
Visual Basic 2005
Recipes
A Problem-Solution Approach

■ ■ ■

Todd Herman, Allen Jones,
Matthew MacDonald, and
Rakesh Rajan

www.allitebooks.com

http://www.allitebooks.org

Visual Basic 2005 Recipes: A Problem-Solution Approach

Copyright © 2007 by Todd Herman, Allen Jones, Matthew MacDonald, Rakesh Rajan

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-852-8

ISBN-10 (pbk): 1-59059-852-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Damien Foggon
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,

Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Beth Christmas
Copy Edit Manager: Nicole Flores
Copy Editor: Marilyn Smith
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Susan Glinert
Proofreader: Liz Welch
Indexer: John Collin
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

www.allitebooks.com

http://www.allitebooks.org

This book is for my incredible wife and best friend Amy, as well as

my son Aidan and daughter Alaina. Without them I wouldn’t be the man

I am today and this book may not have been possible.

—Todd Herman

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Application Development . 1

■CHAPTER 2 Data Manipulation . 39

■CHAPTER 3 Application Domains, Reflection, and Metadata 77

■CHAPTER 4 Threads, Processes, and Synchronization . 111

■CHAPTER 5 Files, Directories, and I/O . 161

■CHAPTER 6 XML Processing . 211

■CHAPTER 7 Windows Forms . 243

■CHAPTER 8 Multimedia . 289

■CHAPTER 9 Database Access . 335

■CHAPTER 10 Networking and Remoting . 373

■CHAPTER 11 Security and Cryptography . 433

■CHAPTER 12 Unmanaged Code Interoperability . 481

■CHAPTER 13 Commonly Used Interfaces and Patterns . 501

■CHAPTER 14 Windows Integration . 545

■CHAPTER 15 Language Integrated Query (LINQ) . 571

■APPENDIX Acronyms . 603

■Index . 609

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 Application Development . 1

1-1. Create a Console Application from the Command Line 2
1-2. Create a Windows-Based Application from the Command Line 4

1-3. Create and Use a Code Module from the Command Line 8

1-4. Create and Use a Code Library from the Command Line 10

1-5. Access Command-Line Arguments . 11

1-6. Include Code Selectively at Build Time . 13

1-7. Access a Program Element That Has the Same Name
As a Keyword . 17

1-8. Create and Manage Strong-Named Key Pairs 18

1-9. Give an Assembly a Strong Name . 19

1-10. Verify That a Strong-Named Assembly Has Not
Been Modified . 22

1-11. Delay Sign an Assembly . 23

1-12. Sign an Assembly with an Authenticode Digital Signature 25

1-13. Create and Trust a Test Software Publisher Certificate 29

1-14. Manage the Global Assembly Cache . 31

1-15. Make Your Assembly More Difficult to Decompile 32

1-16. Manipulate the Appearance of the Console 33

1-17. Embed a Resource File in an Assembly . 35

■CHAPTER 2 Data Manipulation . 39

2-1. Manipulate the Contents of a String Efficiently 39

2-2. Encode a String Using Alternate Character Encoding 42

2-3. Convert Basic Value Types to Byte Arrays . 44

2-4. Base64 Encode Binary Data . 46

2-5. Validate Input Using Regular Expressions . 50

2-6. Use Compiled Regular Expressions . 54

www.allitebooks.com

http://www.allitebooks.org

viii ■CO N T E N T S

2-7. Create Dates and Times from Strings . 56

2-8. Add, Subtract, and Compare Dates and Times 58

2-9. Sort an Array or an ArrayList . 61

2-10. Copy a Collection to an Array . 62

2-11. Use a Strongly Typed Collection . 64

2-12. Create a Generic Type . 66

2-13. Store a Serializable Object to a File . 68

2-14. Read User Input from the Console . 72

■CHAPTER 3 Application Domains, Reflection, and Metadata 77

3-1. Load an Assembly into the Current Application Domain 77

3-2. Create an Application Domain . 80

3-3. Execute an Assembly in a Different Application Domain 82

3-4. Avoid Loading Unnecessary Assemblies into
Application Domains . 84

3-5. Create a Type That Cannot Cross Application
Domain Boundaries . 85

3-6. Create a Type That Can Be Passed Across Application
Domain Boundaries . 86

3-7. Instantiate a Type in a Different Application Domain 89

3-8. Pass Data Between Application Domains . 93

3-9. Unload Assemblies and Application Domains 96

3-10. Retrieve Type Information . 97

3-11. Test an Object’s Type . 99

3-12. Instantiate an Object Using Reflection . 101

3-13. Create a Custom Attribute . 105

3-14. Inspect the Attributes of a Program Element
Using Reflection . 107

■CHAPTER 4 Threads, Processes, and Synchronization 111

4-1. Execute a Method Using the Thread Pool . 112

4-2. Execute a Method Asynchronously . 115

4-3. Execute a Method Periodically . 123

4-4. Execute a Method at a Specific Time . 125

4-5. Execute a Method by Signaling a WaitHandle Object 127

4-6. Execute a Method Using a New Thread . 129

4-7. Synchronize the Execution of Multiple Threads
Using a Monitor . 132

■C ON TE N TS ix

4-8. Synchronize the Execution of Multiple Threads
Using an Event . 137

4-9. Synchronize the Execution of Multiple Threads
Using a Mutex . 140

4-10. Synchronize the Execution of Multiple Threads
Using a Semaphore . 143

4-11. Synchronize Access to a Shared Data Value 145

4-12. Know When a Thread Finishes . 147

4-13. Terminate the Execution of a Thread . 149

4-14. Create a Thread-Safe Collection Instance 151

4-15. Start a New Process . 152

4-16. Terminate a Process . 155

4-17. Ensure That Only One Instance of an Application Can
Execute Concurrently . 158

■CHAPTER 5 Files, Directories, and I/O . 161

5-1. Retrieve Information About a File, Directory, or Drive 162

5-2. Set File and Directory Attributes . 167

5-3. Copy, Move, or Delete a File or a Directory 168

5-4. Calculate the Size of a Directory . 171

5-5. Retrieve Version Information for a File . 173

5-6. Show a Just-in-Time Directory Tree in the TreeView Control 175

5-7. Read and Write a Text File . 177

5-8. Read and Write a Binary File . 180

5-9. Parse a Delimited Text File . 182

5-10. Read a File Asynchronously . 185

5-11. Find Files That Match a Wildcard Expression 188

5-12. Test Two Files for Equality . 190

5-13. Manipulate Strings Representing Filenames 191

5-14. Determine If a Path Is a Directory or a File 193

5-15. Work with Relative Paths . 194

5-16. Create a Temporary File . 195

5-17. Get the Total Free Space on a Drive . 196

5-18. Show the Common File Dialog Boxes . 197

5-19. Use an Isolated Store . 200

5-20. Monitor the File System for Changes . 202

5-21. Access a COM Port . 205

5-22. Get a Random Filename . 206

5-23. Manipulate the Access Control Lists of a File or Directory 207

x ■CO N T E N T S

■CHAPTER 6 XML Processing . 211

6-1. Show the Structure of an XML Document in a TreeView 211

6-2. Insert Nodes in an XML Document . 215

6-3. Quickly Append Nodes in an XML Document 217

6-4. Find Specific Elements by Name . 219

6-5. Get XML Nodes in a Specific XML Namespace 221

6-6. Find Elements with an XPath Search . 222

6-7. Read and Write XML Without Loading an Entire Document
into Memory . 225

6-8. Validate an XML Document Against a Schema 228

6-9. Use XML Serialization with Custom Objects 233

6-10. Create a Schema for a .NET Class . 237

6-11. Generate a Class from a Schema . 237

6-12. Perform an XSL Transform . 238

■CHAPTER 7 Windows Forms . 243

7-1. Add a Control Programmatically . 244

7-2. Link Data to a Control . 246

7-3. Process All the Controls on a Form . 248

7-4. Track the Visible Forms in an Application . 249

7-5. Find All MDI Child Forms . 252

7-6. Save Configuration Settings for a Form . 255

7-7. Force a List Box to Scroll to the Most Recently Added Item 258

7-8. Restrict a Textbox to Accepting Only Specific Input 259

7-9. Use an Autocomplete Combo Box . 262

7-10. Sort a List View by Any Column . 264

7-11. Lay Out Controls Automatically . 268

7-12. Use Part of a Main Menu for a Context Menu 269

7-13. Make a Multilingual Form . 271

7-14. Create a Form That Cannot Be Moved . 274

7-15. Make a Borderless Form Movable . 275

7-16. Create an Animated System Tray Icon . 277

7-17. Validate an Input Control . 279

7-18. Use a Drag-and-Drop Operation . 281

7-19. Use Context-Sensitive Help . 283

7-20. Display a Web Page in a Windows-Based Application 284

■C ON TE N TS xi

■CHAPTER 8 Multimedia . 289

8-1. Find All Installed Fonts . 290

8-2. Perform Hit Testing with Shapes . 292

8-3. Create an Irregularly Shaped Control . 295

8-4. Create a Movable Sprite . 297

8-5. Create a Scrollable Image . 301

8-6. Perform a Screen Capture . 303

8-7. Use Double Buffering to Increase Redraw Speed 304

8-8. Show a Thumbnail for an Image . 307

8-9. Play a Simple Beep or System Sound . 308

8-10. Play a WAV File . 310

8-11. Play a Sound File . 311

8-12. Show a Video with DirectShow . 313

8-13. Retrieve Information About Installed Printers 316

8-14. Print a Simple Document . 318

8-15. Print a Multipage Document . 321

8-16. Print Wrapped Text . 324

8-17. Show a Dynamic Print Preview . 327

8-18. Manage Print Jobs . 330

■CHAPTER 9 Database Access . 335

9-1. Connect to a Database . 336

9-2. Use Connection Pooling . 340

9-3. Create a Database Connection String Programmatically 342

9-4. Store a Database Connection String Securely 344

9-5. Execute a SQL Command or Stored Procedure 347

9-6. Use Parameters in a SQL Command or Stored Procedure 351

9-7. Process the Results of a SQL Query Using a Data Reader 355

9-8. Obtain an XML Document from a SQL Server Query 358

9-9. Perform Asynchronous Database Operations
Against SQL Server . 362

9-10. Write Database-Independent Code . 366

9-11. Discover All Instances of SQL Server on Your Network 370

■CHAPTER 10 Networking and Remoting . 373

10-1. Obtain Information About the Local Network Interface 374

10-2. Detect Changes in Network Connectivity 377

10-3. Download Data over HTTP or FTP . 379

xii ■CO N T E N T S

10-4. Download a File and Process It Using a Stream 382

10-5. Respond to HTTP Requests from Your Application 384

10-6. Get an HTML Page from a Site That
Requires Authentication . 388

10-7. Send E-mail Using SMTP . 390

10-8. Resolve a Host Name to an IP Address . 394

10-9. Ping an IP Address . 396

10-10. Communicate Using TCP . 398

10-11. Create a Multithreaded TCP Server That Supports
Asynchronous Communications . 403

10-12. Communicate Using UDP . 410

10-13. Avoid Hard-Coding the Web Service URL 413

10-14. Set Authentication Credentials for a Web Service 415

10-15. Call a Web Method Asynchronously . 418

10-16. Make an Object Remotable . 420

10-17. Register All the Remotable Classes in an Assembly 425

10-18. Host a Remote Object in IIS . 427

10-19. Control the Lifetime of a Remote Object 429

10-20. Control Versioning for Remote Objects . 431

■CHAPTER 11 Security and Cryptography . 433

11-1. Allow Partially Trusted Code to Use Your
Strong-Named Assembly . 434

11-2. Disable Code Access Security . 436

11-3. Disable Execution Permission Checks . 438

11-4. Ensure the Runtime Grants Specific Permissions to
Your Assembly . 440

11-5. Limit the Permissions Granted to Your Assembly 442

11-6. View the Permissions Required
by an Assembly . 444

11-7. Determine at Runtime If Your Code Has a
Specific Permission . 446

11-8. Restrict Who Can Extend Your Classes and Override
Class Members . 447

11-9. Inspect an Assembly’s Evidence . 449

11-10. Determine If the Current User Is a Member of a Specific
Windows Group . 451

11-11. Restrict Which Users Can Execute Your Code 455

11-12. Impersonate a Windows User . 458

■C ON TE N TS xiii

11-13. Create a Cryptographically Random Number 462

11-14. Calculate the Hash Code of a Password 463

11-15. Calculate the Hash Code of a File . 466

11-16. Verify a Hash Code . 469

11-17. Ensure Data Integrity Using a Keyed Hash Code 471

11-18. Work with Security-Sensitive Strings in Memory 474

11-19. Encrypt and Decrypt Data Using the Data Protection API 477

■CHAPTER 12 Unmanaged Code Interoperability . 481

12-1. Call a Function in an Unmanaged DLL . 481

12-2. Get the Handle for a Control, Window, or File 484

12-3. Call an Unmanaged Function That Uses a Structure 486

12-4. Call an Unmanaged Function That Uses a Callback 489

12-5. Retrieve Unmanaged Error Information . 491

12-6. Use a COM Component in a .NET Client . 493

12-7. Release a COM Component Quickly . 495

12-8. Use Optional Parameters . 496

12-9. Use an ActiveX Control in a .NET Client . 497

12-10. Expose a .NET Component to COM . 499

■CHAPTER 13 Commonly Used Interfaces and Patterns 501

13-1. Implement a Serializable Type . 501

13-2. Implement a Cloneable Type . 508

13-3. Implement a Comparable Type . 512

13-4. Implement an Enumerable Type Using a Custom Iterator 517

13-5. Implement a Disposable Class . 523

13-6. Implement a Formattable Type . 527

13-7. Implement a Custom Exception Class . 531

13-8. Implement a Custom Event Argument . 535

13-9. Implement the Singleton Pattern . 537

13-10. Implement the Observer Pattern . 539

■CHAPTER 14 Windows Integration . 545

14-1. Access Runtime Environment Information 545

14-2. Retrieve the Value of an Environment Variable 549

14-3. Write an Event to the Windows Event Log 550

14-4. Read and Write to the Windows Registry 553

xiv ■CO N T E N T S

14-5. Search the Windows Registry . 556

14-6. Create a Windows Service . 559

14-7. Create a Windows Service Installer . 564

14-8. Create a Shortcut on the Desktop or Start Menu 567

■CHAPTER 15 Language Integrated Query (LINQ) . 571

15-1. Use Implicitly Typed Variables . 572

15-2. Use Object Initializers . 574

15-3. Use Anonymous Types . 576

15-4. Create Extension Methods . 578

15-5. Query an IEnumerable(Of T) Collection . 579

15-6. Query a Nongeneric Collection . 584

15-7. Sort Data Using LINQ . 585

15-8. Filter Data Using LINQ . 589

15-9. Query Data from Multiple Collections . 591

15-10. Perform Aggregate Operations on Collections 594

15-11. Retrieve a Subset of Data from a Collection 598

15-12. Display Collection Data Using Paging . 600

■APPENDIX Acronyms . 603

■INDEX . 609

xv

About the Authors

■TODD HERMAN works for Northrop Grumman developing software for the
Department of State. He has been programming since he received his first
computer, a Commodore 64, on his eleventh birthday. His experience ranges
from developing data-entry software in FoxPro for a water research labora-
tory to writing biometric applications in Visual Basic for NEC. He currently
lives in Virginia with his wife and children, and spends his free time program-
ming, playing games, and watching the Sci-Fi channel.

■ALLEN JONES has 15 years of experience covering a wide range of IT disciplines
in a variety of sectors; however, his true passion has always been software
development. Allen is currently Director of Product Development at Smith-
Bayes, a UK-based firm that develops high-end, strategic-decision-support
software derived from technology used in Formula 1 motor racing.

■MATTHEW MACDONALD is an author, educator, and Microsoft MVP. He is a
regular contributor to programming journals and the author of more than a
dozen books about .NET programming, including Pro .NET 2.0 Windows Forms
and Custom Controls in C#, Pro ASP.NET 2.0, and Pro WPF (each published by
Apress). In a dimly remembered past life, he studied English literature and
theoretical physics.

■RAKESH RAJAN coauthored an earlier book on which this book is based
(Visual C# 2005 Recipes, Apress, 2006). Sadly, Rakesh passed away in 2006. He
was a Microsoft MVP in C# and an MCSD in .NET. As a software engineer from
India, Rakesh worked with US Technology at Technopark, Trivandrum in Kerala.

xvii

About the Technical Reviewer

■DAMIEN FOGGON is a freelance programmer and technical author based in Newcastle, England. He is
technical director of Thing-E Ltd., a company specializing in the development of dynamic web solutions
for the education sector, and founder of Littlepond Ltd. He started out working for BT in the UK before
moving on to progressively smaller companies, finally founding his own company. Now he can work
on all the cool new technologies, rather than the massive monolithic developments that still exist
out there.

Damien is the author of Beginning ASP.NET 2.0 Databases: From Novice to Professional
(Apress, 2006). He can be reached at http://www.littlepond.co.uk.

xix

Acknowledgments

I first want to thank Richard Guidorizzi for reaffirming my thoughts regarding writing a book. Further-
more, I must thank Ewan Buckingham for seeing something in my e-mail and offering me the
opportunity to write this. Finally, I must also extend my thanks and appreciation to Damien Foggon,
my technical reviewer. His comments and suggestions forced me to dig deeper into myself and the
material to make this a book to be proud of.

Todd Herman

xxi

Introduction

Attempting to learn all there is to know about developing VB .NET applications using the Microsoft
.NET Framework would be an incredibly daunting task. For most of us, the easiest and best approach
is to dive in and start writing code. We learn through testing and experimentation, and when we run
into the unknown, we search the Internet or grab a book to assist with the current subject.

Visual Basic 2005 Recipes is not a book that attempts to teach you about the inner workings of a
specific subject. It is a resource book that should sit near you as you program, where you can quickly
use it to reference what you need.

As you are settled in front of your computer working, you will inevitably run into a situation
where you need a little guidance, as all of us do from time to time. The subject matter in this book is
so comprehensive that you are bound to find at least one recipe that will fit the bill whenever you
need that nudge in the right direction.

This book will not teach you everything you need know about developing VB .NET applications in
Visual Studio 2005, but it will be invaluable as a stepping stone. Use the recipes as you need them, to help
move your development projects along or to give you a starting point for your own experimentation.

■Note This book is based on a previously published book called Visual C# 2005 Recipes. All the contents were
converted to Visual Basic and updated to reflect some VB-specific features and functionality. While the recipes all target
.NET Framework 2.0, many of the recipes will still work on .NET Framework 1.1. Where a recipe uses functionality
specific to .NET Framework 2.0, comments were added to present possible alternatives for using .NET Framework 1.1.
Furthermore, as we are on the cusp of a new version of the .NET Framework (3.5) and Visual Studio (code-named
Orcas), Chapter 15 covers a new and remarkable feature known as Language Integrated Query (LINQ).

1

■ ■ ■

C H A P T E R 1

Application Development

This chapter covers some of the fundamental activities you will need to perform when developing
your Visual Basic .NET (VB .NET) solutions. The recipes in this chapter describe how to do the following:

• Use the VB .NET command-line compiler to build console and Windows Forms applications
(recipes 1-1 and 1-2)

• Create and use code modules and libraries (recipes 1-3 and 1-4)

• Access command-line arguments from within your applications (recipe 1-5)

• Use compiler directives and attributes to selectively include code at build time (recipe 1-6)

• Access program elements built in other languages whose names conflict with VB .NET
keywords (recipe 1-7)

• Give assemblies strong names and verify strong-named assemblies (recipes 1-8, 1-9, 1-10,
and 1-11)

• Sign an assembly with a Microsoft Authenticode digital signature (recipes 1-12 and 1-13)

• Manage the shared assemblies that are stored in the global assembly cache (recipe 1-14)

• Make your assembly more difficult to decompile (recipe 1-15)

• Manipulate the appearance of the console (recipe 1-16)

• Compile and embed a string resource file (recipe 1-17)

■Note All the tools discussed in this chapter ship with the Microsoft .NET Framework or the .NET Framework
software development kit (SDK). The tools that are part of the .NET Framework are in the main directory for the
version of the framework you are running. For example, they are in the directory C:\WINDOWS\Microsoft.NET\
Framework\v2.0.50727 if you install version 2.0 of the .NET Framework to the default location. The .NET installation
process automatically adds this directory to your environment path.

The tools provided with the SDK are in the Bin subdirectory of the directory in which you install the SDK, which is
C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0 if you chose the default path during the installation of Microsoft
Visual Studio 2005. This directory is not added to your path automatically, so you must manually edit your path in
order to have easy access to these tools or use the shortcut to the command prompt installed in the Windows Start ➤
Programs menu of Visual Studio that calls vcvarsall.bat to set the right environment variables.

Most of the tools support short and long forms of the command-line switches that control their functionality. This
chapter always shows the long form, which is more informative but requires additional typing. For the shortened
form of each switch, see the tool’s documentation in the .NET Framework SDK.

2 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

1-1. Create a Console Application from the
Command Line

Problem
You need to use the VB .NET command-line compiler to build an application that does not require a
Windows graphical user interface (GUI) but instead displays output to, and reads input from, the
Windows command prompt (console).

Solution
In one of your classes, ensure you implement a Shared method named Main with one of the following
signatures:

Public Shared Sub Main()
End Sub
Public Shared Sub Main(ByVal args As String())
End Sub
Public Shared Function Main() As Integer
End Sub
Public Shared Function Main(ByVal args As String()) As Integer
End Sub

Build your application using the VB .NET compiler (vbc.exe) by running the following
command (where HelloWorld.vb is the name of your source code file):

vbc /target:exe HelloWorld.vb

■Note If you own Visual Studio, you will most often use the Console Application project template to create new
console applications. However, for small applications, it is often just as easy to use the command-line compiler. It
is also useful to know how to build console applications from the command line if you are ever working on a machine
without Visual Studio and want to create a quick utility to automate some task.

How It Works
By default, the VB .NET compiler will build a console application unless you specify otherwise. For
this reason, it’s not necessary to specify the /target:exe switch, but doing so makes your intention
clearer, which is useful if you are creating build scripts that will be used by others or will be used
repeatedly over a period of time.

To build a console application consisting of more than one source code file, you must specify all
the source files as arguments to the compiler. For example, the following command builds an appli-
cation named MyFirstApp.exe from two source files named HelloWorld.vb and ConsoleUtils.vb:

vbc /target:exe /main:HelloWorld /out:MyFirstApp.exe HelloWorld.vb ConsoleUtils.vb

The /out switch allows you to specify the name of the compiled assembly. Otherwise, the assembly
is named after the first source file listed—HelloWorld.vb in the example. If classes in both the

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 3

HelloWorld and ConsoleUtils files contain Main methods, the compiler cannot automatically deter-
mine which method represents the correct entry point for the assembly. Therefore, you must use the
compiler’s /main switch to identify the name of the class that contains the correct entry point for your
application. When using the /main switch, you must provide the fully qualified class name (including
the namespace); otherwise, you will get a BC30420 compilation error: “‘Sub Main’ was not found in
‘HelloWorld’.”

If you have a lot of VB .NET code source files to compile, you should use a response file. This
simple text file contains the command-line arguments for vbc.exe. When you call vbc.exe, you give
the name of this response file as a single parameter prefixed by the @ character. Here is an example:

vbc @commands.rsp

To achieve the equivalent of the previous example, commands.rsp would contain this:

/target:exe /main:HelloWorld /out:MyFirstApp.exe HelloWorld.vb ConsoleUtils.vb

For readability, response files can include comments (using the # character) and can span
multiple lines. The VB .NET compiler also allows you to specify multiple response files.

The Code

The following code lists a class named ConsoleUtils that is defined in a file named ConsoleUtils.vb:

Imports System

Namespace Apress.VisualBasicRecipes.Chapter01
 Public Class ConsoleUtils

 ' This method will display a prompt and read a response from the console.
 Public Shared Function ReadString(ByVal message As String) As String

 Console.Write(message)
 Return Console.ReadLine

 End Function

 ' This method will display a message on the console.
 Public Shared Sub WriteString(ByVal message As String)

 Console.WriteLine(message)

 End Sub

 ' This method is used for testing ConsoleUtils methods.
 ' While it is not good practice to have multiple Main
 ' methods in an assembly, it sometimes can't be avoided.
 ' You specify in the compiler which Main subroutine should
 ' be used as the entry point. For this example, this Main
 ' routine will never be executed.
 Public Shared Sub Main()

 ' Prompt the reader to enter a name.
 Dim name As String = ReadString("Please enter a name: ")

4 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

 ' Welcome the reader to Visual Basic 2005 Recipes.
 WriteString("Welcome to Visual Basic 2005 Recipes, " & name)

 End Sub

 End Class
End Namespace

The HelloWorld class listed next uses the ConsoleUtils class to display the message “Hello, World”
to the console (HelloWorld is contained in the HelloWorld.vb file):

Imports System

Namespace Apress.VisualBasicRecipes.Chapter01
 Public Class HelloWorld

 Public Shared Sub Main()

 ConsoleUtils.WriteString("Hello, World")

 ConsoleUtils.WriteString(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
 End Class
End Namespace

Usage

To build HelloWorld.exe from the two source files, use the following command:

vbc /target:exe /main:Apress.VisualBasicRecipes.Chapter01.HelloWorld ➥
/out:HelloWorld.exe ConsoleUtils.vb HelloWorld.vb

1-2. Create a Windows-Based Application from
the Command Line

Problem
You need to use the VB .NET command-line compiler to build an application that provides a
Windows Forms–based GUI.

Solution
Create a class that inherits from the System.Windows.Forms.Form class. (This will be your applica-
tion’s main form.) In one of your classes, ensure you implement a Shared method named Main. In the
Main method, create an instance of your main form class and pass it to the Shared method Run of the
System.Windows.Forms.Application class. Build your application using the command-line VB .NET
compiler, and specify the /target:winexe compiler switch.

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 5

■Note If you own Visual Studio, you will most often use the Windows Application project template to create new
Windows Forms–based applications. Building large GUI-based applications is a time-consuming undertaking that
involves the correct instantiation, configuration, and wiring up of many forms and controls. Visual Studio automates
much of the work associated with building graphical applications. Trying to build a large graphical application
without the aid of tools such as Visual Studio will take you much longer, be extremely tedious, and result in a greater
chance of bugs in your code. However, it is also useful to know the essentials required to create a Windows-based
application using the command line in case you are ever working on a machine without Visual Studio and want to
create a quick utility to automate some task or get input from a user.

How It Works
Building an application that provides a simple Windows GUI is a world away from developing a full-
fledged Windows-based application. However, you must perform certain tasks regardless of whether you
are writing the Windows equivalent of Hello World or the next version of Microsoft Word, including
the following:

• For each form you need in your application, create a class that inherits from the System.
Windows.Forms.Form class.

• In each of your form classes, declare members that represent the controls that will be on that
form, such as buttons, labels, lists, and textboxes. These members should be declared Private
or at least Protected so that other program elements cannot access them directly. If you need
to expose the methods or properties of these controls, implement the necessary members in
your form class, providing indirect and controlled access to the contained controls.

• Declare methods in your form class that will handle events raised by the controls contained
by the form, such as button clicks or key presses when a textbox is the active control. These
methods should be Private or Protected and follow the standard .NET event pattern (described
in recipe 13-10). It’s in these methods (or methods called by these methods) where you will
define the bulk of your application’s functionality.

• Declare a constructor for your form class that instantiates each of the form’s controls and
configures their initial state (size, color, position, content, and so on). The constructor should
also wire up the appropriate event handler methods of your class to the events of each control.

• Declare a Shared method named Main—usually as a member of your application’s main form
class. This method is the entry point for your application, and it can have the same signatures
as those mentioned in recipe 1-1. In the Main method, call Application.EnableVisualStyles
to allow XP theme support, create an instance of your application’s main form, and pass it as
an argument to the Shared Application.Run method. The Run method makes your main form
visible and starts a standard Windows message loop on the current thread, which passes the
user input (key presses, mouse clicks, and so on) to your application form as events.

The Code

The Recipe01_02 class shown in the following code listing is a simple Windows Forms application
that demonstrates the techniques just listed. When run, it prompts a user to enter a name and then
displays a message box welcoming the user to Visual Basic 2005 Recipes.

6 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Imports System
Imports System.Windows.Forms

Namespace Apress.VisualBasicRecipes.Chapter01

 Public Class Recipe01_02
 Inherits Form

 ' Private members to hold references to the form's controls.
 Private Label1 As Label
 Private TextBox1 As TextBox
 Private Button1 As Button

 ' Constructor used to create an instance of the form and configure
 ' the form's controls.
 Public Sub New()
 ' Instantiate the controls used on the form.
 Me.Label1 = New Label
 Me.TextBox1 = New TextBox
 Me.Button1 = New Button

 ' Suspend the layout logic of the form while we configure and
 ' position the controls.
 Me.SuspendLayout()

 ' Configure Label1, which displays the user prompt.
 Me.Label1.Location = New System.Drawing.Size(16, 36)
 Me.Label1.Name = "Label1"
 Me.Label1.Size = New System.Drawing.Size(155, 16)
 Me.Label1.TabIndex = 0
 Me.Label1.Text = "Please enter your name:"

 ' Configure TextBox1, which accepts the user input.
 Me.TextBox1.Location = New System.Drawing.Point(172, 32)
 Me.TextBox1.Name = "TextBox1"
 Me.TextBox1.TabIndex = 1
 Me.TextBox1.Text = ""

 ' Configure Button1, which the user clicks to enter a name.
 Me.Button1.Location = New System.Drawing.Point(109, 80)
 Me.Button1.Name = "Button1"
 Me.Button1.TabIndex = 2
 Me.Button1.Text = "Enter"
 AddHandler Button1.Click, AddressOf Button1_Click

 ' Configure WelcomeForm, and add controls.
 Me.ClientSize = New System.Drawing.Size(292, 126)
 Me.Controls.Add(Me.Button1)
 Me.Controls.Add(Me.TextBox1)
 Me.Controls.Add(Me.Label1)
 Me.Name = "Form1"
 Me.Text = "Visual Basic 2005 Recipes"

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 7

 ' Resume the layout logic of the form now that all controls are
 ' configured.
 Me.ResumeLayout(False)

 End Sub

 Private Sub Button1_Click(ByVal sender As Object, ➥
ByVal e As System.EventArgs)

 ' Write debug message to the console.
 System.Console.WriteLine("User entered: " + TextBox1.Text)

 ' Display welcome as a message box.
 MessageBox.Show("Welcome to Visual Basic 2005 Recipes, " + ➥
TextBox1.Text, "Visual Basic 2005 Recipes")

 End Sub

 ' Application entry point, creates an instance of the form, and begins
 ' running a standard message loop on the current thread. The message
 ' loop feeds the application with input from the user as events.
 Public Shared Sub Main()
 Application.EnableVisualStyles()
 Application.Run(New Recipe01_02())
 End Sub

 End Class
End Namespace

Usage

To build the Recipe01_02 class into an application, use this command:

vbc /target:winexe Recipe01-02.vb

The /target:winexe switch tells the compiler that you are building a Windows-based applica-
tion. As a result, the compiler builds the executable in such a way that no console is created when you
run your application. If you use the /target:exe switch instead of /target:winexe to build a Windows
Forms application, your application will still work correctly, but you will have a console window
visible while the application is running. Although this is undesirable for production-quality software,
the console window is useful if you want to write debug and logging information while you’re devel-
oping and testing your Windows Forms application. You can write to this console using the Write
and WriteLine methods of the System.Console class.

Figure 1-1 shows the WelcomeForm.exe application greeting a user named John Doe. This
version of the application is built using the /target:exe compiler switch, resulting in the visible
console window in which you can see the output from the Console.WriteLine statement in the
button1_Click event handler.

8 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Figure 1-1. A simple Windows Forms application

1-3. Create and Use a Code Module from the
Command Line

Problem
You need to do one or more of the following:

• Improve your application’s performance and memory efficiency by ensuring the runtime
loads rarely used types only when they are required.

• Compile types written in VB .NET to a form you can build into assemblies being developed in
other .NET languages.

• Use types developed in another language and build them into your VB .NET assemblies.

Solution
Build your VB .NET source code into a module by using the command-line compiler and specifying
the /target:module compiler switch. To incorporate existing modules into your assembly, use the
/addmodule compiler switch.

How It Works
Modules are the building blocks of .NET assemblies and should not be confused with the Module
object type block. Modules consist of a single file that contains the following:

• Microsoft Intermediate Language (MSIL) code created from your source code during
compilation

• Metadata describing the types contained in the module

• Resources, such as icons and string tables, used by the types in the module

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 9

Assemblies consist of one or more modules and an assembly manifest. An assembly manifest is
metadata that contains important information (such as the name, version, culture, and so on)
regarding the assembly. If the assembly contains a single module, the module and assembly mani-
fest are usually built into a single file for convenience. If more than one module exists, the assembly
represents a logical grouping of more than one file that you must deploy as a complete unit. In these
situations, the assembly manifest is either contained in a separate file or built into one of the modules.
Visual Studio includes the MSIL Disassembler tool (Ildasm.exe), which lets you view the raw MSIL
code for any assembly. You can use this tool to view an assembly manifest.

By building an assembly from multiple modules, you complicate the management and deploy-
ment of the assembly, but under some circumstances, modules offer significant benefits:

• The runtime will load a module only when the types defined in the module are required.
Therefore, where you have a set of types that your application uses rarely, you can partition
them into a separate module that the runtime will load only if necessary. This can improve
performance, especially if your application is loaded across a network, and minimize the use
of memory.

• The ability to use many different languages to write applications that run on the common
language runtime (CLR) is a great strength of the .NET Framework. However, the VB .NET
compiler can’t compile your Microsoft C# or COBOL .NET code for inclusion in your assembly.
To use code written in another language, you can compile it into a separate assembly and
reference it. But if you want it to be an integral part of your assembly, you must build it into a
module. Similarly, if you want to allow others to include your code as an integral part of their
assemblies, you must compile your code as modules. When you use modules, because the
code becomes part of the same assembly, members marked as Friend or Protected Friend
are accessible, whereas they would not be if the code had been accessed from an external
assembly.

Usage

To compile a source file named ConsoleUtils.vb (see recipe 1-1 for the contents) into a module,
use the command vbc /target:module ConsoleUtils.vb. The result is the creation of a file named
ConsoleUtils.netmodule. The netmodule extension is the default extension for modules, and the
filename is the same as the name of the VB .NET source file.

You can also build modules from multiple source files, which results in a single file containing
the MSIL and metadata (the assembly manifest) for all types contained in all the source files. The
command vbc /target:module ConsoleUtils.vb WindowsUtils.vb compiles two source files named
ConsoleUtils.vb and WindowsUtils.vb to create the module named ConsoleUtils.netmodule. The
module is named after the first source file listed unless you override the name with the /out compiler
switch. For example, the command vbc /target:module /out:Utilities.netmodule ConsoleUtils.vb
WindowsUtils.vb creates a module named Utilities.netmodule.

To build an assembly consisting of multiple modules, you must use the /addmodule compiler
switch. To build an executable named MyFirstApp.exe from two modules named WindowsUtils.
netmodule and ConsoleUtils.netmodule and two source files named SourceOne.vb and SourceTwo.vb,
use the command vbc /out:MyFirstApp.exe /target:exe /addmodule:WindowsUtils.netmodule,
ConsoleUtils.netmodule SourceOne.vb SourceTwo.vb.

This command will result in an assembly that is composed of the following components:

• MyFirstApp.exe, which contains the assembly manifest as well as the MSIL for the types
declared in the SourceOne.vb and SourceTwo.vb source files

• ConsoleUtils.netmodule and WindowsUtils.netmodule, which are now integral components
of the multifile assembly but are unchanged by this compilation process

10 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

■Caution If you attempt to run an assembly (such as MyFirstApp.exe) without any required netmodules present,
a System.IO.FileNotFoundException is thrown the first time any code tries to use types defined in the
missing code module. This is a significant concern because the missing modules will not be identified until runtime.
You must be careful when deploying multifile assemblies.

1-4. Create and Use a Code Library from the
Command Line

Problem
You need to build a set of functionality into a reusable code library so that multiple applications can
reference and reuse it.

Solution
Build your library using the command-line VB .NET compiler, and specify the /target:library
compiler switch. To reference the library, use the /reference compiler switch when you build your
application, and specify the names of the required libraries.

How It Works
Recipe 1-1 showed you how to build an application named MyFirstApp.exe from the two source files
ConsoleUtils.vb and HelloWorld.vb. The ConsoleUtils.vb file contains the ConsoleUtils class, which
provides methods to simplify interaction with the Windows console. If you were to extend the func-
tionality of the ConsoleUtils class, you could add functionality useful to many applications. Instead
of including the source code for ConsoleUtils in every application, you could build it into a library
and deploy it independently, making the functionality accessible to many applications.

Usage

To build the ConsoleUtils.vb file into a library, use the command vbc /target:library ConsoleUtils.vb.
This will produce a library file named ConsoleUtils.dll. To build a library from multiple source files,
list the name of each file at the end of the command. You can also specify the name of the library
using the /out compiler switch; otherwise, the library is named after the first source file listed. For
example, to build a library named MyFirstLibrary.dll from two source files named ConsoleUtils.vb and
WindowsUtils.vb, use the command vbc /out:MyFirstLibrary.dll /target:library ConsoleUtils.vb
WindowsUtils.vb.

Before distributing your library, you might consider strong naming it so that no one can modify
your assembly and pass it off as being the original. Strong naming your library also allows people to
install it into the global assembly cache (GAC), which makes reuse much easier. (Recipe 1-9 describes
how to strong name your assembly, and recipe 1-14 describes how to install a strong-named assembly
into the GAC.) You might also consider signing your library with an Authenticode signature, which
allows users to confirm you are the publisher of the assembly. (See recipe 1-12 for details on signing
assemblies with Authenticode.)

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 11

To compile an assembly that relies on types declared within external libraries, you must tell
the compiler which libraries are referenced using the /reference compiler switch. For example, to
compile the HelloWorld.vb source file (from recipe 1-1) if the ConsoleUtils class is contained in
the ConsoleUtils.dll library, use the command vbc /reference:ConsoleUtils.dll HelloWorld.vb.
Remember these four points:

• If you reference more than one library, separate each library name with a comma or semi-
colon, but don’t include any spaces. For example, use /reference:ConsoleUtils.dll,
WindowsUtils.dll.

• If the libraries aren’t in the same directory as the source code, use the /libpath switch on the
compiler to specify the additional directories where the compiler should look for libraries.
For example, use /libpath:c:\CommonLibraries,c:\Dev\ThirdPartyLibs.

• Note that additional directories can be relative to the source folder. Don’t forget that at runtime,
the generated assembly must be in the same folder as the application that needs it, except if
you deploy it into the GAC.

• If the library you need to reference is a multifile assembly, reference the file that contains the
assembly manifest. (For information about multifile assemblies, see recipe 1-3.)

1-5. Access Command-Line Arguments

Problem
You need to access the arguments that were specified on the command line when your application
was executed.

Solution
Use a signature for your Main method that exposes the command-line arguments as a String array.
Alternatively, access the command-line arguments from anywhere in your code using the Shared
members of the System.Environment class.

How It Works
Declaring your application’s Main method with one of the following signatures provides access to the
command-line arguments as a string array:

Public Shared Sub Main(ByVal args As String())
End Sub
Public Shared Function Main(ByVal args As String()) As Integer
End Sub

At runtime, the args argument will contain a string for each value entered on the command line
after your application’s name. The application’s name is not included in the array of arguments.

If you need access to the command-line arguments at places in your code other than the Main
method, you can process the command-line arguments in your Main method and store them for later
access. However, this is not necessary since you can use the System.Environment class, which
provides two Shared members that return information about the command line: CommandLine and
GetCommandLineArgs.

12 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

The CommandLine property returns a string containing the full command line that launched the
current process. Depending on the operating system on which the application is running, path infor-
mation might precede the application name. Microsoft Windows 2003, Windows NT 4.0, Windows
2000, and Windows XP don’t include path information, whereas Windows 98 and Windows ME do.
The GetCommandLineArgs method returns a String array containing the command-line arguments.
This array can be processed in the same way as the String array passed to the Main method, as discussed
at the start of this section. Unlike the array passed to the Main method, the first element in the array
returned by the GetCommandLineArgs method is the filename of the application.

The Code

To demonstrate the access of command-line arguments, the Main method in the following example
steps through each of the command-line arguments passed to it and displays them to the console.
The example then accesses the command line directly through the Environment class.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter01
 Public Class Recipe01_05

 Public Shared Sub Main(ByVal args As String())

 ' Step through the command-line arguments
 For Each s As String In args
 Console.WriteLine(s)
 Next

 ' Alternatively, access the command-line arguments directly.
 Console.WriteLine(Environment.CommandLine)

 For Each s As String In Environment.GetCommandLineArgs()
 Console.WriteLine(s)
 Next

 ' Wait to continue
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

If you execute the Recipe01-05 example using the following command:

Recipe01-05 "one \"two\" three" four 'five six'

the application will generate the following output on the console:

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 13

one "two" three
four
'five
six'
"C:\Programming\Visual Basic 2005 Recipes\Chapter01\Recipe01-05\bin\Debug\Recipe
01-05.vshost.exe" "one \"two\" three" four 'five six'
C:\Programming\Visual Basic 2005 Recipes\Chapter01\Recipe01-05\bin\Debug\Recipe0
1-05.vshost.exe
one "two" three
four
'five
six'

Notice that the use of double quotes (") results in more than one word being treated as a single
argument, although single quotes (') do not. Also, you can include double quotes in an argument by
escaping them with the backslash character (\). Finally, notice that all spaces are stripped from the
command line unless they are enclosed in double quotes.

1-6. Include Code Selectively at Build Time

Problem
You need to selectively include and exclude sections of source code from your compiled assembly.

Solution
Use the #If, #ElseIf, #Else, and #End If preprocessor directives to identify blocks of code that
should be conditionally included in your compiled assembly. Use the System.Diagnostics.
ConditionalAttribute attribute to define methods that should be called conditionally only. Control
the inclusion of the conditional code using the #Const directive in your code, or use the /define
switch when you run the VB .NET compiler from the command line.

How It Works
If you need your application to function differently depending on factors such as the platform or
environment on which it runs, you can build runtime checks into the logic of your code that trigger
the variations in operation. However, such an approach can bloat your code and affect performance,
especially if many variations need to be supported or many locations exist where evaluations need
to be made.

An alternative approach is to build multiple versions of your application to support the different
target platforms and environments. Although this approach overcomes the problems of code bloat
and performance degradation, it would be an untenable solution if you had to maintain different
source code for each version, so VB .NET provides features that allow you to build customized
versions of your application from a single code base.

The #If, #ElseIf, #Else, and #End If preprocessor directives allow you to identify blocks of code
that the compiler should include or exclude in your assembly at compile time. This is accomplished
by evaluating the value of specified symbols. Since this happens at compile time, it may result in
multiple executables being distributed.

14 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Symbols can be any literal value. They also support the use of all standard comparison and
logical operators or other symbols. The #If..#End If construct evaluates #If and #ElseIf clauses
only until it finds one that evaluates to true, meaning that if you define multiple symbols (winXP and
win2000, for example), the order of your clauses is important. The compiler includes only the code in
the clause that evaluates to true. If no clause evaluates to true, the compiler includes the code in the
#Else clause.

You can also use logical operators to base conditional compilation on more than one symbol.
Use parentheses to group multiple expressions. Table 1-1 summarizes the supported operators.

■Caution You must be careful not to overuse conditional compilation directives and not to make your conditional
expressions too complex; otherwise, your code can quickly become confusing and unmanageable—especially as
your projects become larger.

To define a symbol, you can either include a #Const directive in your code or use the /define
compiler switch. Symbols defined using #Const are active until the end of the file in which they are
defined. Symbols defined using the /define compiler switch are active in all source files that are
being compiled. All #Const directives must appear at the top of your source file before any code,
including any Imports statements.

If you only need to determine if a symbol has been defined, a more elegant alternative to the #If
preprocessor directive is the attribute System.Diagnostics.ConditionalAttribute. If you apply
ConditionalAttribute to a method, the compiler will ignore any calls to the method if the symbol
specified by ConditionalAttribute is not defined, or set to False, at the calling point.

Using ConditionalAttribute centralizes your conditional compilation logic on the method
declaration and means you can freely include calls to conditional methods without littering your code
with #If directives. However, because the compiler literally removes calls to the conditional method
from your code, your code can’t have dependencies on return values from the conditional method.
This means you can apply ConditionalAttribute only to subroutines.

Table 1-1. Logical Operators Supported by the #If . . #End If Directive

Operator Example Description

NOT #If NOT winXP Inequality. Evaluates to true if the symbol winXP is
not equal to True. Equivalent to #If NOT winXP.

AND #If winXP AND release Logical AND. Evaluates to true only if the symbols
winXP and release are equal to True.

AndAlso #If winXP AndAlso release Logical AND. Works the same as the AND operator,
except that the second expression (release) is not
evaluated if the first expression (winXP) is False.

OR #IF winXP OR release Logical OR. Evaluates to true if either of the
symbols winXP or release is equal to True.

OrElse #IF winXP OrElse release Logical OR. Works to the same as the OR operator,
except that the second expression (release) is not
evaluated if the first expression (winXP) is True.

XOR #IF winXP XOR release Logical XOR. Evaluates to true if only one of the
symbols, winXP or release, is equal to True.

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 15

The Code

In this example, the code assigns a different value to the local variable platformName based on whether
the winXP, win2000, winNT, or Win98 symbols are defined. The head of the code defines the win2000
symbol. In addition, the ConditionalAttribute specifies that calls to the DumpState method should
be included in an assembly only if the symbol DEBUG is defined during compilation. The DEBUG
symbol is defined by default in debug builds.

#Const win2000 = True

Imports System
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter01

 Public Class Recipe01_06

 ' Declare a string to contain the platform name
 Private Shared platformName As String

 <Conditional("DEBUG")> _
 Public Shared Sub DumpState()
 Console.WriteLine("Dump some state...")
 End Sub

 Public Shared Sub Main()

 #If winXP Then ' Compiling for Windows XP
 platformName = "Microsoft Windows XP"
 #ElseIf win2000 Then ' Compiling for Windows 2000
 platformName = "Microsoft Windows 2000"
 #ElseIf winNT Then ' Compiling for Windows NT
 platformName = "Microsoft Windows NT"
 #ElseIf win98 Then ' Compiling for Windows 98
 platformName = "Microsoft Windows 98"
 #Else ' Unknown platform specified
 platformName = "Unknown"
 #End If

 Console.WriteLine(platformName)

 ' Call the conditional DumpState method
 DumpState()

 ' Wait to continue...
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.Read()

 End Sub

 End Class
End Namespace

16 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Usage

To build the example and define the symbol winXP, use the command vbc /define:winXP
ConditionalExample.vb. If you compile this sample without defining the winXP symbol, the win2000
symbol will be used since it was defined directly in the code.

Notes
You can apply multiple ConditionalAttribute instances to a method in order to produce logical OR
behavior. Calls to the following version of the DumpState method will be compiled only if the DEBUG or
TEST symbols are defined:

<Conditional("DEBUG"), Conditional("TEST")> _
Public Shared Sub DumpState()
 ...
End Sub

Achieving logical AND behavior is not as clean and involves the use of an intermediate condi-
tional method, quickly leading to overly complex code that is hard to understand and maintain. You
should be cautious with this approach, as you may end up with code in your assembly that is never
called. The following is a quick example that requires the definition of both the DEBUG and TEST symbols
for the DumpState functionality (contained in DumpState2) to be called:

<Conditional("DEBUG")> _
Public Shared Sub DumpState()
 DumpState2()
End Sub

<Conditional("TEST")> _
Public Shared Sub DumpState2()
 ...
End Sub

It’s important to remember that you are not limited to Boolean values for your symbols. You can
define a symbol with a string value, like this:

#Const OS = "XP"

You could also do this using the command vbc /define:OS=\"XP\" ConditionalExample.vb. You
must escape quotation marks using the \ character.

To use this new symbol, the preprocessor #If..#End If construct must be changed accordingly:

#If OS = "XP" Then ' Compiling for Windows XP
 platformName = "Microsoft Windows XP"
#ElseIf OS = "2000" Then ' Compiling for Windows 2000
 platformName = "Microsoft Windows 2000"
#ElseIf OS = "NT" Then ' Compiling for Windows NT
 platformName = "Microsoft Windows NT"
#ElseIf OS = "98" Then ' Compiling for Windows 98
 platformName = "Microsoft Windows 98"
#Else ' Unknown platform specified
 platformName = "Unknown"
#End If

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 17

■Note The Debug and Trace classes from the System.Diagnostics namespace use ConditionalAttribute
on many of their methods. The methods of the Debug class are conditional on the definition of the symbol DEBUG,
and the methods of the Trace class are conditional on the definition of the symbol TRACE.

1-7. Access a Program Element That Has the
Same Name As a Keyword

Problem
You need to access a member of a type, but the type or member name is the same as a VB .NET keyword.

Solution
Surround all instances of the identifier name in your code with brackets ([]).

How It Works
The .NET Framework allows you to use software components developed in other .NET languages
from within your VB .NET applications. Each language has its own set of keywords (or reserved
words) and imposes different restrictions on the names programmers can assign to program elements
such as types, members, and variables. Therefore, it is possible that a programmer developing a
component in another language will inadvertently use a VB .NET keyword as the name of a program
element. Using brackets ([]) enables you to use a VB .NET keyword as an identifier and overcome
these possible naming conflicts.

The Code

The following code fragment creates the new Operator (perhaps a telephone operator) class. A new
instance of this class is created, and its Friend property is set to True—both Operator and Friend are
VB .NET keywords:

Public Class [Operator]
 Public [Friend] As Boolean
End Class

' Instantiate an operator object
Dim operator1 As New [Operator]

' Set the operator's Friend property
operator1.[Friend] = True

18 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

1-8. Create and Manage Strong-Named Key Pairs

Problem
You need to create public and private keys (a key pair) so that you can assign strong names to your
assemblies.

Solution
Use the Strong Name tool (sn.exe) to generate a key pair and store the keys in a file or cryptographic
service provider (CSP) key container.

■Note A CSP is an element of the Win32 CryptoAPI that provides services such as encryption, decryption, and
digital signature generation. CSPs also provide key container facilities, which use strong encryption and operating
system security to protect any cryptographic keys stored in the container. A detailed discussion of CSPs and CryptoAPI is
beyond the scope of this book. All you need to know for this recipe is that you can store your cryptographic keys in
a CSP key container and be relatively confident that it is secure as long as no one knows your Windows password.
Refer to the CryptoAPI information in the platform SDK documentation for complete details.

How It Works
To generate a new key pair and store the keys in the file named MyKeys.snk, execute the command
sn -k MyKeys.snk. (.snk is the usual extension given to files containing strong name keys.) The generated
file contains both your public and private keys. You can extract the public key using the command
sn -p MyKeys.snk MyPublicKey.snk, which will create MyPublicKey.snk containing only the public
key. Once you have this file in hand, you can view the public key using the command sn -tp
MyPublicKeys.snk, which will generate output similar to the (abbreviated) listing shown here:

Microsoft (R) .NET Framework Strong Name Utility Version 2.0.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Public key is
07020000002400005253413200040000010001002b4ef3c2bbd6478802b64d0dd3f2e7c65ee
6478802b63cb894a782f3a1adbb46d3ee5ec5577e7dccc818937e964cbe997c12076c19f2d7
ad179f15f7dccca6c6b72a

Public key token is 2a1d3326445fc02a

The public key token shown at the end of the listing is the last 8 bytes of a cryptographic hash
code computed from the public key. Because the public key is so long, .NET uses the public key token
for display purposes and as a compact mechanism for other assemblies to reference your public key.
(Recipes 11-14 and 11-15 discuss cryptographic hash codes.)

As the name suggests, you don’t need to keep the public key (or public key token) secret. When
you strong name your assembly (discussed in recipe 1-9), the compiler uses your private key to generate
a digital signature (an encrypted hash code) of the assembly’s manifest. The compiler embeds the
digital signature and your public key in the assembly so that any consumer of the assembly can verify
the digital signature.

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 19

Keeping your private key secret is imperative. People with access to your private key can alter
your assembly and create a new strong name—leaving your customers unaware they are using
modified code. No mechanism exists to repudiate compromised strong name keys. If your private
key is compromised, you must generate new keys and distribute new versions of your assemblies
that are strong named using the new keys. You must also notify your customers about the compro-
mised keys and explain to them which versions of your public key to trust—in all, a very costly
exercise in terms of both money and credibility. You can protect your private key in many ways; the
approach you use will depend on several factors:

• The structure and size of your organization

• Your development and release process

• The software and hardware resources you have available

• The requirements of your customer base

■Tip Commonly, a small group of trusted individuals (the signing authority) has responsibility for the security
of your company’s strong name signing keys and is responsible for signing all assemblies just prior to their final
release. The ability to delay sign an assembly (discussed in recipe 1-11) facilitates this model and avoids the need
to distribute private keys to all development team members.

One feature provided by the Strong Name tool to simplify the security of strong name keys is the
use of CSP key containers. Once you have generated a key pair to a file, you can install the keys into
a key container and delete the file. For example, to store the key pair contained in the file MyKeys.snk
to a CSP container named StrongNameKeys, use the command sn -i MyKeys.snk StrongNameKeys.
You can install only one set of keys to a single container. (Recipe 1-9 explains how to use strong name
keys stored in a CSP key container.)

An important aspect of CSP key containers is that they include user-based containers and
machine-based containers. Windows security ensures each user can access only his own user-based
key containers. However, any user of a machine can access a machine-based container.

By default, the Strong Name tool uses machine-based key containers, meaning that anyone who
can log on to your machine and who knows the name of your key container can sign an assembly
with your strong name keys. To change the Strong Name tool to use user-based containers, use the
command sn -m n, and to switch to machine-based stores, use the command sn -m y. The command
sn -m will display whether the Strong Name tool is currently configured to use machine-based or
user-based containers.

To delete the strong name keys from the StrongNameKeys container (as well as delete the
container), use the command sn -d StrongNameKeys.

1-9. Give an Assembly a Strong Name

Problem
You need to give an assembly a strong name for several reasons:

• So it has a unique identity, which allows people to assign specific permissions to the assembly
when configuring code access security policy

• So it can’t be modified and passed off as your original assembly

20 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

• So it supports versioning and version policy

• So it can be installed in the GAC and shared across multiple applications

Solution
When you build your assembly using the command-line VB .NET compiler, use the /keyfile or
/keycontainer compiler switches to specify the location of your strong name key pair. Use assembly-
level attributes to specify optional information such as the version number and culture for your
assembly. The compiler will strong name your assembly as part of the compilation process.

■Note If you are using Visual Studio, you can configure your assembly to be strong named by opening the project
properties, selecting the Signing tab, and checking the Sign the Assembly box. You will need to specify the location
of the file where your strong name keys are stored—Visual Studio does not allow you to specify the name of a key
container.

How It Works
To strong name an assembly using the VB .NET compiler, you need the following:

• A strong name key pair contained either in a file or in a CSP key container. (Recipe 1-8 discusses
how to create strong name key pairs.)

• Compiler switches to specify the location where the compiler can obtain your strong name
key pair:

• If your key pair is in a file, use the /keyfile compiler switch, and provide the name of the
file where the keys are stored. For example, use /keyfile:MyKeyFile.snk.

• If your key pair is in a CSP container, use the /keycontainer compiler switch, and
provide the name of the CSP key container where the keys are stored. For example,
use /keycontainer:MyKeyContainer.

• Optionally, specify the culture that your assembly supports by applying the attribute
System.Reflection.AssemblyCultureAttribute to the assembly. (You can’t specify a culture
for executable assemblies because executable assemblies support only the neutral culture.)

• Optionally, specify the version of your assembly by applying the attribute
System.Reflection.AssemblyVersionAttribute to the assembly.

■Note If you are using .NET Framework 1.0 or 1.1, the command-line VB .NET compiler does not support the
/keyfile and /keycontainer compiler switches. Instead, you must use the AssemblyKeyFileAttribute
and AssemblyKeyNameAttribute assembly-level attributes within your code to specify the location of your
strong name keys. Alternatively, use the Assembly Linker tool (al.exe), which allows you to specify the strong name
information on the command line using the /keyfile and /keyname switches. Refer to the Assembly Linker infor-
mation in the .NET Framework SDK documentation for more details.

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 21

The Code

The executable code that follows (from a file named Recipe01-09.vb) shows how to use the optional
attributes (shown in bold text) to specify the culture and the version for the assembly:

Imports System
Imports System.Reflection

<Assembly:AssemblyCulture("")>
<Assembly:AssemblyVersion("1.1.0.5")>

Namespace Apress.VisualBasicRecipes.Chapter01

 Public Class Recipe01_09

 Public Shared Sub main()
 Console.WriteLine("Welcome to Visual Basic 2005 Recipes")

 ' Wait to continue...
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.Read()
 End Sub

 End Class
End Namespace

Usage

To create a strong-named assembly from the example code, create the strong name keys and store
them in a file named MyKeyFile using the command sn -k MyKeyFile.snk. Then install the keys into
the CSP container named MyKeys using the command sn -i MyKeyFile.snk MyKeys. You can now
compile the file into a strong-named assembly using the command vbc /keycontainer:MyKeys
Recipe01-09.vb. If you are not using a CSP container, you can specify the specific key file using the
command vbc /keyfile:MyKeyFile.snk Recipe01-09.vb.

Notes
If you use Visual Studio 2005, you may not be able to include the optional AssemblyVersion attribute
in your code. This is because the attribute may already exist for the assembly. By default, Visual
Studio automatically creates a folder called MyProject. This folder stores multiple files, including
AssemblyInfo.vb, which contains standard assembly attributes for the project. These can be manually
edited or edited through the Assembly Information dialog box (see Figure 1-2), accessible from the
Application tab of the project properties. Since the AssemblyInfo.vb file is an efficient way to store
information specific to your assembly, it is actually good practice to create and use a similar file,
even if you are not using Visual Studio to compile.

22 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Figure 1-2. The Assembly Information dialog box

1-10. Verify That a Strong-Named Assembly
Has Not Been Modified

Problem
You need to verify that a strong-named assembly has not been modified after it was built.

Solution
Use the Strong Name tool (sn.exe) to verify the assembly’s strong name.

How It Works
Whenever the .NET runtime loads a strong-named assembly, the runtime extracts the encrypted
hash code that’s embedded in the assembly and decrypts it with the public key, which is also embedded
in the assembly. The runtime then calculates the hash code of the assembly manifest and compares
it to the decrypted hash code. This verification process will identify whether the assembly has changed
after compilation.

If an executable assembly fails strong name verification, the runtime will display an error message
or an error dialog box (depending on whether the application is a console or Windows application).
If executing code tries to load an assembly that fails verification, the runtime will throw a System.
IO.FileLoadException with the message “Strong name validation failed,” which you should handle
appropriately.

As well as generating and managing strong name keys (discussed in recipe 1-8), the Strong
Name tool allows you to verify strong-named assemblies. To verify that the strong-named assembly
Recipe01-09.exe is unchanged, use the command sn -vf Recipe01-09.exe. The -v switch requests the
Strong Name tool to verify the strong name of the specified assembly, and the -f switch forces strong

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 23

name verification even if it has been previously disabled for the specified assembly. (You can disable
strong name verification for specific assemblies using the -Vr switch, as in sn -Vr Recipe01-09.exe; see
recipe 1-11 for details about why you would disable strong name verification.)

If the assembly passes strong name verification, you will see the following output:

Microsoft (R) .NET Framework Strong Name Utility Version 2.0.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Assembly 'Recipe01-09.exe' is valid

However, if the assembly has been modified, you will see this message:

Microsoft (R) .NET Framework Strong Name Utility Version 2.0.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Failed to verify assembly --
Strong name validation failed for assembly 'Recipe01-09.exe'.

1-11. Delay Sign an Assembly

Problem
You need to create a strong-named assembly, but you don’t want to give all members of your devel-
opment team access to the private key component of your strong name key pair.

Solution
Extract and distribute the public key component of your strong name key pair. Follow the instruc-
tions in recipe 1-9 that describe how to give your assembly a strong name. In addition, specify the
/delaysign switch when you compile your assembly. Disable strong name verification for the assembly
using the -Vr switch of the Strong Name tool (sn.exe).

■Note If you are using Visual Studio, you can configure your strong-named assembly to be delay signed by
opening the project properties, selecting the Signing tab, and checking the Delay Sign Only box. Doing so will
prohibit your project from being run or debugged. You can get around this by skipping verification using the -Vr
switch of the Strong Name tool.

How It Works
Assemblies that reference strong-named assemblies contain the public key token of the referenced
assemblies. This means the referenced assembly must be strong named before it can be referenced.
In a development environment in which assemblies are regularly rebuilt, this would require every
developer and tester to have access to your strong name key pair—a major security risk.

Instead of distributing the private key component of your strong name key pair to all members
of the development team, the .NET Framework provides a mechanism named delay signing with
which you can partially strong name an assembly. The partially strong-named assembly contains the

24 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

public key and the public key token (required by referencing assemblies) but contains only a place-
holder for the signature that would normally be generated using the private key.

After development is complete, the signing authority (who has responsibility for the security
and use of your strong name key pair) re-signs the delay-signed assembly to complete its strong
name. The signature is calculated using the private key and embedded in the assembly, making the
assembly ready for distribution.

To delay sign an assembly, you need access only to the public key component of your strong
name key pair. No security risk is associated with distributing the public key, and the signing authority
should make the public key freely available to all developers. To extract the public key component
from a strong name key file named MyKeyFile.snk and write it to a file named MyPublicKey.snk, use
the command sn -p MyKeyFile.snk MyPublicKey.snk. If you store your strong name key pair in a CSP
key container named MyKeys, extract the public key to a file named MyPublicKey.snk using the
command sn -pc MyKeys MyPublicKey.snk.

Once you have a key file containing the public key, you build the delay-signed assembly using
the command-line VB .NET compiler by specifying the /delaysign compiler switch. For example, to
build a delay-signed assembly, using the MyPublicKey.snk public key, from a source file named
Recipe01-11.vb, use this command:

vbc /delaysign /keyfile:MyPublicKey.snk Recipe01-11.vb

When the runtime tries to load a delay-signed assembly, the runtime will identify the assembly
as strong named and will attempt to verify the assembly, as discussed in recipe 1-10. Because it
doesn’t have a digital signature, you must configure the runtime on the local machine to stop veri-
fying the assembly’s strong name using the command sn -Vr Recipe01-11.exe. Note that you need
to do so on every machine on which you want to run your application.

■Tip When using delay-signed assemblies, it’s often useful to be able to compare different builds of the same
assembly to ensure they differ only by their signatures. This is possible only if a delay-signed assembly has been
re-signed using the -R switch of the Strong Name tool. To compare the two assemblies, use the command
sn -D assembly1 assembly2.

Once development is complete, you need to re-sign the assembly to complete the assembly’s
strong name. The Strong Name tool allows you to do this without changing your source code or
recompiling the assembly; however, you must have access to the private key component of the
strong name key pair. To re-sign an assembly named Recipe01-11.exe with a key pair contained in
the file MyKeys.snk, use the command sn -R Recipe01-11.exe MyKeys.snk. If the keys are stored in
a CSP key container named MyKeys, use the command sn -Rc Recipe01-11.exe MyKeys.

Once you have re-signed the assembly, you should turn strong name verification for that assembly
back on using the -Vu switch of the Strong Name tool, as in sn -Vu Recipe01-11.exe. To enable verifica-
tion for all assemblies for which you have disabled strong name verification, use the command sn -Vx.
You can list the assemblies for which verification is disabled using the command sn -Vl.

■Note If you are using.NET Framework 1.0 or 1.1, the command-line VB .NET compiler does not support the
/delaysign compiler switch. Instead, you must use the System.Reflection.AssemblyDelaySignAttribute
assembly-level attributes within your code to specify that you want the assembly delay signed. Alternatively, use the
Assembly Linker tool (al.exe), which does support the /delaysign switch. Refer to the Assembly Linker informa-
tion in the .NET Framework SDK documentation for details.

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 25

1-12. Sign an Assembly with an Authenticode
Digital Signature

Problem
You need to sign an assembly with Authenticode so that users of the assembly can be certain you are
its publisher and the assembly is unchanged after signing.

Solution
Use the Sign Tool (signtool.exe) to sign the assembly with your software publisher certificate (SPC).

■Note Versions 1.0 and 1.1 of the .NET Framework provided a utility called the File Signing tool (signcode.exe)
that enabled you to sign assemblies. The File Signing tool is not provided with .NET Framework 2.0 and has been
superseded by the Sign Tool discussed in this recipe.

How It Works
Strong names provide a unique identity for an assembly as well as proof of the assembly’s integrity,
but they provide no proof as to the publisher of the assembly. The .NET Framework allows you to use
Authenticode technology to sign your assemblies. This enables consumers of your assemblies to
confirm that you are the publisher, as well as confirm the integrity of the assembly. Authenticode
signatures also act as evidence for the signed assembly, which people can use when configuring
code access security policy.

To sign your assembly with an Authenticode signature, you need an SPC issued by a recognized
certificate authority (CA). A CA is a company entrusted to issue SPCs (along with many other types of
certificates) for use by individuals or companies. Before issuing a certificate, the CA is responsible for
confirming that the requesters are who they claim to be and also for making sure the requesters sign
contracts to ensure they don’t misuse the certificates that the CA issues them.

To obtain an SPC, you should view the Microsoft Root Certificate Program Members list
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/
rootcertprog.asp. Here you will find a list of CAs, many of whom can issue you an SPC. For testing
purposes, you can create a test SPC using the process described in recipe 1-13. However, you can’t
distribute your software signed with this test certificate. Because a test SPC isn’t issued by a trusted
CA, most responsible users won’t trust assemblies signed with it.

Once you have an SPC, you use the Sign Tool to Authenticode sign your assembly. The Sign Tool
creates a digital signature of the assembly using the private key component of your SPC and embeds
the signature and the public part of your SPC in your assembly (including your public key). When
verifying your assembly, the consumer decrypts the encrypted hash code using your public key,
recalculates the hash of the assembly, and compares the two hash codes to ensure they are the same.
As long as the two hash codes match, the consumer can be certain that you signed the assembly and
that it has not changed since you signed it.

26 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Usage

The Sign Tool provides a graphical wizard that walks you through the steps to Authenticode sign
your assembly. To sign an assembly named MyAssembly.exe, run this command:

signtool signwizard MyAssembly.exe

Click Next on the introduction screen, and you will see the File Selection screen, where you
must enter the name of the assembly to Authenticode sign (see Figure 1-3). Because you specified the
assembly name on the command line, it is already filled in. If you are signing a multifile assembly,
specify the name of the file that contains the assembly manifest. If you intend to both strong name
and Authenticode sign your assembly, you must strong name the assembly first. (See recipe 1-9 for
details on strong naming assemblies.)

Figure 1-3. The Sign Tool’s File Selection screen

Clicking Next takes you to the Signing Options screen (see Figure 1-4). If your SPC is in a certif-
icate store, select the Typical radio button. If your SPC is in a file, select the Custom radio button.
Then click Next.

Assuming you want to use a file-based certificate (like the test certificate created in recipe 1-13),
click the Select from File button on the Signature Certificate screen (see Figure 1-5), select the file
containing your SPC certificate, and then click Next.

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 27

Figure 1-4. The Sign Tool’s Signing Options screen

Figure 1-5. The Sign Tool’s Signature Certificate screen

28 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

The Private Key screen allows you to identify the location of your private keys, which will either be
in a file or in a CSP key container, depending on where you created and stored them (see Figure 1-6). The
example assumes they are in a file named PrivateKeys.pvk. When you click Next, if you selected to
use a file, you will be prompted (see Figure 1-7) to enter a password to access the file (if required).

Figure 1-6. The Sign Tool’s Private Key screen

Figure 1-7. Prompt for password to private key

You can then select whether to use the sha1 or md5 hash algorithm (see Figure 1-8). The default
is sha1, which is suitable for most purposes. On the Hash Algorithm screen, pick an algorithm, and
then click Next.

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 29

Figure 1-8. The Sign Tool’s Hash Algorithm screen

Click Next to leave the default values on the Additional Certificates screen, the Data Description
screen, and the Timestamping screen. Finally, click Finish. If you are using a file-based private key
that is password protected, you will once again be prompted to enter the password, after which the
Sign Tool will Authenticode sign your assembly.

■Note The Sign Tool uses capicom.dll version 2.1.0.1. If an error occurs when you run signtool.exe that indi-
cates capicom is not accessible or not registered, change to the directory where capicom.dll is located (which is
C:\Program Files\Common Files\Microsoft Shared\CAPICOM by default), and run the command regsvr32
capicom.dll.

1-13. Create and Trust a Test
Software Publisher Certificate

Problem
You need to create an SPC to allow you to test the Authenticode signing of an assembly.

Solution
Use the Certificate Creation tool (makecert.exe) to create a test X.509 certificate and the Software
Publisher Certificate Test tool (cert2spc.exe) to generate an SPC from this X.509 certificate. Trust the
root test certificate using the Set Registry tool (setreg.exe).

30 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

How It Works
To create a test SPC for a software publisher named Todd Herman, create an X.509 certificate
using the Certificate Creation tool. The command makecert -n "CN=Todd Herman" -sk MyKeys
TestCertificate.cer creates a file named TestCertificate.cer containing an X.509 certificate and
stores the associated private key in a CSP key container named MyKeys (which is automatically
created if it does not exist). Alternatively, you can write the private key to a file by substituting the
-sk switch with -sv. For example, to write the private key to a file named PrivateKeys.pvk, use the
command makecert -n " CN=Todd Herman" -sv PrivateKey.pvk TestCertificate.cer. If you write
your private key to a file, the Certificate Creation tool will prompt you to provide a password with
which to protect the private key file (see Figure 1-9).

Figure 1-9. The Certificate Creation tool requests a password when creating file-based private keys.

The Certificate Creation tool supports many arguments, and Table 1-2 lists some of the more
useful ones. You should consult the .NET Framework SDK documentation for full coverage of the
Certificate Creation tool.

Once you have created your X.509 certificate with the Certificate Creation tool, you need to
convert it to an SPC with the Software Publisher Certificate Test tool (cert2spc.exe). To convert the

Table 1-2. Commonly Used Switches of the Certificate Creation Tool

Switch Description

-e Specifies the date when the certificate becomes invalid.

-m Specifies the duration—in months—that the certificate remains valid.

-n Specifies an X.500 name to associate with the certificate. This is the name of the
software publisher that people will see when they view details of the SPC you create.

-sk Specifies the name of the CSP key store in which to store the private key.

-ss Specifies the name of the certificate store where the Certificate Creation tool should
store the generated X.509 certificate.

-sv Specifies the name of the file in which to store the private key.

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 31

certificate TestCertificate.cer to an SPC, use the command cert2spc TestCertificate.cer
TestCertificate.spc. The Software Publisher Certificate Test tool doesn’t offer any optional
switches.

The final step before you can use your test SPC is to trust the root test CA, which is the default
issuer of the test certificate. The Set Registry tool (setreg.exe) makes this a simple task with the command
setreg 1 true. You can now Authenticode sign assemblies with your test SPC using the process
described in recipe 1-12. When you have finished using your test SPC, you must remove trust of the
root test CA using the command setreg 1 false.

1-14. Manage the Global Assembly Cache

Problem
You need to add or remove assemblies from the GAC.

Solution
Use the Global Assembly Cache tool (gacutil.exe) from the command line to view the contents of the
GAC as well as to add and remove assemblies.

■Note The Global Assembly Cache tool was included with earlier versions of the .NET Framework. Microsoft has
since designated it as a developer-specific tool and removed it from .NET Framework 2.0. It is now part of the SDK
and is installed with Visual Studio 2005.

How It Works
Before you can install an assembly in the GAC, the assembly must have a strong name. (See recipe 1-9 for
details on how to strong name your assemblies.) To install an assembly named SomeAssembly.dll into
the GAC, use the command gacutil /i SomeAssembly.dll. You can install different versions of the
same assembly in the GAC to meet the versioning requirements of different applications.

To uninstall the SomeAssembly.dll assembly from the GAC, use the command gacutil
/u SomeAssembly. Notice that you don’t use the .dll extension to refer to the assembly once it’s
installed in the GAC. This will uninstall all assemblies with the specified name. To uninstall a
particular version, specify the version along with the assembly name; for example, use gacutil
/u SomeAssembly,Version=1.0.0.5.

To view the assemblies installed in the GAC, use the command gacutil /l. This will produce
a long list of all the assemblies installed in the GAC, as well as a list of assemblies that have been
precompiled to binary form and installed in the native image (ngen) cache. To avoid searching
through this list to determine whether a particular assembly is installed in the GAC, use the command
gacutil /l SomeAssembly.

■Note The .NET Framework uses the GAC only at runtime; the VB .NET compiler won’t look in the GAC to resolve
any external references that your assembly references. During development, the VB .NET compiler must be able to
access a local copy of any referenced shared assemblies. You can either copy the shared assembly to the same
directory as your source code or use the /libpath switch of the VB .NET compiler to specify the directory where
the compiler can find the required assemblies.

32 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

1-15. Make Your Assembly More Difficult
to Decompile

Problem
You want to make sure that people cannot decompile your .NET assemblies.

Solution
The only way to ensure that your assembly cannot be decompiled is by not making it directly accessible.
This can be accomplished using a server-based solution. If you must distribute assemblies, you have
no way to stop people from decompiling them. The best you can do is use obfuscation and compo-
nents compiled to native code to make your assemblies more difficult to decompile.

How It Works
Because .NET assemblies consist of a standardized, platform-independent set of instruction codes
and metadata that describes the types contained in the assembly, they are relatively easy to decom-
pile. This allows decompilers to generate source code that is close to your original code with ease,
which can be problematic if your code contains proprietary information or algorithms that you want
to keep secret.

The only way to ensure people can’t decompile your assemblies is to prevent them from getting
your assemblies in the first place. Where possible, implement server-based solutions such as
Microsoft ASP.NET applications and Web services. With the security correctly configured on your
server, no one will be able to access your assemblies, and therefore they won’t be able to decompile them.

When building a server solution is not appropriate, you have the following two options:

• Use an obfuscator to make it difficult to understand your code once it is decompiled. Some
versions of Visual Studio include the Community Edition of an obfuscator named Dotfuscator.
Obfuscators use a variety of techniques to make your assembly difficult to decompile; prin-
cipal among these techniques are renaming of Private methods and fields in such a way that
it’s difficult to read and understand the purpose of your code, and inserting control flow
statements to make the logic of your application difficult to follow.

• Build the parts of your application that you want to keep secret in native DLLs or COM objects,
and then call them from your managed application using P/Invoke or COM Interop. (See
Chapter 12 for recipes that show you how to call unmanaged code.)

Neither approach will stop a skilled and determined person from reverse engineering your code, but
both approaches will make the job significantly more difficult and deter most casual observers.

■Note The risks of application decompilation aren’t specific to VB .NET or .NET in general. Determined people
can reverse engineer any software if they have the time and the skill.

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 33

1-16. Manipulate the Appearance of the Console

Problem
You want to control the visual appearance of the Windows console.

Solution
Use the Shared properties and methods of the System.Console class.

How It Works
Version 2.0 of the .NET Framework dramatically enhances the control you have over the appearance
and operation of the Windows console. Table 1-3 describes the properties and methods of the Console
class that you can use to control the console’s appearance.

Table 1-3. Properties and Methods to Control the Appearance of the Console

Member Description

Properties

BackgroundColor Gets and sets the background color of the console using one of the
values from the System.ConsoleColor enumeration. Only new text
written to the console will appear in this color. To make the entire
console this color, call the method Clear after you have configured the
BackgroundColor property.

BufferHeight Gets and sets the buffer height in terms of rows. Buffer refers to the
amount of actual data that can be displayed within the console window.

BufferWidth Gets and sets the buffer width in terms of columns. Buffer refers to the
amount of actual data that can be displayed within the console window.

CursorLeft Gets and sets the column position of the cursor within the buffer.

CursorSize Gets and sets the height of the cursor as a percentage of a character cell.

CursorTop Gets and sets the row position of the cursor within the buffer.

CursorVisible Gets and sets whether the cursor is visible.

ForegroundColor Gets and sets the text color of the console using one of the values from
the System.ConsoleColor enumeration. Only new text written to the
console will appear in this color. To make the entire console this color,
call the method Clear after you have configured the ForegroundColor
property.

LargestWindowHeight Returns the largest possible number of rows based on the current font
and screen resolution.

LargestWindowWidth Returns the largest possible number of columns based on the current
font and screen resolution.

Title Gets and sets text shown in the title bar.

WindowHeight Gets and sets the physical height of the console window in terms of
character rows.

34 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

The Code

The following example demonstrates how to use the properties and methods of the Console class to
dynamically change the appearance of the Windows console:

Imports System

Namespace Apress.VisualBasicRecipes.Chapter01
 Public Class Recipe01_16

 Public Shared Sub Main(ByVal args As String())

 ' Display the standard console.
 Console.Title = "Standard Console"
 Console.WriteLine("Press Enter to change the console's appearance.")
 Console.ReadLine()

 ' Change the console appearance and redisplay.
 Console.Title = "Colored Text"
 Console.ForegroundColor = ConsoleColor.Red
 Console.BackgroundColor = ConsoleColor.Green
 Console.WriteLine("Press Enter to change the console's appearance.")
 Console.ReadLine()

 ' Change the console appearance and redisplay.
 Console.Title = "Cleared / Colored Console"
 Console.ForegroundColor = ConsoleColor.Blue
 Console.BackgroundColor = ConsoleColor.Yellow
 Console.Clear()
 Console.WriteLine("Press Enter to change the console's appearance.")
 Console.ReadLine()

 ' Change the console appearance and redisplay.
 Console.Title = "Resized Console"
 Console.ResetColor()
 Console.Clear()
 Console.SetWindowSize(100, 50)
 Console.BufferHeight = 500
 Console.BufferWidth = 100

WindowWidth Gets and sets the physical width of the console window in terms of
character columns.

