Visual Basic 2005
Recipes

A Problem-Solution Approach

Todd Herman, Allen Jones,
Matthew MacDonald, and
Rakesh Rajan

Apress’

[vww allitebooks.cond

http://www.allitebooks.org

Visual Basic 2005 Recipes: A Problem-Solution Approach
Copyright © 2007 by Todd Herman, Allen Jones, Matthew MacDonald, Rakesh Rajan

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-852-8
ISBN-10 (pbk): 1-59059-852-0
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham

Technical Reviewer: Damien Foggon

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Beth Christmas

Copy Edit Manager: Nicole Flores

Copy Editor: Marilyn Smith

Assistant Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Susan Glinert

Proofreader: Liz Welch

Indexer: John Collin

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
WWW. apTess . com.

The information in this book is distributed on an “asis” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/Download
section.

[vww allitebooks.cond

http://www.allitebooks.org

This book is for my incredible wife and best friend Amy, as well as
my son Aidan and daughter Alaina. Without them I wouldn’t be the man
Iam today and this book may not have been possible.
—Todd Herman

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

Aboutthe AUThOrS o XV
About the Technical ReVIEWE o Xvii
ACKNOWIedgmENtS Xix
INtrodUCioN xxi
CHAPTER 1 Application Developmento, 1
CHAPTER 2 Data Manipulation 39
CHAPTER 3 Application Domains, Reflection, and Metadata................ 77
CHAPTER 4 Threads, Processes, and Synchronization 111
CHAPTER 5 Files, Directories,and 1/0 ..., 161
CHAPTERG6 XML ProCesSingccoviiiuiiiiiiiiiiienaieiienennnnns 211
CHAPTER7 Windows FOrmsot 243
CHAPTER8 Multimedia..............ccoiiii e 289
CHAPTER 9 Database ACCESSc.vuiiiii it 335
CHAPTER 10 Networkingand Remotingccoiiinnt. 373
CHAPTER 11 Security and Cryptographyt 433
CHAPTER 12 Unmanaged Code Interoperability 481
CHAPTER 13 Commonly Used Interfaces and Patterns 501
CHAPTER 14 Windows Integration ...t 545
CHAPTER 15 Language Integrated Query (LINQ) 571
APPENDIX ACTONYMS .. 603
Index 609

[vww allitebooks.cond

http://www.allitebooks.org

Contents

Aboutthe AUThOrS ... oo XV
About the Technical ReVieWer e Xvii
ACKNOWIedgmENtS Xix
0o o o] XXi
CHAPTER 1 Application Development 1
1-1. Create a Console Application from the Command Line 2
1-2. Create a Windows-Based Application from the Command Line 4
1-3. Create and Use a Code Module from the Command Line 8
1-4. Create and Use a Code Library from the Command Line 10
1-5. Access Command-Line Arguments 11
1-6. Include Code Selectively at Build Time 13

1-7. Access a Program Element That Has the Same Name
Asa KeYWOrd e e 17
1-8. Create and Manage Strong-Named Key Pairs 18
1-9. Give an Assembly a StrongName 19

1-10. Verify That a Strong-Named Assembly Has Not

Been Modified ...t e 22
1-11. Delay Signan Assemblyccoiiiiiiii .. 23
1-12. Sign an Assembly with an Authenticode Digital Signature 25
1-13. Create and Trust a Test Software Publisher Certificate 29
1-14. Manage the Global Assembly Cache 31
1-15. Make Your Assembly More Difficult to Decompile 32
1-16. Manipulate the Appearance of the Console 33
1-17. Embed a Resource Fileinan Assembly 35
CHAPTER 2 Data Manipulation .. 39
2-1. Manipulate the Contents of a String Efficiently 39
2-2. Encode a String Using Alternate Character Encoding 42
2-3. Convert Basic Value Typesto Byte Arrays 44
2-4. Base64 Encode BinaryDatal 46
2-5. Validate Input Using Regular Expressions 50
2-6. Use Compiled Regular Expressionsc.covvvnnn.. 54

[vww allitebooks.cond

vii

http://www.allitebooks.org

viii

CONTENTS

CHAPTER 3

CHAPTER 4

2-7. Create Dates and Times from Strings 56
2-8. Add, Subtract, and Compare Datesand Times 58
2-9. Sortan Array oran ArrayList 61
2-10. Copy a CollectiontoanArraycoviiiiiinnein... 62
2-11. Use a Strongly Typed Collectionccoovn.... 64
2-12.Create @ GeNneriC TYPE . ..o et i i 66
2-13. Store a Serializable ObjecttoaFile 68
2-14. Read User Input from the Console 72
Application Domains, Reflection, and Metadata 77
3-1. Load an Assembly into the Current Application Domain 77
3-2. Create an ApplicationDomain ...t 80
3-3. Execute an Assembly in a Different Application Domain 82
3-4. Avoid Loading Unnecessary Assemblies into

Application Domainsot e 84
3-5. Create a Type That Cannot Cross Application

Domain Boundariesc.ovuiiiiii i 85
3-6. Create a Type That Can Be Passed Across Application

Domain Boundariesc.ovueiiiii i e 86
3-7. Instantiate a Type in a Different Application Domain 89
3-8. Pass Data Between Application Domains 93
3-9. Unload Assemblies and Application Domains 96
3-10. Retrieve Type Informationot 97
3-11. Testan Object’'s TYPeovvvieii i 99
3-12. Instantiate an Object Using Reflection 101
3-13. Create a Custom Attributeot 105
3-14. Inspect the Attributes of a Program Element

Using Reflection ... 107
Threads, Processes, and Synchronization 111
4-1. Execute a Method Using the Thread Pool 112
4-2. Execute a Method Asynchronouslycoooevnnt. 115
4-3. Execute a Method Periodically 123
4-4. Execute a Method ata Specific Time 125
4-5. Execute a Method by Signaling a WaitHandle Object 127
4-6. Execute a Method UsingaNew Thread 129

4-7. Synchronize the Execution of Multiple Threads
Usinga Monitort e 132

CHAPTER 5

CONTENTS

4-8. Synchronize the Execution of Multiple Threads

UsinganEvento e e e 137
4-9. Synchronize the Execution of Multiple Threads

Usinga Mutexcoiiiiiiiii i e e 140
4-10. Synchronize the Execution of Multiple Threads

UsingaSemaphoreccoiiiiiiiiiii e 143
4-11. Synchronize Access to a Shared Data Value 145
4-12. Know When a Thread Finishescooovint. 147
4-13. Terminate the ExecutionofaThread 149
4-14, Create a Thread-Safe Collection Instance 151
4-15. Start a New Processcovieiiir i annns 152
4-16. Terminate aProcessooviiiiiiiiiiiiiiiennnns, 155
4-17. Ensure That Only One Instance of an Application Can

Execute Concurrently ... 158
Files, Directories,and 1/0 161
5-1. Retrieve Information About a File, Directory, or Drive 162
5-2. Set File and Directory Attributes, 167
5-3. Copy, Move, or Delete a File or a Directory 168
5-4. Calculate the Size of aDirectoryt 171
5-5. Retrieve Version Information foraFile 173
5-6. Show a Just-in-Time Directory Tree in the TreeView Control 175
5-7.Read and Writea TextFileccoiiiiiiiiiiin.t, 177
5-8. Read and Write a Binary File, 180
5-9. Parse a Delimited TextFilecco it 182
5-10. Read a File Asynchronously 185
5-11. Find Files That Match a Wildcard Expression 188
5-12. Test Two Files for Equalityot 190
5-13. Manipulate Strings Representing Filenames 191
5-14. Determine If a Path Is a DirectoryoraFile 193
5-15. Work with Relative Pathst 194
5-16. Create a Temporary File i, 195
5-17. Get the Total Free Space onaDrive 196
5-18. Show the Common File Dialog Boxes 197
5-19.Useanlsolated Storeccoviiiii i, 200
5-20. Monitor the File System forChanges 202
5-21.Accessa COMPort ...t 205
5-22. Get a Random Filename ...ttt 206

5-23. Manipulate the Access Control Lists of a File or Directory 207

CONTENTS

CHAPTER 6

CHAPTER 7

XML Processingcooovviiiiiiiinneninnn.. 211
6-1. Show the Structure of an XML Document in a TreeView 211
6-2. Insert Nodes inan XML Documentc.ouetts 215
6-3. Quickly Append Nodes in an XML Document 217
6-4. Find Specific ElementsbyName 219
6-5. Get XML Nodes in a Specific XML Namespace 221
6-6. Find Elements with an XPath Search 222
6-7. Read and Write XML Without Loading an Entire Document
INtOMemMoOry ... e e 225
6-8. Validate an XML Document Againsta Schema 228
6-9. Use XML Serialization with Custom Objects 233
6-10. Create a Schemafora .NETClass 237
6-11. Generate a ClassfromaSchema 237
6-12. Perform an XSL Transformt 238
WindowsForms ... 243
7-1. Add a Control Programmatically 244
7-2.Link DatatoaControl ... 246
7-3. Process All the ControlsonaFormcott 248
7-4. Track the Visible Forms in an Application 249
7-5. Find AIMDIChildFormscooiiii i 252
7-6. Save Configuration SettingsforaForm 255
7-7. Force a List Box to Scroll to the Most Recently Added Item 258
7-8. Restrict a Textbox to Accepting Only Specific Input 259
7-9. Use an Autocomplete ComboBoxccoet.. 262
7-10. Sort a List View by Any Columnccoviveinn... 264
7-11. Lay Out Controls Automatically 268
7-12. Use Part of a Main Menu for a ContextMenu 269
7-13. Make a Multilingual Form i ... 271
7-14. Create a Form That CannotBe Moved 274
7-15. Make a Borderless Form Movable 275
7-16. Create an Animated System Traylcon...................... 277
7-17. Validate an Input Control, 279
7-18. Use a Drag-and-Drop Operationccooevnnn.. 281
7-19. Use Context-Sensitive Help ... ia 283

7-20. Display a Web Page in a Windows-Based Application 284

CHAPTER 8

CHAPTER 9

CHAPTER 10

CONTENTS

Multimedia ...l 289
8-1.Find AllInstalled Fontscoiiii i 290
8-2. Perform Hit Testing with Shapes 292
8-3. Create an Irregularly Shaped Control 295
8-4. Create a Movable Spritecc i 297
8-5. Create aScrollableImage ..., 301
8-6. Performa Screen Capture ...t 303
8-7. Use Double Buffering to Increase Redraw Speed 304
8-8. Show a Thumbnail foranlmageccooie... 307
8-9. Play a Simple Beep or System Sound 308
8-10.PlayaWAVFile ... e 310
8-11.PlayaSoundFileccoiiiiiiii i 311
8-12. Show a Video with DirectShow 313
8-13. Retrieve Information About Installed Printers 316
8-14. Printa Simple Documento, 318
8-15. Print a Multipage Documentia... 321
8-16. Print Wrapped Text 324
8-17. Show a Dynamic Print Previewcooiee.. 327
8-18.Manage PrintJobs i 330
Database AcCeSS ... 335
9-1. ConnecttoaDatabaseccviiiiiiiiiinat. 336
9-2. Use Connection Poolingc.covviviii i, 340
9-3. Create a Database Connection String Programmatically 342
9-4. Store a Database Connection String Securely 344
9-5. Execute a SQL Command or Stored Procedure 347
9-6. Use Parameters in a SQL Command or Stored Procedure 351
9-7. Process the Results of a SQL Query Using a Data Reader 355
9-8. Obtain an XML Document from a SQL Server Query 358
9-9. Perform Asynchronous Database Operations

Against SQL Server e e 362
9-10. Write Database-Independent Code, 366
9-11. Discover All Instances of SQL Server on Your Network 370
Networking and Remoting 373
10-1. Obtain Information About the Local Network Interface 374
10-2. Detect Changes in Network Connectivity 377

10-3. Download Data over HTTPor FTP ..., 379

Xi

Xii

CONTENTS

CHAPTER 11

10-4. Download a File and Process It Usinga Stream
10-5. Respond to HTTP Requests from Your Application
10-6. Get an HTML Page from a Site That

Requires Authenticationccciiiiii i
10-7.Send E-mail USing SMTPt
10-8. Resolve a Host Name to an IP Address
10-9.PinganIPAdAressccoviiiiiiiiii e
10-10. Communicate USing TCPciiiiiiie et
10-11. Create a Multithreaded TCP Server That Supports

Asynchronous Communicationsccoeviieinn.,
10-12. Communicate UsSingUDPccciiiiiiinnin...
10-13. Avoid Hard-Coding the Web Service URL
10-14. Set Authentication Credentials for a Web Service
10-15. Call a Web Method Asynchronously
10-16. Make an ObjectRemotable
10-17. Register All the Remotable Classes in an Assembly
10-18. Host a Remote ObjectinlISt
10-19. Control the Lifetime of a Remote Object
10-20. Control Versioning for Remote Objects

Security and Cryptography

11-1. Allow Partially Trusted Code to Use Your

Strong-Named Assembly ...
11-2. Disable Code Access Securityccoeeviiieiinn...
11-3. Disable Execution Permission Checks
11-4. Ensure the Runtime Grants Specific Permissions to

Your Assembly ... e
11-5. Limit the Permissions Granted to Your Assembly
11-6. View the Permissions Required

by an Assembly ... e e
11-7. Determine at Runtime If Your Code Has a

Specific Permission ... e
11-8. Restrict Who Can Extend Your Classes and Override

Class Members ...t e
11-9. Inspect an Assembly’s Evidence
11-10. Determine If the Current User Is a Member of a Specific

WIndoWS GrouUp .. .ove it i e i e
11-11. Restrict Which Users Can Execute Your Code
11-12. Impersonate a Windows Usercoovviievinnn.,

CONTENTS Xiii

11-13. Create a Cryptographically Random Number 462
11-14. Calculate the Hash Code of a Password 463
11-15. Calculate the Hash Code of aFile 466
11-16. VerifyaHash Codeccoiiiiiiii et 469
11-17. Ensure Data Integrity Using a Keyed Hash Code a7
11-18. Work with Security-Sensitive Strings in Memory 474
11-19. Encrypt and Decrypt Data Using the Data Protection API 477
CHAPTER 12 Unmanaged Code Interoperability 481
12-1. Call a Function in an Unmanaged DLL 481
12-2. Get the Handle for a Control, Window, or File 484
12-3. Call an Unmanaged Function That Uses a Structure 486
12-4. Call an Unmanaged Function That Uses a Callback 489
12-5. Retrieve Unmanaged Error Information 491
12-6. Use a COM Componentina .NET Client 493
12-7. Release a COM Component Quickly 495
12-8. Use Optional Parametersccovvviiiininnnn.,. 496
12-9. Use an ActiveX Controlina .NETClient 497
12-10. Expose a .NET Componentto COM 499
CHAPTER 13 Commonly Used Interfaces and Patterns 501
13-1. Implement a Serializable Typecccoiviiiina... 501
13-2. Implement a Cloneable Typeccoviiiiein... 508
13-3. Implementa Comparable Typeccoviiiin... 512
13-4. Implement an Enumerable Type Using a Custom lterator 517
13-5. Implement a Disposable Classccovevnn... 523
13-6. Implement a Formattable Typeol ... 527
13-7. Implement a Custom Exception Class 531
13-8. Implement a Custom Event Argument 535
13-9. Implement the Singleton Pattern 537
13-10. Implement the Observer Pattern 539
CHAPTER 14 Windows Integration 545
14-1. Access Runtime Environment Information 545
14-2. Retrieve the Value of an Environment Variable 549
14-3. Write an Event to the Windows EventLlog 550

14-4. Read and Write to the Windows Registry 553

Xiv

CONTENTS

CHAPTER 15

APPENDIX

14-5. Search the Windows Registryccoovviiiinn.. 556
14-6. Create a Windows Serviceccooviiiiiinnnnnn. 559
14-7. Create a Windows Service Installer 564
14-8. Create a Shortcut on the Desktop or StartMenu 567
Language Integrated Query (LINQ) 571
15-1. Use Implicitly Typed Variablesccott 572
15-2. Use Object Initializersccooiiiiiiiiiii ., 574
15-3. Use AnOnymouS TYPES .. vvviiee it iiiee i iieenaeens 576
15-4. Create Extension Methodsot 578
15-5. Query an I[Enumerable(Of T) Collection 579
15-6. Query a Nongeneric Collectioncooutt. 584
15-7.SortDataUsing LINQ ..., 585
15-8. Filter DataUsing LINQot 589
15-9. Query Data from Multiple Collections 591
15-10. Perform Aggregate Operations on Collections 594
15-11. Retrieve a Subset of Data from a Collection 598
15-12. Display Collection Data Using Paging 600
ACronymS i 603
... 609

About the Authors

TODD HERMAN works for Northrop Grumman developing software for the
Department of State. He has been programming since he received his first
computer, a Commodore 64, on his eleventh birthday. His experience ranges
from developing data-entry software in FoxPro for a water research labora-
tory to writing biometric applications in Visual Basic for NEC. He currently
lives in Virginia with his wife and children, and spends his free time program-
ming, playing games, and watching the Sci-Fi channel.

ALLEN JONES has 15 years of experience covering a wide range of IT disciplines
in a variety of sectors; however, his true passion has always been software
development. Allen is currently Director of Product Development at Smith-
Bayes, a UK-based firm that develops high-end, strategic-decision-support
software derived from technology used in Formula 1 motor racing.

MATTHEW MACDONALD is an author, educator, and Microsoft MVP. He is a
regular contributor to programming journals and the author of more than a
dozen books about .NET programming, including Pro .NET 2.0 Windows Forms
and Custom Controls in C#, Pro ASP.NET 2.0, and Pro WPF (each published by
Apress). In a dimly remembered past life, he studied English literature and
theoretical physics.

RAKESH RAJAN coauthored an earlier book on which this book is based
(Visual C# 2005 Recipes, Apress, 2006). Sadly, Rakesh passed away in 2006. He
was a Microsoft MVP in C# and an MCSD in .NET. As a software engineer from
India, Rakesh worked with US Technology at Technopark, Trivandrum in Kerala.

Xv

About the Technical Reviewer

DAMIEN FOGGON is a freelance programmer and technical author based in Newcastle, England. He is
technical director of Thing-E Ltd., a company specializing in the development of dynamic web solutions
for the education sector, and founder of Littlepond Ltd. He started out working for BT in the UK before
moving on to progressively smaller companies, finally founding his own company. Now he can work
on all the cool new technologies, rather than the massive monolithic developments that still exist
out there.

Damien is the author of Beginning ASP.NET 2.0 Databases: From Novice to Professional
(Apress, 2006). He can be reached at http://www.littlepond.co.uk.

Xvii

Acknowledgments

I first want to thank Richard Guidorizzi for reaffirming my thoughts regarding writing a book. Further-
more, I must thank Ewan Buckingham for seeing something in my e-mail and offering me the

opportunity to write this. Finally, I must also extend my thanks and appreciation to Damien Foggon,
my technical reviewer. His comments and suggestions forced me to dig deeper into myself and the

material to make this a book to be proud of.
Todd Herman

Xix

Introduction

Attempting to learn all there is to know about developing VB .NET applications using the Microsoft
NET Framework would be an incredibly daunting task. For most of us, the easiest and best approach
is to dive in and start writing code. We learn through testing and experimentation, and when we run
into the unknown, we search the Internet or grab a book to assist with the current subject.

Visual Basic 2005 Recipes is not a book that attempts to teach you about the inner workings of a
specific subject. It is a resource book that should sit near you as you program, where you can quickly
use it to reference what you need.

As you are settled in front of your computer working, you will inevitably run into a situation
where you need a little guidance, as all of us do from time to time. The subject matter in this book is
so comprehensive that you are bound to find at least one recipe that will fit the bill whenever you
need that nudge in the right direction.

This book will not teach you everything you need know about developing VB .NET applications in
Visual Studio 2005, but it will be invaluable as a stepping stone. Use the recipes as you need them, to help
move your development projects along or to give you a starting point for your own experimentation.

Note This book is based on a previously published book called Visual C# 2005 Recipes. All the contents were
converted to Visual Basic and updated to reflect some VB-specific features and functionality. While the recipes all target
.NET Framework 2.0, many of the recipes will still work on .NET Framework 1.1. Where a recipe uses functionality
specific to .NET Framework 2.0, comments were added to present possible alternatives for using .NET Framework 1.1.
Furthermore, as we are on the cusp of a new version of the .NET Framework (3.5) and Visual Studio (code-named
Orcas), Chapter 15 covers a new and remarkable feature known as Language Integrated Query (LINQ).

CHAPTER 1

Application Development

This chapter covers some of the fundamental activities you will need to perform when developing
your Visual Basic .NET (VB .NET) solutions. The recipes in this chapter describe how to do the following:

e Use the VB .NET command-line compiler to build console and Windows Forms applications
(recipes 1-1 and 1-2)

¢ Create and use code modules and libraries (recipes 1-3 and 1-4)

e Access command-line arguments from within your applications (recipe 1-5)

* Use compiler directives and attributes to selectively include code at build time (recipe 1-6)

e Access program elements built in other languages whose names conflict with VB .NET
keywords (recipe 1-7)

* Give assemblies strong names and verify strong-named assemblies (recipes 1-8, 1-9, 1-10,
and 1-11)

e Sign an assembly with a Microsoft Authenticode digital signature (recipes 1-12 and 1-13)
e Manage the shared assemblies that are stored in the global assembly cache (recipe 1-14)
e Make your assembly more difficult to decompile (recipe 1-15)

e Manipulate the appearance of the console (recipe 1-16)

e Compile and embed a string resource file (recipe 1-17)

Note All the tools discussed in this chapter ship with the Microsoft .NET Framework or the .NET Framework
software development kit (SDK). The tools that are part of the .NET Framework are in the main directory for the
version of the framework you are running. For example, they are in the directory C:\WINDOWS\Microsoft.NET\
Framework\v2.0.50727 if you install version 2.0 of the .NET Framework to the default location. The .NET installation
process automatically adds this directory to your environment path.

The tools provided with the SDK are in the Bin subdirectory of the directory in which you install the SDK, which is
C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0 if you chose the default path during the installation of Microsoft
Visual Studio 2005. This directory is not added to your path automatically, so you must manually edit your path in
order to have easy access to these tools or use the shortcut to the command prompt installed in the Windows Start »
Programs menu of Visual Studio that calls vcvarsall.bat to set the right environment variables.

Most of the tools support short and long forms of the command-line switches that control their functionality. This
chapter always shows the long form, which is more informative but requires additional typing. For the shortened
form of each switch, see the tool’s documentation in the .NET Framework SDK.

CHAPTER 1 APPLICATION DEVELOPMENT

1-1. Create a Console Application from the
Command Line

Problem

You need to use the VB .NET command-line compiler to build an application that does not require a
Windows graphical user interface (GUI) but instead displays output to, and reads input from, the
Windows command prompt (console).

Solution

In one of your classes, ensure you implement a Shared method named Main with one of the following
signatures:

Public Shared Sub Main()

End Sub

Public Shared Sub Main(ByVal args As String())

End Sub

Public Shared Function Main() As Integer

End Sub

Public Shared Function Main(ByVal args As String()) As Integer
End Sub

Build your application using the VB .NET compiler (vbc.exe) by running the following
command (where HelloWorld.vb is the name of your source code file):

vbc /target:exe HelloWorld.vb

Note If you own Visual Studio, you will most often use the Console Application project template to create new
console applications. However, for small applications, it is often just as easy to use the command-line compiler. It
is also useful to know how to build console applications from the command line if you are ever working on a machine
without Visual Studio and want to create a quick utility to automate some task.

How It Works

By default, the VB .NET compiler will build a console application unless you specify otherwise. For
this reason, it’s not necessary to specify the /target: exe switch, but doing so makes your intention
clearer, which is useful if you are creating build scripts that will be used by others or will be used
repeatedly over a period of time.

To build a console application consisting of more than one source code file, you must specify all
the source files as arguments to the compiler. For example, the following command builds an appli-
cation named MyFirstApp.exe from two source files named HelloWorld.vb and ConsoleUtils.vb:

vbc /target:exe /main:HelloWorld /out:MyFirstApp.exe HelloWorld.vb ConsoleUtils.vb

The /out switch allows you to specify the name of the compiled assembly. Otherwise, the assembly
is named after the first source file listed—HelloWorld.vb in the example. If classes in both the

CHAPTER 1 APPLICATION DEVELOPMENT

HelloWorld and ConsoleUtils files contain Main methods, the compiler cannot automatically deter-
mine which method represents the correct entry point for the assembly. Therefore, you must use the
compiler’s /main switch to identify the name of the class that contains the correct entry point for your
application. When using the /main switch, you must provide the fully qualified class name (including
the namespace); otherwise, you will get a BC30420 compilation error: “‘Sub Main’ was not found in
‘HelloWorld’.”
If you have a lot of VB .NET code source files to compile, you should use a response file. This

simple text file contains the command-line arguments for vbc.exe. When you call vbc.exe, you give
the name of this response file as a single parameter prefixed by the @ character. Here is an example:

vbc @commands.rsp
To achieve the equivalent of the previous example, commands.rsp would contain this:
/target:exe /main:HelloWorld /out:MyFirstApp.exe HelloWorld.vb ConsoleUtils.vb

For readability, response files can include comments (using the # character) and can span
multiple lines. The VB .NET compiler also allows you to specify multiple response files.

The Code
The following code lists a class named ConsoleUtils thatis defined in a file named ConsoleUtils.vb:

Imports System

Namespace Apress.VisualBasicRecipes.Chaptero1
Public Class ConsoleUtils
' This method will display a prompt and read a response from the console.
Public Shared Function ReadString(ByVal message As String) As String

Console.Write(message)
Return Console.Readline

End Function
' This method will display a message on the console.
Public Shared Sub WriteString(ByVal message As String)

Console.WriteLine(message)
End Sub

This method is used for testing ConsoleUtils methods.
While it is not good practice to have multiple Main
methods in an assembly, it sometimes can't be avoided.
You specify in the compiler which Main subroutine should
be used as the entry point. For this example, this Main
routine will never be executed.
Public Shared Sub Main()

' Prompt the reader to enter a name.
Dim name As String = ReadString("Please enter a name: ")

CHAPTER 1 APPLICATION DEVELOPMENT

Welcome the reader to Visual Basic 2005 Recipes.
WriteString("Welcome to Visual Basic 2005 Recipes, " & name)

End Sub

End Class
End Namespace

The HelloWorld class listed next uses the ConsoleUtils class to display the message “Hello, World”
to the console (HelloWorld is contained in the HelloWorld.vb file):

Imports System

Namespace Apress.VisualBasicRecipes.Chaptero1l
Public Class HelloWorld

Public Shared Sub Main()
ConsoleUtils.WriteString("Hello, World")

ConsoleUtils.WriteString(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
End Class
End Namespace

Usage
To build HelloWorld.exe from the two source files, use the following command:

vbc /target:exe /main:Apress.VisualBasicRecipes.Chapter01.HelloWorld w»
/out:HelloWorld.exe ConsoleUtils.vb HelloWorld.vb

1-2. Create a Windows-Based Application from
the Command Line

Problem

You need to use the VB .NET command-line compiler to build an application that provides a
Windows Forms-based GUI.

Solution

Create a class that inherits from the System.Windows.Forms.Form class. (This will be your applica-
tion’s main form.) In one of your classes, ensure youimplement a Shared method named Main. In the
Main method, create an instance of your main form class and pass it to the Shared method Run of the
System.Windows.Forms.Application class. Build your application using the command-line VB .NET
compiler, and specify the /target:winexe compiler switch.

CHAPTER 1 APPLICATION DEVELOPMENT

Note If you own Visual Studio, you will most often use the Windows Application project template to create new
Windows Forms—based applications. Building large GUI-based applications is a time-consuming undertaking that
involves the correct instantiation, configuration, and wiring up of many forms and controls. Visual Studio automates
much of the work associated with building graphical applications. Trying to build a large graphical application
without the aid of tools such as Visual Studio will take you much longer, be extremely tedious, and result in a greater
chance of bugs in your code. However, it is also useful to know the essentials required to create a Windows-based
application using the command line in case you are ever working on a machine without Visual Studio and want to
create a quick utility to automate some task or get input from a user.

How It Works

Building an application that provides a simple Windows GUI is a world away from developing a full-
fledged Windows-based application. However, you must perform certain tasks regardless of whetheryou
are writing the Windows equivalent of Hello World or the next version of Microsoft Word, including
the following:

* For each form you need in your application, create a class that inherits from the System.
Windows.Forms.Form class.

e Ineach ofyour form classes, declare members that represent the controls that will be on that
form, such as buttons, labels, lists, and textboxes. These members should be declared Private
or at least Protected so that other program elements cannot access them directly. If you need
to expose the methods or properties of these controls, implement the necessary members in
your form class, providing indirect and controlled access to the contained controls.

e Declare methods in your form class that will handle events raised by the controls contained
by the form, such as button clicks or key presses when a textbox is the active control. These
methods should be Private or Protected and follow the standard .NET event pattern (described
in recipe 13-10). It’s in these methods (or methods called by these methods) where you will
define the bulk of your application’s functionality.

e Declare a constructor for your form class that instantiates each of the form’s controls and
configures their initial state (size, color, position, content, and so on). The constructor should
also wire up the appropriate event handler methods of your class to the events of each control.

¢ Declare a Shared method named Main—usually as a member of your application’s main form
class. This method is the entry point for your application, and it can have the same signatures
as those mentioned in recipe 1-1. In the Main method, call Application.EnableVisualStyles
to allow XP theme support, create an instance of your application’s main form, and pass it as
an argument to the Shared Application.Run method. The Run method makes your main form
visible and starts a standard Windows message loop on the current thread, which passes the
user input (key presses, mouse clicks, and so on) to your application form as events.

The Code

The Recipe01_02 class shown in the following code listing is a simple Windows Forms application
that demonstrates the techniques just listed. When run, it prompts a user to enter a name and then
displays a message box welcoming the user to Visual Basic 2005 Recipes.

CHAPTER 1 APPLICATION DEVELOPMENT

Imports System
Imports System.Windows.Forms

Namespace Apress.VisualBasicRecipes.Chaptero1l

Public Class Recipeo1 02
Inherits Form
' Private members to hold references to the form's controls.
Private Labell As Label
Private TextBox1 As TextBox
Private Buttoni As Button
' Constructor used to create an instance of the form and configure
the form's controls.
Public Sub New()
' Instantiate the controls used on the form.
Me.Labell = New Label
Me.TextBox1 = New TextBox
Me.Buttonl = New Button

' Suspend the layout logic of the form while we configure and
' position the controls.

Me.SuspendLayout ()

' Configure Label1, which displays the user prompt.
Me.Labell.Location = New System.Drawing.Size(16, 36)
Me.Label1.Name = "Label1"

Me.Label1l.Size = New System.Drawing.Size(155, 16)
Me.Label1.TabIndex = 0

Me.Label1l.Text = "Please enter your name:"

' Configure TextBox1, which accepts the user input.
Me.TextBox1.Location = New System.Drawing.Point(172, 32)
Me.TextBox1.Name = "TextBox1"

Me.TextBox1.TabIndex = 1

Me.TextBox1.Text = ""

' Configure Buttoni, which the user clicks to enter a name.
Me.Buttoni.Location = New System.Drawing.Point(109, 80)
Me.Buttoni.Name = "Button1”

Me.Buttoni.TabIndex = 2

Me.Buttoni.Text = "Enter"

AddHandler Buttoni1.Click, AddressOf Buttoni Click

' Configure WelcomeForm, and add controls.
Me.ClientSize = New System.Drawing.Size(292, 126)
Me.Controls.Add(Me.Button1)
Me.Controls.Add(Me.TextBox1)
Me.Controls.Add(Me.Label1)

Me.Name = "Form1"

Me.Text = "Visual Basic 2005 Recipes"”

CHAPTER 1 APPLICATION DEVELOPMENT

' Resume the layout logic of the form now that all controls are
' configured.
Me.ResumelLayout(False)

End Sub

Private Sub Buttoni Click(ByVal sender As Object, =
ByVal e As System.EventArgs)

Write debug message to the console.
System.Console.WriteLine("User entered: " + TextBoxi.Text)

Display welcome as a message box.
MessageBox. Show("Welcome to Visual Basic 2005 Recipes, " + =
TextBox1.Text, "Visual Basic 2005 Recipes")

End Sub

' Application entry point, creates an instance of the form, and begins
' running a standard message loop on the current thread. The message
' loop feeds the application with input from the user as events.
Public Shared Sub Main()

Application.EnableVisualStyles()

Application.Run(New Recipe01 02())
End Sub

End Class
End Namespace

Usage

To build the Recipe01 02 class into an application, use this command:

vbc /target:winexe Recipe01-02.vb

The /target:winexe switch tells the compiler that you are building a Windows-based applica-
tion. As aresult, the compiler builds the executable in such a way that no console is created when you
run your application. If you use the /target: exe switch instead of /target:winexe to build a Windows
Forms application, your application will still work correctly, but you will have a console window
visible while the application is running. Although this is undesirable for production-quality software,
the console window is useful if you want to write debug and logging information while you're devel-
oping and testing your Windows Forms application. You can write to this console using the Write
and WritelLine methods of the System.Console class.

Figure 1-1 shows the WelcomeForm.exe application greeting a user named John Doe. This
version of the application is built using the /target:exe compiler switch, resulting in the visible
console window in which you can see the output from the Console.Writeline statement in the
button1 Click event handler.

CHAPTER 1 APPLICATION DEVELOPMENT

Figure 1-1. A simple Windows Forms application

1-3. Create and Use a Code Module from the
Command Line

Problem

You need to do one or more of the following:
e Improve your application’s performance and memory efficiency by ensuring the runtime
loads rarely used types only when they are required.

e Compile types written in VB .NET to a form you can build into assemblies being developed in
other .NET languages.

* Use types developed in another language and build them into your VB .NET assemblies.

Solution

Build your VB .NET source code into a module by using the command-line compiler and specifying
the /target:module compiler switch. To incorporate existing modules into your assembly, use the
/addmodule compiler switch.

How It Works

Modules are the building blocks of .NET assemblies and should not be confused with the Module
object type block. Modules consist of a single file that contains the following:

e Microsoft Intermediate Language (MSIL) code created from your source code during
compilation

* Metadata describing the types contained in the module

* Resources, such as icons and string tables, used by the types in the module

CHAPTER 1 APPLICATION DEVELOPMENT

Assemblies consist of one or more modules and an assembly manifest. An assembly manifest is
metadata that contains important information (such as the name, version, culture, and so on)
regarding the assembly. If the assembly contains a single module, the module and assembly mani-
fest are usually built into a single file for convenience. If more than one module exists, the assembly
represents a logical grouping of more than one file that you must deploy as a complete unit. In these
situations, the assembly manifest is either contained in a separate file or built into one of the modules.
Visual Studio includes the MSIL Disassembler tool (Ildasm.exe), which lets you view the raw MSIL
code for any assembly. You can use this tool to view an assembly manifest.

By building an assembly from multiple modules, you complicate the management and deploy-
ment of the assembly, but under some circumstances, modules offer significant benefits:

¢ The runtime will load a module only when the types defined in the module are required.
Therefore, where you have a set of types that your application uses rarely, you can partition
them into a separate module that the runtime will load only if necessary. This can improve
performance, especially if your application is loaded across a network, and minimize the use
of memory.

e The ability to use many different languages to write applications that run on the common
language runtime (CLR) is a great strength of the .NET Framework. However, the VB .NET
compiler can’t compile your Microsoft C# or COBOL .NET code for inclusion in your assembly.
To use code written in another language, you can compile it into a separate assembly and
reference it. But if you want it to be an integral part of your assembly, you must build it into a
module. Similarly, if you want to allow others to include your code as an integral part of their
assemblies, you must compile your code as modules. When you use modules, because the
code becomes part of the same assembly, members marked as Friend or Protected Friend
are accessible, whereas they would not be if the code had been accessed from an external
assembly.

Usage

To compile a source file named ConsoleUtils.vb (see recipe 1-1 for the contents) into a module,
use the command vbc /target:module ConsoleUtils.vb. The resultis the creation of a file named
ConsoleUtils.netmodule. The netmodule extension is the default extension for modules, and the
filename is the same as the name of the VB .NET source file.

You can also build modules from multiple source files, which results in a single file containing
the MSIL and metadata (the assembly manifest) for all types contained in all the source files. The
command vbc /target:module ConsoleUtils.vb WindowsUtils.vb compiles two source files named
ConsoleUtils.vb and WindowsUtils.vb to create the module named ConsoleUtils.netmodule. The
module is named after the first source file listed unless you override the name with the /out compiler
switch. For example, the command vbc /target:module /out:Utilities.netmodule ConsoleUtils.vb
WindowsUtils.vb creates a module named Utilities.netmodule.

To build an assembly consisting of multiple modules, you must use the /addmodule compiler
switch. To build an executable named MyFirstApp.exe from two modules named WindowsUTils.
netmodule and ConsoleUtils.netmodule and two source files named SourceOne.vb and SourceTwo.vb,
use the command vbc /out:MyFirstApp.exe /target:exe /addmodule:WindowsUtils.netmodule,
ConsoleUtils.netmodule SourceOne.vb SourceTwo.vb.

This command will result in an assembly that is composed of the following components:

e MyFirstApp.exe, which contains the assembly manifest as well as the MSIL for the types
declared in the SourceOne.vb and SourceTwo.vb source files

¢ ConsoleUtils.netmodule and WindowsUtils.netmodule, which are now integral components
of the multifile assembly but are unchanged by this compilation process

10

CHAPTER 1 APPLICATION DEVELOPMENT

Caution If you attempt to run an assembly (such as MyFirstApp.exe) without any required netmodules present,
a System.I0.FileNotFoundException is thrown the first time any code tries to use types defined in the
missing code module. This is a significant concern because the missing modules will not be identified until runtime.
You must be careful when deploying multifile assemblies.

1-4. Create and Use a Code Library from the
Command Line

Problem

You need to build a set of functionality into a reusable code library so that multiple applications can
reference and reuse it.

Solution

Build your library using the command-line VB .NET compiler, and specify the /target:library
compiler switch. To reference the library, use the /reference compiler switch when you build your
application, and specify the names of the required libraries.

How It Works

Recipe 1-1 showed you how to build an application named MyFirstApp.exe from the two source files
ConsoleUtils.vb and HelloWorld.vb. The ConsoleUtils.vb file contains the ConsoleUtils class, which
provides methods to simplify interaction with the Windows console. If you were to extend the func-
tionality of the ConsoleUtils class, you could add functionality useful to many applications. Instead
of including the source code for ConsoleUtils in every application, you could build it into a library
and deploy it independently, making the functionality accessible to many applications.

Usage

To build the ConsoleUtils.vb file into alibrary, use the command vbc /target:library ConsoleUtils.vb.
This will produce a library file named ConsoleUtils.dll. To build a library from multiple source files,
list the name of each file at the end of the command. You can also specify the name of the library
using the /out compiler switch; otherwise, the library is named after the first source file listed. For
example, to build a library named MyFirstLibrary.dll from two source files named ConsoleUtils.vb and
WindowsUTtils.vb, use the command vbc /out:MyFirstlibrary.dll /target:library ConsoleUtils.vb
WindowsUtils.vb.

Before distributing your library, you might consider strong naming it so that no one can modify
your assembly and pass it off as being the original. Strong naming your library also allows people to
install it into the global assembly cache (GAC), which makes reuse much easier. (Recipe 1-9 describes
how to strong name your assembly, and recipe 1-14 describes how to install a strong-named assembly
into the GAC.) You might also consider signing your library with an Authenticode signature, which
allows users to confirm you are the publisher of the assembly. (See recipe 1-12 for details on signing
assemblies with Authenticode.)

CHAPTER 1 APPLICATION DEVELOPMENT 11

To compile an assembly that relies on types declared within external libraries, you must tell
the compiler which libraries are referenced using the /reference compiler switch. For example, to
compile the HelloWorld.vb source file (from recipe 1-1) if the ConsoleUtils class is contained in
the ConsoleUtils.dll library, use the command vbc /reference:ConsoleUtils.dll HelloWorld.vb.
Remember these four points:

e Ifyoureference more than one library, separate each library name with a comma or semi-
colon, but don’t include any spaces. For example, use /reference:ConsoleUtils.dll,
WindowsUtils.d1l.

 Ifthelibraries aren’t in the same directory as the source code, use the /1ibpath switch on the
compiler to specify the additional directories where the compiler should look for libraries.
For example, use /libpath:c:\CommonLibraries,c:\Dev\ThirdPartylLibs.

¢ Note thatadditional directories can be relative to the source folder. Don’t forget that at runtime,
the generated assembly must be in the same folder as the application that needs it, except if
you deploy it into the GAC.

e Ifthe library you need to reference is a multifile assembly, reference the file that contains the
assembly manifest. (For information about multifile assemblies, see recipe 1-3.)

1-5. Access Command-Line Arguments

Problem

You need to access the arguments that were specified on the command line when your application
was executed.

Solution

Use a signature for your Main method that exposes the command-line arguments as a String array.
Alternatively, access the command-line arguments from anywhere in your code using the Shared
members of the System.Environment class.

How It Works

Declaring your application’s Main method with one of the following signatures provides access to the
command-line arguments as a string array:

Public Shared Sub Main(ByVal args As String())

End Sub

Public Shared Function Main(ByVal args As String()) As Integer
End Sub

Atruntime, the args argument will contain a string for each value entered on the command line
after your application’s name. The application’s name is not included in the array of arguments.

If you need access to the command-line arguments at places in your code other than the Main
method, you can process the command-line arguments in your Main method and store them for later
access. However, this is not necessary since you can use the System.Environment class, which
provides two Shared members that return information about the command line: CommandLine and
GetCommandLineArgs.

12

CHAPTER 1 APPLICATION DEVELOPMENT

The CommandLine property returns a string containing the full command line that launched the
current process. Depending on the operating system on which the application is running, path infor-
mation might precede the application name. Microsoft Windows 2003, Windows NT 4.0, Windows
2000, and Windows XP don’t include path information, whereas Windows 98 and Windows ME do.
The GetCommandLineArgs method returns a String array containing the command-line arguments.
This array can be processed in the same way as the String array passed to the Main method, as discussed
at the start of this section. Unlike the array passed to the Main method, the first element in the array
returned by the GetCommandLineArgs method is the filename of the application.

The Code

To demonstrate the access of command-line arguments, the Main method in the following example
steps through each of the command-line arguments passed to it and displays them to the console.
The example then accesses the command line directly through the Environment class.

Imports System

Namespace Apress.VisualBasicRecipes.Chaptero1l
Public Class Recipe01 05

Public Shared Sub Main(ByVal args As String())

' Step through the command-line arguments

For Each s As String In args
Console.WriteLine(s)

Next

' Alternatively, access the command-line arguments directly.
Console.WritelLine(Environment.CommandLine)

For Each s As String In Environment.GetCommandLineArgs()
Console.WriteLine(s)
Next

Wait to continue
Console.WritelLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadLine()

End Sub

End Class
End Namespace

Usage
If you execute the Recipe01-05 example using the following command:

Recipe01-05 "one \"two\" three" four 'five six

the application will generate the following output on the console:

CHAPTER 1 APPLICATION DEVELOPMENT

one "two" three

four

"five

six'

"C:\Programming\Visual Basic 2005 Recipes\Chapter01\Recipe01-05\bin\Debug\Recipe

01-05.vshost.exe" "one \"two\" three" four 'five six'
C:\Programming\Visual Basic 2005 Recipes\Chapter01\Recipe01-05\bin\Debug\Recipe0
1-05.vshost.exe

one "two" three

four

'five

six'

Notice that the use of double quotes (") results in more than one word being treated as a single
argument, although single quotes (') do not. Also, you can include double quotes in an argument by
escaping them with the backslash character (\). Finally, notice that all spaces are stripped from the
command line unless they are enclosed in double quotes.

1-6. Include Code Selectively at Build Time

Problem

You need to selectively include and exclude sections of source code from your compiled assembly.

Solution

Use the #If, #E1self, #Else, and #End If preprocessor directives to identify blocks of code that
should be conditionally included in your compiled assembly. Use the System.Diagnostics.
ConditionalAttribute attribute to define methods that should be called conditionally only. Control
the inclusion of the conditional code using the #Const directive in your code, or use the /define
switch when you run the VB .NET compiler from the command line.

How It Works

If you need your application to function differently depending on factors such as the platform or
environment on which it runs, you can build runtime checks into the logic of your code that trigger
the variations in operation. However, such an approach can bloat your code and affect performance,
especially if many variations need to be supported or many locations exist where evaluations need
to be made.

An alternative approach is to build multiple versions of your application to support the different
target platforms and environments. Although this approach overcomes the problems of code bloat
and performance degradation, it would be an untenable solution if you had to maintain different
source code for each version, so VB .NET provides features that allow you to build customized
versions of your application from a single code base.

The #If,#E1lseIf,#Else, and #End Ifpreprocessor directives allow you to identify blocks of code
that the compiler should include or exclude in your assembly at compile time. This is accomplished
by evaluating the value of specified symbols. Since this happens at compile time, it may result in
multiple executables being distributed.

13

14

CHAPTER 1 APPLICATION DEVELOPMENT

Symbols can be any literal value. They also support the use of all standard comparison and
logical operators or other symbols. The #If..#End If constructevaluates #If and #ElseIf clauses
only until it finds one that evaluates to true, meaning that if you define multiple symbols (winXP and
win2000, for example), the order of your clauses is important. The compiler includes only the code in
the clause that evaluates to true. If no clause evaluates to true, the compiler includes the code in the
#E1lse clause.

You can also use logical operators to base conditional compilation on more than one symbol.
Use parentheses to group multiple expressions. Table 1-1 summarizes the supported operators.

Table 1-1. Logical Operators Supported by the #If . . #End If Directive

Operator Example Description

NOT #If NOT winXP Inequality. Evaluates to true if the symbol winXP is
not equal to True. Equivalent to #If NOT winXP.

AND #If winXP AND release Logical AND. Evaluates to true only if the symbols
winXP and release are equal to True.

AndAlso #If winXP AndAlso release Logical AND. Works the same as the AND operator,
except that the second expression (release) is not
evaluated if the first expression (winXP) is False.

OR #IF winXP OR release Logical OR. Evaluates to true if either of the
symbols winXP or release is equal to True.

OrElse #IF winXP OrElse release Logical OR. Works to the same as the OR operator,
except that the second expression (release) is not
evaluated if the first expression (winXP) is True.

XOR #IF winXP XOR release Logical XOR. Evaluates to true if only one of the
symbols, winXP or release, is equal to True.

Caution You must be careful not to overuse conditional compilation directives and not to make your conditional
expressions too complex; otherwise, your code can quickly become confusing and unmanageable—especially as
your projects become larger.

To define a symbol, you can either include a #Const directive in your code or use the /define
compiler switch. Symbols defined using #Const are active until the end of the file in which they are
defined. Symbols defined using the /define compiler switch are active in all source files that are
being compiled. All #Const directives must appear at the top of your source file before any code,
including any Imports statements.

Ifyou onlyneed to determine if a symbol has been defined, a more elegant alternative to the #If
preprocessor directive is the attribute System.Diagnostics.ConditionalAttribute. If you apply
ConditionalAttribute to a method, the compiler will ignore any calls to the method if the symbol
specified by ConditionalAttribute is not defined, or set to False, at the calling point.

Using ConditionalAttribute centralizes your conditional compilation logic on the method
declaration and means you can freely include calls to conditional methods without littering your code
with #If directives. However, because the compiler literally removes calls to the conditional method
from your code, your code can’t have dependencies on return values from the conditional method.
This means you can apply ConditionalAttribute only to subroutines.

CHAPTER 1 APPLICATION DEVELOPMENT

The Code

In this example, the code assigns a different value to the local variable platformName based on whether
the winXP, win2000, winNT, or Win98 symbols are defined. The head of the code defines the win2000
symbol. In addition, the ConditionalAttribute specifies that calls to the DumpState method should
be included in an assembly only if the symbol DEBUG is defined during compilation. The DEBUG
symbol is defined by default in debug builds.

#Const win2000 = True

Imports System
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero1

Public Class Recipe01 06

Declare a string to contain the platform name
Private Shared platformName As String

<Conditional("DEBUG")> _

Public Shared Sub DumpState()
Console.WritelLine("Dump some state...")

End Sub

Public Shared Sub Main()

#If winXP Then " Compiling for Windows XP
platformName = "Microsoft Windows XP"

#ElseIf win2000 Then ' Compiling for Windows 2000
platformName = "Microsoft Windows 2000"

#ElseIf winNT Then " Compiling for Windows NT
platformName = "Microsoft Windows NT"

#ElseIf win98 Then ' Compiling for Windows 98
platformName = "Microsoft Windows 98"

#Else " Unknown platform specified
platformName = "Unknown"

#End If

Console.WritelLine(platformName)

' Call the conditional DumpState method
DumpState()

Wait to continue...
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.Read()

End Sub

End Class
End Namespace

15

16

CHAPTER 1 APPLICATION DEVELOPMENT

Usage

To build the example and define the symbol winXP, use the command vbc /define:winXP
ConditionalExample.vb. If you compile this sample without defining the winXP symbol, the win2000
symbol will be used since it was defined directly in the code.

Notes

You can apply multiple ConditionalAttribute instances to a method in order to produce logical OR
behavior. Calls to the following version of the DumpState method will be compiled only if the DEBUG or
TEST symbols are defined:

<Conditional("DEBUG"), Conditional("TEST")> _
Public Shared Sub DumpState()

End Sub

Achieving logical AND behavior is not as clean and involves the use of an intermediate condi-
tional method, quickly leading to overly complex code that is hard to understand and maintain. You
should be cautious with this approach, as you may end up with code in your assembly that is never

called. The following is a quick example that requires the definition of both the DEBUG and TEST symbols
for the DumpState functionality (contained in DumpState2) to be called:

<Conditional("DEBUG")> _

Public Shared Sub DumpState()
DumpState2()

End Sub

<Conditional("TEST")> _
Public Shared Sub DumpState2()

End Sub

It'simportant to remember that you are not limited to Boolean values for your symbols. You can
define a symbol with a string value, like this:
#Const 0S = "XP"

You could also do this using the command vbc /define:05=\"XP\" ConditionalExample.vb.You
must escape quotation marks using the \ character.
To use this new symbol, the preprocessor #If..#End If construct mustbe changed accordingly:

#If 0S = "XP" Then " Compiling for Windows XP
platformName = "Microsoft Windows XP"

#ElseIf 0S = "2000" Then ' Compiling for Windows 2000
platformName = "Microsoft Windows 2000"

#ElseIf 0S = "NT" Then " Compiling for Windows NT
platformName = "Microsoft Windows NT"

#ElseIf 0S = "98" Then " Compiling for Windows 98
platformName = "Microsoft Windows 98"

#Else " Unknown platform specified

platformName = "Unknown"
#End If

CHAPTER 1 APPLICATION DEVELOPMENT

Note The Debug and Trace classes from the System.Diagnostics namespace use ConditionalAttribute
on many of their methods. The methods of the Debug class are conditional on the definition of the symbol DEBUG,
and the methods of the Trace class are conditional on the definition of the symbol TRACE.

1-7. Access a Program Element That Has the
Same Name As a Keyword

Problem

You need to access a member of a type, but the type or member name is the same as a VB .NET keyword.

Solution

Surround all instances of the identifier name in your code with brackets ([]).

How It Works

The .NET Framework allows you to use software components developed in other .NET languages
from within your VB .NET applications. Each language has its own set of keywords (or reserved
words) and imposes different restrictions on the names programmers can assign to program elements
such as types, members, and variables. Therefore, it is possible that a programmer developing a
component in another language will inadvertently use a VB .NET keyword as the name of a program
element. Using brackets ([]) enables you to use a VB .NET keyword as an identifier and overcome
these possible naming conflicts.

The Code

The following code fragment creates the new Operator (perhaps a telephone operator) class. A new
instance of this class is created, and its Friend property is set to True—both Operator and Friend are
VB .NET keywords:

Public Class [Operator]

Public [Friend] As Boolean
End Class
' Instantiate an operator object
Dim operatorl As New [Operator]
' Set the operator's Friend property
operatori.[Friend] = True

17

18

CHAPTER 1 APPLICATION DEVELOPMENT

1-8. Create and Manage Strong-Named Key Pairs

Problem

You need to create public and private keys (a key pair) so that you can assign strong names to your
assemblies.

Solution

Use the Strong Name tool (sn.exe) to generate a key pair and store the keys in a file or cryptographic
service provider (CSP) key container.

Note ACSP is an element of the Win32 CryptoAPI that provides services such as encryption, decryption, and
digital signature generation. CSPs also provide key container facilities, which use strong encryption and operating
system security to protect any cryptographic keys stored in the container. A detailed discussion of CSPs and CryptoAPI is
beyond the scope of this book. All you need to know for this recipe is that you can store your cryptographic keys in
a CSP key container and be relatively confident that it is secure as long as no one knows your Windows password.
Refer to the CryptoAPI information in the platform SDK documentation for complete details.

How It Works

To generate a new key pair and store the keys in the file named MyKeys.snk, execute the command
sn -k MyKeys.snk. (.snkis theusual extension given to files containing strong name keys.) The generated
file contains both your public and private keys. You can extract the public key using the command
sn -p MyKeys.snk MyPublicKey.snk, which will create MyPublicKey.snk containing only the public
key. Once you have this file in hand, you can view the public key using the command sn -tp
MyPublicKeys.snk, which will generate output similar to the (abbreviated) listing shown here:

Microsoft (R) .NET Framework Strong Name Utility Version 2.0.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Public key is
07020000002400005253413200040000010001002b4ef3c2bbd6478802b64d0dd3f2e7c65ee
6478802b63cb894a782f3a1adbba6d3ee5ec5577e7dccc818937€964cbe997c12076c19f2d7
ad179f15f7dcccabebb72a

Public key token is 2a1d3326445fc02a

The public key token shown at the end of the listing is the last 8 bytes of a cryptographic hash
code computed from the public key. Because the public keyis so long, NET uses the public key token
for display purposes and as a compact mechanism for other assemblies to reference your public key.
(Recipes 11-14 and 11-15 discuss cryptographic hash codes.)

As the name suggests, you don’t need to keep the public key (or public key token) secret. When
you strong name your assembly (discussed in recipe 1-9), the compiler uses your private key to generate
a digital signature (an encrypted hash code) of the assembly’s manifest. The compiler embeds the
digital signature and your public keyin the assembly so that any consumer of the assembly can verify
the digital signature.

CHAPTER 1 APPLICATION DEVELOPMENT

Keeping your private key secret is imperative. People with access to your private key can alter
your assembly and create a new strong name—leaving your customers unaware they are using
modified code. No mechanism exists to repudiate compromised strong name keys. If your private
key is compromised, you must generate new keys and distribute new versions of your assemblies
that are strong named using the new keys. You must also notify your customers about the compro-
mised keys and explain to them which versions of your public key to trust—in all, a very costly
exercise in terms of both money and credibility. You can protect your private key in many ways; the
approach you use will depend on several factors:

e The structure and size of your organization
* Your development and release process
¢ The software and hardware resources you have available

e The requirements of your customer base

Tip Commonly, a small group of trusted individuals (the signing authority) has responsibility for the security
of your company’s strong name signing keys and is responsible for signing all assemblies just prior to their final
release. The ability to delay sign an assembly (discussed in recipe 1-11) facilitates this model and avoids the need
to distribute private keys to all development team members.

One feature provided by the Strong Name tool to simplify the security of strong name keys is the
use of CSP key containers. Once you have generated a key pair to a file, you can install the keys into
akey container and delete the file. For example, to store the key pair contained in the file MyKeys.snk
to a CSP container named StrongNameKeys, use the command sn -i MyKeys.snk StrongNameKeys.
You caninstall only one set ofkeys to a single container. (Recipe 1-9 explains how to use strong name
keys stored in a CSP key container.)

An important aspect of CSP key containers is that they include user-based containers and
machine-based containers. Windows security ensures each user can access only his own user-based
key containers. However, any user of a machine can access a machine-based container.

Bydefault, the Strong Name tool uses machine-based key containers, meaning that anyone who
can log on to your machine and who knows the name of your key container can sign an assembly
with your strong name keys. To change the Strong Name tool to use user-based containers, use the
command sn -m n, and to switch to machine-based stores, use the command sn -m y. The command
sn -mwill display whether the Strong Name tool is currently configured to use machine-based or
user-based containers.

To delete the strong name keys from the StrongNameKeys container (as well as delete the
container), use the command sn -d StrongNameKeys.

1-9. Give an Assembly a Strong Name

Problem

You need to give an assembly a strong name for several reasons:

e Soithasaunique identity, which allows people to assign specific permissions to the assembly
when configuring code access security policy

¢ Soitcan’t be modified and passed off as your original assembly

19

20

CHAPTER 1 APPLICATION DEVELOPMENT

* So it supports versioning and version policy

e So it can be installed in the GAC and shared across multiple applications

Solution

When you build your assembly using the command-line VB .NET compiler, use the /keyfile or
/keycontainer compiler switches to specify the location of your strong name key pair. Use assembly-
level attributes to specify optional information such as the version number and culture for your
assembly. The compiler will strong name your assembly as part of the compilation process.

Note If you are using Visual Studio, you can configure your assembly to be strong named by opening the project
properties, selecting the Signing tab, and checking the Sign the Assembly box. You will need to specify the location
of the file where your strong name keys are stored—Visual Studio does not allow you to specify the name of a key
container.

How It Works
To strong name an assembly using the VB .NET compiler, you need the following:

* A strong name key pair contained either in a file or in a CSP key container. (Recipe 1-8 discusses
how to create strong name key pairs.)

e Compiler switches to specify the location where the compiler can obtain your strong name
key pair:
» Ifyourkey pair is in a file, use the /keyfile compiler switch, and provide the name of the
file where the keys are stored. For example, use /keyfile:MyKeyFile.snk.

» Ifyourkey pair is in a CSP container, use the /keycontainer compiler switch, and
provide the name of the CSP key container where the keys are stored. For example,
use /keycontainer :MyKeyContainer.

e Optionally, specify the culture that your assembly supports by applying the attribute
System.Reflection.AssemblyCultureAttribute to the assembly. (You can’t specify a culture
for executable assemblies because executable assemblies support only the neutral culture.)

¢ Optionally, specify the version of your assembly by applying the attribute
System.Reflection.AssemblyVersionAttribute to the assembly.

Note If you are using .NET Framework 1.0 or 1.1, the command-line VB .NET compiler does not support the
/keyfile and /keycontainer compiler switches. Instead, you must use the AssemblyKeyFileAttribute
and AssemblyKeyNameAttribute assembly-level attributes within your code to specify the location of your
strong name keys. Alternatively, use the Assembly Linker tool (al.exe), which allows you to specify the strong name
information on the command line using the /keyfile and /keyname switches. Refer to the Assembly Linker infor-
mation in the .NET Framework SDK documentation for more details.

CHAPTER 1 APPLICATION DEVELOPMENT

The Code

The executable code that follows (from a file named Recipe01-09.vb) shows how to use the optional
attributes (shown in bold text) to specify the culture and the version for the assembly:

Imports System
Imports System.Reflection

<Assembly:AssemblyCulture("")>
<Assembly:AssemblyVersion("1.1.0.5")>

Namespace Apress.VisualBasicRecipes.Chaptero1
Public Class Recipe01 09

Public Shared Sub main()
Console.Writeline("Welcome to Visual Basic 2005 Recipes")

Wait to continue...
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.Read()

End Sub

End Class
End Namespace

Usage

To create a strong-named assembly from the example code, create the strong name keys and store
them in a file named MyKeyFile using the command sn -k MyKeyFile.snk. Then install the keys into
the CSP container named MyKeys using the command sn -i MyKeyFile.snk MyKeys. You can now
compile the file into a strong-named assembly using the command vbc /keycontainer:MyKeys
Recipe01-09.vb. If you are not using a CSP container, you can specify the specific key file using the
command vbc /keyfile:MyKeyFile.snk Recipe01-09.vb.

Notes

If you use Visual Studio 2005, you may not be able to include the optional AssemblyVersion attribute
in your code. This is because the attribute may already exist for the assembly. By default, Visual
Studio automatically creates a folder called MyProject. This folder stores multiple files, including
AssemblyInfo.vb, which contains standard assembly attributes for the project. These can be manually
edited or edited through the Assembly Information dialog box (see Figure 1-2), accessible from the
Application tab of the project properties. Since the AssemblyInfo.vb file is an efficient way to store
information specific to your assembly, it is actually good practice to create and use a similar file,
even if you are not using Visual Studio to compile.

21

22 CHAPTER 1 APPLICATION DEVELOPMENT

Figure 1-2. The Assembly Information dialog box

1-10. Verify That a Strong-Named Assembly
Has Not Been Modified

Problem

You need to verify that a strong-named assembly has not been modified after it was built.

Solution

Use the Strong Name tool (sn.exe) to verify the assembly’s strong name.

How It Works

Whenever the .NET runtime loads a strong-named assembly, the runtime extracts the encrypted
hash code that’s embedded in the assembly and decrypts it with the public key, which is also embedded
in the assembly. The runtime then calculates the hash code of the assembly manifest and compares
it to the decrypted hash code. This verification process will identify whether the assembly has changed
after compilation.

If an executable assembly fails strong name verification, the runtime will display an error message
or an error dialog box (depending on whether the application is a console or Windows application).
If executing code tries to load an assembly that fails verification, the runtime will throw a System.
I0.FileLoadException with the message “Strong name validation failed,” which you should handle
appropriately.

As well as generating and managing strong name keys (discussed in recipe 1-8), the Strong
Name tool allows you to verify strong-named assemblies. To verify that the strong-named assembly
Recipe01-09.exe is unchanged, use the command sn -vf Recipe01-09.exe. The -v switch requests the
Strong Name tool to verify the strong name of the specified assembly, and the - switch forces strong

CHAPTER 1 APPLICATION DEVELOPMENT

name verification even if it has been previously disabled for the specified assembly. (You can disable
strong name verification for specific assemblies using the -Vr switch, asin sn -Vr Recipe01-09.exe; see
recipe 1-11 for details about why you would disable strong name verification.)

If the assembly passes strong name verification, you will see the following output:

Microsoft (R) .NET Framework Strong Name Utility Version 2.0.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Assembly 'Recipe01-09.exe' is valid

However, if the assembly has been modified, you will see this message:

Microsoft (R) .NET Framework Strong Name Utility Version 2.0.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Failed to verify assembly --
Strong name validation failed for assembly 'Recipe01-09.exe'.

1-11. Delay Sign an Assembly

Problem

You need to create a strong-named assembly, but you don’t want to give all members of your devel-
opment team access to the private key component of your strong name key pair.

Solution

Extract and distribute the public key component of your strong name key pair. Follow the instruc-
tions in recipe 1-9 that describe how to give your assembly a strong name. In addition, specify the
/delaysign switch when you compile your assembly. Disable strong name verification for the assembly
using the -Vr switch of the Strong Name tool (sn.exe).

Note If you are using Visual Studio, you can configure your strong-named assembly to be delay signed by
opening the project properties, selecting the Signing tab, and checking the Delay Sign Only box. Doing so will
prohibit your project from being run or debugged. You can get around this by skipping verification using the -Vr
switch of the Strong Name tool.

How It Works

Assemblies that reference strong-named assemblies contain the public key token of the referenced
assemblies. This means the referenced assembly must be strong named before it can be referenced.
In a development environment in which assemblies are regularly rebuilt, this would require every
developer and tester to have access to your strong name key pair—a major security risk.

Instead of distributing the private key component of your strong name key pair to all members
of the development team, the .NET Framework provides a mechanism named delay signing with
which you can partially strong name an assembly. The partially strong-named assembly contains the

23

24

CHAPTER 1 APPLICATION DEVELOPMENT

public key and the public key token (required by referencing assemblies) but contains only a place-
holder for the signature that would normally be generated using the private key.

After development is complete, the signing authority (who has responsibility for the security
and use of your strong name key pair) re-signs the delay-signed assembly to complete its strong
name. The signature is calculated using the private key and embedded in the assembly, making the
assembly ready for distribution.

To delay sign an assembly, you need access only to the public key component of your strong
name key pair. No security risk is associated with distributing the public key, and the signing authority
should make the public key freely available to all developers. To extract the public key component
from a strong name key file named MyKeyFile.snk and write it to a file named MyPublicKey.snk, use
the command sn -p MyKeyFile.snk MyPublicKey.snk.Ifyoustore your strongname key pair in a CSP
key container named MyKeys, extract the public key to a file named MyPublicKey.snk using the
command sn -pc MyKeys MyPublicKey.snk.

Once you have a key file containing the public key, you build the delay-signed assembly using
the command-line VB .NET compiler by specifying the /delaysign compiler switch. For example, to
build a delay-signed assembly, using the MyPublicKey.snk public key, from a source file named
Recipe01-11.vb, use this command:

vbc /delaysign /keyfile:MyPublicKey.snk Recipe01-11.vb

When the runtime tries to load a delay-signed assembly, the runtime will identify the assembly
as strong named and will attempt to verify the assembly, as discussed in recipe 1-10. Because it
doesn’t have a digital signature, you must configure the runtime on the local machine to stop veri-
fying the assembly’s strong name using the command sn -Vr Recipe01-11.exe. Note that you need
to do so on every machine on which you want to run your application.

Tip When using delay-signed assemblies, it’s often useful to be able to compare different builds of the same
assembly to ensure they differ only by their signatures. This is possible only if a delay-signed assembly has been
re-signed using the -R switch of the Strong Name tool. To compare the two assemblies, use the command
sn -D assemblyl assembly2.

Once development is complete, you need to re-sign the assembly to complete the assembly’s
strong name. The Strong Name tool allows you to do this without changing your source code or
recompiling the assembly; however, you must have access to the private key component of the
strong name key pair. To re-sign an assembly named Recipe01-11.exe with a key pair contained in
the file MyKeys.snk, use the command sn -R Recipe01-11.exe MyKeys.snk. If the keys are stored in
a CSP key container named MyKeys, use the command sn -Rc Recipe01-11.exe MyKeys.

Once you have re-signed the assembly, you should turn strong name verification for that assembly
back on using the -Vu switch of the Strong Name tool, asin sn -Vu Recipe01-11.exe. To enable verifica-
tion for all assemblies for which you have disabled strong name verification, use the command sn -Vx.
You can list the assemblies for which verification is disabled using the command sn -V1.

Note If you are using.NET Framework 1.0 or 1.1, the command-line VB .NET compiler does not support the
/delaysign compiler switch. Instead, you must use the System.Reflection.AssemblyDelaySignAttribute
assembly-level attributes within your code to specify that you want the assembly delay signed. Alternatively, use the
Assembly Linker tool (al.exe), which does support the /delaysign switch. Refer to the Assembly Linker informa-
tion in the .NET Framework SDK documentation for details.

CHAPTER 1 APPLICATION DEVELOPMENT

1-12. Sign an Assembly with an Authenticode
Digital Signature

Problem

You need to sign an assembly with Authenticode so that users of the assembly can be certain you are
its publisher and the assembly is unchanged after signing.

Solution

Use the Sign Tool (signtool.exe) to sign the assembly with your software publisher certificate (SPC).

Note Versions 1.0 and 1.1 of the .NET Framework provided a utility called the File Signing tool (signcode.exe)
that enabled you to sign assemblies. The File Signing tool is not provided with .NET Framework 2.0 and has been
superseded by the Sign Tool discussed in this recipe.

How It Works

Strong names provide a unique identity for an assembly as well as proof of the assembly’s integrity,
but they provide no proof as to the publisher of the assembly. The .NET Framework allows you to use
Authenticode technology to sign your assemblies. This enables consumers of your assemblies to
confirm that you are the publisher, as well as confirm the integrity of the assembly. Authenticode
signatures also act as evidence for the signed assembly, which people can use when configuring
code access security policy.

To sign your assembly with an Authenticode signature, you need an SPC issued by a recognized
certificate authority (CA). A CA is a company entrusted to issue SPCs (along with many other types of
certificates) for use by individuals or companies. Before issuing a certificate, the CA is responsible for
confirming that the requesters are who they claim to be and also for making sure the requesters sign
contracts to ensure they don’t misuse the certificates that the CA issues them.

To obtain an SPC, you should view the Microsoft Root Certificate Program Members list
athttp://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/
rootcertprog.asp. Here you will find a list of CAs, many of whom can issue you an SPC. For testing
purposes, you can create a test SPC using the process described in recipe 1-13. However, you can’t
distribute your software signed with this test certificate. Because a test SPC isn’t issued by a trusted
CA, most responsible users won’t trust assemblies signed with it.

Once you have an SPC, you use the Sign Tool to Authenticode sign your assembly. The Sign Tool
creates a digital signature of the assembly using the private key component of your SPC and embeds
the signature and the public part of your SPC in your assembly (including your public key). When
verifying your assembly, the consumer decrypts the encrypted hash code using your public key,
recalculates the hash of the assembly, and compares the two hash codes to ensure they are the same.
As long as the two hash codes match, the consumer can be certain that you signed the assembly and
that it has not changed since you signed it.

25

26

CHAPTER 1 APPLICATION DEVELOPMENT

Usage

The Sign Tool provides a graphical wizard that walks you through the steps to Authenticode sign
your assembly. To sign an assembly named MyAssembly.exe, run this command:

signtool signwizard MyAssembly.exe

Click Next on the introduction screen, and you will see the File Selection screen, where you
must enter the name of the assembly to Authenticode sign (see Figure 1-3). Because you specified the
assembly name on the command line, it is already filled in. If you are signing a multifile assembly,
specify the name of the file that contains the assembly manifest. If you intend to both strong name
and Authenticode sign your assembly, you must strong name the assembly first. (See recipe 1-9 for
details on strong naming assemblies.)

Figure 1-3. The Sign Tool’s File Selection screen

Clicking Next takes you to the Signing Options screen (see Figure 1-4). If your SPCis in a certif-
icate store, select the Typical radio button. If your SPC is in a file, select the Custom radio button.
Then click Next.

Assuming you want to use a file-based certificate (like the test certificate created in recipe 1-13),
click the Select from File button on the Signature Certificate screen (see Figure 1-5), select the file
containing your SPC certificate, and then click Next.

CHAPTER 1 APPLICATION DEVELOPMENT 27

Figure 1-4. The Sign Tool’s Signing Options screen

Figure 1-5. The Sign Tool’s Signature Certificate screen

28

CHAPTER 1 APPLICATION DEVELOPMENT

The Private Key screen allows you to identify the location of your private keys, which will either be
in a file or in a CSP key container, depending on where you created and stored them (see Figure 1-6). The
example assumes they are in a file named PrivateKeys.pvk. When you click Next, if you selected to
use a file, you will be prompted (see Figure 1-7) to enter a password to access the file (if required).

Figure 1-6. The Sign Tool’s Private Key screen

Figure 1-7. Prompt for password to private key

You can then select whether to use the shal or md5 hash algorithm (see Figure 1-8). The default

is shal, which is suitable for most purposes. On the Hash Algorithm screen, pick an algorithm, and
then click Next.

CHAPTER 1 APPLICATION DEVELOPMENT

Figure 1-8. The Sign Tool’s Hash Algorithm screen

Click Next to leave the default values on the Additional Certificates screen, the Data Description
screen, and the Timestamping screen. Finally, click Finish. If you are using a file-based private key
that is password protected, you will once again be prompted to enter the password, after which the
Sign Tool will Authenticode sign your assembly.

Note The Sign Tool uses capicom.dll version 2.1.0.1. If an error occurs when you run signtool.exe that indi-
cates capicom is not accessible or not registered, change to the directory where capicom.dll is located (which is
C:\Program Files\Common Files\Microsoft Shared\CAPICOM by default), and run the command regsvr32
capicom.dll.

1-13. Create and Trust a Test
Software Publisher Certificate

Problem

You need to create an SPC to allow you to test the Authenticode signing of an assembly.

Solution

Use the Certificate Creation tool (makecert.exe) to create a test X.509 certificate and the Software
Publisher Certificate Test tool (cert2spc.exe) to generate an SPC from this X.509 certificate. Trust the
root test certificate using the Set Registry tool (setreg.exe).

29

30

CHAPTER 1 APPLICATION DEVELOPMENT

How It Works

To create a test SPC for a software publisher named Todd Herman, create an X.509 certificate
using the Certificate Creation tool. The command makecert -n "CN=Todd Herman" -sk MyKeys
TestCertificate.cer creates a file named TestCertificate.cer containing an X.509 certificate and
stores the associated private key in a CSP key container named MyKeys (which is automatically
created if it does not exist). Alternatively, you can write the private key to a file by substituting the
-sk switch with -sv. For example, to write the private key to a file named PrivateKeys.pvk, use the
command makecert -n " CN=Todd Herman" -sv PrivateKey.pvk TestCertificate.cer.If you write
your private key to a file, the Certificate Creation tool will prompt you to provide a password with
which to protect the private key file (see Figure 1-9).

Figure 1-9. The Certificate Creation tool requests a password when creating file-based private keys.

The Certificate Creation tool supports many arguments, and Table 1-2 lists some of the more
useful ones. You should consult the .NET Framework SDK documentation for full coverage of the
Certificate Creation tool.

Table 1-2. Commonly Used Switches of the Certificate Creation Tool

Switch Description

-e Specifies the date when the certificate becomes invalid.

-m Specifies the duration—in months—that the certificate remains valid.

-n Specifies an X.500 name to associate with the certificate. This is the name of the
software publisher that people will see when they view details of the SPC you create.

-sk Specifies the name of the CSP key store in which to store the private key.

-ss Specifies the name of the certificate store where the Certificate Creation tool should

store the generated X.509 certificate.

-sv Specifies the name of the file in which to store the private key.

Once you have created your X.509 certificate with the Certificate Creation tool, you need to
convert it to an SPC with the Software Publisher Certificate Test tool (cert2spc.exe). To convert the

CHAPTER 1 APPLICATION DEVELOPMENT

certificate TestCertificate.cer to an SPC, use the command cert2spc TestCertificate.cer
TestCertificate.spc. The Software Publisher Certificate Test tool doesn’t offer any optional
switches.

The final step before you can use your test SPC is to trust the root test CA, which is the default
issuer of the test certificate. The Set Registry tool (setreg.exe) makes this a simple task with the command
setreg 1 true.You can now Authenticode sign assemblies with your test SPC using the process
described in recipe 1-12. When you have finished using your test SPC, you must remove trust of the
root test CA using the command setreg 1 false.

1-14. Manage the Global Assembly Cache

Problem

You need to add or remove assemblies from the GAC.

Solution

Use the Global Assembly Cache tool (gacutil.exe) from the command line to view the contents of the
GAC as well as to add and remove assemblies.

Note The Global Assembly Cache tool was included with earlier versions of the .NET Framework. Microsoft has
since designated it as a developer-specific tool and removed it from .NET Framework 2.0. It is now part of the SDK
and is installed with Visual Studio 2005.

How It Works

Before you can install an assembly in the GAC, the assembly must have a strong name. (See recipe 1-9 for
details on how to strong name your assemblies.) To install an assembly named SomeAssembly.dll into
the GAC, use the command gacutil /i SomeAssembly.dll.You can install different versions of the
same assembly in the GAC to meet the versioning requirements of different applications.

To uninstall the SomeAssembly.dll assembly from the GAC, use the command gacutil
/u SomeAssembly. Notice that you don’t use the .dll extension to refer to the assembly once it’s
installed in the GAC. This will uninstall all assemblies with the specified name. To uninstall a
particular version, specify the version along with the assembly name; for example, use gacutil
/u SomeAssembly,Version=1.0.0.5.

To view the assemblies installed in the GAC, use the command gacutil /1. This will produce
along list of all the assemblies installed in the GAC, as well as a list of assemblies that have been
precompiled to binary form and installed in the native image (ngen) cache. To avoid searching
through this list to determine whether a particular assembly is installed in the GAC, use the command
gacutil /1 SomeAssembly.

Note The .NET Framework uses the GAC only at runtime; the VB .NET compiler won’t look in the GAC to resolve
any external references that your assembly references. During development, the VB .NET compiler must be able to
access a local copy of any referenced shared assemblies. You can either copy the shared assembly to the same
directory as your source code or use the /1ibpath switch of the VB .NET compiler to specify the directory where
the compiler can find the required assemblies.

31

32

CHAPTER 1 APPLICATION DEVELOPMENT

1-15. Make Your Assembly More Difficult
to Decompile

Problem

You want to make sure that people cannot decompile your .NET assemblies.

Solution

The onlyway to ensure that your assembly cannot be decompiled is by not making it directly accessible.
This can be accomplished using a server-based solution. If you must distribute assemblies, you have
no way to stop people from decompiling them. The best you can do is use obfuscation and compo-
nents compiled to native code to make your assemblies more difficult to decompile.

How It Works

Because .NET assemblies consist of a standardized, platform-independent set of instruction codes
and metadata that describes the types contained in the assembly, they are relatively easy to decom-
pile. This allows decompilers to generate source code that is close to your original code with ease,
which can be problematic if your code contains proprietary information or algorithms that you want
to keep secret.

The only way to ensure people can’t decompile your assemblies is to prevent them from getting
your assemblies in the first place. Where possible, implement server-based solutions such as
Microsoft ASP.NET applications and Web services. With the security correctly configured on your
server, no one will be able to access your assemblies, and therefore they won’t be able to decompile them.

When building a server solution is not appropriate, you have the following two options:

¢ Use an obfuscator to make it difficult to understand your code once it is decompiled. Some
versions of Visual Studio include the Community Edition of an obfuscator named Dotfuscator.
Obfuscators use a variety of techniques to make your assembly difficult to decompile; prin-
cipal among these techniques are renaming of Private methods and fields in such a way that
it’s difficult to read and understand the purpose of your code, and inserting control flow
statements to make the logic of your application difficult to follow.

¢ Build the parts of your application that you want to keep secret in native DLLs or COM objects,
and then call them from your managed application using P/Invoke or COM Interop. (See
Chapter 12 for recipes that show you how to call unmanaged code.)

Neither approach will stop a skilled and determined person from reverse engineering your code, but
both approaches will make the job significantly more difficult and deter most casual observers.

Note The risks of application decompilation aren’t specific to VB .NET or .NET in general. Determined people
can reverse engineer any software if they have the time and the skill.

CHAPTER 1 APPLICATION DEVELOPMENT

1-16. Manipulate the Appearance of the Console

Problem

You want to control the visual appearance of the Windows console.

Solution

Use the Shared properties and methods of the System.Console class.

How It Works

Version 2.0 of the NET Framework dramatically enhances the control you have over the appearance
and operation of the Windows console. Table 1-3 describes the properties and methods of the Console
class that you can use to control the console’s appearance.

Table 1-3. Properties and Methods to Control the Appearance of the Console

Member Description

Properties

BackgroundColor Gets and sets the background color of the console using one of the
values from the System.ConsoleColor enumeration. Only new text
written to the console will appear in this color. To make the entire
console this color, call the method Clear after you have configured the
BackgroundColor property.

BufferHeight Gets and sets the buffer height in terms of rows. Buffer refers to the
amount of actual data that can be displayed within the console window.

BufferWidth Gets and sets the buffer width in terms of columns. Buffer refers to the
amount of actual data that can be displayed within the console window.

CursorlLeft Gets and sets the column position of the cursor within the buffer.

CursorSize Gets and sets the height of the cursor as a percentage of a character cell.

CursorTop Gets and sets the row position of the cursor within the buffer.

CursorVisible Gets and sets whether the cursor is visible.

ForegroundColor Gets and sets the text color of the console using one of the values from
the System.ConsoleColor enumeration. Only new text written to the
console will appear in this color. To make the entire console this color,
call the method Clear after you have configured the ForegroundColor
property.

LargestWindowHeight Returns the largest possible number of rows based on the current font
and screen resolution.

LargestWindowWidth Returns the largest possible number of columns based on the current
font and screen resolution.

Title Gets and sets text shown in the title bar.

WindowHeight Gets and sets the physical height of the console window in terms of

character rows.

33

34

CHAPTER 1

APPLICATION DEVELOPMENT

Table 1-3. Properties and Methods to Control the Appearance of the Console (Continued)

Member Description

WindowhWidth Gets and sets the physical width of the console window in terms of
character columns.

Methods

Clear Clears the console.

ResetColor Sets the foreground and background colors to their default values as
configured within Windows.

SetWindowSize Sets the width and height in terms of columns and rows.

The Code

The following example demonstrates how to use the properties and methods of the Console class to
dynamically change the appearance of the Windows console:

Imports System

Namespace Apress.VisualBasicRecipes.Chaptero1l
Public Class Recipe01 16

Public Shared Sub Main(ByVal args As String())

Display the standard console.

Console.Title = "Standard Console"
Console.WritelLine("Press Enter to change the console's appearance.")
Console.ReadlLine()

Change the console appearance and redisplay.

Console.Title = "Colored Text"

Console.ForegroundColor = ConsoleColor.Red

Console.BackgroundColor = ConsoleColor.Green
Console.WritelLine("Press Enter to change the console's appearance.")
Console.ReadLine()

Change the console appearance and redisplay.

Console.Title = "Cleared / Colored Console"

Console.ForegroundColor = ConsoleColor.Blue

Console.BackgroundColor = ConsoleColor.Yellow

Console.Clear()

Console.WritelLine("Press Enter to change the console's appearance.")
Console.ReadLine()

Change the console appearance and redisplay.

Console.Title = "Resized Console"
Console.ResetColor()
Console.Clear()
Console.SetWindowSize (100, 50)
Console.BufferHeight = 500
Console.BufferWidth = 100

CHAPTER 1 APPLICATION DEVELOPMENT

Console.CursorLeft = 20

Console.CursorSize = 50

Console.CursorTop = 20

Console.CursorVisible = False

Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

1-17. Embed a Resource File in an Assembly

Problem

You need to create a string-based resource file and embed it into an assembly.

Solution

Use the Resource Generator (resgen.exe) to create a compiled resource file. You then use the /resource
switch of the compiler to embed the file into the assembly.

Note The Assembly Linker tool (al.exe) also provides functionality for working with and embedding resource
files. Refer to the Assembly Linker information in the .NET Framework SDK documentation for details.

How It Works

If you need to store strings in an external file and have them accessible to your assembly, you can use
aresource file. Resources are some form of data (a string or an image, for example) that is used by an
application. A resource file is a repository of one or more resources that can be easily accessed.
If you need to store only strings, you can create a simple text file that contains one or more
key/value pairs in the form of key=value. You cannot create image resources starting from a text file.
Once you have your text file, you compile it using the Resource Generator (resgen.exe). Using
this utility, you can convert the text file into either of two types:

* An .resx file, which is an XML resource file. This file is fully documented and can be edited
manually. It is also capable of supporting image resources, unlike the text file. Consult the
.NET Framework SDK documentation for more details on the .resx format.

e A .resource file, which is a compiled binary file and is required if you are embedding the file
into your assembly using the command line compiler. You embed the .resource file into your
assembly by using the /resource switch of the VB .NET compiler. The .resource file can be
compiled from a .txt or an .resx file.

You access the contents of the resource file by instantiating a ResourceManager object. The
GetString method is used to retrieve the value for the specified string. If you have stored something
other than a string, such as an image, in your resource file, use the GetObject method and cast the
return value to the appropriate type.

35

36

CHAPTER 1 APPLICATION DEVELOPMENT

The Code

This example borrows the code from recipe 1-2. The dialog box titles and message prompt have been
removed from the code and are now contained within an external resource file. The new program
uses the ResourceManager object to access the resources.

Imports System
Imports System.windows.forms
Imports System.resources

Namespace Apress.VisualBasicRecipes.Chapterol

Public Class Recipe01 17
Inherits Form
' Private members to hold references to the form's controls.
Private label1l As Label
Private textbox1 As TextBox
Private buttoni As Button
Private resManager As New ResourceManager("Recipe01 17.MyStrings", ‘s
System.Reflection.Assembly.GetExecutingAssembly())
' Constructor used to create an instance of the form and configure
the form's controls.
Public Sub New()
' Instantiate the controls used on the form.
Me.labell = New Label
Me.textbox1 = New TextBox
Me.button1 = New Button

' Suspend the layout logic of the form while we configure and
' position the controls.

Me.SuspendLayout ()

' Configure label1, which displays the user prompt.
Me.labell.Llocation = New System.Drawing.Size(16, 36)
Me.label1.Name = "label1"

Me.label1l.Size = New System.Drawing.Size(155, 16)
Me.label1.TabIndex = 0

Me.labell.Text = resManager.GetString("UserPrompt")
' Configure textbox1, which accepts the user input.
Me.textBox1.Location = New System.Drawing.Point(172, 32)
Me.textbox1.Name = "textbox1"

Me.textbox1.TabIndex = 1

Me.textbox1.Text = ""

' Configure buttoni, which the user clicks to enter a name.
Me.buttoni.Llocation = New System.Drawing.Point(109, 80)
Me.buttoni.Name = "button1”

Me.buttoni.TabIndex = 2

Me.buttoni.Text = "Enter"

AddHandler buttoni.Click, AddressOf buttoni Click

CHAPTER 1 APPLICATION DEVELOPMENT

' Configure WelcomeForm, and add controls.
Me.ClientSize = New System.Drawing.Size(292, 126)
Me.Controls.Add(Me.button1)
Me.Controls.Add(Me.textbox1)
Me.Controls.Add(Me.label1)

Me.Name = "form1"

Me.Text = resManager.GetString("FormTitle")

' Resume the layout logic of the form now that all controls are
configured.

Me.ResumelLayout(False)

End Sub

Private Sub buttoni Click(ByVal sender As Object, w»
ByVal e As System.EventArgs)

' Write debug message to the console.
System.Console.WriteLine("User entered: " + textboxi.Text)
' Display welcome as a message box.

MessageBox.Show resManager.GetString("Message") + textboxi.Text, w»
resManager.GetString("FormTitle"))

End Sub
' Application entry point, creates an instance of the form, and begins
running a standard message loop on the current thread. The message
' loop feeds the application with input from the user as events.
Public Shared Sub Main()

Application.EnableVisualStyles()

Application.Run(New Recipe01l 17())
End Sub

End Class
End Namespace

Usage
First, you must create the MyStrings.txt file that contains your resource strings:

;String resource file for Recipe01-17
UserPrompt=Please enter your name:
FormTitle=Visual Basic 2005 Recipes
Message=Welcome to Visual Basic 2005 Recipes,

You compile this file into a resource file by using the command resgen.exe MyStrings.txt
Recipe01 17.MyStrings.resources. To build the example and embed the resource file, use the
command vbc /resources:Recipe0l_17.MyStrings.resources Recipe01-17.vb.

37

38

CHAPTER 1 APPLICATION DEVELOPMENT

Notes

Using resource files from Visual Studio is a little different from using resource files from the
command line. For this example, the resource file must be in the XML format (.resx) and added
directly into the project. Instead of initially creating the .resource file, you can use the command
resgen.exe MyStrings.txt MyStrings.resx to generate the .resx file required by Visual Studio.

CHAPTER 2

Data Manipulation

M ost applications need to manipulate some form of data. The Microsoft .NET Framework provides
many techniques that simplify or improve the efficiency of common data-manipulation tasks. The
recipes in this chapter describe how to do the following:

e Manipulate the contents of strings efficiently to avoid the overhead of automatic string
creation due to the immutability of strings (recipe 2-1)

* Represent basic data types using different encoding schemes or as byte arrays to allow you to
share data with external systems (recipes 2-2, 2-3, and 2-4)

e Validate user input and manipulate string values using regular expressions (recipes 2-5 and 2-6)

* Create System.DateTime objects from string values, such as those that a user might enter, and
display DateTime objects as formatted strings (recipe 2-7)

e Mathematically manipulate DateTime objects in order to compare dates or add/subtract
periods of time from a date (recipe 2-8)

* Sort the contents of an array or an ArraylList collection (recipe 2-9)
e Copy the contents of a collection to an array (recipe 2-10)
* Use the standard generic collection classes to instantiate a strongly typed collection (recipe 2-11)

* Use generics to define your own general-purpose container or collection class that will be
strongly typed when it is used (recipe 2-12)

» Serialize object state and persist it to a file (recipe 2-13)

¢ Read user input from the Windows console (recipe 2-14)

2-1. Manipulate the Contents of
a String Efficiently

Problem

You need to manipulate the contents of a String object and want to avoid the overhead of automatic
String creation caused by the immutability of String objects.

Solution

Use the System.Text.StringBuilder class to perform the manipulations and convert the result to a
String object using the StringBuilder.ToString method.
39

40

CHAPTER 2 DATA MANIPULATION

How It Works

String objects in .NET are immutable, meaning that once they are created, their content cannot be
changed. If you build a string by concatenating a number of characters or smaller strings, the common
language runtime (CLR) will create a completely new String object whenever you add a new element to
the end of the existing string. Here is an example:

Dim testString as String
testString="Hello"

At this point, you have a String object named testString that contains the value "Hello". Since
strings are immutable, adding the statement testString=testString & " World" will resultin a new
String object being created. The testString object’s reference is changed to point to the newly
generated string, which creates a new object that contains the value "Hello World". This can result
in significant overhead if your application performs frequent string manipulation.

The StringBuilder class offers a solution by providing a character buffer and allowing you to
manipulate its contents without the runtime creating a new object as a result of every change. You
can create a new StringBuilder object that is empty or initialized with the content of an existing
String object. You can manipulate the content of the StringBuilder object using overloaded methods
that allow you to insert and append string representations of different data types. At any time, you
can obtain a String representation of the current content of the StringBuilder object by calling
StringBuilder.ToString.

Two important properties of StringBuilder control its behavior as you append new data:
Capacity and Length. Capacity represents the size of the StringBuilder buffer, and Lengthrepresents
the length of the buffer’s current content. If you append new data that results in the number of characters
in the StringBuilder object (Length) exceeding the capacity of the StringBuilder object (Capacity),
the StringBuilder mustallocate a new buffer to hold the data. The size of this new buffer is double the
size of the previous Capacity value. Used carelessly, this buffer reallocation can negate much of the
benefit of using StringBuilder. If you know the length of data you need to work with, or know an
upper limit, you can avoid unnecessary buffer reallocation by specifying the capacity at creation
time or setting the Capacity property manually. Note that 16 is the default Capacity property setting.
When setting the Capacity and Length properties, be aware of the following behavior:

» Ifyou set Capacity to a value less than the value of Length, the Capacity property throws the
exception System.ArgumentOutOfRangeException. The same exception is also thrown if you try
to raise the Capacity setting above the value of the MaxCapacity property. This should not be
a problem except if you want to allocate more than 2 gigabytes (GB).

» Ifyou set Length to a value less than the length of the current content, the content is
truncated.

» Ifyouset Length to a value greater than the length of the current content, the buffer is padded
with spaces to the specified length. Setting Length to a value greater than Capacity automati-
cally adjusts the Capacity value to be the same as the new Length value.

The Code

The ReverseString method shown in the following example demonstrates the use of the StringBuilder
class toreverse a string. If you did not use the StringBuilder class to perform this operation, it would
be significantly more expensive in terms of resource utilization, especially as the input string is
made longer. The method creates a StringBuilder object of the correct capacity to ensure that no
buffer reallocation is required during the reversal operation.

CHAPTER 2 DATA MANIPULATION 4

Imports System
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter02
Public Class Recipe02 01
Public Shared Function ReverseString(ByVal str As String) As String

' Make sure we have a reversible string.

If str Is Nothing Or str.Length <= 1 Then
Return str

End If

' Create a StringBuilder object with the required capacity.
Dim revStr As StringBuilder = New StringBuilder(str.Length)

Convert the string to a character array so we can easily loop

through it.
Dim chars As Char() = str.ToCharArray()

' Loop backward through the source string one character at a time and

' append each character to the StringBuilder.

For count As Integer = chars.length - 1 To 0 Step -1
revStr.Append(chars(count))

Next

Return revStr.ToString
End Function

Public Shared Sub Main()
Console.Writeline(ReverseString("Madam Im Adam"))

Console.Writeline(ReverseString("The quick brown fox jumped '
over the lazy dog."))

" Wait to continue
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

42

CHAPTER 2 DATA MANIPULATION

2-2. Encode a String Using
Alternate Character Encoding

Problem

You need to exchange character data with systems that use character-encoding schemes other than
UTF-16, which is the character-encoding scheme used internally by the CLR.

Solution

Use the System.Text.Encoding class and its subclasses to convert characters between different
encoding schemes.

How It Works

Unicode is not the only character-encoding scheme, nor is UTF-16 the only way to represent Unicode
characters. When your application needs to exchange character data with external systems (particularly
legacy systems) through an array of bytes, you may need to convert character data between UTF-16
and the encoding scheme supported by the other system.

The MustInherit class Encoding and its concrete subclasses provide the functionality to convert
characters to and from a variety of encoding schemes. Each subclass instance supports the conver-
sion of characters between the instance’s encoding scheme and UTF-16. You obtain instances of the
encoding-specific classes using the Shared factory method Encoding.GetEncoding, which accepts
either the name or the code page number of the required encoding scheme.

Table 2-1 lists some commonly used character-encoding schemes and the code page number
you must pass to the GetEncoding method to create an instance of the appropriate encoding class.
The table also shows Shared properties of the Encoding class that provide shortcuts for obtaining the
most commonly used types of encoding objects.

Table 2-1. Character-Encoding Classes

Encoding Scheme Class Create Using

ASCIL ASCIIEncoding GetEncoding(20127) or the ASCII property

Default (current Encoding GetEncoding(0) or the Default property

Microsoft Windows default)

UTE-7 UTF7Encoding GetEncoding(65000) or the UTF7 property

UTE-8 UTF8Encoding GetEncoding(65001) or the UTF8 property

UTF-16 (Big Endian) UnicodeEncoding GetEncoding(1201) or the BigEndianUnicode
property

UTF-16 (Little Endian) UnicodeEncoding GetEncoding(1200) or the Unicode property

Once you have an Encoding object of the appropriate type, you convert a UTF-16 encoded
Unicode string to a byte array of encoded characters using the GetBytes method. Conversely, you
passabyte array of encoded characters (such as UTF-8) to the GetString method, which will produce
a UTF-16 encoded Unicode string.

CHAPTER 2 DATA MANIPULATION

The Code
The following example demonstrates the use of some encoding classes.

Imports System
Imports System.IO
Imports System.Text.Encoding

Namespace Apress.VisualBasicRecipes.Chapter02
Public Class Recipe02 02
Public Shared Sub Main()

' Create a file to hold the output.
Using output As New StreamWriter("output.txt")
' Create and write a string containing the symbol for pi.
Dim srcString As String = String.Format("Area = {0}r"2", =
ChrW(8H3A0))
output.WriteLine("Source Text: " & srcString)

' Write the UTF-16 encoded bytes of the source string.

Dim utf16String As Byte() = Unicode.GetBytes(srcString)

output.WriteLine("UTF-16 Bytes: {0}", =
BitConverter.ToString (utf16String))

' Convert the UTF-16 encoded source string to UTF-8 and ASCII.
Dim utf8String As Byte() = UTF8.GetBytes(srcString)
Dim asciiString As Byte() = ASCII.GetBytes(srcString)

" Write the UTF-8 and ASCII encoded byte arrays.

output.WriteLine("UTF-8 Bytes: {o}", =
BitConverter.ToString (utf8string))

output.WriteLine("ASCII Bytes: {o}", ‘=
BitConverter.ToString (asciiString))

' Convert UTF-8 and ASCII encoded bytes back to UTF-16 encoded
string and write to the output file.
output.WriteLine("UTF-8 Text: {0}", UTF8.GetString(utf8String))
output.WriteLine("ASCII Text: {0}", ASCII.GetString(asciiString))
End Using

Wait to continue
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

Running the code will generate a file named output.txt. If you open this file in a text editor that
supports Unicode, you will see the following content:

43

44

CHAPTER 2 DATA MANIPULATION

Source Text : Area =mr”2

UTF-16 Bytes: 41-00-72-00-65-00-61-00-20-00-3D-00-20-00-A0-03-72-00-5E-00-32-00
UTF-8 Bytes: 41-72-65-61-20-3D-20-CE-A0-72-5E-32

ASCII Bytes: 41-72-65-61-20-3D-20-3F-72-5E-32

UTF-8 Text : Area = r"2

ASCII Text : Area = mr"2

Notice that using UTF-16 encoding, each character occupies 2 bytes, but because most of the
characters are standard characters, the high-order byte is 0. (The use of little-endian byte ordering
means that the low-order byte appears first.) This means that most of the characters are encoded
using the same numeric values across all three encoding schemes. However, the numeric value for
the symbol pi (emphasized in bold in the preceding output) is different in each of the encodings.
Representing the value of pi requires more than 1 byte. UTF-8 encoding uses 2 bytes, but ASCII has
no direct equivalent and so replaces pi with the code 3F. As you can see in the ASCII text version of
the string, 3F is the symbol for an English question mark (?).

Caution If you convert Unicode characters to ASCII or a specific code page encoding scheme, you risk losing
data. Any Unicode character with a character code that cannot be represented in the scheme will be ignored or altered.

Notes

The Encoding class also provides the Shared method Convert to simplify the conversion of a byte array
from one encoding scheme to another without the need to manually perform an interim conversion
to UTE-16. For example, the following statement converts the ASCII-encoded bytes contained in the
asciiString byte array directly from ASCII encoding to UTF-8 encoding:

Dim utf8String As Byte() = Encoding.Convert(Encoding.ASCII, w»
Encoding.UTF8, asciiString)

2-3. Convert Basic Value Types to Byte Arrays

Problem

You need to convert basic value types to byte arrays.

Solution

The Shared methods of the System.BitConverter class provide a convenient mechanism for converting
most basic value types to and from byte arrays. An exception is the Decimal type. To convert a Decimal
type to or from a byte array, you need to use a System.I0.MemoryStream object.

How It Works

The Shared method GetBytes of the BitConverter class provides overloads that take most of the standard
value types and return the value encoded as an array of bytes. Support is provided for the Boolean,

Char, Double, Short, Integer, Long, Single, UShort, UInteger, and ULong data types. BitConverter also
provides a set of Shared methods that support the conversion of byte arrays to each of the standard
value types. These are named ToBoolean, ToInt32, ToDouble, and so on. When using the BitConverter

CHAPTER 2 DATA MANIPULATION

class, you may notice that some members include the values Int16, Int32, and Int64. These values
are simply an alternate way of saying Short, Integer, and Long, respectively.

Unfortunately, the BitConverter class does not provide support for converting the Decimal type.
Instead, write the Decimal type to aMemoryStream instance using a System.I0.BinaryWriter object,
and then call the MemoryStream. ToArray method. To create a Decimal type from a byte array, create a
MemoryStream object from the byte array and read the Decimal type from the MemoryStream object
using a System.I0.BinaryReader instance.

The Code

The following example demonstrates the use of BitConverter to convert a Boolean type and an
Integer type to and from a byte array. The second argument to each of the ToBoolean and ToInt32
methods is a zero-based offset into the byte array where the BitConverter should start taking the
bytes to create the data value. The code also shows how to convert a Decimal type to a byte array
using a MemoryStream object and a BinaryWriter object, as well as how to convert a byte array to a
Decimal type using a BinaryReader object to read from the MemoryStream object.

Imports System
Imports System.IO
Namespace Apress.VisualBasicRecipes.Chapter02

Public Class Recipe02 03
' Create a byte array from a decimal.
Public Shared Function DecimalToByteArray(ByVal src As Decimal) As Byte()
' Create a MemoryStream as a buffer to hold the binary data.
Using stream As New MemoryStream
' Create a BinaryWriter to write binary data to the stream.
Using writer As New BinaryWriter(stream)
' Write the decimal to the BinaryWriter/MemoryStream.
writer.Write(src)
' Return the byte representation of the decimal.
Return stream.ToArray
End Using
End Using

End Function

Create a decimal from a byte array.
Public Shared Function ByteArrayToDecimal(ByVal src As Byte()) As Decimal
' Create a MemoryStream containing the byte array.
Using stream As New MemoryStream(src)
' Create a BinaryReader to read the decimal from the stream.
Using reader As New BinaryReader(stream)
' Read and return the decimal from the
BinaryReader/MemoryStream.
Return reader.ReadDecimal
End Using
End Using

End Function

45

46 CHAPTER 2 DATA MANIPULATION

Public Shared Sub Main()
Dim b As Byte() = Nothing

Convert a boolean to a byte array and display.
b = BitConverter.GetBytes(True)
Console.WriteLine(BitConverter.ToString(b))
' Convert a byte array to a boolean and display.
Console.WriteLine(BitConverter.ToBoolean(b, 0))

Convert an integer to a byte array and display.
b = BitConverter.GetBytes(3678)
Console.WritelLine(BitConverter.ToString(b))
' Convert a byte array to integer and display.
Console.WriteLine(BitConverter.ToInt32(b, 0))
' Convert a decimal to a byte array and display.
b = DecimalToByteArray(285998345545.563846696D)
Console.WriteLine(BitConverter.ToString(b))

Convert a byte array to a decimal and display.
Console.Writeline(ByteArrayToDecimal(b))

Wait to continue
Console.WritelLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Tip The BitConverter.ToString method provides a convenient mechanism for obtaining a String repre-
sentation of a byte array. Calling ToString and passing a byte array as an argument will return a String object
containing the hexadecimal value of each byte in the array separated by a hyphen; for example, "34-A7-2C".
Unfortunately, there is no standard method for reversing this process to obtain a byte array from a string with this format.

2-4. Base64 Encode Binary Data

Problem

You need to convert binary data into a form that can be stored as part of an ASCII text file (such as an
XML file) or sent as part of a text e-mail message.

CHAPTER 2 DATA MANIPULATION

Solution

Use the Shared methods ToBase64CharArray and FromBase64CharArray of the System.Convert class
to convert your binary data to and from a Base64-encoded Char array. If you need to work with
the encoded data as a string value rather than as a Char array, you can use the ToBase64String and
FromBase64String methods of the Convert class instead.

How It Works

Base64 is an encoding scheme that enables you to represent binary data as a series of ASCII characters
so that it can be included in text files and e-mail messages in which raw binary data is unacceptable.
Base64 encoding works by spreading the contents of 3 bytes of input data across 4 bytes and ensuring
each byte uses only the 7 low-order bits to contain data. This means that each byte of Base64-encoded
data is equivalent to an ASCII character and can be stored or transmitted anywhere ASCII characters
are permitted. This process is not very efficient and can take a while to run on large amounts of data.

The ToBase64CharArray and FromBase64CharArray methods of the Convert class make it straight-
forward to Base64 encode and decode data. However, before Base64 encoding, you must convert
your data to a byte array. Similarly, when decoding, you must convert the byte array back to the
appropriate data type. (See recipe 2-2 for details on converting string data to and from byte arrays
and recipe 2-3 for details on converting basic value types.) The ToBase64String and FromBase64String
methods of the Convert class deal with string representations of Base64-encoded data.

The Code

The example shown here demonstrates how to Base64 encode and decode a Byte array, a Unicode
String, an Integer type, and a Decimal type using the Convert class. The DecimalToBase64 and
Base64ToDecimal methods rely on the ByteArrayToDecimal and DecimalToByteArray methods listed
in recipe 2-3.

Imports System

Imports System.IO

Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter02

Public Class Recipe02 04
' Create a byte array from a decimal.
Public Shared Function DecimalToByteArray(ByVal src As Decimal) As Byte()
' Create a MemoryStream as a buffer to hold the binary data.
Using stream As New MemoryStream
' Create a BinaryWriter to write binary data to the stream.
Using writer As New BinaryWriter(stream)
' Write the decimal to the BinaryWriter/MemoryStream.
writer.Write(src)
' Return the byte representation of the decimal.
Return stream.ToArray
End Using
End Using

End Function

47

48 CHAPTER 2 DATA MANIPULATION

Create a decimal from a byte array.
Public Shared Function ByteArrayToDecimal(ByVal src As Byte()) As Decimal
' Create a MemoryStream containing the byte array.
Using stream As New MemoryStream(src)
' Create a BinaryReader to read the decomal from the stream.
Using reader As New BinaryReader(stream)
" Read and return the decimal from
the BinaryReader/MemoryStream.
Return reader.ReadDecimal
End Using
End Using

End Function

' Base64 encode a Unicode string

Public Shared Function StringToBase64(ByVal src As String) As String
' Get a byte representation of the source string.

Dim b As Byte() = Encoding.Unicode.GetBytes(src)

' Return the Base64-encoded Unicode string.

Return Convert.ToBase64String(b)

End Function

' Decode a Base64-encoded Unicode string.

Public Shared Function Base64ToString(ByVal src As String) As String
' Decode the Base64-encoded string to a byte array.

Dim b As Byte() = Convert.FromBase64String(src)

' Return the decoded Unicode string.

Return Encoding.Unicode.GetString(b)

End Function

' Base64 encode a decimal

Public Shared Function DecimalToBase64(ByVal src As Decimal) As String
' Get a byte representation of the decimal.

Dim b As Byte() = DecimalToByteArray(src)

' Return the Base64-encoded decimal.

Return Convert.ToBase64String(b)

End Function

' Decode a Base64-encoded decimal.

Public Shared Function Base64ToDecimal(ByVal src As String) As Decimal
' Decode the Base64-encoded decimal to a byte array.

Dim b As Byte() = Convert.FromBase64String(src)

CHAPTER 2 DATA MANIPULATION

Return the decoded decimal.
Return ByteArrayToDecimal(b)

End Function

' Base64 encode an integer.

Public Shared Function IntToBase64(ByVal src As Integer) As String
' Get a byte representation of the integer.

Dim b As Byte() = BitConverter.GetBytes(src)

' Return the Base64-encoded integer.

Return Convert.ToBase64String(b)

End Function

' Decode a Baseb4-encoded integer.

Public Shared Function Base64ToInt(ByVal src As String) As Decimal
' Decode the Base64-encoded integer to a byte array.

Dim b As Byte() = Convert.FromBase64String(src)

' Return the decoded integer.

Return BitConverter.ToInt32(b, 0)

End Function
Public Shared Sub Main()

Encode and decode a string
Console.Writeline(StringToBase64("Welcome to Visual Basic Recipes " & w»
"from Apress"))
Console.Writeline(Base64ToString("VwB1AGWAYWBVAGOAZQAGAHQADWA" + '
"gAFYAaQBzAHUAYQBSACAAQWAJACAAUgBLAGMASOBWAGUACWAGAGYAcgB" + =
"VAGOATABBAHAACgBIAHMACWA="))

Encode and decode a decimal.
Console.WritelLine(DecimalToBase64(285998345545.563846696D))
Console.Writeline(Base64ToDecimal("KDjBUPO7BOEPAAAAAAATAA=="))

Encode and decode an integer.
Console.WritelLine(IntToBase64(35789))
Console.WritelLine(Base64ToInt("zYsAAA=="))
" Wait to continue
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

50

CHAPTER 2 DATA MANIPULATION

Caution If you Base64 encode binary data for the purpose of including it as MIME data in an e-mail message,
be aware that the maximum allowed line length in MIME for Base64-encoded data is 76 characters. Therefore, if
your data is longer than 76 characters, you must insert a new line. For further information about the MIME standard,
consult RFCs 2045 through 2049.