Methods

Clear Clears the console.

ResetColor Sets the foreground and background colors to their default values as
configured within Windows.

SetWindowSize Sets the width and height in terms of columns and rows.

Table 1-3. Properties and Methods to Control the Appearance of the Console (Continued)

Member Description

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 35

 Console.CursorLeft = 20
 Console.CursorSize = 50
 Console.CursorTop = 20
 Console.CursorVisible = False
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

1-17. Embed a Resource File in an Assembly

Problem
You need to create a string-based resource file and embed it into an assembly.

Solution
Use the Resource Generator (resgen.exe) to create a compiled resource file. You then use the /resource
switch of the compiler to embed the file into the assembly.

■Note The Assembly Linker tool (al.exe) also provides functionality for working with and embedding resource
files. Refer to the Assembly Linker information in the .NET Framework SDK documentation for details.

How It Works
If you need to store strings in an external file and have them accessible to your assembly, you can use
a resource file. Resources are some form of data (a string or an image, for example) that is used by an
application. A resource file is a repository of one or more resources that can be easily accessed.

If you need to store only strings, you can create a simple text file that contains one or more
key/value pairs in the form of key=value. You cannot create image resources starting from a text file.

Once you have your text file, you compile it using the Resource Generator (resgen.exe). Using
this utility, you can convert the text file into either of two types:

• An .resx file, which is an XML resource file. This file is fully documented and can be edited
manually. It is also capable of supporting image resources, unlike the text file. Consult the
.NET Framework SDK documentation for more details on the .resx format.

• A .resource file, which is a compiled binary file and is required if you are embedding the file
into your assembly using the command line compiler. You embed the .resource file into your
assembly by using the /resource switch of the VB .NET compiler. The .resource file can be
compiled from a .txt or an .resx file.

You access the contents of the resource file by instantiating a ResourceManager object. The
GetString method is used to retrieve the value for the specified string. If you have stored something
other than a string, such as an image, in your resource file, use the GetObject method and cast the
return value to the appropriate type.

36 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

The Code

This example borrows the code from recipe 1-2. The dialog box titles and message prompt have been
removed from the code and are now contained within an external resource file. The new program
uses the ResourceManager object to access the resources.

Imports System
Imports System.windows.forms
Imports System.resources

Namespace Apress.VisualBasicRecipes.Chapter01

 Public Class Recipe01_17
 Inherits Form

 ' Private members to hold references to the form's controls.
 Private label1 As Label
 Private textbox1 As TextBox
 Private button1 As Button
 Private resManager As New ResourceManager("Recipe01_17.MyStrings", ➥
System.Reflection.Assembly.GetExecutingAssembly())

 ' Constructor used to create an instance of the form and configure
 ' the form's controls.
 Public Sub New()
 ' Instantiate the controls used on the form.
 Me.label1 = New Label
 Me.textbox1 = New TextBox
 Me.button1 = New Button

 ' Suspend the layout logic of the form while we configure and
 ' position the controls.
 Me.SuspendLayout()

 ' Configure label1, which displays the user prompt.
 Me.label1.Location = New System.Drawing.Size(16, 36)
 Me.label1.Name = "label1"
 Me.label1.Size = New System.Drawing.Size(155, 16)
 Me.label1.TabIndex = 0
 Me.label1.Text = resManager.GetString("UserPrompt")

 ' Configure textbox1, which accepts the user input.
 Me.textBox1.Location = New System.Drawing.Point(172, 32)
 Me.textbox1.Name = "textbox1"
 Me.textbox1.TabIndex = 1
 Me.textbox1.Text = ""

 ' Configure button1, which the user clicks to enter a name.
 Me.button1.Location = New System.Drawing.Point(109, 80)
 Me.button1.Name = "button1"
 Me.button1.TabIndex = 2
 Me.button1.Text = "Enter"
 AddHandler button1.Click, AddressOf button1_Click

CH AP T E R 1 ■ AP P L IC AT IO N DE V E L O PM E N T 37

 ' Configure WelcomeForm, and add controls.
 Me.ClientSize = New System.Drawing.Size(292, 126)
 Me.Controls.Add(Me.button1)
 Me.Controls.Add(Me.textbox1)
 Me.Controls.Add(Me.label1)
 Me.Name = "form1"
 Me.Text = resManager.GetString("FormTitle")

 ' Resume the layout logic of the form now that all controls are
 ' configured.
 Me.ResumeLayout(False)

 End Sub

 Private Sub button1_Click(ByVal sender As Object, ➥
ByVal e As System.EventArgs)

 ' Write debug message to the console.
 System.Console.WriteLine("User entered: " + textbox1.Text)

 ' Display welcome as a message box.
 MessageBox.Show resManager.GetString("Message") + textbox1.Text, ➥
resManager.GetString("FormTitle"))

 End Sub

 ' Application entry point, creates an instance of the form, and begins
 ' running a standard message loop on the current thread. The message
 ' loop feeds the application with input from the user as events.
 Public Shared Sub Main()
 Application.EnableVisualStyles()
 Application.Run(New Recipe01_17())
 End Sub

 End Class
End Namespace

Usage

First, you must create the MyStrings.txt file that contains your resource strings:

;String resource file for Recipe01-17
UserPrompt=Please enter your name:
FormTitle=Visual Basic 2005 Recipes
Message=Welcome to Visual Basic 2005 Recipes,

You compile this file into a resource file by using the command resgen.exe MyStrings.txt
Recipe01_17.MyStrings.resources. To build the example and embed the resource file, use the
command vbc /resources:Recipe01_17.MyStrings.resources Recipe01-17.vb.

38 CH AP T E R 1 ■ AP P L I CA T I ON D E V E L O P M E N T

Notes
Using resource files from Visual Studio is a little different from using resource files from the
command line. For this example, the resource file must be in the XML format (.resx) and added
directly into the project. Instead of initially creating the .resource file, you can use the command
resgen.exe MyStrings.txt MyStrings.resx to generate the .resx file required by Visual Studio.

39

■ ■ ■

C H A P T E R 2

Data Manipulation

Most applications need to manipulate some form of data. The Microsoft .NET Framework provides
many techniques that simplify or improve the efficiency of common data-manipulation tasks. The
recipes in this chapter describe how to do the following:

• Manipulate the contents of strings efficiently to avoid the overhead of automatic string
creation due to the immutability of strings (recipe 2-1)

• Represent basic data types using different encoding schemes or as byte arrays to allow you to
share data with external systems (recipes 2-2, 2-3, and 2-4)

• Validate user input and manipulate string values using regular expressions (recipes 2-5 and 2-6)

• Create System.DateTime objects from string values, such as those that a user might enter, and
display DateTime objects as formatted strings (recipe 2-7)

• Mathematically manipulate DateTime objects in order to compare dates or add/subtract
periods of time from a date (recipe 2-8)

• Sort the contents of an array or an ArrayList collection (recipe 2-9)

• Copy the contents of a collection to an array (recipe 2-10)

• Use the standard generic collection classes to instantiate a strongly typed collection (recipe 2-11)

• Use generics to define your own general-purpose container or collection class that will be
strongly typed when it is used (recipe 2-12)

• Serialize object state and persist it to a file (recipe 2-13)

• Read user input from the Windows console (recipe 2-14)

2-1. Manipulate the Contents of
a String Efficiently

Problem
You need to manipulate the contents of a String object and want to avoid the overhead of automatic
String creation caused by the immutability of String objects.

Solution
Use the System.Text.StringBuilder class to perform the manipulations and convert the result to a
String object using the StringBuilder.ToString method.

40 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

How It Works
String objects in .NET are immutable, meaning that once they are created, their content cannot be
changed. If you build a string by concatenating a number of characters or smaller strings, the common
language runtime (CLR) will create a completely new String object whenever you add a new element to
the end of the existing string. Here is an example:

Dim testString as String
testString="Hello"

At this point, you have a String object named testString that contains the value "Hello". Since
strings are immutable, adding the statement testString=testString & " World" will result in a new
String object being created. The testString object’s reference is changed to point to the newly
generated string, which creates a new object that contains the value "Hello World". This can result
in significant overhead if your application performs frequent string manipulation.

The StringBuilder class offers a solution by providing a character buffer and allowing you to
manipulate its contents without the runtime creating a new object as a result of every change. You
can create a new StringBuilder object that is empty or initialized with the content of an existing
String object. You can manipulate the content of the StringBuilder object using overloaded methods
that allow you to insert and append string representations of different data types. At any time, you
can obtain a String representation of the current content of the StringBuilder object by calling
StringBuilder.ToString.

Two important properties of StringBuilder control its behavior as you append new data:
Capacity and Length. Capacity represents the size of the StringBuilder buffer, and Length represents
the length of the buffer’s current content. If you append new data that results in the number of characters
in the StringBuilder object (Length) exceeding the capacity of the StringBuilder object (Capacity),
the StringBuilder must allocate a new buffer to hold the data. The size of this new buffer is double the
size of the previous Capacity value. Used carelessly, this buffer reallocation can negate much of the
benefit of using StringBuilder. If you know the length of data you need to work with, or know an
upper limit, you can avoid unnecessary buffer reallocation by specifying the capacity at creation
time or setting the Capacity property manually. Note that 16 is the default Capacity property setting.
When setting the Capacity and Length properties, be aware of the following behavior:

• If you set Capacity to a value less than the value of Length, the Capacity property throws the
exception System.ArgumentOutOfRangeException. The same exception is also thrown if you try
to raise the Capacity setting above the value of the MaxCapacity property. This should not be
a problem except if you want to allocate more than 2 gigabytes (GB).

• If you set Length to a value less than the length of the current content, the content is
truncated.

• If you set Length to a value greater than the length of the current content, the buffer is padded
with spaces to the specified length. Setting Length to a value greater than Capacity automati-
cally adjusts the Capacity value to be the same as the new Length value.

The Code

The ReverseString method shown in the following example demonstrates the use of the StringBuilder
class to reverse a string. If you did not use the StringBuilder class to perform this operation, it would
be significantly more expensive in terms of resource utilization, especially as the input string is
made longer. The method creates a StringBuilder object of the correct capacity to ensure that no
buffer reallocation is required during the reversal operation.

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 41

Imports System
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_01

 Public Shared Function ReverseString(ByVal str As String) As String

 ' Make sure we have a reversible string.
 If str Is Nothing Or str.Length <= 1 Then
 Return str
 End If

 ' Create a StringBuilder object with the required capacity.
 Dim revStr As StringBuilder = New StringBuilder(str.Length)

 ' Convert the string to a character array so we can easily loop
 ' through it.
 Dim chars As Char() = str.ToCharArray()

 ' Loop backward through the source string one character at a time and
 ' append each character to the StringBuilder.
 For count As Integer = chars.Length - 1 To 0 Step -1
 revStr.Append(chars(count))
 Next

 Return revStr.ToString

 End Function

 Public Shared Sub Main()
 Console.WriteLine(ReverseString("Madam Im Adam"))

 Console.WriteLine(ReverseString("The quick brown fox jumped ➥
 over the lazy dog."))

 ' Wait to continue
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

42 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

2-2. Encode a String Using
Alternate Character Encoding

Problem
You need to exchange character data with systems that use character-encoding schemes other than
UTF-16, which is the character-encoding scheme used internally by the CLR.

Solution
Use the System.Text.Encoding class and its subclasses to convert characters between different
encoding schemes.

How It Works
Unicode is not the only character-encoding scheme, nor is UTF-16 the only way to represent Unicode
characters. When your application needs to exchange character data with external systems (particularly
legacy systems) through an array of bytes, you may need to convert character data between UTF-16
and the encoding scheme supported by the other system.

The MustInherit class Encoding and its concrete subclasses provide the functionality to convert
characters to and from a variety of encoding schemes. Each subclass instance supports the conver-
sion of characters between the instance’s encoding scheme and UTF-16. You obtain instances of the
encoding-specific classes using the Shared factory method Encoding.GetEncoding, which accepts
either the name or the code page number of the required encoding scheme.

Table 2-1 lists some commonly used character-encoding schemes and the code page number
you must pass to the GetEncoding method to create an instance of the appropriate encoding class.
The table also shows Shared properties of the Encoding class that provide shortcuts for obtaining the
most commonly used types of encoding objects.

Once you have an Encoding object of the appropriate type, you convert a UTF-16 encoded
Unicode string to a byte array of encoded characters using the GetBytes method. Conversely, you
pass a byte array of encoded characters (such as UTF-8) to the GetString method, which will produce
a UTF-16 encoded Unicode string.

Table 2-1. Character-Encoding Classes

Encoding Scheme Class Create Using

ASCII ASCIIEncoding GetEncoding(20127) or the ASCII property

Default (current
Microsoft Windows default)

Encoding GetEncoding(0) or the Default property

UTF-7 UTF7Encoding GetEncoding(65000) or the UTF7 property

UTF-8 UTF8Encoding GetEncoding(65001) or the UTF8 property

UTF-16 (Big Endian) UnicodeEncoding GetEncoding(1201) or the BigEndianUnicode
property

UTF-16 (Little Endian) UnicodeEncoding GetEncoding(1200) or the Unicode property

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 43

The Code

The following example demonstrates the use of some encoding classes.

Imports System
Imports System.IO
Imports System.Text.Encoding

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_02

 Public Shared Sub Main()

 ' Create a file to hold the output.
 Using output As New StreamWriter("output.txt")
 ' Create and write a string containing the symbol for pi.
 Dim srcString As String = String.Format("Area = {0}r^2", ➥
ChrW(&H3A0))
 output.WriteLine("Source Text: " & srcString)

 ' Write the UTF-16 encoded bytes of the source string.
 Dim utf16String As Byte() = Unicode.GetBytes(srcString)
 output.WriteLine("UTF-16 Bytes: {0}", ➥
BitConverter.ToString (utf16String))

 ' Convert the UTF-16 encoded source string to UTF-8 and ASCII.
 Dim utf8String As Byte() = UTF8.GetBytes(srcString)
 Dim asciiString As Byte() = ASCII.GetBytes(srcString)

 ' Write the UTF-8 and ASCII encoded byte arrays.
 output.WriteLine("UTF-8 Bytes: {0}", ➥
BitConverter.ToString (utf8string))
 output.WriteLine("ASCII Bytes: {0}", ➥
BitConverter.ToString (asciiString))

 ' Convert UTF-8 and ASCII encoded bytes back to UTF-16 encoded
 ' string and write to the output file.
 output.WriteLine("UTF-8 Text: {0}", UTF8.GetString(utf8String))
 output.WriteLine("ASCII Text: {0}", ASCII.GetString(asciiString))
 End Using

 ' Wait to continue
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Running the code will generate a file named output.txt. If you open this file in a text editor that
supports Unicode, you will see the following content:

44 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

Source Text : Area =πr^2
UTF-16 Bytes: 41-00-72-00-65-00-61-00-20-00-3D-00-20-00-A0-03-72-00-5E-00-32-00
UTF-8 Bytes: 41-72-65-61-20-3D-20-CE-A0-72-5E-32
ASCII Bytes: 41-72-65-61-20-3D-20-3F-72-5E-32
UTF-8 Text : Area = r^2
ASCII Text : Area = πr^2

Notice that using UTF-16 encoding, each character occupies 2 bytes, but because most of the
characters are standard characters, the high-order byte is 0. (The use of little-endian byte ordering
means that the low-order byte appears first.) This means that most of the characters are encoded
using the same numeric values across all three encoding schemes. However, the numeric value for
the symbol pi (emphasized in bold in the preceding output) is different in each of the encodings.
Representing the value of pi requires more than 1 byte. UTF-8 encoding uses 2 bytes, but ASCII has
no direct equivalent and so replaces pi with the code 3F. As you can see in the ASCII text version of
the string, 3F is the symbol for an English question mark (?).

■Caution If you convert Unicode characters to ASCII or a specific code page encoding scheme, you risk losing
data. Any Unicode character with a character code that cannot be represented in the scheme will be ignored or altered.

Notes
The Encoding class also provides the Shared method Convert to simplify the conversion of a byte array
from one encoding scheme to another without the need to manually perform an interim conversion
to UTF-16. For example, the following statement converts the ASCII-encoded bytes contained in the
asciiString byte array directly from ASCII encoding to UTF-8 encoding:

Dim utf8String As Byte() = Encoding.Convert(Encoding.ASCII, ➥
Encoding.UTF8, asciiString)

2-3. Convert Basic Value Types to Byte Arrays

Problem
You need to convert basic value types to byte arrays.

Solution
The Shared methods of the System.BitConverter class provide a convenient mechanism for converting
most basic value types to and from byte arrays. An exception is the Decimal type. To convert a Decimal
type to or from a byte array, you need to use a System.IO.MemoryStream object.

How It Works
The Shared method GetBytes of the BitConverter class provides overloads that take most of the standard
value types and return the value encoded as an array of bytes. Support is provided for the Boolean,
Char, Double, Short, Integer, Long, Single, UShort, UInteger, and ULong data types. BitConverter also
provides a set of Shared methods that support the conversion of byte arrays to each of the standard
value types. These are named ToBoolean, ToInt32, ToDouble, and so on. When using the BitConverter

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 45

class, you may notice that some members include the values Int16, Int32, and Int64. These values
are simply an alternate way of saying Short, Integer, and Long, respectively.

Unfortunately, the BitConverter class does not provide support for converting the Decimal type.
Instead, write the Decimal type to a MemoryStream instance using a System.IO.BinaryWriter object,
and then call the MemoryStream.ToArray method. To create a Decimal type from a byte array, create a
MemoryStream object from the byte array and read the Decimal type from the MemoryStream object
using a System.IO.BinaryReader instance.

The Code

The following example demonstrates the use of BitConverter to convert a Boolean type and an
Integer type to and from a byte array. The second argument to each of the ToBoolean and ToInt32
methods is a zero-based offset into the byte array where the BitConverter should start taking the
bytes to create the data value. The code also shows how to convert a Decimal type to a byte array
using a MemoryStream object and a BinaryWriter object, as well as how to convert a byte array to a
Decimal type using a BinaryReader object to read from the MemoryStream object.

Imports System
Imports System.IO
Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_03

 ' Create a byte array from a decimal.
 Public Shared Function DecimalToByteArray(ByVal src As Decimal) As Byte()

 ' Create a MemoryStream as a buffer to hold the binary data.
 Using stream As New MemoryStream
 ' Create a BinaryWriter to write binary data to the stream.
 Using writer As New BinaryWriter(stream)
 ' Write the decimal to the BinaryWriter/MemoryStream.
 writer.Write(src)

 ' Return the byte representation of the decimal.
 Return stream.ToArray
 End Using
 End Using

 End Function

 ' Create a decimal from a byte array.
 Public Shared Function ByteArrayToDecimal(ByVal src As Byte()) As Decimal

 ' Create a MemoryStream containing the byte array.
 Using stream As New MemoryStream(src)
 ' Create a BinaryReader to read the decimal from the stream.
 Using reader As New BinaryReader(stream)
 ' Read and return the decimal from the
 ' BinaryReader/MemoryStream.
 Return reader.ReadDecimal
 End Using
 End Using

 End Function

46 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 Public Shared Sub Main()

 Dim b As Byte() = Nothing

 ' Convert a boolean to a byte array and display.
 b = BitConverter.GetBytes(True)
 Console.WriteLine(BitConverter.ToString(b))

 ' Convert a byte array to a boolean and display.
 Console.WriteLine(BitConverter.ToBoolean(b, 0))

 ' Convert an integer to a byte array and display.
 b = BitConverter.GetBytes(3678)
 Console.WriteLine(BitConverter.ToString(b))

 ' Convert a byte array to integer and display.
 Console.WriteLine(BitConverter.ToInt32(b, 0))

 ' Convert a decimal to a byte array and display.
 b = DecimalToByteArray(285998345545.563846696D)
 Console.WriteLine(BitConverter.ToString(b))

 ' Convert a byte array to a decimal and display.
 Console.WriteLine(ByteArrayToDecimal(b))

 ' Wait to continue
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Tip The BitConverter.ToString method provides a convenient mechanism for obtaining a String repre-
sentation of a byte array. Calling ToString and passing a byte array as an argument will return a String object
containing the hexadecimal value of each byte in the array separated by a hyphen; for example, "34-A7-2C".
Unfortunately, there is no standard method for reversing this process to obtain a byte array from a string with this format.

2-4. Base64 Encode Binary Data

Problem
You need to convert binary data into a form that can be stored as part of an ASCII text file (such as an
XML file) or sent as part of a text e-mail message.

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 47

Solution
Use the Shared methods ToBase64CharArray and FromBase64CharArray of the System.Convert class
to convert your binary data to and from a Base64-encoded Char array. If you need to work with
the encoded data as a string value rather than as a Char array, you can use the ToBase64String and
FromBase64String methods of the Convert class instead.

How It Works
Base64 is an encoding scheme that enables you to represent binary data as a series of ASCII characters
so that it can be included in text files and e-mail messages in which raw binary data is unacceptable.
Base64 encoding works by spreading the contents of 3 bytes of input data across 4 bytes and ensuring
each byte uses only the 7 low-order bits to contain data. This means that each byte of Base64-encoded
data is equivalent to an ASCII character and can be stored or transmitted anywhere ASCII characters
are permitted. This process is not very efficient and can take a while to run on large amounts of data.

The ToBase64CharArray and FromBase64CharArray methods of the Convert class make it straight-
forward to Base64 encode and decode data. However, before Base64 encoding, you must convert
your data to a byte array. Similarly, when decoding, you must convert the byte array back to the
appropriate data type. (See recipe 2-2 for details on converting string data to and from byte arrays
and recipe 2-3 for details on converting basic value types.) The ToBase64String and FromBase64String
methods of the Convert class deal with string representations of Base64-encoded data.

The Code

The example shown here demonstrates how to Base64 encode and decode a Byte array, a Unicode
String, an Integer type, and a Decimal type using the Convert class. The DecimalToBase64 and
Base64ToDecimal methods rely on the ByteArrayToDecimal and DecimalToByteArray methods listed
in recipe 2-3.

Imports System
Imports System.IO
Imports System.Text
Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_04

 ' Create a byte array from a decimal.
 Public Shared Function DecimalToByteArray(ByVal src As Decimal) As Byte()

 ' Create a MemoryStream as a buffer to hold the binary data.
 Using stream As New MemoryStream
 ' Create a BinaryWriter to write binary data to the stream.
 Using writer As New BinaryWriter(stream)
 ' Write the decimal to the BinaryWriter/MemoryStream.
 writer.Write(src)

 ' Return the byte representation of the decimal.
 Return stream.ToArray
 End Using
 End Using

 End Function

48 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Create a decimal from a byte array.
 Public Shared Function ByteArrayToDecimal(ByVal src As Byte()) As Decimal

 ' Create a MemoryStream containing the byte array.
 Using stream As New MemoryStream(src)
 ' Create a BinaryReader to read the decomal from the stream.
 Using reader As New BinaryReader(stream)
 ' Read and return the decimal from
 ' the BinaryReader/MemoryStream.
 Return reader.ReadDecimal
 End Using
 End Using

 End Function

 ' Base64 encode a Unicode string
 Public Shared Function StringToBase64(ByVal src As String) As String

 ' Get a byte representation of the source string.
 Dim b As Byte() = Encoding.Unicode.GetBytes(src)

 ' Return the Base64-encoded Unicode string.
 Return Convert.ToBase64String(b)

 End Function

 ' Decode a Base64-encoded Unicode string.
 Public Shared Function Base64ToString(ByVal src As String) As String

 ' Decode the Base64-encoded string to a byte array.
 Dim b As Byte() = Convert.FromBase64String(src)

 ' Return the decoded Unicode string.
 Return Encoding.Unicode.GetString(b)

 End Function

 ' Base64 encode a decimal
 Public Shared Function DecimalToBase64(ByVal src As Decimal) As String

 ' Get a byte representation of the decimal.
 Dim b As Byte() = DecimalToByteArray(src)

 ' Return the Base64-encoded decimal.
 Return Convert.ToBase64String(b)

 End Function

 ' Decode a Base64-encoded decimal.
 Public Shared Function Base64ToDecimal(ByVal src As String) As Decimal

 ' Decode the Base64-encoded decimal to a byte array.
 Dim b As Byte() = Convert.FromBase64String(src)

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 49

 ' Return the decoded decimal.
 Return ByteArrayToDecimal(b)

 End Function

 ' Base64 encode an integer.
 Public Shared Function IntToBase64(ByVal src As Integer) As String

 ' Get a byte representation of the integer.
 Dim b As Byte() = BitConverter.GetBytes(src)

 ' Return the Base64-encoded integer.
 Return Convert.ToBase64String(b)

 End Function

 ' Decode a Base64-encoded integer.
 Public Shared Function Base64ToInt(ByVal src As String) As Decimal

 ' Decode the Base64-encoded integer to a byte array.
 Dim b As Byte() = Convert.FromBase64String(src)

 ' Return the decoded integer.
 Return BitConverter.ToInt32(b, 0)

 End Function

 Public Shared Sub Main()

 ' Encode and decode a string
 Console.WriteLine(StringToBase64("Welcome to Visual Basic Recipes " & ➥
"from Apress"))
 Console.WriteLine(Base64ToString("VwBlAGwAYwBvAG0AZQAgAHQAbwA" + ➥
"gAFYAaQBzAHUAYQBsACAAQwAjACAAUgBlAGMAaQBwAGUAcwAgAGYAcgB" + ➥
"vAG0AIABBAHAAcgBlAHMAcwA="))

 ' Encode and decode a decimal.
 Console.WriteLine(DecimalToBase64(285998345545.563846696D))
 Console.WriteLine(Base64ToDecimal("KDjBUP07BoEPAAAAAAAJAA=="))

 ' Encode and decode an integer.
 Console.WriteLine(IntToBase64(35789))
 Console.WriteLine(Base64ToInt("zYsAAA=="))

 ' Wait to continue
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

50 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

■Caution If you Base64 encode binary data for the purpose of including it as MIME data in an e-mail message,
be aware that the maximum allowed line length in MIME for Base64-encoded data is 76 characters. Therefore, if
your data is longer than 76 characters, you must insert a new line. For further information about the MIME standard,
consult RFCs 2045 through 2049.

2-5. Validate Input Using Regular Expressions

Problem
You need to validate that user input or data read from a file has the expected structure and content.
For example, you want to ensure that a user enters a valid IP address, telephone number, or e-mail
address.

Solution
Use regular expressions to ensure that the input data follows the correct structure and contains only
valid characters for the expected type of information.

How It Works
When a user inputs data to your application or your application reads data from a file, it’s good practice
to assume that the data is bad until you have verified its accuracy. One common validation require-
ment is to ensure that data entries such as e-mail addresses, telephone numbers, and credit card
numbers follow the pattern and content constraints expected of such data. Obviously, you cannot
be sure the actual data entered is valid until you use it, and you cannot compare it against values that
are known to be correct. However, ensuring the data has the correct structure and content is a good
first step to determining whether the input is accurate. Regular expressions provide an excellent
mechanism for evaluating strings for the presence of patterns, and you can use this to your advan-
tage when validating input data.

The first thing you must do is figure out the regular expression syntax that will correctly match
the structure and content of data you are trying to validate. This is by far the most difficult aspect of
using regular expressions. Many resources exist to help you with regular expressions, such as The
Regulator (http://regex.osherove.com/) by Roy Osherove and RegExDesigner.NET by Chris Sells
(http://www.sellsbrothers.com/tools/#regexd). The RegExLib.com web site (http://www.
regxlib.com/) also provides hundreds of useful prebuilt expressions.

Regular expressions, which are case-sensitive, are constructed from two types of elements:
literals and metacharacters. Literals represent specific characters that appear in the pattern you want
to match. Metacharacters provide support for wildcard matching, ranges, grouping, repetition,
conditionals, and other control mechanisms. Table 2-2 describes some of the more commonly used
regular expression metacharacter elements. (Consult the .NET SDK documentation at http://
msdn2.microsoft.com/en-us/library/hs600312.aspx for a full description of regular expressions.)

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 51

Table 2-2. Commonly Used Regular Expression Metacharacter Elements

Element Description

. Specifies any character except a newline character (\n)

\d Specifies any digit

\D Specifies any non-digit

\s Specifies any whitespace character

\S Specifies any non-whitespace character

\w Specifies any word character

\W Specifies any non-word character

^ Specifies the beginning of the string or line

\A Specifies the beginning of the string

$ Specifies the end of the string or line

\z Specifies the end of the string

| Matches one of the expressions separated by the vertical bar; for example,
AAA|ABA|ABB will match one of AAA, ABA, or ABB (the expression is evaluated left
to right)

[abc] Specifies a match with one of the specified characters; for example, [AbC] will
match A, b, or C, but no other character

[^abc] Specifies a match with any one character except those specified; for example,
[^AbC] will not match A, b, or C, but will match B, F, and so on

[a-z] Specifies a match with any one character in the specified range; for example, [A-C]
will match A, B, or C

[^a-z] Specifies a match with any one character not in the specified range; for example,
[^A-C] will not match A, B, or C but will match B and F

() Identifies a subexpression so that it’s treated as a single element by the regular
expression elements described in this table

? Specifies one or zero occurrences of the previous character or subexpression; for
example, A?B matches B and AB, but not AAB

* Specifies zero or more occurrences of the previous character or subexpression; for
example, A*B matches B, AB, AAB, AAAB, and so on

+ Specifies one or more occurrences of the previous character or subexpression; for
example, A+B matches AB, AAB, AAAB, and so on, but not B

{n} Specifies exactly n occurrences of the preceding character or subexpression; for
example, A{2} matches only AA and A{2}B matches only AAB

{n,} Specifies a minimum of n occurrences of the preceding character or subexpres-
sion; for example, A{2,} matches AA, AAA, AAAA, and so on, but not A

{n, m} Specifies a minimum of n and a maximum of m occurrences of the preceding
character; for example, A{2,4} matches AA, AAA, and AAAA, but not A or AAAAA

52 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

The more complex the data you are trying to match, the more complex the regular expression
syntax becomes. For example, ensuring that input contains only numbers or is of a minimum length
is trivial, but ensuring a string contains a valid URL is extremely complex. Table 2-3 shows some
examples of regular expressions that match against commonly required data types.

Once you know the correct regular expression syntax, create a new System.Text.
RegularExpressions.Regex object, passing a string containing the regular expression to the Regex
constructor. Then call the IsMatch method of the Regex object and pass the string that you want to
validate. IsMatch returns a Boolean value indicating whether the Regex object found a match in the
string. The regular expression syntax determines whether the Regex object will match against only
the full string or match against patterns contained within the string. (See the ^, \A, $, and \z entries
in Table 2-2.)

The Code

The ValidateInput method shown in the following example tests any input string to see if it matches
a specified regular expression.

Imports System
Imports System.Text.RegularExpressions
Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_05

Table 2-3. Commonly Used Regular Expressions

Input Type Description Regular Expression

Numeric input The input consists of one or more decimal
digits; for example, 5 or 5683874674.

^\d+$

Personal identification
number (PIN)

The input consists of four decimal digits; for
example, 1234.

^\d{4}$

Simple password The input consists of six to eight characters;
for example, ghtd6f or b8c7hogh.

^\w{6,8}$

Credit card number The input consists of data that matches the
pattern of most major credit card numbers;
for example, 4921835221552042 or
4921-8352-2155-2042.

^\d{4}-?\d{4}-?\
d{4}-?\d{4}$

E-mail address The input consists of an Internet e-mail
address. The [\w-]+ expression indicates
that each address element must consist of
one or more word characters or hyphens;
for example, somebody@adatum.com.

^[\w-]+@([\w-]
+\.)+[\w-]+$

HTTP or HTTPS URL The input consists of an HTTP-based or
HTTPS-based URL; for example, http://
www.apress.com.

^https?://([\w-]
+\.)+ [\w-]+(/
[\w-./?%=]*)?$

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 53

 Public Shared Function ValidateInput(ByVal expression As String, ➥
ByVal input As String) As Boolean

 ' Create a new Regex based on the specified regular expression.
 Dim r As New Regex(expression)

 ' Test if the specified input matches the regular expression.
 Return r.IsMatch(input)

 End Function

 Public Shared Sub Main(ByVal args As String())

 ' Test the input from the command line. The first argument is the
 ' regular expression, and the second is the input.
 Console.WriteLine("Regular Expresion: {0}", args(0))
 Console.WriteLine("Input: {0}", args(1))
 Console.WriteLine("Valied = {0}", ValidateInput(args(0), args(1)))

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

To execute the example, run Recipe02-05.exe and pass the regular expression and data to test as
command-line arguments. For example, to test for a correctly formed e-mail address, type the
following:

Recipe02-05 ^[\w-]+@([\w-]+\.)+[\w-]+$ myname@mydomain.com

The result would be as follows:

Regular Expression: ^[\w-]+@([\w-]+\.)+[\w-]+$
Input: myname@mydomain.com
Valid = True

Notes
You can use a Regex object repeatedly to test multiple strings, but you cannot change the regular
expression tested for by a Regex object. You must create a new Regex object to test for a different
pattern. This is because the ValidateInput method creates a new Regex instance each time it’s
called. A more suitable alternative, in this case, would be to use a Shared overload of the IsMatch
method, as shown in the following variant of the ValidateInput method.

54 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

' Alternative version of the ValidateInput method that does not create
' Regex instances.
Public Shared Function ValidateInput(ByVal expression As String, ➥
ByVal input As String) As Boolean

 ' Test if the specified input matches the regular expression.
 Return Regex.IsMatch(input, expression)

End Function

2-6. Use Compiled Regular Expressions

Problem
You need to minimize the impact on application performance that arises from using complex regular
expressions frequently.

Solution
When you instantiate the System.Text.RegularExpressions.Regex object that represents your regular
expression, specify the Compiled option of the System.Text.RegularExpressions.RegexOptions enumer-
ation to compile the regular expression to Microsoft Intermediate Language (MSIL).

How It Works
By default, when you create a Regex object, the regular expression pattern you specify in the constructor
is compiled to an intermediate form (not MSIL). Each time you use the Regex object, the runtime
interprets the pattern’s intermediate form and applies it to the target string. With complex regular
expressions that are used frequently, this repeated interpretation process can have a detrimental
effect on the performance of your application.

By specifying the RegexOptions.Compiled option when you create a Regex object, you force the
.NET runtime to compile the regular expression to MSIL instead of the interpreted intermediary
form. This MSIL is just-in-time (JIT) compiled by the runtime to native machine code on first execu-
tion, just like regular assembly code. Subsequent calls to the same RegEx object will use the native
version that was previously compiled. You use a compiled regular expression in the same way as you
use any Regex object; compilation simply results in faster execution.

However, a couple downsides offset the performance benefits provided by compiling regular
expressions. First, the JIT compiler needs to do more work, which will introduce delays during JIT
compilation. This is most noticeable if you create your compiled regular expressions as your appli-
cation starts up. Second, the runtime cannot unload a compiled regular expression once you have
finished with it. Unlike as with a normal regular expression, the runtime’s garbage collector will not
reclaim the memory used by the compiled regular expression. The compiled regular expression will
remain in memory until your program terminates or you unload the application domain in which
the compiled regular expression is loaded. If you only plan to use a RegEx object once, there is no
reason to compile it. Use compiling only for situations where a RegEx object is used frequently.

As well as compiling regular expressions in memory, the Shared Regex.CompileToAssembly
method allows you to create a compiled regular expression and write it to an external assembly. This
means that you can create assemblies containing standard sets of regular expressions, which you
can use from multiple applications. To compile a regular expression and persist it to an assembly,
take the following steps:

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 55

1. Create a System.Text.RegularExpressions.RegexCompilationInfo array large enough to
hold one RegexCompilationInfo object for each of the compiled regular expressions you
want to create.

2. Create a RegexCompilationInfo object for each of the compiled regular expressions. Specify
values for its properties as arguments to the object constructor. The following are the most
commonly used properties:

• IsPublic, a Boolean value that specifies whether the generated regular expression class has
Public visibility

• Name, a String value that specifies the class name

• Namespace, a String value that specifies the namespace of the class

• Pattern, a String value that specifies the pattern that the regular expression will match
(see recipe 2-5 for more details)

• Options, a System.Text.RegularExpressions.RegexOptions value that specifies options for
the regular expression

3. Create a System.Reflection.AssemblyName object. Configure it to represent the name of the
assembly that the Regex.CompileToAssembly method will create.

4. Execute Regex.CompileToAssembly, passing the RegexCompilationInfo array and the
AssemblyName object.

This process creates an assembly that contains one class declaration for each compiled regular
expression—each class derives from Regex. To use the compiled regular expression contained in the
assembly, instantiate the regular expression you want to use and call its method as if you had simply
created it with the normal Regex constructor. (Remember to add a reference to the assembly when
you compile the code that uses the compiled regular expression classes.)

The Code

This line of code shows how to create a Regex object that is compiled to MSIL instead of the usual
intermediate form:

Dim reg As New Regex("[\w-]+@([\w-]+\.)+[\w-]+", RegexOptions.Compiled)

The following example shows how to create an assembly named MyRegEx.dll, which contains
two regular expressions named PinRegex and CreditCardRegex.

Imports System
Imports System.Reflection
Imports System.Text.RegularExpressions

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_06

 Public Shared Sub Main()

 ' Create the array to hold the Regex info objects.
 Dim regexInfo(1) As RegexCompilationInfo

56 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Create the RegexCompilationInfo for PinRegex.
 regexInfo(0) = New RegexCompilationInfo("^\d{4}$", ➥
RegexOptions.Compiled, "PinRegex", "Apress.VisualBasicRecipes.Chapter02", True)

 ' Create the RegexCompilationInfo for CreditCardRegex.
 regexInfo(1) = New RegexCompilationInfo(➥
"^\d{4}-?\d{4}-?\d{4}-?\d{4}$", RegexOptions.Compiled, "CreditCardRegex", ➥
"Apress.VisualBasicRecipes.Chapter02", True)

 ' Create the AssemblyName to define the target assembly.
 Dim assembly As New AssemblyName("MyRegEx")

 ' Create the compiled regular expression.
 Regex.CompileToAssembly(regexInfo, assembly)

 End Sub

 End Class
End Namespace

Usage

When you want to use your new assembly, you must first add a reference to it to your project. You
can do this from within the Visual Studio interface or by using the /r:MyRegEx.dll option of the
command-line compiler.

Once you have a reference to the assembly in your project, you can easily create a reference to
the compiled regular expressions contained inside, as shown in this example:

Dim pinRegExp As New PinRegex

2-7. Create Dates and Times from Strings

Problem
You need to create a System.DateTime instance that represents the time and date specified in a string.

Solution
Use the Parse or ParseExact method of the DateTime class.

■Caution Many subtle issues are associated with using the DateTime class to represent dates and times in
your applications. Although the Parse and ParseExact methods create DateTime objects from strings as described in
this recipe, you must be careful how you use the resulting DateTime objects within your program. See the article
titled “Coding Best Practices Using DateTime in the .NET Framework” (http://msdn.microsoft.com/
netframework/default.aspx?pull=/library/en-us/dndotnet/html/datetimecode.asp) for details
about the problems you may encounter.

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 57

How It Works
Dates and times can be represented as text in many different ways. For example, January 12 1975,
1/12/1975, and Jan-12-1975 are all possible representations of the same date, and 18:19 and 6:19 p.m.
can both be used to represent the same time. The Shared DateTime.Parse method provides a flexible
mechanism for creating DateTime instances from a wide variety of string representations.

The Parse method goes to great lengths to generate a DateTime object from a given string. It will
even attempt to generate a DateTime object from a string containing partial or erroneous information
and will substitute defaults for any missing values. Missing date elements default to the current date,
and missing time elements default to 12:00:00 a.m. After all efforts, if Parse cannot create a DateTime
object, it throws a System.FormatException exception.

The Parse method is both flexible and forgiving. However, for many applications, this level of
flexibility is unnecessary. Often, you will want to ensure that DateTime parses only strings that match
a specific format. In these circumstances, use the ParseExact method instead of Parse. The simplest
overload of the ParseExact method takes three arguments: the time and date string to parse, a format
string that specifies the structure that the time and date string must have, and an IFormatProvider
reference that provides culture-specific information to the ParseExact method. If the IFormatProvider
value is Nothing, the current thread’s culture information is used.

The time and date must meet the requirements specified in the format string, or ParseExact will
throw a System.FormatException exception. You use the same format specifiers for the format string
as you use to format a DateTime object for display as a string. This means that you can use both stan-
dard and custom format specifiers.

The Code

The following example demonstrates the flexibility of the Parse method and the use of the ParseExact
method. Refer to the documentation for the System.Globalization.DateTimeFormatInfo class in the
.NET Framework SDK document for complete details on all available format specifiers.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_07

 Public Shared Sub Main(ByVal args As String())

 ' 1st January 1975 00:00:00
 Dim dt1 As DateTime = DateTime.Parse("Jan 1975")

 ' 12th January 1975 18:19:00
 Dim dt2 As DateTime = DateTime.Parse("Sunday 12 January 1975 18:19:00")

 ' 12th January 1975 00:00:00
 Dim dt3 As DateTime = DateTime.Parse("1,12,1975")

 ' 12th January 1975 18:19:00
 Dim dt4 As DateTime = DateTime.Parse("1/12/1975 18:19:00")

 ' Current Date 18:19
 Dim dt5 As DateTime = DateTime.Parse("6:19 PM")

58 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Display the converted DateTime objects.
 Console.WriteLine(dt1)
 Console.WriteLine(dt2)
 Console.WriteLine(dt3)
 Console.WriteLine(dt4)
 Console.WriteLine(dt5)

 ' Parse only strings containing LongTimePattern.
 Dim dt6 As DateTime = DateTime.ParseExact("6:19:00 PM", "h:mm:ss tt", ➥
Nothing)

 ' Parse only strings containing RFC1123Pattern.
 Dim dt7 As DateTime = DateTime.ParseExact("Sun, 12 Jan 1975 " + ➥
"18:19:00 GMT", "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'", Nothing)

 ' Parse only strings containing MonthDayPattern.
 Dim dt8 As DateTime = DateTime.ParseExact("January 12", "MMMM dd", ➥
Nothing)

 ' Display the converted DateTime objects.
 Console.WriteLine(dt6)
 Console.WriteLine(dt7)
 Console.WriteLine(dt8)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

2-8. Add, Subtract, and Compare Dates and Times

Problem
You need to perform basic arithmetic operations or comparisons using dates and times.

Solution
Use the DateTime and TimeSpan structures, which support standard arithmetic and comparison
operators.

How It Works
A DateTime instance represents a specific time (such as 4:15 a.m. on September 5, 1970), whereas a
TimeSpan instance represents a period of time (such as 2 hours, 35 minutes). You may want to add,
subtract, and compare TimeSpan and DateTime instances.

Internally, both DateTime and TimeSpan use ticks to represent time. A tick is equal to 100 nano-
seconds. TimeSpan stores its time interval as the number of ticks equal to that interval, and DateTime

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 59

stores time as the number of ticks since 12:00:00 midnight on January 1 in 0001 C.E. (C.E. stands for
Common Era and is equivalent to A.D. in the Gregorian calendar.) This approach and the use of
operator overloading makes it easy for DateTime and TimeSpan to support basic arithmetic and
comparison operations. Table 2-4 summarizes the operator support provided by the DateTime and
TimeSpan structures.

The DateTime structure also implements the AddTicks, AddMilliseconds, AddSeconds, AddMinutes,
AddHours, AddDays, AddMonths, and AddYears methods. Each of these methods, which accept a Double
as opposed to a TimeSpan, allows you to add (or subtract using negative values) the appropriate element
of time to a DateTime instance. These methods and the non-comparison operators listed in Table 2-4
do not modify the original DateTime; instead, they create a new instance with the modified value.

Table 2-4. Operators Supported by DateTime and TimeSpan

Operator TimeSpan DateTime

Assignment (=) Because TimeSpan is a structure,
assignment returns a copy and
not a reference

Because DateTime is a structure,
assignment returns a copy and not
a reference

Addition (+) Adds two TimeSpan instances Adds a TimeSpan instance to a
DateTime instance

Subtraction (-) Subtracts one TimeSpan instance
from another TimeSpan instance

Subtracts a TimeSpan instance or a
DateTime instance from a DateTime
instance

Equality (=) Compares two TimeSpan instances
and returns true if they are equal

Compares two DateTime instances
and returns true if they are equal

Inequality (<>) Compares two TimeSpan instances
and returns true if they are
not equal

Compares two DateTime instances
and returns true if they are not equal

Greater than (>) Determines if one TimeSpan
instance is greater than another
TimeSpan instance

Determines if one DateTime instance
is greater than another DateTime
instance

Greater than or
equal to (>=)

Determines if one TimeSpan
instance is greater than or equal
to another TimeSpan instance

Determines if one DateTime instance
is greater than or equal to another
DateTime instance

Less than (<) Determines if one TimeSpan
instance is less than another
TimeSpan instance

Determines if one DateTime instance
is less than another DateTime instance

Less than or
equal to (<=)

Determines if one TimeSpan
instance is less than or equal to
another TimeSpan instance

Determines if one DateTime instance
is less than or equal to another
DateTime instance

Unary negation (-) Returns a TimeSpan instance
with a negated value of the
specified TimeSpan instance

Not supported

Unary plus (+) Returns the TimeSpan instance
specified

Not supported

60 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

The Code

The following example demonstrates the use of operators to manipulate the DateTime and TimeSpan
structures.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_08

 Public Shared Sub Main()

 ' Create a TimeSpan representing 2.5 days.
 Dim timespan1 As New TimeSpan(2, 12, 0, 0)

 ' Create a TimeSpan representing 4.5 days.
 Dim timespan2 As New TimeSpan(4, 12, 0, 0)

 ' Create a TimeSpan representing 1 week.
 Dim oneweek As TimeSpan = timespan1 + timespan2

 ' Create a DateTime with the current date and time.
 Dim now As DateTime = DateTime.Now

 ' Create a DateTime representing 1 week in the past.
 Dim past As DateTime = now - oneweek

 ' Create a DateTime representing 1 week in the future.
 Dim future As DateTime = now + oneweek

 ' Create a DateTime representing the next day using
 ' the AddDays method.
 Dim tomorrow As DateTime = now.AddDays(1)

 ' Display the DateTime instances.
 Console.WriteLine("Now : {0}", now)
 Console.WriteLine("Past : {0}", past)
 Console.WriteLine("Future : {0}", future)
 Console.WriteLine("Tomorrow : {0}", tomorrow)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 61

2-9. Sort an Array or an ArrayList

Problem
You need to sort the elements contained in an array or an ArrayList structure.

Solution
Use the ArrayList.Sort method to sort ArrayList objects and the Shared Array.Sort method to sort
arrays.

How It Works
The simplest Sort method overload sorts the objects contained in an array or ArrayList structure as
long as the objects implement the System.IComparable interface and are of the same type. All of the
basic data types implement IComparable. To sort objects that do not implement IComparable, you
must pass the Array.Sort method an object that implements the System.Collections.IComparer
interface. The IComparer implementation must be capable of comparing the objects contained
within the array or ArrayList. (Recipe 13-3 describes how to implement both comparable types.)

The Code

The following example demonstrates how to use the Sort methods of the ArrayList and Array classes.

Imports System
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_09

 Public Shared Sub Main()

 ' Create a new array and populate it.
 Dim array1 As Integer() = {4, 2, 9, 3}

 ' Sort the array.
 Array.Sort(array1)

 ' Display the contents of the sorted array.
 For Each i As Integer In array1
 Console.WriteLine(i.ToString)
 Next

 ' Create a new ArrayList and populate it.
 Dim list1 As New ArrayList(3)
 list1.Add("Amy")
 list1.Add("Alaina")
 list1.Add("Aidan")

 ' Sort the ArrayList.
 list1.Sort()

62 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Display the contents of the sorted ArrayList.
 For Each s As String In list1
 Console.WriteLine(s)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

2-10. Copy a Collection to an Array

Problem
You need to copy the contents of a collection to an array.

Solution
Use the ICollection.CopyTo method implemented by all collection classes. Alternatively, you can
use the ToArray method implemented by the ArrayList, Stack, and Queue collections, as well as their
respective generic versions List<T>, Stack<T>, and Queue<T>. Refer to recipe 2-12 for more informa-
tion regarding generics.

How It Works
The ICollection.CopyTo method and the ToArray method perform roughly the same function: they
perform a shallow copy of the elements contained in a collection to an array. The key difference is
that CopyTo copies the collection’s elements to an existing array, whereas ToArray creates a new array
before copying the collection’s elements into it.

The CopyTo method takes two arguments: an array and an index. The array is the target of the
copy operation and must be of a type appropriate to handle the elements of the collection. If the
types do not match, or no implicit conversion is possible from the collection element’s type to the
array element’s type, a System.InvalidCastException exception is thrown. The index is the starting
element of the array where the collection’s elements will be copied. If the index is equal to or greater
than the length of the array, or the number of collection elements exceeds the capacity of the array,
a System.ArgumentException exception is thrown.

The ArrayList, Stack, and Queue classes and their generic versions (mentioned earlier) also
implement the ToArray method, which automatically creates an array of the correct size to accom-
modate a copy of all the elements of the collection. If you call ToArray with no arguments, it returns
an object() array, regardless of the type of objects contained in the collection. For convenience, the
ArrayList.ToArray method has an overload to which you can pass a System.Type object that specifies
the type of array that the ToArray method should create. (You must still cast the returned strongly
typed array to the correct type.) The layout of the array’s contents depends on which collection class
you are using. For example, an array produced from a Stack object will be inverted compared to the
array generated by an ArrayList object.

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 63

The Code

This example demonstrates how to copy the contents of an ArrayList structure to an array using the
CopyTo method, and then shows how to use the ToArray method on the ArrayList object.

Imports System
Imports System.Collections
Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_10

 Public Shared Sub Main()

 ' Create a new ArrayList and populate it.
 Dim list As New ArrayList(3)
 list.Add("Amy")
 list.Add("Alaina")
 list.Add("Aidan")

 ' Create a string array and use the ICollection.CopyTo method
 ' to copy the contents of the ArrayList.
 Dim array1(list.Count - 1) As String
 list.CopyTo(array1, 0)

 ' Use ArrayList.ToArray to create an object array from the
 ' contents of the collection.
 Dim array2 As Object() = list.ToArray()

 ' Use ArrayList.ToArray to create a strongly typed string
 ' array from the contents of the collection.
 Dim array3 As String() = DirectCast(list.ToArray(GetType(String)), ➥
String())

 ' Display the contents of the 3 arrays.
 Console.WriteLine("Array 1:")
 For Each s As String In array1
 Console.WriteLine(vbTab + "{0}", s)
 Next

 Console.WriteLine("Array 2:")
 For Each s As String In array2
 Console.WriteLine(vbTab + "{0}", s)
 Next

 Console.WriteLine("Array 3:")
 For Each s As String In array3
 Console.WriteLine(vbTab + "{0}", s)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

64 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 End Class
End Namespace

2-11. Use a Strongly Typed Collection

Problem
You need a collection that works with elements of a specific type so that you do not need to work
with System.Object references in your code.

Solution
Use the appropriate collection class from the System.Collections.Generic namespace. When you
instantiate the collection, specify the type of object the collection should contain using the generics
syntax built into VB .NET 8.0.

How It Works
The generics functionality added to .NET Framework 2.0 and supported by specific syntax in
VB .NET 8.0 make it easy to create type-safe collections and containers (see recipe 2-12). To meet the
most common requirements for collection classes, the System.Collections.Generic namespace
contains a number of predefined generic collections, including the following:

• Dictionary

• LinkedList

• List

• Queue

• Stack

When you instantiate one of these collections, you specify the type of object that the collection
will contain by using the Of keyword with the type name in parentheses after the collection name; for
example, Dictionary(Of System.Reflection.AssemblyName). As a result, all members that add objects
to the collection expect the objects to be of the specified type, and all members that return objects
from the collection will return object references of the specified type. Using strongly typed collec-
tions and working directly with objects of the desired type simplifies development and reduces the
errors that can occur when working with general Object references and casting them to the desired type.

The Code

The following example demonstrates the use of generic collections to create a variety of collections
specifically for the management of AssemblyName objects. Notice that you never need to cast to or
from the Object type.

Imports System
Imports System.Reflection
Imports System.Collections.Generic

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 65

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_11

 Public Shared Sub Main()

 ' Create an AssemblyName object for use during the example.
 Dim assembly1 As New AssemblyName("com.microsoft.crypto, Culture=en, ➥
PublicKeyToken=a5d015c7d5a0b012, Version=1.0.0.0")

 ' Create and use a Dictionary of AssemblyName objects.
 Dim assemblyDictionary As New Dictionary(Of String, AssemblyName)

 assemblyDictionary.Add("Crypto", assembly1)

 Dim ass1 As AssemblyName = assemblyDictionary("Crypto")

 Console.WriteLine("Got AssemblyName from dictionary: {0}", ➥
CType(ass1, AssemblyName).ToString)

 ' Create and use a list of AssemblyName objects.
 Dim assemblyList As New List(Of AssemblyName)

 assemblyList.Add(assembly1)

 Dim ass2 As AssemblyName = assemblyList(0)

 Console.WriteLine(vbCrLf & "Got AssemblyName from list: {0}", ➥
CType(ass2, AssemblyName).ToString)

 ' Create and use a stack of AssemblyName objects.
 Dim assemblyStack As New Stack(Of AssemblyName)

 assemblyStack.Push(assembly1)

 Dim ass3 As AssemblyName = assemblyStack.Pop

 Console.WriteLine(vbCrLf & "Popped AssemblyName from stack: {0}", ➥
CType(ass3, AssemblyName).ToString)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

66 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

2-12. Create a Generic Type

Problem
You need to create a new general-purpose type such as a collection or container that supports strong
typing of the elements it contains.

Solution
Use the generics functionality added to .NET Framework 2.0. Define your class using the generics
syntax provided in VB .NET 8.0.

How It Works
You can leverage the generics capabilities of .NET Framework 2.0 in any class you define. This allows
you to create general-purpose classes that can be used as type-safe instances by other programmers.
When you declare your type, you identify it as a generic type by following the type name with a list of
identifiers for the types used in the class, preceded by the Of keyword and enclosed in parentheses.
Here is an example:

Public Class MyGeneric(Of T1, T2, T3)
End Class

This declaration specifies a new class named MyGenericType, which uses three generic types in
its implementation (T1, T2, and T3). When implementing the type, you substitute the generic type
names into the code instead of using specific type names. For example, one method might take an
argument of type T1 and return a result of type T2, as shown here:

Public Function MyGenericMethod(ByVal arg As T1) As T2
End Function

When other people use your class and create an instance of it, they specify the actual types to
use as part of the instantiation. Here is an example:

Dim obj As New MyGenericType(Of String, System.IO.Stream, String)

The types specified replace T1, T2, and T3 throughout the implementation, so with this instance,
MyGenericMethod would actually be interpreted as follows:

Public Function MyGenericMethod(ByVal arg As String) As Stream
End Function

You can also include constraints as part of your generic type definition. This allows you to make
specifications such as the following:

• Only value types or only reference types can be used with the generic type.

• Only types that implement a default (empty) constructor can be used with the generic type.

• Only types that implement a specific interface can be used with the generic type.

• Only types that inherit from a specific base class can be used with the generic type.

• One generic type must be the same as another generic type (for example, T1 must be the same
as T3).

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 67

For example, to specify that T1 must implement the System.IDisposable interface and provide
a default constructor, that T2 must be or derive from the System.IO.Stream class, and that T3 must be
the same type as T1, change the definition of MyGenericType as follows:

Public Class MyGenericType(Of T1 As {IDisposable}, T2 As {System.IO.Stream}, ➥
T3 As {T1})
End Class

The Code

The following example demonstrates a simplified bag implementation that returns those objects put
into it at random. A bag is a data structure that can contain zero or more items, including duplicates
of items, but does not guarantee any ordering of the items it contains.

Imports System
Imports System.Collections.Generic
Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Bag(Of T)
 ' A list to hold the bag's contents. The list must be
 ' of the same type as the bag.
 Private items As New List(Of T)

 ' A method to add an item to the bag.
 Public Sub Add(ByVal item As T)
 items.Add(item)
 End Sub

 ' A method to remove a random item from the bag.
 Public Function Remove() As T
 Dim item As T = Nothing

 If Not items.Count = 0 Then
 ' Determine which item to remove from the bag.
 Dim r As New Random
 Dim num As Integer = r.Next(0, items.Count)

 ' Remove the item.
 item = items(num)
 items.RemoveAt(num)
 End If

 Return item

 End Function

 ' A method to remove all items form the bag and return them
 ' as an array.
 Public Function RemoveAll() As T()

 Dim i As T() = items.ToArray()
 items.Clear()
 Return i

 End Function

68 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 End Class

 Public Class Recipe02_12

 Public Shared Sub Main()

 ' Create a new bag of strings.
 Dim bag As New Bag(Of String)

 ' Add strings to the bag.
 bag.Add("Amy")
 bag.Add("Alaina")
 bag.Add("Aidan")
 bag.Add("Robert")
 bag.Add("Pearl")
 bag.Add("Mark")
 bag.Add("Karen")

 ' Take four strings from the bag and display.
 Console.WriteLine("Item 1 = {0}", bag.Remove())
 Console.WriteLine("Item 2 = {0}", bag.Remove())
 Console.WriteLine("Item 3 = {0}", bag.Remove())
 Console.WriteLine("Item 4 = {0}", bag.Remove())
 Console.WriteLine(vbCrLf)

 ' Remove the remaining items from the bag.
 Dim s As String() = bag.RemoveAll

 ' Display the remaining items.
 For i As Integer = 0 To s.Length - 1
 Console.WriteLine("Item {0} = {1}", i + 1.ToString, s(i))
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

2-13. Store a Serializable Object to a File

Problem
You need to store a serializable object and its state to a file, and then deserialize it later.

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 69

Solution
Use a formatter to serialize the object and write it to a System.IO.FileStream object. When you need
to retrieve the object, use the same type of formatter to read the serialized data from the file and
deserialize the object. The .NET Framework class library includes the following formatter imple-
mentations for serializing objects to binary or SOAP format:

• System.Runtime.Serialization.Formatters.Binary.BinaryFormatter

• System.Runtime.Serialization.Formatters.Soap.SoapFormatter

How It Works
Using the BinaryFormatter and SoapFormatter classes, you can serialize an instance of any serializ-
able type. (See recipe 13-1 for details on how to make a type serializable.) The BinaryFormatter class
produces a binary data stream representing the object and its state. The SoapFormatter class produces a
SOAP document. SOAP, which stands for Simple Object Access Protocol, is an XML-based protocol
used to exchange messages over the network. SOAP is used as the primary mechanism for commu-
nicating with web services. Refer to recipes 10-13, 10-14, and 10-15 for more information about web
services.

Both the BinaryFormatter and SoapFormatter classes implement the interface System.Runtime.
Serialization.IFormatter, which defines two methods: Serialize and Deserialize. The Serialize
method takes a System.IO.Stream reference and a System.Object reference as arguments, serializes
the Object, and writes it to the Stream. The Deserialize method takes a Stream reference as an argument,
reads the serialized object data from the Stream, and returns an Object reference to a deserialized object.
You must cast the returned Object reference to the correct type.

■Caution To call the Serialize and Deserialize methods of the BinaryFormatter class, your code must
be granted the SecurityPermissionFlag.SerializationFormatter permission. To call the Serialize
and Deserialize methods of the SoapFormatter class, your code must be granted full trust, because the
System.Runtime.Serialization.Formatters.Soap.dll assembly in which the SoapFormatter class is
declared does not allow partially trusted callers. Refer to recipe 11-1 for more information about assemblies and
partially trusted callers.

The Code

The example shown here demonstrates the use of both BinaryFormatter and SoapFormatter to serialize
a System.Collections.ArrayList object containing a list of people to a file. The ArrayList object
is then deserialized from the files and the contents displayed to the console. A reference to the
System.Runtime.Serialization.Formatters.Soap assembly may need to be added to your project
before it can be used.

Imports System
Imports System.IO
Imports System.Collections
Imports System.Runtime.Serialization.Formatters.Soap
Imports System.Runtime.Serialization.Formatters.Binary

70 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_13

 ' Serialize an ArrayList object to a binary file.
 Private Shared Sub BinarySerialize(ByVal list As ArrayList)

 Using str As FileStream = File.Create("people.bin")
 Dim bf As New BinaryFormatter()
 bf.Serialize(str, list)
 End Using

 End Sub

 ' Deserialize an Arraylist object from a binary file.
 Private Shared Function BinaryDeserialize() As ArrayList
 Dim people As ArrayList = Nothing

 Using str As FileStream = File.OpenRead("people.bin")
 Dim bf As New BinaryFormatter()
 people = DirectCast(bf.Deserialize(str), ArrayList)
 End Using
 Return people

 End Function

 ' Serialize an ArrayList object to a SOAP file.
 Private Shared Sub SoapSerialize(ByVal list As ArrayList)

 Using str As FileStream = File.Create("people.soap")
 Dim sf As New SoapFormatter()
 sf.Serialize(str, list)
 End Using

 End Sub

 ' Deserialize an Arraylist object from a SOAP file.
 Private Shared Function SoapDeserialize() As ArrayList
 Dim people As ArrayList = Nothing

 Using str As FileStream = File.OpenRead("people.soap")
 Dim sf As New SoapFormatter()
 people = DirectCast(sf.Deserialize(str), ArrayList)
 End Using
 Return people

 End Function

 Public Shared Sub Main()

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 71

 ' Create and configure the ArrayList to serialize.
 Dim people As New ArrayList
 people.Add("Alex")
 people.Add("Dave")
 people.Add("Jason")
 people.Add("Robb")

 ' Serialize the list to a file in both binary and SOAP format.
 BinarySerialize(people)
 SoapSerialize(people)

 ' Rebuild the lists of people form the binary and SOAP
 ' serializations and display them to the console.
 Dim binaryPeople As ArrayList = BinaryDeserialize()
 Dim soapPeople As ArrayList = SoapDeserialize()

 Console.WriteLine("Binary People:")
 For Each s As String In binaryPeople
 Console.WriteLine(vbTab & s)
 Next

 Console.WriteLine(vbCrLf & "SOAP People:")
 For Each s As String In soapPeople
 Console.WriteLine(vbTab & s)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

To illustrate the different results achieved using the BinaryFormatter and SoapFormatter classes,
Figure 2-1 shows the contents of the people.bin file generated using the BinaryFormatter class,
and Figure 2-2 shows the contents of the people.soap file generated using the SoapFormatter class.

Figure 2-1. Contents of the people.bin file

72 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

Figure 2-2. Contents of the people.soap file

2-14. Read User Input from the Console

Problem
You want to read user input from the Windows console, either a line or character at a time.

Solution
Use the Read or ReadLine method of the System.Console class to read input when the user presses
Enter. To read input without requiring the user to press Enter, use the Console.ReadKey method.

How It Works
The simplest way to read input from the console is to use the Shared Read or ReadLine methods of the
Console class. These methods will cause your application to block, waiting for the user to enter input
and press Enter. In both instances, the user will see the input characters in the console. Once the
user presses Enter, the Read method will return an Integer value representing the next character of
input data, or –1 if no more data is available. Since Read reads only one character, it must be called
repeatedly to continue capturing user input. The ReadLine method will return a string containing all
the data entered, or an empty string if no data was entered.

.NET Framework 2.0 adds the ReadKey method to the Console class, which provides a way to read
input from the console without waiting for the user to press Enter. The ReadKey method waits for the
user to press a key and returns a System.ConsoleKeyInfo object to the caller. By passing true as an
argument to an overload of the ReadKey method, you can also prevent the key pressed by the user
from being echoed to the console.

The returned ConsoleKeyInfo object contains details about the key pressed. The details are
accessible through the properties of the ConsoleKeyInfo class summarized in Table 2-5.

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 73

The KeyAvailable method of the Console class returns a Boolean value indicating whether input
is available in the input buffer without blocking your code.

The Code

The following example reads input from the console one character at a time using the ReadKey method.
If the user presses F1, the program toggles in and out of “secret” mode, where input is masked by
asterisks. When the user presses Escape, the console is cleared and the input the user has entered is
displayed. If the user presses Alt-X or Alt-x, the example terminates.

Imports System
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter02

 Public Class Recipe02_14
 Public Shared Sub Main()

 ' Local variable to hold the key entered by the user.
 Dim key As ConsoleKeyInfo

 ' Control whether character or asterisk is displayed.
 Dim secret As Boolean = False

 ' Character list for the user data entered.
 Dim input As New List(Of Char)
 Dim msg As String = "Enter characters and press Escape to see input." ➥
& vbCrLf & "Press F1 to enter/exit Secret mode and Alt-X to exit."

 Console.WriteLine(msg)

Table 2-5. Properties of the ConsoleKeyInfo Class

Property Description

Key Gets a value of the System.ConsoleKey enumeration representing the key pressed.
The ConsoleKey enumeration contains values that represent all of the keys usually
found on a keyboard. These include all the character and function keys; navigation
and editing keys like Home, Insert, and Delete; and more modern specialized keys
like the Windows key, media player control keys, browser activation keys, and
browser navigation keys.

KeyChar Gets a Char value containing the Unicode character representation of the key
pressed. Special keys such as Insert, Delete, and F1 through F12 do not have a
Unicode representation and will return Nothing.

Modifiers Gets a bitwise combination of values from the System.ConsoleModifiers enumera-
tion that identifies one or more modifier keys pressed simultaneously with the
console key. The members of the ConsoleModifiers enumeration are Alt, Control,
and Shift.

74 CH AP T E R 2 ■ D AT A M AN I P U L AT IO N

 ' Process input until the users enters "Alt-X" or "Alt-x".
 Do
 ' Read a key from the console. Intercept the key so that it is not
 ' displayed to the console. What is displayed is determined later
 ' depending on whether the program is in secret mode.
 key = Console.ReadKey(True)

 ' Switch secret mode on and off.
 If key.Key = ConsoleKey.F1 Then
 If secret Then
 ' Switch secret mode off.
 secret = False
 Else
 ' Switch secret mode on.
 secret = True
 End If
 End If

 If key.Key = ConsoleKey.Backspace Then
 ' Handle Backspace.
 If input.Count > 0 Then
 ' Backspace pressed remove the last character.
 input.RemoveAt(input.Count - 1)

 Console.Write(key.KeyChar)
 Console.Write(" ")
 Console.Write(key.KeyChar)
 End If

 ' Handle Escape.
 ElseIf key.Key = ConsoleKey.Escape Then
 Console.Clear()
 Console.WriteLine("Input: {0}{1}{1}", New ➥
String(input.ToArray), vbCrLf)
 Console.WriteLine(msg)
 input.Clear()

 ' Handle character input.
 ElseIf key.Key >= ConsoleKey.A And key.Key <= ConsoleKey.Z Then
 input.Add(key.KeyChar)

 If secret Then
 Console.Write("*")
 Else
 Console.Write(key.KeyChar)
 End If

 End If

C HA P TE R 2 ■ D AT A M AN IP U L A T I ON 75

 Loop While Not key.Key = ConsoleKey.X Or Not key.Modifiers = ➥
 ConsoleModifiers.Alt

 ' Wait to continue.
 Console.WriteLine("{0}{0}Main method complete. Press Enter", vbCrLf)
 Console.ReadLine()

 End Sub

 End Class
End Namespace

77

■ ■ ■

C H A P T E R 3

Application Domains, Reflection,
and Metadata

The power and flexibility of the Microsoft .NET Framework is enhanced by the ability to inspect
and manipulate types and metadata at runtime. The recipes in this chapter describe how to use
application domains, reflection, and metadata. Specifically, the recipes in this chapter describe how
to do the following:

• Control the loading of assemblies and the instantiation of types in local and remote applica-
tion domains (recipes 3-1, 3-3, 3-4, and 3-7)

• Create application domains into which you can load assemblies that are isolated from the rest
of your application (recipe 3-2)

• Create types that are guaranteed to be unable to cross application domain boundaries (recipe
3-5) and types that have the capability to cross application domain boundaries (recipe 3-6)

• Pass simple configuration data between application domains (recipe 3-8)

• Unload application domains, which provides the only means through which you can unload
assemblies at runtime (recipe 3-9)

• Inspect and test the type of an object using a variety of mechanisms built into the VB .NET
language and capabilities provided by the objects themselves (recipes 3-10 and 3-11)

• Dynamically instantiate an object and execute its methods at runtime using reflection
(recipe 3-12)

• Create custom attributes (recipe 3-13), allowing you to associate metadata with your program
elements, and inspect the value of those custom attributes at runtime (recipe 3-14)

■Note An excellent reference for detailed information on all aspects of application domains and loading assemblies
is Customizing the Microsoft .NET Framework Common Language Runtime by Steven Pratschner (Microsoft Press, 2005).

3-1. Load an Assembly into the Current
Application Domain
Problem
You need to load an assembly into the current application domain at runtime.

78 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

Solution
Use the Shared Load method or the LoadFrom method of the System.Reflection.Assembly class.

■Note The Assembly.LoadWithPartialName method has been deprecated in .NET Framework 2.0. Instead,
you should use the Assembly.Load method described in this recipe.

How It Works
Unlike with Win32, where the referenced DLLs are loaded when the process starts, the common
language runtime (CLR) will automatically load the assemblies referenced by your assembly only
when the metadata for their contained types is required. However, you can also explicitly instruct
the runtime to load assemblies. The Load and LoadFrom methods both result in the runtime loading
an assembly into the current application domain, and both return an Assembly instance that repre-
sents the newly loaded assembly. The differences between each method are the arguments you must
provide to identify the assembly to load and the process that the runtime undertakes to locate the
specified assembly.

The Load method provides overloads that allow you to specify the assembly to load using one of
the following:

• A String containing the fully or partially qualified display name of the assembly

• A System.Reflection.AssemblyName containing details of the assembly

• A Byte array containing the raw bytes that constitute the assembly

A fully qualified display name contains the assembly’s text name, version, culture, and public
key token, separated by commas (for example, System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089). When using a fully qualified name, all four fields are mandatory.
If you need to specify an assembly that doesn’t have a strong name, use PublicKeyToken=null. You
can also specify a partial display name, but as a minimum, you must specify the assembly name
(without the file extension).

In response to the Load call, the runtime undertakes an extensive process to locate and load the
specified assembly. The following is a summary of this process (consult the section “How the Runtime
Locates Assemblies” in the .NET Framework SDK documentation for more details):

1. If you specify a strong-named assembly, the Load method will apply the version policy and
publisher policy to enable requests for one version of an assembly to be satisfied by another
version. You specify the version policy in your machine or application configuration file
using <bindingRedirect> elements. You specify the publisher policy in special resource
assemblies installed in the global assembly cache (GAC).

2. Once the runtime has established the correct version of an assembly to use, it attempts to
load strong-named assemblies from the GAC.

3. If the assembly is not strong named or is not found in the GAC, the runtime looks for applicable
<codeBase> elements in your machine and application configuration files. A <codeBase> element
maps an assembly name to a specific file or a uniform resource locator (URL). If the assembly is
strong named, <codeBase> can refer to any location including Internet-based URLs; otherwise,
<codeBase> must refer to a directory relative to the application directory. If the assembly doesn’t
exist at the specified location, Load throws a System.IO.FileNotFoundException.

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 79

4. If no <codeBase> elements are relevant to the requested assembly, the runtime will locate the
assembly using probing. Probing looks for the first file with the assembly’s name (with either
a .dll or an .exe extension) in the following locations:

• The application root directory

• Directories under the application root that match the assembly’s name and culture

• Directories under the application root that are specified in the private binpath using the
<privatePath> attribute.

The Load method is the easiest way to locate and load assemblies but can also be expensive in
terms of processing if the runtime needs to start probing many directories for a weak-named assembly.
The LoadFrom method allows you to load an assembly from a specific location. If the specified file
isn’t found, the runtime will throw a FileNotFoundException. The runtime won’t attempt to locate
the assembly in the same way as the Load method—LoadFrom provides no support for the GAC, policies,
<codeBase> elements, or probing.

The Code

The following code demonstrates various forms of the Load and LoadFrom methods. Notice that unlike
the Load method, LoadFrom requires you to specify the extension of the assembly file.

Imports System
Imports System.Reflection
Imports System.Globalization

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_01

 Public Shared Sub ListAssemblies()

 ' Get an array of the assemblies loaded into the current
 ' application domain.
 Dim assemblies As Assembly() = AppDomain.CurrentDomain.GetAssemblies()

 For Each a As Assembly In assemblies
 Console.WriteLine(a.GetName)
 Next

 End Sub

 Public Shared Sub Main()

 ' List the assemblies in the current application domain.
 Console.WriteLine("**** BEFORE ****")
 ListAssemblies()

 ' Load the System.Data assembly using a fully qualified display name.
 Dim name1 As String = "System.Data,Version=2.0.0.0," + ➥
"Culture=neutral,PublicKeyToken=b77a5c561934e089"
 Dim a1 As Assembly = Assembly.Load(name1)

80 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 ' Load the System.Xml assembly using an AssemblyName.
 Dim name2 As New AssemblyName()
 name2.Name = "System.Xml"
 name2.Version = New Version(2, 0, 0, 0)
 name2.CultureInfo = New CultureInfo("") ' Neutral culture.
 name2.SetPublicKeyToken(New Byte() {&HB7, &H7A, &H5C, &H56, ➥
&H19, &H34, &HE0, &H89})
 Dim a2 As Assembly = Assembly.Load(name2)

 ' Load the SomeAssembly assembly using a partial display name.
 Dim a3 As Assembly = Assembly.Load("SomeAssembly")

 ' Load the assembly named C:\shared\MySharedAssembly.dll.
 Dim a4 As Assembly = Assembly.LoadFrom("C:\shared\MySharedAssembly.dll")

 ' List the assemblies in the current application domain.
 Console.WriteLine("{0}{0}**** AFTER ****", vbCrLf)
 ListAssemblies()

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

3-2. Create an Application Domain

Problem
You need to create a new application domain.

Solution
Use the Shared method CreateDomain of the System.AppDomain class.

How It Works
The simplest overload of the CreateDomain method takes a single String argument specifying a human-
readable name (friendly name) for the new application domain. Other overloads allow you to specify
evidence and configuration settings for the new application domain. Evidence refers to information,
such as a strong name or application path, that is used by the CLR when making security decisions.
You specify evidence using a System.Security.Policy.Evidence object, and you specify configura-
tion settings using a System.AppDomainSetup object.

The AppDomainSetup class is a container of configuration information for an application domain.
Table 3-1 lists some of the properties of the AppDomainSetup class that you will use most often when
creating application domains. These properties are accessible after creation through members of the
AppDomain object. Some have different names, and some are modifiable at runtime; refer to the .NET

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 81

Framework’s software development kit (SDK) documentation on the AppDomain class for a compre-
hensive discussion.

The Code

The following code demonstrates the creation and initial configuration of an application domain:

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_02

 Public Shared Sub Main()

 ' Instantiate an AppDomainSetup object.
 Dim setupInfo As New AppDomainSetup

 ' Configure the application domain setup information.
 setupInfo.ApplicationBase = "C:\MyRootDirectory"
 setupInfo.ConfigurationFile = "MyApp.config"
 setupInfo.PrivateBinPath = "bin;plugins;external"

 ' Create a new application domain passing Nothing as the evidence
 ' argument. Remember to save a reference to the new AppDomain as
 ' this cannot be retrieved any other way.
 Dim newDomain As AppDomain = AppDomain.CreateDomain("My New " & ➥

Table 3-1. Commonly Used AppDomainSetup Properties

Property Description

ApplicationBase The directory where the CLR will look during probing to resolve
private assemblies. Recipe 3-1 discusses probing. Effectively,
ApplicationBase is the root directory for the executing application.
By default, this is the directory containing the assembly. This is
readable after creation using the AppDomain.BaseDirectory property.

ConfigurationFile The name of the configuration file used by code loaded into the
application domain. This is readable after creation using the
AppDomain.GetData method with the key APP_CONFIG_FILE. By
default, the configuration file is stored in the same folder as the
application.exe file, but if you set ApplicationBase, it will be in that
same folder.

DisallowPublisherPolicy Controls whether the publisher policy section of the application
configuration file is taken into consideration when determining
which version of a strong-named assembly to bind to. Recipe 3-1
discusses publisher policy.

PrivateBinPath A semicolon-separated list of directories that the runtime uses when
probing for private assemblies. These directories are relative to the
directory specified in ApplicationBase. This is readable after appli-
cation domain creation using the AppDomain.RelativeSearchPath
property.

82 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

"AppDomain, Nothing, setupInfo)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note You must maintain a reference to the AppDomain object when you create it because no mechanism exists
to enumerate existing application domains from within managed code.

3-3. Execute an Assembly in a Different
Application Domain

Problem
You need to execute an assembly in an application domain other than the current one.

Solution
Call the ExecuteAssembly or ExecuteAssemblyByName (in .NET Framework 2.0) method of the AppDomain
object that represents the application domain, and specify the filename of an executable assembly.

How It Works
If you have an executable assembly that you want to load and run in an application domain, the
ExecuteAssembly or ExecuteAssemblyByName method provides the easiest solution. The ExecuteAssembly
method provides four overloads. The simplest overload takes only a String containing the name of
the executable assembly to run; you can specify a local file or a URL. Other ExecuteAssembly over-
loads allow you to specify evidence for the assembly (which affects code access security) and arguments
to pass to the assembly’s entry point (equivalent to command-line arguments).

The ExecuteAssembly method loads the specified assembly and executes the method defined in
metadata as the assembly’s entry point (usually the Main method). If the specified assembly isn’t
executable, ExecuteAssembly throws a System.MissingMethodException. The CLR doesn’t start execu-
tion of the assembly in a new thread, so control won’t return from the ExecuteAssembly method until
the newly executed assembly exits. Because the ExecuteAssembly method loads an assembly using
partial information (only the filename), the CLR won’t use the GAC or probing to resolve the assembly.
(See recipe 3-1 for more information.)

The ExecuteAssemblyByName method provides a similar set of overloads and takes the same argu-
ment types as ExecuteAssembly, but instead of just the filename of the executable assembly, it takes
the display name of the assembly. (See recipe 3-1 for more information about the structure of assembly
display names.) This overcomes the limitations inherent in ExecuteAssembly as a result of supplying
only partial names. Here is an example of using this method:

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 83

Dim domain As AppDomain = AppDomain.CreateDomain("NewAppDomain")
domain.ExecuteAssemblyByName("Recipe03-06, Version=1.0.0.0, Culture=neutral, ➥
PublicKeyToken=null", Nothing, args)

The Code

The following code demonstrates how to use the ExecuteAssembly method to load and run an
assembly. The Recipe03_03 class creates an AppDomain and executes itself in that AppDomain using the
ExecuteAssembly method. This results in two copies of the Recipe03-03 assembly loaded into two
different application domains.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_03

 Public Shared Sub Main(ByVal args As String())

 ' For the purpose of this example, if this assembly is executing
 ' in an AppDomain with the friendly name NewAppDomain, do not
 ' create a new AppDomain. This avoids an infinite loop of
 ' AppDomain creation.
 If Not AppDomain.CurrentDomain.FriendlyName = "NewAppDomain" Then
 ' Create a new application domain.
 Dim domain As AppDomain = AppDomain.CreateDomain("NewAppDomain")

 ' Execute this assembly in the new application domain and
 ' pass the array of command-line arguments.
 domain.ExecuteAssembly("Recipe03-03.exe", Nothing, args)

 End If

 ' Display the command-line arguments to the screen prefixed with
 ' the friendly name of the AppDomain.
 For Each s As String In args
 Console.WriteLine(AppDomain.CurrentDomain.FriendlyName + " : " + s)
 Next

 ' Wait to continue.
 If Not AppDomain.CurrentDomain.FriendlyName = "NewAppDomain" Then
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()
 End If

 End Sub

 End Class
End Namespace

Usage

If you run Recipe03-03 using the following command:

Recipe03-03 Testing AppDomains

84 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

you will see that the command-line arguments are listed from both the existing and new application
domains:

NewAppDomain : Testing
NewAppDomain : AppDomains
Recipe03-03.exe : Testing
Recipe03-03.exe : AppDomains

3-4. Avoid Loading Unnecessary Assemblies into
Application Domains

Problem
You need to pass an object reference across multiple application domain boundaries; however, to
conserve memory and avoid impacting performance, you want to ensure the CLR loads only the
object’s type metadata into the application domains where it is required (that is, where you will
actually use the object).

Solution
Wrap the object reference in a System.Runtime.Remoting.ObjectHandle, and unwrap the object
reference only when you need to access the object.

How It Works
When you pass a marshal-by-value (MBV) object across application domain boundaries, the runtime
creates a new instance of that object in the destination application domain. This means the runtime
must load the assembly containing that type metadata into the application domain. Passing MBV
references across intermediate application domains can result in the runtime loading unnecessary
assemblies into application domains. Once loaded, these superfluous assemblies cannot be unloaded
without unloading the containing application domain. (See recipe 3-9 for more information.)

The ObjectHandle class allows you to wrap an object reference so that you can pass it between
application domains without the runtime loading additional assemblies. When the object reaches
the destination application domain, you can unwrap the object reference, causing the runtime to
load the required assembly and allowing you to access the object.

The Code

The following code contains some simple methods that demonstrate how to wrap and unwrap a
System.Data.DataSet using an ObjectHandle:

Imports System
Imports System.Data
Imports System.Runtime.Remoting

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_04

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 85

 ' A method to wrap a DataSet.
 Public Function WrapDataset(ByVal ds As DataSet) As ObjectHandle

 ' Wrap the DataSet.
 Dim objHandle As New ObjectHandle(ds)

 ' Return the wrapped DataSet.
 Return objHandle

 End Function

 ' A method to unwrap a DataSet.
 Public Function UnwrapDataset(ByVal handle As ObjectHandle) As DataSet

 ' Unwrap the DataSet.
 Dim ds As DataSet = CType(handle.Unwrap, DataSet)

 ' Return the DataSet.
 Return ds

 End Function

 End Class
End Namespace

3-5. Create a Type That Cannot Cross Application
Domain Boundaries

Problem
You need to create a type so that instances of the type are inaccessible to code in other application
domains.

Solution
Ensure the type is nonremotable by making sure it is not serializable (no Serializable attribute) and
it does not derive from the MarshalByRefObject class.

How It Works
On occasion, you will want to ensure that instances of a type cannot transcend application domain
boundaries. To create a nonremotable type, ensure that it isn’t serializable and that it doesn’t derive
(directly or indirectly) from the MarshalByRefObject class. If you take these steps, you ensure that an
object’s state can never be accessed from outside the application domain in which the object was
instantiated—such objects cannot be used as arguments or return values in cross-application domain
method calls.

Ensuring that a type isn’t serializable is easy because a class doesn’t inherit the ability to be
serialized from its parent class. To ensure that a type isn’t serializable, make sure it does not have
System.SerializableAttribute applied to the type declaration.

86 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

Ensuring that a class cannot be passed by reference requires a little more attention. Many
classes in the .NET class library derive directly or indirectly from MarshalByRefObject; you must be
careful you don’t inadvertently derive your class from one of these. Commonly used base classes that
derive from MarshalByRefObject include System.ComponentModel.Component, System.IO.Stream,
System.IO.TextReader, System.IO.TextWriter, System.NET.WebRequest, and System.Net.WebResponse.
(Check the .NET Framework SDK documentation on MarshalByRefObject. The inheritance hierarchy
for the class provides a complete list of classes that derive from it.)

3-6. Create a Type That Can Be Passed Across
Application Domain Boundaries

Problem
You need to pass objects across application domain boundaries as arguments or return values.

Solution
Use marshal-by-value (MBV) or marshal-by-reference (MBR) objects.

How It Works
The .NET Remoting system (discussed in Chapter 10) makes passing objects across application
domain boundaries straightforward. However, to those unfamiliar with .NET Remoting, the results
can be very different from those expected. In fact, the most confusing aspect of using multiple appli-
cation domains stems from the interaction with .NET Remoting and the way objects traverse
application domain boundaries.

All types fall into one of three categories: nonremotable, MBV, or MBR. Nonremotable types
cannot cross application domain boundaries and cannot be used as arguments or return values in
cross-application domain calls. (Recipe 3-5 discusses nonremotable types.)

MBV types are serializable types. When you pass an MBV object across an application domain
boundary as an argument or a return value, the .NET Remoting system serializes the object’s current
state, passes it to the destination application domain, and creates a new copy of the object with the
same state as the original. This results in a copy of the MBV object existing in both application domains.
The content of the two instances are initially identical, but they are independent; changes made to
one instance are not reflected in the other instance. This often causes confusion as you try to update
the remote object but are actually updating the local copy. If you want to be able to call and change
an object from a remote application domain, the object needs to be an MBR type.

MBR types are those classes that derive from System.MarshalByRefObject. When you pass an
MBR object across an application domain boundary as an argument or a return value, in the desti-
nation application domain, the .NET Remoting system creates a proxy that represents the remote
MBR object. To any class in the destination application domain, the proxy looks and behaves like the
remote MBR object that it represents. In reality, when a call is made against the proxy, the .NET
Remoting system transparently passes the call and its arguments to the remote application domain
and issues the call against the original object. Any results are passed back to the caller via the proxy.
Figure 3-1 illustrates the relationship between an MBR object and the objects that access it across
application domains via a proxy.

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 87

Figure 3-1. An MBR object is accessed across application domains via a proxy.

The Code

The following example highlights (in bold) the fundamental difference between creating classes that
are passed by value (Recipe03_06MBV) and those passed by reference (Recipe03_06MBR). The code
creates a new application domain and instantiates two remotable objects in it (discussed further in
recipe 3-7). However, because the Recipe03_06MBV object is an MBV object, when it is created in the
new application domain, it is serialized, passed across the application domain boundary, and dese-
rialized as a new independent object in the caller’s application domain. Therefore, when the code
retrieves the name of the application domain hosting each object, Recipe03_06MBV returns the name
of the main application domain, and Recipe03_06MBR returns the name of the new application domain in
which it was created.

■Note This sample uses the CreateInstanceFromAndUnwrap method of the AppDomain class to create the
instances of Recipe03_06MBV and Recipe03_06MBR in the new application domain. This method is covered in
more detail in recipe 3-7.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

 ' Declare a class that is passed by value.
 <Serializable()> _
 Public Class Recipe03_06MBV

88 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 Public ReadOnly Property HomeAppDomain() As String
 Get
 Return AppDomain.CurrentDomain.FriendlyName
 End Get
 End Property

 End Class

 ' Declare a class that is passed by reference.
 Public Class Recipe03_06MBR
 Inherits MarshalByRefObject

 Public ReadOnly Property HomeAppDomain() As String
 Get
 Return AppDomain.CurrentDomain.FriendlyName
 End Get
 End Property

 End Class

 Public Class Recipe03_06
 Public Shared Sub Main(ByVal args As String())

 ' Create a new application domain.
 Dim newDomain As AppDomain = AppDomain.CreateDomain("My ➥
New AppDomain")

 ' Instantiate an MBV object in the new application domain.
 Dim mbvObject As Recipe03_06MBV = ➥
CType(newDomain.CreateInstanceFromAndUnwrap("Recipe03-06.exe", ➥
"Apress.VisualBasicRecipes.Chapter03.Recipe03_06MBV"), Recipe03_02MBV)

 ' Instantiate an MBR object in the new application domain.
 Dim mbrObject As Recipe03_06MBR = ➥
CType(newDomain.CreateInstanceFromAndUnwrap("Recipe03-06.exe", ➥
"Apress.VisualBasicRecipes.Chapter03.Recipe03_06MBR"), Recipe03_02MBR)

 ' Display the name of the application domain in which each of
 ' the objects is located.
 Console.WriteLine("Main AppDomain = {0}", ➥
AppDomain.CurrentDomain.FriendlyName)
 Console.WriteLine("AppDomain of MBV object = {0}", ➥
mbvObject.HomeAppDomain)
 Console.WriteLine("AppDomain of MBR object = {0}", ➥
mbrObject.HomeAppDomain)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 89

■Note Recipe 13-1 provides more details on creating serializable types, and recipe 10-16 describes how to
create remotable types.

3-7. Instantiate a Type in
a Different Application Domain

Problem
You need to instantiate a type in an application domain other than the current one.

Solution
Call the CreateInstance method or the CreateInstanceFrom method of the AppDomain object that
represents the target application domain.

How It Works
The ExecuteAssembly method discussed in recipe 3-3 is straightforward to use, but when you are
developing sophisticated applications that use application domains, you are likely to want more
control over loading assemblies, instantiating types, and invoking object members within the appli-
cation domain.

The CreateInstance and CreateInstanceFrom methods provide a variety of overloads that offer
fine-grained control over the process of object instantiation. The simplest overloads assume the use
of a type’s default constructor, but both methods implement overloads that allow you to provide
arguments to use any constructor.

The CreateInstance method loads a named assembly into the application domain using the
process described for the Assembly.Load method in recipe 3-1. CreateInstance then instantiates
a named type and returns a reference to the new object wrapped in an ObjectHandle (described
in recipe 3-4). The CreateInstanceFrom method also instantiates a named type and returns an
ObjectHandle-wrapped object reference; however, CreateInstanceFrom loads the specified assembly
file into the application domain using the process described in recipe 3-1 for the Assembly.LoadFrom
method.

AppDomain also provides two convenience methods named CreateInstanceAndUnwrap and
CreateInstanceFromAndUnwrap that automatically extract the reference of the instantiated object
from the returned ObjectHandle object; you must cast the returned Object to the correct type.

■Caution Be aware that if you use CreateInstance or CreateInstanceFrom to instantiate MBV types in
another application domain, the object will be created, but the returned Object reference won’t refer to that object.
Because of the way MBV objects cross application domain boundaries, the reference will refer to a copy of the object
created automatically in the local application domain. Only if you create an MBR type will the returned reference
refer to the object in the other application domain. (See recipe 3-6 for more details about MBV and MBR types.)

A common technique to simplify the management of application domains is to use a controller
class. A controller class is a custom MBR type. You create an application domain and then instantiate
your controller class in the application domain using CreateInstance. The controller class implements

90 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

the functionality required by your application to manipulate the application domain and its contents.
This could include loading assemblies, creating further application domains, cleaning up prior to
deleting the application domain, or enumerating program elements (something you cannot normally
do from outside an application domain). It is best to create your controller class in an assembly of its own
to avoid loading unnecessary classes into each application domain. You should also be careful about
which types you pass as return values from your controller to your main application domain to avoid
loading additional assemblies.

The Code

The following code demonstrates how to use a simplified controller class named PluginManager.
When instantiated in an application domain, PluginManager allows you to instantiate classes that
implement the IPlugin interface, start and stop those plug-ins, and return a list of currently loaded
plug-ins.

Imports System
Imports System.Reflection
Imports System.Collections
Imports System.Collections.Generic
Imports System.Collections.Specialized

Namespace Apress.VisualBasicRecipes.Chapter03

 ' A common interface that all plug-ins must implement.
 Public Interface IPlugin

 Sub Start()
 Sub [Stop]()

 End Interface

 ' A simple IPlugin implementation to demonstrate the PluginManager
 ' controller class.
 Public Class SimplePlugin
 Implements IPlugin

 Public Sub Start() Implements IPlugin.Start
 Console.WriteLine(AppDomain.CurrentDomain.FriendlyName & ➥
": SimplePlugin starting...")
 End Sub

 Public Sub [Stop]() Implements IPlugin.Stop
 Console.WriteLine(AppDomain.CurrentDomain.FriendlyName & ➥
": SimplePlugin stopping...")
 End Sub

 End Class

 ' The controller class, which manages the loading and manipulation
 ' of plug-ins in its application domain.
 Public Class PluginManager
 Inherits MarshalByRefObject

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 91

 ' A Dictionary to hold keyed references to IPlugin instances.
 Private plugins As New Dictionary(Of String, IPlugin)

 ' Default constructor.
 Public Sub New()

 End Sub

 ' Constructor that loads a set of specified plug-ins on creation.
 Public Sub New(ByVal pluginList As NameValueCollection)

 ' Load each of the specified plug-ins.
 For Each plugin As String In pluginList.Keys
 Me.LoadPlugin(pluginList(plugin), plugin)
 Next

 End Sub

 ' Load the specified assembly and instantiate the specified
 ' IPlugin implementation from that assembly.
 Public Function LoadPlugin(ByVal assemblyName As String, ➥
ByVal pluginName As String)

 Try
 ' Load the named private assembly.
 Dim assembly As Assembly = Reflection.Assembly.Load(assemblyName)

 ' Create the IPlugin instance, ignore case.
 Dim plugin As IPlugin = DirectCast(assembly.CreateInstance ➥
(pluginName, True), IPlugin)

 If Not plugin Is Nothing Then
 ' Add new IPlugin to ListDictionary
 plugins(pluginName) = plugin

 Return True
 Else
 Return False
 End If
 Catch
 ' Return false on all exceptions for the purpose of
 ' this example. Do not suppress exceptions like this
 ' in production code.
 Return False
 End Try

 End Function

 Public Sub StartPlugin(ByVal plugin As String)

92 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 Try
 ' Extract the IPlugin from the Dictionary and call Start.
 plugins(plugin).Start()
 Catch
 ' Log or handle exceptions appropriately.
 End Try

 End Sub

 Public Sub StopPlugin(ByVal plugin As String)

 Try
 ' Extract the IPlugin from the Dictionary and call Stop.
 plugins(plugin).Stop()
 Catch
 ' Log or handle exceptions appropriately.
 End Try

 End Sub

 Public Function GetPluginList() As ArrayList

 ' Return an enumerable list of plug-in names. Take the keys
 ' and place them in an ArrayList, which supports marshal-by-value.
 Return New ArrayList(plugins.Keys)

 End Function

 End Class

 Public Class Recipe03_07

 Public Shared Sub Main(ByVal args As String())

 ' Create a new application domain.
 Dim domain1 As AppDomain = AppDomain.CreateDomain("NewAppDomain1")

 ' Create a PluginManager in the new application domain using
 ' the default constructor.
 Dim manager1 As PluginManager = CType(domain1.CreateInstanceAndUnwrap ➥
("Recipe03-07", "Apress.VisualBasicRecipes.Chapter03.PluginManager"), PluginManager)

 ' Load a new plugin into NewAppDomain1
 manager1.LoadPlugin("Recipe03-07", "Apress.VisualBasicRecipes." & ➥
 "Chapter03.SimplePlugin")

 ' Start and stop the plug-in NewAppDomain1.
 manager1.StartPlugin("Apress.VisualBasicRecipes.Chapter03.SimplePlugin")
 manager1.StopPlugin("Apress.VisualBasicRecipes.Chapter03.SimplePlugin")

 ' Create a new application domain.
 Dim domain2 As AppDomain = AppDomain.CreateDomain("NewAppDomain2")

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 93

 ' Create a ListDictionary containing a list of plug-ins to create.
 Dim pluginList As New NameValueCollection()
 pluginList("Apress.VisualBasicRecipes.Chapter03.SimplePlugin") = ➥
"Recipe03-07"

 ' Create a PluginManager in the new application domain and
 ' specify the default list of plug-ins to create.
 Dim manager2 As PluginManager = CType(domain1.CreateInstanceAndUnwrap ➥
("Recipe03-07", "Apress.VisualBasicRecipes.Chapter03.PluginManager", True, 0, ➥
Nothing, New Object() {pluginList}, Nothing, Nothing, Nothing), PluginManager)

 ' Display the list of plug-ins loaded into NewAppDomain2.
 Console.WriteLine("{0}Plugins in NewAppDomain2:", vbCrLf)

 For Each s As String In manager2.GetPluginList()
 Console.WriteLine(" - " & s)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

If you run Recipe03-07, you should see the following:

NewAppDomain1: SimplePlugin starting...
NewAppDomain1: SimplePlugin stopping...

Plugins in NewAppDomain2:
 - Apress.VisualBasicRecipes.Chapter03.SimplePlugin

3-8. Pass Data Between Application Domains

Problem
You need a simple mechanism to pass general configuration or state data between application
domains.

Solution
Use the SetData and GetData methods of the AppDomain class.

94 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

How It Works
You can pass data between application domains as arguments and return values when you invoke
the methods and properties of objects that exist in other application domains. However, at times it
is useful to pass data between application domains in such a way that the data is easily accessible by
all code within the application domain.

Every application domain maintains a data cache that contains a set of name-value pairs. Most
of the cache content reflects configuration settings of the application domain, such as the values
from the AppDomainSetup object provided during application domain creation. (See recipe 3-2 for
more information.) You can also use this data cache as a mechanism to exchange data between
application domains or as a simple state storage mechanism for code running within the application
domain.

The SetData method allows you to associate a string key with an object and store it in the appli-
cation domain’s data cache. The GetData method allows you to retrieve an object from the data cache
using the key. If code in one application domain calls the SetData method or the GetData method to
access the data cache of another application domain, the data object must support MBV or MBR
semantics, or a System.Runtime.Serialization.SerializationException is thrown. (See recipe 3-6
for details on the characteristics required to allow objects to transcend application domain boundaries.)

When using the SetData or GetData methods to exchange data between application domains,
you should avoid using the following keys, which are already used by the .NET Framework (refer to
http://msdn2.microsoft.com/en-us/library/system.appdomain.getdata.aspx for more information):

• APP_CONFIG_FILE

• APP_NAME

• APPBASE

• APP_LAUNCH_URL

• LOADER_OPTIMIZATION

• BINPATH_PROBE_ONLY

• CACHE_BASE

• DEV_PATH

• DYNAMIC_BASE

• FORCE_CACHE_INSTALL

• LICENSE_FILE

• PRIVATE_BINPATH

• SHADOW_COPY_DIRS

The Code

The following example demonstrates how to use the SetData and GetData methods by passing a
System.Collections.ArrayList between two application domains. After passing a list of pets to a
second application domain for modification, the application displays the list. You will notice that the
code running in the second application domain does not modify the original list because ArrayList is an
MBV type, meaning that the second application domain has only a copy of the original list. (See
recipe 3-6 for more details.)

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 95

Imports System
Imports System.Reflection
Imports System.collections

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class ListModifier

 Public Sub New()

 ' Get the list from the data cache.
 Dim list As ArrayList = CType(AppDomain.CurrentDomain.GetData("Pets"), ➥
ArrayList)

 ' Modify the list.
 list.Add("Turtle")

 End Sub

 End Class

 Public Class Recipe03_08

 Public Shared Sub Main()

 ' Create a new application domain.
 Dim domain As AppDomain = AppDomain.CreateDomain("Test")

 ' Create an ArrayList and populate with information.
 Dim list As New ArrayList
 list.Add("Dog")
 list.Add("Cat")
 list.Add("Fish")

 ' Place the list in the data cache of the new application domain.
 domain.SetData("Pets", list)

 ' Instantiate a ListModifier in the new application domain.
 domain.CreateInstance("Recipe03-08", "Apress.VisualBasicRecipes." & ➥
"Chapter03.ListModifier")

 ' Get the list and display its contents.
 For Each s As String In CType(domain.GetData("Pets"), ArrayList)
 Console.WriteLine(s)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

96 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

3-9. Unload Assemblies and Application Domains

Problem
You need to unload assemblies or application domains at runtime.

Solution
You have no way to unload individual assemblies from a System.AppDomain. You can unload an entire
application domain using the Shared AppDomain.Unload method, which has the effect of unloading
all assemblies loaded into the application domain.

How It Works
The only way to unload an assembly is to unload the application domain in which the assembly is
loaded. Unfortunately, unloading an application domain will unload all the assemblies that have
been loaded into it. This might seem like a heavy-handed and inflexible approach, but with appro-
priate planning of your application domain, the assembly-loading structure, and the runtime
dependency of your code on that application domain, it is not overly restrictive.

You unload an application domain using the Shared AppDomain.Unload method and passing it an
AppDomain reference to the application domain you want to unload. You cannot unload the default
application domain created by the CLR at startup.

The Unload method stops any new threads from entering the specified application domain and
calls the Thread.Abort method on all threads currently active in the application domain. If the thread
calling the Unload method is currently running in the specified application domain (making it the
target of a Thread.Abort call), a new thread starts in order to carry out the unload operation. If a
problem is encountered unloading an application domain, the thread performing the unload oper-
ation throws a System.CannotUnloadAppDomainException. Attempting to access the application
domain after it has been unloaded will throw a System.AppDomainUnloadedException.

While an application domain is unloading, the CLR calls the finalization method of all objects
in the application domain. Depending on the number of objects and nature of their finalization
methods, this can take an arbitrary amount of time. The AppDomain.IsFinalizingForUnload method
returns True if the application domain is unloading and the CLR has started to finalize contained
objects; otherwise, it returns False.

The Code

This code fragment demonstrates the syntax of the Unload method:

' Create a new application domain.
Dim newDomain As AppDomain = AppDomain.CreateDomain("New Domain")

' Load assemblies into the application domain.
...

' Unload the new application domains.
AppDomain.Unload(newDomain)

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 97

3-10. Retrieve Type Information

Problem
You need to obtain a System.Type object that represents a specific type.

Solution
Use one of the following:

• The GetType operator

• The Shared GetType method of the System.Type class

• The Object.GetType method of an existing instance of the type

• The GetNestedType or GetNestedTypes method of the Type class

• The GetType or GetTypes method of the Assembly class

• The GetType, GetTypes, or FindTypes method of the System.Reflection.Module class

How It Works
The Type class provides a starting point for working with types using reflection. A Type object allows
you to inspect the metadata of the type, obtain details of the type’s members, and create instances
of the type. Because of the type’s importance, the .NET Framework provides a variety of mechanisms for
obtaining references to Type objects.

One method of obtaining a Type object for a specific type is to use the GetType operator shown here:

Dim T1 As System.Type = GetType(System.Text.StringBuilder)

The type name is not enclosed in quotes and must be resolvable by the compiler (meaning you
must reference the assembly). Because the reference is resolved at compile time, the assembly
containing the type becomes a static dependency of your assembly and will be listed as such in your
assembly’s manifest.

Another method that returns a Type object is Object.GetType. This method returns the type of
the object that calls it. The following is an example of its usage:

Dim myStringBuilder As New System.Text.StringBuilder
Dim myType As System.Type = myStringBuilder.GetType()

You can also use the Shared method Type.GetType, which takes a string containing the type name.
Because you use a string to specify the type, you can vary it at runtime, which opens the door to a
world of dynamic programming opportunities using reflection (see recipe 3-12). If you specify just
the type name, the runtime must be able to locate the type in an already loaded assembly. Alternatively,
you can specify an assembly-qualified type name. Refer to the .NET Framework SDK documentation
for the Type.GetType method for a complete description of how to structure assembly-qualified type
names. Table 3-2 summarizes some other methods that provide access to Type objects.

98 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

The Code

The following example demonstrates how to use the GetType operator and the Type.GetType method
to return a Type object for a named type and from existing objects.

Imports System
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_10

 Public Shared Sub Main()

 ' Obtain type information using the GetType operator.
 Dim t1 As Type = GetType(StringBuilder)

 ' Obtain type information using the Type.GetType method.
 ' Case-sensitive, return Nothing if not found.
 Dim t2 As Type = Type.GetType("System.String")

 ' Case-sensitive, throw TypeLoadException if not found.
 Dim t3 As Type = Type.GetType("System.String", True)

 ' Case-insensitive, throw TypeLoadException if not found.
 Dim t4 As Type = Type.GetType("system.string", True, True)

 ' Assembly-qualified type name.
 Dim t5 As Type = Type.GetType("System.Data.DataSet,System.Data," & ➥
"Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089")

Table 3-2. Methods That Return Type Objects

Method Description

Type.GetNestedType Gets a specified type declared as a nested type (a type that is a member
of another type) within the existing Type object.

Type.GetNestedTypes Gets an array of Type objects representing the nested types declared
within the existing Type object.

Assembly.GetType Gets a Type object for the specified type declared within the assembly.

Assembly.GetTypes Gets an array of Type objects representing the types declared within the
assembly.

Module.GetType Gets a Type object for the specified type declared within the module.
(See recipe 1-3 for a discussion of modules.)

Module.GetTypes Gets an array of Type objects representing the types declared within
the module.

Module.FindTypes Gets a filtered array of Type objects representing the types declared within
the module. The types are filtered using a delegate that determines
whether each Type should appear in the final array.

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 99

 ' Obtain type information using the Object.GetType method.
 Dim sb As New StringBuilder
 Dim t6 As Type = sb.GetType()

 ' Display the types.
 Console.WriteLine("Type of T1: {0}", t1.ToString)
 Console.WriteLine("Type of T2: {0}", t2.ToString)
 Console.WriteLine("Type of T3: {0}", t3.ToString)
 Console.WriteLine("Type of T4: {0}", t4.ToString)
 Console.WriteLine("Type of T5: {0}", t5.ToString)
 Console.WriteLine("Type of T6: {0}", t6.ToString)

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

3-11. Test an Object’s Type

Problem
You need to test the type of an object.

Solution
Use the inherited Object.GetType method to obtain a Type for the object. You can also use the TypeOf
and Is operators to test an object’s type.

How It Works
All types inherit the GetType method from the Object base class. As discussed in recipe 3-10, this method
returns a Type reference representing the type of the object. The runtime maintains a single instance
of Type for each type loaded, and all references for this type refer to this same object. This means you
can compare two type references efficiently. For convenience, VB .NET provides the Is operator as
a quick way to check whether an object is a specified type. In addition, Is will return True if the tested
object is derived from the specified class. .NET Framework 2.0 includes the new IsNot operator for
VB .NET. This operator is used to determine if an object is not a specified type. Furthermore, the
Type.IsSubclassOf method can be used to determine if an object derives from the specified type.

When using the TypeOf, Is, and IsNot operators and the IsSubClassOf method, the specified
type must be known and resolvable at compile time. A more flexible (but slower) alternative is to use
the Type.GetType method to return a Type reference for a named type. The Type reference is not
resolved until runtime, which causes a performance hit but allows you to change the type compar-
ison at runtime based on the value of a string.

Finally, you can use the TryCast keyword to perform a safe cast of any object to a specified type.
Unlike a standard cast that triggers a System.InvalidCastException if the object cannot be cast to the
specified type, TryCast returns Nothing. This allows you to perform safe casts that are easy to verify,
but the compared type must be resolvable at runtime.

100 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

■Note The runtime will usually maintain more than one instance of each type depending on how assemblies are
loaded into application domains. Usually, an assembly will be loaded into a specific application domain, meaning a
Type instance will exist in each application domain in which the assembly is loaded. However, assemblies can also
be loaded by a runtime host in a domain-neutral configuration, which means the assembly’s type metadata (and
Type instances) is shared across all application domains. By default, only the mscorlib assembly is loaded in a
domain-neutral configuration.

The Code

The following example demonstrates the various type-testing alternatives described in this recipe.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_11

 ' A method to test whether an object is an instance of a type.
 Public Shared Function IsType(ByVal obj As Object, ByVal myType ➥
As String) As Boolean

 ' Get the named type, use case-insensitive search, throw
 ' an exception if the type is not found.
 Dim t As Type = Type.GetType(myType, True, True)

 If t Is obj.GetType() Then
 Return True
 ElseIf obj.GetType.IsSubclassOf(t) Then
 Return True
 Else
 Return False
 End If

 End Function

 Public Shared Sub Main()

 ' Create a new StringReader for testing.
 Dim someObject As Object = New StringReader("This is a StringReader")

 ' Test if someObject is a StringReader by obtaining and
 ' comparing a Type reference using the TypeOf operator.
 If GetType(StringReader) Is someObject.GetType Then
 Console.WriteLine("GetType Is: someObject is a StringReader")
 End If

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 101

 ' Test if someObject is, or is derived from, a TextReader
 ' using the Is operator.
 If TypeOf someObject Is TextReader Then
 Console.WriteLine("TypeOf Is: someObject is a TextReader or a " & ➥
"derived class")
 End If

 ' Test if someObject is, or is derived from, a TextReader using
 ' the Type.GetType and Type.IsSubClassOf methods.
 If IsType(someObject, "System.IO.TextReader") Then
 Console.WriteLine("GetType: someObject is a TextReader")
 End If

 ' Use the TryCast keyword to perform a safe cast.
 Dim reader As StringReader = TryCast(someObject, StringReader)

 If Not reader Is Nothing Then
 Console.WriteLine("TryCast: someObject is a StringReader")
 End If

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Tip The Shared method GetUnderlyingType of the System.Enum class allows you to retrieve the under-
lying type of an enumeration.

3-12. Instantiate an Object Using Reflection

Problem
You need to instantiate an object at runtime using reflection.

Solution
Obtain a Type object representing the type of object you want to instantiate, call its GetConstructor
method to obtain a System.Reflection.ConstructorInfo object representing the constructor you
want to use, and execute the ConstructorInfo.Invoke method.

How It Works
The first step in creating an object using reflection is to obtain a Type object that represents the
type you want to instantiate. (See recipe 3-10 for details.) Once you have a Type instance, call its
GetConstructor method to obtain a ConstructorInfo representing one of the type’s constructors.

102 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

The most commonly used overload of the GetConstructor method takes a Type array argument and
returns a ConstructorInfo representing the constructor that takes the number, order, and type of
arguments specified in the Type array. To obtain a ConstructorInfo representing a parameterless
(default) constructor, pass an empty Type array (use the Shared field Type.EmptyTypes or new Type(0));
don’t use Nothing, or GetConstructor will throw a System.ArgumentNullException. If GetConstructor
cannot find a constructor with a signature that matches the specified arguments, it will return Nothing.

Once you have the desired ConstructorInfo, call its Invoke method. You must provide an Object
array containing the arguments you want to pass to the constructor. If there are no arguments, pass
Nothing. Invoke instantiates the new object and returns an object reference to it, which you must
cast to the appropriate type.

Reflection functionality is commonly used to implement factories in which you use reflection to
instantiate concrete classes that either extend a common base class or implement a common inter-
face. Often both an interface and a common base class are used. The abstract base class implements
the interface and any common functionality, and then each concrete implementation extends the
base class.

No mechanism exists to formally declare that each concrete class must implement constructors
with specific signatures. If you intend third parties to implement concrete classes, your documenta-
tion must specify the constructor signature called by your factory. A common approach to avoid this
problem is to use a default (empty) constructor and configure the object after instantiation using
properties and methods.

The Code

The following code fragment demonstrates how to instantiate a System.Text.StringBuilder object
using reflection and how to specify the initial content for the StringBuilder (a String) and its capacity
(an Integer):

Imports System
Imports System.Text
Imports System.Reflection

Namespace Apress.VisualBasicRecipes.Chapter03

 Public Class Recipe03_12

 Public Shared Function CreateStringBuilder() As StringBuilder

 ' Obtain the Type for the StringBuilder class.
 Dim type As Type = GetType(StringBuilder)

 ' Create a Type() containing Type instances for each
 ' of the constructor arguments – a String and an Integer.
 Dim argTypes As Type() = New Type() {GetType(System.String), ➥
GetType(System.Int32)}

 ' Obtain the ConstructorInfo object.
 Dim cInfo As ConstructorInfo = type.GetConstructor(argTypes)

 ' Create an Object() containing the constructor arguments.
 Dim argVals As Object() = New Object() {"Some string", 30}

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 103

 ' Create the object and cast it to a StringBuilder.
 Dim sb As StringBuilder = CType(cInfo.Invoke(argVals), StringBuilder)

 Return sb

 End Function

 End Class
End Namespace

The following code demonstrates a factory to instantiate objects that implement the IPlugin
interface (used in recipe 3-7):

Imports System
Imports System.Text
Imports System.Reflection

Namespace Apress.VisualBasicRecipes.Chapter03

 ' A common interface that all plug-ins must implement.
 Public Interface IPlugin

 Property Description() As String
 Sub Start()
 Sub [Stop]()

 End Interface

 ' An abstract base class from which all plug-ins must derive.
 Public MustInherit Class AbstractPlugIn
 Implements IPlugin

 ' Hold a description for the plug-in instance.
 Private m_description As String = ""

 ' Property to get the plug-in description.
 Public Property Description() As String Implements IPlugin.Description
 Get
 Return m_description
 End Get
 Set(ByVal value As String)
 m_description = value
 End Set
 End Property

 ' Declare the members of the IPlugin interface as abstract.
 Public MustOverride Sub Start() Implements IPlugin.Start
 Public MustOverride Sub [Stop]() Implements IPlugin.Stop

 End Class

 ' A simple IPlugin implementation to demonstrate the PluginFactory class.
 Public Class SimplePlugin
 Inherits AbstractPlugIn

104 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

 ' Implement Start method.
 Public Overrides Sub Start()
 Console.WriteLine(Description & ": Starting...")
 End Sub
 ' Implement Stop method.
 Public Overrides Sub [Stop]()
 Console.WriteLine(Description & ": Stopping...")
 End Sub

 End Class

 ' A factory to instantiate instances of IPlugin.
 NotInheritable Class PluginFactory

 Public Shared Function CreatePlugin(ByVal assembly As String, ➥
ByVal pluginName As String, ByVal description As String) As IPlugin

 ' Obtain the Type for the specified plug-in.
 Dim pluginType As Type = Type.GetType(pluginName & ", " & assembly)

 ' Obtain the ConstructorInfo object.
 Dim cInfo As ConstructorInfo = pluginType.GetConstructor ➥
(Type.EmptyTypes)

 ' Create the object and cast it to IPlugin.
 Dim plugin As IPlugin = TryCast(cInfo.Invoke(Nothing), IPlugin)

 ' Configure the new IPlugin.
 plugin.Description = description

 Return plugin

 End Function

 Public Shared Sub Main(ByVal args As String())

 ' Instantiate a new IPlugin using the PluginFactory.
 Dim plugin As IPlugin = PluginFactory.CreatePlugin("Recipe03-12", ➥
"Apress.VisualBasicRecipes.Chapter03.SimplePlugin", "A Simple Plugin")

 plugin.Start()
 plugin.Stop()

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 105

■Tip The System.Activator class provides two Shared methods named CreateInstance and
CreateInstanceFrom that instantiate objects based on Type objects or strings containing type names. The key
difference between using GetConstructor and Activator is that the constructor used by Activator is implied by
the constructor arguments you pass to CreateInstance or CreateInstanceFrom. See the description of the
Activator class in the .NET Framework SDK documentation for more details.

3-13. Create a Custom Attribute

Problem
You need to create a custom attribute.

Solution
Create a class that derives from the abstract (MustInherit) base class System.Attribute. Implement
constructors, fields, and properties to allow users to configure the attribute. Apply the System.
AttributeUsageAttribute attribute to your class to define the following:

• Which program elements are valid targets of the attribute

• Whether you can apply more than one instance of the attribute to a program element

• Whether the attribute is inherited by derived types

How It Works
Attributes provide a mechanism for associating declarative information (metadata) with program
elements. This metadata is contained in the compiled assembly, allowing programs to retrieve it
through reflection at runtime without creating an instance of the type. (See recipe 3-14 for more
details.) Other programs, particularly the CLR, use this information to determine how to interact
with and manage program elements.

To create a custom attribute, derive a class from the abstract (MustInherit) base class System.
Attribute. Custom attribute classes by convention should have a name ending in Attribute (but this
is not essential).

A custom attribute must have at least one Public constructor; the automatically generated
default constructor is sufficient. The constructor parameters become the attribute’s mandatory (or
positional) parameters. When you use the attribute, you must provide values for these parameters in
the order they appear in the constructor. As with any other class, you can declare more than one
constructor, giving users of the attribute the option of using different sets of positional parameters
when applying the attribute. Any Public non-constant writable fields and properties declared by an
attribute are automatically exposed as named parameters. Named parameters are optional and are
specified in the format of name-value pairs where the name is the property or field name. The following
example will clarify how to specify positional and named parameters.

To control how and where a user can apply your attribute, apply the attribute
AttributeUsageAttribute to your custom attribute class. AttributeUsageAttribute supports the one
positional and two named parameters described in Table 3-3. The default values specify the value

106 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

that is applied to your custom attribute if you do not apply AttributeUsageAttribute or do not specify a
value for that particular parameter.

The Code

The following example shows a custom attribute named AuthorAttribute, which you can use to
identify the name and company of the person who created an assembly or a class. AuthorAttribute
declares a single Public constructor that takes a String containing the author’s name. This means
users of AuthorAttribute must always provide a positional String parameter containing the author’s
name. The Company property is Public, making it an optional named parameter, but the Name property is
read-only—no Set accessor is declared—meaning that it isn’t exposed as a named parameter.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

 <AttributeUsage(AttributeTargets.Class Or AttributeTargets.Assembly, ➥
AllowMultiple:=True, Inherited:=True)> _
 Public Class AuthorAttribute
 Inherits System.Attribute

 Private m_Company As String ' Author's company
 Private m_Name As String ' Author's name

 ' Declare a public constructor.
 Public Sub New(ByVal name As String)
 Me.m_Name = name
 m_Company = ""
 End Sub

 ' Declare a property to get/set the company field.
 Public Property Company() As String
 Get
 Return m_Company
 End Get

Table 3-3. Members of the AttributeUsage Type

Parameter Type Description Default

ValidOn Positional
(required)

A member of the System.
AttributeTargets enumeration
that identifies the program
elements on which the
attribute is valid

None; you should set it to
AttributeTargets.All

AllowMultiple Named
(optional)

Whether the attribute can be
specified more than once for a
single element

False

Inherited Named
(optional)

Whether the attribute is
inherited by derived classes
or overridden members

True

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 107

 Set(ByVal value As String)
 m_Company = value
 End Set
 End Property

 ' Declare a property to get the internal field.
 Public ReadOnly Property Name() As String
 Get
 Return m_Name
 End Get
 End Property

 End Class
End Namespace

Usage

The following example demonstrates how to decorate types with AuthorAttribute:

Imports system

' Declare Todd as the assembly author. Assembly attributes
' must be declared after using statements but before any other.
' Author name is a positional parameter.
' Company name is a named parameter.
<Assembly: Apress.VisualBasicRecipes.Chapter03.Author("Todd", Company:="The" & ➥
"Code Architects")>
Namespace Apress.VisualBasicRecipes.Chapter03

 ' Declare a class authored by Todd.
 <Author("Todd", company:="The Code Architects")> _
 Public Class SomeClass
 ' Class implementation.
 End Class

 ' Declare a class authored by Kevin. Since the Company
 ' property is optional, we will leave it out for this test.
 <Author("Kevin")> _
 Public Class SomeOtherClass
 ' Class implementation.
 End Class
End Namespace

3-14. Inspect the Attributes of a Program Element
Using Reflection

Problem
You need to use reflection to inspect the custom attributes applied to a program element.

108 CH AP T E R 3 ■ AP P L I CA T I ON D OM A IN S , R E FL E CT IO N , A N D M E T AD A TA

Solution
All program elements, such as classes and subroutines, implement the System.Reflection.
ICustomAttributeProvider interface. Call the IsDefined method of the ICustomAttributeProvider
interface to determine whether an attribute is applied to a program element, or call the
GetCustomAttributes method of the ICustomAttributeProvider interface to obtain objects repre-
senting the attributes applied to the program element.

How It Works
All the classes that represent program elements implement the ICustomAttributeProvider interface.
This includes Assembly, Module, Type, EventInfo, FieldInfo, PropertyInfo, and MethodBase. MethodBase
has two further subclasses: ConstructorInfo and MethodInfo. If you obtain instances of any of these
classes, you can call the method GetCustomAttributes, which will return an Object array containing
the custom attributes applied to the program element. The Object array contains only custom
attributes, not those contained in the .NET Framework base class library.

The GetCustomAttributes method provides two overloads. The first takes a Boolean that controls
whether GetCustomAttributes should return attributes inherited from parent classes. The second
GetCustomAttributes overload takes an additional Type argument that acts as a filter, resulting in
GetCustomAttributes returning only attributes of the specified type or those that derive from it.

Alternatively, you can call the IsDefined method. IsDefined provides a method that takes two
arguments. The first argument is a Type object representing the type of attribute you are interested
in, and the second is a Boolean that indicates whether IsDefined should look for inherited attributes
of the specified type. IsDefined returns a Boolean indicating whether the specified attribute is applied to
the program element and is less expensive than calling the GetCustomAttributes method, which
actually instantiates the attribute objects.

The Code

The following example uses the custom AuthorAttribute declared in recipe 3-13 and applies it to the
Recipe03_14 class. The Main method calls the GetCustomAttributes method, filtering the attributes so
that the method returns only AuthorAttribute instances. You can safely cast this set of attributes to
AuthorAttribute references and access their members without needing to use reflection.

Imports System
Namespace Apress.VisualBasicRecipes.Chapter03

 <Author("Kevin"), Author("Todd", Company:="The Code Architects")> _
 Public Class Recipe03_14

 Public Shared Sub Main()

 ' Get a Type object for this class.
 Dim myType As Type = GetType(Recipe03_14)

 ' Get the attributes for the type. Apply a filter so that only
 ' instances of AuthorAttributes are returned.
 Dim attrs As Object() = myType.GetCustomAttributes ➥
(GetType(AuthorAttribute), True)

CH AP T E R 3 ■ AP P L I CAT I ON DO M A IN S , R E FL E C T IO N , A N D M E T AD A TA 109

 ' Enumerate the attributes and display their details.
 For Each a As AuthorAttribute In attrs
 Console.WriteLine(a.Name & ", " & a.Company)
 Next

 ' Wait to continue.
 Console.WriteLine(vbCrLf & "Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

111

■ ■ ■

C H A P T E R 4

Threads, Processes,
and Synchronization

One of the strengths of the Microsoft Windows operating system is that it allows many programs
(processes) to run concurrently and allows each process to perform many tasks concurrently (using
multiple threads). When you run an executable application, a new process is created. The process
isolates your application from other programs running on the computer. The process provides the
application with its own virtual memory and its own copies of any libraries it needs to run, allowing
your application to execute as if it were the only application running on the machine.

Along with the process, an initial thread is created that runs your Main method. In single-threaded
applications, this one thread steps through your code and sequentially performs each instruction.
If an operation takes time to complete, such as reading a file from the Internet or doing a complex
calculation, the application will be unresponsive (will block) until the operation is finished, at which
point the thread will continue with the next operation in your program.

To avoid blocking, the main thread can create additional threads and specify which code each
should start running. As a result, many threads may be running in your application’s process, each
running (potentially) different code and performing different operations seemingly simultaneously.
In reality, unless you have multiple processors (or a single multicore processor) in your computer,
the threads are not really running simultaneously. Instead, the operating system coordinates and
schedules the execution of all threads across all processes; each thread is given a tiny portion (or time
slice) of the processor’s time, which gives the impression they are executing at the same time.

The difficulty of having multiple threads executing within your application arises when those
threads need to access shared data and resources. If multiple threads are changing an object’s state
or writing to a file at the same time, your data will quickly become corrupted. To avoid problems, you
must synchronize the threads to make sure they each get a chance to access the resource, but only
one at a time. Synchronization is also important when waiting for a number of threads to reach a
certain point of execution before proceeding with a different task and for controlling the number of
threads that are at any given time actively performing a task—perhaps processing requests from
client applications.

■Note Although it will not affect your multithreaded programming in VB .NET, it is worth noting that an operating
system thread has no fixed relationship to a managed thread. The runtime host—the managed code that loads and
runs the common language runtime (CLR)—controls the relationship between managed and unmanaged threads. A
sophisticated runtime host, such as Microsoft SQL Server 2005, can schedule many managed threads against the same
operating system thread or can perform the actions of a managed thread using different operating system threads.

112 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

This chapter describes how to control processes and threads in your own applications using
the features provided by VB .NET and the Microsoft .NET Framework class library. Specifically, the
recipes in this chapter describe how to do the following:

• Execute code in independent threads using features including the thread pool, asynchronous
method invocation, and timers (recipes 4-1 through 4-6)

• Synchronize the execution of multiple threads using a host of synchronization techniques,
including monitors, events, mutexes, and semaphores (recipes 4-7 and 4-11)

• Terminate threads and know when threads have terminated (recipes 4-12 and 4-13)

• Create thread-safe instances of the .NET collection classes (recipe 4-14)

• Start and stop running in new processes (recipes 4-15 and 4-16)

• Ensure that only one instance of an application is able to run at any given time (recipe 4-17)

As you will see in this chapter, delegates are used extensively in multithreaded programs to wrap
the method that a thread should execute or that should act as a callback when an asynchronous
operation is complete. As in VB .NET 1.1, the AddressOf operator is used to instruct the compiler to
generate the necessary delegate instance.

4-1. Execute a Method Using the Thread Pool

Problem
You need to execute a task using a thread from the runtime’s thread pool.

Solution
Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.WaitCallback delegate; that is, it must be a subroutine (not
a function) and take a single Object argument. Call the Shared method QueueUserWorkItem of the
System.Threading.ThreadPool class, passing it your method name. The runtime will queue your
method and execute it when a thread-pool thread becomes available.

How It Works
Applications that use many short-lived threads or maintain large numbers of concurrent threads
can suffer performance degradation because of the overhead associated with the creation, operation,
and destruction of threads. In addition, it is common in multithreaded systems for threads to sit idle
a large portion of the time while they wait for the appropriate conditions to trigger their execution.
Using a thread pool provides a common solution to improve the scalability, efficiency, and perfor-
mance of multithreaded systems.

The .NET Framework provides a simple thread-pool implementation accessible through the
Shared members of the ThreadPool class. The QueueUserWorkItem method allows you to execute a
method using a thread-pool thread by placing a work item into the queue. As a thread from the thread
pool becomes available, it takes the next work item from the queue and executes it. The thread
performs the work assigned to it, and when it is finished, instead of terminating, the thread returns
to the thread pool and takes the next work item from the work queue.

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 113

■Note If you need to execute a method with a signature that does not match the WaitCallback delegate, you
must use one of the other techniques described in this chapter. See recipe 4-2 or 4-6.

The Code

The following example demonstrates how to use the ThreadPool class to execute a method named
DisplayMessage. The example passes DisplayMessage to the thread pool twice: first with no arguments
and then with a MessageInfo object, which allows you to control which message the new thread will
display.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_01
 ' A private class used to pass data to the DisplayMessage
 ' method when it is executed using the thread pool.
 Private Class MessageInfo
 Private m_Iterations As Integer
 Private m_Message As String

 ' A constructor that takes configuration settings for the thread.
 Public Sub New(ByVal iterations As Integer, ByVal message As String)

 m_Iterations = iterations
 m_Message = message

 End Sub

 ' Properties to retrieve configuration settings.
 Public ReadOnly Property Iterations() As Integer
 Get
 Return m_Iterations
 End Get
 End Property

 Public ReadOnly Property Message() As String
 Get
 Return m_Message
 End Get
 End Property

 End Class

 ' A method that conforms to the System.Threading.WaitCallback
 ' delegate signature. Displays a message to the console.
 Public Shared Sub DisplayMessage(ByVal state As Object)
 ' Safely case the state argument to a MessageInfo object.
 Dim config As MessageInfo = TryCast(state, MessageInfo)

114 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 ' If the config argument is nothing, no arguments were passed to
 ' the ThreadPool.QueueUserWorkItem method; use default values.
 If config Is Nothing Then
 ' Display a fixed message to the console three times.
 For count As Integer = 1 To 3
 Console.WriteLine("A thread pool example.")

 ' Sleep for the purpose of demonstration. Avoid sleeping
 ' on thread-pool threads in real applications.
 Thread.Sleep(1000)
 Next
 Else
 ' Display the specified message the specified number of times.
 For count As Integer = 1 To config.Iterations
 Console.WriteLine(config.Message)

 ' Sleep for the purpose of demonstration. Avoid sleeping
 ' on thread-pool threads in real applications.
 Thread.Sleep(1000)
 Next
 End If
 End Sub

 Public Shared Sub Main()

 ' Execute DisplayMessage using the thread pool and no arguments.
 ThreadPool.QueueUserWorkItem(AddressOf DisplayMessage)

 ' Create a MessageInfo object to pass to the DisplayMessage method.
 Dim info As New MessageInfo(5, "A thread pool example with arguments.")

 ' Execute a DisplayMessage using the thread pool and providing an
 ' argument.
 ThreadPool.QueueUserWorkItem(AddressOf DisplayMessage, info)

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
 End Class
End Namespace

Notes
Using the runtime’s thread pool simplifies multithreaded programming dramatically; however, be
aware that the implementation is a simple, general-purpose thread pool. Before deciding to use the
thread pool, consider the following points:

• Each process has one thread pool, which supports by default a maximum of 25 concurrent
threads per processor. You can change the maximum number of threads using the Shared
ThreadPool.SetMaxThreads method, but some runtime hosts (IIS and SQL Server, for example)
will limit the maximum number of threads and may not allow the default value to be changed
at all.

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 115

• As well as allowing you to use the thread pool to execute code directly, the runtime uses the
thread pool for other purposes internally. This includes the asynchronous execution of methods
(see recipe 4-2), execution of timer events (see recipes 4-3 and 4-4), and execution of wait-
based methods (see recipe 4-5). All of these uses can lead to heavy contention for the thread-
pool threads, meaning that the work queue can become very long. Although the work queue’s
maximum length is limited only by the amount of memory available to the runtime’s process,
an excessively long queue will result in long delays before queued work items are executed.
The Shared ThreadPool.GetAvailableThreads method returns the number of threads currently
available in the thread pool. This can be useful in determining whether your application is
placing too much load on the thread pool, indicating that you should increase the number of
available threads using the ThreadPool.SetMaxThreads method.

• Where possible, avoid using the thread pool to execute long-running processes. The limited
number of threads in the thread pool means that a handful of threads tied up with long-running
processes can significantly affect the overall performance of the thread pool. Specifically, you
should avoid putting thread-pool threads to sleep for any length of time.

• Thread-pool threads are background threads. You can configure threads as either foreground
threads or background threads. Foreground and background threads are identical, except that a
background thread will not keep an application process alive. Therefore, your application will
terminate automatically when the last foreground thread of your application terminates.

• You have no control over the scheduling of thread-pool threads, and you cannot prioritize
work items. The thread pool handles each work item in the sequence in which you add it to
the work queue.

• Once a work item is queued, it cannot be canceled or stopped.

• Do not try to use thread-pool threads to directly update or manipulate Windows Forms controls,
because they can be updated only by the thread that created them. For example, suppose that
you have a form with a progress bar and a button that starts some action. When you click the
button, a thread-pool thread is created to perform the action. Since the progress bar is part of
the main application form, it exists on the main application’s thread. Attempting to manipu-
late it from the thread-pool thread can cause unforeseen issues. The proper approach is to
call delegate methods from the thread-pool threads and have them manipulate the interface
for you.

4-2. Execute a Method Asynchronously

Problem
You need to start execution of a method and continue with other tasks while the method runs on a
separate thread. After the method completes, you need to retrieve the method’s return value.

Solution
Declare a delegate with the same signature as the method you want to execute. Create an instance of
the delegate that references the method. Call the BeginInvoke method of the delegate instance to
start executing your method. Use the EndInvoke method to determine the method’s status as well as
obtain the method’s return value if complete.

116 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

How It Works
Typically, when you invoke a method, you do so synchronously, meaning that the calling code blocks
until the method is complete. Most of the time, this is the expected, desired behavior because your
code requires the operation to complete before it can continue. However, sometimes it is useful to
execute a method asynchronously, meaning that you start the method in a separate thread and then
continue with other operations.

The .NET Framework implements an asynchronous execution pattern that allows you to call
any method asynchronously using a delegate. When you declare and compile a delegate, the compiler
automatically generates two methods that support asynchronous execution: BeginInvoke and EndInvoke.
When you call BeginInvoke on a delegate instance, the method referenced by the delegate is queued for
asynchronous execution. BeginInvoke does not cause the code execution to wait, but rather returns
immediately with an IAsyncResult instance. IAsyncResult is used when calling EndInvoke. The method
referenced by BeginInvoke executes in the context of the first available thread-pool thread.

The signature of the BeginInvoke method includes the same arguments as those specified by the
delegate signature, followed by two additional arguments to support asynchronous completion.
These additional arguments are as follows:

• A System.AsyncCallback delegate instance that references a method that the runtime will call
when the asynchronous method completes. The method will be executed by a thread-pool
thread. Passing Nothing means no method is called, and you must use another mechanism
(discussed later in this recipe) to determine when the asynchronous method is complete.

• A reference to an object that the runtime associates with the asynchronous operation for you.
The asynchronous method does not use or have access to this object, but it is available to your
code when the method completes, allowing you to associate useful state information with an
asynchronous operation. For example, this object allows you to map results against initiated
operations in situations where you initiate many asynchronous operations that use a
common callback method to perform completion.

The EndInvoke method allows you to retrieve the return value of a method that was executed
asynchronously, but you must first determine when it has finished. If your asynchronous method
threw an exception, it will be rethrown so that you can handle it when you call EndInvoke. Here are
the four techniques for determining whether an asynchronous method has finished:

• Blocking stops the execution of the current thread until the asynchronous method completes
execution by calling EndInvoke. In effect, this is much the same as synchronous execution.
However, you have the flexibility to decide exactly when your code enters the blocked state,
giving you the opportunity to perform some additional processing before blocking.

• Polling involves repeatedly testing the state of an asynchronous method to determine
whether it is complete by checking the IsCompleted property of the IAsyncResult returned
from BeginInvoke. This is a simple technique and is not particularly efficient from a processing
perspective. You should avoid tight loops that consume processor time; it is best to put the
polling thread to sleep for a period using Thread.Sleep between completion tests. Because
polling involves maintaining a loop, the actions of the waiting thread are limited, but you can
easily update some kind of progress indicator.

• Waiting depends on the AsyncWaitHandle property of the IAsyncResult returned by BeginInvoke.
This object derives from the System.Threading.WaitHandle class and is signaled when the
asynchronous method completes. Waiting is a more efficient version of polling and also
allows you to wait for multiple asynchronous methods to complete. You can specify time-out
values to allow your waiting thread to notify a failure if the asynchronous method takes too
long or if you want to periodically update a status indicator.

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 117

• A callback is a method that the runtime calls when an asynchronous operation completes.
The calling code does not need to take any steps to determine when the asynchronous method is
complete and is free to continue with other processing. Callbacks provide the greatest flexi-
bility but also introduce the greatest complexity, especially if you have many asynchronous
operations active concurrently that all use the same callback. In such cases, you must use
appropriate state objects as the last parameter of BeginInvoke to match the completed methods
against those you initiated.

■Caution Even if you do not want to handle the return value of your asynchronous method, you should call
EndInvoke; otherwise, you risk leaking memory each time you initiate an asynchronous call using BeginInvoke.

The Code

The following code demonstrates how to use the asynchronous execution pattern. It uses a delegate
named AsyncExampleDelegate to execute a method named LongRunningMethod asynchronously.
LongRunningMethod simulates a long-running method using a configurable delay (produced using
Thread.Sleep). The example contains the following five methods that demonstrate the various
approaches to handling asynchronous method completion:

• The BlockingExample method executes LongRunningMethod asynchronously and continues
with a limited set of processing. Once this processing is complete, BlockingExample blocks
until LongRunningMethod completes. To block, BlockingExample calls the EndInvoke method
of the AsyncExampleDelegate delegate instance. If LongRunningMethod has already finished,
EndInvoke returns immediately; otherwise, BlockingExample blocks until LongRunningMethod
completes.

• The PollingExample method executes LongRunningMethod asynchronously and then enters a
polling loop until LongRunningMethod completes. PollingExample tests the IsCompleted
property of the IAsyncResult instance returned by BeginInvoke to determine whether
LongRunningMethod is complete; otherwise, PollingExample calls Thread.Sleep.

• The WaitingExample method executes LongRunningMethod asynchronously and then waits
until LongRunningMethod completes. WaitingExample uses the AsyncWaitHandle property of the
IAsyncResult instance returned by BeginInvoke to obtain a WaitHandle and then calls its
WaitOne method. Using a time-out allows WaitingExample to break out of waiting in order to
perform other processing or to fail completely if the asynchronous method is taking too long.

• The WaitAllExample method executes LongRunningMethod asynchronously multiple times and
then uses an array of WaitHandle objects to wait efficiently until all the methods are complete.

• The CallbackExample method executes LongRunningMethod asynchronously and passes
an AsyncCallback delegate instance (that references the CallbackHandler method) to the
BeginInvoke method. The referenced CallbackHandler method is called automatically when
the asynchronous LongRunningMethod completes, leaving the CallbackExample method free to
continue processing. It’s important to note that a reference to the AsyncExampleDelegate is
passed to the BeginInvoke method via the DelegateAsyncState parameter. If you did not pass
this reference, the callback method would not have access to the delegate instance and would
be unable to call EndInvoke.

In VB .NET, it is not necessary to implicitly create a delegate instance, such as Dim longMethod
As AsyncExampleDelegate = New AsyncExampleDelegate(AddressOf LongRunningMethod). Since
the AddressOf operator does this automatically, the more efficient statement Dim longMethod As
AsyncExampleDelegate = AddressOf LongRunningMethod is used instead.

118 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

■Note For the purpose of demonstrating the various synchronization techniques, the example performs several
tasks that should be avoided when using the thread pool, including putting thread-pool threads to sleep and calling
long-running methods. See recipe 4-1 for more suggestions on using the thread pool appropriately.

Imports System
Imports System.Threading
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_02

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal currentTime As DateTime, ➥
ByVal msg As String)

 Console.WriteLine("[{0,3}/{1}] - {2} : {3}", ➥
Thread.CurrentThread.ManagedThreadId, IIf(Thread.CurrentThread.IsThreadPoolThread, ➥
"pool", "fore"), currentTime.ToString("HH:mm:ss.ffff"), msg)

 End Sub

 ' A delegate that allows you to perform asynchronous execution of
 ' LongRunningMethod.
 Public Delegate Function AsyncExampleDelegate(ByVal delay As Integer, ➥
ByVal name As String) As DateTime

 ' A simulated long-running method.
 Public Shared Function LongRunningMethod(ByVal delay As Integer, ➥
ByVal name As String) As DateTime

 TraceMsg(DateTime.Now, name & " example - thread starting.")

 ' Simulate time-consuming process.
 Thread.Sleep(delay)

 TraceMsg(DateTime.Now, name & " example - thread stopping.")

 ' Return the method's completion time.
 Return DateTime.Now

 End Function

 ' This method executes LongRunningMethod asynchronously and continues
 ' with other processing. Once the processing is complete, the method
 ' blocks until LongRunningMethod completes.
 Public Shared Sub BlockingExample()

 Console.WriteLine(Environment.NewLine & "*** Running Blocking " & ➥
 "Example ***")

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 119

 ' Invoke LongRunningMethod asynchronously. Pass Nothing for both the
 ' callback delegate and the asynchronous state object.
 Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
 Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, ➥
"Blocking", Nothing, Nothing)

 ' Perform other processing until ready to block.
 For count As Integer = 1 To 3
 TraceMsg(DateTime.Now, "Continue processing until ready to block..")

 Thread.Sleep(300)
 Next

 ' Block until the asynchronous method completes.
 TraceMsg(DateTime.Now, "Blocking until method is complete...")

 ' Obtain the completion data for the asynchronous method.
 Dim completion As DateTime = DateTime.MinValue

 Try
 completion = longMethod.EndInvoke(asyncResult)
 Catch ex As Exception
 ' Catch and handle those exceptions you would if calling
 ' LongRunningMethod directly.
 End Try

 ' Display completion information.
 TraceMsg(completion, "Blocking example complete.")

 End Sub

 ' This method executes LongRunningMethod asynchronously and then
 ' enters a polling loop until LongRunningMethod completes.
 Public Shared Sub PollingExample()

 Console.WriteLine(Environment.NewLine & "*** Running Polling " & ➥
 "Example ***")

 ' Invoke LongRunningMethod asynchronously. Pass Nothing for both the
 ' callback delegate and the asynchronous state object.
 Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
 Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, ➥
"Polling", Nothing, Nothing)

 ' Poll the asynchronous method to test for completion. If not
 ' complete, sleep for 300ms before polling again.
 TraceMsg(DateTime.Now, "Poll repeatedly until method is complete.")

 While Not asyncResult.IsCompleted
 TraceMsg(DateTime.Now, "Polling...")
 Thread.Sleep(300)
 End While

120 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 ' Obtain the completion data for the asynchronous method.
 Dim completion As DateTime = DateTime.MinValue

 Try
 completion = longMethod.EndInvoke(asyncResult)
 Catch ex As Exception
 ' Catch and handle those exceptions you would if calling
 ' LongRunningMethod directly.
 End Try

 ' Display completion information.
 TraceMsg(completion, "Polling example complete.")

 End Sub

 ' This method executes LongRunningMethod asychronously and then
 ' uses a WaitHandle to wait efficiently until LongRunningMethod
 ' completes. Use of a time-out allows the method to break out of
 ' waiting in order to update the user interface or fail if the
 ' asynchronous method is taking too long.
 Public Shared Sub WaitingExample()

 Console.WriteLine(Environment.NewLine & "*** Running Waiting " & ➥
 "Example ***")

 ' Invoke LongRunningMethod asynchronously. Pass Nothing for both the
 ' callback delegate and the asynchronous state object.
 Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
 Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, ➥
"Waiting", Nothing, Nothing)

 ' Wait for the asynchronous method to complete. Time-out after
 ' 300ms and display status to the console before continuing to
 ' wait.
 TraceMsg(DateTime.Now, "Waiting until method is complete.")

 While Not asyncResult.AsyncWaitHandle.WaitOne(300, False)
 TraceMsg(DateTime.Now, "Wait timeout...")
 End While

 ' Obtain the completion data for the asynchronous method.
 Dim completion As DateTime = DateTime.MinValue

 Try
 completion = longMethod.EndInvoke(asyncResult)
 Catch ex As Exception
 ' Catch and handle those exceptions you would if calling
 ' LongRunningMethod directly.
 End Try

 ' Display completion information.
 TraceMsg(completion, "Waiting example complete.")

 End Sub

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 121

 ' This method executes LongRunningMethod asynchronously multiple
 ' times and then uses an array of WaitHandle objects to wait
 ' efficiently until all of the methods are complete. Use of a
 ' time-out allows the method to break out of waiting in order to
 ' update the user interface or fail if the asynchronous method
 ' is taking too long.
 Public Shared Sub WaitAllExample()

 Console.WriteLine(Environment.NewLine & "*** Running WaitAll " & ➥
"Example ***")

 ' An ArrayList to hold the IAsyncResult instances for each of the
 ' asynchonrous methods started.
 Dim asyncResults As New ArrayList(3)

 ' Invoke three LongRunningMethod asynchronously. Pass Nothing for
 ' both the callback delegate and the asynchronous state object. Add
 ' the IAsyncResult instance for each method to the ArrayList.
 Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod

 asyncResults.Add(longMethod.BeginInvoke(3000, "WaitAll 1", Nothing, ➥
Nothing))
 asyncResults.Add(longMethod.BeginInvoke(2500, "WaitAll 2", Nothing, ➥
Nothing))
 asyncResults.Add(longMethod.BeginInvoke(1500, "WaitAll 3", Nothing, ➥
Nothing))

 ' Create an array of WaitHandle objects that will be used to wait
 ' for the completion of all the asynchronous methods.
 Dim waitHandles As WaitHandle() = New WaitHandle(2) {}

 For count As Integer = 0 To 2
 waitHandles(count) = DirectCast(asyncResults(count), ➥
IAsyncResult).AsyncWaitHandle
 Next

 ' Wait for all three asynchronous methods to complete. Time-out
 ' after 300ms and display status to the console before continuing
 ' to wait.
 TraceMsg(DateTime.Now, "Waiting until all 3 methods are complete...")

 While Not WaitHandle.WaitAll(waitHandles, 300, False)
 TraceMsg(DateTime.Now, "WaitAll timeout...")
 End While

 ' Inspect the completion data for each method, and determine the
 ' time at which the final method completed.
 Dim completion As DateTime = DateTime.MinValue

 For Each result As IAsyncResult In asyncResults
 Try
 Dim completedTime As DateTime = longMethod.EndInvoke(result)
 If completedTime > completion Then completion = completedTime
 Catch ex As Exception

122 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 ' Catch and handle those exceptions you would if calling
 ' LongRunningMethod directly.
 End Try
 Next

 ' Display completion information.
 TraceMsg(completion, "WaitAll example complete.")

 End Sub

 ' This method executes LongRunningMethod asnchronously and passes
 ' an AsyncCallback delegate instance. The referenced CallbackHandler
 ' method is called automatically when the asynchronous method
 ' completes, leaving this method free to continue processing.
 Public Shared Sub CallbackExample()

 Console.WriteLine(Environment.NewLine & "*** Running Callback" & ➥
"Example ***")

 ' Invoke LongRunningMethod asynchronously. Pass an AsyncCallback
 ' delegate instance referencing the CallbackHandler method that
 ' will be called automatically when the asynchronous method
 ' completes. Pass a reference to the AsyncExampleDelegate delegate
 ' instance as asynchronous state; otherwise, the callback method
 ' has no access to the delegate instance in order to call EndInvoke.
 Dim longMethod As AsyncExampleDelegate = AddressOf LongRunningMethod
 Dim asyncResult As IAsyncResult = longMethod.BeginInvoke(2000, ➥
"Callback", AddressOf CallbackHandler, longMethod)

 ' Continue with other processing.
 For count As Integer = 0 To 15
 TraceMsg(DateTime.Now, "Continue processing...")
 Thread.Sleep(300)
 Next

 End Sub

 ' A method to handle asynchronous completion using callbacks.
 Public Shared Sub CallbackHandler(ByVal result As IAsyncResult)
 ' Extract the reference to the AsyncExampleDelegate instance
 ' from the IAsyncResult instance. This allows you to obtain the
 ' completion data.
 Dim longMethod As AsyncExampleDelegate = DirectCast(result.AsyncState, ➥
AsyncExampleDelegate)

 ' Obtain the completion data for the asynchronous method.
 Dim completion As DateTime = DateTime.MinValue

 Try
 completion = longMethod.EndInvoke(result)
 Catch ex As Exception
 ' Catch and handle those exceptions you would if calling
 ' LongRunningMethod directly.
 End Try

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 123

 ' Display completion information.
 TraceMsg(completion, "Callback example complete.")

 End Sub

 <MTAThread()> _
 Public Shared Sub Main()

 ' Demonstrate the various approaches to asynchronous method completion.
 BlockingExample()
 PollingExample()
 WaitingExample()
 WaitAllExample()
 CallbackExample()

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
 End Class
End Namespace

4-3. Execute a Method Periodically

Problem
You need to execute a method in a separate thread periodically.

Solution
Declare a method containing the code you want to execute periodically. The method’s signature
must match that defined by the System.Threading.TimerCallback delegate; in other words, it must
be a subroutine (not a function) and take a single Object argument. Create a System.Threading.
Timer object and pass it the method you want to execute, along with a state Object that the timer will
pass to your method when the timer expires. The runtime will wait until the timer expires, and then
call your method using a thread from the thread pool.

■Tip If you are implementing a timer in a Windows Forms application, you should consider using the System.
Windows.Forms.Timer, which also provides additional support in Visual Studio that allows you to drag the timer
from your Toolbox onto your application. For server-based applications where you want to signal multiple listeners
each time the timer fires, consider using the System.Timers.Timer class, which notifies listeners using events.

How It Works
It is often useful to execute a method at regular intervals. For example, you might need to clean a
data cache every 20 minutes. The System.Threading.Timer class makes the periodic execution of
methods straightforward, allowing you to execute a method referenced by a TimerCallback delegate

124 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

at specified intervals. The referenced method executes in the context of a thread from the thread
pool. (See recipe 4-1 for notes on the appropriate use of thread-pool threads.)

When you create a Timer object, you specify two time intervals. The first value specifies the milli-
second delay until the Timer first executes your method. Specify 0 to execute the method immediately,
and specify System.Threading.Timeout.Infinite (which is –1) to create the Timer in an unstarted
state. The second value specifies the interval in milliseconds; then the Timer will repeatedly call your
method following the initial execution. If you specify a value of 0 or Timeout.Infinite, the Timer will
execute the method only once (as long as the initial delay is not Timeout.Infinite). You can specify
the time intervals as Integer, Long, UInteger, or System.TimeSpan values.

Once you have created a Timer object, you can modify the intervals used by the timer using the
Change method, but you cannot change the method that is called. When you have finished with a
Timer object, you should call its Dispose method to free system resources held by the timer. Disposing of
the Timer object cancels any method that is scheduled for execution.

The Code

The TimerExample class shown next demonstrates how to use a Timer object to call a method named
TimerHandler. Initially, the Timer object is configured to call TimerHandler after 2 seconds and then
at 1-second intervals. The example allows you to enter a new millisecond interval in the console,
which is applied using the Timer.Change method.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_03

 Public Shared Sub Main()

 ' Create the state object that is passed to the TimerHandler
 ' method when it is triggered. In this case, a message to display.
 Dim state As String = "Timer expired."

 Console.WriteLine("{0} : Creating Timer.", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))

 ' Create a Timer that fires first after 2 seconds and then every
 ' second. The threadTimer object is automatically disposed at the
 ' end of the Using block.
 Using threadTimer As New Timer(AddressOf TimerTriggered, state, 2000, ➥
1000)
 Dim period As Integer

 ' Read the new timer interval from the console until the
 ' user enters 0 (zero). Invalid values use a default value
 ' of 0, which will stop the example.
 Do
 Try
 period = Int32.Parse(Console.ReadLine())
 Catch ex As FormatException
 period = 0
 End Try

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 125

 ' Change the timer to fire using the new interval starting
 ' immediately.
 If period > 0 Then threadTimer.Change(0, period)

 Loop While period > 0
 End Using

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 Private Shared Sub TimerTriggered(ByVal state As Object)
 Console.WriteLine("{0} : {1}", DateTime.Now.ToString("HH:mm:ss.ffff"), ➥
state)
 End Sub

 End Class
End Namespace

4-4. Execute a Method at a Specific Time

Problem
You need to execute a method in a separate thread at a specific time.

Solution
Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.TimerCallback delegate; that is, it must be a subroutine (not a
function) and take a single Object argument. Create a System.Threading.Timer object, and pass it the
method you want to execute along with a state Object that the timer will pass to your method when
the timer expires. Calculate the time difference between the current time and the desired execution
time, and configure the Timer object to fire once after this period of time.

How It Works
Executing a method at a particular time is often useful. For example, you might need to back up data
at 1 a.m. daily. Although primarily used for calling methods at regular intervals, the Timer object also
provides the flexibility to call a method at a specific time.

When you create a Timer object, you specify two time intervals. The first value specifies the milli-
second delay until the Timer first executes your method. To execute the method at a specific time,
you should set this value to the difference between the current time (System.DateTime.Now) and the
desired execution time. The second value specifies the interval after which the Timer will repeatedly
call your method following the initial execution. If you specify a value of 0, System.Threading.
Timeout.Infinite, or TimeSpan(-1), the Timer object will execute the method only once. If you need
the method to execute at a specific time every day, you can easily set this value using TimeSpan.
FromDays(1), which represents the number of milliseconds in 24 hours.

126 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

The Code

The following code demonstrates how to use a Timer object to execute a method at a specified time.
The RunAt method calculates the TimeSpan between the current time and a time specified on the
command line (in RFC1123 format) and configures a Timer object to fire once after that period of time.

Imports System
Imports System.Threading
Imports System.Globalization

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_04
 Public Shared Sub RunAt(ByVal execTime As DateTime)

 ' Calculate the difference between the specified execution
 ' time and the current time.
 Dim waitTime As TimeSpan = execTime - DateTime.Now

 ' Check if a time in the past was specified. If it was, set
 ' the waitTime to TimeSpan(0) which will cause the timer
 ' to execute immediately.
 If waitTime < New TimeSpan(0) Then
 Console.WriteLine("A 'Past' time was specified.")
 Console.WriteLine("Timer will fire immediately.")
 waitTime = New TimeSpan(0)
 End If

 ' Create a Timer that fires once at the specified time. Specify
 ' an interval of -1 to stop the timer executing the method
 ' repeatedly.
 Dim threadTimer As New Timer(AddressOf TimerTriggered, ➥
"Timer Triggered", waitTime, New TimeSpan(-1))

 End Sub

 Private Shared Sub TimerTriggered(ByVal state As Object)
 Console.WriteLine("{0} : {1}", DateTime.Now.ToString("HH:mm:ss.ffff"), ➥
 state)
 Console.WriteLine("Main method complete. Press Enter.")
 End Sub

 Public Shared Sub Main(ByVal args As String())

 Dim execTime As DateTime

 ' Ensure there is an execution time specified on the command line.
 If args.Length > 0 Then
 ' Convert the string to a datetime. Support only the RFC1123
 ' DateTime pattern.
 Try
 execTime = DateTime.ParseExact(args(0), "r", Nothing)
 Console.WriteLine("Current time : " & ➥

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 127

DateTime.Now.ToString("r"))
 Console.WriteLine("Execution time : " & ➥
execTime.ToString("r"))

 RunAt(execTime)
 Catch ex As FormatException
 Console.WriteLine("Execution time must be of the " & ➥
"format:{0}{1}{2}", ControlChars.NewLine, ControlChars.Tab, ➥
CultureInfo.CurrentCulture.DateTimeFormat.RFC1123Pattern)
 End Try

 ' Wait to continue.
 Console.WriteLine("Waiting for Timer...")
 Console.ReadLine()
 Else
 Console.WriteLine("Specify the time you want the method to " & ➥
"execute using the format :{0}{1} {2}", ControlChars.NewLine, ControlChars.Tab, ➥
CultureInfo.CurrentCulture.DateTimeFormat.RFC1123Pattern)
 End If
 End Sub
 End Class

End Namespace

Usage

If you run Recipe04-04 using the following command:

Recipe04-04 "Sat, 24 Mar 2007 18:25:00 GMT"

you will see output similar to the following:

Current time : Sat, 24 Mar 2007 18:24:25 GMT
Execution time : Sat, 24 Mar 2007 18:25:00 GMT
Waiting for Timer...
18:25:00.0000 : Timer Triggered
Main method complete. Press Enter.

4-5. Execute a Method by Signaling
a WaitHandle Object

Problem
You need to execute one or more methods automatically when an object derived from System.
Threading.WaitHandle is signaled.

Solution
Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.WaitOrTimerCallback delegate. Using the Shared ThreadPool.

128 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

RegisterWaitForSingleObject method, register the method to execute and the WaitHandle object
that will trigger execution when signaled.

How It Works
You can use classes derived from the WaitHandle class to trigger the execution of a method. Using the
RegisterWaitForSingleObject method of the ThreadPool class, you can register a WaitOrTimerCallback
delegate instance for execution by a thread-pool thread when a specified WaitHandle-derived object
enters a signaled state. You can configure the thread pool to execute the method only once or to
automatically reregister the method for execution each time the WaitHandle is signaled. If the
WaitHandle is already signaled when you call RegisterWaitForSingleObject, the method will execute
immediately. The Unregister method of the System.Threading.RegisteredWaitHandle object
returned by the RegisterWaitForSingleObject method is used to cancel a registered wait operation.