2-5. Validate Input Using Regular Expressions

Problem

You need to validate that user input or data read from a file has the expected structure and content.
For example, you want to ensure that a user enters a valid IP address, telephone number, or e-mail
address.

Solution

Use regular expressions to ensure that the input data follows the correct structure and contains only
valid characters for the expected type of information.

How It Works

When a user inputs data to your application or your application reads data from a file, it’s good practice
to assume that the data is bad until you have verified its accuracy. One common validation require-
ment is to ensure that data entries such as e-mail addresses, telephone numbers, and credit card
numbers follow the pattern and content constraints expected of such data. Obviously, you cannot
be sure the actual data entered is valid until you use it, and you cannot compare it against values that
are known to be correct. However, ensuring the data has the correct structure and content is a good
first step to determining whether the input is accurate. Regular expressions provide an excellent
mechanism for evaluating strings for the presence of patterns, and you can use this to your advan-
tage when validating input data.

The first thing you must do is figure out the regular expression syntax that will correctly match
the structure and content of data you are trying to validate. This is by far the most difficult aspect of
using regular expressions. Many resources exist to help you with regular expressions, such as The
Regulator (http://regex.osherove.com/) by Roy Osherove and RegExDesigner.NET by Chris Sells
(http://www.sellsbrothers.com/tools/#regexd). The RegExLib.com web site (http://www.
regxlib.com/) also provides hundreds of useful prebuilt expressions.

Regular expressions, which are case-sensitive, are constructed from two types of elements:
literals and metacharacters. Literals represent specific characters that appear in the pattern you want
to match. Metacharacters provide support for wildcard matching, ranges, grouping, repetition,
conditionals, and other control mechanisms. Table 2-2 describes some of the more commonly used
regular expression metacharacter elements. (Consult the NET SDK documentation at http://
msdn2.microsoft.com/en-us/library/hs600312.aspx for a full description of regular expressions.)

CHAPTER 2 DATA MANIPULATION

Table 2-2. Commonly Used Regular Expression Metacharacter Elements

Element Description
Specifies any character except a newline character (\n)

\d Specifies any digit

\D Specifies any non-digit

\s Specifies any whitespace character

\S Specifies any non-whitespace character

\w Specifies any word character

\W Specifies any non-word character

n Specifies the beginning of the string or line

\A Specifies the beginning of the string

$ Specifies the end of the string or line

\z Specifies the end of the string

| Matches one of the expressions separated by the vertical bar; for example,
AAA|ABA | ABB will match one of AAA, ABA, or ABB (the expression is evaluated left
to right)

[abc] Specifies a match with one of the specified characters; for example, [AbC] will
match A, b, or C, but no other character

[~abc] Specifies a match with any one character except those specified; for example,
[~AbC] will notmatch A, b, or C, but will match B, F, and so on

[a-Z] Specifies a match with any one character in the specified range; for example, [A-C]
will match A, B, or C

[ra-z] Specifies a match with any one character not in the specified range; for example,
[~A-C] will not match A, B, or C but will match B and F

() Identifies a subexpression so that it’s treated as a single element by the regular
expression elements described in this table

? Specifies one or zero occurrences of the previous character or subexpression; for
example, A?B matches B and AB, but not AAB

* Specifies zero or more occurrences of the previous character or subexpression; for
example, A*B matches B, AB, AAB, AAAB, and so on

+ Specifies one or more occurrences of the previous character or subexpression; for
example, A+B matches AB, AAB, AAAB, and so on, but not B

{n} Specifies exactly n occurrences of the preceding character or subexpression; for
example, A{2} matches only AA and A{2}B matches only AAB

{n,} Specifies a minimum of n occurrences of the preceding character or subexpres-
sion; for example, A{2, } matches AA, AAA, AAAA, and so on, but not A

{n, m} Specifies a minimum of » and a maximum of m occurrences of the preceding

character; for example, A{2,4} matches AA, AAA, and AAAA, but not A or AAAAA

51

52

CHAPTER 2

DATA MANIPULATION

The more complex the data you are trying to match, the more complex the regular expression
syntax becomes. For example, ensuring that input contains only numbers or is of a minimum length
is trivial, but ensuring a string contains a valid URL is extremely complex. Table 2-3 shows some
examples of regular expressions that match against commonly required data types.

Table 2-3. Commonly Used Regular Expressions

Input Type

Description

Regular Expression

Numeric input

Personal identification

number (PIN)

Simple password

Credit card number

E-mail address

HTTP or HTTPS URL

The input consists of one or more decimal
digits; for example, 5 or 5683874674.

The input consists of four decimal digits; for
example, 1234.

The input consists of six to eight characters;
for example, ghtd6f or b8c7hogh.

The input consists of data that matches the
pattern of most major credit card numbers;
for example, 4921835221552042 or
4921-8352-2155-2042.

The input consists of an Internet e-mail
address. The [\w-]+ expression indicates
that each address element must consist of
one or more word characters or hyphens;
for example, somebody@adatum.com.

The input consists of an HTTP-based or
HTTPS-based URL; for example, http://
WWW.apress.com.

d+$
Md{4}$
"\w{6,8}$

Md{a}-2\d{4}-2\
d{a}-2\d{4}$

MAw-1+@([\w-1]
)+ \w-1+$

~https?://7([\w-]
A\)+ [\w-1+(/
[\W-./2%=T1%)7%

Once you know the correct regular expression syntax, create a new System.Text.
RegularExpressions.Regex object, passing a string containing the regular expression to the Regex
constructor. Then call the IsMatch method of the Regex object and pass the string that you want to
validate. IsMatch returns a Boolean value indicating whether the Regex object found a match in the
string. The regular expression syntax determines whether the Regex object will match against only
the full string or match against patterns contained within the string. (See the *, \A, $, and \z entries
in Table 2-2.)

The Code

The ValidateInput method shown in the following example tests any input string to see if it matches
a specified regular expression.

Imports System
Imports System.Text.RegularExpressions
Namespace Apress.VisualBasicRecipes.Chaptero2

Public Class Recipe02 05

CHAPTER 2 DATA MANIPULATION

Public Shared Function ValidateInput(ByVal expression As String, =
ByVal input As String) As Boolean

' Create a new Regex based on the specified regular expression.
Dim r As New Regex(expression)

' Test if the specified input matches the regular expression.
Return r.IsMatch(input)

End Function
Public Shared Sub Main(ByVal args As String())

' Test the input from the command line. The first argument is the
' regular expression, and the second is the input.
Console.Writeline("Regular Expresion: {0}", args(0))
Console.WritelLine("Input: {0}", args(1))
Console.Writeline("vValied = {0}", ValidateInput(args(0), args(1)))

" Wait to continue.
Console.Writeline(vbCrLf & "Main method complete. Press Enter")
Console.Readline()

End Sub

End Class
End Namespace

Usage

To execute the example, run Recipe02-05.exe and pass the regular expression and data to test as
command-line arguments. For example, to test for a correctly formed e-mail address, type the
following:

Recipe02-05 ~[\w-J+@([\w-]+\.)+[\w-]+$ myname@mydomain.com

The result would be as follows:

Regular Expression: ~[\w-]+@([\w-]+\.)+[\w-]+$
Input: myname@mydomain.com
Valid = True

Notes

You can use a Regex object repeatedly to test multiple strings, but you cannot change the regular
expression tested for by a Regex object. You must create a new Regex object to test for a different
pattern. This is because the ValidateInput method creates a new Regex instance each time it’s
called. A more suitable alternative, in this case, would be to use a Shared overload of the IsMatch
method, as shown in the following variant of the ValidateInput method.

53

54

CHAPTER 2 DATA MANIPULATION

Alternative version of the ValidateInput method that does not create
Regex instances.

Public Shared Function ValidateInput(ByVal expression As String, ‘=
ByVal input As String) As Boolean

Test if the specified input matches the regular expression.
Return Regex.IsMatch(input, expression)

End Function

2-6. Use Compiled Regular Expressions

Problem

You need to minimize the impact on application performance that arises from using complex regular
expressions frequently.

Solution

When you instantiate the System.Text.RegularExpressions.Regex object that represents your regular
expression, specify the Compiled option of the System.Text.RegularExpressions.RegexOptions enumer-
ation to compile the regular expression to Microsoft Intermediate Language (MSIL).

How It Works

By default, when you create a Regex object, the regular expression pattern you specify in the constructor
is compiled to an intermediate form (not MSIL). Each time you use the Regex object, the runtime
interprets the pattern’s intermediate form and applies it to the target string. With complex regular
expressions that are used frequently, this repeated interpretation process can have a detrimental
effect on the performance of your application.

By specifying the RegexOptions.Compiled option when you create a Regex object, you force the
.NET runtime to compile the regular expression to MSIL instead of the interpreted intermediary
form. This MSIL is just-in-time (JIT) compiled by the runtime to native machine code on first execu-
tion, just like regular assembly code. Subsequent calls to the same RegEx object will use the native
version that was previously compiled. You use a compiled regular expression in the same way as you
use any Regex object; compilation simply results in faster execution.

However, a couple downsides offset the performance benefits provided by compiling regular
expressions. First, the JIT compiler needs to do more work, which will introduce delays during JIT
compilation. This is most noticeable if you create your compiled regular expressions as your appli-
cation starts up. Second, the runtime cannot unload a compiled regular expression once you have
finished with it. Unlike as with a normal regular expression, the runtime’s garbage collector will not
reclaim the memory used by the compiled regular expression. The compiled regular expression will
remain in memory until your program terminates or you unload the application domain in which
the compiled regular expression is loaded. If you only plan to use a RegEx object once, there is no
reason to compile it. Use compiling only for situations where a RegEx object is used frequently.

As well as compiling regular expressions in memory, the Shared Regex.CompileToAssembly
method allows you to create a compiled regular expression and write it to an external assembly. This
means that you can create assemblies containing standard sets of regular expressions, which you
can use from multiple applications. To compile a regular expression and persist it to an assembly,
take the following steps:

CHAPTER 2 DATA MANIPULATION 55

1. Create a System.Text.RegularExpressions.RegexCompilationInfo array large enough to
hold one RegexCompilationInfo object for each of the compiled regular expressions you
want to create.

2. Create a RegexCompilationInfo object for each of the compiled regular expressions. Specify
values for its properties as arguments to the object constructor. The following are the most
commonly used properties:

e IsPublic, aBoolean value that specifies whether the generated regular expression class has
Public visibility

* Name, a String value that specifies the class name

* Namespace, a String value that specifies the namespace of the class

e Pattern, a String value that specifies the pattern that the regular expression will match
(see recipe 2-5 for more details)

* Options, a System.Text.RegularExpressions.RegexOptions value that specifies options for
the regular expression

3. Create a System.Reflection.AssemblyName object. Configure it to represent the name of the
assembly that the Regex.CompileToAssembly method will create.

4. Execute Regex.CompileToAssembly, passing the RegexCompilationInfo array and the
AssemblyName object.

This process creates an assembly that contains one class declaration for each compiled regular
expression—each class derives from Regex. To use the compiled regular expression contained in the
assembly, instantiate the regular expression you want to use and call its method as if you had simply
created it with the normal Regex constructor. (Remember to add a reference to the assembly when
you compile the code that uses the compiled regular expression classes.)

The Code

This line of code shows how to create a Regex object that is compiled to MSIL instead of the usual
intermediate form:

Dim reg As New Regex("[\w-]+@([\w-]+\.)+[\w-]+", RegexOptions.Compiled)

The following example shows how to create an assembly named MyRegEx.dll, which contains
two regular expressions named PinRegex and CreditCardRegex.

Imports System
Imports System.Reflection
Imports System.Text.RegularExpressions

Namespace Apress.VisualBasicRecipes.Chapter02
Public Class Recipe02 06
Public Shared Sub Main()

Create the array to hold the Regex info objects.
Dim regexInfo(1) As RegexCompilationInfo

56

CHAPTER 2 DATA MANIPULATION

Create the RegexCompilationInfo for PinRegex.
regexInfo(0) = New RegexCompilationInfo("~\d{4}$", =
RegexOptions.Compiled, "PinRegex", "Apress.VisualBasicRecipes.Chapter02", True)

Create the RegexCompilationInfo for CreditCardRegex.
regexInfo(1) = New RegexCompilationInfo('

"Md{4}-2\d{4}-2\d{4}-2\d{4}$", RegexOptions.Compiled, "CreditCardRegex", =

"Apress.VisualBasicRecipes.Chapter02", True)

Create the AssemblyName to define the target assembly.
Dim assembly As New AssemblyName("MyRegEx")

Create the compiled regular expression.
Regex.CompileToAssembly (regexInfo, assembly)

End Sub

End Class
End Namespace

Usage

When you want to use your new assembly, you must first add a reference to it to your project. You
can do this from within the Visual Studio interface or by using the /r:MyRegEx.dl1 option of the
command-line compiler.

Once you have a reference to the assembly in your project, you can easily create a reference to
the compiled regular expressions contained inside, as shown in this example:

Dim pinRegExp As New PinRegex

2-7. Create Dates and Times from Strings

Problem

Youneed to create a System.DateTime instance that represents the time and date specified in a string.

Solution

Use the Parse or ParseExact method of the DateTime class.

CGaution Many subtle issues are associated with using the DateTime class to represent dates and times in
your applications. Although the Parse and ParseExact methods create DateTime objects from strings as described in
this recipe, you must be careful how you use the resulting DateTime objects within your program. See the article
titled “Coding Best Practices Using DateTime in the .NET Framework” (http://msdn.microsoft.com/
netframework/default.aspx?pull=/1ibrary/en-us/dndotnet/html/datetimecode.asp) for details
about the problems you may encounter.

CHAPTER 2 DATA MANIPULATION

How It Works

Dates and times can be represented as text in many different ways. For example, January 12 1975,
1/12/1975, and Jan-12-1975 are all possible representations of the same date, and 18:19 and 6:19 p.m.
can both be used to represent the same time. The Shared DateTime.Parse method provides a flexible
mechanism for creating DateTime instances from a wide variety of string representations.

The Parse method goes to great lengths to generate a DateTime object from a given string. It will
even attempt to generate a DateTime object from a string containing partial or erroneous information
and will substitute defaults for any missing values. Missing date elements default to the current date,
and missing time elements default to 12:00:00 a.m. After all efforts, if Parse cannot create a DateTime
object, it throws a System.FormatException exception.

The Parse method is both flexible and forgiving. However, for many applications, this level of
flexibility is unnecessary. Often, you will want to ensure that DateTime parses only strings that match
a specific format. In these circumstances, use the ParseExact method instead of Parse. The simplest
overload of the ParseExact method takes three arguments: the time and date string to parse, a format
string that specifies the structure that the time and date string must have, and an IFormatProvider
reference that provides culture-specific information to the ParseExact method. If the IFormatProvider
value is Nothing, the current thread’s culture information is used.

The time and date must meet the requirements specified in the format string, or ParseExact will
throw a System.FormatException exception. You use the same format specifiers for the format string
as you use to format a DateTime object for display as a string. This means that you can use both stan-
dard and custom format specifiers.

The Code

The following example demonstrates the flexibility of the Parse method and the use of the ParseExact
method. Refer to the documentation for the System.Globalization.DateTimeFormatInfo class in the
.NET Framework SDK document for complete details on all available format specifiers.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter02
Public Class Recipe02 07
Public Shared Sub Main(ByVal args As String())

' 1st January 1975 00:00:00
Dim dt1 As DateTime = DateTime.Parse("Jan 1975")

' 12th January 1975 18:19:00
Dim dt2 As DateTime = DateTime.Parse("Sunday 12 January 1975 18:19:00")

' 12th January 1975 00:00:00
Dim dt3 As DateTime = DateTime.Parse("1,12,1975")

' 12th January 1975 18:19:00
Dim dt4 As DateTime = DateTime.Parse("1/12/1975 18:19:00")

" Current Date 18:19
Dim dt5 As DateTime = DateTime.Parse("6:19 PM")

57

58 CHAPTER 2 DATA MANIPULATION

Display the converted DateTime objects.
Console.WriteLine(dt1)
Console.WriteLine(dt2)
Console.WriteLine(dt3)
Console.WriteLine(dt4)
Console.WriteLine(dts)

Parse only strings containing LongTimePattern.
Dim dt6 As DateTime = DateTime.ParseExact("6:19:00 PM", "h:mm:ss tt", w
Nothing)

Parse only strings containing RFC1123Pattern.
Dim dt7 As DateTime = DateTime.ParseExact("Sun, 12 Jan 1975 " + w»
"18:19:00 CMT", "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'", Nothing)

Parse only strings containing MonthDayPattern.
Dim dt8 As DateTime = DateTime.ParseExact("January 12", "MMMM dd",
Nothing)

Display the converted DateTime objects.
Console.WriteLine(dt6)
Console.WriteLine(dt7)
Console.WriteLine(dt8)

" Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

2-8. Add, Subtract, and Compare Dates and Times

Problem

You need to perform basic arithmetic operations or comparisons using dates and times.

Solution

Use the DateTime and TimeSpan structures, which support standard arithmetic and comparison
operators.

How It Works

A DateTime instance represents a specific time (such as 4:15 a.m. on September 5, 1970), whereas a
TimeSpan instance represents a period of time (such as 2 hours, 35 minutes). You may want to add,
subtract, and compare TimeSpan and DateTime instances.

Internally, both DateTime and TimeSpan use ticksto represent time. A tick is equal to 100 nano-
seconds. TimeSpan stores its time interval as the number of ticks equal to that interval, and DateTime

CHAPTER 2 DATA MANIPULATION

stores time as the number of ticks since 12:00:00 midnight on January 1 in 0001 C.E. (C.E. stands for
Common Era and is equivalent to A.D. in the Gregorian calendar.) This approach and the use of
operator overloading makes it easy for DateTime and TimeSpan to support basic arithmetic and
comparison operations. Table 2-4 summarizes the operator support provided by the DateTime and

TimeSpan structures.

Table 2-4. Operators Supported by DateTime and TimeSpan

Operator

TimeSpan

DateTime

Assignment (=)

Addition (+)

Subtraction (-)

Equality (=)

Inequality (<>)

Greater than (>)

Greater than or

equal to (>=)

Less than (<)

Less than or
equal to (<=)

Unary negation (-)

Unary plus (+)

Because TimeSpan is a structure,
assignment returns a copy and
not a reference

Adds two TimeSpan instances

Subtracts one TimeSpan instance
from another TimeSpan instance

Compares two TimeSpan instances
and returns true if they are equal

Compares two TimeSpan instances
and returns true if they are
not equal

Determines if one TimeSpan
instance is greater than another
TimeSpan instance

Determines if one TimeSpan
instance is greater than or equal
to another TimeSpan instance

Determines if one TimeSpan
instance is less than another
TimeSpan instance

Determines if one TimeSpan
instance is less than or equal to
another TimeSpan instance

Returns a TimeSpan instance
with a negated value of the
specified TimeSpan instance

Returns the TimeSpan instance
specified

Because DateTime is a structure,
assignment returns a copy and not
areference

Adds a TimeSpan instance to a
DateTime instance

Subtracts a TimeSpan instance or a
DateTime instance from a DateTime
instance

Compares two DateTime instances
and returns true if they are equal

Compares two DateTime instances
and returns true if they are not equal

Determines if one DateTime instance
is greater than another DateTime
instance

Determines if one DateTime instance
is greater than or equal to another
DateTime instance

Determines if one DateTime instance
is less than another DateTime instance

Determines if one DateTime instance
is less than or equal to another
DateTime instance

Not supported

Not supported

The DateTime structure also implements the AddTicks, AddMilliseconds, AddSeconds, AddMinutes,
AddHours, AddDays, AddMonths, and AddYears methods. Each of these methods, which accept a Double
as opposed to a TimeSpan, allows you to add (or subtract using negative values) the appropriate element
of time to a DateTime instance. These methods and the non-comparison operators listed in Table 2-4
do not modify the original DateTime; instead, they create a new instance with the modified value.

59

CHAPTER 2 DATA MANIPULATION

The Code

The following example demonstrates the use of operators to manipulate the DateTime and TimeSpan
structures.

Imports System
Namespace Apress.VisualBasicRecipes.Chaptero2
Public Class Recipe02 08

Public Shared Sub Main()
' Create a TimeSpan representing 2.5 days.

Dim timespanil As New TimeSpan(2, 12, 0, 0)

' Create a TimeSpan representing 4.5 days.

Dim timespan2 As New TimeSpan(4, 12, 0, 0)

' Create a TimeSpan representing 1 week.

Dim oneweek As TimeSpan = timespanl + timespan2

' Create a DateTime with the current date and time.

Dim now As DateTime = DateTime.Now

' Create a DateTime representing 1 week in the past.

Dim past As DateTime = now - oneweek

' Create a DateTime representing 1 week in the future.

Dim future As DateTime = now + oneweek

' Create a DateTime representing the next day using

' the AddDays method.

Dim tomorrow As DateTime = now.AddDays(1)

Display the DateTime instances.

Console.WritelLine("Now : {0}", now)
Console.WriteLine("Past : {0}", past)
Console.WriteLine("Future : {o}", future)

Console.WriteLine("Tomorrow : {0}", tomorrow)

" Wait to continue.

Console.WritelLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 2 DATA MANIPULATION

2-9. Sort an Array or an ArraylList

Problem

You need to sort the elements contained in an array or an ArraylList structure.

Solution

Use the ArraylList.Sort method to sort ArraylList objects and the Shared Array. Sort method to sort
arrays.

How It Works

The simplest Sort method overload sorts the objects contained in an array or ArraylList structure as
long as the objects implement the System.IComparable interface and are of the same type. All of the
basic data types implement IComparable. To sort objects that do not implement IComparable, you
must pass the Array.Sort method an object that implements the System.Collections.IComparer
interface. The IComparer implementation must be capable of comparing the objects contained
within the array or ArraylList. (Recipe 13-3 describes how to implement both comparable types.)

The Code

The following example demonstrates how to use the Sort methods of the ArrayList and Array classes.

Imports System
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chapter02
Public Class Recipe02 09

Public Shared Sub Main()
' Create a new array and populate it.

Dim array1l As Integer() = {4, 2, 9, 3}

" Sort the array.

Array.Sort(array1)

' Display the contents of the sorted array.

For Each i As Integer In arrayl
Console.Writeline(i.ToString)

Next

' Create a new Arraylist and populate it.

Dim 1ist1 As New ArraylList(3)

list1.Add("Amy")

list1.Add("Alaina")

list1.Add("Aidan")

' Sort the Arraylist.
list1.Sort()

61

62

CHAPTER 2 DATA MANIPULATION

Display the contents of the sorted Arraylist.
For Each s As String In list1
Console.WriteLine(s)
Next

Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

2-10. Copy a Collection to an Array

Problem

You need to copy the contents of a collection to an array.

Solution

Use the ICollection.CopyTo method implemented by all collection classes. Alternatively, you can
use the ToArray method implemented by the ArraylList, Stack, and Queue collections, as well as their
respective generic versions List<T>, Stack<T>, and Queue<T>. Refer to recipe 2-12 for more informa-
tion regarding generics.

How It Works

The ICollection.CopyTo method and the ToArray method perform roughly the same function: they
perform a shallow copy of the elements contained in a collection to an array. The key difference is
that CopyTo copies the collection’s elements to an existing array, whereas ToArray creates a new array
before copying the collection’s elements into it.

The CopyTo method takes two arguments: an array and an index. The array is the target of the
copy operation and must be of a type appropriate to handle the elements of the collection. If the
types do not match, or no implicit conversion is possible from the collection element’s type to the
array element’s type, a System.InvalidCastException exception is thrown. The index is the starting
element of the array where the collection’s elements will be copied. If the index is equal to or greater
than the length of the array, or the number of collection elements exceeds the capacity of the array,
a System.ArgumentException exception is thrown.

The ArraylList, Stack, and Queue classes and their generic versions (mentioned earlier) also
implement the ToArray method, which automatically creates an array of the correct size to accom-
modate a copy of all the elements of the collection. If you call ToArray with no arguments, it returns
anobject() array, regardless of the type of objects contained in the collection. For convenience, the
ArraylList.ToArray method hasan overload to which you can pass a System.Type object that specifies
the type of array that the ToArray method should create. (You must still cast the returned strongly
typed array to the correct type.) The layout of the array’s contents depends on which collection class
you are using. For example, an array produced from a Stack object will be inverted compared to the
array generated by an ArraylList object.

The Code

CHAPTER 2 DATA MANIPULATION

This example demonstrates how to copy the contents of an ArrayList structure to an array using the
CopyTo method, and then shows how to use the ToArray method on the ArrayList object.

Imports System
Imports System.Collections
Namespace Apress.VisualBasicRecipes.Chapter02

Public Class Recipe02 10

Public Shared Sub Main()

String())

Create a new Arraylist and populate it.
Dim 1ist As New ArraylList(3)
list.Add("Amy")

list.Add("Alaina")

list.Add("Aidan")

' Create a string array and use the ICollection.CopyTo method
to copy the contents of the Arraylist.

Dim arrayi(list.Count - 1) As String

list.CopyTo(array1i, 0)

Use Arraylist.ToArray to create an object array from the
contents of the collection.
Dim array2 As Object() = list.ToArray()

Use Arraylist.ToArray to create a strongly typed string
array from the contents of the collection.
Dim array3 As String() = DirectCast(list.ToArray(GetType(String)), ‘=

Display the contents of the 3 arrays.
Console.Writeline("Array 1:")
For Each s As String In arrayl
Console.WriteLine(vbTab + "{0}", s)
Next

Console.Writeline("Array 2:")

For Each s As String In array2
Console.WriteLine(vbTab + "{0}", s)

Next

Console.Writeline("Array 3:")

For Each s As String In array3
Console.WriteLine(vbTab + "{0}", s)

Next

" Wait to continue.

Console.Writeline(vbCrLf & "Main method complete. Press Enter")

Console.ReadlLine()

End Sub

63

64

CHAPTER 2 DATA MANIPULATION

End Class
End Namespace

2-11. Use a Strongly Typed Collection

Problem

You need a collection that works with elements of a specific type so that you do not need to work
with System.Object references in your code.

Solution

Use the appropriate collection class from the System.Collections.Generic namespace. When you
instantiate the collection, specify the type of object the collection should contain using the generics
syntax built into VB .NET 8.0.

How It Works

The generics functionality added to .NET Framework 2.0 and supported by specific syntax in

VB .NET 8.0 make it easy to create type-safe collections and containers (see recipe 2-12). To meet the
most common requirements for collection classes, the System.Collections.CGeneric namespace
contains a number of predefined generic collections, including the following:

e Dictionary
e Linkedlist
e List

e Queue

e Stack

When you instantiate one of these collections, you specify the type of object that the collection
will contain by using the Of keyword with the type name in parentheses after the collection name; for
example, Dictionary (0f System.Reflection.AssemblyName).As aresult, all members that add objects
to the collection expect the objects to be of the specified type, and all members that return objects
from the collection will return object references of the specified type. Using strongly typed collec-
tions and working directly with objects of the desired type simplifies development and reduces the
errors that can occur when working with general Object references and casting them to the desired type.

The Code

The following example demonstrates the use of generic collections to create a variety of collections
specifically for the management of AssemblyName objects. Notice that you never need to cast to or
from the Object type.

Imports System
Imports System.Reflection
Imports System.Collections.Generic

CHAPTER 2 DATA MANIPULATION 65

Namespace Apress.VisualBasicRecipes.Chapter02
Public Class Recipe02 11

Public Shared Sub Main()

Create an AssemblyName object for use during the example.
Dim assemblyl As New AssemblyName("com.microsoft.crypto, Culture=en, ‘=
PublicKeyToken=a5d015c7d5a0b012, Version=1.0.0.0")

Create and use a Dictionary of AssemblyName objects.
Dim assemblyDictionary As New Dictionary(Of String, AssemblyName)

assemblyDictionary.Add("Crypto", assembly1)
Dim ass1 As AssemblyName = assemblyDictionary("Crypto")

Console.Writeline("Got AssemblyName from dictionary: {o}", =
(Type(ass1, AssemblyName).ToString)

Create and use a list of AssemblyName objects.
Dim assemblylList As New List(Of AssemblyName)

assemblylist.Add(assembly1)
Dim ass2 As AssemblyName = assemblylList(0)

Console.Writeline(vbCrLf & "Got AssemblyName from list: {o}", w»
(Type(ass2, AssemblyName).ToString)

Create and use a stack of AssemblyName objects.
Dim assemblyStack As New Stack(Of AssemblyName)

assemblyStack.Push(assembly1)
Dim ass3 As AssemblyName = assemblyStack.Pop

Console.Writeline(vbCrLf & "Popped AssemblyName from stack: {o}", =
(Type(ass3, AssemblyName).ToString)

Wait to continue.
Console.Writeline(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

66

CHAPTER 2 DATA MANIPULATION

2-12. Create a Generic Type

Problem

Youneed to create a new general-purpose type such as a collection or container that supports strong
typing of the elements it contains.

Solution

Use the generics functionality added to .NET Framework 2.0. Define your class using the generics
syntax provided in VB .NET 8.0.

How It Works

You can leverage the generics capabilities of .NET Framework 2.0 in any class you define. This allows
youto create general-purpose classes that can be used as type-safe instances by other programmers.
When you declare your type, you identify it as a generic type by following the type name with alist of
identifiers for the types used in the class, preceded by the 0f keyword and enclosed in parentheses.
Here is an example:

Public Class MyGeneric(Of T1, T2, T3)
End Class

This declaration specifies a new class named MyGenericType, which uses three generic types in
its implementation (T1, T2, and T3). When implementing the type, you substitute the generic type
names into the code instead of using specific type names. For example, one method might take an
argument of type T1 and return a result of type T2, as shown here:

Public Function MyGenericMethod(ByVal arg As T1) As T2
End Function

When other people use your class and create an instance of it, they specify the actual types to
use as part of the instantiation. Here is an example:

Dim obj As New MyGenericType(Of String, System.IO.Stream, String)

The types specified replace T1, T2, and T3 throughout the implementation, so with this instance,
MyGenericMethod would actually be interpreted as follows:

Public Function MyGenericMethod(ByVal arg As String) As Stream
End Function

You can also include constraints as part of your generic type definition. This allows you to make
specifications such as the following:

e Only value types or only reference types can be used with the generic type.

e Only types that implement a default (empty) constructor can be used with the generic type.

e Only types that implement a specific interface can be used with the generic type.

e Only types that inherit from a specific base class can be used with the generic type.

* One generic type must be the same as another generic type (for example, T1 must be the same
asT3).

CHAPTER 2 DATA MANIPULATION

For example, to specify that T1 must implement the System. IDisposable interface and provide
a default constructor, that T2 must be or derive from the System.I0.Streamclass, and that T3 mustbe
the same type as T1, change the definition of MyGenericType as follows:

Public Class MyGenericType(Of T1 As {IDisposable}, T2 As {System.IO.Stream}, w»
T3 As {T1})
End Class

The Code

The following example demonstrates a simplified bag implementation that returns those objects put
into it at random. A bagis a data structure that can contain zero or more items, including duplicates
of items, but does not guarantee any ordering of the items it contains.

Imports System
Imports System.Collections.Generic
Namespace Apress.VisualBasicRecipes.Chapter02

Public Class Bag(Of T)
" A list to hold the bag's contents. The list must be
" of the same type as the bag.
Private items As New List(Of T)

' A method to add an item to the bag.
Public Sub Add(Byval item As T)
items.Add(item)
End Sub
' A method to remove a random item from the bag.
Public Function Remove() As T
Dim item As T = Nothing

If Not items.Count = 0 Then
' Determine which item to remove from the bag.
Dim r As New Random
Dim num As Integer = r.Next(0, items.Count)
' Remove the item.
item = items(num)
items.RemoveAt (num)
End If

Return item

End Function
' A method to remove all items form the bag and return them
as an array.

Public Function RemoveAll() As T()

Dim i As T() = items.ToArray()
items.Clear()
Return i

End Function

67

68 CHAPTER 2 DATA MANIPULATION

End Class
Public Class Recipe02 12

Public Shared Sub Main()
' Create a new bag of strings.
Dim bag As New Bag(Of String)

' Add strings to the bag.
bag.Add("Amy")
bag.Add("Alaina")
bag.Add("Aidan")
bag.Add("Robert")
bag.Add("Pearl")
bag.Add("Mark")
bag.Add("Karen")

' Take four strings from the bag and display.
Console.WritelLine("Item 1 = {0}", bag.Remove())
Console.WriteLine("Item 2 = {0}", bag.Remove())
Console.WritelLine("Item 3 = {0}", bag.Remove())
Console.WritelLine("Item 4 = {0}", bag.Remove())
Console.WritelLine(vbCrLf)

' Remove the remaining items from the bag.
Dim s As String() = bag.RemoveAll

Display the remaining items.
For i As Integer = 0 To s.Length - 1

Console.WritelLine("Item {0} = {1}", i + 1.ToString, s(i))
Next

Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

2-13. Store a Serializable Object to a File

Problem

You need to store a serializable object and its state to a file, and then deserialize it later.

CHAPTER 2 DATA MANIPULATION

Solution

Use a formatterto serialize the object and write it to a System.I0.FileStream object. When you need
to retrieve the object, use the same type of formatter to read the serialized data from the file and
deserialize the object. The .NET Framework class library includes the following formatter imple-
mentations for serializing objects to binary or SOAP format:

e System.Runtime.Serialization.Formatters.Binary.BinaryFormatter

e System.Runtime.Serialization.Formatters.Soap.SoapFormatter

How It Works

Using the BinaryFormatter and SoapFormatter classes, you can serialize an instance of any serializ-
able type. (See recipe 13-1 for details on how to make a type serializable.) The BinaryFormatter class
produces a binary data stream representing the object and its state. The SoapFormatter class produces a
SOAP document. SOAP, which stands for Simple Object Access Protocol, is an XML-based protocol
used to exchange messages over the network. SOAP is used as the primary mechanism for commu-
nicating with web services. Refer to recipes 10-13, 10-14, and 10-15 for more information about web
services.

Both the BinaryFormatter and SoapFormatter classes implement the interface System.Runtime.
Serialization.IFormatter, which defines two methods: Serialize and Deserialize. The Serialize
method takes a System.I0.Stream reference and a System.0Object reference as arguments, serializes
the Object, and writes it to the Stream. The Deserialize method takes a Stream reference as an argument,
reads the serialized object data from the Stream, and returns an Object reference to a deserialized object.
You must cast the returned Object reference to the correct type.

Caution To call the Serialize and Deserialize methods of the BinaryFormatter class, your code must
be granted the SecurityPermissionFlag.SerializationFormatter permission. To call the Serialize
and Deserialize methods of the SoapFormatter class, your code must be granted full trust, because the
System.Runtime.Serialization.Formatters.Soap.d11 assembly in which the SoapFormatter classis
declared does not allow partially trusted callers. Refer to recipe 11-1 for more information about assemblies and
partially trusted callers.

The Code

The example shown here demonstrates the use ofboth BinaryFormatter and SoapFormatter to serialize
aSystem.Collections.ArraylList object containing alist of people to a file. The ArraylList object

is then deserialized from the files and the contents displayed to the console. A reference to the
System.Runtime.Serialization.Formatters.Soap assembly may need to be added to your project
before it can be used.

Imports System

Imports System.IO

Imports System.Collections

Imports System.Runtime.Serialization.Formatters.Soap
Imports System.Runtime.Serialization.Formatters.Binary

69

70 CHAPTER 2 DATA MANIPULATION

Namespace Apress.VisualBasicRecipes.Chaptero2

Public Class Recipe02_ 13
' Serialize an Arraylist object to a binary file.
Private Shared Sub BinarySerialize(ByVal list As Arraylist)

Using str As FileStream = File.Create("people.bin")
Dim bf As New BinaryFormatter()
bf.Serialize(str, list)

End Using

End Sub

Deserialize an Arraylist object from a binary file.
Private Shared Function BinaryDeserialize() As Arraylist
Dim people As ArraylList = Nothing

Using str As FileStream = File.OpenRead("people.bin")
Dim bf As New BinaryFormatter()
people = DirectCast(bf.Deserialize(str), Arraylist)
End Using
Return people

End Function
' Serialize an Arraylist object to a SOAP file.
Private Shared Sub SoapSerialize(ByVal 1list As Arraylist)

Using str As FileStream = File.Create("people.soap")
Dim sf As New SoapFormatter()
sf.Serialize(str, list)

End Using

End Sub

Deserialize an Arraylist object from a SOAP file.
Private Shared Function SoapDeserialize() As Arraylist
Dim people As ArraylList = Nothing

Using str As FileStream = File.OpenRead("people.soap")
Dim sf As New SoapFormatter()
people = DirectCast(sf.Deserialize(str), Arraylist)
End Using
Return people

End Function

Public Shared Sub Main()

CHAPTER 2 DATA MANIPULATION

Create and configure the Arraylist to serialize.
Dim people As New Arraylist
people.Add("Alex")
people.Add("Dave")
people.Add("Jason")
people.Add("Robb")

' Serialize the list to a file in both binary and SOAP format.
BinarySerialize(people)
SoapSerialize(people)

Rebuild the lists of people form the binary and SOAP
serializations and display them to the console.

Dim binaryPeople As ArraylList = BinaryDeserialize()

Dim soapPeople As Arraylist = SoapDeserialize()

Console.WritelLine("Binary People:")
For Each s As String In binaryPeople
Console.WriteLine(vbTab & s)

Next

Console.Writeline(vbCrLf & "SOAP People:")

For Each s As String In soapPeople
Console.WriteLine(vbTab & s)

Next

Wait to continue.
Console.Writeline(vbCrLf & "Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

To illustrate the different results achieved using the BinaryFormatter and SoapFormatter classes,
Figure 2-1 shows the contents of the people.bin file generated using the BinaryFormatter class,
and Figure 2-2 shows the contents of the people.soap file generated using the SoapFormatter class.

Figure 2-1. Contents of the people.bin file

n

72 CHAPTER 2 DATA MANIPULATION

Figure 2-2. Contents of the people.soap file

2-14. Read User Input from the Console

Problem

You want to read user input from the Windows console, either a line or character at a time.

Solution

Use the Read or ReadLine method of the System.Console class to read input when the user presses
Enter. To read input without requiring the user to press Enter, use the Console.ReadKey method.

How It Works

The simplest way to read input from the console is to use the Shared Read or ReadLine methods of the
Console class. These methods will cause your application to block, waiting for the user to enter input
and press Enter. In both instances, the user will see the input characters in the console. Once the
user presses Enter, the Read method will return an Integer value representing the next character of
input data, or -1 if no more data is available. Since Read reads only one character, it must be called
repeatedly to continue capturing user input. The ReadLine method will return a string containing all
the data entered, or an empty string if no data was entered.

.NET Framework 2.0 adds the ReadKey method to the Console class, which provides a way to read
input from the console without waiting for the user to press Enter. The ReadKey method waits for the
user to press a key and returns a System. ConsoleKeyInfo object to the caller. By passing true as an
argument to an overload of the ReadKey method, you can also prevent the key pressed by the user
from being echoed to the console.

The returned ConsoleKeyInfo object contains details about the key pressed. The details are
accessible through the properties of the ConsoleKeyInfo class summarized in Table 2-5.

CHAPTER 2 DATA MANIPULATION

Table 2-5. Properties of the ConsoleKeyInfo Class

Property Description

Key Gets a value of the System.ConsoleKey enumeration representing the key pressed.
The ConsoleKey enumeration contains values that represent all of the keys usually
found on a keyboard. These include all the character and function keys; navigation
and editing keys like Home, Insert, and Delete; and more modern specialized keys
like the Windows key, media player control keys, browser activation keys, and
browser navigation keys.

KeyChar Gets a Char value containing the Unicode character representation of the key
pressed. Special keys such as Insert, Delete, and F1 through F12 do not have a
Unicode representation and will return Nothing.

Modifiers Gets a bitwise combination of values from the System.ConsoleModifiers enumera-
tion that identifies one or more modifier keys pressed simultaneously with the
console key. The members of the ConsoleModifiers enumeration are Alt, Control,
and Shift.

The KeyAvailable method of the Console class returns a Boolean value indicating whether input
is available in the input buffer without blocking your code.

The Code

The following example reads input from the console one character at a time using the ReadKey method.
If the user presses F1, the program toggles in and out of “secret” mode, where input is masked by
asterisks. When the user presses Escape, the console is cleared and the input the user has entered is
displayed. If the user presses Alt-X or Alt-x, the example terminates.

Imports System
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter02

Public Class Recipe02 14
Public Shared Sub Main()
" Local variable to hold the key entered by the user.
Dim key As ConsoleKeyInfo
' Control whether character or asterisk is displayed.
Dim secret As Boolean = False
' Character list for the user data entered.
Dim input As New List(Of Char)
Dim msg As String = "Enter characters and press Escape to see input." w»
& vbCrLf & "Press F1 to enter/exit Secret mode and Alt-X to exit."

Console.WritelLine(msg)

73

74 CHAPTER 2 DATA MANIPULATION

' Process input until the users enters "Alt-X" or "Alt-x".
Do
Read a key from the console. Intercept the key so that it is not
' displayed to the console. What is displayed is determined later
depending on whether the program is in secret mode.
key = Console.ReadKey(True)
' Switch secret mode on and off.
If key.Key = ConsoleKey.F1 Then
If secret Then
" Switch secret mode off.
secret = False
Else
' Switch secret mode on.
secret = True
End If
End If

If key.Key = ConsoleKey.Backspace Then
Handle Backspace.
If input.Count > 0 Then
' Backspace pressed remove the last character.
input.RemoveAt (input.Count - 1)

Console.Write(key.KeyChar)
Console.Write(" ")
Console.Write(key.KeyChar)
End If
' Handle Escape.
ElseIf key.Key = ConsoleKey.Escape Then
Console.Clear()
Console.Writeline("Input: {0}{1}{1}", New ‘=
String(input.ToArray), vbCrLf)
Console.Writeline(msg)
input.Clear()
' Handle character input.
ElseIf key.Key >= ConsoleKey.A And key.Key <= ConsoleKey.Z Then
input.Add(key.KeyChar)

If secret Then
Console.Write("*")

Else
Console.Write(key.KeyChar)

End If

End If

CHAPTER 2 DATA MANIPULATION 75

Loop While Not key.Key = ConsoleKey.X Or Not key.Modifiers = w»
ConsoleModifiers.Alt

Wait to continue.
Console.Writeline("{0}{0}Main method complete. Press Enter", vbCrLf)
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 3

Application Domains, Reflection,
and Metadata

The power and flexibility of the Microsoft .NET Framework is enhanced by the ability to inspect
and manipulate types and metadata at runtime. The recipes in this chapter describe how to use
application domains, reflection, and metadata. Specifically, the recipes in this chapter describe how
to do the following:

e Control the loading of assemblies and the instantiation of types in local and remote applica-
tion domains (recipes 3-1, 3-3, 3-4, and 3-7)

e Createapplication domains into which you can load assemblies that are isolated from the rest
of your application (recipe 3-2)

* Create types that are guaranteed to be unable to cross application domain boundaries (recipe
3-5) and types that have the capability to cross application domain boundaries (recipe 3-6)

* Pass simple configuration data between application domains (recipe 3-8)

¢ Unload application domains, which provides the only means through which you can unload
assemblies at runtime (recipe 3-9)

e Inspect and test the type of an object using a variety of mechanisms built into the VB .NET
language and capabilities provided by the objects themselves (recipes 3-10 and 3-11)

* Dynamically instantiate an object and execute its methods at runtime using reflection
(recipe 3-12)

* Create custom attributes (recipe 3-13), allowing you to associate metadata with your program
elements, and inspect the value of those custom attributes at runtime (recipe 3-14)

Note An excellent reference for detailed information on all aspects of application domains and loading assemblies
is Customizing the Microsoft .NET Framework Common Language Runtime by Steven Pratschner (Microsoft Press, 2005).

3-1. Load an Assembly into the Current
Application Domain

Problem

You need to load an assembly into the current application domain at runtime.
77

78

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Solution

Use the Shared Load method or the LoadFrom method of the System.Reflection.Assembly class.

Note The Assembly.LoadwWithPartialName method has been deprecated in .NET Framework 2.0. Instead,
you should use the Assembly . Load method described in this recipe.

How It Works

Unlike with Win32, where the referenced DLLs are loaded when the process starts, the common
language runtime (CLR) will automatically load the assemblies referenced by your assembly only
when the metadata for their contained types is required. However, you can also explicitly instruct
the runtime to load assemblies. The Load and LoadFrom methods both result in the runtime loading
an assembly into the current application domain, and both return an Assembly instance that repre-
sents the newlyloaded assembly. The differences between each method are the arguments you must
provide to identify the assembly to load and the process that the runtime undertakes to locate the
specified assembly.

The Load method provides overloads that allow you to specify the assembly to load using one of
the following:

e A String containing the fully or partially qualified display name of the assembly
e ASystem.Reflection.AssemblyName containing details of the assembly

* A Byte array containing the raw bytes that constitute the assembly

A fully qualified display name contains the assembly’s text name, version, culture, and public
key token, separated by commas (for example, System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089). When using a fully qualified name, all four fields are mandatory.
If you need to specify an assembly that doesn’t have a strong name, use PublicKeyToken=null. You
can also specify a partial display name, but as a minimum, you must specify the assembly name
(without the file extension).

In response to the Load call, the runtime undertakes an extensive process to locate and load the
specified assembly. The following is a summary of this process (consult the section “How the Runtime
Locates Assemblies” in the .NET Framework SDK documentation for more details):

1. If you specify a strong-named assembly, the Load method will apply the version policy and
publisher policy to enable requests for one version of an assembly to be satisfied by another
version. You specify the version policy in your machine or application configuration file
using <bindingRedirect> elements. You specify the publisher policy in special resource
assemblies installed in the global assembly cache (GAC).

2. Once the runtime has established the correct version of an assembly to use, it attempts to
load strong-named assemblies from the GAC.

3. Iftheassembly is not strong named or is not found in the GAC, the runtime looks for applicable
<codeBase> elements in your machine and application configuration files. A <codeBase> element
maps an assembly name to a specific file or a uniform resource locator (URL). If the assembly is
strong named, <codeBase> can refer to any location including Internet-based URLs; otherwise,
<codeBase> must refer to a directory relative to the application directory. If the assembly doesn’t
exist at the specified location, Load throws a System.I0.FileNotFoundException.

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

4. Ifno <codeBase> elements are relevant to the requested assembly, the runtime will locate the
assembly using probing. Probing looks for the first file with the assembly’s name (with either
a .dll or an .exe extension) in the following locations:

* The application root directory
* Directories under the application root that match the assembly’s name and culture

* Directories under the application root that are specified in the private binpath using the
<privatePath> attribute.

The Load method is the easiest way to locate and load assemblies but can also be expensive in
terms of processing if the runtime needs to start probing many directories for aweak-named assembly.
The LoadFrom method allows you to load an assembly from a specific location. If the specified file
isn’t found, the runtime will throw a FileNotFoundException. The runtime won’t attempt to locate
the assembly in the same way as the Load method—LoadFrom provides no support for the GAC, policies,
<codeBase> elements, or probing.

The Code

The following code demonstrates various forms of the Load and LoadFrom methods. Notice that unlike
the Load method, LoadFrom requires you to specify the extension of the assembly file.

Imports System
Imports System.Reflection
Imports System.Globalization

Namespace Apress.VisualBasicRecipes.Chapter03
Public Class Recipe03 01

Public Shared Sub ListAssemblies()
' Get an array of the assemblies loaded into the current

application domain.

Dim assemblies As Assembly() = AppDomain.CurrentDomain.GetAssemblies()

For Each a As Assembly In assemblies
Console.WritelLine(a.GetName)
Next

End Sub

Public Shared Sub Main()
' List the assemblies in the current application domain.
Console.WritelLine("**** BEFORE *¥**")
ListAssemblies()
' Load the System.Data assembly using a fully qualified display name.
Dim namel As String = "System.Data,Version=2.0.0.0," + =
"Culture=neutral,PublickKeyToken=b77a5c561934e089"
Dim a1 As Assembly = Assembly.Load(namel)

79

80

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Load the System.Xml assembly using an AssemblyName.

Dim name2 As New AssemblyName()

name2.Name = "System.Xml"

name2.Version = New Version(2, 0, 0, 0)

name2.CultureInfo = New CultureInfo("") ' Neutral culture.

name2.SetPublicKeyToken(New Byte() {8HB7, 8H7A, &H5C, 8H56, w»
8H19, 8H34, 8HEO, 8H89})

Dim a2 As Assembly = Assembly.load(name2)

' Load the SomeAssembly assembly using a partial display name.
Dim a3 As Assembly = Assembly.load("SomeAssembly")

" Load the assembly named C:\shared\MySharedAssembly.dll.
Dim a4 As Assembly = Assembly.LoadFrom("C:\shared\MySharedAssembly.d11")

List the assemblies in the current application domain.
Console.WriteLine("{0}{o}**** AFTER ****" = ybCrLf)
ListAssemblies()

Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadLine()

End Sub

End Class
End Namespace

3-2. Create an Application Domain

Problem

You need to create a new application domain.

Solution

Use the Shared method CreateDomain of the System.AppDomain class.

How It Works

The simplest overload of the CreateDomain method takes a single String argument specifying a human-
readable name (friendly name) for the new application domain. Other overloads allow you to specify
evidence and configuration settings for the new application domain. Evidencerefers to information,
such as a strong name or application path, that is used by the CLR when making security decisions.
You specify evidence using a System. Security.Policy.Evidence object, and you specify configura-
tion settings using a System.AppDomainSetup object.

The AppDomainSetup class is a container of configuration information for an application domain.
Table 3-1 lists some of the properties of the AppDomainSetup class that you will use most often when
creating application domains. These properties are accessible after creation through members of the
AppDomain object. Some have different names, and some are modifiable at runtime; refer to the .NET

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA 81

Framework’s software development kit (SDK) documentation on the AppDomain class for a compre-
hensive discussion.

Table 3-1. Commonly Used AppDomainSetup Properties

Property Description

ApplicationBase The directory where the CLR will look during probing to resolve
private assemblies. Recipe 3-1 discusses probing. Effectively,
ApplicationBase is the root directory for the executing application.
By default, this is the directory containing the assembly. This is
readable after creation using the AppDomain.BaseDirectory property.

ConfigurationFile The name of the configuration file used by code loaded into the
application domain. This is readable after creation using the
AppDomain.GetData method with the key APP_CONFIG_FILE. By
default, the configuration file is stored in the same folder as the
application.exe file, but if you set ApplicationBase, it will be in that
same folder.

DisallowPublisherPolicy Controls whether the publisher policy section of the application
configuration file is taken into consideration when determining
which version of a strong-named assembly to bind to. Recipe 3-1
discusses publisher policy.

PrivateBinPath A semicolon-separated list of directories that the runtime uses when
probing for private assemblies. These directories are relative to the
directory specified in ApplicationBase. This is readable after appli-
cation domain creation using the AppDomain.RelativeSearchPath

property.

The Code
The following code demonstrates the creation and initial configuration of an application domain:

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

Public Class Recipe03 02

Public Shared Sub Main()
" Instantiate an AppDomainSetup object.

Dim setupInfo As New AppDomainSetup

' Configure the application domain setup information.

setupInfo.ApplicationBase = "C:\MyRootDirectory"

setupInfo.ConfigurationFile = "MyApp.config"

setupInfo.PrivateBinPath = "bin;plugins;external”

' Create a new application domain passing Nothing as the evidence

argument. Remember to save a reference to the new AppDomain as

this cannot be retrieved any other way.

Dim newDomain As AppDomain = AppDomain.CreateDomain("My New " & ‘=

82 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

"AppDomain, Nothing, setupInfo)

Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Note You must maintain a reference to the AppDomain object when you create it because no mechanism exists
to enumerate existing application domains from within managed code.

3-3. Execute an Assembly in a Different
Application Domain

Problem

You need to execute an assembly in an application domain other than the current one.

Solution

Call the ExecuteAssembly or ExecuteAssemblyByName (in .NET Framework 2.0) method of the AppDomain
object that represents the application domain, and specify the filename of an executable assembly.

How It Works

If you have an executable assembly that you want to load and run in an application domain, the
ExecuteAssembly or ExecuteAssemblyByName method provides the easiest solution. The ExecuteAssembly
method provides four overloads. The simplest overload takes only a String containing the name of
the executable assembly to run; you can specify a local file or a URL. Other ExecuteAssembly over-
loads allow you to specify evidence for the assembly (which affects code access security) and arguments
to pass to the assembly’s entry point (equivalent to command-line arguments).

The ExecuteAssembly method loads the specified assembly and executes the method defined in
metadata as the assembly’s entry point (usually the Main method). If the specified assembly isn’t
executable, ExecuteAssembly throws a System.MissingMethodException. The CLR doesn’t start execu-
tion of the assembly in a new thread, so control won’t return from the ExecuteAssembly method until
the newly executed assembly exits. Because the ExecuteAssembly method loads an assembly using
partial information (only the filename), the CLR won’t use the GAC or probing to resolve the assembly.
(See recipe 3-1 for more information.)

The ExecuteAssemblyByName method provides a similar set of overloads and takes the same argu-
ment types as ExecuteAssembly, but instead of just the filename of the executable assembly, it takes
the display name of the assembly. (See recipe 3-1 for more information about the structure of assembly
display names.) This overcomes the limitations inherent in ExecuteAssembly as a result of supplying
only partial names. Here is an example of using this method:

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA 83

Dim domain As AppDomain = AppDomain.CreateDomain("NewAppDomain")
domain.ExecuteAssemblyByName("Recipe03-06, Version=1.0.0.0, Culture=neutral, =
PublicKeyToken=null", Nothing, args)

The Code

The following code demonstrates how to use the ExecuteAssembly method to load and run an
assembly. The Recipe03_03 class creates an AppDomain and executes itself in that AppDomain using the
ExecuteAssembly method. This results in two copies of the Recipe03-03 assemblyloaded into two
different application domains.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

Public Class Recipe03 03

Public Shared Sub Main(ByVal args As String())
' For the purpose of this example, if this assembly is executing
in an AppDomain with the friendly name NewAppDomain, do not
create a new AppDomain. This avoids an infinite loop of
AppDomain creation.
If Not AppDomain.CurrentDomain.FriendlyName = "NewAppDomain" Then
' Create a new application domain.
Dim domain As AppDomain = AppDomain.CreateDomain("NewAppDomain™)

Execute this assembly in the new application domain and
pass the array of command-line arguments.
domain.ExecuteAssembly("Recipe03-03.exe", Nothing, args)

End If

' Display the command-line arguments to the screen prefixed with

the friendly name of the AppDomain.

For Each s As String In args
Console.Writeline(AppDomain.CurrentDomain.FriendlyName +

Next

+5)

Wait to continue.

If Not AppDomain.CurrentDomain.FriendlyName = "NewAppDomain" Then
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End If

End Sub

End Class
End Namespace

Usage

If you run Recipe03-03 using the following command:

Recipe03-03 Testing AppDomains

84

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

you will see that the command-line arguments are listed from both the existing and new application
domains:

NewAppDomain : Testing
NewAppDomain : AppDomains
Recipe03-03.exe : Testing
Recipe03-03.exe : AppDomains

3-4. Avoid Loading Unnecessary Assemblies into
Application Domains

Problem

You need to pass an object reference across multiple application domain boundaries; however, to
conserve memory and avoid impacting performance, you want to ensure the CLR loads only the
object’s type metadata into the application domains where it is required (that is, where you will
actually use the object).

Solution

Wrap the object reference in a System.Runtime.Remoting.0ObjectHandle, and unwrap the object
reference only when you need to access the object.

How It Works

When you pass a marshal-by-value (MBV) object across application domain boundaries, the runtime
creates a new instance of that object in the destination application domain. This means the runtime
must load the assembly containing that type metadata into the application domain. Passing MBV
references across intermediate application domains can result in the runtime loading unnecessary
assemblies into application domains. Once loaded, these superfluous assemblies cannot be unloaded
without unloading the containing application domain. (See recipe 3-9 for more information.)

The ObjectHandle class allows you to wrap an object reference so that you can pass it between
application domains without the runtime loading additional assemblies. When the object reaches
the destination application domain, you can unwrap the object reference, causing the runtime to
load the required assembly and allowing you to access the object.

The Code

The following code contains some simple methods that demonstrate how to wrap and unwrap a
System.Data.DataSet using an ObjectHandle:

Imports System
Imports System.Data
Imports System.Runtime.Remoting

Namespace Apress.VisualBasicRecipes.Chaptero3

Public Class Recipe03_04

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

A method to wrap a DataSet.
Public Function WrapDataset(ByVal ds As DataSet) As ObjectHandle

' Wrap the DataSet.
Dim objHandle As New ObjectHandle(ds)

Return the wrapped DataSet.
Return objHandle

End Function

A method to unwrap a DataSet.
Public Function UnwrapDataset(ByVal handle As ObjectHandle) As DataSet

Unwrap the DataSet.
Dim ds As DataSet = CType(handle.Unwrap, DataSet)

' Return the DataSet.
Return ds

End Function

End Class
End Namespace

3-5. Create a Type That Cannot Cross Application
Domain Boundaries

Problem

You need to create a type so that instances of the type are inaccessible to code in other application
domains.

Solution

Ensure the type is nonremotable by making sure it is not serializable (no Serializable attribute) and
it does not derive from the MarshalByRefObject class.

How It Works

On occasion, you will want to ensure that instances of a type cannot transcend application domain
boundaries. To create a nonremotable type, ensure that it isn’t serializable and that it doesn’t derive
(directly or indirectly) from the MarshalByRefObject class. If you take these steps, you ensure that an
object’s state can never be accessed from outside the application domain in which the object was
instantiated—such objects cannot be used as arguments or return values in cross-application domain
method calls.

Ensuring that a type isn’t serializable is easy because a class doesn’t inherit the ability to be
serialized from its parent class. To ensure that a type isn’t serializable, make sure it does not have
System.SerializableAttribute applied to the type declaration.

85

86

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Ensuring that a class cannot be passed by reference requires a little more attention. Many
classes in the .NET class library derive directly or indirectly from MarshalByRefObject; you must be
careful you don’tinadvertently derive your class from one of these. Commonly used base classes that
derive from MarshalByRefObject include System.ComponentModel.Component, System.I0.Stream,
System.I0.TextReader, System.I0.TextWriter, System.NET.WebRequest, and System.Net.WebResponse.
(Check the .NET Framework SDK documentation on MarshalByRefObject. The inheritance hierarchy
for the class provides a complete list of classes that derive from it.)

3-6. Create a Type That Can Be Passed Across
Application Domain Boundaries

Problem

You need to pass objects across application domain boundaries as arguments or return values.

Solution
Use marshal-by-value (MBV) or marshal-by-reference (MBR) objects.

How It Works

The .NET Remoting system (discussed in Chapter 10) makes passing objects across application
domain boundaries straightforward. However, to those unfamiliar with .NET Remoting, the results
can be very different from those expected. In fact, the most confusing aspect of using multiple appli-
cation domains stems from the interaction with .NET Remoting and the way objects traverse
application domain boundaries.

All types fall into one of three categories: nonremotable, MBV, or MBR. Nonremotable types
cannot cross application domain boundaries and cannot be used as arguments or return values in
cross-application domain calls. (Recipe 3-5 discusses nonremotable types.)

MBYV types are serializable types. When you pass an MBV object across an application domain
boundary as an argument or a return value, the .NET Remoting system serializes the object’s current
state, passes it to the destination application domain, and creates a new copy of the object with the
same state as the original. This results in a copy of the MBV object existing in both application domains.
The content of the two instances are initially identical, but they are independent; changes made to
one instance are not reflected in the other instance. This often causes confusion as you try to update
the remote object but are actually updating the local copy. If you want to be able to call and change
an object from a remote application domain, the object needs to be an MBR type.

MBR types are those classes that derive from System.MarshalByRefObject. When you pass an
MBR object across an application domain boundary as an argument or a return value, in the desti-
nation application domain, the .NET Remoting system creates a proxy that represents the remote
MBR object. To any class in the destination application domain, the proxy looks and behaves like the
remote MBR object that it represents. In reality, when a call is made against the proxy, the .NET
Remoting system transparently passes the call and its arguments to the remote application domain
and issues the call against the original object. Any results are passed back to the caller via the proxy.
Figure 3-1 illustrates the relationship between an MBR object and the objects that access it across
application domains via a proxy.

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Application Domain 2

Object

NS

MBR Object

Application Domain 1

Figure 3-1. An MBR object is accessed across application domains via a proxy.

The Code

The following example highlights (in bold) the fundamental difference between creating classes that
are passed by value (Recipe03 06MBV) and those passed by reference (Recipe03_06MBR). The code
creates a new application domain and instantiates two remotable objects in it (discussed further in
recipe 3-7). However, because the Recipe03_06MBV object is an MBV object, when it is created in the
new application domain, it is serialized, passed across the application domain boundary, and dese-
rialized as a new independent object in the caller’s application domain. Therefore, when the code
retrieves the name of the application domain hosting each object, Recipe03_06MBV returns the name
of the main application domain, and Recipe03_06MBR returns the name of the new application domain in
which it was created.

Note This sample uses the CreateInstanceFromAndUnwrap method of the AppDomain class to create the
instances of Recipe03_06MBV and Recipe03_06MBR in the new application domain. This method is covered in
more detail in recipe 3-7.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter03
' Declare a class that is passed by value.

<Serializable()> _

Public Class Recipe03_06MBV

87

88 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Public ReadOnly Property HomeAppDomain() As String
Get
Return AppDomain.CurrentDomain.FriendlyName

End Get
End Property

End Class

' Declare a class that is passed by reference.
Public Class Recipe03_06MBR
Inherits MarshalByRefObject

Public ReadOnly Property HomeAppDomain() As String
Get
Return AppDomain.CurrentDomain.FriendlyName

End Get
End Property

End Class

Public Class Recipe03_06
Public Shared Sub Main(ByVal args As String())

' Create a new application domain.
Dim newDomain As AppDomain = AppDomain.CreateDomain("My ‘=

New AppDomain")

' Instantiate an MBV object in the new application domain.

Dim mbvObject As Recipe03 O6MBV = w»
CType(newDomain.CreateInstanceFromAndUnwrap ("Recipe03-06.exe", w
"Apress.VisualBasicRecipes.Chapter03.Recipe03 O6MBV"), Recipe03 02MBV)

' Instantiate an MBR object in the new application domain.

Dim mbrObject As Recipe03 O6MBR = ‘w»
CType(newDomain.CreateInstanceFromAndUnwrap ("Recipe03-06.exe", w
"Apress.VisualBasicRecipes.Chapter03.Recipe03 O6MBR"), Recipe03 02MBR)

' Display the name of the application domain in which each of

' the objects is located.

Console.WriteLine("Main AppDomain = {0}", ‘=
AppDomain.CurrentDomain.FriendlyName)

Console.WriteLine("AppDomain of MBV object = {0}", =
mbvObject.HomeAppDomain)
Console.WriteLine("AppDomain of MBR object = {0}", =

mbrObject.HomeAppDomain)

' Wait to continue.

Console.WritelLine(vbCrLf & "Main method complete. Press Enter.")

Console.ReadlLine()
End Sub

End Class
End Namespace

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Note Recipe 13-1 provides more details on creating serializable types, and recipe 10-16 describes how to
create remotable types.

3-7. Instantiate a Type in
a Different Application Domain

Problem

You need to instantiate a type in an application domain other than the current one.

Solution

Call the CreateInstance method or the CreateInstanceFrom method of the AppDomain object that
represents the target application domain.

How It Works

The ExecuteAssembly method discussed in recipe 3-3 is straightforward to use, but when you are
developing sophisticated applications that use application domains, you are likely to want more
control over loading assemblies, instantiating types, and invoking object members within the appli-
cation domain.

The CreateInstance and CreateInstanceFrom methods provide a variety of overloads that offer
fine-grained control over the process of object instantiation. The simplest overloads assume the use
of a type’s default constructor, but both methods implement overloads that allow you to provide
arguments to use any constructor.

The CreateInstance method loads a named assembly into the application domain using the
process described for the Assembly . Load method in recipe 3-1. CreateInstance then instantiates
anamed type and returns a reference to the new object wrapped in an ObjectHandle (described
in recipe 3-4). The CreateInstanceFrom method also instantiates a named type and returns an
ObjectHandle-wrapped object reference; however, CreateInstanceFromloads the specified assembly
file into the application domain using the process described in recipe 3-1 for the Assembly.LoadFrom
method.

AppDomain also provides two convenience methods named CreateInstanceAndUnwrap and
CreateInstanceFromAndUnwrap that automatically extract the reference of the instantiated object
from the returned ObjectHandle object; you must cast the returned Object to the correct type.

Caution Be aware that if you use CreateInstance or CreateInstanceFrom to instantiate MBV types in
another application domain, the object will be created, but the returned Object reference won’t refer to that object.
Because of the way MBV objects cross application domain boundaries, the reference will refer to a copy of the object
created automatically in the local application domain. Only if you create an MBR type will the returned reference
refer to the object in the other application domain. (See recipe 3-6 for more details about MBV and MBR types.)

A common technique to simplify the management of application domains is to use a controller
class. A controller class is a custom MBR type. You create an application domain and then instantiate
your controller class in the application domain using CreateInstance. The controller class implements

89

90

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

the functionality required by your application to manipulate the application domain and its contents.
This could include loading assemblies, creating further application domains, cleaning up prior to
deleting the application domain, or enumerating program elements (something you cannot normally
do from outside an application domain). Itis best to create your controller class in an assembly of its own
to avoid loading unnecessary classes into each application domain. You should also be careful about
which types you pass as return values from your controller to your main application domain to avoid
loading additional assemblies.

The Code

The following code demonstrates how to use a simplified controller class named PluginManager.
When instantiated in an application domain, PluginManager allows you to instantiate classes that
implement the IPlugin interface, start and stop those plug-ins, and return a list of currently loaded
plug-ins.

Imports System

Imports System.Reflection

Imports System.Collections

Imports System.Collections.Generic
Imports System.Collections.Specialized

Namespace Apress.VisualBasicRecipes.Chaptero3

A common interface that all plug-ins must implement.
Public Interface IPlugin

Sub Start()
Sub [Stop]()

End Interface
" A simple IPlugin implementation to demonstrate the PluginManager
controller class.
Public Class SimplePlugin

Implements IPlugin

Public Sub Start() Implements IPlugin.Start
Console.WritelLine(AppDomain.CurrentDomain.FriendlyName & ‘=
: SimplePlugin starting...")
End Sub

Public Sub [Stop]() Implements IPlugin.Stop
Console.Writeline(AppDomain.CurrentDomain.FriendlyName & ‘=
: SimplePlugin stopping...")
End Sub

End Class
' The controller class, which manages the loading and manipulation
of plug-ins in its application domain.
Public Class PluginManager

Inherits MarshalByRefObject

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

' A Dictionary to hold keyed references to IPlugin instances.
Private plugins As New Dictionary(Of String, IPlugin)

' Default constructor.
Public Sub New()

End Sub

' Constructor that loads a set of specified plug-ins on creation.
Public Sub New(ByVal pluginList As NameValueCollection)

' Load each of the specified plug-ins.

For Each plugin As String In pluginlist.Keys
Me.LoadPlugin(pluginList(plugin), plugin)

Next

End Sub

" Load the specified assembly and instantiate the specified

" IPlugin implementation from that assembly.

Public Function LoadPlugin(ByVal assemblyName As String, ‘=
Byval pluginName As String)

Try
' Load the named private assembly.
Dim assembly As Assembly = Reflection.Assembly.Load(assemblyName)

' Create the IPlugin instance, ignore case.
Dim plugin As IPlugin = DirectCast(assembly.CreateInstance ‘=

(pluginName, True), IPlugin)

If Not plugin Is Nothing Then
" Add new IPlugin to ListDictionary
plugins(pluginName) = plugin

Return True
Else
Return False
End If
Catch
' Return false on all exceptions for the purpose of
' this example. Do not suppress exceptions like this
" in production code.
Return False
End Try

End Function

Public Sub StartPlugin(ByVal plugin As String)

91

92 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Try
' Extract the IPlugin from the Dictionary and call Start.
plugins(plugin).Start()

Catch

End Try

Log or handle exceptions appropriately.

End Sub
Public Sub StopPlugin(ByVal plugin As String)

Try

Extract the IPlugin from the Dictionary and call Stop.
plugins(plugin).Stop()

Catch

Log or handle exceptions appropriately.
End Try

End Sub

Public Function GetPluginList() As Arraylist
' Return an enumerable list of plug-in names. Take the keys

and place them in an Arraylist, which supports marshal-by-value.

Return New ArraylList(plugins.Keys)

End Function
End Class
Public Class Recipe03 07

Public Shared Sub Main(ByVal args As String())
' Create a new application domain.
Dim domaini As AppDomain = AppDomain.CreateDomain("NewAppDomaini")
' Create a PluginManager in the new application domain using
the default constructor.
Dim managerl As PluginManager = CType(domaini.CreateInstanceAndUnwrap ‘=
("Recipe03-07", "Apress.VisualBasicRecipes.Chapter03.PluginManager"), PluginManager)

Load a new plugin into NewAppDomaini
managerl.lLoadPlugin("Recipe03-07", "Apress.VisualBasicRecipes." & ‘w»
"Chapter03.SimplePlugin")
' Start and stop the plug-in NewAppDomaini.
managerl.StartPlugin("Apress.VisualBasicRecipes.Chapter03.SimplePlugin™)
managerl.StopPlugin("Apress.VisualBasicRecipes.Chapter03.SimplePlugin")
' Create a new application domain.
Dim domain2 As AppDomain = AppDomain.CreateDomain("NewAppDomain2")

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Create a ListDictionary containing a list of plug-ins to create.
Dim pluginList As New NameValueCollection()
pluginList("Apress.VisualBasicRecipes.Chaptero3.SimplePlugin") = w»

"Recipe03-07"
' Create a PluginManager in the new application domain and

specify the default list of plug-ins to create.

Dim manager2 As PluginManager = CType(domaini.CreateInstanceAndUnwrap ‘=

("Recipe03-07", "Apress.VisualBasicRecipes.Chapter03.PluginManager”, True, 0, ‘=

Nothing, New Object() {pluginList}, Nothing, Nothing, Nothing), PluginManager)

Display the list of plug-ins loaded into NewAppDomain2.
Console.Writeline("{0}Plugins in NewAppDomain2:", vbCrLf)

For Each s As String In manager2.GetPluginList()
Console.WriteLine(" - " & s)
Next

Wait to continue.
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

If you run Recipe03-07, you should see the following:

NewAppDomaini: SimplePlugin starting...
NewAppDomaini: SimplePlugin stopping...

Plugins in NewAppDomain2:
- Apress.VisualBasicRecipes.Chapter03.SimplePlugin

3-8. Pass Data Between Application Domains

Problem

You need a simple mechanism to pass general configuration or state data between application
domains.

Solution
Use the SetData and GetData methods of the AppDomain class.

93

94

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

How It Works

You can pass data between application domains as arguments and return values when you invoke
the methods and properties of objects that exist in other application domains. However, at times it
is useful to pass data between application domains in such a way that the data is easily accessible by
all code within the application domain.

Every application domain maintains a data cache that contains a set of name-value pairs. Most
of the cache content reflects configuration settings of the application domain, such as the values
from the AppDomainSetup object provided during application domain creation. (See recipe 3-2 for
more information.) You can also use this data cache as a mechanism to exchange data between
application domains or as a simple state storage mechanism for code running within the application
domain.

The SetData method allows you to associate a string key with an object and store it in the appli-
cation domain’s data cache. The GetData method allows you to retrieve an object from the data cache
using the key. If code in one application domain calls the SetData method or the GetData method to
access the data cache of another application domain, the data object must support MBV or MBR
semantics, or a System.Runtime.Serialization.SerializationException is thrown. (See recipe 3-6
for details on the characteristics required to allow objects to transcend application domain boundaries.)

When using the SetData or GetData methods to exchange data between application domains,
you should avoid using the following keys, which are already used by the .NET Framework (refer to
http://msdn2.microsoft.com/en-us/library/system.appdomain.getdata.aspx for more information):

e APP_CONFIG_FILE

* APP_NAME

e APPBASE

* APP_ILAUNCH_URL

* LOADER_OPTIMIZATION
e BINPATH_PROBE_ONLY
* CACHE_BASE

e DEV_PATH

¢ DYNAMIC_BASE

* FORCE_CACHE_INSTALL
e LICENSE_FILE

e PRIVATE_BINPATH

¢ SHADOW_COPY_DIRS

The Code

The following example demonstrates how to use the SetData and GetData methods by passing a
System.Collections.ArraylList between two application domains. After passing a list of pets to a
second application domain for modification, the application displays the list. You will notice that the
code running in the second application domain does not modify the original listbecause ArrayList is an
MBYV type, meaning that the second application domain has only a copy of the original list. (See
recipe 3-6 for more details.)

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Imports System
Imports System.Reflection
Imports System.collections

Namespace Apress.VisualBasicRecipes.Chapter03
Public Class ListModifier
Public Sub New()

' Get the list from the data cache.
Dim 1list As ArraylList = CType(AppDomain.CurrentDomain.GetData("Pets"), ‘w»
Arraylist)

" Modify the list.
list.Add("Turtle")

End Sub
End Class
Public Class Recipe03 08

Public Shared Sub Main()
' Create a new application domain.

Dim domain As AppDomain = AppDomain.CreateDomain("Test")
' Create an Arraylist and populate with information.
Dim list As New Arraylist

list.Add("Dog")

list.Add("Cat")

list.Add("Fish")

" Place the list in the data cache of the new application domain.
domain.SetData("Pets", list)

' Instantiate a ListModifier in the new application domain.

domain.CreateInstance("Recipe03-08", "Apress.VisualBasicRecipes." & ‘w»
"Chapter03.ListModifier")

' Get the list and display its contents.
For Each s As String In CType(domain.GetData("Pets"), ArraylList)

Console.WritelLine(s)

Next
' Wait to continue.
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

95

96

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

3-9. Unload Assemblies and Application Domains

Problem

You need to unload assemblies or application domains at runtime.

Solution

You have no way to unload individual assemblies from a System.AppDomain. You can unload an entire
application domain using the Shared AppDomain.Unload method, which has the effect of unloading
all assemblies loaded into the application domain.

How It Works

The only way to unload an assembly is to unload the application domain in which the assembly is
loaded. Unfortunately, unloading an application domain will unload all the assemblies that have
been loaded into it. This might seem like a heavy-handed and inflexible approach, but with appro-
priate planning of your application domain, the assembly-loading structure, and the runtime
dependency of your code on that application domain, it is not overly restrictive.

Youunload an application domain using the Shared AppDomain.Unload method and passingit an
AppDomain reference to the application domain you want to unload. You cannot unload the default
application domain created by the CLR at startup.

The Unload method stops any new threads from entering the specified application domain and
calls the Thread.Abort method on all threads currently active in the application domain. If the thread
calling the Unload method is currently running in the specified application domain (making it the
target of a Thread.Abort call), a new thread starts in order to carry out the unload operation. If a
problem is encountered unloading an application domain, the thread performing the unload oper-
ation throws a System.CannotUnloadAppDomainException. Attempting to access the application
domain after it has been unloaded will throw a System. AppDomainUnloadedException.

While an application domain is unloading, the CLR calls the finalization method of all objects
in the application domain. Depending on the number of objects and nature of their finalization
methods, this can take an arbitrary amount of time. The AppDomain.IsFinalizingForUnload method
returns True if the application domain is unloading and the CLR has started to finalize contained
objects; otherwise, it returns False.

The Code

This code fragment demonstrates the syntax of the Unload method:

Create a new application domain.
Dim newDomain As AppDomain = AppDomain.CreateDomain("New Domain")

Load assemblies into the application domain.

Unload the new application domains.
AppDomain.Unload(newDomain)

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

3-10. Retrieve Type Information

Problem

You need to obtain a System.Type object that represents a specific type.

Solution
Use one of the following:

* The GetType operator

* The Shared GetType method of the System.Type class

e The Object.GetType method of an existing instance of the type

* The GetNestedType or GetNestedTypes method of the Type class

e The GetType or GetTypes method of the Assembly class

* The GetType, GetTypes, or FindTypes method of the System.Reflection.Module class

How It Works

The Type class provides a starting point for working with types using reflection. A Type object allows
you to inspect the metadata of the type, obtain details of the type’s members, and create instances
of the type. Because of the type’s importance, the .NET Framework provides a variety of mechanisms for
obtaining references to Type objects.

One method of obtaining a Type object for a specific type is to use the GetType operator shown here:

Dim T1 As System.Type = GetType(System.Text.StringBuilder)

The type name is not enclosed in quotes and must be resolvable by the compiler (meaning you
must reference the assembly). Because the reference is resolved at compile time, the assembly
containing the type becomes a static dependency of your assembly and will be listed as such in your
assembly’s manifest.

Another method that returns a Type object is Object.GetType. This method returns the type of
the object that calls it. The following is an example of its usage:

Dim myStringBuilder As New System.Text.StringBuilder
Dim myType As System.Type = myStringBuilder.GetType()

You can also use the Shared method Type.GetType, which takes a string containing the type name.
Because you use a string to specify the type, you can vary it at runtime, which opens the door to a
world of dynamic programming opportunities using reflection (see recipe 3-12). If you specify just
the type name, the runtime must be able to locate the type in an already loaded assembly. Alternatively,
you can specify an assembly-qualified type name. Refer to the NET Framework SDK documentation
for the Type.GetType method for a complete description of how to structure assembly-qualified type
names. Table 3-2 summarizes some other methods that provide access to Type objects.

97

98

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Table 3-2. Methods That Return Type Objects

Method Description

Type.GetNestedType Gets a specified type declared as a nested type (a type that is a member
of another type) within the existing Type object.

Type.GetNestedTypes Gets an array of Type objects representing the nested types declared
within the existing Type object.

Assembly.GetType Gets a Type object for the specified type declared within the assembly.

Assembly.GetTypes Gets an array of Type objects representing the types declared within the
assembly.

Module.GetType Gets a Type object for the specified type declared within the module.
(See recipe 1-3 for a discussion of modules.)

Module.GetTypes Gets an array of Type objects representing the types declared within
the module.

Module.FindTypes Gets a filtered array of Type objects representing the types declared within

the module. The types are filtered using a delegate that determines
whether each Type should appear in the final array.

The Code

The following example demonstrates how to use the GetType operator and the Type.GetType method
to return a Type object for a named type and from existing objects.

Imports System
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chaptero3
Public Class Recipe03_10
Public Shared Sub Main()

Obtain type information using the GetType operator.
Dim t1 As Type = GetType(StringBuilder)
' Obtain type information using the Type.GetType method.
Case-sensitive, return Nothing if not found.
Dim t2 As Type = Type.GetType("System.String")

Case-sensitive, throw TypeloadException if not found.
Dim t3 As Type = Type.GetType("System.String", True)
' Case-insensitive, throw TypeloadException if not found.
Dim t4 As Type = Type.GetType("system.string", True, True)

Assembly-qualified type name.
Dim t5 As Type = Type.GetType("System.Data.DataSet,System.Data,"” & w»
"Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089")

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA 99

Obtain type information using the Object.GetType method.
Dim sb As New StringBuilder
Dim t6 As Type = sb.GetType()

Display the types.
Console.WriteLine("Type of T1: {0}", t1.ToString)
Console.WriteLine("Type of T2: {0}", t2.ToString)
Console.WriteLine("Type of T3: {0}", t3.ToString)
Console.WritelLine("Type of T4: {0}", t4.ToString)
Console.WriteLine("Type of T5: {0}", t5.ToString)
Console.WriteLine("Type of T6: {0}", t6.ToString)

" Wait to continue.
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

3-11. Test an Object’s Type

Problem

You need to test the type of an object.

Solution

Use the inherited Object.GetType method to obtain a Type for the object. You can also use the TypeOf
and Is operators to test an object’s type.

How It Works

All types inherit the GetType method from the Object base class. As discussed in recipe 3-10, this method
returns a Type reference representing the type of the object. The runtime maintains a single instance
of Type for each typeloaded, and all references for this type refer to this same object. This means you
can compare two type references efficiently. For convenience, VB .NET provides the Is operator as
aquickway to check whether an object is a specified type. In addition, Is will return True if the tested
object is derived from the specified class. .NET Framework 2.0 includes the new IsNot operator for
VB .NET. This operator is used to determine if an object is not a specified type. Furthermore, the
Type.IsSubclassOf method can be used to determine if an object derives from the specified type.

When using the TypeOf, Is, and IsNot operators and the IsSubClassOf method, the specified
type must be known and resolvable at compile time. A more flexible (but slower) alternative is to use
the Type.GetType method to return a Type reference for a named type. The Type reference is not
resolved until runtime, which causes a performance hit but allows you to change the type compar-
ison at runtime based on the value of a string.

Finally, you can use the TryCast keyword to perform a safe cast of any object to a specified type.
Unlike a standard cast that triggers a System. InvalidCastException if the object cannotbe cast to the
specified type, TryCast returns Nothing. This allows you to perform safe casts that are easy to verify,
but the compared type must be resolvable at runtime.

100

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Note The runtime will usually maintain more than one instance of each type depending on how assemblies are
loaded into application domains. Usually, an assembly will be loaded into a specific application domain, meaning a
Type instance will exist in each application domain in which the assembly is loaded. However, assemblies can also
be loaded by a runtime host in a domain-neutral configuration, which means the assembly’s type metadata (and
Type instances) is shared across all application domains. By default, only the mscor1ib assembly is loaded in a
domain-neutral configuration.

The Code

The following example demonstrates the various type-testing alternatives described in this recipe.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chaptero3

Public Class Recipe03 11
" A method to test whether an object is an instance of a type.
Public Shared Function IsType(ByVal obj As Object, Byval myType =
As String) As Boolean
' Get the named type, use case-insensitive search, throw
an exception if the type is not found.
Dim t As Type = Type.GetType(myType, True, True)

If t Is obj.GetType() Then
Return True

ElseIf obj.GetType.IsSubclassOf(t) Then
Return True

Else
Return False

End If

End Function

Public Shared Sub Main()
' Create a new StringReader for testing.

Dim someObject As Object = New StringReader("This is a StringReader")

' Test if someObject is a StringReader by obtaining and

comparing a Type reference using the TypeOf operator.

If GetType(StringReader) Is someObject.GetType Then
Console.WritelLine("GetType Is: someObject is a StringReader")

End If

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

' Test if someObject is, or is derived from, a TextReader
' using the Is operator.
If TypeOf someObject Is TextReader Then
Console.Writeline("TypeOf Is: someObject is a TextReader or a " & w»
"derived class")
End If

' Test if someObject is, or is derived from, a TextReader using

' the Type.GetType and Type.IsSubClassOf methods.

If IsType(someObject, "System.IO.TextReader") Then
Console.Writeline("GetType: someObject is a TextReader")

End If

' Use the TryCast keyword to perform a safe cast.
Dim reader As StringReader = TryCast(someObject, StringReader)

If Not reader Is Nothing Then
Console.Writeline("TryCast: someObject is a StringReader")
End If

Wait to continue.
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Tip The Shared method GetUnderlyingType of the System. Enum class allows you to retrieve the under-
lying type of an enumeration.

3-12. Instantiate an Object Using Reflection

Problem

You need to instantiate an object at runtime using reflection.

Solution

Obtain a Type object representing the type of object you want to instantiate, call its GetConstructor
method to obtain a System.Reflection.ConstructorInfo object representing the constructor you
want to use, and execute the ConstructorInfo.Invoke method.

How It Works

The first step in creating an object using reflection is to obtain a Type object that represents the
type you want to instantiate. (See recipe 3-10 for details.) Once you have a Type instance, call its
GetConstructor method to obtain a ConstructorInfo representing one of the type’s constructors.

101

102

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

The most commonly used overload of the GetConstructor method takes a Type array argument and
returns a ConstructorInfo representing the constructor that takes the number, order, and type of
arguments specified in the Type array. To obtain a ConstructorInfo representing a parameterless
(default) constructor, pass an empty Type array (use the Shared field Type. EmptyTypes or new Type(0));
don’tuse Nothing, or GetConstructor will throw a System.ArgumentNullException. If GetConstructor
cannot find a constructor with a signature that matches the specified arguments, it will return Nothing.

Once you have the desired ConstructorInfo, callits Invoke method. You must provide an Object
array containing the arguments you want to pass to the constructor. If there are no arguments, pass
Nothing. Invoke instantiates the new object and returns an object reference to it, which you must
cast to the appropriate type.

Reflection functionality is commonly used to implement factories in which you use reflection to
instantiate concrete classes that either extend a common base class or implement a common inter-
face. Often both an interface and a common base class are used. The abstract base class implements
the interface and any common functionality, and then each concrete implementation extends the
base class.

No mechanism exists to formally declare that each concrete class must implement constructors
with specific signatures. If you intend third parties to implement concrete classes, your documenta-
tion must specify the constructor signature called by your factory. A common approach to avoid this
problem is to use a default (empty) constructor and configure the object after instantiation using
properties and methods.

The Code

The following code fragment demonstrates how to instantiate a System.Text.StringBuilder object
using reflection and how to specify the initial content for the StringBuilder (a String) and its capacity
(an Integer):

Imports System
Imports System.Text
Imports System.Reflection

Namespace Apress.VisualBasicRecipes.Chaptero3
Public Class Recipe03_12

Public Shared Function CreateStringBuilder() As StringBuilder
' Obtain the Type for the StringBuilder class.
Dim type As Type = GetType(StringBuilder)
' Create a Type() containing Type instances for each
of the constructor arguments - a String and an Integer.
Dim argTypes As Type() = New Type() {GetType(System.String), =
GetType(System.Int32)}

Obtain the ConstructorInfo object.

Dim cInfo As ConstructorInfo = type.GetConstructor(argTypes)
' Create an Object() containing the constructor arguments.
Dim argVals As Object() = New Object() {"Some string", 30}

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA 103

' Create the object and cast it to a StringBuilder.
Dim sb As StringBuilder = CType(cInfo.Invoke(argVals), StringBuilder)

Return sb
End Function

End Class
End Namespace

The following code demonstrates a factory to instantiate objects that implement the IPlugin
interface (used in recipe 3-7):

Imports System
Imports System.Text
Imports System.Reflection

Namespace Apress.VisualBasicRecipes.Chapter03

A common interface that all plug-ins must implement.
Public Interface IPlugin

Property Description() As String
Sub Start()
Sub [Stop]()

End Interface

' An abstract base class from which all plug-ins must derive.
Public MustInherit Class AbstractPlugIn
Implements IPlugin
" Hold a description for the plug-in instance.
Private m_description As String = ""
' Property to get the plug-in description.
Public Property Description() As String Implements IPlugin.Description
Get
Return m_description
End Get
Set(Byval value As String)
m_description = value
End Set
End Property

' Declare the members of the IPlugin interface as abstract.
Public MustOverride Sub Start() Implements IPlugin.Start
Public MustOverride Sub [Stop]() Implements IPlugin.Stop

End Class
" A simple IPlugin implementation to demonstrate the PluginFactory class.

Public Class SimplePlugin
Inherits AbstractPlugIn

104 CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Implement Start method.
Public Overrides Sub Start()
Console.WritelLine(Description & ": Starting...")
End Sub
' Implement Stop method.
Public Overrides Sub [Stop]()
Console.WritelLine(Description & ": Stopping...")
End Sub

End Class
" A factory to instantiate instances of IPlugin.
NotInheritable Class PluginFactory

Public Shared Function CreatePlugin(ByVal assembly As String, '
ByVal pluginName As String, ByVal description As String) As IPlugin
' Obtain the Type for the specified plug-in.
Dim pluginType As Type = Type.GetType(pluginName & ", " & assembly)
' Obtain the ConstructorInfo object.
Dim cInfo As ConstructorInfo = pluginType.GetConstructor w

(Type.EmptyTypes)

Create the object and cast it to IPlugin.
Dim plugin As IPlugin = TryCast(cInfo.Invoke(Nothing), IPlugin)

Configure the new IPlugin.
plugin.Description = description

Return plugin
End Function
Public Shared Sub Main(ByVal args As String())

Instantiate a new IPlugin using the PluginFactory.
Dim plugin As IPlugin = PluginFactory.CreatePlugin("Recipe03-12",
"Apress.VisualBasicRecipes.Chapter03.SimplePlugin”, "A Simple Plugin")

plugin.Start()
plugin.Stop()

Wait to continue.
Console.WritelLine(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

-

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Tip The System.Activator class provides two Shared methods named CreateInstance and
CreateInstanceFrom that instantiate objects based on Type objects or strings containing type names. The key
difference between using GetConstructor and Activator is that the constructor used by Activator is implied by
the constructor arguments you pass to CreateInstance or CreateInstanceFrom. See the description of the
Activator class in the .NET Framework SDK documentation for more details.

3-13. Create a Custom Attribute

Problem

You need to create a custom attribute.

Solution

Create a class that derives from the abstract (MustInherit) base class System.Attribute. Implement
constructors, fields, and properties to allow users to configure the attribute. Apply the System.
AttributeUsageAttribute attribute to your class to define the following:

e Which program elements are valid targets of the attribute
e Whether you can apply more than one instance of the attribute to a program element

e Whether the attribute is inherited by derived types

How It Works

Attributes provide a mechanism for associating declarative information (metadata) with program
elements. This metadata is contained in the compiled assembly, allowing programs to retrieve it
through reflection at runtime without creating an instance of the type. (See recipe 3-14 for more
details.) Other programs, particularly the CLR, use this information to determine how to interact
with and manage program elements.

To create a custom attribute, derive a class from the abstract (MustInherit) base class System.
Attribute. Custom attribute classes by convention should have aname endingin Attribute (but this
is not essential).

A custom attribute must have at least one Public constructor; the automatically generated
default constructor is sufficient. The constructor parameters become the attribute’s mandatory (or
positional) parameters. When you use the attribute, you must provide values for these parameters in
the order they appear in the constructor. As with any other class, you can declare more than one
constructor, giving users of the attribute the option of using different sets of positional parameters
when applying the attribute. Any Public non-constant writable fields and properties declared by an
attribute are automatically exposed as named parameters. Named parameters are optional and are
specified in the format of name-value pairs where the name is the property or field name. The following
example will clarify how to specify positional and named parameters.

To control how and where a user can apply your attribute, apply the attribute
AttributeUsageAttribute to your custom attribute class. AttributeUsageAttribute supports the one
positional and two named parameters described in Table 3-3. The default values specify the value

105

106

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

that is applied to your custom attribute if you do not apply AttributeUsageAttribute or do notspecify a
value for that particular parameter.

Table 3-3. Members of the AttributeUsage Type

Parameter Type Description Default
ValidOn Positional A member of the System. None; you should set it to
(required) AttributeTargets enumeration AttributeTargets.All

that identifies the program
elements on which the
attribute is valid

AllowMultiple Named Whether the attribute can be False
(optional) specified more than once for a
single element
Inherited Named Whether the attribute is True
(optional) inherited by derived classes

or overridden members

The Code

The following example shows a custom attribute named AuthorAttribute, which you can use to
identify the name and company of the person who created an assembly or a class. AuthorAttribute
declares a single Public constructor that takes a String containing the author’s name. This means
users of AuthorAttribute must always provide a positional String parameter containing the author’s
name. The Company property is Public, making it an optional named parameter, but the Name property is
read-only—no Set accessor is declared—meaning that it isn’t exposed as a named parameter.

Imports System
Namespace Apress.VisualBasicRecipes.Chaptero3

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Assembly, w»
AllowMultiple:=True, Inherited:=True)> _
Public Class AuthorAttribute
Inherits System.Attribute

Private m Company As String ' Author's company
Private m Name As String ' Author's name
' Declare a public constructor.
Public Sub New(ByVal name As String)

Me.m_Name = name

m_Company = ""
End Sub
' Declare a property to get/set the company field.
Public Property Company() As String

Get

Return m_Company
End Get

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Set(Byval value As String)
m_Company = value
End Set
End Property
' Declare a property to get the internal field.
Public ReadOnly Property Name() As String
Get
Return m_Name
End Get
End Property

End Class
End Namespace

Usage
The following example demonstrates how to decorate types with AuthorAttribute:

Imports system

' Declare Todd as the assembly author. Assembly attributes

' must be declared after using statements but before any other.

Author name is a positional parameter.

Company name is a named parameter.

<Assembly: Apress.VisualBasicRecipes.Chapter03.Author("Todd", Company:="The" & ‘w»
"Code Architects")>

Namespace Apress.VisualBasicRecipes.Chapter03

Declare a class authored by Todd.
<Author("Todd", company:="The Code Architects")> _
Public Class SomeClass
Class implementation.

End Class
' Declare a class authored by Kevin. Since the Company
property is optional, we will leave it out for this test.

<Author("Kevin")> _

Public Class SomeOtherClass

' (Class implementation.

End Class

End Namespace

3-14. Inspect the Attributes of a Program Element
Using Reflection

Problem

You need to use reflection to inspect the custom attributes applied to a program element.

107

108

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA

Solution

All program elements, such as classes and subroutines, implement the System.Reflection.
ICustomAttributeProvider interface. Call the IsDefined method of the ICustomAttributeProvider
interface to determine whether an attribute is applied to a program element, or call the
GetCustomAttributes method of the ICustomAttributeProvider interface to obtain objects repre-
senting the attributes applied to the program element.

How It Works

All the classes thatrepresent program elements implement the ICustomAttributeProvider interface.
This includes Assembly, Module, Type, EventInfo, FieldInfo, PropertyInfo, and MethodBase. MethodBase
has two further subclasses: ConstructorInfo and MethodInfo. If you obtain instances of any of these
classes, you can call the method GetCustomAttributes, which will return an Object array containing
the custom attributes applied to the program element. The Object array contains only custom
attributes, not those contained in the .NET Framework base class library.

The GetCustomAttributes method provides two overloads. The first takes a Boolean that controls
whether GetCustomAttributes should return attributes inherited from parent classes. The second
GetCustomAttributes overload takes an additional Type argument that acts as a filter, resulting in
GetCustomAttributes returning only attributes of the specified type or those that derive from it.

Alternatively, you can call the IsDefined method. IsDefined provides a method that takes two
arguments. The first argument is a Type object representing the type of attribute you are interested
in, and the second is a Boolean that indicates whether IsDefined should look for inherited attributes
of the specified type. IsDefined returns a Boolean indicating whether the specified attribute is applied to
the program element and is less expensive than calling the GetCustomAttributes method, which
actually instantiates the attribute objects.

The Code

The following example uses the custom AuthorAttribute declared in recipe 3-13 and applies it to the
Recipe03_14 class. The Main method calls the GetCustomAttributes method, filtering the attributes so
that the method returns only AuthorAttribute instances. You can safely cast this set of attributes to
AuthorAttribute references and access their members without needing to use reflection.

Imports System
Namespace Apress.VisualBasicRecipes.Chaptero3

<Author("Kevin"), Author("Todd", Company:="The Code Architects")> _
Public Class Recipe03_14

Public Shared Sub Main()

Get a Type object for this class.
Dim myType As Type = GetType(Recipe03 14)
' Get the attributes for the type. Apply a filter so that only
instances of AuthorAttributes are returned.
Dim attrs As Object() = myType.GetCustomAttributes w»
(GetType(AuthorAttribute), True)

CHAPTER 3 APPLICATION DOMAINS, REFLECTION, AND METADATA 109

Enumerate the attributes and display their details.
For Each a As AuthorAttribute In attrs
Console.Writeline(a.Name & ", " & a.Company)
Next
" Wait to continue.
Console.Writeline(vbCrLf & "Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 4

Threads, Processes,
and Synchronization

One of the strengths of the Microsoft Windows operating system is that it allows many programs
(processes) to run concurrently and allows each process to perform many tasks concurrently (using
multiple threads). When you run an executable application, a new process is created. The process
isolates your application from other programs running on the computer. The process provides the
application with its own virtual memory and its own copies of any libraries it needs to run, allowing
your application to execute as if it were the only application running on the machine.

Along with the process, an initial thread is created that runs your Main method. In single-threaded
applications, this one thread steps through your code and sequentially performs each instruction.
If an operation takes time to complete, such as reading a file from the Internet or doing a complex
calculation, the application will be unresponsive (will block) until the operation is finished, at which
point the thread will continue with the next operation in your program.

To avoid blocking, the main thread can create additional threads and specify which code each
should start running. As a result, many threads may be running in your application’s process, each
running (potentially) different code and performing different operations seemingly simultaneously.
In reality, unless you have multiple processors (or a single multicore processor) in your computer,
the threads are not really running simultaneously. Instead, the operating system coordinates and
schedules the execution of all threads across all processes; each thread is given a tiny portion (or time
slice) of the processor’s time, which gives the impression they are executing at the same time.

The difficulty of having multiple threads executing within your application arises when those
threads need to access shared data and resources. If multiple threads are changing an object’s state
or writing to a file at the same time, your data will quickly become corrupted. To avoid problems, you
must synchronize the threads to make sure they each get a chance to access the resource, but only
one at a time. Synchronization is also important when waiting for a number of threads to reach a
certain point of execution before proceeding with a different task and for controlling the number of
threads that are at any given time actively performing a task—perhaps processing requests from
client applications.

Note Although it will not affect your multithreaded programming in VB .NET, it is worth noting that an operating
system thread has no fixed relationship to a managed thread. The runtime host—the managed code that loads and
runs the common language runtime (CLR)—controls the relationship between managed and unmanaged threads. A
sophisticated runtime host, such as Microsoft SQL Server 2005, can schedule many managed threads against the same
operating system thread or can perform the actions of a managed thread using different operating system threads.

11

112 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

This chapter describes how to control processes and threads in your own applications using
the features provided by VB .NET and the Microsoft .NET Framework class library. Specifically, the
recipes in this chapter describe how to do the following:

* Execute code inindependent threads using features including the thread pool, asynchronous
method invocation, and timers (recipes 4-1 through 4-6)

¢ Synchronize the execution of multiple threads using a host of synchronization techniques,
including monitors, events, mutexes, and semaphores (recipes 4-7 and 4-11)

e Terminate threads and know when threads have terminated (recipes 4-12 and 4-13)
¢ Create thread-safe instances of the .NET collection classes (recipe 4-14)
e Start and stop running in new processes (recipes 4-15 and 4-16)

* Ensure that only one instance of an application is able to run at any given time (recipe 4-17)

Asyouwill see in this chapter, delegates are used extensively in multithreaded programs to wrap
the method that a thread should execute or that should act as a callback when an asynchronous
operation is complete. As in VB .NET 1.1, the AddressOf operator is used to instruct the compiler to
generate the necessary delegate instance.

4-1. Execute a Method Using the Thread Pool

Problem

You need to execute a task using a thread from the runtime’s thread pool.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.WaitCallback delegate; that is, it must be a subroutine (not
a function) and take a single Object argument. Call the Shared method QueueUserWorkItem of the
System.Threading.ThreadPool class, passing it your method name. The runtime will queue your
method and execute it when a thread-pool thread becomes available.

How It Works

Applications that use many short-lived threads or maintain large numbers of concurrent threads
can suffer performance degradation because of the overhead associated with the creation, operation,
and destruction of threads. In addition, itis common in multithreaded systems for threads to sitidle
a large portion of the time while they wait for the appropriate conditions to trigger their execution.
Using a thread pool provides a common solution to improve the scalability, efficiency, and perfor-
mance of multithreaded systems.

The .NET Framework provides a simple thread-pool implementation accessible through the
Shared members of the ThreadPool class. The QueueUserWorkItem method allows you to execute a
method using a thread-pool thread by placing a work item into the queue. As a thread from the thread
pool becomes available, it takes the next work item from the queue and executes it. The thread
performs the work assigned to it, and when it is finished, instead of terminating, the thread returns
to the thread pool and takes the next work item from the work queue.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION 113

Note If you need to execute a method with a signature that does not match the WaitCallback delegate, you
must use one of the other techniques described in this chapter. See recipe 4-2 or 4-6.

The Code

The following example demonstrates how to use the ThreadPool class to execute a method named
DisplayMessage. The example passes DisplayMessage to the thread pool twice: first with no arguments
and then with a MessageInfo object, which allows you to control which message the new thread will
display.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 01

' A private class used to pass data to the DisplayMessage
method when it is executed using the thread pool.
Private Class MessageInfo

Private m_Iterations As Integer

Private m_Message As String

A constructor that takes configuration settings for the thread.
Public Sub New(ByVal iterations As Integer, ByVal message As String)

m_Iterations = iterations
m_Message = message

End Sub
' Properties to retrieve configuration settings.
Public ReadOnly Property Iterations() As Integer
Get
Return m_Iterations
End Get
End Property

Public ReadOnly Property Message() As String
Get
Return m_Message
End Get
End Property

End Class

' A method that conforms to the System.Threading.WaitCallback
delegate signature. Displays a message to the console.
Public Shared Sub DisplayMessage(ByVal state As Object)
' Safely case the state argument to a MessageInfo object.
Dim config As MessageInfo = TryCast(state, MessageInfo)

114 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

If the config argument is nothing, no arguments were passed to
the ThreadPool.QueueUserWorkItem method; use default values.
If config Is Nothing Then
' Display a fixed message to the console three times.
For count As Integer = 1 To 3

Console.Writeline("A thread pool example.")

Sleep for the purpose of demonstration. Avoid sleeping
on thread-pool threads in real applications.
Thread.Sleep(1000)
Next
Else

Display the specified message the specified number of times.
For count As Integer = 1 To config.Iterations
Console.Writeline(config.Message)
' Sleep for the purpose of demonstration. Avoid sleeping
on thread-pool threads in real applications.
Thread.Sleep(1000)
Next
End If
End Sub

Public Shared Sub Main()
' Execute DisplayMessage using the thread pool and no arguments.

ThreadPool.QueueUserWorkItem(AddressOf DisplayMessage)

' Create a MessageInfo object to pass to the DisplayMessage method.

Dim info As New MessageInfo(5, "A thread pool example with arguments.")

' Execute a DisplayMessage using the thread pool and providing an

argument.

ThreadPool.QueueUserWorkItem(AddressOf DisplayMessage, info)

Wait to continue.
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
End Class
End Namespace

Notes

Using the runtime’s thread pool simplifies multithreaded programming dramatically; however, be
aware that the implementation is a simple, general-purpose thread pool. Before deciding to use the
thread pool, consider the following points:

e Each process has one thread pool, which supports by default a maximum of 25 concurrent
threads per processor. You can change the maximum number of threads using the Shared
ThreadPool.SetMaxThreads method, but some runtime hosts (IIS and SQL Server, for example)
will limit the maximum number of threads and may not allow the default value to be changed
atall.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION 115

¢ Aswell as allowing you to use the thread pool to execute code directly, the runtime uses the
thread pool for other purposes internally. This includes the asynchronous execution of methods
(see recipe 4-2), execution of timer events (see recipes 4-3 and 4-4), and execution of wait-
based methods (see recipe 4-5). All of these uses can lead to heavy contention for the thread-
pool threads, meaning that the work queue can become very long. Although the work queue’s
maximum length is limited only by the amount of memory available to the runtime’s process,
an excessively long queue will result in long delays before queued work items are executed.
The Shared ThreadPool.GetAvailableThreads method returns the number of threads currently
available in the thread pool. This can be useful in determining whether your application is
placing too much load on the thread pool, indicating that you should increase the number of
available threads using the ThreadPool. SetMaxThreads method.

e Where possible, avoid using the thread pool to execute long-running processes. The limited
number of threads in the thread pool means that a handful of threads tied up with long-running
processes can significantly affect the overall performance of the thread pool. Specifically, you
should avoid putting thread-pool threads to sleep for any length of time.

e Thread-pool threads are background threads. You can configure threads as either foreground
threads or background threads. Foreground and background threads are identical, except that a
background thread will not keep an application process alive. Therefore, your application will
terminate automatically when the last foreground thread of your application terminates.

* You have no control over the scheduling of thread-pool threads, and you cannot prioritize
work items. The thread pool handles each work item in the sequence in which you add it to
the work queue.

* Once a work item is queued, it cannot be canceled or stopped.

¢ Do not try to use thread-pool threads to directly update or manipulate Windows Forms controls,
because they can be updated only by the thread that created them. For example, suppose that
you have a form with a progress bar and a button that starts some action. When you click the
button, a thread-pool thread is created to perform the action. Since the progress bar is part of
the main application form, it exists on the main application’s thread. Attempting to manipu-
late it from the thread-pool thread can cause unforeseen issues. The proper approach is to
call delegate methods from the thread-pool threads and have them manipulate the interface
for you.

4-2. Execute a Method Asynchronously

Problem

You need to start execution of a method and continue with other tasks while the method runs on a
separate thread. After the method completes, you need to retrieve the method’s return value.

Solution

Declare a delegate with the same signature as the method you want to execute. Create an instance of
the delegate that references the method. Call the BeginInvoke method of the delegate instance to
start executing your method. Use the EndInvoke method to determine the method’s status as well as
obtain the method’s return value if complete.

116

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

How It Works

Typically, when you invoke a method, you do so synchronously, meaning that the calling code blocks
until the method is complete. Most of the time, this is the expected, desired behavior because your
code requires the operation to complete before it can continue. However, sometimes it is useful to
execute a method asynchronously, meaning that you start the method in a separate thread and then
continue with other operations.

The .NET Framework implements an asynchronous execution pattern that allows you to call
any method asynchronously using a delegate. When you declare and compile a delegate, the compiler
automatically generates two methods that supportasynchronous execution: BeginInvoke and EndInvoke.
When you call BeginInvoke on a delegate instance, the method referenced by the delegate is queued for
asynchronous execution. BeginInvoke does not cause the code execution to wait, but rather returns
immediately with an IAsyncResult instance. IAsyncResult is used when calling EndInvoke. The method
referenced by BeginInvoke executes in the context of the first available thread-pool thread.

The signature of the BeginInvoke method includes the same arguments as those specified by the
delegate signature, followed by two additional arguments to support asynchronous completion.
These additional arguments are as follows:

e ASystem.AsyncCallback delegate instance that references a method that the runtime will call
when the asynchronous method completes. The method will be executed by a thread-pool
thread. Passing Nothing means no method is called, and you must use another mechanism
(discussed later in this recipe) to determine when the asynchronous method is complete.

* Areference to an object that the runtime associates with the asynchronous operation for you.
The asynchronous method does not use or have access to this object, butit is available to your
code when the method completes, allowing you to associate useful state information with an
asynchronous operation. For example, this object allows you to map results against initiated
operations in situations where you initiate many asynchronous operations that use a
common callback method to perform completion.

The EndInvoke method allows you to retrieve the return value of a method that was executed
asynchronously, but you must first determine when it has finished. If your asynchronous method
threw an exception, it will be rethrown so that you can handle it when you call EndInvoke. Here are
the four techniques for determining whether an asynchronous method has finished:

* Blockingstops the execution of the current thread until the asynchronous method completes
execution by calling EndInvoke. In effect, this is much the same as synchronous execution.
However, you have the flexibility to decide exactly when your code enters the blocked state,
giving you the opportunity to perform some additional processing before blocking.

e Pollinginvolves repeatedly testing the state of an asynchronous method to determine
whether it is complete by checking the IsCompleted property of the IAsyncResult returned
from BeginInvoke. This is a simple technique and is not particularly efficient from a processing
perspective. You should avoid tight loops that consume processor time; it is best to put the
polling thread to sleep for a period using Thread.Sleep between completion tests. Because
polling involves maintaining a loop, the actions of the waiting thread are limited, but you can
easily update some kind of progress indicator.

* Waitingdepends on the AsyncWaitHandle property of the IAsyncResult returned by BeginInvoke.
This object derives from the System.Threading.WaitHandle class and is signaled when the
asynchronous method completes. Waiting is a more efficient version of polling and also
allows you to wait for multiple asynchronous methods to complete. You can specify time-out
values to allow your waiting thread to notify a failure if the asynchronous method takes too
long or if you want to periodically update a status indicator.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

A callback is a method that the runtime calls when an asynchronous operation completes.
The calling code does not need to take any steps to determine when the asynchronous method is
complete and is free to continue with other processing. Callbacks provide the greatest flexi-
bility but also introduce the greatest complexity, especially if you have many asynchronous
operations active concurrently that all use the same callback. In such cases, you must use
appropriate state objects as the last parameter of BeginInvoke to match the completed methods
against those you initiated.

CGaution Even if you do not want to handle the return value of your asynchronous method, you should call
EndInvoke; otherwise, you risk leaking memory each time you initiate an asynchronous call using BeginInvoke.

The Code

The following code demonstrates how to use the asynchronous execution pattern. It uses a delegate
named AsyncExampleDelegate to execute a method named LongRunningMethod asynchronously.
LongRunningMethod simulates a long-running method using a configurable delay (produced using
Thread.Sleep). The example contains the following five methods that demonstrate the various
approaches to handling asynchronous method completion:

The BlockingExample method executes LongRunningMethod asynchronously and continues
with a limited set of processing. Once this processing is complete, BlockingExample blocks
until LongRunningMethod completes. To block, BlockingExample calls the EndInvoke method
of the AsyncExampleDelegate delegate instance. If LongRunningMethod has already finished,
EndInvoke returns immediately; otherwise, BlockingExample blocks until LongRunningMethod
completes.

The PollingExample method executes LongRunningMethod asynchronously and then enters a
polling loop until LongRunningMethod completes. PollingExample tests the IsCompleted
property of the IAsyncResult instance returned by BeginInvoke to determine whether
LongRunningMethod is complete; otherwise, PollingExample calls Thread.Sleep.

The WaitingExample method executes LongRunningMethod asynchronously and then waits
until LongRunningMethod completes. WaitingExample uses the AsyncWaitHandle property of the
IAsyncResult instance returned by BeginInvoke to obtain a WaitHandle and then calls its
WaitOne method. Using a time-out allows WaitingExample to break out of waiting in order to
perform other processing or to fail completely if the asynchronous method is taking too long.

The WaitAllExample method executes LongRunningMethod asynchronously multiple times and
then uses an array of WaitHandle objects to wait efficiently until all the methods are complete.

The CallbackExample method executes LongRunningMethod asynchronously and passes

an AsyncCallback delegate instance (that references the CallbackHandler method) to the
BeginInvoke method. The referenced CallbackHandler method is called automatically when
the asynchronous LongRunningMethod completes, leaving the CallbackExample method free to
continue processing. It’s important to note that a reference to the AsyncExampleDelegate is
passed to the BeginInvoke method via the DelegateAsyncState parameter. If you did not pass
thisreference, the callback method would not have access to the delegate instance and would
be unable to call EndInvoke.

In VB .NET, it is not necessary to implicitly create a delegate instance, such as Dim longMethod
As AsyncExampleDelegate = New AsyncExampleDelegate(AddressOf LongRunningMethod). Since
the AddressOf operator does this automatically, the more efficient statement Dim longMethod As
AsyncExampleDelegate = AddressOf LongRunningMethod is used instead.

117

118 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Note For the purpose of demonstrating the various synchronization techniques, the example performs several
tasks that should be avoided when using the thread pool, including putting thread-pool threads to sleep and calling
long-running methods. See recipe 4-1 for more suggestions on using the thread pool appropriately.

Imports System
Imports System.Threading
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 02
" A utility method for displaying useful trace information to the
console along with details of the current thread.

Private Shared Sub TraceMsg(ByVal currentTime As DateTime, ‘w»
ByVal msg As String)

Console.WriteLine("[{0,3}/{1}] - {2} : {3}", =
Thread.CurrentThread.ManagedThreadId, IIf(Thread.CurrentThread.IsThreadPoolThread, w»
"pool"”, "fore"), currentTime.ToString("HH:mm:ss.ffff"), msg)

End Sub
" A delegate that allows you to perform asynchronous execution of
LongRunningMethod.

Public Delegate Function AsyncExampleDelegate(ByVal delay As Integer, ‘w»
ByVal name As String) As DateTime

A simulated long-running method.
Public Shared Function LongRunningMethod(ByVal delay As Integer, ‘=
ByVal name As String) As DateTime

TraceMsg(DateTime.Now, name & " example - thread starting.")

Simulate time-consuming process.
Thread.Sleep(delay)

TraceMsg(DateTime.Now, name & " example - thread stopping.")
' Return the method's completion time.
Return DateTime.Now

End Function

This method executes LongRunningMethod asynchronously and continues
with other processing. Once the processing is complete, the method
blocks until LongRunningMethod completes.

Public Shared Sub BlockingExample()

Console.WritelLine(Environment.NewLine & "*** Running Blocking " & w»
"Example ***")

"Blocking",

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Invoke LongRunningMethod asynchronously. Pass Nothing for both the
callback delegate and the asynchronous state object.

Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
Dim asyncResult As IAsyncResult = longMethod.BeginInvoke (2000, '
Nothing, Nothing)

Perform other processing until ready to block.
For count As Integer = 1 To 3
TraceMsg(DateTime.Now, "Continue processing until ready to block..")

Thread. Sleep(300)
Next
" Block until the asynchronous method completes.
TraceMsg(DateTime.Now, "Blocking until method is complete...")
' Obtain the completion data for the asynchronous method.
Dim completion As DateTime = DateTime.MinValue

Try

completion = longMethod.EndInvoke(asyncResult)
Catch ex As Exception

' Catch and handle those exceptions you would if calling
LongRunningMethod directly.

End Try

Display completion information.
TraceMsg(completion, "Blocking example complete.")

End Sub

This method executes LongRunningMethod asynchronously and then
enters a polling loop until LongRunningMethod completes.

Public Shared Sub PollingExample()

Console.WritelLine(Environment.NewLine & "*** Running Polling " & ‘w»

"Example ***")

"Polling",

Invoke LongRunningMethod asynchronously. Pass Nothing for both the
callback delegate and the asynchronous state object.

Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
Dim asyncResult As IAsyncResult = longMethod.BeginInvoke (2000, ‘w»
Nothing, Nothing)

Poll the asynchronous method to test for completion. If not
complete, sleep for 300ms before polling again.
TraceMsg(DateTime.Now, "Poll repeatedly until method is complete.")

While Not asyncResult.IsCompleted
TraceMsg(DateTime.Now, "Polling...")
Thread. Sleep(300)

End While

119

120

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

' Obtain the completion data for the asynchronous method.
Dim completion As DateTime = DateTime.MinValue

Try
completion = longMethod.EndInvoke(asyncResult)

Catch ex As Exception
' Catch and handle those exceptions you would if calling
' LongRunningMethod directly.

End Try

Display completion information.
TraceMsg(completion, "Polling example complete.")

End Sub

' This method executes LongRunningMethod asychronously and then
' uses a WaitHandle to wait efficiently until LongRunningMethod
' completes. Use of a time-out allows the method to break out of
' waiting in order to update the user interface or fail if the
asynchronous method is taking too long.

Public Shared Sub WaitingExample()

Console.WritelLine(Environment.NewLine & "*** Running Waiting " & '
"Example ***")

" Invoke LongRunningMethod asynchronously. Pass Nothing for both the

' callback delegate and the asynchronous state object.

Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod

Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, '
"Waiting", Nothing, Nothing)

' Wait for the asynchronous method to complete. Time-out after
' 300ms and display status to the console before continuing to
" wait.

TraceMsg(DateTime.Now, "Waiting until method is complete.")

While Not asyncResult.AsyncWaitHandle.WaitOne(300, False)
TraceMsg(DateTime.Now, "Wait timeout...")
End While

' Obtain the completion data for the asynchronous method.
Dim completion As DateTime = DateTime.MinValue

Try
completion = longMethod.EndInvoke(asyncResult)

Catch ex As Exception
' Catch and handle those exceptions you would if calling
" LongRunningMethod directly.

End Try

Display completion information.
TraceMsg(completion, "Waiting example complete.")

End Sub

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

This method executes LongRunningMethod asynchronously multiple
times and then uses an array of WaitHandle objects to wait
efficiently until all of the methods are complete. Use of a
time-out allows the method to break out of waiting in order to
update the user interface or fail if the asynchronous method
is taking too long.

Public Shared Sub WaitAllExample()

Console.Writeline(Environment.NewLine & "*** Running WaitAll " & ‘s

"Example ***")

Nothing))
Nothing))

Nothing))

An Arraylist to hold the IAsyncResult instances for each of the
asynchonrous methods started.
Dim asyncResults As New Arraylist(3)

" Invoke three LongRunningMethod asynchronously. Pass Nothing for

' both the callback delegate and the asynchronous state object. Add
' the IAsyncResult instance for each method to the Arraylist.

Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod

asyncResults.Add(longMethod.BeginInvoke (3000, "WaitAll 1", Nothing,
asyncResults.Add(longMethod.BeginInvoke (2500, "WaitAll 2", Nothing,

asyncResults.Add(longMethod.BeginInvoke (1500, "WaitAll 3", Nothing,

' Create an array of WaitHandle objects that will be used to wait
' for the completion of all the asynchronous methods.
Dim waitHandles As WaitHandle() = New WaitHandle(2) {}

02

For count As Integer T
DirectCast(asyncResults(count), ‘=

=0
waitHandles(count) =

IAsyncResult).AsyncWaitHandle

Next

' Wait for all three asynchronous methods to complete. Time-out

' after 300ms and display status to the console before continuing

' to wait.

TraceMsg(DateTime.Now, "Waiting until all 3 methods are complete...")

While Not WaitHandle.WaitAll(waitHandles, 300, False)
TraceMsg(DateTime.Now, "WaitAll timeout...")
End While

Inspect the completion data for each method, and determine the
time at which the final method completed.
Dim completion As DateTime = DateTime.MinValue

For Each result As IAsyncResult In asyncResults
Try
Dim completedTime As DateTime = longMethod.EndInvoke(result)
If completedTime > completion Then completion = completedTime
Catch ex As Exception

121

122 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Catch and handle those exceptions you would if calling
' LongRunningMethod directly.

End Try
Next

Display completion information.
TraceMsg(completion, "WaitAll example complete.")

End Sub
' This method executes LongRunningMethod asnchronously and passes

an AsyncCallback delegate instance. The referenced CallbackHandler
method is called automatically when the asynchronous method
completes, leaving this method free to continue processing.

Public Shared Sub CallbackExample()

Console.WritelLine(Environment.NewLine & "*** Running Callback" & ‘=
"Example ***")

Invoke LongRunningMethod asynchronously. Pass an AsyncCallback
delegate instance referencing the CallbackHandler method that
will be called automatically when the asynchronous method
completes. Pass a reference to the AsyncExampleDelegate delegate
instance as asynchronous state; otherwise, the callback method

has no access to the delegate instance in order to call EndInvoke.

Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod

Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, '
"Callback", AddressOf CallbackHandler, longMethod)

' Continue with other processing.

For count As Integer = 0 To 15
TraceMsg(DateTime.Now, "Continue processing...")
Thread.Sleep(300)

Next

End Sub
" A method to handle asynchronous completion using callbacks.
Public Shared Sub CallbackHandler(ByVal result As IAsyncResult)
' Extract the reference to the AsyncExampleDelegate instance

from the IAsyncResult instance. This allows you to obtain the
completion data.

Dim longMethod As AsyncExampleDelegate = DirectCast(result.AsyncState, w»
AsyncExampleDelegate)

Obtain the completion data for the asynchronous method.
Dim completion As DateTime = DateTime.MinValue

Try

completion = longMethod.EndInvoke(result)
Catch ex As Exception

' Catch and handle those exceptions you would if calling
LongRunningMethod directly.

End Try

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Display completion information.
TraceMsg(completion, "Callback example complete.")

End Sub

<MTAThread()> _
Public Shared Sub Main()

Demonstrate the various approaches to asynchronous method completion.
BlockingExample()

PollingExample()

WaitingExample()

WaitAllExample()

CallbackExample()

" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
End Class
End Namespace

4-3. Execute a Method Periodically

Problem

You need to execute a method in a separate thread periodically.

Solution

Declare a method containing the code you want to execute periodically. The method’s signature
must match that defined by the System.Threading.TimerCallback delegate; in other words, it must
be a subroutine (not a function) and take a single Object argument. Create a System.Threading.
Timer object and pass it the method you want to execute, along with a state Object that the timer will
pass to your method when the timer expires. The runtime will wait until the timer expires, and then
call your method using a thread from the thread pool.

Tip If you are implementing a timer in a Windows Forms application, you should consider using the System.
Windows.Forms.Timer, which also provides additional support in Visual Studio that allows you to drag the timer
from your Toolbox onto your application. For server-based applications where you want to signal multiple listeners

each time the timer fires, consider using the System.Timers.Timer class, which notifies listeners using events.

How It Works

It is often useful to execute a method at regular intervals. For example, you might need to clean a
data cache every 20 minutes. The System.Threading. Timer class makes the periodic execution of
methods straightforward, allowing you to execute a method referenced by a TimerCallback delegate

123

124

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

at specified intervals. The referenced method executes in the context of a thread from the thread
pool. (See recipe 4-1 for notes on the appropriate use of thread-pool threads.)

When you create a Timer object, you specify two time intervals. The first value specifies the milli-
second delay until the Timer first executes your method. Specify 0 to execute the method immediately,
and specify System.Threading. Timeout.Infinite (which is -1) to create the Timer in an unstarted
state. The second value specifies the interval in milliseconds; then the Timer will repeatedly call your
method following the initial execution. If you specify a value of 0 or Timeout.Infinite, the Timer will
execute the method only once (as long as the initial delay is not Timeout.Infinite). You can specify
the time intervals as Integer, Long, UInteger, or System. TimeSpan values.

Once you have created a Timer object, you can modify the intervals used by the timer using the
Change method, but you cannot change the method that is called. When you have finished with a
Timer object, you should call its Dispose method to free system resources held by the timer. Disposing of
the Timer object cancels any method that is scheduled for execution.

The Code

The TimerExample class shown next demonstrates how to use a Timer object to call a method named
TimerHandler. Initially, the Timer object is configured to call TimerHandler after 2 seconds and then
at 1-second intervals. The example allows you to enter a new millisecond interval in the console,
which is applied using the Timer.Change method.

Imports System
Imports System.Threading
Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 03

Public Shared Sub Main()
' Create the state object that is passed to the TimerHandler
method when it is triggered. In this case, a message to display.

Dim state As String = "Timer expired."

Console.WritelLine("{0} : Creating Timer.", ‘w»
DateTime.Now.ToString("HH:mm:ss.ffff"))

' Create a Timer that fires first after 2 seconds and then every
second. The threadTimer object is automatically disposed at the
" end of the Using block.
Using threadTimer As New Timer (AddressOf TimerTriggered, state, 2000, w»

1000)
Dim period As Integer
' Read the new timer interval from the console until the
user enters 0 (zero). Invalid values use a default value
of 0, which will stop the example.

Do
Try
period = Int32.Parse(Console.ReadlLine())
Catch ex As FormatException
period = 0
End Try

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Change the timer to fire using the new interval starting
immediately.
If period > 0 Then threadTimer.Change(0, period)

Loop While period > 0
End Using

Wait to continue.
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

Private Shared Sub TimerTriggered(ByVal state As Object)
Console.Writeline("{0} : {1}", DateTime.Now.ToString("HH:mm:ss.ffff"), =
state)
End Sub

End Class
End Namespace

4-4. Execute a Method at a Specific Time

Problem

You need to execute a method in a separate thread at a specific time.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.TimerCallback delegate; that is, it must be a subroutine (not a
function) and take a single Object argument. Create a System.Threading.Timer object, and passitthe
method you want to execute along with a state Object that the timer will pass to your method when
the timer expires. Calculate the time difference between the current time and the desired execution
time, and configure the Timer object to fire once after this period of time.

How It Works

Executing a method at a particular time is often useful. For example, you might need to back up data
at 1 a.m. daily. Although primarily used for calling methods at regular intervals, the Timer object also
provides the flexibility to call a method at a specific time.

When you create a Timer object, you specify two time intervals. The first value specifies the milli-
second delay until the Timer first executes your method. To execute the method at a specific time,
you should set this value to the difference between the current time (System.DateTime.Now) and the
desired execution time. The second value specifies the interval after which the Timer will repeatedly
call your method following the initial execution. If you specify a value of 0, System.Threading.
Timeout.Infinite, or TimeSpan(-1), the Timer object will execute the method only once. If you need
the method to execute at a specific time every day, you can easily set this value using TimeSpan.
FromDays(1), which represents the number of milliseconds in 24 hours.

125

126 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

The Code

The following code demonstrates how to use a Timer object to execute a method at a specified time.
The RunAt method calculates the TimeSpan between the current time and a time specified on the
command line (in RFC1123 format) and configures a Timer object to fire once after that period of time.

Imports System
Imports System.Threading
Imports System.Globalization

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipeo4 04
Public Shared Sub RunAt(ByVal execTime As DateTime)
' Calculate the difference between the specified execution
time and the current time.
Dim waitTime As TimeSpan = execTime - DateTime.Now

Check if a time in the past was specified. If it was, set
the waitTime to TimeSpan(0) which will cause the timer
to execute immediately.
If waitTime < New TimeSpan(0) Then
Console.WritelLine("A 'Past' time was specified.")
Console.WriteLine("Timer will fire immediately.")
waitTime = New TimeSpan(0)
End If

Create a Timer that fires once at the specified time. Specify
an interval of -1 to stop the timer executing the method
repeatedly.

Dim threadTimer As New Timer(AddressOf TimerTriggered, ‘=
"Timer Triggered", waitTime, New TimeSpan(-1))

End Sub

Private Shared Sub TimerTriggered(ByVal state As Object)
Console.WritelLine("{0} : {1}", DateTime.Now.ToString("HH:mm:ss.ffff"), w»
state)
Console.WritelLine("Main method complete. Press Enter.")
End Sub

Public Shared Sub Main(ByVal args As String())

Dim execTime As DateTime
' Ensure there is an execution time specified on the command line.
If args.Length > 0 Then
' Convert the string to a datetime. Support only the RFC1123
DateTime pattern.
Try
execTime = DateTime.ParseExact(args(0), "r", Nothing)
Console.WritelLine("Current time Mg -

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

DateTime.Now.ToString("r"))
Console.WriteLine("Execution time : " & w»
execTime.ToString("r"))

RunAt(execTime)
Catch ex As FormatException
Console.WriteLine("Execution time must be of the " & w»
"format:{0}{1}{2}", ControlChars.NewLine, ControlChars.Tab, ‘w»
CultureInfo.CurrentCulture.DateTimeFormat.RFC1123Pattern)
End Try
" Wait to continue.
Console.Writeline("Waiting for Timer...")
Console.ReadlLine()
Else
Console.Writeline("Specify the time you want the method to " & w»
"execute using the format :{0}{1} {2}", ControlChars.NewLine, ControlChars.Tab, ‘=
CultureInfo.CurrentCulture.DateTimeFormat.RFC1123Pattern)
End If
End Sub
End Class

End Namespace

Usage

If you run Recipe04-04 using the following command:
Recipe04-04 "Sat, 24 Mar 2007 18:25:00 GMT"

you will see output similar to the following:

Current time . Sat, 24 Mar 2007 18:24:25 GMT
Execution time : Sat, 24 Mar 2007 18:25:00 GMT
Waiting for Timer...

18:25:00.0000 : Timer Triggered

Main method complete. Press Enter.

4-5. Execute a Method by Signaling
a WaitHandle Object

Problem

You need to execute one or more methods automatically when an object derived from System.
Threading.WaitHandle is signaled.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.WaitOrTimerCallback delegate. Using the Shared ThreadPool.

127

128

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

RegisterWaitForSingleObject method, register the method to execute and the WaitHandle object
that will trigger execution when signaled.

How It Works

You can use classes derived from the WaitHandle class to trigger the execution of amethod. Using the
RegisterWaitForSingleObject method of the ThreadPool class, you can register aWaitOrTimerCallback
delegate instance for execution by a thread-pool thread when a specified WaitHandle-derived object
enters a signaled state. You can configure the thread pool to execute the method only once or to
automatically reregister the method for execution each time the WaitHandle is signaled. If the
WaitHandle is already signaled when you call RegisterWaitForSingleObject, the method will execute
immediately. The Unregister method of the System.Threading.RegisteredWaitHandle object
returned by the RegisterWaitForSingleObject method is used to cancel a registered wait operation.
The class most commonly used as a trigger is AutoResetEvent, which automatically returns to an
unsignaled state after it is signaled. However, you can also use the ManualResetEvent, Mutex, and
Semaphore classes, which require you to change the signaled state manually. AutoResetEvent and
ManualResetEvent derive from the EventWaitHandle class, which in turn derives from WaitHandle.

The Code

The following example demonstrates how to use an AutoResetEvent to trigger the execution of a
method named ResetEventHandler. (The AutoResetEvent class is discussed further in recipe 4-8.)

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipeo4 04
' A method that is executed when the AutoResetEvent is signaled
or the wait operation times out.
Private Shared Sub ResetEventHandler(ByVal state As Object, ByVal =
timedOut As Boolean)

Display an appropriate message to the console based on whether
the wait timed out or the AutoResetEvent was signaled.
If timedOut Then
Console.WritelLine("{0} : Wait timed out.", w
DateTime.Now.ToString("HH:mm:ss.ffff"))
Else
Console.WriteLine("{0} : {1}", =
DateTime.Now.ToString("HH:mm:ss.ffff"), state)
End If

End Sub

Public Shared Sub Main()

Create the new AutoResetEvent in an unsignaled state.
Dim autoEvent As New AutoResetEvent(False)

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

' Create the state object that is passed to the event handler
' method when it is triggered. In this case, a message to display.
Dim state As String = "AutoResetEvent signaled."”

' Register the ResetEventHandler method to wait for the AutoResetEvent
' to be signaled. Set a time-out of 3 seconds and configure the wait

' operation to reset after activation (last argument).

Dim handle As RegisteredWaitHandle = w»

ThreadPool.RegisterWaitForSingleObject(autoEvent, AddressOf ResetEventHandler, ‘w»
state, 3000, False)

e ANCEL"

Console.Writeline("Press ENTER to signal the AutoResetEvent or enter" & ‘w»
to unregister the wait operation.")

While Not Console.ReadlLine.ToUpper = "CANCEL"
" If "CANCEL" has not been entered into the console, signal
" the AutoResetEvent, which will cause the EventHandler
' method to execute. The AutoResetEvent will automatically
' revert to an unsignaled state.
autoEvent. Set()

End While

Unregister the wait operation.
Console.Writeline("Unregistering wait operation.")
handle.Unregister(Nothing)

' Wait to continue.
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-6. Execute a Method Using a New Thread

Problem

You need to execute code in its own thread, and you want complete control over the thread’s state
and operation.

Solution

Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.ThreadStart or System.Threading.ParameterizedThreadStart
delegate. Create a new System.Threading.Thread object, and pass the method delegate as an argu-
ment to its constructor. Call the Thread.Start method to start the execution of your method.

129

130

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

How It Works

For maximum control and flexibility when creating multithreaded applications, you need to take a
direct role in creating and managing threads. This is the most complex approach to multithreaded
programming, but it is the only way to overcome the restrictions and limitations inherent in the
approaches using thread-pool threads, as discussed in the preceding recipes. The Thread class
provides the mechanism through which you create and control threads. To create and start a new
thread, follow this process:

1. Define a method that matches the ThreadStart or ParameterizedThreadStart delegate. The
ThreadStart delegate takes no arguments and must be a subroutine (not a function). This
means you cannot easily pass data to your new thread. The ParameterizedThreadStart del-
egate must also be a subroutine but takes a single Object as an argument, allowing you to
pass data to the method you want to run. (The ParameterizedThreadStart delegate is a
welcome addition to .NET Framework 2.0.) The method you want to execute can be Shared
or an instance method.

2. Create anew Thread object, and pass a delegate to your method as an argument to the Thread
constructor. The new thread has an initial state of Unstarted (a member of the System.
Threading.ThreadState enumeration) and is a foreground thread by default. If you want to
configure it to be a background thread, you need to set its IsBackground property to True.

3. Call Start on the Thread object, which changes its state to ThreadState.Running and begins
execution of your method. If you need to pass data to your method, include it as an argument to
the Start call. If you call Start more than once, it will throw a System.Threading.
ThreadStateException.

The Code

The following code demonstrates how to execute a method in a new thread and how to pass data to
the new thread.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipeo4 04
" A utility method for displaying useful trace information to the
console along with details of the current thread.
Private Shared Sub TraceMsg(ByVal msg As String)
Console.WriteLine("[{0,3}] - {1} : {2}", =
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
End Sub

A private class used to pass initialization data to a new thread.
Private Class ThreadStartData

' Member variables hold initialization data for a new thread.
Private ReadOnly m Iterations As Integer
Private ReadOnly m Message As String
Private ReadOnly m Delay As Integer

Public Sub New(ByVal iterations As Integer, ByVal message As String, ‘=

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION 131

ByVal delay As Integer)
m_Iterations = iterations
m_Message = message
m_Delay = delay
End Sub
' Properties provide read-only access to initialization data.
Public ReadOnly Property Iterations()
Get
Return m_Iterations
End Get
End Property

Public ReadOnly Property Message()
Get
Return m_Message
End Get
End Property

Public ReadOnly Property Delay()
Get
Return m_Delay
End Get
End Property

End Class
' Declare the method that will be executed in its own thread. The
' method displays a message to the console a specified number of
times, sleeping between each message for a specified duration.
Private Shared Sub DisplayMessage(ByVal config As Object)
Dim data As ThreadStartData = TryCast(config, ThreadStartData)

If Not data Is Nothing Then
For count As Integer = 0 To data.Iterations - 1
TraceMsg(data.Message)
' Sleep for the specified period.
Thread.Sleep(data.Delay)
Next
Else
TraceMsg("Invalid thread configuration.™)
End If

End Sub

Public Shared Sub Main()
' Create a new Thread object specifying DisplayMessage

as the method it will execute.

Dim newThread As New Thread(AddressOf DisplayMessage)

Create a new ThreadStartData object to configure the thread.
Dim config As New ThreadStartData(5, "A thread example.", 500)

132

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

TraceMsg("Starting new thread.")

' Start the new thread and pass the ThreadStartData object
' containing the initialization data.
newThread. Start(config)

Continue with other processing.

For count As Integer = 0 To 12
TraceMsg("Main thread continuing processing...")
Thread.Sleep(200)

Next

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-7. Synchronize the Execution of Multiple
Threads Using a Monitor

Problem

You need to coordinate the activities of multiple threads to ensure the efficient use of shared
resources or to ensure several threads are not updating the same shared resource at the same time.

Solution

Identify an appropriate object to use as a mechanism to control access to the shared resource/data.
Use the Shared method Monitor.Enter to acquire a lock on the object, and use the Shared method
Monitor.Exit to release the lock so another thread may acquire it.

How It Works

The greatest challenge in writing a multithreaded application is ensuring that the threads work in
concert. This is commonly referred to as thread synchronization and includes the following:

* Ensuring threads access shared objects and data correctly so that they do not cause corruption

* Ensuring threads execute only when they are meant to and cause minimum overhead when
they are idle

The most commonly used synchronization mechanism is the System.Threading.Monitor class.
The Monitor class allows a single thread to obtain an exclusive lock on an object by calling the Shared
method Monitor.Enter. By acquiring an exclusive lock prior to accessing a shared resource or data,
you ensure that only one thread can access the resource concurrently. Once the thread has finished

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

with the resource, release the lock to allow another thread to access it. A block of code that enforces
this behavior is often referred to as a critical section.

Note Monitors are managed-code synchronization mechanisms that do not rely on any specific operating
system primitives. This ensures your code is portable should you want to run it on a non-Windows platform. This is
in contrast to the synchronization mechanisms discussed in recipes 4-8, 4-9, and 4-10, which rely on Win32
operating system—based synchronization objects.

You can use any object to act as the lock; it is common to use the keyword Me to obtain a lock on
the current object, but it is better to use a separate object dedicated to the purpose of synchroniza-
tion. The key point is that all threads attempting to access a shared resource must try to acquire the
samelock. Other threads that attempt to acquire a lock using Monitor.Enter on the same object will
block (enter aWaitSleepJoinstate) and are added to thelock’s ready queueuntil the thread that owns
the lock releases it by calling the Shared method Monitor.Exit. When the owning thread calls Exit,
one of the threads from the ready queue acquires the lock. We say “one of the threads” because
threads are not necessarily executed in any specific order. If the owner of a lock does not release it by
calling Exit, all other threads will block indefinitely. Therefore, it is important to place the Exit call
within a Finally block to ensure thatitis called even if an exception occurs. To ensure threads do not
wait indefinitely, you can specify a time-out value when you call Monitor.Enter.

Tip Because Monitor is used so frequently in multithreaded applications, VB .NET provides language-level
support through the Synclock statement, which the compiler translates to the use of the Monitor class. A block
of code encapsulated in a Synclock statement is equivalent to calling Monitor.Enter when entering the block and
Monitor.Exit when exiting the block. In addition, the compiler automatically places the Monitor.Exit callina
Finally block to ensure that the lock is released if an exception is thrown.

UsingMonitor.Enter and Monitor.Exitis often all you will need to correctly synchronize access
to a shared resource in a multithreaded application. However, when you are trying to coordinate
the activation of a pool of threads to handle work items from a shared queue, Monitor.Enter and
Monitor.Exit will not be sufficient. In this situation, you want a potentially large number of threads
to wait efficiently until a work item becomes available without putting unnecessary load on the
central processing unit (CPU). This is where you need the fine-grained synchronization control
provided by the Monitor.Wait, Monitor.Pulse, and Monitor.PulseAll methods.

The thread that currently owns the lock can call Monitor.Wait, which will release the lock and
place that thread on the lock’s wait queue. Threads in a wait queue also have a state of WaitSleepJoin
and will continue to block until a thread that owns the lock calls either the Monitor.Pulse method or
the Monitor.PulseAll method. Monitor.Pulse moves one of the waiting threads from the wait queue
to the ready queue, and Monitor.PulseAll moves all threads. Once a thread has moved from the wait
queue to the ready queue, it can acquire the lock the next time the lock is released. It is important to
understand that threads on a lock’s wait queue will not acquire a released lock; they will wait indef-
initely until you call Monitor.Pulse or Monitor.PulseAll to move them to the ready queue.

So, in practice, when your pool threads are inactive, they sit in the wait queue. As a new work
item arrives, a dispatcher obtains the lock and calls Monitor.Pulse, moving one worker thread to the
ready queue, where it will obtain the lock as soon as the dispatcher releases it. The worker thread
takes the work item, releases the lock, and processes the work item. Once the worker thread has
finished with the work item, it again obtains the lock in order to take the next work item, but if there
is no work item to process, the thread calls Monitor.Wait and goes back to the wait queue.

133

134

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

The Code

The following example demonstrates how to synchronize access to a shared resource (the console)
and the activation of waiting threads using the Monitor.Wait, Monitor.Pulse, and Monitor.PulseAll
methods. The example starts three worker threads that take work items from a queue and processes
them. These threads initially have no work items and are put into a wait state using Monitor.Wait.
When the user presses Enter the first two times, work items (strings in the example) are added to the
work queue, and Monitor.Pulse is called to release one waiting thread for each work item. The third
time the user presses Enter, Monitor.PulseAll is called, releasing all waiting threads and allowing
them to terminate.

Imports System
Imports System.Threading
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipeo4 04
' Declare an object for synchronization of access to the console.

A shared object is used because you are using it in shared methods.

Private Shared consoleGate As New Object

Declare a Queue to represent the work queue.
Private Shared workQueue As New Queue(Of String)
' Declare a flag to indicate to activated threads that they should
terminate and not process more work items.

Private Shared workItemsProcessed As Boolean = False

" A utility method for displaying useful trace information to the
console along with details of the current thread.

Private Shared Sub TraceMsg(ByVal msg As String)

SynclLock consoleGate
Console.Writeline("[{0,3}/{1}] - {2} : {3}", =
Thread.CurrentThread.ManagedThreadId, IIf(Thread.CurrentThread.IsThreadPoolThread, w»
"pool"”, "fore"), DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
End SyncLock

End Sub
' Declare the method that will be executed by each thread to process
items from the work queue.

Private Shared Sub ProcessWorkItems()

A local variable to hold the work item taken from the work queue.
Dim workItem As String = Nothing

TraceMsg("Thread started, processing items from the queue...")
' Process items from the work queue until termination is signaled.
While Not workItemsProcessed

' Obtain the lock on the work queue.

Monitor.Enter (workQueue)

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Try

' Pop the next work item and process it, or wait if none
are available.
If workQueue.Count = 0 Then

TraceMsg("No work items, waiting...")

Wait until Pulse is called on the workQueue object.
Monitor.Wait(workQueue)
Else
' Obtain the next work item.
workItem = workQueue.Dequeue
End If
Catch
Finally
Always release the lock.
Monitor.Exit(workQueue)
End Try
' Process the work item if one was obtained.
If Not workItem Is Nothing Then
' Obtain a lock on the console and display a series
of messages.
SynclLock consoleGate
For i As Integer = 0 To 4
TraceMsg("Processing " & workItem)
Thread.Sleep(200)
Next
End SynclLock

Reset the status of the local variable.
workItem = Nothing
End If
End While
' This will be reached only if workItemsProcessed is true.
TraceMsg("Terminating.")
End Sub

Public Shared Sub Main()

TraceMsg("Starting worker threads.")
' Add an initial work item to the work queue.
SyncLock workQueue

workQueue.Enqueue("Work Item 1")
End SynclLock

Create and start three new worker threads running the
ProcessWorkItems method.
For count As Integer = 1 To 3
Dim newThread As New Thread(AddressOf ProcessWorkItems)
newThread. Start()
Next

135

136 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Thread.Sleep(1500)
' The first time the user presses Enter, add a work item and
activate a single thread to process it.

TraceMsg("Press Enter to pulse one waiting thread.")
Console.ReadlLine()

Acquire a lock on the workQueue object.
SyncLock workQueue
' Add a work item.
workQueue.Enqueue("Work Item 2.")
' Pulse 1 waiting thread.
Monitor.Pulse(workQueue)
End SyncLock

Thread.Sleep(2000)
' The second time the user presses Enter, add three work items and
activate three threads to process them.
TraceMsg("Press Enter to pulse three waiting threads.")
Console.ReadlLine()
' Acquire a lock on the workQueue object.
SyncLock workQueue
' Add work items to the work queue, and activate worker threads.
workQueue. Enqueue("Work Item 3.")
Monitor.Pulse(workQueue)
workQueue.Enqueue("Work Item 4.")
Monitor.Pulse(workQueue)
workQueue. Enqueue("Work Item 5.")
Monitor.Pulse(workQueue)
End SynclLock

Thread.Sleep(3500)
' The third time the user presses Enter, signal the worker threads
to terminate and activate them all.

TraceMsg("Press Enter to pulse all waiting threads.")
Console.ReadlLine()

Acquire a lock on the workQueue object.
SyncLock workQueue
' Signal that threads should terminate.
workItemsProcessed = True
' Pulse all waiting threads.
Monitor.PulseAll (workQueue)
End SynclLock

Thread.Sleep(1000)

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Wait to continue.
TraceMsg("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-8. Synchronize the Execution of Multiple
Threads Using an Event

Problem

You need a mechanism to synchronize the execution of multiple threads in order to coordinate their
activities or access to shared resources.

Solution

Use the EventWaitHandle, AutoResetEvent, and ManualResetEvent classes from the System.Threading
namespace.

How It Works

The EventWaitHandle, AutoResetEvent, and ManualResetEvent classes provide similar functionality.
In fact, although the EventiWaitHandle is new to .NET Framework 2.0, it is the base class from which
the AutoResetEvent and ManualResetEvent classes are derived. (EventWaitHandle inherits from
System.Threading.WaitHandle and allows you to create named events.) All three event classes allow
you to synchronize multiple threads by manipulating the state of the event between two possible
values: signaled and unsignaled.

Threads requiring synchronization call Shared or inherited methods of the WaitHandle abstract
base class (summarized in Table 4-1) to test the state of one or more event objects. If the events are
signaled when tested, the thread continues to operate unhindered. If the events are unsignaled, the
thread enters aWaitSleepJoin state, blocking until one or more of the events become signaled or
when a given time-out expires.

The key differences between the three event classes are how they transition from a signaled to
an unsignaled state and their visibility. Both the AutoResetEvent and ManualResetEvent classes are
local to the process in which they are declared. To signal an AutoResetEvent class, call its Set method,
which will release only one thread that is waiting on the event. The AutoResetEvent class will then
automatically return to an unsignaled state. The code in recipe 4-5 demonstrates how to use an
AutoResetEvent class.

The ManualResetEvent class must be manually switched back and forth between signaled and
unsignaled states using its Set and Reset methods. Calling Set on a ManualResetEvent class will set it
to a signaled state, releasing all threads that are waiting on the event. Only by callingReset does the
ManualResetEvent class become unsignaled.

137

138

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Table 4-1. WaitHandle Methods for Synchronizing Thread Execution

Method Description

WaitOne Causes the calling thread to enter a WaitSleepJoin state and wait for a specific
WaitHandle derived object to be signaled. You can also specify a time-out
value. The WaitingExample method in recipe 4-2 demonstrates how to use
the WaitOne method.

WaitAny A Shared method that causes the calling thread to enter a WaitSleepJoin state
and wait for any one of the objects in a WaitHandle array to be signaled. You
can also specify a time-out value.

WaitAll A Shared method that causes the calling thread to enter a WaitSleepJoin state
and wait for all the WaitHandle objects in a WaitHandle array to be signaled.
You can also specify a time-out value. The WaitAllExample method in recipe 4-2
demonstrates how to use the WaitAll method.

SignalAndWait A Shared method that causes the calling thread to signal a specified event
object and then wait on a specified event object. The signal and wait operations
are carried out as an atomic operation. You can also specify a time-out value.
SignalAndWait is new to .NET Framework 2.0.

You can configure the EventWaitHandle class to operate in a manual or automatic reset mode,
making it possible to act like either the AutoResetEvent class or the ManualResetEvent class. When
you create the EventWaitHandle, you pass a value of the System.Threading.EventResetMode enumer-
ation to configure the mode in which the EventhWaitHandle will function; the two possible values are
AutoReset and ManualReset. The unique benefit of the EventWaitHandle class is that it is not constrained
to the local process. When you create an EventWaitHandle class, you can associate a name with it that
makes it accessible to other processes, including nonmanaged Win32 code. This allows you to synchro-
nize the activities of threads across process and application domain boundaries and synchronize
access to resources that are shared by multiple processes. To obtain a reference to an existing named
EventWaitHandle, call the Shared method EventWaitHandle.OpenExisting, and specify the name of
the event.

The Code

The following example demonstrates how to use a named EventWaitHandle in manual mode that
is initially signaled. A thread is spawned that waits on the event and then displays a message to the
console—repeating the process every 2 seconds. When you press Enter, you toggle the event between a
signaled and an unsignaled state. This example uses the Join keyword to cause the application’s
execution to wait until the thread terminates. Join is covered in more detail in recipe 4-12.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipeo4 08

' Boolean to signal that the second thread should terminate.
Public Shared terminate As Boolean = False

A utility method for displaying useful trace information to the

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

console along with details of the current thread.
Private Shared Sub TraceMsg(ByVal msg As String)
Console.WriteLine("[{0,3}] - {1} : {2}", =
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
End Sub
' Declare the method that will be executed on the separate thread.
The method waits on the EventWaitHandle before displaying a message
to the console and then waits two seconds and loops.
Private Shared Sub DisplayMessage()

Obtain a handle to the EventWaitHandle with the name "EventExample".
Dim eventHandle As EventWaitHandle = w»
EventWaitHandle.OpenExisting("EventExample")

TraceMsg("DisplayMessage Started.")

While Not terminate
' Wait on the EventWaitHandle, time-out after two seconds. WaitOne
returns true if the event is signaled; otherwise, false. The
first time through, the message will be displayed immediately
because the EventWaitHandle was created in a signaled state.
If eventHandle.WaitOne (2000, True) Then
TraceMsg("EventWaitHandle In Signaled State.")
Else
TraceMsg("WaitOne Time Out -- EventWaitHandle In" & w»
"Unsignaled State.")
End If
Thread. Sleep(2000)
End While

TraceMsg("Thread Terminating.")
End Sub

Public Shared Sub Main()
' Create a new EventWaitHandle with an initial signaled state, in
manual mode, with the name "EventExample".
Using eventHandle As New EventWaitHandle(True, ‘w»
EventResetMode.ManualReset, "EventExample")
Create and start a new thread running the DisplayMessage

' method.

TraceMsg("Starting DisplayMessageThread.")

Dim newThread As New Thread(AddressOf DisplayMessage)

newThread. Start ()

Allow the EventWaitHandle to be toggled between a signaled and
unsignaled state up to three times before ending.

For count As Integer = 1 To 3

' Wait for Enter to be pressed.

Console.ReadLine()

139

140 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

You need to toggle the event. The only way to know the
current state is to wait on it with a 0 (zero) time-out
" and test the result.

If eventHandle.WaitOne(0, True) Then

TraceMsg("Switching Event To UnSignaled State.")

Event is signaled, so unsignal it.
eventHandle.Reset()

Else
TraceMsg("Switching Event To Signaled State.")
' Event is unsignaled, so signal it.

eventHandle. Set ()

End If

Next

Terminate the DisplayMessage thread, and wait for it to
complete before disposing of the EventWaitHandle.
terminate = True

eventHandle.Set()

newThread.Join(5000)

End Using

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadLine()

End Sub

End Class
End Namespace

4-9. Synchronize the Execution of Multiple
Threads Using a Mutex

Problem

You need to coordinate the activities of multiple threads (possibly across process boundaries) to
ensure the efficient use of shared resources or to ensure several threads are not updating the same
shared resource at the same time.

Solution
Use the System. Threading.Mutex class.

How It Works

The Mutex has a similar purpose to the Monitor discussed in recipe 4-7—it provides a means to ensure
only a single thread has access to a shared resource or section of code at any given time. However,

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

unlike the Monitor, which is implemented fully within managed code, the Mutex is a wrapper around
an operating system synchronization object. This means you can use a Mutex to synchronize the
activities of threads across process boundaries, even with threads running in nonmanaged Win32
code. You can use the OpenExisting method to open an existing, system-wide Mutex object.

Like the EventWaitHandle, AutoResetEvent, and ManualResetEvent classes discussed in recipe 4-8,
the Mutex is derived from System.Threading.WaitHandle and enables thread synchronization in a
similar fashion. A Mutex is in either a signaled state or an unsignaled state. A thread acquires owner-
ship of the Mutex at construction or by using one of the methods listed earlier in Table 4-1. If a thread
has ownership of the Mutex, the Mutex is unsignaled, meaning other threads will block if they try to
acquire ownership. Ownership of the Mutex is released by the owning thread calling the Mutex.
ReleaseMutex method, which signals the Mutex and allows another thread to acquire ownership. A
thread may acquire ownership of a Mutex any number of times without problems, but it must release
the Mutex an equal number of times to free it and make it available for another thread to acquire. If the
thread with ownership of aMutex terminates normally, the Mutex becomes signaled, allowing another
thread to acquire ownership.

The Code

The following example demonstrates how to use a named Mutex to limit access to a shared resource
(the console) to a single thread at any given time. This example uses the Join keyword to cause the
application’s execution to wait until the thread terminates. Join is covered in more detail in recipe 4-12.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 09
' Boolean to signal that the second thread should terminate.
Public Shared terminate As Boolean = False
" A utility method for displaying useful trace information to the
console along with details of the current thread.
Private Shared Sub TraceMsg(ByVal msg As String)
Console.WriteLine("[{0,3}] - {1} : {2}", =
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
End Sub
' Declare the method that will be executed on the separate thread.
In a loop the method waits to obtain a Mutex before displaying a
a message to the console and then waits one second before releasing
' the Mutex.
Private Shared Sub DisplayMessage()

Obtain a handle to the Mutex with the name MutexExample.

Do not attempt to take ownership immediately.

Using newMutex As New Mutex(False, "MutexExample")
TraceMsg("Thread Started.")

While Not terminate
' Wait on the Mutex.
newMutex.WaitOne()

14

142 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

TraceMsg("Thread owns the Mutex.")
Thread.Sleep(1000)
TraceMsg("Thread releasing the Mutex.")
' Release the Mutex.
newMutex.ReleaseMutex()
' Sleep a little to give another thread a good chance of
acquiring the Mutex.
Thread.Sleep(100)

End While

TraceMsg("Thread terminating.")
End Using

End Sub

Public Shared Sub Main()
' Create a new Mutex with the name MutexExample.

Using newMutex As New Mutex(False, "MutexExample")
TraceMsg("Starting threads -- press Enter to terminate.")

Create and start three new threads running the
DisplayMessage method.

Dim thread1 As New Thread(AddressOf DisplayMessage)
Dim thread2 As New Thread(AddressOf DisplayMessage)
Dim thread3 As New Thread(AddressOf DisplayMessage)

thread1.Start()
thread2.Start()
thread3.Start()
' Wait for Enter to be pressed.
Console.ReadLine()

Terminate the DisplayMessage threads, and wait for them to
complete before disposing of the Mutex.

terminate = True

thread1.Join(5000)

thread2.Join(5000)

thread3.Join(5000)

End Using

" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")

Console.ReadlLine()
End Sub

End Class
End Namespace

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Note Recipe 4-17 demonstrates how to use a named Mutex as a means to ensure only a single instance of an
application can be started at any given time.

4-10. Synchronize the Execution of Multiple
Threads Using a Semaphore

Problem

You need to control the number of threads that can access a shared resource or section of code
concurrently.

Solution

Use the System.Threading.Semaphore class.

How It Works

The Semaphore is another synchronization class derived from the System.Threading.WaitHandle
class. The Semaphore is new in .NET Framework 2.0, but it will be familiar to those with Win32
programming experience. The purpose of the Semaphore is to allow a specified maximum number of
threads to access a shared resource or section of code concurrently.

As with the other synchronization classes derived from WaitHandle (discussed in recipes 4-8 and
4-9), a Semaphore is either in a signaled state or in an unsignaled state. Threads wait for the Semaphore
to become signaled using the methods described earlier in Table 4-1. The Semaphore maintains a
count of the active threads it has allowed through and automatically switches to an unsignaled state
once the maximum number of threads is reached. To release the Semaphore and allow other waiting
threads the opportunity to act, a thread calls the Release method on the Semaphore object. A thread
may acquire ownership of the Semaphore more than once, reducing the maximum number of threads
that can be active concurrently, and must call Release the same number of times to fully release it.

The Code

The following example demonstrates how to use a named Semaphore to limit access to a shared
resource (the console) to two threads at any given time. The code is similar to that used in recipe 4-9 but
substitutes a Semaphore for the Mutex. This example uses the Join keyword to cause the application’s
execution to wait until the thread terminates. Join is covered in more detail in recipe 4-12.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipe04 10

Boolean to signal that the second thread should terminate.
Public Shared terminate As Boolean = False

143

144 CHAPTER 4

THREADS, PROCESSES, AND SYNCHRONIZATION

A utility method for displaying useful trace information to the
console along with details of the current thread.

Private Shared Sub TraceMsg(ByVal msg As String)

Console.WriteLine("[{0,3}] - {1} : {2}", =

Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
End Sub

Declare the method that will be executed on the separate thread.

In a loop the method waits to obtain a Semaphore before displaying a
a message to the console and then waits one second before releasing
the Semaphore.

Private Shared Sub DisplayMessage()

Obtain a handle to the Semaphore, created in main, with the name
SemaphoreExample. Do not attempt to take ownership immediately.
Using sem As Semaphore = Semaphore.OpenExisting("SemaphoreExample")
TraceMsg("Thread Started.")

While Not terminate
' Wait on the Semaphore.
sem.WaitOne()

TraceMsg("Thread owns the Semaphore.")
Thread.Sleep(1000)
TraceMsg("Thread releasing the Semaphore.")
' Release the Semaphore.
sem.Release()
' Sleep a little to give another thread a good chance of
acquiring the Semaphore.
Thread.Sleep(100)

End While

TraceMsg("Thread terminating.")
End Using

End Sub

Public Shared Sub Main()

Create a new Semaphore with the name SemaphoreExample.

Using sem As New Semaphore(2, 2, "SemaphoreExample")
TraceMsg("Starting threads -- press Enter to terminate.")
' Create and start three new threads running the

DisplayMessage method.

Dim threadi As New Thread(AddressOf DisplayMessage)

Dim thread2 As New Thread(AddressOf DisplayMessage)

Dim thread3 As New Thread(AddressOf DisplayMessage)

thread1.Start()
thread2.Start()
thread3.Start()

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Wait for Enter to be pressed.
Console.ReadlLine()

' Terminate the DisplayMessage threads, and wait for them to
complete before disposing of the Semaphore.

terminate = True

thread1.Join(5000)

thread2.Join(5000)

thread3.Join(5000)

End Using

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-11. Synchronize Access to a Shared Data Value

Problem

You need to ensure operations on a numeric data value are executed atomically so that multiple
threads accessing the value do not cause errors or corruption.

Solution

Use the Shared members of the System. Threading.Interlocked class.

How It Works

The Interlocked class contains several Shared methods that perform some simple arithmetic and
comparison operations on a variety of data types and ensure the operations are carried out atomi-
cally. Table 4-2 summarizes the methods and the data types on which they can be used. Note that
the methods use the ByRef keyword on their arguments to allow the method to update the value of the
actual value type variable passed in. If the operations you want to perform are not supported by the
Interlocked class, you will need to implement your own synchronization using the other approaches
described in this chapter.

Caution Be aware, as of the time of this writing, the reliability of the 64-bit interlocked operations on a 32-bit
platform is in question.

145

146

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Table 4-2. Interlocked Methods for Synchronizing Data Access

Method Description

Add Adds two Integer or Long values and sets the value of the first argument to
the sum of the two values.

CompareExchange Compares two values; if they are the same, sets the first argument to a
specified value. This method has overloads to support the comparison and
exchange of Integer, Long, Single, Double, Object, and System.IntPtr.

Decrement Decrements an Integer or Long value.

Exchange Sets the value of a variable to a specified value. This method has overloads
to support the exchange of Integer, Long, Single, Double, Object, and
System.IntPtr.

Increment Increments an Integer or Long value.

The Code

The following simple example demonstrates how to use the methods of the Interlocked class. The
example does not demonstrate Interlocked in the context of a multithreaded program and is provided
only to clarify the syntax and effect of the various methods.

Imports System

Imports System.threading

Namespace Apress.VisualBasicRecipes.Chaptero4

Class Recipeo4 11

Public Shared Sub Main()

Dim firstInt As Integer = 2500
Dim secondInt As Integer = 8000

Console.WritelLine("firstInt initial value = {0}", firstInt)
Console.WriteLine("secondInt initial value = {0}", secondInt)

Decrement firstInt in a thread-safe manner. This is
the thread-safe equivalent of firstInt = firstInt - 1.

Interlocked.Decrement (firstInt)

Console.WriteLine(Environment.NewLine)
Console.WriteLine("firstInt after decrement = {0}", firstInt)

Increment secondInt in a thread-safe manner. This is
the thread-safe equivalent of secondInt = secondInt + 1.

Interlocked.Increment(secondInt)

Console.WriteLine("secondInt after increment = {0}", secondInt)

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION 147

" Add the firstInt and secondInt values, and store the result
" in firstInt. This is the thread-safe equivalent of firstInt
" = firstInt + secondInt.

Interlocked.Add(firstInt, secondInt)

Console.WriteLine(Environment.NewlLine)
Console.WriteLine("firstInt after Add = {0}", firstInt)
Console.WriteLine("secondInt after Add = {0}", secondInt)

Exchange the value of firstInt with secondInt. This is the
' thread-safe equivalent of secondInt = firstInt.
Interlocked.Exchange(secondInt, firstInt)

Console.WriteLine(Environment.NewlLine)
Console.Writeline("firstInt after Exchange = {0}", firstInt)
Console.Writeline("secondInt after Exchange = {0}", secondInt)

Compare firstInt with secondInt, and if they are equal, set
' firstInt to 5000. This is the thread-safe equivalent of
" if firstInt = secondInt then firstInt = 5000.
Interlocked.CompareExchange(firstInt, 5000, secondInt)

Console.WriteLine(Environment.NewlLine)
Console.Writeline("firstInt after Comparekxchange = {0}", firstInt)
Console.Writeline("secondInt after CompareExchange = {0}", secondInt)

" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-12. Know When a Thread Finishes

Problem

You need to know when a thread has finished.

Solution
Use the IsAlive property or the Join method of the Thread class.

How It Works

The easiest way to test whether a thread has finished executing is to test the Thread.IsAlive property.
The IsAlive property returns True if the thread has been started but has not terminated or been
aborted. The IsAlive property provides a simple test to see whether a thread has finished executing,

148

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

but commonly you will need one thread to wait for another thread to complete its processing.
Instead of testing IsAlive in a loop, which is inefficient, you can use the Thread.Join method.

Join causes the calling thread to block until the referenced thread terminates, at which point the
calling thread will continue. You can optionally specify an Integer or a TimeSpan value that specifies
the time, after which the Join operation will time out and execution of the calling thread will resume.
If you specify a time-out value, Join returns True if the thread terminated and returns False if Join
timed out.

The Code

The following example executes a second thread and then calls Join (with a time-out of 2 seconds)
to wait for the second thread to terminate. Because the second thread takes about 5 seconds to execute,
the Join method will always time out, and the example will display a message to the console. The
example then calls Join again without a time-out and blocks until the second thread terminates.

Imports System
Imports System.threading

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipeo4 12

Private Shared Sub DisplayMessage()
' Display a message to the console 5 times.
For count As Integer = 1 To 5
Console.WritelLine("{0} : DisplayMessage thread", ‘=
DateTime.Now.ToString("HH:mm:ss.ffff"))
' Sleep for 1 second.
Thread.Sleep(1000)
Next
End Sub

Public Shared Sub Main()
' Create a new Thread to run the DisplayMessage method.
Dim newThread As New Thread(AddressOf DisplayMessage)

Console.WritelLine("{0} : Starting DisplayMessage thread.", =
DateTime.Now.ToString("HH:mm:ss.ffff"))

' Start the DisplayMessage thread.
newThread.Start()

Block until the DisplayMessage thread finishes, or time-out after

' 2 seconds.
If Not newThread.Join(2000) Then
Console.WriteLine("{0} : Join timed out !!", w

DateTime.Now.ToString("HH:mm:ss.ffff"))
End If

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Block again until the DisplayMessage thread finishes with
no time-out.
newThread.Join()

Wait to continue.
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-13. Terminate the Execution of a Thread

Problem

You need to terminate an executing thread without waiting for it to finish on its own accord.

Solution

Call the Abort method of the Thread object you want to terminate.

How It Works

It is better to write your code so that you can signal to a thread that it should shut down and allow it
to terminate naturally. Recipes 4-7, 4-8, and 4-9 demonstrate this technique (using a Boolean flag).
However, sometimes you will want a more direct method of terminating an active thread.

Calling Abort on an active Thread object terminates the thread by throwing a System.Threading.
ThreadAbortException in the code that the thread is running. You can pass an object as an argument
to the Abort method, which is accessible to the aborted thread through the ExceptionState property
of the ThreadAbortException. When called, Abort returns immediately, but the runtime determines
exactly when the exception is thrown, so you cannot assume the thread has terminated by the Abort
returns. You should use the techniques described in recipe 4-12 if you need to determine when the
aborted thread is actually finished.

The aborted thread’s code can catch the ThreadAbortException to perform cleanup, but the
runtime will automatically throw the exception again when exiting the Catch block to ensure that the
thread terminates. So, you should not write code after the Catch block because it will never execute.
However, calling the Shared Thread.ResetAbort in the Catch block will cancel the abort request and
exit the Catch block, allowing the thread to continue executing. Once you abort a thread, you cannot
restart it by calling Thread. Start.

Note An alternative to using the Abort method is to use a member variable. The thread should check the vari-
able when appropriate. When you need to, set this variable to instruct the thread to end gracefully. This method
offers a little more control than Abort.

149

150 CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

The Code

The following example creates a new thread that continues to display messages to the console until
you press Enter, at which point the thread is terminated by a call to Thread.Abort.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipe04_ 13
Private Shared Sub Displaymessage()

Try
While True
Display a message to the console.

Console.Writeline("{0} : DisplayMessage thread active", w»
DateTime.Now.ToString("HH:mm:ss.ffff"))

' Sleep for 1 second.
Thread.Sleep(1000)
End While
Catch ex As ThreadAbortException
Display a message to the console.
Console.WritelLine("{0} : DisplayMessage thread terminating - {1}", =
DateTime.Now.ToString("HH:mm:ss.ffff"), DirectCast(ex.ExceptionState, String))

Call Thread.ResetAbort here to cancel the abort request.
End Try

This code is never executed unless Thread.ResetAbort is
called in the previous catch block.

Console.WritelLine("{0} : nothing is called after the catch block", =
DateTime.Now.ToString("HH:mm:ss.ffff"))

End Sub

Public Shared Sub Main()

Create a new Thread to run the DisplayMessage method.
Dim newThread As New Thread(AddressOf Displaymessage)

Console.Writeline("{0} : Starting DisplayMessage thread - press " & w»
"Enter to terminate.", DateTime.Now.ToString("HH:mm:ss.ffff"))

Start the DisplayMessage thread.
newThread.Start()

Wait until Enter is pressed and terminate the thread.
System.Console.ReadLine()

newThread.Abort("User pressed Enter")

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Block again until the DisplayMessage thread finishes.
newThread.Join()

Wait to continue.
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-14. Create a Thread-Safe Collection Instance

Problem

You need multiple threads to be able to safely access the contents of a collection concurrently.

Solution

Use Synclock statements in your code to synchronize thread access to the collection, or to access the
collection through a thread-safe wrapper.

How It Works

By default, the standard collection classes from the System.Collections, System.Collections.
Specialized, and System.Collections.Generic namespaces will support multiple threads reading the
collection’s content concurrently. However, if more than one of these threads tries to modify the
collection, you will almost certainly encounter problems. This is because the operating system can
interrupt the actions of the thread while modifications to the collection have been only partially
applied. This leaves the collection in an indeterminate state, which could cause another thread
accessing the collection to fail, return incorrect data, or corrupt the collection.

Note Using thread synchronization introduces a performance overhead. Making collections non-thread-safe by
default provides better performance for the vast majority of situations where multiple threads are not used.

The most commonly used collections from the System.Collections namespace implement a
Shared method named Synchronized; this includes only the ArrayList, Hashtable, Queue, SortedlList,
and Stack classes. The Synchronized method takes a collection object of the appropriate type as an
argument and returns an object that provides a synchronized wrapper around the specified collec-
tion object. The wrapper object is returned as the same type as the original collection, but all the
methods and properties that read and write the collection ensure that only a single thread has access
to the initial collection content concurrently. You can test whether a collection is thread-safe using
the IsSynchronized property. Once you get the wrapper, you should neither access the initial collection
nor create a new wrapper; both result in a loss of thread safety.

The collection classes such as HybridDictionary, ListDictionary, and StringCollection from
the System.Collections.Specialized namespace do not implement a Synchronized method. To
provide thread-safe access to instances of these classes, you must implement manual synchronization

151

152

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

using the Object returned by their SyncRoot property. This property and IsSynchronized are both
defined by the ICollection interface that is implemented by all collection classes from System.
Collections and System.Collections.Specialized (exceptBitVector32). You can therefore synchro-
nize all your collections in a fine-grained way.

However, the new .NET Framework 2.0 classes in the System.Collections.Generic namespace
provide no built-in synchronization mechanisms, leaving it to you to implement thread synchroni-
zation manually using the techniques discussed in this chapter.

CGaution Often you will have multiple collections and data elements that are related and need to be updated
atomically. In these instances, you should not use the synchronization mechanisms provided by the individual
collection classes. This approach will introduce synchronization problems, such as deadlocks and race conditions.
You must decide which collections and other data elements need to be managed atomically and use the techniques
described in this chapter to synchronize access to these elements as a unit.

The Code

The following code snippet shows how to create a thread-safe Hashtable instance.

' C(Create a standard Hashtable.
Dim hUnsync As New Hashtable

Create a synchronized wrapper.
Dim hSync = Hashtable.Synchronized(hUnsync)

The following code snippet shows how to create a thread-safe NameValueCollection. Notice that
the NameValueCollection class derives from the NameObjectCollectionBase class, which uses an explicit
interface implementation to implement the ICollection.SyncRoot property. As shown, you must
cast the NameValueCollection to an ICollection instance before you can access the SyncRoot prop-
erty. Casting is not necessary with other specialized collection classes such as HybridDictionary,
ListDictionary, and StringCollection, which do not use explicit interface implementation to
implement SyncRoot.

Create a NameValueCollection.
Dim nvCollection As New NameValueCollection

Obtain a lock on the NameValue collection before modification.
SyncLock DirectCast(nvCollection, ICollection).SyncRoot

End SyncLock

4-15. Start a New Process

Problem

You need to execute an application in a new process.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Solution

Call one of the Shared Start method overloads of the System.Diagnostics.Process class. Specify the
configuration details of the process you want to start as individual arguments to the Start method
or in a System.Diagnostics.ProcessStartInfo object that you pass to the Start method.

How It Works

The Process class provides a managed representation of an operating system process and offers a
simple mechanism through which you can execute both managed and unmanaged applications.
The Process class implements five Shared overloads of the Start method, which you use to start a
new process. All these methods return a Process object that represents the newly started process.
Two of these overloads are methods that allow you to specify only the name and arguments to pass
to the new process. For example, the following statements both execute Notepad in a new process.

Execute notepad.exe with no command-line arguments.
Process.Start("notepad.exe")

' Execute notepad.exe passing the name of the file to open as a
command-line argument.

Process.Start("notepad.exe", "SomeFile.txt")

Two other overloads allow you to specify the name of a Windows user who the process should
run as. You must specify the username, password, and Windows domain. The password is specified
asaSystem.Security.SecureString for added security. (See recipe 11-18 for more information about
the SecureString class.) Here is an example:

Dim mySecureString As New System.Security.SecureString

Obtain a password and place it in SecureString (see recipe 11-18).
' Execute notepad.exe with no command-line arguments.
Process.Start("notepad.exe", "Todd", mySecureString, "MyDomain")
' Execute notepad.exe passing the name of the file to open as a

command-line argument.

Process.Start("notepad.exe", "SomeFile.txt", "Todd", mySecureString, "MyDomain")

The remaining Shared overload requires you to create a ProcessStartInfo object configured
with the details of the process you want to run. Using the ProcessStartInfo object provides greater
control over the behavior and configuration of the new process. Table 4-3 summarizes some of the
commonly used properties of the ProcessStartInfo class.

It is also possible to create and view information on processes running on a remote computer.
This is accomplished by creating an instance of a Process class and specifying the target computer
name. You can also use the Shared methods GetProcessById, GetProcessByName and GetProcesses.
Each method returns a Process object and has an overload that takes the name of the target computer.

When finished with a Process object, you should dispose of it in order to release system resources—
call Close, call Dispose, or create the Process object within the scope of a Using statement.

Note Disposing of a Process object does not affect the underlying system process, which will continue to run.

153

154

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Table 4-3. Properties of the ProcessStartinfo Class

Property Description

Arguments The command-line arguments to pass to the new process.

Domain A String containing the Windows domain name to which the user belongs.
ErrorDialog If Process. Start cannot start the specified process, it will throw a

System.ComponentModel.Win32Exception. If ExrrorDialog is True, Start
displays an error dialog box to the user before throwing the exception.

FileName The name of the application to start. You can also specify any type of file
for which you have configured an application association. For example,
you could specify a file with a .doc or an .xls extension, which would cause
Microsoft Word or Microsoft Excel to run.

LoadUserProfile A Boolean indicating whether the user’s profile should be loaded from the
registry when the new process is started. This is used if you need to access
information from the HKEY_CURRENT_USER registry key.

Password A SecureString containing the password of the user.
UserName A String containing the name of the user to use when starting the process.
WindowStyle A member of the System.Diagnostics.ProcessWindowStyle enumeration,

which controls how the window is displayed. Valid values include Hidden,
Maximized, Minimized, and Normal.

WorkingDirectory The fully qualified name of the initial directory for the new process.

The Code

The following example uses Process to execute Notepad in a maximized window and open a file
named C:\Temp\file.txt. After creation, the example calls the Process.WaitForExit method, which
blocks the calling thread until a process terminates or a specified time-out expires. This method
returns True if the process ends before the time-out and returns False otherwise.

Imports System
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipe04_15

Public Shared Sub Main()
' Create a ProcessStartInfo object and configure it with the

information required to run the new process.

Dim startInfo As New ProcessStartInfo

startInfo.FileName = "notepad.exe"
startInfo.Arguments = "file.txt"
startInfo.WorkingDirectory = "C:\Temp"
startInfo.WindowStyle = ProcessWindowStyle.Maximized
startInfo.ErrorDialog = True

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Declare a new process object.
Dim newProcess As Process

Try
' Start the new process.
newProcess = Process.Start(startInfo)

Wait for the new process to terminate before exiting.
Console.Writeline("Waiting 30 seconds for process to finish.")

If newProcess.WaitForExit(30000) Then
Console.WriteLine("Process terminated.")
Else
Console.Writeline("Timed out waiting for process to end.")
End If
Catch ex As Exception
Console.Writeline("Could not start process.")
Console.WriteLine(ex)
End Try

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

4-16. Terminate a Process

Problem

You need to terminate a process such as an application or a service.

Solution

Obtain a Process object representing the operating system process you want to terminate. For
Windows-based applications, call Process.CloseMainWindow to send a close message to the applica-
tion’s main window. For Windows-based applications that ignore CloseMainWindow, or for non-
Windows-based applications, call the Process.Kill method.

How It Works

If you start a new process from managed code using the Process class (discussed in recipe 4-15), you
can terminate the process using the Process object that represents the new process. You can also

155

156

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

obtain Process objects that refer to other currently running processes using the Shared methods of
the Process class summarized in Table 4-4.

Table 4-4. Methods for Obtaining Process References

Method Description

GetCurrentProcess Returns a Process object representing the currently active process.

GetProcessById Returns a Process object representing the process with the specified ID.
This is the process ID (PID) you can get using Windows Task Manager.

GetProcesses Returns an array of Process objects representing all currently active
processes.

GetProcessesByName Returns an array of Process objects representing all currently active

processes with a specified friendly name. The friendly name is the name
of the executable excluding file extension or path; for example, a friendly
name could be notepad or calc.

As mentioned in recipe 4-15, you can obtain a Process object that refers to a process running on
aremote computer. However, you can only view information regarding remote processes. The Kill
and CloseMainWindow methods work only on local processes.

Once you have a Process object representing the process you want to terminate, youneed to call
either the CloseMainWindow method or the Kill method. The CloseMainWindow method posts a
WM_CLOSE message to a Windows-based application’s main window. This method has the same effect
as if the user had closed the main window using the system menu, and it gives the application the
opportunity to perform its normal shutdown routine. CloseMainWindow will not terminate applica-
tions that do not have a main window or applications with a disabled main window—possibly
because a modal dialog box is currently displayed. Under such circumstances, CloseMainWindow will
return False.

CloseMainWindow returns True if the close message was successfully sent, but this does not guar-
antee that the process is actually terminated. For example, applications used to edit data typically
give the user the opportunity to save unsaved data if a close message is received. The user usually has
the chance to cancel the close operation under such circumstances. This means CloseMainWindow
will return True, but the application will still be running once the user cancels. You can use the
Process.WaitForExit method to signal process termination and the Process.HasExited property to
test whether a process has terminated. Alternatively, you can use the Kill method.

The Kill method simply terminates a process immediately; the user has no chance to stop the
termination, and all unsaved data is lost. Kill is the only option for terminating Windows-based
applications that do not respond to CloseMainWindow and for terminating non-Windows-based
applications.

The Code

The following example starts a new instance of Notepad, waits 5 seconds, and then terminates
the Notepad process. The example first tries to terminate the process using CloseMainWindow. If
CloseMainWindow returns False, or the Notepad process is still running after CloseMainWindow is
called, the example calls Kill and forces the Notepad process to terminate. You can force
CloseMainWindow to return False by leaving the File Open dialog box open.

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Imports System
Imports system.threading
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipe04 16

Public Shared Sub Main()
' Create a new Process and run notepad.exe.
Using newProcess As Process = Process.Start("notepad.exe", =
"C:\SomeFile.txt")
' Wait for 5 seconds and terminate the notepad process.
Console.Writeline("Waiting 5 seconds before terminating " & w»
"notepad.exe.")
Thread. Sleep(5000)
' Terminate notepad process.
Console.Writeline("Terminating Notepad with CloseMainWindow.")

Try to send a close message to the main window.
If Not newProcess.CloseMainWindow Then
' Close message did not get sent - Kill Notepad.
Console.WriteLine("CloseMainWindow returned false - " & ‘w»
"terminating Notepad with Kill.")
newProcess.Kill()
Else
' Close message sent successfully. Wait for 2 seconds
for termination confirmation before resorting to kill.
If Not newProcess.WaitForExit(2000) Then
Console.WriteLine("CloseMaineWindow failed to " & w»
"terminate - terminating Notepad with Kill.")
newProcess.Kill()
End If
End If
End Using

Wait to continue.
Console.Writeline("Main method compelte. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

157

158

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

4-17. Ensure That Only One Instance of an
Application Can Execute Concurrently

Problem

You need to ensure that a user can have only one instance of an application running concurrently.

Solution

Create a named System.Threading.Mutex object, and have your application try to acquire ownership
of it at startup.

How It Works

The Mutex provides a mechanism for synchronizing the execution of threads across process bound-
aries and also provides a convenient mechanism through which to ensure that only a single instance
of an application is running concurrently. By trying to acquire ownership of a named Mutex at startup
and exiting if the Mutex cannot be acquired, you can ensure that only one instance of your applica-
tion is running. Refer to recipe 4-9 for further information on the Mutex class.

The Code

This example uses a Mutex named MutexExample to ensure that only a single instance of the example
can execute.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chaptero4
Class Recipeo4_17

Public Shared Sub Main()

' A Boolean that indicates whether this application has
initial ownership of the Mutex.
Dim ownsMutex As Boolean
' Attempts to create and take ownership of a Mutex named
MutexExample.
Using newMutex As New Mutex(True, "MutexExample", ownsMutex)

' If the application owns the Mutex it can continue to execute;
otherwise, the application should exit.

If ownsMutex Then
Console.Writeline("This application currently owns the " & w»

"mutex named MutexExample. Additional instances of this application will not " & w»
"run until you release the mutex by pressing Enter.")

CHAPTER 4 THREADS, PROCESSES, AND SYNCHRONIZATION

Console.ReadLine()
' Release the mutex.
newMutex.ReleaseMutex ()
Else
Console.WriteLine("Another instance of this application " & w»
"already owns the mutex named MutexExample. This instance of the application " & w»
"will terminate.")
End If
End Using

Wait to continue.
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
End Class

End Namespace

Note If you do not construct the Mutex in a Using statement and encapsulate the body of your application in
the body of the Using block as shown in this example, in long-running applications, the garbage collector may dispose
of the Mutex if it is not referenced after initial creation. This will result in releasing the Mutex and allowing addi-
tional instances of the application to execute concurrently. In these circumstances, you should include the statement
System.GC.KeepAlive(mutex) to ensure the Mutex is not garbage collected. Thanks to Michael A. Covington
for highlighting this possibility.

159

CHAPTER 5

Files, Directories, and 1/0

The Microsoft .NET Framework I/0 classes fall into two basic categories. First are the classes that
retrieve information from the file system and allow you to perform file system operations such as
copying files and moving directories. Two examples are the FileInfo and the DirectoryInfo classes.
The second, and possibly more important, category includes a broad range of classes that allow you
to read and write data from all types of streams. Streams can correspond to binary or text files, a file
in an isolated store, a network connection, or even a memory buffer. In all cases, the way you interact
with a stream is the same.

The primary namespace for .NET Framework I/O operations is System.I0; however, .NET Frame-
work 2.0 offers VB .NET programmers another option in the form of the My object. My, located in the
Microsoft.VisualBasic assembly, is a highly versatile object that encapsulates common functionality
into several root classes. These classes provide quick and easy access to common functionality.
Table 5-1 lists the main root classes of My.

Table 5-1. Main Root Objects of My

Object Description
Application Provides access to information and methods related to the current application.
Computer Provides access to information and methods for various computer-related

objects. This object contains the following child objects: Audio, Clipboard,
Clock, FileSystem, Info, Keyboard, Mouse, Network, Ports, and Registry.

Forms Provides access to information and methods related to the forms contained in
your project.

Resources Provides access to information and methods related to any resources contained
in your project.

Settings Provides access to information and methods related to your application settings.

User Provides access to information and methods related to the current user.

WebServices Provides access to information and methods related to any web services

contained in your application.

The classes available to the My object are determined by the current project. For example, if you
are creating a web control or web site, the My .Forms class will not be accessible. Refer to the .NET
Framework software development kit (SDK) documentation for more details on the availability of My
classes and for instructions on how this availability can be customized by using special compiler
constants.

161

162

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

This chapter describes how to use the various file system and stream-based classes provided by
the System.I0 namespace and the My.Microsoft.VisualBasic.FileSystem class.
The recipes in this chapter describe how to do the following:

* Retrieve or modify information about a file, directory, or a drive (recipes 5-1, 5-2, 5-4, 5-5,
and 5-17)
¢ Copy, move, and delete files and directories (recipe 5-3)

e Show a directory tree in a Microsoft Windows-based application and use the common file
dialog boxes (recipes 5-6 and 5-18)

¢ Read and write text and binary files (recipes 5-7 and 5-8)

» Parse formatted text files (recipe 5-9)

* Read files asynchronously (recipe 5-10)

e Search for specific files and test files for equality (recipes 5-11 and 5-12)

e Work with strings that contain path information (recipes 5-13, 5-14, and 5-15)

e Create temporary files and files in a user-specific isolated store (recipes 5-16 and 5-19)
* Monitor the file system for changes (recipe 5-20)

e Write to COM ports (recipe 5-21)

¢ Generate random filenames (recipe 5-22)

¢ Retrieve or modify the access control lists (ACLs) of a file or directory (recipe 5-23)

5-1. Retrieve Information About a File, Directory,
or Drive

Problem

You need to retrieve information about a file, directory, or drive.

Solution

Create anew System.I0.FileInfo, System.I0.DirectoryInfo,or System.I0.DriveInfo object, depending
on the type of resource about which you need to retrieve information. Supply the path of the resource to
the constructor, and then you will be able to retrieve information through the properties of the class.

How It Works

To create a FileInfo, DirectoryInfo, or DriveInfo object, you supply a relative or fully qualified path
to the constructor. You can also use the GetFileInfo, GetDirectoryInfo, and GetDriveInfo Shared
methods of the My. Computer.FileSystem. These methods return an instance of a FileInfo,
DirectoryInfo, and DriveInfo object, respectively. You can retrieve information through the corre-
sponding object properties. Table 5-2 lists some of the key members and methods of these objects.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Table 5-2. Key Members for Files, Directories, and Drives

Member Applies To Description
Exists FileInfoand Returns True or False, depending on whether a
DirectoryInfo file or a directory exists at the specified location.
Attributes FileInfo and Returns one or more values from the System.I0.
DirectoryInfo FileAttributes enumeration, which represents
the attributes of the file or the directory.

CreationTime, FileInfo and Return System.DateTime instances that describe

LastAccessTime, and DirectoryInfo when a file or a directory was created, last accessed,

LasthWriteTime and last updated, respectively.

FullName and Name FileInfoand Return a string that represents the full path, the

DirectoryInfo directory, or the filename (with extension).

Extension FileInfo Returns a string representing the extension for
the file.

IsReadOnly FileInfo Returns True or False, depending on whether a
file is read-only.

Length FileInfo Returns the file size as a number of bytes.

DirectoryName and FileInfo DirectoryName returns the name of the parent

Directory directory as a string. Directory returns a full
DirectoryInfo object that represents the parent
directory and allows you to retrieve more infor-
mation about it.

Parent and Root DirectoryInfo Return a DirectoryInfo object that represents the
parent or root directory.

CreateSubdirectory DirectoryInfo Creates a directory with the specified name in the
directory represented by the DirectoryInfo object.
It also returns a new DirectoryInfo object that
represents the subdirectory.

GetDirectories DirectoryInfo Returns an array of DirectoryInfo objects, with
one element for each subdirectory contained in
this directory.

GetFiles DirectoryInfo Returns an array of FileInfo objects, with one
element for each file contained in this directory.

DriveType DriveInfo Returns a DriveType enumeration value that
represents the type of the specified drive; for
example, Fixed or CDRom.

AvailableFreeSpace DriveInfo Returns a long that represents the free space
available in the drive.

GetDrives DriveInfo Returns an array of DriveInfo objects that

represents the logical drives in the computer.

163

164

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

The following are a few points to note while working with these objects:

e FileInfoand DirectoryInfo classes derive from the abstract FileSystemInfo class, which

defines common methods like CreationTime, Exists, and so on. The DriveInfo class does not
inherit from this base class, so it does not provide some of the common members available in
the other two classes.

The full set of properties FileInfo and DirectoryInfo objects expose is read the first time you
interrogate any property. If the file or directory changes after this point, you must call the
Refresh method to update the properties. However, this is not the case for DriveInfo; each
property access asks the file system for an up-to-date value.

Specifying an invalid path, directory, or drive when using the corresponding My . Computer.
FileSystem methods will throw the appropriate exception. When using the FileInfo,
DirectoryInfo, or DriveInfo classes directly, you will not encounter an error if you specify an
invalid path. Instead, you will receive an object that represents an entity that does not exist—
its Exists (or IsReady property for DriveInfo) property will be False. You can use this object
to manipulate the entity. However, if you attempt to read most other properties, exceptions
like FileNotFoundException, DirectoryNotFoundException, and so on will be thrown.

The Code

The following console application takes a file path from a command-line argument, and then
displays information about the file, the containing directory, and the drive.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 01

Public Shared Sub Main(ByVal args As String)

If args.Length > 0 Then
' Display file information.
Dim file As FileInfo = New FileInfo(args(0))

Console.WritelLine("Checking file: " & file.Name)
Console.Writeline("File exists: " & file.Exists.ToString)

If file.Exists Then
Console.Write("File created: ")
Console.Writeline(file.CreationTime.ToString)
Console.Write("File last updated: ")
Console.Writeline(file.LastWriteTime.ToString)
Console.Write("File last accessed: ")
Console.Writeline(file.LastAccessTime.ToString)
Console.Write("File size: ")
Console.Writeline(file.Length.ToString)
Console.Write("File attribute list: ")
Console.Writeline(file.Attributes.ToString)

End If

Console.WriteLine()

CHAPTER 5 FILES, DIRECTORIES, AND 1/0 165

Display directory information.
Dim dir As DirectoryInfo = file.Directory

Console.Writeline("Checking directory: " & dir.Name)
Console.Writeline("In directory: " & dir.Parent.Name)
Console.Write("Directory exists: ")
Console.Writeline(dir.Exists.ToString)

If dir.Exists Then
Console.Write("Directory created: ")
Console.Writeline(dir.CreationTime.ToString)
Console.Write("Directory last updated: ")
Console.Writeline(dir.LastWriteTime.ToString)
Console.Write("Directory last accessed: ")
Console.Writeline(dir.LastAccessTime.ToString)
Console.Write("Directory attribute list: ")
Console.Writeline(file.Attributes.ToString)
Console.Write("Directory contains: ")
Console.Writeline(dir.GetFiles().Length.ToString & " files")

End If

Console.WritelLine()

' Display drive information.

Dim drv As DriveInfo = New DriveInfo(file.FullName)

Console.Write("Drive: ")
Console.WriteLine(drv.Name)

If drv.IsReady Then
Console.Write("Drive type: ")
Console.Writeline(drv.DriveType.ToString)
Console.Write("Drive format: ")
Console.Writeline(drv.DriveFormat.ToString)
Console.Write("Drive free space: ")
Console.Writeline(drv.AvailableFreeSpace.ToString)

End If

" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

Else
Console.Writeline("Please supply a filename.")
End If

End Sub
End Class

End Namespace

Instead of explicitly creating the FileInfo, DirectoryInfo, and DriveInfo class instances, you
can also use the appropriate Shared methods of the My.Computer.FileSystem class, as shown in the
following examples.

166 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Display file information.
Dim file As FileInfo = My.Computer.FileSystem.GetFileInfo(args(0))
' Display directory information.
Dim dir As DirectoryInfo = w»
My.Computer.FileSystem.GetDirectoryInfo(file.Directory.ToString)
' Display drive information.
Dim drv As DriveInfo = My.Computer.FileSystem.GetDriveInfo(file.FullName)

Usage

If you execute the command Recipe05-01.exe c:\windows\win.ini, you might expect the following
output:

Checking file: win.ini

File exists: True

File created: 8/23/2001 8:00:00 AM

File last updated: 1/11/2007 3:02:03 AM
File last accessed: 1/19/2007 2:24:23 PM
File size (bytes): 636

File attribute list: Archive

Checking directory: windows

In directory: c:\

Directory exists: True

Directory created: 6/13/2006 7:36:41 PM
Directory last updated: 1/19/2007 8:30:09 AM
Directory last accessed: 1/19/2007 3:34:32 PM
Directory attribute list: Archive

Directory contains: 204 files

Drive: c:\

Drive type: Fixed

Drive format: NTFS

Drive free space: 69418700800

Note Instead of using the instance methods of the FileInfo and DirectoryInfo classes, you can use the
Shared File and Directory classes (note that a class corresponding to the DriveInfo class does not exist).
The File and Directory methods expose most of the same functionality, but they require you to submit the file-
name or path with every method invocation. In cases where you need to perform multiple operations with the same
file or directory, using the FileInfo and DirectoryInfo classes will be faster, because they will perform
security checks only once. Also note that you could obtain the list of all logical drives in the computer by using the
Shared DriveInfo.GetDrives method.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-2. Set File and Directory Attributes

Problem

You need to test or modify file or directory attributes.

Solution

Createa System.IO.FileInfo object forafile oraSystem.IO0.DirectoryInfo objectfor adirectoryand
use the bitwise And, Or, and Xor operators to modify the value of the Attributes property.

How It Works

The FileInfo.Attributes and DirectoryInfo.Attributes properties represent file attributes such as
archive, system, hidden, read-only, compressed, and encrypted. (Refer to the MSDN reference for
the full list.) Because a file can possess any combination of attributes, the Attributes property accepts a
combination of enumerated values. To individually test for a single attribute or change a single attribute,
you need to use bitwise arithmetic.

Note The Attributes setting is made up (in binary) of a series of ones and zeros, such as 00010011. Each
1 represents an attribute that is present, while each 0 represents an attribute that is not. When you use a bitwise
And operation, it compares each individual digit against each digit in the enumerated value. For example, if you
bitwise And a value of 00100001 (representing an individual file’s archive and read-only attributes) with the
enumerated value 00000001 (which represents the read-only flag), the resulting value will be 00000001—it will
have a 1 only where it can be matched in both values.

The Code
The following example takes a read-only test file and checks for the read-only attribute.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapter0s

Public Class Recipe05 02
Public Shared Sub Main()
' This file has the archive and read-only attributes.
Dim file As New FileInfo("data.txt")

This displays the string "ReadOnly, Archive".
Console.Writeline(file.Attributes.ToString)
Console.WriteLine(Environment.NewlLine)

' This test fails, because other attributes are set.

If file.Attributes = FileAttributes.ReadOnly Then
Console.Writeline("File is read-only (faulty test).")

End If

167

168 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

This test succeeds, because it filters out just the
read-only attributes.
If file.Attributes And FileAttributes.ReadOnly = w»
FileAttributes.ReadOnly Then
Console.WriteLine("File is read-only (correct test).")
End If

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

When setting an attribute, you must use bitwise arithmetic, as demonstrated in the following
example. In this case, it's needed to ensure that you don’t inadvertently clear the other attributes.

This adds just the read-only attribute.
file.Attributes = file.Attributes Or FileAttributes.ReadOnly

This removes just the read-only attibute.
file.Attributes = file.Attributes Xor FileAttributes.ReadOnly

5-3. Copy, Move, or Delete a File or a Directory

Problem

You need to copy, move, or delete a file or directory.

Solution

You have two main options for manipulating files and directories. One option is to create a System.
I0.FileInfo objectfor a file or a System.I0.DirectoryInfo object for a directory, supplying the path
in the constructor. You can then use the object’s methods to copy, move, and delete the file or directory.
Alternatively, you can use the My.Computer.FileSystem class and its Shared methods.

How It Works

The FileInfo,DirectoryInfo, and My.Computer.FileSystem classes include a host of valuable methods
for manipulating files and directories. Table 5-3 shows methods for the FileInfo class, Table 5-4
shows methods for the DirectoryInfo class, and Table 5-5 shows methods for the My.Computer.
FileSystem class.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Table 5-3. Key Instance Methods for Manipulating a FileInfo Object

Method

Description

CopyTo

Create and CreateText

Copies a file to the new path and filename specified as a param-
eter. It also returns a new FileInfo object that represents the new
(copied) file. You can supply an optional additional parameter of
True to allow overwriting.

Create creates the specified file and returns a FileStream object
that you can use to write to it. CreateText performs the same task,
but returns a StreamWriter object that wraps the stream. For more
information about writing files, see recipes 5-7 and 5-8.

Open, OpenRead, OpenText, and Open opens a file and allows you to specify the mode (Open,

OpenlWrite

Delete

Encrypt and Decrypt

MoveTo

Replace

Append, and so on), access type (Read, Write, and so on), and
sharing options. OpenRead and OpenText open a file in read-only
mode, returning a FileStream or StreamReader object. Openhrite
opens a file in write-only mode, returning a FileStream object. For
more information about reading files, see recipes 5-7 and 5-8.

Removes the file, if it exists.

Encrypt/decrypt a file using the current account. This applies to
NTEFS file systems only.

Moves the file to the new path and filename specified as a parameter.
MoveTo can also be used to rename a file without changing its location.

Replaces contents of a file by the current FileInfo object. This
method could also take a backup copy of the replaced file.

Table 5-4. Key Instance Methods for Manipulating a DirectoryInfo Object

Method Description

Create Creates the specified directory. If the path specifies multiple directories
that do not exist, they will all be created at once.

CreateSubdirectory Creates a directory with the specified path in the directory represented
by the DirectoryInfo object. If the path specifies multiple directories that
do not exist, they will all be created at once. It also returns a new
DirectoryInfo object that represents the last directory in the specified path.

Delete Removes the directory, if it exists. If you want to delete a directory that
contains files or other directories, you must use the overloaded Delete
method that accepts a parameter named Recursive and set it to True.

MoveTo Moves the directory (contents and all) to a new path. MoveTo can also be

used to rename a directory without changing its location.

Table 5-5. Key Shared Methods for Manipulating Files and Folders with the
My.Computer.FileSystem Object

Method

Description

CopyDirectory and
CopyFile

Copy a directory (and all its contents) or a file to the new path specified.

169

170

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Table 5-5. Key Shared Methods for Manipulating Files and Folders with the
My.Computer.FileSystem Object

Method Description

CreateDirectory Creates a new directory with the specified name and path.

DeleteDirectory and Delete the specified directory (and all its contents) or file. Both

DeleteFile methods offer the Recycle parameter, which determines if files are
deleted permanently or sent to the Recycle Bin. DeleteDirectory has
a parameter named OnDirectoryNotEmpty to determine if all contents
should be deleted.

MoveDirectory Move a directory (and all its contents) or a file to the new

and MoveFile

OpenTextFieldParser

OpenTextFileReader and
OpenTextFileWriter

path specified.

Opens afile and returns a TextFieldParser object. The TextFieldParser
class is contained in the Microsoft.VisualBasic.FileIO namespace
and is used to parse the contents of a text file. For more information
about parsing, see recipe 5-9.

Open the specified file and return either a StreamReader or Streamhriter
as appropriate. For more information about reading and writing files,
see recipes 5-7 and 5-8.

The Code

One useful feature that is missing from the DirectoryInfo class is a copy method. The following
example contains a helper function that can copy any directory and its contents.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 03

Public Shared Sub Main(ByVal args As String())

If args.Length = 2 Then
Dim sourceDir As New DirectoryInfo(args(0))
Dim destinationDir As New DirectoryInfo(args(1))

CopyDirectory(sourceDir, destinationDir)

Wait to continue.

Console.WriteLine(Environment.NewLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadLine()

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Else
Console.Writeline("USAGE: " & " Recipe05 03 [sourcePath] " & w»
"[destinationPath]")
End If

End Sub

Public Shared Sub CopyDirectory(ByVal source As DirectoryInfo, w»
ByVal destination As DirectoryInfo)

If Not destination.Exists Then
destination.Create()

End If

" Copy all files.

Dim files As FileInfo() = source.GetFiles

For Each file As FileInfo In files
file.CopyTo(Path.Combine(destination.FullName, file.Name))

Next

' Process subdirectories.

Dim dirs As DirectoryInfo() = source.GetDirectories

For Each dir As DirectoryInfo In dirs
' Get destination directory.
Dim destinationDir As String = Path.Combine(destination.FullName, ‘=

dir.Name)
' Call CopyDirectory recursively.
CopyDirectory(dir, New DirectoryInfo(destinationDir))
Next
End Sub
End Class

End Namespace

While the recipe contains examples of useful methods in the FileInfo and DirectoryInfo
classes, you should use the new Shared My . Computer.FileSystem.CopyDirectory method. This would
replace the entire preceding example with the following line of code.

My.Computer.FileSystem.CopyDirectory("SomeSourceDirectory”, "SomeTargetDirectory")

5-4. Calculate the Size of a Directory

Problem

You need to calculate the size of all files contained in a directory (and, optionally, its subdirectories).

m

172 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Solution

Examine all the files in a directory and add together their FileInfo.Length properties. Use recursive
logic to include the size of files in contained subdirectories.

How It Works

The DirectoryInfo class does not provide any property that returns size information. However, you
can easily calculate the size of all files contained in a directory using the FileInfo. Length property.

The Code

The following example calculates the size of a directory and optionally examines subdirectories
recursively.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05_ 04
Public Shared Sub Main(ByVal args As String())

If args.Length > 0 Then
Dim dir As New DirectoryInfo(args(0))

Console.Writeline("Total size: " & w
CalculateDirectorySize(dir, True).ToString & " bytes.")

" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadLine()

Else
Console.WriteLine("Please supply a directory path.")
End If
End Sub

Public Shared Function CalculateDirectorySize(ByVal dir As DirectoryInfo, =
ByVal includeSubDirs As Boolean) As Long

Dim totalSize As Long = 0

Examine all contained files.
Dim files As FileInfo() = dir.GetFiles

For Each currentFile As FileInfo In files
totalSize += currentFile.length
Next

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Examine all contained directories.
If includeSubDirs Then
Dim dirs As DirectoryInfo() = dir.GetDirectories

For Each currentDir As DirectoryInfo In dirs
totalSize += CalculateDirectorySize(currentDir, True)
Next
End If

Return totalSize
End Function

End Class
End Namespace

5-5. Retrieve Version Information for a File

Problem

You want to retrieve file version information, such as the publisher of a file, its revision number,
associated comments, and so on.

Solution

Use the Shared GetVersionInfo method of the System.Diagnostics.FileVersionInfo class.

How It Works

The .NET Framework allows you to retrieve file information without resorting to the Windows API.
Instead, you simply need to use the FileVersionInfo class and call the GetVersionInfo method with the
filename as a parameter. You can then retrieve extensive information through the FileVersionInfo
properties.

The Code

The FileVersionInfo properties are too numerous to list here, but the following code snippet shows
an example of what you might retrieve.

Imports System
Imports system.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter0s

Public Class Recipe05 05
Public Shared Sub Main(ByVal args As String())

If args.Length > 0 Then
Dim info As FileVersionInfo = ‘w»
FileVersionInfo.GetVersionInfo(args(0))

173

174 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Display version information.
Console.WriteLine("Checking File: " & info.FileName)
Console.WriteLine("Product Name: " & info.ProductName)
Console.WriteLine("Product Version: " & info.ProductVersion)
Console.WriteLine("Company Name: " & info.CompanyName)
Console.WriteLine("File Version: " & info.FileVersion)
Console.WritelLine("File Description: " & info.FileDescription)
Console.WriteLine("Original Filename: " & info.OriginalFilename)
Console.Writeline("Legal Copyright: " & info.LegalCopyright)
Console.WriteLine("InternalName: " & info.InternalName)
Console.WriteLine("IsDebug: " & info.IsDebug)
Console.WriteLine("IsPatched: " & info.IsPatched)
Console.WriteLine("IsPreRelease: " & info.IsPreRelease)
Console.WritelLine("IsPrivateBuild: " & info.IsPrivateBuild)
Console.WritelLine("IsSpecialBuild: " & info.IsSpecialBuild)

" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadLine()

Else
Console.WritelLine("Please supply a filename.")
End If

End Sub

End Class
End Namespace

Usage

If you run the command Recipe05_05 c:\windows\explorer.exe, the example produces the
following output.

Checking File: c:\windows\explorer.exe

Product Name: Microsoftr Windowsr Operating System
Product Version: 6.00.2900.2180

Company Name: Microsoft Corporation

File Version: 6.00.2900.2180 (xpsp_sp2_rtm.040803-2158)
File Description: Windows Explorer

Original Filename: EXPLORER.EXE

Legal Copyright: c Microsoft Corporation. All rights reserved.
InternalName: explorer

IsDebug: False

IsPatched: False

IsPreRelease: False

IsPrivateBuild: False

IsSpecialBuild: False

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-6. Show a Just-in-Time Directory Tree in the
TreeView Control

Problem

You need to display a directory tree in a TreeView control. However, filling the directory tree struc-
ture at startup is too time-consuming.

Solution

Fill the firstlevel of directories in the TreeView control and add a hidden dummy node to each directory
branch. React to the TreeView.BeforeExpand event to fill in subdirectories in a branch just before
it’s displayed.

How It Works

You can use recursion to build an entire directory tree. However, scanning the file system in this way
can be slow, particularly for large drives. For this reason, professional file management software
programs (including Windows Explorer) use a different technique. They query the necessary directory
information when the user requests it.

The TreeView control is particularly well suited to this approach because it provides a BeforeExpand
event that fires before a new level of nodes is displayed. You can use a placeholder (such as an asterisk
or empty TreeNode) in all the directory branches that are not filled in. This allows you to fill in parts
of the directory tree as they are displayed.

To use this type of solution, you need the following three ingredients:

e AFillmethod that adds a single level of directory nodes based on a single directory. You will
use this method to fill directory levels as they are expanded.

¢ Abasic Form. Load event handler that uses the Fill method to add the first level of directories
for the drive.

e ATreeView.BeforeExpand event handler that reacts when the user expands a node and calls
the Fill method if this directory information has not yet been added.

The Code

The following shows the code for this solution. The automatically generated code for the form
designer is not included here, but it is included with this book’s downloadable code.

Imports System
Imports System.IO
" All design code is stored in the autogenerated partial
class called DirectoryTree.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class DirectoryTree

Private Sub DirectoryTree Load(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles MyBase.Load

175

176 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

" Set the first node.
Dim rootNode As New TreeNode("C:\")
treeDirectory.Nodes.Add(rootNode)

" Fill the first level and expand it.
Fill(rootNode)
treeDirectory.Nodes(0).Expand()

End Sub

Private Sub treeDirectory BeforeExpand(ByVal sender As Object, w»
ByVal e As System.Windows.Forms.TreeViewCancelEventArgs) Handles w»

treeDirectory.BeforeExpand

" If a dummy node is found, remove it and read the
' real directory list.
If e.Node.Nodes(0).Text = "*" Then
e.Node.Nodes.Clear()
Fill(e.Node)
End If

End Sub
Private Sub Fill(ByVal dirNode As TreeNode)
Dim dir As New DirectoryInfo(dirNode.FullPath)

' An exception could be thrown in this code if you don't
have sufficient security permissions for a file or directory.
You can catch and then ignore this exception.

For Each dirItem As DirectoryInfo In dir.GetDirectories
' Add a node for the directory.
Dim newNode As New TreeNode(dirItem.Name)
dirNode.Nodes.Add(newNode)
newNode .Nodes . Add ("*")

Next

End Sub
End Class

Figure 5-1 shows the directory tree in action.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Figure 5-1. A directory tree with the TreeView

If you prefer to use the My object, you can replace the use of the DirectoryInfo class with the
My.Computer.FileSystem class. The following replacement Fill method is an example of how to do this.

Private Sub Fill(ByVal dirNode As TreeNode)

An exception could be thrown in this code if you don't
have sufficient security permissions for a file or directory.
You can catch and then ignore this exception.
For Each dir As String In w»
My.Computer.FileSystem.CGetDirectories(dirNode.FullPath)
' Add a node for the directory.
Dim newNode As New TreeNode(Path.GetFileName(dir))
dirNode.Nodes.Add(newNode)
newNode.Nodes .Add("*")
Next

End Sub

5-7. Read and Write a Text File

Problem

You need to write data to a sequential text file using ASCII, Unicode (UTF-16), or UTF-8 encoding.

Solution

Create a new System.I0.FileStreamobject that references the file. To write the file, wrap the FileStream
in a System.IO.StreamWriter and use the overloaded Write method. To read the file, wrap the
FileStreamin a System.IO.StreamReader and use the Read or ReadLine method. The File class also
provides the Shared CreateText and OpenText methods for writing and reading UTF-8 files. Another

177

178

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

alternative is to use the OpenTextFileReader and OpenTextFileWriter methods of the My.Computer.
FileSystem class. These methods open a file and return a StreamReader or Streamhriter, respectively.

How It Works

The .NET Framework allows you to write or read text with any stream by using the StreamWriter and
StreamReader classes. When writing data with the StreamWriter, you use the StreamWriter.Write
method. This method is overloaded to support all the common VB .NET .NET data types, including
strings, chars, integers, floating-point numbers, decimals, and so on. However, the Write and Writeline
methods always convert the supplied data to text. Unlike Write, the WritelLine method places each
value on a separate line, so you should use it if you want to be able to easily convert the text back to
its original data type.

The way a string is represented depends on the encoding you use. The most common encodings
are listed in Table 5-6.

Table 5-6. Common Encodings

Encoding Description Represented By
ASCII Encodes each character in a string using ASCII property of the
7 bits. ASCII-encoded data cannot contain System.Text.Encoding class

extended Unicode characters. When using
ASCII encoding in .NET, the bits will be
padded and the resulting byte array will
have 1 byte for each character.

UTF-7 Unicode Uses 7 bits for ordinary ASCII characters UTF7 property of the
and multiple 7-bit pairs for extended System.Text.Encoding class
characters. This encoding is primarily
for use with 7-bit protocols such as mail,
and it is not regularly used.

UTF-8 Unicode Uses 8 bits for ordinary ASCII characters and UTF8 property of the
multiple 8-bit pairs for extended characters. System.Text.Encoding class
The resulting byte array will have 1 byte
for each character (provided there are no
extended characters).

Full Unicode Represents each character in a string Unicode property of the

(or UTF-16) using 16 bits. The resulting byte array System.Text.Encoding class
will have 2 bytes for each character.

UTF-32 Unicode Represents each character in a string UTF32 property of the
using 32 bits. The resulting byte array System.Text.Encoding class

will have 4 bytes for each character.

The .NET Framework provides a class for each type of encoding in the System. Text namespace.
When using StreamReader and StreamWriter, you can specify the encoding or simply use the default
UTF-8 encoding.

When reading information, you use the Read or ReadLine method of StreamReader. The Read
method reads a single character, or the number of characters you specify, and returns the data as an
Integer that represents the character read or the number of characters read, respectively. The ReadLine
method returns a string with the content of an entire line. The ReadToEnd method will return a string
with the content starting from the current position to the end of the stream. An alternative to the

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

ReadToEnd method is the Shared ReadAllText method of the My.Computer.FileSystem and System.
10.File classes.

The Code
The following console application writes and then reads a text file.

Imports System
Imports System.IO
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter0s

Public Class Recipe05 07
Public Shared Sub Main()
' Create a new file.
Using fs As New FileStream("test.txt", FileMode.Create)
' Create a writer and specify the encoding. The
default (UTF-8) supports special Unicode characters,
but encodes all standard characters in the same way as
' ASCII encoding.
Using w As New StreamWriter(fs, Encoding.UTF8)

Write a decimal, string and char.
w.WriteLine(CDec(124.23))
w.WritelLine("Test string")
w.WriteLine("!"c)

End Using
End Using

Console.WriteLine("Press Enter to read the information.")
Console.ReadlLine()
' Open the file in read-only mode.
Using fs As New FileStream("test.txt", FileMode.Open)
Using r As New StreamReader(fs, Encoding.UTF8)
' Read the data and convert it to the appropriate data type.
Console.WriteLine(Decimal.Parse(r.ReadLine))
Console.WriteLine(r.ReadlLine)
Console.WriteLine(Char.Parse(r.ReadLine))
End Using
End Using
' Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.Readline()

End Sub

End Class
End Namespace

179

180

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

If you prefer to use the My object, you can use the OpenTextFileReader and OpenTextFileWriter
methods of the My. Computer.FileSystem class. These methods do not require a FileStream object,
which makes the code alittle simpler, as shown in the following example.

Open and write to a file.
Using w As StreamWriter = My.Computer.FileSystem.OpenTextFileWriter("test.txt", w»
False, Encoding.UTF8)
" Write a decimal, string and char.
w.Writeline(CDec(124.23))
w.WriteLine("Test string")
w.WriteLine("!"c)
End Using
' Open and read from the file.
Using r As StreamReader = My.Computer.FileSystem.OpenTextFileReader("test.txt", w»
Encoding.UTF8)
' Read the data and convert it to the appropriate data type.
Console.WritelLine(Decimal.Parse(r.ReadlLine))
Console.WriteLine(r.ReadlLine)
Console.WriteLine(Char.Parse(r.ReadLine))
End Using

5-8. Read and Write a Binary File

Problem

You need to write data to a binary file, with strong data typing.

Solution

Create anew System.I0.FileStream object that references the file. To write the file, wrap the FileStream
in a System.I0.BinaryWriter and use the overloaded Write method. To read the file, wrap the
FileStreamin a System.IO.BinaryReader and use the Read method that corresponds to the expected
data type.

How It Works

The .NET Framework allows you to write or read binary data with any stream by using the BinaryWriter
and BinaryReader classes. When writing data with the BinaryWriter, you use the Write method. This
method is overloaded to support all the common VB .NET data types, including strings, chars, integers,
floating-point numbers, decimals, and so on. The information will then be encoded as a series of
bytes and written to the file. You can configure the encoding used for strings, which defaults to UTF-8, by
using an overloaded constructor that accepts a System. Text.Encoding object, as described in recipe 5-7.
You must be particularly fastidious with data types when using binary files. This is because
when you retrieve the information, you must use one of the strongly typed Read methods from the
BinaryReader, unless you intend to read the file character by character. For example, to retrieve
decimal data, you use ReadDecimal. To read a string, you use ReadString. (The BinaryWriter always
records the length of a string when it writes it to a binary file to prevent any possibility of error.)

CHAPTER 5 FILES, DIRECTORIES, AND 1/0 181

The Code

The following console application writes and then reads a binary file.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

Public Class Recipe05 08
Public Shared Sub Main()
' Create a new file and writer.
Using fs As New FileStream("test.bin", FileMode.Create)
Using w As New BinaryWriter(fs)
' Write a decimal, 2 strings and a char.
w.Write(CDec(124.23))
w.Write("Test string")
w.Write("Test string 2")
w.Write("!"c)
End Using
End Using
Console.WriteLine("Press Enter to read the information.")
Console.ReadlLine()
' Open the file in read-only mode.
Using fs As New FileStream("test.bin", FileMode.Open)
Using sr As New StreamReader(fs)
' Display the raw information in the file.
Console.WriteLine(sr.ReadToEnd)
Console.WritelLine()
' Read the data and convert it to the appropriate data type.
fs.Position = 0
Using br As New BinaryReader(fs)
Console.WritelLine(br.ReadDecimal)
Console.WritelLine(br.ReadString)
Console.WritelLine(br.ReadString)
Console.WriteLine(br.ReadChar)
End Using
End Using
End Using
" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

182

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-9. Parse a Delimited Text File

Problem

You need to parse the contents of a delimited text file.

Solution

Create and configure a new Microsoft.VisualBasic.FileIO.TextFieldParser object that references
the file you need to parse. Loop through the file until the EndOfData propertyis True. Use the ReadFields
method to return an array of strings representing one row of parsed data from the file.