The class most commonly used as a trigger is AutoResetEvent, which automatically returns to an
unsignaled state after it is signaled. However, you can also use the ManualResetEvent, Mutex, and
Semaphore classes, which require you to change the signaled state manually. AutoResetEvent and
ManualResetEvent derive from the EventWaitHandle class, which in turn derives from WaitHandle.

The Code

The following example demonstrates how to use an AutoResetEvent to trigger the execution of a
method named ResetEventHandler. (The AutoResetEvent class is discussed further in recipe 4-8.)

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_04

 ' A method that is executed when the AutoResetEvent is signaled
 ' or the wait operation times out.
 Private Shared Sub ResetEventHandler(ByVal state As Object, ByVal ➥
timedOut As Boolean)

 ' Display an appropriate message to the console based on whether
 ' the wait timed out or the AutoResetEvent was signaled.
 If timedOut Then
 Console.WriteLine("{0} : Wait timed out.", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))
 Else
 Console.WriteLine("{0} : {1}", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"), state)
 End If

 End Sub

 Public Shared Sub Main()

 ' Create the new AutoResetEvent in an unsignaled state.
 Dim autoEvent As New AutoResetEvent(False)

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 129

 ' Create the state object that is passed to the event handler
 ' method when it is triggered. In this case, a message to display.
 Dim state As String = "AutoResetEvent signaled."

 ' Register the ResetEventHandler method to wait for the AutoResetEvent
 ' to be signaled. Set a time-out of 3 seconds and configure the wait
 ' operation to reset after activation (last argument).
 Dim handle As RegisteredWaitHandle = ➥
ThreadPool.RegisterWaitForSingleObject(autoEvent, AddressOf ResetEventHandler, ➥
state, 3000, False)

 Console.WriteLine("Press ENTER to signal the AutoResetEvent or enter" & ➥
"""CANCEL"" to unregister the wait operation.")

 While Not Console.ReadLine.ToUpper = "CANCEL"
 ' If "CANCEL" has not been entered into the console, signal
 ' the AutoResetEvent, which will cause the EventHandler
 ' method to execute. The AutoResetEvent will automatically
 ' revert to an unsignaled state.
 autoEvent.Set()
 End While

 ' Unregister the wait operation.
 Console.WriteLine("Unregistering wait operation.")
 handle.Unregister(Nothing)

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-6. Execute a Method Using a New Thread

Problem
You need to execute code in its own thread, and you want complete control over the thread’s state
and operation.

Solution
Declare a method containing the code you want to execute. The method’s signature must match
that defined by the System.Threading.ThreadStart or System.Threading.ParameterizedThreadStart
delegate. Create a new System.Threading.Thread object, and pass the method delegate as an argu-
ment to its constructor. Call the Thread.Start method to start the execution of your method.

130 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

How It Works
For maximum control and flexibility when creating multithreaded applications, you need to take a
direct role in creating and managing threads. This is the most complex approach to multithreaded
programming, but it is the only way to overcome the restrictions and limitations inherent in the
approaches using thread-pool threads, as discussed in the preceding recipes. The Thread class
provides the mechanism through which you create and control threads. To create and start a new
thread, follow this process:

1. Define a method that matches the ThreadStart or ParameterizedThreadStart delegate. The
ThreadStart delegate takes no arguments and must be a subroutine (not a function). This
means you cannot easily pass data to your new thread. The ParameterizedThreadStart del-
egate must also be a subroutine but takes a single Object as an argument, allowing you to
pass data to the method you want to run. (The ParameterizedThreadStart delegate is a
welcome addition to .NET Framework 2.0.) The method you want to execute can be Shared
or an instance method.

2. Create a new Thread object, and pass a delegate to your method as an argument to the Thread
constructor. The new thread has an initial state of Unstarted (a member of the System.
Threading.ThreadState enumeration) and is a foreground thread by default. If you want to
configure it to be a background thread, you need to set its IsBackground property to True.

3. Call Start on the Thread object, which changes its state to ThreadState.Running and begins
execution of your method. If you need to pass data to your method, include it as an argument to
the Start call. If you call Start more than once, it will throw a System.Threading.
ThreadStateException.

The Code

The following code demonstrates how to execute a method in a new thread and how to pass data to
the new thread.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_04

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal msg As String)
 Console.WriteLine("[{0,3}] - {1} : {2}", ➥
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
 End Sub

 ' A private class used to pass initialization data to a new thread.
 Private Class ThreadStartData

 ' Member variables hold initialization data for a new thread.
 Private ReadOnly m_Iterations As Integer
 Private ReadOnly m_Message As String
 Private ReadOnly m_Delay As Integer

 Public Sub New(ByVal iterations As Integer, ByVal message As String, ➥

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 131

ByVal delay As Integer)
 m_Iterations = iterations
 m_Message = message
 m_Delay = delay
 End Sub

 ' Properties provide read-only access to initialization data.
 Public ReadOnly Property Iterations()
 Get
 Return m_Iterations
 End Get
 End Property

 Public ReadOnly Property Message()
 Get
 Return m_Message
 End Get
 End Property

 Public ReadOnly Property Delay()
 Get
 Return m_Delay
 End Get
 End Property

 End Class

 ' Declare the method that will be executed in its own thread. The
 ' method displays a message to the console a specified number of
 ' times, sleeping between each message for a specified duration.
 Private Shared Sub DisplayMessage(ByVal config As Object)
 Dim data As ThreadStartData = TryCast(config, ThreadStartData)

 If Not data Is Nothing Then
 For count As Integer = 0 To data.Iterations - 1
 TraceMsg(data.Message)

 ' Sleep for the specified period.
 Thread.Sleep(data.Delay)
 Next
 Else
 TraceMsg("Invalid thread configuration.")
 End If

 End Sub

 Public Shared Sub Main()

 ' Create a new Thread object specifying DisplayMessage
 ' as the method it will execute.
 Dim newThread As New Thread(AddressOf DisplayMessage)

 ' Create a new ThreadStartData object to configure the thread.
 Dim config As New ThreadStartData(5, "A thread example.", 500)

132 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 TraceMsg("Starting new thread.")

 ' Start the new thread and pass the ThreadStartData object
 ' containing the initialization data.
 newThread.Start(config)

 ' Continue with other processing.
 For count As Integer = 0 To 12
 TraceMsg("Main thread continuing processing...")
 Thread.Sleep(200)
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-7. Synchronize the Execution of Multiple
Threads Using a Monitor

Problem
You need to coordinate the activities of multiple threads to ensure the efficient use of shared
resources or to ensure several threads are not updating the same shared resource at the same time.

Solution
Identify an appropriate object to use as a mechanism to control access to the shared resource/data.
Use the Shared method Monitor.Enter to acquire a lock on the object, and use the Shared method
Monitor.Exit to release the lock so another thread may acquire it.

How It Works
The greatest challenge in writing a multithreaded application is ensuring that the threads work in
concert. This is commonly referred to as thread synchronization and includes the following:

• Ensuring threads access shared objects and data correctly so that they do not cause corruption

• Ensuring threads execute only when they are meant to and cause minimum overhead when
they are idle

The most commonly used synchronization mechanism is the System.Threading.Monitor class.
The Monitor class allows a single thread to obtain an exclusive lock on an object by calling the Shared
method Monitor.Enter. By acquiring an exclusive lock prior to accessing a shared resource or data,
you ensure that only one thread can access the resource concurrently. Once the thread has finished

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 133

with the resource, release the lock to allow another thread to access it. A block of code that enforces
this behavior is often referred to as a critical section.

■Note Monitors are managed-code synchronization mechanisms that do not rely on any specific operating
system primitives. This ensures your code is portable should you want to run it on a non-Windows platform. This is
in contrast to the synchronization mechanisms discussed in recipes 4-8, 4-9, and 4-10, which rely on Win32
operating system–based synchronization objects.

You can use any object to act as the lock; it is common to use the keyword Me to obtain a lock on
the current object, but it is better to use a separate object dedicated to the purpose of synchroniza-
tion. The key point is that all threads attempting to access a shared resource must try to acquire the
same lock. Other threads that attempt to acquire a lock using Monitor.Enter on the same object will
block (enter a WaitSleepJoin state) and are added to the lock’s ready queue until the thread that owns
the lock releases it by calling the Shared method Monitor.Exit. When the owning thread calls Exit,
one of the threads from the ready queue acquires the lock. We say “one of the threads” because
threads are not necessarily executed in any specific order. If the owner of a lock does not release it by
calling Exit, all other threads will block indefinitely. Therefore, it is important to place the Exit call
within a Finally block to ensure that it is called even if an exception occurs. To ensure threads do not
wait indefinitely, you can specify a time-out value when you call Monitor.Enter.

■Tip Because Monitor is used so frequently in multithreaded applications, VB .NET provides language-level
support through the Synclock statement, which the compiler translates to the use of the Monitor class. A block
of code encapsulated in a Synclock statement is equivalent to calling Monitor.Enter when entering the block and
Monitor.Exit when exiting the block. In addition, the compiler automatically places the Monitor.Exit call in a
Finally block to ensure that the lock is released if an exception is thrown.

Using Monitor.Enter and Monitor.Exit is often all you will need to correctly synchronize access
to a shared resource in a multithreaded application. However, when you are trying to coordinate
the activation of a pool of threads to handle work items from a shared queue, Monitor.Enter and
Monitor.Exit will not be sufficient. In this situation, you want a potentially large number of threads
to wait efficiently until a work item becomes available without putting unnecessary load on the
central processing unit (CPU). This is where you need the fine-grained synchronization control
provided by the Monitor.Wait, Monitor.Pulse, and Monitor.PulseAll methods.

The thread that currently owns the lock can call Monitor.Wait, which will release the lock and
place that thread on the lock’s wait queue. Threads in a wait queue also have a state of WaitSleepJoin
and will continue to block until a thread that owns the lock calls either the Monitor.Pulse method or
the Monitor.PulseAll method. Monitor.Pulse moves one of the waiting threads from the wait queue
to the ready queue, and Monitor.PulseAll moves all threads. Once a thread has moved from the wait
queue to the ready queue, it can acquire the lock the next time the lock is released. It is important to
understand that threads on a lock’s wait queue will not acquire a released lock; they will wait indef-
initely until you call Monitor.Pulse or Monitor.PulseAll to move them to the ready queue.

So, in practice, when your pool threads are inactive, they sit in the wait queue. As a new work
item arrives, a dispatcher obtains the lock and calls Monitor.Pulse, moving one worker thread to the
ready queue, where it will obtain the lock as soon as the dispatcher releases it. The worker thread
takes the work item, releases the lock, and processes the work item. Once the worker thread has
finished with the work item, it again obtains the lock in order to take the next work item, but if there
is no work item to process, the thread calls Monitor.Wait and goes back to the wait queue.

134 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

The Code

The following example demonstrates how to synchronize access to a shared resource (the console)
and the activation of waiting threads using the Monitor.Wait, Monitor.Pulse, and Monitor.PulseAll
methods. The example starts three worker threads that take work items from a queue and processes
them. These threads initially have no work items and are put into a wait state using Monitor.Wait.
When the user presses Enter the first two times, work items (strings in the example) are added to the
work queue, and Monitor.Pulse is called to release one waiting thread for each work item. The third
time the user presses Enter, Monitor.PulseAll is called, releasing all waiting threads and allowing
them to terminate.

Imports System
Imports System.Threading
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_04

 ' Declare an object for synchronization of access to the console.
 ' A shared object is used because you are using it in shared methods.
 Private Shared consoleGate As New Object

 ' Declare a Queue to represent the work queue.
 Private Shared workQueue As New Queue(Of String)

 ' Declare a flag to indicate to activated threads that they should
 ' terminate and not process more work items.
 Private Shared workItemsProcessed As Boolean = False

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal msg As String)

 SyncLock consoleGate
 Console.WriteLine("[{0,3}/{1}] - {2} : {3}", ➥
Thread.CurrentThread.ManagedThreadId, IIf(Thread.CurrentThread.IsThreadPoolThread, ➥
"pool", "fore"), DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
 End SyncLock

 End Sub

 ' Declare the method that will be executed by each thread to process
 ' items from the work queue.
 Private Shared Sub ProcessWorkItems()

 ' A local variable to hold the work item taken from the work queue.
 Dim workItem As String = Nothing

 TraceMsg("Thread started, processing items from the queue...")

 ' Process items from the work queue until termination is signaled.
 While Not workItemsProcessed
 ' Obtain the lock on the work queue.
 Monitor.Enter(workQueue)

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 135

 Try
 ' Pop the next work item and process it, or wait if none
 ' are available.
 If workQueue.Count = 0 Then
 TraceMsg("No work items, waiting...")

 ' Wait until Pulse is called on the workQueue object.
 Monitor.Wait(workQueue)
 Else
 ' Obtain the next work item.
 workItem = workQueue.Dequeue
 End If
 Catch
 Finally
 ' Always release the lock.
 Monitor.Exit(workQueue)
 End Try

 ' Process the work item if one was obtained.
 If Not workItem Is Nothing Then
 ' Obtain a lock on the console and display a series
 ' of messages.
 SyncLock consoleGate
 For i As Integer = 0 To 4
 TraceMsg("Processing " & workItem)
 Thread.Sleep(200)
 Next
 End SyncLock

 ' Reset the status of the local variable.
 workItem = Nothing
 End If
 End While

 ' This will be reached only if workItemsProcessed is true.
 TraceMsg("Terminating.")
 End Sub

 Public Shared Sub Main()

 TraceMsg("Starting worker threads.")

 ' Add an initial work item to the work queue.
 SyncLock workQueue
 workQueue.Enqueue("Work Item 1")
 End SyncLock

 ' Create and start three new worker threads running the
 ' ProcessWorkItems method.
 For count As Integer = 1 To 3
 Dim newThread As New Thread(AddressOf ProcessWorkItems)
 newThread.Start()
 Next

136 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 Thread.Sleep(1500)

 ' The first time the user presses Enter, add a work item and
 ' activate a single thread to process it.
 TraceMsg("Press Enter to pulse one waiting thread.")
 Console.ReadLine()

 ' Acquire a lock on the workQueue object.
 SyncLock workQueue
 ' Add a work item.
 workQueue.Enqueue("Work Item 2.")

 ' Pulse 1 waiting thread.
 Monitor.Pulse(workQueue)
 End SyncLock

 Thread.Sleep(2000)

 ' The second time the user presses Enter, add three work items and
 ' activate three threads to process them.
 TraceMsg("Press Enter to pulse three waiting threads.")
 Console.ReadLine()

 ' Acquire a lock on the workQueue object.
 SyncLock workQueue
 ' Add work items to the work queue, and activate worker threads.
 workQueue.Enqueue("Work Item 3.")
 Monitor.Pulse(workQueue)
 workQueue.Enqueue("Work Item 4.")
 Monitor.Pulse(workQueue)
 workQueue.Enqueue("Work Item 5.")
 Monitor.Pulse(workQueue)
 End SyncLock

 Thread.Sleep(3500)

 ' The third time the user presses Enter, signal the worker threads
 ' to terminate and activate them all.
 TraceMsg("Press Enter to pulse all waiting threads.")
 Console.ReadLine()

 ' Acquire a lock on the workQueue object.
 SyncLock workQueue
 ' Signal that threads should terminate.
 workItemsProcessed = True

 ' Pulse all waiting threads.
 Monitor.PulseAll(workQueue)
 End SyncLock

 Thread.Sleep(1000)

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 137

 ' Wait to continue.
 TraceMsg("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-8. Synchronize the Execution of Multiple
Threads Using an Event

Problem
You need a mechanism to synchronize the execution of multiple threads in order to coordinate their
activities or access to shared resources.

Solution
Use the EventWaitHandle, AutoResetEvent, and ManualResetEvent classes from the System.Threading
namespace.

How It Works
The EventWaitHandle, AutoResetEvent, and ManualResetEvent classes provide similar functionality.
In fact, although the EventWaitHandle is new to .NET Framework 2.0, it is the base class from which
the AutoResetEvent and ManualResetEvent classes are derived. (EventWaitHandle inherits from
System.Threading.WaitHandle and allows you to create named events.) All three event classes allow
you to synchronize multiple threads by manipulating the state of the event between two possible
values: signaled and unsignaled.

Threads requiring synchronization call Shared or inherited methods of the WaitHandle abstract
base class (summarized in Table 4-1) to test the state of one or more event objects. If the events are
signaled when tested, the thread continues to operate unhindered. If the events are unsignaled, the
thread enters a WaitSleepJoin state, blocking until one or more of the events become signaled or
when a given time-out expires.

The key differences between the three event classes are how they transition from a signaled to
an unsignaled state and their visibility. Both the AutoResetEvent and ManualResetEvent classes are
local to the process in which they are declared. To signal an AutoResetEvent class, call its Set method,
which will release only one thread that is waiting on the event. The AutoResetEvent class will then
automatically return to an unsignaled state. The code in recipe 4-5 demonstrates how to use an
AutoResetEvent class.

The ManualResetEvent class must be manually switched back and forth between signaled and
unsignaled states using its Set and Reset methods. Calling Set on a ManualResetEvent class will set it
to a signaled state, releasing all threads that are waiting on the event. Only by calling Reset does the
ManualResetEvent class become unsignaled.

138 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

You can configure the EventWaitHandle class to operate in a manual or automatic reset mode,
making it possible to act like either the AutoResetEvent class or the ManualResetEvent class. When
you create the EventWaitHandle, you pass a value of the System.Threading.EventResetMode enumer-
ation to configure the mode in which the EventWaitHandle will function; the two possible values are
AutoReset and ManualReset. The unique benefit of the EventWaitHandle class is that it is not constrained
to the local process. When you create an EventWaitHandle class, you can associate a name with it that
makes it accessible to other processes, including nonmanaged Win32 code. This allows you to synchro-
nize the activities of threads across process and application domain boundaries and synchronize
access to resources that are shared by multiple processes. To obtain a reference to an existing named
EventWaitHandle, call the Shared method EventWaitHandle.OpenExisting, and specify the name of
the event.

The Code

The following example demonstrates how to use a named EventWaitHandle in manual mode that
is initially signaled. A thread is spawned that waits on the event and then displays a message to the
console—repeating the process every 2 seconds. When you press Enter, you toggle the event between a
signaled and an unsignaled state. This example uses the Join keyword to cause the application’s
execution to wait until the thread terminates. Join is covered in more detail in recipe 4-12.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_08

 ' Boolean to signal that the second thread should terminate.
 Public Shared terminate As Boolean = False

 ' A utility method for displaying useful trace information to the

Table 4-1. WaitHandle Methods for Synchronizing Thread Execution

Method Description

WaitOne Causes the calling thread to enter a WaitSleepJoin state and wait for a specific
WaitHandle derived object to be signaled. You can also specify a time-out
value. The WaitingExample method in recipe 4-2 demonstrates how to use
the WaitOne method.

WaitAny A Shared method that causes the calling thread to enter a WaitSleepJoin state
and wait for any one of the objects in a WaitHandle array to be signaled. You
can also specify a time-out value.

WaitAll A Shared method that causes the calling thread to enter a WaitSleepJoin state
and wait for all the WaitHandle objects in a WaitHandle array to be signaled.
You can also specify a time-out value. The WaitAllExample method in recipe 4-2
demonstrates how to use the WaitAll method.

SignalAndWait A Shared method that causes the calling thread to signal a specified event
object and then wait on a specified event object. The signal and wait operations
are carried out as an atomic operation. You can also specify a time-out value.
SignalAndWait is new to .NET Framework 2.0.

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 139

 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal msg As String)
 Console.WriteLine("[{0,3}] - {1} : {2}", ➥
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
 End Sub

 ' Declare the method that will be executed on the separate thread.
 ' The method waits on the EventWaitHandle before displaying a message
 ' to the console and then waits two seconds and loops.
 Private Shared Sub DisplayMessage()

 ' Obtain a handle to the EventWaitHandle with the name "EventExample".
 Dim eventHandle As EventWaitHandle = ➥
EventWaitHandle.OpenExisting("EventExample")

 TraceMsg("DisplayMessage Started.")

 While Not terminate
 ' Wait on the EventWaitHandle, time-out after two seconds. WaitOne
 ' returns true if the event is signaled; otherwise, false. The
 ' first time through, the message will be displayed immediately
 ' because the EventWaitHandle was created in a signaled state.
 If eventHandle.WaitOne(2000, True) Then
 TraceMsg("EventWaitHandle In Signaled State.")
 Else
 TraceMsg("WaitOne Time Out -- EventWaitHandle In" & ➥
"Unsignaled State.")
 End If
 Thread.Sleep(2000)
 End While

 TraceMsg("Thread Terminating.")
 End Sub

 Public Shared Sub Main()

 ' Create a new EventWaitHandle with an initial signaled state, in
 ' manual mode, with the name "EventExample".
 Using eventHandle As New EventWaitHandle(True, ➥
EventResetMode.ManualReset, "EventExample")
 ' Create and start a new thread running the DisplayMessage
 ' method.
 TraceMsg("Starting DisplayMessageThread.")
 Dim newThread As New Thread(AddressOf DisplayMessage)
 newThread.Start()

 ' Allow the EventWaitHandle to be toggled between a signaled and
 ' unsignaled state up to three times before ending.
 For count As Integer = 1 To 3
 ' Wait for Enter to be pressed.
 Console.ReadLine()

140 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 ' You need to toggle the event. The only way to know the
 ' current state is to wait on it with a 0 (zero) time-out
 ' and test the result.
 If eventHandle.WaitOne(0, True) Then
 TraceMsg("Switching Event To UnSignaled State.")

 ' Event is signaled, so unsignal it.
 eventHandle.Reset()
 Else
 TraceMsg("Switching Event To Signaled State.")

 ' Event is unsignaled, so signal it.
 eventHandle.Set()
 End If
 Next

 ' Terminate the DisplayMessage thread, and wait for it to
 ' complete before disposing of the EventWaitHandle.
 terminate = True
 eventHandle.Set()
 newThread.Join(5000)

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-9. Synchronize the Execution of Multiple
Threads Using a Mutex

Problem
You need to coordinate the activities of multiple threads (possibly across process boundaries) to
ensure the efficient use of shared resources or to ensure several threads are not updating the same
shared resource at the same time.

Solution
Use the System.Threading.Mutex class.

How It Works
The Mutex has a similar purpose to the Monitor discussed in recipe 4-7—it provides a means to ensure
only a single thread has access to a shared resource or section of code at any given time. However,

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 141

unlike the Monitor, which is implemented fully within managed code, the Mutex is a wrapper around
an operating system synchronization object. This means you can use a Mutex to synchronize the
activities of threads across process boundaries, even with threads running in nonmanaged Win32
code. You can use the OpenExisting method to open an existing, system-wide Mutex object.

Like the EventWaitHandle, AutoResetEvent, and ManualResetEvent classes discussed in recipe 4-8,
the Mutex is derived from System.Threading.WaitHandle and enables thread synchronization in a
similar fashion. A Mutex is in either a signaled state or an unsignaled state. A thread acquires owner-
ship of the Mutex at construction or by using one of the methods listed earlier in Table 4-1. If a thread
has ownership of the Mutex, the Mutex is unsignaled, meaning other threads will block if they try to
acquire ownership. Ownership of the Mutex is released by the owning thread calling the Mutex.
ReleaseMutex method, which signals the Mutex and allows another thread to acquire ownership. A
thread may acquire ownership of a Mutex any number of times without problems, but it must release
the Mutex an equal number of times to free it and make it available for another thread to acquire. If the
thread with ownership of a Mutex terminates normally, the Mutex becomes signaled, allowing another
thread to acquire ownership.

The Code

The following example demonstrates how to use a named Mutex to limit access to a shared resource
(the console) to a single thread at any given time. This example uses the Join keyword to cause the
application’s execution to wait until the thread terminates. Join is covered in more detail in recipe 4-12.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_09

 ' Boolean to signal that the second thread should terminate.
 Public Shared terminate As Boolean = False

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal msg As String)
 Console.WriteLine("[{0,3}] - {1} : {2}", ➥
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
 End Sub

 ' Declare the method that will be executed on the separate thread.
 ' In a loop the method waits to obtain a Mutex before displaying a
 ' a message to the console and then waits one second before releasing
 ' the Mutex.
 Private Shared Sub DisplayMessage()

 ' Obtain a handle to the Mutex with the name MutexExample.
 ' Do not attempt to take ownership immediately.
 Using newMutex As New Mutex(False, "MutexExample")
 TraceMsg("Thread Started.")

 While Not terminate
 ' Wait on the Mutex.
 newMutex.WaitOne()

142 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 TraceMsg("Thread owns the Mutex.")
 Thread.Sleep(1000)
 TraceMsg("Thread releasing the Mutex.")

 ' Release the Mutex.
 newMutex.ReleaseMutex()

 ' Sleep a little to give another thread a good chance of
 ' acquiring the Mutex.
 Thread.Sleep(100)
 End While
 TraceMsg("Thread terminating.")
 End Using

 End Sub

 Public Shared Sub Main()

 ' Create a new Mutex with the name MutexExample.
 Using newMutex As New Mutex(False, "MutexExample")
 TraceMsg("Starting threads -- press Enter to terminate.")

 ' Create and start three new threads running the
 ' DisplayMessage method.
 Dim thread1 As New Thread(AddressOf DisplayMessage)
 Dim thread2 As New Thread(AddressOf DisplayMessage)
 Dim thread3 As New Thread(AddressOf DisplayMessage)

 thread1.Start()
 thread2.Start()
 thread3.Start()

 ' Wait for Enter to be pressed.
 Console.ReadLine()

 ' Terminate the DisplayMessage threads, and wait for them to
 ' complete before disposing of the Mutex.
 terminate = True
 thread1.Join(5000)
 thread2.Join(5000)
 thread3.Join(5000)

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 143

■Note Recipe 4-17 demonstrates how to use a named Mutex as a means to ensure only a single instance of an
application can be started at any given time.

4-10. Synchronize the Execution of Multiple
Threads Using a Semaphore

Problem
You need to control the number of threads that can access a shared resource or section of code
concurrently.

Solution
Use the System.Threading.Semaphore class.

How It Works
The Semaphore is another synchronization class derived from the System.Threading.WaitHandle
class. The Semaphore is new in .NET Framework 2.0, but it will be familiar to those with Win32
programming experience. The purpose of the Semaphore is to allow a specified maximum number of
threads to access a shared resource or section of code concurrently.

As with the other synchronization classes derived from WaitHandle (discussed in recipes 4-8 and
4-9), a Semaphore is either in a signaled state or in an unsignaled state. Threads wait for the Semaphore
to become signaled using the methods described earlier in Table 4-1. The Semaphore maintains a
count of the active threads it has allowed through and automatically switches to an unsignaled state
once the maximum number of threads is reached. To release the Semaphore and allow other waiting
threads the opportunity to act, a thread calls the Release method on the Semaphore object. A thread
may acquire ownership of the Semaphore more than once, reducing the maximum number of threads
that can be active concurrently, and must call Release the same number of times to fully release it.

The Code

The following example demonstrates how to use a named Semaphore to limit access to a shared
resource (the console) to two threads at any given time. The code is similar to that used in recipe 4-9 but
substitutes a Semaphore for the Mutex. This example uses the Join keyword to cause the application’s
execution to wait until the thread terminates. Join is covered in more detail in recipe 4-12.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_10

 ' Boolean to signal that the second thread should terminate.
 Public Shared terminate As Boolean = False

144 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

 ' A utility method for displaying useful trace information to the
 ' console along with details of the current thread.
 Private Shared Sub TraceMsg(ByVal msg As String)
 Console.WriteLine("[{0,3}] - {1} : {2}", ➥
Thread.CurrentThread.ManagedThreadId, DateTime.Now.ToString("HH:mm:ss.ffff"), msg)
 End Sub

 ' Declare the method that will be executed on the separate thread.
 ' In a loop the method waits to obtain a Semaphore before displaying a
 ' a message to the console and then waits one second before releasing
 ' the Semaphore.
 Private Shared Sub DisplayMessage()

 ' Obtain a handle to the Semaphore, created in main, with the name
 ' SemaphoreExample. Do not attempt to take ownership immediately.
 Using sem As Semaphore = Semaphore.OpenExisting("SemaphoreExample")
 TraceMsg("Thread Started.")

 While Not terminate
 ' Wait on the Semaphore.
 sem.WaitOne()

 TraceMsg("Thread owns the Semaphore.")
 Thread.Sleep(1000)
 TraceMsg("Thread releasing the Semaphore.")

 ' Release the Semaphore.
 sem.Release()

 ' Sleep a little to give another thread a good chance of
 ' acquiring the Semaphore.
 Thread.Sleep(100)
 End While
 TraceMsg("Thread terminating.")
 End Using

 End Sub

 Public Shared Sub Main()

 ' Create a new Semaphore with the name SemaphoreExample.
 Using sem As New Semaphore(2, 2, "SemaphoreExample")
 TraceMsg("Starting threads -- press Enter to terminate.")

 ' Create and start three new threads running the
 ' DisplayMessage method.
 Dim thread1 As New Thread(AddressOf DisplayMessage)
 Dim thread2 As New Thread(AddressOf DisplayMessage)
 Dim thread3 As New Thread(AddressOf DisplayMessage)

 thread1.Start()
 thread2.Start()
 thread3.Start()

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 145

 ' Wait for Enter to be pressed.
 Console.ReadLine()

 ' Terminate the DisplayMessage threads, and wait for them to
 ' complete before disposing of the Semaphore.
 terminate = True
 thread1.Join(5000)
 thread2.Join(5000)
 thread3.Join(5000)

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-11. Synchronize Access to a Shared Data Value

Problem
You need to ensure operations on a numeric data value are executed atomically so that multiple
threads accessing the value do not cause errors or corruption.

Solution
Use the Shared members of the System.Threading.Interlocked class.

How It Works
The Interlocked class contains several Shared methods that perform some simple arithmetic and
comparison operations on a variety of data types and ensure the operations are carried out atomi-
cally. Table 4-2 summarizes the methods and the data types on which they can be used. Note that
the methods use the ByRef keyword on their arguments to allow the method to update the value of the
actual value type variable passed in. If the operations you want to perform are not supported by the
Interlocked class, you will need to implement your own synchronization using the other approaches
described in this chapter.

■Caution Be aware, as of the time of this writing, the reliability of the 64-bit interlocked operations on a 32-bit
platform is in question.

146 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

The Code

The following simple example demonstrates how to use the methods of the Interlocked class. The
example does not demonstrate Interlocked in the context of a multithreaded program and is provided
only to clarify the syntax and effect of the various methods.

Imports System
Imports System.threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_11

 Public Shared Sub Main()

 Dim firstInt As Integer = 2500
 Dim secondInt As Integer = 8000

 Console.WriteLine("firstInt initial value = {0}", firstInt)
 Console.WriteLine("secondInt initial value = {0}", secondInt)

 ' Decrement firstInt in a thread-safe manner. This is
 ' the thread-safe equivalent of firstInt = firstInt - 1.
 Interlocked.Decrement(firstInt)

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("firstInt after decrement = {0}", firstInt)

 ' Increment secondInt in a thread-safe manner. This is
 ' the thread-safe equivalent of secondInt = secondInt + 1.
 Interlocked.Increment(secondInt)

 Console.WriteLine("secondInt after increment = {0}", secondInt)

Table 4-2. Interlocked Methods for Synchronizing Data Access

Method Description

Add Adds two Integer or Long values and sets the value of the first argument to
the sum of the two values.

CompareExchange Compares two values; if they are the same, sets the first argument to a
specified value. This method has overloads to support the comparison and
exchange of Integer, Long, Single, Double, Object, and System.IntPtr.

Decrement Decrements an Integer or Long value.

Exchange Sets the value of a variable to a specified value. This method has overloads
to support the exchange of Integer, Long, Single, Double, Object, and
System.IntPtr.

Increment Increments an Integer or Long value.

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 147

 ' Add the firstInt and secondInt values, and store the result
 ' in firstInt. This is the thread-safe equivalent of firstInt
 ' = firstInt + secondInt.
 Interlocked.Add(firstInt, secondInt)

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("firstInt after Add = {0}", firstInt)
 Console.WriteLine("secondInt after Add = {0}", secondInt)

 ' Exchange the value of firstInt with secondInt. This is the
 ' thread-safe equivalent of secondInt = firstInt.
 Interlocked.Exchange(secondInt, firstInt)

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("firstInt after Exchange = {0}", firstInt)
 Console.WriteLine("secondInt after Exchange = {0}", secondInt)

 ' Compare firstInt with secondInt, and if they are equal, set
 ' firstInt to 5000. This is the thread-safe equivalent of
 ' if firstInt = secondInt then firstInt = 5000.
 Interlocked.CompareExchange(firstInt, 5000, secondInt)

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("firstInt after CompareExchange = {0}", firstInt)
 Console.WriteLine("secondInt after CompareExchange = {0}", secondInt)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-12. Know When a Thread Finishes

Problem
You need to know when a thread has finished.

Solution
Use the IsAlive property or the Join method of the Thread class.

How It Works
The easiest way to test whether a thread has finished executing is to test the Thread.IsAlive property.
The IsAlive property returns True if the thread has been started but has not terminated or been
aborted. The IsAlive property provides a simple test to see whether a thread has finished executing,

148 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

but commonly you will need one thread to wait for another thread to complete its processing.
Instead of testing IsAlive in a loop, which is inefficient, you can use the Thread.Join method.

Join causes the calling thread to block until the referenced thread terminates, at which point the
calling thread will continue. You can optionally specify an Integer or a TimeSpan value that specifies
the time, after which the Join operation will time out and execution of the calling thread will resume.
If you specify a time-out value, Join returns True if the thread terminated and returns False if Join
timed out.

The Code

The following example executes a second thread and then calls Join (with a time-out of 2 seconds)
to wait for the second thread to terminate. Because the second thread takes about 5 seconds to execute,
the Join method will always time out, and the example will display a message to the console. The
example then calls Join again without a time-out and blocks until the second thread terminates.

Imports System
Imports System.threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_12

 Private Shared Sub DisplayMessage()

 ' Display a message to the console 5 times.
 For count As Integer = 1 To 5
 Console.WriteLine("{0} : DisplayMessage thread", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))

 ' Sleep for 1 second.
 Thread.Sleep(1000)
 Next
 End Sub

 Public Shared Sub Main()

 ' Create a new Thread to run the DisplayMessage method.
 Dim newThread As New Thread(AddressOf DisplayMessage)

 Console.WriteLine("{0} : Starting DisplayMessage thread.", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))

 ' Start the DisplayMessage thread.
 newThread.Start()

 ' Block until the DisplayMessage thread finishes, or time-out after
 ' 2 seconds.
 If Not newThread.Join(2000) Then
 Console.WriteLine("{0} : Join timed out !!", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))
 End If

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 149

 ' Block again until the DisplayMessage thread finishes with
 ' no time-out.
 newThread.Join()

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-13. Terminate the Execution of a Thread

Problem
You need to terminate an executing thread without waiting for it to finish on its own accord.

Solution
Call the Abort method of the Thread object you want to terminate.

How It Works
It is better to write your code so that you can signal to a thread that it should shut down and allow it
to terminate naturally. Recipes 4-7, 4-8, and 4-9 demonstrate this technique (using a Boolean flag).
However, sometimes you will want a more direct method of terminating an active thread.

Calling Abort on an active Thread object terminates the thread by throwing a System.Threading.
ThreadAbortException in the code that the thread is running. You can pass an object as an argument
to the Abort method, which is accessible to the aborted thread through the ExceptionState property
of the ThreadAbortException. When called, Abort returns immediately, but the runtime determines
exactly when the exception is thrown, so you cannot assume the thread has terminated by the Abort
returns. You should use the techniques described in recipe 4-12 if you need to determine when the
aborted thread is actually finished.

The aborted thread’s code can catch the ThreadAbortException to perform cleanup, but the
runtime will automatically throw the exception again when exiting the Catch block to ensure that the
thread terminates. So, you should not write code after the Catch block because it will never execute.
However, calling the Shared Thread.ResetAbort in the Catch block will cancel the abort request and
exit the Catch block, allowing the thread to continue executing. Once you abort a thread, you cannot
restart it by calling Thread.Start.

■Note An alternative to using the Abort method is to use a member variable. The thread should check the vari-
able when appropriate. When you need to, set this variable to instruct the thread to end gracefully. This method
offers a little more control than Abort.

150 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

The Code

The following example creates a new thread that continues to display messages to the console until
you press Enter, at which point the thread is terminated by a call to Thread.Abort.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_13

 Private Shared Sub Displaymessage()

 Try
 While True
 ' Display a message to the console.
 Console.WriteLine("{0} : DisplayMessage thread active", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))

 ' Sleep for 1 second.
 Thread.Sleep(1000)
 End While
 Catch ex As ThreadAbortException
 ' Display a message to the console.
 Console.WriteLine("{0} : DisplayMessage thread terminating - {1}", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"), DirectCast(ex.ExceptionState, String))

 ' Call Thread.ResetAbort here to cancel the abort request.
 End Try

 ' This code is never executed unless Thread.ResetAbort is
 ' called in the previous catch block.
 Console.WriteLine("{0} : nothing is called after the catch block", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))

 End Sub

 Public Shared Sub Main()

 ' Create a new Thread to run the DisplayMessage method.
 Dim newThread As New Thread(AddressOf Displaymessage)

 Console.WriteLine("{0} : Starting DisplayMessage thread - press " & ➥
"Enter to terminate.", DateTime.Now.ToString("HH:mm:ss.ffff"))

 ' Start the DisplayMessage thread.
 newThread.Start()

 ' Wait until Enter is pressed and terminate the thread.
 System.Console.ReadLine()

 newThread.Abort("User pressed Enter")

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 151

 ' Block again until the DisplayMessage thread finishes.
 newThread.Join()

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-14. Create a Thread-Safe Collection Instance

Problem
You need multiple threads to be able to safely access the contents of a collection concurrently.

Solution
Use SyncLock statements in your code to synchronize thread access to the collection, or to access the
collection through a thread-safe wrapper.

How It Works
By default, the standard collection classes from the System.Collections, System.Collections.
Specialized, and System.Collections.Generic namespaces will support multiple threads reading the
collection’s content concurrently. However, if more than one of these threads tries to modify the
collection, you will almost certainly encounter problems. This is because the operating system can
interrupt the actions of the thread while modifications to the collection have been only partially
applied. This leaves the collection in an indeterminate state, which could cause another thread
accessing the collection to fail, return incorrect data, or corrupt the collection.

■Note Using thread synchronization introduces a performance overhead. Making collections non-thread-safe by
default provides better performance for the vast majority of situations where multiple threads are not used.

The most commonly used collections from the System.Collections namespace implement a
Shared method named Synchronized; this includes only the ArrayList, Hashtable, Queue, SortedList,
and Stack classes. The Synchronized method takes a collection object of the appropriate type as an
argument and returns an object that provides a synchronized wrapper around the specified collec-
tion object. The wrapper object is returned as the same type as the original collection, but all the
methods and properties that read and write the collection ensure that only a single thread has access
to the initial collection content concurrently. You can test whether a collection is thread-safe using
the IsSynchronized property. Once you get the wrapper, you should neither access the initial collection
nor create a new wrapper; both result in a loss of thread safety.

The collection classes such as HybridDictionary, ListDictionary, and StringCollection from
the System.Collections.Specialized namespace do not implement a Synchronized method. To
provide thread-safe access to instances of these classes, you must implement manual synchronization

152 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

using the Object returned by their SyncRoot property. This property and IsSynchronized are both
defined by the ICollection interface that is implemented by all collection classes from System.
Collections and System.Collections.Specialized (except BitVector32). You can therefore synchro-
nize all your collections in a fine-grained way.

However, the new .NET Framework 2.0 classes in the System.Collections.Generic namespace
provide no built-in synchronization mechanisms, leaving it to you to implement thread synchroni-
zation manually using the techniques discussed in this chapter.

■Caution Often you will have multiple collections and data elements that are related and need to be updated
atomically. In these instances, you should not use the synchronization mechanisms provided by the individual
collection classes. This approach will introduce synchronization problems, such as deadlocks and race conditions.
You must decide which collections and other data elements need to be managed atomically and use the techniques
described in this chapter to synchronize access to these elements as a unit.

The Code

The following code snippet shows how to create a thread-safe Hashtable instance.

' Create a standard Hashtable.
Dim hUnsync As New Hashtable

' Create a synchronized wrapper.
Dim hSync = Hashtable.Synchronized(hUnsync)

The following code snippet shows how to create a thread-safe NameValueCollection. Notice that
the NameValueCollection class derives from the NameObjectCollectionBase class, which uses an explicit
interface implementation to implement the ICollection.SyncRoot property. As shown, you must
cast the NameValueCollection to an ICollection instance before you can access the SyncRoot prop-
erty. Casting is not necessary with other specialized collection classes such as HybridDictionary,
ListDictionary, and StringCollection, which do not use explicit interface implementation to
implement SyncRoot.

' Create a NameValueCollection.
Dim nvCollection As New NameValueCollection

' Obtain a lock on the NameValue collection before modification.
SyncLock DirectCast(nvCollection, ICollection).SyncRoot
 ...
End SyncLock

4-15. Start a New Process

Problem
You need to execute an application in a new process.

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 153

Solution
Call one of the Shared Start method overloads of the System.Diagnostics.Process class. Specify the
configuration details of the process you want to start as individual arguments to the Start method
or in a System.Diagnostics.ProcessStartInfo object that you pass to the Start method.

How It Works
The Process class provides a managed representation of an operating system process and offers a
simple mechanism through which you can execute both managed and unmanaged applications.
The Process class implements five Shared overloads of the Start method, which you use to start a
new process. All these methods return a Process object that represents the newly started process.
Two of these overloads are methods that allow you to specify only the name and arguments to pass
to the new process. For example, the following statements both execute Notepad in a new process.

' Execute notepad.exe with no command-line arguments.
Process.Start("notepad.exe")

' Execute notepad.exe passing the name of the file to open as a
' command-line argument.
Process.Start("notepad.exe", "SomeFile.txt")

Two other overloads allow you to specify the name of a Windows user who the process should
run as. You must specify the username, password, and Windows domain. The password is specified
as a System.Security.SecureString for added security. (See recipe 11-18 for more information about
the SecureString class.) Here is an example:

Dim mySecureString As New System.Security.SecureString

' Obtain a password and place it in SecureString (see recipe 11-18).

' Execute notepad.exe with no command-line arguments.
Process.Start("notepad.exe", "Todd", mySecureString, "MyDomain")

' Execute notepad.exe passing the name of the file to open as a
' command-line argument.
Process.Start("notepad.exe", "SomeFile.txt", "Todd", mySecureString, "MyDomain")

The remaining Shared overload requires you to create a ProcessStartInfo object configured
with the details of the process you want to run. Using the ProcessStartInfo object provides greater
control over the behavior and configuration of the new process. Table 4-3 summarizes some of the
commonly used properties of the ProcessStartInfo class.

It is also possible to create and view information on processes running on a remote computer.
This is accomplished by creating an instance of a Process class and specifying the target computer
name. You can also use the Shared methods GetProcessById, GetProcessByName and GetProcesses.
Each method returns a Process object and has an overload that takes the name of the target computer.

When finished with a Process object, you should dispose of it in order to release system resources—
call Close, call Dispose, or create the Process object within the scope of a Using statement.

■Note Disposing of a Process object does not affect the underlying system process, which will continue to run.

154 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

The Code

The following example uses Process to execute Notepad in a maximized window and open a file
named C:\Temp\file.txt. After creation, the example calls the Process.WaitForExit method, which
blocks the calling thread until a process terminates or a specified time-out expires. This method
returns True if the process ends before the time-out and returns False otherwise.

Imports System
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_15

 Public Shared Sub Main()

 ' Create a ProcessStartInfo object and configure it with the
 ' information required to run the new process.
 Dim startInfo As New ProcessStartInfo

 startInfo.FileName = "notepad.exe"
 startInfo.Arguments = "file.txt"
 startInfo.WorkingDirectory = "C:\Temp"
 startInfo.WindowStyle = ProcessWindowStyle.Maximized
 startInfo.ErrorDialog = True

Table 4-3. Properties of the ProcessStartInfo Class

Property Description

Arguments The command-line arguments to pass to the new process.

Domain A String containing the Windows domain name to which the user belongs.

ErrorDialog If Process.Start cannot start the specified process, it will throw a
System.ComponentModel.Win32Exception. If ErrorDialog is True, Start
displays an error dialog box to the user before throwing the exception.

FileName The name of the application to start. You can also specify any type of file
for which you have configured an application association. For example,
you could specify a file with a .doc or an .xls extension, which would cause
Microsoft Word or Microsoft Excel to run.

LoadUserProfile A Boolean indicating whether the user’s profile should be loaded from the
registry when the new process is started. This is used if you need to access
information from the HKEY_CURRENT_USER registry key.

Password A SecureString containing the password of the user.

UserName A String containing the name of the user to use when starting the process.

WindowStyle A member of the System.Diagnostics.ProcessWindowStyle enumeration,
which controls how the window is displayed. Valid values include Hidden,
Maximized, Minimized, and Normal.

WorkingDirectory The fully qualified name of the initial directory for the new process.

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 155

 ' Declare a new process object.
 Dim newProcess As Process

 Try
 ' Start the new process.
 newProcess = Process.Start(startInfo)

 ' Wait for the new process to terminate before exiting.
 Console.WriteLine("Waiting 30 seconds for process to finish.")

 If newProcess.WaitForExit(30000) Then
 Console.WriteLine("Process terminated.")
 Else
 Console.WriteLine("Timed out waiting for process to end.")
 End If
 Catch ex As Exception
 Console.WriteLine("Could not start process.")
 Console.WriteLine(ex)
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

4-16. Terminate a Process

Problem
You need to terminate a process such as an application or a service.

Solution
Obtain a Process object representing the operating system process you want to terminate. For
Windows-based applications, call Process.CloseMainWindow to send a close message to the applica-
tion’s main window. For Windows-based applications that ignore CloseMainWindow, or for non-
Windows-based applications, call the Process.Kill method.

How It Works
If you start a new process from managed code using the Process class (discussed in recipe 4-15), you
can terminate the process using the Process object that represents the new process. You can also

156 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

obtain Process objects that refer to other currently running processes using the Shared methods of
the Process class summarized in Table 4-4.

As mentioned in recipe 4-15, you can obtain a Process object that refers to a process running on
a remote computer. However, you can only view information regarding remote processes. The Kill
and CloseMainWindow methods work only on local processes.

Once you have a Process object representing the process you want to terminate, you need to call
either the CloseMainWindow method or the Kill method. The CloseMainWindow method posts a
WM_CLOSE message to a Windows-based application’s main window. This method has the same effect
as if the user had closed the main window using the system menu, and it gives the application the
opportunity to perform its normal shutdown routine. CloseMainWindow will not terminate applica-
tions that do not have a main window or applications with a disabled main window—possibly
because a modal dialog box is currently displayed. Under such circumstances, CloseMainWindow will
return False.

CloseMainWindow returns True if the close message was successfully sent, but this does not guar-
antee that the process is actually terminated. For example, applications used to edit data typically
give the user the opportunity to save unsaved data if a close message is received. The user usually has
the chance to cancel the close operation under such circumstances. This means CloseMainWindow
will return True, but the application will still be running once the user cancels. You can use the
Process.WaitForExit method to signal process termination and the Process.HasExited property to
test whether a process has terminated. Alternatively, you can use the Kill method.

The Kill method simply terminates a process immediately; the user has no chance to stop the
termination, and all unsaved data is lost. Kill is the only option for terminating Windows-based
applications that do not respond to CloseMainWindow and for terminating non-Windows-based
applications.

The Code

The following example starts a new instance of Notepad, waits 5 seconds, and then terminates
the Notepad process. The example first tries to terminate the process using CloseMainWindow. If
CloseMainWindow returns False, or the Notepad process is still running after CloseMainWindow is
called, the example calls Kill and forces the Notepad process to terminate. You can force
CloseMainWindow to return False by leaving the File Open dialog box open.

Table 4-4. Methods for Obtaining Process References

Method Description

GetCurrentProcess Returns a Process object representing the currently active process.

GetProcessById Returns a Process object representing the process with the specified ID.
This is the process ID (PID) you can get using Windows Task Manager.

GetProcesses Returns an array of Process objects representing all currently active
processes.

GetProcessesByName Returns an array of Process objects representing all currently active
processes with a specified friendly name. The friendly name is the name
of the executable excluding file extension or path; for example, a friendly
name could be notepad or calc.

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 157

Imports System
Imports system.threading
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_16

 Public Shared Sub Main()

 ' Create a new Process and run notepad.exe.
 Using newProcess As Process = Process.Start("notepad.exe", ➥
 "C:\SomeFile.txt")
 ' Wait for 5 seconds and terminate the notepad process.
 Console.WriteLine("Waiting 5 seconds before terminating " & ➥
"notepad.exe.")
 Thread.Sleep(5000)

 ' Terminate notepad process.
 Console.WriteLine("Terminating Notepad with CloseMainWindow.")

 ' Try to send a close message to the main window.
 If Not newProcess.CloseMainWindow Then
 ' Close message did not get sent - Kill Notepad.
 Console.WriteLine("CloseMainWindow returned false - " & ➥
"terminating Notepad with Kill.")
 newProcess.Kill()
 Else
 ' Close message sent successfully. Wait for 2 seconds
 ' for termination confirmation before resorting to kill.
 If Not newProcess.WaitForExit(2000) Then
 Console.WriteLine("CloseMaineWindow failed to " & ➥
"terminate - terminating Notepad with Kill.")
 newProcess.Kill()
 End If
 End If
 End Using

 ' Wait to continue.
 Console.WriteLine("Main method compelte. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

158 CH AP T E R 4 ■ T HR E AD S , P R O CE SS E S , AN D S Y N C HR O N I ZA T I O N

4-17. Ensure That Only One Instance of an
Application Can Execute Concurrently

Problem
You need to ensure that a user can have only one instance of an application running concurrently.

Solution
Create a named System.Threading.Mutex object, and have your application try to acquire ownership
of it at startup.

How It Works
The Mutex provides a mechanism for synchronizing the execution of threads across process bound-
aries and also provides a convenient mechanism through which to ensure that only a single instance
of an application is running concurrently. By trying to acquire ownership of a named Mutex at startup
and exiting if the Mutex cannot be acquired, you can ensure that only one instance of your applica-
tion is running. Refer to recipe 4-9 for further information on the Mutex class.

The Code

This example uses a Mutex named MutexExample to ensure that only a single instance of the example
can execute.

Imports System
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter04

 Class Recipe04_17

 Public Shared Sub Main()

 ' A Boolean that indicates whether this application has
 ' initial ownership of the Mutex.
 Dim ownsMutex As Boolean

 ' Attempts to create and take ownership of a Mutex named
 ' MutexExample.
 Using newMutex As New Mutex(True, "MutexExample", ownsMutex)
 ' If the application owns the Mutex it can continue to execute;
 ' otherwise, the application should exit.
 If ownsMutex Then
 Console.WriteLine("This application currently owns the " & ➥
"mutex named MutexExample. Additional instances of this application will not " & ➥
"run until you release the mutex by pressing Enter.")

C H AP TE R 4 ■ TH R E A DS , P R O CE S SE S , A N D SY N CH R O N IZ A T I ON 159

 Console.ReadLine()

 ' Release the mutex.
 newMutex.ReleaseMutex()
 Else
 Console.WriteLine("Another instance of this application " & ➥
"already owns the mutex named MutexExample. This instance of the application " & ➥
"will terminate.")
 End If
 End Using

 ' Wait to continue.
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
 End Class

End Namespace

■Note If you do not construct the Mutex in a Using statement and encapsulate the body of your application in
the body of the Using block as shown in this example, in long-running applications, the garbage collector may dispose
of the Mutex if it is not referenced after initial creation. This will result in releasing the Mutex and allowing addi-
tional instances of the application to execute concurrently. In these circumstances, you should include the statement
System.GC.KeepAlive(mutex) to ensure the Mutex is not garbage collected. Thanks to Michael A. Covington
for highlighting this possibility.

161

■ ■ ■

C H A P T E R 5

Files, Directories, and I/O

The Microsoft .NET Framework I/O classes fall into two basic categories. First are the classes that
retrieve information from the file system and allow you to perform file system operations such as
copying files and moving directories. Two examples are the FileInfo and the DirectoryInfo classes.
The second, and possibly more important, category includes a broad range of classes that allow you
to read and write data from all types of streams. Streams can correspond to binary or text files, a file
in an isolated store, a network connection, or even a memory buffer. In all cases, the way you interact
with a stream is the same.

The primary namespace for .NET Framework I/O operations is System.IO; however, .NET Frame-
work 2.0 offers VB .NET programmers another option in the form of the My object. My, located in the
Microsoft.VisualBasic assembly, is a highly versatile object that encapsulates common functionality
into several root classes. These classes provide quick and easy access to common functionality.
Table 5-1 lists the main root classes of My.

The classes available to the My object are determined by the current project. For example, if you
are creating a web control or web site, the My.Forms class will not be accessible. Refer to the .NET
Framework software development kit (SDK) documentation for more details on the availability of My
classes and for instructions on how this availability can be customized by using special compiler
constants.

Table 5-1. Main Root Objects of My

Object Description

Application Provides access to information and methods related to the current application.

Computer Provides access to information and methods for various computer-related
objects. This object contains the following child objects: Audio, Clipboard,
Clock, FileSystem, Info, Keyboard, Mouse, Network, Ports, and Registry.

Forms Provides access to information and methods related to the forms contained in
your project.

Resources Provides access to information and methods related to any resources contained
in your project.

Settings Provides access to information and methods related to your application settings.

User Provides access to information and methods related to the current user.

WebServices Provides access to information and methods related to any web services
contained in your application.

162 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

This chapter describes how to use the various file system and stream-based classes provided by
the System.IO namespace and the My.Microsoft.VisualBasic.FileSystem class.

The recipes in this chapter describe how to do the following:

• Retrieve or modify information about a file, directory, or a drive (recipes 5-1, 5-2, 5-4, 5-5,
and 5-17)

• Copy, move, and delete files and directories (recipe 5-3)

• Show a directory tree in a Microsoft Windows-based application and use the common file
dialog boxes (recipes 5-6 and 5-18)

• Read and write text and binary files (recipes 5-7 and 5-8)

• Parse formatted text files (recipe 5-9)

• Read files asynchronously (recipe 5-10)

• Search for specific files and test files for equality (recipes 5-11 and 5-12)

• Work with strings that contain path information (recipes 5-13, 5-14, and 5-15)

• Create temporary files and files in a user-specific isolated store (recipes 5-16 and 5-19)

• Monitor the file system for changes (recipe 5-20)

• Write to COM ports (recipe 5-21)

• Generate random filenames (recipe 5-22)

• Retrieve or modify the access control lists (ACLs) of a file or directory (recipe 5-23)

5-1. Retrieve Information About a File, Directory,
or Drive

Problem
You need to retrieve information about a file, directory, or drive.

Solution
Create a new System.IO.FileInfo, System.IO.DirectoryInfo, or System.IO.DriveInfo object, depending
on the type of resource about which you need to retrieve information. Supply the path of the resource to
the constructor, and then you will be able to retrieve information through the properties of the class.

How It Works
To create a FileInfo, DirectoryInfo, or DriveInfo object, you supply a relative or fully qualified path
to the constructor. You can also use the GetFileInfo, GetDirectoryInfo, and GetDriveInfo Shared
methods of the My.Computer.FileSystem. These methods return an instance of a FileInfo,
DirectoryInfo, and DriveInfo object, respectively. You can retrieve information through the corre-
sponding object properties. Table 5-2 lists some of the key members and methods of these objects.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 163

Table 5-2. Key Members for Files, Directories, and Drives

Member Applies To Description

Exists FileInfo and
DirectoryInfo

Returns True or False, depending on whether a
file or a directory exists at the specified location.

Attributes FileInfo and
DirectoryInfo

Returns one or more values from the System.IO.
FileAttributes enumeration, which represents
the attributes of the file or the directory.

CreationTime,
LastAccessTime, and
LastWriteTime

FileInfo and
DirectoryInfo

Return System.DateTime instances that describe
when a file or a directory was created, last accessed,
and last updated, respectively.

FullName and Name FileInfo and
DirectoryInfo

Return a string that represents the full path, the
directory, or the filename (with extension).

Extension FileInfo Returns a string representing the extension for
the file.

IsReadOnly FileInfo Returns True or False, depending on whether a
file is read-only.

Length FileInfo Returns the file size as a number of bytes.

DirectoryName and
Directory

FileInfo DirectoryName returns the name of the parent
directory as a string. Directory returns a full
DirectoryInfo object that represents the parent
directory and allows you to retrieve more infor-
mation about it.

Parent and Root DirectoryInfo Return a DirectoryInfo object that represents the
parent or root directory.

CreateSubdirectory DirectoryInfo Creates a directory with the specified name in the
directory represented by the DirectoryInfo object.
It also returns a new DirectoryInfo object that
represents the subdirectory.

GetDirectories DirectoryInfo Returns an array of DirectoryInfo objects, with
one element for each subdirectory contained in
this directory.

GetFiles DirectoryInfo Returns an array of FileInfo objects, with one
element for each file contained in this directory.

DriveType DriveInfo Returns a DriveType enumeration value that
represents the type of the specified drive; for
example, Fixed or CDRom.

AvailableFreeSpace DriveInfo Returns a long that represents the free space
available in the drive.

GetDrives DriveInfo Returns an array of DriveInfo objects that
represents the logical drives in the computer.

164 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

The following are a few points to note while working with these objects:

• FileInfo and DirectoryInfo classes derive from the abstract FileSystemInfo class, which
defines common methods like CreationTime, Exists, and so on. The DriveInfo class does not
inherit from this base class, so it does not provide some of the common members available in
the other two classes.

• The full set of properties FileInfo and DirectoryInfo objects expose is read the first time you
interrogate any property. If the file or directory changes after this point, you must call the
Refresh method to update the properties. However, this is not the case for DriveInfo; each
property access asks the file system for an up-to-date value.

• Specifying an invalid path, directory, or drive when using the corresponding My.Computer.
FileSystem methods will throw the appropriate exception. When using the FileInfo,
DirectoryInfo, or DriveInfo classes directly, you will not encounter an error if you specify an
invalid path. Instead, you will receive an object that represents an entity that does not exist—
its Exists (or IsReady property for DriveInfo) property will be False. You can use this object
to manipulate the entity. However, if you attempt to read most other properties, exceptions
like FileNotFoundException, DirectoryNotFoundException, and so on will be thrown.

The Code

The following console application takes a file path from a command-line argument, and then
displays information about the file, the containing directory, and the drive.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_01
 Public Shared Sub Main(ByVal args As String)

 If args.Length > 0 Then
 ' Display file information.
 Dim file As FileInfo = New FileInfo(args(0))

 Console.WriteLine("Checking file: " & file.Name)
 Console.WriteLine("File exists: " & file.Exists.ToString)

 If file.Exists Then
 Console.Write("File created: ")
 Console.WriteLine(file.CreationTime.ToString)
 Console.Write("File last updated: ")
 Console.WriteLine(file.LastWriteTime.ToString)
 Console.Write("File last accessed: ")
 Console.WriteLine(file.LastAccessTime.ToString)
 Console.Write("File size: ")
 Console.WriteLine(file.Length.ToString)
 Console.Write("File attribute list: ")
 Console.WriteLine(file.Attributes.ToString)
 End If
 Console.WriteLine()

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 165

 ' Display directory information.
 Dim dir As DirectoryInfo = file.Directory

 Console.WriteLine("Checking directory: " & dir.Name)
 Console.WriteLine("In directory: " & dir.Parent.Name)
 Console.Write("Directory exists: ")
 Console.WriteLine(dir.Exists.ToString)

 If dir.Exists Then
 Console.Write("Directory created: ")
 Console.WriteLine(dir.CreationTime.ToString)
 Console.Write("Directory last updated: ")
 Console.WriteLine(dir.LastWriteTime.ToString)
 Console.Write("Directory last accessed: ")
 Console.WriteLine(dir.LastAccessTime.ToString)
 Console.Write("Directory attribute list: ")
 Console.WriteLine(file.Attributes.ToString)
 Console.Write("Directory contains: ")
 Console.WriteLine(dir.GetFiles().Length.ToString & " files")
 End If
 Console.WriteLine()

 ' Display drive information.
 Dim drv As DriveInfo = New DriveInfo(file.FullName)

 Console.Write("Drive: ")
 Console.WriteLine(drv.Name)

 If drv.IsReady Then
 Console.Write("Drive type: ")
 Console.WriteLine(drv.DriveType.ToString)
 Console.Write("Drive format: ")
 Console.WriteLine(drv.DriveFormat.ToString)
 Console.Write("Drive free space: ")
 Console.WriteLine(drv.AvailableFreeSpace.ToString)
 End If

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 Else
 Console.WriteLine("Please supply a filename.")
 End If

 End Sub

 End Class
End Namespace

Instead of explicitly creating the FileInfo, DirectoryInfo, and DriveInfo class instances, you
can also use the appropriate Shared methods of the My.Computer.FileSystem class, as shown in the
following examples.

166 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

' Display file information.
Dim file As FileInfo = My.Computer.FileSystem.GetFileInfo(args(0))

' Display directory information.
Dim dir As DirectoryInfo = ➥
My.Computer.FileSystem.GetDirectoryInfo(file.Directory.ToString)

' Display drive information.
Dim drv As DriveInfo = My.Computer.FileSystem.GetDriveInfo(file.FullName)

Usage

If you execute the command Recipe05-01.exe c:\windows\win.ini, you might expect the following
output:

Checking file: win.ini
File exists: True
File created: 8/23/2001 8:00:00 AM
File last updated: 1/11/2007 3:02:03 AM
File last accessed: 1/19/2007 2:24:23 PM
File size (bytes): 636
File attribute list: Archive

Checking directory: windows
In directory: c:\
Directory exists: True
Directory created: 6/13/2006 7:36:41 PM
Directory last updated: 1/19/2007 8:30:09 AM
Directory last accessed: 1/19/2007 3:34:32 PM
Directory attribute list: Archive
Directory contains: 204 files

Drive: c:\
Drive type: Fixed
Drive format: NTFS
Drive free space: 69418700800

■Note Instead of using the instance methods of the FileInfo and DirectoryInfo classes, you can use the
Shared File and Directory classes (note that a class corresponding to the DriveInfo class does not exist).
The File and Directory methods expose most of the same functionality, but they require you to submit the file-
name or path with every method invocation. In cases where you need to perform multiple operations with the same
file or directory, using the FileInfo and DirectoryInfo classes will be faster, because they will perform
security checks only once. Also note that you could obtain the list of all logical drives in the computer by using the
Shared DriveInfo.GetDrives method.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 167

5-2. Set File and Directory Attributes

Problem
You need to test or modify file or directory attributes.

Solution
Create a System.IO.FileInfo object for a file or a System.IO.DirectoryInfo object for a directory and
use the bitwise And, Or, and Xor operators to modify the value of the Attributes property.

How It Works
The FileInfo.Attributes and DirectoryInfo.Attributes properties represent file attributes such as
archive, system, hidden, read-only, compressed, and encrypted. (Refer to the MSDN reference for
the full list.) Because a file can possess any combination of attributes, the Attributes property accepts a
combination of enumerated values. To individually test for a single attribute or change a single attribute,
you need to use bitwise arithmetic.

■Note The Attributes setting is made up (in binary) of a series of ones and zeros, such as 00010011. Each
1 represents an attribute that is present, while each 0 represents an attribute that is not. When you use a bitwise
And operation, it compares each individual digit against each digit in the enumerated value. For example, if you
bitwise And a value of 00100001 (representing an individual file’s archive and read-only attributes) with the
enumerated value 00000001 (which represents the read-only flag), the resulting value will be 00000001—it will
have a 1 only where it can be matched in both values.

The Code

The following example takes a read-only test file and checks for the read-only attribute.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_02
 Public Shared Sub Main()

 ' This file has the archive and read-only attributes.
 Dim file As New FileInfo("data.txt")

 ' This displays the string "ReadOnly, Archive".
 Console.WriteLine(file.Attributes.ToString)
 Console.WriteLine(Environment.NewLine)

 ' This test fails, because other attributes are set.
 If file.Attributes = FileAttributes.ReadOnly Then
 Console.WriteLine("File is read-only (faulty test).")
 End If

168 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 ' This test succeeds, because it filters out just the
 ' read-only attributes.
 If file.Attributes And FileAttributes.ReadOnly = ➥
FileAttributes.ReadOnly Then
 Console.WriteLine("File is read-only (correct test).")
 End If

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

When setting an attribute, you must use bitwise arithmetic, as demonstrated in the following
example. In this case, it’s needed to ensure that you don’t inadvertently clear the other attributes.

' This adds just the read-only attribute.
file.Attributes = file.Attributes Or FileAttributes.ReadOnly

' This removes just the read-only attibute.
file.Attributes = file.Attributes Xor FileAttributes.ReadOnly

5-3. Copy, Move, or Delete a File or a Directory

Problem
You need to copy, move, or delete a file or directory.

Solution
You have two main options for manipulating files and directories. One option is to create a System.
IO.FileInfo object for a file or a System.IO.DirectoryInfo object for a directory, supplying the path
in the constructor. You can then use the object’s methods to copy, move, and delete the file or directory.
Alternatively, you can use the My.Computer.FileSystem class and its Shared methods.

How It Works
The FileInfo, DirectoryInfo, and My.Computer.FileSystem classes include a host of valuable methods
for manipulating files and directories. Table 5-3 shows methods for the FileInfo class, Table 5-4
shows methods for the DirectoryInfo class, and Table 5-5 shows methods for the My.Computer.
FileSystem class.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 169

Table 5-3. Key Instance Methods for Manipulating a FileInfo Object

Method Description

CopyTo Copies a file to the new path and filename specified as a param-
eter. It also returns a new FileInfo object that represents the new
(copied) file. You can supply an optional additional parameter of
True to allow overwriting.

Create and CreateText Create creates the specified file and returns a FileStream object
that you can use to write to it. CreateText performs the same task,
but returns a StreamWriter object that wraps the stream. For more
information about writing files, see recipes 5-7 and 5-8.

Open, OpenRead, OpenText, and
OpenWrite

Open opens a file and allows you to specify the mode (Open,
Append, and so on), access type (Read, Write, and so on), and
sharing options. OpenRead and OpenText open a file in read-only
mode, returning a FileStream or StreamReader object. OpenWrite
opens a file in write-only mode, returning a FileStream object. For
more information about reading files, see recipes 5-7 and 5-8.

Delete Removes the file, if it exists.

Encrypt and Decrypt Encrypt/decrypt a file using the current account. This applies to
NTFS file systems only.

MoveTo Moves the file to the new path and filename specified as a parameter.
MoveTo can also be used to rename a file without changing its location.

Replace Replaces contents of a file by the current FileInfo object. This
method could also take a backup copy of the replaced file.

Table 5-4. Key Instance Methods for Manipulating a DirectoryInfo Object

Method Description

Create Creates the specified directory. If the path specifies multiple directories
that do not exist, they will all be created at once.

CreateSubdirectory Creates a directory with the specified path in the directory represented
by the DirectoryInfo object. If the path specifies multiple directories that
do not exist, they will all be created at once. It also returns a new
DirectoryInfo object that represents the last directory in the specified path.

Delete Removes the directory, if it exists. If you want to delete a directory that
contains files or other directories, you must use the overloaded Delete
method that accepts a parameter named Recursive and set it to True.

MoveTo Moves the directory (contents and all) to a new path. MoveTo can also be
used to rename a directory without changing its location.

Table 5-5. Key Shared Methods for Manipulating Files and Folders with the
My.Computer.FileSystem Object

Method Description

CopyDirectory and
CopyFile

Copy a directory (and all its contents) or a file to the new path specified.

170 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

The Code

One useful feature that is missing from the DirectoryInfo class is a copy method. The following
example contains a helper function that can copy any directory and its contents.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_03

 Public Shared Sub Main(ByVal args As String())

 If args.Length = 2 Then
 Dim sourceDir As New DirectoryInfo(args(0))
 Dim destinationDir As New DirectoryInfo(args(1))

 CopyDirectory(sourceDir, destinationDir)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

CreateDirectory Creates a new directory with the specified name and path.

DeleteDirectory and
DeleteFile

Delete the specified directory (and all its contents) or file. Both
methods offer the Recycle parameter, which determines if files are
deleted permanently or sent to the Recycle Bin. DeleteDirectory has
a parameter named OnDirectoryNotEmpty to determine if all contents
should be deleted.

MoveDirectory
and MoveFile

Move a directory (and all its contents) or a file to the new
path specified.

OpenTextFieldParser Opens a file and returns a TextFieldParser object. The TextFieldParser
class is contained in the Microsoft.VisualBasic.FileIO namespace
and is used to parse the contents of a text file. For more information
about parsing, see recipe 5-9.

OpenTextFileReader and
OpenTextFileWriter

Open the specified file and return either a StreamReader or StreamWriter
as appropriate. For more information about reading and writing files,
see recipes 5-7 and 5-8.

Table 5-5. Key Shared Methods for Manipulating Files and Folders with the
My.Computer.FileSystem Object

Method Description

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 171

 Else
 Console.WriteLine("USAGE: " & " Recipe05_03 [sourcePath] " & ➥
"[destinationPath]")
 End If

 End Sub

 Public Shared Sub CopyDirectory(ByVal source As DirectoryInfo, ➥
ByVal destination As DirectoryInfo)

 If Not destination.Exists Then
 destination.Create()
 End If

 ' Copy all files.
 Dim files As FileInfo() = source.GetFiles

 For Each file As FileInfo In files
 file.CopyTo(Path.Combine(destination.FullName, file.Name))
 Next

 ' Process subdirectories.
 Dim dirs As DirectoryInfo() = source.GetDirectories

 For Each dir As DirectoryInfo In dirs
 ' Get destination directory.
 Dim destinationDir As String = Path.Combine(destination.FullName, ➥
dir.Name)

 ' Call CopyDirectory recursively.
 CopyDirectory(dir, New DirectoryInfo(destinationDir))
 Next

 End Sub

 End Class
End Namespace

While the recipe contains examples of useful methods in the FileInfo and DirectoryInfo
classes, you should use the new Shared My.Computer.FileSystem.CopyDirectory method. This would
replace the entire preceding example with the following line of code.

My.Computer.FileSystem.CopyDirectory("SomeSourceDirectory", "SomeTargetDirectory")

5-4. Calculate the Size of a Directory

Problem
You need to calculate the size of all files contained in a directory (and, optionally, its subdirectories).

172 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

Solution
Examine all the files in a directory and add together their FileInfo.Length properties. Use recursive
logic to include the size of files in contained subdirectories.

How It Works
The DirectoryInfo class does not provide any property that returns size information. However, you
can easily calculate the size of all files contained in a directory using the FileInfo.Length property.

The Code

The following example calculates the size of a directory and optionally examines subdirectories
recursively.

Imports System
Imports system.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_04
 Public Shared Sub Main(ByVal args As String())

 If args.Length > 0 Then
 Dim dir As New DirectoryInfo(args(0))

 Console.WriteLine("Total size: " & ➥
CalculateDirectorySize(dir, True).ToString & " bytes.")

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 Else
 Console.WriteLine("Please supply a directory path.")
 End If

 End Sub

 Public Shared Function CalculateDirectorySize(ByVal dir As DirectoryInfo, ➥
ByVal includeSubDirs As Boolean) As Long

 Dim totalSize As Long = 0

 ' Examine all contained files.
 Dim files As FileInfo() = dir.GetFiles

 For Each currentFile As FileInfo In files
 totalSize += currentFile.Length
 Next

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 173

 ' Examine all contained directories.
 If includeSubDirs Then
 Dim dirs As DirectoryInfo() = dir.GetDirectories

 For Each currentDir As DirectoryInfo In dirs
 totalSize += CalculateDirectorySize(currentDir, True)
 Next
 End If

 Return totalSize

 End Function

 End Class
End Namespace

5-5. Retrieve Version Information for a File

Problem
You want to retrieve file version information, such as the publisher of a file, its revision number,
associated comments, and so on.

Solution
Use the Shared GetVersionInfo method of the System.Diagnostics.FileVersionInfo class.

How It Works
The .NET Framework allows you to retrieve file information without resorting to the Windows API.
Instead, you simply need to use the FileVersionInfo class and call the GetVersionInfo method with the
filename as a parameter. You can then retrieve extensive information through the FileVersionInfo
properties.

The Code

The FileVersionInfo properties are too numerous to list here, but the following code snippet shows
an example of what you might retrieve.

Imports System
Imports system.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_05
 Public Shared Sub Main(ByVal args As String())

 If args.Length > 0 Then
 Dim info As FileVersionInfo = ➥
FileVersionInfo.GetVersionInfo(args(0))

174 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 ' Display version information.
 Console.WriteLine("Checking File: " & info.FileName)
 Console.WriteLine("Product Name: " & info.ProductName)
 Console.WriteLine("Product Version: " & info.ProductVersion)
 Console.WriteLine("Company Name: " & info.CompanyName)
 Console.WriteLine("File Version: " & info.FileVersion)
 Console.WriteLine("File Description: " & info.FileDescription)
 Console.WriteLine("Original Filename: " & info.OriginalFilename)
 Console.WriteLine("Legal Copyright: " & info.LegalCopyright)
 Console.WriteLine("InternalName: " & info.InternalName)
 Console.WriteLine("IsDebug: " & info.IsDebug)
 Console.WriteLine("IsPatched: " & info.IsPatched)
 Console.WriteLine("IsPreRelease: " & info.IsPreRelease)
 Console.WriteLine("IsPrivateBuild: " & info.IsPrivateBuild)
 Console.WriteLine("IsSpecialBuild: " & info.IsSpecialBuild)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 Else
 Console.WriteLine("Please supply a filename.")
 End If

 End Sub

 End Class
End Namespace

Usage

If you run the command Recipe05_05 c:\windows\explorer.exe, the example produces the
following output.

Checking File: c:\windows\explorer.exe
Product Name: Microsoftr Windowsr Operating System
Product Version: 6.00.2900.2180
Company Name: Microsoft Corporation
File Version: 6.00.2900.2180 (xpsp_sp2_rtm.040803-2158)
File Description: Windows Explorer
Original Filename: EXPLORER.EXE
Legal Copyright: c Microsoft Corporation. All rights reserved.
InternalName: explorer
IsDebug: False
IsPatched: False
IsPreRelease: False
IsPrivateBuild: False
IsSpecialBuild: False

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 175

5-6. Show a Just-in-Time Directory Tree in the
TreeView Control

Problem
You need to display a directory tree in a TreeView control. However, filling the directory tree struc-
ture at startup is too time-consuming.

Solution
Fill the first level of directories in the TreeView control and add a hidden dummy node to each directory
branch. React to the TreeView.BeforeExpand event to fill in subdirectories in a branch just before
it’s displayed.

How It Works
You can use recursion to build an entire directory tree. However, scanning the file system in this way
can be slow, particularly for large drives. For this reason, professional file management software
programs (including Windows Explorer) use a different technique. They query the necessary directory
information when the user requests it.

The TreeView control is particularly well suited to this approach because it provides a BeforeExpand
event that fires before a new level of nodes is displayed. You can use a placeholder (such as an asterisk
or empty TreeNode) in all the directory branches that are not filled in. This allows you to fill in parts
of the directory tree as they are displayed.

To use this type of solution, you need the following three ingredients:

• A Fill method that adds a single level of directory nodes based on a single directory. You will
use this method to fill directory levels as they are expanded.

• A basic Form.Load event handler that uses the Fill method to add the first level of directories
for the drive.

• A TreeView.BeforeExpand event handler that reacts when the user expands a node and calls
the Fill method if this directory information has not yet been added.

The Code

The following shows the code for this solution. The automatically generated code for the form
designer is not included here, but it is included with this book’s downloadable code.

Imports System
Imports System.IO

' All design code is stored in the autogenerated partial
' class called DirectoryTree.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class DirectoryTree

 Private Sub DirectoryTree_Load(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles MyBase.Load

176 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 ' Set the first node.
 Dim rootNode As New TreeNode("C:\")
 treeDirectory.Nodes.Add(rootNode)

 ' Fill the first level and expand it.
 Fill(rootNode)
 treeDirectory.Nodes(0).Expand()

 End Sub

 Private Sub treeDirectory_BeforeExpand(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.TreeViewCancelEventArgs) Handles ➥
treeDirectory.BeforeExpand

 ' If a dummy node is found, remove it and read the
 ' real directory list.
 If e.Node.Nodes(0).Text = "*" Then
 e.Node.Nodes.Clear()
 Fill(e.Node)
 End If

 End Sub

 Private Sub Fill(ByVal dirNode As TreeNode)

 Dim dir As New DirectoryInfo(dirNode.FullPath)

 ' An exception could be thrown in this code if you don't
 ' have sufficient security permissions for a file or directory.
 ' You can catch and then ignore this exception.

 For Each dirItem As DirectoryInfo In dir.GetDirectories
 ' Add a node for the directory.
 Dim newNode As New TreeNode(dirItem.Name)
 dirNode.Nodes.Add(newNode)
 newNode.Nodes.Add("*")
 Next

 End Sub
End Class

Figure 5-1 shows the directory tree in action.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 177

Figure 5-1. A directory tree with the TreeView

If you prefer to use the My object, you can replace the use of the DirectoryInfo class with the
My.Computer.FileSystem class. The following replacement Fill method is an example of how to do this.