How It Works

The TextFieldParser class can be found in the Microsoft.VisualBasic.FileIO namespace. You can
either use one of its constructors to create an instance directly or use the Shared My.Computer.
FileSystem.OpenTextFieldParser method to return an instance. Some of the more important properties
and methods of this class are listed in Table 5-7.

Table 5-7. Key Properties and Methods of the TextFieldParser Class

Property or Method Description

CommentTokens An array of strings that indicates which lines in the file are
comments. Commented lines are skipped.

Delimiters An array of strings that defines the delimiters used in the
text file. TextFieldType must be set to FieldType.Delimited
to use this property.

EndOfData Returns True if there is no more data to be parsed.

ErrorlLine Returns the actual line in the file that threw the last
MalformedLineException.

ErrorLineNumber Returns the line number that threw the last
MalformedLineException.

FieldWidths An array of integers that defines the widths of each field.
TextFieldType must be set to FieldType.FixedWidth to use
this property.

HasFieldsEnclosedInQuotes Indicates whether some fields are enclosed in quotation

marks. This is True by default.

TextFieldType Indicates the type of file (Delimited or FixedWidth) that is
being parsed. This is set to Delimited by default.

ReadFields Reads and parses all fields for the current row and
returns the data as an array of strings. The pointer is
then moved to the next row. If a field cannot be parsed,
aMalformedLineException is thrown.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Table 5-7. Key Properties and Methods of the TextFieldParser Class

Property or Method Description

SetDelimiters Sets the Delimiters property to the value or values specified.
The single parameter for this method is a parameter array,
so you can supply a comma-separated list of values rather
than an actual array.

SetFieldWidths Sets the FieldWidths property to the value or values speci-
fied. The single parameter for this method is a parameter
array, so you can supply a comma-separated list of values
rather than an actual array.

Once you have an instance, you need to configure it according to the file you need to parse. If
your file is delimited, set the TextFieldType property to Delimited and set the Delimiters property to
the appropriate delimiters. If the file is fixed width, set the TextFieldType property to FixedwWidth and
set the FieldWidths property to the appropriate widths. Use the CommentTokens property to instruct
the parser to skip rows that are comments and do not contain any data to be parsed.

Use the ReadFields method to parse the current row, return an array of strings containing each field
parsed, and move the file pointer to the next row. If a field cannot be parsed, a MalformedLineException
is thrown. You can then use the ErrorLine and ErrorLineNumber properties of the TextFieldParser
class to obtain information about which line and field caused the exception.

The Code

The following example creates a sample comma-delimited log file. The file is then read and parsed,
using the TextFieldParser class. The fields contained in the file are written to the console.

Imports System
Imports System.IO
Imports Microsoft.VisualBasic.FileIO

Namespace Apress.VisualBasicRecipes.Chapter0s
Public Class Recipe05 09

Public Shared Sub Main()
' Create the sample log file.
Using w As StreamWriter = w»
My.Computer.FileSystem.OpenTextFileWriter("SampleLog.txt", =
False, System.Text.Encoding.UTF8)

" Write sample log records to the file. The parser
will skip blank lines. Also, the TextFieldParser
can be configured to ignore lines that are comments.

w.WritelLine("'In this sample log file, comments " & ‘=
"start with a ""'"". The")

w.WriteLine(
"will ignore these lines.")
w.WriteLine("")

w.WriteLine("{0},INFO,""{1}""", DateTime.Now, ‘=
"Some informational text.")

w.WriteLine("{0},WARN,""{1}""", DateTime.Now, ‘=

parser, when configured correctly, " & =

183

184 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

"Some warning message.")

w.WriteLine("{0},ERR!,""{1}""", DateTime.Now, ‘=
"[ERROR] Some exception has occurred.")

w.WriteLine("{0},INFO,""{1}""", DateTime.Now, ‘=
"More informational text.")

w.WriteLine("{0},ERR!,""{1}""", DateTime.Now, ‘=
"[ERROR] Some exception has occurred.")

End Using

Console.Writeline("Press Enter to read and parse the information.")
Console.ReadlLine()

" Open the file in and parse the data into a

' TextFieldParser object.

Using logFile As TextFieldParser = w»
My.Computer.FileSystem.OpenTextFieldParser("Samplelog.txt")

Console.WritelLine("Parsing text file.")
Console.WriteLine(Environment.NewLine)

Write header information to the console.
Console.Writeline("{0,-29} {1} {2}", "Date/Time in RFC1123", w»
"Type", "Message")

' Configure the parser. For this recipe, make sure
' HasFieldsEnclosedInQuotes is True.
logFile.TextFieldType = FieldType.Delimited
logFile.CommentTokens = New String() {"'"}

logFile.Delimiters = New String() {",
logFile.HasFieldsEnclosedInQuotes = True

Dim currentRecord As String()

' Loop through the file until we reach the end.
Do While Not logFile.EndOfData
Try
' Parse all the fields into the currentRow
array. This method automatically moves
' the file pointer to the next row.
currentRecord = logFile.ReadFields

' Write the parsed record to the console.
Console.WriteLine("{o:r} {1} {2}", =
DateTime.Parse(currentRecord(0)), currentRecord(1), currentRecord(2))
Catch ex As MalformedLineException
' The MalformedlLineException is thrown by the
' TextFieldParser anytime a line cannot be
' parsed.
Console.Writeline("An exception occurred attempting " & w»
"to parse this row: ", ex.Message)
End Try
Loop
End Using

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

The following is an example of the output you will see when you run this test.

Press Enter to read and parse the information.
Parsing text file.

Date/Time in RFC1123 Type Message

Sat, 20 Jan 2007 13:34:32 GMT INFO Some informational text.

Sat, 20 Jan 2007 13:34:32 GMT WARN Some warning message such as watch
Sat, 20 Jan 2007 13:34:32 GMT ERR! [ERROR] Some exception has occurred.
Sat, 20 Jan 2007 13:34:32 GMT INFO More informational text.

Sat, 20 Jan 2007 13:34:32 GMT ERR! [ERROR] Some exception has occurred.

5-10. Read a File Asynchronously

Problem

You need to read data from a file without blocking the execution of your code. This technique is
commonly used if the file is stored on a slow backing store (such as a networked drive in a wide
area network).

Solution

Create a separate class that will read the file asynchronously. Start reading a block of data using the
FileStream.BeginRead method and supply a callback method. When the callback s triggered, retrieve the
data by calling FileStream.EndRead, process it, and read the next block asynchronously with BeginRead.

How It Works

The FileStreamincludes basic support for asynchronous use through the BeginRead and EndRead
methods. Using these methods, you can read a block of data on one of the threads provided by the
NET Framework thread pool, without needing to directly use the threading classes in the System.
Threading namespace.

When reading a file asynchronously, you choose the amount of data that you want to read at a
time. Depending on the situation, you might want to read a very small amount of data at a time (for
example, if you are copying it block by block to another file) or a relatively large amount of data (for
example, if you need a certain amount of information before your processing logic can start). You
specify the block size when calling BeginRead, and you pass a buffer where the data will be placed.
Because the BeginRead and EndRead methods need to be able to access many of the same pieces of

185

186 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

information, such as the FileStream, the buffer, the block size, and so on, it’s usually easiest to
encapsulate your asynchronous file reading code in a single class.

The Code

The following example demonstrates reading a file asynchronously. The AsyncProcessor class
provides a public StartProcess method, which starts an asynchronous read. Every time the read
operation finishes, the OnCompletedRead callback is triggered and the block of data is processed. If
there is more data in the file, a new asynchronous read operation is started. AsyncProcessor reads 2
kilobytes (2,048 bytes) at a time.

Imports System
Imports System.IO
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapteros
Public Class AsyncProcessor
Private inputStream As Stream

' The buffer that will hold the retrieved data.
Private buffer As Byte()

' The amount that will be read in one block (2 kb).
Private m BufferSize As Integer = 2048

Public ReadOnly Property BufferSize() As Integer
Get
Return m_BufferSize
End Get
End Property

Public Sub New(ByVal fileName As String, ByVal size As Integer)

m BufferSize = size
buffer = New Byte(m BufferSize) {}

Open the file, specifying true for asynchronous support.
inputStream = New FileStream(fileName, FileMode.Open, FileAccess.Read, =
FileShare.Read, m BufferSize, True)

End Sub
Public Sub StartProcess()

Start the asynchronous read, which will fill the buffer.
inputStream.BeginRead(buffer, 0, buffer.Length, w»
AddressOf OnCompletedRead, Nothing)
End Sub

Private Sub OnCompletedRead(ByVal asyncResult As IAsyncResult)

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

One block has been read asynchronously. Retrieve
' the data.
Dim bytesRead As Integer = inputStream.EndRead(asyncResult)
" If no bytes are read, the stream is at the end of the file.
If bytesRead > 0 Then
' Pause to simulate processing this block of data.
Console.WriteLine("{0}[ASYNC READER]: Read one block.", ‘w»
ControlChars.Tab)
Thread.Sleep(20)
' Begin to read the next block asynchronously.
inputStream.BeginRead(buffer, 0, buffer.Length, w»
AddressOf OnCompletedRead, Nothing)
Else
' End the operation.
Console.Writeline("{0}[ASYNC READER]: Complete.", ControlChars.Tab)
inputStream.Close()
End If

End Sub

End Class
End Namespace

Usage

The following example shows a console application that uses AsyncProcessor to read a 2-megabyte
file.

Imports System
Imports System.IO
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter0s
Public Class Recipe05 10

Public Shared Sub Main(ByVal args As String())

' Create a 2 MB test file.

Using fs As New FileStream("test.txt", FileMode.Create)

fs.SetLength(2097152)

End Using

' Start the asynchronous file processor on another thread.
Dim asyncIO As New AsyncProcessor("test.txt", 2048)
asyncI0.StartProcess()
' At the same time, do some other work.
In this example, we simply loop for 10 seconds.
Dim startTime As DateTime = DateTime.Now

187

188

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

While DateTime.Now.Subtract(startTime).TotalSeconds < 10
Console.WriteLine("[MAIN THREAD]: Doing some work.")
' Pause to simulate a time-consuming operation.
Thread.Sleep(100)

End While

Console.WriteLine("[MAIN THREAD]: Complete.")

Console.ReadlLine()

' Remove the test file.

File.Delete("test.txt")

End Sub
End Class

End Namespace

The following is an example of the output you will see when you run this test.

[MAIN THREAD]:
[ASYNC
[ASYNC
[MAIN THREAD]:
[ASYNC
[ASYNC
[ASYNC
[ASYNC
[MAIN THREAD]:
[ASYNC
[ASYNC
[ASYNC

Doing some work.

READER]: Read one
READER]: Read one
Doing some work.

READER]: Read one
READER]: Read one
READER]: Read one
READER]: Read one
Doing some work.

READER]: Read one
READER]: Read one
READER]: Read one

block.
block.

block.
block.
block.
block.

block.
block.
block.

5-11. Find Files That Match
a Wildcard Expression

Problem

You need to process multiple files based on a filter expression (such as *.dl1 or mysheet20??.x1s).

Solution

Use the overloaded version of the System.I0.DirectoryInfo.GetFiles method that accepts a filter
expression and returns an array of FileInfo objects. For searching recursively across all subdirecto-
ries, use the overloaded version that accepts the SearchOption enumeration.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

How It Works

The DirectoryInfo and Directory objects both provide a way to search the directories for files that
match a specific filter expression. These search expressions can use the standard ? and * wildcards.
You can use a similar technique to retrieve directories that match a specified search pattern by using
the overloaded DirectoryInfo.GetDirectories method. .NET Framework 2.0 offers a new overload
of GetFiles for searching recursively using the SearchOption.AllDirectories enumeration constant.

As an alternative, you can also use the Shared GetFiles method of the My.Computer.FileSystem
class. This method returns only strings representing the full path of the file, rather than FileInfo
objects. As with the System.I0.DirectoryInfo.GetFiles method, you can use an overload to search
recursively using the SearchOptions.SearchAllSubDirectories enumeration constant. This method
also allows you to search for multiple file extensions at once.

The Code

The following example retrieves the names of all the files in a specified directory that match a spec-
ified filter string. The directory and filter expression are submitted as command-line arguments. The
code then iterates through the retrieved FileInfo collection of matching files and displays the name
and size of each one.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter0s

Public Class Recipe05 11
Public Shared Sub Main(ByVal args As String())

If args.Length = 2 Then
Dim dir As New DirectoryInfo(args(0))

Dim files As FileInfo() = dir.GetFiles(args(1))
' Display the name of all the files.

For Each file As FileInfo In files
Console.Write("Name: " & file.Name + " ")
Console.Writeline("Size: " & file.length.ToString)

Next

" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

Else
Console.Writeline("USAGE: Recipe05-11 [directory]” & =
"[filterExpression]")
End If

End Sub

End Class
End Namespace

189

190

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-12. Test Two Files for Equality

Problem

You need to quickly compare the content of two files and determine if it matches exactly.

Solution

Calculate the hash code of each file using the System.Security.Cryptography.HashAlgorithm class,
and then compare the hash codes.

How It Works

You might compare file content in a number of ways. For example, you could examine a portion of
the file for similar data, or you could read through each file byte by byte, comparing each byte as you
go. Both of these approaches are valid, but in some cases, it's more convenient to use a hash code
algorithm.

A hash code algorithm generates a small (typically about 20 bytes) binary fingerprint for a file.
While it’s possible for different files to generate the same hash codes, that is statistically unlikely to
occur. In fact, even a minor change (for example, modifying a single bit in the source file) has an
approximately 50-percent chance of independently changing each bit in the hash code. For this
reason, hash codes are often used in security code to detect data tampering. (Hash codes are discussed
in more detail in recipes 11-14, 11-15, and 11-16.)

To create a hash code, you must first create a HashAlgorithm object, typically by calling the
Shared HashAlgorithm.Create method. This defaults to using the shal algorithm but provides an
overload allowing other algorithms to be provided. You can then call HashAlgorithm.ComputeHash,
which returns a byte array with the hash data.

The Code

The following example demonstrates a simple console application that reads two filenames that are
supplied as arguments and uses hash codes to test the files for equality. The hashes are compared by
converting them into strings. Alternatively, you could compare them by iterating over the byte array
and comparing each value. That approach would be slightly faster, but because the overhead of
converting 20 bytes into a string is minimal, it’s not required.

Imports System
Imports System.IO
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 12
Public Shared Sub Main(ByVal args As String())

If args.Length = 2 Then
Console.WriteLine("comparing {0} and {1}", args(0), args(1))
' Create the hashing object.
Using hashAlg As HashAlgorithm = HashAlgorithm.Create
Using fsA As New FileStream(args(0), FileMode.Open), ‘=
fsB As New FileStream(args(1), FileMode.Open)

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

' Calculate the hash for the files.
Dim hashBytesA As Byte() = hashAlg.ComputeHash(fsA)
Dim hashBytesB As Byte() = hashAlg.ComputeHash(fsB)

Compare the hashes.
If BitConverter.ToString(hashBytesA) = w»
BitConverter.ToString(hashBytesB) Then
Console.WritelLine("Files match.")
Else
Console.WriteLine("No match.")
End If

End Using

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadLine()

End Using

Else
Console.Writeline("USAGE: Recipe05-12 [fileName] [fileName]")
End If

End Sub

End Class
End Namespace

5-13. Manipulate Strings Representing Filenames

Problem

You want to retrieve a portion of a path or verify that a file path is in a normal (standardized) form.

Solution

Process the path using the System.I0.Path class. You can use Path.GetFileName to retrieve a file-
name from a path, Path.ChangeExtension to modify the extension portion of a path string, and
Path.Combine to create a fully qualified path without worrying about whether your directory includes
a trailing directory separation (\) character.

How It Works

File paths are often difficult to work with in code because of the many different ways to represent the
same directory. For example, you might use an absolute path (C:\Temp), a UNC path (\\MyServer\\
MyShare\temp), or one of many possible relative paths (C:\Temp\MyFiles\..\ or C:\Temp\MyFiles\
-\ \temp).

191

192

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

The easiest way to handle file system pathsis to use the Shared methods of the Path class to make
sure you have the information you expect. For example, here is how to take a filename that might
include a qualified path and extract just the filename:

Dim filename As String = "..\System\MyFile.txt"
filename = Path.GetFileName(filename)

Now filename = "MyFile.txt"

And here is how you might append the filename to a directory path using the Path.Combine
method:

Dim filename As String = "..\..\myfile.txt"
Dim fullPath As String = "c:\Temp"

filename = Path.GetFileName(filename)
fullPath = Path.Combine(fullPath, filename)

' fullPath is now "c:\Temp\myfile.txt"

The advantage of this approach is that a trailing backslash (\) is automatically added to the path
name ifrequired. The Path class also provides the following useful Shared methods for manipulating
path information:

e GetExtension returns just the extension of the file in the string. If there is no extension, an
empty string is returned.

* ChangeExtension modifies the current extension of the file in a string. If no extension is spec-
ified, the current extension will be removed.

* GetDirectoryName returns all the directory information, which is the text between the first and
last directory separators (\).

e GetFileNameWithoutExtension is similar to GetFileName, but it omits the extension.

e GetFullPath has no effect on an absolute path, and it changes a relative path into an absolute
path using the current directory. For example, if C:\Temp\ is the current directory, calling
GetFullPath on a filename such as test.txt returns C:\Temp \test.txt.

e GetPathRoot retrieves a string with the root (for example, “C:\”), provided that information is
in the string. For a relative path, it returns Nothing.

e HasExtension returns True if the path ends with an extension.
e IsPathRooted returns Trueif the path is an absolute path and False if it’s a relative path.
The My.Computer.FileSystemoffers two Shared methods that also work with paths. The CombinePath

method is the equivalent of Path.Combine. The GetParentPath method returns the path of the parent
folder for the path specified.

Note In most cases, an exception will be thrown if you try to supply an invalid path to one of these methods (for
example, paths that include illegal characters). However, path names that are invalid because they contain a wildcard
character (* or ?) will not cause the methods to throw an exception. You could use the Path.GetInvalidPathChars
or Path.GetInvalidFileNameChars method to obtain an array of characters that are illegal in path or filenames,
respectively.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-14. Determine If a Path Is a Directory or a File

Problem

You have a path (in the form of a string), and you want to determine whether it corresponds to a
directory or a file.

Solution

Test the path with the Directory.Exists and File.Exists methods.

How It Works

The System.I0.Directory and System.I0.File classes both provide an Exists method. The Directory.
Exists method returns True if a supplied relative or absolute path corresponds to an existing direc-
tory, even a shared folder with an UNC name. File.Exists returns True if the path corresponds to an
existing file.

As an alternative, you can use the Shared FileExists and DirectoryExists methods of the
My.Computer.FileSystemclass. These methods work in the same way as the System.I0.Directory and
System.IO0.File methods

The Code

The following example demonstrates how you can quickly determine if a path corresponds to a file
or directory.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter0s

Public Class Recipe05 14
Public Shared Sub Main(ByVal args As String())

For Each arg As String In args
Console.Write(arg)

If Directory.Exists(arg) Then
Console.WritelLine(" is a directory.")

ElseIf File.Exists(arg) Then
Console.WriteLine(" is a file.")

Else
Console.WriteLine(" does not exist.")

End If

Next

" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

193

194

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-15. Work with Relative Paths

Problem

You want to set the current working directory so that you can use relative paths in your code.

Solution

Use the Shared GetCurrentDirectory and SetCurrentDirectory methods of the System.I0.Directory
class.

How It Works

Relative paths are automatically interpreted in relation to the current working directory, which is the
path of the current application by default. You can retrieve the current working directory by calling
Directory.GetCurrentDirectory or change it using Directory.SetCurrentDirectory. In addition,
you can use the Shared GetFullPath method of the System.I0.Path class to convert a relative path
into an absolute path using the current working directory.

The Code

The following is a simple example that demonstrates working with relative paths.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05_ 15
Public Shared Sub Main()

Console.Writeline("Using: " & Directory.GetCurrentDirectory())
Console.WritelLine("The relative path for 'file.txt' will " & w»

"automatically become: '" & Path.GetFullPath("file.txt") & "'")
Console.WriteLine()

Console.WriteLine("Changing current directory to c:\")
Directory.SetCurrentDirectory("C:\")

Console.WritelLine("Now the relative path for 'file.txt' will " & w»
"automatically become: '" & Path.GetFullPath("file.txt") & "'")

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class

End Namespace

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Usage

The output for this example might be the following (if you run the application in the directory
C:\temp).

Using: c:\temp
The relative path 'file.txt' will automatically become 'c:\temp\file.txt'

Changing current directory to c:\
The relative path 'file.txt' will automatically become 'c:\file.txt'

Gaution If you use relative paths, it's recommended that you set the working path at the start of each file inter-
action. Otherwise, you could introduce unnoticed security vulnerabilities that could allow a malicious user to force
your application into accessing or overwriting system files by tricking it into using a different working directory.

5-16. Create a Temporary File

Problem

You need to create a file that will be placed in the user-specific temporary directory and will have a
unique name, so that it will not conflict with temporary files generated by other programs.

Solution

Use the Shared GetTempFileName method of the System.IO0.Path class, which returns a path made up
of the user’s temporary directory and a randomly generated filename.

How It Works

You can use a number of approaches to generate temporary files. In simple cases, you might just
create a file in the application directory, possibly using a GUID or a timestamp in conjunction with
arandom value as the filename. However, the Path class provides a helper method that can save you
some work. It creates a file with a unique filename in the current user’s temporary directory. On
Windows XP, this is a folder similar to C:\Documents and Settings\[username]\Local Settings\temp
by default.

The Code

The following example demonstrates creating a temporary file.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter0s

Public Class Recipe05 16
Public Shared Sub Main()

195

196

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Dim tempFile As String = Path.GetTempFileName
Console.WritelLine("Using " & tempFile)

Using fs As New FileStream(tempFile, FileMode.Open)
" Write some data
End Using

" Now delete the file.
File.Delete(tempFile)

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

5-17. Get the Total Free Space on a Drive

Problem

You need to examine a drive and determine how many bytes of free space are available.

Solution
Use the DriveInfo.AvailableFreeSpace property.

How It Works

The DriveInfo class (new to .NET Framework 2.0) provides members that let you find out the drive
type, free space, and many other details of a drive. In order to create a new DriveInfo object, you
need to pass the drive letter or the drive root string to the constructor, such as 'C' or "C:\" for creating
a DriveInfo instance representing the C drive of the computer. You could also retrieve the list of
logical drives available by using the Shared Directory.GetlogicalDrives method, which returns an
array of strings, each containing the root of the drive, such as "C:\". For more details on each drive,
you create a DriveInfo instance, passing either the root or the letter corresponding to the logical
drive. If you need a detailed description of each logical drive, call the DriveInfo.GetDrives method,
which returns an array of DriveInfo objects, instead of using Directory.GetlLogicalDrives.

Note A System.I0.IOException exception is thrown if you try to access an unavailable network drive.

The Code

The following console application shows the available free space using the DriveInfo class for the
given drive or for all logical drives if no argument is passed to the application.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter0s
Public Class Recipe05 17
Public Shared Sub Main(ByVal args As String())

If args.Length = 1 Then
Dim drive As New DriveInfo(args(0))

Console.Write("Free space in {0}-drive (in kilobytes): ", args(0))
Console.Writeline(drive.AvailableFreeSpace / 1024)

Else
For Each drive As DriveInfo In DrivelInfo.GetDrives

Try
Console.WriteLine("Free space in {0} - {1} KB: ", =
drive.RootDirectory, drive.AvailableFreeSpace / 1024)
Catch ex As IOException
Console.WriteLine(drive)
End Try

Next
End If
" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Note In addition to the AvailableFreeSpace property, DriveInfo also defines a TotalFreeSpace property.
The difference between these two properties is that AvailableFreeSpace takes into account disk quotas.

5-18. Show the Common File Dialog Boxes

Problem

You need to show the standard Windows dialog boxes for opening and saving files and for selecting
a folder.

197

198

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Solution

Use the OpenFileDialog, SaveFileDialog, and FolderBrowserDialog classes in the System.Windows.
Forms namespace. Call the ShowDialog method to display the dialog box, examine the return value to
determine whether the user clicked Open or Cancel, and retrieve the selection from the FileName or
SelectedPath property.

How It Works

The .NET Framework provides objects that wrap many of the standard Windows dialog boxes,
including those used for saving and selecting files and directories. These classes all inherit from
System.Windows.Forms.CommonDialog and include the following:

* OpenFileDialog, which allows the user to select a file, as shown in Figure 5-2. The filename
and path are provided to your code through the FileName property (or the FileNames collec-
tion, if you have enabled multiple file select by settingMultiselect to True). Additionally, you
can use the Filter property to set the file format choices and set CheckFileExists. Filter lets
you limit the file types that are displayed, and CheckFileExists ensures that only an existing
file can be specified.

Figure 5-2. OpenFileDialog shows the Open dialog box.

* SaveFileDialog, which allows the user to specify a new file. The filename and path are provided
to your code through the FileName property. You can also use the Filter property to set the
file format choices, and set the CreatePrompt and OverwritePrompt Boolean properties to
instruct .NET to display a confirmation if the user selects a new file or an existing file, respectively.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

* FolderBrowserDialog, which allows the user to select (and optionally create) a directory, as shown
in Figure 5-3. The selected path is provided through the SelectedPath property, and you can
specify whether or not a Create New button should appear using the ShowNewFolderButton
property.

Figure 5-3. FolderBrowserDialog shows the Browse for Folder dialog box.

When using OpenFileDialog or SaveFileDialog, you need to set the filter string, which specifies
the allowed file extensions. If you do not set the filter string, the Type drop-down list will be empty,
and all files will be shown in the dialog box.

The filter string is separated with the pipe character (|) in this format:

[Text label] | [Extension list separated by semicolons] | [Text label]
| [Extension list separated by semicolons] |

You can also set the Title (form caption) and the InitialDirectory.

The Code

The following code shows a Windows-based application that allows the user to load documents into
aRichTextBox, edit the content, and then save the modified document. When opening and saving a
document, the OpenFileDialog and SaveFileDialog classes are used.

All designed code is stored in the autogenerated partial
class called MainForm.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class MainForm

Private Sub mnuOpen Click(ByVal sender As Object, ByVal e As System.EventArgs) =
Handles mnuOpen.Click

Dim dlg As New OpenFileDialog

199

200 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

dlg.Filter = "Rich Text Files (*.rtf)|*.RTF|ALl Files (*.*)|*.*"
dlg.CheckFileExists = True
dlg.InitialDirectory = Application.StartupPath

If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then
rtDoc.LoadFile(dlg.FileName)
rtDoc.Enabled = True

End If

End Sub

Private Sub mnuSave Click(ByVal sender As Object, ByVal e As System.EventArgs) =
Handles mnuSave.Click

Dim dlg As New SaveFileDialog

dlg.Filter = "Rich Text Files (*.rtf)|*.RTF|Text Files (*.txt)|*.TXT|" & w»
"All Files (*.*)[*.*"
dlg.InitialDirectory = Application.StartupPath

If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then
rtDoc.SaveFile(dlg.FileName)
End If

End Sub

Private Sub mnuExit Click(ByVal sender As Object, ByVal e As System.EventArgs) =
Handles mnuExit.Click

Me.Close()

End Sub
End Class

5-19. Use an Isolated Store

Problem

Youneed to store data in a file, but your application does not have the required FileIOPermission for
the local hard drive.

Solution

Use the IsolatedStorageFile and IsolatedStorageFileStream classes from the System.IO.
IsolatedStorage namespace. These classes allow your application to write data to a file in a user-
specific directory without needing permission to access the local hard drive directly.

How It Works

The .NET Framework includes support for isolated storage, which allows you to read and write to a
user-specific or machine-specific virtual file system that the common language runtime (CLR) manages.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0 201

When you create isolated storage files, the data is automatically serialized to a unique location in the
user profile path. In Windows XP, the profile path is typically something like C:\Documents and
Settings\[username]\Local Settings\Application Data\isolated storage\[guid_identifier]).

One reason you might use isolated storage is to give a partially trusted application limited ability to
store data. For example, the default CLR security policy gives local code unrestricted FileIOPermission,
which allows it to open or write to any file. Code that you run from a remote server on the local
intranet is automatically assigned fewer permissions. It lacks the FileIOPermission, but it has the
IsolatedStoragePermission, givingit the ability to use isolated stores. (The security policy also limits
the maximum amount of space that can be used in an isolated store.) Another reason you might
use an isolated store is to better secure data. For example, data in one user’s isolated store will
be restricted from another nonadministrative user.

By default, each isolated store is segregated by user and assembly. That means that when the
same user runs the same application, the application will access the data in the same isolated store.
However, you can choose to segregate it further by application domain, so that multiple AppDomain
instances running in the same application receive different isolated stores.

The files are stored as part of a user’s profile, so users can access their isolated storage files
on any workstation they log on to if roaming profiles are configured on your local area network.

(In this case, the store must be specifically designated as a roaming store by applying the
IsolatedStorageFile.Roaming flag when it’s created.) By letting the .NET Framework and the CLR
provide these levels of isolation, you can relinquish responsibility for maintaining the separation
between files, and you do not need to worry that programming oversights or misunderstandings will
cause loss of critical data.

The Code

The following example shows how you can access isolated storage.

Imports System
Imports System.IO
Imports System.IO.IsolatedStorage

Namespace Apress.VisualBasicRecipes.Chapter0s

Public Class Recipe05 19
Public Shared Sub Main(ByVal args As String())
' Create the store for the current user.
Using store As IsolatedStorageFile = w»
IsolatedStorageFile.GetUserStoreForAssembly
" Create a folder in the root of the isolated store.
store.CreateDirectory("MyFolder")
' Create a file in the isolated store.
Using fs As New IsolatedStorageFileStream("MyFile.txt", w»
FileMode.Create, store)
Dim w As New StreamWriter(fs)

You can now write to the file as normal.
w.WriteLine("Test")
w.Flush()

End Using

202

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Console.WriteLine("Current size: " & store.CurrentSize.ToString)
Console.Writeline("Scope: " & store.Scope.ToString)
Console.WriteLine("Contained files include:")

Dim files As String() = store.GetFileNames("*.*")

For Each file As String In files
Console.Writeline(file)

Next

End Using

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

The following demonstrates using multiple AppDomain instances running in the same applica-
tion to receive different isolated stores.

Access isolated storage for the current user and assembly

(which is equivalent to the first example).”

store = IsolatedStorageFile.GetStore(IsolatedStorageScope.User Or ‘w
IsolatedStorageScope.Assembly, Nothing, Nothing)

Access isolated storage for the current user, assembly,

and application domain. In other words, this data is

accessible only by the current AppDomain instance.

store = IsolatedStorageFile.GetStore(IsolatedStorageScope.User Or ‘=
IsolatedStorageScope.Assembly Or IsolatedStorageScope.Domain, Nothing, Nothing)

The preceding use of GetStore is equivalent to calling the GetUserStoreForDomain method of the
IsolatedStorageFile class.

5-20. Monitor the File System for Changes

Problem

You need to react when a file system change is detected in a specific path (such as a file modification
or creation).

Solution

Use the System.I0.FileSystemWatcher component, specify the path or file you want to monitor, and
handle the Exror, Created, Deleted, Renamed, and Changed events as needed.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

How It Works

When linking together multiple applications and business processes, it’s often necessary to create a
program that waits idly and becomes active only when a new file is received or changed. You can
create this type of program by scanning a directory periodically, but you face a key trade-off. The
more often you scan, the more system resources you waste. The less often you scan, the longer it will
take to detect a change. The solution is to use the FileSystemWatcher class to react directly to Windows
file events.

To use FileSystemWatcher, you must create an instance and set the following properties:

e Path indicates the directory you want to monitor.
e Filter indicates the types of files you are monitoring.

* NotifyFilter indicates the type of changes you are monitoring.

FileSystemWatcher raises four key events: Created, Deleted, Renamed, and Changed. All of these
events provide information through their FileSystemEventArgs parameter, including the name of
the file (Name), the full path (FullPath), and the type of change (ChangeType). The Renamed event provides
aRenamedEventArgs instance, which derives from FileSystemEventArgs, and adds information about
the original filename (01dName and 01dFullPath).

By default, the FileSystemWatcher is disabled. To start it, you must set the FileSystemWatcher.
EnableRaisingEvents property to True. If you ever need to disable it, just set the property to False.

The Created, Deleted, and Renamed events require no configuration. However, if you want to use
the Changed event, you need to use the NotifyFilter property to indicate the types of changes you
want to watch. Otherwise, your program might be swamped by an unceasing series of events as files
are modified.

The NotifyFilter property, which defaults to LastWrite, FileName, and DirectoryName, can be
set using any combination of the following values from the System.I0.NotifyFilters enumeration:

e Attributes

e (CreationTime

e DirectoryName

e FileName

* LastAccess

e LasthWrite

e Security

e Size

The FileSystemWatcher is capable of detecting many file- or folder-related actions at once. It
does this by creating and using threads from the ThreadPool to handle the appropriate events. As
events occur, they are queued in an internal buffer. If this buffer overflows, some of the events may

be lost. This overflow fires the Error event. You should handle this event to log or resolve this issue if
it arises.

The Code

The following example shows a console application that handles Created and Deleted events, and
tests these events by creating a test file.

203

204

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Imports System
Imports System.IO
Imports System.Windows.Forms

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 20
Public Shared Sub Main()

Using watch As New FileSystemWatcher

watch.Path = Application.StartupPath
watch.Filter = "* *"
watch.IncludeSubdirectories = True

' Attach the event handlers.

AddHandler watch.Created, AddressOf OnCreatedOrDeleted
AddHandler watch.Deleted, AddressOf OnCreatedOrDeleted
watch.EnableRaisingEvents = True

Console.WritelLine("Press Enter to create a file.")
Console.ReadLine()

If File.Exists("test.bin") Then
File.Delete("test.bin")
End If

' Create test.bin file.

Using fs As New FileStream("test.bin", FileMode.Create)
' Do something here...

End Using

Console.Writeline("Press Enter to terminate the application.")
Console.ReadLine()

End Using
" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
' Fires when a new file is created or deleted in the directory
that is being monitored.

Private Shared Sub OnCreatedOrDeleted(ByVal sender As Object, '
ByVal e As FileSystemEventArgs)

Display the notification information.
Console.WriteLine("{O}NOTIFICATION: {1} was {2}", ControlChars.Tab, w»
e.FullPath, e.ChangeType.ToString)
Console.WriteLine()

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

End Sub

End Class
End Namespace

5-21. Access a COM Port

Problem

You need to send data directly to a serial port.

Solution

Use the System.I0.Ports.SerialPort class. This class represents a serial port resource and defines
methods that enable communication through it.

How It Works

NET Framework 2.0 defines a System.I0.Ports namespacethat contains several classes. The central
class is SerialPort. A SerialPort instance represents a serial port resource and provides methods
that let you communicate through it. The SerialPort class also exposes properties that let you specify
the port, baud rate, parity, and other information. If you need a list of the available COM ports, the
SerialPort class provides the GetPortNames method, which returns a string array containing the
names of each port.

As an alternative, the My object contains the My. Computer.Ports class, which can be used to work
with ports. This class contains the Shared SerialPortNames property and the Shared OpenSerialPort
method. SerialPortNames is equivalent to the GetPortNames method, butitreturns aread-only collec-
tion of strings. OpenSerialPort returns aSerialPort instance. This method has several overloads that
let you correctly configure the returned instance.

The Code

The following example demonstrates a simple console application that lists all available COM ports
and then writes a string to the first available one.

Imports System
Imports System.IO.Ports

Namespace Apress.VisualBasicRecipes.Chapter0s

Public Class Recipe05 21

Public Shared Sub Main()
' Enumerate each of the available COM ports

on the computer.

Console.Writeline("Available Ports on this computer:")

For Each portName As String In SerialPort.GetPortNames
Console.Writeline("PORT: " & portName)

Next

Console.WritelLine()

205

206

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

For this example, lets just grab the first item from
the array returned by the GetPortNames method.

Dim testPort As String = SerialPort.GetPortNames(0)
Using port As New SerialPort(testPort)

Set the properties.
port.BaudRate = 9600
port.Parity = Parity.None
port.ReadTimeout = 10
port.StopBits = StopBits.One

Write a message into the port.
port.Open()

port.Write("Hello world!")
port.Close()

Console.WriteLine("Wrote to the {0} port.”, testPort)

End Using

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

5-22. Get a Random Filename

Problem

You need to get a random name for creating a folder or a file.

Solution

Use the Path.GetRandomFileName method, which returns a random name.

How It Works

The System.I0.Path class includes a GetRandomFileName method, which is new to .NET Framework 2.0.
This method generates a random string that can be used for creating a new file or folder.

The difference between GetRandomFileName and GetTempFileName (discussed in recipe 5-16) of
the Path class is that GetRandomFileName just returns a random string and does not create a file, whereas
GetTempFileName creates a new 0-byte temporary file and returns the path to the file.

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

5-23. Manipulate the Access Gontrol Lists
of a File or Directory

Problem

You want to modify the access control list (ACL) of a file or directory in the computer.

Solution

Use the GetAccessControl and SetAccessControl methods of the File or Directory class.

How It Works

.NET Framework 2.0 now includes support for ACLs for resources like I/O, registry, and threading
classes. You can retrieve and apply the ACL for a resource by using the GetAccessControl and
SetAccessControl methods defined in the corresponding resource classes. For example, the File
and Directory classes define both these methods, which let you manipulate the ACLs for a file or
directory.

To add or remove an ACL-associated right of a file or directory, you need to first retrieve the
FileSecurity or DirectorySecurity object currently applied to the resource using the GetAccessControl
method. Once you retrieve this object, you need to perform the required modification of the rights,
and then apply the ACL back to the resource using the SetAccessControl method. Table 5-8 shows a
list of the common methods used for adding and removing ACL permissions.

Table 5-8. Key Methods for Adding and Removing ACLs

Method Description

AddAccessRule Adds the permissions specified.

ResetAccessRule Adds the permissions specified. If the specified permission
already exists, it will be replaced.

RemoveAccessRule Removes all of the permissions that match the specified rule.

RemoveAccessRuleAll Removes all permissions for the user referenced in the
specified rule.

RemoveAccessRuleSpecific Removes the permissions specified.

The Code

The following example demonstrates the effect of denying Everyone Read access to a temporary file,
using a console application. An attempt to read the file after a change in the ACL triggers a security
exception.

Imports System
Imports System.IO
Imports System.Security.AccessControl

207

208 CHAPTER 5 FILES, DIRECTORIES, AND 1/0

Namespace Apress.VisualBasicRecipes.Chapteros

Public Class Recipe05 23
Public Shared Sub Main()
Dim fileName As String
' Create a new file and assign full control to 'Everyone'.
Console.WritelLine("Press any key to write a new file...")
Console.ReadKey(True)

fileName = Path.GetRandomFileName
Using testStream As New FileStream(fileName, FileMode.Create)
' Do something...
End Using
Console.WriteLine("Created a new file {0}.", fileName)
Console.WriteLine()
' Deny 'Everyone' access to the file.
Console.WritelLine("Press any key to deny 'Everyone' access " & w»
"to the file.")
Console.ReadKey(True)

SetRule(fileName, "Everyone", FileSystemRights.Read, w»
AccessControlType.Deny)

Console.WritelLine("Removed access rights of 'Everyone'.")
Console.WriteLine()

' Attempt to access the file.

Console.Writeline("Press any key to attempt to access the file...")
Console.ReadKey(True)

Dim stream As FileStream
Try
stream = New FileStream(fileName, FileMode.Create)
Catch ex As Exception
Console.WriteLine("Exception thrown : ")
Console.WriteLine(ex.ToString)
Finally
If stream IsNot Nothing Then
stream.Close()
stream.Dispose()
End If
End Try
' Wait to contiue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadLine()

End Sub

Private Shared Sub SetRule(ByVal filePath As String, ByVal account As ‘w»

CHAPTER 5 FILES, DIRECTORIES, AND 1/0

String, ByVal rights As FileSystemRights, ByVal controlType As AccessControlType)

' Get a FileSecurity object that represents the

' current security settings.
Dim fSecurity As FileSecurity = File.GetAccessControl(filePath)

' Update the FileSystemAccessRule with the new

security settings.
fSecurity.ResetAccessRule(New FileSystemAccessRule(account, rights, ‘=

controlType))

' Set the new access settings.
File.SetAccessControl(filePath, fSecurity)

End Sub

End Class
End Namespace

209

CHAPTER 6

XML Processing

One of the most remarkable aspects of the Microsoft NET Framework is its deep integration with
Extensible Markup Language (XML). In many .NET applications, you won’t even be aware you're
using XML technologies—they’ll just be used behind the scenes when you serialize a Microsoft
ADO.NET DataSet, call a web service, or read application settings from a Web.config configuration
file. In other cases, you’ll want to work directly with the System.Xml namespaces to manipulate XML
data. Common XML tasks include parsing an XML file, validating it against a schema, applying an
XSL transform to create a new document or Hypertext Markup Language (HTML) page, and searching
intelligently with XPath. The recipes in this chapter describe how to do the following:

* Read, parse, and manipulate XML data (recipes 6-1, 6-2, 6-3, and 6-7)

¢ Search an XML document for specific nodes, by name (recipe 6-4), by namespace (recipe 6-5), or
by using XPath (recipe 6-6)

e Validate an XML document with an XML schema (recipe 6-8)

¢ Serialize an object to XML (recipe 6-9), create an XML schema for a class (recipe 6-10), and
generate the source code for a class based on an XML schema (recipe 6-11)

e Transform an XML document to another document using an XSL Transformations (XSLT)
stylesheet (recipe 6-12)

6-1. Show the Structure of an XML Document
in a TreeView

Problem

You need to display the structure and content of an XML document in a Windows-based application.

Solution

Load the XML document using the System.Xml.XmlDocument class. Create a re-entrant method that
converts a single XmINode into a System.Windows.Forms.TreeNode, and call it recursively to walk
through the entire document.

211

212

CHAPTER 6 XML PROCESSING

How It Works

The .NET Framework provides several different ways to process XML documents. The one you use
depends in part upon your programming task. One of the most fully featured classes is Xm1Document,
which provides an in-memory representation of an XML document that conforms to the W3C Docu-
ment Object Model (DOM). The Xm1Document class allows you to browse through the nodes in any
direction, insert and remove nodes, and change the structure on the fly. For details of the DOM spec-
ification, go to http://www.w3c.org/DOM.

Note The XmlDocument class is not scalable for very large XML documents, because it holds the entire XML
content in memory at once. If you want a more memory-efficient alternative, and you can afford to read and process
the XML piece by piece, consider the XmlReader and XmlWriter classes described in recipe 6-7.

To use the XmlDocument class, simply create a new instance of the class, and call the Load method
with a filename, a Stream, a TextReader, or an XmlReader object. It is also possible to read the XML
from a simple string with the LoadXML method. You can even supply a string with a URL that points
to an XML document on the Web using the Load method. The Xm1Document instance will be populated
with the tree of elements, or nodes, from the source document. The entry point for accessing these
nodesistheroot element. The Xm1Document.DocumentElement property provides an alternate method
for directly accessing this root element. DocumentElement is an Xm1Element object that can contain
one or more nested XmlNode objects, which in turn can contain more XmlNode objects, and so on. An
XmlNode is the basic ingredient of an XML file. Common XML nodes include elements, attributes,
comments, and contained text.

When dealing with an XmlNode or a class that derives from it (such as Xm1Element, XmlAttribute,
or XmlDocument), you can use the following basic properties:

e ChildNodes is an XmlNodeList collection that contains the first level of nested nodes.
¢ Name is the name of the node.

* NodeType returns a member of the System.Xml.XmINodeType enumeration that indicates the
type of the node (element, attribute, text, and so on).

¢ Value is the content of the node, if it’s a text, a CDATA, or an attribute node.

e Attributes provides a collection of node objects representing the attributes applied to the
element.

e TInnerText retrieves a string with the concatenated value of the node and all nested nodes.
e InnerXml retrieves a string with the concatenated XML markup for all nested nodes.

e QuterXml retrieves a string with the concatenated XML markup for the current node and all
nested nodes.

The Code

The following example walks through every element of an XmlDocument using the ChildNodes property
and a recursive method. Each node is displayed in a TreeView control, with descriptive text that
either identifies it or shows its content.

Imports System

Imports System.Windows.Forms
Imports System.Xml

Imports System.IO

CHAPTER 6 XML PROCESSING 213

" All designed code is stored in the autogenerated partial
' class called XmlTreeDisplay.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class XmlTreeDisplay

Private Sub cmdLoad Click(Byval sender As System.Object, ‘w»
ByVal e As System.EventArgs) Handles cmdlLoad.Click
' C(lear the tree.
Dim doc As New XmlDocument

Try
doc.Load(txtXmlFile.Text)

Populate the TreeView.
ConvertXmlNodeToTreeNode(doc, treeXml.Nodes)
' Expand all nodes.

treeXml.Nodes(0).ExpandAll()
Catch ex As Exception

MessageBox. Show(ex.Message)
End Try

End Sub

Private Sub ConvertXmlNodeToTreeNode(ByVal thisXmlNode As XmlNode, ‘=
ByVal treeNodes As TreeNodeCollection)

' Add a TreeNode node that represents this XmlNode.
Dim newTreeNode As TreeNode = treeNodes.Add(thisXmlNode.Name)

' Customize the TreeNode text based on the XmlNode
' type and content.
Select Case thisXmlNode.NodeType
Case XmlNodeType.ProcessingInstruction
newTreeNode.Text = thisXmlNode.Value
Case XmlNodeType.XmlDeclaration
newTreeNode.Text = "<?" & thisXmlNode.Name & " " & w»
thisXmlNode.Value & "?>"
Case XmlNodeType.Element
newTreeNode.Text = "<" & thisXmlNode.Name & ">"
Case XmlNodeType.Attribute
newTreeNode.Text = "ATTRIBUTE: " & thisXmlNode.Name
Case XmlNodeType.Text
newTreeNode.Text = thisXmlNode.Value
Case XmlNodeType.CDATA
newTreeNode.Text = thisXmlNode.Value
Case XmlNodeType.Comment
newTreeNode.Text = "<!--" & thisXmlNode.Value & "-->"
End Select

214 CHAPTER 6 XML PROCESSING

Call this routine recursively for each attribute.

' (XmlAttribute is a subclass of XmlNode.)

If Not thisXmlNode.Attributes Is Nothing Then
For Each attribute As XmlAttribute In thisXmlNode.Attributes

ConvertXmlNodeToTreeNode(attribute, newTreeNode.Nodes)

Next

End If

' Call this routine recursively for each child node.

Typically, this child node represents a nested element

or element content.

For Each childNode As XmlNode In thisXmlNode.ChildNodes
ConvertXmlNodeToTreeNode(childNode, newTreeNode.Nodes)

Next

End Sub

Private Sub XmlTreeDisplay Load(ByVal sender As Object, ‘w»
ByVal e As System.EventArgs) Handles Me.Load

txtXmlFile.Text = Path.Combine(Application.StartupPath, =
"..\..\ProductCatalog.xml")

End Sub

End Class

Usage

As an example, consider the following simple XML file (which is included with the sample code as
the ProductCatalog.xml file).

<?xml version="1.0" ?>

<productCatalog>
<catalogName>Jones and Jones Unique Catalog 2004</catalogName>
<expiryDate>2005-01-01</expiryDate>

<products>
<product id="1001">
<productName>Gourmet Coffee</productName>
<description>The finest beans from rare Chilean
plantations.</description>
<productPrice>0.99</productPrice>
<inStock>true</inStock>
</product>
<product id="1002">
<productName>Blue China Tea Pot</productName>
<description>A trendy update for tea drinkers.</description>
<productPrice>102.99</productPrice>
<inStock>true</inStock>
</product>
</products>
</productCatalog>

CHAPTER 6 XML PROCESSING

Figure 6-1 shows how this file will be rendered in the form.

Figure 6-1. The displayed structure of an XML document

6-2. Insert Nodes in an XML Document

Problem

You need to modify an XML document by inserting new data, or you want to create an entirely new
XML document in memory.

Solution

Create the node using the appropriate Xm1Document method (such as CreateElement, CreateAttribute,
CreateNode, and so on). Then insert it using the appropriate XmINode method (such as InsertAfter,
InsertBefore, or AppendChild).

How It Works

Inserting a node into the XmlDocument class is a two-step process: create the node, and then insert
it at the appropriate location. Optionally, you can then call Xm1Document.Save to persist changes.

To create a node, you use one of the XmlDocument methods starting with the word Create,
depending on the type of node. This ensures the node will have the same namespace as the rest of
the document. (Alternatively, you can supply a namespace as an additional string argument.) Next,
you must find a suitable related node and use one of its insertion methods to add the new node to
the tree.

The Code

The following example demonstrates this technique by programmatically creating a new XML
document.

215

216 CHAPTER 6 XML PROCESSING

Imports System
Imports System.Xml

Namespace Apress.VisualBasicRecipes.Chaptero6

Public Class Recipe06 02
Public Shared Sub Main()
' Create a new, empty document.
Dim doc As New XmlDocument
Dim docNode As XmlNode = doc.CreateXmlDeclaration("1.0", "UTF-8", w»
Nothing)

doc.AppendChild(docNode)
' Create and insert a new element.

Dim productsNode As XmlNode = doc.CreateElement("Products")
doc.AppendChild(productsNode)

' Create a nested element (with an attribute).

Dim productNode As XmlNode = doc.CreateElement("Product")

Dim productAttribute As XmlAttribute = doc.CreateAttribute("id")
productAttribute.Value = "1001"
productNode.Attributes.Append(productAttribute)
productsNode.AppendChild(productNode)

Create and add the subelements for this product node
" (with contained text data).
Dim nameNode As XmlNode = doc.CreateElement("ProductName")
nameNode.AppendChild(doc.CreateTextNode("Gourmet Coffee"))
productNode.AppendChild(nameNode)
Dim priceNode As XmlNode = doc.CreateElement("ProductPrice")
priceNode.AppendChild(doc.CreateTextNode("0.99"))
productNode.AppendChild(priceNode)

Create and add another product node.
productNode = doc.CreateElement("Product™)
productAttribute = doc.CreateAttribute("id")
productAttribute.Value = "1002"
productNode.Attributes.Append(productAttribute)
productsNode.AppendChild(productNode)
nameNode = doc.CreateElement("ProductName")
nameNode.AppendChild(doc.CreateTextNode("Blue China Tea Pot"))
productNode.AppendChild(nameNode)
priceNode = doc.CreateElement("ProductPrice")
priceNode.AppendChild(doc.CreateTextNode("102.99"))
productNode.AppendChild(priceNode)

Save the document (to the console window rather
' than a file).
doc.Save(Console.Out)
Console.ReadlLine()

CHAPTER 6 XML PROCESSING

End Sub

End Class
End Namespace

When you run this code, the generated XML document looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<Products>
<Product id="1001">
<ProductName>Gourmet Coffee</ProductName>
<ProductPrice>0.99</ProductPrice>
</Product>
<Product id="1002">
<ProductName>Blue China Tea Pot</ProductName>
<ProductPrice>102.99</ProductPrice>
</Product>
</Products>

6-3. Quickly Append Nodes in an XML Document

Problem

You need to add nodes to an XML document without requiring lengthy, verbose code.

Solution

Create a helper function that accepts an element name and content, and can generate the entire
element at once. Alternatively, use the XmlDocument.CloneNode method to copy branches of an
XmlDocument.

How It Works

Inserting a single element into an Xm1Document requires several lines of code. You can shorten this
code in several ways. One approach is to create a dedicated helper class with higher-level methods
for adding elements and attributes. For example, you could create an AddElement method that gener-
ates a new element, inserts it, and adds any contained text—the three operations needed to insert
most elements.

The Code

The following is an example of a helper class for inserting elements.

Imports System
Imports System.Xml

Namespace Apress.VisualBasicRecipes.Chapter06

Public Class XmlHelper

217

218 CHAPTER 6 XML PROCESSING

Public Shared Function AddElement(ByVal elementName As String, w»
ByVal textContent As String, ByVal parent As XmlNode) As XmlElement

Dim element As XmlElement = ‘w»
parent.OwnerDocument.CreateElement(elementName)

parent.AppendChild(element)

If textContent IsNot Nothing Then
Dim content As XmlNode
content = parent.OwnerDocument.CreateTextNode(textContent)
element.AppendChild(content)

End If

Return element
End Function

Public Shared Function AddAttribute(ByVal attributeName As String,
ByVal textContent As String, ByVal parent As XmlNode) As XmlAttribute

Dim attribute As XmlAttribute

attribute = parent.OwnerDocument.CreateAttribute(attributeName)
attribute.Value = textContent
parent.Attributes.Append(attribute)

Return attribute
End Function

End Class
End Namespace

You can now condense the XML-generating code from recipe 6-2 with the following simpler
syntax.

Public Class Recipe06 03
Public Shared Sub Main()

' Create the basic document.

Dim doc As New XmlDocument

Dim docNode As XmlNode = doc.CreateXmlDeclaration("1.0", "UTF-8", Nothing)
doc.AppendChild(docNode)

Dim products = doc.CreateElement("Products")

doc.AppendChild(products)

' Add two products.

Dim product As XmlNode = XmlHelper.AddElement("Product”, Nothing, products)
XmlHelper.AddAttribute("id", "1001", product)

XmlHelper.AddElement ("ProductName", "Gourmet Coffee", product)
XmlHelper.AddElement ("ProductPrice”, "0.99", product)

CHAPTER 6 XML PROCESSING

product = XmlHelper.AddElement("Product”, Nothing, products)
XmlHelper.AddAttribute("id", "1003", product)
XmlHelper.AddElement ("ProductName", "Blue China Tea Pot", product)
XmlHelper.AddElement ("ProductPrice”, "102.99", product)

Save the document (to the console window rather than a file)
doc.Save(Console.Out)
Console.ReadlLine()

End Sub
End Class

Alternatively, you might want to take the helper methods such as AddAttribute and AddElement
and make them instance methods in a custom class you derive from XmlDocument.

Another approach to simplifying writing XML is to duplicate nodes using the Xm1Node .CloneNode
method. CloneNode accepts a Boolean deep parameter. If you set this parameter to True, CloneNode
will duplicate the entire branch, with all nested nodes.

Here is an example that creates a new product node by copying the first node:

" (Add first product node).
' Create a new element based on an existing product.
product = product.CloneNode(True)

' Modify the node data.
product.Attributes(0).vValue = "1002"
product.ChildNodes(0).ChildNodes(0).Value
product.ChildNodes(1).ChildNodes(1).Value

"Blue China Tea Pot"
"102.99"

' Add the new element.
products.AppendChild(product)

In this example, certain assumptions are being made about the existing nodes; for example, that the
first child in the item node is always the name, and the second child is always the price. If such assump-
tions are not guaranteed to be true, you might need to examine the node name programmatically.

6-4. Find Specific Elements by Name

Problem

You need to retrieve a specific element or elements from an Xm1Document using only the element name.

Solution

Use the XmlDocument.GetElementsByTagName method, which searches an entire document and returns a
System.Xml.XmlNodelist containing any matches.

How It Works

The Xm1Document class provides a convenient GetElementsByTagName method that searches an entire
document for elements that have the indicated element name. It returns the results as a collection
of Xm1Node objects.

219

220

CHAPTER 6 XML PROCESSING

The Code

The following code demonstrates how you could use GetElementsByTagName to calculate the total
price of items in a catalog by retrieving all elements with the name productPrice.

Imports System
Imports System.Xml

Namespace Apress.VisualBasicRecipes.Chaptero6

Public Class Recipe06_ 04
Public Shared Sub Main()
' Load the document.
Dim doc As New XmlDocument
doc.Load("..\..\ProductCatalog.xml")
' Retrieve all prices.
Dim totalPrice As Decimal = 0
Dim prices As XmlNodelist = doc.GetElementsByTagName("productPrice")
For Each price As XmlNode In prices
' Get the inner text of each matching element.
totalPrice += Decimal.Parse(price.ChildNodes(0).Value)
Next

Console.Writeline("Total catalog value: " & totalPrice.ToString)
Console.ReadlLine()

End Sub

End Class
End Namespace

Notes

You can also search portions of an XML document by using the XmLElement.GetElementsByTagName
method. It searches all the descendant nodes looking for matches. To use this method, first retrieve
an XmlNode that corresponds to an element. Then cast this object to an XmlElement. The following
example demonstrates how to find the price node under the first product element.

Retrieve a reference to the first product.

Dim product As XmlNode = doc.GetElementsByTagName("products")(0)
' Find the price under this product.

Dim price As XmlNode = DirectCast(product, ‘w»
XmlElement).GetElementsByTagName("productPrice")(0)

If your elements include an id attribute, you can also use a method called GetElementById to
retrieve an element that has a matching id value.

CHAPTER 6 XML PROCESSING

6-5. Get XML Nodes in a Specific XML Namespace

Problem

You need to retrieve elements from a specific namespace using an XmlDocument.

Solution

Use the overload of the XmlDocument.GetElementsByTagName method that requires a namespace
name as a string argument. Additionally, supply an asterisk (*) for the element name if you want to
match all elements.

How It Works

Many XML documents contain nodes from more than one namespace. For example, an XML document
that represents a scientific article might use a separate type of markup for denoting math equations
and vector diagrams, or an XML document with information about a purchase order might aggre-
gate client and order information with a shipping record. Similarly, an XML document that represents a
business-to-business transaction might include portions from both companies, written in separate
markup languages.

A common task in XML programming is to retrieve the elements found in a specific namespace.
You can perform this task with the overloaded version of the XmlDocument .GetElementsByTagName
method that requires a namespace name. You can use this method to find elements by name or to
find all the elements in the specified namespace if you supply an asterisk for the element name.

The Code

As an example, consider the following compound XML document that includes order and client
information, in two different namespaces (http://mycompany/OrderML and http://mycompany/
ClientML).

<?xml version="1.0" ?>
<ord:order xmlns:ord="http://mycompany/OrderML"
xmlns:cli="http://mycompany/ClientML">

<cli:client>
<cli:firstName>Vicky</cli:firstName>
<cli:lastName>Kevin</cli:lastName>
</cli:client>

<ord:orderItem itemNumber="3211" />
<ord:orderItem itemNumber="1155" />
</ord:order>

Here is a simple console application that selects all the elements in the http://mycompany/
OrderML namespace:

Imports System
Imports System.Xml

Namespace Apress.VisualBasicRecipes.Chapter06

221

222 CHAPTER 6 XML PROCESSING

Public Class Recipe06 05
Public Shared Sub Main()
' Load the document.

Dim doc As New XmlDocument
doc.Lload("..\..\Order.xml")
' Retrieve all order elements.

Dim matches As XmlNodelist = doc.GetElementsByTagName("*", w»
"http://mycompany/OrderML")

' Display all the information.
Console.WriteLine("Element {0}Attributes", ControlChars.Tab)
Console.WritelLine("**xikick {oldokttttarnkt = ControlChars.Tab)

For Each node As XmlNode In matches
Console.Write("{0}{1}", node.Name, ControlChars.Tab)
For Each attribute As XmlAttribute In node.Attributes

Console.Write(attribute.value & " ")

Next
Console.WritelLine()

Next

Console.ReadlLine()

End Sub

End Class
End Namespace

The output of this program is as follows.

Element Attributes
k3kokskok ok k kkkkokkkokokk
ord:order http://mycompany/OrderML http://mycompany/ClientML

ord:orderItem 3211
ord:orderItem 1155

6-6. Find Elements with an XPath Search

Problem

You need to search an XML document for nodes using advanced search criteria. For example, you
might want to search a particular branch of an XML document for nodes that have certain attributes
or contain a specific number of nested child nodes.

Solution

Execute an XPath expression using the SelectNodes or SelectSingleNode method of the XmlDocument
class.

CHAPTER 6 XML PROCESSING

How It Works

The XmlNode class defines two methods that perform XPath searches: SelectNodes and SelectSingleNode.
These methods operate on all contained child nodes. Because the XmlDocument inherits from XmlNode,
you can call Xm1Document.SelectNodes to search an entire document.

The Code

As an example, consider the following orders.xml document, which represents an order for two
items. This document includes text and numeric data, nested elements, and attributes, so it provides
a good way to test simple XPath expressions.

<?xml version="1.0"?>
<Order id="2004-01-30.195496">
<Client id="R0S-930252034">
<Name>Remarkable Office Supplies</Name>
</Client>

<Items>
<Item id="1001">
<Name>Electronic Protractor</Name>
<Price»42.99</Price>
</Item>
<Item id="1002">
<Name>Vorpal Stapler</Name>
<Price>500.50</Price>
</Item>
</Items>
</Order>

Basic XPath syntax uses a pathlike notation. For example, the path /Order/Items/Item indicates
an <Item> element thatis nested inside an <Items> element, which, in turn, is nested in a root <Order>
element. This is an absolute path. The following example uses an XPath absolute path to find the
name of every item in an order:

Imports System
Imports System.Xml

Namespace Apress.VisualBasicRecipes.Chapter06

Public Class Recipe06 06
Public Shared Sub Main()
' Load the document.
Dim doc As New XmlDocument
doc.Load("..\..\Orders.xml")

Retrieve the name of every item.

This could not be accomplished as easily with the
GetElementsByTagName method, because the Name elements are

used in Item elements and Client elements, and so

both types would be returned.

Dim nodes As XmlNodelist = doc.SelectNodes("/Order/Items/Item/Name")

223

224

CHAPTER 6 XML PROCESSING
For Each node As XmlNode In nodes
Console.WritelLine(node.InnerText)
Next
Console.ReadlLine()
End Sub
End Class

End Namespace

The output of this program is as follows.

Electronic Protractor
Vorpal Stapler

Notes

XPath provides a rich and powerful search syntax. Table 6-1 outlines some of the key ingredients in
more advanced XPath expressions and includes examples that show how they would work with the
order document. For a more detailed reference, refer to the W3C XPath recommendation at http://
www.w3.0rg/TR/xpath.

Table 6-1. XPath Expression Syntax

Expression Description Example
/ Starts an absolute path that /0rder/Items/Item selects all Item elements
selects from the root node that are children of an Items element, which
is itself a child of the root Order element.
// Starts a relative path that selects //Ttem/Name selects all the Name elements that
nodes anywhere are children of an Item element, regardless of
where they appear in the document.
@ Selects an attribute of a node /0rder/@id selects the attribute named id

Selects any element in the path

Combines multiple paths

Indicates the current (default)
node

Indicates the parent node

from the root Order element.

/0rder/* selects both Items and Client nodes
because both are contained by a root Order
element.

/0rder/TItems/Item/Name|Order/Client/Name
selects the Name nodes used to describe a
(lient and the Name nodes used to describe
an Item.

If the current node is an Order, the expres-
sion ./Items refers to the related items for
that order.

//Name/ . . selects any element that is parent
to a Name, which includes the Client and
Item elements.

Table 6-1. XPath Expression Syntax

CHAPTER 6 XML PROCESSING

Expression Description Example

[1] Defines selection criteria that /0rder[@id="2004-01-30.195496"] selects
can test a contained node or an the Order elements with the indicated attri-
attribute value bute value. /0rder/Items/Item[Price > 50]

Retrieves elements based on
what text a contained element

starts-with

starts with

position Retrieves elements based on
position

count Counts elements. You specify

the name of the child element
to count or an asterisk (*) for
all children.

selects products higher than $50 in price.
/Order/Items/Item[Price > 50 and
Name="Laser Printer"] selects products
that match two criteria.

/Order/Items/Item[starts-with (Name,
"C")] finds all Item elements that have a
Name element that starts with the letter C.

/0rder/Items/Item[position()=2] selects
the second Item element.

/Order/Items/Item[count(Price) = 1]
retrieves Item elements that have exactly
one nested Price element.

Note XPath expressions and all element and attribute names you use inside them are always case-sensitive,

because XML itself is case-sensitive.

6-7. Read and Write XML Without Loading an
Entire Document into Memory

Problem

You need to read XML from a stream or write it to a stream. However, you want to process the infor-
mation one node at a time, rather than loading it all into memory with an Xm1Document.

Solution

To write XML, create an XmlWriter that wraps a stream and use Write methods (such as
WriteStartElement and WriteEndElement). To read XML, create an XmlReader that wraps a stream,

and call Read to move from node to node.

How It Works

The XmlWriter and XmlReader classes read or write XML directly from a stream one node at a time.
These classes do not provide the same features for navigating and manipulating your XML as
XmlDocument, but they do provide higher performance and a smaller memory footprint, particularly

if you are dealing with large XML documents.

225

226

CHAPTER 6 XML PROCESSING

Both the XmlWriter and XmlReader are abstract classes, which means you cannot create an
instance of them directly. Instead, you need to create an instance of a derived class, such as
XmlTextWriter. In .NET Framework 2.0, the preferred convention is not to create a derived class
directly. Instead, you should call the Create method of the XmlWriter or XmlReader and supply a URI
string or a TextWriter or TextReader stream, respectively. The Create method will return the correct
derived class based on the options you specify. This allows for a more flexible model. Because your
code uses the base classes, it can work seamlessly with any derived class. For example, you could
switch to a validating reader (as shown in recipe 6-8) without needing to modify your code.

To write XML to any stream, you can use the streamlined XmlWriter. It provides Write methods
that write one node at a time. These include the following:

e WriteStartDocument, which writes the document prologue, and WriteEndDocument, which
closes any open elements at the end of the document

e WriteStartElement, which writes an opening tag for the element you specify. You can then
add more elements nested inside this element, or you can call WriteEndElement to write the
closing tag

e WriteElementString, which writes an entire element, with an opening tag, a closing tag, and
text content

* WriteAttributeString, which writes an entire attribute for the nearest open element, with a
name and value

Using these methods usually requires less code than creating an Xm1Document by hand, as
demonstrated in recipes 6-2 and 6-3.

To read the XML, you use the Read method of the XmlReader. This method advances the reader
to the next node, excluding attributes, and returns true. If no more nodes can be found, it returns
false. You can retrieve information about the current node through XmlReader properties, including
its Name, Value, and NodeType.

To find out whether an element has attributes, you must explicitly test the HasAttributes prop-
erty and then use the GetAttribute method to retrieve the attributes by name or index number. The
XmlReader class can access only one node at atime, and it cannot move backward or jump to an arbitrary
node, which gives much less flexibility than the Xm1Document class.

The Code

The following console application writes and reads a simple XML document using the XmlWriter and
XmlReader classes. This is the same XML document created in recipes 6-2 and 6-3 using the
XmlDocument class.

Imports System
Imports System.Xml
Imports System.IO
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chaptero6

Public Class Recipe06 07
Public Shared Sub Main()
' Create the file and writer.
Dim fs As New FileStream("products.xml", FileMode.Create)

CHAPTER 6 XML PROCESSING 227

If you want to configure additional details (like indenting,
encoding, and new line handling), use the overload of the Create
method that accepts an XmlWriterSettings object instead.

Dim w As XmlWriter = XmlWriter.Create(fs)

Start the document and create the parent Products node.
w.WriteStartDocument()
w.WriteStartElement ("Products")

Write a product.
w.WriteStartElement ("Product")
w.WriteAttributeString("id", "1001")
w.WriteElementString("ProductName", "Gourmet Coffee")
w.WriteElementString("ProductPrice”, "0.99")
w.WriteEndElement()

Write another product.
w.WriteStartElement ("Product")
w.WriteAttributeString("id", "1002")
w.WriteElementString("ProductName", "Blue China Tea Pot")
w.WriteElementString("ProductPrice”, "102.99")
w.WriteEndElement()

End the Products node and document.
w.WriteEndElement()
w.WriteEndDocument ()

' Flush and close the parent document.
w.Flush()

fs.Close()

Console.WritelLine("Document created. Press Enter to read it.")
Console.ReadlLine()

fs = New FileStream("Products.xml", FileMode.Open)

If you want to configure additional details (like comments,
whitespace handling, or validation), use the overload of the
Create method that accepts an XmlReaderSettings object instead.
Dim r As XmlReader = XmlReader.Create(fs)

Read all nodes.
While r.Read

If r.NodeType = XmlNodeType.Element Then
Console.WritelLine()
Console.WriteLine("<{0}>", r.Name)

If r.HasAttributes Then
For i As Integer = 0 To r.AttributeCount - 1
Console.WriteLine("{O}ATTRIBUTE: {1}", =
ControlChars.Tab, r.GetAttribute(i))
Next
End If

228

CHAPTER 6 XML PROCESSING

ElseIf r.NodeType = XmlNodeType.Text Then
Console.Writeline("{O}VALUE: {1}", ControlChars.Tab, r.Value)
End If

End While
Console.ReadlLine()
End Sub

End Class
End Namespace

Often, when using the XmlReader, you are searching for specific nodes, rather than processing
every element as in this example. The approach used in this example does not work as well in this
situation. It forces you to read element tags, text content, and CDATA sections separately, which
means you need to explicitly keep track of where you are in the document. A better approach is to read
the entire node and text content at once (for simple text-only nodes) by using the ReadElementString
method. You can also use methods such as ReadToDescendant, ReadToFollowing, and ReadToNextSibling,
which allow you to skip some nodes.

For example, you can use ReadToFollowing("Price") to skip straight to the next Price element,
without worrying about whitespace, comments, or other elements before it. (If a Price element
cannotbe found, the XmlReader moves to the end of the document, and the ReadToFollowing method
returns false.)

6-8. Validate an XML Document Against a Schema

Problem

You need to validate the content of an XML document by ensuring that it conforms to an XML schema.

Solution

When you call XmlReader.Create, supply an XmlReaderSettings object that indicates you want to
perform validation. Then move through the document one node at a time by calling Xm1Reader .Read,
catching any validation exceptions. To find all the errors in a document without catching exceptions,
handle the ValidationEventHandler event on the XmlReaderSettings object given as a parameter to
XmlReader.

How It Works

An XML schema defines the rules that a given type of XML document must follow. The schema
includes rules that define the following:

¢ The elements and attributes that can appear in a document

e The data types for elements and attributes

e The structure of a document, including which elements are children of other elements

e The order and number of child elements that appear in a document

e Whether elements are empty, can include text, or require fixed values

Atits most basic level, XML Schema Definition (XSD) defines the elements that can occur in an
XML document. XSD documents are themselves written in XML, and you use a separate predefined

CHAPTER 6 XML PROCESSING

element (named <element>) in the XSD document to indicate each element that is required in the
target document. The type attribute indicates the data type. This recipe uses the product catalog first
presented in recipe 6-1.

Here is an example for a product name:

<xsd:element name="productName" type="xsd:string" />
And here is an example for the product price:
<xsd:element name="productPrice" type="xsd:decimal" />

The basic schema data types are defined at http://www.w3.0rg/TR/xmlschema-2. They map
closely to .NET data types and include String, Integer, Long, Decimal, Single, DateTime, Boolean, and
Base64Binary—to name a few of the most frequently used types.

Both the productName and productPrice are simple types because they contain only character
data. Elements that contain nested elements are called complex types. You can nest them together
using a <sequence> tag, if order is important, or an <all> tag ifitis not. Here is how you might model
the <product> element in the product catalog. Notice that attributes are always declared after elements,
and they are not grouped with a <sequence> or <all> tag because the order is not important:

<xsd:complexType name="product">
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="productPrice" type="xsd:decimal"/>
<xsd:element name="inStock" type="xsd:boolean"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer"/>
</xsd:complexType>

By default, a listed element can occur exactly one time in a document. You can configure this
behavior by specifying the maxOccurs and minOccurs attributes. Here is an example that allows an
unlimited number of products in the catalog:

<xsd:element name="product" type="product" maxOccurs="unbounded" />

Here is the complete schema for the product catalog XML:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<!-- Define the complex type product. -->
<xsd:complexType name="product">
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="productPrice" type="xsd:decimal"/>
<xsd:element name="inStock" type="xsd:boolean"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer"/>
</xsd:complexType>

<!-- This is the structure the document must match.
It begins with a productCatalog element that nests other elements. -->
<xsd:element name="productCatalog">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="catalogName" type="xsd:string"/>
<xsd:element name="expiryDate" type="xsd:date"/>

229

230

CHAPTER 6 XML PROCESSING

<xsd:element name="products">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="product" type="product"”
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

The XmlReader class can enforce these schema rules, providing you explicitly request a validating
reader when you use the XmlReader.Create method. (Even if you do not use a validating reader, an
exception will be thrown if the reader discovers XML that is not well formed, such as an illegal char-
acter, improperly nested tags, and so on.)

Once you have created your validating reader, the validation occurs automatically as you read
through the document. As soon as an error is found, the XmlReader raises a ValidationEventHandler
event with information about the error on the Xm1ReaderSettings object given at creation time. If you
want, you can handle this event and continue processing the document to find more errors. If you
do not handle this event, an XmlException will be raised when the first error is encountered and
processing will be aborted.

The Code

The following example shows a utility class that displays all errors in an XML document when the
ValidateXml method is called. Errors are displayed in a console window, and a final Boolean variable
is returned to indicate the success or failure of the entire validation operation.

Imports System
Imports System.Xml
Imports system.Xml.Schema

Namespace Apress.VisualBasicRecipes.Chaptero6

Public Class ConsoleValidator
' Set to true if at least one error exists.
Private m Failed As Boolean
Public ReadOnly Property Failed() As Boolean
Get
Return m_Failed
End Get
End Property

Public Function ValidateXML(ByVal xmlFileName As String, ‘=
ByVal schemaFileName As String) As Boolean
' Set the type of validation.
Dim settings As New XmlReaderSettings
settings.ValidationType = ValidationType.Schema

CHAPTER 6 XML PROCESSING

Load the schema file.
Dim schemas As New XmlSchemaSet
settings.Schemas = schemas

' When loading the schema, specify the namespace it validates

" and the location of the file. Use Nothing to use the

' targetNamespace specified in the schema.

schemas.Add(Nothing, schemaFileName)

' Specify an event handler for validation errors.

AddHandler settings.ValidationEventHandler, AddressOf w»
HandleValidationEvents

Create the validating reader.
Dim validator As XmlReader = XmlReader.Create(xmlFileName, settings)

m_Failed = False
Try
' Read all XML data.
While validator.Read()
End While
Catch ex As Exception
' This happens if the XML document includes illegal characters
or elements that aren't properly nested or closed.
Console.WriteLine("A critical XML error has occurred.")
Console.Writeline(ex.Message)
m_Failed = True
Finally
validator.Close()
End Try
Return Not m_Failed

End Function

Private Sub HandleValidationEvents(ByVal sender As Object, w»
ByVal args As ValidationEventArgs)

m_Failed = True

Display the validation error.
Console.Writeline("Validation error: " & args.Message)
Console.WritelLine()

End Sub

End Class
End Namespace

Here is how you would use the class to validate the product catalog:

Public Class Recipe06 08
Public Shared Sub Main()

Dim xmlValidator As New ConsoleValidator
Console.Writeline("Validating ProductCatalog.xml")

231

232 CHAPTER 6 XML PROCESSING

Dim success As Boolean = xmlValidator.ValidateXML("..\..\" & w
"ProductCatalog.xml", "..\..\ProductCatalog.xsd")

If Not success Then
Console.WriteLine("Validation failed.")
Else
Console.WritelLine("Validation succeeded.")
End If
Console.ReadLine()

End Sub

End Class

If the document is valid, no messages will appear, and the success variable will be set to true.
But consider what happens if you use a document that breaks schema rules, such as the following
ProductCatalog Invalid.xml file.

<?xml version="1.0" ?>

<productCatalog>
<catalogName>Acme Fall 2006 Catalog</catalogName>
<expiryDate>Jan 1, 2007</expiryDate>

<products>
<product id="1001">
<productName>Magic Ring</productName>
<productPrice>$342.10</productPrice>
<inStock>true</inStock>
</product>
<product id="1002">
<productName>Flying Carpet</productName>
<productPrice>982.99</productPrice>
<inStock>Yes</inStock>
</product>
</products>
</productCatalog>

Ifyou attempt to validate this document, the success variable will be set to false, and the output
will indicate each error:

Validating ProductCatalog Invalid.xml

Validation error: The 'expiryDate' element is invalid - The value 'Jan 1, 2007’
is invalid according to its datatype 'http://www.w3.org/2001/XMLSchema:date’ -
The string 'Jan 1, 2007' is not a valid XsdDateTime value.

Validation error: The element 'product' has invalid child element 'productPrice’
List of possible elements expected: 'description’.

Validation error: The element 'product' has invalid child element 'productPrice’.
List of possible elements expected: 'description’.

Validation failed.

CHAPTER 6 XML PROCESSING

Finally, if you want to validate an XML document and load it into an in-memory XmlDocument,
you need to take a slightly different approach. The Xm1Document provides its own Schemas property,
along with a Validate method that checks the entire document in one step. When you call Validate,
you supply a delegate that points to your validation event handler.

Here is how it works:

Dim doc As New XmlDocument
doc.Load("..\..\ProductCatalog.xml")

Specify the schema information.
Dim schemas As New XmlSchemaSet
schemas.Add(Nothing, schemaFileName)
doc.Schemas = schemas

' Validate the document.
doc.Validate(AddressOf HandleValidationEvents)

Note For more in-depth information regarding XML schemas, refer to http: //www.w3.org/xml/
schema.html.

6-9. Use XML Serialization with Custom Objects

Problem

You need to use XML as a serialization format. However, you don’t want to process the XML directly
in your code. Instead, you want to interact with the data using custom objects.

Solution

Use the System.Xml.Serialization.XmlSerializer class to transfer data from your object to XML,
and vice versa. You can also mark up your class code with attributes to customize its XML
representation.

How It Works

The XmlSerializer class allows you to convert objects to XML data, and vice versa. This process is
used natively by web services and provides a customizable serialization mechanism that does not
require a single line of custom code. The Xml1Serializer class is even intelligent enough to correctly
create arrays when it finds nested elements.

The only requirements for using Xm1Serializer are as follows:

e The XmlSerializer serializes only properties and Public variables.

¢ The classes you want to serialize must include a default zero-argument constructor. The
XmlSerializer uses this constructor when creating the new object during deserialization.

e All class properties must be readable and writable. This is because Xm1Serializer uses the
property Get accessor to retrieve information and the property Set accessor to restore the
data after deserialization.

233

234

CHAPTER 6 XML PROCESSING

Note You can also store your objects using .NET serialization and the System.Runtime.Serialization.
Formatters.Soap.SoapFormatter class. In this case, you simply need to make your class serializable; you do
not need to provide a default constructor or ensure all properties are writable. However, this gives you no control
over the format of the serialized XML.

To use XML serialization, you must first mark up your data objects with attributes that indicate
the desired XML mapping. You can find these attributes in the System.Xml. Serialization namespace.
The attributes are as follows:

e XmlRoot specifies the name of the root element of the XML file. By default, XmlSerializer will
use the name of the class. You can apply this attribute to the class declaration.

e XmlElement indicates the element name to use for a property or Public variable. By default,
XmlSerializer will serialize properties and Public variables using their names.

e XmlAttribute indicates that a property or Public variable should be serialized as an attribute,
not an element, and specifies the attribute name.

e XmlEnum configures the text that should be used when serializing enumerated values. If you
don’t use XmLEnum, the name of the enumerated constant will be used.

* XmlIgnore indicates that a property or Public variable should not be serialized.

The Code

As an example, consider the product catalog first shown in recipe 6-1. You can represent this XML
document using ProductCatalog and Product objects. Here’s the class code that you might use:

Imports System

Imports System.Xml

Imports System.Xml.Serialization
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chaptero6

<XmlRoot("productCatalog")> _
Public Class ProductCatalog

<XmlElement("catalogName")> _
Public CatalogName As String
' Use the date data type (and ignore the time portion

" in the serialized XML).
<XmlElement(ElementName:="expiryDate", DataType:="date")> _
Public ExpiryDate As DateTime

' Configure the name of the element that holds all products
and the name of the product element itself.
<XmlArray("products"), XmlArrayItem("product")> _

Public Products As Product()

Public Sub New()
End Sub

CHAPTER 6 XML PROCESSING

Public Sub New(ByVal catalogName As String, ByVal expiryDate As DateTime)

Me.CatalogName = catalogName
Me.ExpiryDate = expiryDate

End Sub
End Class
Public Class Product

<XmlElement("productName")> _

Public ProductName As String = String.Empty

<XmlElement("productPrice")> _

Public ProductPrice As Decimal = 0

<XmlElement("inStock")> _
Public InStock As Boolean = False

<XmlAttribute(AttributeName:="id", DataType:="integer")> _

Public Id As String = String.Empty

Public Sub New()
End Sub

Public Sub New(ByVal productName As String, ByVal productPrice As Decimal)

Me.ProductName = productName

Me.ProductPrice = productPrice

End Sub

End Class

End Namespace

Notice that these classes use the XML serialization attributes to rename element names (using

Pascal casing in the class member names and camel casing in the XML tag names), indicate data
types that are not obvious, and specify how <product> elements will be nested in the <productCatalog>.

Using these custom classes and the XmlSerializer object, you can translate XML into objects,

Imports System

Imports System.Xml

Imports System.Xml.Serialization
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter06

Public Class Recipe06 09
Public Shared Sub Main()

and vice versa. The following is the code you would need to create a new ProductCatalog object, serialize
the results to an XML document, deserialize the document back to an object, and then display the
XML document.

235

236 CHAPTER 6 XML PROCESSING

Create the product catalog.

Dim catalog = New ProductCatalog('New Catalog", ‘=
DateTime.Now.AddYears(1))

Dim products As Product() = New Product(1) {}

products(0) = New Product("Product 1", CDec(42.99))
products(1) = New Product("Product 2", CDec(202.99))

catalog.Products = products

' Serialize the order to a file.
Dim serializer As New XmlSerializer(GetType(ProductCatalog))

Dim fs As New FileStream("ProductCatalog.xml", FileMode.Create)

serializer.Serialize(fs, catalog)
fs.Close()

catalog = Nothing

Deserialize the order from the file.
fs = New FileStream("ProductCatalog.xml", FileMode.Open)
catalog = DirectCast(serializer.Deserialize(fs), ProductCatalog)

Serialize the order to the console window.
serializer.Serialize(Console.Out, catalog)
Console.ReadlLine()

End Sub

End Class
End Namespace

The output of this program is as follows:

<?xml version="1.0" encoding="IBM437"?>
<productCatalog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:xsd=
"http://www.w3.0rg/2001/XMLSchema">
<catalogName>New Catalog</catalogName>
<expiryDate>2008-01-21</expiryDate>
<products>
<product id="">
<productName>Product 1</productName>
<productPrice>42.99</productPrice>
<inStock>false</inStock>
</product>
<product id="">
<productName>Product 2</productName>
<productPrice>202.99</productPrice>
<inStock>false</inStock>
</product>
</products>
</productCatalog>

CHAPTER 6 XML PROCESSING 237

6-10. Create a Schema for a .NET Class

Problem

You need to create an XML schema based on one or more VB .NET classes. This will allow you to vali-
date XML documents before deserializing them with the XmlSerializer.

Solution

Use the XML Schema Definition Tool (xsd.exe) command-line utility included with the .NET Frame-
work. Specify the name of your assembly as a command-line argument, and add the /t: [TypeName]
parameter to indicate the types for which you want to generate a schema.

How It Works

Recipe 6-9 demonstrated how to use the XmlSerializer to serialize .NET objects to XML and deseri-
alize XML into .NET objects. But if you want to use XML as a way to interact with other applications,
business processes, or non-.NET Framework applications, you'll need an easy way to validate the
XML before you attempt to deserialize it. You will also need to define an XML schema document that
defines the structure and data types used in your XML format so that other applications can work
with it. One quick solution is to generate an XML schema using the xsd.exe command-line utility.

The xsd.exe utility is included with the .NET Framework. If you have installed Microsoft Visual
Studio 2005, you will find it in a directory like C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin.
The xsd.exe utility can generate schema documents from compiled assemblies. You simply need to
supply the filename and indicate the class that represents the XML document with the / t:[TypeName]
parameter.

Usage

As an example, consider the ProductCatalog and Product classes shown in recipe 6-9. You could
create the XML schema for a product catalog with the following command line:

xsd Recipe6-09.exe /t:ProductCatalog

You need to specify only the ProductCatalog class on the command line because the Product
class is referenced by the ProductCatalog and will be included automatically. The generated schema
in this example will represent a complete product catalog, with contained product items. It will be
given the default filename schema0.xsd. You can now use the validation technique shown in recipe 6-8
to test whether the XML document can be successfully validated with the schema.

6-11. Generate a Class from a Schema

Problem

You need to create one or more VB .NET classes based on an XML schema. You can then create an
XML document in the appropriate format using these objects and the XmlSerializer.

238

CHAPTER 6 XML PROCESSING

Solution

Use the xsd.exe command-line utility included with the .NET Framework. Specify the name of your
schema file as a command-line argument, and add the /c parameter to indicate you want to generate
class code.

How It Works

Recipe 6-10 introduced the xsd.exe command-line utility, which you can use to generate schemas
based on class definitions. The reverse operation—generating VB .NET source code based on an XML
schema document—is also possible. This is primarily useful if you want to write a certain format of
XML document but you do not want to manually create the document by writing individual nodes
with the Xm1Document class or the XmlWriter class. Instead, by using xsd.exe, you can generate a set of
full .NET objects. You can then serialize these objects to the required XML representation using the
XmlSerializer, as described in recipe 6-9.

To generate source code from a schema, you simply need to supply the filename of the schema
document and add the /c parameter to indicate you want to generate the required classes.

Usage

As an example, consider the schema shown in recipe 6-8. You can generate VB .NET code for this
schema with the following command line:

xsd ProductCatalog.xsd /c

This will generate one file (ProductCatalog.cs) with two classes: Product and ProductCalalog.
These classes are similar to the ones created in recipe 6-9, except that the class member names
match the XML document exactly. Optionally, you can add the /f parameter. If you do, the generated
classes will be composed of Public fields. If you do not, the generated classes will use Public proper-
ties instead (which simply wrap Private fields).

6-12. Perform an XSL Transform

Problem

You need to transform an XML document into another document using an XSLT stylesheet.

Solution

Use the System.Xml.Xs1.Xs1CompiledTransform class. Load the XSLT stylesheet using the
XslCompiledTransform.Load method, and generate the output document by using the Transform
method and supplying a source XML document.

How It Works

XSLT (or XSL transforms) is an XML-based language designed to transform one XML document into
another document. You can use XSLT to create a new XML document with the same data butarranged
in a different structure or to select a subset of the data in a document. You can also use it to create a
different type of structured document. XSLT is commonly used in this manner to format an XML
document into an HTML page.

CHAPTER 6 XML PROCESSING

The Code

This recipe transforms the orders.xml document shown in recipe 6-6 into an HTML document with
atable and then displays the results. To perform this transformation, you'll need the following XSLT
stylesheet:

<?xml version="1.0" encoding="UTF-8" 2>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0" >

<xsl:template match="Order">
<html><body><p>
Order <xsl:value-of select="Client/@id"/>
for <xsl:value-of select="Client/Name"/></p>
<table border="1">
<td>ID</td><td>Name</td><td>Price</td>
<xsl:apply-templates select="Items/Item"/>
</table></body></html>

</xsl:template>

<xsl:template match="Items/Item">
<tr>
<td><xsl:value-of select="@id"/></td>
<td><xsl:value-of select="Name"/></td>
<td><xsl:value-of select="Price"/></td>
</tr>

</xsl:template>

</xsl:stylesheet>

Essentially, every XSLT stylesheet consists of a set of templates. Each template matches some
set of elements in the source document, and then describes the contribution that the matched
element will make to the resulting document. To match the template, the XSLT document uses
XPath expressions, as described in recipe 6-6.

The orders.xslt stylesheet contains two template elements (as children of the root stylesheet
element). The first template matches the root Order element. When the XSLT processor finds an
Order element, it outputs the HTML elements necessary to start the HTML document and the text
result of an XPath expression. In this case, the XPath expressions (Client/@id and Client/Name)
match the id attribute and the Name element. It then starts a table with appropriate column headings
and inserts some data about the client using the value-of command, which inserts the value of the
specified element as text.

Next, the apply-templates command branches off and performs processing of any contained
Itemelements. This is required because there might be multiple Item elements. Each Item element is
matched using the XPath expression Items/Item. The root Order node is not specified because Order
is the current node. Finally, the initial template writes the HTML elements necessary to end the
HTML document.

If you execute this transform on the sample orders.xml file shown in recipe 6-6, you will end up
with an HTML document similar to the following.

239

240 CHAPTER 6 XML PROCESSING

<html>
<body>
<p>
Order R0S5-930252034
for Remarkable Office Supplies</p>
<table border="1">
<td>ID</td>
<td>Name</td>
<td>Price</td>
<tr>
<td>1001</td>
<td>Electronic Protractor</td>
<td>42.99</td>
</tr>
<tr>
<td>1002</td>
<td>Vorpal Stapler</td>
<td>500.50</td>
</tr>
</table>
</body>
</html>

To apply an XSLT stylesheet in .NET, you use the Xs1CompiledTransform class. (Do not confuse this
class with the similar Xs1Transform class—it still works but is deprecated in .NET Framework 2.0.)

The following code shows a Windows-based application that programmatically applies the
transformation and then displays the transformed file in a window using the WebBrowser control:

Imports System

Imports System.Windows.Forms
Imports System.Xml.Xsl

" All designed code is stored in the autogenerated partial
class called TransformXML.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class TransformXml

Private Sub TransformXml Load(ByVal sender As Object, ‘=
ByVal e As System.EventArgs) Handles Me.Load

Dim transform As New XslCompiledTransform

' Load the XSLT stylesheet.
transform.Load("..\..\orders.xslt")

Transform orders.xml into orders.html using orders.xslt.
transform.Transform("..\..\orders.xml", "orders.html")

Browser.Navigate(Application.StartupPath & "\orders.html")

End Sub
End Class

CHAPTER 6 XML PROCESSING 24

Figure 6-2 shows the application.

TransformXml

Order ROS-930252034 for Remarkable Office Supplies

ID Name Price
1001 Electronic Protractor 42.99
1002 |Vorpal Stapler 500.50

Figure 6-2. The stylesheet output for orders.xml

In this example, the code uses the overloaded version of the Transform method that saves the
resulting document directly to disk, although you can receive it as a stream and process it inside your
application instead. The following code shows an alternate approach that keeps the document
content in memory at all times (with no external results file). The Xs1CompiledTransform writes the
results to an XmlWriter that wraps a StringBuilder. The content is then copied from the StringBuilder
into the WebBrowser through the handy WebBrowser.DocumentText property. The results are identical.

Dim htmlContent = New StringBuilder
Dim results As XmlWriter = XmlWriter.Create(htmlContent)

transform.Transform("..\..\orders.xml", results)
Browser.DocumentText = htmlContent.ToString

Note For more in-depth information regarding XSLT, refer to http: //www.w3.0rg/tr/xslt.

CHAPTER 7

Windows Forms

The Microsoft .NET Framework includes a rich set of classes for creating traditional Windows-based
applications in the System.Windows . Forms namespace. These range from basic controls such as the
TextBox, Button, and MainMenu classes to specialized controls such as TreeView, LinkLabel, and
NotifyIcon.In addition, you will find all the tools you need to manage Multiple Document Interface
(MDI) applications, integrate context-sensitive help, and even create multilingual user interfaces—
all without needing to resort to the complexities of the Win32 API.

Most VB .NET developers quickly find themselves at home with the Windows Forms program-
ming model. This chapter offers a number of tips and timesaving techniques that can make your
Windows programming endeavors even more productive.

Note Most of the recipes in this chapter use control classes, which are defined in the System.Windows .
Forms namespace. When introducing these classes, the full namespace name is not indicated, and System.
Windows.Forms is assumed.

The recipes in this chapter describe how to do the following:
¢ Add controls to a form programmatically at runtime so that you can build forms dynamically
instead of only building static forms in the Visual Studio forms designer (recipe 7-1)

e Link arbitrary data objects to controls to provide an easy way to associate data with a control
without the need to maintain additional data structures (recipe 7-2)

e Process all the controls on a form in a generic way (recipe 7-3)
e Track all the forms and MDI forms in an application (recipes 7-4 and 7-5)

e Save user-based and computer-based configuration information for Windows Forms appli-
cations using the mechanisms built into the .NET Framework and Windows (recipe 7-6)

* Force alist box to always display the most recently added item, so that users do not need to
scroll up and down to find it (recipe 7-7)

e Assistinputvalidation by restricting what data a user can enter into a textbox, and implement
a component-based mechanism for validating user input and reporting errors (recipes 7-8
and 7-17)

e Implement a custom autocomplete combo box so that you can make suggests for completing
words as users type data (recipe 7-9)

* Allow users to sort a list view based on the values in any column (recipe 7-10)

243

244

CHAPTER 7 WINDOWS FORMS

¢ Avoid the need to explicitly lay out controls on a form by using the Windows Forms layout
controls (recipe 7-11)

e Use part of a main menu in a context menu (recipe 7-12)
¢ Provide multilingual support in your Windows Forms application (recipe 7-13)

¢ Create forms that cannot be moved and create borderless forms that can be moved (recipes 7-14
and 7-15)

e Create an animated system tray icon for your application (recipe 7-16)
e Support drag-and-drop functionality in your Windows Forms application (recipe 7-18)
* Provide context-sensitive help to the users of your Windows Forms application (recipe 7-19)

¢ Display Web-based information within your Windows application and allow users to browse
the Web from within your application (recipe 7-20)

Note Visual Studio, with its advanced design and editing capabilities, provides the easiest and most productive
way to develop Windows Forms applications. Therefore, the recipes in this chapter—unlike those in most other
chapters—rely heavily on the use of Visual Studio. Instead of focusing on the library classes that provide the required
functionality, or looking at the code generated by Visual Studio, these recipes focus on how to achieve the recipe’s
goal using the Visual Studio user interface and the code that you must write manually to complete the required func-
tionality. The separation of generated and manual code is particularly elegant in Visual Studio 2005 due to the
extensive use it makes of partial types.

7-1. Add a Control Programmatically

Problem

You need to add a control to a form at runtime, not design time.

Solution

Create an instance of the appropriate control class. Then add the control object to a form or a container
control by calling Controls.Add on the container. (The container’s Controls property returns a
ControlCollectioninstance.)

How It Works

In a .NET form-based application, there is really no difference between creating a control at design
time and creating it at runtime. When you create controls at design time (using a tool like Microsoft
Visual Studio), the necessary code is added to your form class. In .NET Framework 2.0, Visual Studio
will also place this code in a separate source file using the partial type functionality. You can use the
same code in your application to create controls on the fly. Just follow these steps:

1. Create an instance of the appropriate control class.

2. Configure the control properties accordingly (particularly the size and position
coordinates).

CHAPTER 7 WINDOWS FORMS

3. Add the control to the form or another container. Every control implements a read-only
Controls property that returns a ControlCollection containing references to all of its child
controls. To add a child control, invoke the Controls.Add method.

4. If you need to handle the events for the new control, you can wire them up to existing methods.

Ifyouneed to add multiple controls to a form or container, you should call SuspendLayout on the
parent control before adding the dynamic controls, and then call ResumeLayout once you have finished.
This temporarily disables the layoutlogic used to position controls and will allow you to avoid signif-
icant performance overheads and weird flickering if many controls are being added.

The Code

The following example demonstrates the dynamic creation of a list of checkboxes. One checkbox is
added for each item in a String array. All the checkboxes are added to a panel that has its AutoScroll
property set to True, which gives basic scrolling support to the checkbox list.

Imports System

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-01.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07 01

Private Sub Recipe07 01 Load(ByVal sender As Object, =
ByVal e As System.EventArgs) Handles Me.load
' Create an array of strings to use as the labels for
the dynamic checkboxes.
Dim foods As String() = {"Grain", "Bread", "Beans", "Eggs", "Chicken", w»
"Milk", "Fruit", "Vegetables", "Pasta", "Rice", "Fish", "Beef"}

Suspend the panel's layout logic while multiple controls
are added.
paneli.SuspendLayout()

Specify the Y coordinate of the topmost checkbox in the list.
Dim topPosition As Integer = 10
' Create one new checkbox for each name in the list of
food types.
For Each food As String In foods
' Create a new checkbox.
Dim newCheckBox As New CheckBox

Configure the new checkbox.
newCheckBox.Top = topPosition
newCheckBox.Left = 10
newCheckBox.Text = food

' Set the Y coordinate of the next checkbox.
topPosition += 30

245

246

CHAPTER 7 WINDOWS FORMS

Add the checkbox to the panel contained by the form.
paneli.Controls.Add(newCheckBox)

Next

' Resume the form's layout logic now that all controls

have been added.

Me.ResumelLayout()

End Sub
End Class

Usage

Figure 7-1 shows how the example will look when run.

Figure 7-1. A dynamically generated checkbox list

7-2. Link Data to a Control

Problem

You need to link an object to a specific control (perhaps to store some arbitrary information that
relates to a given display item).

Solution

Store a reference to the object in the Tag property of the control.

How It Works

Every class that derives from Control inherits a Tag property. The Tag property is not used by the
control or the .NET Framework. Instead, it’s reserved as a convenient storage place for application-
specific information. In addition, some other classes not derived from Control also provide a Tag
property. Useful examples include the ListViewItem, TreeNode, and MenuItem classes.

CHAPTER 7 WINDOWS FORMS

Because the Tag property is defined as an Object type, you can use it to store any value type or
reference type, from a simple number or string to a custom object you have defined. When retrieving
data from the Tag property, you must cast the Object to the correct type before use.

The Code

The following example adds a list of filenames (as ListViewItem objects) to a ListView control. The

corresponding System.I0.FileInfo object for each file is stored in the Tag property of its respective
ListViewItem. When a user double-clicks one of the filenames, the code retrieves the FileInfo object
from the Tag property and displays the filename and size using the MessageBox Shared method Show.

Imports System

Imports System.IO

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-02.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07 02

Private Sub Recipe07 02 Load(ByVal sender As Object, =
ByVal e As System.EventArgs) Handles Me.load

' Get all the files in the root directory/
Dim rootDirectory As New DirectoryInfo("C:\")
Dim files As FileInfo() = rootDirectory.GetFiles
' Display the name of each file in the ListView.
For Each file As FileInfo In files
Dim item As ListViewItem = listViewl.Items.Add(file.Name)
item.ImageIndex = 0
' Associate each FileInfo object with its ListViewItem.
item.Tag = file
Next

End Sub

Private Sub listViewl ItemActivate(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles listViewl.ItemActivate
' Get information from the linked FileInfo object and display
it using a MessageBox.
Dim item As ListViewItem = DirectCast(sender, ListView).SelectedItems(0)
Dim file As FileInfo = DirectCast(item.Tag, FileInfo)
Dim info As String = String.Format("{o} is {1} bytes.", file.FullName, ‘=
file.Length)

MessageBox.Show(info, "File Information")

End Sub
End Class

247

248 CHAPTER 7 WINDOWS FORMS

Usage

Figure 7-2 shows how the example will look when run.

Figure 7-2. Storing data in the Tag property

7-3. Process All the Controls on a Form

Problem

You need to perform a generic task with all the controls on the form. For example, you may need to
retrieve or clear their Text property, change their color, or resize them.

Solution

Iterate recursively through the collection of controls. Interact with each control using the properties
and methods of the base Control class.

How It Works

You can iterate through the controls on a form using the ControlCollection object obtained from
the Controls property. The ControlCollection includes all the controls that are placed directly on
the form surface. However, if any of these controls are container controls (such as GroupBox, Panel,
or TabPage), they might contain more controls. Thus, it's necessary to use recursive logic that searches
the Controls collection of every control on the form.

The Code

The following example demonstrates the use of recursive logic to find every TextBox on a form and
clears the text they contain. When a button is clicked, the code tests each control on the form to
determine whether it is a TextBox by using the TypeOf keyword in conjunction with the Is operator.

CHAPTER 7 WINDOWS FORMS

Imports System

Imports System.IO

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-03.Designer.vb. You can see this

' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07 03

Private Sub cmdProcessAll Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles cmdProcessAll.Click

ProcessControls(Me)
End Sub

Private Sub ProcessControls(ByVal ctrl As Control)
' Ignore the control unless it's a textbox.

If TypeOf (ctrl) Is TextBox Then
ctrl.Text = ""

End If

' Process controls recursively. This is required

if controls contain other controls (for

example, if you use panels, group boxes, or other

container controls).

For Each ctrlChild As Control In ctrl.Controls
ProcessControls(ctrlChild)

Next

End Sub
End Class

7-4. Track the Visible Forms in an Application

Problem

You need access to all of the open forms that are currently owned by an application.

Solution

Iterate through the FormCollection object that you get from the Shared property OpenForms of the
Application object.

How It Works

In .NET Framework 2.0, Windows Forms applications automatically keep track of the open forms
that they own. This information is accessed through the Application.OpenForms property, which
returns a FormCollection object containing a Form object for each form the application owns. You
can iterate through the FormCollectionto access all Form objects or obtain a single Form object using
its name (Form.Name) or its position in the FormCollection as an index.

249

250

CHAPTER 7 WINDOWS FORMS

The My object (see Chapter 5 for more information) provides an identical OpenForms property in
the My.Application class. It also provides quick-and-easy design-time access to each form in the
current project via the My.Forms class.

The Code

The following example demonstrates the use of the Application.OpenForms property and the
FormCollection it returns to manage the active forms in an application. The example allows you to
create new forms with specified names. A list of active forms is displayed when you click the Refresh
List button. When you click the name of a form in the list, it is made the active form.

Because of the way the FormCollection works, more than one form may have the same name. If
duplicate forms have the same name, the first one found will be activated. If you try to retrieve a Form
using a name that does not exist, Nothing is returned. The following is the code for the application’s
main form

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe07-04.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Public Class Recipe07_04

Private Sub Recipe07 04 Load(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles MyBase.Load

Refresh the list to display the initial set of forms.
RefreshForms()

End Sub
" A button click event handler to create a new child form.
Private Sub btnNewForm Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles btnNewForm.Click
' Create a new child form and set its name as specified.
If no name is specified, use a default name.
Dim child As New Recipe07_04Child

If txtFormName.Text Is String.Empty Then
child.Name = "Child Form"
Else
child.Name = txtFormName.Text
End If
' Show the new child form.
child.Show()

End Sub

List selection event handler to activate the selected form based on
its name.

CHAPTER 7 WINDOWS FORMS

Private Sub listForms SelectedIndexChanged(ByVal sender As Object, w»

ByVal e As System.EventArgs) Handles listForms.SelectedIndexChanged
' Activate the selected form using its name as the index into the

collection of active forms. If there are duplicate forms with the
same name, the first one found will be activated.
Dim selectedForm As Form = Application.OpenForms(listForms.Text)
' If the form has been closed, using its name as an index into the
FormCollection will return nothing. In this instance, update the
list of forms.
If selectedForm IsNot Nothing Then

" Activate the selected form.

selectedForm.Activate()

Else
' Display a message and refresh the form list.
MessageBox.Show("Form closed; refreshing list...", "Form Closed")
RefreshForms ()

End If

End Sub
" A button click event handler to initiate a refresh of the list of
active forms.

Private Sub btnRefresh Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles btnRefresh.Click

RefreshForms ()

End Sub
" A method to perform a refresh of the list of active forms.
Private Sub RefreshForms()

' Clear the list and repopulate from the Application.OpenForms
property.
listForms.Items.Clear()

For Each f As Form In Application.OpenForms
listForms.Items.Add(f.Name)
Next

End Sub
End Class

The following is the code for the child forms you create by clicking the New Form button.

Imports System

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-04Child.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07 04Child

251

252

CHAPTER 7 WINDOWS FORMS

" A button click event handler to close the child form.
Private Sub btnClose Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles btnClose.Click

Close()

End Sub

Display the name of the form when it is painted.
Private Sub Recipe07 04Child Paint(ByVal sender As Object, w»
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

Display the name of the form.
1blFormName.Text = Name

End Sub
End Class

Notes

Versions 1.0 and 1.1 of the .NET Framework do not provide any way of determining which forms are
currently owned by an application. (The one exception is MDI applications, as described in recipe 7-5.)
If you want to determine which forms exist or which forms are displayed, or you want one form to
call the methods or set the properties of another form, you will need to keep track of form instances
on your own.

For tracking small numbers of forms, one useful approach is to create a Shared class consisting
of Shared members. Each Shared member holds a reference to a specific Form. If you have many forms
you need to track, such as in a document-based application where the user can create multiple
instances of the same form, one per document, a generic collection such as a System.Collections.
Generic.Dictionary(Of String,Form) is very useful. This lets you map a Form object to a name.

Whichever approach you take, each Formobject should register itself with the tracker class when
itis first created. A logical place to put this code is in the Form. Load event. Conversely, when the Form
object is closed, it should deregister itself with the tracker class. Deregistration should occur in the
Closing or Closed events of the Form class. This method would work very well as a base class from
which each new form inherits.

Using either of these approaches, any code that requires access to a Form object can obtain a
reference to it from the members of the tracker class, and even invoke operations on the Form instance
directly through the tracker class if you are sure the Form object exists.

7-5. Find All MDI Child Forms

Problem

You need to find all the forms that are currently being displayed in an MDI application.

Solution
Iterate through the forms returned by the MdiChildren collection property of the MDI parent.

CHAPTER 7 WINDOWS FORMS 253

How It Works

The .NET Framework includes two convenient shortcuts for managing the forms open in MDI appli-
cations: the MdiParent and MdiChildren properties of the Form class. The MdiParent property of any
MDI child returns a Form representing the containing parent window. The MdiChildren property
returns an array containing all of the MDI child forms.

The Code

The following example presents an MDI parent window that allows you to create new MDI children
by clicking the New item on the File menu. Each child window contains a label, which displays the

date and time when the MDI child was created, and a button. When the button is clicked, the event
handler walks through all the MDI child windows and displays the label text that each one contains.
Notice that when the example enumerates the collection of MDI child forms, it converts the generic
Form reference to the derived Recipe07_05Child form class so thatit can use the LabelText property.
The following is the Recipe07_05Parent class.

Imports System

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-05Parent.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07 O5Parent

When the New menu item is clicked, create a new MDI child.
Private Sub mnuNew Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles mnuNew.Click

Dim frm As New Recipe07 05Child

frm.MdiParent = Me
frm.Show()

End Sub

End Class
The following is the Recipe07_05Child class.

Imports System

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-05Child.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07 05Child

A property to provide easy access to the label data.
Public ReadOnly Property LabelText() As String
Get
Return label.Text
End Get
End Property

254 CHAPTER 7 WINDOWS FORMS

' When a button on any of the MDI child forms is clicked, display the

' contents of each form by enumerating the MdiChildren collection.