Private Sub Fill(ByVal dirNode As TreeNode)

 ' An exception could be thrown in this code if you don't
 ' have sufficient security permissions for a file or directory.
 ' You can catch and then ignore this exception.
 For Each dir As String In ➥
My.Computer.FileSystem.GetDirectories(dirNode.FullPath)
 ' Add a node for the directory.
 Dim newNode As New TreeNode(Path.GetFileName(dir))
 dirNode.Nodes.Add(newNode)
 newNode.Nodes.Add("*")
 Next

End Sub

5-7. Read and Write a Text File

Problem
You need to write data to a sequential text file using ASCII, Unicode (UTF-16), or UTF-8 encoding.

Solution
Create a new System.IO.FileStream object that references the file. To write the file, wrap the FileStream
in a System.IO.StreamWriter and use the overloaded Write method. To read the file, wrap the
FileStream in a System.IO.StreamReader and use the Read or ReadLine method. The File class also
provides the Shared CreateText and OpenText methods for writing and reading UTF-8 files. Another

178 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

alternative is to use the OpenTextFileReader and OpenTextFileWriter methods of the My.Computer.
FileSystem class. These methods open a file and return a StreamReader or StreamWriter, respectively.

How It Works
The .NET Framework allows you to write or read text with any stream by using the StreamWriter and
StreamReader classes. When writing data with the StreamWriter, you use the StreamWriter.Write
method. This method is overloaded to support all the common VB .NET .NET data types, including
strings, chars, integers, floating-point numbers, decimals, and so on. However, the Write and WriteLine
methods always convert the supplied data to text. Unlike Write, the WriteLine method places each
value on a separate line, so you should use it if you want to be able to easily convert the text back to
its original data type.

The way a string is represented depends on the encoding you use. The most common encodings
are listed in Table 5-6.

The .NET Framework provides a class for each type of encoding in the System.Text namespace.
When using StreamReader and StreamWriter, you can specify the encoding or simply use the default
UTF-8 encoding.

When reading information, you use the Read or ReadLine method of StreamReader. The Read
method reads a single character, or the number of characters you specify, and returns the data as an
Integer that represents the character read or the number of characters read, respectively. The ReadLine
method returns a string with the content of an entire line. The ReadToEnd method will return a string
with the content starting from the current position to the end of the stream. An alternative to the

Table 5-6. Common Encodings

Encoding Description Represented By

ASCII Encodes each character in a string using
7 bits. ASCII-encoded data cannot contain
extended Unicode characters. When using
ASCII encoding in .NET, the bits will be
padded and the resulting byte array will
have 1 byte for each character.

ASCII property of the
System.Text.Encoding class

UTF-7 Unicode Uses 7 bits for ordinary ASCII characters
and multiple 7-bit pairs for extended
characters. This encoding is primarily
for use with 7-bit protocols such as mail,
and it is not regularly used.

UTF7 property of the
System.Text.Encoding class

UTF-8 Unicode Uses 8 bits for ordinary ASCII characters and
multiple 8-bit pairs for extended characters.
The resulting byte array will have 1 byte
for each character (provided there are no
extended characters).

UTF8 property of the
System.Text.Encoding class

Full Unicode
(or UTF-16)

Represents each character in a string
using 16 bits. The resulting byte array
will have 2 bytes for each character.

Unicode property of the
System.Text.Encoding class

UTF-32 Unicode Represents each character in a string
using 32 bits. The resulting byte array
will have 4 bytes for each character.

UTF32 property of the
System.Text.Encoding class

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 179

ReadToEnd method is the Shared ReadAllText method of the My.Computer.FileSystem and System.
IO.File classes.

The Code

The following console application writes and then reads a text file.

Imports System
Imports System.IO
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_07
 Public Shared Sub Main()

 ' Create a new file.
 Using fs As New FileStream("test.txt", FileMode.Create)
 ' Create a writer and specify the encoding. The
 ' default (UTF-8) supports special Unicode characters,
 ' but encodes all standard characters in the same way as
 ' ASCII encoding.
 Using w As New StreamWriter(fs, Encoding.UTF8)

 ' Write a decimal, string and char.
 w.WriteLine(CDec(124.23))
 w.WriteLine("Test string")
 w.WriteLine("!"c)

 End Using
 End Using

 Console.WriteLine("Press Enter to read the information.")
 Console.ReadLine()

 ' Open the file in read-only mode.
 Using fs As New FileStream("test.txt", FileMode.Open)
 Using r As New StreamReader(fs, Encoding.UTF8)
 ' Read the data and convert it to the appropriate data type.
 Console.WriteLine(Decimal.Parse(r.ReadLine))
 Console.WriteLine(r.ReadLine)
 Console.WriteLine(Char.Parse(r.ReadLine))
 End Using
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

180 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

If you prefer to use the My object, you can use the OpenTextFileReader and OpenTextFileWriter
methods of the My.Computer.FileSystem class. These methods do not require a FileStream object,
which makes the code a little simpler, as shown in the following example.

' Open and write to a file.
Using w As StreamWriter = My.Computer.FileSystem.OpenTextFileWriter("test.txt", ➥
False, Encoding.UTF8)
 ' Write a decimal, string and char.
 w.WriteLine(CDec(124.23))
 w.WriteLine("Test string")
 w.WriteLine("!"c)
End Using

' Open and read from the file.
Using r As StreamReader = My.Computer.FileSystem.OpenTextFileReader("test.txt", ➥
Encoding.UTF8)
 ' Read the data and convert it to the appropriate data type.
 Console.WriteLine(Decimal.Parse(r.ReadLine))
 Console.WriteLine(r.ReadLine)
 Console.WriteLine(Char.Parse(r.ReadLine))
End Using

5-8. Read and Write a Binary File

Problem
You need to write data to a binary file, with strong data typing.

Solution
Create a new System.IO.FileStream object that references the file. To write the file, wrap the FileStream
in a System.IO.BinaryWriter and use the overloaded Write method. To read the file, wrap the
FileStream in a System.IO.BinaryReader and use the Read method that corresponds to the expected
data type.

How It Works
The .NET Framework allows you to write or read binary data with any stream by using the BinaryWriter
and BinaryReader classes. When writing data with the BinaryWriter, you use the Write method. This
method is overloaded to support all the common VB .NET data types, including strings, chars, integers,
floating-point numbers, decimals, and so on. The information will then be encoded as a series of
bytes and written to the file. You can configure the encoding used for strings, which defaults to UTF-8, by
using an overloaded constructor that accepts a System.Text.Encoding object, as described in recipe 5-7.

You must be particularly fastidious with data types when using binary files. This is because
when you retrieve the information, you must use one of the strongly typed Read methods from the
BinaryReader, unless you intend to read the file character by character. For example, to retrieve
decimal data, you use ReadDecimal. To read a string, you use ReadString. (The BinaryWriter always
records the length of a string when it writes it to a binary file to prevent any possibility of error.)

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 181

The Code

The following console application writes and then reads a binary file.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_08
 Public Shared Sub Main()

 ' Create a new file and writer.
 Using fs As New FileStream("test.bin", FileMode.Create)
 Using w As New BinaryWriter(fs)
 ' Write a decimal, 2 strings and a char.
 w.Write(CDec(124.23))
 w.Write("Test string")
 w.Write("Test string 2")
 w.Write("!"c)
 End Using
 End Using
 Console.WriteLine("Press Enter to read the information.")
 Console.ReadLine()

 ' Open the file in read-only mode.
 Using fs As New FileStream("test.bin", FileMode.Open)
 Using sr As New StreamReader(fs)
 ' Display the raw information in the file.
 Console.WriteLine(sr.ReadToEnd)
 Console.WriteLine()

 ' Read the data and convert it to the appropriate data type.
 fs.Position = 0
 Using br As New BinaryReader(fs)
 Console.WriteLine(br.ReadDecimal)
 Console.WriteLine(br.ReadString)
 Console.WriteLine(br.ReadString)
 Console.WriteLine(br.ReadChar)
 End Using
 End Using
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

182 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

5-9. Parse a Delimited Text File

Problem
You need to parse the contents of a delimited text file.

Solution
Create and configure a new Microsoft.VisualBasic.FileIO.TextFieldParser object that references
the file you need to parse. Loop through the file until the EndOfData property is True. Use the ReadFields
method to return an array of strings representing one row of parsed data from the file.

How It Works
The TextFieldParser class can be found in the Microsoft.VisualBasic.FileIO namespace. You can
either use one of its constructors to create an instance directly or use the Shared My.Computer.
FileSystem.OpenTextFieldParser method to return an instance. Some of the more important properties
and methods of this class are listed in Table 5-7.

Table 5-7. Key Properties and Methods of the TextFieldParser Class

Property or Method Description

CommentTokens An array of strings that indicates which lines in the file are
comments. Commented lines are skipped.

Delimiters An array of strings that defines the delimiters used in the
text file. TextFieldType must be set to FieldType.Delimited
to use this property.

EndOfData Returns True if there is no more data to be parsed.

ErrorLine Returns the actual line in the file that threw the last
MalformedLineException.

ErrorLineNumber Returns the line number that threw the last
MalformedLineException.

FieldWidths An array of integers that defines the widths of each field.
TextFieldType must be set to FieldType.FixedWidth to use
this property.

HasFieldsEnclosedInQuotes Indicates whether some fields are enclosed in quotation
marks. This is True by default.

TextFieldType Indicates the type of file (Delimited or FixedWidth) that is
being parsed. This is set to Delimited by default.

ReadFields Reads and parses all fields for the current row and
returns the data as an array of strings. The pointer is
then moved to the next row. If a field cannot be parsed,
a MalformedLineException is thrown.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 183

Once you have an instance, you need to configure it according to the file you need to parse. If
your file is delimited, set the TextFieldType property to Delimited and set the Delimiters property to
the appropriate delimiters. If the file is fixed width, set the TextFieldType property to FixedWidth and
set the FieldWidths property to the appropriate widths. Use the CommentTokens property to instruct
the parser to skip rows that are comments and do not contain any data to be parsed.

Use the ReadFields method to parse the current row, return an array of strings containing each field
parsed, and move the file pointer to the next row. If a field cannot be parsed, a MalformedLineException
is thrown. You can then use the ErrorLine and ErrorLineNumber properties of the TextFieldParser
class to obtain information about which line and field caused the exception.

The Code

The following example creates a sample comma-delimited log file. The file is then read and parsed,
using the TextFieldParser class. The fields contained in the file are written to the console.

Imports System
Imports System.IO
Imports Microsoft.VisualBasic.FileIO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_09

 Public Shared Sub Main()

 ' Create the sample log file.
 Using w As StreamWriter = ➥
My.Computer.FileSystem.OpenTextFileWriter("SampleLog.txt", ➥
 False, System.Text.Encoding.UTF8)

 ' Write sample log records to the file. The parser
 ' will skip blank lines. Also, the TextFieldParser
 ' can be configured to ignore lines that are comments.
 w.WriteLine("'In this sample log file, comments " & ➥
"start with a ""'"". The")
 w.WriteLine("'parser, when configured correctly, " & ➥
"will ignore these lines.")
 w.WriteLine("")
 w.WriteLine("{0},INFO,""{1}""", DateTime.Now, ➥
"Some informational text.")
 w.WriteLine("{0},WARN,""{1}""", DateTime.Now, ➥

SetDelimiters Sets the Delimiters property to the value or values specified.
The single parameter for this method is a parameter array,
so you can supply a comma-separated list of values rather
than an actual array.

SetFieldWidths Sets the FieldWidths property to the value or values speci-
fied. The single parameter for this method is a parameter
array, so you can supply a comma-separated list of values
rather than an actual array.

Table 5-7. Key Properties and Methods of the TextFieldParser Class

Property or Method Description

184 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

"Some warning message.")
 w.WriteLine("{0},ERR!,""{1}""", DateTime.Now, ➥
"[ERROR] Some exception has occurred.")
 w.WriteLine("{0},INFO,""{1}""", DateTime.Now, ➥
"More informational text.")
 w.WriteLine("{0},ERR!,""{1}""", DateTime.Now, ➥
"[ERROR] Some exception has occurred.")

 End Using

 Console.WriteLine("Press Enter to read and parse the information.")
 Console.ReadLine()

 ' Open the file in and parse the data into a
 ' TextFieldParser object.
 Using logFile As TextFieldParser = ➥
My.Computer.FileSystem.OpenTextFieldParser("SampleLog.txt")

 Console.WriteLine("Parsing text file.")
 Console.WriteLine(Environment.NewLine)

 ' Write header information to the console.
 Console.WriteLine("{0,-29} {1} {2}", "Date/Time in RFC1123", ➥
"Type", "Message")

 ' Configure the parser. For this recipe, make sure
 ' HasFieldsEnclosedInQuotes is True.
 logFile.TextFieldType = FieldType.Delimited
 logFile.CommentTokens = New String() {"'"}
 logFile.Delimiters = New String() {","}
 logFile.HasFieldsEnclosedInQuotes = True

 Dim currentRecord As String()

 ' Loop through the file until we reach the end.
 Do While Not logFile.EndOfData
 Try
 ' Parse all the fields into the currentRow
 ' array. This method automatically moves
 ' the file pointer to the next row.
 currentRecord = logFile.ReadFields

 ' Write the parsed record to the console.
 Console.WriteLine("{0:r} {1} {2}", ➥
DateTime.Parse(currentRecord(0)), currentRecord(1), currentRecord(2))
 Catch ex As MalformedLineException
 ' The MalformedLineException is thrown by the
 ' TextFieldParser anytime a line cannot be
 ' parsed.
 Console.WriteLine("An exception occurred attempting " & ➥
"to parse this row: ", ex.Message)
 End Try
 Loop
 End Using

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 185

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

The following is an example of the output you will see when you run this test.

Press Enter to read and parse the information.

Parsing text file.

Date/Time in RFC1123 Type Message
Sat, 20 Jan 2007 13:34:32 GMT INFO Some informational text.
Sat, 20 Jan 2007 13:34:32 GMT WARN Some warning message such as watch
Sat, 20 Jan 2007 13:34:32 GMT ERR! [ERROR] Some exception has occurred.
Sat, 20 Jan 2007 13:34:32 GMT INFO More informational text.
Sat, 20 Jan 2007 13:34:32 GMT ERR! [ERROR] Some exception has occurred.

5-10. Read a File Asynchronously

Problem
You need to read data from a file without blocking the execution of your code. This technique is
commonly used if the file is stored on a slow backing store (such as a networked drive in a wide
area network).

Solution
Create a separate class that will read the file asynchronously. Start reading a block of data using the
FileStream.BeginRead method and supply a callback method. When the callback is triggered, retrieve the
data by calling FileStream.EndRead, process it, and read the next block asynchronously with BeginRead.

How It Works
The FileStream includes basic support for asynchronous use through the BeginRead and EndRead
methods. Using these methods, you can read a block of data on one of the threads provided by the
.NET Framework thread pool, without needing to directly use the threading classes in the System.
Threading namespace.

When reading a file asynchronously, you choose the amount of data that you want to read at a
time. Depending on the situation, you might want to read a very small amount of data at a time (for
example, if you are copying it block by block to another file) or a relatively large amount of data (for
example, if you need a certain amount of information before your processing logic can start). You
specify the block size when calling BeginRead, and you pass a buffer where the data will be placed.
Because the BeginRead and EndRead methods need to be able to access many of the same pieces of

186 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

information, such as the FileStream, the buffer, the block size, and so on, it’s usually easiest to
encapsulate your asynchronous file reading code in a single class.

The Code

The following example demonstrates reading a file asynchronously. The AsyncProcessor class
provides a public StartProcess method, which starts an asynchronous read. Every time the read
operation finishes, the OnCompletedRead callback is triggered and the block of data is processed. If
there is more data in the file, a new asynchronous read operation is started. AsyncProcessor reads 2
kilobytes (2,048 bytes) at a time.

Imports System
Imports System.IO
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class AsyncProcessor

 Private inputStream As Stream

 ' The buffer that will hold the retrieved data.
 Private buffer As Byte()

 ' The amount that will be read in one block (2 kb).
 Private m_BufferSize As Integer = 2048

 Public ReadOnly Property BufferSize() As Integer
 Get
 Return m_BufferSize
 End Get
 End Property

 Public Sub New(ByVal fileName As String, ByVal size As Integer)

 m_BufferSize = size
 buffer = New Byte(m_BufferSize) {}

 ' Open the file, specifying true for asynchronous support.
 inputStream = New FileStream(fileName, FileMode.Open, FileAccess.Read, ➥
FileShare.Read, m_BufferSize, True)

 End Sub

 Public Sub StartProcess()

 ' Start the asynchronous read, which will fill the buffer.
 inputStream.BeginRead(buffer, 0, buffer.Length, ➥
AddressOf OnCompletedRead, Nothing)

 End Sub

 Private Sub OnCompletedRead(ByVal asyncResult As IAsyncResult)

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 187

 ' One block has been read asynchronously. Retrieve
 ' the data.
 Dim bytesRead As Integer = inputStream.EndRead(asyncResult)

 ' If no bytes are read, the stream is at the end of the file.
 If bytesRead > 0 Then
 ' Pause to simulate processing this block of data.
 Console.WriteLine("{0}[ASYNC READER]: Read one block.", ➥
ControlChars.Tab)
 Thread.Sleep(20)

 ' Begin to read the next block asynchronously.
 inputStream.BeginRead(buffer, 0, buffer.Length, ➥
AddressOf OnCompletedRead, Nothing)
 Else
 ' End the operation.
 Console.WriteLine("{0}[ASYNC READER]: Complete.", ControlChars.Tab)
 inputStream.Close()
 End If

 End Sub

 End Class
End Namespace

Usage

The following example shows a console application that uses AsyncProcessor to read a 2-megabyte
file.

Imports System
Imports System.IO
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_10

 Public Shared Sub Main(ByVal args As String())
 ' Create a 2 MB test file.
 Using fs As New FileStream("test.txt", FileMode.Create)
 fs.SetLength(2097152)
 End Using

 ' Start the asynchronous file processor on another thread.
 Dim asyncIO As New AsyncProcessor("test.txt", 2048)
 asyncIO.StartProcess()

 ' At the same time, do some other work.
 ' In this example, we simply loop for 10 seconds.
 Dim startTime As DateTime = DateTime.Now

188 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 While DateTime.Now.Subtract(startTime).TotalSeconds < 10
 Console.WriteLine("[MAIN THREAD]: Doing some work.")

 ' Pause to simulate a time-consuming operation.
 Thread.Sleep(100)
 End While

 Console.WriteLine("[MAIN THREAD]: Complete.")
 Console.ReadLine()

 ' Remove the test file.
 File.Delete("test.txt")
 End Sub

 End Class
End Namespace

The following is an example of the output you will see when you run this test.

[MAIN THREAD]: Doing some work.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
[MAIN THREAD]: Doing some work.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
[MAIN THREAD]: Doing some work.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
 [ASYNC READER]: Read one block.
 . . .

5-11. Find Files That Match
a Wildcard Expression

Problem
You need to process multiple files based on a filter expression (such as *.dll or mysheet20??.xls).

Solution
Use the overloaded version of the System.IO.DirectoryInfo.GetFiles method that accepts a filter
expression and returns an array of FileInfo objects. For searching recursively across all subdirecto-
ries, use the overloaded version that accepts the SearchOption enumeration.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 189

How It Works
The DirectoryInfo and Directory objects both provide a way to search the directories for files that
match a specific filter expression. These search expressions can use the standard ? and * wildcards.
You can use a similar technique to retrieve directories that match a specified search pattern by using
the overloaded DirectoryInfo.GetDirectories method. .NET Framework 2.0 offers a new overload
of GetFiles for searching recursively using the SearchOption.AllDirectories enumeration constant.

As an alternative, you can also use the Shared GetFiles method of the My.Computer.FileSystem
class. This method returns only strings representing the full path of the file, rather than FileInfo
objects. As with the System.IO.DirectoryInfo.GetFiles method, you can use an overload to search
recursively using the SearchOptions.SearchAllSubDirectories enumeration constant. This method
also allows you to search for multiple file extensions at once.

The Code

The following example retrieves the names of all the files in a specified directory that match a spec-
ified filter string. The directory and filter expression are submitted as command-line arguments. The
code then iterates through the retrieved FileInfo collection of matching files and displays the name
and size of each one.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_11
 Public Shared Sub Main(ByVal args As String())

 If args.Length = 2 Then
 Dim dir As New DirectoryInfo(args(0))
 Dim files As FileInfo() = dir.GetFiles(args(1))

 ' Display the name of all the files.
 For Each file As FileInfo In files
 Console.Write("Name: " & file.Name + " ")
 Console.WriteLine("Size: " & file.Length.ToString)
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 Else
 Console.WriteLine("USAGE: Recipe05-11 [directory]" & ➥
"[filterExpression]")
 End If

 End Sub

 End Class
End Namespace

190 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

5-12. Test Two Files for Equality

Problem
You need to quickly compare the content of two files and determine if it matches exactly.

Solution
Calculate the hash code of each file using the System.Security.Cryptography.HashAlgorithm class,
and then compare the hash codes.

How It Works
You might compare file content in a number of ways. For example, you could examine a portion of
the file for similar data, or you could read through each file byte by byte, comparing each byte as you
go. Both of these approaches are valid, but in some cases, it’s more convenient to use a hash code
algorithm.

A hash code algorithm generates a small (typically about 20 bytes) binary fingerprint for a file.
While it’s possible for different files to generate the same hash codes, that is statistically unlikely to
occur. In fact, even a minor change (for example, modifying a single bit in the source file) has an
approximately 50-percent chance of independently changing each bit in the hash code. For this
reason, hash codes are often used in security code to detect data tampering. (Hash codes are discussed
in more detail in recipes 11-14, 11-15, and 11-16.)

To create a hash code, you must first create a HashAlgorithm object, typically by calling the
Shared HashAlgorithm.Create method. This defaults to using the sha1 algorithm but provides an
overload allowing other algorithms to be provided. You can then call HashAlgorithm.ComputeHash,
which returns a byte array with the hash data.

The Code

The following example demonstrates a simple console application that reads two filenames that are
supplied as arguments and uses hash codes to test the files for equality. The hashes are compared by
converting them into strings. Alternatively, you could compare them by iterating over the byte array
and comparing each value. That approach would be slightly faster, but because the overhead of
converting 20 bytes into a string is minimal, it’s not required.

Imports System
Imports System.IO
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_12
 Public Shared Sub Main(ByVal args As String())

 If args.Length = 2 Then
 Console.WriteLine("comparing {0} and {1}", args(0), args(1))

 ' Create the hashing object.
 Using hashAlg As HashAlgorithm = HashAlgorithm.Create
 Using fsA As New FileStream(args(0), FileMode.Open), ➥
fsB As New FileStream(args(1), FileMode.Open)

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 191

 ' Calculate the hash for the files.
 Dim hashBytesA As Byte() = hashAlg.ComputeHash(fsA)
 Dim hashBytesB As Byte() = hashAlg.ComputeHash(fsB)

 ' Compare the hashes.
 If BitConverter.ToString(hashBytesA) = ➥
BitConverter.ToString(hashBytesB) Then
 Console.WriteLine("Files match.")
 Else
 Console.WriteLine("No match.")
 End If

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Using

 Else
 Console.WriteLine("USAGE: Recipe05-12 [fileName] [fileName]")
 End If

 End Sub

 End Class
End Namespace

5-13. Manipulate Strings Representing Filenames

Problem
You want to retrieve a portion of a path or verify that a file path is in a normal (standardized) form.

Solution
Process the path using the System.IO.Path class. You can use Path.GetFileName to retrieve a file-
name from a path, Path.ChangeExtension to modify the extension portion of a path string, and
Path.Combine to create a fully qualified path without worrying about whether your directory includes
a trailing directory separation (\) character.

How It Works
File paths are often difficult to work with in code because of the many different ways to represent the
same directory. For example, you might use an absolute path (C:\Temp), a UNC path (\\MyServer\\
MyShare\temp), or one of many possible relative paths (C:\Temp\MyFiles\..\ or C:\Temp\MyFiles\
..\..\temp).

192 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

The easiest way to handle file system paths is to use the Shared methods of the Path class to make
sure you have the information you expect. For example, here is how to take a filename that might
include a qualified path and extract just the filename:

Dim filename As String = "..\System\MyFile.txt"
filename = Path.GetFileName(filename)

' Now filename = "MyFile.txt"

And here is how you might append the filename to a directory path using the Path.Combine
method:

Dim filename As String = "..\..\myfile.txt"
Dim fullPath As String = "c:\Temp"

filename = Path.GetFileName(filename)
fullPath = Path.Combine(fullPath, filename)

' fullPath is now "c:\Temp\myfile.txt"

The advantage of this approach is that a trailing backslash (\) is automatically added to the path
name if required. The Path class also provides the following useful Shared methods for manipulating
path information:

• GetExtension returns just the extension of the file in the string. If there is no extension, an
empty string is returned.

• ChangeExtension modifies the current extension of the file in a string. If no extension is spec-
ified, the current extension will be removed.

• GetDirectoryName returns all the directory information, which is the text between the first and
last directory separators (\).

• GetFileNameWithoutExtension is similar to GetFileName, but it omits the extension.

• GetFullPath has no effect on an absolute path, and it changes a relative path into an absolute
path using the current directory. For example, if C:\Temp\ is the current directory, calling
GetFullPath on a filename such as test.txt returns C:\Temp\test.txt.

• GetPathRoot retrieves a string with the root (for example, “C:\”), provided that information is
in the string. For a relative path, it returns Nothing.

• HasExtension returns True if the path ends with an extension.

• IsPathRooted returns True if the path is an absolute path and False if it’s a relative path.

The My.Computer.FileSystem offers two Shared methods that also work with paths. The CombinePath
method is the equivalent of Path.Combine. The GetParentPath method returns the path of the parent
folder for the path specified.

■Note In most cases, an exception will be thrown if you try to supply an invalid path to one of these methods (for
example, paths that include illegal characters). However, path names that are invalid because they contain a wildcard
character (* or ?) will not cause the methods to throw an exception. You could use the Path.GetInvalidPathChars
or Path.GetInvalidFileNameChars method to obtain an array of characters that are illegal in path or filenames,
respectively.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 193

5-14. Determine If a Path Is a Directory or a File

Problem
You have a path (in the form of a string), and you want to determine whether it corresponds to a
directory or a file.

Solution
Test the path with the Directory.Exists and File.Exists methods.

How It Works
The System.IO.Directory and System.IO.File classes both provide an Exists method. The Directory.
Exists method returns True if a supplied relative or absolute path corresponds to an existing direc-
tory, even a shared folder with an UNC name. File.Exists returns True if the path corresponds to an
existing file.

As an alternative, you can use the Shared FileExists and DirectoryExists methods of the
My.Computer.FileSystem class. These methods work in the same way as the System.IO.Directory and
System.IO.File methods.

The Code

The following example demonstrates how you can quickly determine if a path corresponds to a file
or directory.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_14
 Public Shared Sub Main(ByVal args As String())

 For Each arg As String In args
 Console.Write(arg)

 If Directory.Exists(arg) Then
 Console.WriteLine(" is a directory.")
 ElseIf File.Exists(arg) Then
 Console.WriteLine(" is a file.")
 Else
 Console.WriteLine(" does not exist.")
 End If
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

194 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

5-15. Work with Relative Paths

Problem
You want to set the current working directory so that you can use relative paths in your code.

Solution
Use the Shared GetCurrentDirectory and SetCurrentDirectory methods of the System.IO.Directory
class.

How It Works
Relative paths are automatically interpreted in relation to the current working directory, which is the
path of the current application by default. You can retrieve the current working directory by calling
Directory.GetCurrentDirectory or change it using Directory.SetCurrentDirectory. In addition,
you can use the Shared GetFullPath method of the System.IO.Path class to convert a relative path
into an absolute path using the current working directory.

The Code

The following is a simple example that demonstrates working with relative paths.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_15
 Public Shared Sub Main()

 Console.WriteLine("Using: " & Directory.GetCurrentDirectory())
 Console.WriteLine("The relative path for 'file.txt' will " & ➥
"automatically become: '" & Path.GetFullPath("file.txt") & "'")
 Console.WriteLine()

 Console.WriteLine("Changing current directory to c:\")
 Directory.SetCurrentDirectory("C:\")

 Console.WriteLine("Now the relative path for 'file.txt' will " & ➥
"automatically become: '" & Path.GetFullPath("file.txt") & "'")

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class

End Namespace

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 195

Usage

The output for this example might be the following (if you run the application in the directory
C:\temp).

Using: c:\temp
The relative path 'file.txt' will automatically become 'c:\temp\file.txt'

Changing current directory to c:\
The relative path 'file.txt' will automatically become 'c:\file.txt'

■Caution If you use relative paths, it’s recommended that you set the working path at the start of each file inter-
action. Otherwise, you could introduce unnoticed security vulnerabilities that could allow a malicious user to force
your application into accessing or overwriting system files by tricking it into using a different working directory.

5-16. Create a Temporary File

Problem
You need to create a file that will be placed in the user-specific temporary directory and will have a
unique name, so that it will not conflict with temporary files generated by other programs.

Solution
Use the Shared GetTempFileName method of the System.IO.Path class, which returns a path made up
of the user’s temporary directory and a randomly generated filename.

How It Works
You can use a number of approaches to generate temporary files. In simple cases, you might just
create a file in the application directory, possibly using a GUID or a timestamp in conjunction with
a random value as the filename. However, the Path class provides a helper method that can save you
some work. It creates a file with a unique filename in the current user’s temporary directory. On
Windows XP, this is a folder similar to C:\Documents and Settings\[username]\Local Settings\temp
by default.

The Code

The following example demonstrates creating a temporary file.

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_16
 Public Shared Sub Main()

196 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 Dim tempFile As String = Path.GetTempFileName

 Console.WriteLine("Using " & tempFile)

 Using fs As New FileStream(tempFile, FileMode.Open)
 ' Write some data
 End Using

 ' Now delete the file.
 File.Delete(tempFile)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

5-17. Get the Total Free Space on a Drive

Problem
You need to examine a drive and determine how many bytes of free space are available.

Solution
Use the DriveInfo.AvailableFreeSpace property.

How It Works
The DriveInfo class (new to .NET Framework 2.0) provides members that let you find out the drive
type, free space, and many other details of a drive. In order to create a new DriveInfo object, you
need to pass the drive letter or the drive root string to the constructor, such as 'C' or "C:\" for creating
a DriveInfo instance representing the C drive of the computer. You could also retrieve the list of
logical drives available by using the Shared Directory.GetLogicalDrives method, which returns an
array of strings, each containing the root of the drive, such as "C:\". For more details on each drive,
you create a DriveInfo instance, passing either the root or the letter corresponding to the logical
drive. If you need a detailed description of each logical drive, call the DriveInfo.GetDrives method,
which returns an array of DriveInfo objects, instead of using Directory.GetLogicalDrives.

■Note A System.IO.IOException exception is thrown if you try to access an unavailable network drive.

The Code

The following console application shows the available free space using the DriveInfo class for the
given drive or for all logical drives if no argument is passed to the application.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 197

Imports System
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_17

 Public Shared Sub Main(ByVal args As String())

 If args.Length = 1 Then
 Dim drive As New DriveInfo(args(0))

 Console.Write("Free space in {0}-drive (in kilobytes): ", args(0))
 Console.WriteLine(drive.AvailableFreeSpace / 1024)
 Else
 For Each drive As DriveInfo In DriveInfo.GetDrives

 Try
 Console.WriteLine("Free space in {0} - {1} KB: ", ➥
drive.RootDirectory, drive.AvailableFreeSpace / 1024)
 Catch ex As IOException
 Console.WriteLine(drive)
 End Try

 Next
 End If

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note In addition to the AvailableFreeSpace property, DriveInfo also defines a TotalFreeSpace property.
The difference between these two properties is that AvailableFreeSpace takes into account disk quotas.

5-18. Show the Common File Dialog Boxes

Problem
You need to show the standard Windows dialog boxes for opening and saving files and for selecting
a folder.

198 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

Solution
Use the OpenFileDialog, SaveFileDialog, and FolderBrowserDialog classes in the System.Windows.
Forms namespace. Call the ShowDialog method to display the dialog box, examine the return value to
determine whether the user clicked Open or Cancel, and retrieve the selection from the FileName or
SelectedPath property.

How It Works
The .NET Framework provides objects that wrap many of the standard Windows dialog boxes,
including those used for saving and selecting files and directories. These classes all inherit from
System.Windows.Forms.CommonDialog and include the following:

• OpenFileDialog, which allows the user to select a file, as shown in Figure 5-2. The filename
and path are provided to your code through the FileName property (or the FileNames collec-
tion, if you have enabled multiple file select by setting Multiselect to True). Additionally, you
can use the Filter property to set the file format choices and set CheckFileExists. Filter lets
you limit the file types that are displayed, and CheckFileExists ensures that only an existing
file can be specified.

Figure 5-2. OpenFileDialog shows the Open dialog box.

• SaveFileDialog, which allows the user to specify a new file. The filename and path are provided
to your code through the FileName property. You can also use the Filter property to set the
file format choices, and set the CreatePrompt and OverwritePrompt Boolean properties to
instruct .NET to display a confirmation if the user selects a new file or an existing file, respectively.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 199

• FolderBrowserDialog, which allows the user to select (and optionally create) a directory, as shown
in Figure 5-3. The selected path is provided through the SelectedPath property, and you can
specify whether or not a Create New button should appear using the ShowNewFolderButton
property.

Figure 5-3. FolderBrowserDialog shows the Browse for Folder dialog box.

When using OpenFileDialog or SaveFileDialog, you need to set the filter string, which specifies
the allowed file extensions. If you do not set the filter string, the Type drop-down list will be empty,
and all files will be shown in the dialog box.

The filter string is separated with the pipe character (|) in this format:

[Text label] | [Extension list separated by semicolons] | [Text label]
| [Extension list separated by semicolons] | . . .

You can also set the Title (form caption) and the InitialDirectory.

The Code

The following code shows a Windows-based application that allows the user to load documents into
a RichTextBox, edit the content, and then save the modified document. When opening and saving a
document, the OpenFileDialog and SaveFileDialog classes are used.

' All designed code is stored in the autogenerated partial
' class called MainForm.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class MainForm

 Private Sub mnuOpen_Click(ByVal sender As Object, ByVal e As System.EventArgs) ➥
Handles mnuOpen.Click

 Dim dlg As New OpenFileDialog

200 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 dlg.Filter = "Rich Text Files (*.rtf)|*.RTF|All Files (*.*)|*.*"
 dlg.CheckFileExists = True
 dlg.InitialDirectory = Application.StartupPath

 If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then
 rtDoc.LoadFile(dlg.FileName)
 rtDoc.Enabled = True
 End If

 End Sub

 Private Sub mnuSave_Click(ByVal sender As Object, ByVal e As System.EventArgs) ➥
Handles mnuSave.Click

 Dim dlg As New SaveFileDialog

 dlg.Filter = "Rich Text Files (*.rtf)|*.RTF|Text Files (*.txt)|*.TXT|" & ➥
"All Files (*.*)|*.*"
 dlg.InitialDirectory = Application.StartupPath

 If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then
 rtDoc.SaveFile(dlg.FileName)
 End If

 End Sub

 Private Sub mnuExit_Click(ByVal sender As Object, ByVal e As System.EventArgs) ➥
Handles mnuExit.Click

 Me.Close()

 End Sub
End Class

5-19. Use an Isolated Store

Problem
You need to store data in a file, but your application does not have the required FileIOPermission for
the local hard drive.

Solution
Use the IsolatedStorageFile and IsolatedStorageFileStream classes from the System.IO.
IsolatedStorage namespace. These classes allow your application to write data to a file in a user-
specific directory without needing permission to access the local hard drive directly.

How It Works
The .NET Framework includes support for isolated storage, which allows you to read and write to a
user-specific or machine-specific virtual file system that the common language runtime (CLR) manages.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 201

When you create isolated storage files, the data is automatically serialized to a unique location in the
user profile path. In Windows XP, the profile path is typically something like C:\Documents and
Settings\[username]\Local Settings\Application Data\isolated storage\[guid_identifier]).

One reason you might use isolated storage is to give a partially trusted application limited ability to
store data. For example, the default CLR security policy gives local code unrestricted FileIOPermission,
which allows it to open or write to any file. Code that you run from a remote server on the local
intranet is automatically assigned fewer permissions. It lacks the FileIOPermission, but it has the
IsolatedStoragePermission, giving it the ability to use isolated stores. (The security policy also limits
the maximum amount of space that can be used in an isolated store.) Another reason you might
use an isolated store is to better secure data. For example, data in one user’s isolated store will
be restricted from another nonadministrative user.

By default, each isolated store is segregated by user and assembly. That means that when the
same user runs the same application, the application will access the data in the same isolated store.
However, you can choose to segregate it further by application domain, so that multiple AppDomain
instances running in the same application receive different isolated stores.

The files are stored as part of a user’s profile, so users can access their isolated storage files
on any workstation they log on to if roaming profiles are configured on your local area network.
(In this case, the store must be specifically designated as a roaming store by applying the
IsolatedStorageFile.Roaming flag when it’s created.) By letting the .NET Framework and the CLR
provide these levels of isolation, you can relinquish responsibility for maintaining the separation
between files, and you do not need to worry that programming oversights or misunderstandings will
cause loss of critical data.

The Code

The following example shows how you can access isolated storage.

Imports System
Imports System.IO
Imports System.IO.IsolatedStorage

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_19
 Public Shared Sub Main(ByVal args As String())

 ' Create the store for the current user.
 Using store As IsolatedStorageFile = ➥
IsolatedStorageFile.GetUserStoreForAssembly
 ' Create a folder in the root of the isolated store.
 store.CreateDirectory("MyFolder")

 ' Create a file in the isolated store.
 Using fs As New IsolatedStorageFileStream("MyFile.txt", ➥
FileMode.Create, store)
 Dim w As New StreamWriter(fs)

 ' You can now write to the file as normal.
 w.WriteLine("Test")
 w.Flush()

 End Using

202 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 Console.WriteLine("Current size: " & store.CurrentSize.ToString)
 Console.WriteLine("Scope: " & store.Scope.ToString)
 Console.WriteLine("Contained files include:")

 Dim files As String() = store.GetFileNames("*.*")
 For Each file As String In files
 Console.WriteLine(file)
 Next

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

The following demonstrates using multiple AppDomain instances running in the same applica-
tion to receive different isolated stores.

' Access isolated storage for the current user and assembly
' (which is equivalent to the first example)."
store = IsolatedStorageFile.GetStore(IsolatedStorageScope.User Or ➥
IsolatedStorageScope.Assembly, Nothing, Nothing)

' Access isolated storage for the current user, assembly,
' and application domain. In other words, this data is
' accessible only by the current AppDomain instance.
store = IsolatedStorageFile.GetStore(IsolatedStorageScope.User Or ➥
IsolatedStorageScope.Assembly Or IsolatedStorageScope.Domain, Nothing, Nothing)

The preceding use of GetStore is equivalent to calling the GetUserStoreForDomain method of the
IsolatedStorageFile class.

5-20. Monitor the File System for Changes

Problem
You need to react when a file system change is detected in a specific path (such as a file modification
or creation).

Solution
Use the System.IO.FileSystemWatcher component, specify the path or file you want to monitor, and
handle the Error, Created, Deleted, Renamed, and Changed events as needed.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 203

How It Works
When linking together multiple applications and business processes, it’s often necessary to create a
program that waits idly and becomes active only when a new file is received or changed. You can
create this type of program by scanning a directory periodically, but you face a key trade-off. The
more often you scan, the more system resources you waste. The less often you scan, the longer it will
take to detect a change. The solution is to use the FileSystemWatcher class to react directly to Windows
file events.

To use FileSystemWatcher, you must create an instance and set the following properties:

• Path indicates the directory you want to monitor.

• Filter indicates the types of files you are monitoring.

• NotifyFilter indicates the type of changes you are monitoring.

FileSystemWatcher raises four key events: Created, Deleted, Renamed, and Changed. All of these
events provide information through their FileSystemEventArgs parameter, including the name of
the file (Name), the full path (FullPath), and the type of change (ChangeType). The Renamed event provides
a RenamedEventArgs instance, which derives from FileSystemEventArgs, and adds information about
the original filename (OldName and OldFullPath).

By default, the FileSystemWatcher is disabled. To start it, you must set the FileSystemWatcher.
EnableRaisingEvents property to True. If you ever need to disable it, just set the property to False.

The Created, Deleted, and Renamed events require no configuration. However, if you want to use
the Changed event, you need to use the NotifyFilter property to indicate the types of changes you
want to watch. Otherwise, your program might be swamped by an unceasing series of events as files
are modified.

The NotifyFilter property, which defaults to LastWrite, FileName, and DirectoryName, can be
set using any combination of the following values from the System.IO.NotifyFilters enumeration:

• Attributes

• CreationTime

• DirectoryName

• FileName

• LastAccess

• LastWrite

• Security

• Size

The FileSystemWatcher is capable of detecting many file- or folder-related actions at once. It
does this by creating and using threads from the ThreadPool to handle the appropriate events. As
events occur, they are queued in an internal buffer. If this buffer overflows, some of the events may
be lost. This overflow fires the Error event. You should handle this event to log or resolve this issue if
it arises.

The Code

The following example shows a console application that handles Created and Deleted events, and
tests these events by creating a test file.

204 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

Imports System
Imports System.IO
Imports System.Windows.Forms

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_20
 Public Shared Sub Main()

 Using watch As New FileSystemWatcher

 watch.Path = Application.StartupPath
 watch.Filter = "*.*"
 watch.IncludeSubdirectories = True

 ' Attach the event handlers.
 AddHandler watch.Created, AddressOf OnCreatedOrDeleted
 AddHandler watch.Deleted, AddressOf OnCreatedOrDeleted
 watch.EnableRaisingEvents = True

 Console.WriteLine("Press Enter to create a file.")
 Console.ReadLine()

 If File.Exists("test.bin") Then
 File.Delete("test.bin")
 End If

 ' Create test.bin file.
 Using fs As New FileStream("test.bin", FileMode.Create)
 ' Do something here...
 End Using

 Console.WriteLine("Press Enter to terminate the application.")
 Console.ReadLine()

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' Fires when a new file is created or deleted in the directory
 ' that is being monitored.
 Private Shared Sub OnCreatedOrDeleted(ByVal sender As Object, ➥
ByVal e As FileSystemEventArgs)

 ' Display the notification information.
 Console.WriteLine("{0}NOTIFICATION: {1} was {2}", ControlChars.Tab, ➥
e.FullPath, e.ChangeType.ToString)
 Console.WriteLine()

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 205

 End Sub

 End Class
End Namespace

5-21. Access a COM Port

Problem
You need to send data directly to a serial port.

Solution
Use the System.IO.Ports.SerialPort class. This class represents a serial port resource and defines
methods that enable communication through it.

How It Works
.NET Framework 2.0 defines a System.IO.Ports namespace that contains several classes. The central
class is SerialPort. A SerialPort instance represents a serial port resource and provides methods
that let you communicate through it. The SerialPort class also exposes properties that let you specify
the port, baud rate, parity, and other information. If you need a list of the available COM ports, the
SerialPort class provides the GetPortNames method, which returns a string array containing the
names of each port.

As an alternative, the My object contains the My.Computer.Ports class, which can be used to work
with ports. This class contains the Shared SerialPortNames property and the Shared OpenSerialPort
method. SerialPortNames is equivalent to the GetPortNames method, but it returns a read-only collec-
tion of strings. OpenSerialPort returns a SerialPort instance. This method has several overloads that
let you correctly configure the returned instance.

The Code

The following example demonstrates a simple console application that lists all available COM ports
and then writes a string to the first available one.

Imports System
Imports System.IO.Ports

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_21
 Public Shared Sub Main()

 ' Enumerate each of the available COM ports
 ' on the computer.
 Console.WriteLine("Available Ports on this computer:")
 For Each portName As String In SerialPort.GetPortNames
 Console.WriteLine("PORT: " & portName)
 Next
 Console.WriteLine()

206 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

 ' For this example, lets just grab the first item from
 ' the array returned by the GetPortNames method.
 Dim testPort As String = SerialPort.GetPortNames(0)
 Using port As New SerialPort(testPort)

 ' Set the properties.
 port.BaudRate = 9600
 port.Parity = Parity.None
 port.ReadTimeout = 10
 port.StopBits = StopBits.One

 ' Write a message into the port.
 port.Open()
 port.Write("Hello world!")
 port.Close()

 Console.WriteLine("Wrote to the {0} port.", testPort)

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

5-22. Get a Random Filename

Problem
You need to get a random name for creating a folder or a file.

Solution
Use the Path.GetRandomFileName method, which returns a random name.

How It Works
The System.IO.Path class includes a GetRandomFileName method, which is new to .NET Framework 2.0.
This method generates a random string that can be used for creating a new file or folder.

The difference between GetRandomFileName and GetTempFileName (discussed in recipe 5-16) of
the Path class is that GetRandomFileName just returns a random string and does not create a file, whereas
GetTempFileName creates a new 0-byte temporary file and returns the path to the file.

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 207

5-23. Manipulate the Access Control Lists
of a File or Directory

Problem
You want to modify the access control list (ACL) of a file or directory in the computer.

Solution
Use the GetAccessControl and SetAccessControl methods of the File or Directory class.

How It Works
.NET Framework 2.0 now includes support for ACLs for resources like I/O, registry, and threading
classes. You can retrieve and apply the ACL for a resource by using the GetAccessControl and
SetAccessControl methods defined in the corresponding resource classes. For example, the File
and Directory classes define both these methods, which let you manipulate the ACLs for a file or
directory.

To add or remove an ACL-associated right of a file or directory, you need to first retrieve the
FileSecurity or DirectorySecurity object currently applied to the resource using the GetAccessControl
method. Once you retrieve this object, you need to perform the required modification of the rights,
and then apply the ACL back to the resource using the SetAccessControl method. Table 5-8 shows a
list of the common methods used for adding and removing ACL permissions.

The Code

The following example demonstrates the effect of denying Everyone Read access to a temporary file,
using a console application. An attempt to read the file after a change in the ACL triggers a security
exception.

Imports System
Imports System.IO
Imports System.Security.AccessControl

Table 5-8. Key Methods for Adding and Removing ACLs

Method Description

AddAccessRule Adds the permissions specified.

ResetAccessRule Adds the permissions specified. If the specified permission
already exists, it will be replaced.

RemoveAccessRule Removes all of the permissions that match the specified rule.

RemoveAccessRuleAll Removes all permissions for the user referenced in the
specified rule.

RemoveAccessRuleSpecific Removes the permissions specified.

208 CH AP T E R 5 ■ F I L E S , D IR E CT OR I E S , AN D I / O

Namespace Apress.VisualBasicRecipes.Chapter05

 Public Class Recipe05_23
 Public Shared Sub Main()
 Dim fileName As String

 ' Create a new file and assign full control to 'Everyone'.
 Console.WriteLine("Press any key to write a new file...")
 Console.ReadKey(True)

 fileName = Path.GetRandomFileName
 Using testStream As New FileStream(fileName, FileMode.Create)
 ' Do something...
 End Using
 Console.WriteLine("Created a new file {0}.", fileName)
 Console.WriteLine()

 ' Deny 'Everyone' access to the file.
 Console.WriteLine("Press any key to deny 'Everyone' access " & ➥
"to the file.")
 Console.ReadKey(True)

 SetRule(fileName, "Everyone", FileSystemRights.Read, ➥
AccessControlType.Deny)

 Console.WriteLine("Removed access rights of 'Everyone'.")
 Console.WriteLine()

 ' Attempt to access the file.
 Console.WriteLine("Press any key to attempt to access the file...")
 Console.ReadKey(True)

 Dim stream As FileStream
 Try
 stream = New FileStream(fileName, FileMode.Create)
 Catch ex As Exception
 Console.WriteLine("Exception thrown : ")
 Console.WriteLine(ex.ToString)
 Finally
 If stream IsNot Nothing Then
 stream.Close()
 stream.Dispose()
 End If
 End Try

 ' Wait to contiue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 Private Shared Sub SetRule(ByVal filePath As String, ByVal account As ➥

CH AP T E R 5 ■ F I L E S , D IR E C TO R I E S , AN D I / O 209

String, ByVal rights As FileSystemRights, ByVal controlType As AccessControlType)

 ' Get a FileSecurity object that represents the
 ' current security settings.
 Dim fSecurity As FileSecurity = File.GetAccessControl(filePath)

 ' Update the FileSystemAccessRule with the new
 ' security settings.
 fSecurity.ResetAccessRule(New FileSystemAccessRule(account, rights, ➥
 controlType))

 ' Set the new access settings.
 File.SetAccessControl(filePath, fSecurity)

 End Sub

 End Class
End Namespace

211

■ ■ ■

C H A P T E R 6

XML Processing

One of the most remarkable aspects of the Microsoft .NET Framework is its deep integration with
Extensible Markup Language (XML). In many .NET applications, you won’t even be aware you’re
using XML technologies—they’ll just be used behind the scenes when you serialize a Microsoft
ADO.NET DataSet, call a web service, or read application settings from a Web.config configuration
file. In other cases, you’ll want to work directly with the System.Xml namespaces to manipulate XML
data. Common XML tasks include parsing an XML file, validating it against a schema, applying an
XSL transform to create a new document or Hypertext Markup Language (HTML) page, and searching
intelligently with XPath. The recipes in this chapter describe how to do the following:

• Read, parse, and manipulate XML data (recipes 6-1, 6-2, 6-3, and 6-7)

• Search an XML document for specific nodes, by name (recipe 6-4), by namespace (recipe 6-5), or
by using XPath (recipe 6-6)

• Validate an XML document with an XML schema (recipe 6-8)

• Serialize an object to XML (recipe 6-9), create an XML schema for a class (recipe 6-10), and
generate the source code for a class based on an XML schema (recipe 6-11)

• Transform an XML document to another document using an XSL Transformations (XSLT)
stylesheet (recipe 6-12)

6-1. Show the Structure of an XML Document
in a TreeView

Problem
You need to display the structure and content of an XML document in a Windows-based application.

Solution
Load the XML document using the System.Xml.XmlDocument class. Create a re-entrant method that
converts a single XmlNode into a System.Windows.Forms.TreeNode, and call it recursively to walk
through the entire document.

212 CH AP T E R 6 ■ X M L P R O CE S S I N G

How It Works
The .NET Framework provides several different ways to process XML documents. The one you use
depends in part upon your programming task. One of the most fully featured classes is XmlDocument,
which provides an in-memory representation of an XML document that conforms to the W3C Docu-
ment Object Model (DOM). The XmlDocument class allows you to browse through the nodes in any
direction, insert and remove nodes, and change the structure on the fly. For details of the DOM spec-
ification, go to http://www.w3c.org/DOM.

■Note The XmlDocument class is not scalable for very large XML documents, because it holds the entire XML
content in memory at once. If you want a more memory-efficient alternative, and you can afford to read and process
the XML piece by piece, consider the XmlReader and XmlWriter classes described in recipe 6-7.

To use the XmlDocument class, simply create a new instance of the class, and call the Load method
with a filename, a Stream, a TextReader, or an XmlReader object. It is also possible to read the XML
from a simple string with the LoadXML method. You can even supply a string with a URL that points
to an XML document on the Web using the Load method. The XmlDocument instance will be populated
with the tree of elements, or nodes, from the source document. The entry point for accessing these
nodes is the root element. The XmlDocument.DocumentElement property provides an alternate method
for directly accessing this root element. DocumentElement is an XmlElement object that can contain
one or more nested XmlNode objects, which in turn can contain more XmlNode objects, and so on. An
XmlNode is the basic ingredient of an XML file. Common XML nodes include elements, attributes,
comments, and contained text.

When dealing with an XmlNode or a class that derives from it (such as XmlElement, XmlAttribute,
or XmlDocument), you can use the following basic properties:

• ChildNodes is an XmlNodeList collection that contains the first level of nested nodes.

• Name is the name of the node.

• NodeType returns a member of the System.Xml.XmlNodeType enumeration that indicates the
type of the node (element, attribute, text, and so on).

• Value is the content of the node, if it’s a text, a CDATA, or an attribute node.

• Attributes provides a collection of node objects representing the attributes applied to the
element.

• InnerText retrieves a string with the concatenated value of the node and all nested nodes.

• InnerXml retrieves a string with the concatenated XML markup for all nested nodes.

• OuterXml retrieves a string with the concatenated XML markup for the current node and all
nested nodes.

The Code

The following example walks through every element of an XmlDocument using the ChildNodes property
and a recursive method. Each node is displayed in a TreeView control, with descriptive text that
either identifies it or shows its content.

Imports System
Imports System.Windows.Forms
Imports System.Xml
Imports System.IO

C HA P TE R 6 ■ X M L PR O C E SS IN G 213

' All designed code is stored in the autogenerated partial
' class called XmlTreeDisplay.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class XmlTreeDisplay

 Private Sub cmdLoad_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdLoad.Click

 ' Clear the tree.
 Dim doc As New XmlDocument

 Try
 doc.Load(txtXmlFile.Text)

 ' Populate the TreeView.
 ConvertXmlNodeToTreeNode(doc, treeXml.Nodes)

 ' Expand all nodes.
 treeXml.Nodes(0).ExpandAll()
 Catch ex As Exception
 MessageBox.Show(ex.Message)
 End Try

 End Sub

 Private Sub ConvertXmlNodeToTreeNode(ByVal thisXmlNode As XmlNode, ➥
ByVal treeNodes As TreeNodeCollection)

 ' Add a TreeNode node that represents this XmlNode.
 Dim newTreeNode As TreeNode = treeNodes.Add(thisXmlNode.Name)

 ' Customize the TreeNode text based on the XmlNode
 ' type and content.
 Select Case thisXmlNode.NodeType
 Case XmlNodeType.ProcessingInstruction
 newTreeNode.Text = thisXmlNode.Value
 Case XmlNodeType.XmlDeclaration
 newTreeNode.Text = "<?" & thisXmlNode.Name & " " & ➥
thisXmlNode.Value & "?>"
 Case XmlNodeType.Element
 newTreeNode.Text = "<" & thisXmlNode.Name & ">"
 Case XmlNodeType.Attribute
 newTreeNode.Text = "ATTRIBUTE: " & thisXmlNode.Name
 Case XmlNodeType.Text
 newTreeNode.Text = thisXmlNode.Value
 Case XmlNodeType.CDATA
 newTreeNode.Text = thisXmlNode.Value
 Case XmlNodeType.Comment
 newTreeNode.Text = "<!--" & thisXmlNode.Value & "-->"
 End Select

214 CH AP T E R 6 ■ X M L P R O CE S S I N G

 ' Call this routine recursively for each attribute.
 ' (XmlAttribute is a subclass of XmlNode.)
 If Not thisXmlNode.Attributes Is Nothing Then
 For Each attribute As XmlAttribute In thisXmlNode.Attributes
 ConvertXmlNodeToTreeNode(attribute, newTreeNode.Nodes)
 Next
 End If

 ' Call this routine recursively for each child node.
 ' Typically, this child node represents a nested element
 ' or element content.
 For Each childNode As XmlNode In thisXmlNode.ChildNodes
 ConvertXmlNodeToTreeNode(childNode, newTreeNode.Nodes)
 Next

 End Sub

 Private Sub XmlTreeDisplay_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 txtXmlFile.Text = Path.Combine(Application.StartupPath, ➥
"..\..\ProductCatalog.xml")

 End Sub

End Class

Usage

As an example, consider the following simple XML file (which is included with the sample code as
the ProductCatalog.xml file).

<?xml version="1.0" ?>
<productCatalog>
 <catalogName>Jones and Jones Unique Catalog 2004</catalogName>
 <expiryDate>2005-01-01</expiryDate>

 <products>
 <product id="1001">
 <productName>Gourmet Coffee</productName>
 <description>The finest beans from rare Chilean
 plantations.</description>
 <productPrice>0.99</productPrice>
 <inStock>true</inStock>
 </product>
 <product id="1002">
 <productName>Blue China Tea Pot</productName>
 <description>A trendy update for tea drinkers.</description>
 <productPrice>102.99</productPrice>
 <inStock>true</inStock>
 </product>
 </products>
</productCatalog>

C HA P TE R 6 ■ X M L PR O C E SS IN G 215

Figure 6-1 shows how this file will be rendered in the form.

Figure 6-1. The displayed structure of an XML document

6-2. Insert Nodes in an XML Document

Problem
You need to modify an XML document by inserting new data, or you want to create an entirely new
XML document in memory.

Solution
Create the node using the appropriate XmlDocument method (such as CreateElement, CreateAttribute,
CreateNode, and so on). Then insert it using the appropriate XmlNode method (such as InsertAfter,
InsertBefore, or AppendChild).

How It Works
Inserting a node into the XmlDocument class is a two-step process: create the node, and then insert
it at the appropriate location. Optionally, you can then call XmlDocument.Save to persist changes.

To create a node, you use one of the XmlDocument methods starting with the word Create,
depending on the type of node. This ensures the node will have the same namespace as the rest of
the document. (Alternatively, you can supply a namespace as an additional string argument.) Next,
you must find a suitable related node and use one of its insertion methods to add the new node to
the tree.

The Code

The following example demonstrates this technique by programmatically creating a new XML
document.

216 CH AP T E R 6 ■ X M L P R O CE S S I N G

Imports System
Imports System.Xml

Namespace Apress.VisualBasicRecipes.Chapter06

 Public Class Recipe06_02
 Public Shared Sub Main()

 ' Create a new, empty document.
 Dim doc As New XmlDocument
 Dim docNode As XmlNode = doc.CreateXmlDeclaration("1.0", "UTF-8", ➥
Nothing)

 doc.AppendChild(docNode)

 ' Create and insert a new element.
 Dim productsNode As XmlNode = doc.CreateElement("Products")
 doc.AppendChild(productsNode)

 ' Create a nested element (with an attribute).
 Dim productNode As XmlNode = doc.CreateElement("Product")
 Dim productAttribute As XmlAttribute = doc.CreateAttribute("id")
 productAttribute.Value = "1001"
 productNode.Attributes.Append(productAttribute)
 productsNode.AppendChild(productNode)

 ' Create and add the subelements for this product node
 ' (with contained text data).
 Dim nameNode As XmlNode = doc.CreateElement("ProductName")
 nameNode.AppendChild(doc.CreateTextNode("Gourmet Coffee"))
 productNode.AppendChild(nameNode)
 Dim priceNode As XmlNode = doc.CreateElement("ProductPrice")
 priceNode.AppendChild(doc.CreateTextNode("0.99"))
 productNode.AppendChild(priceNode)

 ' Create and add another product node.
 productNode = doc.CreateElement("Product")
 productAttribute = doc.CreateAttribute("id")
 productAttribute.Value = "1002"
 productNode.Attributes.Append(productAttribute)
 productsNode.AppendChild(productNode)
 nameNode = doc.CreateElement("ProductName")
 nameNode.AppendChild(doc.CreateTextNode("Blue China Tea Pot"))
 productNode.AppendChild(nameNode)
 priceNode = doc.CreateElement("ProductPrice")
 priceNode.AppendChild(doc.CreateTextNode("102.99"))
 productNode.AppendChild(priceNode)

 ' Save the document (to the console window rather
 ' than a file).
 doc.Save(Console.Out)
 Console.ReadLine()

C HA P TE R 6 ■ X M L PR O C E SS IN G 217

 End Sub

 End Class
End Namespace

When you run this code, the generated XML document looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<Products>
 <Product id="1001">
 <ProductName>Gourmet Coffee</ProductName>
 <ProductPrice>0.99</ProductPrice>
 </Product>
 <Product id="1002">
 <ProductName>Blue China Tea Pot</ProductName>
 <ProductPrice>102.99</ProductPrice>
 </Product>
</Products>

6-3. Quickly Append Nodes in an XML Document

Problem
You need to add nodes to an XML document without requiring lengthy, verbose code.

Solution
Create a helper function that accepts an element name and content, and can generate the entire
element at once. Alternatively, use the XmlDocument.CloneNode method to copy branches of an
XmlDocument.

How It Works
Inserting a single element into an XmlDocument requires several lines of code. You can shorten this
code in several ways. One approach is to create a dedicated helper class with higher-level methods
for adding elements and attributes. For example, you could create an AddElement method that gener-
ates a new element, inserts it, and adds any contained text—the three operations needed to insert
most elements.

The Code

The following is an example of a helper class for inserting elements.

Imports System
Imports System.Xml

Namespace Apress.VisualBasicRecipes.Chapter06

 Public Class XmlHelper

218 CH AP T E R 6 ■ X M L P R O CE S S I N G

 Public Shared Function AddElement(ByVal elementName As String, ➥
ByVal textContent As String, ByVal parent As XmlNode) As XmlElement

 Dim element As XmlElement = ➥
parent.OwnerDocument.CreateElement(elementName)

 parent.AppendChild(element)

 If textContent IsNot Nothing Then
 Dim content As XmlNode
 content = parent.OwnerDocument.CreateTextNode(textContent)
 element.AppendChild(content)
 End If

 Return element

 End Function

 Public Shared Function AddAttribute(ByVal attributeName As String, ➥
ByVal textContent As String, ByVal parent As XmlNode) As XmlAttribute

 Dim attribute As XmlAttribute

 attribute = parent.OwnerDocument.CreateAttribute(attributeName)
 attribute.Value = textContent
 parent.Attributes.Append(attribute)

 Return attribute

 End Function

 End Class
End Namespace

You can now condense the XML-generating code from recipe 6-2 with the following simpler
syntax.

Public Class Recipe06_03

 Public Shared Sub Main()

 ' Create the basic document.
 Dim doc As New XmlDocument
 Dim docNode As XmlNode = doc.CreateXmlDeclaration("1.0", "UTF-8", Nothing)
 doc.AppendChild(docNode)
 Dim products = doc.CreateElement("Products")
 doc.AppendChild(products)

 ' Add two products.
 Dim product As XmlNode = XmlHelper.AddElement("Product", Nothing, products)
 XmlHelper.AddAttribute("id", "1001", product)
 XmlHelper.AddElement("ProductName", "Gourmet Coffee", product)
 XmlHelper.AddElement("ProductPrice", "0.99", product)

C HA P TE R 6 ■ X M L PR O C E SS IN G 219

 product = XmlHelper.AddElement("Product", Nothing, products)
 XmlHelper.AddAttribute("id", "1003", product)
 XmlHelper.AddElement("ProductName", "Blue China Tea Pot", product)
 XmlHelper.AddElement("ProductPrice", "102.99", product)

 ' Save the document (to the console window rather than a file)
 doc.Save(Console.Out)
 Console.ReadLine()

 End Sub
End Class

Alternatively, you might want to take the helper methods such as AddAttribute and AddElement
and make them instance methods in a custom class you derive from XmlDocument.

Another approach to simplifying writing XML is to duplicate nodes using the XmlNode.CloneNode
method. CloneNode accepts a Boolean deep parameter. If you set this parameter to True, CloneNode
will duplicate the entire branch, with all nested nodes.

Here is an example that creates a new product node by copying the first node:

' (Add first product node).

' Create a new element based on an existing product.
product = product.CloneNode(True)

' Modify the node data.
product.Attributes(0).Value = "1002"
product.ChildNodes(0).ChildNodes(0).Value = "Blue China Tea Pot"
product.ChildNodes(1).ChildNodes(1).Value = "102.99"

' Add the new element.
products.AppendChild(product)

In this example, certain assumptions are being made about the existing nodes; for example, that the
first child in the item node is always the name, and the second child is always the price. If such assump-
tions are not guaranteed to be true, you might need to examine the node name programmatically.

6-4. Find Specific Elements by Name

Problem
You need to retrieve a specific element or elements from an XmlDocument using only the element name.

Solution
Use the XmlDocument.GetElementsByTagName method, which searches an entire document and returns a
System.Xml.XmlNodeList containing any matches.

How It Works
The XmlDocument class provides a convenient GetElementsByTagName method that searches an entire
document for elements that have the indicated element name. It returns the results as a collection
of XmlNode objects.

220 CH AP T E R 6 ■ X M L P R O CE S S I N G

The Code

The following code demonstrates how you could use GetElementsByTagName to calculate the total
price of items in a catalog by retrieving all elements with the name productPrice.

Imports System
Imports System.Xml

Namespace Apress.VisualBasicRecipes.Chapter06

 Public Class Recipe06_04
 Public Shared Sub Main()

 ' Load the document.
 Dim doc As New XmlDocument
 doc.Load("..\..\ProductCatalog.xml")

 ' Retrieve all prices.
 Dim totalPrice As Decimal = 0
 Dim prices As XmlNodeList = doc.GetElementsByTagName("productPrice")
 For Each price As XmlNode In prices
 ' Get the inner text of each matching element.
 totalPrice += Decimal.Parse(price.ChildNodes(0).Value)
 Next

 Console.WriteLine("Total catalog value: " & totalPrice.ToString)
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes
You can also search portions of an XML document by using the XmlElement.GetElementsByTagName
method. It searches all the descendant nodes looking for matches. To use this method, first retrieve
an XmlNode that corresponds to an element. Then cast this object to an XmlElement. The following
example demonstrates how to find the price node under the first product element.

' Retrieve a reference to the first product.
Dim product As XmlNode = doc.GetElementsByTagName("products")(0)

' Find the price under this product.
Dim price As XmlNode = DirectCast(product, ➥
XmlElement).GetElementsByTagName("productPrice")(0)

If your elements include an id attribute, you can also use a method called GetElementById to
retrieve an element that has a matching id value.

C HA P TE R 6 ■ X M L PR O C E SS IN G 221

6-5. Get XML Nodes in a Specific XML Namespace

Problem
You need to retrieve elements from a specific namespace using an XmlDocument.

Solution
Use the overload of the XmlDocument.GetElementsByTagName method that requires a namespace
name as a string argument. Additionally, supply an asterisk (*) for the element name if you want to
match all elements.

How It Works
Many XML documents contain nodes from more than one namespace. For example, an XML document
that represents a scientific article might use a separate type of markup for denoting math equations
and vector diagrams, or an XML document with information about a purchase order might aggre-
gate client and order information with a shipping record. Similarly, an XML document that represents a
business-to-business transaction might include portions from both companies, written in separate
markup languages.

A common task in XML programming is to retrieve the elements found in a specific namespace.
You can perform this task with the overloaded version of the XmlDocument.GetElementsByTagName
method that requires a namespace name. You can use this method to find elements by name or to
find all the elements in the specified namespace if you supply an asterisk for the element name.

The Code

As an example, consider the following compound XML document that includes order and client
information, in two different namespaces (http://mycompany/OrderML and http://mycompany/
ClientML).

<?xml version="1.0" ?>
<ord:order xmlns:ord="http://mycompany/OrderML"
 xmlns:cli="http://mycompany/ClientML">

 <cli:client>
 <cli:firstName>Vicky</cli:firstName>
 <cli:lastName>Kevin</cli:lastName>
 </cli:client>

 <ord:orderItem itemNumber="3211" />
 <ord:orderItem itemNumber="1155" />

</ord:order>

Here is a simple console application that selects all the elements in the http://mycompany/
OrderML namespace:

Imports System
Imports System.Xml

Namespace Apress.VisualBasicRecipes.Chapter06

222 CH AP T E R 6 ■ X M L P R O CE S S I N G

 Public Class Recipe06_05
 Public Shared Sub Main()

 ' Load the document.
 Dim doc As New XmlDocument
 doc.Load("..\..\Order.xml")

 ' Retrieve all order elements.
 Dim matches As XmlNodeList = doc.GetElementsByTagName("*", ➥
"http://mycompany/OrderML")

 ' Display all the information.
 Console.WriteLine("Element {0}Attributes", ControlChars.Tab)
 Console.WriteLine("******* {0}**********", ControlChars.Tab)

 For Each node As XmlNode In matches
 Console.Write("{0}{1}", node.Name, ControlChars.Tab)
 For Each attribute As XmlAttribute In node.Attributes
 Console.Write(attribute.Value & " ")
 Next
 Console.WriteLine()
 Next
 Console.ReadLine()

 End Sub

 End Class
End Namespace

The output of this program is as follows.

Element Attributes
******* **********
ord:order http://mycompany/OrderML http://mycompany/ClientML
ord:orderItem 3211
ord:orderItem 1155

6-6. Find Elements with an XPath Search

Problem
You need to search an XML document for nodes using advanced search criteria. For example, you
might want to search a particular branch of an XML document for nodes that have certain attributes
or contain a specific number of nested child nodes.

Solution
Execute an XPath expression using the SelectNodes or SelectSingleNode method of the XmlDocument
class.

C HA P TE R 6 ■ X M L PR O C E SS IN G 223

How It Works
The XmlNode class defines two methods that perform XPath searches: SelectNodes and SelectSingleNode.
These methods operate on all contained child nodes. Because the XmlDocument inherits from XmlNode,
you can call XmlDocument.SelectNodes to search an entire document.

The Code

As an example, consider the following orders.xml document, which represents an order for two
items. This document includes text and numeric data, nested elements, and attributes, so it provides
a good way to test simple XPath expressions.

<?xml version="1.0"?>
<Order id="2004-01-30.195496">
 <Client id="ROS-930252034">
 <Name>Remarkable Office Supplies</Name>
 </Client>

 <Items>
 <Item id="1001">
 <Name>Electronic Protractor</Name>
 <Price>42.99</Price>
 </Item>
 <Item id="1002">
 <Name>Vorpal Stapler</Name>
 <Price>500.50</Price>
 </Item>
 </Items>
</Order>

Basic XPath syntax uses a pathlike notation. For example, the path /Order/Items/Item indicates
an <Item> element that is nested inside an <Items> element, which, in turn, is nested in a root <Order>
element. This is an absolute path. The following example uses an XPath absolute path to find the
name of every item in an order:

Imports System
Imports System.Xml

Namespace Apress.VisualBasicRecipes.Chapter06

 Public Class Recipe06_06
 Public Shared Sub Main()

 ' Load the document.
 Dim doc As New XmlDocument
 doc.Load("..\..\Orders.xml")

 ' Retrieve the name of every item.
 ' This could not be accomplished as easily with the
 ' GetElementsByTagName method, because the Name elements are
 ' used in Item elements and Client elements, and so
 ' both types would be returned.
 Dim nodes As XmlNodeList = doc.SelectNodes("/Order/Items/Item/Name")

224 CH AP T E R 6 ■ X M L P R O CE S S I N G

 For Each node As XmlNode In nodes
 Console.WriteLine(node.InnerText)
 Next
 Console.ReadLine()

 End Sub

 End Class
End Namespace

The output of this program is as follows.

Electronic Protractor
Vorpal Stapler

Notes
XPath provides a rich and powerful search syntax. Table 6-1 outlines some of the key ingredients in
more advanced XPath expressions and includes examples that show how they would work with the
order document. For a more detailed reference, refer to the W3C XPath recommendation at http://
www.w3.org/TR/xpath.

Table 6-1. XPath Expression Syntax

Expression Description Example

/ Starts an absolute path that
selects from the root node

/Order/Items/Item selects all Item elements
that are children of an Items element, which
is itself a child of the root Order element.

// Starts a relative path that selects
nodes anywhere

//Item/Name selects all the Name elements that
are children of an Item element, regardless of
where they appear in the document.

@ Selects an attribute of a node /Order/@id selects the attribute named id
from the root Order element.

* Selects any element in the path /Order/* selects both Items and Client nodes
because both are contained by a root Order
element.

| Combines multiple paths /Order/Items/Item/Name|Order/Client/Name
selects the Name nodes used to describe a
Client and the Name nodes used to describe
an Item.

. Indicates the current (default)
node

If the current node is an Order, the expres-
sion ./Items refers to the related items for
that order.

.. Indicates the parent node //Name/.. selects any element that is parent
to a Name, which includes the Client and
Item elements.

C HA P TE R 6 ■ X M L PR O C E SS IN G 225

■Note XPath expressions and all element and attribute names you use inside them are always case-sensitive,
because XML itself is case-sensitive.

6-7. Read and Write XML Without Loading an
Entire Document into Memory

Problem
You need to read XML from a stream or write it to a stream. However, you want to process the infor-
mation one node at a time, rather than loading it all into memory with an XmlDocument.

Solution
To write XML, create an XmlWriter that wraps a stream and use Write methods (such as
WriteStartElement and WriteEndElement). To read XML, create an XmlReader that wraps a stream,
and call Read to move from node to node.

How It Works
The XmlWriter and XmlReader classes read or write XML directly from a stream one node at a time.
These classes do not provide the same features for navigating and manipulating your XML as
XmlDocument, but they do provide higher performance and a smaller memory footprint, particularly
if you are dealing with large XML documents.

[] Defines selection criteria that
can test a contained node or an
attribute value

/Order[@id="2004-01-30.195496"] selects
the Order elements with the indicated attri-
bute value. /Order/Items/Item[Price > 50]
selects products higher than $50 in price.
/Order/Items/Item[Price > 50 and
Name="Laser Printer"] selects products
that match two criteria.

starts-with Retrieves elements based on
what text a contained element
starts with

/Order/Items/Item[starts-with (Name,
"C")] finds all Item elements that have a
Name element that starts with the letter C.

position Retrieves elements based on
position

/Order/Items/Item[position()=2] selects
the second Item element.

count Counts elements. You specify
the name of the child element
to count or an asterisk (*) for
all children.

/Order/Items/Item[count(Price) = 1]
retrieves Item elements that have exactly
one nested Price element.

Table 6-1. XPath Expression Syntax

Expression Description Example

226 CH AP T E R 6 ■ X M L P R O CE S S I N G

Both the XmlWriter and XmlReader are abstract classes, which means you cannot create an
instance of them directly. Instead, you need to create an instance of a derived class, such as
XmlTextWriter. In .NET Framework 2.0, the preferred convention is not to create a derived class
directly. Instead, you should call the Create method of the XmlWriter or XmlReader and supply a URI
string or a TextWriter or TextReader stream, respectively. The Create method will return the correct
derived class based on the options you specify. This allows for a more flexible model. Because your
code uses the base classes, it can work seamlessly with any derived class. For example, you could
switch to a validating reader (as shown in recipe 6-8) without needing to modify your code.

To write XML to any stream, you can use the streamlined XmlWriter. It provides Write methods
that write one node at a time. These include the following:

• WriteStartDocument, which writes the document prologue, and WriteEndDocument, which
closes any open elements at the end of the document

• WriteStartElement, which writes an opening tag for the element you specify. You can then
add more elements nested inside this element, or you can call WriteEndElement to write the
closing tag

• WriteElementString, which writes an entire element, with an opening tag, a closing tag, and
text content

• WriteAttributeString, which writes an entire attribute for the nearest open element, with a
name and value

Using these methods usually requires less code than creating an XmlDocument by hand, as
demonstrated in recipes 6-2 and 6-3.

To read the XML, you use the Read method of the XmlReader. This method advances the reader
to the next node, excluding attributes, and returns true. If no more nodes can be found, it returns
false. You can retrieve information about the current node through XmlReader properties, including
its Name, Value, and NodeType.

To find out whether an element has attributes, you must explicitly test the HasAttributes prop-
erty and then use the GetAttribute method to retrieve the attributes by name or index number. The
XmlReader class can access only one node at a time, and it cannot move backward or jump to an arbitrary
node, which gives much less flexibility than the XmlDocument class.

The Code

The following console application writes and reads a simple XML document using the XmlWriter and
XmlReader classes. This is the same XML document created in recipes 6-2 and 6-3 using the
XmlDocument class.

Imports System
Imports System.Xml
Imports System.IO
Imports System.Text

Namespace Apress.VisualBasicRecipes.Chapter06

 Public Class Recipe06_07
 Public Shared Sub Main()

 ' Create the file and writer.
 Dim fs As New FileStream("products.xml", FileMode.Create)

C HA P TE R 6 ■ X M L PR O C E SS IN G 227

 ' If you want to configure additional details (like indenting,
 ' encoding, and new line handling), use the overload of the Create
 ' method that accepts an XmlWriterSettings object instead.
 Dim w As XmlWriter = XmlWriter.Create(fs)

 ' Start the document and create the parent Products node.
 w.WriteStartDocument()
 w.WriteStartElement("Products")

 ' Write a product.
 w.WriteStartElement("Product")
 w.WriteAttributeString("id", "1001")
 w.WriteElementString("ProductName", "Gourmet Coffee")
 w.WriteElementString("ProductPrice", "0.99")
 w.WriteEndElement()

 ' Write another product.
 w.WriteStartElement("Product")
 w.WriteAttributeString("id", "1002")
 w.WriteElementString("ProductName", "Blue China Tea Pot")
 w.WriteElementString("ProductPrice", "102.99")
 w.WriteEndElement()

 ' End the Products node and document.
 w.WriteEndElement()
 w.WriteEndDocument()

 ' Flush and close the parent document.
 w.Flush()
 fs.Close()

 Console.WriteLine("Document created. Press Enter to read it.")
 Console.ReadLine()

 fs = New FileStream("Products.xml", FileMode.Open)

 ' If you want to configure additional details (like comments,
 ' whitespace handling, or validation), use the overload of the
 ' Create method that accepts an XmlReaderSettings object instead.
 Dim r As XmlReader = XmlReader.Create(fs)

 ' Read all nodes.
 While r.Read

 If r.NodeType = XmlNodeType.Element Then
 Console.WriteLine()
 Console.WriteLine("<{0}>", r.Name)

 If r.HasAttributes Then
 For i As Integer = 0 To r.AttributeCount - 1
 Console.WriteLine("{0}ATTRIBUTE: {1}", ➥
ControlChars.Tab, r.GetAttribute(i))
 Next
 End If

228 CH AP T E R 6 ■ X M L P R O CE S S I N G

 ElseIf r.NodeType = XmlNodeType.Text Then
 Console.WriteLine("{0}VALUE: {1}", ControlChars.Tab, r.Value)
 End If

 End While
 Console.ReadLine()
 End Sub

 End Class
End Namespace

Often, when using the XmlReader, you are searching for specific nodes, rather than processing
every element as in this example. The approach used in this example does not work as well in this
situation. It forces you to read element tags, text content, and CDATA sections separately, which
means you need to explicitly keep track of where you are in the document. A better approach is to read
the entire node and text content at once (for simple text-only nodes) by using the ReadElementString
method. You can also use methods such as ReadToDescendant, ReadToFollowing, and ReadToNextSibling,
which allow you to skip some nodes.

For example, you can use ReadToFollowing("Price") to skip straight to the next Price element,
without worrying about whitespace, comments, or other elements before it. (If a Price element
cannot be found, the XmlReader moves to the end of the document, and the ReadToFollowing method
returns false.)

6-8. Validate an XML Document Against a Schema

Problem
You need to validate the content of an XML document by ensuring that it conforms to an XML schema.

Solution
When you call XmlReader.Create, supply an XmlReaderSettings object that indicates you want to
perform validation. Then move through the document one node at a time by calling XmlReader.Read,
catching any validation exceptions. To find all the errors in a document without catching exceptions,
handle the ValidationEventHandler event on the XmlReaderSettings object given as a parameter to
XmlReader.

How It Works
An XML schema defines the rules that a given type of XML document must follow. The schema
includes rules that define the following:

• The elements and attributes that can appear in a document

• The data types for elements and attributes

• The structure of a document, including which elements are children of other elements

• The order and number of child elements that appear in a document

• Whether elements are empty, can include text, or require fixed values

At its most basic level, XML Schema Definition (XSD) defines the elements that can occur in an
XML document. XSD documents are themselves written in XML, and you use a separate predefined

C HA P TE R 6 ■ X M L PR O C E SS IN G 229

element (named <element>) in the XSD document to indicate each element that is required in the
target document. The type attribute indicates the data type. This recipe uses the product catalog first
presented in recipe 6-1.

Here is an example for a product name:

<xsd:element name="productName" type="xsd:string" />

And here is an example for the product price:

<xsd:element name="productPrice" type="xsd:decimal" />

The basic schema data types are defined at http://www.w3.org/TR/xmlschema-2. They map
closely to .NET data types and include String, Integer, Long, Decimal, Single, DateTime, Boolean, and
Base64Binary—to name a few of the most frequently used types.

Both the productName and productPrice are simple types because they contain only character
data. Elements that contain nested elements are called complex types. You can nest them together
using a <sequence> tag, if order is important, or an <all> tag if it is not. Here is how you might model
the <product> element in the product catalog. Notice that attributes are always declared after elements,
and they are not grouped with a <sequence> or <all> tag because the order is not important:

<xsd:complexType name="product">
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="productPrice" type="xsd:decimal"/>
 <xsd:element name="inStock" type="xsd:boolean"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer"/>
</xsd:complexType>

By default, a listed element can occur exactly one time in a document. You can configure this
behavior by specifying the maxOccurs and minOccurs attributes. Here is an example that allows an
unlimited number of products in the catalog:

<xsd:element name="product" type="product" maxOccurs="unbounded" />

Here is the complete schema for the product catalog XML:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- Define the complex type product. -->
 <xsd:complexType name="product">
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="productPrice" type="xsd:decimal"/>
 <xsd:element name="inStock" type="xsd:boolean"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer"/>
 </xsd:complexType>

 <!-- This is the structure the document must match.
 It begins with a productCatalog element that nests other elements. -->
 <xsd:element name="productCatalog">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="catalogName" type="xsd:string"/>
 <xsd:element name="expiryDate" type="xsd:date"/>

230 CH AP T E R 6 ■ X M L P R O CE S S I N G

 <xsd:element name="products">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="product" type="product"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

The XmlReader class can enforce these schema rules, providing you explicitly request a validating
reader when you use the XmlReader.Create method. (Even if you do not use a validating reader, an
exception will be thrown if the reader discovers XML that is not well formed, such as an illegal char-
acter, improperly nested tags, and so on.)

Once you have created your validating reader, the validation occurs automatically as you read
through the document. As soon as an error is found, the XmlReader raises a ValidationEventHandler
event with information about the error on the XmlReaderSettings object given at creation time. If you
want, you can handle this event and continue processing the document to find more errors. If you
do not handle this event, an XmlException will be raised when the first error is encountered and
processing will be aborted.

The Code

The following example shows a utility class that displays all errors in an XML document when the
ValidateXml method is called. Errors are displayed in a console window, and a final Boolean variable
is returned to indicate the success or failure of the entire validation operation.

Imports System
Imports System.Xml
Imports system.Xml.Schema

Namespace Apress.VisualBasicRecipes.Chapter06

 Public Class ConsoleValidator

 ' Set to true if at least one error exists.
 Private m_Failed As Boolean
 Public ReadOnly Property Failed() As Boolean
 Get
 Return m_Failed
 End Get
 End Property

 Public Function ValidateXML(ByVal xmlFileName As String, ➥
ByVal schemaFileName As String) As Boolean

 ' Set the type of validation.
 Dim settings As New XmlReaderSettings
 settings.ValidationType = ValidationType.Schema

C HA P TE R 6 ■ X M L PR O C E SS IN G 231

 ' Load the schema file.
 Dim schemas As New XmlSchemaSet
 settings.Schemas = schemas

 ' When loading the schema, specify the namespace it validates
 ' and the location of the file. Use Nothing to use the
 ' targetNamespace specified in the schema.
 schemas.Add(Nothing, schemaFileName)
 ' Specify an event handler for validation errors.
 AddHandler settings.ValidationEventHandler, AddressOf ➥
HandleValidationEvents

 ' Create the validating reader.
 Dim validator As XmlReader = XmlReader.Create(xmlFileName, settings)

 m_Failed = False
 Try
 ' Read all XML data.
 While validator.Read()
 End While
 Catch ex As Exception
 ' This happens if the XML document includes illegal characters
 ' or elements that aren't properly nested or closed.
 Console.WriteLine("A critical XML error has occurred.")
 Console.WriteLine(ex.Message)
 m_Failed = True
 Finally
 validator.Close()
 End Try
 Return Not m_Failed

 End Function

 Private Sub HandleValidationEvents(ByVal sender As Object, ➥
ByVal args As ValidationEventArgs)

 m_Failed = True

 ' Display the validation error.
 Console.WriteLine("Validation error: " & args.Message)
 Console.WriteLine()

 End Sub

 End Class
End Namespace

Here is how you would use the class to validate the product catalog:

Public Class Recipe06_08

 Public Shared Sub Main()

 Dim xmlValidator As New ConsoleValidator
 Console.WriteLine("Validating ProductCatalog.xml")

232 CH AP T E R 6 ■ X M L P R O CE S S I N G

 Dim success As Boolean = xmlValidator.ValidateXML("..\..\" & ➥
"ProductCatalog.xml", "..\..\ProductCatalog.xsd")

 If Not success Then
 Console.WriteLine("Validation failed.")
 Else
 Console.WriteLine("Validation succeeded.")
 End If
 Console.ReadLine()

 End Sub

End Class

If the document is valid, no messages will appear, and the success variable will be set to true.
But consider what happens if you use a document that breaks schema rules, such as the following
ProductCatalog_Invalid.xml file.

<?xml version="1.0" ?>
<productCatalog>
 <catalogName>Acme Fall 2006 Catalog</catalogName>
 <expiryDate>Jan 1, 2007</expiryDate>

 <products>
 <product id="1001">
 <productName>Magic Ring</productName>
 <productPrice>$342.10</productPrice>
 <inStock>true</inStock>
 </product>
 <product id="1002">
 <productName>Flying Carpet</productName>
 <productPrice>982.99</productPrice>
 <inStock>Yes</inStock>
 </product>
 </products>
</productCatalog>

If you attempt to validate this document, the success variable will be set to false, and the output
will indicate each error:

Validating ProductCatalog_Invalid.xml

Validation error: The 'expiryDate' element is invalid - The value 'Jan 1, 2007'
is invalid according to its datatype 'http://www.w3.org/2001/XMLSchema:date' -
The string 'Jan 1, 2007' is not a valid XsdDateTime value.

Validation error: The element 'product' has invalid child element 'productPrice'
List of possible elements expected: 'description'.

Validation error: The element 'product' has invalid child element 'productPrice'.
List of possible elements expected: 'description'.

Validation failed.

C HA P TE R 6 ■ X M L PR O C E SS IN G 233

Finally, if you want to validate an XML document and load it into an in-memory XmlDocument,
you need to take a slightly different approach. The XmlDocument provides its own Schemas property,
along with a Validate method that checks the entire document in one step. When you call Validate,
you supply a delegate that points to your validation event handler.

Here is how it works:

Dim doc As New XmlDocument
doc.Load("..\..\ProductCatalog.xml")

' Specify the schema information.
Dim schemas As New XmlSchemaSet
schemas.Add(Nothing, schemaFileName)
doc.Schemas = schemas

' Validate the document.
doc.Validate(AddressOf HandleValidationEvents)

■Note For more in-depth information regarding XML schemas, refer to http://www.w3.org/xml/
schema.html.

6-9. Use XML Serialization with Custom Objects

Problem
You need to use XML as a serialization format. However, you don’t want to process the XML directly
in your code. Instead, you want to interact with the data using custom objects.

Solution
Use the System.Xml.Serialization.XmlSerializer class to transfer data from your object to XML,
and vice versa. You can also mark up your class code with attributes to customize its XML
representation.

How It Works
The XmlSerializer class allows you to convert objects to XML data, and vice versa. This process is
used natively by web services and provides a customizable serialization mechanism that does not
require a single line of custom code. The XmlSerializer class is even intelligent enough to correctly
create arrays when it finds nested elements.

The only requirements for using XmlSerializer are as follows:

• The XmlSerializer serializes only properties and Public variables.

• The classes you want to serialize must include a default zero-argument constructor. The
XmlSerializer uses this constructor when creating the new object during deserialization.

• All class properties must be readable and writable. This is because XmlSerializer uses the
property Get accessor to retrieve information and the property Set accessor to restore the
data after deserialization.

234 CH AP T E R 6 ■ X M L P R O CE S S I N G

■Note You can also store your objects using .NET serialization and the System.Runtime.Serialization.
Formatters.Soap.SoapFormatter class. In this case, you simply need to make your class serializable; you do
not need to provide a default constructor or ensure all properties are writable. However, this gives you no control
over the format of the serialized XML.

To use XML serialization, you must first mark up your data objects with attributes that indicate
the desired XML mapping. You can find these attributes in the System.Xml.Serialization namespace.
The attributes are as follows:

• XmlRoot specifies the name of the root element of the XML file. By default, XmlSerializer will
use the name of the class. You can apply this attribute to the class declaration.

• XmlElement indicates the element name to use for a property or Public variable. By default,
XmlSerializer will serialize properties and Public variables using their names.

• XmlAttribute indicates that a property or Public variable should be serialized as an attribute,
not an element, and specifies the attribute name.

• XmlEnum configures the text that should be used when serializing enumerated values. If you
don’t use XmlEnum, the name of the enumerated constant will be used.

• XmlIgnore indicates that a property or Public variable should not be serialized.

The Code

As an example, consider the product catalog first shown in recipe 6-1. You can represent this XML
document using ProductCatalog and Product objects. Here’s the class code that you might use:

Imports System
Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter06

 <XmlRoot("productCatalog")> _
 Public Class ProductCatalog

 <XmlElement("catalogName")> _
 Public CatalogName As String

 ' Use the date data type (and ignore the time portion
 ' in the serialized XML).
 <XmlElement(ElementName:="expiryDate", DataType:="date")> _
 Public ExpiryDate As DateTime

 ' Configure the name of the element that holds all products
 ' and the name of the product element itself.
 <XmlArray("products"), XmlArrayItem("product")> _
 Public Products As Product()

 Public Sub New()
 End Sub

C HA P TE R 6 ■ X M L PR O C E SS IN G 235

 Public Sub New(ByVal catalogName As String, ByVal expiryDate As DateTime)

 Me.CatalogName = catalogName
 Me.ExpiryDate = expiryDate

 End Sub

 End Class

 Public Class Product

 <XmlElement("productName")> _
 Public ProductName As String = String.Empty

 <XmlElement("productPrice")> _
 Public ProductPrice As Decimal = 0

 <XmlElement("inStock")> _
 Public InStock As Boolean = False

 <XmlAttribute(AttributeName:="id", DataType:="integer")> _
 Public Id As String = String.Empty

 Public Sub New()
 End Sub

 Public Sub New(ByVal productName As String, ByVal productPrice As Decimal)

 Me.ProductName = productName
 Me.ProductPrice = productPrice

 End Sub

 End Class
End Namespace

Notice that these classes use the XML serialization attributes to rename element names (using
Pascal casing in the class member names and camel casing in the XML tag names), indicate data
types that are not obvious, and specify how <product> elements will be nested in the <productCatalog>.

Using these custom classes and the XmlSerializer object, you can translate XML into objects,
and vice versa. The following is the code you would need to create a new ProductCatalog object, serialize
the results to an XML document, deserialize the document back to an object, and then display the
XML document.

Imports System
Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

Namespace Apress.VisualBasicRecipes.Chapter06

 Public Class Recipe06_09
 Public Shared Sub Main()

236 CH AP T E R 6 ■ X M L P R O CE S S I N G

 ' Create the product catalog.
 Dim catalog = New ProductCatalog("New Catalog", ➥
DateTime.Now.AddYears(1))
 Dim products As Product() = New Product(1) {}

 products(0) = New Product("Product 1", CDec(42.99))
 products(1) = New Product("Product 2", CDec(202.99))

 catalog.Products = products

 ' Serialize the order to a file.
 Dim serializer As New XmlSerializer(GetType(ProductCatalog))
 Dim fs As New FileStream("ProductCatalog.xml", FileMode.Create)

 serializer.Serialize(fs, catalog)
 fs.Close()

 catalog = Nothing

 ' Deserialize the order from the file.
 fs = New FileStream("ProductCatalog.xml", FileMode.Open)
 catalog = DirectCast(serializer.Deserialize(fs), ProductCatalog)

 ' Serialize the order to the console window.
 serializer.Serialize(Console.Out, catalog)
 Console.ReadLine()

 End Sub

 End Class
End Namespace

The output of this program is as follows:

<?xml version="1.0" encoding="IBM437"?>
<productCatalog xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd=
"http://www.w3.org/2001/XMLSchema">
 <catalogName>New Catalog</catalogName>
 <expiryDate>2008-01-21</expiryDate>
 <products>
 <product id="">
 <productName>Product 1</productName>
 <productPrice>42.99</productPrice>
 <inStock>false</inStock>
 </product>
 <product id="">
 <productName>Product 2</productName>
 <productPrice>202.99</productPrice>
 <inStock>false</inStock>
 </product>
 </products>
</productCatalog>

C HA P TE R 6 ■ X M L PR O C E SS IN G 237

6-10. Create a Schema for a .NET Class

Problem
You need to create an XML schema based on one or more VB .NET classes. This will allow you to vali-
date XML documents before deserializing them with the XmlSerializer.

Solution
Use the XML Schema Definition Tool (xsd.exe) command-line utility included with the .NET Frame-
work. Specify the name of your assembly as a command-line argument, and add the /t:[TypeName]
parameter to indicate the types for which you want to generate a schema.

How It Works
Recipe 6-9 demonstrated how to use the XmlSerializer to serialize .NET objects to XML and deseri-
alize XML into .NET objects. But if you want to use XML as a way to interact with other applications,
business processes, or non–.NET Framework applications, you’ll need an easy way to validate the
XML before you attempt to deserialize it. You will also need to define an XML schema document that
defines the structure and data types used in your XML format so that other applications can work
with it. One quick solution is to generate an XML schema using the xsd.exe command-line utility.

The xsd.exe utility is included with the .NET Framework. If you have installed Microsoft Visual
Studio 2005, you will find it in a directory like C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin.
The xsd.exe utility can generate schema documents from compiled assemblies. You simply need to
supply the filename and indicate the class that represents the XML document with the / t:[TypeName]
parameter.

Usage

As an example, consider the ProductCatalog and Product classes shown in recipe 6-9. You could
create the XML schema for a product catalog with the following command line:

xsd Recipe6-09.exe /t:ProductCatalog

You need to specify only the ProductCatalog class on the command line because the Product
class is referenced by the ProductCatalog and will be included automatically. The generated schema
in this example will represent a complete product catalog, with contained product items. It will be
given the default filename schema0.xsd. You can now use the validation technique shown in recipe 6-8
to test whether the XML document can be successfully validated with the schema.

6-11. Generate a Class from a Schema

Problem
You need to create one or more VB .NET classes based on an XML schema. You can then create an
XML document in the appropriate format using these objects and the XmlSerializer.

238 CH AP T E R 6 ■ X M L P R O CE S S I N G

Solution
Use the xsd.exe command-line utility included with the .NET Framework. Specify the name of your
schema file as a command-line argument, and add the /c parameter to indicate you want to generate
class code.

How It Works
Recipe 6-10 introduced the xsd.exe command-line utility, which you can use to generate schemas
based on class definitions. The reverse operation—generating VB .NET source code based on an XML
schema document—is also possible. This is primarily useful if you want to write a certain format of
XML document but you do not want to manually create the document by writing individual nodes
with the XmlDocument class or the XmlWriter class. Instead, by using xsd.exe, you can generate a set of
full .NET objects. You can then serialize these objects to the required XML representation using the
XmlSerializer, as described in recipe 6-9.

To generate source code from a schema, you simply need to supply the filename of the schema
document and add the /c parameter to indicate you want to generate the required classes.

Usage

As an example, consider the schema shown in recipe 6-8. You can generate VB .NET code for this
schema with the following command line:

xsd ProductCatalog.xsd /c

This will generate one file (ProductCatalog.cs) with two classes: Product and ProductCalalog.
These classes are similar to the ones created in recipe 6-9, except that the class member names
match the XML document exactly. Optionally, you can add the /f parameter. If you do, the generated
classes will be composed of Public fields. If you do not, the generated classes will use Public proper-
ties instead (which simply wrap Private fields).

6-12. Perform an XSL Transform

Problem
You need to transform an XML document into another document using an XSLT stylesheet.

Solution
Use the System.Xml.Xsl.XslCompiledTransform class. Load the XSLT stylesheet using the
XslCompiledTransform.Load method, and generate the output document by using the Transform
method and supplying a source XML document.

How It Works
XSLT (or XSL transforms) is an XML-based language designed to transform one XML document into
another document. You can use XSLT to create a new XML document with the same data but arranged
in a different structure or to select a subset of the data in a document. You can also use it to create a
different type of structured document. XSLT is commonly used in this manner to format an XML
document into an HTML page.

C HA P TE R 6 ■ X M L PR O C E SS IN G 239

The Code

This recipe transforms the orders.xml document shown in recipe 6-6 into an HTML document with
a table and then displays the results. To perform this transformation, you’ll need the following XSLT
stylesheet:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0" >

 <xsl:template match="Order">
 <html><body><p>
 Order <xsl:value-of select="Client/@id"/>
 for <xsl:value-of select="Client/Name"/></p>
 <table border="1">
 <td>ID</td><td>Name</td><td>Price</td>
 <xsl:apply-templates select="Items/Item"/>
 </table></body></html>
 </xsl:template>

 <xsl:template match="Items/Item">
 <tr>
 <td><xsl:value-of select="@id"/></td>
 <td><xsl:value-of select="Name"/></td>
 <td><xsl:value-of select="Price"/></td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

Essentially, every XSLT stylesheet consists of a set of templates. Each template matches some
set of elements in the source document, and then describes the contribution that the matched
element will make to the resulting document. To match the template, the XSLT document uses
XPath expressions, as described in recipe 6-6.

The orders.xslt stylesheet contains two template elements (as children of the root stylesheet
element). The first template matches the root Order element. When the XSLT processor finds an
Order element, it outputs the HTML elements necessary to start the HTML document and the text
result of an XPath expression. In this case, the XPath expressions (Client/@id and Client/Name)
match the id attribute and the Name element. It then starts a table with appropriate column headings
and inserts some data about the client using the value-of command, which inserts the value of the
specified element as text.

Next, the apply-templates command branches off and performs processing of any contained
Item elements. This is required because there might be multiple Item elements. Each Item element is
matched using the XPath expression Items/Item. The root Order node is not specified because Order
is the current node. Finally, the initial template writes the HTML elements necessary to end the
HTML document.

If you execute this transform on the sample orders.xml file shown in recipe 6-6, you will end up
with an HTML document similar to the following.

240 CH AP T E R 6 ■ X M L P R O CE S S I N G

<html>
 <body>
 <p>
 Order ROS-930252034
 for Remarkable Office Supplies</p>
 <table border="1">
 <td>ID</td>
 <td>Name</td>
 <td>Price</td>
 <tr>
 <td>1001</td>
 <td>Electronic Protractor</td>
 <td>42.99</td>
 </tr>
 <tr>
 <td>1002</td>
 <td>Vorpal Stapler</td>
 <td>500.50</td>
 </tr>
 </table>
 </body>
</html>

To apply an XSLT stylesheet in .NET, you use the XslCompiledTransform class. (Do not confuse this
class with the similar XslTransform class—it still works but is deprecated in .NET Framework 2.0.)

The following code shows a Windows-based application that programmatically applies the
transformation and then displays the transformed file in a window using the WebBrowser control:

Imports System
Imports System.Windows.Forms
Imports System.Xml.Xsl

' All designed code is stored in the autogenerated partial
' class called TransformXML.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class TransformXml

 Private Sub TransformXml_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Dim transform As New XslCompiledTransform

 ' Load the XSLT stylesheet.
 transform.Load("..\..\orders.xslt")

 ' Transform orders.xml into orders.html using orders.xslt.
 transform.Transform("..\..\orders.xml", "orders.html")

 Browser.Navigate(Application.StartupPath & "\orders.html")

 End Sub
End Class

C HA P TE R 6 ■ X M L PR O C E SS IN G 241

Figure 6-2 shows the application.

Figure 6-2. The stylesheet output for orders.xml

In this example, the code uses the overloaded version of the Transform method that saves the
resulting document directly to disk, although you can receive it as a stream and process it inside your
application instead. The following code shows an alternate approach that keeps the document
content in memory at all times (with no external results file). The XslCompiledTransform writes the
results to an XmlWriter that wraps a StringBuilder. The content is then copied from the StringBuilder
into the WebBrowser through the handy WebBrowser.DocumentText property. The results are identical.

Dim htmlContent = New StringBuilder
Dim results As XmlWriter = XmlWriter.Create(htmlContent)

transform.Transform("..\..\orders.xml", results)
Browser.DocumentText = htmlContent.ToString

■Note For more in-depth information regarding XSLT, refer to http://www.w3.org/tr/xslt.

243

■ ■ ■

C H A P T E R 7

Windows Forms

The Microsoft .NET Framework includes a rich set of classes for creating traditional Windows-based
applications in the System.Windows.Forms namespace. These range from basic controls such as the
TextBox, Button, and MainMenu classes to specialized controls such as TreeView, LinkLabel, and
NotifyIcon. In addition, you will find all the tools you need to manage Multiple Document Interface
(MDI) applications, integrate context-sensitive help, and even create multilingual user interfaces—
all without needing to resort to the complexities of the Win32 API.

Most VB .NET developers quickly find themselves at home with the Windows Forms program-
ming model. This chapter offers a number of tips and timesaving techniques that can make your
Windows programming endeavors even more productive.

■Note Most of the recipes in this chapter use control classes, which are defined in the System.Windows.
Forms namespace. When introducing these classes, the full namespace name is not indicated, and System.
Windows.Forms is assumed.

The recipes in this chapter describe how to do the following:

• Add controls to a form programmatically at runtime so that you can build forms dynamically
instead of only building static forms in the Visual Studio forms designer (recipe 7-1)

• Link arbitrary data objects to controls to provide an easy way to associate data with a control
without the need to maintain additional data structures (recipe 7-2)

• Process all the controls on a form in a generic way (recipe 7-3)

• Track all the forms and MDI forms in an application (recipes 7-4 and 7-5)

• Save user-based and computer-based configuration information for Windows Forms appli-
cations using the mechanisms built into the .NET Framework and Windows (recipe 7-6)

• Force a list box to always display the most recently added item, so that users do not need to
scroll up and down to find it (recipe 7-7)

• Assist input validation by restricting what data a user can enter into a textbox, and implement
a component-based mechanism for validating user input and reporting errors (recipes 7-8
and 7-17)

• Implement a custom autocomplete combo box so that you can make suggests for completing
words as users type data (recipe 7-9)

• Allow users to sort a list view based on the values in any column (recipe 7-10)

244 CH AP T E R 7 ■ W IN DO W S FO R M S

• Avoid the need to explicitly lay out controls on a form by using the Windows Forms layout
controls (recipe 7-11)

• Use part of a main menu in a context menu (recipe 7-12)

• Provide multilingual support in your Windows Forms application (recipe 7-13)

• Create forms that cannot be moved and create borderless forms that can be moved (recipes 7-14
and 7-15)

• Create an animated system tray icon for your application (recipe 7-16)

• Support drag-and-drop functionality in your Windows Forms application (recipe 7-18)

• Provide context-sensitive help to the users of your Windows Forms application (recipe 7-19)

• Display Web-based information within your Windows application and allow users to browse
the Web from within your application (recipe 7-20)

■Note Visual Studio, with its advanced design and editing capabilities, provides the easiest and most productive
way to develop Windows Forms applications. Therefore, the recipes in this chapter—unlike those in most other
chapters—rely heavily on the use of Visual Studio. Instead of focusing on the library classes that provide the required
functionality, or looking at the code generated by Visual Studio, these recipes focus on how to achieve the recipe’s
goal using the Visual Studio user interface and the code that you must write manually to complete the required func-
tionality. The separation of generated and manual code is particularly elegant in Visual Studio 2005 due to the
extensive use it makes of partial types.

7-1. Add a Control Programmatically

Problem
You need to add a control to a form at runtime, not design time.

Solution
Create an instance of the appropriate control class. Then add the control object to a form or a container
control by calling Controls.Add on the container. (The container’s Controls property returns a
ControlCollection instance.)

How It Works
In a .NET form-based application, there is really no difference between creating a control at design
time and creating it at runtime. When you create controls at design time (using a tool like Microsoft
Visual Studio), the necessary code is added to your form class. In .NET Framework 2.0, Visual Studio
will also place this code in a separate source file using the partial type functionality. You can use the
same code in your application to create controls on the fly. Just follow these steps:

1. Create an instance of the appropriate control class.

2. Configure the control properties accordingly (particularly the size and position
coordinates).

CH AP T E R 7 ■ W IN DO W S FO R M S 245

3. Add the control to the form or another container. Every control implements a read-only
Controls property that returns a ControlCollection containing references to all of its child
controls. To add a child control, invoke the Controls.Add method.

4. If you need to handle the events for the new control, you can wire them up to existing methods.

If you need to add multiple controls to a form or container, you should call SuspendLayout on the
parent control before adding the dynamic controls, and then call ResumeLayout once you have finished.
This temporarily disables the layout logic used to position controls and will allow you to avoid signif-
icant performance overheads and weird flickering if many controls are being added.

The Code

The following example demonstrates the dynamic creation of a list of checkboxes. One checkbox is
added for each item in a String array. All the checkboxes are added to a panel that has its AutoScroll
property set to True, which gives basic scrolling support to the checkbox list.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-01.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_01

 Private Sub Recipe07_01_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Create an array of strings to use as the labels for
 ' the dynamic checkboxes.
 Dim foods As String() = {"Grain", "Bread", "Beans", "Eggs", "Chicken", ➥
"Milk", "Fruit", "Vegetables", "Pasta", "Rice", "Fish", "Beef"}

 ' Suspend the panel's layout logic while multiple controls
 ' are added.
 panel1.SuspendLayout()

 ' Specify the Y coordinate of the topmost checkbox in the list.
 Dim topPosition As Integer = 10

 ' Create one new checkbox for each name in the list of
 ' food types.
 For Each food As String In foods
 ' Create a new checkbox.
 Dim newCheckBox As New CheckBox

 ' Configure the new checkbox.
 newCheckBox.Top = topPosition
 newCheckBox.Left = 10
 newCheckBox.Text = food

 ' Set the Y coordinate of the next checkbox.
 topPosition += 30

246 CH AP T E R 7 ■ W IN DO W S FO R M S

 ' Add the checkbox to the panel contained by the form.
 panel1.Controls.Add(newCheckBox)
 Next

 ' Resume the form's layout logic now that all controls
 ' have been added.
 Me.ResumeLayout()

 End Sub
End Class

Usage

Figure 7-1 shows how the example will look when run.

Figure 7-1. A dynamically generated checkbox list

7-2. Link Data to a Control

Problem
You need to link an object to a specific control (perhaps to store some arbitrary information that
relates to a given display item).

Solution
Store a reference to the object in the Tag property of the control.

How It Works
Every class that derives from Control inherits a Tag property. The Tag property is not used by the
control or the .NET Framework. Instead, it’s reserved as a convenient storage place for application-
specific information. In addition, some other classes not derived from Control also provide a Tag
property. Useful examples include the ListViewItem, TreeNode, and MenuItem classes.

CH AP T E R 7 ■ W IN DO W S FO R M S 247

Because the Tag property is defined as an Object type, you can use it to store any value type or
reference type, from a simple number or string to a custom object you have defined. When retrieving
data from the Tag property, you must cast the Object to the correct type before use.

The Code

The following example adds a list of filenames (as ListViewItem objects) to a ListView control. The
corresponding System.IO.FileInfo object for each file is stored in the Tag property of its respective
ListViewItem. When a user double-clicks one of the filenames, the code retrieves the FileInfo object
from the Tag property and displays the filename and size using the MessageBox Shared method Show.

Imports System
Imports System.IO
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-02.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_02

 Private Sub Recipe07_02_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Get all the files in the root directory/
 Dim rootDirectory As New DirectoryInfo("C:\")
 Dim files As FileInfo() = rootDirectory.GetFiles

 ' Display the name of each file in the ListView.
 For Each file As FileInfo In files
 Dim item As ListViewItem = listView1.Items.Add(file.Name)
 item.ImageIndex = 0

 ' Associate each FileInfo object with its ListViewItem.
 item.Tag = file
 Next

 End Sub

 Private Sub listView1_ItemActivate(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles listView1.ItemActivate

 ' Get information from the linked FileInfo object and display
 ' it using a MessageBox.
 Dim item As ListViewItem = DirectCast(sender, ListView).SelectedItems(0)
 Dim file As FileInfo = DirectCast(item.Tag, FileInfo)
 Dim info As String = String.Format("{0} is {1} bytes.", file.FullName, ➥
file.Length)

 MessageBox.Show(info, "File Information")

 End Sub
End Class

248 CH AP T E R 7 ■ W IN DO W S FO R M S

Usage

Figure 7-2 shows how the example will look when run.

Figure 7-2. Storing data in the Tag property

7-3. Process All the Controls on a Form

Problem
You need to perform a generic task with all the controls on the form. For example, you may need to
retrieve or clear their Text property, change their color, or resize them.

Solution
Iterate recursively through the collection of controls. Interact with each control using the properties
and methods of the base Control class.

How It Works
You can iterate through the controls on a form using the ControlCollection object obtained from
the Controls property. The ControlCollection includes all the controls that are placed directly on
the form surface. However, if any of these controls are container controls (such as GroupBox, Panel,
or TabPage), they might contain more controls. Thus, it’s necessary to use recursive logic that searches
the Controls collection of every control on the form.

The Code

The following example demonstrates the use of recursive logic to find every TextBox on a form and
clears the text they contain. When a button is clicked, the code tests each control on the form to
determine whether it is a TextBox by using the TypeOf keyword in conjunction with the Is operator.

CH AP T E R 7 ■ W IN DO W S FO R M S 249

Imports System
Imports System.IO
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-03.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_03

 Private Sub cmdProcessAll_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdProcessAll.Click

 ProcessControls(Me)

 End Sub

 Private Sub ProcessControls(ByVal ctrl As Control)

 ' Ignore the control unless it's a textbox.
 If TypeOf (ctrl) Is TextBox Then
 ctrl.Text = ""
 End If

 ' Process controls recursively. This is required
 ' if controls contain other controls (for
 ' example, if you use panels, group boxes, or other
 ' container controls).
 For Each ctrlChild As Control In ctrl.Controls
 ProcessControls(ctrlChild)
 Next

 End Sub
End Class

7-4. Track the Visible Forms in an Application

Problem
You need access to all of the open forms that are currently owned by an application.

Solution
Iterate through the FormCollection object that you get from the Shared property OpenForms of the
Application object.

How It Works
In .NET Framework 2.0, Windows Forms applications automatically keep track of the open forms
that they own. This information is accessed through the Application.OpenForms property, which
returns a FormCollection object containing a Form object for each form the application owns. You
can iterate through the FormCollection to access all Form objects or obtain a single Form object using
its name (Form.Name) or its position in the FormCollection as an index.

250 CH AP T E R 7 ■ W IN DO W S FO R M S

The My object (see Chapter 5 for more information) provides an identical OpenForms property in
the My.Application class. It also provides quick-and-easy design-time access to each form in the
current project via the My.Forms class.

The Code

The following example demonstrates the use of the Application.OpenForms property and the
FormCollection it returns to manage the active forms in an application. The example allows you to
create new forms with specified names. A list of active forms is displayed when you click the Refresh
List button. When you click the name of a form in the list, it is made the active form.

Because of the way the FormCollection works, more than one form may have the same name. If
duplicate forms have the same name, the first one found will be activated. If you try to retrieve a Form
using a name that does not exist, Nothing is returned. The following is the code for the application’s
main form.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-04.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Public Class Recipe07_04

 Private Sub Recipe07_04_Load(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles MyBase.Load

 ' Refresh the list to display the initial set of forms.
 RefreshForms()

 End Sub

 ' A button click event handler to create a new child form.
 Private Sub btnNewForm_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnNewForm.Click

 ' Create a new child form and set its name as specified.
 ' If no name is specified, use a default name.
 Dim child As New Recipe07_04Child

 If txtFormName.Text Is String.Empty Then
 child.Name = "Child Form"
 Else
 child.Name = txtFormName.Text
 End If

 ' Show the new child form.
 child.Show()

 End Sub

 ' List selection event handler to activate the selected form based on
 ' its name.

CH AP T E R 7 ■ W IN DO W S FO R M S 251

 Private Sub listForms_SelectedIndexChanged(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles listForms.SelectedIndexChanged

 ' Activate the selected form using its name as the index into the
 ' collection of active forms. If there are duplicate forms with the
 ' same name, the first one found will be activated.
 Dim selectedForm As Form = Application.OpenForms(listForms.Text)

 ' If the form has been closed, using its name as an index into the
 ' FormCollection will return nothing. In this instance, update the
 ' list of forms.
 If selectedForm IsNot Nothing Then
 ' Activate the selected form.
 selectedForm.Activate()
 Else
 ' Display a message and refresh the form list.
 MessageBox.Show("Form closed; refreshing list...", "Form Closed")
 RefreshForms()
 End If

 End Sub

 ' A button click event handler to initiate a refresh of the list of
 ' active forms.
 Private Sub btnRefresh_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnRefresh.Click

 RefreshForms()

 End Sub

 ' A method to perform a refresh of the list of active forms.
 Private Sub RefreshForms()

 ' Clear the list and repopulate from the Application.OpenForms
 ' property.
 listForms.Items.Clear()

 For Each f As Form In Application.OpenForms
 listForms.Items.Add(f.Name)
 Next

 End Sub
End Class

The following is the code for the child forms you create by clicking the New Form button.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-04Child.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_04Child

252 CH AP T E R 7 ■ W IN DO W S FO R M S

 ' A button click event handler to close the child form.
 Private Sub btnClose_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnClose.Click

 Close()

 End Sub

 ' Display the name of the form when it is painted.
 Private Sub Recipe07_04Child_Paint(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 ' Display the name of the form.
 lblFormName.Text = Name

 End Sub
End Class

Notes
Versions 1.0 and 1.1 of the .NET Framework do not provide any way of determining which forms are
currently owned by an application. (The one exception is MDI applications, as described in recipe 7-5.)
If you want to determine which forms exist or which forms are displayed, or you want one form to
call the methods or set the properties of another form, you will need to keep track of form instances
on your own.

For tracking small numbers of forms, one useful approach is to create a Shared class consisting
of Shared members. Each Shared member holds a reference to a specific Form. If you have many forms
you need to track, such as in a document-based application where the user can create multiple
instances of the same form, one per document, a generic collection such as a System.Collections.
Generic.Dictionary(Of String,Form) is very useful. This lets you map a Form object to a name.

Whichever approach you take, each Form object should register itself with the tracker class when
it is first created. A logical place to put this code is in the Form.Load event. Conversely, when the Form
object is closed, it should deregister itself with the tracker class. Deregistration should occur in the
Closing or Closed events of the Form class. This method would work very well as a base class from
which each new form inherits.

Using either of these approaches, any code that requires access to a Form object can obtain a
reference to it from the members of the tracker class, and even invoke operations on the Form instance
directly through the tracker class if you are sure the Form object exists.

7-5. Find All MDI Child Forms

Problem
You need to find all the forms that are currently being displayed in an MDI application.

Solution
Iterate through the forms returned by the MdiChildren collection property of the MDI parent.

CH AP T E R 7 ■ W IN DO W S FO R M S 253

How It Works
The .NET Framework includes two convenient shortcuts for managing the forms open in MDI appli-
cations: the MdiParent and MdiChildren properties of the Form class. The MdiParent property of any
MDI child returns a Form representing the containing parent window. The MdiChildren property
returns an array containing all of the MDI child forms.

The Code

The following example presents an MDI parent window that allows you to create new MDI children
by clicking the New item on the File menu. Each child window contains a label, which displays the
date and time when the MDI child was created, and a button. When the button is clicked, the event
handler walks through all the MDI child windows and displays the label text that each one contains.
Notice that when the example enumerates the collection of MDI child forms, it converts the generic
Form reference to the derived Recipe07_05Child form class so that it can use the LabelText property.
The following is the Recipe07_05Parent class.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-05Parent.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_05Parent

 ' When the New menu item is clicked, create a new MDI child.
 Private Sub mnuNew_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles mnuNew.Click

 Dim frm As New Recipe07_05Child

 frm.MdiParent = Me
 frm.Show()

 End Sub

End Class

The following is the Recipe07_05Child class.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-05Child.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_05Child

 ' A property to provide easy access to the label data.
 Public ReadOnly Property LabelText() As String
 Get
 Return label.Text
 End Get
 End Property

254 CH AP T E R 7 ■ W IN DO W S FO R M S

 ' When a button on any of the MDI child forms is clicked, display the
 ' contents of each form by enumerating the MdiChildren collection.
 Private Sub cmdShowAllWindows_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdShowAllWindows.Click

 For Each frm As Form In Me.MdiParent.MdiChildren
 ' Cast the generic Form to the Recipe07_05Child derived class type.
 Dim child As Recipe07_05Child = DirectCast(frm, Recipe07_05Child)
 MessageBox.Show(child.LabelText, frm.Text)
 Next

 End Sub

 ' Set the MDI child form's label to the current date/time.
 Private Sub Recipe07_05Child_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 label.Text = DateTime.Now.ToString

 End Sub

End Class

Usage

Figure 7-3 shows how the example will look when run.

Figure 7-3. Getting information from multiple MDI child windows

CH AP T E R 7 ■ W IN DO W S FO R M S 255

7-6. Save Configuration Settings for a Form

Problem
You need to store configuration settings for a form so that they are remembered the next time that
the form is shown.

Solution
Use the .NET Framework 2.0 Application Settings functionality, which is configurable at design time
in Visual Studio.

How It Works
The Application Settings functionality in .NET Framework 2.0 provides an easy-to-use mechanism
through which you can save application and user settings used to customize the appearance and
operation of a Windows Forms application. You configure Application Settings through the Properties
panel of each Windows control (including the main Windows Form) in your application. By expanding
the ApplicationSettings property and clicking the ellipsis (three dots) to the right of (PropertyBinding),
you can review and configure Application Settings for each property of the active control. See Figure 7-4
for an example.

When you configure a new Application Setting for a control’s property, you must assign it a name, a
default value, and a scope.

• The name allows you to both access the setting programmatically and reuse the Application
Setting across multiple controls.

• The default value is used if the application cannot obtain a value from a configuration file at
runtime.

• The scope is either User or Application.

Settings with an Application scope are stored in the application’s configuration file (usually
located in the same folder as the application assembly) and are read-only. The benefit of an Applica-
tion scope is that you can change configuration settings by editing the configuration file without
needing to recompile the application. Settings with a User scope are read-write by default and are
stored in a file located in an isolated store (see recipe 5-18 for information about isolated stores).

When you configure your application to use Application Settings, Visual Studio actually autogener-
ates a wrapper class that provides access to the configuration file information, regardless of whether
it is scoped as Application or User. This class, named MySettings, is in the Settings.Designer.vb file,
which can be found in your project’s My Project folder. This folder also contains the Settings.settings
file. When you open this file in Visual Studio, it will display a dialog box that allows you to easily edit
your application’s settings. You will see these files only if you have turned on the Show All Files option in
the Solution Explorer.

256 CH AP T E R 7 ■ W IN DO W S FO R M S

Figure 7-4. Configuring Application Settings in Visual Studio

The My.Settings class contains properties with names matching each of the Application Setting
names you configured for your controls’ properties. The controls will automatically read their
configuration at startup, but you should store configuration changes prior to terminating your appli-
cation by calling the My.Settings.Save method. You can also configure this to occur automatically
by checking the Save My.Settings on Shutdown option in the Application section of your project’s
properties, as shown in Figure 7-5.

CH AP T E R 7 ■ W IN DO W S FO R M S 257

Figure 7-5. Automatically saving settings on shutdown

The Code

The following example shows how to update and save Application Settings, which are Size and
Color in this case, at runtime.

Imports System
Imports System.ComponentModel
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-06.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_06

 Private Sub Recipe07_06_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Me.Size = My.Settings.Size

 End Sub

258 CH AP T E R 7 ■ W IN DO W S FO R M S

 Private Sub Button_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles redButton.Click, blueButton.Click, ➥
greenButton.Click

 ' Change the color of the textbox depending on which button
 ' was pressed.
 Dim btn As Button = TryCast(sender, Button)

 If btn IsNot Nothing Then
 ' Set the BackColor of the textbox to the ForeColor of the button.
 textBox1.BackColor = btn.ForeColor

 ' Update the application settings with the new value.
 My.Settings.Color = textBox1.BackColor

 End If

 End Sub

 Private Sub Recipe07_06_FormClosing(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles Me.FormClosing

 ' Update the application settings for Form.
 My.Settings.Size = Me.Size

 ' Store all application settings.
 My.Settings.Save()

 End Sub

End Class

7-7. Force a List Box to Scroll to the Most
Recently Added Item

Problem
You need to scroll a list box programmatically so that the most recently added items are visible.

Solution
Set the ListBox.TopIndex property, which sets the first visible list item.

How It Works
In some cases, you might have a list box that stores a significant amount of information or one that
you add information to periodically. Often, the most recent information, which is added at the end
of the list, is more important than the information at the top of the list. One solution is to scroll the
list box so that recently added items are visible. The ListBox.TopIndex property enables you to do
this by allowing you to specify which item is visible at the top of the list.

CH AP T E R 7 ■ W IN DO W S FO R M S 259

The Code

The following sample form includes a list box and a button. Each time the button is clicked, 20 items
are added to the list box. Each time new items are added, the code sets the ListBox.TopIndex property
and forces the list box to display the most recently added items. To provide better feedback, the
same line is also selected.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-07.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_07

 Private counter As Integer = 1

 ' Button click event handler adds 20 new items to the ListBox.
 Private Sub cmdTest_Click(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles cmdTest.Click

 ' Add 20 items.
 For i As Integer = 1 To 19
 counter += 1
 listBox1.Items.Add("Item " & counter.ToString())
 Next

 ' Set the TopIndex property of the ListBox to ensure the
 ' most recently added items are visible.
 listBox1.TopIndex = listBox1.Items.Count - 1
 listBox1.SelectedIndex = listBox1.Items.Count - 1

 End Sub
End Class

7-8. Restrict a Textbox to Accepting
Only Specific Input

Problem
You need to create a textbox that will reject all nonnumeric keystrokes.

Solution
Use the MaskedTextBox control and set the Mask property to configure the input that is acceptable.

How It Works
One way to ensure user input is valid is to prevent invalid data from being entered in the first place.
The MaskedTextBox control facilitates this approach. The MaskedTextBox.Mask property takes a string
that specifies the input mask for the control. This mask determines what type of input a user can

260 CH AP T E R 7 ■ W IN DO W S FO R M S

enter at each point in the control’s text area. If the user enters an incorrect character, the control will
beep if the BeepOnError property is True, and the MaskInputRejected event is raised so that you can
customize the handling of incorrect input.

■Note The MaskedTextBox control will not solve all your user-input validation problems. While it does make
some types of validation easy to implement, without customization, it will not ensure some common validation
requirements are met. For example, you can specify that only numeric digits can be input, but you cannot specify
that they must be less than a specific value, nor can you control the overall characteristics of the input value.

The Code

The following example demonstrates the use of the MaskedTextBox control. A series of buttons allows
you to change the active mask on the MaskedTextBox control and experiment with the various masks.
Notice that the control automatically tries to accommodate existing content with the new mask
when the mask is changed. If the content is not allowed with the new mask, the control is cleared.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-08.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_08

 Private Sub btnTime_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnTime.Click

 ' Set the input mask to that of a short time.
 Me.mskTextBox.UseSystemPasswordChar = False
 Me.mskTextBox.Mask = "00:00"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

 Private Sub btnDecimal_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnDecimal.Click

 ' Set the input mask to that of a decimal.
 Me.mskTextBox.UseSystemPasswordChar = False
 Me.mskTextBox.Mask = "999,999.00"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

 Private Sub btnDate_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnDate.Click

 ' Set the input mask to that of a short date.
 Me.mskTextBox.UseSystemPasswordChar = False
 Me.mskTextBox.Mask = "00/00/0000"

CH AP T E R 7 ■ W IN DO W S FO R M S 261

 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

 Private Sub btnUSZip_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnUSZip.Click

 ' Set the input mask to that of a US ZIP code.
 Me.mskTextBox.UseSystemPasswordChar = False
 Me.mskTextBox.Mask = "00000-9999"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

 Private Sub btnUKPost_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnUKPost.Click

 ' Set the input mask to that of a UK postcode.
 Me.mskTextBox.UseSystemPasswordChar = False
 Me.mskTextBox.Mask = ">LCCC 9LL"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub

 Private Sub btnSecret_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles btnSecret.Click

 ' Set the input mask to that of a secret PIN.
 Me.mskTextBox.UseSystemPasswordChar = True
 Me.mskTextBox.Mask = "0000"
 Me.lblActiveMask.Text = Me.mskTextBox.Mask
 Me.mskTextBox.Focus()

 End Sub
End Class

Notes
The MaskedTextBox used in this recipe is new to .NET Framework 2.0. In previous versions of the
.NET Framework, one approach was to use a standard TextBox control and handle the KeyPress
events it raises. The KeyPress event is raised after each keystroke has been received but before it
is displayed. You can use the KeyPressEventArgs event parameter to effectively cancel an invalid
keystroke by setting its Handled property to True.

For example, to allow only numeric input, you must allow a keystroke only if it corresponds to
a number (0 through 9) or a special control key (such as Delete or the arrow keys). The keystroke
character is provided to the KeyPress event through the KeyPressEventArgs.KeyChar property. You
can use two Shared methods of the System.Char class—IsDigit and IsControl—to quickly test the
character.

262 CH AP T E R 7 ■ W IN DO W S FO R M S

7-9. Use an Autocomplete Combo Box

Problem
You want to create a combo box that automatically completes what the user is typing based on the
item list.

Solution
You can implement a basic autocomplete combo box by creating a custom control that overrides the
OnKeyPress and OnTextChanged methods of the ComboBox object.

■Note The ComboBox control in .NET Framework 2.0 provides autocomplete options. You can configure the
behavior using the AutoCompleteMode property of the ComboBox class.

How It Works
An autocomplete control has many different variations. For example, the control may fill in values
based on a list of recent selections (as Microsoft Excel does when you are entering cell values), or the
control might display a drop-down list of near matches (as Microsoft Internet Explorer does when
you are typing a URL). You can create a basic autocomplete combo box by handling the KeyPress
and TextChanged events, or by creating a custom class that derives from ComboBox and overrides the
OnKeyPress and OnTextChanged methods.

The Code

The following example contains an AutoCompleteComboBox control that derives from ComboBox.
The AutoCompleteComboBox control supports autocompletion by overriding the OnKeyPress and
OnTextChanged inherited methods. In the OnKeyPress method, the combo box determines whether or
not an autocomplete replacement should be made. If the user pressed a character key (such as a
letter), the replacement can be made, but if the user pressed a control key (such as the backspace
key, the cursor keys, and so on), no action should be taken. The OnTextChanged method performs the
actual replacement after the key processing is complete. This method looks up the first match for the
current text in the list of items, and then adds the rest of the matching text. After the text is added,
the combo box selects the characters between the current insertion point and the end of the text.
This allows the user to continue typing and replace the autocomplete text if it is not what the user wants.

Imports System
Imports System.Windows.Forms

Public Class AutoCompleteCombobox
 Inherits ComboBox

 ' A private member to track if a special key is pressed, in
 ' which case, any text replacement operation will be skipped.
 Private controlKey As Boolean = False

CH AP T E R 7 ■ W IN DO W S FO R M S 263

 ' Determine whether a special key was pressed.
 Protected Overrides Sub OnKeyPress(ByVal e As ➥
System.Windows.Forms.KeyPressEventArgs)

 ' First call the overridden base class method.
 MyBase.OnKeyPress(e)

 ' Clear the text if the Escape key is pressed.
 If e.KeyChar = ChrW(Keys.Escape) Then
 ' Clear the text.
 Me.SelectedIndex = -1
 Me.Text = ""
 controlKey = True
 ElseIf Char.IsControl(e.KeyChar) Then
 ' Don't try to autocomplete when control key is pressed.
 controlKey = True
 Else
 ' Noncontrol keys should trigger autocomplete.
 controlKey = False
 End If

 End Sub

 ' Perform the text substitution.
 Protected Overrides Sub OnTextChanged(ByVal e As System.EventArgs)

 ' First call the overridden base class method.
 MyBase.OnTextChanged(e)

 If Not Me.Text = "" And Not controlKey Then
 ' Search the current contents of the combo box for a
 ' matching entry.
 Dim matchText As String = Me.Text
 Dim match As Integer = Me.FindString(matchText)

 ' If a matching entry is found, insert it now.
 If Not match = -1 Then
 Me.SelectedIndex = match

 ' Select the added text so it can be replaced
 ' if the user keeps trying.
 Me.SelectionStart = matchText.Length
 Me.SelectionLength = Me.Text.Length - Me.SelectionStart
 End If
 End If

 End Sub
End Class

Usage

The following code demonstrates the use of the AutoCompleteComboBox by adding it to a form and
filling it with a list of words. In this example, the control is added to the form manually, and the list
of words is retrieved from a text file named words.txt. As an alternative, you could compile the

264 CH AP T E R 7 ■ W IN DO W S FO R M S

AutoCompleteComboBox class to a separate class library assembly, and then add it to the Visual Studio
Toolbox, so you could add it to forms at design time.

Imports System
Imports System.IO
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-09.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_09

 Private Sub Recipe07_09_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load
 ' Add the AutoCompleteComboBox to the form.
 Dim combo As New AutoCompleteCombobox

 combo.Location = New Point(10, 10)
 Me.Controls.Add(combo)

 ' Read the list of words from the file words.txt and add them
 ' to the AutoCompleteComboBox.
 Using fs As New FileStream("..\..\words.txt", FileMode.Open)
 Using r As New StreamReader(fs)
 While r.Peek > -1
 Dim word As String = r.ReadLine
 combo.Items.Add(word)
 End While
 End Using
 End Using

 End Sub
End Class

Figure 7-6 shows how the AutoCompleteComboBox will look when the example is run.

Figure 7-6. An autocomplete combo box

7-10. Sort a List View by Any Column

Problem
You need to sort a list view, but the built-in ListView.Sort method sorts based on only the first column.

CH AP T E R 7 ■ W IN DO W S FO R M S 265

Solution
Create a type that implements the System.Collections.IComparer interface and can sort
ListViewItem objects. The IComparer type can sort based on any ListViewItem criteria you specify.
Set the ListView.ListViewItemSorter property with an instance of the IComparer type before calling
the ListView.Sort method.

How It Works
The ListView control provides a Sort method that orders items alphabetically based on the text in
the first column. If you want to sort based on other column values or order items numerically, you
need to create a custom implementation of the IComparer interface that can perform the work. The
IComparer interface defines a single method named Compare, which takes two Object arguments and
determines which one should be ordered first. Full details of how to implement the IComparer inter-
face are available in recipe 13-3.

The Code

The following example demonstrates the creation of an IComparer implementation named
ListViewItemComparer. This class relies on the Compare method of String and Decimal to perform
appropriate comparisons. The ListViewItemComparer class also implements two additional proper-
ties: Column and Numeric. The Column property identifies the column that should be used for sorting.
The Numeric property is a Boolean flag that can be set to True if you want to perform number-based
comparisons instead of alphabetic comparisons. The numeric sorting is applied when the users
clicks the first column.

When the user clicks a column heading, the example creates a ListViewItemComparer instance,
configures the column to use for sorting, and assigns the ListViewItemComparer instance to the
ListView.ListViewItemSorter property before calling the ListView.Sort method.

Imports System
Imports system.Collections
Imports System.Windows.forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-10.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_10

 Private Sub listView1_ColumnClick(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.ColumnClickEventArgs) Handles listView1.ColumnClick

 ' Create and/or configure the ListViewItemComparer to sort based on
 ' the column that was clicked.
 Dim sorter As ListViewItemComparer = TryCast(listView1.ListViewItemSorter, ➥
ListViewItemComparer)

 If sorter Is Nothing Then
 ' Create a new ListViewItemComparer.
 sorter = New ListViewItemComparer(e.Column)

 ' Use Decimal comparison for the first column.
 If e.Column = 0 Then
 sorter.Numeric = True

266 CH AP T E R 7 ■ W IN DO W S FO R M S

 Else
 sorter.Numeric = False
 End If

 listView1.ListViewItemSorter = sorter
 Else
 ' Use Decimal comparison for the first column.
 If e.Column = 0 Then
 sorter.Numeric = True
 Else
 sorter.Numeric = False
 End If

 ' Configure the existing ListViewItemComparer.
 If sorter.Column = e.Column Then
 sorter.Descending = Not sorter.Descending
 Else
 sorter.Column = e.Column
 sorter.Descending = False
 End If
 End If

 ' Sort the ListView.
 listView1.Sort()

 End Sub
End Class

Public Class ListViewItemComparer
 Implements IComparer

 ' Private members to configure comparer logic.
 Private m_Column As Integer
 Private m_Numeric As Boolean = False
 Private m_Descending As Boolean = False

 ' Property to get/set the column to use for comparison.
 Public Property Column() As Integer
 Get
 Return m_Column
 End Get
 Set(ByVal value As Integer)
 m_Column = value
 End Set
 End Property

 ' Property to get/set whether numeric comparison is required
 ' as opposed to the standard alphabetic comparison.
 Public Property Numeric() As Boolean
 Get
 Return m_Numeric
 End Get

CH AP T E R 7 ■ W IN DO W S FO R M S 267

 Set(ByVal value As Boolean)
 m_Numeric = value
 End Set
 End Property

 ' Property to get/set whether we are sorting in descending
 ' order or not.
 Public Property Descending() As Boolean
 Get
 Return m_Descending
 End Get
 Set(ByVal Value As Boolean)
 m_Descending = Value
 End Set
 End Property

 Public Sub New(ByVal columnIndex As Integer)
 Column = columnIndex
 End Sub

 Public Function Compare(ByVal x As Object, ByVal y As Object) ➥
As Integer Implements System.Collections.IComparer.Compare

 ' Convert the arguments to ListViewItem objects.
 Dim itemX As ListViewItem = TryCast(x, ListViewItem)
 Dim itemY As ListViewItem = TryCast(y, ListViewItem)

 ' Handle the logic for a Nothing reference as dictated by the
 ' IComparer interface. Nothing is considered less than
 ' any other value.
 If itemX Is Nothing And itemY Is Nothing Then
 Return 0
 ElseIf itemX Is Nothing Then
 Return -1
 ElseIf itemY Is Nothing Then
 Return 1
 End If

 ' Short-circuit condition where the items are references
 ' to the same object.
 If itemX Is itemY Then Return 0

 ' Determine if numeric comparison is required.
 If Numeric Then
 ' Convert column text to numbers before comparing.
 ' If the conversion fails, just use the value 0.
 Dim itemXVal, itemYVal As Decimal

 If Not Decimal.TryParse(itemX.SubItems(Column).Text, itemXVal) Then
 itemXVal = 0
 End If
 If Not Decimal.TryParse(itemY.SubItems(Column).Text, itemYVal) Then
 itemYVal = 0
 End If

268 CH AP T E R 7 ■ W IN DO W S FO R M S

 If Descending Then
 Return Decimal.Compare(itemYVal, itemXVal)
 Else
 Return Decimal.Compare(itemXVal, itemYVal)
 End If
 Else
 ' Keep the column text in its native string format
 ' and perform an alphabetic comparison.
 Dim itemXText As String = itemX.SubItems(Column).Text
 Dim itemYText As String = itemY.SubItems(Column).Text

 If Descending Then
 Return String.Compare(itemYText, itemXText)
 Else
 Return String.Compare(itemXText, itemYText)
 End If
 End If

 End Function
End Class

7-11. Lay Out Controls Automatically

Problem
You have a large set of controls on a form and you want them arranged automatically.

Solution
Use the FlowLayoutPanel container to dynamically arrange the controls using a horizontal or vertical
flow, or use the TableLayoutPanel container to dynamically arrange the controls in a grid.

How It Works
The FlowLayoutPanel and TableLayoutPanel containers (both new to .NET Framework 2.0) simplify
the design-time and runtime layout of the controls they contain. At both design time and runtime,
as you add controls to one of these panels, the panel’s logic determines where the control should be
positioned, so you do not need to determine the exact location.

With the FlowLayoutPanel container, the FlowDirection and WrapContents properties determine
where controls are positioned. FlowDirection controls the order and location of controls, and it can
be set to LeftToRight (the default), TopDown, RightToLeft, or BottomUp. The WrapContents property
controls whether controls run off the edge of the panel or wrap around to form a new line of controls.
The default is to wrap controls.

With the TableLayoutPanel container, the RowCount and ColumnCount properties control how
many rows and columns are currently in the panel’s grid. The default for both of these properties is 0. The
GrowStyle property determines how the grid grows to accommodate more controls once it is full, and
it can be set to AddRows (the default), AddColumns, or FixedSize (which means the grid cannot grow).

Figure 7-7 shows the design-time appearance of both a TableLayoutPanel container and a
FlowLayoutPanel container. The TableLayoutPanel panel is configured with three rows and three
columns. The FlowLayoutPanel panel is configured to wrap contents and use left-to-right flow direction.

CH AP T E R 7 ■ W IN DO W S FO R M S 269

Figure 7-7. Using a FlowLayoutPanel panel and a TableLayoutPanel panel

7-12. Use Part of a Main Menu for a Context Menu

Problem
You need to create a context menu that shows the same menu items as those displayed as part of an
application’s main menu.

Solution
Use the CloneMenu method of the MenuItem class to duplicate the required portion of the main menu.

How It Works
In many applications, a control’s context-sensitive menu duplicates a portion of the main menu.
However, .NET does not allow you to create a MenuItem instance that is contained in more than one
menu at a time.

The solution is to make a duplicate copy of a portion of the menu using the CloneMenu method,
which returns a reference to the cloned item. The CloneMenu method not only copies the appropriate
MenuItem items (and any contained submenus), but it also registers each MenuItem object with the
same event handlers. Thus, when a user clicks a cloned menu item in a context menu, the event
handler will be triggered as if the user had clicked the menu item in the main menu.

The Code

The following example uses the CloneMenu method to configure the context menu for a TextBox to be
a duplicate of the File menu.

Imports system
Imports System.Drawing
Imports System.Windows.Forms

270 CH AP T E R 7 ■ W IN DO W S FO R M S

' All designed code is stored in the autogenerated partial
' class called Recipe07-12.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_12

 ' As the main form loads, clone the required section of the main
 ' menu and assign it to the ContextMenu propety of the TextBox.
 Private Sub Recipe07_12_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Dim mnuContext As New ContextMenu

 ' Copy the menu items from the File menu into a context menu.
 For Each mnuItem As MenuItem In mnuFile.MenuItems
 mnuContext.MenuItems.Add(mnuItem.CloneMenu)
 Next

 ' Attach the cloned menu to the TextBox.
 TextBox1.ContextMenu = mnuContext

 End Sub

 ' Event handler to display the ContextMenu for the TextBox.
 Private Sub TextBox1_MouseDown(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.MouseEventArgs) Handles TextBox1.MouseDown

 If e.Button = Windows.Forms.MouseButtons.Right Then
 TextBox1.ContextMenu.Show(TextBox1, New Point(e.X, e.Y))
 End If

 End Sub

 ' Event handler to process clicks on File/Open menu item.
 ' For the purpose of the example, simply show a message box.
 Private Sub mnuOpen_Click(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles mnuOpen.Click
 MessageBox.Show("This is the event handler for Open.", "Recipe07-12")
 End Sub

 Private Sub mnuSave_Click(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles mnuSave.Click
 MessageBox.Show("This is the event handler for Save.", "Recipe07-12")
 End Sub

 Private Sub mnuExit_Click(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles mnuExit.Click
 MessageBox.Show("This is the event handler for Exit.", "Recipe07-12")
 End Sub

End Class

CH AP T E R 7 ■ W IN DO W S FO R M S 271

Usage

Figure 7-8 shows how the example will look when run.

Figure 7-8. Copying part of a main menu to a context menu

7-13. Make a Multilingual Form

Problem
You need to create a localizable form that can be deployed in more than one language.

Solution
Store all locale-specific information in resource files, which are compiled into satellite assemblies.

How It Works
The .NET Framework includes built-in support for localization through its use of resource files. The
basic idea is to store information that is locale-specific (for example, button text) in a resource file.
You can create resource files for each culture you need to support and compile them into satellite
assemblies. When you run the application, .NET will automatically use the correct satellite assembly
based on the locale settings of the current user/computer.

You can read to and write from resource files manually; they are XML files (see recipe 1-17 for
more information about resource files). However, Visual Studio also includes extensive design-time
support for localized forms. It works like this:

272 CH AP T E R 7 ■ W IN DO W S FO R M S

1. Set the Localizable property of a Form to True using the Properties window.

2. Set the Language property of the form to the locale for which you would like to enter infor-
mation, as shown in Figure 7-9. Then configure the localizable properties of all the controls
on the form. Instead of storing your changes in the designer-generated code for the form,
Visual Studio will actually create a new resource file to hold your data.

Figure 7-9. Selecting a language for localizing a form

3. Repeat step 2 for each language that you want to support. Each time you enter a new locale
for the form’s Language property, a new resource file will be generated. If you select Project ➤
Show All Files from the Visual Studio menu, you will find these resource files under your form’s
folder, as shown in Figure 7-10. If you change the Language property to a locale you have
already configured, your previous settings will reappear, and you will be able to modify them.

You can now compile and test your application on differently localized systems. Visual Studio
will create a separate directory and satellite assembly for each resource file in the project. You can
select Project ➤ Show All Files from the Visual Studio menu to see how these files are arranged, as
shown in Figure 7-10.

CH AP T E R 7 ■ W IN DO W S FO R M S 273

Figure 7-10. Satellite assembly and resource files structure

The Code

Although you do not need to manually code any of the localization functionality, as a testing
shortcut, you can force your application to adopt a specific culture by modifying the Thread.
CurrentUICulture property of the application thread. However, you must modify this property
before the form has loaded.

Imports System
Imports System.Threading
Imports System.Globalization
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-13.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_13

 Public Shared Sub Main()

 Thread.CurrentThread.CurrentUICulture = New CultureInfo("fr")
 Application.Run(New Recipe07_13)

 End Sub

End Class

Usage

Figure 7-11 shows both the English and French versions of the example. As you can see, both the
language and the layout of the form are different depending on the current locale.

274 CH AP T E R 7 ■ W IN DO W S FO R M S

Figure 7-11. English and French localizations

7-14. Create a Form That Cannot Be Moved

Problem
You want to create a form that occupies a fixed location on the screen and cannot be moved.

Solution
Make a borderless form by setting the FormBorderStyle property of the Form class to the value
FormBorderStyle.None.

How It Works
You can create a borderless form by setting the FormBorderStyle property of a Form to None. Border-
less forms cannot be moved. However, as their name implies, they also lack any kind of border. If
you want a border, you will need to add it yourself, either with manual drawing code or by using a
background image.

One other approach to creating an immovable form does provide a basic control-style border. First,
set the ControlBox, MinimizeBox, and MaximizeBox properties of the form to False. Then set the Text
property to an empty string. The form will have a raised gray border or black line (depending on the
FormBorderStyle option you use), similar to a button. Figure 7-12 shows both types of immovable forms.

CH AP T E R 7 ■ W IN DO W S FO R M S 275

Figure 7-12. Two types of forms that cannot be moved

7-15. Make a Borderless Form Movable

Problem
You need to create a borderless form that can be moved. This might be the case if you are creating a
custom window that has a unique look (for example, for a visually rich application such as a game or
a media player).

Solution
Create another control that responds to the MouseDown, MouseUp, and MouseMove events and program-
matically moves the form.

How It Works
Borderless forms omit a title bar, which makes it impossible for a user to move them. You can compen-
sate for this shortcoming by adding a control to the form that serves the same purpose. For example,
Figure 7-13 shows a form that includes a label to support dragging. The user can click this label, and
then drag the form to a new location on the screen while holding down the mouse button. As the
user moves the mouse, the form moves correspondingly, as though it were “attached” to the mouse
pointer.

276 CH AP T E R 7 ■ W IN DO W S FO R M S

Figure 7-13. A movable borderless form

To implement this solution, take the following steps:

1. Create a form-level Boolean variable that tracks whether or not the form is currently being
dragged.

2. When the label is clicked, the code sets the flag to indicate that the form is in drag mode. At
the same time, the current mouse position is recorded. You add this logic to the event handler
for the Label.MouseDown event.

3. When the user moves the mouse over the label, the form is moved correspondingly, so that
the position of the mouse over the label is unchanged. You add this logic to the event handler
for the Label.MouseMove event.

4. When the user releases the mouse button, the dragging mode is switched off. You add this
logic to the event handler for the Label.MouseUp event.

The Code

The following example creates a borderless form that a user can move by clicking a form control and
dragging the form.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-15.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_15

 ' Boolean member tracks whether the form is in drag mode.
 ' If it is, mouse movements over the label will be translated
 ' into form movements.
 Private dragging As Boolean

 ' Stores the offset where the label is clicked.
 Private pointClicked As Point

 ' MouseDown event handler for the label initiates the dragging process.
 Private Sub lblDrag_MouseDown(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.MouseEventArgs) Handles lblDrag.MouseDown

CH AP T E R 7 ■ W IN DO W S FO R M S 277

 If e.Button = Windows.Forms.MouseButtons.Left Then
 ' Turn the drag mode on and store the point clicked.
 dragging = True
 pointClicked = New Point(e.X, e.Y)
 Else
 dragging = False
 End If

 End Sub

 ' MouseMove event handler for the label processes dragging movements if
 ' the form is in drag mode.
 Private Sub lblDrag_MouseMove(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.MouseEventArgs) Handles lblDrag.MouseMove

 If dragging Then

 Dim pointMoveTo As Point

 ' Find the current mouse position in screen coordinates.
 pointMoveTo = Me.PointToScreen(New Point(e.X, e.Y))

 ' Compensate for the position of the control clicked.
 pointMoveTo.Offset(-pointClicked.X, -pointClicked.Y)

 ' Move the form.
 Me.Location = pointMoveTo

 End If

 End Sub

 ' MouseUp event handler for the label switches off drag mode.
 Private Sub lblDrag_MouseUp(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.MouseEventArgs) Handles lblDrag.MouseUp
 dragging = False
 End Sub

 Private Sub cmdClose_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdClose.Click
 Me.Close()
 End Sub

End Class

7-16. Create an Animated System Tray Icon

Problem
You need to create an animated system tray icon (perhaps to indicate the status of a long-running
task).

278 CH AP T E R 7 ■ W IN DO W S FO R M S

Solution
Create and show a NotifyIcon control. Use a timer that fires periodically (every second or so) and
updates the NotifyIcon.Icon property.

How It Works
The .NET Framework makes it easy to show a system tray icon with the NotifyIcon component.
You simply need to add this component to a form and supply an icon by setting the Icon property.
Optionally, you can add a linked context menu through the ContextMenu property. The NotifyIcon
component automatically displays its context menu when it’s right-clicked. You can animate a
system tray icon by swapping the icon periodically.

The Code

The following example uses eight icons, each of which shows a moon graphic in a different stage of
fullness. By moving from one image to another, the illusion of animation is created.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-16.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_16

 ' An array to hold the set of Icons used to create the
 ' animation effect.
 Private images As Icon() = New Icon(8) {}

 ' An integer to identify the current icon to display.
 Dim offset As Integer = 0

 Private Sub Recipe07_16_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Load the basic set of eight icons.
 images(0) = New Icon("moon01.ico")
 images(1) = New Icon("moon02.ico")
 images(2) = New Icon("moon03.ico")
 images(3) = New Icon("moon04.ico")
 images(4) = New Icon("moon05.ico")
 images(5) = New Icon("moon06.ico")
 images(6) = New Icon("moon07.ico")
 images(7) = New Icon("moon08.ico")

 End Sub

 Private Sub timer_Elapsed(ByVal sender As Object, ➥
ByVal e As System.Timers.ElapsedEventArgs) Handles timer.Elapsed

CH AP T E R 7 ■ W IN DO W S FO R M S 279

 ' Change the icon. This event handler fires once every
 ' second (1000ms).
 notifyIcon.Icon = images(offset)
 offset += 1
 If offset > 7 Then offset = 0

 End Sub
End Class

7-17. Validate an Input Control

Problem
You need to alert the user of invalid input in a control, such as a TextBox.

Solution
Use the ErrorProvider component to display an error icon next to the offending control. Check for
errors before allowing the user to continue.

How It Works
You can perform validation in a Windows-based application in a number of ways. One approach is
to refuse any invalid character as the user presses a key, by using a MaskedTextBox control, as shown
in recipe 7-8. Another approach is to respond to control validation events and prevent users from
changing focus from one control to another if an error exists. A less invasive approach is to simply
flag the offending control in some way, so that the user can review all the errors at once. You can use
this approach by adding the ErrorProvider component to your form.

The ErrorProvider is a special property extender component that displays error icons next to
invalid controls. You show the error icon next to a control by using the ErrorProvider.SetError
method and specifying the appropriate control and a string error message. The ErrorProvider will
then show a warning icon to the right of the control. When the user hovers the mouse above the warning
icon, the detailed message appears. To clear an error, just pass an empty string to the SetError method.

You need to add only one ErrorProvider component to your form, and you can use it to display
an error icon next to any control. To add the ErrorProvider, drag it on the form or into the compo-
nent tray, or create it manually in code.

The Code

The following example checks the value that a user has entered into a textbox whenever the textbox
loses focus. The code validates this textbox using a regular expression that checks to see if the value
corresponds to the format of a valid e-mail address (see recipe 2-5 for more details on regular
expressions). If validation fails, the ErrorProvider is used to display an error message. If the text is
valid, any existing error message is cleared from the ErrorProvider. Finally, the Click event handler
for the OK button steps through all the controls on the form and verifies that none of them have errors
before allowing the example to continue. In this example, an empty textbox is allowed, although it
would be a simple matter to perform additional checks when the OK button is clicked for situations
where empty textboxes are not acceptable.

280 CH AP T E R 7 ■ W IN DO W S FO R M S

Imports System
Imports System.Windows.Forms
Imports System.Text.RegularExpressions

' All designed code is stored in the autogenerated partial
' class called Recipe07-17.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_17

 ' Button click event handler ensures the ErrorProvider is not
 ' reporting any error for each control before proceeding.
 Private Sub Button1_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles Button1.Click

 Dim errorText As String = String.Empty
 Dim invalidInput As Boolean = False

 For Each ctrl As Control In Me.Controls
 If Not errProvider.GetError(ctrl) = String.Empty Then
 errorText += " * " & errProvider.GetError(ctrl) & ➥
ControlChars.NewLine
 invalidInput = True
 End If
 Next

 If invalidInput Then
 MessageBox.Show(String.Format("This form contains the following " & ➥
"unresolved errors:{0}{0}{1}", ControlChars.NewLine, errorText, "Invalid Input", ➥
MessageBoxButtons.OK, MessageBoxIcon.Warning))
 Else
 Me.Close()
 End If

 End Sub

 ' When the TextBox loses focus, check that the contents are a valid
 ' email address.
 Private Sub txtEmail_Leave(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles txtEmail.Leave

 ' Create a regular expression to check for valid email addresses.
 Dim emailRegEx As Regex

 emailRegEx = New Regex("^[\w-]+@([\w]+\.)+[\w]+$")

 ' Validate the text from the control that raised the event.
 Dim ctrl As Control = DirectCast(sender, Control)

 If emailRegEx.IsMatch(ctrl.Text) Or ctrl.Text = String.Empty Then
 errProvider.SetError(ctrl, String.Empty)
 Else
 errProvider.SetError(ctrl, "This is not a valid email address.")
 End If

CH AP T E R 7 ■ W IN DO W S FO R M S 281

 End Sub
End Class

Usage

Figure 7-14 shows how the ErrorProvider control indicates an input error for the TextBox control
when the example is run.

Figure 7-14. A validated form with the ErrorProvider

7-18. Use a Drag-and-Drop Operation

Problem
You need to use the drag-and-drop feature to exchange information between two controls (possibly
in separate windows or in separate applications).

Solution
Start a drag-and-drop operation using the DoDragDrop method of the Control class, and then respond to
the DragEnter and DragDrop events.

How It Works
A drag-and-drop operation allows the user to transfer information from one place to another by clicking
an item and dragging it to another location. A drag-and-drop operation consists of the following
three basic steps:

1. The user clicks a control, holds down the mouse button, and begins dragging. If the control
supports the drag-and-drop feature, it sets aside some information.

2. The user drags the mouse over another control. If this control accepts the dragged type of
content, the mouse cursor changes to the special drag-and-drop icon (arrow and page).
Otherwise, the mouse cursor becomes a circle with a line drawn through it.

3. When the user releases the mouse button, the data is sent to the control, which can then
process it appropriately.

To support drag-and-drop functionality, you must handle the DragEnter, DragDrop, and (typically)
MouseDown events. To start a drag-and-drop operation, you call the source control’s DoDragDrop method.
At this point, you submit the data and specify the type of operations that will be supported (copying,
moving, and so on). Controls that can receive dragged data must have the AllowDrop property set to
True. These controls will receive a DragEnter event when the mouse drags the data over them. At this

282 CH AP T E R 7 ■ W IN DO W S FO R M S

point, you can examine the data that is being dragged, decide whether the control can accept the
drop, and set the DragEventArgs.Effect property accordingly. The final step is to respond to the
DragDrop event in the destination control, which occurs when the user releases the mouse button.

The DragEventArgs.Data property, which is an IDataObject, represents the data that is being
dragged or dropped. IDataObject is an interface for transferring general data objects. You get the
data by using the GetData method. The GetDataPresent method, which accepts a String or Type, is
used to determine the type of data represented by the IDataObject.

The Code

The following example allows you to drag content between two textboxes, as well as to and from
other applications that support drag-and-drop operations.

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-18.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_18

 ' This event is fired when you drop the text on a TextBox.
 ' The text of the target TextBox will change to the drop
 ' text.
 Private Sub TextBox_DragDrop(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.DragEventArgs) Handles TextBox1.DragDrop, ➥
TextBox2.DragDrop

 Dim txt As TextBox = DirectCast(sender, TextBox)
 txt.Text = DirectCast(e.Data.GetData(DataFormats.Text), String)

 End Sub

 ' This event is fired when your cursor enters a TextBox while
 ' you are in a drag operation. It ensures you can only drop
 ' text.
 Private Sub TextBox_DragEnter(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.DragEventArgs) Handles TextBox1.DragEnter, ➥
TextBox2.DragEnter

 If e.Data.GetDataPresent(DataFormats.Text) Then
 e.Effect = DragDropEffects.Copy
 Else
 e.Effect = DragDropEffects.None
 End If

 End Sub

 ' This event is fired when you push down the mouse button
 ' while in a TextBox. This grabs the contents of the
 ' TextBox and starts the drag operation.

CH AP T E R 7 ■ W IN DO W S FO R M S 283

 Private Sub TextBox_MouseDown(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.MouseEventArgs) Handles TextBox1.MouseDown, ➥
TextBox2.MouseDown

 Dim txt As TextBox = DirectCast(sender, TextBox)
 txt.SelectAll()
 txt.DoDragDrop(txt.Text, DragDropEffects.Copy)

 End Sub
End Class

7-19. Use Context-Sensitive Help

Problem
You want to display a specific help file topic depending on the currently selected control.

Solution
Use the HelpProvider component, and set the HelpKeyword and HelpNavigator extended properties
for each control.