Private Sub cmdShowAllWindows Click(ByVal sender As System.Object, ‘w»
ByVal e As System.EventArgs) Handles cmdShowAllWindows.Click

For Each frm As Form In Me.MdiParent.MdiChildren
' Cast the generic Form to the Recipe07 05Child derived class type.
Dim child As Recipe07 05Child = DirectCast(frm, Recipe07_05Child)
MessageBox.Show(child.LabelText, frm.Text)

Next

End Sub
' Set the MDI child form's label to the current date/time.
Private Sub Recipe07 05Child Load(ByVal sender As Object, ‘=
ByVal e As System.EventArgs) Handles Me.Load
label.Text = DateTime.Now.ToString
End Sub
End Class

Usage

Figure 7-3 shows how the example will look when run.

Figure 7-3. Getting information from multiple MDI child windows

CHAPTER 7 WINDOWS FORMS

7-6. Save Configuration Settings for a Form

Problem

You need to store configuration settings for a form so that they are remembered the next time that
the form is shown.

Solution

Use the NET Framework 2.0 Application Settings functionality, which is configurable at design time
in Visual Studio.

How It Works

The Application Settings functionality in .NET Framework 2.0 provides an easy-to-use mechanism
through which you can save application and user settings used to customize the appearance and
operation of a Windows Forms application. You configure Application Settings through the Properties
panel of each Windows control (including the main Windows Form) in your application. By expanding
the ApplicationSettings property and clicking the ellipsis (three dots) to the right of (PropertyBinding),
you can review and configure Application Settings for each property of the active control. See Figure 7-4
for an example.

When you configure a new Application Setting for a control’s property, you must assign ita name, a
default value, and a scope.

¢ The name allows you to both access the setting programmatically and reuse the Application
Setting across multiple controls.

e The default value is used if the application cannot obtain a value from a configuration file at
runtime.

* The scope is either User or Application.

Settings with an Application scope are stored in the application’s configuration file (usually
located in the same folder as the application assembly) and are read-only. The benefit of an Applica-
tion scope is that you can change configuration settings by editing the configuration file without
needing to recompile the application. Settings with a User scope are read-write by default and are
stored in a file located in an isolated store (see recipe 5-18 for information about isolated stores).

When you configure your application to use Application Settings, Visual Studio actually autogener-
ates a wrapper class that provides access to the configuration file information, regardless of whether
itis scoped as Application or User. This class, named MySettings, is in the Settings.Designer.vb file,
which can be found in your project’s My Project folder. This folder also contains the Settings.settings
file. When you open this file in Visual Studio, it will display a dialog box that allows you to easily edit
your application’s settings. You will see these files only if you have turned on the Show All Files option in
the Solution Explorer.

255

256 CHAPTER 7 WINDOWS FORMS

Figure 7-4. Configuring Application Settings in Visual Studio

TheMy.Settings class contains properties with names matching each of the Application Setting
names you configured for your controls’ properties. The controls will automatically read their
configuration at startup, but you should store configuration changes prior to terminating your appli-
cation by calling the My. Settings.Save method. You can also configure this to occur automatically
by checking the Save My.Settings on Shutdown option in the Application section of your project’s
properties, as shown in Figure 7-5.

CHAPTER 7 WINDOWS FORMS 257

Figure 7-5. Automatically saving settings on shutdown

The Code

The following example shows how to update and save Application Settings, which are Size and
Color in this case, at runtime.

Imports System

Imports System.ComponentModel
Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-06.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_06

Private Sub Recipe07 06 Load(ByVal sender As Object, =
ByVal e As System.EventArgs) Handles Me.load

Me.Size = My.Settings.Size

End Sub

258 CHAPTER 7 WINDOWS FORMS

Private Sub Button Click(ByVal sender As System.Object, ‘w»
ByVal e As System.EventArgs) Handles redButton.Click, blueButton.Click, w»
greenButton.Click

Change the color of the textbox depending on which button
was pressed.
Dim btn As Button = TryCast(sender, Button)

If btn IsNot Nothing Then
' Set the BackColor of the textbox to the ForeColor of the button.
textBox1.BackColor = btn.ForeColor

Update the application settings with the new value.
My.Settings.Color = textBox1.BackColor

End If
End Sub

Private Sub Recipe07 06 FormClosing(ByVal sender As Object, ‘w»
ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

Update the application settings for Form.
My.Settings.Size = Me.Size

Store all application settings.
My.Settings.Save()

End Sub

End Class

7-17. Force a List Box to Scroll to the Most
Recently Added Item

Problem

You need to scroll a list box programmatically so that the most recently added items are visible.

Solution

Set the ListBox.TopIndex property, which sets the first visible list item.

How It Works

In some cases, you might have a list box that stores a significant amount of information or one that
you add information to periodically. Often, the most recent information, which is added at the end
of the list, is more important than the information at the top of the list. One solution is to scroll the
list box so that recently added items are visible. The ListBox.TopIndex property enables you to do
this by allowing you to specify which item is visible at the top of the list.

CHAPTER 7 WINDOWS FORMS

The Code

The following sample form includes a list box and a button. Each time the button is clicked, 20 items
are added to the list box. Each time new items are added, the code sets the ListBox.TopIndex property
and forces the list box to display the most recently added items. To provide better feedback, the
same line is also selected.

Imports System

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-07.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07 07

Private counter As Integer =1

' Button click event handler adds 20 new items to the ListBox.
Private Sub cmdTest Click(ByVal sender As Object, ‘=

ByVal e As System.EventArgs) Handles cmdTest.Click

' Add 20 items.
For i As Integer = 1 To 19

counter += 1

listBox1.Items.Add("Item " & counter.ToString())
Next
' Set the TopIndex property of the ListBox to ensure the
most recently added items are visible.
listBox1.TopIndex = listBox1.Items.Count - 1
listBox1.SelectedIndex = listBox1.Items.Count - 1

End Sub
End Class

7-8. Restrict a Texthox to Accepting
Only Specific Input

Problem

You need to create a textbox that will reject all nonnumeric keystrokes.

Solution

Use the MaskedTextBox control and set the Mask property to configure the input that is acceptable.

How It Works

One way to ensure user input is valid is to prevent invalid data from being entered in the first place.
The MaskedTextBox control facilitates this approach. The MaskedTextBox.Mask property takes a string
that specifies the input mask for the control. This mask determines what type of input a user can

259

260

CHAPTER 7 WINDOWS FORMS

enter at each point in the control’s text area. If the user enters an incorrect character, the control will
beep if the BeepOnError property is True, and the MaskInputRejected event is raised so that you can
customize the handling of incorrect input.

Note The MaskedTextBox control will not solve all your user-input validation problems. While it does make
some types of validation easy to implement, without customization, it will not ensure some common validation
requirements are met. For example, you can specify that only numeric digits can be input, but you cannot specify
that they must be less than a specific value, nor can you control the overall characteristics of the input value.

The Code

The following example demonstrates the use of the MaskedTextBox control. A series of buttons allows
you to change the active mask on the MaskedTextBox control and experiment with the various masks.
Notice that the control automatically tries to accommodate existing content with the new mask
when the mask is changed. If the content is not allowed with the new mask, the control is cleared.

Imports System

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-08.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07 08

Private Sub btnTime Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles btnTime.Click
' Set the input mask to that of a short time.
Me.mskTextBox.UseSystemPasswordChar = False
Me.mskTextBox.Mask = "00:00"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus()

End Sub

Private Sub btnDecimal Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles btnDecimal.Click
' Set the input mask to that of a decimal.
Me.mskTextBox.UseSystemPasswordChar = False
Me.mskTextBox.Mask = "999,999.00"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus()

End Sub

Private Sub btnDate Click(ByVal sender As System.Object, ‘w»
ByVal e As System.EventArgs) Handles btnDate.Click

' Set the input mask to that of a short date.
Me.mskTextBox.UseSystemPasswordChar = False
Me.mskTextBox.Mask = "00/00/0000"

CHAPTER 7 WINDOWS FORMS

Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus ()

End Sub

Private Sub btnUSZip Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles btnUSZip.Click

' Set the input mask to that of a US ZIP code.
Me.mskTextBox.UseSystemPasswordChar = False
Me.mskTextBox.Mask = "00000-9999"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus ()

End Sub

Private Sub btnUKPost Click(ByVal sender As System.Object, ‘w»
ByVal e As System.EventArgs) Handles btnUKPost.Click

' Set the input mask to that of a UK postcode.
Me.mskTextBox.UseSystemPasswordChar = False
Me.mskTextBox.Mask = ">LCCC 9LL"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus ()

End Sub

Private Sub btnSecret Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles btnSecret.Click

' Set the input mask to that of a secret PIN.
Me.mskTextBox.UseSystemPasswordChar = True
Me.mskTextBox.Mask = "0000"
Me.lblActiveMask.Text = Me.mskTextBox.Mask
Me.mskTextBox.Focus ()

End Sub
End Class

Notes

The MaskedTextBox used in this recipe is new to .NET Framework 2.0. In previous versions of the
NET Framework, one approach was to use a standard TextBox control and handle the KeyPress
events it raises. The KeyPress event is raised after each keystroke has been received but before it
is displayed. You can use the KeyPressEventArgs event parameter to effectively cancel an invalid
keystroke by setting its Handled property to True.

For example, to allow only numeric input, you must allow a keystroke only if it corresponds to
anumber (0 through 9) or a special control key (such as Delete or the arrow keys). The keystroke
character is provided to the KeyPress event through the KeyPressEventArgs.KeyChar property. You
can use two Shared methods of the System.Char class—IsDigit and IsControl—to quickly test the
character.

261

262

CHAPTER 7 WINDOWS FORMS

7-9. Use an Autocomplete Combo Box

Problem

You want to create a combo box that automatically completes what the user is typing based on the
item list.

Solution

You can implement a basic autocomplete combo box by creating a custom control that overrides the
OnKeyPress and OnTextChanged methods of the ComboBox object.

Note The ComboBox control in .NET Framework 2.0 provides autocomplete options. You can configure the
behavior using the AutoCompleteMode property of the ComboBox class.

How It Works

An autocomplete control has many different variations. For example, the control may fill in values
based on a list of recent selections (as Microsoft Excel does when you are entering cell values), or the
control might display a drop-down list of near matches (as Microsoft Internet Explorer does when
you are typing a URL). You can create a basic autocomplete combo box by handling the KeyPress
and TextChanged events, or by creating a custom class that derives from ComboBox and overrides the
OnKeyPress and OnTextChanged methods.

The Code

The following example contains an AutoCompleteComboBox control that derives from ComboBox.
The AutoCompleteComboBox control supports autocompletion by overriding the OnKeyPress and
OnTextChanged inherited methods. In the OnKeyPress method, the combo box determines whether or
not an autocomplete replacement should be made. If the user pressed a character key (such as a
letter), the replacement can be made, but if the user pressed a control key (such as the backspace
key, the cursor keys, and so on), no action should be taken. The OnTextChanged method performs the
actual replacement after the key processing is complete. This method looks up the first match for the
current text in the list of items, and then adds the rest of the matching text. After the text is added,
the combo box selects the characters between the current insertion point and the end of the text.
This allows the user to continue typing and replace the autocomplete text if it is not what the user wants.

Imports System
Imports System.Windows.Forms

Public Class AutoCompleteCombobox
Inherits ComboBox
" A private member to track if a special key is pressed, in
which case, any text replacement operation will be skipped.
Private controlKey As Boolean = False

CHAPTER 7 WINDOWS FORMS

Determine whether a special key was pressed.
Protected Overrides Sub OnKeyPress(ByVal e As w»
System.Windows.Forms.KeyPressEventArgs)

First call the overridden base class method.
MyBase.OnKeyPress(e)
' (Clear the text if the Escape key is pressed.
If e.KeyChar = ChrW(Keys.Escape) Then
' Clear the text.
Me.SelectedIndex = -1
Me.Text = ""
controlKey = True
ElseIf Char.IsControl(e.KeyChar) Then
' Don't try to autocomplete when control key is pressed.
controlKey = True
Else
" Noncontrol keys should trigger autocomplete.
controlKey = False
End If

End Sub
' Perform the text substitution.
Protected Overrides Sub OnTextChanged(ByVal e As System.EventArgs)

First call the overridden base class method.
MyBase.OnTextChanged(e)

If Not Me.Text = "" And Not controlKey Then
' Search the current contents of the combo box for a
matching entry.
Dim matchText As String = Me.Text
Dim match As Integer = Me.FindString(matchText)
' If a matching entry is found, insert it now.
If Not match = -1 Then
Me.SelectedIndex = match
' Select the added text so it can be replaced
if the user keeps trying.
Me.SelectionStart = matchText.Length
Me.Selectionlength = Me.Text.lLength - Me.SelectionStart
End If
End If

End Sub
End Class

Usage

The following code demonstrates the use of the AutoCompleteComboBox by adding it to a form and
filling it with a list of words. In this example, the control is added to the form manually, and the list
of words is retrieved from a text file named words.txt. As an alternative, you could compile the

263

264

CHAPTER 7 WINDOWS FORMS

AutoCompleteComboBox class to a separate class library assembly, and then add it to the Visual Studio
Toolbox, so you could add it to forms at design time.

Imports System

Imports System.IO

Imports System.Drawing
Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-09.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_09

Private Sub Recipe07 09 Load(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles Me.Load
' Add the AutoCompleteComboBox to the form.
Dim combo As New AutoCompleteCombobox

combo. Location = New Point(10, 10)
Me.Controls.Add(combo)

' Read the list of words from the file words.txt and add them
" to the AutoCompleteComboBox.
Using fs As New FileStream("..\..\words.txt", FileMode.Open)
Using r As New StreamReader(fs)
While r.Peek > -1
Dim word As String = r.Readline
combo. Items.Add(word)
End While
End Using
End Using

End Sub
End Class

Figure 7-6 shows how the AutoCompleteComboBox will look when the example is run.

E® Recipe07_09

Figure 7-6. An autocomplete combo box

7-10. Sort a List View by Any Column

Problem

You need to sort a list view, but the built-in ListView.Sort method sorts based on only the first column.

CHAPTER 7 WINDOWS FORMS 265

Solution

Create a type that implements the System.Collections.IComparer interface and can sort
ListViewItem objects. The IComparer type can sort based on any ListViewItem criteria you specify.
Set the ListView.ListViewItemSorter property with an instance of the IComparer type before calling
the ListView.Sort method.

How It Works

The ListView control provides a Sort method that orders items alphabetically based on the text in
the first column. If you want to sort based on other column values or order items numerically, you
need to create a custom implementation of the IComparer interface that can perform the work. The
IComparer interface defines a single method named Compare, which takes two Object arguments and
determines which one should be ordered first. Full details of how to implement the IComparer inter-
face are available in recipe 13-3.

The Code

The following example demonstrates the creation of an IComparer implementation named
ListViewItemComparer. This class relies on the Compare method of String and Decimal to perform
appropriate comparisons. The ListViewItemComparer class also implements two additional proper-
ties: Column and Numeric. The Column property identifies the column that should be used for sorting.
The Numeric property is a Boolean flag that can be set to True if you want to perform number-based
comparisons instead of alphabetic comparisons. The numeric sorting is applied when the users
clicks the first column.

When the user clicks a column heading, the example creates a ListViewItemComparer instance,
configures the column to use for sorting, and assigns the ListViewItemComparer instance to the
ListView.ListViewItemSorter property before calling the ListView.Sort method.

Imports System

Imports system.Collections
Imports System.Windows.forms
" All designed code is stored in the autogenerated partial
class called Recipe07-10.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_10

Private Sub listViewl ColumnClick(ByVal sender As Object, ‘=
ByVal e As System.Windows.Forms.ColumnClickEventArgs) Handles listViewl.ColumnClick

Create and/or configure the ListViewItemComparer to sort based on
the column that was clicked.

Dim sorter As ListViewItemComparer = TryCast(listViewl.lListViewItemSorter, w»
ListViewItemComparer)

If sorter Is Nothing Then
' Create a new ListViewItemComparer.
sorter = New ListViewItemComparer(e.Column)
' Use Decimal comparison for the first column.
If e.Column = 0 Then
sorter.Numeric = True

266 CHAPTER 7 WINDOWS FORMS

Else
sorter.Numeric = False
End If

listViewl.ListViewItemSorter = sorter
Else

Use Decimal comparison for the first column.
If e.Column = 0 Then

sorter.Numeric = True
Else

sorter.Numeric = False
End If

Configure the existing ListViewItemComparer.
If sorter.Column = e.Column Then
sorter.Descending = Not sorter.Descending
Else
sorter.Column = e.Column
sorter.Descending = False
End If
End If

" Sort the ListView.
listView1.Sort()

End Sub
End Class

Public Class ListViewItemComparer
Implements IComparer
' Private members to configure comparer logic.
Private m Column As Integer
Private m Numeric As Boolean = False
Private m Descending As Boolean = False
' Property to get/set the column to use for comparison.
Public Property Column() As Integer
Get
Return m_Column
End Get
Set(ByVal value As Integer)
m_Column = value
End Set
End Property
' Property to get/set whether numeric comparison is required
as opposed to the standard alphabetic comparison.
Public Property Numeric() As Boolean
Get
Return m_Numeric
End Get

CHAPTER 7 WINDOWS FORMS

Set(Byval value As Boolean)
m_Numeric = value
End Set
End Property
' Property to get/set whether we are sorting in descending
order or not.
Public Property Descending() As Boolean
Get
Return m_Descending
End Get
Set(Byval Value As Boolean)
m_Descending = Value
End Set
End Property

Public Sub New(ByVal columnIndex As Integer)
Column = columnIndex
End Sub

Public Function Compare(ByVal x As Object, ByVal y As Object) '
As Integer Implements System.Collections.IComparer.Compare

Convert the arguments to ListViewItem objects.
Dim itemX As ListViewItem = TryCast(x, ListViewItem)
Dim itemY As ListViewItem = TryCast(y, ListViewItem)
' Handle the logic for a Nothing reference as dictated by the
IComparer interface. Nothing is considered less than
any other value.

If itemX Is Nothing And itemY Is Nothing Then
Return 0

ElseIf itemX Is Nothing Then
Return -1

ElseIf itemY Is Nothing Then
Return 1

End If

Short-circuit condition where the items are references
to the same object.
If itemX Is itemY Then Return 0

Determine if numeric comparison is required.
If Numeric Then

' Convert column text to numbers before comparing.
If the conversion fails, just use the value 0.
Dim itemXVal, itemYVal As Decimal

If Not Decimal.TryParse(itemX.SubItems(Column).Text, itemXVal) Then

itemXval = 0

End If

If Not Decimal.TryParse(itemY.SubItems(Column).Text, itemYVal) Then
itemyval = 0

End If

267

268

CHAPTER 7 WINDOWS FORMS

If Descending Then
Return Decimal.Compare(itemYval, itemXval)
Else
Return Decimal.Compare(itemXval, itemYval)
End If
Else
' Keep the column text in its native string format
and perform an alphabetic comparison.
Dim itemXText As String = itemX.SubItems(Column).Text
Dim itemYText As String = itemY.SubItems(Column).Text

If Descending Then
Return String.Compare(itemYText, itemXText)
Else
Return String.Compare(itemXText, itemYText)
End If
End If

End Function
End Class

7-11. Lay Out Controls Automatically

Problem

You have a large set of controls on a form and you want them arranged automatically.

Solution

Use the FlowLayoutPanel container to dynamically arrange the controls using a horizontal or vertical
flow, or use the TableLayoutPanel container to dynamically arrange the controls in a grid.

How It Works

The FlowLayoutPanel and TableLayoutPanel containers (both new to .NET Framework 2.0) simplify
the design-time and runtime layout of the controls they contain. At both design time and runtime,
as you add controls to one of these panels, the panel’s logic determines where the control should be
positioned, so you do not need to determine the exact location.

With the FlowLayoutPanel container, the FlowDirection and WrapContents properties determine
where controls are positioned. FlowDirection controls the order and location of controls, and it can
be set to LeftToRight (the default), TopDown, RightToleft, or BottomUp. The WrapContents property
controls whether controls run off the edge of the panel or wrap around to form a new line of controls.
The default is to wrap controls.

With the TablelLayoutPanel container, the RowCount and ColumnCount properties control how
manyrows and columns are currentlyin the panel’s grid. The default for both of these propertiesis 0. The
GrowStyle property determines how the grid grows to accommodate more controls once it is full, and
it can be set to AddRows (the default), AddColumns, or FixedSize (which means the grid cannot grow).

Figure 7-7 shows the design-time appearance of both a TableLayoutPanel container and a
FlowLayoutPanel container. The TableLayoutPanel panel is configured with three rows and three
columns. The FlowLayoutPanel panel is configured to wrap contents and use left-to-right flow direction.

CHAPTER 7 WINDOWS FORMS

Figure 7-7. Using a FlowLayoutPanel panel and a TableLayoutPanel panel

7-12. Use Part of a Main Menu for a Context Menu

Problem

You need to create a context menu that shows the same menu items as those displayed as part of an
application’s main menu.

Solution

Use the CloneMenu method of the MenuItem class to duplicate the required portion of the main menu.

How It Works

In many applications, a control’s context-sensitive menu duplicates a portion of the main menu.
However, .NET does not allow you to create a MenuIteminstance that is contained in more than one
menu at a time.

The solution is to make a duplicate copy of a portion of the menu using the CloneMenu method,
which returns a reference to the cloned item. The CloneMenu method not only copies the appropriate
MenuItemitems (and any contained submenus), but it also registers each MenuItem object with the
same event handlers. Thus, when a user clicks a cloned menu item in a context menu, the event
handler will be triggered as if the user had clicked the menu item in the main menu.

The Code

The following example uses the CloneMenu method to configure the context menu for a TextBox to be
a duplicate of the File menu.

Imports system
Imports System.Drawing
Imports System.Windows.Forms

269

270 CHAPTER 7 WINDOWS FORMS

All designed code is stored in the autogenerated partial
class called Recipe07-12.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_12

As the main form loads, clone the required section of the main

menu and assign it to the ContextMenu propety of the TextBox.
Private Sub Recipe07 12 Load(ByVal sender As Object, w»

ByVal e As System.EventArgs) Handles Me.Load

Dim mnuContext As New ContextMenu

' Copy the menu items from the File menu into a context menu.

For Each mnuItem As MenuItem In mnuFile.MenuItems
mnuContext.MenuItems.Add(mnuItem.CloneMenu)

Next

' Attach the cloned menu to the TextBox.
TextBox1.ContextMenu = mnuContext

End Sub

Event handler to display the ContextMenu for the TextBox.
Private Sub TextBoxi MouseDown(ByVal sender As Object, ‘=
ByVal e As System.Windows.Forms.MouseEventArgs) Handles TextBox1.MouseDown

If e.Button = Windows.Forms.MouseButtons.Right Then
TextBox1.ContextMenu. Show(TextBox1, New Point(e.X, e.Y))
End If

End Sub
' Event handler to process clicks on File/Open menu item.
For the purpose of the example, simply show a message box.
Private Sub mnuOpen Click(ByVal sender As Object, ‘w»
ByVal e As System.EventArgs) Handles mnuOpen.Click
MessageBox.Show("This is the event handler for Open.", "Recipeo7-12")
End Sub

Private Sub mnuSave Click(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles mnuSave.Click
MessageBox.Show("This is the event handler for Save.", "Recipe07-12")
End Sub

Private Sub mnuExit Click(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles mnuExit.Click
MessageBox.Show("This is the event handler for Exit.", "Recipe07-12")
End Sub

End Class

CHAPTER 7 WINDOWS FORMS

Usage

Figure 7-8 shows how the example will look when run.

Figure 7-8. Copying part of a main menu to a context menu

7-13. Make a Multilingual Form

Problem

You need to create a localizable form that can be deployed in more than one language.

Solution

Store all locale-specific information in resource files, which are compiled into satellite assemblies.

How It Works

The .NET Framework includes built-in support for localization through its use of resource files. The
basic idea is to store information that is locale-specific (for example, button text) in a resource file.
You can create resource files for each culture you need to support and compile them into satellite
assemblies. When you run the application, .NET will automatically use the correct satellite assembly
based on the locale settings of the current user/ computer.

You can read to and write from resource files manually; they are XML files (see recipe 1-17 for
more information about resource files). However, Visual Studio also includes extensive design-time
support for localized forms. It works like this:

2n

272 CHAPTER 7 WINDOWS FORMS

1. Setthe Localizable property of a Form to True using the Properties window.

2. Set the Language property of the form to the locale for which you would like to enter infor-
mation, as shown in Figure 7-9. Then configure the localizable properties of all the controls
on the form. Instead of storing your changes in the designer-generated code for the form,
Visual Studio will actually create a new resource file to hold your data.

Figure 7-9. Selecting a language for localizing a form

3. Repeat step 2 for each language that you want to support. Each time you enter a new locale
for the form’s Language property, a new resource file will be generated. If you select Project »
Show All Files from the Visual Studio menu, you will find these resource files under your form’s
folder, as shown in Figure 7-10. If you change the Language property to a locale you have
already configured, your previous settings will reappear, and you will be able to modify them.

You can now compile and test your application on differently localized systems. Visual Studio
will create a separate directory and satellite assembly for each resource file in the project. You can
select Project » Show All Files from the Visual Studio menu to see how these files are arranged, as
shown in Figure 7-10.

CHAPTER 7 WINDOWS FORMS

EMEsl Recipe07-13
=i My Project
=3 References

1 obj

= E] Recipe07-13.vb
%] Recipe07-13.Designer.vb
%) Recipe07-13.en.resx
%) Recipe07-13.fr.resx
4] Recipe07-13.resx

Figure 7-10. Satellite assembly and resource files structure

The Code

Although you do not need to manually code any of the localization functionality, as a testing
shortcut, you can force your application to adopt a specific culture by modifying the Thread.
CurrentUICulture property of the application thread. However, you must modify this property
before the form has loaded.

Imports System

Imports System.Threading
Imports System.Globalization
Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-13.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07 13

Public Shared Sub Main()

Thread.CurrentThread.CurrentUICulture = New CultureInfo("fr")
Application.Run(New Recipe07 13)

End Sub
End Class

Usage

Figure 7-11 shows both the English and French versions of the example. As you can see, both the
language and the layout of the form are different depending on the current locale.

273

274 CHAPTER 7 WINDOWS FORMS

Figure 7-11. English and French localizations

7-14. Create a Form That Cannot Be Moved

Problem

You want to create a form that occupies a fixed location on the screen and cannot be moved.

Solution

Make a borderless form by setting the FormBorderStyle property of the Form class to the value
FormBorderStyle.None.

How It Works

You can create a borderless form by setting the FormBorderStyle property of a Form to None. Border-
less forms cannot be moved. However, as their name implies, they also lack any kind of border. If
you want a border, you will need to add it yourself, either with manual drawing code or by using a
background image.

One other approach to creating an immovable form does provide a basic control-style border. First,
setthe ControlBox, MinimizeBox, and MaximizeBox properties of the form to False. Then set the Text
property to an empty string. The form will have a raised gray border or black line (depending on the
FormBorderStyle option you use), similar to a button. Figure 7-12 shows both types of immovable forms.

CHAPTER 7 WINDOWS FORMS

Figure 7-12. Two types of forms that cannot be moved

7-15. Make a Borderless Form Movable

Problem

You need to create a borderless form that can be moved. This might be the case if you are creating a
custom window that has a unique look (for example, for a visually rich application such as a game or
a media player).

Solution

Create another control that responds to the MouseDown, MouseUp, and MouseMove events and program-
matically moves the form.

How It Works

Borderless forms omit a title bar, which makes it impossible for a user to move them. You can compen-
sate for this shortcoming by adding a control to the form that serves the same purpose. For example,
Figure 7-13 shows a form that includes a label to support dragging. The user can click this label, and
then drag the form to a new location on the screen while holding down the mouse button. As the
user moves the mouse, the form moves correspondingly, as though it were “attached” to the mouse
pointer.

275

276

CHAPTER 7 WINDOWS FORMS

Figure 7-13. A movable borderless form

To implement this solution, take the following steps:

1. Create a form-level Boolean variable that tracks whether or not the form is currently being
dragged.

2. When the label is clicked, the code sets the flag to indicate that the form is in drag mode. At
the same time, the current mouse position is recorded. You add this logic to the event handler
for the Label.MouseDown event.

3. When the user moves the mouse over the label, the form is moved correspondingly, so that
the position of the mouse over the label is unchanged. You add this logic to the event handler
for the Label.MouseMove event.

4. When the user releases the mouse button, the dragging mode is switched off. You add this
logic to the event handler for the Label.MouseUp event.

The Code

The following example creates a borderless form that a user can move by clicking a form control and
dragging the form.

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe07-15.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_15

Boolean member tracks whether the form is in drag mode.

If it is, mouse movements over the label will be translated
into form movements.

Private dragging As Boolean

' Stores the offset where the label is clicked.

Private pointClicked As Point

' MouseDown event handler for the label initiates the dragging process.
Private Sub 1blDrag MouseDown(ByVal sender As Object, ‘=

ByVal e As System.Windows.Forms.MouseEventArgs) Handles 1blDrag.MouseDown

CHAPTER 7 WINDOWS FORMS

If e.Button = Windows.Forms.MouseButtons.Left Then
' Turn the drag mode on and store the point clicked.
dragging = True
pointClicked = New Point(e.X, e.Y)
Else
dragging = False
End If

End Sub
' MouseMove event handler for the label processes dragging movements if
the form is in drag mode.

Private Sub 1blDrag MouseMove(ByVal sender As Object, ‘=
ByVal e As System.Windows.Forms.MouseEventArgs) Handles 1lblDrag.MouseMove

If dragging Then

Dim pointMoveTo As Point
' Find the current mouse position in screen coordinates.
pointMoveTo = Me.PointToScreen(New Point(e.X, e.Y))

Compensate for the position of the control clicked.
pointMoveTo.Offset(-pointClicked.X, -pointClicked.Y)
' Move the form.
Me.Location = pointMoveTo

End If

End Sub
' MouseUp event handler for the label switches off drag mode.
Private Sub 1blDrag MouseUp(ByVal sender As Object, w»
ByVal e As System.Windows.Forms.MouseEventArgs) Handles 1blDrag.MouseUp
dragging = False
End Sub

Private Sub cmdClose Click(ByVal sender As System.Object, '
ByVal e As System.EventArgs) Handles cmdClose.Click
Me.Close()
End Sub

End Class

7-16. Create an Animated System Tray Icon

Problem

You need to create an animated system tray icon (perhaps to indicate the status of along-running
task).

277

278

CHAPTER 7 WINDOWS FORMS

Solution

Create and show a NotifyIcon control. Use a timer that fires periodically (every second or so) and
updates the NotifyIcon.Icon property.

How It Works

The .NET Framework makes it easy to show a system tray icon with the NotifyIcon component.
You simply need to add this component to a form and supply an icon by setting the Icon property.
Optionally, you can add a linked context menu through the ContextMenu property. The NotifyIcon
component automatically displays its context menu when it’s right-clicked. You can animate a
system tray icon by swapping the icon periodically.

The Code

The following example uses eight icons, each of which shows a moon graphic in a different stage of
fullness. By moving from one image to another, the illusion of animation is created.

Imports System

Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe07-16.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_16

An array to hold the set of Icons used to create the
animation effect.
Private images As Icon() = New Icon(8) {}

An integer to identify the current icon to display.
Dim offset As Integer = 0

Private Sub Recipe07 16 Load(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles Me.Load

' Load the basic set of eight icons.
images(0) = New Icon("moon01.ico"
images(1) = New Icon("moon02.ico"
images(2) = New Icon("moon03.ico"
images(3) = New Icon("moon04.ico"
images(4) = New Icon("moon05.ico"
images(5) = New Icon("moon06.ico"
images(6) = New Icon("moon07.ico"
images(7) = New Icon("moon08.ico"

End Sub

Private Sub timer Elapsed(ByVal sender As Object, w»
ByVal e As System.Timers.ElapsedEventArgs) Handles timer.Elapsed

CHAPTER 7 WINDOWS FORMS

Change the icon. This event handler fires once every
' second (1000ms).

notifyIcon.Icon = images(offset)

offset += 1

If offset > 7 Then offset = 0

End Sub
End Class

7-17. Validate an Input Control

Problem

You need to alert the user of invalid input in a control, such as a TextBox.

Solution

Use the ErrorProvider component to display an error icon next to the offending control. Check for
errors before allowing the user to continue.

How It Works

You can perform validation in a Windows-based application in a number of ways. One approach is
to refuse any invalid character as the user presses a key, by using a MaskedTextBox control, as shown
in recipe 7-8. Another approach is to respond to control validation events and prevent users from
changing focus from one control to another if an error exists. A less invasive approach is to simply
flag the offending control in some way, so that the user can review all the errors at once. You can use
this approach by adding the ErrorProvider component to your form.

The ErrorProvider is a special property extender component that displays error icons next to
invalid controls. You show the error icon next to a control by using the ErrorProvider.SetError
method and specifying the appropriate control and a string error message. The ErrorProvider will
then show a warning icon to the right of the control. When the user hovers the mouse above the warning
icon, the detailed message appears. To clear an error, just pass an empty string to the SetError method.

You need to add only one ErrorProvider component to your form, and you can use it to display
an error icon next to any control. To add the ErrorProvider, drag it on the form or into the compo-
nent tray, or create it manually in code.

The Code

The following example checks the value that a user has entered into a textbox whenever the textbox
loses focus. The code validates this textbox using a regular expression that checks to see if the value
corresponds to the format of a valid e-mail address (see recipe 2-5 for more details on regular
expressions). If validation fails, the ExrrorProvider is used to display an error message. If the text is
valid, any existing error message is cleared from the ExrrorProvider. Finally, the Click event handler
for the OK button steps through all the controls on the form and verifies that none of them have errors
before allowing the example to continue. In this example, an empty textbox is allowed, although it
would be a simple matter to perform additional checks when the OK button is clicked for situations
where empty textboxes are not acceptable.

279

280 CHAPTER 7 WINDOWS FORMS

Imports System

Imports System.Windows.Forms

Imports System.Text.RegularExpressions
" All designed code is stored in the autogenerated partial
class called Recipe07-17.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_17

Button click event handler ensures the ErrorProvider is not
reporting any error for each control before proceeding.

Private Sub Buttoni Click(ByVal sender As System.Object, ‘w»
ByVal e As System.EventArgs) Handles Buttoni.Click

Dim errorText As String = String.Empty
Dim invalidInput As Boolean = False

For Each ctrl As Control In Me.Controls
If Not errProvider.GetError(ctrl) = String.Empty Then
errorText += " * " & errProvider.GetError(ctrl) & w»
ControlChars.NewlLine
invalidInput = True
End If
Next

If invalidInput Then
MessageBox.Show(String.Format("This form contains the following " & ‘w»
"unresolved errors:{0}{0}{1}", ControlChars.NewlLine, errorText, "Invalid Input", =
MessageBoxButtons.OK, MessageBoxIcon.Warning))
Else
Me.Close()
End If

End Sub
" When the TextBox loses focus, check that the contents are a valid
email address.
Private Sub txtEmail Leave(ByVal sender As Object, ‘=
ByVal e As System.EventArgs) Handles txtEmail.Leave
' Create a regular expression to check for valid email addresses.
Dim emailRegEx As Regex

emailRegEx = New Regex("~[\w-]+@([\w]+\.)+[\w]+$")

' Validate the text from the control that raised the event.
Dim ctrl As Control = DirectCast(sender, Control)

If emailRegEx.IsMatch(ctrl.Text) Or ctrl.Text = String.Empty Then
errProvider.SetError(ctrl, String.Empty)
Else
errProvider.SetError(ctrl, "This is not a valid email address.")
End If

CHAPTER 7 WINDOWS FORMS

End Sub
End Class

Usage

Figure 7-14 shows how the ErrorProvider control indicates an input error for the TextBox control
when the example is run.

Figure 7-14. A validated form with the ErrorProvider

7-18. Use a Drag-and-Drop Operation

Problem

You need to use the drag-and-drop feature to exchange information between two controls (possibly
in separate windows or in separate applications).

Solution

Start a drag-and-drop operation using the DoDragDrop method of the Control class, and then respond to
the DragEnter and DragDrop events.

How It Works

A drag-and-drop operation allows the user to transfer information from one place to another by clicking
an item and dragging it to another location. A drag-and-drop operation consists of the following
three basic steps:

1. The user clicks a control, holds down the mouse button, and begins dragging. If the control
supports the drag-and-drop feature, it sets aside some information.

2. The user drags the mouse over another control. If this control accepts the dragged type of
content, the mouse cursor changes to the special drag-and-drop icon (arrow and page).
Otherwise, the mouse cursor becomes a circle with a line drawn through it.

3. When the user releases the mouse button, the data is sent to the control, which can then
process it appropriately.

To support drag-and-drop functionality, you must handle the DragEnter, DragDrop, and (typically)
MouseDown events. To start a drag-and-drop operation, you call the source control’s DoDragDrop method.
At this point, you submit the data and specify the type of operations that will be supported (copying,
moving, and so on). Controls that can receive dragged data must have the AllowDrop property set to
True. These controls will receive a DragEnter event when the mouse drags the data over them. At this

281

282 CHAPTER 7 WINDOWS FORMS

point, you can examine the data that is being dragged, decide whether the control can accept the
drop, and set the DragEventArgs.Effect property accordingly. The final step is to respond to the
DragDrop event in the destination control, which occurs when the user releases the mouse button.

The DragEventArgs.Data property, which is an IDataObject, represents the data that is being
dragged or dropped. IDataObject is an interface for transferring general data objects. You get the
data by using the GetData method. The GetDataPresent method, which accepts a String or Type, is
used to determine the type of data represented by the IDataObject.

The Code

The following example allows you to drag content between two textboxes, as well as to and from
other applications that support drag-and-drop operations.

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe07-18.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_18

This event is fired when you drop the text on a TextBox.
The text of the target TextBox will change to the drop
' text.
Private Sub TextBox DragDrop(ByVal sender As Object, w»
ByVal e As System.Windows.Forms.DragEventArgs) Handles TextBox1.DragDrop, =
TextBox2.DragDrop

Dim txt As TextBox = DirectCast(sender, TextBox)
txt.Text = DirectCast(e.Data.GetData(DataFormats.Text), String)

End Sub
' This event is fired when your cursor enters a TextBox while
you are in a drag operation. It ensures you can only drop

" text.

Private Sub TextBox DragEnter(ByVal sender As Object, ‘=
ByVal e As System.Windows.Forms.DragEventArgs) Handles TextBox1.DragEnter, w»
TextBox2.DragEnter

If e.Data.GetDataPresent(DataFormats.Text) Then
e.Effect = DragDropEffects.Copy

Else
e.Effect = DragDropEffects.None

End If

End Sub
' This event is fired when you push down the mouse button
while in a TextBox. This grabs the contents of the
TextBox and starts the drag operation.

CHAPTER 7 WINDOWS FORMS

Private Sub TextBox_MouseDown(ByVal sender As Object, ‘=
ByVal e As System.Windows.Forms.MouseEventArgs) Handles TextBox1.MouseDown, '
TextBox2.MouseDown

Dim txt As TextBox = DirectCast(sender, TextBox)
txt.SelectAll()
txt.DoDragDrop(txt.Text, DragDropEffects.Copy)

End Sub
End Class

7-19. Use Context-Sensitive Help

Problem

You want to display a specific help file topic depending on the currently selected control.

Solution

Use the HelpProvider component, and set the HelpKeyword and HelpNavigator extended properties
for each control.

How It Works

The .NET Framework provides support for context-sensitive help through the HelpProvider class.
The HelpProvider classis a special extender control. You add it to the component tray of a form, and
it extends all the controls on the form with a few additional properties, including HelpNavigator and
HelpKeyword. For example, Figure 7-15 shows a form that has two controls and a HelpProvider named
helpProvider1. The ListBox control, which is currently selected, has several help-specific properties
that are provided through the HelpProvider.

To use context-sensitive help with HelpProvider, follow these three steps:

1. Set the HelpProvider.HelpNamespace property with the name of the help file (for example,
myhelp.chm).

2. For every control that requires context-sensitive help, set the HelpNavigator extender property
to HelpNavigator.Topic.

3. For every control that requires context-sensitive help, set the HelpKeyword extender property
with the name of the topic that should be linked to this control. (The topic names are spe-
cific to the help file and can be configured in your help-authoring tools.)

If the user presses the F1 key while a control has focus, the help file will be launched automati-
cally, and the linked topic will be displayed in the help window. If the user presses F1 while positioned
on a control that does not have a linked help topic, the help settings for the containing control will
be used (for example, a group box or a panel). If there are no containing controls or the containing
control does not have any help settings, the form’s help settings will be used. You can also use the
HelpProvider methods to set or modify context-sensitive help mapping at runtime.

283

284

CHAPTER 7 WINDOWS FORMS

Figure 7-15. The HelpProvider extender properties

7-20. Display a Web Page
in a Windows-Based Application

Problem

You want to display a web page and provide web-navigation capabilities within your Windows
Forms application.

Solution

Use the WebBrowser control to display the web page and other standard controls like buttons and
textboxes to allow the user to control the operation of the WebBrowser.

Caution The WebBrowser control is a managed wrapper around the WebBrowser ActiveX control, which is
the same component used by Internet Explorer. This means that if you use a Main method, it must be annotated
with the STAThread attribute. Furthermore, the component is very resource-intensive and should be disposed of
correctly.

CHAPTER 7 WINDOWS FORMS

How It Works

The WebBrowser control (new to .NET Framework 2.0) makes it a trivial task to embed highly functional
web browser capabilities into your Windows applications. The WebBrowser control is responsible for
the display of web pages and maintaining page history, but it does not provide any controls for user
interaction. Instead, the WebBrowser control exposes properties and events that you can manipulate
programmatically to control the operation of the WebBrowser. This approach makes the WebBrowser
control highly flexible and adaptable to almost any situation. Table 7-1 summarizes some of the
commonly used WebBrowser members related to web navigation.

Table 7-1. Commonly Used Members of the WebBrowser Control

Member Description

Property

AllowNavigation Controls whether the WebBrowser can navigate to another page after its
initial page has been loaded

CanGoBack Indicates whether the WebBrowser currently holds back page history,
which would allow the GoBack method to succeed

CanGoForward Indicates whether the WebBrowser currently holds forward page history,
which would allow the GoForward method to succeed

IsBusy Indicates whether the WebBrowser is currently busy downloading a page

url Holds the URL of the currently displayed/downloading page

Method

GoBack Displays the previous page in the page history, if there is one

GoForward Displays the next page in the page history, if there is one

GoHome Displays the home page of the current user as configured in Internet
Explorer

Navigate Displays the web page at the specified URL

Stop Stops the current WebBrowser activity

Event

DocumentCompleted Signals that the active download has completed and the document is

displayed in the WebBrowser

You can also use the WebBrowser.DocumentText property to set (or get) the currently displayed
HTML contents of the WebBrowser. To manipulate the contents using the Document Object Model
(DOM), get an HtmlDocument instance via the Document property.

The Code

The following example uses the WebBrowser control to allow users to navigate to a web page whose
address is entered into a TextBox. Buttons also allow users to move forward and backward through
page history and navigate directly to their personal home page.

285

286 CHAPTER 7 WINDOWS FORMS

Imports System

Imports System.Windows.Forms
' All designed code is stored in the autogenerated partial
class called Recipe07-20.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07 20

Private Sub goButton Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles goButton.Click

Navigate to the URL specified in the TextBox.
webBrowser1.Navigate (textURL.Text)

End Sub

Private Sub backButton Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles backButton.Click

Go to the previous page in the WebBrowser history.
webBrowser1.GoBack ()

End Sub

Private Sub homeButton Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles homeButton.Click

Navigate to the current user's home page.
webBrowser1.GoHome ()

End Sub

Private Sub forwardButton Click(ByVal sender As System.Object, ‘w»
ByVal e As System.EventArgs) Handles forwardButton.Click

Go to the next page in the WebBrowser history.
webBrowser1.GoForward()

End Sub

Private Sub Recipe07 20 Load(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles Me.Load

Navigate to the Apress home page when the application first
loads.
webBrowser1.Navigate("http://www.apress.com/")

End Sub

CHAPTER 7 WINDOWS FORMS 287

' Event handler to perform general interface maintenance once a

' document has been loaded into the WebBrowser.

Private Sub webBrowserl DocumentCompleted(ByVal sender As Object, w»
ByVal e As System.Windows.Forms.WebBrowserDocumentCompletedEventArgs) Handles w»
webBrowser1.DocumentCompleted

' Update the content of the TextBox to reflect the current URL.
textURL.Text = webBrowser1.Url.ToString

' Enable or disable the Back button depending on whether the
' WebBrowser has back history
If webBrowseri.CanGoBack Then
backButton.Enabled = True
Else
backButton.Enabled = False
End If

' Enable or disable the Forward button depending on whether the
' WebBrowser has forward history.
If webBrowseri.CanGoForward Then
forwardButton.Enabled = True
Else
forwardButton.Enabled = False
End If

End Sub
End Class

CHAPTER 8

Multimedia

Multimedia is a very expansive subject that covers sound, video, graphics, and printing. The aim
of this chapter is to briefly touch on each main topic. If you would like more detailed information,
refer to books devoted to the subject, such as Pro.NET 2.0 Graphics Programmingby Eric White
(Apress, 2005) or Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005 by Matthew MacDonald
(Apress, 2006).

The .NET Framework provides direct support for most multimedia functionality. The System.
Drawing namespace provides support for manipulating two-dimensional drawings. Most of the
classes in this namespace, such as Drawing2D and Graphics, wrap GDI32.dll and USER32.dll. These
libraries provide the native Graphics Device Interface (GDI) functionality in the Windows applica-
tion programming interface (API). They also make it easier to draw complex shapes, work with
coordinates and transforms, and process images. The Printing namespace, which contains classes
related to printing, is also part of the System.Drawing namespace. This namespace uses GDI support
for drawing text or images to a Document object. While this class does provide support for enumer-
ating and collecting information for installed printers, it is limited to local printers and it does not
support all information, such as print jobs.

The System.Media namespace provides support for playing basic sounds, such as WAV files. If
you want to show a video file or play more sophisticated audio files, such as MP3s, you will need to
look beyond the .NET Framework.

This chapter presents recipes that show you how to use built-in .NET features and, where necessary,
native Win32 libraries via P/Invoke or COM Interop. The recipes in this chapter describe how to do
the following:

¢ Find the fonts installed in your system (recipe 8-1)

e Perform hit testing with shapes (recipe 8-2)

e Create an irregularly shaped form or control (recipe 8-3)

e Create a sprite that can be moved around (recipe 8-4)

e Display an image that can be made to scroll (recipe 8-5)

e Capture an image of the desktop (recipe 8-6)

* Enable double buffering to increase performance while redrawing (recipe 8-7)
¢ Create a thumbnail for an existing image (recipe 8-8)

* Play a beep or a system-defined sound (recipe 8-9), play a WAV file (recipe 8-10), play a non-
WAV file such as an MP3 file (recipe 8-11), and play a video with DirectShow (recipe 8-12)

* Retrieve information about the printers installed in the machine (recipe 8-13), print a simple
document (recipe 8-14), print a document that has multiple pages (recipe 8-15), print wrapped
text (recipe 8-16), show a print preview (recipe 8-17), and manage print jobs (recipe 8-18)

289

290

CHAPTER 8 MULTIMEDIA

8-1. Find All Installed Fonts

Problem

You need to retrieve a list of all the fonts installed on the current computer.

Solution

Create a new instance of the System.Drawing.Text.InstalledFontCollection class, which contains a
collection of FontFamily objects representing all the installed fonts.

How It Works

The InstalledFontCollection class allows you to retrieve information about currently installed
fonts. It derives from the FontCollection class, which allows you to get a list of font families as a
collection in the Families property.

The Code

The following code shows a form that iterates through the font collection when it is first created.
Every time it finds a font, it creates a new Label control that will display the font name in the given
font face (at a size of 14 points). The Label is added to a Panel control named pnlFonts with AutoScroll
set to True, allowing the user to scroll through the list of available fonts.

Imports System

Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Text
' All designed code is stored in the autogenerated partial
class called Recipe08-01.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 01

Private Sub Recipe08 01 Load(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles Me.Load
' Create the font collection.
Using fontFamilies As New InstalledFontCollection
' TIterate through all font families.
Dim offset As Integer = 10

For Each family As FontFamily In fontFamilies.Families
Try

Create a label that will display text in this font.
Dim fontLabel As New Label

fontlLabel.Text = family.Name
fontLabel.Font = New Font(family, 14)
fontlLabel.Left = 10

CHAPTER 8 MULTIMEDIA 291

fontlLabel.Width = pnlFonts.Width
fontlLabel.Top = offset

' Add the label to a scrollable Panel.

pnlFonts.Controls.Add(fontLabel)

offset += 30
Catch ex As ArgumentException

" An ArgumentException will be thrown if the selected
font does not support regular style (the default used
when creating a font object). For this example, we
will display an appropriate message in the list.
Dim fontlabel As New Label

fontlLabel.Text = ex.Message

fontLabel.Font = New Font("Arial", 10, FontStyle.Italic)
fontlLabel.ForeColor = Color.Red

fontlabel.Left = 10

fontLabel.Width = 500

fontlLabel.Top = offset

" Add the label to a scrollable Panel.
pnlFonts.Controls.Add(fontLabel)
offset += 30
End Try
Next
End Using

End Sub
End Class

Figure 8-1 shows the results of this simple test application.

Figure 8-1. A list of installed fonts

292

CHAPTER 8 MULTIMEDIA

8-2. Perform Hit Testing with Shapes

Problem

You need to detect whether a user clicks inside a shape.

Solution

Test the point where the user clicked with methods such as Rectangle.Contains and Region.IsVisible
(in the System.Drawing namespace) or GraphicsPath.IsVisible (in the System.Drawing.Drawing2D
namespace), depending on the type of shape.

How It Works

Often, if you use GDI+ to draw shapes on a form, you need to be able to determine when a user clicks
inside a given shape. This can be determined using a Rectangle and a Point. A Rectangle is defined
by its height, width, and upper-left coordinates, which are reflected by the Height, Width, X, and Y
properties. A Point, which is an Xand Y coordinate, represents a specific location on the screen. The
.NET Framework provides three methods to help with this task:

e TheRectangle.Contains method, which takes a point and returns true if the point is inside a
given rectangle. In many cases, you can retrieve a rectangle for another type of object. For
example, you can use Image.GetBounds to retrieve the invisible rectangle that represents the
image boundaries. The Rectangle structure is a member of the System.Drawing namespace.

e The GraphicsPath.IsVisible method, which takes a point and returns true if the point is
inside the area defined by a closed GraphicsPath. Because a GraphicsPath can contain multiple
lines, shapes, and figures, this approach is useful if you want to test whether a point is contained
inside a nonrectangular region. The GraphicsPath class is a member of the System.Drawing.
Drawing2D namespace.

e TheRegion.IsVisible method, which takes a point and returns true if the point is inside the
areadefined by aRegion. ARegion, like the GraphicsPath, canrepresenta complex nonrectangular
shape. Region is a member of the System.Drawing namespace.

The Code

The following example shows a form that creates a Rectangle and a GraphicsPath. By default, these
two shapes are given light-blue backgrounds. However, an event handler responds to the Form.
MouseMove event, checks to see whether the mouse pointer is in one of these shapes, and updates the
shape’s background to bright pink if the pointer is there.

Note that the highlighting operation takes place directly inside the MouseMove event handler. The
painting is performed only if the current selection has changed. For simpler code, you could invali-
date the entire form every time the mouse pointer moves in or out of a region and handle all the
drawing in the Form.Paint event handler, but this would lead to more drawing and generate addi-
tional flicker as the entire form is repainted.

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Drawing2D

CHAPTER 8 MULTIMEDIA 293

" All designed code is stored in the autogenerated partial
" class called Recipe08-02.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Public Class Recipe08 02

' Define the shapes used on this form.
Private path As GraphicsPath
Private rect As Rectangle

' Define the flags that track where the mouse pointer is.
Private inPath As Boolean = False
Private inRectangle As Boolean = False

' Define the brushes used for painting the shapes.
Private highlightBrush As Brush = Brushes.HotPink
Private defaultBrush As Brush = Brushes.LightBlue

Private Sub Recipe08 02 Load(ByVal sender As Object, =
ByVal e As System.EventArgs) Handles Me.load

' Create the shapes that will be displayed.

path = New GraphicsPath

path.AddE1llipse(10, 10, 100, 60)

path.AddCurve(New Point() {New Point(50, 50), New Point(10, 33),
New Point(80, 43)})

path.AddLine(50, 120, 250, 80)

path.AddLine(120, 40, 110, 50)

path.CloseFigure()

rect = New Rectangle(100, 170, 220, 170)
End Sub

Private Sub Recipe08 02 MouseMove(ByVal sender As Object, ‘=
ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove

Using g As Graphics = Me.CreateGraphics
' Perform hit testing with rectangle.
If rect.Contains(e.X, e.Y) Then
If Not inRectangle Then
inRectangle = True
' Highlight the rectangle.
g.FillRectangle(highlightBrush, rect)
g.DrawRectangle(Pens.Black, rect)
End If
ElseIf inRectangle Then
inRectangle = False
' Restore the unhighlighted rectangle.
g.FillRectangle(defaultBrush, rect)
g.DrawRectangle(Pens.Black, rect)
End If

294

CHAPTER 8 MULTIMEDIA

Perform hit testing with path.

If path.IsVisible(e.X, e.Y) Then
If Not inPath Then
inPath = True

Highlight the path.
g.Fillpath(highlightBrush, path)
g.DrawPath(Pens.Black, path)

End If

ElseIf inPath Then
inPath = False
' Restore the unhighlighted path.
g.FillPath(defaultBrush, path)
g.DrawPath(Pens.Black, path)

End If

End Using
End Sub

Private Sub Recipe08 02 Paint(ByVal sender As Object, ‘=
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

Dim g As Graphics = e.Graphics

' Paint the shapes according to the current selection.
If inPath Then
g.FillPath(highlightBrush, path)
g.FillRectangle(defaultBrush, rect)
ElseIf inRectangle Then
g.FillRectangle(highlightBrush, rect)
g.FillPath(defaultBrush, path)
Else
g.FillPath(defaultBrush, path)
g.FillRectangle(defaultBrush, rect)
End If

g.DrawPath(Pens.Black, path)
g.DrawRectangle(Pens.Black, rect)

End Sub
End Class

Figure 8-2 shows the application in action.

CHAPTER 8 MULTIMEDIA

Figure 8-2. Hit testing with a Rectangle object and a GraphicsPath object

8-3. Create an Irregularly Shaped Control

Problem

You need to create a nonrectangular form or control.

Solution

Create a new System.Drawing.Region object that has the shape you want for the form, and assign it
to the Form.Region or Control.Region property.

How It Works

To create a nonrectangular form or control, you first need to define the shape you want. The easiest
approach is to use the System.Drawing.Drawing2D.GraphicsPath object, which can accommodate
any combination of ellipses, rectangles, closed curves, and even strings. You can add shapes to
aGraphicsPath instance using methods such as AddE1lipse, AddRectangle, AddClosedCurve, and
AddString. Once you are finished defining the shape you want, you can create a Region object from
this GraphicsPath—just pass the GraphicsPath to the Region class constructor. Finally, you can
assign the Region to the Form.Region property or the Control.Region property.

The Code

The following example creates an irregularly shaped form (shown in Figure 8-3) using two curves
made of multiple points, which are converted into a closed figure using the GraphicsPath.
CloseAllFigures method.

295

296 CHAPTER 8 MULTIMEDIA

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Drawing2D
" All designed code is stored in the autogenerated partial
class called Recipe08-03.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 03

Private Sub Recipe08 03 Load(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles Me.Load

Dim path As New GraphicsPath

Dim pointsA As Point() = New Point() {New Point(0, 0), New Point(40, 60),
New Point(Me.Width - 100, 10)}

Dim pointsB As Point() = New Point() {New Point(Me.Width - 40, =
Me.Height - 60), New Point(Me.Width, Me.Height), New Point(10, Me.Height)}

path.AddCurve(pointsA)
path.AddCurve(pointsB)

path.CloseAllFigures()
Me.Region = New Region(path)
End Sub

Private Sub cmdClose Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles cmdClose.Click

Me.Close()
End Sub

End Class

When you run the application, you will see results similar to Figure 8-3.

Note Another method for creating nonrectangular forms (not controls) is using the BackgroundImage and
TransparencyKey properties available in the Form class. However, this method could cause display problems
when monitors are set to a color depth greater than 24-bit. For more information about this topic, refer to the
Microsoft Knowledge Base article at http://support.microsoft.com/kb/822495.

For an example that demonstrates a nonrectangular control, refer to recipe 8-4.

CHAPTER 8 MULTIMEDIA

Figure 8-3. A nonrectangular form

8-4. Create a Movable Sprite

Problem

You need to create a shape the user can manipulate on a form, perhaps by dragging it, resizing it, or
otherwise interacting with it.

Solution

Create a custom control, and override the painting logic to draw a shape. Assign your shape to the
Control.Region property. You can then use this Region to perform hit testing, which is demonstrated
in recipe 8-2.

How It Works

If you need to create a complex user interface that incorporates many custom-drawn elements, you
need a way to track these elements and allow the user to interact with them. The easiest approach in
.NET is to create a dedicated control by deriving a class from System.Windows.Forms.Control. You
can then customize the way this control appears and operates by adding the appropriate function-
ality to the appropriate events. For example, if the control needs to respond in a certain way when it
is selected, you may want to add the needed functionality to the MouseEnter, MouselLeave, MouseUp, or
MouseDown event.

The Code

The following example shows a control that represents a simple ellipse shape on a form. All controls
are associated with a rectangular region on a form, so the E11ipseShape control generates an ellipse
that fills these boundaries (provided through the Control.ClientRectangle property). Once the

shape has been generated, the Control.Region propertyis setaccording to the bounds on the ellipse.

297

298 CHAPTER 8 MULTIMEDIA

This ensures events such as MouseMove, MouseDown, Click, and so on will occur only if the mouse is
over the ellipse, not the entire client rectangle.
The following code shows the full E11ipseShape code:

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Drawing2D
" All designed code is stored in the autogenerated partial
class called EllipseShape.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Public Class EllipseShape

Inherits System.Windows.Forms.Control

Dim path As GraphicsPath = Nothing

Private Sub RefreshPath()
' Create the GraphicsPath for the shape (in this case

an ellipse that fits inside the full control area)

and apply it to the control by setting the Region

property.

path = New GraphicsPath

path.AddEllipse(Me.ClientRectangle)

Me.Region = New Region(path)

End Sub
Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.PaintEventArgs)
MyBase.OnPaint(e)
If path IsNot Nothing Then
e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
e.Graphics.FillPath(New SolidBrush(Me.BackColor), path)
e.Graphics.DrawPath(New Pen(Me.ForeColor, 4), path)
End If
End Sub

Private Sub EllipseShape Resize(ByVal sender As Object, ‘w»
ByVal e As System.EventArgs) Handles Me.Resize

RefreshPath()
Me.Invalidate()

End Sub

End Class

CHAPTER 8 MULTIMEDIA

You could define the E11ipseShape control in a separate class library assembly so you could add
itto the Visual Studio .NET Toolbox and use it at design time. However, even without taking this step,
it is easy to create a simple test application. The following Windows Forms application creates two
ellipses and allows the user to drag both of them around the form, simply by holding the mouse
down and moving the pointer.

Imports System

Imports System.Drawing
Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe08-04.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 04

Tracks when drag mode is on.
Private isDraggingA As Boolean = False
Private isDraggingB As Boolean = False

The ellipse shape controls.
Private ellipseA, ellipseB As EllipseShape

Private Sub Recipe08 04 Load(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles Me.load

Create and configure both ellipses.
ellipseA = New EllipseShape
ellipseA.Width = 100
ellipseA.Height = 100
ellipseA.Top = 30
ellipseA.left = 30
ellipseA.BackColor = Color.Red
Me.Controls.Add(ellipseA)

ellipseB = New EllipseShape
ellipseB.Width = 100
ellipseB.Height = 100
ellipseB.Top = 130

ellipseB.left = 130
ellipseB.BackColor = Color.Azure
Me.Controls.Add(ellipseB)

' Attach both ellipses to the same set of event handlers.
AddHandler ellipseA.MouseDown, AddressOf Ellipse MouseDown
AddHandler ellipseA.MouseUp, AddressOf Ellipse MouseUp
AddHandler ellipseA.MouseMove, AddressOf Ellipse MouseMove

AddHandler ellipseB.MouseDown, AddressOf Ellipse MouseDown
AddHandler ellipseB.MouseUp, AddressOf Ellipse MouseUp
AddHandler ellipseB.MouseMove, AddressOf Ellipse MouseMove

End Sub

299

300 CHAPTER 8 MULTIMEDIA

Private Sub Ellipse MouseDown(ByVal sender As Object, ByVal e As MouseEventArgs)

If e.Button = Windows.Forms.MouseButtons.Left Then
' Get the control that triggered this event.
Dim ctrl As Control = DirectCast(sender, Control)

ctrl.Tag = New Point(e.X, e.Y)
If ctrl Is ellipseA Then
isDraggingA = True
Else
isDraggingB = True
End If
End If

End Sub

Private Sub Ellipse MouseUp(ByVal sender As Object, ByVal e As MouseEventArgs)

isDraggingA = False
isDraggingB = False

End Sub

Private Sub Ellipse MouseMove(ByVal sender As Object, ByVal e As MouseEventArgs)

Get the control that triggered this event.
Dim ctrl As Control = DirectCast(sender, Control)

If (isDraggingA And (ctrl Is ellipseA)) Or (isDraggingB And ‘=
(ctrl Is ellipseB)) Then

' Get the offset.
Dim pnt As Point = DirectCast(ctrl.Tag, Point)

Move the control.
ctrl.left = e.X + ctrl.Left - pnt.X
ctrl.Top = e.Y + ctrl.Top - pnt.Y

End If
End Sub

End Class

Figure 8-4 shows the user about to drag an ellipse.

CHAPTER 8 MULTIMEDIA

Figure 8-4. Dragging custom shape controls on a form

8-5. Create a Scrollable Image

Problem

You need to create a scrollable picture.

Solution

Leverage the automatic scroll capabilities of the System.Windows.Forms.Panel control by setting
Panel.AutoScroll to True and placing a System.Windows.Forms.PictureBox control with the image
content inside the Panel.

How It Works

The Panel control has built-in scrolling support, as shown in recipe 8-1. If you place any controls in
it that extend beyond its bounds and you set Panel.AutoScroll to True, the panel will show scroll
bars that allow the user to move through the content. This works particularly well with large images.
You canload or create the image in memory, assign it to a picture box (which has no intrinsic support
for scrolling), and then show the picture box inside the panel. The only consideration you need to
remember is to make sure you set the picture box dimensions equal to the full size of the image you
want to show.

301

302

CHAPTER 8 MULTIMEDIA

The Code

The following example creates an image that represents a document. The image is generated as an
in-memory bitmap, and several lines of text are added using the Graphics.DrawString method. The
image is then bound to a picture box, which is shown in a scrollable panel.

Imports System

Imports System.Drawing
Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe08-05.Designer.vb. You can see this

file by selecting Show All Files in Solution Explorer.
Public Class Recipe08 05

Private Sub Recipe08 05 Load(ByVal sender As Object, ‘w»
ByVal e As System.EventArgs) Handles Me.Load

Dim text As String = "The quick brown fox jumps over the lazy dog."

Using fnt As New Font("Tahoma", 14)
' Create an in-memory bitmap.
Dim bmp As New Bitmap(600, 600)

Using g As Graphics = Graphics.FromImage(bmp)

g.FillRectangle(Brushes.White, New Rectangle(0, 0, bmp.Width, =
bmp.Height))

Draw several lines of text on the bitmap.
For i As Integer = 1 To 10

g.DrawString(text, fnt, Brushes.Black, 50, 50 + i * 60)
Next

End Using

Display the bitmap in the picture box.
pictureBox1.BackgroundImage = bmp
pictureBox1.Size = bmp.Size

End Using
End Sub
End Class

When you run the application, you will get results similar to those shown in Figure 8-5.

CHAPTER 8 MULTIMEDIA

Figure 8-5. Adding scrolling support to custom content

8-6. Perform a Screen Capture

Problem

You need to take a snapshot of the current desktop.

Solution

Use the CopyFromScreen method of the Graphics class to copy screen contents.

How It Works

The Graphics class now includes CopyFromScreen methods that copy color data from the screen onto
the drawing surface represented by a Graphics object. This method requires you to pass the source
and destination points and the size of the image to be copied.

The Code

The following example captures the screen and displays it in a picture box. It first creates a new
Bitmap object and then invokes CopyFromScreen to draw onto the Bitmap. After drawing, the image
is assigned to the picture box.

Imports System

Imports System.Drawing
Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe08-06.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 06

303

304 CHAPTER 8 MULTIMEDIA

Private Sub cmdCapture Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles cmdCapture.Click

Dim screenCapture As New Bitmap(Screen.PrimaryScreen.Bounds.Width,
Screen.PrimaryScreen.Bounds.Height)

Using g As Graphics = Graphics.FromImage(screenCapture)
g.CopyFromScreen(0, 0, 0, 0, screenCapture.Size)

End Using

pictureBox1.Image = screenCapture

End Sub

End Class

When you run the application and click the Capture button, you will get results similar to those
shown in Figure 8-6.

Figure 8-6. Capturing the screen contents

8-7. Use Double Buffering to Increase
Redraw Speed

Problem

Youneed to optimize drawing for a form or an authored control that is frequently refreshed, and you
want to reduce flicker.

CHAPTER 8 MULTIMEDIA

Solution

Set the DoubleBuffered property of the form to True.

How It Works

In some applications, you need to repaint a form or control frequently. This is commonly the case
when creating animations. For example, you might use a timer to invalidate your form every second.
Your painting code could then redraw an image at a new location, creating the illusion of motion.
The problem with this approach is that every time you invalidate the form, Windows repaints the
window background (clearing the form) and then runs your painting code, which draws the graphic
element by element. This can cause substantial on-screen flicker.

Double bufferingis a technique you can implement to reduce this flicker. With double buffering,
your drawing logic writes to an in-memory bitmap, which is copied to the form at the end of the
drawing operation in a single, seamless repaint operation. Flickering is reduced dramatically.

NET Framework 2.0 provides a default double buffering mechanism for forms and controls.
You can enable this by setting the DoubleBuffered property of your form or control to True or by using
the SetStyle method.

The Code

The following example sets the DoubleBuffered property of the form to True and shows an animation
of an image alternately growing and shrinking on the page. The drawing logic takes place in the
Form.Paint event handler, and a timer invalidates the form in a preset interval so that the image can
be redrawn. The user can choose whether to enable double buffering through a checkbox on the
form. Without double buffering, the form flickers noticeably. When double buffering is enabled,
however, the image grows and shrinks with smooth, flicker-free animation.

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Drawing2D
" All designed code is stored in the autogenerated partial
class called Recipe08-07.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 07

Track the image size and the type of animation
(expanding or shrinking).

Private isShrinking As Boolean =
Private imageSize As Integer = 0

False

Store the logo that will be painted on the form.
Private img As Image

Private Sub Recipe08 07 Load(ByVal sender As Object, =
ByVal e As System.EventArgs) Handles Me.load
' Load the logo image from the file.
img = Image.FromFile("test.jpg")

305

306 CHAPTER 8 MULTIMEDIA

' Start the timer that invalidates the form.
tmrRefresh.Start()

End Sub

Private Sub tmrRefresh Tick(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles tmrRefresh.Tick

' Change the desired image size according to the animation mode.
If isShrinking Then
imageSize -= 1
Else
imageSize += 1
End If

' Change the sizing direction if it nears the form border.
If imageSize > (Me.Width - 150) Then
isShrinking = True
ElseIf imageSize < 1 Then
isShrinking = False
End If

Me.Invalidate()
End Sub

Private Sub Recipe08 07 Paint(ByVal sender As Object, ‘=
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

Dim g As Graphics

g = e.Graphics

g.SmoothingMode = SmoothingMode.HighQuality
' Draw the background.

g.FillRectangle(Brushes.Yellow, New Rectangle(New Point(0, 0), =

Me.ClientSize))

Draw the logo image.
g.DrawImage(img, 50, 50, 50 + imageSize, 50 + imageSize)

End Sub
Private Sub chkUseDoubleBuffering CheckedChanged(ByVal sender As Object, ‘=
ByVal e As System.EventArgs) Handles chkUseDoubleBuffering.CheckedChanged

Me.DoubleBuffered = chkUseDoubleBuffering.Checked
End Sub

End Class

CHAPTER 8 MULTIMEDIA

Note .NET Framework 3.0 offers options for handling double buffering manually. For more information about
double buffering, refer to the MSDN documentation at http://msdn2.microsoft.com/en-us/library/
ms229622.aspx.

8-8. Show a Thumbnail for an Image

Problem

You need to show thumbnails (small representations of pictures) for the images in a directory.

Solution

Read the image from the file using the Shared FromFile method of the System.Drawing.Image class.
You can then retrieve a thumbnail using the Image.GetThumbnailImage method.

How It Works

The Image class provides the functionality for generating thumbnails through the GetThumbnailImage
method. You simply need to pass the width and height of the thumbnail you want (in pixels), and the
Image class will create a new Image object that fits these criteria. Antialiasing is used when reducing
the image to ensure the best possible image quality, although some blurriness and loss of detail is
inevitable. (Antialiasingis the process of removing jagged edges, often in resized graphics, by adding
shading with an intermediate color.) In addition, you can supply a notification callback, allowing
you to create thumbnails asynchronously.

When generating a thumbnail, it is important to ensure that the aspect ratio remains constant.
For example, if you reduce a 200x100 picture to a 50x50 thumbnail, the width will be compressed to
one quarter and the height will be compressed to one half, distorting the image. To ensure that the
aspect ratio remains constant, you can change either the width or the height to a fixed size, and then
adjust the other dimension proportionately.

Note If you attempt to load a file that is not a supported image type, you will receive an OutOfMemoryException.
This is important to know because it is not the error you might expect to receive in this situation.

The Code

The following example reads a bitmap file and generates a thumbnail that is not greater than
200x200 pixels while preserving the original aspect ratio:

Imports System

Imports System.Drawing
Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe08-08.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 08

307

308 CHAPTER 8 MULTIMEDIA

Private thumbNail As Image

Private Sub Recipe08 08 Load(ByVal sender As Object, w»
ByVal e As System.EventArgs) Handles Me.Load

Using img As Image = Image.FromFile("test.jpg")

Dim thumbnailWidth As Integer = 0
Dim thumbnailHeight As Integer = 0
' Adjust the largest dimension to 200 pixels.
This ensures that a thumbnail will not be larger than
200x200 pixel square for each one.
If img.Width > img.Height Then

thumbnailWidth = 200

thumbnailHeight = Convert.ToInt32((CSng(200) / img.Width) * w»

img.Height)
Else
thumbnailHeight = 200
thumbnailWidth = Convert.ToInt32((CSng(200) / img.Height) * w»
img.Width)
End If

thumbNail = img.GetThumbnailImage(thumbnailWidth, thumbnailHeight, '
Nothing, IntPtr.Zero)

End Using
End Sub
Private Sub Recipe08 08 Paint(ByVal sender As Object, ‘=
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint
e.Graphics.DrawImage(thumbNail, 10, 10)
End Sub

End Class

8-9. Play a Simple Beep or System Sound

Problem

You need to play a simple system-defined beep or sound.

Solution

Use the managed Beep method of the Console class or the P1ay method of the SystemSound class.

How It Works

.NET Framework 2.0 now has new additions such as the Beep method in the Console class and a new
namespace System.Media, which provides classes for playing sound files.

CHAPTER 8 MULTIMEDIA 309

Overloads of the Console.Beep method let you play a beep with the default frequency and dura-
tion or with a frequency and duration you specify. Frequency is represented in hertz (and must range
from 37 to 32,767), and the duration is represented in milliseconds. Internally, these methods invoke
the Beep Win32 function and use the computer’s internal speaker. Thus, if the computer does not
have an internal speaker, no sound will be produced.

The System.Media namespace contains the following classes:

* The SystemSound classrepresents a Windows sound event, such as an asterisk, beep, question,
and so on. It also defines a Play method, which lets you play the sound associated with it.

* The SystemSounds class defines properties that let you obtain the SystemSound instance of a
specific Windows sound event. For example, it defines an Asterisk property that returns a
SystemSound instance associated with the asterisk Windows sound event.

* The SoundPlayer class lets you play WAV files. For more information about how to play a WAV
file using this class, refer to recipe 8-10.

As an alternative for playing system sounds, you can also use the My namespace (refer to
Chapter 5 for further details). My includes the My . Computer.Audio class, which contains the Shared
PlaySystemSound method for playing system sounds. It takes a SystemSound object as its parameter.

The Code

The following example plays two different beeps and the asterisk sound in succession, using the
Console and SystemSound classes:

Imports System
Imports System.Windows.Forms
Imports System.Media

" All designed code is stored in the autogenerated partial
class called Recipe08-09.Designer.vb. You can see this

' file by selecting Show All Files in Solution Explorer.

Partial Public Class Recipe08 09

Private Sub Recipe08 09 Load(ByVal sender As Object, =
ByVal e As System.EventArgs) Handles Me.load
' Play a beep with default frequency and
duration (800 and 200, respectively)
Console.Beep()

Play a beep with frequency as 200 and duration as 300.
Console.Beep (200, 300)

' Play the sound associated with the Asterisk event.
SystemSounds.Asterisk.Play()

End Sub

End Class

The following shows how to use the My namespace to play the system sound:

My .Computer.Audio.PlaySystemSound(SystemSounds.Asterisk)

310

CHAPTER 8 MULTIMEDIA

8-10. Play a WAV File

Problem
You need to play a WAV file.

Solution

Create anew instance of the System.Media. SoundPlayer class, pass thelocation or stream of the WAV
file, and invoke the P1lay method.

How It Works

.NET Framework 2.0 defines a new System.Media namespace that contains a SoundPlayer class.
SoundPlayer contains constructors that let you specify the location of a WAV file or its stream. Once
you have created an instance, you just need to invoke the Play method to play the file. The Play
method creates a new thread to play the sound and is thus asynchronous (unless a stream is used).
For playing the sound synchronously, use the PlaySync method. Note that SoundPlayer supports
only the WAV format.

Before a file is played, it is loaded into memory. You can load a file in advance by invoking the
Load or LoadSync method, depending on whether you want the operation to be asynchronous or
synchronous.

The My.Computer.Audio class provides an alternative for playing WAV files. This class consists
of the Shared methods Play, PlaySystemSound (refer to recipe 8-9), and Stop. The Play method, the
equivalent of the SoundPlayer.Play method, uses the P1layMode parameter to configure how the
sound is played. PlayMode is an AudioPlayMode enumerated type that can be set to Background (plays
the sound asynchronously), BackgroundLoop (plays the sound asynchronously and loops until the
Stop method is called), and WaitToComplete (plays the sound synchronously).

The Code

The following example shows a simple form that allows users to open any WAV file and play it:

Imports System

Imports System.Windows.Forms
Imports System.Media

' All designed code is stored in the autogenerated partial
class called Recipe08-10.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 10

Private Sub cmdOpen Click(ByVal sender As System.Object, ‘w»
ByVal e As System.EventArgs) Handles cmdOpen.Click

Allow the user to choose a file.
Dim openDialog As New OpenFileDialog

openDialog.Filter = "WAV Files|*.wav|All Files|*.*"

CHAPTER 8 MULTIMEDIA

If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
Dim player As New SoundPlayer(openDialog.FileName)

Try
player.Play()
Catch ex As Exception
MessageBox.Show("An error occurred while playing media.")
Finally
player.Dispose()
End Try

End If
End Sub

End Class

To use the My namespace, remove references to the Player object and replace Player.Play()
with this:

My .Computer.Audio.Play(openDialog.FileName)

8-11. Play a Sound File

Problem

You need to play a non-WAYV format audio file such as an MP3 file.

Solution

Use the ActiveMovie COM component included with Windows Media Player, which supports WAV
and MP3 audio.

How It Works

The ActiveMovie Quartz library provides a COM component that can play various types of audio
files, including the WAV and MP3 formats. The Quartz type library is provided through quartz.dll
and isincluded as a part of Microsoft DirectX with Media Player and the Windows operating system.

The first step for using the library is to generate an interop class that can manage the interaction
between your .NET application and the unmanaged Quartz library. You can generate a C# class with
this interop code using the Type Library Importer utility (Tlbimp.exe) and the following command
line, where [WindowsDir] is the path for your installation of Windows:

tlbimp [WindowsDir]\system32\quartz.dll /out:QuartzTypelib.d1l

Alternatively, you can generate the interop class using Visual Studio by adding a reference. To
do this, right-click your project in the Solution Explorer, choose Add Reference from the context
menu, select the COM tab, and scroll down to select ActiveMovie Control Type Library, as shown in
Figure 8-7.

31

312 CHAPTER 8 MULTIMEDIA

Figure 8-7. Adding the Quartz interop class

Once the interop class is generated, you can work with the IMediaControl interface. You can specify
the file you want to play using RenderFile, and you can control playback using methods such asRun, Stop,
and Pause. The actual playback takes place on a separate thread, so it will not block your code.

While the .NET Framework will eventually release any references to a COM object and collect
the memory it uses, it is best practice to do this yourself as soon as it is no longer needed. Managed
code does not access COM objects directly, but instead uses a runtime callable wrapper (RCW). The
RCW acts as a proxy between managed code and a referenced COM object. The Shared method
ReleaseComObject, from the System.Runtime.InteropServices.Marshal class, properly destroys the
RCW and the COM object it used.

The Code

The following example shows a simple form that allows you to open any audio file and play it. The
COM object is destroyed using ReleaseComObject.
You can also use the Quartz library to show movie files, as demonstrated in recipe 8-12.

Imports System

Imports System.Windows.Forms
Imports QuartzTypelib

' All designed code is stored in the autogenerated partial
class called Recipe08-11.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 11

Private Sub cmdOpen Click(ByVal sender As System.Object, ‘w»
ByVal e As System.EventArgs) Handles cmdOpen.Click

CHAPTER 8 MULTIMEDIA

Allow the user to choose a file.
Dim openDialog As New OpenFileDialog

openDialog.Filter = "Media Files|*.wav;*.mp3;*.mp2;*.wma|All Files|*.*"

If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
' Access the IMediaControl interface.
Dim graphManager As New QuartzTypelib.FilgraphManager
Dim mc As QuartzTypelib.IMediaControl = DirectCast(graphManager, ‘=
QuartzTypelLib.IMediaControl)

Specify the file.
mc.RenderFile(openDialog.FileName)

Try
mc.Run()
Catch ex As Exception
MessageBox.Show("An error occurred while playing media.")
Finally
Destroy the COM object (QuartzTypelLib) that we are using.
System.Runtime.InteropServices.Marshal.ReleaseComObject(graphManager)
End Try

End If

End Sub
End Class

8-12. Show a Video with DirectShow

Problem
You need to play a video file (such as an MPEG, an AVI, or a WMV file) in a Windows Forms application.

Solution

Use the ActiveMovie COM component included with Windows Media Player. Bind the video output
to a picture box on your form by setting the IVideoWindow.Owner property to the PictureBox.Handle

property.

How It Works

Although the .NET Framework does not include any managed classes for interacting with video files,
you can leverage the functionality of DirectShow using the COM-based Quartz library included with
Windows Media Player and the Windows operating system. For information about creating an interop
assembly for the Quartz type library, refer to recipe 8-11.

Once you have created the interop assembly, you can use the IMediaControl interface to load
and play amovie. This is essentially the same technique demonstrated in recipe 8-11 with audio files.
However, if you want to show the video window inside your application interface (rather than in a
separate stand-alone window), you must also use the IVideoWindow interface. The core FilgraphManager
object can be cast to both the IMediaControl interface and the IVideoWindow interface (several other

313

314

CHAPTER 8 MULTIMEDIA

interfaces are also supported, such as IBasicAudio, which allows you to configure balance and
volume settings). With the IVideoWindow interface, you can bind the video output to a control on your
form, such as a Panel or a PictureBox. To do so, set the IVideoWindow.Owner property to the handle
for the control, which you can retrieve using the Control.Handle property. Then call IVideoWindow.
SetWindowPosition to set the window size and location. You can call this method to change the video
size during playback (for example, if the form is resized).

The Code

The following example shows a simple form that allows users to open any video file and play it back
in the provided picture box. The picture box is anchored to all sides of the form, so it changes size
as the form resizes. The code responds to the PictureBox.SizeChanged event to change the size of
the corresponding video window. Also, the reference to the QuartzTypelib is destroyed using
ReleaseComObject (discussed in recipe 8-11) when the form is closed.

Imports System

Imports System.Drawing
Imports System.Windows.Forms
Imports QuartzTypelib

" All designed code is stored in the autogenerated partial
class called Recipe08-12.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 12

Define the constants used for specifying the window style.
Private Const WS _CHILD As Integer = &H40000000

Private Const WS_CLIPCHILDREN As Integer = &H2000000

' Hold a form-level reference to the QuartzTypelib.FilgraphManager
object.

Private graphManager As FilgraphManager

Hold a form-level reference to the media control interface,
so the code can control playback of the currently loaded
movie.

Private mc As IMediaControl = Nothing

Hold a form-level reference to the video window in case it
needs to be resized.
Private videoWindow As IVideoWindow = Nothing

Private Sub cmdOpen Click(ByVal sender As System.Object, ‘w»
ByVal e As System.EventArgs) Handles cmdOpen.Click
" Allow the user to choose a file.
Dim openDialog As New OpenFileDialog

openDialog.Filter = "Media Files|*.mpg;*.avi;*.wma;*.mov;*.wav;*.mp2;*.mp3" & w»
"|All Files|*.*"

CHAPTER 8 MULTIMEDIA

If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then

Stop the playback for the current movie, if it exists.
If mc IsNot Nothing Then mc.Stop()
" Load the movie file.
graphmanager = New FilgraphManager
graphManager.RenderFile(openDialog.FileName)
' Attach the view to a picture box on the form.
Try
videoWindow = DirectCast(graphmanager, IVideoWindow)
videoWindow.Owner = pictureBoxi.Handle.ToInt32
videoWindow.WindowStyle = WS_CHILD Or WS_CLIPCHILDREN
videoWindow.SetWindowPosition(pictureBox1.ClientRectangle.Left, =
pictureBox1.ClientRectangle.Top, pictureBoxi.ClientRectangle.Width, w»
pictureBox1.ClientRectangle.Height)
Catch ex As Exception
" An error can occur if the file does not have a video
source (for example, an MP3 file).
You can ignore this error and still allow playback to
continue (without any visualization).
End Try

Start the playback (asynchronously).
mc = DirectCast(graphManager, IMediaControl)
mc.Run()

End If
End Sub

Private Sub pictureBoxi SizeChanged(ByVal sender As Object, =
ByVal e As System.EventArgs) Handles pictureBox1.SizeChanged

If videoWindow IsNot Nothing Then

Try
videoWindow.SetWindowPosition(pictureBox1.ClientRectangle.Left, ‘=
pictureBox1.ClientRectangle.Top, pictureBoxi.ClientRectangle.Width, w»
pictureBox1.ClientRectangle.Height)
Catch ex As Exception
' Ignore the exception thrown when resizing the form
when the file does not have a video source.
End Try

End If

End Sub

315

316 CHAPTER 8 MULTIMEDIA

Private Sub Recipe08 12 FormClosed(ByVal sender As Object, ByVal e As w»
System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed

Destroy the COM object (QuartzTypelLib) that we are using.
If mc IsNot Nothing Then
System.Runtime.InteropServices.Marshal.ReleaseComObject(graphManager)
End If
End Sub

End Class

Figure 8-8 shows an example of the output you will see.

Figure 8-8. Playing a video file

8-13. Retrieve Information About
Installed Printers

Problem

You need to retrieve a list of available printers.

Solution

Read the names in the InstalledPrinters collection of the System.Drawing.Printing.PrinterSettings
class.

How It Works

The PrinterSettings class encapsulates the settings for a printer and information about the printer.
For example, you can use the PrinterSettings class to determine supported paper sizes, paper

CHAPTER 8 MULTIMEDIA

sources, and resolutions and check for the ability to print color or double-sided (duplexed) pages.
In addition, you can retrieve default page settings for margins, page orientation, and so on.

The PrinterSettings class provides a Shared InstalledPrinters string collection, which includes
the name of every printer installed on the computer. If you want to find out more information about
the settings for a specific printer, create a PrinterSettings instance and set the PrinterName property
accordingly.

The Code

The following code shows a console application that finds all the printers installed on a computer
and displays information about the paper sizes and the resolutions supported by each one

You do not need to take this approach when creating an application that provides printing
features. As you will see in recipe 8-14, you can use the PrintDialog class to prompt the user to
choose a printer and its settings. The PrintDialog class can automatically apply its settings to the
appropriate PrintDocument without any additional code.

Imports System
Imports System.Drawing.Printing

Namespace Apress.VisualBasicRecipes.Chapter08
Public Class Recipe08 13

Public Shared Sub Main()

For Each printerName As String In PrinterSettings.InstalledPrinters
' Display the printer name.
Console.Writeline("Printer: {0}", printerName)
' Retrieve the printer settings.
Dim printer As New PrinterSettings
printer.PrinterName = printerName
' Check that this is a valid printer.
(This step might be requried if you read the printer name
from a user-supplied value or a registry or configuration
file setting.)
If printer.IsValid Then
' Display the list of valid resolutions.
Console.WritelLine("Supported Resolutions:")

For Each resolution As PrinterResolution In w»
printer.PrinterResolutions
Console.WriteLine(" {0}", resolution)
Next
Console.WritelLine()

Display the list of valid paper sizes.
Console.WritelLine("Supported Paper Sizes:")

For Each size As PaperSize In printer.PaperSizes
If System.Enum.IsDefined(size.Kind.GetType, size.Kind) Then
Console.WritelLine(" {0}", size)
End If

317

318 CHAPTER 8 MULTIMEDIA

Next
Console.Writeline()
End If
Next
Console.ReadlLine()
End Sub

End Class
End Namespace

Usage
Here is the type of output this utility displays:

Printer: Snaglt 8

Supported Resolutions:
[PrinterResolution High]
[PrinterResolution Medium]
[PrinterResolution Low]
[PrinterResolution Draft]
[PrinterResolution X=600 Y=600]
[PrinterResolution X=300 Y=300]
[PrinterResolution X=200 Y=200]
[PrinterResolution X=100 Y=100]

Supported Paper Sizes:
[PaperSize Letter Kind=Letter Height=1100 Width=850]
[PaperSize Legal Kind=Legal Height=1400 Width=850]
[PaperSize Executive Kind=Executive Height=1050 Width=725]
[PaperSize A4 Kind=A4 Height=1169 Width=827]
[PaperSize Envelope #10 Kind=Number10Envelope Height=950 Width=412]
[PaperSize Envelope DL Kind=DLEnvelope Height=866 Width=433]
[PaperSize Envelope C5 Kind=C5Envelope Height=902 Width=638]
[PaperSize Envelope B5 Kind=B5Envelope Height=984 Width=693]
[PaperSize Envelope Monarch Kind=MonarchEnvelope Height=750 Width=387]

Printer: Microsoft Office Document Image Writer

Note You can print a document in almost any type of application. However, your application must include a
reference to the System.Drawing.d11 assembly. If you are using a project type in Visual Studio that would not
normally have this reference (such as a console application), you must add it.

8-14. Print a Simple Document

Problem

You need to print text or images.

CHAPTER 8 MULTIMEDIA

Solution

Create a PrintDocument and write a handler for the PrintDocument.PrintPage event that uses the
DrawString and DrawImage methods of the Graphics class to print data to the page.

How It Works

The .NET Framework uses an asynchronous event-based printing model. To print a document, you
create a System.Drawing.Printing.PrintDocument instance, configure its properties, and then call its
Print method, which schedules the printjob. The common language runtime (CLR) will then fire the
BeginPrint, PrintPage, and EndPrint events of the PrintDocument class on a new thread. You handle
these events and use the provided System.Drawing.Graphics object to output data to the page. Graphics
and text are written to a page in the same way as you draw to a window using GDI+. However, you
might need to track your position on a page, because every Graphics class method requires explicit
coordinates that indicate where to draw.

You configure printer settings through the PrintDocument.PrinterSettings and PrintDocument.
DefaultPageSettings properties. The PrinterSettings property returns a full PrinterSettings object (as
described in recipe 8-13), which identifies the printer that will be used. The DefaultPageSettings
property provides a full PageSettings object that specifies printer resolution, margins, orientation,
and so on. You can configure these properties in code, or you can use the System.Windows.Forms.
PrintDialog class to let the user make the changes using the standard Windows Print dialog box, shown
in Figure 8-9. In the Print dialog box, the user can select a printer and choose the number of copies.
The user can also click the Properties button to configure advanced settings such as page layout and
printer resolution. Finally, the user can either accept or cancel the print operation by clicking OK
or Cancel.

Figure 8-9. Using the PrintDialog class

Before using the PrintDialog class, you must explicitly attach it to a PrintDocument object by
setting the PrintDialog.Document property. Then any changes the user makes in the Print dialog box
will be automatically applied to the PrintDocument object.

319

320

CHAPTER 8 MULTIMEDIA

The Code

The following example provides a form with a single button. When the user clicks the button, the
application creates a new PrintDocument, allows the user to configure print settings, and then starts
an asynchronous print operation (provided the user clicks OK). An event handler responds to the
PrintPage event and writes several lines of text and an image.

This example has one limitation: it can print only a single page. To print more complex docu-
ments and span multiple pages, you will probably want to create a specialized class that encapsulates the
document information, the current page, and so on, as described in recipe 8-15.

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Printing
Imports System.IO

" All designed code is stored in the autogenerated partial
class called Recipe08-14.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 14

Private Sub cmdPrint Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles cmdPrint.Click
' Create the document and attach an event handler.
Dim doc As New PrintDocument

AddHandler doc.PrintPage, AddressOf Doc_PrintPage
" Allow the user to choose a printer and specify other settings.
Dim dlgSettings As New PrintDialog
dlgSettings.Document = doc
' If the user clicked OK, print the document.
If dlgSettings.ShowDialog = Windows.Forms.DialogResult.OK Then

' This method returns immediately, before the print job starts.
The PrintPage event will fire asynchronously.

doc.Print()
End If

End Sub

Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)

' Determine the font.

Using fnt As New Font("Arial", 30)

' Determine the position on the page. In this case,
we read the margin settings (although there is
nothing that prevents your code from going outside
the margin bounds).

Dim x As Single = e.MarginBounds.Lleft
Dim y As Single = e.MarginBounds.Top

Determine the height of a line (based on the font used).

CHAPTER 8 MULTIMEDIA

Dim lineHeight As Single = Font.GetHeight(e.Graphics)
" Print five lines of text.
For i As Integer = 1 To 5
' Draw the text with a black brush, using the
font and coordinates we have determined.
e.Graphics.DrawString("This is line " & i.ToString, Font, =
Brushes.Black, x, y)

Move down the equivalent spacing of one line.
y += lineheight

Next

y += lineHeight

Draw an image.
e.Graphics.DrawImage(Image.FromFile(Path.Combine(‘w»
Application.StartupPath, "test.jpg")), x, y)

End Using

End Sub
End Class

8-15. Print a Multipage Document

Problem

You need to print complex documents with multiple pages and possibly print several different docu-
ments at once.

Solution

Place the information you want to print into a custom class that derives from PrintDocument, and in
the PrintPage event handler, set the PrintPageEventArgs.HasMorePages property to True as long as
pages are remaining.

How It Works

The PrintDocument.PrintPage event is triggered to let you to print only a single page. If you need to
print more pages, you need to set the PrintPageEventArgs.HasMorePages property to True in the
PrintPage event handler. Aslong as HasMorePages is set to True, the PrintDocument class will continue
firing PrintPage events. However, it is up to you to track which page you are on, what data should be
placed on each page, and what is the last page for which HasMorePage is not set to True. To facilitate
this tracking, it is a good idea to create a custom class.

The Code

The following example shows a class called TextDocument. This class inherits from PrintDocument
and adds three properties. Text stores an array of text lines, PageNumber reflects the last printed page,
and Offset indicates the last line that was printed from the Text array.

321

322 CHAPTER 8 MULTIMEDIA

Public Class TextDocument
Inherits PrintDocument

Private m Text As String()
Private m PageNumber As Integer
Private m Offset As Integer

Public Sub New(ByVal txt As String())
Me.Text = txt
End Sub

Public Property Text() As String()
Get
Return m_Text
End Get
Set(ByVal value As String())
m Text = value
End Set
End Property

Public Property PageNumber() As Integer
Get
Return m_PageNumber
End Get
Set(Byval value As Integer)
m_PageNumber = value
End Set
End Property

Public Property Offset() As Integer
Get
Return m Offset
End Get
Set(ByVal value As Integer)
m Offset = value
End Set
End Property

End Class

Depending on the type of material you are printing, you might want to modify this class. For
example, you could store an array of image data, some content that should be used as a header or
footer on each page, font information, or even the name of a file from which you want to read the
information. Encapsulating the information in a single class makes it easier to print more than one
document at the same time. This is especially important because the printing process runs in a new
dedicated thread. As a consequence, the user is able to keep working in the application and therefore
update your data while the pages are printing. So, this dedicated class should contain a copy of the
data to print to avoid any concurrency problems.

The code that initiates printing is the same as in recipe 8-14, but now it creates a TextDocument
instance instead of aPrintDocument instance. The PrintPage event handler keeps track of the current
line and checks whether the page has space before attempting to print the next line. If a new page is
needed, the HasMorePages property is set to True and the PrintPage event fires again for the next page.

CHAPTER 8 MULTIMEDIA

If not, the print operation is deemed complete. This simple code sample also takes into account
whether a line fits on the page, according to the height (see recipe 8-16).
The full form code is as follows:

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Printing
" All designed code is stored in the autogenerated partial
class called Recipe08-15.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 15

Private Sub cmdPrint Click(ByVal sender As System.Object, '
ByVal e As System.EventArgs) Handles cmdPrint.Click

Create a document with 100 lines.
Dim printText As String() = New String(100) {}

For i As Integer = 1 To 100
printText(i) = i.ToString

printText(i) += ": The quick brown fox jumps over the lazy dog."
Next

Dim doc As New TextDocument(printText)
AddHandler doc.PrintPage, AddressOf Doc_PrintPage

Dim dlgSettings As New PrintDialog
dlgSettings.Document = doc
' If the user clicked 0K, print the document.
If dlgSettings.ShowDialog = Windows.Forms.DialogResult.OK Then

' This method returns immediately, before the print job starts.
The PrintPage event will fire asynchronously.

doc.Print()
End If

End Sub

Private Sub Doc_PrintPage(ByVal sender As Object, Byval e As PrintPageEventArgs)
' Retrieve the document that sent this event.
Dim doc As TextDocument = DirectCast(sender, TextDocument)
' Determine the font and determine the line height.
Using fnt As New Font("Arial", 10)
Dim lineHeight As Single = Font.GetHeight(e.Graphics)
' Create variables to hold position on the page.
Dim x As Single = e.MarginBounds.Left
Dim y As Single = e.MarginBounds.Top

323

324 CHAPTER 8 MULTIMEDIA

Increment the page counter (to reflect the page that
is about to be printed).
doc.PageNumber += 1

" Print all the information that can fit on the page.
" This loop ends when the next line would go over the
bottom margin or there are no more lines to print.
While ((y + lineHeight) < e.MarginBounds.Bottom And doc.Offset <= =
doc.Text.GetUpperBound(0))
e.Graphics.DrawString(doc.Text(doc.0ffset), Font, Brushes.Black, =

X, y)
Move to the next line of data.
doc.Offset += 1
' Move the equivalent of one line down the page.
y += lineHeight
End While
If doc.Offset < doc.Text.GetUpperBound(0) Then
' There is still at least one more page. Signal
' this event to fire again.
e.HasMorePages = True
Else
Printing is complete.
doc.Offset = 0
End If
End Using
End Sub
End Class

8-16. Print Wrapped Text

Problem

You need to parse a large block of text into distinct lines that fit on one page.

Solution

Use the Graphics.DrawString method overload that accepts a bounding rectangle.

How It Works

Often, you will need to break a large block of text into separate lines that can be printed individually
on a page. The .NET Framework can perform this task automatically, provided you use a version of
the Graphics.DrawString method that accepts a bounding rectangle. You specify a rectangle that
represents where you want the text to be displayed. The text is then wrapped automatically to fit
within those confines.

CHAPTER 8 MULTIMEDIA

The Code

The following code demonstrates this approach, using the bounding rectangle that represents the
printable portion of the page. It prints a large block of text from a textbox on the form.

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Printing
" All designed code is stored in the autogenerated partial
class called Recipe08-16.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 16

Private Sub cmdPrint Click(ByVal sender As System.Object, ‘=

ByVal e As System.EventArgs) Handles cmdPrint.Click
' Create the document and attach an event handler.

Dim text As String = "Windows Server 2003 builds on the core strengths " & _
"of the Windows family of operating systems--security, manageability, " & _
"reliability, availability, and scalability. Windows Server 2003 " & _
"provides an application environment to build, deploy, manage, and " & _
"run XML web services. Additionally, advances in Windows Server 2003 " & _
"provide many benefits for developing applications.”

Dim doc As New ParagraphDocument (text)

AddHandler doc.PrintPage, AddressOf Doc_PrintPage
" Allow the user to choose a printer and specify other settings.
Dim dlgsettings As New PrintDialog

dlgsettings.Document = doc

' If the user clicked 0K, print the document.

If dlgsettings.ShowDialog = Windows.Forms.DialogResult.OK Then
doc.Print()

End If

End Sub

Private Sub Doc_PrintPage(ByVal sender As Object, Byval e As PrintPageEventArgs)
' Retrieve the document that sent this event.
Dim doc As ParagraphDocument = DirectCast(sender, ParagraphDocument)

' Define the font and text.
Using fnt As New Font("Arial", 15)
e.Graphics.DrawString(doc.Text, Font, Brushes.Black, w»
e.MarginBounds, StringFormat.GenericDefault)
End Using

End Sub
End Class

325

326 CHAPTER 8 MULTIMEDIA

Public Class ParagraphDocument
Inherits PrintDocument

Private m Text As String

Public Sub New(ByVal txt As String)
Me.Text = txt
End Sub

Public Property Text() As String
Get
Return m_Text
End Get
Set(ByVval value As String)
m Text = value
End Set
End Property

End Class
Figure 8-10 shows the wrapped text.

Figure 8-10. The printed document with wrapping

CHAPTER 8 MULTIMEDIA

8-17. Show a Dynamic Print Preview

Problem

You need to use an on-screen preview that shows how a printed document will look.

Solution

Use PrintPreviewDialog or PrintPreviewControl (both of which are found in the System.Windows.
Forms namespace).

How It Works

The .NET Framework provides two elements of user interface that can take a PrintDocument instance,
run your printing code (such as the code demonstrated in recipe 8-15), and use it to generate a graph-
ical on-screen preview:

e The PrintPreviewDialog, which shows a preview in a stand-alone form

e The PrintPreviewControl, which shows a preview in a control that can be embedded in one
of your own custom forms

Touse astand-alone print preview form, create aPrintPreviewDialog object, assign its Document
property, and call the Show method:

Dim dlgPreview As New PrintPreviewDialog
dlgPreview.Document = doc
dlgPreview.Show()

The Print Preview window (shown in Figure 8-11) provides all the controls the user needs to
move from page to page, zoom in, and so on. The window even provides a print button that allows
the user to send the document directly to the printer. You can tailor the window to some extent by
modifying the PrintPreviewDialog properties.

You can also add a PrintPreviewControl control to any of your forms to show a preview along-
side other information. In this case, you do not need to call the Show method. As soon as you set
the PrintPreviewControl.Document property, the preview is generated. To clear the preview,
set the Document property to Nothing. To refresh the preview, reassign the Document property.
PrintPreviewControl shows only the preview pages, not any additional controls. However, you can
add your own controls for zooming, tiling multiple pages, and so on. You simply need to adjust the
PrintPreviewControl properties accordingly.

327

328 CHAPTER 8 MULTIMEDIA

Figure 8-11. Using the PrintPreviewDialog control
The Code

As an example, consider the form shown in Figure 8-12. It incorporates a PrintPreviewControl and
allows the user to select a zoom setting.

Figure 8-12. Using the PrintPreviewControl in a custom window

CHAPTER 8

Here is the complete form code:

Imports System

Imports System.Drawing

Imports System.Windows.Forms
Imports System.Drawing.Printing
" All designed code is stored in the autogenerated partial
class called Recipe08-17.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 17

Private doc As PrintDocument

Private Sub Recipe08 17 Load(ByVal sender As Object, =
ByVal e As System.EventArgs) Handles Me.load
' Set the allowed zoom settings.
For i As Integer = 1 To 10
1stZoom.Items.Add((i * 10).ToString)
Next

Create a document with 100 lines.
Dim printText As String() = New String(100) {}

For i As Integer = 1 To 100
printText(i) = i.ToString

printText(i) += ": The quick brown fox jumps over the lazy dog."

Next
Dim doc As New TextDocument(printText)
AddHandler doc.PrintPage, AddressOf Doc_PrintPage

1stZoom.Text = "100"
printPreviewControl.Zoom = 1
printPreviewControl.Document = doc
printPreviewControl.Rows = 2

End Sub

Private Sub cmdPrint Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles cmdPrint.Click
' Set the zoom.
printPreviewControl.Zoom = Single.Parse(lstZoom.Text) / 100
' Rebind the PrintDocument to refresh the preview.
printPreviewControl.Document = doc

End Sub

(PrintDocument.PrintPage event handler code omitted. See recipe 8-15.)

MULTIMEDIA

329

330

CHAPTER 8 MULTIMEDIA

End Class

(TextDocument class code omitted. See recipe 8-15.)

8-18. Manage Print Jobs

Problem

You need to pause or resume a print job or a print queue.

Solution

Use Windows Management Instrumentation (WMI). You can retrieve information from the print
queue using a query with the Win32_PrintJob class, and you can use the Pause and Resume methods
of the WMIWin32 PrintJob and Win32_Printer classes to manage the queue.

How It Works

WMI allows you to retrieve a vast amount of system information using a querylike syntax. One of the
tasks you can perform with WMI is to retrieve a list of outstanding print jobs, along with information
about each one. You can also perform operations such as printing and resuming a job or all the jobs
for a printer. To use WMI, you need to add a reference to the System.Management.dl1 assembly.

The Code

The following code shows a Windows application that interacts with the print queue. It performs a
WMI query to get a list of all the outstanding print jobs on the computer and displays the job ID for
eachoneinalistbox. When the user selects the item, a more complete WMI query is performed, and
additional details about the print job are displayed in a textbox. Finally, the user can click the Pause
and Resume button after selecting a job to change its status.

Remember that Windows permissions might prevent you from pausing or resuming print jobs
created by another user. In fact, permissions might even prevent you from retrieving status informa-
tion and could cause a security exception to be thrown.

Imports System

Imports System.Drawing
Imports System.Windows.Forms
Imports System.Management
Imports System.Collections
Imports System.Text

" All designed code is stored in the autogenerated partial
class called Recipe08-18.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08 18

Private Sub cmdRefresh Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles cmdRefresh.Click

CHAPTER 8

" Select all the outstanding print jobs.
Dim query As String = "SELECT * FROM Win32_PrintJob"

Using jobQuery As New ManagementObjectSearcher(query)
Using jobs As ManagementObjectCollection = jobQuery.Get()
' Add the jobs in the queue to the list box.

1stJobs.Items.Clear()
txtJobInfo.Text = ""

For Each job As ManagementObject In jobs
1stJobs.Items.Add(job("JobID"))
Next
End Using
End Using

End Sub

Private Sub Recipe08 18 Load(ByVal sender As Object, =
ByVal e As System.EventArgs) Handles Me.load

cmdRefresh Click(Nothing, Nothing)

End Sub

This helper method performs a WMI query and returns the
' WMI job for the currently selected list box item.

MULTIMEDIA

Private Function GetSelectedJob(ByVal jobID As String) As ManagementObject

Try
' Select the matching print job.

Dim query As String = "SELECT * FROM Win32_PrintJob WHERE JobID='" & w»

jobID & """
Dim job As ManagementObject = Nothing

Using jobQuery As New ManagementObjectSearcher(query)
Dim jobs As ManagementObjectCollection = jobQuery.Get
Dim enumerator As IEnumerator = jobs.GetEnumerator

enumerator.MoveNext ()
job = DirectCast(enumerator.Current, ManagementObject)

End Using

Return job
Catch ex As InvalidOperationException
' The current property of the enumerator is invalid.

Return Nothing
End Try

End Function

331

332 CHAPTER 8 MULTIMEDIA

Private Sub lstJobs SelectedIndexChanged(ByVal sender As Object, ‘=
ByVal e As System.EventArgs) Handles lstJobs.SelectedIndexChanged

Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)

If job Is Nothing Then
txtJobInfo.Text = ""
Exit Sub

End If

Display job information.
Dim jobInfo As New StringBuilder

jobInfo.AppendFormat("Document: {0}", job("Document").ToString)
jobInfo.Append(Environment.NewLine)
jobInfo.AppendFormat("DriverName: {0}", job("DriverName").ToString)
jobInfo.Append(Environment.NewLine)

jobInfo.AppendFormat("Status: {0}", job("Status").ToString)
jobInfo.Append(Environment.NewLine)

jobInfo.AppendFormat("Owner: {0}", job("Owner").ToString)
jobInfo.Append(Environment.NewLine)
jobInfo.AppendFormat("PagesPrinted: {0}", job("PagesPrinted").ToString)
jobInfo.Append(Environment.NewLine)
jobInfo.AppendFormat("TotalPages: {0}", job("TotalPages").ToString)

If job("JobStatus") IsNot Nothing Then

txtJobInfo.Text += Environment.NewlLine

txtJobInfo.Text += "JobStatus: " & job("JobStatus").ToString
End If

If job("StartTime") IsNot Nothing Then
jobInfo.Append(Environment.NewLine)
jobInfo.AppendFormat("StartTime: {0}", job("StartTime").ToString)

End If

txtJobInfo.Text = jobInfo.ToString

End Sub

Private Sub cmdPause Click(ByVal sender As System.Object, ‘=
ByVal e As System.EventArgs) Handles cmdPause.Click

If 1stJobs.SelectedIndex = -1 Then Exit Sub

Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)

CHAPTER 8 MULTIMEDIA

If job Is Nothing Then Exit Sub
' Attempt to pause the job.
Dim returnValue As Integer = CType(job.InvokeMethod("Pause", Nothing), ‘=
Integer)
' Display information about the return value.
If returnvalue = 0 Then
MessageBox. Show("Successfully paused job.")
Else
MessageBox.Show("Unrecognized return value when pausing job.")
End If

End Sub

Private Sub cmdResume Click(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles cmdResume.Click

If 1lstJobs.SelectedIndex = -1 Then Exit Sub

Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)
If job Is Nothing Then Exit Sub

If (CInt(job("StatusMask") And 1)) = 1 Then

' Attempt to resume the job.
Dim returnvalue As Integer = CType(job.InvokeMethod("Resume", Nothing), ‘=

Integer)
Display information about the return value.
If returnValue = 0 Then
MessageBox. Show("Successfully resumed job.")
ElseIf returnvalue = 5 Then
MessageBox.Show("Access denied.")
Else
MessageBox.Show("Unrecognized return value when resuming job.")
End If
End If
End Sub
End Class

Figure 8-13 shows an example of running this application.