How It Works
The .NET Framework provides support for context-sensitive help through the HelpProvider class.
The HelpProvider class is a special extender control. You add it to the component tray of a form, and
it extends all the controls on the form with a few additional properties, including HelpNavigator and
HelpKeyword. For example, Figure 7-15 shows a form that has two controls and a HelpProvider named
helpProvider1. The ListBox control, which is currently selected, has several help-specific properties
that are provided through the HelpProvider.

To use context-sensitive help with HelpProvider, follow these three steps:

1. Set the HelpProvider.HelpNamespace property with the name of the help file (for example,
myhelp.chm).

2. For every control that requires context-sensitive help, set the HelpNavigator extender property
to HelpNavigator.Topic.

3. For every control that requires context-sensitive help, set the HelpKeyword extender property
with the name of the topic that should be linked to this control. (The topic names are spe-
cific to the help file and can be configured in your help-authoring tools.)

If the user presses the F1 key while a control has focus, the help file will be launched automati-
cally, and the linked topic will be displayed in the help window. If the user presses F1 while positioned
on a control that does not have a linked help topic, the help settings for the containing control will
be used (for example, a group box or a panel). If there are no containing controls or the containing
control does not have any help settings, the form’s help settings will be used. You can also use the
HelpProvider methods to set or modify context-sensitive help mapping at runtime.

284 CH AP T E R 7 ■ W IN DO W S FO R M S

Figure 7-15. The HelpProvider extender properties

7-20. Display a Web Page
in a Windows-Based Application

Problem
You want to display a web page and provide web-navigation capabilities within your Windows
Forms application.

Solution
Use the WebBrowser control to display the web page and other standard controls like buttons and
textboxes to allow the user to control the operation of the WebBrowser.

■Caution The WebBrowser control is a managed wrapper around the WebBrowser ActiveX control, which is
the same component used by Internet Explorer. This means that if you use a Main method, it must be annotated
with the STAThread attribute. Furthermore, the component is very resource-intensive and should be disposed of
correctly.

CH AP T E R 7 ■ W IN DO W S FO R M S 285

How It Works
The WebBrowser control (new to .NET Framework 2.0) makes it a trivial task to embed highly functional
web browser capabilities into your Windows applications. The WebBrowser control is responsible for
the display of web pages and maintaining page history, but it does not provide any controls for user
interaction. Instead, the WebBrowser control exposes properties and events that you can manipulate
programmatically to control the operation of the WebBrowser. This approach makes the WebBrowser
control highly flexible and adaptable to almost any situation. Table 7-1 summarizes some of the
commonly used WebBrowser members related to web navigation.

You can also use the WebBrowser.DocumentText property to set (or get) the currently displayed
HTML contents of the WebBrowser. To manipulate the contents using the Document Object Model
(DOM), get an HtmlDocument instance via the Document property.

The Code

The following example uses the WebBrowser control to allow users to navigate to a web page whose
address is entered into a TextBox. Buttons also allow users to move forward and backward through
page history and navigate directly to their personal home page.

Table 7-1. Commonly Used Members of the WebBrowser Control

Member Description

Property

AllowNavigation Controls whether the WebBrowser can navigate to another page after its
initial page has been loaded

CanGoBack Indicates whether the WebBrowser currently holds back page history,
which would allow the GoBack method to succeed

CanGoForward Indicates whether the WebBrowser currently holds forward page history,
which would allow the GoForward method to succeed

IsBusy Indicates whether the WebBrowser is currently busy downloading a page

Url Holds the URL of the currently displayed/downloading page

Method

GoBack Displays the previous page in the page history, if there is one

GoForward Displays the next page in the page history, if there is one

GoHome Displays the home page of the current user as configured in Internet
Explorer

Navigate Displays the web page at the specified URL

Stop Stops the current WebBrowser activity

Event

DocumentCompleted Signals that the active download has completed and the document is
displayed in the WebBrowser

286 CH AP T E R 7 ■ W IN DO W S FO R M S

Imports System
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe07-20.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe07_20

 Private Sub goButton_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles goButton.Click

 ' Navigate to the URL specified in the TextBox.
 webBrowser1.Navigate(textURL.Text)

 End Sub

 Private Sub backButton_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles backButton.Click

 ' Go to the previous page in the WebBrowser history.
 webBrowser1.GoBack()

 End Sub

 Private Sub homeButton_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles homeButton.Click

 ' Navigate to the current user's home page.
 webBrowser1.GoHome()

 End Sub

 Private Sub forwardButton_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles forwardButton.Click

 ' Go to the next page in the WebBrowser history.
 webBrowser1.GoForward()

 End Sub

 Private Sub Recipe07_20_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Navigate to the Apress home page when the application first
 ' loads.
 webBrowser1.Navigate("http://www.apress.com/")

 End Sub

CH AP T E R 7 ■ W IN DO W S FO R M S 287

 ' Event handler to perform general interface maintenance once a
 ' document has been loaded into the WebBrowser.
 Private Sub webBrowser1_DocumentCompleted(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.WebBrowserDocumentCompletedEventArgs) Handles ➥
webBrowser1.DocumentCompleted

 ' Update the content of the TextBox to reflect the current URL.
 textURL.Text = webBrowser1.Url.ToString

 ' Enable or disable the Back button depending on whether the
 ' WebBrowser has back history
 If webBrowser1.CanGoBack Then
 backButton.Enabled = True
 Else
 backButton.Enabled = False
 End If

 ' Enable or disable the Forward button depending on whether the
 ' WebBrowser has forward history.
 If webBrowser1.CanGoForward Then
 forwardButton.Enabled = True
 Else
 forwardButton.Enabled = False
 End If

 End Sub
End Class

289

■ ■ ■

C H A P T E R 8

Multimedia

Multimedia is a very expansive subject that covers sound, video, graphics, and printing. The aim
of this chapter is to briefly touch on each main topic. If you would like more detailed information,
refer to books devoted to the subject, such as Pro .NET 2.0 Graphics Programming by Eric White
(Apress, 2005) or Pro .NET 2.0 Windows Forms and Custom Controls in VB 2005 by Matthew MacDonald
(Apress, 2006).

The .NET Framework provides direct support for most multimedia functionality. The System.
Drawing namespace provides support for manipulating two-dimensional drawings. Most of the
classes in this namespace, such as Drawing2D and Graphics, wrap GDI32.dll and USER32.dll. These
libraries provide the native Graphics Device Interface (GDI) functionality in the Windows applica-
tion programming interface (API). They also make it easier to draw complex shapes, work with
coordinates and transforms, and process images. The Printing namespace, which contains classes
related to printing, is also part of the System.Drawing namespace. This namespace uses GDI support
for drawing text or images to a Document object. While this class does provide support for enumer-
ating and collecting information for installed printers, it is limited to local printers and it does not
support all information, such as print jobs.

The System.Media namespace provides support for playing basic sounds, such as WAV files. If
you want to show a video file or play more sophisticated audio files, such as MP3s, you will need to
look beyond the .NET Framework.

This chapter presents recipes that show you how to use built-in .NET features and, where necessary,
native Win32 libraries via P/Invoke or COM Interop. The recipes in this chapter describe how to do
the following:

• Find the fonts installed in your system (recipe 8-1)

• Perform hit testing with shapes (recipe 8-2)

• Create an irregularly shaped form or control (recipe 8-3)

• Create a sprite that can be moved around (recipe 8-4)

• Display an image that can be made to scroll (recipe 8-5)

• Capture an image of the desktop (recipe 8-6)

• Enable double buffering to increase performance while redrawing (recipe 8-7)

• Create a thumbnail for an existing image (recipe 8-8)

• Play a beep or a system-defined sound (recipe 8-9), play a WAV file (recipe 8-10), play a non-
WAV file such as an MP3 file (recipe 8-11), and play a video with DirectShow (recipe 8-12)

• Retrieve information about the printers installed in the machine (recipe 8-13), print a simple
document (recipe 8-14), print a document that has multiple pages (recipe 8-15), print wrapped
text (recipe 8-16), show a print preview (recipe 8-17), and manage print jobs (recipe 8-18)

290 CH AP T E R 8 ■ M U L T IM E DI A

8-1. Find All Installed Fonts

Problem
You need to retrieve a list of all the fonts installed on the current computer.

Solution
Create a new instance of the System.Drawing.Text.InstalledFontCollection class, which contains a
collection of FontFamily objects representing all the installed fonts.

How It Works
The InstalledFontCollection class allows you to retrieve information about currently installed
fonts. It derives from the FontCollection class, which allows you to get a list of font families as a
collection in the Families property.

The Code

The following code shows a form that iterates through the font collection when it is first created.
Every time it finds a font, it creates a new Label control that will display the font name in the given
font face (at a size of 14 points). The Label is added to a Panel control named pnlFonts with AutoScroll
set to True, allowing the user to scroll through the list of available fonts.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Text

' All designed code is stored in the autogenerated partial
' class called Recipe08-01.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_01

 Private Sub Recipe08_01_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Create the font collection.
 Using fontFamilies As New InstalledFontCollection

 ' Iterate through all font families.
 Dim offset As Integer = 10

 For Each family As FontFamily In fontFamilies.Families

 Try
 ' Create a label that will display text in this font.
 Dim fontLabel As New Label

 fontLabel.Text = family.Name
 fontLabel.Font = New Font(family, 14)
 fontLabel.Left = 10

CH A PT E R 8 ■ M U L T I M E D IA 291

 fontLabel.Width = pnlFonts.Width
 fontLabel.Top = offset

 ' Add the label to a scrollable Panel.
 pnlFonts.Controls.Add(fontLabel)
 offset += 30
 Catch ex As ArgumentException
 ' An ArgumentException will be thrown if the selected
 ' font does not support regular style (the default used
 ' when creating a font object). For this example, we
 ' will display an appropriate message in the list.
 Dim fontLabel As New Label

 fontLabel.Text = ex.Message
 fontLabel.Font = New Font("Arial", 10, FontStyle.Italic)
 fontLabel.ForeColor = Color.Red
 fontLabel.Left = 10
 fontLabel.Width = 500
 fontLabel.Top = offset

 ' Add the label to a scrollable Panel.
 pnlFonts.Controls.Add(fontLabel)
 offset += 30
 End Try

 Next

 End Using

 End Sub
End Class

Figure 8-1 shows the results of this simple test application.

Figure 8-1. A list of installed fonts

292 CH AP T E R 8 ■ M U L T IM E DI A

8-2. Perform Hit Testing with Shapes

Problem
You need to detect whether a user clicks inside a shape.

Solution
Test the point where the user clicked with methods such as Rectangle.Contains and Region.IsVisible
(in the System.Drawing namespace) or GraphicsPath.IsVisible (in the System.Drawing.Drawing2D
namespace), depending on the type of shape.

How It Works
Often, if you use GDI+ to draw shapes on a form, you need to be able to determine when a user clicks
inside a given shape. This can be determined using a Rectangle and a Point. A Rectangle is defined
by its height, width, and upper-left coordinates, which are reflected by the Height, Width, X, and Y
properties. A Point, which is an X and Y coordinate, represents a specific location on the screen. The
.NET Framework provides three methods to help with this task:

• The Rectangle.Contains method, which takes a point and returns true if the point is inside a
given rectangle. In many cases, you can retrieve a rectangle for another type of object. For
example, you can use Image.GetBounds to retrieve the invisible rectangle that represents the
image boundaries. The Rectangle structure is a member of the System.Drawing namespace.

• The GraphicsPath.IsVisible method, which takes a point and returns true if the point is
inside the area defined by a closed GraphicsPath. Because a GraphicsPath can contain multiple
lines, shapes, and figures, this approach is useful if you want to test whether a point is contained
inside a nonrectangular region. The GraphicsPath class is a member of the System.Drawing.
Drawing2D namespace.

• The Region.IsVisible method, which takes a point and returns true if the point is inside the
area defined by a Region. A Region, like the GraphicsPath, can represent a complex nonrectangular
shape. Region is a member of the System.Drawing namespace.

The Code

The following example shows a form that creates a Rectangle and a GraphicsPath. By default, these
two shapes are given light-blue backgrounds. However, an event handler responds to the Form.
MouseMove event, checks to see whether the mouse pointer is in one of these shapes, and updates the
shape’s background to bright pink if the pointer is there.

Note that the highlighting operation takes place directly inside the MouseMove event handler. The
painting is performed only if the current selection has changed. For simpler code, you could invali-
date the entire form every time the mouse pointer moves in or out of a region and handle all the
drawing in the Form.Paint event handler, but this would lead to more drawing and generate addi-
tional flicker as the entire form is repainted.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Drawing2D

CH A PT E R 8 ■ M U L T I M E D IA 293

' All designed code is stored in the autogenerated partial
' class called Recipe08-02.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Public Class Recipe08_02

 ' Define the shapes used on this form.
 Private path As GraphicsPath
 Private rect As Rectangle

 ' Define the flags that track where the mouse pointer is.
 Private inPath As Boolean = False
 Private inRectangle As Boolean = False

 ' Define the brushes used for painting the shapes.
 Private highlightBrush As Brush = Brushes.HotPink
 Private defaultBrush As Brush = Brushes.LightBlue

 Private Sub Recipe08_02_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Create the shapes that will be displayed.
 path = New GraphicsPath
 path.AddEllipse(10, 10, 100, 60)
 path.AddCurve(New Point() {New Point(50, 50), New Point(10, 33), ➥
New Point(80, 43)})
 path.AddLine(50, 120, 250, 80)
 path.AddLine(120, 40, 110, 50)
 path.CloseFigure()

 rect = New Rectangle(100, 170, 220, 170)

 End Sub

 Private Sub Recipe08_02_MouseMove(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove

 Using g As Graphics = Me.CreateGraphics
 ' Perform hit testing with rectangle.
 If rect.Contains(e.X, e.Y) Then
 If Not inRectangle Then
 inRectangle = True

 ' Highlight the rectangle.
 g.FillRectangle(highlightBrush, rect)
 g.DrawRectangle(Pens.Black, rect)
 End If
 ElseIf inRectangle Then
 inRectangle = False

 ' Restore the unhighlighted rectangle.
 g.FillRectangle(defaultBrush, rect)
 g.DrawRectangle(Pens.Black, rect)
 End If

294 CH AP T E R 8 ■ M U L T IM E DI A

 ' Perform hit testing with path.
 If path.IsVisible(e.X, e.Y) Then
 If Not inPath Then
 inPath = True

 ' Highlight the path.
 g.FillPath(highlightBrush, path)
 g.DrawPath(Pens.Black, path)
 End If
 ElseIf inPath Then
 inPath = False

 ' Restore the unhighlighted path.
 g.FillPath(defaultBrush, path)
 g.DrawPath(Pens.Black, path)
 End If

 End Using

 End Sub

 Private Sub Recipe08_02_Paint(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 Dim g As Graphics = e.Graphics

 ' Paint the shapes according to the current selection.
 If inPath Then
 g.FillPath(highlightBrush, path)
 g.FillRectangle(defaultBrush, rect)
 ElseIf inRectangle Then
 g.FillRectangle(highlightBrush, rect)
 g.FillPath(defaultBrush, path)
 Else
 g.FillPath(defaultBrush, path)
 g.FillRectangle(defaultBrush, rect)
 End If

 g.DrawPath(Pens.Black, path)
 g.DrawRectangle(Pens.Black, rect)

 End Sub
End Class

Figure 8-2 shows the application in action.

CH A PT E R 8 ■ M U L T I M E D IA 295

Figure 8-2. Hit testing with a Rectangle object and a GraphicsPath object

8-3. Create an Irregularly Shaped Control

Problem
You need to create a nonrectangular form or control.

Solution
Create a new System.Drawing.Region object that has the shape you want for the form, and assign it
to the Form.Region or Control.Region property.

How It Works
To create a nonrectangular form or control, you first need to define the shape you want. The easiest
approach is to use the System.Drawing.Drawing2D.GraphicsPath object, which can accommodate
any combination of ellipses, rectangles, closed curves, and even strings. You can add shapes to
a GraphicsPath instance using methods such as AddEllipse, AddRectangle, AddClosedCurve, and
AddString. Once you are finished defining the shape you want, you can create a Region object from
this GraphicsPath—just pass the GraphicsPath to the Region class constructor. Finally, you can
assign the Region to the Form.Region property or the Control.Region property.

The Code

The following example creates an irregularly shaped form (shown in Figure 8-3) using two curves
made of multiple points, which are converted into a closed figure using the GraphicsPath.
CloseAllFigures method.

296 CH AP T E R 8 ■ M U L T IM E DI A

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Drawing2D

' All designed code is stored in the autogenerated partial
' class called Recipe08-03.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_03

 Private Sub Recipe08_03_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Dim path As New GraphicsPath
 Dim pointsA As Point() = New Point() {New Point(0, 0), New Point(40, 60), ➥
New Point(Me.Width - 100, 10)}
 Dim pointsB As Point() = New Point() {New Point(Me.Width - 40, ➥
Me.Height - 60), New Point(Me.Width, Me.Height), New Point(10, Me.Height)}

 path.AddCurve(pointsA)
 path.AddCurve(pointsB)

 path.CloseAllFigures()

 Me.Region = New Region(path)

 End Sub

 Private Sub cmdClose_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdClose.Click

 Me.Close()

 End Sub

End Class

When you run the application, you will see results similar to Figure 8-3.

■Note Another method for creating nonrectangular forms (not controls) is using the BackgroundImage and
TransparencyKey properties available in the Form class. However, this method could cause display problems
when monitors are set to a color depth greater than 24-bit. For more information about this topic, refer to the
Microsoft Knowledge Base article at http://support.microsoft.com/kb/822495.

For an example that demonstrates a nonrectangular control, refer to recipe 8-4.

CH A PT E R 8 ■ M U L T I M E D IA 297

Figure 8-3. A nonrectangular form

8-4. Create a Movable Sprite

Problem
You need to create a shape the user can manipulate on a form, perhaps by dragging it, resizing it, or
otherwise interacting with it.

Solution
Create a custom control, and override the painting logic to draw a shape. Assign your shape to the
Control.Region property. You can then use this Region to perform hit testing, which is demonstrated
in recipe 8-2.

How It Works
If you need to create a complex user interface that incorporates many custom-drawn elements, you
need a way to track these elements and allow the user to interact with them. The easiest approach in
.NET is to create a dedicated control by deriving a class from System.Windows.Forms.Control. You
can then customize the way this control appears and operates by adding the appropriate function-
ality to the appropriate events. For example, if the control needs to respond in a certain way when it
is selected, you may want to add the needed functionality to the MouseEnter, MouseLeave, MouseUp, or
MouseDown event.

The Code

The following example shows a control that represents a simple ellipse shape on a form. All controls
are associated with a rectangular region on a form, so the EllipseShape control generates an ellipse
that fills these boundaries (provided through the Control.ClientRectangle property). Once the
shape has been generated, the Control.Region property is set according to the bounds on the ellipse.

298 CH AP T E R 8 ■ M U L T IM E DI A

This ensures events such as MouseMove, MouseDown, Click, and so on will occur only if the mouse is
over the ellipse, not the entire client rectangle.

The following code shows the full EllipseShape code:

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Drawing2D

' All designed code is stored in the autogenerated partial
' class called EllipseShape.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Public Class EllipseShape
 Inherits System.Windows.Forms.Control

 Dim path As GraphicsPath = Nothing

 Private Sub RefreshPath()

 ' Create the GraphicsPath for the shape (in this case
 ' an ellipse that fits inside the full control area)
 ' and apply it to the control by setting the Region
 ' property.
 path = New GraphicsPath
 path.AddEllipse(Me.ClientRectangle)
 Me.Region = New Region(path)

 End Sub

 Protected Overrides Sub OnPaint(ByVal e As System.Windows.Forms.PaintEventArgs)

 MyBase.OnPaint(e)

 If path IsNot Nothing Then
 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias
 e.Graphics.FillPath(New SolidBrush(Me.BackColor), path)
 e.Graphics.DrawPath(New Pen(Me.ForeColor, 4), path)
 End If

 End Sub

 Private Sub EllipseShape_Resize(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Resize

 RefreshPath()
 Me.Invalidate()

 End Sub

End Class

CH A PT E R 8 ■ M U L T I M E D IA 299

You could define the EllipseShape control in a separate class library assembly so you could add
it to the Visual Studio .NET Toolbox and use it at design time. However, even without taking this step,
it is easy to create a simple test application. The following Windows Forms application creates two
ellipses and allows the user to drag both of them around the form, simply by holding the mouse
down and moving the pointer.

Imports System
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe08-04.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_04

 ' Tracks when drag mode is on.
 Private isDraggingA As Boolean = False
 Private isDraggingB As Boolean = False

 ' The ellipse shape controls.
 Private ellipseA, ellipseB As EllipseShape

 Private Sub Recipe08_04_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Create and configure both ellipses.
 ellipseA = New EllipseShape
 ellipseA.Width = 100
 ellipseA.Height = 100
 ellipseA.Top = 30
 ellipseA.Left = 30
 ellipseA.BackColor = Color.Red
 Me.Controls.Add(ellipseA)

 ellipseB = New EllipseShape
 ellipseB.Width = 100
 ellipseB.Height = 100
 ellipseB.Top = 130
 ellipseB.Left = 130
 ellipseB.BackColor = Color.Azure
 Me.Controls.Add(ellipseB)

 ' Attach both ellipses to the same set of event handlers.
 AddHandler ellipseA.MouseDown, AddressOf Ellipse_MouseDown
 AddHandler ellipseA.MouseUp, AddressOf Ellipse_MouseUp
 AddHandler ellipseA.MouseMove, AddressOf Ellipse_MouseMove

 AddHandler ellipseB.MouseDown, AddressOf Ellipse_MouseDown
 AddHandler ellipseB.MouseUp, AddressOf Ellipse_MouseUp
 AddHandler ellipseB.MouseMove, AddressOf Ellipse_MouseMove

 End Sub

300 CH AP T E R 8 ■ M U L T IM E DI A

 Private Sub Ellipse_MouseDown(ByVal sender As Object, ByVal e As MouseEventArgs)

 If e.Button = Windows.Forms.MouseButtons.Left Then
 ' Get the control that triggered this event.
 Dim ctrl As Control = DirectCast(sender, Control)

 ctrl.Tag = New Point(e.X, e.Y)
 If ctrl Is ellipseA Then
 isDraggingA = True
 Else
 isDraggingB = True
 End If
 End If

 End Sub

 Private Sub Ellipse_MouseUp(ByVal sender As Object, ByVal e As MouseEventArgs)

 isDraggingA = False
 isDraggingB = False

 End Sub

 Private Sub Ellipse_MouseMove(ByVal sender As Object, ByVal e As MouseEventArgs)

 ' Get the control that triggered this event.
 Dim ctrl As Control = DirectCast(sender, Control)

 If (isDraggingA And (ctrl Is ellipseA)) Or (isDraggingB And ➥
(ctrl Is ellipseB)) Then

 ' Get the offset.
 Dim pnt As Point = DirectCast(ctrl.Tag, Point)

 ' Move the control.
 ctrl.Left = e.X + ctrl.Left - pnt.X
 ctrl.Top = e.Y + ctrl.Top - pnt.Y

 End If
 End Sub

End Class

Figure 8-4 shows the user about to drag an ellipse.

CH A PT E R 8 ■ M U L T I M E D IA 301

Figure 8-4. Dragging custom shape controls on a form

8-5. Create a Scrollable Image

Problem
You need to create a scrollable picture.

Solution
Leverage the automatic scroll capabilities of the System.Windows.Forms.Panel control by setting
Panel.AutoScroll to True and placing a System.Windows.Forms.PictureBox control with the image
content inside the Panel.

How It Works
The Panel control has built-in scrolling support, as shown in recipe 8-1. If you place any controls in
it that extend beyond its bounds and you set Panel.AutoScroll to True, the panel will show scroll
bars that allow the user to move through the content. This works particularly well with large images.
You can load or create the image in memory, assign it to a picture box (which has no intrinsic support
for scrolling), and then show the picture box inside the panel. The only consideration you need to
remember is to make sure you set the picture box dimensions equal to the full size of the image you
want to show.

302 CH AP T E R 8 ■ M U L T IM E DI A

The Code

The following example creates an image that represents a document. The image is generated as an
in-memory bitmap, and several lines of text are added using the Graphics.DrawString method. The
image is then bound to a picture box, which is shown in a scrollable panel.

Imports System
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe08-05.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Public Class Recipe08_05

 Private Sub Recipe08_05_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Dim text As String = "The quick brown fox jumps over the lazy dog."

 Using fnt As New Font("Tahoma", 14)
 ' Create an in-memory bitmap.
 Dim bmp As New Bitmap(600, 600)

 Using g As Graphics = Graphics.FromImage(bmp)
 g.FillRectangle(Brushes.White, New Rectangle(0, 0, bmp.Width, ➥
bmp.Height))

 ' Draw several lines of text on the bitmap.
 For i As Integer = 1 To 10
 g.DrawString(text, fnt, Brushes.Black, 50, 50 + i * 60)
 Next

 End Using

 ' Display the bitmap in the picture box.
 pictureBox1.BackgroundImage = bmp
 pictureBox1.Size = bmp.Size

 End Using

 End Sub

End Class

When you run the application, you will get results similar to those shown in Figure 8-5.

CH A PT E R 8 ■ M U L T I M E D IA 303

Figure 8-5. Adding scrolling support to custom content

8-6. Perform a Screen Capture

Problem
You need to take a snapshot of the current desktop.

Solution
Use the CopyFromScreen method of the Graphics class to copy screen contents.

How It Works
The Graphics class now includes CopyFromScreen methods that copy color data from the screen onto
the drawing surface represented by a Graphics object. This method requires you to pass the source
and destination points and the size of the image to be copied.

The Code

The following example captures the screen and displays it in a picture box. It first creates a new
Bitmap object and then invokes CopyFromScreen to draw onto the Bitmap. After drawing, the image
is assigned to the picture box.

Imports System
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe08-06.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_06

304 CH AP T E R 8 ■ M U L T IM E DI A

 Private Sub cmdCapture_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdCapture.Click

 Dim screenCapture As New Bitmap(Screen.PrimaryScreen.Bounds.Width, ➥
Screen.PrimaryScreen.Bounds.Height)

 Using g As Graphics = Graphics.FromImage(screenCapture)
 g.CopyFromScreen(0, 0, 0, 0, screenCapture.Size)
 End Using

 pictureBox1.Image = screenCapture

 End Sub

End Class

When you run the application and click the Capture button, you will get results similar to those
shown in Figure 8-6.

Figure 8-6. Capturing the screen contents

8-7. Use Double Buffering to Increase
Redraw Speed

Problem
You need to optimize drawing for a form or an authored control that is frequently refreshed, and you
want to reduce flicker.

CH A PT E R 8 ■ M U L T I M E D IA 305

Solution
Set the DoubleBuffered property of the form to True.

How It Works
In some applications, you need to repaint a form or control frequently. This is commonly the case
when creating animations. For example, you might use a timer to invalidate your form every second.
Your painting code could then redraw an image at a new location, creating the illusion of motion.
The problem with this approach is that every time you invalidate the form, Windows repaints the
window background (clearing the form) and then runs your painting code, which draws the graphic
element by element. This can cause substantial on-screen flicker.

Double buffering is a technique you can implement to reduce this flicker. With double buffering,
your drawing logic writes to an in-memory bitmap, which is copied to the form at the end of the
drawing operation in a single, seamless repaint operation. Flickering is reduced dramatically.

.NET Framework 2.0 provides a default double buffering mechanism for forms and controls.
You can enable this by setting the DoubleBuffered property of your form or control to True or by using
the SetStyle method.

The Code

The following example sets the DoubleBuffered property of the form to True and shows an animation
of an image alternately growing and shrinking on the page. The drawing logic takes place in the
Form.Paint event handler, and a timer invalidates the form in a preset interval so that the image can
be redrawn. The user can choose whether to enable double buffering through a checkbox on the
form. Without double buffering, the form flickers noticeably. When double buffering is enabled,
however, the image grows and shrinks with smooth, flicker-free animation.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Drawing2D

' All designed code is stored in the autogenerated partial
' class called Recipe08-07.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_07

 ' Track the image size and the type of animation
 ' (expanding or shrinking).
 Private isShrinking As Boolean = False
 Private imageSize As Integer = 0

 ' Store the logo that will be painted on the form.
 Private img As Image

 Private Sub Recipe08_07_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Load the logo image from the file.
 img = Image.FromFile("test.jpg")

306 CH AP T E R 8 ■ M U L T IM E DI A

 ' Start the timer that invalidates the form.
 tmrRefresh.Start()

 End Sub

 Private Sub tmrRefresh_Tick(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles tmrRefresh.Tick

 ' Change the desired image size according to the animation mode.
 If isShrinking Then
 imageSize -= 1
 Else
 imageSize += 1
 End If

 ' Change the sizing direction if it nears the form border.
 If imageSize > (Me.Width - 150) Then
 isShrinking = True
 ElseIf imageSize < 1 Then
 isShrinking = False
 End If

 Me.Invalidate()

 End Sub

 Private Sub Recipe08_07_Paint(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 Dim g As Graphics

 g = e.Graphics
 g.SmoothingMode = SmoothingMode.HighQuality

 ' Draw the background.
 g.FillRectangle(Brushes.Yellow, New Rectangle(New Point(0, 0), ➥
Me.ClientSize))

 ' Draw the logo image.
 g.DrawImage(img, 50, 50, 50 + imageSize, 50 + imageSize)

 End Sub

 Private Sub chkUseDoubleBuffering_CheckedChanged(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles chkUseDoubleBuffering.CheckedChanged
 Me.DoubleBuffered = chkUseDoubleBuffering.Checked
 End Sub

End Class

CH A PT E R 8 ■ M U L T I M E D IA 307

■Note .NET Framework 3.0 offers options for handling double buffering manually. For more information about
double buffering, refer to the MSDN documentation at http://msdn2.microsoft.com/en-us/library/
ms229622.aspx.

8-8. Show a Thumbnail for an Image

Problem
You need to show thumbnails (small representations of pictures) for the images in a directory.

Solution
Read the image from the file using the Shared FromFile method of the System.Drawing.Image class.
You can then retrieve a thumbnail using the Image.GetThumbnailImage method.

How It Works
The Image class provides the functionality for generating thumbnails through the GetThumbnailImage
method. You simply need to pass the width and height of the thumbnail you want (in pixels), and the
Image class will create a new Image object that fits these criteria. Antialiasing is used when reducing
the image to ensure the best possible image quality, although some blurriness and loss of detail is
inevitable. (Antialiasing is the process of removing jagged edges, often in resized graphics, by adding
shading with an intermediate color.) In addition, you can supply a notification callback, allowing
you to create thumbnails asynchronously.

When generating a thumbnail, it is important to ensure that the aspect ratio remains constant.
For example, if you reduce a 200×100 picture to a 50×50 thumbnail, the width will be compressed to
one quarter and the height will be compressed to one half, distorting the image. To ensure that the
aspect ratio remains constant, you can change either the width or the height to a fixed size, and then
adjust the other dimension proportionately.

■Note If you attempt to load a file that is not a supported image type, you will receive an OutOfMemoryException.
This is important to know because it is not the error you might expect to receive in this situation.

The Code

The following example reads a bitmap file and generates a thumbnail that is not greater than
200×200 pixels while preserving the original aspect ratio:

Imports System
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe08-08.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_08

308 CH AP T E R 8 ■ M U L T IM E DI A

 Private thumbNail As Image

 Private Sub Recipe08_08_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Using img As Image = Image.FromFile("test.jpg")

 Dim thumbnailWidth As Integer = 0
 Dim thumbnailHeight As Integer = 0

 ' Adjust the largest dimension to 200 pixels.
 ' This ensures that a thumbnail will not be larger than
 ' 200x200 pixel square for each one.
 If img.Width > img.Height Then
 thumbnailWidth = 200
 thumbnailHeight = Convert.ToInt32((CSng(200) / img.Width) * ➥
img.Height)
 Else
 thumbnailHeight = 200
 thumbnailWidth = Convert.ToInt32((CSng(200) / img.Height) * ➥
img.Width)
 End If

 thumbNail = img.GetThumbnailImage(thumbnailWidth, thumbnailHeight, ➥
Nothing, IntPtr.Zero)

 End Using

 End Sub

 Private Sub Recipe08_08_Paint(ByVal sender As Object, ➥
ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint
 e.Graphics.DrawImage(thumbNail, 10, 10)
 End Sub

End Class

8-9. Play a Simple Beep or System Sound

Problem
You need to play a simple system-defined beep or sound.

Solution
Use the managed Beep method of the Console class or the Play method of the SystemSound class.

How It Works
.NET Framework 2.0 now has new additions such as the Beep method in the Console class and a new
namespace System.Media, which provides classes for playing sound files.

CH A PT E R 8 ■ M U L T I M E D IA 309

Overloads of the Console.Beep method let you play a beep with the default frequency and dura-
tion or with a frequency and duration you specify. Frequency is represented in hertz (and must range
from 37 to 32,767), and the duration is represented in milliseconds. Internally, these methods invoke
the Beep Win32 function and use the computer’s internal speaker. Thus, if the computer does not
have an internal speaker, no sound will be produced.

The System.Media namespace contains the following classes:

• The SystemSound class represents a Windows sound event, such as an asterisk, beep, question,
and so on. It also defines a Play method, which lets you play the sound associated with it.

• The SystemSounds class defines properties that let you obtain the SystemSound instance of a
specific Windows sound event. For example, it defines an Asterisk property that returns a
SystemSound instance associated with the asterisk Windows sound event.

• The SoundPlayer class lets you play WAV files. For more information about how to play a WAV
file using this class, refer to recipe 8-10.

As an alternative for playing system sounds, you can also use the My namespace (refer to
Chapter 5 for further details). My includes the My.Computer.Audio class, which contains the Shared
PlaySystemSound method for playing system sounds. It takes a SystemSound object as its parameter.

The Code

The following example plays two different beeps and the asterisk sound in succession, using the
Console and SystemSound classes:

Imports System
Imports System.Windows.Forms
Imports System.Media

' All designed code is stored in the autogenerated partial
' class called Recipe08-09.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_09

 Private Sub Recipe08_09_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Play a beep with default frequency and
 ' duration (800 and 200, respectively)
 Console.Beep()

 ' Play a beep with frequency as 200 and duration as 300.
 Console.Beep(200, 300)

 ' Play the sound associated with the Asterisk event.
 SystemSounds.Asterisk.Play()

 End Sub

End Class

The following shows how to use the My namespace to play the system sound:

My.Computer.Audio.PlaySystemSound(SystemSounds.Asterisk)

310 CH AP T E R 8 ■ M U L T IM E DI A

8-10. Play a WAV File

Problem
You need to play a WAV file.

Solution
Create a new instance of the System.Media.SoundPlayer class, pass the location or stream of the WAV
file, and invoke the Play method.

How It Works
.NET Framework 2.0 defines a new System.Media namespace that contains a SoundPlayer class.
SoundPlayer contains constructors that let you specify the location of a WAV file or its stream. Once
you have created an instance, you just need to invoke the Play method to play the file. The Play
method creates a new thread to play the sound and is thus asynchronous (unless a stream is used).
For playing the sound synchronously, use the PlaySync method. Note that SoundPlayer supports
only the WAV format.

Before a file is played, it is loaded into memory. You can load a file in advance by invoking the
Load or LoadSync method, depending on whether you want the operation to be asynchronous or
synchronous.

The My.Computer.Audio class provides an alternative for playing WAV files. This class consists
of the Shared methods Play, PlaySystemSound (refer to recipe 8-9), and Stop. The Play method, the
equivalent of the SoundPlayer.Play method, uses the PlayMode parameter to configure how the
sound is played. PlayMode is an AudioPlayMode enumerated type that can be set to Background (plays
the sound asynchronously), BackgroundLoop (plays the sound asynchronously and loops until the
Stop method is called), and WaitToComplete (plays the sound synchronously).

The Code

The following example shows a simple form that allows users to open any WAV file and play it:

Imports System
Imports System.Windows.Forms
Imports System.Media

' All designed code is stored in the autogenerated partial
' class called Recipe08-10.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_10

 Private Sub cmdOpen_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdOpen.Click

 ' Allow the user to choose a file.
 Dim openDialog As New OpenFileDialog

 openDialog.Filter = "WAV Files|*.wav|All Files|*.*"

CH A PT E R 8 ■ M U L T I M E D IA 311

 If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
 Dim player As New SoundPlayer(openDialog.FileName)

 Try
 player.Play()
 Catch ex As Exception
 MessageBox.Show("An error occurred while playing media.")
 Finally
 player.Dispose()
 End Try

 End If

 End Sub

End Class

To use the My namespace, remove references to the Player object and replace Player.Play()
with this:

My.Computer.Audio.Play(openDialog.FileName)

8-11. Play a Sound File

Problem
You need to play a non-WAV format audio file such as an MP3 file.

Solution
Use the ActiveMovie COM component included with Windows Media Player, which supports WAV
and MP3 audio.

How It Works
The ActiveMovie Quartz library provides a COM component that can play various types of audio
files, including the WAV and MP3 formats. The Quartz type library is provided through quartz.dll
and is included as a part of Microsoft DirectX with Media Player and the Windows operating system.

The first step for using the library is to generate an interop class that can manage the interaction
between your .NET application and the unmanaged Quartz library. You can generate a C# class with
this interop code using the Type Library Importer utility (Tlbimp.exe) and the following command
line, where [WindowsDir] is the path for your installation of Windows:

tlbimp [WindowsDir]\system32\quartz.dll /out:QuartzTypeLib.dll

Alternatively, you can generate the interop class using Visual Studio by adding a reference. To
do this, right-click your project in the Solution Explorer, choose Add Reference from the context
menu, select the COM tab, and scroll down to select ActiveMovie Control Type Library, as shown in
Figure 8-7.

312 CH AP T E R 8 ■ M U L T IM E DI A

Figure 8-7. Adding the Quartz interop class

Once the interop class is generated, you can work with the IMediaControl interface. You can specify
the file you want to play using RenderFile, and you can control playback using methods such as Run, Stop,
and Pause. The actual playback takes place on a separate thread, so it will not block your code.

While the .NET Framework will eventually release any references to a COM object and collect
the memory it uses, it is best practice to do this yourself as soon as it is no longer needed. Managed
code does not access COM objects directly, but instead uses a runtime callable wrapper (RCW). The
RCW acts as a proxy between managed code and a referenced COM object. The Shared method
ReleaseComObject, from the System.Runtime.InteropServices.Marshal class, properly destroys the
RCW and the COM object it used.

The Code

The following example shows a simple form that allows you to open any audio file and play it. The
COM object is destroyed using ReleaseComObject.

You can also use the Quartz library to show movie files, as demonstrated in recipe 8-12.

Imports System
Imports System.Windows.Forms
Imports QuartzTypeLib

' All designed code is stored in the autogenerated partial
' class called Recipe08-11.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_11

 Private Sub cmdOpen_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdOpen.Click

CH A PT E R 8 ■ M U L T I M E D IA 313

 ' Allow the user to choose a file.
 Dim openDialog As New OpenFileDialog

 openDialog.Filter = "Media Files|*.wav;*.mp3;*.mp2;*.wma|All Files|*.*"

 If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
 ' Access the IMediaControl interface.
 Dim graphManager As New QuartzTypeLib.FilgraphManager
 Dim mc As QuartzTypeLib.IMediaControl = DirectCast(graphManager, ➥
QuartzTypeLib.IMediaControl)

 ' Specify the file.
 mc.RenderFile(openDialog.FileName)

 Try
 mc.Run()
 Catch ex As Exception
 MessageBox.Show("An error occurred while playing media.")
 Finally
 ' Destroy the COM object (QuartzTypeLib) that we are using.
 System.Runtime.InteropServices.Marshal.ReleaseComObject(graphManager)
 End Try

 End If

 End Sub
End Class

8-12. Show a Video with DirectShow

Problem
You need to play a video file (such as an MPEG, an AVI, or a WMV file) in a Windows Forms application.

Solution
Use the ActiveMovie COM component included with Windows Media Player. Bind the video output
to a picture box on your form by setting the IVideoWindow.Owner property to the PictureBox.Handle
property.

How It Works
Although the .NET Framework does not include any managed classes for interacting with video files,
you can leverage the functionality of DirectShow using the COM-based Quartz library included with
Windows Media Player and the Windows operating system. For information about creating an interop
assembly for the Quartz type library, refer to recipe 8-11.

Once you have created the interop assembly, you can use the IMediaControl interface to load
and play a movie. This is essentially the same technique demonstrated in recipe 8-11 with audio files.
However, if you want to show the video window inside your application interface (rather than in a
separate stand-alone window), you must also use the IVideoWindow interface. The core FilgraphManager
object can be cast to both the IMediaControl interface and the IVideoWindow interface (several other

314 CH AP T E R 8 ■ M U L T IM E DI A

interfaces are also supported, such as IBasicAudio, which allows you to configure balance and
volume settings). With the IVideoWindow interface, you can bind the video output to a control on your
form, such as a Panel or a PictureBox. To do so, set the IVideoWindow.Owner property to the handle
for the control, which you can retrieve using the Control.Handle property. Then call IVideoWindow.
SetWindowPosition to set the window size and location. You can call this method to change the video
size during playback (for example, if the form is resized).

The Code

The following example shows a simple form that allows users to open any video file and play it back
in the provided picture box. The picture box is anchored to all sides of the form, so it changes size
as the form resizes. The code responds to the PictureBox.SizeChanged event to change the size of
the corresponding video window. Also, the reference to the QuartzTypeLib is destroyed using
ReleaseComObject (discussed in recipe 8-11) when the form is closed.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports QuartzTypeLib

' All designed code is stored in the autogenerated partial
' class called Recipe08-12.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_12

 ' Define the constants used for specifying the window style.
 Private Const WS_CHILD As Integer = &H40000000
 Private Const WS_CLIPCHILDREN As Integer = &H2000000

 ' Hold a form-level reference to the QuartzTypeLib.FilgraphManager
 ' object.
 Private graphManager As FilgraphManager

 ' Hold a form-level reference to the media control interface,
 ' so the code can control playback of the currently loaded
 ' movie.
 Private mc As IMediaControl = Nothing

 ' Hold a form-level reference to the video window in case it
 ' needs to be resized.
 Private videoWindow As IVideoWindow = Nothing

 Private Sub cmdOpen_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdOpen.Click

 ' Allow the user to choose a file.
 Dim openDialog As New OpenFileDialog

 openDialog.Filter = "Media Files|*.mpg;*.avi;*.wma;*.mov;*.wav;*.mp2;*.mp3" & ➥
"|All Files|*.*"

CH A PT E R 8 ■ M U L T I M E D IA 315

 If openDialog.ShowDialog = Windows.Forms.DialogResult.OK Then

 ' Stop the playback for the current movie, if it exists.
 If mc IsNot Nothing Then mc.Stop()

 ' Load the movie file.
 graphmanager = New FilgraphManager
 graphManager.RenderFile(openDialog.FileName)

 ' Attach the view to a picture box on the form.
 Try
 videoWindow = DirectCast(graphmanager, IVideoWindow)
 videoWindow.Owner = pictureBox1.Handle.ToInt32
 videoWindow.WindowStyle = WS_CHILD Or WS_CLIPCHILDREN
 videoWindow.SetWindowPosition(pictureBox1.ClientRectangle.Left, ➥
pictureBox1.ClientRectangle.Top, pictureBox1.ClientRectangle.Width, ➥
pictureBox1.ClientRectangle.Height)
 Catch ex As Exception
 ' An error can occur if the file does not have a video
 ' source (for example, an MP3 file).
 ' You can ignore this error and still allow playback to
 ' continue (without any visualization).
 End Try

 ' Start the playback (asynchronously).
 mc = DirectCast(graphManager, IMediaControl)
 mc.Run()

 End If

 End Sub

 Private Sub pictureBox1_SizeChanged(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles pictureBox1.SizeChanged

 If videoWindow IsNot Nothing Then

 Try
 videoWindow.SetWindowPosition(pictureBox1.ClientRectangle.Left, ➥
pictureBox1.ClientRectangle.Top, pictureBox1.ClientRectangle.Width, ➥
pictureBox1.ClientRectangle.Height)
 Catch ex As Exception
 ' Ignore the exception thrown when resizing the form
 ' when the file does not have a video source.
 End Try

 End If

 End Sub

316 CH AP T E R 8 ■ M U L T IM E DI A

 Private Sub Recipe08_12_FormClosed(ByVal sender As Object, ByVal e As ➥
System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed

 ' Destroy the COM object (QuartzTypeLib) that we are using.
 If mc IsNot Nothing Then
 System.Runtime.InteropServices.Marshal.ReleaseComObject(graphManager)
 End If

 End Sub

End Class

Figure 8-8 shows an example of the output you will see.

Figure 8-8. Playing a video file

8-13. Retrieve Information About
Installed Printers

Problem
You need to retrieve a list of available printers.

Solution
Read the names in the InstalledPrinters collection of the System.Drawing.Printing.PrinterSettings
class.

How It Works
The PrinterSettings class encapsulates the settings for a printer and information about the printer.
For example, you can use the PrinterSettings class to determine supported paper sizes, paper

CH A PT E R 8 ■ M U L T I M E D IA 317

sources, and resolutions and check for the ability to print color or double-sided (duplexed) pages.
In addition, you can retrieve default page settings for margins, page orientation, and so on.

The PrinterSettings class provides a Shared InstalledPrinters string collection, which includes
the name of every printer installed on the computer. If you want to find out more information about
the settings for a specific printer, create a PrinterSettings instance and set the PrinterName property
accordingly.

The Code

The following code shows a console application that finds all the printers installed on a computer
and displays information about the paper sizes and the resolutions supported by each one.

You do not need to take this approach when creating an application that provides printing
features. As you will see in recipe 8-14, you can use the PrintDialog class to prompt the user to
choose a printer and its settings. The PrintDialog class can automatically apply its settings to the
appropriate PrintDocument without any additional code.

Imports System
Imports System.Drawing.Printing

Namespace Apress.VisualBasicRecipes.Chapter08
 Public Class Recipe08_13

 Public Shared Sub Main()

 For Each printerName As String In PrinterSettings.InstalledPrinters

 ' Display the printer name.
 Console.WriteLine("Printer: {0}", printerName)

 ' Retrieve the printer settings.
 Dim printer As New PrinterSettings
 printer.PrinterName = printerName

 ' Check that this is a valid printer.
 ' (This step might be requried if you read the printer name
 ' from a user-supplied value or a registry or configuration
 ' file setting.)
 If printer.IsValid Then
 ' Display the list of valid resolutions.
 Console.WriteLine("Supported Resolutions:")

 For Each resolution As PrinterResolution In ➥
printer.PrinterResolutions
 Console.WriteLine(" {0}", resolution)
 Next
 Console.WriteLine()

 ' Display the list of valid paper sizes.
 Console.WriteLine("Supported Paper Sizes:")

 For Each size As PaperSize In printer.PaperSizes
 If System.Enum.IsDefined(size.Kind.GetType, size.Kind) Then
 Console.WriteLine(" {0}", size)
 End If

318 CH AP T E R 8 ■ M U L T IM E DI A

 Next
 Console.WriteLine()
 End If
 Next
 Console.ReadLine()
 End Sub

 End Class
End Namespace

Usage

Here is the type of output this utility displays:

Printer: SnagIt 8
Supported Resolutions:
 [PrinterResolution High]
 [PrinterResolution Medium]
 [PrinterResolution Low]
 [PrinterResolution Draft]
 [PrinterResolution X=600 Y=600]
 [PrinterResolution X=300 Y=300]
 [PrinterResolution X=200 Y=200]
 [PrinterResolution X=100 Y=100]

Supported Paper Sizes:
 [PaperSize Letter Kind=Letter Height=1100 Width=850]
 [PaperSize Legal Kind=Legal Height=1400 Width=850]
 [PaperSize Executive Kind=Executive Height=1050 Width=725]
 [PaperSize A4 Kind=A4 Height=1169 Width=827]
 [PaperSize Envelope #10 Kind=Number10Envelope Height=950 Width=412]
 [PaperSize Envelope DL Kind=DLEnvelope Height=866 Width=433]
 [PaperSize Envelope C5 Kind=C5Envelope Height=902 Width=638]
 [PaperSize Envelope B5 Kind=B5Envelope Height=984 Width=693]
 [PaperSize Envelope Monarch Kind=MonarchEnvelope Height=750 Width=387]

Printer: Microsoft Office Document Image Writer
. . .

■Note You can print a document in almost any type of application. However, your application must include a
reference to the System.Drawing.dll assembly. If you are using a project type in Visual Studio that would not
normally have this reference (such as a console application), you must add it.

8-14. Print a Simple Document

Problem
You need to print text or images.

CH A PT E R 8 ■ M U L T I M E D IA 319

Solution
Create a PrintDocument and write a handler for the PrintDocument.PrintPage event that uses the
DrawString and DrawImage methods of the Graphics class to print data to the page.

How It Works
The .NET Framework uses an asynchronous event-based printing model. To print a document, you
create a System.Drawing.Printing.PrintDocument instance, configure its properties, and then call its
Print method, which schedules the print job. The common language runtime (CLR) will then fire the
BeginPrint, PrintPage, and EndPrint events of the PrintDocument class on a new thread. You handle
these events and use the provided System.Drawing.Graphics object to output data to the page. Graphics
and text are written to a page in the same way as you draw to a window using GDI+. However, you
might need to track your position on a page, because every Graphics class method requires explicit
coordinates that indicate where to draw.

You configure printer settings through the PrintDocument.PrinterSettings and PrintDocument.
DefaultPageSettings properties. The PrinterSettings property returns a full PrinterSettings object (as
described in recipe 8-13), which identifies the printer that will be used. The DefaultPageSettings
property provides a full PageSettings object that specifies printer resolution, margins, orientation,
and so on. You can configure these properties in code, or you can use the System.Windows.Forms.
PrintDialog class to let the user make the changes using the standard Windows Print dialog box, shown
in Figure 8-9. In the Print dialog box, the user can select a printer and choose the number of copies.
The user can also click the Properties button to configure advanced settings such as page layout and
printer resolution. Finally, the user can either accept or cancel the print operation by clicking OK
or Cancel.

Figure 8-9. Using the PrintDialog class

Before using the PrintDialog class, you must explicitly attach it to a PrintDocument object by
setting the PrintDialog.Document property. Then any changes the user makes in the Print dialog box
will be automatically applied to the PrintDocument object.

320 CH AP T E R 8 ■ M U L T IM E DI A

The Code

The following example provides a form with a single button. When the user clicks the button, the
application creates a new PrintDocument, allows the user to configure print settings, and then starts
an asynchronous print operation (provided the user clicks OK). An event handler responds to the
PrintPage event and writes several lines of text and an image.

This example has one limitation: it can print only a single page. To print more complex docu-
ments and span multiple pages, you will probably want to create a specialized class that encapsulates the
document information, the current page, and so on, as described in recipe 8-15.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Printing
Imports System.IO

' All designed code is stored in the autogenerated partial
' class called Recipe08-14.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_14

 Private Sub cmdPrint_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdPrint.Click

 ' Create the document and attach an event handler.
 Dim doc As New PrintDocument

 AddHandler doc.PrintPage, AddressOf Doc_PrintPage

 ' Allow the user to choose a printer and specify other settings.
 Dim dlgSettings As New PrintDialog
 dlgSettings.Document = doc

 ' If the user clicked OK, print the document.
 If dlgSettings.ShowDialog = Windows.Forms.DialogResult.OK Then
 ' This method returns immediately, before the print job starts.
 ' The PrintPage event will fire asynchronously.
 doc.Print()
 End If

 End Sub

 Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)

 ' Determine the font.
 Using fnt As New Font("Arial", 30)
 ' Determine the position on the page. In this case,
 ' we read the margin settings (although there is
 ' nothing that prevents your code from going outside
 ' the margin bounds).
 Dim x As Single = e.MarginBounds.Left
 Dim y As Single = e.MarginBounds.Top

 ' Determine the height of a line (based on the font used).

CH A PT E R 8 ■ M U L T I M E D IA 321

 Dim lineHeight As Single = Font.GetHeight(e.Graphics)

 ' Print five lines of text.
 For i As Integer = 1 To 5
 ' Draw the text with a black brush, using the
 ' font and coordinates we have determined.
 e.Graphics.DrawString("This is line " & i.ToString, Font, ➥
Brushes.Black, x, y)

 ' Move down the equivalent spacing of one line.
 y += lineheight
 Next
 y += lineHeight

 ' Draw an image.
 e.Graphics.DrawImage(Image.FromFile(Path.Combine(➥
Application.StartupPath, "test.jpg")), x, y)

 End Using

 End Sub
End Class

8-15. Print a Multipage Document

Problem
You need to print complex documents with multiple pages and possibly print several different docu-
ments at once.

Solution
Place the information you want to print into a custom class that derives from PrintDocument, and in
the PrintPage event handler, set the PrintPageEventArgs.HasMorePages property to True as long as
pages are remaining.

How It Works
The PrintDocument.PrintPage event is triggered to let you to print only a single page. If you need to
print more pages, you need to set the PrintPageEventArgs.HasMorePages property to True in the
PrintPage event handler. As long as HasMorePages is set to True, the PrintDocument class will continue
firing PrintPage events. However, it is up to you to track which page you are on, what data should be
placed on each page, and what is the last page for which HasMorePage is not set to True. To facilitate
this tracking, it is a good idea to create a custom class.

The Code

The following example shows a class called TextDocument. This class inherits from PrintDocument
and adds three properties. Text stores an array of text lines, PageNumber reflects the last printed page,
and Offset indicates the last line that was printed from the Text array.

322 CH AP T E R 8 ■ M U L T IM E DI A

Public Class TextDocument
 Inherits PrintDocument

 Private m_Text As String()
 Private m_PageNumber As Integer
 Private m_Offset As Integer

 Public Sub New(ByVal txt As String())

 Me.Text = txt

 End Sub

 Public Property Text() As String()
 Get
 Return m_Text
 End Get
 Set(ByVal value As String())
 m_Text = value
 End Set
 End Property

 Public Property PageNumber() As Integer
 Get
 Return m_PageNumber
 End Get
 Set(ByVal value As Integer)
 m_PageNumber = value
 End Set
 End Property

 Public Property Offset() As Integer
 Get
 Return m_Offset
 End Get
 Set(ByVal value As Integer)
 m_Offset = value
 End Set
 End Property

End Class

Depending on the type of material you are printing, you might want to modify this class. For
example, you could store an array of image data, some content that should be used as a header or
footer on each page, font information, or even the name of a file from which you want to read the
information. Encapsulating the information in a single class makes it easier to print more than one
document at the same time. This is especially important because the printing process runs in a new
dedicated thread. As a consequence, the user is able to keep working in the application and therefore
update your data while the pages are printing. So, this dedicated class should contain a copy of the
data to print to avoid any concurrency problems.

The code that initiates printing is the same as in recipe 8-14, but now it creates a TextDocument
instance instead of a PrintDocument instance. The PrintPage event handler keeps track of the current
line and checks whether the page has space before attempting to print the next line. If a new page is
needed, the HasMorePages property is set to True and the PrintPage event fires again for the next page.

CH A PT E R 8 ■ M U L T I M E D IA 323

If not, the print operation is deemed complete. This simple code sample also takes into account
whether a line fits on the page, according to the height (see recipe 8-16).

The full form code is as follows:

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Printing

' All designed code is stored in the autogenerated partial
' class called Recipe08-15.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_15

 Private Sub cmdPrint_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdPrint.Click

 ' Create a document with 100 lines.
 Dim printText As String() = New String(100) {}

 For i As Integer = 1 To 100
 printText(i) = i.ToString
 printText(i) += ": The quick brown fox jumps over the lazy dog."
 Next

 Dim doc As New TextDocument(printText)

 AddHandler doc.PrintPage, AddressOf Doc_PrintPage

 Dim dlgSettings As New PrintDialog
 dlgSettings.Document = doc

 ' If the user clicked OK, print the document.
 If dlgSettings.ShowDialog = Windows.Forms.DialogResult.OK Then
 ' This method returns immediately, before the print job starts.
 ' The PrintPage event will fire asynchronously.
 doc.Print()
 End If

 End Sub

 Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)

 ' Retrieve the document that sent this event.
 Dim doc As TextDocument = DirectCast(sender, TextDocument)

 ' Determine the font and determine the line height.
 Using fnt As New Font("Arial", 10)
 Dim lineHeight As Single = Font.GetHeight(e.Graphics)

 ' Create variables to hold position on the page.
 Dim x As Single = e.MarginBounds.Left
 Dim y As Single = e.MarginBounds.Top

324 CH AP T E R 8 ■ M U L T IM E DI A

 ' Increment the page counter (to reflect the page that
 ' is about to be printed).
 doc.PageNumber += 1

 ' Print all the information that can fit on the page.
 ' This loop ends when the next line would go over the
 ' bottom margin or there are no more lines to print.
 While ((y + lineHeight) < e.MarginBounds.Bottom And doc.Offset <= ➥
doc.Text.GetUpperBound(0))
 e.Graphics.DrawString(doc.Text(doc.Offset), Font, Brushes.Black, ➥
x, y)

 ' Move to the next line of data.
 doc.Offset += 1

 ' Move the equivalent of one line down the page.
 y += lineHeight
 End While

 If doc.Offset < doc.Text.GetUpperBound(0) Then
 ' There is still at least one more page. Signal
 ' this event to fire again.
 e.HasMorePages = True
 Else
 ' Printing is complete.
 doc.Offset = 0
 End If

 End Using

 End Sub
End Class

8-16. Print Wrapped Text

Problem
You need to parse a large block of text into distinct lines that fit on one page.

Solution
Use the Graphics.DrawString method overload that accepts a bounding rectangle.

How It Works
Often, you will need to break a large block of text into separate lines that can be printed individually
on a page. The .NET Framework can perform this task automatically, provided you use a version of
the Graphics.DrawString method that accepts a bounding rectangle. You specify a rectangle that
represents where you want the text to be displayed. The text is then wrapped automatically to fit
within those confines.

CH A PT E R 8 ■ M U L T I M E D IA 325

The Code

The following code demonstrates this approach, using the bounding rectangle that represents the
printable portion of the page. It prints a large block of text from a textbox on the form.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Printing

' All designed code is stored in the autogenerated partial
' class called Recipe08-16.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_16

 Private Sub cmdPrint_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdPrint.Click

 ' Create the document and attach an event handler.
 Dim text As String = "Windows Server 2003 builds on the core strengths " & _
 "of the Windows family of operating systems--security, manageability, " & _
 "reliability, availability, and scalability. Windows Server 2003 " & _
 "provides an application environment to build, deploy, manage, and " & _
 "run XML web services. Additionally, advances in Windows Server 2003 " & _
 "provide many benefits for developing applications."

 Dim doc As New ParagraphDocument(text)
 AddHandler doc.PrintPage, AddressOf Doc_PrintPage

 ' Allow the user to choose a printer and specify other settings.
 Dim dlgsettings As New PrintDialog
 dlgsettings.Document = doc

 ' If the user clicked OK, print the document.
 If dlgsettings.ShowDialog = Windows.Forms.DialogResult.OK Then
 doc.Print()
 End If

 End Sub

 Private Sub Doc_PrintPage(ByVal sender As Object, ByVal e As PrintPageEventArgs)

 ' Retrieve the document that sent this event.
 Dim doc As ParagraphDocument = DirectCast(sender, ParagraphDocument)

 ' Define the font and text.
 Using fnt As New Font("Arial", 15)
 e.Graphics.DrawString(doc.Text, Font, Brushes.Black, ➥
e.MarginBounds, StringFormat.GenericDefault)
 End Using

 End Sub
End Class

326 CH AP T E R 8 ■ M U L T IM E DI A

Public Class ParagraphDocument
 Inherits PrintDocument

 Private m_Text As String

 Public Sub New(ByVal txt As String)
 Me.Text = txt
 End Sub

 Public Property Text() As String
 Get
 Return m_Text
 End Get
 Set(ByVal value As String)
 m_Text = value
 End Set
 End Property

End Class

Figure 8-10 shows the wrapped text.

Figure 8-10. The printed document with wrapping

CH A PT E R 8 ■ M U L T I M E D IA 327

8-17. Show a Dynamic Print Preview

Problem
You need to use an on-screen preview that shows how a printed document will look.

Solution
Use PrintPreviewDialog or PrintPreviewControl (both of which are found in the System.Windows.
Forms namespace).

How It Works
The .NET Framework provides two elements of user interface that can take a PrintDocument instance,
run your printing code (such as the code demonstrated in recipe 8-15), and use it to generate a graph-
ical on-screen preview:

• The PrintPreviewDialog, which shows a preview in a stand-alone form

• The PrintPreviewControl, which shows a preview in a control that can be embedded in one
of your own custom forms

To use a stand-alone print preview form, create a PrintPreviewDialog object, assign its Document
property, and call the Show method:

Dim dlgPreview As New PrintPreviewDialog
dlgPreview.Document = doc
dlgPreview.Show()

The Print Preview window (shown in Figure 8-11) provides all the controls the user needs to
move from page to page, zoom in, and so on. The window even provides a print button that allows
the user to send the document directly to the printer. You can tailor the window to some extent by
modifying the PrintPreviewDialog properties.

You can also add a PrintPreviewControl control to any of your forms to show a preview along-
side other information. In this case, you do not need to call the Show method. As soon as you set
the PrintPreviewControl.Document property, the preview is generated. To clear the preview,
set the Document property to Nothing. To refresh the preview, reassign the Document property.
PrintPreviewControl shows only the preview pages, not any additional controls. However, you can
add your own controls for zooming, tiling multiple pages, and so on. You simply need to adjust the
PrintPreviewControl properties accordingly.

328 CH AP T E R 8 ■ M U L T IM E DI A

Figure 8-11. Using the PrintPreviewDialog control

The Code

As an example, consider the form shown in Figure 8-12. It incorporates a PrintPreviewControl and
allows the user to select a zoom setting.

Figure 8-12. Using the PrintPreviewControl in a custom window

CH A PT E R 8 ■ M U L T I M E D IA 329

Here is the complete form code:

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Drawing.Printing

' All designed code is stored in the autogenerated partial
' class called Recipe08-17.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_17

 Private doc As PrintDocument

 Private Sub Recipe08_17_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 ' Set the allowed zoom settings.
 For i As Integer = 1 To 10
 lstZoom.Items.Add((i * 10).ToString)
 Next

 ' Create a document with 100 lines.
 Dim printText As String() = New String(100) {}

 For i As Integer = 1 To 100
 printText(i) = i.ToString
 printText(i) += ": The quick brown fox jumps over the lazy dog."
 Next

 Dim doc As New TextDocument(printText)

 AddHandler doc.PrintPage, AddressOf Doc_PrintPage

 lstZoom.Text = "100"
 printPreviewControl.Zoom = 1
 printPreviewControl.Document = doc
 printPreviewControl.Rows = 2

 End Sub

 ' (PrintDocument.PrintPage event handler code omitted. See recipe 8-15.)

 Private Sub cmdPrint_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdPrint.Click

 ' Set the zoom.
 printPreviewControl.Zoom = Single.Parse(lstZoom.Text) / 100

 ' Rebind the PrintDocument to refresh the preview.
 printPreviewControl.Document = doc

 End Sub

330 CH AP T E R 8 ■ M U L T IM E DI A

End Class

' (TextDocument class code omitted. See recipe 8-15.)

8-18. Manage Print Jobs

Problem
You need to pause or resume a print job or a print queue.

Solution
Use Windows Management Instrumentation (WMI). You can retrieve information from the print
queue using a query with the Win32_PrintJob class, and you can use the Pause and Resume methods
of the WMI Win32_PrintJob and Win32_Printer classes to manage the queue.

How It Works
WMI allows you to retrieve a vast amount of system information using a querylike syntax. One of the
tasks you can perform with WMI is to retrieve a list of outstanding print jobs, along with information
about each one. You can also perform operations such as printing and resuming a job or all the jobs
for a printer. To use WMI, you need to add a reference to the System.Management.dll assembly.

The Code

The following code shows a Windows application that interacts with the print queue. It performs a
WMI query to get a list of all the outstanding print jobs on the computer and displays the job ID for
each one in a list box. When the user selects the item, a more complete WMI query is performed, and
additional details about the print job are displayed in a textbox. Finally, the user can click the Pause
and Resume button after selecting a job to change its status.

Remember that Windows permissions might prevent you from pausing or resuming print jobs
created by another user. In fact, permissions might even prevent you from retrieving status informa-
tion and could cause a security exception to be thrown.

Imports System
Imports System.Drawing
Imports System.Windows.Forms
Imports System.Management
Imports System.Collections
Imports System.Text

' All designed code is stored in the autogenerated partial
' class called Recipe08-18.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class Recipe08_18

 Private Sub cmdRefresh_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdRefresh.Click

CH A PT E R 8 ■ M U L T I M E D IA 331

 ' Select all the outstanding print jobs.
 Dim query As String = "SELECT * FROM Win32_PrintJob"

 Using jobQuery As New ManagementObjectSearcher(query)
 Using jobs As ManagementObjectCollection = jobQuery.Get()
 ' Add the jobs in the queue to the list box.
 lstJobs.Items.Clear()
 txtJobInfo.Text = ""

 For Each job As ManagementObject In jobs
 lstJobs.Items.Add(job("JobID"))
 Next
 End Using
 End Using

 End Sub

 Private Sub Recipe08_18_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 cmdRefresh_Click(Nothing, Nothing)

 End Sub

 ' This helper method performs a WMI query and returns the
 ' WMI job for the currently selected list box item.
 Private Function GetSelectedJob(ByVal jobID As String) As ManagementObject

 Try
 ' Select the matching print job.
 Dim query As String = "SELECT * FROM Win32_PrintJob WHERE JobID='" & ➥
jobID & "'"
 Dim job As ManagementObject = Nothing

 Using jobQuery As New ManagementObjectSearcher(query)
 Dim jobs As ManagementObjectCollection = jobQuery.Get
 Dim enumerator As IEnumerator = jobs.GetEnumerator

 enumerator.MoveNext()
 job = DirectCast(enumerator.Current, ManagementObject)
 End Using

 Return job
 Catch ex As InvalidOperationException
 ' The current property of the enumerator is invalid.
 Return Nothing
 End Try

 End Function

332 CH AP T E R 8 ■ M U L T IM E DI A

 Private Sub lstJobs_SelectedIndexChanged(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles lstJobs.SelectedIndexChanged

 Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)

 If job Is Nothing Then
 txtJobInfo.Text = ""
 Exit Sub
 End If

 ' Display job information.
 Dim jobInfo As New StringBuilder

 jobInfo.AppendFormat("Document: {0}", job("Document").ToString)
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("DriverName: {0}", job("DriverName").ToString)
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("Status: {0}", job("Status").ToString)
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("Owner: {0}", job("Owner").ToString)
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("PagesPrinted: {0}", job("PagesPrinted").ToString)
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("TotalPages: {0}", job("TotalPages").ToString)

 If job("JobStatus") IsNot Nothing Then
 txtJobInfo.Text += Environment.NewLine
 txtJobInfo.Text += "JobStatus: " & job("JobStatus").ToString
 End If

 If job("StartTime") IsNot Nothing Then
 jobInfo.Append(Environment.NewLine)
 jobInfo.AppendFormat("StartTime: {0}", job("StartTime").ToString)
 End If
 txtJobInfo.Text = jobInfo.ToString

 End Sub

 Private Sub cmdPause_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdPause.Click

 If lstJobs.SelectedIndex = -1 Then Exit Sub

 Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)

CH A PT E R 8 ■ M U L T I M E D IA 333

 If job Is Nothing Then Exit Sub

 ' Attempt to pause the job.
 Dim returnValue As Integer = CType(job.InvokeMethod("Pause", Nothing), ➥
Integer)

 ' Display information about the return value.
 If returnValue = 0 Then
 MessageBox.Show("Successfully paused job.")
 Else
 MessageBox.Show("Unrecognized return value when pausing job.")
 End If

 End Sub

 Private Sub cmdResume_Click(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles cmdResume.Click

 If lstJobs.SelectedIndex = -1 Then Exit Sub

 Dim job As ManagementObject = GetSelectedJob(lstJobs.Text)

 If job Is Nothing Then Exit Sub

 If (CInt(job("StatusMask") And 1)) = 1 Then
 ' Attempt to resume the job.
 Dim returnValue As Integer = CType(job.InvokeMethod("Resume", Nothing), ➥
Integer)

 ' Display information about the return value.
 If returnValue = 0 Then
 MessageBox.Show("Successfully resumed job.")
 ElseIf returnValue = 5 Then
 MessageBox.Show("Access denied.")
 Else
 MessageBox.Show("Unrecognized return value when resuming job.")
 End If

 End If

 End Sub

End Class

Figure 8-13 shows an example of running this application.

334 CH AP T E R 8 ■ M U L T IM E DI A

Figure 8-13. Retrieving information from the print queue

■Note Other WMI methods you might use in a printing scenario include AddPrinterConnection,
SetDefaultPrinter, CancelAllJobs, and PrintTestPage, all of which work with the Win32_Printer
class. For more information about WMI, refer to http://www.microsoft.com/whdc/system/pnppwr/wmi/
default.mspx.

335

■ ■ ■

C H A P T E R 9

Database Access

In the Microsoft .NET Framework, access to a wide variety of data sources is enabled through a
group of classes collectively named Microsoft ADO.NET. Each type of data source is supported
through the provision of a data provider. Each data provider contains a set of classes that not only
implement a standard set of interfaces (defined in the System.Data namespace), but also provide
functionality unique to the data source they support. These classes include representations of
connections, commands, properties, data adapters, and data readers through which you interact
with a data source.

■Note ADO.NET is an extensive subsection of the .NET Framework class library and includes a great deal of
advanced functionality. For comprehensive coverage of ADO.NET, read David Sceppa’s excellent book Programming
Microsoft ADO.NET 2.0 Core Reference (Microsoft Press, 2006).

Table 9-1 lists the data providers included as standard with the .NET Framework.

Table 9-1. .NET Framework Data Provider Implementations

Data Provider Description

.NET Framework
Data Provider
for ODBC

Provides connectivity (via COM Interop) to any data source that implements an
ODBC interface. This includes Microsoft SQL Server, Oracle, and Microsoft
Access databases. Data provider classes are contained in the System.Data.
Odbc namespace and have the prefix Odbc.

.NET Framework
Data Provider
for OLE DB

Provides connectivity (via COM Interop) to any data source that implements an
OLE DB interface. This includes Microsoft SQL Server, MSDE, Oracle, and Jet
databases. Data provider classes are contained in the System.Data.OleDb
namespace and have the prefix OleDb.

.NET Framework
Data Provider
for Oracle

Provides optimized connectivity to Oracle databases via Oracle client
software version 8.1.7 or later. Data provider classes are contained in the
System.Data.OracleClient namespace and have the prefix Oracle.

.NET Framework
Data Provider for
SQL Server

Provides optimized connectivity to Microsoft SQL Server version 7 and later
(including MSDE) by communicating directly with the SQL Server data
source, without the need to use ODBC or OLE DB. Data provider classes are
contained in the System.Data.SqlClient namespace and have the prefix Sql.

.NET Compact
Framework Data
Provider for SQL
Server CE

Provides connectivity to Microsoft SQL Server 2005 Compact Edition. Data
provider classes are contained in the System.Data.SqlServerCe namespace
and have the prefix SqlCe.

336 CH AP T E R 9 ■ D AT AB A SE ACC E S S

■Tip Where possible, the recipes in this chapter are programmed against the interfaces defined in the System.
Data namespace. This approach makes it easier to apply the solutions to any database. Adopting this approach in
your own code will make it more portable. However, the data provider classes that implement these interfaces often
implement additional functionality specific to their own database. Generally, you must trade off portability against
access to proprietary functionality when it comes to database code. Recipe 9-10 describes how you can use the
System.Data.Common.DbProviderFactory and associated classes (new to .NET Framework 2.0) to write
generic code that is not tied to a specific database implementation.

This chapter describes some of the most commonly used aspects of ADO.NET. The recipes in
this chapter describe how to do the following:

• Create, configure, open, and close database connections (recipe 9-1)

• Employ connection pooling to improve the performance and scalability of applications that
use database connections (recipe 9-2)

• Create and securely store database connection strings (recipes 9-3 and 9-4)

• Execute SQL commands and stored procedures, and use parameters to improve their flexi-
bility (recipes 9-5 and 9-6)

• Process the results returned by database queries as either a set of rows or as XML (recipes 9-7
and 9-8)

• Execute database operations asynchronously, allowing your main code to continue with
other tasks while the database operation executes in the background (recipe 9-9)

• Write generic ADO.NET code that can be configured to work against any relational database
for which a data provider is available (recipe 9-10)

• Discover all instances of SQL Server 2000 and SQL Server 2005 available on a network
(recipe 9-11)

■Note Unless otherwise stated, the recipes in this chapter have been written to use SQL Server 2005 Express
Edition running on the local machine and use the AdventureWorks sample database provided by Microsoft. To run
the examples against your own database, ensure the AdventureWorks sample is installed and update the recipe’s
connection string to contain the name of your server instead of .\sqlexpress. You can obtain the script to set up
the AdventureWorks database from http://www.microsoft.com/downloads/details.aspx?familyid=
E719ECF7-9F46-4312-AF89-6AD8702E4E6E&displaylang=en. Download and run the AdventureWorksDB.msi
file. This site also contains the file SQLServerDatabasesAndSamplesOverview.htm, which contains instructions for
installing the AdventureWorks database.

9-1. Connect to a Database

Problem
You need to open a connection to a database.

C H AP TE R 9 ■ DA TA B AS E A CC E SS 337

Solution
Create a connection object appropriate to the type of database to which you need to connect. Configure
the connection object by setting its ConnectionString property. Open the connection by calling the
connection object’s Open method.

How It Works
The first step in database access is to open a connection to the database. All connection objects inherit
from the abstract (MustInherit) System.Data.Common.DbConnection class. This class implements the
System.Data.IDbConnection interface. The DbConnection class represents a database connection,
and each data provider includes a unique implementation. Here is the list of the implementations
for the five standard data providers:

• System.Data.Odbc.OdbcConnection

• System.Data.OleDb.OleDbConnection

• System.Data.OracleClient.OracleConnection

• System.Data.SqlClient.SqlConnection

• System.Data.SqlServerCe.SqlCeConnection

You configure a connection object using a connection string. A connection string is a set of
semicolon-separated name-value pairs. You can supply a connection string either as a constructor
argument or by setting a connection object’s ConnectionString property before opening the connec-
tion. Each connection class implementation requires that you provide different information in the
connection string. Refer to the ConnectionString property documentation for each implementation
to see the values you can specify. Possible settings include the following:

• The name of the target database server

• The name of the database to open initially

• Connection time-out values

• Connection-pooling behavior (see recipe 9-2)

• Authentication mechanisms to use when connecting to secured databases, including provision
of a username and password if needed

Once configured, call the connection object’s Open method to open the connection to the data-
base. You can then use the connection object to execute commands against the data source (discussed
in recipe 9-3). The properties of a connection object also allow you to retrieve information about the
state of a connection and the settings used to open the connection. When you’re finished with a
connection, you should always call its Close method to free the underlying database connection and
system resources. IDbConnection extends System.IDisposable, meaning that each connection class
implements the Dispose method. Dispose automatically calls Close, making the Using statement a
very clean and efficient way of using connection objects in your code.

You achieve optimum scalability by opening your database connection as late as possible and
closing it as soon as you have finished. This ensures that you do not tie up database connections for
long periods, so you give all code the maximum opportunity to obtain a connection. This is especially
important if you are using connection pooling.

338 CH AP T E R 9 ■ D AT AB A SE ACC E S S

The Code

The following example demonstrates how to use both the SqlConnection and OleDbConnection classes to
open a connection to a Microsoft SQL Server database running on the local machine that uses inte-
grated Windows security.

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.OleDb

Namespace Apress.VisualBasicRecipes.Chapter09

 Public Class Recipe09_01

 Public Shared Sub SqlConnectionExample()

 ' Configure an empty SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Open the database connection.
 con.Open()

 ' Display the information about the connection.
 If con.State = ConnectionState.Open Then
 Console.WriteLine("SqlConnection Information:")
 Console.WriteLine(" Connection State = " & con.State)
 Console.WriteLine(" Connection String = " & ➥
con.ConnectionString)
 Console.WriteLine(" Database Source = " & con.DataSource)
 Console.WriteLine(" Database = " & con.Database)
 Console.WriteLine(" Server Version = " & con.ServerVersion)
 Console.WriteLine(" Workstation Id = " & con.WorkstationId)
 Console.WriteLine(" Timeout = " & con.ConnectionTimeout)
 Console.WriteLine(" Packet Size = " & con.PacketSize)
 Else
 Console.WriteLine("SqlConenction failed to open.")
 Console.WriteLine(" Connection State = " & con.State)
 End If

 ' Close the database connection.
 con.Close()

 End Using

 End Sub

 Public Shared Sub OleDbConnectionExample()

C H AP TE R 9 ■ DA TA B AS E A CC E SS 339

 ' Configure an empty SqlConnection object.
 Using con As New OleDbConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Provider=SQLOLEDB;Data " & ➥
"Source=.\sqlexpress;Initial Cataglo=AdventureWorks;Integrated Security=SSPI;"

 ' Open the database connection.
 con.Open()

 ' Display the information about the connection.
 If con.State = ConnectionState.Open Then
 Console.WriteLine("OleDbConnection Information:")
 Console.WriteLine(" Connection State = " & con.State)
 Console.WriteLine(" Connection String = " & ➥
con.ConnectionString)
 Console.WriteLine(" Database Source = " & con.DataSource)
 Console.WriteLine(" Database = " & con.Database)
 Console.WriteLine(" Server Version = " & con.ServerVersion)
 Console.WriteLine(" Timeout = " & con.ConnectionTimeout)
 Else
 Console.WriteLine("OleDbConnection failed to open.")
 Console.WriteLine(" Connection State = " & con.State)
 End If

 ' Close the database connection.
 con.Close()

 End Using

 End Sub

 Public Shared Sub Main()

 ' Open connection using SqlConnection.
 SqlConnectionExample()
 Console.WriteLine(Environment.NewLine)

 ' Open connection using OleDbConnection.
 OleDbConnectionExample()
 Console.WriteLine(Environment.NewLine)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

340 CH AP T E R 9 ■ D AT AB A SE ACC E S S

9-2. Use Connection Pooling

Problem
You need to use a pool of database connections to improve application performance and scalability.