333

334 CHAPTER 8 MULTIMEDIA

Figure 8-13. Retrieving information from the print queue

Note Other WMI methods you might use in a printing scenario include AddPrinterConnection,
SetDefaultPrinter, CancelAllJobs, and PrintTestPage, all of which work with the Win32_Printer
class. For more information about WMI, refer to http://www.microsoft.com/whdc/system/pnppwr/wmi/
default.mspx.

CHAPTER 9

Database Access

In the Microsoft .NET Framework, access to a wide variety of data sources is enabled through a
group of classes collectively named Microsoft ADO.NET. Each type of data source is supported
through the provision of a data provider. Each data provider contains a set of classes that not only
implement a standard set of interfaces (defined in the System.Data namespace), but also provide
functionality unique to the data source they support. These classes include representations of
connections, commands, properties, data adapters, and data readers through which you interact

with a data source.

Note ADO.NET is an extensive subsection of the .NET Framework class library and includes a great deal of

advanced functionality. For comprehensive coverage of ADO.NET, read David Sceppa’s excellent book Programming

Microsoft ADO.NET 2.0 Core Reference (Microsoft Press, 2006).

Table 9-1 lists the data providers included as standard with the .NET Framework.

Table 9-1. .NET Framework Data Provider Implementations

Data Provider

Description

.NET Framework
Data Provider
for ODBC

.NET Framework
Data Provider
for OLE DB

.NET Framework
Data Provider
for Oracle

.NET Framework
Data Provider for
SQL Server

.NET Compact
Framework Data
Provider for SQL
Server CE

Provides connectivity (via COM Interop) to any data source that implements an
ODBC interface. This includes Microsoft SQL Server, Oracle, and Microsoft
Access databases. Data provider classes are contained in the System.Data.
0dbc namespace and have the prefix Odbc.

Provides connectivity (via COM Interop) to any data source that implements an
OLE DB interface. This includes Microsoft SQL Server, MSDE, Oracle, and Jet
databases. Data provider classes are contained in the System.Data.0leDb
namespace and have the prefix 01eDb.

Provides optimized connectivity to Oracle databases via Oracle client
software version 8.1.7 or later. Data provider classes are contained in the
System.Data.OracleClient namespace and have the prefix Oracle.

Provides optimized connectivity to Microsoft SQL Server version 7 and later
(including MSDE) by communicating directly with the SQL Server data
source, without the need to use ODBC or OLE DB. Data provider classes are
contained in the System.Data.SqlClient namespace and have the prefix Sql.

Provides connectivity to Microsoft SQL Server 2005 Compact Edition. Data
provider classes are contained in the System.Data.SqlServerCe namespace
and have the prefix SqlCe.

335

336

CHAPTER 9 DATABASE ACCESS

Tip Where possible, the recipes in this chapter are programmed against the interfaces defined in the System.
Data namespace. This approach makes it easier to apply the solutions to any database. Adopting this approach in
your own code will make it more portable. However, the data provider classes that implement these interfaces often
implement additional functionality specific to their own database. Generally, you must trade off portability against
access to proprietary functionality when it comes to database code. Recipe 9-10 describes how you can use the
System.Data.Common.DbProviderFactory and associated classes (new to .NET Framework 2.0) to write
generic code that is not tied to a specific database implementation.

This chapter describes some of the most commonly used aspects of ADO.NET. The recipes in
this chapter describe how to do the following:
* Create, configure, open, and close database connections (recipe 9-1)

* Employ connection pooling to improve the performance and scalability of applications that
use database connections (recipe 9-2)

* Create and securely store database connection strings (recipes 9-3 and 9-4)

e Execute SQL commands and stored procedures, and use parameters to improve their flexi-
bility (recipes 9-5 and 9-6)

* Process the results returned by database queries as either a set of rows or as XML (recipes 9-7
and 9-8)

* Execute database operations asynchronously, allowing your main code to continue with
other tasks while the database operation executes in the background (recipe 9-9)

e Write generic ADO.NET code that can be configured to work against any relational database
for which a data provider is available (recipe 9-10)

¢ Discover all instances of SQL Server 2000 and SQL Server 2005 available on a network
(recipe 9-11)

Note Unless otherwise stated, the recipes in this chapter have been written to use SQL Server 2005 Express
Edition running on the local machine and use the AdventureWorks sample database provided by Microsoft. To run
the examples against your own database, ensure the AdventureWorks sample is installed and update the recipe’s
connection string to contain the name of your server instead of . \sqlexpress. You can obtain the script to set up
the AdventureWorks database from http://www.microsoft.com/downloads/details.aspx?familyid=
E719ECF7-9F46-4312-AF89-6AD8702E4E6E&displaylang=en. Download and run the AdventureWorksDB.msi
file. This site also contains the file SQLServerDatabasesAndSamplesOverview.htm, which contains instructions for
installing the AdventureWorks database.

9-1. Connect to a Database

Problem

You need to open a connection to a database.

CHAPTER 9 DATABASE ACCESS 337

Solution

Create a connection object appropriate to the type of database to which you need to connect. Configure
the connection object by setting its ConnectionString property. Open the connection by calling the
connection object’s Open method.

How It Works

The first step in database access is to open a connection to the database. All connection objects inherit
from the abstract (MustInherit) System.Data.Common.DbConnection class. This class implements the
System.Data.IDbConnection interface. The DbConnection class represents a database connection,
and each data provider includes a unique implementation. Here is the list of the implementations
for the five standard data providers:

System.Data.0dbc.0dbcConnection
System.Data.0leDb.0leDbConnection
System.Data.OracleClient.OracleConnection
System.Data.SqlClient.SqlConnection
System.Data.SqlServerCe.SqlCeConnection

You configure a connection object using a connection string. A connection string is a set of
semicolon-separated name-value pairs. You can supply a connection string either as a constructor
argument or by setting a connection object’s ConnectionString property before opening the connec-
tion. Each connection class implementation requires that you provide different information in the
connection string. Refer to the ConnectionString property documentation for each implementation
to see the values you can specify. Possible settings include the following:

The name of the target database server

The name of the database to open initially
Connection time-out values
Connection-pooling behavior (see recipe 9-2)

Authentication mechanisms to use when connecting to secured databases, including provision
of a username and password if needed

Once configured, call the connection object’s Open method to open the connection to the data-
base. You can then use the connection object to execute commands against the data source (discussed
in recipe 9-3). The properties of a connection object also allow you to retrieve information about the
state of a connection and the settings used to open the connection. When you're finished with a
connection, you should always call its Close method to free the underlying database connection and
system resources. IDbConnection extends System.IDisposable, meaning that each connection class
implements the Dispose method. Dispose automatically calls Close, making the Using statement a
very clean and efficient way of using connection objects in your code.

You achieve optimum scalability by opening your database connection as late as possible and
closing it as soon as you have finished. This ensures that you do not tie up database connections for
long periods, so you give all code the maximum opportunity to obtain a connection. This is especially
important if you are using connection pooling.

338

CHAPTER 9 DATABASE ACCESS

The Code

The following example demonstrates how to use both the SqlConnection and 0OleDbConnection classes to
open a connection to a Microsoft SQL Server database running on the local machine that uses inte-
grated Windows security.

Imports System

Imports System.Data

Imports System.Data.SqlClient
Imports System.Data.0leDb

Namespace Apress.VisualBasicRecipes.Chaptero9
Public Class Recipe09 01

Public Shared Sub SglConnectionExample()
' Configure an empty SqlConnection object.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;"
' Open the database connection.
con.Open()
' Display the information about the connection.
If con.State = ConnectionState.Open Then
Console.Writeline("SqlConnection Information:")

Console.WritelLine(" Connection State = " & con.State)
Console.Writeline(" Connection String = " & =
con.ConnectionString)

Console.Writeline(" Database Source = " & con.DataSource)
Console.Writeline(" Database = " & con.Database)
Console.Writeline(" Server Version = " & con.ServerVersion)
Console.Writeline(" Workstation Id = " & con.WorkstationId)
Console.WritelLine(" Timeout = " & con.ConnectionTimeout)
Console.Writeline(" Packet Size = " & con.PacketSize)

Else
Console.Writeline("SqlConenction failed to open.")
Console.WritelLine(" Connection State = " & con.State)

End If

(Close the database connection.
con.Close()

End Using
End Sub

Public Shared Sub OleDbConnectionExample()

CHAPTER 9 DATABASE ACCESS

Configure an empty SqlConnection object.
Using con As New OleDbConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Provider=SQLOLEDB;Data " & w»
"Source=.\sqlexpress;Initial Cataglo=AdventureWorks;Integrated Security=SSPI;"

Open the database connection.
con.Open()

Display the information about the connection.
If con.State = ConnectionState.Open Then
Console.WriteLine("0leDbConnection Information:")

Console.WriteLine(" Connection State = " & con.State)
Console.WritelLine(" Connection String = " & =
con.ConnectionString)
Console.WriteLine(" Database Source = " & con.DataSource)
Console.WriteLine(" Database = " & con.Database)
Console.WriteLine(" Server Version = " & con.ServerVersion)
Console.WriteLine(" Timeout = " & con.ConnectionTimeout)
Else
Console.WriteLine("0leDbConnection failed to open.")
Console.WriteLine(" Connection State = " & con.State)
End If

Close the database connection.
con.Close()

End Using
End Sub
Public Shared Sub Main()

Open connection using SglConnection.
SqlConnectionExample()
Console.WriteLine(Environment.NewlLine)

Open connection using OleDbConnection.
0leDbConnectionExample()
Console.WriteLine(Environment.NewlLine)

" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

339

340

CHAPTER 9 DATABASE ACCESS

9-2. Use Connection Pooling

Problem

You need to use a pool of database connections to improve application performance and scalability.

Solution

Configure the connection pool using settings in the connection string of a connection object.

How It Works

Connection pooling significantly reduces the overhead associated with creating and destroying
database connections. Connection pooling also improves the scalability of solutions by reducing the
number of concurrent connections a database must maintain. Many of these connections sitidle for
a significant portion of their lifetimes.

With connection pooling, the first time you create a connection, the .NET Framework checks
the pool to see if a connection is available. If the pool hasn’t yet reached its limit, a new connection
will be created and added to it. The next time you attempt to use a connection with the identical
connection string, instead of a new connection being created and opened, the existing connection
in the pool is used. When you close the connection, it is returned to the pool until it is needed again.
Once created, a pool exists until your process terminates.

The SQL Server and Oracle data providers encapsulate connection-pooling functionality that
they enable by default. One connection pool exists for each unique connection string you specify
when you open a new connection. Each time you open a new connection with a connection string
that you used previously, the connection is taken from the existing pool. Only if you specify a different
connection string will the data provider create a new connection pool. You can control some char-
acteristics of your pool using the connection string settings described in Table 9-2.

Table 9-2. Connection String Settings That Control Connection Pooling

Setting Description

Connection Lifetime Specifies the maximum time in seconds that a connection is allowed
to live in the pool before it’s closed. The age of a connection is tested
only when the connection is returned to the pool. This setting is useful
for minimizing pool size if the pool is not heavily used and also ensures
optimal load balancing is achieved in clustered database environments.
The default value is 0, which means connections exist for the life of
the current process.

Connection Reset Supported only by the SQL Server data provider. Specifies whether
connections are reset as they are taken from the pool. A value of True
(the default) ensures a connection’s state is reset but requires an
additional communication with the database.

Max Pool Size Specifies the maximum number of connections that should be in the
pool. Connections are created and added to the pool as required until
this value is reached. If a request for a connection is made but there
are no free connections, the calling code will block until a connection
becomes available. The default value is 100.

CHAPTER 9 DATABASE ACCESS

Table 9-2. Connection String Settings That Control Connection Pooling

Setting Description

Min Pool Size Specifies the minimum number of connections that should be in the
pool. On pool creation, this number of connections is created and added
to the pool. During periodic maintenance, or when a connection is
requested, connections are added to the pool to ensure the minimum
number of connections is available. The default value is 0.

Pooling Set to False to obtain a nonpooled connection. The default value
is True.

The Code

Thefollowing example demonstrates the configuration of a connection pool that contains a minimum of
5 and a maximum of 15 connections. Connections expire after 10 minutes (600 seconds) and are
reset each time a connection is obtained from the pool. The example also demonstrates how to use
the Pooling setting to obtain a connection object that is not from a pool. This is useful if your appli-
cation uses a single long-lived connection to a database.

Imports System
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
Public Class Recipe09 02

Public Shared Sub Main()

Obtain a pooled connection.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=15;" & w»
"Connection Reset=True;Connection Lifetime=600;"
' Open the database connection.
con.Open()

Access the database...
' Close the database connection.

This returns the connection to the pool for reuse.
con.Close()

End Using
' Obtain a nonpooled connection.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;Pooling=False;"

Open the database connection.

3

342 CHAPTER 9 DATABASE ACCESS

con.Open()

Access the database...

(Close the database connection.
con.Close()

End Using

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Notes

The ODBC and OLE DB data providers also support connection pooling, but they do not implement
connection pooling within managed .NET classes, and you do not configure the pool in the same
way as you do for the SQL Server and Oracle data providers. ODBC connection pooling is managed
by the ODBC Driver Manager and configured using the ODBC Data Source Administrator tool in the
Control Panel. OLE DB connection pooling is managed by the native OLE DB implementation. The most
you can do is disable pooling by including the setting OLE DB Services=-4; in your connection string.

The SQL Server CE data provider does not support connection pooling, because SQL Server CE
supports only a single concurrent connection.

9-3. Create a Database Connection String
Programmatically

Problem

You need to programmatically create or modify a syntactically correct connection string by working
with its component parts or by parsing a given connection string.

Solution

Use the System.Data.Common.DbConnectionStringBuilder class or one ofits strongly typed subclasses
that form part of an ADO.NET data provider.

How It Works

Connection strings are String objects that contain a set of configuration parameters in the form of
name-value pairs separated by semicolons. These configuration parameters instruct the ADO.NET
infrastructure how to open a connection to the data source you want to access and how to handle

CHAPTER 9 DATABASE ACCESS 343

the life cycle of connections to that data source. As a developer, you will often simply define your
connection string by hand and store it in a configuration file (see recipe 9-4). However, at times, you
may want to build a connection string from component elements entered by a user, or you may want
to parse an existing connection string into its component parts to allow you to manipulate it program-
matically. The DbConnectionStringBuilder class (new to .NET Framework 2.0) and the classes
derived from it provide both these capabilities.

DbConnectionStringBuilder is a class used to create connection strings from name-value pairs
or to parse connection strings, but it does not enforce any logic on which configuration parameters
are valid. Instead, each data provider (except the SQL Server CE data provider) includes a unique
implementation derived from DbConnectionStringBuilder that accurately enforces the configura-
tion rules for a connection string of that type. Here is the list of available DbConnectionStringBuilder
implementations for standard data providers:

e System.Data.0dbc.OdbcConnectionStringBuilder
e System.Data.0leDb.0leDbConnectionStringBuilder
e System.Data.OracleClient.OracleConnectionStringBuilder

e System.Data.SqlClient.SqlConnectionStringBuilder

Each of these classes exposes properties for getting and setting the possible parameters for a
connection string of that type. To parse an existing connection string, pass it as an argument when
creating the DbConnectionStringBuilder derived class or set the ConnectionString property. If this
string contains a keyword not supported by the type of connection, an ArgumentException exception
is thrown.

The Code

The following example demonstrates the use of the SqlConnectionStringBuilder class to parse and
construct SQL Server connection strings.

Imports System
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
Public Class Recipe09 03

Public Shared Sub Main()

' Configure the SqlConnection object's connection string.

Dim conString As String = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=15;" & w»
"Connection Reset=True;Connection Lifetime=600;"

' Parse the SOL Server connection string and display the component
' configuration parameters.

Dim sbi As New SqlConnectionStringBuilder(conString)

Console.Writeline("Parsed SQL Connection String Parameters:")

Console.WriteLine(" Database Source = " & sbi.DataSource)
Console.Writeline(" Database = " & sbi.InitialCatalog)
Console.Writeline(" Use Integrated Security = " & w»

sb1.IntegratedSecurity)

344

CHAPTER 9 DATABASE ACCESS

Console.WriteLine(" Min Pool Size = " & sb1.MinPoolSize)
Console.WriteLine(" Max Pool Size = " & sbi.MaxPoolSize)
Console.WriteLine(" Lifetime = " & sbi.lLoadBalanceTimeout)
Console.WriteLine(" Connection Reset = " & sbi.ConnectionReset)

Dim

sb2.
sb2.

sb2

sb2

Build a connection string from component parameters and display it.

sb2 As New SglConnectionStringBuilder(conString)

DataSource = ".\sqlexpress"
InitialCatalog = "AdventureWorks"

.IntegratedSecurity = True
sb2.

MinPoolSize = 5

.MaxPoolSize = 15
sb2.
sb2.

LoadBalanceTimeout = 600
ConnectionReset = True

Console.WriteLine(Environment.NewLine)
Console.Writeline("Constructed connection string:")
Console.WriteLine(" " & sb2.ConnectionString)

Wait to continue.

Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadLine()

End Sub

End Class
End Namespace

9-4. Store a Database Connection String Securely

Problem

You need to store a database connection string securely.

Solution

Store the connection string in an encrypted section of the application’s configuration file.

Note Protected configuration—the .NET Framework feature that lets you encrypt configuration information—
relies on the key storage facilities of the Data Protection API (DPAPI) to store the secret key used to encrypt the
configuration file. This solves the very difficult problem of code-based secret key management. Refer to recipe 11-19 for
more information about the DPAPI.

CHAPTER 9 DATABASE ACCESS

How It Works

Database connection strings often contain secret information, or at the very least information that
would be valuable to someone trying to attack your system. As such, you should not store connection
strings in plaintext, nor is it sufficient to hard-code them into the application code. Strings embedded in
an assembly can easily be retrieved using a disassembler. .NET Framework 2.0 adds a number of
classes and capabilities that make storing and retrieving encrypted connection strings in your appli-
cation’s configuration trivial.

Unencrypted connection strings are stored in the machine or application configuration file in
the <connectionStrings> section in the format shown here:

<configuration>

<connectionStrings>

<add name="ConnectionString1" connectionString="Data Source='w
.\sqglexpress;Database=AdventureWorks;Integrated Security=SSPI;Min Pool Size=5; w»
Max Pool Size=15;Connection Reset=True;Connection Lifetime=600;"
providerName="System.Data.SqlClient" />

</connectionStrings>

</configuration>

The easiest way to read this connection stringis to use the indexed ConnectionStrings property
of the System.Configuration.ConfigurationManager class. Specifying the name of the connection
string you want as the property index will return a System. Configuration.ConnectionStringSettings
object. The ConnectionStringSettings.ConnectionString property gets the connection string, and
the ConnectionStringSettings.ProviderName property gets the provider name that you can use to
create a data provider factory (see recipe 9-10). This process will work regardless of whether the
connection string has been encrypted or written in plaintext.

To write a connection string to the application’s configuration file, you must first obtain a
System.Configuration.Configuration object, which represents the application’s configuration
file. The easiest way to do this is by calling the System.Configuration.ConfigurationManager.
OpenExeConfiguration method. You should then create and configure a new System.Configuration.
ConnectionStringSettings object to represent the stored connection string. You should provide a
name, connection string, and data provider name for storage. Add the ConnectionStringSettings
object to the Configuration’s ConnectionStringsSection collection available through the Configuration.
ConnectionStrings property. Finally, save the updated file by calling the Configuration.Save method.

To encrypt the connection strings section of the configuration file, before saving the file, you must
configure the ConnectionStringsSection collection. To do this, call the ConnectionStringsSection.
SectionInformation.ProtectSection method and pass it a string containing the name of the
protected configuration provider to use: either RsaProtectedConfigurationProvider or
DPAPIProtectedConfigurationProvider. To disable encryption, call the SectionInformation.Unprotect
method.

Note To use the classes from the System.Configuration namespace discussed in this recipe, you must add
a reference to the System.Configuration.dll assembly when you build your application.

The Code

The following example demonstrates the writing of an encrypted connection string to the applica-
tion’s configuration file and the subsequent reading and use of that connection string.

345

346

CHAPTER 9 DATABASE ACCESS

Imports System
Imports System.Configuration
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chaptero9
Public Class Recipe09 04

Private Shared Sub WriteEncryptedConnectionStringSection(ByVal name As ‘w»
String, ByVal constring As String, ByVal provider As String)

' Get the configuration file for the current application. Specify
the ConfigurationUserLevel.None argument so that we get the
configuration settings that apply to all users.

Dim config As Configuration = w»
ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None)

Get the connectionStrings section from the configuration file.
Dim section As ConnectionStringsSection = config.ConnectionStrings
' If the connectionString section does not exist, create it.
If section Is Nothing Then

section = New ConnectionStringsSection

config.Sections.Add("connectionSettings", section)
End If
' If it is not already encrypted, configure the connectionStrings
section to be encrypted using the standard RSA Protected
Configuration Provider.
If Not section.SectionInformation.IsProtected Then

' Remove this statement to write the connection string in clear
text for the purpose of testing.

section.SectionInformation.ProtectSection w»
("RsaProtectedConfigurationProvider™)
End If

Create a new connection string element and add it to the
connection string configuration section.

Dim cs As New ConnectionStringSettings(name, constring, provider)
section.ConnectionStrings.Add(cs)

Force the connection string section to be saved.
section.SectionInformation.ForceSave = True
' Save the updated configuration file.
config.Save(ConfigurationSaveMode.Full)

End Sub

Public Shared Sub main()
' The connection string information to be written to the

configuration file.

Dim conName As String = "ConnectionString1"

Dim conString As String = "Data Source=.\sqlexpress;Database=" & w»

CHAPTER 9 DATABASE ACCESS

"Adventurelorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=5;" & w»
"Connection Reset=True;Connection Lifetime=600;"
Dim providerName As String = "System.Data.SqlClient"
' Write the new connection string to the application's
configuration file.
WriteEncryptedConnectionStringSection(conName, conString, providerName)

Read the encrypted connection string settings from the
application's configuration file.

Dim cs2 As ConnectionStringSettings = w»
ConfigurationManager.ConnectionStrings("ConnectionString1™)

Use the connection string to create a new SOL Server connection.
Using con As New SqlConnection(cs2.ConnectionString)

' Issue database commands/queries...
End Using

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Notes

The example in this recipe uses the OpenExeConfiguration method to open the configuration file for
the application. It accepts a ConfigurationUserLevel enumerator value, which is set to None to get
the configuration settings for all users. If you need to access user-specific settings, you should use the
PerUserRoaming or PerUserRoamingAndLocal value. PerUserRoaming refers to the current user’s
roaming configuration settings. PerUserRoamingAndLocal refers to the user’s local settings.

9-5. Execute a SQL Command
or Stored Procedure

Problem

You need to execute a SQL command or stored procedure on a database.

Solution

Create a command object appropriate to the type of database you intend to use. Configure the
command object by setting its CommandType and CommandText properties. Execute the command
using the ExecuteNonQuery, ExecuteReader, or ExecuteScalar method, depending on the type of
command and its expected results.

347

348

CHAPTER 9 DATABASE ACCESS

How It Works

All command objects
implements the Syst
command, and each

inherit the abstract (MustInherit) System.Data.Common.DbCommand class, which
em.Data.IDbCommand interface. The DbCommand class represents a database
data provider includes a unique implementation. Here is the list of the imple-

mentations for the five standard data providers:

e System.Data.0dbc.0dbcCommand
e System.Data.0leDb.0leDbCommand

e System.Data.OracleClient.OracleCommand

e System.Data.S
e System.Data.S

glClient.SqlCommand
glServerCe.SqlCeCommand

To execute a command against a database, you must have an open connection (discussed in
recipe 9-1) and a properly configured command object appropriate to the type of database you are
accessing. You can create command objects directly using a constructor, but a simpler approach is

to use the CreateComm

and factory method of a connection object. The CreateCommand method returns

a command object of the correct type for the data provider and configures it with the appropriate

information (such as

CommandTimeout and Connection) obtained from the connection you used to

create the command. Before executing the command, you must configure the properties described
in Table 9-3, which are common to all command implementations.

Table 9-3. Common Command Object Properties

Property

Description

CommandText

CommandTimeout

CommandType

Connection

Parameters

Transaction

A String containing the text of the SQL command to execute or the name
of a stored procedure. The content of the CommandText property must be
compatible with the value you specify in the CommandType property.

An Integer that specifies the number of seconds to wait for the command to
return before timing out and raising an exception. Defaults to 30 seconds.

Avalue of the System.Data.CommandType enumeration that specifies the type
of command represented by the command object. For most data providers,
valid values are StoredProcedure, when you want to execute a stored proce-
dure, and Text, when you want to execute a SQL text command. If you are
using the OLE DB data provider, you can specify TableDirect when you want
to return the entire contents of one or more tables. Refer to the .NET Frame-
work SDK documentation for more details. Defaults to Text.

A DbConnection instance that provides the connection to the database on
which you will execute the command. If you create the command using the
IDbConnection.CreateCommand method, this property will be automatically
set to the DbConnection instance from which you created the command.

A System.Data.DbParameterCollection instance containing the set of
parameters to substitute into the command. This property is optional.
(See recipe 9-6 for details on how to use parameters.)

A System.Data.DbTransaction instance representing the transaction into
which to enlist the command. If the connection object used to create this
method specified a transaction, this property will be automatically set to that
instance. This property is optional. (See the NET Framework SDK documen-
tation for details about transactions.)

CHAPTER 9 DATABASE ACCESS

Once you have configured your command object, you can execute it in a number of ways,
depending on the nature of the command, the type of data returned by the command, and the
format in which you want to process the data.

¢ To execute a command that does not return database data (such as UPDATE, INSERT, DELETE,
or CREATE TABLE), call ExecuteNonQuery. For the UPDATE, INSERT, and DELETE commands, the
ExecuteNonQuery method returns an Integer that specifies the number of rows affected by the
command. For commands that don’t return rows, such as CREATE TABLE, ExecuteNonQuery
returns the value -1.

* To execute a command that returns a result set, such as a SELECT statement or stored procedure,
use the ExecuteReader method. ExecuteReader returns a DbDataReader instance (discussed in
recipe 9-7) through which you have access to the result data. When the ExecuteReader command
returns, the connection cannot be used for any other commands while the IDataReader is
open. Most data providers also allow you to execute multiple SQL commands in a single call
to the ExecuteReader method, as demonstrated in the example in this recipe, which also shows
how to access each result set.

e Ifyouwantto execute a query but need only the value from the first column of the first row of
result data, use the ExecuteScalar method. The value is returned as an Object reference that
you must cast to the correct type.

Note The IDbCommand implementations included in the Oracle and SQL data providers implement additional
command execution methods. Recipe 9-8 describes how to use the ExecuteXmlReader method provided by the
SqlCommand class. Refer to the .NET Framework’s SDK documentation, at http://msdn2.microsoft.com/
en-us/library/system.data.oracleclient.oraclecommand(vs.80).aspx, for details on the addi-
tional ExecuteOracleNonQuery and ExecuteOracleScalar methods provided by the OracleCommand class.

The Code

The following example demonstrates the use of command objects to update a database record, return
records from a query, and obtain a scalar value. Recipe 9-6 covers the use of stored procedures.

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
Public Class Recipe09 05

Public Shared Sub ExecuteNonQueryExample(ByVal con As IDbConnection)
' Create and configure a new command.
Dim com As IDbCommand = con.CreateCommand
com.CommandType = CommandType.Text
com.CommandText = "UPDATE HumanResources.Employee SET Title = " & w»
Production Supervisor' WHERE EmployeeID = 24;"

Execute the command and process the result.
Dim result As Integer = com.ExecuteNonQuery

349

350 CHAPTER 9 DATABASE ACCESS

If result = 1 Then
Console.WriteLine("Employee title updated.")
ElseIf result > 1 Then
Console.WriteLine("{0} employee titles updated.”, result)
Else
Console.WritelLine("Employee title not updated.")
End If

End Sub
Public Shared Sub ExecuteReaderExample(ByVal con As IDbConnection)

Create and configure a new command.

Dim com As IDbCommand = con.CreateCommand

com.CommandType = CommandType.Text

com.CommandText = "SET ROWCOUNT 10;SELECT Production.Product.Name," & 'w»
"Production.Product.ListPrice FROM Production.Product " & w»
"ORDER BY Production.Product.ListPrice DESC;SET ROWCOUNT o;"

' Execute the command and process the results.
Using reader As IDataReader = com.ExecuteReader

While reader.Read
Display the product details.
Console.Writeline(" {0} = {1}", =
reader("Name"), reader("ListPrice"))
End While

End Using
End Sub
Public Shared Sub ExecuteScalarExample(ByVal con As IDbConnection)

Create and configure a new command.
Dim com As IDbCommand = con.CreateCommand
com.CommandType = CommandType.Text
com.CommandText = "SELECT COUNT(*) FROM HumanResources.Employee;"
' Execute the command and cast the result.
Dim result As Integer = CInt(com.ExecuteScalar)

Console.WritelLine("Employee count = " & result)
End Sub

Public Shared Sub Main()
' Create a new SqlConnection object.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;"

CHAPTER 9 DATABASE ACCESS

Open the database connection and execute the example
commands through the connection.
con.Open()

ExecuteNonQueryExample(con)
Console.WriteLine(Environment.NewLine)

ExecuteReaderExample(con)
Console.WriteLine(Environment.NewLine)

ExecuteScalarExample(con)
Console.WriteLine(Environment.NewLine)

Close the database connection.
con.Close()

End Using

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

9-6. Use Parameters in a SQL Command
or Stored Procedure

Problem

You need to set the arguments of a stored procedure or use parameters in a SQL query to improve
flexibility.

Solution

Create parameter objects appropriate to the type of command object you intend to execute. Configure
the parameter objects’ data types, values, and directions and add them to the command object’s
parameter collection using the IDbCommand.Parameters.Add method.

How It Works

All command objects support the use of parameters, so you can do the following:

¢ Set the arguments of stored procedures.
* Receive stored procedure return values.

e Substitute values into SQL queries at runtime.

351

352

CHAPTER 9 DATABASE ACCESS

All parameter objects inherit the abstract (MustInherit) System.Data.Common.DbParameter class,
which implements the System.Data.IDataParameter interface. The DbParameter classrepresentsa
parameter, and each data provider includes a unique implementation. Here is the list of the imple-
mentations for the five standard data providers:

e System.Data.Odbc.OdbcParameter

e System.Data.0leDb.OleDbParameter

e System.Data.OracleClient.OracleParameter
* System.Data.SqlClient.SqlParameter

e System.Data.SqlServerCe.SqlCeParameter

To use parameters with a text command, you must identify where to substitute the parameter’s
value within the command. The ODBC, OLE DB, and SQL Server CE data providers support positional
parameters; the location of each argument is identified by a question mark (?). For example, the
following command identifies two locations to be substituted with parameter values.

UPDATE HumanResources.Employee SET Title = ? WHERE Employeeld = ?

The SQL Server and Oracle data providers support named parameters, which allow you to iden-
tify each parameter location using a name preceded by the at symbol (@). Named parameters are very
useful when you need to use the same parameter in multiple locations. Here is the equivalent command
using named parameters:

UPDATE HumanResources.Employee SET Title = @title WHERE Employeeld = @id

To specify the parameter values to substitute into a command, you must create parameter
objects of the correct type and add them to the command object’s parameter collection accessible
through the Parameters property. You can add named parameters in any order, but you must add
positional parameters in the same order they appear in the text command. When you execute your
command, the value of each parameter is substituted into the command before it is executed against
the data source. You can create parameter objects in the following ways:

e Use the CreateParameter method of the command object.
e Use the Parameters.Add method of the command object.
* Use System.Data.Common.DbProviderFactory.

* Directly create parameter objects using constructors and configure them using constructor
arguments or through setting their properties. (This approach ties you to a specific database
provider.)

A parameter object’s properties describe everything about a parameter that the command
object needs to use the parameter object when executing a command against a data source. Table 9-4
describes the properties that you will use most frequently when configuring parameters.

When using parameters to execute stored procedures, you must provide parameter objects to
satisfy each argument required by the stored procedure, including both input and output arguments. If
astored procedure has a return value, the parameter to hold the return value (with aDirection prop-
erty equal to ReturnValue) must be the first parameter added to the parameter collection.

CHAPTER 9 DATABASE ACCESS

Table 9-4. Commonly Used Parameter Properties

Property Description

DbType Avalue of the System.Data.DbType enumeration that specifies the type of
data contained in the parameter. Commonly used values include String,
Int32, DateTime, and Currency.

Direction Avalue from the System.Data.ParameterDirection enumeration that indi-
cates the direction in which the parameter is used to pass data. Valid values
are Input, InputOutput, Output, and ReturnValue. The default is Input.

IsNullable A Boolean that indicates whether the parameter accepts Nothing values. The
default is False.

ParameterName A String containing the name of the parameter.

Value An Object containing the value of the parameter.

The Code

The following example demonstrates the use of parameters in SQL queries. The
ParameterizedCommandExample method demonstrates the use of parameters in a SQL Server UPDATE
statement. The ParameterizedCommandExample method’s arguments include an open SqlConnection,
an Integer, and a String. The values of the two strings are substituted into the UPDATE command
using parameters. The StoredProcedureExample method demonstrates the use of parameters to call
a stored procedure.

Since not all providers support named parameters, this example specifically uses SQL objects.
Instead of using IDbConnection, IDbCommand, and IDataParameter, it uses the specific classes
SqlConnection, SqlCommand, and SqlParameter, respectively.

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
Public Class Recipe09 06

Public Shared Sub ParameterizedCommandExample(ByVal con As SqlConnection, ‘=
ByVal employeeID As Integer, ByVal title As String)

Create and configure a new command containing 2 named parameters.
Using com As SqlCommand = con.CreateCommand

com.CommandType = CommandType.Text
com.CommandText = "UPDATE HumanResources.Employee SET Title = " & w»
"@title WHERE EmployeeID = @id;"

Create a SqlParameter object for the title parameter.
Dim p1 As SqlParameter = com.CreateParameter
pl.ParameterName = "@title"

p1.5q1DbType = SqlDbType.VarChar

pl.Value = title

com.Parameters.Add(p1)

353

354 CHAPTER 9 DATABASE ACCESS

' Use a shorthand syntax to add the id parameter.
com.Parameters.Add("@id", SqlDbType.Int).Value = employeeID
' Execute the command and process the result.
Dim result As Integer = com.ExecuteNonQuery

If result = 1 Then
Console.Writeline("Employee {0} title updated to {1}", =
employeeID, title)
ElseIf result > 1 Then
' Indicates multiple records were affected.
Console.Writeline("{0} records for employee {1} had the " & =
"title updated to {2}", result, employeeID, title)
Else
Console.Writeline("Employee {0} title not updated.", employeelD)
End If

End Using
End Sub

Public Shared Sub StoredProcedureExample(ByVal con As SqlConnection, '
ByVal managerID As Integer)

Create and configure a new command containing 2 named parameters.
Using com As SglCommand = con.CreateCommand

com.CommandType = CommandType.StoredProcedure
com.CommandText = "uspGetManagerEmployees"

Create the required SglParameter object.
com.Parameters.Add("@anagerID", SqlDbType.Int).Value = managerID

Execute the command and process the result.
Dim result As Integer = com.ExecuteNonQuery

Using reader As IDataReader = com.ExecuteReader
Console.Writeline("Employees managed by manager #{0}.", =
managerID.ToString)

While reader.Read
Display the product details.
Console.WriteLine(" {0}, {1} ({2})", reader("LastName"), 'w
reader("FirstName"), reader("employeeID"))
End While
End Using
End Using
End Sub

Public Shared Sub Main()

CHAPTER 9 DATABASE ACCESS

Create a new SqlConnection object.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;"

Open the database connection and execute the example
commands through the connection.
con.Open()

ParameterizedCommandExample(con, 16, "Production Technician")
Console.WriteLine(Environment.NewLine)

StoredProcedurekxample(con, 185)
Console.WriteLine(Environment.NewLine)

Close the database connection.
con.Close()

End Using

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

9-7. Process the Results of a SQL Query Using a
Data Reader

Problem

You need to process the data contained in the System.Data.DbDataReader class instance returned
when you execute the DbCommand. ExecuteReader method (see recipe 9-5).

Solution

Use the members of the DbDataReader class to move through the rows in the result set sequentially
and access the individual data items contained in each row.

How It Works

The DbDataReader class represents a data reader, which is a forward-only, read-only mechanism for
accessing the results of a SQL query. This is an abstract (MustInherit) class that implements the

355

356

CHAPTER 9

DATABASE ACCESS

System.Data.IDataReader interface. Each data provider includes a unique DbDataReader implemen-
tation. Here is the list of the implementations for the five standard data providers:

* System.Data.Odbc.OdbcDataReader
e System.Data.0leDb.OleDbDataReader

e System.Data.OracleClient.OracleDataReader
* System.Data.SqlClient.SqlDataReader

e System.Data.SqlServerCe.SqlCeDataReader

The IDataReader interface extends the System.Data.IDataRecord interface. Together, these
interfaces declare the functionality that provides access to both the data and the structure of the data
contained in the result set. Table 9-5 describes some of the commonly used members of the IDataReader
and IDataRecord interfaces.

Table 9-5. Commonly Used Members of Data Reader Classes

Member Description

Property

FieldCount Gets the number of columns in the current row.

IsClosed Returns True if the IDataReader is closed; False if it’s currently open.

Item Returns an Object representing the value of the specified column in the
current row. Columns can be specified using a zero-based integer index or
a string containing the column name. You must cast the returned value to
the appropriate type. This is the indexer for the IDataRecord interface.

Method

GetDataTypeName Gets the name of the data source data type as a String for a specified column.

GetFieldType Gets a System.Type instance representing the data type of the value
contained in the column specified using a zero-based integer index.

GetName Gets the name of the column specified by using a zero-based integer index.

GetOrdinal Gets the zero-based column ordinal for the column with the specified name.

GetSchemaTable Returns a System.Data.DataTable instance that contains metadata
describing the columns contained in the IDataReader.

IsDBNull Returns True if the value in the specified column contains a data source
null value; otherwise, it returns False.

NextResult If the IDataReader includes multiple result sets because multiple state-
ments were executed, NextResult moves to the next set of results. This
method returns True or False, indicating whether or not there are more
results. By default, the IDataReader is positioned on the first result set.

Read Advances the reader to the next record. This method returns True or False,

indicating whether or not there are more records. The reader always starts
prior to the first record.

CHAPTER 9 DATABASE ACCESS

In addition to those members listed in Table 9-5, the data reader provides a set of methods for
retrieving typed data from the current row. Each of the following methods takes an integer argument
that identifies the zero-based index of the column from which the data should be returned:
GetBoolean, GetByte, GetBytes, GetChar, GetChars, GetDateTime, GetDecimal, GetDouble, GetFloat,
GetGuid, GetInt16, GetInt32, GetInt64, GetString.

The SQL Server and Oracle data readers also include methods for retrieving data as data source-
specific data types. For example, the SqlDataReader includes methods such as GetSqlByte,
GetSglDecimal, and GetSqlMoney, and the OracleDataReader includes methods such as GetOraclelob,
GetOracleNumber, and GetOracleMonthSpan. Refer to the NET Framework SDK documentation for
more details.

When you have finished with a data reader, you should always call its Close method so that you
can use the database connection again. IDataReader extends System.IDisposable, meaning that
each data reader class implements the Dispose method. Dispose automatically calls Close, making
the Using statement a very clean and efficient way of using data readers.

The Code

The following example demonstrates the use of a data reader to process the contents of two result
setsreturned by executing a batch query containing two SELECT queries. The first result setis enumerated
and displayed to the console. The second result set is inspected for metadata information, which is
then displayed.

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
Public Class Recipe09 07

Public Shared Sub Main()
' Create a new SqlConnection object.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;"
' Create and configure a new command.
Using com As IDbCommand = con.CreateCommand

com.CommandType = CommandType.Text

com.CommandText = "SELECT BirthDate,FirstName,LastName " & w»
"FROM HumanResources.Employee e INNER JOIN Person.Contact c ON " & =
"e.EmployeeID=c.ContactID ORDER BY BirthDate;SELECT * FROM HumanResources.Employee;"

Open the database connection and execute the example
commands through the connection.
con.Open()
' Execute the command and obtain a data reader.
Using reader As IDataReader = com.ExecuteReader

357

358 CHAPTER 9 DATABASE ACCESS

" Process the first set of results and display the
' content of the result set.
Console.Writeline("Employee Birthdays (By Age).")

While reader.Read
Console.WriteLine(" {0,18:D} - {1} {2}", =
reader.GetDateTime(0), reader("FirstName"), reader(2))
End While
Console.WriteLine(Environment.NewlLine)

' Process the second set of results and display details

' about the columns and data types in the result set.

reader.NextResult()

Console.WritelLine("Employee Table Metadata.")

For field As Integer = 0 To reader.FieldCount - 1
Console.WriteLine(" Column Name:{0} Type:{1}", =

reader.GetName(field), reader.GetDataTypeName(field))
Next

End Using

Close the database connection.
con.Close()

End Using

End Using

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

9-8. Obtain an XML Document
from a SQL Server Query

Problem

You need to execute a query against a SQL Server 2000 (or later) database and retrieve the results
as XML.

CHAPTER 9 DATABASE ACCESS

Solution

Specify the FOR XML clause in your SQL query to return the results as XML. Execute the command
using the ExecuteXmlReader method of the System.Data.SqlClient.SqlCommand class, which returns
a System.Xml.XmlReader object through which you can access the returned XML data.

How It Works

SQL Server 2000 (and later versions) provides direct support for XML. You simply need to add the
clause FOR XML AUTO to the end of a SQL query to indicate that the results should be returned as XML.
By default, the XML representation is not a full XML document. Instead, it simply returns the result
of each record in a separate element, with all the fields as attributes. For example, this query:

SELECT DepartmentID, [Name] FROM HumanResources.Department FOR XML AUTO

returns XML with the following structure:

<HumanResources.Department DepartmentID="12" Name="Document Control" />
<HumanResources.Department DepartmentID="1" Name="Engineering" />

<HumanResources.Department DepartmentID="16" Name="Executive" />

Alternatively, you can add the ELEMENTS keyword to the end of a query to structure the results
using nested elements rather than attributes. For example, this query:

SELECT DepartmentID, [Name] FROM HumanResources.Department FOR XML AUTO, ELEMENTS

returns XML with the following structure:

<HumanResources.Department>
<DepartmentID>12</DepartmentID>
<Name>Document Control</Name>
</HumanResources.Department>
<HumanResources.Department>
<DepartmentID>1</DepartmentID>
<Name>Engineering</Name>
</HumanResources.Department>
<HumanResources.Department>
<DepartmentID>16</DepartmentID>
<Name>Executive</Name>
</HumanResources.Department>

Tip You can also fine-tune the format using the FOR XML EXPLICIT syntax. For example, this allows you to
convert some fields to attributes and others to elements. Refer to SQL Server Books Online, http://msdn2.
microsoft.com/en-us/library/ms189068.aspx, for more information.

When the ExecuteXmlReader command returns, the connection cannot be used for any other
commands while the XmlReader is open. You should process the results as quickly as possible, and
you must always close the XmlReader. Instead of working with the XmlReader and accessing the data
sequentially, you can read the XML data into a System.Xml.XmlDocument. This way, all the data is
retrieved into memory, and the database connection can be closed. You can then continue to interact
with the XML document. (Chapter 6 contains numerous examples of how to use the XmlReader and
XmlDocument classes.)

359

360 CHAPTER 9 DATABASE ACCESS

The Code

The following example demonstrates how to retrieve results as XML using the FOR XML clause and the
ExecuteXmlReader method.

Imports System

Imports System.Xml

Imports System.Data

Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chaptero9
Public Class Recipe09 08

Public Shared Sub ConnectedExample()
' Create a new SqlConnection object.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sqlexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;"

Create and configure a new command that includes the
" FOR XML AUTO clause.

Using com As SqlCommand = con.CreateCommand

com.CommandType = CommandType.Text
com.CommandText = "SELECT DepartmentID, [Name], GroupName " & w»
"FROM HumanResources.Department FOR XML AUTO;"
' Open the database connection.
con.Open()
' Execute the command and retrieve an XmlReader to access
the results.
Using reader As XmlReader = com.ExecuteXmlReader
While reader.Read
Console.WriteLine("Element: " & reader.Name)

If reader.HasAttributes Then
For i As Integer = 0 To reader.AttributeCount - 1
reader.MoveToAttribute(i)
Console.Write(" {o0}: {1}", reader.Name, ‘=
reader.Value)
Next
' Move the XmlReader back to the element node.
reader.MoveToElement ()
Console.WriteLine(Environment.NewLine)
End If
End While
End Using
' Close the database connection.
con.Close()

CHAPTER 9 DATABASE ACCESS

End Using
End Using

End Sub
Public Shared Sub DisconnectedExample()

Dim doc As New XmlDocument
' Create a new SqlConnection object.
Using con As New SqlConnection
' Configure the SqlConnection object's connection string.
con.ConnectionString = "Data Source=.\sglexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;"

Create and configure a new command that includes the
" FOR XML AUTO clause.
Using com As SqlCommand = con.CreateCommand

com.CommandType = CommandType.Text
com.CommandText = "SELECT DepartmentID, [Name], GroupName " & w»
"FROM HumanResources.Department FOR XML AUTO;"

Open the database connection.
con.Open()

" Load the XML data into the XmlDocument. Must first create a
' root element into which to place each result row element.
Dim reader As XmlReader = com.ExecuteXmlReader

doc. LoadXml("<results></results>")

' Create an XmlNode from the next XML element read from the
reader.

Dim newNode As XmlNode = doc.ReadNode(reader)

While newNode IsNot Nothing
doc.DocumentElement.AppendChild(newNode)
newNode = doc.ReadNode(reader)

End While

' Close the database connection.

con.Close()

End Using
End Using

Process the disconnected XmlDocument.
Console.WriteLine(doc.OuterXml)

End Sub

Public Shared Sub Main()

361

362

CHAPTER 9 DATABASE ACCESS

ConnectedExample()
Console.WriteLine(Environment.NewLine)

DisconnectedExample()
Console.WriteLine(Environment.NewLine)

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

9-9. Perform Asynchronous Database Operations
Against SQL Server

Problem

You need to execute a query or command against a SQL Server database as a background task while
your application continues with other processing.

Solution

Use the BeginExecuteNonQuery, BeginExecuteReader, or BeginExecuteXmlReader method of the
System.Data.SqlClient.SqlCommand class to start the database operation as a background task.
These methods all return a System. IAsyncResult object that you can use to determine the operation’s
status or use thread synchronization to wait for completion. Use the IAsyncResult object and the
corresponding EndExecuteNonQuery, EndExecuteReader, or EndExecuteXmlReader method to obtain
the result of the operation.

Note Only the Sq1Command class supports the asynchronous operations described in this recipe. The equivalent
command classes for the Oracle, SQL Server CE, ODBC, and OLE DB data providers do not provide this functionality.

How It Works

You will usually execute operations against databases synchronously, meaning that the calling code
blocks until the operation is complete. Synchronous calls are most common because your code will
usually require the result of the operation before it can continue. However, sometimes it’s useful
to execute a database operation asynchronously, meaning that you start the method in a separate
thread and then continue with other operations.

CHAPTER 9 DATABASE ACCESS

Note To execute asynchronous operations over a System.Data.SqlClient.SqlConnection connection,
you must specify the value Asynchronous Processing=True in its connection string.

As of NET Framework 2.0, the SqlCommand class implements the asynchronous execution pattern
similar to that discussed in recipe 4-2. As with the general asynchronous execution pattern described
in recipe 4-2, the arguments of the asynchronous execution methods (BeginExecuteNonQuery,
BeginExecuteReader, and BeginExecuteXmlReader) are the same as those of the synchronous variants
(ExecuteNonQuery, ExecuteReader, and ExecuteXmlReader), but they take the following two additional
arguments to support asynchronous completion:

e ASystem.AsyncCallback delegate instance that references a method that the runtime will call
when the asynchronous operation completes. The method is executed in the context of a
thread-pool thread. Passing Nothing means that no method is called and you must use another
completion mechanism (discussed later in this recipe) to determine when the asynchronous
operation is complete.

* AnObject reference that the runtime associates with the asynchronous operation. The asyn-
chronous operation does not use nor have access to this object, but it’s available to your code
when the operation completes, allowing you to associate useful state information with an
asynchronous operation. For example, this object allows you to map results against initiated
operations in situations where you initiate many asynchronous operations that use a common
callback method to perform completion.

The EndExecuteNonQuery, EndExecuteReader, and EndExecuteXmlReader methods allow you to
retrieve the return value of an operation that was executed asynchronously, but you must first deter-
mine when it has finished. Here are the four techniques for determining if an asynchronous method
has finished:

* Blocking: This method stops the execution of the current thread until the asynchronous
operation completes execution. In effect, this is much the same as synchronous execution.
However, you do have the flexibility to decide exactly when your code enters the blocked
state, giving you the opportunity to carry out some additional processing before blocking.

* Polling: This method involves repeatedly testing the state of an asynchronous operation to
determine if it’'s complete. This is a very simple technique and is not particularly efficient
from a processing perspective. You should avoid tight loops that consume processor time. It’s
best to put the polling thread to sleep for a period using Thread. Sleep between completion
tests. Because polling involves maintaining a loop, the actions of the waiting thread are limited,
but you can easily update some kind of progress indicator.

* Waiting This method uses an object derived from the System.Threading.WaitHandle class to
signal when the asynchronous method completes. Waiting is a more efficient version of polling
and in addition allows you to wait for multiple asynchronous operations to complete. You
can also specify time-out values to allow your waiting thread to fail if the asynchronous oper-
ation takes too long, or if you want to periodically update a status indicator.

e Callback: This is a method that the runtime calls when an asynchronous operation completes.
The calling code does not need to take any steps to determine when the asynchronous oper-
ation is complete and is free to continue with other processing. Callbacks provide the greatest
flexibility, but also introduce the greatest complexity, especially if you have many concurrently
active asynchronous operations that all use the same callback. In such cases, you must use
appropriate state objects to match completed methods against those you initiated.

363

364

CHAPTER 9 DATABASE ACCESS

Caution When using the asynchronous capabilities of the SQL Server data provider, you must ensure that your
code does not inadvertently dispose of objects that are still being used by other threads. Pay particular attention to
SqlConnection and SqlCommand objects.

The Code

Recipe 4-2 provides examples of all of the completion techniques summarized in the preceding list.
The following example demonstrates the use of an asynchronous call to execute a stored procedure
on a SQL Server database. The code uses a callback to process the returned result set.

Imports System

Imports System.Data

Imports System.Threading
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chaptero9
Public Class Recipe09 09
" A method to handle asynchronous completion using callbacks.
Public Shared Sub CallBackHandler(ByVal result As IAsyncResult)
' Obtain a reference to the SqlCommand used to initiate the
asynchronous operation.
Using cmd As SqlCommand = TryCast(result.AsyncState, SqlCommand)
' Obtain the result of the stored procedure.
Using reader As SglDataReader = cmd.EndExecuteReader(result)

Display the results of the stored procedure to the console.
SyncLock Console.Out

Console.WriteLine("Bill of Materials:")

Console.Writeline("ID Description Quantity "R -
"ListPrice")

While reader.Read
Display the record details.
Console.WriteLine("{0} {1} {2} {3}", =
reader ("ComponentID"), reader("ComponentDesc"), reader("TotalQuantity"), =
reader("ListPrice"))

End While
End SynclLock

End Using
End Using

End Sub

CHAPTER 9 DATABASE ACCESS

Public Shared Sub Main()
' Create a new SqlConnection object.
Using con As New SqlConnection

' Configure the SqlConnection object's connection string.

" You must specify Asynchronous Processing=True to support

' asynchronous operations over the connection.

con.ConnectionString = "Data Source=.\sqglexpress;Database=" & w»
"Adventurelorks;Integrated Security=SSPI;Asynchronous Processing=true;"

Create and configure a new command to run a stored procedure.
Using cmd As SqlCommand = con.CreateCommand

cmd . CommandType = CommandType.StoredProcedure
cmd.CommandText = "uspGetBillOfMaterials"

Create the required SqlParameter objects.
cmd.Parameters.Add("@StartProductID”, SqlDbType.Int).Value
cmd.Parameters.Add("@CheckDate", SqlDbType.DateTime).Value

DateTime.Parse("07/10/2000")

771

14

Open the database connection and execute the command
' asynchronously. Pass the reference to the SqlCommand
' used to initiate the asynchronous operation.
con.Open()
cmd.BeginExecuteReader (AddressOf CallBackHandler, cmd)
End Using
' Continue with other processing.
For count As Integer = 1 To 10
SyncLock Console.Out
Console.WriteLine("{0} : Continue processing...", w
DateTime.Now.ToString("HH:mm:ss.ffff"))
End SynclLock
Thread. Sleep(500)
Next
' Close the database connection.
con.Close()
" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Using
End Sub

End Class
End Namespace

365

366

CHAPTER 9 DATABASE ACCESS

9-10. Write Database-Independent Code

Problem

You need to write code that can be configured to work against any relational database supported by
an ADO.NET data provider.

Solution

Program to the ADO.NET data provider base classes that inherit the main interfaces, such as
IDbConnection, in the System.Data namespace. Unlike the concrete implementations, such as
SglConnection, the base classes do not rely on features and data types that are unique to specific
database implementations. Use factory classes and methods to instantiate the data provider objects
you need to use.

How It Works

Using a specific data provider implementation (the SQL Server data provider, for example) simplifies
your code and may be appropriate if you need to support only a single type of database or require
access to specific features provided by that data provider, such as the asynchronous execution for
SQL Server detailed in recipe 9-9. However, if you program your application against a specific data
provider implementation, you will need to rewrite and test those sections of your code if you want to
use a different data provider at some point in the future.

Table 9-6 contains a summary of the main interfaces you must program against when writing
generic ADO.NET code that will work with any relational database’s data provider. The table also
explains how to create objects of the appropriate type that implement the interface. Many of the
recipes in this chapter demonstrate the use of ADO.NET data provider interfaces over specific imple-
mentation, as highlighted in the table.

Table 9-6. Data Provider Interfaces

Interface Description Demonstrated In

IDbConnection Represents a connection to arelational database. Recipes 9-1 and 9-5
You must program the logic to create a connection
object of the appropriate type based on your appli-
cation’s configuration information, or use the
DbProviderFactory.CreateConnection factory
method (discussed in this recipe).

IDbCommand Represents a SQL command that is issued to a rela- Recipes 9-5 and 9-6
tional database. You can create IDbCommand objects
of the appropriate type using the IDbConnection.
CreateCommand or DbProviderFactory.
CreateCommand factory method.

IDataParameter Represents a parameter to an IDbCommand object. Recipe 9-6
You can create IDataParameter objects of the
correct type using the IDbCommand.CreateParameter,
IDbCommand.Parameters.Add, or DbProviderFactory.
CreateParameter factory method.

CHAPTER 9 DATABASE ACCESS

Table 9-6. Data Provider Interfaces

Interface Description Demonstrated In

IDataReader Represents the result set of a database query and Recipes 9-5 and 9-7
provides access to the contained rows and columns.
An object of the correct type will be returned when
you call the IDbCommand.ExecuteReader method.

IDataAdapter Represents the set of commands used to fill a System.
Data.DataSet from arelational database and to
update the database based on changes to the DataSet.
You must program the logic to create a data adapter
object of the appropriate type based on your
application’s configuration information, or use the
DbProviderFactory.CreateAdapter factory method
(discussed in this recipe).

The System.Data.Common.DbProviderFactory class is newto .NET Framework 2.0 and provides a
set of factory methods for creating all types of data provider objects, making it very useful for imple-
menting generic database code. Most important, DbProviderFactory provides a mechanism for
obtaining an initial IDbConnection instance, which is the critical starting point to writing generic
ADO.NET code. Each of the standard data provider implementations (except the SQL Server CE data
provider) includes a unique factory class derived from DbProviderFactory. Here is the list of
DbProviderFactory subclasses:

e System.Data.Odbc.OdbcFactory

e System.Data.0leDb.0leDbFactory

e System.Data.OracleClient.OracleClientFactory
e System.Data.SqlClient.SqlClientFactory

Note It’s important to understand that there is no common data type for parameters. You are forced to use
DbType, and you are responsible for understanding the mapping between your generic provider and your data
source.

You can obtain an instance of the appropriate DbProviderFactory subclass using the
DbProviderFactories class, which is effectively a factory of factories. Each data provider factory is
described by configuration information in the machine.config file similar to that shown here for the
SQL Server data adapter. This can be changed or overridden by application-specific configuration
information if required.

<configuration>
<system.data>
<DbProviderFactories>

<add name="SqlClient Data Provider" invariant="System.Data.SqlClient" w»
description=".Net Framework Data Provider for SqlServer" type= =
"System.Data.SqlClient.SqlClientFactory, System.Data, Version=2.0.0.0, =
Culture=neutral, PublicKeyToken=b77a5c561934e089" />

<add name="Odbc Data Provider" ... />

<add name="0OleDb Data Provider" ... />

<add name="OracleClient Data Provider" ... />

367

368 CHAPTER 9 DATABASE ACCESS

<add name="SQL Server CE Data ... />
</DbProviderFactories>
</system.data>
</configuration>

You can enumerate the available data provider factories by calling DbProviderFactories.
GetFactoryClasses, which returns a System.Data.DataTable containing the following columns:

* Name, which contains a human-readable name for the provider factory. Taken from the name
attribute in the configuration information.

e Description, which contains a human-readable description for the provider factory. Taken
from the description attribute of the configuration information.

e InvariantName, which contains the unique name used to refer to the data provider factory
programmatically. Taken from the invariant attribute of the configuration information.

* AssemblyQualifiedName, which contains the fully qualified name of the DbProviderFactory
class for the data provider. Taken from the type attribute of the configuration information.

Normally, you would allow the provider to be selected at install time or the first time the appli-
cation was run, and then store the settings as user or application configuration data. The mostimportant
piece of information is the InvariantName, which you pass to the DbProviderFactories.GetFactory
method to obtain the DbProviderFactory implementation you will use to create your IDbConnection
instances.

Note Prior to .NET Framework 2.0, it was difficult to write generic ADO.NET code because each data provider
implemented its own exception class that did not extend a common base class. In .NET Framework 2.0, the
System.Data.Common.DbException class has been added as the base class of all data provider-specific
exceptions, making generic handling of database exceptions a reality.

The Code

The following example demonstrates the enumeration of all data providers configured for

the local machine and application. It then uses the DbProviderFactories class to instantiate a
DbProviderFactory object (actually a SqlClientFactory) from which it creates the appropriate
IDbConnection. It then uses the factory methods of the data provider interfaces to create other
required objects, resulting in code that is completely generic.

Imports System
Imports System.Data
Imports system.Data.Common

Namespace Apress.VisualBasicRecipes.Chaptero9
Public Class Recipe09 10

Public Shared Sub Main()
' Obtain the list of ADO.NET data providers registered in the

' machine and application configuration file.
Using providers As DataTable = DbProviderFactories.GetFactoryClasses

CHAPTER 9 DATABASE ACCESS 369

Enumerate the set of data providers and display details.
Console.WritelLine("Available ADO.NET Data Providers:")

For Each prov As DataRow In providers.Rows
Console.WritelLine(" Name:{0}", prov("Name"))
Console.Writeline(" Description:{0}", prov("Description"))
Console.WriteLine(" Invariant Name:{0}", =
prov("InvariantName"))
Next

End Using
' Obtain the DbProviderFactory for SQL Server. The provider to use
could be selected by the user or read from a configuration file.
In this case, we simply pass the invariant name.

Dim factory As DbProviderFactory = w»
DbProviderFactories.GetFactory("System.Data.SqlClient")

Use the DbProviderFactory to create the initial IDbConnection, and
then the data provider interface factory methods for other objects.
Using con As IDbConnection = factory.CreateConnection

Normally, read the connection string from secure storage.

See recipe 9-2. In this case, use a default value.
con.ConnectionString = "Data Source=.\sqglexpress;Database=" & w»

"Adventurelorks;Integrated Security=SSPI;"

Create and configure a new command.
Using com As IDbCommand = con.CreateCommand

com.CommandType = CommandType.Text

com.CommandText = "SET ROWCOUNT 10;SELECT prod.Name, " & w»
"inv.Quantity FROM Production.Product prod INNER JOIN " & w»
"Production.ProductInventory inv ON prod.ProductID = inv.ProductID ORDER BY " & w»
"inv.Quantity DESC;"

' Open the connection.
con.Open()
' Execute the command and process the results.
Using reader As IDataReader = com.ExecuteReader

Console.WriteLine(Environment.NewLine)
Console.WritelLine("Quantity of the Ten Most Stocked " & w»
"Products:")

While reader.Read
Display the product details.
Console.WriteLine(" {0} = {1}", reader("Name"), w»
reader ("Quantity"))
End While

End Using

370

CHAPTER 9 DATABASE ACCESS

(Close the database connection.
con.Close()

End Using
End Using

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

9-11. Discover All Instances of SQL Server
on Your Network

Problem

You need to obtain a list of all instances of SQL Server 2000 or SQL Server 2005 that are accessible on
the network.

Solution

Use the GetDataSources method of the System.Data.Sql.SqlDataSourceEnumerator class.

Note Your code needs to be granted FullTrust to be able to execute the GetDataSources method.

How It Works

The addition of the new SqlDataSourceEnumerator class in .NET Framework 2.0 makes it easy to
enumerate the SQL Server instances accessible on the network. In previous versions of the .NET
Framework, you needed to create a COM Interop library to access the SQLDMO library to achieve
this.

In .NET Framework 2.0, you simply obtain the singleton SqlDataSourceEnumerator instance via
the Shared property SqlDataSourceEnumerator.Instance and call its GetDataSources method. The
GetDataSources method returnsa System.Data.DataTable that contains a set of System.Data.DataRow
objects. Each DataRow represents a single SQL Server instance and contains the following columns:

¢ ServerName, which contains the name of the server where the SQL Server instance is hosted.

e InstanceName, which contains the name of the SQL Server instance or the empty string if the
SQL Server is the default instance.

e IsClustered, which indicates whether the SQL Server instance is part of a cluster.

¢ Version, which contains the version of the SQL Server instance (8.00.x for SQL Server 2000 or
9.00.x for SQL Server 2005).

CHAPTER 9 DATABASE ACCESS

Caution It is possible to configure SQL Server 2005 to be invisible to the GetDataSources method by disabling
the SQL Server Browser. Therefore, you cannot assume that a SQL Server instance does not exist because you could
not discover it.

The Code

The following example demonstrates the use of the SqlDataSourceEnumerator class to discover and
display details of all SQL Server instances accessible (and visible) on the network.

Imports System
Imports System.Data
Imports system.Data.Sql

Namespace Apress.VisualBasicRecipes.Chapter09
Public Class Recipe09 11

Public Shared Sub Main()

' Obtain the DataTable of SQL Server instances.
Using sqlSources As DataTable = w»
SqlDataSourceEnumerator.Instance.GetDataSources()

Enumerate the set of SQL Servers and display details.
Console.WritelLine("Discover SQL Server Instances:")

For Each source As DataRow In sqlSources.Rows
Console.WriteLine(" Server Name:{0}", source("ServerName"))
Console.WriteLine(" Instance Name:{0}", source("InstanceName"))
Console.WriteLine(" Is Clustered:{0}", source("IsClustered"))
Console.WriteLine(" Version:{0}", source("Version"))
Console.WriteLine(Environment.NewLine)

Next

End Using

" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")

Console.ReadlLine()
End Sub

End Class
End Namespace

3n

CHAPTER 10

Networking and Remoting

The Microsoft .NET Framework includes a full set of classes for network programming. These classes
support everything from socket-based programming with Transmission Control Protocol/Internet
Protocol (TCP/IP) to downloading files and HTML pages from the Web over Hypertext Transfer
Protocol (HTTP). Not only do these networking classes provide you with a rich set of tried-and-
tested tools to use in your own distributed applications, they are also the foundation on which two
high-level distributed programming models integral to the .NET Framework are built: Remoting and
web services.

Although Remoting and web services share many similarities (for example, they both abstract
cross-process and cross-machine calls as method invocations on remote objects), they also have
fundamental differences. Web services are built using cross-platform standards and are based on the
concept of XML messaging. Web services are executed by the ASP.NET runtime, which means they
gain ASP.NET features such as output caching. This also means that web services are fundamentally
stateless. Overall, web services are best suited when you need to cross platform boundaries (for
example, with a Java client calling an ASP.NET web service) or trust boundaries (for example, in business-
to-business transactions).

Remoting is a .NET-specific technology for distributed objects and is the successor to Distrib-
uted Component Object Model (DCOM). It’s ideal for in-house systems in which all applications are
built on the .NET platform, such as the backbone of an internal order-processing system. Remoting
allows for different types of communication, including leaner binary messages and more efficient
TCP/IP connections, which aren’t supported by web services. In addition, Remoting is the only tech-
nology that supports stateful objects and bidirectional communication through callbacks. It’s also
the only technology that allows you to send custom .NET objects over the wire.

The recipes in this chapter describe how to do the following:

¢ Obtain configuration and network statistic information about the network interfaces on a

computer, as well as detect when network configuration changes occur (recipes 10-1 and 10-2)
¢ Download files from File Transfer Protocol (FTP) and HTTP servers (recipes 10-3, 10-4, and 10-6)
* Respond to HTTP requests from within your application (recipe 10-5)

* Send e-mail messages with attachments using Simple Mail Transfer Protocol (SMTP)
(recipe 10-7)

e Use the Domain Name System (DNS) to resolve a host name into an Internet Protocol (IP)
address (recipe 10-8)

¢ PinganIP address to determine whether it is accessible and calculate round-trip communication
speeds by sending it an Internet Control Message Protocol (ICMP) Echo request (recipe 10-9)

e Communicate between programs through the direct use of TCP in both synchronous and
asynchronous communication models (recipes 10-10 and 10-11)

373

374

CHAPTER 10 NETWORKING AND REMOTING

¢ Communicate using User Datagram Protocol (UDP) datagrams where the connection-oriented
and reliable TCP represents unnecessary overhead (recipe 10-12)

* Write web service proxy classes that read the web service uniform resource locator (URL) from
a configuration file, thus avoiding the need to rebuild code if the URL changes (recipe 10-13)

* Provide credentials to allow a proxy class to authenticate against a secured web service
(recipe 10-14)

e Call a web service method asynchronously to avoid the calling code blocking and waiting for
the web service to respond (recipe 10-15)

* Create remotable objects and register them with the .NET Framework’s Remoting infrastruc-
ture (recipes 10-16 and 10-17)

e Host aremote object in Internet Information Services (IIS) (recipe 10-18)

e Control the lifetime and versioning of remotable objects (recipes 10-19 and 10-20)

10-1. Obtain Information Ahout the
Local Network Interface

Problem

You need to obtain information about the network adapters and network configuration of the local
machine.

Solution

Call the Shared method GetAllNetworkInterfaces of the System.Net.NetworkInformation.
NetworkInterface class to get an array of objects derived from the abstract class NetworkInterface.
Each object represents a network interface available on the local machine. Use the members of each
NetworkInterface object to retrieve configuration information and network statistics for that interface.

How It Works

The addition of the System.Net.NetworkInformation namespace in .NET Framework 2.0 provides
easy access to information about network configuration and statistics that was not readily available
to .NET applications previously.

The primary means of retrieving network information are the properties and methods of the
NetworkInterface class. You do not instantiate NetworkInterface objects directly. Instead, you
call the Shared method NetworkInterface.GetAllNetworkInterfaces, which returns an array of
NetworkInterface objects. Each object represents a single network interface on the local machine.
You can then obtain network information and statistics about the interface using the NetworkInterface
members described in Table 10-1.

Tip The System.Net.NetworkInformation.IPGlobalProperties class (new to .NET Framework 2.0)
also provides access to useful information about the network configuration of the local computer.

CHAPTER 10 NETWORKING AND REMOTING

Table 10-1. Members of the NetworklInterface Class

Member Description

Properties

Description Gets a String that provides a general description of the interface.

Id Gets a String that contains the unique identifier of the interface.

IsReceiveOnly Gets a Boolean indicating whether the interface can only receive or
can both send and receive data.

Name Gets a String containing the name of the interface.

NetworkInterfaceType Gets a value from the System.Net.NetworkInformation.

NetworkInterfaceType enumeration that identifies the type of
interface. Common values include Ethernet, FastEthernetT,
and Loopback.

OperationalStatus Gets a value from the System.Net.NetworkInformation.
OperationalStatus enumeration that identifies the status
of the interface. Common values include Down and Up.

Speed Gets a Long that identifies the speed (in bits per second) of the inter-
face as reported by the adapter, not based on dynamic calculation.

SupportsMulticast Gets a Boolean indicating whether the interface is enabled to receive
multicast packets.

Methods

GetIPProperties Returns a System.Net.NetworkInformation.IPInterfaceProperties

object that provides access to the TCP/IP configuration information
for the interface. Properties of the IPInterfaceProperties object
provide access to WINS, DNS, gateway, and IP address configuration.

GetIPv4Statistics Returns a System.Net.NetworkInformation.IPv4InterfaceStatistics
object that provides access to the TCP/IP v4 statistics for the interface.
The properties of the IPv4InterfaceStatistics object provide access to
information about bytes sent and received, packets sent and received,
discarded packets, and packets with errors.

GetPhysicalAddress Returns a System.Net.NetworkInformation.PhysicalAddress
object that provides access to the physical address of the interface.
You can obtain the physical address as a Byte array using the
method PhysicalAddress.GetAddressBytes or as a String using
PhysicalAddress.ToString.

Supports Returns a Boolean indicating whether the interface supports a
specified protocol. You specify the protocol using a value from
the System.Net.NetworkInformation.NetworkInterfaceComponent
enumeration. Possible values include IPv4 and IPv6.

The NetworkInterface class also provides two other Shared members that you will find useful:
e The Shared property LoopbackInterfaceIndex returns an Integer identifying the index of the
loopback interface within the NetworkInterface array returned by GetAllNetworkInterfaces.

e The Shared method GetIsNetworkAvailable returns a Boolean indicating whether any network
connection is available; that is, has an OperationalStatus value of Up.

375

376 CHAPTER 10 NETWORKING AND REMOTING

The Code

The following example uses the members of the NetworkInterface class to display information
about all the network interfaces on the local machine.

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 01

Public Shared Sub Main()
' Only proceed if there is a network available.
If NetworkInterface.GetIsNetworkAvailable Then
' Get the set of all NetworkInterface objects for the local
machine.
Dim interfaces As NetworkInterface() = w
NetworkInterface.GetAllNetworkInterfaces

Iterate through the interfaces and display information.
For Each ni As NetworkInterface In interfaces
Report basic interface information.
Console.Writeline("Interface Name: {0}", ni.Name)
Console.WritelLine(" Description: {0}", ni.Description)
Console.WritelLine(" 10: {o}", ni.Id)
Console.Writeline(" Type: {0}", ni.NetworkInterfaceType)
Console.WritelLine(" Speed: {0}", ni.Speed)
Console.WritelLine(" Status: {0}", ni.OperationalStatus)
' Report physical address.
Console.WritelLine(" Physical Address: {0}", =
ni.GetPhysicalAddress().ToString)

Report network statistics for the interface.

Console.WritelLine(" Bytes Sent: {0}", =
ni.GetIPv4Statistics().BytesSent)
Console.WritelLine(" Bytes Received: {0}", =

ni.GetIPv4Statistics.BytesReceived)

' Report IP configuration.

Console.WritelLine(" IP Addresses:")

For Each addr As UnicastIPAddressInformation In ‘s
ni.GetIPProperties.UnicastAddresses

Console.WriteLine(" - {0} (lease expires {1})", =

addr.Address, DateTime.Now.AddSeconds(addr.DhcpleaseLifetime))

Next

Console.Writeline(Environment.NewlLine)

Next
Else

Console.WritelLine("No network available.")
End If

CHAPTER 10 NETWORKING AND REMOTING

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

10-2. Detect Changes in Network Connectivity

Problem

You need a mechanism to check whether changes to the network occur during the life of your
application.

Solution

Add handlers to the Shared NetworkAddressChanged and NetworkAvailabilityChanged events imple-
mented by the System.Net.NetworkInformation.NetworkChange class. The My object also offers a
shared NetworkAvailabilityChanged event. This event is implemented by the My . Computer.Network
class, which is part of the Microsoft.VisualBasic.Devices namespace. (See Chapter 5 for more
information about the My object.)

How It Works

The NetworkChange class (new to .NET Framework 2.0) provides an easy-to-use mechanism that
allows applications to be aware of changes to network addresses and general network availability.
This allows your applications to adapt dynamically to the availability and configuration of the network.

The NetworkAvailabilityChanged event fires when a change occurs to general network availability.
The NetworkAvailabilityChangedEventHandler delegate is used to handle this event and is passed a
NetworkAvailabilityEventArgs object when the event fires. The NetworkAvailabilityEventArgs.
IsAvailable property returns a Boolean value indicating whether the network is available or unavail-
able following the change.

The NetworkAvailabilityChanged event, of the My object, works in the same way as the matching
event in the NetworkChange class. The only real difference is in naming. This version of the event uses
the NetworkAvailableChangedEventHandler delegate to handle this event, but its event arguments
parameter is a NetworkAvailableEventArgs object. Also, the property for retrieving network avail-
ability is named IsNetworkAvailable.

The NetworkAddressChanged event fires when the IP address of a network interface changes. An
instance of the NetworkAddressChangedEventHandler delegate is required to handle these events. No
event-specific arguments are passed to the event handler, which must call NetworkInterface.
GetAllNetworkInterfaces (discussed in recipe 10-1) to determine what has changed and to take
appropriate action. The My object does not offer an equivalent for this event.

The Code

The following example demonstrates how to use handlers that catch NetworkAddressChanged and
NetworkAvailabilityChanged events and then displays status information to the console.

377

378 CHAPTER 10 NETWORKING AND REMOTING

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10_ 02
' Declare a method to handle NetworkAvailabilityChanged events.
Private Shared Sub NetworkAvailabilityChanged(ByVal sender As Object, ‘w»
ByVal e As NetworkAvailabilityEventArgs)

Report whether the network is now available or unavailable.
If e.IsAvailable Then

Console.WriteLine("Network Available")
Else

Console.WriteLine("Network Unavailable")
End If

End Sub
' Declare a method to handle NetworkAddressChanged events.

Private Shared Sub NetwordAddressChanged(ByVal sender As Object, ‘=
ByVal e As EventArgs)

Console.WriteLine("Current IP Addresses:")
' TIterate through the interfaces and display information.
For Each ni As NetworkInterface In w»
NetworkInterface.GetAllNetworkInterfaces
For Each addr As UnicastIPAddressInformation In ‘w»
ni.GetIPProperties.UnicastAddresses

Console.WritelLine(" - {0} (lease expires {1})", =
addr.Address, DateTime.Now.AddSeconds(addr.DhcpleaseLifetime))
Next
Next
End Sub

Public Shared Sub Main()
' Add the handlers to the NetworkChange events.
AddHandler NetworkChange.NetworkAvailabilityChanged, w»
AddressOf NetworkAvailabilityChanged
AddHandler NetworkChange.NetworkAddressChanged, ‘=
AddressOf NetworkAddressChanged

CHAPTER 10 NETWORKING AND REMOTING

Wait to continue.

Console.WriteLine(Environment.NewlLine)

Console.Writeline("Press Enter to stop waiting for network events.")
Console.ReadlLine()

End Sub

End Class
End Namespace

To use the My object equivalent of the NetworkAvailabilityChanged event, replace the
NetworkAvailabilityChanged handler with the following:

Declare a method to handle NetworkAvailabilityChanged events.
Private Shared Sub NetworkAvailabilityChanged(ByVal sender As Object, ‘w»
ByVal e As Microsoft.VisualBasic.Devices.NetworkAvailableEventArgs)

Report whether the network is now available or unavailable.
If e.IsNetworkAvailable Then

Console.WriteLine("Network Available")
Else

Console.WriteLine("Network Unavailable")
End If

End Sub

You also need to replace the current call to AddHandler with this:

AddHandler My.Computer.Network.NetworkAvailabilityChanged, AddressOf w»
NetworkAvailabilityChanged

10-3. Download Data over HTTP or FTP

Problem

You need a quick, simple way to download data from the Internet using HTTP or FTP.

Solution

Use the methods of the System.Net.WebClient class or the DownloadFile method of the My.Computer.
Network class. (Refer to Chapter 5 for more information about the My object.)

How It Works

The .NET Framework provides several mechanisms for transferring data over the Internet. One of
the easiest approaches is to use the System.Net.WebClient class. WebClient provides many high-level
methods that simplify the transfer of data by specifying the source as a uniform resource identifier
(URI); Table 10-2 summarizes them. The URI can specify that a file (file://), FTP (ftp://), HTTP ((http://),
or HTTPS (https://) scheme be used to download the resource.

379

380

CHAPTER 10 NETWORKING AND REMOTING

Table 10-2. Data Download Methods of the WebClient Class

Method Description

OpenRead Returns a System.IO0.Stream that provides access to the data from a
specified URIL.

OpenReadAsync Same as OpenRead, but performs the data transfer using a thread-pool

thread so that the calling thread does not block. Add an event
handler to the OpenReadCompleted event to receive notification that
the operation has completed.

DownloadData Returns a Byte array that contains the data from a specified URIL

DownloadDataAsync Same as DownloadData, but performs the data transfer using a thread-
pool thread so that the calling thread does not block. Add an event
handler to the DownloadDataCompleted event to receive notification
that the operation has completed.

DownloadFile Downloads data from a specified URI and saves it to a specified
local file.
DownloadFileAsync Same as DownloadFile, but performs the data transfer using a thread-

pool thread so that the calling thread does not block. Add an event
handler to the DownloadFileCompleted event to receive notification
that the operation has completed.

DownloadString Returns a String that contains the data from a specified URI. (This is
new to .NET Framework 2.0.)

DownloadStringAsync Same as DownloadString, but performs the data transfer using a thread-
pool thread so that the calling thread does not block. Add an event
handler to the DownloadStringCompleted event to receive notification
that the operation has completed.

The asynchronous download methods were added in .NET Framework 2.0 and allow you to
download data as a background task using a thread from the thread pool (discussed in recipe 4-1).
When the download is finished or fails, the thread calls the appropriate OnXXX virtual methods that
raise the corresponding event on the WebClient object, which you can handle using a method that
matches the signature of the System.ComponentModel.AsyncCompletedEventHandler delegate if you
don’t want to derive a type from WebClient and override the virtual method. However, the WebClient
object can handle only a single concurrent asynchronous download, making a WebClient object suit-
able for the background download of large single sets of data but not for the download of many files
concurrently. (You could, of course, create multiple WebClient objects to handle multiple down-
loads.) You can cancel the outstanding asynchronous download using the method CancelAsync.

Tip The WebClient class derives from System.ComponentModel.Component, so you can add it to the
Visual Studio 2005 Form Designer Toolbox in order to allow you to easily set the properties or define the event
handlers in a Windows Forms—based application.

If you need to download only a file, the My object also offers a DownloadFile method. As with the
matching method in the WebClient class, you can specify a String or Uri for the address parameter.
The My version of the method lets you specify a username and password or a System.Net.ICredential
object, while the WebClient version requires you to use the Credentials property of the class, which
accepts only an ICredential object. Unlike with the WebClient version, you can also specify a time-out

CHAPTER 10 NETWORKING AND REMOTING

using the connectionTimeout parameter or show a nonmodal progress dialog box (which includes a
Cancel button) using the showUI parameter.

The Code

The following example downloads a specified resource from a URI as a string and, since it is an
HTML page, parses it for any fully qualified URLs that refer to GIF files. It then downloads each
of these files to the local hard drive.

Imports System

Imports System.IO

Imports System.Net

Imports System.Text.RegularExpressions

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 03

Public Shared Sub Main()
' Specify the URI of the resource to parse.

Dim remoteUri As String = "http://www.apress.com”

' Create a WebClient to perform the download.

Dim client As New WebClient

Console.WritelLine("Downloading {0}", remoteUri)
' Perform the download getting the resource as a string.
Dim str As String = client.DownloadString(remoteUri)

Use a regular expression to extract all fully qualified
" URIs that refer to GIF files.
Dim matches As MatchCollection = Regex.Matches(str, ‘=
"http\S+[*-,;:?]\.gif")
' Try to download each referenced GIF file.
For Each expMatch As Match In matches
For Each grp As Group In expMatch.Groups
' Determine the local filename.
Dim downloadedFile As String = w»
grp.Value.Substring(grp.Value.LastIndexOf("/") + 1)

Try
" Download and store the file.
Console.WriteLine("Downloading {0} to file {1}", w»

grp.Value, downloadedFile)

client.DownloadFile(New Uri(grp.Value), downloadedFile)
Catch ex As Exception
Console.Writeline("Failed to download {0}", grp.Value)
End Try
Next
Next

381

382

CHAPTER 10 NETWORKING AND REMOTING

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Note The regular expression used in the example is simple and is not designed to cater to all possible URL
structures. Recipes 2-5 and 2-6 discuss regular expressions.

Changing the code sample to use the My version of DownloadFile is as simple as replacing
client.DownloadFile with My.Computer.Network.DownloadFile.

Notes

You may also want to upload data to resources specified as a URI, although this technique is not as
commonly used as the other approaches discussed in this recipe. The WebClient class also provides
the following methods for performing uploads that are equivalent to the download methods discussed
previously:

e OpenWrite

e OpenWriteAsync

e UploadData

* UploadDataAsync

* UploadFile

* UploadFileAsync

e UploadString

* UploadStringAsync

Not to be outdone, My offers the UploadFile method, which is used in a similar fashion to the
DownloadFile method.

10-4. Download a File and Process It
Using a Stream

Problem

You need to retrieve a file from a web site, but you do not want to save it directly to the hard drive,
or you do not have permission to do so. Instead, you need to process the data in your application
directly in memory.

CHAPTER 10 NETWORKING AND REMOTING

Solution

Use the System.Net.WebRequest class to create your request, the System.Net.WebResponse class to
retrieve the response from the web server, and some form of reader (typically a System. I0.StreamReader
for HTML or text data, or a System.I0.BinaryReader for a binary file) to parse the response data.

Note You could also use the OpenRead method of the System.Net.WebClient class to open a stream.
However, the additional capabilities of the WebRequest and WebResponse classes give you more control over
the operation of the network request.

How It Works

Opening and downloading a stream of data from the Web using the WebRequest and WebResponse
classes takes the following four basic steps:

1. Use the Shared method Create of the WebRequest class to specify the page you want. This
method returns a WebRequest-derived object, depending on the type of URI you specify. For
example, if you use an HTTP or HTTPS URI (with the scheme http:// or https://), you will
create an HttpWebRequest instance. If you use a file system URI (with the scheme file:/ /), you
will create a FileWebRequest instance. In .NET Framework 2.0, you can also use an FTP URL
(with the scheme ftp://), which will create an FtpWebRequest.

2. Use the GetResponse method of the WebRequest object to return a WebResponse object for the
page. If the request times out, a System.Net.WebException will be thrown. You can configure
the time-out for the network request through the WebRequest. Timeout property in milliseconds
(the default value is 100000).

3. Create a StreamReader or a BinaryReader that wraps the stream returned by the WebResponse.
GetResponseStream method.

4. Perform any steps you need to with the stream contents.

The Code

The following example retrieves and displays a graphic and the HTML content of a web page.
Figure 10-1 shows the output.

Imports System

Imports System.Net

Imports System.IO

Imports System.Drawing
Imports System.Windows.Forms
" All designed code is stored in the autogenerated partial
class called Recipe10-04.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Public Class Recipe10 04

Private Sub Recipe1l0 04 Load(ByVal sender As Object, =
ByVal e As System.EventArgs) Handles Me.load

Dim picUri As String = "http://www.apress.com/img/img05/Hex_RGB4.jpg"
Dim htmlUri As String = "http://www.apress.com”

383

384 CHAPTER 10 NETWORKING AND REMOTING

' Create the requests.
Dim requestPic As WebRequest = WebRequest.Create(picUri)
Dim requestHtml As WebRequest = WebRequest.Create(htmlUri)

' Get the responses. This takes the most significant amount of
" time, particularly if the file is large, because the whole

' response is retrieved.

Dim responsePic As WebResponse = requestPic.GetResponse

Dim responseHtml As WebResponse = requestHtml.GetResponse

' Read the image from the response stream.
pictureboxi.image = Image.FromStream(responsePic.GetResponseStream)

' Read the text from the response stream.
Using r As New StreamReader(responseHtml.GetResponseStream)
textbox1.text = r.ReadToEnd
End Using
End Sub

End Class

Figure 10-1. Downloading content from the Web using a stream

10-5. Respond to HTTP Requests
from Your Application

Problem

You want your application to be able to respond to HTTP requests programmatically.

CHAPTER 10 NETWORKING AND REMOTING

Solution

Use the new System.Net.HttpListener class provided by .NET Framework 2.0.

Note Your application must be running on Windows XP Service Pack 2 (or later) or Windows 2003 to use the
HttpListener class; otherwise, a System.PlatformNotSupportedException will be thrown when you try
to instantiate it. Check the Boolean returned by the Shared property HttpListener.IsSupported to see
whether support is available.

How It Works

The HttplListener class provides an easy-to-use mechanism through which your programs can
accept and respond to HTTP requests. To use the HttpListener class, follow these steps:

1.
2.

Instantiate an HttpListener object.

Configure the URI prefixes that the HttpListener object will handle using the Prefixes property.
A URI prefix is a string that represents the starting portion of a URI, which consists of the
schema type (such as http or https), a host, and optionally a path and port. The Prefixes
property returns a System.Net.HttplListenerPrefixCollection collection to which you can
add URI prefixes using the Add method. Each prefix must end with a forward slash (/), or a
System.ArgumentException is thrown. If you specify a URL prefix that is already being handled,
aSystem.Net.HttpListenerException is thrown. When a client makes a request, the request
will be handled by the listener configured with the prefix that most closely matches the
client’s requested URL.

Start the HttpListener object by calling its Start method. You must call Start before the
HttpListener object can accept and process HTTP requests.

Accept client requests using the GetContext method of the HttpListener object. The GetContext
method will block the calling thread until a request is received and then returns a System.
Net.HttpListenerContext object. Alternatively, you can use the BeginGetContext and
EndGetContext methods to listen for requests on a thread-pool thread. When a request is
received, the System.AsynchCallback delegate specified as the argument to the BeginGetContext
method will be called and passed the HttpListenerContext object. Regardless of how it is
obtained, theHttpListenerContext objectsimplements three read-only properties critical to
the handling of a client request:

* The Request property returns a System.Net.HttpListenerRequest through which you can
access details of the client’s request.

* The Response property returns a System.Net.HttpListenerResponse through which you
can configure the response to send to the client.

* The User property returns an instance of a type implementing System. Security.Principal.
IPrincipal, which you can use to obtain identity, authentication, and authorization infor-
mation about the user associated with the request.

Configure the HTTP response through the members of the HttpListenerResponse object
accessible through the HttpListenerContext.Response property.

Send the response by calling the Close method of the HttpListenerResponse object.

7. Once you have finished processing HTTP requests, call Stop on the HttpListener object to

stop accepting more requests and pause the listener. Call Close to shut down the HttpListener
object, which will wait until all outstanding requests have been processed, or call Abort to
terminate the HttpListener object without waiting for requests to be complete.

385

386

CHAPTER 10 NETWORKING AND REMOTING

The Code

The following example demonstrates how to use the HttpListener class to process HTTP requests.
The example starts listening for five requests concurrently using the asynchronous BeginGetContext
method and handles the response to each request by calling the RequestHandler method. Each time
arequest is handled, a new call is made to BeginGetContext so that you always have the capacity to
handle up to five requests.

To open a connection to the example from your browser, enter the URL http://localhost:19080/
VisualBasicRecipes/ or http://localhost:20000/Recipe10-05/, and you will see the response from
the appropriate request handler.

Imports System

Imports System.IO
Imports System.Net
Imports System.Text
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 05

Public Shared Sub Main()

Quit gracefully if this feature is not supported.
If Not HttplListener.IsSupported Then
Console.WriteLine("You must be running this example on Windows" & '
" XP SP2, Windows Server 2003, or higher to create an HttplListener.")

Exit Sub
End If
' Create the Httplistener.
listener = New Httplistener
' Configure the URI prefixes that will map to the HttplListener.
listener.Prefixes.Add("http://localhost:19080/VisualBasicRecipes/")
listener.Prefixes.Add("http://localhost:20000/Recipe10-05/")
' Start the Httplistener before listening for incoming requests.
Console.WriteLine("Starting HTTP Server")
listener.Start()
Console.WriteLine("HTTP Server started")
Console.WriteLine(Environment.NewLine)

' Create a number of asynchronous request handlers up to
the configurable maximum. Give each a unique identifier.
For count As Integer = 1 To maxRequestHandlers

listener.BeginGetContext (AddressOf RequestHandler, w»
"RequestHandler " & Interlocked.Increment(requestHandlerID))
Next
' Wait for the user to stop the HttplListener.
Console.WritelLine("Press Enter to stop the HTTP Server.")
Console.ReadlLine()

CHAPTER 10 NETWORKING AND REMOTING 387

Stop accepting new requests.
listener.Stop()

' Terminate the HttplListener without processing current requests.
listener.Abort()

" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
' Configure the maximum number of requests that can be
handled concurrently.

Private Shared maxRequestHandlers As Integer = 5

An integer used to assign each HTTP request handler a unique
identifier.
Private Shared requestHandlerID As Integer = 0

The Httplistener is the class that provides all the
capabilities to receive and process HTTP requests.
Private Shared listener As HttplListener

A method to asynchronously process individual requests
and send responses.
Private Shared Sub RequestHandler(ByVal result As IAsyncResult)

Console.Writeline("{0}: Activated.", result.AsyncState)

Try

Obtain the HttplListenerContext for the new request.
Dim context As HttplListenerContext = listener.EndGetContext(result)

Console.Writeline("{0}: Processing HTTP Request from {1} ({2}).", =
result.AsyncState, context.Request.UserHostName, context.Request.RemoteEndPoint)

' Build the response using a StreamWriter feeding the
Response.OutputStream.
Dim sw As New StreamWriter(context.Response.OutputStream, w»

Encoding.UTF8)

sw.WriteLine("<html>")

sw.WriteLine("<head>")

sw.Writeline("<title>Visual Basic Recipes</title>")
sw.WriteLine("</head>")

sw.WriteLine("<body>")

sw.WritelLine("Recipe 10-5: " & result.AsyncState)
sw.WriteLine("</body>")

sw.WriteLine("</html>")

sw.Flush()

388 CHAPTER 10 NETWORKING AND REMOTING

Configure the response.
context.Response.ContentType = "text/html"
context.Response.ContentEncoding = Encoding.UTF8

Close the response to send it to the client.
context.Response.Close()

Console.WriteLine("{0}: Sent HTTP response.”, result.AsyncState)
Catch ex As ObjectDisposedException
Console.WriteLine("{0}: HttpListener disposed--shutting down.", ‘w»
result.AsyncState)
Finally
' Start another handler unless the HttplListener is closing.
If listener.Islistening Then
Console.Writeline("{0}: Creating new request handler.", =
result.AsyncState)

listener.BeginGetContext(AddressOf RequestHandler, w»
"RequestHandler " & Interlocked.Increment(requestHandlerID))
End If
End Try

End Sub

End Class
End Namespace

10-6. Get an HTML Page from a Site
That Requires Authentication

Problem

You need to retrieve a file from a web site, but the web site requires that you provide credentials for
the purpose of authentication.

Solution

Use the System.Net.WebRequest and System.Net.WebResponse classes as described in recipe 10-4.
Before making the request, configure the WebRequest.Credentials and WebRequest.Certificates
properties with the necessary authentication information.

Tip You could also use the System.Net.WebClient class (discussed in recipe 10-3). It also has Credentials
and Certificates properties that allow you to associate user credentials with a web request.

How It Works

Some web sites require user authentication information. When connecting through a browser, this
information might be submitted transparently (for example, on alocal intranet site that uses Integrated

CHAPTER 10 NETWORKING AND REMOTING

Windows authentication), or the browser might request this information with a login dialog box.
When accessing a web page programmatically, your code needs to submit this information. The
approach you use depends on the type of authentication implemented by the web site:

» If the web site is using basic or digest authentication, you can transmit a username and
password combination by manually creating a new System.Net.NetworkCredential object,
which implements the ICredentials and ICredentialsByHost interface, and assigning it to
the WebRequest.Credentials property. With digest authentication, you may also supply a
domain name.

e If the web site is using Integrated Windows authentication, you can take the same approach
and manually create a new System.Net.NetworkCredential object. Alternatively, you can
retrieve the current user login information from the System.Net.CredentialCache object
using the DefaultCredentials property.

e If the web site requires a client certificate, you can load the certificate from a file using the
System.Security.Cryptography.X509Certificates.X509Certificate2 class and add that to
the HttpWebRequest.ClientCertificates collection.

e In .NET Framework 2.0, you can load an X.509 certificate from a certificate store using the
class System.Security.Cryptography.X509Certificates.X509Store defined in the System.
Security.dll assembly. You can either find a certificate in the store programmatically using
the X509Store.Certificates.Find method or present users with a Windows dialog box and
allow them to select the certificate. To present a dialog box, pass a collection of X.509 certifi-
cates contained in an X509Certificate2Collection object to the SelectFromCollection
method of the System.Security.Cryptography.X509Certificates.X509Certificate2UI class.

The Code

The following example demonstrates all four of the basic approaches described previously. Note
that you need to add a reference to the System.Security.dll assembly.

Imports System
Imports System.Net
Imports System.Security.Cryptography.X509Certificates

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 06

Public Shared Sub Main()
' Create a WebRequest that authenticates the user with a
username and password combination over basic authentication.
Dim requestA As WebRequest = WebRequest.Create("http:" & w»
"/ /www . somesite.com")
requestA.Credentials = New NetworkCredential("username", "password")

Create a WebRequest that authenticates the current user
with Integrated Windows authentication.

Dim requestB As WebRequest = WebRequest.Create("http:" & w»
"/ /www . somesite.com")

requestB.Credentials = CredentialCache.DefaultCredentials

389

390 CHAPTER 10 NETWORKING AND REMOTING

Create a WebRequest that authenticates the use with a client
certificate loaded from a file.

Dim requestC As HttpWebRequest = w»
DirectCast(WebRequest.Create("http:"//www.somesite.com"), HttpWebRequest)

Dim cert1 = X509Certificate.CreateFromCertFile("..\..\" & w»
"TestCertificate.cer")

requestC.ClientCertificates.Add(cert1)

Create a WebRequest that authenticates the user with a client
certificate loaded from a certificate store. Try to find a
certificate with a specific subject, but if it is not found,
present the user with a dialog so he can select the certificate
to use from his personal store.

Dim requestD As HttpWebRequest = ‘=
DirectCast(WebRequest.Create("http://www.somesite.com"), HttpWebRequest)

Dim store As New X509Store

Dim certs As X509Certificate2Collection = w»
store.Certificates.Find(X509FindType.FindBySubjectName, "Todd Herman", False)

If certs.Count = 1 Then
requestD.ClientCertificates.Add(certs(0))
Else
certs = X509Certificate2UI.SelectFromCollection(‘w»
store.Certificates,"Select Certificate", "Select the certificate to use for " & w
"authentication.", X509SelectionFlag.SingleSelection)

If Not certs.Count = 0 Then
requestD.ClientCertificates.Add(certs(0))
End If
End If
Now issue the request and process the responses...

End Sub

End Class
End Namespace

10-7. Send E-mail Using SMTP

Problem

You need to send e-mail using an SMTP server.

Solution

Use the SmtpClient and MailMessage classes in the System.Net.Mail namespace.

CHAPTER 10 NETWORKING AND REMOTING

Note In version 1.0 and 1.1 of the .NET Framework, you would send SMTP mail using the SmtpMail and
MailMessage classesinthe System.Web.Mail namespace from the System.Web.d11 assembly. Both of these
classes have been made obsolete. The SmtpClient and MailMessage classes discussed in this recipe are new
to the System.d11 assembly in .NET Framework 2.0, and both simplify and extend the functionality provided by

earlier versions.

How It Works

An instance of the SmtpClient class provides the mechanism through which you communicate with
the SMTP server. You configure the SmtpClient using the properties described in Table 10-3.

Table 10-3. Properties of the SmtpClient Class

Property

Description

(ClientCertificates

Credentials

EnableSsl

Host

Port

Timeout

UseDefaultCredentials

Gets a System. Security.Cryptography.X509Certificates.
X509CertificatesCollection to which you add the certificates
to use for communicating with the SMTP server (if required).

Gets or sets an implementation of the System.Net.ICredentialsByHost
interface that represents the credentials to use to gain access to the
SMTP server. The CredentialCache and NetworkCredential classes
implement the ICredentialsByHost interface. Use NetworkCredential
if you want to specify a single set of credentials and CredentialCache
if you want to specify more than one.

Gets or sets a Boolean value that indicates whether the SmtpClient
should use Secure Sockets Layer (SSL) to communicate with the
SMTP server.

Gets or sets a String containing the host name or IP address of the
SMTP server to use to send e-mail.

Gets or sets an Integer value containing the port number to connect
to on the SMTP server. The default value is 25.

Gets or sets an Integer value containing the time-out in milliseconds
when attempting to send e-mail. The default is 100 seconds.

Gets or sets a Boolean value indicating whether the default user
credentials are used when communicating with the SMTP server. If true,
the credentials passed to the SMTP server are automatically obtained
from the Shared property CredentialCache.DefaultCredentials.

Tip You can specify default settings for the SmtpClient in the <mailSettings> section of your machine or
application configuration files. Configurable default values include the host, port, username, password, and whether
or not the default credentials should be used.

Mail messages are represented by MailMessage objects, which you instantiate and then
configure using the members summarized in Table 10-4.

391

392

CHAPTER 10

NETWORKING AND REMOTING

Tip For simple mail messages, the MailMessage class provides a constructor that allows you to specify the
from, to, subject, and body information for the mail message as String arguments. This allows you to create a
complete mail message in a single call.

Table 10-4. Properties of the MailMessage Class

Property

Description

Attachments

Bcc

Body
BodyEncoding

CC

From

IsBodyHtml

ReplyTo

Subject

SubjectEncoding

To

Gets or sets a System.Net.Mail.AttachmentCollection containing the set
of attachments for the e-mail message. A System.Net.Mail.Attachment
object represents each attachment. You can create Attachment objects
from files or streams, and you can configure the encoding and content
type for each attachment.

Gets or sets a System.Net.Mail.MailAddressCollection containing
the blind carbon copy addresses for the e-mail message. The
MailAddressCollection contains one or more MailAddress objects.

Gets or sets a String value that contains the body text of the e-mail message.

Gets or sets a System.Text.Encoding object that specifies the encoding for
the body of the e-mail message. The default value is Nothing, resulting in

a default encoding of us-ascii, which is equivalent to the Encoding object

returned by the Shared property Encoding.ASCII.

Gets or sets a System.Net.Mail .MailAddressCollection containing
the carbon copy addresses for the e-mail message. The
MailAddressCollection contains one or more MailAddress objects.

Gets or sets a System.Net.Mail .MailAddress containing the from address
for the e-mail message.

Gets or sets a Boolean value identifying whether the body of the e-mail
message contains HTML.

Gets or sets a System.Net.Mail.MailAddress containing the reply address
for the e-mail message.

Gets or sets a String containing the subject for the e-mail message.

Gets or sets a System.Text.Encoding object that specifies the encoding
used to encode the subject of the e-mail subject. The default value is
Nothing, resulting in a default encoding of us-ascii, which is equivalent to
the Encoding object returned by the Shared property Encoding.ASCII.

Gets or sets a System.Net.Mail.MailAddressCollection containing the
destination addresses for the e-mail message. The MailAddressCollection
contains one or more MailAddress objects.

Once you have configured the SmtpClient, you can send your MailMessage objects using the
SmtpClient.Send method, which will cause your code to block until the send operation is completed
or fails. Alternatively, you can send mail using a thread from the thread pool by calling the SendAsync
method. When you call SendAsync, your code will be free to continue other processing while the
e-mail is sent. Add an event handler to the SendCompleted event to receive notification that the asyn-
chronous send has completed.

CHAPTER 10 NETWORKING AND REMOTING

Note You cannot use SMTP to retrieve e-mail. For this task, you need the Post Office Protocol 3 (POP3) or the
Internet Message Access Protocol (IMAP), neither of which is exposed natively in the .NET Framework.

The Code

The following example demonstrates how to use the SmtpClient class to send an e-mail message
with multiple attachments to a set of recipients whose e-mail addresses are specified as command-

line arguments.

Imports System

Imports System.
Imports System.

Net
Net.Mail

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 07

Public

Shared Sub Main(ByVal args As String())

Create and configure the SmtpClient that will send the mail.
Specify the host name of the SMTP server and the port used
to send mail.

Dim client As New SmtpClient("mail.somecompany.com”, 25)

Configure the SmtpClient with the credentials used to connect
to the SMTP server.

client.Credentials = New NetworkCredential("user@somecompany.com", ‘=

"password")

Create the MailMessage to represent the e-mail being sent.

Using msg As New MailMessage

"Basic Recipes.

"text/plain"))

Configure the e-mail sender and subject.

msg.From = New MailAddress("author@visual-basic-recipes.com™)
msg.Subject = "Greetings from Visual Basic Recipes”

' Configure the e-mail body.

msg.Body = "This is a message from Recipe 10-07 of Visual " & w»
Attached is the source file and the binary for the recipe."

" Attach the files to the e-mail message and set their MIME type.
msg.Attachments.Add(New Attachment("..\..\Recipe10-07.vb", =

msg.Attachments.Add(New Attachment("Recipe10-07.exe", w»

"application/octet-stream"))

Iterate through the set of recipients specified on the
command line. Add all addresses with the correct structure
as recipients.
For Each arg As String In args

' Create a MailAdress from each value on the command line
and add it to the set of recipients.

393

394

CHAPTER 10 NETWORKING AND REMOTING

Try
msg.To.Add(New MailAddress(arg))

Catch ex As FormatException
' Proceed to the next specified recipient.
Console.Writeline("{0}: Error -- {1}", arg, ex.Message)
Continue For

End Try

Send the message.
client.Send(msg)
Next

End Using

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

10-8. Resolve a Host Name to an IP Address

Problem

You want to determine the IP address for a computer based on its fully qualified domain name by
performing a DNS query.

Solution

In .NET Framework 2.0, use the method GetHostEntry of the System.Net.Dns class, and pass the
computer’s fully qualified domain name as a string parameter.

Note In version 1.0 and 1.1 of the .NET Framework, you would use the method GetHostByName of the Dns
class. This method is marked as obsolete in .NET Framework 2.0.

How It Works

On the Internet, the human-readable names that refer to computers are mapped to IP addresses,
which is what TCP/IP requires in order to communicate between computers. For example, the name
www.apress.com might be mapped to the IP address 65.19.150.100. To determine the IP address for a
given name, the computer contacts a DNS server. The name or IP address of the DNS server contacted is
configured as part of a computer’s network configuration.

The entire process of name resolution is transparent if you use the System.Net.Dns class, which
allows you to retrieve the IP address for a host name by calling GetHostEntry.

CHAPTER 10 NETWORKING AND REMOTING

Tip The Dns class also provides the BeginGetHostEntry and EndGetHostEntry methods, which allow you
to resolve IP addresses asynchronously. Also, the static method GetHostName returns the computer name of the
local machine.

The Code

The following example retrieves the IP addresses of all computers whose fully qualified domain
names are specified as command-line arguments.

Imports System
Imports System.Net

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 08

Public Shared Sub Main(Byval args As String())
For Each comp As String In args

Try
' Retrieve the DNS entry for the specified computer.
Dim dnsEntry As IPHostEntry = Dns.GetHostEntry(comp)
' The DNS entry may contain more than one IP address. Iterate
through them and display each one along with the type of
address (AddressFamily).
For Each address As IPAddress In dnsEntry.AddresslList
Console.WriteLine("{0} = {1} ({2})", comp, address, =
address.AddressFamily)
Next
Catch ex As Exception
Console.Writeline("{0} = Error ({1})", comp, ex.Message)
End Try
Next
' Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage
Running the example with the following command line:
Tecipe10-08 www.apress.com www.microsoft.com localhost somejunk

will produce the following output. Notice that multiple IP addresses are returned for some host names.

395

396

CHAPTER 10 NETWORKING AND REMOTING

WWW.apress.com = 65.19.150.101 (InterNetwork)
www.microsoft.com = 207.46.20.60 (InterNetwork)
www.microsoft.com = 207.46.198.30 (InterNetwork)
www.microsoft.com = 207.46.198.60 (InterNetwork)
www.microsoft.com = 207.46.199.30 (InterNetwork)
www.microsoft.com = 207.46.225.60 (InterNetwork)
www.microsoft.com = 207.46.18.30 (InterNetwork)
www.microsoft.com = 207.46.19.30 (InterNetwork)
www.microsoft.com = 207.46.19.60 (InterNetwork)
localhost = 127.0.0.1 (InterNetwork)

somejunk = Error (No such host is known)

10-9. Ping an IP Address

Problem

You want to check to see whether a computer is online and accessible and gauge its response time.

Solution

Send a ping message. This message is sent using the ICMP, accessible through the Send method of
the System.Net.NetworkInformation.Ping class.

Note The Ping class is new to .NET Framework 2.0. To send a ping message in earlier versions of the .NET
Framework, you had to undertake significant effort to manually create an ICMP request message using raw sockets
and lengthy code.

How It Works

A ping message contacts a device at a specific IP address, passing it a test packet, and requests that
the remote device respond by echoing back the packet. To gauge the connection latency between
two computers, you can measure the time taken for a ping response to be received.

Caution Many commercial web sites do not respond to ping requests because they represent an unnecessary
processing overhead and are often used in denial of service attacks. The firewall that protects the site will usually
filter out ping requests before they reach the specified destination. This will cause your ping request to time out.

The Ping class allows you to send ping messages using the Send method. The Send method
provides a number of overloads, which allow you to specify the following:

e TheIP address or host name of the target computer. You can specify this as a String ora
System.Net.IPAddress object.

e The number of milliseconds to wait for a response before the request times out (specified as
an Integer). The default is set to 5000.

CHAPTER 10 NETWORKING AND REMOTING

* AByte array of up to 65,500 data bytes that is sent with the ping request and that should be
returned in the response.

e ASystem.Net.NetworkInformation.PingOptions object that specifies time-to-live and frag-
mentation options for the transmission of the ping message.

The Send method will return a System.Net.NetworkInformation.PingReply object. The Status
property of the PingReply will contain a value from the System.Net.NetworkInformation.IPStatus
enumeration from which you can determine the result of the ping request. The most common values
will be Success and TimedOut. If the host name you pass to the Send method cannot be resolved, Send will
throw an exception, but you must look at the InnerException to determine the cause of the problem.

The Ping class also provides a SendAsync method that performs the ping request using a thread-pool
thread so that the calling thread does not block. When the ping is finished or fails because of a time-out,
the thread raises the PingCompleted event on the Ping object, which you can handle using a method that
matches the signature of the System.Net.NetworkInformation.PingCompletedEventHandler delegate.
However, the Ping object can handle only a single concurrent request; otherwise, it will throw a System.
InvalidOperationException.

Tip The Ping class derives from System.ComponentModel . Component, so you can add it to the Visual
Studio 2005 Form Designer Toolbox. This will allow you to easily set the properties or define the event handlers in
a Windows Forms—based application.

The Code

The following example pings the computers whose domain names or IP addresses are specified as
command-line arguments.

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 09

Public Shared Sub Main(ByVal args As String())
' Create an instance of the Ping class.

Using png As New Ping
Console.Writeline("Pinging:")

For Each comp As String In args

Try
Console.Write(" {0}...", comp)
' Ping the specified computer with a time-out of 100ms.
Dim reply As PingReply = png.Send(comp, 100)

397

398 CHAPTER 10 NETWORKING AND REMOTING

If reply.Status = IPStatus.Success Then
Console.WriteLine("Success - IP Address:{0} " & w
"Time:{1}ms", reply.Address, reply.RoundtripTime)
Else
Console.Writeline(reply.Status.ToString)
End If

Catch ex As Exception
Console.Writeline("Error ({0})", ex.InnerException.Message)
End Try

Next

End Using

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

Running the example with the following command line:
recipe10-09 www.apress.com www.google.com localhost somejunk

will produce the following output:

Pinging:
www.apress.com...TimedOut
www.google.com...Success - IP Address:216.239.59.104 Time:42ms
localhost...Success - IP Address:127.0.0.1 Time:Oms
somejunk...Error (No such host is known)

10-10. Communicate Using TCP

Problem

You need to send data between two computers on a network using a TCP/IP connection.

Solution

One computer (the server) must begin listening using the System.Net.Sockets.TcplListener class.
Another computer (the client) connects to it using the System.Net.Sockets.TcpClient class. Once a
connection is established, both computers can communicate using the
System.Net.Sockets.NetworkStream class.

CHAPTER 10 NETWORKING AND REMOTING

How It Works

TCP is areliable, connection-oriented protocol that allows two computers to communicate over a
network. It provides built-in flow control, sequencing, and error handling, which make it reliable
and easy to program.

To create a TCP connection, one computer must act as the server and start listening on a specific
endpoint. (An endpoint is a combination of an IP address and a port number.) The other computer
must act as a client and send a connection request to the endpoint on which the first computer is
listening. Once the connection is established, the two computers can take turns exchanging messages.
The .NET Framework makes this process easy through its stream abstraction. Both computers simply
write to and read from a System.Net.Sockets.NetworkStream to transmit data.

Note Even though a TCP connection always requires a server and a client, an individual application could be
both. For example, in a peer-to-peer application, one thread is dedicated to listening for incoming requests (acting
as a server), and another thread is dedicated to initiating outgoing connections (acting as a client). In the examples
in this chapter, the client and server are provided as separate applications and are placed in separate subdirectories.

Once a TCP connection is established, the two computers can send any type of data by writing
it to the NetworkStream. However, it’s a good idea to begin designing a networked application by
defining the application-level protocol that clients and servers will use to communicate. This protocol
includes constants that represent the allowable commands, ensuring that your application code
doesn’t include hard-coded communication strings.

The Code

In this recipe’s example, the defined protocol is basic. You would add more constants depending on
the type of application. For example, in a file transfer application, you might include a client message
for requesting a file. The server might then respond with an acknowledgment and return file details
such as the file size. These constants should be compiled into a separate class library assembly,
which must be referenced by both the client and server. Here is the code for the shared protocol:

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 10Shared

Public Const AcknowledgeOK As String = "OK"
Public Const AcknowledgeCancel = "Cancel"
Public Const Disconnect As String = "Bye"
Public Const RequestConnect As String = "Hello"

End Class

End Namespace

The following code is a template for a basic TCP server. It listens on a fixed port, accepts the first
incoming connection using the TcpListener.AcceptTcpClient method, and then waits for the client
to request a disconnect. At this point, the server could call the AcceptTcpClient method again to wait
for the next client, but instead it simply shuts down.

399

400 CHAPTER 10 NETWORKING AND REMOTING

Imports System

Imports System.IO

Imports System.Net

Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10_10Server
Public Shared Sub Main()

' Create a new listener on port 8000.
Dim listener As New Tcplistener(IPAddress.Parse("127.0.0.1"), 8000)

Console.WritelLine("About to initialize port.")
listener.Start()
Console.WritelLine("Listening for a connection...")

Try
' Wait for a connection request, and return a TcpClient
' initialized for communication.
Using client As TcpClient = listener.AcceptTcpClient
Console.Writeline("Connection accepted.")

' Retrieve the network stream.
Dim stream As NetworkStream = client.GetStream()

' Create a BinaryWriter for writing to the stream.

Using w As New BinaryWriter(stream)
' Create a BinaryReader for reading from the stream.
Using r As New BinaryReader(stream)

If r.ReadString = Recipe10 10Shared.RequestConnect Then
w.Write(Recipe10 10Shared.AcknowledgeOK)
Console.WritelLine("Connection completed.")

While Not r.ReadString = ‘=

Recipe10_10Shared.Disconnect
End While

Console.WriteLine(Environment.NewLine)

Console.Writeline("Disconnect request received.")
Else

Console.WriteLine("Can't complete connection.")
End If

End Using
End Using
End Using

Console.WriteLine("Connection closed.")

Catch ex As Exception
Console.WritelLine(ex.ToString)

CHAPTER 10 NETWORKING AND REMOTING

Finally
' Close the underlying socket (stop listening for
new requests).
listener.Stop()
Console.Writeline("Listener stopped.")
End Try
" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

The following code is a template for a basic TCP client. It contacts the server at the specified IP
address and port. In this example, the loopback address (127.0.0.1) is used, which always points to
the local computer. Keep in mind that a TCP connection requires two ports: one at the server end
and one at the client end. However, only the server port to connect to needs to be specified. The
outgoing client port can be chosen dynamically at runtime from the available ports, which is what
the TcpClient class will do by default.

Imports System

Imports System.IO

Imports System.Net

Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 10Client

Public Shared Sub Main()
Dim client As New TcpClient
Try

Console.Writeline("Attempting to connect to the server on " & w
"port 8000.")
client.Connect (IPAddress.Parse("127.0.0.1"), 8000)
Console.WriteLine("Connection established.")
' Retrieve the network stream.
Dim stream As NetworkStream = client.GetStream()
' Create a BinaryWriter for writing to the stream.
Using w As New BinaryWriter(stream)
' Create a BinaryReader for reading from the stream.
Using r As New BinaryReader(stream)
' Start a dialogue.
w.Write(Recipe10 10Shared.RequestConnect)

401

402

CHAPTER 10 NETWORKING AND REMOTING

If r.ReadString = Recipe10_10Shared.AcknowledgeOK Then
Console.WriteLine("Connected.")
Console.WriteLine("Press Enter to disconnect.")
Console.ReadlLine()
Console.Writeline("Disconnecting...")
w.Write(Recipe10 10Shared.Disconnect)

Else
Console.WritelLine("Connection not completed.")

End If

End Using
End Using

Catch ex As Exception
Console.WriteLine(ex.ToString)
Finally
' Close the connection socket.
client.Close()
Console.WritelLine("Port closed.")
End Try
" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage
Here’s a sample connection transcript on the server side:

About to initialize port.
Listening for a connection...
Connection accepted.
Connection completed.

Disconnect request received.
Connection closed.
Listener stopped.

And here’s a sample connection transcript on the client side:

Attempting to connect to the server on port 8000.
Connection established.

Connected.

Press Enter to disconnect.

Disconnecting...
Port closed.

CHAPTER 10 NETWORKING AND REMOTING

10-11. Create a Multithreaded TCP Server That
Supports Asynchronous Communications

Problem

You need to handle multiple network requests concurrently or perform a network data transfer as a
background task while your program continues with other processing.

Solution

Use the AcceptTcpClient method of the System.Net.Sockets.TcpListener class to accept connec-
tions. Every time a new client connects, start a new thread to handle the connection. Alternatively,
use the TcpListener.BeginAcceptTcpClient to accept a new client connection on a thread-pool
thread using the asynchronous execution pattern (discussed in recipe 4-2).

To start abackground task to handle the asynchronous sending of data, you can use the BeginWrite
method of the System.Net.Sockets.NetworkStream class and supply a callback method—each time
the callback is triggered, send more data.

How It Works

A single TCP endpoint (IP address and port) can serve multiple connections. In fact, the operating
system takes care of most of the work for you. All you need to do is create a worker object on the
server that will handle each connection on a separate thread. The TcpListener.AcceptTcpClient
method returns a TcpClient when a connection is established. This should be passed off to a threaded
worker object so that the worker can communicate with the remote client.

Alternatively, call the TcpListener.BeginAcceptTcpClient method to start an asynchronous
operation using a thread-pool thread that waits in the background for a client to connect.
BeginAcceptTcpClient follows the asynchronous execution pattern, allowing you to wait for the
operation to complete or specify a callback that the .NET runtime will call when a client connects.
(See recipe 4-2 for details on the options available.) Whichever mechanism you use, once
BeginAcceptTcpClient has completed, call EndAcceptTcpClient to obtain the newly created
TcpClient object.

To exchange network data asynchronously, you can use the NetworkStreamclass, which includes
basic support for asynchronous communication through the BeginRead and BeginWrite methods.
Using these methods, you can send or receive a block of data on one of the threads provided by the
thread pool, without blocking your code. When sending data asynchronously, you must send raw
binary data (an array of bytes). It’s up to you to choose the amount you want to send or receive at
atime.

One advantage of this approach when sending files is that the entire content of the file does not
have to be held in memory at once. Instead, it is retrieved just before a new block is sent. Another
advantage is that the server can abort the transfer operation easily at any time.

The Code

The following example demonstrates various techniques for handling network connections and
communications asynchronously. The server (Recipe10-11Server) starts a thread-pool thread
listening for new connections using the TcpListener.BeginAcceptTcpClient method and specifying
a callback method to handle the new connections. Every time a client connects to the server, the

403

404

CHAPTER 10 NETWORKING AND REMOTING

callback method obtains the new TcpClient object and passes it to a new threaded ClientHandler
object to handle client communications.

The ClientHandler object waits for the client to request data and then sends a large amount of
data (read from a file) to the client. This data is sent asynchronously, which means ClientHandler
could continue to perform other tasks. In this example, it simply monitors the network stream for
messages sent from the client. The client reads only a third of the data before sending a disconnect
message to the server, which terminates the remainder of the file transfer and drops the client
connection.

Here is the code for the shared protocol:

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10_11Shared

Public Const AcknowledgeOK As String = "OK"
Public Const AcknowledgeCancel = "Cancel"
Public Const Disconnect As String = "Bye"
Public Const RequestConnect As String = "Hello"
Public Const RequestData = "Data"

End Class

End Namespace
Here is the server code:

Imports System

Imports System.IO

Imports System.Net
Imports System.Threading
Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10_11Server
" A flag used to indicate whether the server is shutting down.
Private Shared m_Terminate As Boolean
Public Shared ReadOnly Property Terminate() As Boolean
Get
Return m_Terminate
End Get
End Property

A variable to track the identity of each client connection.
Private Shared ClientNumber As Integer = 0

A single Tcplistener will accept all incoming client connections.
Private Shared listener As Tcplistener

Public Shared Sub Main()

CHAPTER 10 NETWORKING AND REMOTING 405

' Create a 100KB test file for use in the example. This file will

' be sent to clients that connect.

Using fs As New FileStream("test.bin", FileMode.Create)
fs.SetlLength(100000)

End Using

Try
' Create a Tcplistener that will accept incoming client
' connections on port 8000 of the local machine.
listener = New TcplListener(IPAddress.Parse("127.0.0.1"), 8000)

Console.Writeline("Starting TcplListener...")

' Start the Tcplistener accepting connections.
m_Terminate = False
listener.Start()

' Begin asynchronously listening for client connections. When a

" new connection is established, call the ConnectionHandler method
to process the new connection.

listener.BeginAcceptTcpClient (AddressOf ConnectionHandler, Nothing)

' Keep the server active until the user presses Enter.

Console.Writeline("Server awaiting connections. Press Enter " & w»
"to stop server.")

Console.ReadlLine()

Finally
' Shut down the TcplListener. This will cause any outstanding

' asynchronous requests to stop and throw an exception in

' the ConnectionHandler when EndAcceptTcpClient is called.

' A more robust termination synchronization may be desired here,

" but for the purpose of this example, ClientHandler threads

' are all background threads and will terminate automatically when

' the main thread terminates. This is suitable for our needs.

Console.Writeline("Server stopping...")

m_Terminate = True

If listener IsNot Nothing Then listener.Stop()

End Try
" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

" A method to handle the callback when a connection is established
' from a client. This is a simple way to implement a dispatcher

' but lacks the control and scalability required when implementing
' full-blown asynchronous server applications.

Private Shared Sub ConnectionHandler(ByVal result As IAsyncResult)

406 CHAPTER 10 NETWORKING AND REMOTING

Dim client As TcpClient = Nothing

Always end the asynchronous operation to avoid leaks.
Try
' Get the TcpClient that represents the new client connection.
client = listener.EndAcceptTcpClient(result)
Catch ex As ObjectDisposedException
' The server is shutting down and the outstanding asynchronous
' request calls the completion method with this exception.
' The exception is thrown when EndAcceptTcpClient is called.
Do nothing and return.
Exit Sub
End Try

Console.WritelLine("Dispatcher: New connection accepted.")
' Begin asynchronously listening for the next client
connection.
listener.BeginAcceptTcpClient(AddressOf ConnectionHandler, Nothing)
If client IsNot Nothing Then
' Determine the identifier for the new client connection.
Interlocked.Increment(ClientNumber)

Dim clientName As String = "Client " & ClientNumber.ToString

Console.Writeline("Dispatcher: Creating client handler ({o0})", =

clientName)
' Create a new ClientHandler to handle this connection.
Dim blah As New ClientHandler(client, clientName)
End If
End Sub
End Class

A class that encapsulates the logic to handle a client connection.
Public Class ClientHandler

' The TcpClient that represents the connection to the client.
Private client As TcpClient

" A name that uniquely identifies this ClientHandler.
Private clientName As String

' The amount of data that will be written in one block (2KB).
Private bufferSize As Integer = 2048

" The buffer that holds the data to write.
Private buffer As Byte()

' Used to read data from the local file.

CHAPTER 10 NETWORKING AND REMOTING

Private testFile As FileStream
" A signal to stop sending data to the client.
Private stopDataTransfer As Boolean

Public Sub New(ByVal cli As TcpClient, ByVal cliID As String)

Me.buffer = New Byte(bufferSize) {}
Me.client = cli

Me.clientName = cliID

' Create a new background thread to handle the client connection
so that we do not consume a thread-pool thread for a long time
and also so that it will be terminated when the main thread ends.
Dim newThread As New Thread(AddressOf ProcessConnection)
newThread.IsBackground = True

newThread.Start()

End Sub
Private Sub ProcessConnection()

Using client
' Create a BinaryReader to receive messages from the client. At

the end of the using block, it will close both the BinaryReader

and the underlying NetworkStream.

Using reader As New BinaryReader(client.GetStream)

If reader.ReadString = Recipel0 11Shared.RequestConnect Then
' Create a BinaryWriter to send messages to the client.
' At the end of the using block, it will close both the
BinaryWriter and the underlying NetworkStream.
Using writer As New BinaryWriter(client.GetStream)

writer.Write(Recipe10_11Shared.AcknowledgeOK)
Console.WriteLine(clientName & ": Connection " & 'w»
"established.")

Dim message As String =
While Not message = Recipe10_11Shared.Disconnect

Try
' Read the message from the client.
message = reader.ReadString
Catch ex As Exception
' For the purpose of the example,
any exception should be taken
as a client disconnect.
message = Recipe10_11Shared.Disconnect
End Try

407

408 CHAPTER 10 NETWORKING AND REMOTING

If message = Recipe10_11Shared.RequestData Then

Console.WriteLine(clientName & ":" & w»
"Requested data.", "Sending...")

' The filename could be supplied by the client,

' but in this example, a test file is
hard-coded.

testFile = New FileStream("test.bin", w»

FileMode.Open, FileAccess.Read)

" Send the file size. This is how the client
" knows how much to read.
writer.Write(testFile.Length.ToString)

' Start an asynchronous send operation.
stopDataTransfer = False
StreamData(Nothing)

ElseIf message = Recipel0_11Shared.Disconnect Then
Console.WritelLine(clientName & ": Client " & w»

"disconnecting...")
stopDataTransfer = True
Else
Console.WriteLine(clientName & ": Unknown " & w»
"command.")
End If
End While
End Using
Else

Console.WriteLine(clientName & ": Could not establish " & w»
"connection.")
End If
End Using

End Using
Console.WriteLine(clientName & ": Client connection closed.")

End Sub
Private Sub StreamData(ByVal asyncResult As IAsyncResult)

' Always complete outstanding asynchronous operations to avoid

" leaks.
If asyncResult IsNot Nothing Then

Try
client.GetStream.Endwrite(asyncResult)

Catch ex As Exception
' For the purpose of the example, any exception obtaining

or writing to the network should just terminate the
download.

testFile.Close()

Exit Sub
End Try

End If

CHAPTER 10 NETWORKING AND REMOTING

' Check if the code has been triggerd to stop.
If Not stopDataTransfer And Not Recipel0 11Server.Terminate Then
' Read the next block from the file.
Dim bytesRead As Integer = testFile.Read(buffer, 0, buffer.Length)

" If no bytes are read, the stream is at the end of the file.
If bytesRead > 0 Then
Console.WritelLine(clientName & ": Streaming next block.")

" Write the next block to the network stream.
client.GetStream.BeginWrite(buffer, 0, buffer.Length, =
AddressOf StreamData, Nothing)
Else
' End the operation.
Console.Writeline(clientName & ": File streaming complete.")
testFile.Close()
End If
Else
' Client disconnected.
Console.WriteLine(clientName & ": Client disconnected.")
testFile.Close()

End If

End Sub
End Class

End Namespace
And here is the client code:

Imports System

Imports System.IO

Imports System.Net

Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 11Client

Public Shared Sub Main()
Using client As New TcpClient

Console.Writeline("Attempting to connect to the server on " & w
"port 8000.")

' Connect to the server.
client.Connect (IPAddress.Parse("127.0.0.1"), 8000)

' Create a BinaryWriter for writing to the stream.

Using writer As New BinaryWriter(client.GetStream)
' Start a dialogue.

writer.Write(Recipe10_11Shared.RequestConnect)

409

410

CHAPTER 10 NETWORKING AND REMOTING

Create a BinaryReader for reading from the stream.
Using reader As New BinaryReader(client.GetStream)

If reader.ReadString = Recipe10 11Shared.AcknowledgeOK Then

Console.WriteLine("Connection established. Press " & w»
"Enter to download data.")

Console.ReadlLine()

' Send message requesting data to server.
writer.Write(Recipe10 11Shared.RequestData)
" The server should respond with the size of
the data it will send. Assume it does.

Dim fileSize As Integer = =
Integer.Parse(reader.ReadString())

Only get part of the data, then carry out a

premature disconnect.

For i As Integer = 1 To fileSize / 3
Console.Write(client.GetStream.ReadByte)

Next

Console.WriteLine(Environment.NewLine)
Console.WriteLine("Press Enter to disconnect.")
Console.ReadlLine()
Console.Writeline("Disconnecting...")

writer.Write(Recipe10 11Shared.Disconnect)
Else

Console.WritelLine("Connection not completed.")
End If

End Using
End Using
End Using

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

10-12. Communicate Using UDP

Problem

You need to send data between two computers on a network using a UDP stream.

CHAPTER 10 NETWORKING AND REMOTING

Solution

Use the System.Net. Sockets.UdpClient class, and use two threads: one to send data and the other to
receive it.

How It Works

UDP is a connectionless protocol that doesn’t include any flow control or error checking. Unlike
TCP, UDP shouldn’t be used where reliable communication is required. However, because of its
lower overhead, UDP is often used for “chatty” applications where it is acceptable to lose some
messages. For example, imagine you want to create a network in which individual clients send infor-
mation about the current temperature at their locations to a server every few minutes. You might use
UDP in this case because the communication frequency is high and the damage caused by losing a
packet is trivial (because the server can just continue to use the last received temperature reading).

The Code

The application shown in the following code uses two threads: one to receive messages and one to
send them. The application stops when the user presses the Enter key without any text to send.
Notice that UDP applications cannot use the NetworkStream abstraction that TCP applications can.
Instead, they must convert all data to a stream of bytes using an encoding class, as described in
recipe 2-2.

Imports System

Imports System.Text
Imports System.Net
Imports System.Net.Sockets
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 12

Private Shared localPort As Integer

Public Shared Sub Main()
' Define the endpoint where messages are sent.

Console.Write("Connect to IP: ")

Dim ip As String = Console.ReadlLine

Console.Write("Connect to port: ")

Dim port As Integer = Int32.Parse(Console.ReadlLine)

Dim remoteEndPoint As New IPEndPoint(IPAddress.Parse(ip), port)
' Define the local endpoint (where messages are received).
Console.Write("Local port for listening: ")

localPort = Int32.Parse(Console.Readline)

' Create a new thread for receiving incoming messages.
Dim receiveThread As New Thread(AddressOf ReceiveData)
receiveThread.IsBackground = True

receiveThread. Start()

411

412 CHAPTER 10 NETWORKING AND REMOTING

Using client As New UdpClient
Console.WriteLine("Type message and press Enter to send:")

Try
Dim txt As String

Do
txt = Console.Readline
' Send the text to the remote client.
If Not txt.Length = 0 Then
' Encode the data to binary using UTF8 encoding.
Dim data As Byte() = Encoding.UTF8.GetBytes(txt)
' Send the text to the remote client.
client.Send(data, data.Length, remoteEndPoint)
End If
Loop While Not txt.Length = 0
Catch ex As Exception
Console.Writeline(ex.ToString)
Finally
client.Close()
End Try
End Using
" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub
Private Shared Sub ReceiveData()

Using client As New UdpClient(localPort)

' This is an endless loop, but since it is running in
a background thread, it will be destroyed when the
application (the main thread) ends.
While True

Try
' Receive bytes.
Dim anyIP As New IPEndPoint(IPAddress.Any, 0)

Dim data As Byte() = client.Receive(anyIP)

Convert bytes to text using UTF8 encoding.
Dim txt As String = Encoding.UTF8.GetString(data)

Display the retrieved text.
Console.WriteLine(">> " & txt)

Catch ex As Exception
Console.Writeline(ex.ToString)
End Try

CHAPTER 10 NETWORKING AND REMOTING

End While
End Using

End Sub

End Class
End Namespace

Usage

To test this application, load two instances at the same time. On computer A, specify the IP address
and port for computer B. On computer B, specify the IP address and port for computer A. You can

then send text messages back and forth at will. You can test this application with clients on the local
computer using the loopbackalias 127.0.0.1, provided you use different listening ports. For example,
imagine a situation with two UDP clients, client A and client B. Here’s a sample transcript for client A:

Connect to IP: 127.0.0.1

Connect to port: 8001

Local port for listening: 8080

Type message and press Enter to send:
Hi there!

And here’s the corresponding transcript for client B (with the received message):

Connect to IP: 127.0.0.1

Connect to port: 8080

Local port for listening: 8001

Type message and press Enter to send:
>> Hi there!

10-13. Avoid Hard-Coding the Web Service URL

Problem

You need to use a web service located at a URL that might change after you deploy the client application.

Solution

Use a dynamic URL, which will be retrieved automatically from the client application’s configuration
file. You can configure a dynamic URL in the URL Behavior section of a Web Reference’s properties
in Microsoft Visual Studio or by using the /urlkey parameter with the Web Services Description
Language tool (wsdl.exe).

How It Works

When you create a web reference in Visual Studio 2005, the automatically generated proxy class is
configured to use a dynamic URL as the address of the referenced web service. This allows you to
specify an alternate URL without having to recompile your code, which contains the original URL to
the service. This alternate URL, used to contact the web service at runtime, is read from your appli-
cation’s configuration file. The automatically generated configuration section looks something like
the following, where the value element contains the URL of the web service:

413

414

CHAPTER 10 NETWORKING AND REMOTING

<applicationSettings>
<Recipe10_13.My.MySettings>
<setting name="Recipe10 13 MyWebService MyWebService" w»
serializeAs="String">
<value>http://localhost/TestWebService/MyWebService.asmx</value>
</setting>
</Recipe10_13.My.MySettings>
</applicationSettings>

Note The name attribute in the configuration file, as shown in the preceding example, is automatically generated
based on the application name and the web service’s namespace and class name, respectively.

In previous releases of Visual Studio, dynamic URLs were not the default behavior. In these
cases, you can configure the setting through the URL Behavior option in the Properties window for
the web reference, as shown in Figure 10-2.

Figure 10-2. Configuring a dynamic URL for a web service in Visual Studio

If you use wsdl.exe from the command line to generate your web service proxy class, it uses a
static URL by default. To configure wsdl.exe to use a dynamic URL, you must use the /urlkey parameter
and specify the configuration setting name that the proxy class should read from the configuration file.
Here is an example:

wsdl http://localhost/TestWebService/MyWebService.asmx?WSDL /urlkey:MyWebService

CHAPTER 10 NETWORKING AND REMOTING

Whether you're using Visual Studio or wsdl.exe, the automatically generated proxy class is
coded in such a way that if the class doesn’t find the configuration parameter containing a dynamic
URL, it defaults to the static URL that was used during development.

Tip You can always manually override the URL setting in your code by modifying the Ur1 property of the proxy
class after you instantiate it.

10-14. Set Authentication Credentials
for a Web Service

Problem

You want a web service client to submit logon credentials for IIS authentication.

Solution

Configure the Credentials and Certificates properties of the web service’s proxy class with the
appropriate credentials prior to calling a web service method.

How It Works

You can configure web services, like web pages, to require users to authenticate using credentials
such as usernames and passwords or X.509 certificates. Unlike web pages, web services have no
built-in method for retrieving authentication information from the client, because web services are
executed by other applications, not directly by the user. Thus, the application that’s interacting with
the web service bears the responsibility for submitting any required authentication information.

Similar to the System.Net.WebRequest discussed in recipe 10-4, the web service proxy classes
automatically generated by Visual Studio and the Web Services Description Language tool (wsdl.exe)
implement Credentials and ClientCertificates properties. Using these properties allows you to
associate user credentials with web method calls. The approach you use depends on the type of
authentication implemented by the web service:

e If the web service is using basic or digest authentication, you can transmit a username and
password combination by manually creating a new System.Net.NetworkCredential object
and assigning it to the proxy’s Credentials property. With digest authentication, you may
also supply a domain name.

¢ If the web service is using Integrated Windows authentication, you can take the same approach
and manually create a new NetworkCredential object. Alternatively, you can configure the
proxy to use the current user login information by setting the proxy’s UseDefaultCredentials
property to True.

» Ifthe web service requires a client certificate, you can load the certificate from a file using the
System.Security.Cryptography.X509Certificates.X509Certificate2 class and add that to
the proxy’s ClientCertificates collection.

415

416

CHAPTER 10 NETWORKING AND REMOTING

e In .NET Framework 2.0, you can load an X.509 certificate from a certificate store using the
class System.Security.Cryptography.X509Certificates.X509Store. You can either find a
certificate in the store programmatically using the X509Store.Certificates.Find method or
present the users with a Windows dialog box using X509Store.Certificates. Select and allow
them to select the certificate.

Tip To add more than one set of credentials to a proxy, create a CredentialCache object and add multiple
NetworkCredential objects to the credential collection using the Add method. Add also allows you to specify the
URI, port, and authentication mechanism for which each NetworkCredential object should be used. Then assign
the CredentialCache object to the proxy’s Credentials property.

The Code

The following web service provides a simple user authentication test. GetIISUser returns the user
that was authenticated by IIS. If anonymous access is allowed, the result will be an empty string
because no authentication will be performed. If anonymous access is denied, the result will be a
string in the form [DomainName]\[UserName| or [ComputerName]\[UserName].

<WebMethod()> _

Public Function GetIISUser() As String
Return User.Identity.Name

End Function

The following example shows how a client can access a web service that uses basic authentica-
tion, Integrated Windows authentication, and X.509 certificate-based authentication:

Imports System

Imports System.Net

Imports Recipe1l0 14.MyWebService

Imports System.Security.Cryptography.X509Certificates

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10_ 14

Public Shared Sub Main()

' Create a web service proxy. For the purpose of the example, set
the ConnectionGroupName to a unique value to stop the
ServicePointManager reusing the connection in future requests.
Dim proxyl As New MyWebService.MyWebService
proxyil.ConnectionGroupName = "Test1"

' Configure the proxy with a set of credentials for use over basic

' authentication.

Dim cache As New CredentialCache

cache.Add(New Uri(proxy1.Url), "Basic", New NetworkCredential('user", ‘w»
"password"))

proxyl.Credentials = cache

' Try to call the GetIISUser web method.

CHAPTER 10 NETWORKING AND REMOTING

Try

Console.Writeline("Authenticated user = {0}", proxyl.GetIISUser)
Catch ex As WebException

Console.WriteLine("Basic authentication failed")
End Try
' Create a proxy that authenticates the current user
with Integrated Windows authentication.
Dim proxy2 As New MyWebService.MyWebService
proxy2.ConnectionGroupName = "Test2"
proxy2.Credentials = Nothing
proxy2.UseDefaultCredentials = True

Try

Console.Writeline("Authenticated user = {0}", proxy2.GetIISUser)
Catch ex As WebException

Console.Writeline("Integrated Windows authentication failed")
End Try

Create a proxy that authenticates the user with a client
certificate loaded from a file.
Dim proxy3 As New MyWebService.MyWebService
proxy3.ConnectionGroupName = "Test3"
Dim cert1 As X509Certificate = w»
X509Certificate.CreateFromCertFile("..\..\TestCertificate.cer")
proxy3.ClientCertificates.Add(cert1)

Try

Console.Writeline("Authenticated user = {0}", proxy3.GetIISUser)
Catch ex As WebException

Console.WritelLine("Certificate authentication failed")
End Try
" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter")
Console.ReadlLine()

End Sub

End Class
End Namespace

Notes

When you want to use the credentials of the currently logged-on user, you should set the
UseDefaultCredentials property to True. This is demonstrated in the preceding example. However,
if you do this while Credentials is set to something other than DefaultCredentials or Nothing, an
InvalidOperationException will be thrown

47

418

CHAPTER 10 NETWORKING AND REMOTING

10-15. Call a Web Method Asynchronously

Problem

You need to invoke a web method on another thread so that your program can continue with other
tasks (such as updating the user interface) while waiting for the response.

Solution

Use the proxy class’s built-in asynchronous method and asynchronous completion event, which are
automatically generated for every web method supported by the web service. The method is named
XXXAsync, and the completion event is named XXXCompleted, where XXX is the name of the original,
synchronous method.

How It Works

The automatically generated proxy class has the features you need to call any web method asynchro-
nously. For example, consider the Wait web method shown in the following code, which pauses for
a random number of seconds between a lower and an upper value:

Returns the specified string after a random delay

between a lower and upper bound.

<WebMethod()> _

Public Function Echo(ByVal str As String, ByVal lower As Integer, ‘=
ByVal upper As Integer) As String

Sleep for a random period of time between the specified
lower and upper boundaries.

Dim rand As New Random
System.Threading.Thread.Sleep(rand.Next(lower, upper))

Echo back the specified string.
Return str

End Function

The proxy class generated for the web service that exposes the Echo method will also implement
a method named EchoAsync, an event named EchoCompleted, an event argument data class named
EchoCompletedEventArgs, and a delegate named EchoCompletedEventHandler. Together, these
program elements allow you to call the Echo web method asynchronously and handle the result—
regardless of whether the call fails or succeeds. All web methods follow the same model; only the
names are changed. Each of these elements is described here:

e The EchoAsync method takes the same arguments as the Echo method, with the option of
providing an additional Object argument that can be used for general state information. This
extra state is passed to the EchoCompletedEventHandler (described next) when the asynchro-
nous call completes and is often used to match completed events to original calls. When you
call EchoAsync, the NET Framework returns control immediately to the calling code so that it
can continue processing, but executes the method on a thread from the thread pool.

CHAPTER 10 NETWORKING AND REMOTING 419

* When the EchoAsync method completes, the proxy raises the EchoCompleted event using a thread
from the thread pool. To handle these events, you must add an EchoCompletedEventHandler
delegate to the event. The EchoCompletedEventHandler delegate declares two arguments. The
first argument is an object that is a reference to the sender (or source) of the event, which is the
proxy object. The second argument is an EchoCompletedEventArgs object, which is discussed next.

* The EchoCompletedEventArgs class provides access to the result of the asynchronous opera-
tion. The Cancelled property indicates whether the operation was canceled by a call to the
CancelAsynch method, which was included in the proxy class. The Error property contains
any exception that was raised that caused the asynchronous operation to fail, UserState contains
the user state Object (if any) that was passed to the EchoAsync method, and Result is of the
same type returned by Echo and contains the result of the asynchronous call if it succeeded.

Note The asynchronous model described in this recipe is new to the web service proxy code generated by Visual
Studio 2005. In earlier versions of Visual Studio and in the code generated by the Web Services Description
Language tool (wsdl.exe), a different asynchronous model is implemented. Instead of an XXXAsync method and the
use of events, the proxy would have BeginXXX and EndXXX methods. This old approach had the benefit of providing
you with System.Threading.WaitHandle objects for the asynchronous operations, which you could use for
multithreaded synchronization.

The Code

The following example demonstrates how to call a web method named Echo asynchronously using
the automatically generated EchoAsync method of the proxy. The EchoAsync method is called three times,
and the second instance is canceled before it has a chance to complete. The EchoCompletedHandler
method processes the results of the three asynchronous method calls.

Imports System
Imports System.Threading
Imports Recipe10 15.MyWebService

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 15

Public Shared Sub Main()
Create a proxy through which to execute the methods of

the web service.
Dim proxy As New MyWebService.MyWebService

Add an event handler to the EchoCompleted event.
AddHandler proxy.EchoCompleted, AddressOf EchoCompletedHandler

' Call the Echo three times asynchronously.

proxy.EchoAsync("Echo String 1", 7000, 10000, "Test1")
proxy.EchoAsync("Echo String 2", 5000, 10000, "Test2")
proxy.EchoAsync("Echo String 3", 1000, 10000, "Test3")

Quickly cancel the second asynchronous operation.
proxy.CancelAsync("Test2")

420 CHAPTER 10 NETWORKING AND REMOTING

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

A method to handle asynchronous Echo completion events.
Private Shared Sub EchoCompletedHandler(ByVal sender As Object, w»
ByVal args As EchoCompletedEventArgs)

If args.Error IsNot Nothing Then
Console.WriteLine("{0}: {1}", args.UserState, args.Error.Message)
ElseIf args.Cancelled Then
Console.WritelLine("{0}: operation cancelled before completion.”, w»
args.UserState)
Else
Console.Writeline("{0}: Succeeded, echoed string = {1}.", =
args.UserState, args.Result)
End If

End Sub

End Class
End Namespace

10-16. Make an Object Remotable

Problem

Youneed to create a class that can be accessed from another application or another computer on the
network. However, you don’t need cross-platform compatibility, and you want optimum performance.

Solution

Make the class remotable by deriving from System.MarshalByRefObject, and create a component
host that registers the class with the .NET Remoting infrastructure.

How It Works

Remoting allows you to make an object accessible across process and machine boundaries. While
web services are ideal when you need to share functionality across platforms or trust boundaries,

Remoting is the best-performing choice for a closed system in which all components are built on

.NET and the Windows operating system. To use .NET Remoting, you need the following ingredients,

each of which must reside in a separate assembly:

CHAPTER 10 NETWORKING AND REMOTING

* A remotable object: This object can be accessed from other applications and computers and
must derive from the System.MarshalByRefObject.

* Acomponent host. This application registers the remotable type with the .NET Remoting
infrastructure using the RemotingConfiguration class from the System.Runtime.Remoting
namespace. You can use any type of long-running .NET Framework application for a component
host (including Windows Forms-based applications, Windows services, console applications,
and even IIS). As long as the component host is running, remote clients can create or connect
to existing instances of the remotable object. The component host never interacts with the
remotable objects directly. Allit does is register the appropriate types with the NET Remoting
infrastructure. After this point, clients can create object instances, and the server application
can continue with other tasks. However, when the component host is closed, any remotable
objects will be destroyed, and no more hosted objects can be created.

¢ A client application: This application can create or connect to instances of the remotable class in
the component host process and interact with them. The client uses the RemotingConfiguration
class to register the types it wants to access remotely. The client application uses the
RemotingConfiguration.Configure method to register the remote objects it wants to call.
Once this step is taken, the client can create the object exactly as it would create a local object.
However, the object will actually be created in the component host.

Figure 10-3 shows how these three parts interact. This example has only one client. However,
it’s also possible for multiple clients to create instances of the remotable class at the same time. In
this case, you can configure the Remoting host, whether each client has its own remotable object
instance or all clients share a single instance.

Ordinary Object % » Remotable Object

Component Host
(Server Application)

Client Application

Figure 10-3. Using a remotable class

Note Ideally, the remote object won’t retain any state. This characteristic allows you to use single-call activa-
tion, in which object instances are created at the beginning of each method call and released at the end, much like
a web service. This ensures your objects consume the fewest possible server resources and saves you from the
added complexity of implementing a lease policy to configure object lifetime.

The Code

The following example demonstrates the declaration of a remotable class that reads data from the
Person.Contact table of the AdventureWorks database and returns a System.Data.DataTable. Notice
that the only Remoting-specific code is the derivation of the class from the System.MarshalByRef class.

421

422 CHAPTER 10 NETWORKING AND REMOTING

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter10
' Define a class that extends MarshalByRefObject, making it remotable.
Public Class Recipe10_ 16
Inherits MarshalByRefObject

Private Shared connectionString As String = "Data Source=.\sqlexpress;" & w»
"Initial Catalog=AdventureWorks;Integrated Security=SSPI;"

' The DataTable returned by this method is serializable, meaning that the
data will be physically passed back to the caller across the network.
Public Function GetContacts() As DataTable

Dim SQL As String = "SELECT * FROM Person.Contact;"
' Create ADO.NET objects to execute the DB query.
Using con As New SqlConnection(connectionString)
Using com As New SqlCommand(SQL, con)
Dim adapter As New SqlDataAdapter(com)
Dim ds As New DataSet
' Execute the command.
Try
con.Open()
adapter.Fill(ds, "Contacts")
Catch ex As Exception
Console.Writeline(ex.ToString)
Finally
con.Close()
End Try

' Return the first DataTable in the DataSet to the caller.
Return ds.Tables(0)

End Using
End Using

End Function
' This method allows you to verify that the object is running remotely.
Public Function GetHostlocation() As String

Return AppDomain.CurrentDomain.FriendlyName
End Function

End Class
End Namespace

CHAPTER 10 NETWORKING AND REMOTING

Usage
To use the Recipe10 16 class remotely, you must host it and then create a client that uses the remote

object. Here is the code for a simple console component host:

Imports System
Imports System.Runtime.Remoting

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 16Host

Public Shared Sub Main()
' Register the remotable classes defined in the specified

configuration file.

RemotingConfiguration.Configure("Recipe10-16Host.exe.config", False)

As long as this application is running, the registered remote
objects will be accessible.

Console.Clear()

Console.WriteLine("Press Enter to shut down the host.")
Console.ReadlLine()

End Sub

End Class
End Namespace

The component host uses a new section in the standard configuration file (in this case Recipel0-16
Host.exe.config) to configure the classes it will support, the ports it will support for network
communication, and the URI that the client will use to access the object. The host application must
have a reference to the assembly, the Recipel0-16 assembly in this case, containing the implemen-
tation of the remote object class. The configuration file also configures the remote object to use
single-call activation, meaning that a new object is created for each client call.

<?xml version="1.0" encoding="utf-8" 2>
<configuration>
<system.runtime.remoting>
<application>

<!-- Define the remotable types. -->
<service>
<wellknown
mode = "SingleCall"
type = "Apress.VisualBasicRecipes.Chapter10.Recipe10_ 16, Recipe10-16"
objectUri = "Recipe10-16.rem" />

</service>

<!-- Define the protocol used for network access.
You can use tcp or http channels. -->

<channels>

<channel ref="tcp" port="19080" />
</channels>

423

424

CHAPTER 10 NETWORKING AND REMOTING

</application>
</system.runtime.remoting>
</configuration>

The following sample code shows a simple client that uses the remote object created earlier.
Notice that in this example, the configuration of the Remoting infrastructure is performed program-
matically instead of using the configuration file. You should avoid such an approach when using
shared configuration values because using configuration files provides more flexibility. If you did use
a configuration file for the client, it would look similar to this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.runtime.remoting>
<application>

<client>
<wellknown
type="Apress.VisualBasicRecipes.Chapter10.Recipe10 16,Recipe10 16"
url="tcp://localhost:19080/Recipe10-16.rem" />
</client>

</application>
</system.runtime.remoting>
</configuration>

However, if you want to dynamically configure the Remoting infrastructure, you will need to be
familiar with the approach demonstrated here. For detailed information, see Advanced .NET Remoting,
Second Edition by Ingo Rammer and Mario Szpuszta (Apress, 2005). Note that as with the host, the
assembly containing the declaration of the class that will be accessed remotely must still be explicitly
referenced by the application.

Imports System

Imports System.Runtime.Remoting

Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.Tcp
Imports System.Data

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10_16Client

Public Shared Sub Main()
' Register a new TCP Remoting channel to communicate with the

remote object.

ChannelServices.RegisterChannel(New TcpChannel, False)

Register the classes that will be accessed remotely.
RemotingConfiguration.RegisterWellKnownClientType(‘w»
GetType(Recipe10_16), "tcp://localhost:19080/Recipe10-16.rem")
" Now any attempts to instantiate the Recipe10 16 class
will actually create a proxy to a remote instance.

CHAPTER 10 NETWORKING AND REMOTING

Interact with the remote object through a proxy.
Dim proxy As New Recipe10_16

Try
Display the name of the component host application domain
where the object executes.
Console.Writeline("Object executing in: " & proxy.GetHostLocation)
Catch ex As Exception
Console.Writeline(ex.ToString)
End Try

Get the DataTable from the remote object and display its contents.
Dim dt As DataTable = proxy.GetContacts

For Each row As DataRow In dt.Rows
Console.WriteLine("{0}, {1}", row("LastName"), row("FirstName"))
Next

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

10-17. Register All the Remotable Classes
in an Assembly

Problem

You want to register all the remotable classes that are defined in an assembly without having to
specify them in a configuration file.

Solution

Load the assembly with the remotable classes using reflection. Loop through all its Public types, and
use the RemotingConfiguration.RegisterWellknownServiceType method to register every remotable
class.

How It Works

NET makes it equally easy to register remotable classes through a configuration file or program-
matically with code. The type being registered must extend MarshalByRefObject, and then you

call RemotingConfiguration.RegisterhWellKnownServiceType, passing on the type, the URI on
which remote clients can connect to the type, and a value of the System.Runtime.Remoting.
WellKnownObjectMode enumeration, which describes how the Remoting infrastructure should map
client calls to object instances. The possible values are SingleCall, in which every incoming call is

425

426 CHAPTER 10 NETWORKING AND REMOTING

serviced by a new object, and Singleton, in which every incoming call is serviced by the same object.
When using singleton objects, accurate state management and thread synchronization become critical.

The Code

The following server code searches for remotable classes in an assembly that is specified as a
command-line argument. Each class derived from MarshalByRefObject is registered, and then the
example displays the channel where the remotable object is available.

Imports System

Imports System.Reflection

Imports System.Runtime.Remoting

Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.Tcp

Namespace Apress.VisualBasicRecipes.Chapter10
Public Class Recipe10 17

Public Shared Sub Main(ByVal args As String())
' Ensure there is an argument. We assume it is a valid

filename.

If Not args.Length = 1 Then Exit Sub

Register a new TCP Remoting channel to communicate with
the remote object.
ChannelServices.RegisterChannel(New TcpChannel(19080), False)

Get the registered Remoting channel.
Dim channel As TcpChannel = w»
DirectCast(ChannelServices.RegisteredChannels(0), TcpChannel)
' Create an Assembly object representing the assembly
where remotable classes are defined.
Dim remoteAssembly As Assembly = Assembly.LoadFrom(args(0))

Process all the public types in the specified assembly.
For Each remType As Type In remoteAssembly.GetExportedTypes()
' Check if type is remotable.
If remType.IsSubclassOf(GetType(MarshalByRefObject)) Then
' Register each type using the type name as the URI.
Console.Writeline("Registering {0}", remType.Name)
RemotingConfiguration.RegisterWellKnownServiceType(remType, ‘=
remType.Name, WellKnownObjectMode.SingleCall)

' Determine the URL where this type is published.
Dim urls As String() = channel.GetUrlsForUri(remType.Name)
Console.WritelLine("Url: {0}", urls(0))

End If

Next

CHAPTER 10 NETWORKING AND REMOTING

As long as this application is running, the registered remote
objects will be accessible.
Console.WriteLine(Environment.NewlLine)

Console.WriteLine("Press Enter to shut down the host.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

Place the Recipel0-16.exe assembly in the directory where this recipe is and run the following
command line:

recipel10-17 recipel0-16.exe

This will produce results similar to the following output:

Registering Recipe10 16
Url: tcp://192.168.239.80:19080/Recipel0_16

Notes

The preceding code determines if a class is remotable by examining whether it derives from
MarshalByRefObject. This approach always works, but it could lead you to expose some types that
you don’t want to make remotable. For example, the System.Windows.Forms.Form object derives
indirectly from MarshalByRefObject. This means that if your remote object library contains any
forms, they will be exposed remotely. To avoid this problem, don’t include remotable types in your
assembly unless you want to make them publicly available. Alternatively, identify the types you want
to register with a custom attribute. You could then check for this attribute before registering a type.

10-18. Host a Remote Object in 1IS

Problem

You want to create a remotable object in IIS (perhaps so that you can use SSL or IIS authentication)
instead of a dedicated component host.

Solution

Place the configuration file and assembly in a directory (configured as an application within IIS),
and modify the object URI so that it ends in .rem or .soap.

How It Works

Instead of creating a dedicated component host, you can host a remotable class in IIS. This allows
you to ensure that the remotable classes will always be available, and it allows you to use IIS features
such as SSL encryption and Integrated Windows authentication.

427

428

CHAPTER 10 NETWORKING AND REMOTING

To host a remotable class in IIS, you must first create a virtual directory. The directory will
contain two things: a configuration file named Web.config that registers the remotable classes and a
Bin directory where you must place the corresponding class library assembly (or install the assembly
in the GAC).

The configuration file for hosting in IIS is quite similar to the configuration file you use with a
custom component host. However, you must follow several additional rules:

* You must use the HTTP channel (although you can use the binary formatter for smaller
message sizes).

* You cannot specify a specific port number for listening. IIS listens on all the ports you have config-
ured in IIS Manager. Typically, this will be ports 80 and 443 (for secure SSL communication).

¢ The object URI must end with .rem or .soap.

e When using IIS, you are stepping into ASP.NET territory. The configuration file you use here
for Remoting must be named Web.config, which is the configuration file used by ASP.NET
applications.

The Code

Here’s an example Web.config file that registers the remote class shown in recipe 10-16:

<?xml version="1.0"?>
<configuration>
<system.runtime.remoting>
<application>
<!-- Define the remotable types. -->
<service>
<wellknown mode="SingleCall" w»

type="Apress.VisualBasicRecipes.Chapter10.Recipe10 16,Recipe10-16" w»
objectUri="Recipe10-16.rem" />

</service>

<!-- Define the protocol used for network access.

You can use only the http channel. -->
<channels>

<channel ref="http" />
</channels>

<!-- Uncomment the following section if you want to use the
binary formatter rather than the default SOAP formatter.-->
<l--

<serverProviders>

<formatter ref="binary" />
</serverProviders>
-->
</application>
</system.runtime.remoting>
</configuration>

Usage

A client can use an object hosted in IIS in the same way as an object hosted in a custom component
host. However, the directory name will become part of the object URL For example, if the Web.config

CHAPTER 10 NETWORKING AND REMOTING 429

file shown in the preceding code is hosted in the directory http://localhost/RemoteObjects, the full
URL will be http://localhost/RemoteObjects/Recipe10-16.rem.

Note When hosting an object with IIS, the account used to execute the object is the ASP.NET account defined
in the Machine.config file. If this account doesn’t have the rights to access the database (which is the default situation),
you will receive an error when you try this example. Look at the .NET Framework for documentation on the
<processModel> element.

10-19. Control the Lifetime of a Remote Object

Problem

You want to configure how long a singleton or client-activated object lives while not in use.

Solution

Configure a lease policy by using configuration file settings, override the MarshalByRefObject.
InitializelifetimeService method, or implement a custom lease provider.

How It Works

If aremotable object uses single-call activation, it will be destroyed automatically at the end of each
method call. This behavior changes with client-activated and singleton objects, which are given a
longer lifetime dictated by a lifetime lease. With the default settings, a remote object will be automat-
ically destroyed if it’s inactive for 2 minutes, provided it has been in existence for at least 5 minutes.

The component host, remote object, and client each have the opportunity to change lifetime
settings, as described here:

e The component host can specify different lease lifetime defaults in the configuration file
using the <1ifetime> element, which is a child of the <system.runtime.remoting> element.
The leaseTime attribute of the element specifies the default lifetime for all hosted objects. The
renewOnCallTime attribute specifies the amount of time by which the lease is extended when
acallismade against a hosted object. You can specify the values for both attributes as positive
integers with a time unit suffix for days (D), hours (H), minutes (M), or seconds (S). For example,
10 hours is 10H, and 30 seconds is 30S.

* The remote class can override its InitializelifetimeService method (inherited from
MarshalByRefObject) to modify its initial lease settings by configuring and returning an object
that implements the System.Runtime.Remoting.Lifetime.ILease interface. You obtain an
ILease instance by calling the base class method InitializelifetimeService. Then configure
the returned ILease by setting the InitiallLeaseTime and RenewOnCallTime properties to the
desired values using System.TimeSpan objects. If you want the object to have an unlimited life-
time, simply return a Nothing reference instead of an ILease object. This is most commonly
the case if you are creating a singleton object that needs to run independently (and perma-
nently), even if clients aren’t currently using it.

* The client can call the MarshalByRefObject.GetLifetimeService method on a specific remote
object to retrieve an ILease instance. The client can then call the ILease.Renew method to
specify a minimum amount of time the object should be kept alive.

430 CHAPTER 10 NETWORKING AND REMOTING

The Code

The following example demonstrates how to use a component host’s configuration file to control
lifetime leases. The configuration gives each hosted object an initial lifetime of 10 minutes, and each
time a member of the object is invoked, the lifetime is set to be at least 3 minutes.

<?xml version="1.0" encoding="utf-8" 2>
<configuration>
<system.runtime.remoting>
<application>

<!-- Define the remotable types. -->
<service>
<wellknown
mode = "SingleCall"
type = "Apress.VisualBasicRecipes.Chapter10.Recipe10 19, Recipe10-19"
objectUri = "Recipe10-19" />
</service>

<!-- Define the protocol used for network access.

You can use tcp or http channels. -->
<channels>
<channel ref="tcp" port="19080" />
</channels>

<lifetime leaseTime="10M" renewOnCallTime="3M" />

</application>
</system.runtime.remoting>
</configuration>

The following example demonstrates how to use the second approach outlined where the
remotable object overrides the InitializelifetimeService method and takes control of its own life-

time. The example shows a remotable object that gives itself a default 10-minute lifetime and 3-minute
renewal time.

Imports System

Imports System.Runtime.Remoting.Lifetime

Namespace Apress.VisualBasicRecipes.Chapter10

Define a class that extends MarshalByRefObject, making it remotable.
Public Class Recipe10_ 19

Inherits MarshalByRefObject
Public Overrides Function InitializeLifetimeService() As Object

Dim lease As IlLease = DirectCast(MyBase.InitializelifetimeService(), =
ILease)

CHAPTER 10 NETWORKING AND REMOTING

Lease can only be configured if it is in an initial state.
If lease.CurrentState = LeaseState.Initial Then
lease.InitialleaseTime = TimeSpan.FromMinutes(10)
lease.RenewOnCallTime = TimeSpan.FromMinutes(3)
End If

Return lease

End Function

End Class
End Namespace

10-20. Control Versioning for Remote Objects

Problem

You want to create a component host that can host more than one version of the same object.

Solution

Install all versions of the remotable object into the global assembly cache (GAC), and explicitly
register each version at a different URI endpoint. See recipe 1-14 for details on how to manage the
assemblies in the GAC.

How It Works

.NET Remoting doesn’t include any intrinsic support for versioning. When a client creates a remote
object, the component host automatically uses the version in the local directory or, in the case of a

shared assembly, the latest version from the GAC. To support multiple versions, you have three choices:

* Create separate component host applications: Each component host will host a different version
of the remote object assembly and will register its version with a different URIL This approach
forces you to run multiple component host applications at once and is most practical if you
are using IIS hosting (as described in recipe 10-18).

* Create an entirely new remote object assembly (instead of simply changing the version): You
can then register the classes from both assemblies at different URIs by using the same
component host.

* Install all versions of the remote object assembly in the GAC: You can now create a component
host that maps different URIs to specific versions of the remote object assembly.

431

432 CHAPTER 10 NETWORKING AND REMOTING

The Code

Installing all versions of the remote object assembly in the GAC is the most flexible approach in cases
where you need to support multiple versions. The following configuration file registers two versions of
theRemoteObjects assembly at two different endpoints. Notice that youneed to include the exact version
number and public key token when using assemblies from the GAC. You can find this information by
viewing the assembly in the Windows Explorer GAC plug-in (browse to C:\[WindowsDirl\Assembly).
The client configuration file won’t change at all (aside from updating the URI, if required). The client
“chooses” the version it wants to use by using the corresponding URIL.

<configuration>
<system.runtime.remoting>
<application>

<service>

<!-- The type information is split over two lines to accommodate the
bounds of the page. In the configuration file, this information
must all be placed on a single line. -->
<wellknown mode="SingleCall"
type="RemoteObjects.RemoteObject, RemoteObjects, Version 1.0.0.1,
Culture=neutral, PublicKeyToken=8b5ed84fd25209e1"
objectUri="RemoteObj_1.0" />

<wellknown mode="SingleCall"
type="RemoteObjects.RemoteObject, RemoteObjects, Version 2.0.0.1,
Culture=neutral, PublicKeyToken=8b5ed84fd25209e1"
objectUri="RemoteObj_2.0" />
</service>

<channels>
<channel ref="tcp" port="19080" />
</channels>

</application>
</system.runtime.remoting>
</configuration>

CHAPTER 11

Security and Cryptography

A principal goal of the Microsoft .NET Framework is to make computing more secure, especially
with respect to the use of mobile code and distributed systems. Most modern operating systems
(including Microsoft Windows) support user-based security, allowing you to control the actions and
resources to which a user has access. However, in the highly connected world resulting from the
proliferation of computer networks, particularly the Internet, it’s insufficient to base security solely
on the identity of a system’s user. In the interest of security, code should not automatically receive
the same level of trust that you assign to the person running the code.

The .NET Framework incorporates two complementary security models that address many of
the issues associated with user and code security: code access security (CAS) and role-based security
(RBS). CAS and RBS do not replace or duplicate the security facilities provided by the underlying
operating system. They are platform-independent mechanisms that provide additional security
capabilities to augment and enhance the overall security of your managed solutions. CAS uses infor-
mation about the source and origin of an assembly (evidence) gathered at runtime to determine which
actions and resources code from the assembly can access (permissions). The NET Framework security
policy—a hierarchical set of configurable rules—defines the mapping between evidence and
permissions. The building blocks of security policy are code groups, which allow you to configure the
mapping between evidence and permissions. The set of permissions granted to an assembly as a
result of the security policy is known as the assembly’s grant set.

The .NET Framework class library uses permission demandsto protect its most important func-
tionality from unauthorized access. A demand forces the common language runtime (CLR) to ensure
that the whole stack of code calling a protected method has a specific permission. CAS ensures that
the runtime capabilities of code depend on the level of trust you place in the creator and source of the
code, not the level of trust you place in the user running the code.

Following a more traditional security model, RBS allows you to make runtime decisions based
on the identity and roles of the user on whose behalf an application is running. On the Windows
operating system, this equates to making decisions based on the Windows username and the Windows
groups to which that user belongs. However, RBS provides a generic security mechanism that is
independent of the underlying operating system, allowing you (with some development) to integrate
with any user account system.

Another important aspect of the security features provided by the .NET Framework s cryptography.
Cryptography is one of the most complex aspects of software development that any developer will
use. The theory of modern cryptographic techniques is extremely difficult to understand and requires a
level of mathematical knowledge that relatively few people have or need. Fortunately, the .NET Frame-
work class library provides easy-to-use implementations of the most commonly used cryptographic
techniques and support for the most popular and well-understood algorithms.

This chapter provides a wide variety of recipes that cover some of the more commonly used
security capabilities provided by the .NET Framework. As you read the recipes in this chapter and
think about how to apply the techniques to your own code, keep in mind that individual security

433

434 CHAPTER 11 SECURITY AND CRYPTOGRAPHY

features are rarely effective when implemented in isolation. In particular, cryptography does not
equal security; the use of cryptography is merely one small element of creating a secure solution.
The recipes in this chapter describe how to do the following:

* Develop strong-named assemblies that can still be called by partially trusted code (recipe 11-1)

e Configure the .NET Framework security policy to turn off CAS completely or turn off only
execution permission checks (recipes 11-2 and 11-3)

* Request specific code access permissions for your assemblies, determine at runtime what
permissions the current assembly has, and inspect third-party assemblies to determine what
permissions they need in order to run correctly (recipes 11-4, 11-5, 11-6, and 11-7)

e Control inheritance and member overrides using CAS (recipe 11-8)

e Inspect the evidence presented by an assembly to the runtime when the assembly is loaded
(recipe 11-9)

* Integrate with Windows security to determine if a user is a member of a specific Windows
group, restrict which users can execute your code, and impersonate other Windows users
(recipes 11-10, 11-11, and 11-12)

* Generate random numbers that are nondeterministic and are suitable for use in security-
sensitive applications (recipe 11-13)

e Use hash codes and keyed hash codes to store user passwords and determine if files have
changed (recipes 11-14, 11-15, 11-16, and 11-17)

* Useencryption to protect sensitive data both in memory and when it is stored to disk (recipes
11-18 and 11-19)

Note For a broader explanation of secure programming and where cryptography fits in the overall security
landscape, read Writing Secure Code, Second Edition, by Michael Howard and David LeBlanc (Microsoft Press, 2003),
a modern classic of computer literature that contains a wealth of practical field-tested information. For more comprehen-
sive coverage of the .NET security classes, see Programming .NET Security by Adam Freeman and Allen Jones
(O’Reilly and Associates, 2003). Although not yet updated for .NET Framework 2.0, Programming .NET Security
provides easily understood descriptions of security fundamentals, covers all the .NET security classes in detail, and
demonstrates how to extend most aspects of the security framework.

11-1. Allow Partially Trusted Code to Use Your
Strong-Named Assembly

Problem

You need to write a shared assembly that is accessible to code that is not fully trusted. By default,
the runtime does not allow partially trusted code to access the types and members contained in a
strong-named assembly.

Solution

Apply the assembly-level attribute System.Security.AllowPartiallyTrustedCallersAttribute to
your shared assembly.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

How It Works

To minimize the security risks posed by malicious code, the runtime does not allow assemblies
granted only partial trust to access strong-named assemblies. This restriction dramatically reduces
the opportunity for malicious code to attack your system, but the reasoning behind such a heavy-
handed approach requires some explanation.

Assemblies that contain important functionality that is shared between multiple applications
are usually strong-named and often installed in the global assembly cache (GAC). This is particularly
true of the assemblies that constitute the .NET Framework class library. Other strong-named assemblies
from well-known and widely distributed products will also be in the GAC and accessible to managed
applications. The high chance that certain assemblies will be present in the GAC, their easy accessibility,
and their importance to many different applications makes strong-named assemblies the most likely
target for any type of subversive activity by malicious managed code.

Generally, the code most likely to be malicious is that which is loaded from remote locations,
such as the Internet, over which you have little or no control. Under the default security policy in
versions 1.x and 2.0 of the .NET Framework, all code run from the local machine has full trust, whereas
code loaded from remote locations has only partial trust. Stopping partially trusted code from accessing
strong-named assemblies means that partially trusted code has no opportunity to use the features
of the assembly for malicious purposes, and cannot probe and explore the assembly to find exploitable
holes. Of course, this theory hinges on the assumption that you correctly administer your security
policy. If you simply assign all code full trust, not only will any assembly be able to access your strong-
named assembly, but the code will also be able to access all of the functionality of the .NET Framework
and even Win32 or any COM object through P/Invoke and COM Interop. That would be a security
disaster!

Note If you design, implement, and test your shared assembly correctly using CAS to restrict access to important
members, you do not need to impose a blanket restriction to prevent partially trusted code from using your assembly.
However, for an assembly of any significance, it's impossible to prove there are no security holes that malicious
code can exploit. Therefore, you should carefully consider the need to allow partially trusted code to access your
strong-named assembly before applying the AllowPartiallyTrustedCallers attribute. However, you might
have no choice. If you are exposing public classes that provide events, you must apply this attribute. If you do not,
an assembly that is not strong-named will be allowed to register a handler for one of your events, but when it is
called, a security exception will be thrown. Code in an assembly that is not strong-named is not allowed to call code
in a strong-named assembly.

The runtime stops partially trusted code from accessing strong-named assemblies by placing an
implicit LinkDemand for the FullTrust permission set on every Public and Protected member of every
publicly accessible type defined in the assembly. A LinkDemand verifies that the caller has the speci-
fied permissions, during just-in-time (JIT) compilation. This means that only assemblies granted the
permissions equivalent to the FullTrust permission set are able to access the types and members
from the strong-named assembly. Applying AllowPartiallyTrustedCallersAttribute to your strong-

named assembly signals the runtime not to enforce the LinkDemand on the contained types and members.

Note The runtime is responsible for enforcing the implicit LinkDemand security actions required to protect
strong-named assemblies. The VB .NET assembler does not generate declarative LinkDemand statements at
compile time.

435

436

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

The Code

The following code fragment shows the application of the attribute AllowPartiallyTrustedCaller-
sAttribute. Notice that you must prefix the attribute with Assembly: to signal to the compiler that
the target of the attribute is the assembly (also called a global attribute). Because you target the
assembly, the attribute must be positioned after any top-level Imports statements, but before any
namespace or type declarations.

Imports System.Security
<Assembly: AllowPartiallyTrustedCallers()>
Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe11 01
' Implementation code...

End Class

End Namespace

Tip It's common practice to contain all global attributes in a file separate from the rest of your application code.
Microsoft Visual Studio uses this approach, creating a file named Assemblylnfo.vb (located in the My Projects folder,
which is hidden by default) to contain all global attributes.

Notes

If, after applying AllowPartiallyTrustedCallersAttribute to your assembly, you want to restrict
partially trusted code from calling only specific members, you should implement a LinkDemand for
the FullTrust permission set on the necessary members, as shown in the following code fragment.

<System.Security.Permissions.PermissionSet(SecurityAction.LinkDemand, ‘=
Name:="FullTrust")> _
Public Sub SomeMethod()
' Method code...
End Sub

11-2. Disable Code Access Security

Problem

You need to turn off all code access security (CAS) checks for the purpose of testing or debugging an
application.

Solution

Use the Code Access Security Policy tool (Caspol.exe) and execute the command caspol -s off from
the command line to temporarily disable code access security checks.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Note You could permanently turn off CAS in .NET Framework 1.0 and 1.1 both programmatically and using
Caspol.exe. In .NET Framework 2.0, you can turn off CAS only temporarily and only by using Caspol.exe.

How It Works

In some cases, code-level security might not be of interest to you. For example, when you are debugging
code, you might want to exclude the possible interference caused by CAS. On rare occasions, the
need for performance might outweigh the need for security. CAS is a key element of the .NET runtime’s
security model and one that sets it apart from many other computing platforms. Although CAS was
implemented with performance in mind and has been used prudently throughout the .NET class
library, some overhead is associated with each security demand and resulting stack walk that the
runtime must execute to check every caller in the chain of execution.

CGaution You should disable CAS only for performance reasons after you have exhausted all other possible
measures to achieve the performance characteristics your application requires. Profiling your code will usually iden-
tify areas where you can improve performance significantly without the need to disable CAS. In addition, you should
ensure that your system resources have appropriate protection using operating system security mechanisms, such
as Windows access control lists (ACLs), before disabling CAS.

In these situations, you can temporarily disable CAS and remove the overhead and possible
interference caused by code-level security checks. Turning off CAS has the effect of giving all code
the ability to perform any action supported by the .NET Framework (equivalent to the FullTrust
permission set). This includes the ability to load other code, call native libraries, and use pointers to
access memory directly.

Caspol.exe is a utility provided with the .NET Framework that allows you to configure all aspects
of your CAS policy from the command line. When you enter the command caspol -s off from the
command line, you will see the following message indicating that CAS has been temporarily disabled.

Microsoft (r) .NET Framework CasPol 2.0.50727.42
Copyright (c) Microsoft Corporation. Al rights reserved.

CAS enforcement is being turned off temporarily. Press <enter> when you want to
restore the setting back on.

As the message states, CAS enforcement is off until you press Enter, or until the console in which
Caspol.exe is running terminates.

Notes

In versions 1.0 and 1.1 of the .NET Framework, running the command caspol -s off turned off CAS
enforcement permanently until you turned it on again using the command caspol -s on.In addition, it
was possible to turn CAS on and off programmatically using the System. Security.SecurityManager
class. The SecurityManager class contains a set of Shared methods and properties that provide access
to critical security functionality and data. For example, the SecurityEnabled property turns CAS checks
on and off.

To disable CAS, your code must run as a Windows Administrator and must have the ControlPolicy
element of the permission System.Security.Permissions.SecurityPermission. You do notneed any
specific permissions to enable CAS.

437

438

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Changing SecurityEnabled will not affect the enforcement of CAS in existing processes, nor will
it affect new processes until you call the SavePolicy method, which saves the state of SecurityEnabled to
the Windows registry. Unfortunately, the .NET Framework does not guarantee that changes to
SecurityEnabled will correctly affect the operation of CAS in the current process, so you must change
SecurityEnabled, and then launch a new process to achieve reliable and expected operation. The
current on/ off state of CAS is stored in the Windows registry in the key HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\.NETFramework\Security\Policy as part of a set of flags contained in the
Global Settings value. If the key does not exist, CAS defaults to on. Because CAS can no longer be
permanently turned off in .NET Framework 2.0, this registry key is no longer used to control CAS.

The following example will work only on .NET Framework 1.0 and 1.1. It contains two methods
(CasOn and CasOff) that demonstrate the code required to turn CAS on and off programmatically and
persist the configuration change.

Imports System.Security

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe11 02

A method to turn on CAS and persist the change.
Public Sub CasOn()

" Turn on CAS checks.
SecurityManager.SecurityEnabled = True

Persist the configuration change.
SecurityManager.SavePolicy()

End Sub

A method to turn off CAS and persist the change.
Public Sub CasOff()

" Turn off CAS checks.
SecurityManager.SecurityEnabled = False

Persist the configuration change.
SecurityManager.SavePolicy()

End Sub

End Class
End Namespace

11-3. Disable Execution Permission Checks

Problem

You need to load assemblies at runtime without the runtime checking them for execution permission.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY 439

Solution

In code, set the property CheckExecutionRights of the class System.Security. SecurityManager to False
and persist the change by calling SecurityManager.SavePolicy. Alternatively, use the Code Access
Security Policy tool (Caspol.exe), and execute the command caspol -e off from the command line.

How It Works

As theruntime loads each assembly, it ensures that the assembly’s grant set (the permissions assigned to
the assembly based on the security policy) includes the Execution element of SecurityPermission.
The runtime implements a lazy policy resolution process, meaning that the grant set of an assembly
is not calculated until the first time a security demand is made against the assembly. Not only does
execution permission checking force the runtime to check that every assembly has the execution
permission, but it also indirectly causes policy resolution for every assembly loaded, effectively negating
the benefits of lazy policy resolution. These factors can introduce a noticeable delay as assemblies
are loaded, especially when the runtime loads a number of assemblies together, as it does at appli-
cation startup.

In many situations, simply allowing code to load and run is not a significant risk, as long as all
other important operations and resources are correctly secured using CAS and operating system
security. The SecurityManager class contains a set of Shared methods and properties that provide
access to critical security functionality and data. For example, the CheckExecutionRights property
turns on and off execution permission checks.

To modify the value of CheckExecutionRights, your code must have the ControlPolicy element
of SecurityPermission. The change will affect the current process immediately, allowing you to load
assemblies at runtime without the runtime checking them for execution permission. However, the
change will not affect other existing processes. You must call the SavePolicy method to persist the
change to the Windows registry for it to affect new processes.

The Code

The following example contains two methods (ExecutionCheckOn and ExecutionCheckOff) that
demonstrate the code required to turn on and off execution permission checks and persist the
configuration change.

Imports System.Security

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe11 03
' A method to turn on execution permission checking
and persist the change.
Public Sub ExecutionCheckOn()
" Turn on CAS checks.
SecurityManager.CheckExecutionRights = True

Persist the configuration change.
SecurityManager.SavePolicy()

End Sub

440 CHAPTER 11 SECURITY AND CRYPTOGRAPHY

A method to turn off execution permission checking
and persist the change.

Public Sub ExecutionCheckOff()

" Turn on CAS checks.
SecurityManager.CheckExecutionRights = False

Persist the configuration change.
SecurityManager.SavePolicy()

End Sub

End Class
End Namespace

Notes

The .NET runtime allows you to turn off the automatic checks for execution permissions from within
code or by using Caspol.exe. When you enter the command caspol -e off orits counterpart caspol

-e onfrom the command line, the Caspol.exe utility actually sets the CheckExecutionRights property
of the SecurityManager class before calling SecurityManager.SavePolicy.

11-4. Ensure the Runtime Grants Specific
Permissions to Your Assembly

Problem

You need to ensure that the runtime grants your assembly those code access permissions that are
critical to the successful operation of your application.

Solution

In your assembly, use permission requests to specify the code access permissions that your assembly
must have. You declare permission requests using assembly-level code access permission
attributes.

How It Works

The name permission requestis a little misleading given that the runtime will never grant permissions to
an assembly unless security policy dictates that the assembly should have those permissions. However,
naming aside, permission requests serve an essential purpose, and although the way the runtime
handles permission requests might initially seem strange, the nature of CAS does not allow for any
obvious alternative.

Permission requests identify permissions that your code musthave to function. For example, if
you wrote a movie player that your customers could use to download and view movies from your
web server, it would be disastrous if the user’s security policy did not allow your player to open a
network connection to your media server. Your player would load and run, but as soon as the user tried
to connect to your server to play a movie, the application would crash with the exception System.
Security.SecurityException. The solution is to include in your assembly a permission request for
the code access permission required to open a network connection to your server (System.Net.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY a4

WebPermission or System.Net.SocketPermission, depending on the type of connection you need
to open).

The runtime honors permission requests using the premise that it’s better that your code never
load than to load and fail sometime later when it tries to perform an action that it does not have
permission to perform. Therefore, if after security policy resolution the runtime determines that the
user does not have the appropriate permissions to satisfy the assembly’s permission requests, the
runtime will fail to load the assembly and will instead throw the exception System.Security.Policy.
PolicyException. Since your own code failed to load, the runtime will handle this security exception
during the assembly loading and transform it into a System.IO.FilelLoadException exception that
will terminate your program.

When you try to load an assembly from within code (either automatically or manually), and the
loaded assembly contains permission requests that the security policy does not satisfy, the method
you use to load the assembly will throw a PolicyException exception, which you must handle
appropriately.

To declare a permission request, you must use the attribute counterpart of the code access
permission that you need to request. All code access permissions have an attribute counterpart that
you use to construct declarative security statements, including permission requests. For example,
the attribute counterpart of SocketPermission is SocketPermissionAttribute, and the attribute
counterpart of WebPermission is WebPermissionAttribute. All permissions and their attribute counter-
parts follow the same naming convention and are members of the same namespace.

When making a permission request, it's important to remember the following:

* You must declare the permission request after any top-level Imports statements but before
any namespace or type declarations.

* The attribute must target the assembly, so you must prefix the attribute name with Assembly.
* Youdo not need to include the Attribute portion of an attribute’s name, although you can.

* You must specify SecurityAction.RequestMinimum as the first positional argument of the
attribute. This value identifies the statement as a permission request.

* Youmust configure the attribute to represent the code access permission you want to request
using the attribute’s properties. Refer to the .NET Framework SDK documentation for details
of the properties implemented by each code access security attribute.

¢ To make more than one permission request, simply include multiple permission request
statements.

The Code

The following example is a console application that includes two permission requests: one for
SocketPermission and the other for SecurityPermission. If you try to execute the
PermissionRequestExample application and your security policy does not grant the assembly the
requested permissions, you will get a FilelLoadException exception, and the application will not
execute. Using the default security policy, this will happen if you run the assembly from a network
share, because assemblies loaded from the intranet zone are not granted SocketPermission.

Imports System

Imports System.Net

Imports System.Security.Permissions
' Permission request for SocketPermission that allows the code to

open a TCP connection to the specified host and port.

<Assembly: SocketPermission(SecurityAction.RequestMinimum, Access:="Connect", ‘w»
Host:="www.fabrikam.com", Port:="3538", Transport:="Tcp")>

442

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Permission request for the UnmanagedCode element of SecurityPermission,
which controls the code's ability to execute unmanaged code.
<Assembly: SecurityPermission(SecurityAction.RequestMinimum, UnmanagedCode:=True)>

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe1l 04

Public Shared Sub Main()

Do something

Wait to continue.
Console.Write("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

11-5. Limit the Permissions Granted
to Your Assembly

Problem

Youneed to restrict the code access permissions granted to your assembly, ensuring that people and
other software can never use your code as a mechanism through which to perform undesirable or
malicious actions.

Solution

Use declarative security statements to specify optional permission requests and permission refusal
requests in your assembly. Optional permission requests define the maximum set of permissions
that the runtime will grant to your assembly. Permission refusal requests specify particular permis-
sions that the runtime should not grant to your assembly.

How It Works

In the interest of security, it’s ideal if your code has only those code access permissions required to
perform its function. This minimizes the opportunities for people and other code to use your code
to carry out malicious or undesirable actions. The problem is that the runtime resolves an assembly’s
permissions using security policy, which a user or an administrator configures. Security policy could
be different in every location where your application is run, and you have no control over what
permissions the security policy assigns to your code.

Although you cannot control security policy in all locations where your code runs, the .NET
Framework provides two mechanisms through which you can reject permissions granted to your
assembly:

CHAPTER 11 SECURITY AND CRYPTOGRAPHY 443

* Refuse request: This allows you to identify specific permissions that you do not want the
runtime to grant to your assembly. After policy resolution, if the final grant set of an assembly
contains any permission specified in a refuse request, the runtime removes that permission.

* Optional permission request: This defines the maximum set of permissions that the runtime
can grant to your assembly. If the final grant set of an assembly contains any permissions
other than those specified in the optional permission request, the runtime removes those
permissions. Unlike as with a minimum permission request (discussed in recipe 11-4), the
runtime will not refuse to load your assembly if it cannot grant all of the permissions specified
in the optional request.

The approach you use depends on how many permissions you want to reject. If you want to
reject only a handful of permissions, a refuse request is easier to code. You just specify the permissions
that you do not want to grant to your assembly. However, if you want to reject a large number of
permissions, it’s easier to code an optional request for the few permissions that you do want; all
others not specified will be refused by the assembly.

You include optional and refuse requests in your code using declarative security statements with the
same syntax as the minimum permission requests discussed in recipe 11-4. The only difference is the
value of the System.Security.Permissions.SecurityAction that you pass to the permission attribute’s
constructor. Use SecurityAction.RequestOptional to declare an optional permission request and
SecurityAction.RequestRefuse to declare a refuse request. As with minimal permission requests, you
must declare optional and refuse requests as global attributes by beginning the permission attribute
name with the prefix Assembly. In addition, all requests must appear after any top-level Imports
statements but before any namespace or type declarations.

The Code

The code shown here demonstrates an optional permission request for the Internet permission set.
The Internet permission set is a named permission set defined by the default security policy. When
the runtime loads the example, it will not grant the assembly any permission that is not included
within the Internet permission set. (Consult the .NET Framework SDK documentation for details of
the permissions contained in the Internet permission set.)

Imports System.Security.Permissions
<Assembly: PermissionSet(SecurityAction.RequestOptional, Name:="Internet")>
Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipell 05 OptionalRequest
Class implementation...

End Class

End Namespace

In contrast to the preceding example, the following example uses a refuse request to single out
the permission System. Security.Permissions.FileIOPermission—representing write access to the
C: drive—for refusal.

Imports System.Security.Permissions
<Assembly: FileIOPermission(SecurityAction.RequestRefuse, Write:="C:\")>

Namespace Apress.VisualBasicRecipes.Chapteri1

444

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Public Class Recipe1l1l 05 RefuseRequest
' (Class implementation...
End Class

End Namespace

11-6. View the Permissions Required
by an Assembly

Problem

You need to view the permissions that an assembly must be granted in order to run correctly.

Solution

Use the Permissions Calculator (Permcalc.exe) supplied with the .NET Framework SDK version 2.0
or the Permissions View tool (Permview.exe) supplied with the .NET Framework SDK versions 1.0
and 1.1.

How It Works

To configure security policy correctly, you need to know the code access permission requirements
of the assemblies you intend to run. This is true of both executable assemblies and libraries that you
access from your own applications. With libraries, it’s also important to know which permissions the
assembly refuses so that you do not try to use the library to perform arestricted action, which would
resultin a System.Security.SecurityException exception.

The Permissions View tool (Permview.exe), supplied with the .NET Framework SDK versions 1.0
and 1.1, allows you to view the minimal, optional, and refuse permission requests made by an assembly.
By specifying the /decl switch, you can view all of the declarative security statements contained in
an assembly, including declarative demands and asserts. This can give you a good insight into what
the assembly is trying to do and allow you to configure security policy appropriately. However,
Permview.exe does not show the imperative security operations contained within the assembly.
Imperative security refers to statements in code that create and use an instance of the required
permissions object.

The Permissions Calculator (Permcalc.exe) supplied with the .NET Framework SDK version 2.0
overcomes this limitation. Permcalc.exe walks through an assembly and provides an estimate of the
permissions the assembly requires to run, regardless of whether they are declarative or imperative.

Note The Permissions View tool (Permview.exe) is not supplied with the .NET Framework SDK version 2.0.
Permview.exe from previous versions of the .NET Framework does not work correctly with .NET 2.0 assemblies.
This is unfortunate, as Permcalc.exe does not provide a direct replacement for some of the useful functionality
provided by Permview.exe. Although Permcalc.exe can determine both the imperative and declarative demands an
assembly makes, it does not report the minimal, optional, and refusal requests made within an assembly.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

The Code

The following example shows a class that declares a minimum, optional, and refusal request, as well
as a number of imperative security demands.

Imports System
Imports System.Net
Imports System.Security.Permissions

Minimum permission request for SocketPermission.
<Assembly: SocketPermission(SecurityAction.RequestMinimum, Unrestricted:=True)>
' Optional permission request for IsolatedStorageFilePermission.
<Assembly: IsolatedStorageFilePermission(SecurityAction.RequestOptional, w»
Unrestricted:=True)>

Refuse request for ReflectionPermission.
<Assembly: ReflectionPermission(SecurityAction.RequestRefuse, Unrestricted:=True)>

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Receipell 06

Public Shared Sub Main()
Create and configure a FileIOPermission object that represents

write access to the C:\Data folder.
Dim fileIOPerm As New FileIOPermission(FileIOPermissionAccess.Write, ‘w»

"C:\Data")

' Make the demand.
fileIOPerm.Demand()

Do something...

Wait to continue.
Console.Write("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

Executing the command permcalc -sandbox Recipel1-06.exe will generate a file named sandbox.
PermCalc.xml that contains XML representations of the permissions required by the assembly. The
sandbox parameter creates a private area (sandbox) for an application, with the minimum permis-
sions in which the application requires to run. Where the exact requirements of a permission cannot
be determined (because itis based on runtime data), Permcalc.exe reports that unrestricted permissions
of that type are required. You can instead default to the Internet zone permissions using the -Internet
flag. Here are the contents of sandbox.PermCalc.xml when run against the sample code.

445

446

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

<?xml version="1.0"?>
<Sandbox>
<PermissionSet version="1" class="System.Security.PermissionSet">
<IPermission Write="C:\Data" version="1"
class="System.Security.Permissions.FileIOPermission, mscorlib,
Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934€089" />
<IPermission version="1"
class="System.Security.Permissions.SecurityPermission,
mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934€089" Flags="Execution" />
<IPermission version="1" class="System.Security.Permissions.UIPermission,
mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934€089" Unrestricted="true" />
<IPermission version="1" class="System.Net.SocketPermission, System,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
Unrestricted="true" />
</PermissionSet>
</Sandbox>

11-7. Determine at Runtime If Your Code Has a
Specific Permission

Problem

You need to determine at runtime if your assembly has a specific permission, such as write access
to files.

Solution

Instantiate and configure the permission you want to test for, and then pass it as an argument to the
Shared method IsGranted of the class System.Security.SecurityManager.

How It Works

Using minimum permission requests, you can ensure that the runtime grants your assembly a spec-
ified set of permissions. As a result, when your code is running, you can safely assume that it has the
requested minimum permissions. However, you might want to implement opportunistic function-
ality that your application offers only if the runtime grants your assembly appropriate permissions.
This approach is partially formalized using optional permission requests, which allow you to define
a set of permissions that your code could use if the security policy granted them, but are not essen-
tial for the successful operation of your code. (Recipe 11-5 provides more details on using optional
permission requests.)

The problem with optional permission requests is that the runtime has no ability to communi-
cate to your assembly which of the requested optional permissions it has granted. You can try to use a
protected operation and fail gracefully if the call results in the exception System. Security.
SecurityException. However, it's more efficient to determine in advance if you have the necessary
permissions. You can then build logic into your code to avoid invoking secured members that will
cause stack walks and raise security exceptions.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY 447

Note IsGranted checks the grant set of only the calling assembly. It does not do a full stack walk to evaluate
the grant set of other assemblies on the call stack.

The Code

The following example demonstrates how to use the IsGranted method to determine if the assembly
has write permission to the directory C:\Data. You could make such a call each time you needed to
test for the permission, but it’s more efficient to use the returned Boolean value to set a configura-
tion flag indicating whether to allow users to save files.

Imports System.Security
Imports System.Security.Permissions

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipell 07
' Define a variable to indicate whether the assembly has write
access to the C:\Data folder.
Private canWrite As Boolean = False

Public Sub New()
' Create and configure a FileIOPermission object that
represents write access the the C:\Data folder.
Dim fileIOPerm As New FileIOPermission(FileIOPermissionAccess.Write, w»

"C:\Data")
' Test if the current assembly has the specified permission.
canWrite = SecurityManager.IsGranted(fileIOPerm)
End Sub
End Class

End Namespace

11-8. Restrict Who Can Extend Your Classes and
Override Class Members

Problem

You need to control what code can extend your classes through inheritance and which class members a
derived class can override.

Solution

Use declarative security statements to apply the SecurityAction.InheritanceDemand to the declara-
tions of the classes and members that you need to protect.

448

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Note In .NET Framework 2.0, assemblies granted FullTrust can extend a class regardless of the security
demands implemented on the class. This means that the InheritanceDemand is useful in environments where
assembly permissions are closely managed, because you can still ensure that malicious or unauthorized code
cannot extend your critical business classes. However, the InheritanceDemand does not allow you to protect
classes that you develop and distribute to other environments, as part of a packaged product, for example. Although
this may seem like a useful feature has been lost, there were always ways for a determined programmer to write
and run fully trusted assemblies to overcome the InheritanceDemand. The approach taken in .NET 2.0 is simply
to avoid people placing too much confidence in a security feature that was at best an inconvenience to the deter-
mined hacker.

How It Works

Language modifiers such as NotOverridable, NotInheritable, Public, Private, and Overridable give
you a level of control over the ability of classes to inherit from your class and override its members.
However, these modifiers are inflexible, providing no selectivity in restricting which code can extend
a class or override its members. For example, you might want to allow only code written by your
company or department to extend business-critical classes. By applying an InheritanceDemand to
your class or member declaration, you can specify runtime permissions that a class must have to
extend your class or override particular members. Remember that the permissions of a class are the
permissions of the assembly in which the class is declared.

Although you can demand any permission or permission set in your InheritanceDemand, it’s
more common to demand identity permissions. Identity permissions represent evidence presented
to the runtime by an assembly. If an assembly presents certain types of evidence at load time, the
runtime will automatically assign the assembly the appropriate identity permission. Identity permissions
allow you to use regular imperative and declarative security statements to base security decisions
directly on code identity, without the need to evaluate evidence objects directly. Table 11-1 lists the
type of identity permission generated for each type of evidence. (Evidence types are members of the
System.Security.Policy namespace, and identity permission types are members of the System.
Security.Permissions namespace.)

Table 11-1. Evidence Classes That Generate Identity Permissions

Evidence Class Identity Permission

Publisher PublisherIdentityPermission
Site SiteIdentityPermission
StrongName StrongNameIdentityPermission
Url UrlldentityPermission

Zone ZoneIdentityPermission

Note The runtime assigns identity permissions to an assembly based on the evidence presented by the assembly.
You cannot assign additional identity permissions to an assembly through the configuration of security policy.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY 449

You must use declarative security syntax to implement an InheritanceDemand, and so you must
use the attribute counterpart of the permission class that you want to demand. All permission classes,
including InheritanceDemand, have an attribute counterpart that you use to construct declarative
security statements. For example, the attribute counterpart of PublisherIdentityPermission is
PublisherIdentityPermissionAttribute, and the attribute counterpart of
StrongNameIdentityPermissionis StrongNameIdentityPermissionAttribute. All permissions and their
attribute counterparts follow the same naming convention and are members of the same namespace.

To control which code can extend your class, apply the InheritanceDemand to the class declara-
tion using one of the permissions listed in Table 11-1. To control which code can override specific
members of a class, apply the InheritanceDemand to the member declaration.

The Code

The following example demonstrates the use of an InheritanceDemand on both a class and a method.
Applying a PublisherIdentityPermissionAttribute to the Recipe11 08 class means only classes in
assemblies signed by the publisher certificate contained in the pubcert.cer file (or assemblies granted
FullTrust) can extend the class. The contents of the pubcert.cer file are read at compile time, and
the necessary certificate information is built into the assembly metadata. To demonstrate that other
permissions can also be used with an InheritanceDemand, the PermissionSetAttribute is used to
allow only classes granted the FullTrust permission set to override the method
SomeProtectedMethod.

Imports System.Security.Permissions
Namespace Apress.VisualBasicRecipes.Chapteri1

<PublisherIdentityPermission(SecurityAction.InheritanceDemand, w»
CertFile:="pubcert.cer")> _
Public Class Recipe11 08

<PermissionSet(SecurityAction.InheritanceDemand, Name:="FullTrust")> _
Public Sub SomeProtectedMethod()

' Method implementation...
End Sub

End Class
End Namespace

11-9. Inspect an Assembly’s Evidence

Problem

You need to inspect the evidence that the runtime assigned to an assembly.

Solution

Obtain a System.Reflection.Assembly object that represents the assembly in which you are interested.
Get the System.Security.Policy.Evidence collection from the Evidence property of the Assembly
object, and access the contained evidence objects using the GetEnumerator, GetHostEnumerator, or
GetAssemblyEnumerator method of the Evidence class.

450

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

How It Works

The Evidence class represents a collection of evidence objects. The read-only Evidence property of
the Assembly class returns an Evidence collection object that contains all of the evidence objects that
the runtime assigned to the assembly as the assembly was loaded.

The Evidence class actually contains two collections, representing different types of evidence:

* Hostevidenceincludes those evidence objects assigned to the assembly by the runtime or the
trusted code that loaded the assembly.

* Assembly evidence represents custom evidence objects embedded into the assembly at
build time.

The Evidence classimplements three methods for enumerating the evidence objects it contains:
GetEnumerator, GetHostEnumerator, and GetAssemblyEnumerator. The GetHostEnumerator and
GetAssemblyEnumerator methods return a System.Collections.IEnumerator instance that enumer-
ates only those evidence objects from the appropriate collection. The GetEnumerator method returns
an IEnumerator instance that enumerates allof the evidence objects contained in the Evidence collection.

Note Evidence classes do not extend a standard base class or implement a standard interface. Therefore, when
working with evidence programmatically, you need to test the type of each object and know what particular types
you are seeking. (See recipe 3-11 for details on how to test the type of an object at runtime.)

The Code

The following example demonstrates how to display the host and assembly evidence of an assembly
on the console. The example relies on the fact that all standard evidence classes override the Object.
ToString method to display a useful representation of the evidence object’s state. Although inter-
esting, this example does not always show the evidence that an assembly would have when loaded
from within your program. The runtime host (such as the Microsoft ASP.NET or Internet Explorer
runtime host) is free to assign additional host evidence as it loads an assembly.

Imports System

Imports System.Reflection
Imports System.Collections
Imports System.Security.Policy

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe11 09

Public Shared Sub Main(ByVal args As String())
" Load the specified assembly.

Dim a As Assembly = Assembly.lLoadFrom(args(0))

' Get the evidence collection from the

loaded assembly.

Dim e As Evidence = a.Evidence

Display the host evidence.
Dim x As IEnumerator = e.GetHostEnumerator

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Console.Write("HOST EVIDENCE COLLECTION:")

While x.MoveNext
Console.Write(x.Current.ToString)
Console.Write("Press Enter to see next evidence.")
Console.ReadlLine()

End While

' Display the assembly evidence.

x = e.GetAssemblyEnumerator()

Console.Write("ASSEMBLY EVIDENCE COLLECTION:")

While x.MoveNext
Console.Write(x.Current.ToString)
Console.Write("Press Enter to see next evidence.")
Console.ReadlLine()

End While

" Wait to continue.

Console.Write("Main method complete. Press Enter.")

Console.ReadlLine()

End Sub

End Class
End Namespace

Note All of the standard evidence classes provided by the .NET Framework are immutable, ensuring that you
cannot change their values after the runtime has created them and assigned them to the assembly. In addition, you
cannot add or remove items while you are enumerating across the contents of a collection using an IEnumerator;
otherwise, the MoveNext method throws a System.InvalidOperationException exception.

11-10. Determine If the Current User Is a Member
of a Specific Windows Group

Problem

You need to determine if the current user of your application is a member of a specific Windows user
group.

Solution

Obtain a System.Security.Principal.WindowsIdentity object representing the current Windows
user by calling the Shared method WindowsIdentity.GetCurrent. Create a System.Security.Principal.
WindowsPrincipal class using the WindowsIdentity class, and then call the method IsInRole of
the WindowsPrincipal object.

451

452

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

How It Works

The role-based security (RBS) mechanism of the .NET Framework abstracts the user-based security
features of the underlying operating system through the following two key interfaces:

e The System.Security.Principal.IIdentity interface, which represents the entity on whose
behalf code is running; for example, a user or service account.

e The System.Security.Principal.IPrincipal interface, which represents the entity’s IIdentity
and the set of roles to which the entity belongs. A roleis simply a categorization used to group
entities with similar security capabilities, such as a Windows user group.

To integrate RBS with Windows user security, the .NET Framework provides the following two
Windows-specific classes that implement the IIdentity and IPrincipal interfaces:

e System.Security.Principal.WindowsIdentity, which implements the IIdentity interface
and represents a Windows user.

e System.Security.Principal.WindowsPrincipal, which implements IPrincipal and repre-
sents the set of Windows groups to which the user belongs.

Because .NET RBS is a generic solution designed to be platform-independent, you have no
access to the features and capabilities of the Windows user account through the ITdentity and
IPrincipal interfaces, and you must frequently use the WindowsIdentity and WindowsPrincipal
objects directly.

To determine if the current user is a member of a specific Windows group, you must first call the
Shared method WindowsIdentity.GetCurrent. The GetCurrent method returns a WindowsIdentity
object that represents the Windows user on whose behalf the current thread is running. An overload
of the GetCurrent method new to .NET Framework 2.0 takes a Boolean argument and allows you to
control what is returned by GetCurrent if the current thread is impersonating a user different from
the one associated with the process. If the argument is True, GetCurrent returns a WindowsIdentity
representing the impersonated user, or it returns Nothing if the thread is not impersonating a user.
If the argument is False, GetCurrent returns the WindowsIdentity of the thread if it is not imperson-
ating a user, or it returns the WindowsIdentity of the process if the thread is currently impersonating
a user.

Note The Windows Identity class provides overloaded constructors that, when running on Microsoft Windows
Server 2003 or later platforms, allow you to obtain a WindowsIdentity object representing a named user. You
can use this WindowsIdentity object and the process described in this recipe to determine if that user is a
member of a specific Windows group. If you try to use one of these constructors when running on an earlier version
of Windows, the WindowsIdentity constructor will throw an exception. On Windows platforms preceding Windows
Server 2003, you must use native code to obtain a Windows access token representing the desired user. You can
then use this access token to instantiate a WindowsIdentity object. Recipe 11-12 explains how to obtain Windows
access tokens for specific users.

Once you have a WindowsIdentity, instantiate a new WindowsPrincipal object, passing the
WindowsIdentity object as an argument to the constructor. Finally, call the IsInRole method of
the WindowsPrincipal object to test if the useris in a specific group (role). IsInRole returns True if the
user is a member of the specified group; otherwise, it returns False. The IsInRole method provides
four overloads:

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

* The first overload takes a String containing the name of the group for which you want to test.
The group name must be of the form [DomainName]\[GroupName] for domain-based groups
and [MachineName]\[GroupName] for locally defined groups. If you want to test for member-
ship of a standard Windows group, use the form BUILTIN\[GroupName] or the other overload
that takes a value from the System.Security.Principal.WindowsBuiltInRole enumeration.
IsInRole performs a case-insensitive test for the specified group name.

* The second IsInRole overload accepts an Integer, which specifies a Windows role identifier
(RID). RIDs provide a mechanism to identify groups that is independent of language and
localization.

e The third IsInRole overload accepts a member of the System.Security.Principal.Windows-
BuiltInRole enumeration. The WindowsBuiltInRole enumeration defines a set of members
that represent each of the built-in Windows groups. As with RIDs, these groups are indepen-
dent of language and localization.

e The fourth IsInRole overload (new to .NET Framework 2.0) accepts a System.Security.
Principal.SecurityIdentifier object that represents the security identifier (SID) of the
group for which you want to test.

Table 11-2 lists the name, RID, and WindowsBuiltInRole value for each of the standard Windows
groups.

Table 11-2. Windows Built-In Account Names and Identifiers

Account Name RID (Hex) WindowsBuiltinRole Value
BUILTIN\Account Operators 0x224 AccountOperator
BUILTIN\Administrators 0x220 Administrator
BUILTIN\Backup Operators 0x227 BackupOperator
BUILTIN\Guests 0x222 Guest
BUILTIN\Power Users 0x223 PowerUser
BUILTIN\Print Operators 0x226 PrintOperator
BUILTIN\Replicators 0x228 Replicator
BUILTIN\Server Operators 0x225 SystemOperator
BUILTIN\Users 0x221 User

The Code

The following example demonstrates how to test whether the current user is a member of a set of
named Windows groups. You specify the groups that you want to test for as command-line arguments.
Remember to prefix the group name with the machine or domain name, or BUILTIN for standard
Windows groups.

453

454

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Imports System
Imports System.Security.Principal

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe1l 10

Public Shared Sub Main(ByVal args As String())

' Obtain a WindowsIdentity object representing the currently
" logged on Windows user.
Dim identity As WindowsIdentity = WindowsIdentity.GetCurrent

' Create a Windows Principal object that represents the security
' capabilities of the specified WindowsIdentity; in this case,

' the Windows groups to which the current user belongs.

Dim principal As New WindowsPrincipal(identity)

' TIterate through the group names specified as command-line
' arguments and test to see if the current user is a member of
each one.
For Each role As String In args
Console.WriteLine("Is {0} a member of {1}? = {2}", identity.Name, ‘=
role, principal.IsInRole(role))
Next

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.Write("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

If you run this example as a user named Robb on a computer named MACHINE using this command:
Recipe11-10 BUILTIN\Administrators BUILTIN\Users MACHINE\Accountants

you will see console output similar to the following:

Is MACHINE\Robb a member of BUILTIN\Administrators? = False
Is MACHINE\Robb a member of BUILTIN\Users? = True
Is MACHINE\Robb a member of MACHINE\Accountants? = True

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

11-11. Restrict Which Users Can Execute
Your Code

Problem

You need to restrict which users can execute elements of your code based on the user’s name or the
roles of which the user is a member.

Solution

Use the permission class System. Security.Permissions.PrincipalPermission and its attribute
counterpart System.Security.Permissions.PrincipalPermissionAttribute to protect your program
elements with RBS demands.

How It Works

The .NET Framework supports both imperative and declarative RBS (refer to recipe 11-10) demands.
The class PrincipalPermission provides support for imperative security statements, and its attribute
counterpart PrincipalPermissionAttribute provides support for declarative security statements.
RBS demands use the same syntax as CAS demands, but RBS demands specify the name the current
user must have, or more commonly, the roles of which the user must be a member. An RBS demand
instructs the runtime to look at the name and roles of the current user, and if that user does not meet
the requirements of the demand, the runtime throws a System. Security.SecurityException exception.

To make an imperative security demand, you must first create a PrincipalPermission object
specifying the username or role name you want to demand, and then you must call its Demand method.
You can specify only a single username and role name per demand. If either the username or the role
name is Nothing, any value will satisfy the demand. Unlike with code access permissions, an RBS
demand does not result in a stack walk; the runtime evaluates only the username and roles of the
current user.

To make a declarative security demand, you must annotate the class or member you want to
protect with a correctly configured PrincipalPermissionAttribute attribute. Class-level demands
apply to all members of the class, unless a member-specific demand overrides the class demand.

Generally, you are free to choose whether to implement imperative or declarative demands.
However, imperative security demands allow you to integrate RBS demands with code logic to
achieve more sophisticated demand behavior. In addition, if you do not know the role or usernames
to demand at compile time, you must use imperative demands. Declarative demands have the
advantage that they are separate from code logic and easier to identify. In addition, you can view
declarative demands using the Permview.exe tool (discussed in recipe 11-6). Whether you imple-
ment imperative or declarative demands, you must ensure that the runtime has access to the name
and roles for the current user to evaluate the demand correctly.

The System.Threading.Thread class represents an operating system thread running managed
code. The Shared property CurrentPrincipal of the Thread class contains an IPrincipal instance
representing the roles on whose behalf the managed thread is running.

At the operating system level, each thread also has an associated Windows access token (repre-
sented by the WindowsIdentity class), which represents the Windows account on whose behalf the
thread is running. The IPrincipal instance and the Windows access token are two separate entities.
Windows uses its access token to enforce operating system security, whereas the .NET runtime uses
its IPrincipal instance to evaluate application-level RBS demands. The identity and principal are
separate entities, and they may represent different user accounts, as noted in recipe 11-12.

455

456

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

The benefit of this approach is that you can implement a user and an RBS model within your
application using a proprietary user accounts database, without the need for all users to have Windows
user accounts. This is a particularly useful approach in large-scale, publicly accessible Internet
applications.

By default, the Thread. CurrentPrincipal propertyis undefined. Because obtaining user-related
information can be time-consuming, and only a minority of applications use this information, the
.NET designers opted for lazy initialization of the CurrentPrincipal property. The first time code gets
the Thread.CurrentPrincipal property, the runtime assigns an IPrincipal instance to the property
using the following logic:

e Ifthe application domain in which the current thread is executing has a default principal, the
runtime assigns this principal to the Thread.CurrentPrincipal property. By default, applica-
tion domains do not have default principals. You can set the default principal of an application
domain by calling the method SetThreadPrincipal on a System.AppDomain object that repre-
sents the application domain you want to configure. Code must have the ControlPrincipal
element of SecurityPermission to call SetThreadPrincipal. You can set the default principal
only once for each application domain; a second call to SetThreadPrincipal results in the
exception System.Security.Policy.PolicyException.

e Ifthe application domain does not have a default principal, the application domain’s prin-
cipal policy determines which IPrincipal implementation to create and assign to Thread.
CurrentPrincipal. To configure principal policy for an application domain, obtain an
AppDomain object that represents the application domain and call the object’s
SetPrincipalPolicy method. The SetPrincipalPolicy method accepts a member of the
enumeration System.Security.Principal.PrincipalPolicy, which specifies the type of
IPrincipal object to assign to Thread.CurrentPrincipal. Code must have the
ControlPrincipal element of SecurityPermission to call SetPrincipalPolicy. Table 11-3 lists
the available PrincipalPolicy values; the default value is UnauthenticatedPrincipal.

» Ifyour code has the ControlPrincipal element of SecurityPermission, you can instantiate
your own IPrincipal object and assign it to the Thread.CurrentPrincipal property directly.
This will prevent the runtime from assigning default IPrincipal objects or creating new ones
based on principal policy.

Table 11-3. Members of the PrincipalPolicy Enumeration

Member Name Description

NoPrincipal No IPrincipal objectis created. Thread.CurrentPrincipal
returns Nothing.

UnauthenticatedPrincipal An empty System.Security.Principal.GenericPrincipal
object is created and assigned to Thread.CurrentPrincipal.

WindowsPrincipal AWindowsPrincipal object representing the currently
logged-on Windows user is created and assigned to
Thread.CurrentPrincipal.

Whatever method you use to establish the IPrincipal for the current thread, you must do so
before you use RBS demands, or the correct user (IPrincipal) information will not be available for
the runtime to process the demand. Normally, when running on the Windows platform, you would
set the principal policy of an application domain to PrincipalPolicy.WindowsPrincipal (as shown
here) to obtain Windows user information.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

' Obtain a reference to the current application domain.
Dim currentAppDomain As AppDomain = System.AppDomain.CurrentDomain

' Configure the current application domain to use Windows-based principals.
currentAppDomain.SetPrincipalPolicy (w»
Security.Principal.PrincipalPolicy.WindowsPrincipal)

The Code

The following example demonstrates the use of imperative and declarative RBS demands. The
example shows three methods protected using imperative RBS demands (Method1, Method2, and
Method3), and then three other methods protected using the equivalent declarative RBS demands
(Method4, Methods, and Method6).

Imports System
Imports System.Security.Permissions

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe11 11

Public Shared Sub Method1()
" An imperative role-based security demand for the current

principal to represent an identity with the name Amy. The

roles of the principal are irrelevant.

Dim perm As New PrincipalPermission("MACHINE\Amy", Nothing)

' Make the demand.
perm.Demand()

End Sub
Public Shared Sub Method2()

An imperative role-based security demand for the current

' principal to be a member of the roles Managers or Developers.

" If the principal is a member of either role, access is granted.
Using the PrincipalPermission, you can express only an OR type

" relationship. This is because the PrincipalPolicy.Intersect method
always returns an empty permission unless the two inputs are the
same. However, you can use code logic to implement more complex

' conditions. In this case, the name of the identity is irrelevant.
Dim permi As New PrincipalPermission(Nothing, "MACHINE\Managers")

Dim perm2 As New PrincipalPermission(Nothing, "MACHINE\Developers")

' Make the demand.
perml.Union(perm2).Demand()

End Sub

Public Shared Sub Method3()

457

458 CHAPTER 11 SECURITY AND CRYPTOGRAPHY

An imperative role-based security demand for the current principal
to represent an identity with the name Amy AND be a member of the
Managers role.

Dim perm As New PrincipalPermission("MACHINE\Amy", "MACHINE\Managers")

' Make the demand.
perm.Demand()

End Sub
" A declarative role-based security demand for the current principal
to represent an identity with the name Amy.
<PrincipalPermission(SecurityAction.Demand, Name:="MACHINE\Amy")> _
Public Shared Sub Method4()

Method implementation...

End Sub
" A declarative role-based security demand for the current principal
to be a member of the roles Managers OR Developers. If the principal
is a member of either role, access is granted. You can express only
an OR type relationship, not an AND relationship.
<PrincipalPermission(SecurityAction.Demand, Role:="MACHINE\Managers"), ‘=
PrincipalPermission(SecurityAction.Demand, Role:="MACHINE\Developers")> _
Public Shared Sub Methods5()

Method implementation...

End Sub
" A declarative role-based security demand for the current principal
to represent an identity with the name Amy and be a member of the
Managers role.

<PrincipalPermission(SecurityAction.Demand, Name:="MACHINE\Amy", ‘w»
Role:="MACHINE\Managers")> _

Public Shared Sub Method6()

Method implementation...
End Sub

End Class
End Namespace

11-12. Impersonate a Windows User

Problem

You need your code to run in the context of a Windows user other than the currently active user account.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Solution

Obtain a System.Security.Principal.WindowsIdentity object representing the Windows user you
need to impersonate, and then call the Impersonate method of the WindowsIdentity object.

How It Works

Every Windows thread has an associated access token, which represents the Windows account on
whose behalf the thread is running. The Windows operating system uses the access token to determine
whether a thread has the appropriate permissions to perform protected operations on behalf of the
account, such as read and write files, reboot the system, and change the system time.

Bydefault, a managed application runs in the context of the Windows account that executed the
application. This is normally desirable behavior, but sometimes you will want to run an application
in the context of a different Windows account. This is particularly true in the case of server-side
applications that process transactions on behalf of the users remotely connected to the server.

It’s common for a server application to run in the context of a Windows account created specif-
ically for the application—a service account. This service account will have minimal permissions to
access system resources. Enabling the application to operate as though it were the connected user
permits the application to access the operations and resources appropriate to that user’s security
clearance. When an application assumes the identity of another user, it's known as impersonation.
Correctly implemented, impersonation simplifies security administration and application design,
while maintaining user accountability.

Note As discussedin recipe 11-11, a thread’s Windows access token and its .NET principal are separate entities and
can represent different users. The impersonation technique described in this recipe changes only the Windows
access token of the current thread; it does not change the thread’s principal. To change the thread’s principal, code
must have the ControlPrincipal element of SecurityPermission and assign a new System.Security.
Principal.IPrincipal object to the CurrentPrincipal property of the current System.Threading.Thread.

The System.Security.Principal.WindowsIdentity class provides the functionality through
which you invoke impersonation. However, the exact process depends on which version of Windows
your application is running. If it’s running on Windows Server 2003 or later, the WindowsIdentity
class supports constructor overloads that create WindowsIdentity objects based on the account
name of the user you want to impersonate. On all previous versions of Windows, you must first
obtain a System.IntPtr containing a reference to a Windows access token that represents the user to
impersonate. To obtain the access token reference, you must use a native method such as the Logo-
nUser function from the Win32 API.

Caution A major issue with performing impersonation on Microsoft Windows 2000 and Windows NT is that
an account must have the Windows privilege SE_TCB_NAME to execute LogonUser. This requires you to configure
Windows security policy and grant the account the right to “act as part of operating system.” This grants the
account a very high level of trust. You should never grant the privilege SE_TCB_NAME directly to user accounts. The
requirement for an account to have the SE_TCB_NAME privilege no longer exists for Windows 2003, Windows XP,
and Windows Vista.

Once you have a WindowsIdentity object representing the user you want to impersonate, call its
Impersonate method. From that point on, all actions your code performs occur in the context of the
impersonated Windows account. The Impersonate method returns a System.Security.Principal.

459

460 CHAPTER 11 SECURITY AND CRYPTOGRAPHY

WindowsSecurityContext object, which represents the active account prior to impersonation. To
revert to the original account, call the Undo method of this WindowsSecurityContext object.

The Code

The following example demonstrates impersonation of a Windows user. The example uses the LogonUser
function of the Win32 API to obtain a Windows access token for the specified user, impersonates the
user, and then reverts to the original user context.

Imports System
Imports System.IO
Imports System.Security.Principal
Imports System.Security.Permissions
Imports System.Runtime.InteropServices
' Ensure the assembly has permission to execute unmanaged code
and control the thread principal.
<Assembly: SecurityPermission(SecurityAction.RequestMinimum, UnmanagedCode:=True, ‘w»
ControlPrincipal:=True)>
Namespace Apress.VisualBasicRecipes.Chapteri1

Public Class Recipe11 12

Define some constants for use with the LogonUser function.
Const LOGON32_PROVIDER DEFAULT As Integer = 0
Const LOGON32_ LOGON_INTERACTIVE As Integer = 2
" Import the Win32 LogonUser function from advapi32.dll. Specify
"SetlastError = True" to correctly support access to Win32 error
codes.
<D11lImport(“"advapi32.dll", SetlastError:=True, CharSet:=CharSet.Unicode)> _
Private Shared Function LogonUser(ByVal userName As String,
ByVal domain As String, ByVal password As String, ByVal logonType As Integer, =
ByVal logonProvider As Integer, ByRef accessToken As IntPtr) As Boolean
End Function

Public Shared Sub Main(ByVal args As String())
' Create a new IntPtr to hold the access token returned by the

LogonUser function.

Dim accessToken As IntPtr = IntPtr.Zero

Call the LogonUser function to obtain an access token for the
specified user. The accessToken variable is passed to LogonUser
by reference and will contain a reference to the Windows access
token if LogonUser is successful.

Dim success As Boolean = LogonUser(args(0), ".", args(1), =
LOGON32_LOGON_INTERACTIVE, LOGON32_PROVIDER_DEFAULT, accessToken)

If LogonUser returns false, an error has occurred.
Display the error and exit.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

If Not success Then

Console.Writeline("LogonUser returned error {0}", =

Marshal.GetlastWin32Error())
Else
Display the active identity.

Console.Writeline("Identity before impersonation = {0}", =
WindowsIdentity.GetCurrent.Name)

' Create a new WindowsIdentity from the Windows access token.

Dim identity As New WindowsIdentity(accessToken)

' Impersonate the specified user, saving a reference to the
returned WindowsImpersonationContext, which contains the
information necessary to revert to the original user context.

Dim impContext As WindowsImpersonationContext = w»
identity.Impersonate

Display the active identity.
Console.Writeline("Identity during impersonation = {0}", =
WindowsIdentity.GetCurrent.Name)

Perform actions as the impersonated user...

Revert to the original Windows user using the
WindowsImpersonationContext object.
impContext.Undo()

Display the active identity.

Console.Writeline("Identity after impersonation = {0}", =
WindowsIdentity.GetCurrent.Name)

" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End If
End Sub

End Class
End Namespace

Usage

The example expects two command-line arguments: the account name of the user on the local
machine to impersonate and the account’s password. For example, the command Recipe11-12
Administrator password impersonates the user Administrator, as long as that user exists in the local
accounts database and has the password “password.”

461

462

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

11-13. Create a Cryptographically
Random Number

Problem

You need to create a random number that is suitable for use in cryptographic and security applications.

Solution

Use a cryptographic random number generator, derived from System. Security.Cryptography.
RandomNumberGenerator such as the System.Security.Cryptography.RNGCryptoServiceProvider class.

How It Works

The System.Random class is a pseudo-random number generator that uses a mathematical algorithm
to simulate the generation of random numbers. In fact, the algorithm it uses is deterministic, meaning
that you can always calculate what the next number will be based on the previously generated number.
This means that numbers generated by the Random class are unsuitable for use in situations in which
security is a priority, such as generating encryption keys and passwords.

When you need a nondeterministic random number for use in cryptographic or security-related
applications, you must use a random number generator derived from the class RandomNumberGenerator.
The RandomNumberGenerator class is an abstract (MustInherit) class from which all concrete .NET
random number generator classes should inherit. Currently, the RNGCryptoServiceProvider class is
the only concrete implementation provided. The RNGCryptoServiceProvider class provides a managed
wrapper around the CryptGenRandom function of the Win32 CryptoAPI, and you can use it to fill Byte
arrays with cryptographically random Byte values.

Note The numbers produced by the RNGCryptoServiceProvider class are not truly random. However, they
are sufficiently random to meet the requirements of cryptography and security applications in most commercial and
government environments.

As is the case with many of the .NET cryptography classes, the RandomNumberGenerator base class is
a factory for the concrete implementation classes that derive from it. Calling RandomNumberGenerator.
Create("System.Security.Cryptography.RNGCryptoServiceProvider") will return an instance of
RNGCryptoServiceProvider that you can use to generate random numbers. In addition, because
RNGCryptoServiceProvider is the only concrete implementation provided, it’s the default class
created if you call the Create method without arguments, as in RandomNumberGenerator.Create().

Once you have a RandomNumberGenerator instance, the method GetBytes fills a Byte array with
random Byte values. As an alternative, you can use the GetNonZeroBytes method if you need random
data that contains no zero values.

The Code

The following example instantiates an RNGCryptoServiceProvider object and uses it to generate
random values.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Imports System
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe11 13

Public Shared Sub Main()
' Create a byte array to hold the random data.
Dim number As Byte() = New Byte(32) {}

Instantiate the default random number generator.
Dim rng As RandomNumberGenerator = RandomNumberGenerator.Create

Generate 32 bytes of random data.
rng.GetBytes(number)

Display the random number.
Console.Writeline(BitConverter.ToString(number))
" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method compelte. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Note The computational effort required to generate a random number with RNGCryptoServiceProvider
is significantly greater than that required by Random. For everyday purposes, the use of RNGCryptoServiceProvider
is overkill. You should consider the quantity of random numbers you need to generate and the purpose of the
numbers before deciding to use RNGCryptoServiceProvider. Excessive and unnecessary use of the
RNGCryptoServiceProvider class could have a noticeable effect on application performance if many random
numbers are generated.

11-14. Calculate the Hash Code of a Password

Problem

You need to store a user’s password securely so that you can use it to authenticate the user in the
future.

Solution

Create and store a cryptographic hash code of the password using a hashing algorithm class derived
from the System.Security.Cryptography.HashAlgorithm class. On future authentication attempts,
generate the hash of the password entered by the user and compare it to the stored hash code.

463

464

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Caution You should never store a user’s plaintext password, because it is a major security risk and one that
most users would not appreciate, given that many of them will use the same password to access multiple systems.

How It Works

Hashing algorithms are one-way cryptographic functions that take plaintext of variable length and
generate a fixed-size numeric value. They are one-waybecause it’s nearly impossible to derive the
original plaintext from the hash code. Hashing algorithms are deterministic; applying the same
hashing algorithm to a specific piece of plaintext always generates the same hash code. This makes
hash codes useful for determining if two blocks of plaintext (passwords in this case) are the same.
The design of hashing algorithms ensures that the chance of two different pieces of plaintext generating
the same hash code is extremely small (although notimpossible). In addition, there is no correlation
between the similarity of two pieces of plaintext and their hash codes; minor differences in the plain-
text cause significant differences in the resulting hash codes.

When using passwords to authenticate a user, you are not concerned with the content of the
password that the user enters. You need to know only that the entered password matches the pass-
word that you have recorded for that user in your accounts database.

The nature of hashing algorithms makes them ideal for storing passwords securely. When the
user provides a new password, you must create the hash code of the password and store it, and then
discard the plaintext password. Each time the user tries to authenticate with your application, calculate
the hash code of the password that user provides and compare it with the hash code you have stored.

Note People regularly ask how to obtain a password from a hash code. The simple answer is that you cannot.
The whole purpose of a hash code is to act as a token that you can freely store without creating security holes. If a
user forgets a password, you cannot derive it from the stored hash code. Rather, you must either reset the account
to some default value or generate a new password for the user.

Generating hash codes is simple in the .NET Framework. The MustInherit class HashAlgorithm
provides a base from which all concrete hashing algorithm implementations derive. The .NET
Framework class library includes the seven hashing algorithm implementations listed in Table 11-4;
each implementation class is a member of the System.Security.Cryptography namespace. The
classes with names ending in CryptoServiceProvider wrap functionality provided by the native
Win32 CryptoAPI, whereas those with names ending in Managed are fully implemented in managed
code. In the case of shal, SHA1CryptoServiceProvider and SHAIManaged both implement the same algo-
rithm, but the SHA1Managed class uses the managed library rather than wrapping the CryptoAPI (CAPI).

Table 11-4. Hashing Algorithm Implementations

Algorithm Name Class Name Hash Code Size (in Bits)
MD5 MD5CryptoServiceProvider 128
RIPEMD160 or RIPEMD-160 RIPEMD160Managed 160
SHA or SHA1 SHA1CryptoServiceProvider 160
SHA1Managed SHA1Managed 160

SHA256 or SHA-256 SHA256Managed 256

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Table 11-4. Hashing Algorithm Implementations

Algorithm Name Class Name Hash Code Size (in Bits)
SHA384 or SHA-384 SHA384Managed 384
SHA512 or SHA-512 SHA512Managed 512

Although you can create instances of the hashing algorithm classes directly, the HashAlgorithm
base class is a factory for the concrete implementation classes that derive from it. Calling the Shared
method HashAlgorithm.Create will return an object of the specified type. Using the factory approach
allows you to write generic code that can work with any hashing algorithm implementation. Note
that unlike in recipe 11-13, you do not pass the class name as parameter to the factory; instead, you
pass the algorithm name. If you do not specify an algorithm name, the default, SHA1Managed, is used.

Once you have a HashAlgorithm object, its ComputeHash method accepts a Byte array argument
containing plaintext and returns a new Byte array containing the generated hash code. Table 11-4
shows the size of hash code (in bits) generated by each hashing algorithm class.

Note The SHA1Managed algorithm cannot be implemented using the factory approach. It must be instantiated
directly.

The Code

The example shown here demonstrates the creation of a hash code from a string, such as a password.
The application expects two command-line arguments: the name of the hashing algorithm to use
and the string from which to generate the hash. Because the HashAlgorithm.ComputeHash method
requires a Byte array, you must first byte-encode the input string using the class System.Text.
Encoding, which provides mechanisms for converting strings to and from various character-encoding
formats.

Imports System
imports System.Text
imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipell 14

Public Shared Sub Main(ByVal args As String())
' Create a HashAlgorithm of the type specified by the first

command-line argument.

Dim hashAlg As HashAlgorithm = Nothing

The SHA1Managed algorithm cannot be implemented using the
factory approach. It must be instantiated directly.
If args(0).CompareTo("SHAIManaged") = 0 The
hashAlg = New SHA1Managed
Else
hashAlg = HashAlgorithm.Create(args(0))
End If

465

466 CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Using hashAlg

Convert the password string, provided as the second
command-line argument, to an array of bytes.
Dim pwordData As Byte() = Encoding.Default.GetBytes(args(1))

Generate the hash code of the password.
Dim hash As Byte() = hashAlg.ComputeHash(pwordData)

Display the hash code of the password to the console.
Console.Writeline(BitConverter.ToString(hash))

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadLine()

End Using
End Sub

End Class
End Namespace

Usage
Running the following command:
Recipe11-14 SHA1 ThisIsMyPassword

will display the following hash code to the console:

30-B8-BD-58-29-88-89-00-D1-5D-2B-BE-62-70-D9-BC-65-B0-70-2F

In contrast, executing this command:
Recipe11-14 RIPEMD-160 ThisIsMyPassword

will display the following hash code:

0C-39-3B-2E-8A-4E-D3-DD-FB-E3-C8-05-E4-62-6F-6B-76-7C-7A-49

11-15. Calculate the Hash Code of a File

Problem

You need to determine if the contents of a file have changed over time.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Solution

Create a cryptographic hash code of the file’s contents using the ComputeHash method of the System.
Security.Cryptography.HashAlgorithm class. Store the hash code for future comparison against
newly generated hash codes.

How It Works

As well as allowing you to store passwords securely (discussed in recipe 11-14), hash codes provide
an excellent means of determining if a file has changed. By calculating and storing the cryptographic
hash of a file, you can later recalculate the hash of the file to determine if the file has changed in the
interim. A hashing algorithm will produce a very different hash code even if the file has been changed
only slightly, and the chances of two different files resulting in the same hash code are extremely
small.

Gaution Standard hash codes are not suitable for sending with a file to ensure the integrity of the file’s contents. If
someone intercepts the file in transit, that person can easily change the file and recalculate the hash code, leaving
the recipient none the wiser. Recipe 11-17 discusses a variant of the hash code—a keyed hash code—that is suitable
for ensuring the integrity of a file in transit.

The HashAlgorithm class makes it easy to generate the hash code of a file. First, instantiate one
of the concrete hashing algorithm implementations derived from the HashAlgorithm class. To instantiate
the desired hashing algorithm class, pass the name of the hashing algorithm to the HashAlgorithm.
Create method, as described in recipe 11-14. See Table 11-4 for a list of valid hashing algorithm
names. Then, instead of passing a Byte array to the ComputeHash method, you pass a System. I0.
Stream object representing the file from which you want to generate the hash code. The HashAlgorithm
object handles the process of reading data from the Stream and returns a Byte array containing the
hash code for the file.

Note The SHA1Managed algorithm cannot be implemented using the factory approach. It must be instantiated
directly.

The Code

The example shown here demonstrates the generation of a hash code from a file. The application
expects two command-line arguments: the name of the hashing algorithm to use and the name of
the file from which the hash is calculated.

Imports System
Imports System.IO
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipel1l 15

Public Shared Sub Main(ByVal args As String())

467

468 CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Create a HashAlgorithm of the type specified by the first
command-line argument.
Dim hashAlg As HashAlgorithm = Nothing

The SHA1Managed algorithm cannot be implemented using the
factory approach. It must be instantiated directly.
If args(0).CompareTo("SHAIManaged") = 0 Then
hashAlg = New SHA1Managed
Else
hashAlg = HashAlgorithm.Create(args(0))
End If

Open a FileStream to the file specified by the second
command-line argument.
Using fileArg As New FileStream(args(1), FileMode.Open, FileAccess.Read)

Generate the hash code of the password.
Dim hash As Byte() = hashAlg.ComputeHash(fileArg)

Display the hash code of the password to the console.
Console.Writeline(BitConverter.ToString(hash))

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WriteLine("Main method complete. Press Enter.")
Console.ReadLine()

End Using
End Sub

End Class
End Namespace

Usage

Running this command:
Recipe11-15 SHA1 Recipell-15.exe

will display the following hash code to the console:

F9-0E-31-C7-57-82-11-A3-9B-9F-0C-A3-CB-54-4C-34-68-30-19-58

In contrast, executing this command:
Recipe11-15 RIPEMD-160 Recipel1-15.exe

will display the following hash code:

FB-21-82-E7-0F-BA-71-C4-0B-A0-9A-EB-BC-9D-D3-44-6E-D7-5A-CA

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

11-16. Verify a Hash Code

Problem

You need to verify a password or confirm that a file remains unchanged by comparing two hash codes.

Solution

Convert both the old and the new hash codes to hexadecimal code strings, Base64 strings, or Byte
arrays and compare them.

How It Works

You can use hash codes to determine if two pieces of data (such as passwords or files) are the same,
without the need to store, or even maintain access to, the original data. To determine if data changes
over time, you must generate and store the original data’s hash code. Later, you can generate another
hash code for the data and compare the old and new hash codes, which will show if any change has
occurred. The format in which you store the original hash code will determine the most appropriate
way to verify a newly generated hash code against the stored one.

Note The recipes in this chapter use the ToString method of the class System.BitConverter to convert
Byte arrays to hexadecimal string values for display. Although easy to use and appropriate for display purposes,
this approach may be inappropriate for use when storing hash codes, because it places a hyphen (-) between each
byte value (for example, 4D-79-3A-C9-. . .). In addition, the BitConverter class does not provide a method to
parse such a string representation back into a By te array.

Hash codes are often stored in text files, either as hexadecimal strings (for example,
89D22213170A9CFF09A392F00E2C6C4EDC1BOEF9), or as Base64-encoded strings (for example,
idliExcKnP8Jo5LwDixsTtwbDuvk=). Alternatively, hash codes may be stored in databases as raw byte
values. Regardless of how you store your hash code, the first step in comparing old and new hash
codes is to get them both into a common form.

The Code

This following example contains three methods that use different approaches to compare hash codes:

* VerifyHexHash: This method converts a new hash code (a Byte array) to a hexadecimal string
for comparison to an old hash code. Other than the BitConverter.ToString method, the NET
Framework class library does not provide an easy method to convert a Byte array to a hexa-
decimal string. You must program a loop to step through the elements of the byte array, convert
each individual byte to a string, and append the string to the hexadecimal string representation
ofthe hash code. The use of a System.Text.StringBuilder avoids the unnecessary creation of
new strings each time the loop appends the next byte value to the result string. (See recipe 2-1 for
more details.)

* VerifyB64Hash: This method takes a new hash code as a Byte array and the old hash code as a
Base64-encoded string. The method encodes the new hash code as a Base64 string and performs
a straightforward string comparison of the two values.

469

470

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

* VerifyByteHash: This method compares two hash codes represented as Byte arrays. The NET
Framework class library does not include a method that performs this type of comparison,
and so you must program a loop to compare the elements of the two arrays. This code uses a
few timesaving techniques, namely ensuring that the Byte arrays are the same length before
starting to compare them and returning False on the first difference found.

Imports System
Imports System.Text
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe11 16
' A method to compare a newly generated hash code with an
existing hash code that's represented by a hex code string.
Private Shared Function VerifyHexHash(ByVal hash As Byte(),
ByVal oldHashString As String)

Create a string representation of the hash code bytes.
Dim newHashString As New StringBuilder(hash.Length)
' Append each byte as a two-character uppercase hex string.
For Each b As Byte In hash

newHashString.AppendFormat ("{0:X2}", b)
Next
' Compare the string representation of the old and new hash
codes and return the result.

Return oldHashString.Replace("-", "") = newHashString.ToString

End Function
' A method to compare a newly generated hash code with an
existing hash code that's represented by a Base64-encoded
string.

Private Shared Function VerifyB64Hash(ByVal hash As Byte(), w»
ByVal oldHashString As String) As Boolean

Create a Base64 representation of the hash code bytes.
Dim newHashString As String = Convert.ToBase64String(hash)
' Compare the string representations of the old and new hash
codes and return the result.

Return oldHashString = newHashString

End Function
' A method to compare a newly generated hash code with an
existing hash code represented by a byte array.

Private Shared Function VerifyByteHash(ByVal hash As Byte(), ‘=
Byval oldHash As Byte()) As Boolean

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

If either array is nothing or the arrays are different lengths,
then they are not equal.
If hash Is Nothing Or oldHash Is Nothing Or Not (hash.Length = w»
oldHash.Length) Then
Return False
End If

Step through the byte arrays and compare each byte value.
For count As Integer = 0 To hash.Length - 1

If Not hash(count) = oldHash(count) Then Return False
Next

Hash codes are equal.
Return True

End Function

End Class
End Namespace

11-17. Ensure Data Integrity Using
a Keyed Hash Code

Problem

You need to transmit a file to someone and provide the recipient with a means to verify the integrity
of the file and its source.

Solution

Share a secret key with the intended recipient. This key would ideally be a randomly generated
number, but it could also be a phrase that you and the recipient agree to use. Use the key with

one of the keyed hashing algorithm classes derived from the System.Security.Cryptography.
KeyedHashAlgorithm class to create a keyed hash code. Send the hash code with the file. On receipt of
the file, the recipient will generate the keyed hash code of the file using the shared secret key. If the
hash codes are equal, the recipient knows that the file is from you and that it has not changed in transit.

How It Works

Hash codes are useful for comparing two pieces of data to determine if they are the same, even if you
no longer have access to the original data. However, you cannot use a hash code to reassure the
recipient of data as to the data’s integrity. If someone could intercept the data, that person could
replace the data and generate a new hash code. When the recipient verifies the hash code, it will
seem correct, even though the data is actually nothing like what you sent originally.

A simple and efficient solution to the problem of data integrity is a keyed hash code. A keyed hash
code is similar to anormal hash code (discussedinrecipes 11-14 and 11-15); however, the keyed hash
code incorporates an element of secret data—a key—known only to the sender and the receiver. Without
the key, a person cannot generate the correct hash code from a given set of data. When you success-
fully verify a keyed hash code, you can be certain that only someone who knows the secret key could
generate the hash code.

47

472

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Caution The secret key must remain secret. Anyone who knows the secret key can generate valid keyed hash
codes, meaning that you would be unable to determine if someone else who knew the key had changed the content
of a document. For this reason, you should not transmit or store the secret key with the document whose integrity
you are trying to protect.

Generating keyed hash codes is similar to generating normal hash codes. All HMAC algorithm
classes, excluding MACTripleDES, derive themselves from the HMAC base class, which inherits the
KeyedHashAlgorithm class, which inherits the HashAlgorithm class. MACTripleDES inherits the
KeyedHashAlgorithm base class directly. The .NET Framework class library includes the seven keyed
hashing algorithm implementations listed in Table 11-5. Each implementation is a member of the
namespace System. Security.Cryptography.

Table 11-5. Keyed Hashing Algorithm Implementations

Algorithm/Class Name Key Size (in Bits) Hash Code Size (in Bits)
HMACMDS (new in .NET 2.0) Any 128

HMACRIPEMD160 (new in .NET 2.0) Any 160

HMACSHA1 Any 160

HMACSHA256 (new in .NET 2.0) Any 256

HMACSHA384 (new in .NET 2.0) Any 384

HMACSHA512 (new in .NET 2.0) Any 512

MACTripleDES 128,192 64

As with the standard hashing algorithms, you can either create keyed hashing algorithm objects
directly or use the Shared factory method KeyedHashAlgorithm.Create and pass the algorithm name
as an argument. Using the factory approach allows you to write generic code that can work with any
keyed hashing algorithm implementation, but as shown in Table 11-5, MACTripleDES supports fixed
key lengths that you must accommodate in generic code.

If you use constructors to instantiate a keyed hashing object, you can pass the secret key to the
constructor. Using the factory approach, you must set the key using the Key property inherited from
the KeyedHashAlgorithm class. Then call the ComputeHash method and pass either a Byte array or a
System.IO.Streamobject. The keyed hashing algorithm will process the input data and return a Byte
array containing the keyed hash code. Table 11-5 shows the size of hash code generated by each
keyed hashing algorithm.

The Code

The following example demonstrates the generation of a keyed hash code from a file. The example
uses the given class to generate the keyed hash code, and then displays it to the console. The example
requires three command-line arguments: the name of the file from which the hash is calculated, the
name of the algorithm to instantiate, and the key to use when calculating the hash.

CHAPTER 11 SECURITY AND CRYPTOGRAPHY 473

Imports System

Imports System.IO

Imports System.Text

Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe11 17

Public Shared Sub Main(ByVal args As String())

Create a byte array from the key string, which is the
" third command-line argument.
Dim key As Byte() = Encoding.Default.GetBytes(args(2))

' Create a KeyedHashAlgorithm derived object to generate the keyed
" hash code for the input file. Pass the byte array representing
the key to the constructor.
Using hashAlg As KeyedHashAlgorithm = KeyedHashAlgorithm.Create(args(1))

Assign the key.
hashAlg.Key = key

Open a FileStream to read the input file. The filename is
specified by the first command-line argument.
Using argFile As New FileStream(args(0), FileMode.Open, ‘=
FileAccess.Read)

' Generate the keyed hash code of the file's contents.
Dim hash As Byte() = hashAlg.ComputeHash(argFile)

' Display the keyed hash code to the console.
Console.WritelLine(BitConverter.ToString(hash))

End Using
End Using

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method compelte. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage
Executing the following command:
Recipel1-17 Recipe11-17.exe HMACSHA1 secretKey

will display the following hash code to the console:

474

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

53-E6-03-59-C8-BB-F6-74-51-BF-B6-(3-75-B2-78-0B-43-01-3A-E0

In contrast, executing this command:
Recipe11-17 Recipe11-17.exe HMACSHA1 anotherKey

will display the following hash code to the console:

70-2C-77-88-86-87-F4-89-0D-E2-DD-0A-B3-85-B7-4E-E6-7D-67-F6

11-18. Work with Security-Sensitive Strings
in Memory

Problem

You need to work with sensitive string data, such as passwords or credit card numbers, in memory
and need to minimize the risk of other people or processes accessing that data.

Solution

Use the class System.Security.SecureString to hold the sensitive data values in memory.

How It Works

Storing sensitive data such as passwords, personal details, and banking information in memory as
String objects is insecure for many reasons, including the following:

* String objects are not encrypted.

e The immutability of String objects means that whenever you change the String, the old
String value is left in memory until it is dereferenced by the garbage collector and eventually
overwritten.

* Because the garbage collector is free to reorganize the contents of the managed heap, multiple
copies of your sensitive data may be present on the heap.

e Ifpart of your process address space is swapped to disk or a memory dump is written to disk,
a copy of your data may be stored on the disk.

Each of these factors increases the opportunities for others to access your sensitive data. In .NET
Framework versions 1.0 and 1.1, one solution to these problems is to use Byte arrays to hold an
encrypted version of the sensitive data. You have much better control over a Byte array than you do
with a String; principally, you can wipe the array any time you like. .NET Framework 2.0 introduces
the SecureString class to simplify the task of working with sensitive String data in memory.

You create a SecureString as either initially empty or from a pointer to a character (Char) array.
Then you manipulate the contents of the SecureString one character at a time using the methods
AppendChar, InsertAt, RemoveAt, and SetAt. As you add characters to the SecureString, they are
encrypted using the capabilities of the Data Protection API (DPAPI).

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Note The SecureString class uses features of the DPAPI and is available only on Windows 2000 SP3 and later
operating system versions.

The SecureString class also provides a method named MakeReadOnly. As the name suggests, calling
MakeReadOnly configures the SecureString to no longer allow its value to be changed. Attempting to
modify a SecureString marked as read-only results in the exception System. InvalidOperationException
being thrown. Once you have set the SecureString to read-only, it cannot be undone.

The SecureString class has a ToString method, but rather than retrieving a string representation of
the contained data, it returns only arepresentation of the type (System. Security. SecureString). Instead,
the class System.Runtime. InteropServices.Marshal implements a number of Shared methods that
take a SecureString object; decrypts it; converts it to a binary string, a block of ANSI, or a block of
Unicode data; and returns a System.IntPtr object that points to the converted data. The Marshal
class also offers Shared methods for displaying the contents referenced by an IntPtr. Here is a code
snippet to demonstrate this:

Retrieve a pointer to the data contained in a
SecureString.

Dim secureStringPtr As IntPtr = w»
Marshal.SecureStringToGlobalAllocUnicode(mySecureString)

Retrieve a string representation of the data
referenced by a pointer.
Dim clearText As String = Marshal.PtrToStringAuto(secureStringPtr)

Display the secure string contents in clear text.
Console.WriteLine(clearText))

At any time, you can call the SecureString.Clear method to clear the sensitive data, and when
you have finished with the SecureString object, call its Dispose method to clear the data and free the
memory. SecureString implements System.IDisposable.

Note Aithough it might seem that the benefits of the SecureString class are limited, because there is no way
in Windows Forms applications to get such a secured string from the GUI without first retrieving a nonsecured
String through a TextBox or another control, it is likely that third parties and future additions to the .NET Frame-
work will use the SecureString class to handle sensitive data. This is already the case in System.Diagnostics.
ProcessStartInfo, where usinga SecureString, you can setthe Password property to the password of the user
context in which the new process should be run.

The Code

The following example reads a username and password from the console and starts Notepad.exe as
the specified user. The password is masked on input and stored in a SecureString in memory, maxi-
mizing the chances of the password remaining secret.

Imports System
Imports System.Security
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe11 18

475

476 CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Public Shared Function ReadString() As SecureString

' Create a new empty SecureString.
Dim str As New SecureString

' Read the string from the console one
' character at a time without displaying it.
Dim nextChar As ConsoleKeyInfo = Console.ReadKey(True)

' Read characters until Enter is pressed.
While Not nextChar.Key = ConsoleKey.Enter

If nextChar.Key = ConsoleKey.Backspace Then
If str.Length > 0 Then
' Backspace pressed. Remove the last character.
str.RemoveAt(str.Length - 1)

Console.Write(nextChar.KeyChar)
Console.Write(" ")
Console.Write(nextChar.KeyChar)
Else
Console.Beep()
End If
Else
' Append the character to the SecureString and
' display a masked character.
str.AppendChar(nextChar.KeyChar)
Console.Write("*")
End If

' Read the next character.
nextChar = Console.ReadKey(True)

End While

' String entry finished. Make it read-only.
str.MakeReadOnly()

Return str
End Function
Public Shared Sub Main()

Dim user As String =

' Get the username under which Notepad.exe will be run.
Console.Write("Enter the user name: ")
user = Console.ReadlLine

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Get the user's password as a SecureString.
Console.Write("Enter the user's password: ")
Using pword As SecureString = ReadString()

' Start Notepad as the specified user.
Dim startInfo As New ProcessStartInfo

startInfo.FileName = "Notepad.exe"
startInfo.UserName = user
startInfo.Password = pword
startInfo.UseShellExecute = False
' Create a new Process object.
Using proc As New Process

' Assign the ProcessStartInfo to the Process object.
proc.StartInfo = startInfo

Try
' Start the new process.
proc.Start()

Catch ex As Exception
Console.WriteLine(Environment.NewLine)
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Could not start Notepad process.")
Console.WritelLine(ex.ToString)

End Try
End Using

End Using

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter")
Console.Readline()

End Sub

End Class
End Namespace

11-19. Encrypt and Decrypt Data Using the Data
Protection API

Problem

You need a convenient way to securely encrypt data without the headache associated with key
management.

477

478

CHAPTER 11 SECURITY AND CRYPTOGRAPHY

Solution

Use the ProtectedData and ProtectedMemory classes of the System.Security.Cryptography namespace
in .NET Framework 2.0 to access the encryption and key management capabilities provided by the
DPAPL

How It Works

Given that the .NET Framework provides you with well-tested implementations of the most widely
used and trusted encryption algorithms, the biggest challenge you face when using cryptography is
key management—namely the effective generation, storage, and sharing of keys to facilitate the use
of cryptography. In fact, key management is the biggest problem facing most people when they want
to securely store or transmit data using cryptographic techniques. If implemented incorrectly, key
management can easily render useless all of your efforts to encrypt your data.

DPAPI provides encryption and decryption services without the need for you to worry about key
management. DPAPI automatically generates keys based on Windows user credentials, stores keys
securely as part of your profile, and even provides automated key expiry without losing access to
previously encrypted data.

Note DPAPI is suitable for many common uses of cryptography in Windows applications, but will not help you
in situations that require you to distribute or share secret or public keys with other users.

Inversions 1.0 and 1.1 of the NET Framework, you needed to use P/Invoke to work with DPAPI.
.NET Framework 2.0 introduces in System. Security two managed classes that provide easy access to
the encryption and decryption capabilities of DPAPI: ProtectedData and ProtectedMemory. Both
classes allow you to encrypt a Byte array by passing it to the Shared method Protect, and decrypt a
Byte array of encrypted data by passing it the Shared method Unprotect. The difference in the classes
is in the scope that they allow you to specify when you encrypt and decrypt data.

Caution You mustuse ProtectedData if you intend to store encrypted data and reboot your machine before
decrypting it. ProtectedMemory will be unable to decrypt data that was encrypted before a reboot.

When you call ProtectedData.Protect, you specify a value from the enumeration System.
Security.Cryptography.DataProtectionScope. The following are the possible values:

e CurrentUser, which means that only code running in the context of the current user can decrypt
the data

¢ LocalMachine, which means that any code running on the same computer can decrypt the data

When you call ProtectedMemory.Protect, you specify a value from the enumeration
System.Security.Cryptography.MemoryProtectionScope. The possible values are as follows:

e (CrossProcess, which means that any code in any process can decrypt the encrypted data
* Samelogon, which means that only code running in the same user context can decrypt the data

e SameProcess, which means that only code running in the same process can decrypt the data

Both classes allow you to specify additional data (entropy) when you encrypt your data. This
entropy is used to further encrypt the data, making certain types of cryptographic attacks less likely

CHAPTER 11 SECURITY AND CRYPTOGRAPHY 479

to succeed. If you choose to use entropy when you protect data, you must use the same entropy value
when you unprotect the data. It is not essential that you keep the entropy data secret, so it can be
stored freely without encryption.

The Code

The following example demonstrates the use of the ProtectedData class to encrypt a string entered
at the console by the user. Note that you need to reference the System. Security assembly.

Imports System
Imports System.Text
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapteri1
Public Class Recipe11 19

Public Shared Sub Main()

' Read the string from the console.
Console.Write("Enter the string to encrypt: ")
Dim str As String = Console.ReadlLine

Create a byte array of entropy to use in the encryption process.
Dim entropy As Byte() = {0, 1, 2, 3, 4, 5, 6, 7, 8}

Encrypt the entered string after converting it to a
byte array. Use CurrentUser scope so that only the
current user can decrypt the data.

Dim enc As Byte() = ProtectedData.Protect(
Encoding.Default.GetBytes(str), entropy, DataProtectionScope.CurrentUser)

Display the encrypted data to the console.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Encrypted string = {0}", BitConverter.ToString(enc))
' Attempt to decrypt the data using CurrentUser scope.

Dim dec As Byte() = ProtectedData.Unprotect(enc, entropy, =
DataProtectionScope.CurrentUser)

Display the data decrypted using CurrentUser scope.

Console.WriteLine(Environment.NewlLine)

Console.Writeline("Decrypted data using CurrentUser scope = {0}", =
Encoding.Default.GetString(dec))

" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

CHAPTER 12

Unmanaged Code Interoperability

The Microsoft .NET Framework is an extremely ambitious platform, combining a managed runtime
(the common language runtime, or CLR), a platform for hosting web applications (Microsoft ASP.NET),
and an extensive class library for building all types of applications. However, as expansive as the NET
Framework is, it does not duplicate all the features that are available in unmanaged code. Currently,
the .NET Framework does not include every function that is available in the Win32 API, and many
businesses are using complex proprietary solutions that they have built with COM-based languages
such as Microsoft Visual Basic 6 (VB6) and Visual C++ 6.

Fortunately, Microsoft does not intend for businesses to abandon the code base they have built
up when they move to the .NET platform. Instead, the .NET Framework is equipped with interoper-
ability features that allow you to use legacy code from .NET Framework applications and even access
.NET assemblies as though they were COM components. The recipes in this chapter describe how to
do the following:

e Call functions defined in an unmanaged DLL, get the handles for a control or window, invoke
an unmanaged function that uses a structure, invoke unmanaged callback functions, and
retrieve unmanaged error information (recipes 12-1 through 12-5)

e Use COM components from .NET Framework applications, release COM components, and
use optional parameters (recipes 12-6 through 12-8)

¢ Use ActiveX controls from .NET Framework applications (recipe 12-9)

* Expose the functionality of a .NET assembly as a COM component (recipe 12-10)

Note Managed code refers to code developed in a.NET language (such as VB .NET and C#). This code is compiled
to Microsoft Intermediary Language (MSIL) and runs within the CLR. When the code is executed, it is compiled to
machine language using the just-in-time (JIT) compiler. Unmanaged code refers to code developed in a non-.NET
language (such as C++ or VB6). This code is compiled directly to machine language. If you use Visual C++ .NET,
you can create managed or unmanaged code, depending on the project type you select.

12-1. Call a Function in an Unmanaged DLL

Problem

You need to call a function in a DLL. This function might be a part of the Win32 API or your own
legacy code.

481

482

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

Solution

Declare amethod in your VB .NET code that you will use to access the unmanaged function. Declare
this method as Shared and apply the attribute System.Runtime.InteropServices.
D11lImportAttribute to specify the DLL file and the name of the unmanaged function.

How It Works

To use a C function from an external library, all you need to do is declare it appropriately. The CLR
automatically handles the rest, including loading the DLL into memory when the function is called
and marshaling the parameters from .NET data types to C data types. The .NET service that supports
this cross-platform execution is named PInvoke (Platform Invoke), and the process is usually seam-
less. Occasionally, you will need to do a little more work, such as when you need to supportin-memory
structures, callbacks, or mutable strings.

PInvoke is often used to access functionality in the Win32 API, particularly Win32 features that
are not presentin the set of managed classes that make up the .NET Framework. Three core libraries
make up the Win32 APIL:

e Kernel32.dllincludes operating system-specific functionality such as process loading, context
switching, and file and memory I/0O.

e User32.dll includes functionality for manipulating windows, menus, dialog boxes, icons, and
So on.

e GDI32.dll includes graphical capabilities for drawing directly on windows, menus, and control
surfaces, as well as for printing.

As an example, consider the Win32 API functions used for writing and reading INI files, such as
GetPrivateProfileString and WritePrivateProfileString, in Kernel32.dll. The .NET Framework
does not include any classes that wrap this functionality. However, you can import these functions
using the attribute D11ImportAttribute, like this:

<D1lImport("kernel32.d1ll", EntryPoint:="WritePrivateProfileString")> _

Private Shared Function WritePrivateProfileString(ByVal lpAppName As String, =
ByVal lpKeyName As String, ByVal 1pString As String, =
ByVal 1pFileName As String) As Boolean

End Function

The arguments specified in the signature of the WritePrivateProfileString method must match
the DLL method, or a runtime error will occur when you attempt to invoke it. Remember that you do
not define any method body, because the declaration refers to a method in the DLL. The EntryPoint
portion of the attribute D11ImportAttribute is optional in this example. You do not need to specify
the EntryPoint when the declared function name matches the function name in the external library.

The Code

The following is an example of using some Win32 API functions to get INI file information. It declares
the unmanaged functions used and exposes Public methods to call them. The code first displays the
current value of a key in the INI file, modifies it, retrieves the new value, and then writes the default
value.

Imports System
Imports System.Runtime.InteropServices
Imports System.Text

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

Namespace Apress.VisualBasicRecipes.Chapteri2
Public Class Recipe12 01

' Declare the unmanaged functions

<D11Import("kernel32.d1ll", EntryPoint:="GetPrivateProfileString")> _

Private Shared Function GetPrivateProfileString(ByVal lpAppName As ‘=
String, ByVal lpKeyName As String, ByVal lpDefault As String, ByVal w»
1pReturnedString As StringBuilder, ByVal nSize As Integer, ByVal lpFileName As w»
String) As Integer

End Function

<D11Import("kernel32.d1ll", EntryPoint:="WritePrivateProfileString")> _

Private Shared Function WritePrivateProfileString(ByVal lpAppName As ‘=
String, ByVal lpKeyName As String, ByVal lpString As String, ByVal lpFileName As w»
String) As Boolean

End Function

Public Shared Sub main()

Dim val As String
' Obtain current value.

val = GetIniValue("SampleSection", "Key1", "initest.ini"
Console.Writeline("Value of Keyl in [SampleSection] is: {0}", val)
" Write a new value.

WriteIniValue("SampleSection", "Key1", "New Value", "initest.ini")
' Obtain the new value.

val = GetIniValue("SampleSection", "Key1", "initest.ini"
Console.Writeline("Value of Keyl in [SampleSection] is now: {0}", val)
' MWrite original value.

WriteIniValue("SampleSection", "Key1", "Value1", "initest.ini")
" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

Public Shared Function GetIniValue(ByVal section As String, w»
Byval key As String, ByVal fileName As String) As String

Dim chars As Integer = 256
Dim buffer As New StringBuilder(chars)

If Not GetPrivateProfileString(section, key, "", buffer, chars, w
fileName) = 0 Then
Return buffer.ToString
Else
Return Nothing
End If

483

484

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

End Function

Public Shared Function WriteIniValue(ByVal section As String, ‘=
ByVal key As String, ByVal value As String, ByVal fileName As String) As String
Return WritePrivateProfileString(section, key, value, fileName)
End Function

End Class
End Namespace

Note The GetPrivateProfileString method is declared with one StringBuilder parameter
(IpReturnedString). This is because this string must be mutable; when the call completes, it will contain the
returned INI file information. Whenever you need a mutable string, you must substitute StringBuilder in place of
the String class. Often, you will need to create the StringBuilder object with a character buffer of a set size,
and then pass the size of the buffer to the function as another parameter. You can specify the number of characters
in the StringBuilder constructor. See recipe 2-1 for more information about using the StringBuilder class.

Usage

You can test this program quite easily. First, in the application folder, create the inittest.ini file
shown here:

[SampleSection]
Key1=Valuel

Now, execute Recipel2-01.exe. You will get an output such as this:

Value of Keyl in [SampleSection] is: Valuel
Value of Keyl in [SampleSection] is now: New Value

Main method complete. Press Enter.

12-2. Get the Handle for a Control, Window,
or File

Problem

You need to call an unmanaged function, such as GetWindowText, that requires the handle for a
control, a window, or a file.

Solution

Many classes, including all Control-derived classes and the FileStream class, return the handle of
the unmanaged Windows object they are wrapping as an IntPtr through a property named Handle.
Other classes also provide similar information; for example, the System.Diagnostics.Process class
provides a Process.MainWindowHandle property in addition to the Handle property.

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

How It Works

The .NET Framework does not hide underlying details such as the operating system handles used for
controls and windows. Although you usually will not use this information, you can retrieve it if you
need to call an unmanaged function that requires it. Many Microsoft Win32 API functions, for example,
require control or window handles.

The Code

As an example, consider the Windows-based application shown in Figure 12-1. It consists of a single
window that always stays on top of all other windows regardless of focus. (This behavior is enforced
by setting the Form.TopMost property to True.) The form also includes a timer that periodically calls
the unmanaged GetForegroundWindow and GetWindowText Win32 API functions to determine which

window is currently active and its caption, respectively.

Figure 12-1. Retrieving information about the active window

One additional detail in this example is that the code also uses the Form.Handle property to get
the handle of the main application form. It then compares it with the handle of the active form to test
if the current application has focus. The following is the complete code for this form.

Imports System

Imports System.Windows.Forms

Imports System.Runtime.InteropServices
Imports System.Text

" All designed code is stored in the autogenerated partial
class called ActiveWindowInfo.Designer.vb. You can see this
file by selecting Show All Files in Solution Explorer.
Partial Public Class ActiveWindowInfo

Declare external functions.
<D11Import("user32.dll")> _

Private Shared Function GetForegroundWindow() As IntPtr
End Function

<D11Import("user32.dll")> _

Private Shared Function GetWindowText(ByVal hWnd As IntPtr, =
ByVal text As StringBuilder, ByVal count As Integer) As Integer

End Function

485

486 CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

Private Sub tmrRefresh Tick(ByVal sender As System.Object, w»
ByVal e As System.EventArgs) Handles tmrRefresh.Tick

Dim chars As Integer = 256

Dim buff As New StringBuilder(chars)

' Obtain the handle of the active window.

Dim handle As IntPtr = GetForeGroundWindow()

' Update the controls.

If GetWindowText(handle, buff, chars) > 0 Then
1blCaption.Text = buff.ToString
lblHandle.Text = handle.ToString

If handle = Me.Handle Then
1blCurrent.Text = "True"
Else
1blCurrent.Text = "False"
End If

End If

End Sub
End Class

Caution The Windows Forms infrastructure manages window handles for forms and controls transparently.
Changing some of their properties can force the CLR to create a new native window behind the scenes, and a new
handle gets wrapped with a different handle. For that reason, you should always retrieve the handle before you use
it (rather than storing it in a member variable for a long period of time).

12-3. Call an Unmanaged Function That Uses
a Structure

Problem

You need to call an unmanaged function, such as GetVersionEx, that accepts a structure as a parameter.

Solution

Define the structure in your VB .NET code. Use the attribute System.Runtime. InteropServices.
StructlayoutAttribute to configure how the structure fields are laid out in memory. Use the Shared
SizeOf method of the System.Runtime.InteropServices.Marshal class if you need to determine the
size of the unmanaged structure in bytes.

How It Works

In VB .NET code, you are not able to directly control how type fields are laid out once the memory is
allocated. Instead, the CLR is free to arrange fields to optimize performance, especially in the context of

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

moving memory around during garbage collection. This can cause problems when interacting with
legacy functions, such as those written in C, that expect structures to be laid out sequentially in
memory to follow their definition in include files. Fortunately, the .NET Framework allows you to
solve this problem by using the attribute StructLayoutAttribute, which lets you specify how the
members of a given class or structure should be arranged in memory.

The Code

As an example, consider the unmanaged GetVersionEx function provided in the Kernel32.dll file.
This function accepts a pointer to an OSVERSIONINFO structure and uses it to return information
about the current operating system version. To use the 0SVERSIONINFO structure in VB .NET code,
you must define it with the attribute StructLayoutAttribute, as shown here:

<Structlayout(LayoutKind.Sequential)> _
Public Structure OSVersionInfo

Public dwOSVersionInfoSize As Integer

Public dwMajorVersion As Integer

Public dwMinorVersion As Integer

Public dwBuildNumber As Integer

Public dwPlatformId As Integer
<MarshalAs(UnmanagedType.ByValTStr, SizeConst:=128)> _
Public szCSDVersion As String

End Structure

Note that this structure also uses the attribute System.Runtime.InteropServices.
MarshalAsAttribute, which is required for fixed-length strings. In this example, MarshalAsAttribute
specifies the string will be passed by value and will contain a buffer of exactly 128 characters, as spec-
ified in the OSVERSIONINFO structure. This example uses sequential layout, which means the data
types in the structure are laid out in the order they are listed in the class or structure.

Instead of using sequential layout, you could use LayoutKind.Explicit;in which case, you must
define the byte offset of each field using FieldOffsetAttribute. This layout is useful when dealing
with an irregularly packed structure or one where you want to omit some of the fields that you do not
want to use. Here is an example that defines the 0SVersionInfo class with an explicit layout:

<Structlayout(LayoutKind.Explicit)> _
Public Structure OSVersionInfo2

<FieldOffset(0)> Public dwOSVersionInfoSize As Integer
<FieldOffset(4)> Public dwMajorVersion As Integer
<FieldOffset(8)> Public dwMinorVersion As Integer
<FieldOffset(12)> Public dwBuildNumber As Integer
<FieldOffset(16)> Public dwPlatformId As Integer
<MarshalAs(UnmanagedType.ByValTStr, SizeConst:=128)> _
<FieldOffset(20)> Public szCSDVersion As String

End Structure

Now that you've defined the structure used by the GetVersionEx function, you can declare the
function and then use it. The following console application shows all the code you will need. A parameter
marked with the InAttribute (<[In]()>) is marshaled from the calling assembly to the unmanaged
function, while one marked with the OutAttribute (<Out()>) is marshaled in the opposite direction.
If neither of these attributes is used, then marshaling is decided based on how the parameter is passed

487

488 CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

(ByRef or ByVal). In this example, you need to make sure that 0SVersionInfo is marshaled in both
directions, so both attributes are applied. In addition, the code uses the Marshal.SizeOf method to
calculate the size the marshaled structure will occupy in memory.

Imports System
Imports System.Runtime.InteropServices

Namespace Apress.VisualBasicRecipes.Chapteri2

<StructlLayout(LayoutKind.Sequential)> _
Public Structure OSVersionInfo

Public dwOSVersionInfoSize As Integer

Public dwMajorVersion As Integer

Public dwMinorVersion As Integer

Public dwBuildNumber As Integer

Public dwPlatformId As Integer
<MarshalAs(UnmanagedType.ByValTStr, SizeConst:=128)> _
Public szCSDVersion As String

End Structure

Public Class Recipel2 03
' Declare the external function.
<D11lImport("kernel32.dll")> _
Public Shared Function GetVersionEx(<[In](), Out()> ByRef osvi As =
0SVersionInfo) As Boolean
End Function

Public Shared Sub Main()
Dim osvi As New 0SVersionInfo

osvi.dwOSVersionInfoSize = Marshal.SizeOf(osvi)
' Obtain the 0S version information.
GetVersionEx(osvi)

Display the version information.

Console.Writeline("Class Size: " & osvi.dwOSVersionInfoSize.ToString)

Console.WritelLine("Major Version: " & osvi.dwMajorVersion.ToString)

Console.WritelLine("Minor Version: " & osvi.dwMinorVersion.ToString)

Console.WritelLine("Build Number: " & osvi.dwBuildNumber.ToString)

Console.WritelLine("Platform Id: " & osvi.dwPlatformId.ToString)

Console.WritelLine("CSD Version: " & osvi.szCSDVersion.ToString)

Console.WriteLine("Platform: " & w»
Environment.OSVersion.Platform.ToString)

Console.WritelLine("Version: " & Environment.O0SVersion.Version.ToString)

" Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

End Sub

End Class
End Namespace

Usage

If you run this application on a Windows XP system, you will see information such as this:

Class Size: 148

Major Version: 5

Minor Version: 1

Build Number: 2600

Platform Id: 2

CSD Version: Service Pack 2
Platform: Win32NT

Version: 5.1.2600.131072

12-4. Call an Unmanaged Function That Uses
a Callback

Problem

You need to call an asynchronous unmanaged function, such as EnumWindows, and allow it to call a
method, or make a callback, in your code.

Solution

Create a delegate that has the required signature for the callback. Use this delegate when defining
and using the unmanaged function.

How It Works

Many of the Win32 API functions use callbacks. For example, if you want to retrieve the name of all
the top-level windows that are currently open, you can call the unmanaged EnumWindows function in
the User32.dll file. When calling EnumhWindows, you need to supply a pointer to a function in your code.
The Windows operating system will then call this function repeatedly, once for each top-level window
that it finds, and pass the window handle to your code.

The .NET Framework allows you to handle callback scenarios like this without resorting to
pointers and unsafe code blocks. Instead, you can define and use a delegate that points to your call-
back function. When you pass the delegate to the EnumWindows function, for example, the CLR will
automatically marshal the delegate to the expected unmanaged function pointer.

The Code

Following is a console application that uses EnumWindows with a callback to display the name of every
open window.

489

490 CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

Imports System
Imports System.Text
Imports System.Runtime.InteropServices

Namespace Apress.VisualBasicRecipes.Chapteri2
Public Class Recipe12 04

' The signature for the callback method.

Public Delegate Function CallBack(ByVal hwnd As IntPtr, s
ByVal 1Param As Integer) As Boolean

' The unmanaged function that will trigger the callback
as it enumerates the open windows.

<D11lImport("user32.dll")> _

Public Shared Function EnumWindows(ByVal windowCallback As CallBack, ‘=
ByVal param As Integer) As Integer

End Function

<D11lImport("user32.dll")> _

Public Shared Function GetWindowText(ByVal hWnd As IntPtr, s
ByVal text As StringBuilder, ByVal count As Integer) As Integer

End Function

Public Shared Sub Main()
' Request that the operating system enumerate all windows,
and trigger your callback with the handle of each one.
EnumWindows (AddressOf DisplayWindowInfo, 0)
' Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

' The method that will receive the callback. The second
' parameter is not used, but is needed to match the
callback's signature.
Public Shared Function DisplayWindowInfo(ByVal hWnd As IntPtr, s
ByVal 1Param As Integer) As Boolean

Dim chars As Integer = 100
Dim buf As New StringBuilder(chars)

If Not GetWindowText(hWnd, buf, chars) = 0 Then
Console.WriteLine(buf)

End If

Return True

End Function

End Class
End Namespace

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

12-5. Retrieve Unmanaged Error Information

Problem

You need to retrieve error information (either an error code or a text message) explaining why a
Win32 API call failed.

Solution

On the declaration of the unmanaged method, set the SetLastError field of the D11ImportAttribute
to True. If an error occurs when you execute the method, call the Shared Marshal.GetlLastWin32Error
method to retrieve the error code. To get a text description for a specific error code, use the unmanaged
FormatMessage function.

How It Works

You cannot retrieve error information directly using the unmanaged GetlLastError function. The
problem is that the error code returned by GetlLastError might not reflect the error caused by the
unmanaged function you are using. Instead, it might be set by other .NET Framework classes or the
CLR. You can retrieve the error information safely using the Shared Marshal.CGetLastWin32Error method.
This method should be called immediately after the unmanaged call, and it will return the error
information only once. (Subsequent calls to GetLastWin32Error will simply return the error code
127.) In addition, you must specifically set the SetLastError field of the D11ImportAttribute to True
to indicate that errors from this function should be cached.

<D11lImport("user32.dll", SetlastError:=True)>

You can extract additional information from the Win32 error code using the unmanaged
FormatMessage function from the Kernel32.dll file.

The Code

The following console application attempts to show a message box, but submits an invalid window
handle. The error information is retrieved with Marshal.GetlLastWin32Error, and the corresponding
text information is retrieved using FormatMessage.

Imports System
Imports System.Runtime.InteropServices

Namespace Apress.VisualBasicRecipes.Chapteri2
Public Class Recipe12 05
' Declare the unmanaged functions.
<D1lImport("kernel32.d11l")> _
Private Shared Function FormatMessage(ByVal dwFlags As Integer, ‘w»
ByVal lpSource As Integer, ByVal dwMessage As Integer, =
ByVal dwLanguageId As Integer, ByRef lpBuffer As String, ByVal nSize As Integer, =
ByVal Arguments As Integer) As Integer
End Function

491

492 CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

<D1lImport("user32.dll", SetlastError:=True)> _
Public Shared Function MessageBox(ByVal hWnd As IntPtr, s

ByVal pText As String, ByVal pCaption As String, ByVal uType As Integer) As Integer
End Function

Public Shared Sub Main()
" Invoke the MessageBox function passing an invalid

window handle and thus forcing an error.

Dim badwWindowHandle As IntPtr = New IntPtr(-1)

MessageBox (badWindowHandle, "Message", "Caption", 0)
' Obtain the error information.
Dim errorCode As Integer = Marshal.GetlastWin32Error

If Not errorCode = 0 Then
Console.WritelLine(errorCode)
Console.Writeline(GetErrorMessage(errorCode))

End If

" Wait to continue.

Console.WriteLine(Environment.NewLine)

Console.WritelLine("Main method complete. Press Enter.")

Console.ReadlLine()

End Sub
' GetErrorMessage formats and returns an error message

corresponding to the input error code.

Public Shared Function GetErrorMessage(ByVal errorCode As Integer) As String

Dim FORMAT MESSAGE_ALLOCATE BUFFER As Integer = 8H100
Dim FORMAT_MESSAGE_IGNORE_INSERTS As Integer = &H200
Dim FORMAT_MESSAGE_FROM_SYSTEM As Integer = &H1000

Dim messageSize As Integer = 255

Dim 1lpMsgBuf As String = ""

Dim dwFlags As Integer = FORMAT_MESSAGE_ALLOCATE_BUFFER Or w»
FORMAT_MESSAGE_FROM_SYSTEM Or FORMAT_MESSAGE_IGNORE_INSERTS

Dim retVal As Integer = FormatMessage(dwFlags, 0, errorCode, 0, ‘w»
1pMsgBuf, messageSize, 0)
If retval = 0 Then
Return Nothing
Else
Return 1pMsgBuf
End If

End Function

End Class
End Namespace

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

Usage
Here is the output generated by the preceding program:

1400
Invalid window handle.

12-6. Use a COM Component in a .NET Client

Problem

You need to use a COM component, such as the older ADODB components, in a .NET client.

Solution

Use a primary interop assembly (PIA), if one is available. Otherwise, generate a runtime callable
wrapper (RCW) using the Type Library Importer (Tlbimp.exe) or the Add Reference feature in Visual
Studio .NET.

How It Works

The .NET Framework includes extensive support for COM interoperability. To allow .NET clients to
interact with a COM component, .NET uses an RCW—a special .NET proxy class that sits between
your .NET code and the COM component. The RCW handles all the details, including marshaling
data types, using the traditional COM interfaces, and handling COM events.

You have the following three options for using an RCW:

¢ Obtain an RCW from the author of the original COM component. In this case, the RCW is
created from a PIA provided by the publisher, as Microsoft does for Microsoft Office.

* Generate an RCW using the Tlbimp.exe command-line utility or Visual Studio .NET.

* Create your own RCW using the types in the System.Runtime.InteropServices namespace.
(This can be an extremely tedious and complicated process.)

If you want to use Visual Studio .NET to generate an RCW, you simply need to select Add Reference
from the Project menu, and then select the appropriate component from the COM tab. When you
click OK, the PIA will be generated and added to your project references. After that, you can use the
Object Browser to inspect the namespaces and classes that are available.

If possible, you should always use a PIA instead of generating your own RCW. PIAs are more
likely to work as expected, because they are created and digitally signed by the original component
publisher. They might also include additional .NET refinements or enhancements. If a PIA is regis-
tered on your system fora COM component, Visual Studio .NET will automatically use that PIA when
you add a reference to the COM component. For example, the NET Framework includes an adodb.dll
assembly that allows you to use the ADO classic COM objects. If you add a reference to the Microsoft
ActiveX Data Objects component, this PIAwill be used automatically; no new RCW will be generated.
Similarly, Microsoft Office 2003 provides a PIA that improves .NET support for Office Automation.
However, you must download this assembly from the MSDN web site (athttp://msdn.microsoft.com/
downloads/list/office.asp).

493

494

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

Ifyou are not using Visual Studio .NET, you can create a wrapper assembly using the Tlbimp.exe
command-line utility that is included with the .NET Framework. The only mandatory piece of infor-
mation is the filename that contains the COM component. For example, the following statement
creates an RCW with the default filename and namespace, assuming that the MyCOMComponent.dll file
is in the current directory.

tlbimp MyCOMComponent.dll

Assuming that MyCOM Component.dll has a type named MyClasses, the generated RCW file
will have the name MyClasses.dll and will expose its classes through a namespace named MyClasses.
You can also configure these options with command-line parameters, as described in the MSDN
reference. For example, you can use /out: [Filename] to specify a different assembly filename and
/namespace: [Namespace] to set a different namespace for the generated classes. You can also specify
a key file using /keyfile[keyfilename] so that the component will be signed and given a strong
name, allowing it to be placed in the global assembly cache (GAC). Use the /primary parameter to
create a PIA.

The Code

The following example shows how you can use COM Interop to access the classic ADO objects from
a .NET Framework application.

Imports System

Namespace Apress.VisualBasicRecipes.Chapteri2
Public Class Recipe12 06
' Be sure to add a reference to ADODB (runtime version 1.1.4322)
to the project.
Public Shared Sub Main()

This example assumes that you have the AdventureWorks
sample database installed. If you don't, you will need
to change the connectionString accordingly.

Create a new ADODB connection.

Dim con As New ADODB.Connection

Dim connectionString As String = "Provider=SQLOLEDB.1;Data " & w»
Source=.\sqlexpress;Initial Catalog=AdventureWorks;Integrated Security=SSPI;"

con.Open(connectionString, Nothing, Nothing, 0)
' Execute a SELECT query.

Dim recordsAffected As Object = Nothing

Dim rs As ADODB.Recordset = con.Execute("SELECT * FROM " & 'w»

HumanResources.Employee;", recordsAffected, 0)

Print out the results.
While Not rs.EOF = True

Console.Writeline(rs.Fields("EmployeeID").Value)
1s.MoveNext()

End While

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

12-7. Release a COM Component Quickly

Problem

You need to ensure that a COM component is removed from memory immediately, without waiting
for garbage collection to take place, or you need to make sure that COM objects are released in a
specific order.

Solution

Release the reference to the underlying COM object using the Shared Marshal.FinalReleaseComObject
method and passing the appropriate RCW reference.

How It Works

COM uses reference counting to determine when objects should be released. When you use an RCW,
the reference will be held to the underlying COM object, even when the object variable goes out of
scope. The reference will be released only when the garbage collector disposes of the RCW object. As
aresult, you cannot control when or in what order COM objects will be released from memory.

To get around this limitation, you usually use the Marshal.ReleaseComObject method. However,
if the COM object’s pointer is marshaled several times, you need to repeatedly call this method to
decrease the count to zero. However, the FinalReleaseComObject method allows you to release all
references in one go, by setting the reference count of the supplied RCW to zero. This means that you
do not need to loop and invoke ReleaseComObject to completely release an RCW. Once an object is
released in this manner, it can no longer be used unless it’s re-created.

For example, in the ADO example in recipe 12-6, you could release the underlying ADO
Recordset and Connection objects by adding these two lines to the end of your code:

System.Runtime.InteropServices.Marshal.FinalReleaseComObject(rs)
System.Runtime.InteropServices.Marshal.FinalReleaseComObject(con)

Note The ReleaseComObject method does not actually release the COM object; it just decrements the refer-
ence count. If the reference count reaches zero, the COM object will be released. FinalReleaseComObject
works by setting the reference count of an RCW to zero. It thus bypasses the internal count logic and releases all
references.

495

496

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

12-8. Use Optional Parameters

Problem

You need to call a method in a COM component without supplying all the required parameters.

Solution
Use the Type.Missing field.

How It Works

The .NET Framework is designed with a heavy use of method overloading. Most methods are over-
loaded several times so that you can call the version that requires only the parameters you choose to
supply. COM, on the other hand, does not support method overloading. Instead, COM components
usually use methods with alonglist of optional parameters. You do not need to specify values for the
optional parameters. For example, if a method includes three optional parameters, you can assign a
value to the first and third one, skipping the second one. Passing Nothing to the second optional
parameter would have the same effect. However, COM parameters are often passed by reference,
which means your code cannot simply pass a Nothing reference. Instead, it must declare an object
variable and then pass that variable.

You can mitigate the problem to some extent by supplying the Type .Missing field whenever you
wish to omit an optional parameter. If you need to pass a parameter by reference, you can simply
declare a single object variable, set it equal to Type.Missing, and use it in all cases, like this:

Private Shared n As Object = Type.Missing

The Code

The following example uses the Microsoft Word COM objects to programmatically create and show
a document. Many of the methods the example uses require optional parameters passed by refer-
ence. You will notice that the use of the Type .Missing field simplifies this code greatly. Each use is
emphasized in the code listing.

Imports System
Imports Microsoft.Office.Interop

Namespace Apress.VisualBasicRecipes.Chapteri2
' This recipe requires a reference to Word and

Microsoft.Office.Core.

Public Class Recipe12 08

Private Shared n As Object = Type.Missing

Public Shared Sub Main()
' Start Word in the background.

Dim app As New Word.Application

app.DisplayAlerts = Word.WdAlertlLevel.wdAlertsNone

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

Create a new document (this is not visible to the user).
Dim doc As Word.Document = app.Documents.Add(n, n, n, n)

Console.WritelLine()
Console.Writeline("Creating new document.™)
Console.WritelLine()

Add a heading and two lines of text.
Dim range As Word.Range = doc.Paragraphs.Add(n).Range

range.InsertBefore("Test Document")
range.Style = "Heading 1"

range = doc.Paragraphs.Add(n).Range
range.InsertBefore("Line one." & ControlChars.CrLf & "Line two.")
range.Font.Bold = 1

Show a print preview, and make Word visible.
doc.PrintPreview()
app.Visible = True

Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

12-9. Use an ActiveX Control in a .NET Client

Problem

You need to place an ActiveX control on a form or a user control in a .NET Framework application.

Solution

Use an RCW exactly as you would with an ordinary COM component (see recipe 12-6). To work with
the ActiveX control at design time, add it to the Visual Studio .NET Toolbox.

How It Works

As with COM components, the .NET Framework fully supports the use of ActiveX controls. When
working with COM (detailed in recipe 12-6), an RCW is required to allow communication between
your code and the COM object. An ActiveX control differs in that it requires two RCWs. The first RCW
provides communication between the COM object and the second RCW. The second RCW is required to
communicate between the first COM object and your Windows form.

This extra wrapper is required because any control you use on your form must derive from
System.Windows.Forms.Control. The second wrapper derives from the System.Windows.Forms.AxHost

497

498

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

class, which derives from System.Windows.Forms.Control. This provides the standard .NET control
properties, methods, and events (such as Location, Size, Anchor, and so on).

Several methods are available for creating the necessary RCWs. One method is to use the
Aximp.exe command-line utility. This tool is the equivalent to Tlbimp.exe, which is used to generate
an RCW for COM components. You just run aximp and supply the path to the ActiveX component.
The following is an example of using this tool on the Microsoft Masked Edit control.

aximp c:\windows\system32\msmask32.ocx

This will generate MSMask.dll, the first wrapper, and AxMSMask.dll, the second wrapper. The
MSMask.dll file is identical to the RCW that Tlbimp.exe would have produced fora COM component.
The main component of the AxMSMask.dll file is the AxMaskEdBox class, which is part of the AxMSMask
namespace. The Ax prefixrepresents the word ActiveXand indicates which wrapper derives from the
AxHost class. To use the control in your project, you just need to add a reference to both these assem-
blies, and then create an instance of the control. The following code snippet demonstrates creating
an instance of the control and adding it to a form:

Create a new instance of the ActiveX control.
Dim AxMaskEdBox1 As New AxMSMask.AxMaskEdBox

' Set some properties.
AxMaskEdBox1.Location = New Point(0, 0)
AxMaskEdBox1.Size = New Size(200, 50)

" Add the control to the form.
Me.Controls.Add(AxMaskEdBox1)

The .NET Framework also offers the AxImporter class, found in the System.Windows.Forms.
Design namespace. This class lets you generate the appropriate wrapper assemblies by using the
GenerateFromFile or GenerateFromTypelLibrary method. Both methods return the assembly qualified
name for the ActiveX control defined by the newly created assemblies. The AxImporter constructor
takes an AxImporter.Option class instance. This class contains several properties that represent
options the importer will use, but only the OutputDirectory property is required. You then use one
of the methods, such as GenerateFromFile, to create the necessary wrappers. Once the assemblies
have been generated, you can reference them at design time, as you would any other component, or
you can reference them at runtime using reflection (described in Chapter 3). The following sample code
demonstrates using AxImporter to create and use an instance of the Masked Edit control at runtime.

Create the AxImporter options and set the output
directory.

Dim axOptions As New AxImporter.Options
axOptions.outputDirectory = "C:\"

' Create the AxImporter object and generate the wrappers
for the c:\windows\system32\msmask32.ocx file.

Dim aximp As New AxImporter(axOptions)

Dim fi As New FileInfo("C:\windows\system32\msmask32.ocx")
Dim assemblyName As String = aximp.GenerateFromFile(fi)

Load the ActiveX RCW and create an instance of the control

type named in assemblyName (which is "AxMSMask.AxMaskEdBox,AxMSMask").
Dim MSMaskAssembly As Assembly = Assembly.LoadFrom("C:\AxMSMask.d11")
Dim AxMaskEdBox1 As Object = w»
MSMaskAssembly.CreateInstance(assemblyName.Substring (o, ‘w»

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

assemblyName. Index0f(",")))

Set some properties.
AxMaskEdBox1.Location = New Point(0, 0)
AxMaskEdBox1.Size = New Size(200, 50)

' Add the control to the form.
Me.Controls.Add(AxMaskEdBox1)

The simplest method, if you are using Visual Studio, is to add the ActiveX control to the Toolbox.
You do this by selecting Choose Toolbox Items from the Tools menu. This will add an icon representing
the ActiveX control to the Toolbox. Once you place the control on your form, the required RCWs will
be created, and the appropriate references will be added to your project. The only difference between
these generated files and those created by the two previous methods are the names. This method will
name the files AxInterop.MSMask.dll and Interop.MSMask.dll.

Adding the control in this manner will automatically generate code in the hidden designer region of
your form. That code will look similar to this:

Me.AxMaskEdBox1 = New AxMSMask.AxMaskEdBox
(Type(Me.AxMaskEdBox1, System.ComponentModel.ISupportInitialize).BeginInit()

'AxMaskEdBox1

Me.AxMaskEdBox1.Location = New System.Drawing.Point(10, 15)

Me.AxMaskEdBox1.Name = "AxMaskEdBox1"

Me.AxMaskEdBox1.0cxState = CType(resources.GetObject("AxMaskEdBox1.0cxState"), w»
System.Windows.Forms.AxHost.State)

Me.AxMaskEdBox1.Size = New System.Drawing.Size(247, 43)

Me.AxMaskEdBox1.TabIndex = 0

Me.Controls.Add(Me.AxMaskEdBox1)

12-10. Expose a .NET Component to COM

Problem

You need to create a .NET component that can be called by a COM client.

Solution

Create an assembly that follows certain restrictions identified in this recipe. Export a type library for
this assembly using the Type Library Exporter (Tlbexp.exe) command-line utility.

How It Works

The .NET Framework includes support for COM clients to use .NET components. When a COM client
needs to create a .NET object, the CLR creates the managed object and a COM callable wrapper
(CCW) that wraps the object. The COM client interacts with the managed object through the CCW.
No matter how many COM clients are attempting to access a managed object, only one CCW is
created for it.

499

500

CHAPTER 12 UNMANAGED CODE INTEROPERABILITY

Types that need to be accessed by COM clients must meet certain requirements:

¢ The managed type (class, interface, struct, or enum) must be Public.

e Ifthe COM client needs to create the object, it must have a Public default constructor. COM
does not support parameterized constructors.

¢ The members of the type that are being accessed must be Public instance members. Private,
Protected, Friend, and Shared members are not accessible to COM clients.

In addition, you should consider the following recommendations:

* Youshould not create inheritance relationships between classes, because these relationships
will not be visible to COM clients (although .NET will attempt to simulate this by declaring a
shared base class interface).

e The classes you are exposing should implement an interface. If they don’t implement an
interface, one will be generated automatically. Changing the class in the future may cause
versioning issues, so implementing your own interface is highly suggested. You use the
ClassInterfaceAttribute to turn off the automatic generation of the interface and specify
your own. For added versioning control, you can use the attribute System.Runtime.
InteropServices.GuidAttribute to specify the GUID that should be assigned to an interface.

¢ Ideally, you should give the managed assembly a strong name so that it can be installed into
the GAC and shared among multiple clients.

In order fora COM client to create the .NET object, itrequires a type library (a .tlb file). The type
library can be generated from an assembly using the Tlbexp.exe command-line utility. Here is an
example of the syntax you use:

tlbexp ManagedLibrary.dll

Tlbexp.exe includes several options that affect how the tool runs and the output is produced.
For example, you can use /out to specify the path and/or name produced by the utility. If you don’t
use this option, the file is created in the current directory with a name based on the assembly name
and ending with .tlb. For automation purposes, you could use the /silent option to suppress all
messages.

Once you generate the type library, you can reference it from the unmanaged development tool.
With Visual Basic 6, you reference the .tlb file from the Project»References dialog box. In Visual C++ 6,
you can use the #import statement to import the type definitions from the type library.

CHAPTER 13

Commonly Used Interfaces
and Patterns

The recipes in this chapter show you how to implement patterns you will use frequently during the
development of Microsoft .NET Framework applications. Some of these patterns are formalized
using interfaces defined in the .NET Framework class library. Others are less rigid, but still require
you to take specific approaches to their design and implementation of your types. The recipes in this
chapter describe how to do the following:

* Create serializable types that you can easily store to disk, send across the network, or pass by
value across application domain boundaries (recipe 13-1)

e Provide a mechanism that creates accurate and complete copies (clones) of objects
(recipe 13-2)

e Implement types that are easy to compare and sort (recipe 13-3)

e Support the enumeration of the elements contained in custom collections by creating a
custom iterator (recipe 13-4)

e Ensure that a type that uses unmanaged resources correctly releases those resources when
they are no longer needed (recipe 13-5)

* Display string representations of objects that vary based on format specifiers (recipe 13-6)

¢ Correctly implement custom exception and event argument types, which you will use frequently
in the development of your applications (recipes 13-7 and 13-8)

e Implement the commonly used Singleton and Observer design patterns using the built-in
features of VB .NET and the .NET Framework class library (recipes 13-9 and 13-10)

13-1. Implement a Serializable Type

Problem

You need to implement a custom type that is serializable, allowing you to do the following:

» Store instances of the type to persistent storage (for example, a file or a database).
e Transmit instances of the type across a network.

» Passinstances of the type “by value” across application domain boundaries.

501

502

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

Solution

For serialization of simple types, apply the attribute System.SerializableAttribute to the type
declaration. For types that are more complex, or to control the content and structure of the serialized
data, implement the interface System.Runtime.Serialization.ISerializable.

How It Works

Recipe 2-13 showed how to serialize and deserialize an object using the formatter classes provided
with the .NET Framework class library. However, types are not serializable by default. To implement
a custom type that is serializable, you must apply the attribute SerializableAttribute to your type
declaration. As long as all of the data fields in your type are serializable types, applying
SerializableAttribute is all you need to do to make your custom type serializable. If you are imple-
menting a custom class that derives from a base class, the base class must also be serializable.

Caution Classes that derive from a serializable type don’t inherit the attribute SerializableAttribute.
To make derived types serializable, you must explicitly declare them as serializable by applying the
SerializableAttribute attribute.

Each formatter class contains the logic necessary to serialize types decorated with
SerializableAttribute and will correctly serialize all Public, Protected, and Private fields. You can
exclude specific fields from serialization by applying the attribute System.NonSerializedAttribute
to those fields. As a rule, you should exclude the following fields from serialization:

* Fields that contain nonserializable data types

* Fields that contain values that might be invalid when the object is deserialized, such as
memory addresses, thread IDs, and unmanaged resource handles

* Fields that contain sensitive or secret information, such as passwords, encryption keys, and
the personal details of people and organizations

» Fields that contain data that is easily re-creatable or retrievable from other sources, especially
if the data is large

If you exclude fields from serialization, you must implement your type to compensate for the
fact that some data will not be present when an object is deserialized. Unfortunately, you cannot
create or retrieve the missing data fields in an instance constructor, because formatters do not call
constructors during the process of deserializing objects. The best approach for achieving fine-grained
control of the serialization of your custom types is to use the attributes from the System.Runtime.
Serialization namespace described in Table 13-1. These attributes allow you to identify methods of
the serializable type that the serialization process should execute before and after serialization and
deserialization. Any method annotated with one of these attributes must take a single System.
Runtime.Serialization.StreamingContext argument, which contains details about the source or
intended destination of the serialized object so that you can determine what to serialize. For example,
you might be happy to serialize secret data if it’s destined for another application domain in the same
process, but not if the data will be written to a file.

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

Table 13-1. Attributes to Customize the Serialization and Deserialization Processs

Attribute Description

OnSerializingAttribute Apply this attribute to a method to have it executed before the
object is serialized. This is useful if you need to modify object
state before it is serialized. For example, you may need to convert a
DateTime field to UTC time for storage.

OnSerializedAttribute Apply this attribute to a method to have it executed after the
object is serialized. This is useful in case you need to revert the
object state to what it was before the method annotated with
OnSerializingAttribute was run.

OnDeserializingAttribute Apply this attribute to a method to have it executed before the
object is deserialized. This is useful if you need to modify the
object state prior to deserialization.

OnDeserializedAttribute Apply this attribute to a method to have it executed after the
object is deserialized. This is useful if you need to re-create addi-
tional object state that depends on the data that was deserialized
with the object or modify the deserialized state before the object
is used.

As types evolve, you often add new member variables to support new features. This new state
causes a problem when deserializing old objects because the new member variables are not part of
the serialized object. NET Framework 2.0 introduces the attribute System.Runtime.Serialization.
OptionalFieldAttribute. When you create a new version of a type and add data members, annotate
them with OptionalFieldAttribute, and the deserialization process will not fail if they are not present.
You can then annotate new methods with OnDeserializedAttribute (see Table 13-1) to configure the
new member variables appropriately.

For the majority of custom types, the mechanisms described will be sufficient to meet your seri-
alization needs. If you require more control over the serialization process, you can implement the
interface ISerializable. The formatter classes use different logic when serializing and deserializing
instances of types that implement ISerializable. To implement ISerializable correctly you must
do the following:

e Declare that your type implements ISerializable.

e Apply the attribute SerializableAttribute to your type declaration as just described. What
gets serialized is determined by the GetObjectData method, rather than relying on automatic
serialization. For this reason, you shouldn’t use NonSerializedAttribute because it will have
no effect.

e Implement the ISerializable.GetObjectData method (used during serialization), which
takes the argument types System.Runtime.Serialization.SerializationInfo and System.
Runtime.Serialization.StreamingContext.

e Implement a nonpublic constructor (used during deserialization) that accepts the same argu-
ments as the GetObjectData method. Remember that if you plan to derive classes from your
serializable class, you should make the constructor Protected.

¢ Ifyou are creating a serializable class from a base class that also implements ISerializable,
your type’s GetObjectData method and deserialization constructor must call the equivalent
method and constructor in the base class.

503

504

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

During serialization, the formatter calls the GetObjectData method and passes it
SerializationInfo and StreamingContext references as arguments. Your type must populate
the SerializationInfo object with the data you want to serialize. The SerializationInfo class acts
as a list of field/value pairs and provides the AddValue method to let you store a field with its value.
In each call to AddValue, you must specify a name for the field/value pair; you use this name during
deserialization to retrieve the value of each field. The AddValue method has 16 overloads that allow
you to add values of different data types to the SerializationInfo object.

When a formatter deserializes an instance of your type, it calls the deserialization constructor,
again passing a SerializationInfo and a StreamingContext reference as arguments. Your type must
extract the serialized data from the SerializationInfo object using one of the SerializationInfo.
Get* methods; for example, using GetString, GetInt32, or GetBoolean. The StreamingContext object
provides information about the purpose and destination of the serialized data, allowing you to
choose which data to serialize. During deserialization, the StreamingContext object provides infor-
mation about the source of the serialized data, allowing you to mirror the logic you implemented for
serialization.

Note During standard serialization operations, the formatters do not use the capabilities of the StreamingContext
object to provide specifics about the source, destination, and purpose of serialized data. However, if you wish to
perform customized serialization, your code can configure the formatter's StreamingContext object prior to initiating
serialization and deserialization. Consult the .NET Framework SDK documentation for details of the StreamingContext
class.

The Code

The following example demonstrates a serializable Employee class that implements the ISerializable
interface. In this example, the Employee class does not serialize the Address property if the provided
StreamingContext object specifies that the destination of the serialized data is a file. The Main method
demonstrates the serialization and deserialization of an Employee object.

Imports System

Imports System.IO

Imports System.Text

Imports System.Runtime.Serialization

Imports System.Runtime.Serialization.Formatters.Binary

Namespace Apress.VisualBasicRecipes.Chapteri3

<Serializable()> _
Public Class Employee
Implements ISerializable

Private m Name As String
Private m Age As Integer
Private m Address As String
' Simple Employee constructor.

Public Sub New(ByVal name As String, ByVal age As Integer,
ByVal address As String)

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS 505

m_Name = name
m_Age = age
m_Address = address

End Sub
' Constructor required to enable a formatter to deserialize an
Employee object. You should declare the constructor protected
to help ensure it is not called unnecessarily.

Private Sub New(ByVal info As SerializationInfo,
ByVal context As StreamingContext)

Extract the name and age of the employee, which will always be
present in the serialized data regardless of the value of the
StreamingContext.

m_Name = info.GetString("Name")

m_Age = info.GetInt32("Age")

Attempt to extract the employee's address and fail gracefully
" if it is not available.
Try

m_Address = info.GetString("Address")
Catch ex As SerializationException
m_Address = Nothing

End Try
End Sub

Public property to provide access to the employee's name.
Public Property Name() As String
Get
Return m_Name
End Get
Set(Byval Value As String)
m_Name = Value
End Set
End Property

Public property to provide access to the employee's age.
Public Property Age() As Integer
Get
Return m_Age
End Get
Set(Byval value As Integer)
m_Age = value
End Set
End Property

Public property to provide access to the employee's address.
Uses lazy initialization to establish address because a
deserialized object will not have an address value.

506 CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

Public Property Address() As String
Get
If m_Address Is Nothing Then
' Load the address from persistent storage.
In this case, set it to an empty string.
m_Address = String.Empty
End If

Return m_Address
End Get
Set(Byval value As String)
m_Address = value
End Set
End Property
' Declared by the ISerializable interface, the GetObjectData method
provides the mechanism with which a formatter obtains the object
data that it should serialize.
Public Sub GetObjectData(ByVal info As SerializationInfo, '
ByVal context As StreamingContext) Implements.ISerializable.CGetObjectData

Always serialize the employee's name and age.

info.Addvalue("Name", Name)

info.Addvalue("Age", Age)

' Don't serialize the employee's address if the StreamingContext

indicates that the serialized data is to be written to a file.

If (context.State And StreamingContextStates.File) = 0 Then
info.Addvalue("Address", Address)

End If

End Sub

Override Object.ToString to return a string representation of the
Employee state.
Public Overrides Function ToString() As String

Dim str As New StringBuilder

str.AppendFormat("Name: {0}{1}", Name, ControlChars.CrLf)
str.AppendFormat("Age: {0}{1}", Age, ControlChars.CrLf)
str.AppendFormat("Address: {0}{1}", Address, ControlChars.CrLf)

Return str.ToString
End Function

End Class

A class to demonstrate the use of Employee.
Public Class Recipe13 01

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS 507

Public Shared Sub Main()
' Create an Employee object representing an employee named Alex.

Dim emp As New Employee("Alex", 35, "Retroville")

' Display Employee object.

Console.Writeline(emp.ToString())

' Serialize the Employee object specifying another application domain

as the destination of the serialized data. ALl data including the

employee's address is serialized.

Dim str As Stream = File.Create("Alex.bin")

Dim bf As New BinaryFormatter

bf.Context = New StreamingContext(StreamingContextStates.CrossAppDomain)

bf.Serialize(str, emp)

str.Close()

Deserialize and display the Employee object.
str = File.OpenRead("Alex.bin")
bf = New BinaryFormatter
emp = DirectCast(bf.Deserialize(str), Employee)
str.Close()
Console.WritelLine(emp.ToString())
' Serialize the Employee object specifying a file as the destination
of the serialized data. In this case, the employee's address is not
included in the serialized data.
str = File.Create("Alex.bin")
bf = New BinaryFormatter
bf.Context = New StreamingContext(StreamingContextStates.File)
bf.Serialize(str, emp)
str.Close()

Deserialize and display the Employee.
str = File.OpenRead("Alex.bin")
bf = New BinaryFormatter
emp = DirectCast(bf.Deserialize(str), Employee)
str.Close()
Console.Writeline(emp.ToString())
" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.Readline()

End Sub

End Class
End Namespace

508

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

13-2. Implement a Cloneable Type

Problem

You need to create a custom type that provides a simple mechanism for programmers to create
copies of type instances.

Solution

Implement the System.ICloneable interface.

How It Works

When you assign one value type to another, you create a copy of the value. No link exists between the
two values—a change to one will not affect the other. However, when you assign one reference type
to another (excluding strings, which receive special treatment by the runtime), you do not create a
new copy of the reference type. Instead, both reference types refer to the same object, and changes
to the value of the object are reflected in both references. To create a true copy of a reference type,
you must clone the object to which it refers.

The ICloneable interface identifies a type as cloneable and declares the Clone method as the
mechanism through which you obtain a clone of an object. The Clone method takes no arguments
and returns a System.Object, regardless of the implementing type. This means that once you clone
an object, you must explicitly cast the clone to the correct type.

The approach you take to implementing the Clone method for a custom type depends on the
data members declared within the type. If the custom type contains only value-type (Integer, Byte,
and so on) and System. String data members, you can implement the Clone method by instantiating
anew object and setting its data members to the same values as the current object. The Object class
(from which all types derive) includes the Protected method MemberwiseClone, which automates this
process.

If your custom type contains reference-type data members, you must decide whether your
Clone method will perform a shallow copy or a deep copy. A shallow copy means that any reference-
type data members in the clone will refer to the same objects as the equivalent reference-type data
members in the original object. A deep copy means that you must create clones of the entire object
graph so that the reference-type data members of the clone refer to physically independent copies
(clones) of the objects referenced by the original object.

A shallow copy is easy to implement by calling the MemberwiseClone method from within your
Clone method. However, a deep copy is often what programmers expect when they first clone an
object, but it’s rarely what they get. This is especially true of the collection classes in the System.
Collections namespace, which all implement shallow copies in their Clone methods. Although it
would often be useful if these collections implemented a deep copy, there are two key reasons why
types (especially generic collection classes) do not implement deep copies:

* Creating a clone of a large object graph is processor-intensive and memory-intensive.

¢ General-purpose collections can contain wide and deep object graphs consisting of any type
of object. Creating a deep-copy implementation to cater to such variety is not feasible because
some objects in the collection might not be cloneable, and others might contain circular
references, which would send the cloning process into an infinite loop.

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

For strongly typed collections in which the nature of the contained elements are understood
and controlled, a deep copy can be a very useful feature; for example, the System.Xml.XmINode imple-
ments a deep copy in its Clone method. This allows you to create true copies of entire XML object
hierarchies with a single statement.

Tip Ifyou need to clone an object that does not implement ICloneable but is serializable, you can often serialize
and then deserialize the object to achieve the same result as cloning. However, be aware that the serialization
process might not serialize all data members (as discussed in recipe 13-1). Likewise, if you create a custom serial-
izable type, you can potentially use the serialization process just described to perform a deep copy within your
ICloneable.Clone method implementation. To clone a serializable object, use the class System.Runtime.
Serialization.Formatters.Binary.BinaryFormatter to serialize the object to, and then deserialize the
object from a System.IO0.MemoryStream object.

The Code

The following example demonstrates various approaches to cloning. The simple class named
Employee contains only String and Integer members, and so relies on the inherited MemberwiseClone
method to create a clone. The Team class contains an implementation of the Clone method that
performs a deep copy. The Team class contains a collection of Employee objects, representing a team
of people. When you call the Clone method of a Team object, the method creates a clone of every
contained Employee object and adds it to the cloned Team object. The Team class provides a Private
constructor to simplify the code in the Clone method. The use of constructors is a common approach
to simplify the cloning process.

Imports System
Imports System.Text
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter13

Public Class Employee
Implements ICloneable

Public Name As String
Public Title As String
Public Age As Integer
' Simple Employee constructor.

Public Sub New(ByVal _name As String, ByVal title As String, ‘=
ByVal age As Integer)

Name = _name
Title = title
Age = age

End Sub

' Create a clone using the Object.MemberwiseClone method because

the Employee class contains only string and value types.

Public Function Clone() As Object Implements System.ICloneable.Clone
Return Me.MemberwiseClone

End Function

509

510 CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

Returns a string representation of the Employee object.
Public Overrides Function ToString() As String

Return String.Format("{o} ({1}) - Age {2}", Name, Title, Age)
End Function

End Class

Public Class Team
Implements ICloneable
" A List to hold the Employee team members.

Public TeamMembers As New List(Of Employee)

Public Sub New()

End Sub

' Adds an Employee object to the team.

Public Sub AddMember(ByVal member As Employee)
TeamMembers .Add(member)

End Sub

Override Object.ToString to return a string representation
of the entire team.
Public Overrides Function ToString() As String

Dim str As New StringBuilder

For Each e As Employee In TeamMembers
str.AppendFormat(" {0}{1}", e, ControlChars.CrLf)

Next

Return str.ToString

End Function

Implementation of ICloneable.Clone.
Public Function Clone() As Object Implements System.ICloneable.Clone

Create a deep copy of the team.
Dim newTeam As New Team

For Each e As Employee In Me.TeamMembers

' Clone the individual Employee objects and

' add them to the List.

newTeam.AddMember (DirectCast(e.Clone, Employee))
Next
Return newTeam

End Function

End Class

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS 511

A class to demonstrate the use of Employee.
Public Class Recipe13 02

Public Shared Sub Main()
' Create the original team.

Dim newTeam As New Team

newTeam.AddMember(New Employee("Dave", "Architect", 34))

newTeam.AddMember (New Employee("Alex", "Designer", 35))

newTeam.AddMember (New Employee("Robb", "Developer", 25))

' Clone the original team.

Dim clonedTeam As Team = DirectCast(newTeam.Clone, Team)

Display the original team.
Console.Writeline("Original Team:")
Console.WritelLine(newTeam)

' Display the cloned team.
Console.WriteLine("Cloned Team:")
Console.WriteLine(clonedTeam)

' Make change.
Console.WriteLine("*** Make a change to original team ***")
Console.WriteLine(Environment.NewlLine)

newTeam. TeamMembers(0) .Name = "Jason"
newTeam. TeamMembers(0).Title = "Supervisor”
newTeam. TeamMembers (0) .Age = 30

' Display the original team.
Console.Writeline("Original Team:")
Console.WritelLine(newTeam)

Display the cloned team.
Console.WriteLine("Cloned Team:")
Console.WriteLine(clonedTeam)

" Wait to continue.
Console.WriteLine(Environment.NewlLine)
Console.Writeline("Main method complete. Press Enter.")
Console.Read()

End Sub

End Class
End Namespace

512

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

13-3. Implement a Comparable Type

Problem

You need to provide a mechanism that allows you to compare custom types, enabling you to easily
sort collections containing instances of those types.

Solution

To provide a standard comparison mechanism for a type, implement the generic System. IComparable<T>
interface. To support the comparison of a type based on more than one characteristic, create separate
types that implement the generic System.Collections.Generic.IComparer<T> interface.

Caution The System. IComparable and System.Collections.IComparer interfaces available prior to
.NET Framework 2.0 do not use generics to ensure type safety. When working with .NET Framework 1.0 or 1.1, you must
take extra precautions to ensure the objects passed to the methods of these interfaces are of the appropriate type.

How It Works

If you need to sort your type into only a single order, such as ascending ID number or alphabetically
based on surname, you should implement the IComparable(0f T) interface. IComparable(Of T)
defines a single method named CompareTo, shown here:

Public Function CompareTo(ByVal other As T) As Integer
End Function

According to the specification of the CompareTo method, the object (other) passed to the method
must be an object of the same type as that being called, or CompareTo must throw a System.
ArgumentException exception. This is less important in .NET Framework 2.0, given that the imple-
mentation of IComparable uses generics and is type-safe, ensuring that the argument is of the correct
type. The value returned by CompareTo should be calculated as follows:

e Ifthe current object is less than other, return less than zero (for example, -1).
e Ifthe current object has the same value as other, return zero.

e Ifthe current object is greater than other, return greater than zero (for example, 1).

What these comparisons mean depends on the type implementing the IComparable interface.
For example, if you were sorting people based on their surname, you would do a String comparison
on this field. However, if you wanted to sort by birthday, you would need to perform a comparison
of the corresponding System.DateTime fields.

To support a variety of sort orders for a particular type, you must implement separate helper
types that implement the IComparer (Of T) interface, which defines the Compare method shown here:
Public Function CompareTo(ByVal x As T, ByVal y As T) As Integer
End Function

These helper types must encapsulate the necessary logic to compare two objects and return a
value based on the following logic:

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

e Ifxisless thany, return less than zero (for example, -1).
e If x has the same value as y, return zero.

e Ifxis greater thany, return greater than zero (for example, 1).

The Code

The Newspaper class listed here demonstrates the implementation of both the IComparable and
IComparer interfaces. The Newspaper.CompareTo method performs a case-insensitive comparison
of two Newspaper objects based on their Name properties. A Private nested class named
AscendingCirculationComparer implements IComparer and compares two Newspaper objects based
on their Circulation properties. An AscendingCirculationComparer object is obtained using the
Shared Newspaper.CirculationSorter property.

The Main method shown here demonstrates the comparison and sorting capabilities provided by
implementing the IComparable and IComparer interfaces. The method creates a System.Collections.
Arraylist collection containing five Newspaper objects. Main then sorts the ArraylList twice using the
Arraylist.Sort method. The first Sort operation uses the default Newspaper comparison mechanism
provided by the IComparable.CompareTo method. The second Sort operation uses an
AscendingCirculationComparer object to perform comparisons through its implementation of the
IComparer.Compare method.

Imports System
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter13
Public Class Newspaper
Implements IComparable(Of Newspaper)

Private _name As String

Private circulation As Integer
' Simple Newspaper constructor.

Public Sub New(ByVal name As String, ByVal circulation As Integer)

_nhame = name
_circulation = circulation

End Sub
' Declare a read-only property that returns an instance of the
AscendingCirculationComparer.
Public Shared ReadOnly Property CirculationSorter() As ‘=
IComparer (Of Newspaper)
Get
Return New AscendingCirculationComparer
End Get
End Property
' Declare a read-only property to access _name field.
Public ReadOnly Property Name() As String
Get
Return _name
End Get
End Property

513

514 CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

Declare a read-only property to access _circulation field.
Public ReadOnly Property Circulation() As String
Get
Return _circulation
End Get
End Property

Override Object.ToString.

Public Overrides Function ToString() As String

Return String.Format("{0}: Circulation = {1}", name, circulation)
End Function
' Implementation of IComparable.CompareTo. The generic definition
of IComparable allows us to ensure that the argument provided
must be a Newspaper object. Comparison is based on a case-
insensitive comparison of the Newspaper names.

Public Function CompareTo(ByVal other As Newspaper) As Integer w»

Implements System.IComparable(Of Newspaper).CompareTo

IComparable dictates that an object is always considered
greater than nothing.
If other Is Nothing Then Return 1

Short-circuit the case where the other Newspaper object is a
reference to this one.
If other Is Me Then Return 0

Calculate return value by performing a case-insensitive
comparison of the Newspaper names.

' Because the Newspaper name is a string, the easiest approach
is to reply on the comparison capabilities of the string
class, which perform culture-sensitive string comparisons.
Return String.Compare(Me.Name, other.Name, True)

End Function

Private Class AscendingCirculationComparer
Implements IComparer(Of Newspaper)

Implementation of IComparer.Compare. The generic definition of
IComparer allows us to ensure both arguments are Newspaper
objects.

Public Function Compare(ByVal x As Newspaper, '
ByVal y As Newspaper) As Integer Implements w»
System.Collections.CGeneric.IComparer(Of Newspaper).Compare

Handle logic for nothing reference as dictated by the
IComparer interface. Nothing is considered less than
any other value.

If x Is Nothing And y Is Nothing Then

Return 0

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS 515

ElseIf x Is Nothing Then

Return -1

ElseIf y Is Nothing Then
Return 1

End If

Short-circuit condition where x and y are references.
to the same object.
If x Is y Then
Return 0
End If

Compare the circulation figures. IComparer dictates that:
return less than zero if x <y
return zero if x =y
return greater than zero if x >y
This logic is easily implemented using integer arithmetic.
Return x.Circulation - y.Circulation

End Function

End Class
End Class
" A class to demonstrate the use of Newspaper.
Public Class Recipe13 03

Public Shared Sub Main()
Dim newspapers As New List(Of Newspaper)

newspapers.Add(New Newspaper("The Washington Post", 125780))
newspapers.Add(New Newspaper("The Times", 55230))
newspapers.Add(New Newspaper("The Sun", 88760))
newspapers.Add(New Newspaper("The Herald", 5670))
newspapers.Add(New Newspaper("The Gazette", 235950))

Console.Clear()
Console.Writeline("Unsorted newspaper list:")

For Each n As Newspaper In newspapers
Console.WriteLine(" {0}", n)

Next

' Sort the newspaper list using the object's implementation

of IComparable.CompareTo.

Console.WriteLine(Environment.NewlLine)

Console.Writeline("Newspaper list sorted by name (default order):")

newspapers.Sort()

For Each n As Newspaper In newspapers
Console.WriteLine(" {0}", n)
Next

516 CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

Sort the newspaper list using the supplied IComparer object.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Newspaper list sorted by circulation:")
newspapers.Sort(Newspaper.CirculationSorter)

For Each n As Newspaper In newspapers
Console.WriteLine(" {0}", n)
Next

Wait to continue.
Console.WriteLine(Environment.NewLine)
Console.WritelLine("Main method complete. Press Enter.")
Console.ReadlLine()

End Sub

End Class
End Namespace

Usage

Running the example will produce the results shown here. The first list of newspapers is unsorted,
the second is sorted using the IComparable interface, and the third is sorted using a comparer class
that implements IComparer.

Unsorted newspaper list:
The Washington Post: Circulation = 125780
The Times: Circulation = 55230
The Sun: Circulation = 88760
The Herald: Circulation = 5670
The Gazette: Circulation = 235950

Newspaper list sorted by name (default order):
The Gazette: Circulation = 235950
The Herald: Circulation = 5670
The Sun: Circulation = 88760
The Times: Circulation = 55230
The Washington Post: Circulation = 125780

Newspaper list sorted by circulation:
The Herald: Circulation = 5670
The Times: Circulation = 55230
The Sun: Circulation = 88760
The Washington Post: Circulation = 125780
The Gazette: Circulation = 235950

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

13-4. Implement an Enumerable Type Using a
Custom Iterator

Problem

You need to create a collection type whose contents you can enumerate using a For Each statement.

Solution

Implement the interface System.Collections.IEnumerable or System.Collections.Generic.
IEnumerable(Of T) on your collection type. The GetEnumerator method of the IEnumerable interface
returns an enumerator, which is an object that implements either the System.Collections.IEnumerator
or System.Collections.Ceneric.IEnumerator(Of T) interface, respectively. The IEnumerator interface
defines the methods used by the For Each statement to enumerate the collection.

Implement a private inner class within the enumerable type that implements the interface
IEnumerator and can iterate over the enumerable type while maintaining appropriate state informa-
tion. In the GetEnumerator method of the enumerable type, create and return an instance of the
iterator class.

Caution The IEnumerable and IEnumerator interfaces from the System.Collections.Generic
namespace mentioned in this recipe are new to .NET Framework 2.0. The interfaces from which these two inter-
faces inherit are also named IEnumerable and IEnumerator but are located in the System.Collections
namespace. This recipe will work using.NET Framework 1.0 or 1.1, but generic collections are not supported.

How It Works

A numeric indexer allows you to iterate through the elements of most standard collections using a
For loop. However, this technique does not always provide an appropriate abstraction for nonlinear
data structures, such as trees and multidimensional collections. The For Each statement provides
an easy-to-use and syntactically elegant mechanism for iterating through a collection of objects,
regardless of their internal structures.

In order to support For Each semantics, the type containing the collection of objects should
implement the IEnumerable interface. The IEnumerable interface declares a single method named
GetEnumerator, which does not take any arguments and returns an object that implements
IEnumerator.

The next step is to implement a separate class that implements the IEnumerator interface.

The IEnumerator interface provides a read-only, forward-only cursor for accessing the members
of the underlying collection. Table 13-2 describes the members of the IEnumerator interface. The
IEnumerator instance returned by GetEnumerator is your custom iterator—the object that actually
supports enumeration of the collection’s data elements.

If your collection class contains different types of data that you want to enumerate separately,
implementing the IEnumerable interface on the collection class is insufficient. In this case, you would
implement a number of properties that returned different IEnumerator instances that handle each
specific data type. For example, you might have a class that includes a collection of employees and a
collection of tasks. You would create the Employees property, which would return an IEnumerator for
the employee collection and the Tasks property, which would return an IEnumerator for the task
collection.

517

518

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

Table 13-2. Members of the IEnumerator Interface

Member Description

Current Property that returns the current data element. When the enumerator is created,
Current refers to a position preceding the first data element. This means you must
call MoveNext before using Current. If Current is called and the enumerator is posi-
tioned before the first element or after the last element in the data collection,
Current must throw a System.InvalidOperationException.

MoveNext Method that moves the enumerator to the next data element in the collection.
Returns True if there are more elements; otherwise, it returns False. If the under-
lying source of data changes during the life of the enumerator, MoveNext must
throw an InvalidOperationException.

Reset Method that moves the enumerator to a position preceding the first element in
the data collection. If the underlying source of data changes during the life of the
enumerator, Reset must throw an InvalidOperationException.

The Code

The TeamMember, Team, and TeamMemberEnumerator classes in the following example demonstrate
the implementation of a custom iterator using the IEnumerable and IEnumerator interfaces. The
TeamMember class represents a member of a team. The Team class, which represents a team of people,
is a collection of TeamMember objects. Team implements the IEnumerable interface and declares a sepa-
rate class, named TeamMemberEnumerator, to provide enumeration functionality. Team implements
the Observer patternusing delegate and event members to notify all TeamMemberEnumerator objects if
their underlying Team changes. (See recipe 13-10 for a detailed description of the Observer pattern.)
The TeamMemberEnumerator class is a Private nested class, so you cannot create instances of it other
than through the Team.GetEnumerator method.

This example also demonstrates what happens when you attempt to change the collection you
are enumerating through. In this case, an InvalidOperationException is thrown.

Imports System
Imports System.Collections.Generic
Imports System.Text.RegularExpressions

Namespace Apress.VisualBasicRecipes.Chapteri3

The TeamMember class represents an individual team member.
Public Class TeamMember

Public Name As String
Public Title As String

Simple TeamMember constructor.
Public Sub New(ByVal name As String, ByVal title As String)

Me.Name = _name
Me.Title = _title

End Sub

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS 519

Returns a string representation of the TeamMember.
Public Overrides Function ToString() As String

Return String.Format("{o} ({1})", Name, Title)
End Function

End Class
' Team class represents a collection of TeamMember objects.
It implements the IEnumerable interface to support enumerating
TeamMember objects.
Public Class Team

Implements IEnumerable

A delegate that specifies the signature that all team change
event handler methods must implement.

Public Delegate Sub TeamChangedEventHandler(ByVal source As Team, ‘=
ByVal e As EventArgs)

' A List to contain the TeamMember objects.
Private teamMembers As List(Of TeamMember)
' The event used to notify that the Team has changed.
Public Event TeamChange As TeamChangedEventHandler

Team constructor.
Public Sub New()

teamMembers = New List(Of TeamMember)
End Sub

Implement the IEnumerable.GetEnumerator method.
Public Function GetEnumerator() As System.Collections.IEnumerator ‘=
Implements System.Collections.IEnumerable.GetEnumerator
Return New TeamMemberEnumerator(Me)
End Function
' Adds a TeamMember object to the Team.
Public Sub AddMember(ByVal member As TeamMember)

teamMembers . Add (member)
" Notify listeners that the list has changed.
RaiseEvent TeamChange(Me, EventArgs.Empty)

End Sub

TeamMemberEnumerator is a private nested class that provides
the functionality to enumerate the TeamMembers contained in
a Team collection. As a nested class, TeamMemberEnumerator
has access to the private members of the Team class.

Private Class TeamMemberEnumerator

Implements IEnumerator

520

CHAPTER 13 COMMONLY USED INTERFACES AND PATTERNS

' The Team that this object is enumerating.
Private sourceTeam As Team

' Boolean to indicate whether underlying Team has changed
and so is invalid for further enumeration.
Private teamInvalid As Boolean = False

Integer to identify the current TeamMember. Provides
' the index of the TeamMember in the underlying List
' used by the Team collection. Initialize to -1, which is
' the index prior to the first element.
Private currentMember As Integer = -1

" The constructor takes a reference to the Team that is
' the source of the enumerated data.
Friend Sub New(ByVal team As Team)

Me.sourceTeam = _team

' Register with sourceTeam for change notifications.
AddHandler Me.sourceTeam.TeamChange, AddressOf Me.TeamChange

End Sub

Implement the IEnumerator.Current property.
Public ReadOnly Property Current() As Object Implements ‘s
System.Collections.IEnumerator.Current
Get
' If the TeamMemberEnumerator is positioned before
' the first element or after the last element, then
' throw an exception.
If currentMember = -1 Or currentMember > w»
(sourceTeam.teamMembers.Count - 1) Then
Throw New InvalidOperationException
End If

' Otherwise, return the current TeamMember.
Return sourceTeam.teamMembers (currentMember)

End Get
End Property

' Implement the IEnumerator.MoveNext method.
Public Function MoveNext() As Boolean Implements ‘w»
System.Collections.IEnumerator.MoveNext

" If underlying Team is invalid, throw exception.
If teamInvalid Then

Throw New InvalidOperat