Solution
Configure the connection pool using settings in the connection string of a connection object.

How It Works
Connection pooling significantly reduces the overhead associated with creating and destroying
database connections. Connection pooling also improves the scalability of solutions by reducing the
number of concurrent connections a database must maintain. Many of these connections sit idle for
a significant portion of their lifetimes.

With connection pooling, the first time you create a connection, the .NET Framework checks
the pool to see if a connection is available. If the pool hasn’t yet reached its limit, a new connection
will be created and added to it. The next time you attempt to use a connection with the identical
connection string, instead of a new connection being created and opened, the existing connection
in the pool is used. When you close the connection, it is returned to the pool until it is needed again.
Once created, a pool exists until your process terminates.

The SQL Server and Oracle data providers encapsulate connection-pooling functionality that
they enable by default. One connection pool exists for each unique connection string you specify
when you open a new connection. Each time you open a new connection with a connection string
that you used previously, the connection is taken from the existing pool. Only if you specify a different
connection string will the data provider create a new connection pool. You can control some char-
acteristics of your pool using the connection string settings described in Table 9-2.

Table 9-2. Connection String Settings That Control Connection Pooling

Setting Description

Connection Lifetime Specifies the maximum time in seconds that a connection is allowed
to live in the pool before it’s closed. The age of a connection is tested
only when the connection is returned to the pool. This setting is useful
for minimizing pool size if the pool is not heavily used and also ensures
optimal load balancing is achieved in clustered database environments.
The default value is 0, which means connections exist for the life of
the current process.

Connection Reset Supported only by the SQL Server data provider. Specifies whether
connections are reset as they are taken from the pool. A value of True
(the default) ensures a connection’s state is reset but requires an
additional communication with the database.

Max Pool Size Specifies the maximum number of connections that should be in the
pool. Connections are created and added to the pool as required until
this value is reached. If a request for a connection is made but there
are no free connections, the calling code will block until a connection
becomes available. The default value is 100.

C H AP TE R 9 ■ DA TA B AS E A CC E SS 341

The Code

The following example demonstrates the configuration of a connection pool that contains a minimum of
5 and a maximum of 15 connections. Connections expire after 10 minutes (600 seconds) and are
reset each time a connection is obtained from the pool. The example also demonstrates how to use
the Pooling setting to obtain a connection object that is not from a pool. This is useful if your appli-
cation uses a single long-lived connection to a database.

Imports System
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
 Public Class Recipe09_02

 Public Shared Sub Main()

 ' Obtain a pooled connection.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=15;" & ➥
"Connection Reset=True;Connection Lifetime=600;"

 ' Open the database connection.
 con.Open()

 ' Access the database...

 ' Close the database connection.
 ' This returns the connection to the pool for reuse.
 con.Close()

 End Using

 ' Obtain a nonpooled connection.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;Pooling=False;"

 ' Open the database connection.

Min Pool Size Specifies the minimum number of connections that should be in the
pool. On pool creation, this number of connections is created and added
to the pool. During periodic maintenance, or when a connection is
requested, connections are added to the pool to ensure the minimum
number of connections is available. The default value is 0.

Pooling Set to False to obtain a nonpooled connection. The default value
is True.

Table 9-2. Connection String Settings That Control Connection Pooling

Setting Description

342 CH AP T E R 9 ■ D AT AB A SE ACC E S S

 con.Open()

 ' Access the database...

 ' Close the database connection.
 con.Close()

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes
The ODBC and OLE DB data providers also support connection pooling, but they do not implement
connection pooling within managed .NET classes, and you do not configure the pool in the same
way as you do for the SQL Server and Oracle data providers. ODBC connection pooling is managed
by the ODBC Driver Manager and configured using the ODBC Data Source Administrator tool in the
Control Panel. OLE DB connection pooling is managed by the native OLE DB implementation. The most
you can do is disable pooling by including the setting OLE DB Services=-4; in your connection string.

The SQL Server CE data provider does not support connection pooling, because SQL Server CE
supports only a single concurrent connection.

9-3. Create a Database Connection String
Programmatically

Problem
You need to programmatically create or modify a syntactically correct connection string by working
with its component parts or by parsing a given connection string.

Solution
Use the System.Data.Common.DbConnectionStringBuilder class or one of its strongly typed subclasses
that form part of an ADO.NET data provider.

How It Works
Connection strings are String objects that contain a set of configuration parameters in the form of
name-value pairs separated by semicolons. These configuration parameters instruct the ADO.NET
infrastructure how to open a connection to the data source you want to access and how to handle

C H AP TE R 9 ■ DA TA B AS E A CC E SS 343

the life cycle of connections to that data source. As a developer, you will often simply define your
connection string by hand and store it in a configuration file (see recipe 9-4). However, at times, you
may want to build a connection string from component elements entered by a user, or you may want
to parse an existing connection string into its component parts to allow you to manipulate it program-
matically. The DbConnectionStringBuilder class (new to .NET Framework 2.0) and the classes
derived from it provide both these capabilities.

DbConnectionStringBuilder is a class used to create connection strings from name-value pairs
or to parse connection strings, but it does not enforce any logic on which configuration parameters
are valid. Instead, each data provider (except the SQL Server CE data provider) includes a unique
implementation derived from DbConnectionStringBuilder that accurately enforces the configura-
tion rules for a connection string of that type. Here is the list of available DbConnectionStringBuilder
implementations for standard data providers:

• System.Data.Odbc.OdbcConnectionStringBuilder

• System.Data.OleDb.OleDbConnectionStringBuilder

• System.Data.OracleClient.OracleConnectionStringBuilder

• System.Data.SqlClient.SqlConnectionStringBuilder

Each of these classes exposes properties for getting and setting the possible parameters for a
connection string of that type. To parse an existing connection string, pass it as an argument when
creating the DbConnectionStringBuilder derived class or set the ConnectionString property. If this
string contains a keyword not supported by the type of connection, an ArgumentException exception
is thrown.

The Code

The following example demonstrates the use of the SqlConnectionStringBuilder class to parse and
construct SQL Server connection strings.

Imports System
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
 Public Class Recipe09_03

 Public Shared Sub Main()

 ' Configure the SqlConnection object's connection string.
 Dim conString As String = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=15;" & ➥
"Connection Reset=True;Connection Lifetime=600;"

 ' Parse the SQL Server connection string and display the component
 ' configuration parameters.
 Dim sb1 As New SqlConnectionStringBuilder(conString)

 Console.WriteLine("Parsed SQL Connection String Parameters:")
 Console.WriteLine(" Database Source = " & sb1.DataSource)
 Console.WriteLine(" Database = " & sb1.InitialCatalog)
 Console.WriteLine(" Use Integrated Security = " & ➥
sb1.IntegratedSecurity)

344 CH AP T E R 9 ■ D AT AB A SE ACC E S S

 Console.WriteLine(" Min Pool Size = " & sb1.MinPoolSize)
 Console.WriteLine(" Max Pool Size = " & sb1.MaxPoolSize)
 Console.WriteLine(" Lifetime = " & sb1.LoadBalanceTimeout)
 Console.WriteLine(" Connection Reset = " & sb1.ConnectionReset)

 ' Build a connection string from component parameters and display it.
 Dim sb2 As New SqlConnectionStringBuilder(conString)

 sb2.DataSource = ".\sqlexpress"
 sb2.InitialCatalog = "AdventureWorks"
 sb2.IntegratedSecurity = True
 sb2.MinPoolSize = 5
 sb2.MaxPoolSize = 15
 sb2.LoadBalanceTimeout = 600
 sb2.ConnectionReset = True

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Constructed connection string:")
 Console.WriteLine(" " & sb2.ConnectionString)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

9-4. Store a Database Connection String Securely

Problem
You need to store a database connection string securely.

Solution
Store the connection string in an encrypted section of the application’s configuration file.

■Note Protected configuration—the .NET Framework feature that lets you encrypt configuration information—
relies on the key storage facilities of the Data Protection API (DPAPI) to store the secret key used to encrypt the
configuration file. This solves the very difficult problem of code-based secret key management. Refer to recipe 11-19 for
more information about the DPAPI.

C H AP TE R 9 ■ DA TA B AS E A CC E SS 345

How It Works
Database connection strings often contain secret information, or at the very least information that
would be valuable to someone trying to attack your system. As such, you should not store connection
strings in plaintext, nor is it sufficient to hard-code them into the application code. Strings embedded in
an assembly can easily be retrieved using a disassembler. .NET Framework 2.0 adds a number of
classes and capabilities that make storing and retrieving encrypted connection strings in your appli-
cation’s configuration trivial.

Unencrypted connection strings are stored in the machine or application configuration file in
the <connectionStrings> section in the format shown here:

<configuration>
 <connectionStrings>
 <add name="ConnectionString1" connectionString="Data Source=➥
.\sqlexpress;Database=AdventureWorks;Integrated Security=SSPI;Min Pool Size=5; ➥
Max Pool Size=15;Connection Reset=True;Connection Lifetime=600;"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
</configuration>

The easiest way to read this connection string is to use the indexed ConnectionStrings property
of the System.Configuration.ConfigurationManager class. Specifying the name of the connection
string you want as the property index will return a System.Configuration.ConnectionStringSettings
object. The ConnectionStringSettings.ConnectionString property gets the connection string, and
the ConnectionStringSettings.ProviderName property gets the provider name that you can use to
create a data provider factory (see recipe 9-10). This process will work regardless of whether the
connection string has been encrypted or written in plaintext.

To write a connection string to the application’s configuration file, you must first obtain a
System.Configuration.Configuration object, which represents the application’s configuration
file. The easiest way to do this is by calling the System.Configuration.ConfigurationManager.
OpenExeConfiguration method. You should then create and configure a new System.Configuration.
ConnectionStringSettings object to represent the stored connection string. You should provide a
name, connection string, and data provider name for storage. Add the ConnectionStringSettings
object to the Configuration’s ConnectionStringsSection collection available through the Configuration.
ConnectionStrings property. Finally, save the updated file by calling the Configuration.Save method.

To encrypt the connection strings section of the configuration file, before saving the file, you must
configure the ConnectionStringsSection collection. To do this, call the ConnectionStringsSection.
SectionInformation.ProtectSection method and pass it a string containing the name of the
protected configuration provider to use: either RsaProtectedConfigurationProvider or
DPAPIProtectedConfigurationProvider. To disable encryption, call the SectionInformation.Unprotect
method.

■Note To use the classes from the System.Configuration namespace discussed in this recipe, you must add
a reference to the System.Configuration.dll assembly when you build your application.

The Code

The following example demonstrates the writing of an encrypted connection string to the applica-
tion’s configuration file and the subsequent reading and use of that connection string.

346 CH AP T E R 9 ■ D AT AB A SE ACC E S S

Imports System
Imports System.Configuration
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
 Public Class Recipe09_04

 Private Shared Sub WriteEncryptedConnectionStringSection(ByVal name As ➥
String, ByVal constring As String, ByVal provider As String)

 ' Get the configuration file for the current application. Specify
 ' the ConfigurationUserLevel.None argument so that we get the
 ' configuration settings that apply to all users.
 Dim config As Configuration = ➥
ConfigurationManager.OpenExeConfiguration(ConfigurationUserLevel.None)

 ' Get the connectionStrings section from the configuration file.
 Dim section As ConnectionStringsSection = config.ConnectionStrings

 ' If the connectionString section does not exist, create it.
 If section Is Nothing Then
 section = New ConnectionStringsSection
 config.Sections.Add("connectionSettings", section)
 End If

 ' If it is not already encrypted, configure the connectionStrings
 ' section to be encrypted using the standard RSA Protected
 ' Configuration Provider.
 If Not section.SectionInformation.IsProtected Then
 ' Remove this statement to write the connection string in clear
 ' text for the purpose of testing.
 section.SectionInformation.ProtectSection ➥
("RsaProtectedConfigurationProvider")
 End If

 ' Create a new connection string element and add it to the
 ' connection string configuration section.
 Dim cs As New ConnectionStringSettings(name, constring, provider)
 section.ConnectionStrings.Add(cs)

 ' Force the connection string section to be saved.
 section.SectionInformation.ForceSave = True

 ' Save the updated configuration file.
 config.Save(ConfigurationSaveMode.Full)

 End Sub

 Public Shared Sub main()

 ' The connection string information to be written to the
 ' configuration file.
 Dim conName As String = "ConnectionString1"
 Dim conString As String = "Data Source=.\sqlexpress;Database=" & ➥

C H AP TE R 9 ■ DA TA B AS E A CC E SS 347

"AdventureWorks;Integrated Security=SSPI;Min Pool Size=5;Max Pool Size=5;" & ➥
"Connection Reset=True;Connection Lifetime=600;"
 Dim providerName As String = "System.Data.SqlClient"

 ' Write the new connection string to the application's
 ' configuration file.
 WriteEncryptedConnectionStringSection(conName, conString, providerName)

 ' Read the encrypted connection string settings from the
 ' application's configuration file.
 Dim cs2 As ConnectionStringSettings = ➥
ConfigurationManager.ConnectionStrings("ConnectionString1")

 ' Use the connection string to create a new SQL Server connection.
 Using con As New SqlConnection(cs2.ConnectionString)
 ' Issue database commands/queries...
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes
The example in this recipe uses the OpenExeConfiguration method to open the configuration file for
the application. It accepts a ConfigurationUserLevel enumerator value, which is set to None to get
the configuration settings for all users. If you need to access user-specific settings, you should use the
PerUserRoaming or PerUserRoamingAndLocal value. PerUserRoaming refers to the current user’s
roaming configuration settings. PerUserRoamingAndLocal refers to the user’s local settings.

9-5. Execute a SQL Command
or Stored Procedure

Problem
You need to execute a SQL command or stored procedure on a database.

Solution
Create a command object appropriate to the type of database you intend to use. Configure the
command object by setting its CommandType and CommandText properties. Execute the command
using the ExecuteNonQuery, ExecuteReader, or ExecuteScalar method, depending on the type of
command and its expected results.

348 CH AP T E R 9 ■ D AT AB A SE ACC E S S

How It Works
All command objects inherit the abstract (MustInherit) System.Data.Common.DbCommand class, which
implements the System.Data.IDbCommand interface. The DbCommand class represents a database
command, and each data provider includes a unique implementation. Here is the list of the imple-
mentations for the five standard data providers:

• System.Data.Odbc.OdbcCommand

• System.Data.OleDb.OleDbCommand

• System.Data.OracleClient.OracleCommand

• System.Data.SqlClient.SqlCommand

• System.Data.SqlServerCe.SqlCeCommand

To execute a command against a database, you must have an open connection (discussed in
recipe 9-1) and a properly configured command object appropriate to the type of database you are
accessing. You can create command objects directly using a constructor, but a simpler approach is
to use the CreateCommand factory method of a connection object. The CreateCommand method returns
a command object of the correct type for the data provider and configures it with the appropriate
information (such as CommandTimeout and Connection) obtained from the connection you used to
create the command. Before executing the command, you must configure the properties described
in Table 9-3, which are common to all command implementations.

Table 9-3. Common Command Object Properties

Property Description

CommandText A String containing the text of the SQL command to execute or the name
of a stored procedure. The content of the CommandText property must be
compatible with the value you specify in the CommandType property.

CommandTimeout An Integer that specifies the number of seconds to wait for the command to
return before timing out and raising an exception. Defaults to 30 seconds.

CommandType A value of the System.Data.CommandType enumeration that specifies the type
of command represented by the command object. For most data providers,
valid values are StoredProcedure, when you want to execute a stored proce-
dure, and Text, when you want to execute a SQL text command. If you are
using the OLE DB data provider, you can specify TableDirect when you want
to return the entire contents of one or more tables. Refer to the .NET Frame-
work SDK documentation for more details. Defaults to Text.

Connection A DbConnection instance that provides the connection to the database on
which you will execute the command. If you create the command using the
IDbConnection.CreateCommand method, this property will be automatically
set to the DbConnection instance from which you created the command.

Parameters A System.Data.DbParameterCollection instance containing the set of
parameters to substitute into the command. This property is optional.
(See recipe 9-6 for details on how to use parameters.)

Transaction A System.Data.DbTransaction instance representing the transaction into
which to enlist the command. If the connection object used to create this
method specified a transaction, this property will be automatically set to that
instance. This property is optional. (See the .NET Framework SDK documen-
tation for details about transactions.)

C H AP TE R 9 ■ DA TA B AS E A CC E SS 349

Once you have configured your command object, you can execute it in a number of ways,
depending on the nature of the command, the type of data returned by the command, and the
format in which you want to process the data.

• To execute a command that does not return database data (such as UPDATE, INSERT, DELETE,
or CREATE TABLE), call ExecuteNonQuery. For the UPDATE, INSERT, and DELETE commands, the
ExecuteNonQuery method returns an Integer that specifies the number of rows affected by the
command. For commands that don’t return rows, such as CREATE TABLE, ExecuteNonQuery
returns the value –1.

• To execute a command that returns a result set, such as a SELECT statement or stored procedure,
use the ExecuteReader method. ExecuteReader returns a DbDataReader instance (discussed in
recipe 9-7) through which you have access to the result data. When the ExecuteReader command
returns, the connection cannot be used for any other commands while the IDataReader is
open. Most data providers also allow you to execute multiple SQL commands in a single call
to the ExecuteReader method, as demonstrated in the example in this recipe, which also shows
how to access each result set.

• If you want to execute a query but need only the value from the first column of the first row of
result data, use the ExecuteScalar method. The value is returned as an Object reference that
you must cast to the correct type.

■Note The IDbCommand implementations included in the Oracle and SQL data providers implement additional
command execution methods. Recipe 9-8 describes how to use the ExecuteXmlReader method provided by the
SqlCommand class. Refer to the .NET Framework’s SDK documentation, at http://msdn2.microsoft.com/
en-us/library/system.data.oracleclient.oraclecommand(vs.80).aspx, for details on the addi-
tional ExecuteOracleNonQuery and ExecuteOracleScalar methods provided by the OracleCommand class.

The Code

The following example demonstrates the use of command objects to update a database record, return
records from a query, and obtain a scalar value. Recipe 9-6 covers the use of stored procedures.

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
 Public Class Recipe09_05

 Public Shared Sub ExecuteNonQueryExample(ByVal con As IDbConnection)

 ' Create and configure a new command.
 Dim com As IDbCommand = con.CreateCommand
 com.CommandType = CommandType.Text
 com.CommandText = "UPDATE HumanResources.Employee SET Title = " & ➥
"'Production Supervisor' WHERE EmployeeID = 24;"

 ' Execute the command and process the result.
 Dim result As Integer = com.ExecuteNonQuery

350 CH AP T E R 9 ■ D AT AB A SE ACC E S S

 If result = 1 Then
 Console.WriteLine("Employee title updated.")
 ElseIf result > 1 Then
 Console.WriteLine("{0} employee titles updated.", result)
 Else
 Console.WriteLine("Employee title not updated.")
 End If

 End Sub

 Public Shared Sub ExecuteReaderExample(ByVal con As IDbConnection)

 ' Create and configure a new command.
 Dim com As IDbCommand = con.CreateCommand
 com.CommandType = CommandType.Text
 com.CommandText = "SET ROWCOUNT 10;SELECT Production.Product.Name," & ➥
"Production.Product.ListPrice FROM Production.Product " & ➥
"ORDER BY Production.Product.ListPrice DESC;SET ROWCOUNT 0;"

 ' Execute the command and process the results.
 Using reader As IDataReader = com.ExecuteReader

 While reader.Read
 ' Display the product details.
 Console.WriteLine(" {0} = {1}", ➥
reader("Name"), reader("ListPrice"))
 End While

 End Using

 End Sub

 Public Shared Sub ExecuteScalarExample(ByVal con As IDbConnection)

 ' Create and configure a new command.
 Dim com As IDbCommand = con.CreateCommand
 com.CommandType = CommandType.Text
 com.CommandText = "SELECT COUNT(*) FROM HumanResources.Employee;"

 ' Execute the command and cast the result.
 Dim result As Integer = CInt(com.ExecuteScalar)

 Console.WriteLine("Employee count = " & result)

 End Sub

 Public Shared Sub Main()

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

C H AP TE R 9 ■ DA TA B AS E A CC E SS 351

 ' Open the database connection and execute the example
 ' commands through the connection.
 con.Open()

 ExecuteNonQueryExample(con)
 Console.WriteLine(Environment.NewLine)

 ExecuteReaderExample(con)
 Console.WriteLine(Environment.NewLine)

 ExecuteScalarExample(con)
 Console.WriteLine(Environment.NewLine)

 ' Close the database connection.
 con.Close()

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

9-6. Use Parameters in a SQL Command
or Stored Procedure

Problem
You need to set the arguments of a stored procedure or use parameters in a SQL query to improve
flexibility.

Solution
Create parameter objects appropriate to the type of command object you intend to execute. Configure
the parameter objects’ data types, values, and directions and add them to the command object’s
parameter collection using the IDbCommand.Parameters.Add method.

How It Works
All command objects support the use of parameters, so you can do the following:

• Set the arguments of stored procedures.

• Receive stored procedure return values.

• Substitute values into SQL queries at runtime.

352 CH AP T E R 9 ■ D AT AB A SE ACC E S S

All parameter objects inherit the abstract (MustInherit) System.Data.Common.DbParameter class,
which implements the System.Data.IDataParameter interface. The DbParameter class represents a
parameter, and each data provider includes a unique implementation. Here is the list of the imple-
mentations for the five standard data providers:

• System.Data.Odbc.OdbcParameter

• System.Data.OleDb.OleDbParameter

• System.Data.OracleClient.OracleParameter

• System.Data.SqlClient.SqlParameter

• System.Data.SqlServerCe.SqlCeParameter

To use parameters with a text command, you must identify where to substitute the parameter’s
value within the command. The ODBC, OLE DB, and SQL Server CE data providers support positional
parameters; the location of each argument is identified by a question mark (?). For example, the
following command identifies two locations to be substituted with parameter values.

UPDATE HumanResources.Employee SET Title = ? WHERE EmployeeId = ?

The SQL Server and Oracle data providers support named parameters, which allow you to iden-
tify each parameter location using a name preceded by the at symbol (@). Named parameters are very
useful when you need to use the same parameter in multiple locations. Here is the equivalent command
using named parameters:

UPDATE HumanResources.Employee SET Title = @title WHERE EmployeeId = @id

To specify the parameter values to substitute into a command, you must create parameter
objects of the correct type and add them to the command object’s parameter collection accessible
through the Parameters property. You can add named parameters in any order, but you must add
positional parameters in the same order they appear in the text command. When you execute your
command, the value of each parameter is substituted into the command before it is executed against
the data source. You can create parameter objects in the following ways:

• Use the CreateParameter method of the command object.

• Use the Parameters.Add method of the command object.

• Use System.Data.Common.DbProviderFactory.

• Directly create parameter objects using constructors and configure them using constructor
arguments or through setting their properties. (This approach ties you to a specific database
provider.)

A parameter object’s properties describe everything about a parameter that the command
object needs to use the parameter object when executing a command against a data source. Table 9-4
describes the properties that you will use most frequently when configuring parameters.

When using parameters to execute stored procedures, you must provide parameter objects to
satisfy each argument required by the stored procedure, including both input and output arguments. If
a stored procedure has a return value, the parameter to hold the return value (with a Direction prop-
erty equal to ReturnValue) must be the first parameter added to the parameter collection.

C H AP TE R 9 ■ DA TA B AS E A CC E SS 353

The Code

The following example demonstrates the use of parameters in SQL queries. The
ParameterizedCommandExample method demonstrates the use of parameters in a SQL Server UPDATE
statement. The ParameterizedCommandExample method’s arguments include an open SqlConnection,
an Integer, and a String. The values of the two strings are substituted into the UPDATE command
using parameters. The StoredProcedureExample method demonstrates the use of parameters to call
a stored procedure.

Since not all providers support named parameters, this example specifically uses SQL objects.
Instead of using IDbConnection, IDbCommand, and IDataParameter, it uses the specific classes
SqlConnection, SqlCommand, and SqlParameter, respectively.

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
 Public Class Recipe09_06

 Public Shared Sub ParameterizedCommandExample(ByVal con As SqlConnection, ➥
ByVal employeeID As Integer, ByVal title As String)

 ' Create and configure a new command containing 2 named parameters.
 Using com As SqlCommand = con.CreateCommand

 com.CommandType = CommandType.Text
 com.CommandText = "UPDATE HumanResources.Employee SET Title = " & ➥
"@title WHERE EmployeeID = @id;"

 ' Create a SqlParameter object for the title parameter.
 Dim p1 As SqlParameter = com.CreateParameter
 p1.ParameterName = "@title"
 p1.SqlDbType = SqlDbType.VarChar
 p1.Value = title
 com.Parameters.Add(p1)

Table 9-4. Commonly Used Parameter Properties

Property Description

DbType A value of the System.Data.DbType enumeration that specifies the type of
data contained in the parameter. Commonly used values include String,
Int32, DateTime, and Currency.

Direction A value from the System.Data.ParameterDirection enumeration that indi-
cates the direction in which the parameter is used to pass data. Valid values
are Input, InputOutput, Output, and ReturnValue. The default is Input.

IsNullable A Boolean that indicates whether the parameter accepts Nothing values. The
default is False.

ParameterName A String containing the name of the parameter.

Value An Object containing the value of the parameter.

354 CH AP T E R 9 ■ D AT AB A SE ACC E S S

 ' Use a shorthand syntax to add the id parameter.
 com.Parameters.Add("@id", SqlDbType.Int).Value = employeeID

 ' Execute the command and process the result.
 Dim result As Integer = com.ExecuteNonQuery

 If result = 1 Then
 Console.WriteLine("Employee {0} title updated to {1}", ➥
employeeID, title)
 ElseIf result > 1 Then
 ' Indicates multiple records were affected.
 Console.WriteLine("{0} records for employee {1} had the " & ➥
"title updated to {2}", result, employeeID, title)
 Else
 Console.WriteLine("Employee {0} title not updated.", employeeID)
 End If

 End Using

 End Sub

 Public Shared Sub StoredProcedureExample(ByVal con As SqlConnection, ➥
ByVal managerID As Integer)

 ' Create and configure a new command containing 2 named parameters.
 Using com As SqlCommand = con.CreateCommand

 com.CommandType = CommandType.StoredProcedure
 com.CommandText = "uspGetManagerEmployees"

 ' Create the required SqlParameter object.
 com.Parameters.Add("@ManagerID", SqlDbType.Int).Value = managerID

 ' Execute the command and process the result.
 Dim result As Integer = com.ExecuteNonQuery

 Using reader As IDataReader = com.ExecuteReader
 Console.WriteLine("Employees managed by manager #{0}.", ➥
managerID.ToString)

 While reader.Read
 ' Display the product details.
 Console.WriteLine(" {0}, {1} ({2})", reader("LastName"), ➥
reader("FirstName"), reader("employeeID"))
 End While

 End Using

 End Using

 End Sub

 Public Shared Sub Main()

C H AP TE R 9 ■ DA TA B AS E A CC E SS 355

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Open the database connection and execute the example
 ' commands through the connection.
 con.Open()

 ParameterizedCommandExample(con, 16, "Production Technician")
 Console.WriteLine(Environment.NewLine)

 StoredProcedureExample(con, 185)
 Console.WriteLine(Environment.NewLine)

 ' Close the database connection.
 con.Close()

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

9-7. Process the Results of a SQL Query Using a
Data Reader

Problem
You need to process the data contained in the System.Data.DbDataReader class instance returned
when you execute the DbCommand.ExecuteReader method (see recipe 9-5).

Solution
Use the members of the DbDataReader class to move through the rows in the result set sequentially
and access the individual data items contained in each row.

How It Works
The DbDataReader class represents a data reader, which is a forward-only, read-only mechanism for
accessing the results of a SQL query. This is an abstract (MustInherit) class that implements the

356 CH AP T E R 9 ■ D AT AB A SE ACC E S S

System.Data.IDataReader interface. Each data provider includes a unique DbDataReader implemen-
tation. Here is the list of the implementations for the five standard data providers:

• System.Data.Odbc.OdbcDataReader

• System.Data.OleDb.OleDbDataReader

• System.Data.OracleClient.OracleDataReader

• System.Data.SqlClient.SqlDataReader

• System.Data.SqlServerCe.SqlCeDataReader

The IDataReader interface extends the System.Data.IDataRecord interface. Together, these
interfaces declare the functionality that provides access to both the data and the structure of the data
contained in the result set. Table 9-5 describes some of the commonly used members of the IDataReader
and IDataRecord interfaces.

Table 9-5. Commonly Used Members of Data Reader Classes

Member Description

Property

FieldCount Gets the number of columns in the current row.

IsClosed Returns True if the IDataReader is closed; False if it’s currently open.

Item Returns an Object representing the value of the specified column in the
current row. Columns can be specified using a zero-based integer index or
a string containing the column name. You must cast the returned value to
the appropriate type. This is the indexer for the IDataRecord interface.

Method

GetDataTypeName Gets the name of the data source data type as a String for a specified column.

GetFieldType Gets a System.Type instance representing the data type of the value
contained in the column specified using a zero-based integer index.

GetName Gets the name of the column specified by using a zero-based integer index.

GetOrdinal Gets the zero-based column ordinal for the column with the specified name.

GetSchemaTable Returns a System.Data.DataTable instance that contains metadata
describing the columns contained in the IDataReader.

IsDBNull Returns True if the value in the specified column contains a data source
null value; otherwise, it returns False.

NextResult If the IDataReader includes multiple result sets because multiple state-
ments were executed, NextResult moves to the next set of results. This
method returns True or False, indicating whether or not there are more
results. By default, the IDataReader is positioned on the first result set.

Read Advances the reader to the next record. This method returns True or False,
indicating whether or not there are more records. The reader always starts
prior to the first record.

C H AP TE R 9 ■ DA TA B AS E A CC E SS 357

In addition to those members listed in Table 9-5, the data reader provides a set of methods for
retrieving typed data from the current row. Each of the following methods takes an integer argument
that identifies the zero-based index of the column from which the data should be returned:
GetBoolean, GetByte, GetBytes, GetChar, GetChars, GetDateTime, GetDecimal, GetDouble, GetFloat,
GetGuid, GetInt16, GetInt32, GetInt64, GetString.

The SQL Server and Oracle data readers also include methods for retrieving data as data source-
specific data types. For example, the SqlDataReader includes methods such as GetSqlByte,
GetSqlDecimal, and GetSqlMoney, and the OracleDataReader includes methods such as GetOracleLob,
GetOracleNumber, and GetOracleMonthSpan. Refer to the .NET Framework SDK documentation for
more details.

When you have finished with a data reader, you should always call its Close method so that you
can use the database connection again. IDataReader extends System.IDisposable, meaning that
each data reader class implements the Dispose method. Dispose automatically calls Close, making
the Using statement a very clean and efficient way of using data readers.

The Code

The following example demonstrates the use of a data reader to process the contents of two result
sets returned by executing a batch query containing two SELECT queries. The first result set is enumerated
and displayed to the console. The second result set is inspected for metadata information, which is
then displayed.

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
 Public Class Recipe09_07

 Public Shared Sub Main()

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Create and configure a new command.
 Using com As IDbCommand = con.CreateCommand

 com.CommandType = CommandType.Text
 com.CommandText = "SELECT BirthDate,FirstName,LastName " & ➥
"FROM HumanResources.Employee e INNER JOIN Person.Contact c ON " & ➥
"e.EmployeeID=c.ContactID ORDER BY BirthDate;SELECT * FROM HumanResources.Employee;"

 ' Open the database connection and execute the example
 ' commands through the connection.
 con.Open()

 ' Execute the command and obtain a data reader.
 Using reader As IDataReader = com.ExecuteReader

358 CH AP T E R 9 ■ D AT AB A SE ACC E S S

 ' Process the first set of results and display the
 ' content of the result set.
 Console.WriteLine("Employee Birthdays (By Age).")

 While reader.Read
 Console.WriteLine(" {0,18:D} - {1} {2}", ➥
reader.GetDateTime(0), reader("FirstName"), reader(2))
 End While
 Console.WriteLine(Environment.NewLine)

 ' Process the second set of results and display details
 ' about the columns and data types in the result set.
 reader.NextResult()
 Console.WriteLine("Employee Table Metadata.")
 For field As Integer = 0 To reader.FieldCount - 1
 Console.WriteLine(" Column Name:{0} Type:{1}", ➥
reader.GetName(field), reader.GetDataTypeName(field))
 Next

 End Using

 ' Close the database connection.
 con.Close()

 End Using

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

9-8. Obtain an XML Document
from a SQL Server Query

Problem
You need to execute a query against a SQL Server 2000 (or later) database and retrieve the results
as XML.

C H AP TE R 9 ■ DA TA B AS E A CC E SS 359

Solution
Specify the FOR XML clause in your SQL query to return the results as XML. Execute the command
using the ExecuteXmlReader method of the System.Data.SqlClient.SqlCommand class, which returns
a System.Xml.XmlReader object through which you can access the returned XML data.

How It Works
SQL Server 2000 (and later versions) provides direct support for XML. You simply need to add the
clause FOR XML AUTO to the end of a SQL query to indicate that the results should be returned as XML.
By default, the XML representation is not a full XML document. Instead, it simply returns the result
of each record in a separate element, with all the fields as attributes. For example, this query:

SELECT DepartmentID, [Name] FROM HumanResources.Department FOR XML AUTO

returns XML with the following structure:

<HumanResources.Department DepartmentID="12" Name="Document Control" />
<HumanResources.Department DepartmentID="1" Name="Engineering" />
<HumanResources.Department DepartmentID="16" Name="Executive" />

Alternatively, you can add the ELEMENTS keyword to the end of a query to structure the results
using nested elements rather than attributes. For example, this query:

SELECT DepartmentID, [Name] FROM HumanResources.Department FOR XML AUTO, ELEMENTS

returns XML with the following structure:

<HumanResources.Department>
 <DepartmentID>12</DepartmentID>
 <Name>Document Control</Name>
</HumanResources.Department>
<HumanResources.Department>
 <DepartmentID>1</DepartmentID>
 <Name>Engineering</Name>
</HumanResources.Department>
<HumanResources.Department>
 <DepartmentID>16</DepartmentID>
 <Name>Executive</Name>
</HumanResources.Department>

■Tip You can also fine-tune the format using the FOR XML EXPLICIT syntax. For example, this allows you to
convert some fields to attributes and others to elements. Refer to SQL Server Books Online, http://msdn2.
microsoft.com/en-us/library/ms189068.aspx, for more information.

When the ExecuteXmlReader command returns, the connection cannot be used for any other
commands while the XmlReader is open. You should process the results as quickly as possible, and
you must always close the XmlReader. Instead of working with the XmlReader and accessing the data
sequentially, you can read the XML data into a System.Xml.XmlDocument. This way, all the data is
retrieved into memory, and the database connection can be closed. You can then continue to interact
with the XML document. (Chapter 6 contains numerous examples of how to use the XmlReader and
XmlDocument classes.)

360 CH AP T E R 9 ■ D AT AB A SE ACC E S S

The Code

The following example demonstrates how to retrieve results as XML using the FOR XML clause and the
ExecuteXmlReader method.

Imports System
Imports System.Xml
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
 Public Class Recipe09_08

 Public Shared Sub ConnectedExample()

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Create and configure a new command that includes the
 ' FOR XML AUTO clause.
 Using com As SqlCommand = con.CreateCommand

 com.CommandType = CommandType.Text
 com.CommandText = "SELECT DepartmentID, [Name], GroupName " & ➥
"FROM HumanResources.Department FOR XML AUTO;"

 ' Open the database connection.
 con.Open()

 ' Execute the command and retrieve an XmlReader to access
 ' the results.
 Using reader As XmlReader = com.ExecuteXmlReader
 While reader.Read
 Console.WriteLine("Element: " & reader.Name)

 If reader.HasAttributes Then
 For i As Integer = 0 To reader.AttributeCount - 1
 reader.MoveToAttribute(i)
 Console.Write(" {0}: {1}", reader.Name, ➥
reader.Value)
 Next

 ' Move the XmlReader back to the element node.
 reader.MoveToElement()
 Console.WriteLine(Environment.NewLine)
 End If
 End While
 End Using

 ' Close the database connection.
 con.Close()

C H AP TE R 9 ■ DA TA B AS E A CC E SS 361

 End Using
 End Using

 End Sub

 Public Shared Sub DisconnectedExample()

 Dim doc As New XmlDocument

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Create and configure a new command that includes the
 ' FOR XML AUTO clause.
 Using com As SqlCommand = con.CreateCommand

 com.CommandType = CommandType.Text
 com.CommandText = "SELECT DepartmentID, [Name], GroupName " & ➥
"FROM HumanResources.Department FOR XML AUTO;"

 ' Open the database connection.
 con.Open()

 ' Load the XML data into the XmlDocument. Must first create a
 ' root element into which to place each result row element.
 Dim reader As XmlReader = com.ExecuteXmlReader
 doc.LoadXml("<results></results>")

 ' Create an XmlNode from the next XML element read from the
 ' reader.
 Dim newNode As XmlNode = doc.ReadNode(reader)

 While newNode IsNot Nothing
 doc.DocumentElement.AppendChild(newNode)
 newNode = doc.ReadNode(reader)
 End While

 ' Close the database connection.
 con.Close()

 End Using
 End Using

 ' Process the disconnected XmlDocument.
 Console.WriteLine(doc.OuterXml)

 End Sub

 Public Shared Sub Main()

362 CH AP T E R 9 ■ D AT AB A SE ACC E S S

 ConnectedExample()
 Console.WriteLine(Environment.NewLine)

 DisconnectedExample()
 Console.WriteLine(Environment.NewLine)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

9-9. Perform Asynchronous Database Operations
Against SQL Server

Problem
You need to execute a query or command against a SQL Server database as a background task while
your application continues with other processing.

Solution
Use the BeginExecuteNonQuery, BeginExecuteReader, or BeginExecuteXmlReader method of the
System.Data.SqlClient.SqlCommand class to start the database operation as a background task.
These methods all return a System.IAsyncResult object that you can use to determine the operation’s
status or use thread synchronization to wait for completion. Use the IAsyncResult object and the
corresponding EndExecuteNonQuery, EndExecuteReader, or EndExecuteXmlReader method to obtain
the result of the operation.

■Note Only the SqlCommand class supports the asynchronous operations described in this recipe. The equivalent
command classes for the Oracle, SQL Server CE, ODBC, and OLE DB data providers do not provide this functionality.

How It Works
You will usually execute operations against databases synchronously, meaning that the calling code
blocks until the operation is complete. Synchronous calls are most common because your code will
usually require the result of the operation before it can continue. However, sometimes it’s useful
to execute a database operation asynchronously, meaning that you start the method in a separate
thread and then continue with other operations.

C H AP TE R 9 ■ DA TA B AS E A CC E SS 363

■Note To execute asynchronous operations over a System.Data.SqlClient.SqlConnection connection,
you must specify the value Asynchronous Processing=True in its connection string.

As of .NET Framework 2.0, the SqlCommand class implements the asynchronous execution pattern
similar to that discussed in recipe 4-2. As with the general asynchronous execution pattern described
in recipe 4-2, the arguments of the asynchronous execution methods (BeginExecuteNonQuery,
BeginExecuteReader, and BeginExecuteXmlReader) are the same as those of the synchronous variants
(ExecuteNonQuery, ExecuteReader, and ExecuteXmlReader), but they take the following two additional
arguments to support asynchronous completion:

• A System.AsyncCallback delegate instance that references a method that the runtime will call
when the asynchronous operation completes. The method is executed in the context of a
thread-pool thread. Passing Nothing means that no method is called and you must use another
completion mechanism (discussed later in this recipe) to determine when the asynchronous
operation is complete.

• An Object reference that the runtime associates with the asynchronous operation. The asyn-
chronous operation does not use nor have access to this object, but it’s available to your code
when the operation completes, allowing you to associate useful state information with an
asynchronous operation. For example, this object allows you to map results against initiated
operations in situations where you initiate many asynchronous operations that use a common
callback method to perform completion.

The EndExecuteNonQuery, EndExecuteReader, and EndExecuteXmlReader methods allow you to
retrieve the return value of an operation that was executed asynchronously, but you must first deter-
mine when it has finished. Here are the four techniques for determining if an asynchronous method
has finished:

• Blocking: This method stops the execution of the current thread until the asynchronous
operation completes execution. In effect, this is much the same as synchronous execution.
However, you do have the flexibility to decide exactly when your code enters the blocked
state, giving you the opportunity to carry out some additional processing before blocking.

• Polling: This method involves repeatedly testing the state of an asynchronous operation to
determine if it’s complete. This is a very simple technique and is not particularly efficient
from a processing perspective. You should avoid tight loops that consume processor time. It’s
best to put the polling thread to sleep for a period using Thread.Sleep between completion
tests. Because polling involves maintaining a loop, the actions of the waiting thread are limited,
but you can easily update some kind of progress indicator.

• Waiting: This method uses an object derived from the System.Threading.WaitHandle class to
signal when the asynchronous method completes. Waiting is a more efficient version of polling
and in addition allows you to wait for multiple asynchronous operations to complete. You
can also specify time-out values to allow your waiting thread to fail if the asynchronous oper-
ation takes too long, or if you want to periodically update a status indicator.

• Callback: This is a method that the runtime calls when an asynchronous operation completes.
The calling code does not need to take any steps to determine when the asynchronous oper-
ation is complete and is free to continue with other processing. Callbacks provide the greatest
flexibility, but also introduce the greatest complexity, especially if you have many concurrently
active asynchronous operations that all use the same callback. In such cases, you must use
appropriate state objects to match completed methods against those you initiated.

364 CH AP T E R 9 ■ D AT AB A SE ACC E S S

■Caution When using the asynchronous capabilities of the SQL Server data provider, you must ensure that your
code does not inadvertently dispose of objects that are still being used by other threads. Pay particular attention to
SqlConnection and SqlCommand objects.

The Code

Recipe 4-2 provides examples of all of the completion techniques summarized in the preceding list.
The following example demonstrates the use of an asynchronous call to execute a stored procedure
on a SQL Server database. The code uses a callback to process the returned result set.

Imports System
Imports System.Data
Imports System.Threading
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter09
 Public Class Recipe09_09

 ' A method to handle asynchronous completion using callbacks.
 Public Shared Sub CallBackHandler(ByVal result As IAsyncResult)

 ' Obtain a reference to the SqlCommand used to initiate the
 ' asynchronous operation.
 Using cmd As SqlCommand = TryCast(result.AsyncState, SqlCommand)
 ' Obtain the result of the stored procedure.
 Using reader As SqlDataReader = cmd.EndExecuteReader(result)

 ' Display the results of the stored procedure to the console.
 SyncLock Console.Out
 Console.WriteLine("Bill of Materials:")
 Console.WriteLine("ID Description Quantity " & ➥
"ListPrice")

 While reader.Read
 ' Display the record details.
 Console.WriteLine("{0} {1} {2} {3}", ➥
reader("ComponentID"), reader("ComponentDesc"), reader("TotalQuantity"), ➥
reader("ListPrice"))
 End While

 End SyncLock

 End Using
 End Using

 End Sub

C H AP TE R 9 ■ DA TA B AS E A CC E SS 365

 Public Shared Sub Main()

 ' Create a new SqlConnection object.
 Using con As New SqlConnection

 ' Configure the SqlConnection object's connection string.
 ' You must specify Asynchronous Processing=True to support
 ' asynchronous operations over the connection.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;Asynchronous Processing=true;"

 ' Create and configure a new command to run a stored procedure.
 Using cmd As SqlCommand = con.CreateCommand

 cmd.CommandType = CommandType.StoredProcedure
 cmd.CommandText = "uspGetBillOfMaterials"

 ' Create the required SqlParameter objects.
 cmd.Parameters.Add("@StartProductID", SqlDbType.Int).Value = 771
 cmd.Parameters.Add("@CheckDate", SqlDbType.DateTime).Value = ➥
DateTime.Parse("07/10/2000")

 ' Open the database connection and execute the command
 ' asynchronously. Pass the reference to the SqlCommand
 ' used to initiate the asynchronous operation.
 con.Open()
 cmd.BeginExecuteReader(AddressOf CallBackHandler, cmd)
 End Using

 ' Continue with other processing.
 For count As Integer = 1 To 10
 SyncLock Console.Out
 Console.WriteLine("{0} : Continue processing...", ➥
DateTime.Now.ToString("HH:mm:ss.ffff"))
 End SyncLock
 Thread.Sleep(500)
 Next

 ' Close the database connection.
 con.Close()

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Using
 End Sub

 End Class
End Namespace

366 CH AP T E R 9 ■ D AT AB A SE ACC E S S

9-10. Write Database-Independent Code

Problem
You need to write code that can be configured to work against any relational database supported by
an ADO.NET data provider.

Solution
Program to the ADO.NET data provider base classes that inherit the main interfaces, such as
IDbConnection, in the System.Data namespace. Unlike the concrete implementations, such as
SqlConnection, the base classes do not rely on features and data types that are unique to specific
database implementations. Use factory classes and methods to instantiate the data provider objects
you need to use.

How It Works
Using a specific data provider implementation (the SQL Server data provider, for example) simplifies
your code and may be appropriate if you need to support only a single type of database or require
access to specific features provided by that data provider, such as the asynchronous execution for
SQL Server detailed in recipe 9-9. However, if you program your application against a specific data
provider implementation, you will need to rewrite and test those sections of your code if you want to
use a different data provider at some point in the future.

Table 9-6 contains a summary of the main interfaces you must program against when writing
generic ADO.NET code that will work with any relational database’s data provider. The table also
explains how to create objects of the appropriate type that implement the interface. Many of the
recipes in this chapter demonstrate the use of ADO.NET data provider interfaces over specific imple-
mentation, as highlighted in the table.

Table 9-6. Data Provider Interfaces

Interface Description Demonstrated In

IDbConnection Represents a connection to a relational database.
You must program the logic to create a connection
object of the appropriate type based on your appli-
cation’s configuration information, or use the
DbProviderFactory.CreateConnection factory
method (discussed in this recipe).

Recipes 9-1 and 9-5

IDbCommand Represents a SQL command that is issued to a rela-
tional database. You can create IDbCommand objects
of the appropriate type using the IDbConnection.
CreateCommand or DbProviderFactory.
CreateCommand factory method.

Recipes 9-5 and 9-6

IDataParameter Represents a parameter to an IDbCommand object.
You can create IDataParameter objects of the
correct type using the IDbCommand.CreateParameter,
IDbCommand.Parameters.Add, or DbProviderFactory.
CreateParameter factory method.

Recipe 9-6

C H AP TE R 9 ■ DA TA B AS E A CC E SS 367

The System.Data.Common.DbProviderFactory class is new to .NET Framework 2.0 and provides a
set of factory methods for creating all types of data provider objects, making it very useful for imple-
menting generic database code. Most important, DbProviderFactory provides a mechanism for
obtaining an initial IDbConnection instance, which is the critical starting point to writing generic
ADO.NET code. Each of the standard data provider implementations (except the SQL Server CE data
provider) includes a unique factory class derived from DbProviderFactory. Here is the list of
DbProviderFactory subclasses:

• System.Data.Odbc.OdbcFactory

• System.Data.OleDb.OleDbFactory

• System.Data.OracleClient.OracleClientFactory

• System.Data.SqlClient.SqlClientFactory

■Note It’s important to understand that there is no common data type for parameters. You are forced to use
DbType, and you are responsible for understanding the mapping between your generic provider and your data
source.

You can obtain an instance of the appropriate DbProviderFactory subclass using the
DbProviderFactories class, which is effectively a factory of factories. Each data provider factory is
described by configuration information in the machine.config file similar to that shown here for the
SQL Server data adapter. This can be changed or overridden by application-specific configuration
information if required.

<configuration>
 <system.data>
 <DbProviderFactories>
 <add name="SqlClient Data Provider" invariant="System.Data.SqlClient" ➥
description=".Net Framework Data Provider for SqlServer" type= ➥
"System.Data.SqlClient.SqlClientFactory, System.Data, Version=2.0.0.0, ➥
Culture=neutral, PublicKeyToken=b77a5c561934e089" />
 <add name="Odbc Data Provider" ... />
 <add name="OleDb Data Provider" ... />
 <add name="OracleClient Data Provider" ... />

IDataReader Represents the result set of a database query and
provides access to the contained rows and columns.
An object of the correct type will be returned when
you call the IDbCommand.ExecuteReader method.

Recipes 9-5 and 9-7

IDataAdapter Represents the set of commands used to fill a System.
Data.DataSet from a relational database and to
update the database based on changes to the DataSet.
You must program the logic to create a data adapter
object of the appropriate type based on your
application’s configuration information, or use the
DbProviderFactory.CreateAdapter factory method
(discussed in this recipe).

Table 9-6. Data Provider Interfaces

Interface Description Demonstrated In

368 CH AP T E R 9 ■ D AT AB A SE ACC E S S

 <add name="SQL Server CE Data ... />
 </DbProviderFactories>
 </system.data>
</configuration>

You can enumerate the available data provider factories by calling DbProviderFactories.
GetFactoryClasses, which returns a System.Data.DataTable containing the following columns:

• Name, which contains a human-readable name for the provider factory. Taken from the name
attribute in the configuration information.

• Description, which contains a human-readable description for the provider factory. Taken
from the description attribute of the configuration information.

• InvariantName, which contains the unique name used to refer to the data provider factory
programmatically. Taken from the invariant attribute of the configuration information.

• AssemblyQualifiedName, which contains the fully qualified name of the DbProviderFactory
class for the data provider. Taken from the type attribute of the configuration information.

Normally, you would allow the provider to be selected at install time or the first time the appli-
cation was run, and then store the settings as user or application configuration data. The most important
piece of information is the InvariantName, which you pass to the DbProviderFactories.GetFactory
method to obtain the DbProviderFactory implementation you will use to create your IDbConnection
instances.

■Note Prior to .NET Framework 2.0, it was difficult to write generic ADO.NET code because each data provider
implemented its own exception class that did not extend a common base class. In .NET Framework 2.0, the
System.Data.Common.DbException class has been added as the base class of all data provider-specific
exceptions, making generic handling of database exceptions a reality.

The Code

The following example demonstrates the enumeration of all data providers configured for
the local machine and application. It then uses the DbProviderFactories class to instantiate a
DbProviderFactory object (actually a SqlClientFactory) from which it creates the appropriate
IDbConnection. It then uses the factory methods of the data provider interfaces to create other
required objects, resulting in code that is completely generic.

Imports System
Imports System.Data
Imports system.Data.Common

Namespace Apress.VisualBasicRecipes.Chapter09
 Public Class Recipe09_10

 Public Shared Sub Main()

 ' Obtain the list of ADO.NET data providers registered in the
 ' machine and application configuration file.
 Using providers As DataTable = DbProviderFactories.GetFactoryClasses

C H AP TE R 9 ■ DA TA B AS E A CC E SS 369

 ' Enumerate the set of data providers and display details.
 Console.WriteLine("Available ADO.NET Data Providers:")

 For Each prov As DataRow In providers.Rows
 Console.WriteLine(" Name:{0}", prov("Name"))
 Console.WriteLine(" Description:{0}", prov("Description"))
 Console.WriteLine(" Invariant Name:{0}", ➥
prov("InvariantName"))
 Next

 End Using

 ' Obtain the DbProviderFactory for SQL Server. The provider to use
 ' could be selected by the user or read from a configuration file.
 ' In this case, we simply pass the invariant name.
 Dim factory As DbProviderFactory = ➥
DbProviderFactories.GetFactory("System.Data.SqlClient")

 ' Use the DbProviderFactory to create the initial IDbConnection, and
 ' then the data provider interface factory methods for other objects.
 Using con As IDbConnection = factory.CreateConnection

 ' Normally, read the connection string from secure storage.
 ' See recipe 9-2. In this case, use a default value.
 con.ConnectionString = "Data Source=.\sqlexpress;Database=" & ➥
"AdventureWorks;Integrated Security=SSPI;"

 ' Create and configure a new command.
 Using com As IDbCommand = con.CreateCommand

 com.CommandType = CommandType.Text
 com.CommandText = "SET ROWCOUNT 10;SELECT prod.Name, " & ➥
"inv.Quantity FROM Production.Product prod INNER JOIN " & ➥
"Production.ProductInventory inv ON prod.ProductID = inv.ProductID ORDER BY " & ➥
"inv.Quantity DESC;"

 ' Open the connection.
 con.Open()

 ' Execute the command and process the results.
 Using reader As IDataReader = com.ExecuteReader

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Quantity of the Ten Most Stocked " & ➥
"Products:")

 While reader.Read
 ' Display the product details.
 Console.WriteLine(" {0} = {1}", reader("Name"), ➥
reader("Quantity"))
 End While

 End Using

370 CH AP T E R 9 ■ D AT AB A SE ACC E S S

 ' Close the database connection.
 con.Close()

 End Using
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

9-11. Discover All Instances of SQL Server
on Your Network

Problem
You need to obtain a list of all instances of SQL Server 2000 or SQL Server 2005 that are accessible on
the network.

Solution
Use the GetDataSources method of the System.Data.Sql.SqlDataSourceEnumerator class.

■Note Your code needs to be granted FullTrust to be able to execute the GetDataSources method.

How It Works
The addition of the new SqlDataSourceEnumerator class in .NET Framework 2.0 makes it easy to
enumerate the SQL Server instances accessible on the network. In previous versions of the .NET
Framework, you needed to create a COM Interop library to access the SQLDMO library to achieve
this.

In .NET Framework 2.0, you simply obtain the singleton SqlDataSourceEnumerator instance via
the Shared property SqlDataSourceEnumerator.Instance and call its GetDataSources method. The
GetDataSources method returns a System.Data.DataTable that contains a set of System.Data.DataRow
objects. Each DataRow represents a single SQL Server instance and contains the following columns:

• ServerName, which contains the name of the server where the SQL Server instance is hosted.

• InstanceName, which contains the name of the SQL Server instance or the empty string if the
SQL Server is the default instance.

• IsClustered, which indicates whether the SQL Server instance is part of a cluster.

• Version, which contains the version of the SQL Server instance (8.00.x for SQL Server 2000 or
9.00.x for SQL Server 2005).

C H AP TE R 9 ■ DA TA B AS E A CC E SS 371

■Caution It is possible to configure SQL Server 2005 to be invisible to the GetDataSources method by disabling
the SQL Server Browser. Therefore, you cannot assume that a SQL Server instance does not exist because you could
not discover it.

The Code

The following example demonstrates the use of the SqlDataSourceEnumerator class to discover and
display details of all SQL Server instances accessible (and visible) on the network.

Imports System
Imports System.Data
Imports system.Data.Sql

Namespace Apress.VisualBasicRecipes.Chapter09
 Public Class Recipe09_11

 Public Shared Sub Main()

 ' Obtain the DataTable of SQL Server instances.
 Using sqlSources As DataTable = ➥
SqlDataSourceEnumerator.Instance.GetDataSources()

 ' Enumerate the set of SQL Servers and display details.
 Console.WriteLine("Discover SQL Server Instances:")

 For Each source As DataRow In sqlSources.Rows
 Console.WriteLine(" Server Name:{0}", source("ServerName"))
 Console.WriteLine(" Instance Name:{0}", source("InstanceName"))
 Console.WriteLine(" Is Clustered:{0}", source("IsClustered"))
 Console.WriteLine(" Version:{0}", source("Version"))
 Console.WriteLine(Environment.NewLine)
 Next

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

373

■ ■ ■

C H A P T E R 1 0

Networking and Remoting

The Microsoft .NET Framework includes a full set of classes for network programming. These classes
support everything from socket-based programming with Transmission Control Protocol/Internet
Protocol (TCP/IP) to downloading files and HTML pages from the Web over Hypertext Transfer
Protocol (HTTP). Not only do these networking classes provide you with a rich set of tried-and-
tested tools to use in your own distributed applications, they are also the foundation on which two
high-level distributed programming models integral to the .NET Framework are built: Remoting and
web services.

Although Remoting and web services share many similarities (for example, they both abstract
cross-process and cross-machine calls as method invocations on remote objects), they also have
fundamental differences. Web services are built using cross-platform standards and are based on the
concept of XML messaging. Web services are executed by the ASP.NET runtime, which means they
gain ASP.NET features such as output caching. This also means that web services are fundamentally
stateless. Overall, web services are best suited when you need to cross platform boundaries (for
example, with a Java client calling an ASP.NET web service) or trust boundaries (for example, in business-
to-business transactions).

Remoting is a .NET-specific technology for distributed objects and is the successor to Distrib-
uted Component Object Model (DCOM). It’s ideal for in-house systems in which all applications are
built on the .NET platform, such as the backbone of an internal order-processing system. Remoting
allows for different types of communication, including leaner binary messages and more efficient
TCP/IP connections, which aren’t supported by web services. In addition, Remoting is the only tech-
nology that supports stateful objects and bidirectional communication through callbacks. It’s also
the only technology that allows you to send custom .NET objects over the wire.

The recipes in this chapter describe how to do the following:

• Obtain configuration and network statistic information about the network interfaces on a
computer, as well as detect when network configuration changes occur (recipes 10-1 and 10-2)

• Download files from File Transfer Protocol (FTP) and HTTP servers (recipes 10-3, 10-4, and 10-6)

• Respond to HTTP requests from within your application (recipe 10-5)

• Send e-mail messages with attachments using Simple Mail Transfer Protocol (SMTP)
(recipe 10-7)

• Use the Domain Name System (DNS) to resolve a host name into an Internet Protocol (IP)
address (recipe 10-8)

• Ping an IP address to determine whether it is accessible and calculate round-trip communication
speeds by sending it an Internet Control Message Protocol (ICMP) Echo request (recipe 10-9)

• Communicate between programs through the direct use of TCP in both synchronous and
asynchronous communication models (recipes 10-10 and 10-11)

374 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

• Communicate using User Datagram Protocol (UDP) datagrams where the connection-oriented
and reliable TCP represents unnecessary overhead (recipe 10-12)

• Write web service proxy classes that read the web service uniform resource locator (URL) from
a configuration file, thus avoiding the need to rebuild code if the URL changes (recipe 10-13)

• Provide credentials to allow a proxy class to authenticate against a secured web service
(recipe 10-14)

• Call a web service method asynchronously to avoid the calling code blocking and waiting for
the web service to respond (recipe 10-15)

• Create remotable objects and register them with the .NET Framework’s Remoting infrastruc-
ture (recipes 10-16 and 10-17)

• Host a remote object in Internet Information Services (IIS) (recipe 10-18)

• Control the lifetime and versioning of remotable objects (recipes 10-19 and 10-20)

10-1. Obtain Information About the
Local Network Interface

Problem
You need to obtain information about the network adapters and network configuration of the local
machine.

Solution
Call the Shared method GetAllNetworkInterfaces of the System.Net.NetworkInformation.
NetworkInterface class to get an array of objects derived from the abstract class NetworkInterface.
Each object represents a network interface available on the local machine. Use the members of each
NetworkInterface object to retrieve configuration information and network statistics for that interface.

How It Works
The addition of the System.Net.NetworkInformation namespace in .NET Framework 2.0 provides
easy access to information about network configuration and statistics that was not readily available
to .NET applications previously.

The primary means of retrieving network information are the properties and methods of the
NetworkInterface class. You do not instantiate NetworkInterface objects directly. Instead, you
call the Shared method NetworkInterface.GetAllNetworkInterfaces, which returns an array of
NetworkInterface objects. Each object represents a single network interface on the local machine.
You can then obtain network information and statistics about the interface using the NetworkInterface
members described in Table 10-1.

■Tip The System.Net.NetworkInformation.IPGlobalProperties class (new to .NET Framework 2.0)
also provides access to useful information about the network configuration of the local computer.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 375

The NetworkInterface class also provides two other Shared members that you will find useful:

• The Shared property LoopbackInterfaceIndex returns an Integer identifying the index of the
loopback interface within the NetworkInterface array returned by GetAllNetworkInterfaces.

• The Shared method GetIsNetworkAvailable returns a Boolean indicating whether any network
connection is available; that is, has an OperationalStatus value of Up.

Table 10-1. Members of the NetworkInterface Class

Member Description

Properties

Description Gets a String that provides a general description of the interface.

Id Gets a String that contains the unique identifier of the interface.

IsReceiveOnly Gets a Boolean indicating whether the interface can only receive or
can both send and receive data.

Name Gets a String containing the name of the interface.

NetworkInterfaceType Gets a value from the System.Net.NetworkInformation.
NetworkInterfaceType enumeration that identifies the type of
interface. Common values include Ethernet, FastEthernetT,
and Loopback.

OperationalStatus Gets a value from the System.Net.NetworkInformation.
OperationalStatus enumeration that identifies the status
of the interface. Common values include Down and Up.

Speed Gets a Long that identifies the speed (in bits per second) of the inter-
face as reported by the adapter, not based on dynamic calculation.

SupportsMulticast Gets a Boolean indicating whether the interface is enabled to receive
multicast packets.

Methods

GetIPProperties Returns a System.Net.NetworkInformation.IPInterfaceProperties
object that provides access to the TCP/IP configuration information
for the interface. Properties of the IPInterfaceProperties object
provide access to WINS, DNS, gateway, and IP address configuration.

GetIPv4Statistics Returns a System.Net.NetworkInformation.IPv4InterfaceStatistics
object that provides access to the TCP/IP v4 statistics for the interface.
The properties of the IPv4InterfaceStatistics object provide access to
information about bytes sent and received, packets sent and received,
discarded packets, and packets with errors.

GetPhysicalAddress Returns a System.Net.NetworkInformation.PhysicalAddress
object that provides access to the physical address of the interface.
You can obtain the physical address as a Byte array using the
method PhysicalAddress.GetAddressBytes or as a String using
PhysicalAddress.ToString.

Supports Returns a Boolean indicating whether the interface supports a
specified protocol. You specify the protocol using a value from
the System.Net.NetworkInformation.NetworkInterfaceComponent
enumeration. Possible values include IPv4 and IPv6.

376 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

The Code

The following example uses the members of the NetworkInterface class to display information
about all the network interfaces on the local machine.

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_01

 Public Shared Sub Main()

 ' Only proceed if there is a network available.
 If NetworkInterface.GetIsNetworkAvailable Then
 ' Get the set of all NetworkInterface objects for the local
 ' machine.
 Dim interfaces As NetworkInterface() = ➥
NetworkInterface.GetAllNetworkInterfaces

 ' Iterate through the interfaces and display information.
 For Each ni As NetworkInterface In interfaces
 ' Report basic interface information.
 Console.WriteLine("Interface Name: {0}", ni.Name)
 Console.WriteLine(" Description: {0}", ni.Description)
 Console.WriteLine(" ID: {0}", ni.Id)
 Console.WriteLine(" Type: {0}", ni.NetworkInterfaceType)
 Console.WriteLine(" Speed: {0}", ni.Speed)
 Console.WriteLine(" Status: {0}", ni.OperationalStatus)

 ' Report physical address.
 Console.WriteLine(" Physical Address: {0}", ➥
ni.GetPhysicalAddress().ToString)

 ' Report network statistics for the interface.
 Console.WriteLine(" Bytes Sent: {0}", ➥
ni.GetIPv4Statistics().BytesSent)
 Console.WriteLine(" Bytes Received: {0}", ➥
ni.GetIPv4Statistics.BytesReceived)

 ' Report IP configuration.
 Console.WriteLine(" IP Addresses:")
 For Each addr As UnicastIPAddressInformation In ➥
ni.GetIPProperties.UnicastAddresses
 Console.WriteLine(" - {0} (lease expires {1})", ➥
addr.Address, DateTime.Now.AddSeconds(addr.DhcpLeaseLifetime))
 Next
 Console.WriteLine(Environment.NewLine)

 Next
 Else
 Console.WriteLine("No network available.")
 End If

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 377

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

10-2. Detect Changes in Network Connectivity

Problem
You need a mechanism to check whether changes to the network occur during the life of your
application.

Solution
Add handlers to the Shared NetworkAddressChanged and NetworkAvailabilityChanged events imple-
mented by the System.Net.NetworkInformation.NetworkChange class. The My object also offers a
shared NetworkAvailabilityChanged event. This event is implemented by the My.Computer.Network
class, which is part of the Microsoft.VisualBasic.Devices namespace. (See Chapter 5 for more
information about the My object.)

How It Works
The NetworkChange class (new to .NET Framework 2.0) provides an easy-to-use mechanism that
allows applications to be aware of changes to network addresses and general network availability.
This allows your applications to adapt dynamically to the availability and configuration of the network.

The NetworkAvailabilityChanged event fires when a change occurs to general network availability.
The NetworkAvailabilityChangedEventHandler delegate is used to handle this event and is passed a
NetworkAvailabilityEventArgs object when the event fires. The NetworkAvailabilityEventArgs.
IsAvailable property returns a Boolean value indicating whether the network is available or unavail-
able following the change.

The NetworkAvailabilityChanged event, of the My object, works in the same way as the matching
event in the NetworkChange class. The only real difference is in naming. This version of the event uses
the NetworkAvailableChangedEventHandler delegate to handle this event, but its event arguments
parameter is a NetworkAvailableEventArgs object. Also, the property for retrieving network avail-
ability is named IsNetworkAvailable.

The NetworkAddressChanged event fires when the IP address of a network interface changes. An
instance of the NetworkAddressChangedEventHandler delegate is required to handle these events. No
event-specific arguments are passed to the event handler, which must call NetworkInterface.
GetAllNetworkInterfaces (discussed in recipe 10-1) to determine what has changed and to take
appropriate action. The My object does not offer an equivalent for this event.

The Code

The following example demonstrates how to use handlers that catch NetworkAddressChanged and
NetworkAvailabilityChanged events and then displays status information to the console.

378 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_02

 ' Declare a method to handle NetworkAvailabilityChanged events.
 Private Shared Sub NetworkAvailabilityChanged(ByVal sender As Object, ➥
ByVal e As NetworkAvailabilityEventArgs)

 ' Report whether the network is now available or unavailable.
 If e.IsAvailable Then
 Console.WriteLine("Network Available")
 Else
 Console.WriteLine("Network Unavailable")
 End If

 End Sub

 ' Declare a method to handle NetworkAddressChanged events.
 Private Shared Sub NetwordAddressChanged(ByVal sender As Object, ➥
ByVal e As EventArgs)

 Console.WriteLine("Current IP Addresses:")

 ' Iterate through the interfaces and display information.
 For Each ni As NetworkInterface In ➥
NetworkInterface.GetAllNetworkInterfaces
 For Each addr As UnicastIPAddressInformation In ➥
ni.GetIPProperties.UnicastAddresses
 Console.WriteLine(" - {0} (lease expires {1})", ➥
addr.Address, DateTime.Now.AddSeconds(addr.DhcpLeaseLifetime))
 Next
 Next

 End Sub

 Public Shared Sub Main()

 ' Add the handlers to the NetworkChange events.
 AddHandler NetworkChange.NetworkAvailabilityChanged, ➥
AddressOf NetworkAvailabilityChanged
 AddHandler NetworkChange.NetworkAddressChanged, ➥
AddressOf NetworkAddressChanged

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 379

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Press Enter to stop waiting for network events.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

To use the My object equivalent of the NetworkAvailabilityChanged event, replace the
NetworkAvailabilityChanged handler with the following:

 ' Declare a method to handle NetworkAvailabilityChanged events.
 Private Shared Sub NetworkAvailabilityChanged(ByVal sender As Object, ➥
ByVal e As Microsoft.VisualBasic.Devices.NetworkAvailableEventArgs)

 ' Report whether the network is now available or unavailable.
 If e.IsNetworkAvailable Then
 Console.WriteLine("Network Available")
 Else
 Console.WriteLine("Network Unavailable")
 End If

 End Sub

You also need to replace the current call to AddHandler with this:

AddHandler My.Computer.Network.NetworkAvailabilityChanged, AddressOf ➥
NetworkAvailabilityChanged

10-3. Download Data over HTTP or FTP

Problem
You need a quick, simple way to download data from the Internet using HTTP or FTP.

Solution
Use the methods of the System.Net.WebClient class or the DownloadFile method of the My.Computer.
Network class. (Refer to Chapter 5 for more information about the My object.)

How It Works
The .NET Framework provides several mechanisms for transferring data over the Internet. One of
the easiest approaches is to use the System.Net.WebClient class. WebClient provides many high-level
methods that simplify the transfer of data by specifying the source as a uniform resource identifier
(URI); Table 10-2 summarizes them. The URI can specify that a file (file://), FTP (ftp://), HTTP ((http://),
or HTTPS (https://) scheme be used to download the resource.

380 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

The asynchronous download methods were added in .NET Framework 2.0 and allow you to
download data as a background task using a thread from the thread pool (discussed in recipe 4-1).
When the download is finished or fails, the thread calls the appropriate OnXXX virtual methods that
raise the corresponding event on the WebClient object, which you can handle using a method that
matches the signature of the System.ComponentModel.AsyncCompletedEventHandler delegate if you
don’t want to derive a type from WebClient and override the virtual method. However, the WebClient
object can handle only a single concurrent asynchronous download, making a WebClient object suit-
able for the background download of large single sets of data but not for the download of many files
concurrently. (You could, of course, create multiple WebClient objects to handle multiple down-
loads.) You can cancel the outstanding asynchronous download using the method CancelAsync.

■Tip The WebClient class derives from System.ComponentModel.Component, so you can add it to the
Visual Studio 2005 Form Designer Toolbox in order to allow you to easily set the properties or define the event
handlers in a Windows Forms–based application.

If you need to download only a file, the My object also offers a DownloadFile method. As with the
matching method in the WebClient class, you can specify a String or Uri for the address parameter.
The My version of the method lets you specify a username and password or a System.Net.ICredential
object, while the WebClient version requires you to use the Credentials property of the class, which
accepts only an ICredential object. Unlike with the WebClient version, you can also specify a time-out

Table 10-2. Data Download Methods of the WebClient Class

Method Description

OpenRead Returns a System.IO.Stream that provides access to the data from a
specified URI.

OpenReadAsync Same as OpenRead, but performs the data transfer using a thread-pool
thread so that the calling thread does not block. Add an event
handler to the OpenReadCompleted event to receive notification that
the operation has completed.

DownloadData Returns a Byte array that contains the data from a specified URI.

DownloadDataAsync Same as DownloadData, but performs the data transfer using a thread-
pool thread so that the calling thread does not block. Add an event
handler to the DownloadDataCompleted event to receive notification
that the operation has completed.

DownloadFile Downloads data from a specified URI and saves it to a specified
local file.

DownloadFileAsync Same as DownloadFile, but performs the data transfer using a thread-
pool thread so that the calling thread does not block. Add an event
handler to the DownloadFileCompleted event to receive notification
that the operation has completed.

DownloadString Returns a String that contains the data from a specified URI. (This is
new to .NET Framework 2.0.)

DownloadStringAsync Same as DownloadString, but performs the data transfer using a thread-
pool thread so that the calling thread does not block. Add an event
handler to the DownloadStringCompleted event to receive notification
that the operation has completed.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 381

using the connectionTimeout parameter or show a nonmodal progress dialog box (which includes a
Cancel button) using the showUI parameter.

The Code

The following example downloads a specified resource from a URI as a string and, since it is an
HTML page, parses it for any fully qualified URLs that refer to GIF files. It then downloads each
of these files to the local hard drive.

Imports System
Imports System.IO
Imports System.Net
Imports System.Text.RegularExpressions

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_03

 Public Shared Sub Main()

 ' Specify the URI of the resource to parse.
 Dim remoteUri As String = "http://www.apress.com"

 ' Create a WebClient to perform the download.
 Dim client As New WebClient

 Console.WriteLine("Downloading {0}", remoteUri)

 ' Perform the download getting the resource as a string.
 Dim str As String = client.DownloadString(remoteUri)

 ' Use a regular expression to extract all fully qualified
 ' URIs that refer to GIF files.
 Dim matches As MatchCollection = Regex.Matches(str, ➥
"http\S+[^-,;:?]\.gif")

 ' Try to download each referenced GIF file.
 For Each expMatch As Match In matches
 For Each grp As Group In expMatch.Groups
 ' Determine the local filename.
 Dim downloadedFile As String = ➥
grp.Value.Substring(grp.Value.LastIndexOf("/") + 1)

 Try
 ' Download and store the file.
 Console.WriteLine("Downloading {0} to file {1}", ➥
grp.Value, downloadedFile)

 client.DownloadFile(New Uri(grp.Value), downloadedFile)
 Catch ex As Exception
 Console.WriteLine("Failed to download {0}", grp.Value)
 End Try
 Next
 Next

382 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note The regular expression used in the example is simple and is not designed to cater to all possible URL
structures. Recipes 2-5 and 2-6 discuss regular expressions.

Changing the code sample to use the My version of DownloadFile is as simple as replacing
client.DownloadFile with My.Computer.Network.DownloadFile.

Notes
You may also want to upload data to resources specified as a URI, although this technique is not as
commonly used as the other approaches discussed in this recipe. The WebClient class also provides
the following methods for performing uploads that are equivalent to the download methods discussed
previously:

• OpenWrite

• OpenWriteAsync

• UploadData

• UploadDataAsync

• UploadFile

• UploadFileAsync

• UploadString

• UploadStringAsync

Not to be outdone, My offers the UploadFile method, which is used in a similar fashion to the
DownloadFile method.

10-4. Download a File and Process It
Using a Stream

Problem
You need to retrieve a file from a web site, but you do not want to save it directly to the hard drive,
or you do not have permission to do so. Instead, you need to process the data in your application
directly in memory.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 383

Solution
Use the System.Net.WebRequest class to create your request, the System.Net.WebResponse class to
retrieve the response from the web server, and some form of reader (typically a System.IO.StreamReader
for HTML or text data, or a System.IO.BinaryReader for a binary file) to parse the response data.

■Note You could also use the OpenRead method of the System.Net.WebClient class to open a stream.
However, the additional capabilities of the WebRequest and WebResponse classes give you more control over
the operation of the network request.

How It Works
Opening and downloading a stream of data from the Web using the WebRequest and WebResponse
classes takes the following four basic steps:

1. Use the Shared method Create of the WebRequest class to specify the page you want. This
method returns a WebRequest-derived object, depending on the type of URI you specify. For
example, if you use an HTTP or HTTPS URI (with the scheme http:// or https://), you will
create an HttpWebRequest instance. If you use a file system URI (with the scheme file://), you
will create a FileWebRequest instance. In .NET Framework 2.0, you can also use an FTP URL
(with the scheme ftp://), which will create an FtpWebRequest.

2. Use the GetResponse method of the WebRequest object to return a WebResponse object for the
page. If the request times out, a System.Net.WebException will be thrown. You can configure
the time-out for the network request through the WebRequest.Timeout property in milliseconds
(the default value is 100000).

3. Create a StreamReader or a BinaryReader that wraps the stream returned by the WebResponse.
GetResponseStream method.

4. Perform any steps you need to with the stream contents.

The Code

The following example retrieves and displays a graphic and the HTML content of a web page.
Figure 10-1 shows the output.

Imports System
Imports System.Net
Imports System.IO
Imports System.Drawing
Imports System.Windows.Forms

' All designed code is stored in the autogenerated partial
' class called Recipe10-04.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Public Class Recipe10_04

 Private Sub Recipe10_04_Load(ByVal sender As Object, ➥
ByVal e As System.EventArgs) Handles Me.Load

 Dim picUri As String = "http://www.apress.com/img/img05/Hex_RGB4.jpg"
 Dim htmlUri As String = "http://www.apress.com"

384 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Create the requests.
 Dim requestPic As WebRequest = WebRequest.Create(picUri)
 Dim requestHtml As WebRequest = WebRequest.Create(htmlUri)

 ' Get the responses. This takes the most significant amount of
 ' time, particularly if the file is large, because the whole
 ' response is retrieved.
 Dim responsePic As WebResponse = requestPic.GetResponse
 Dim responseHtml As WebResponse = requestHtml.GetResponse

 ' Read the image from the response stream.
 picturebox1.image = Image.FromStream(responsePic.GetResponseStream)

 ' Read the text from the response stream.
 Using r As New StreamReader(responseHtml.GetResponseStream)
 textbox1.text = r.ReadToEnd
 End Using

 End Sub

End Class

Figure 10-1. Downloading content from the Web using a stream

10-5. Respond to HTTP Requests
from Your Application

Problem
You want your application to be able to respond to HTTP requests programmatically.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 385

Solution
Use the new System.Net.HttpListener class provided by .NET Framework 2.0.

■Note Your application must be running on Windows XP Service Pack 2 (or later) or Windows 2003 to use the
HttpListener class; otherwise, a System.PlatformNotSupportedException will be thrown when you try
to instantiate it. Check the Boolean returned by the Shared property HttpListener.IsSupported to see
whether support is available.

How It Works
The HttpListener class provides an easy-to-use mechanism through which your programs can
accept and respond to HTTP requests. To use the HttpListener class, follow these steps:

1. Instantiate an HttpListener object.

2. Configure the URI prefixes that the HttpListener object will handle using the Prefixes property.
A URI prefix is a string that represents the starting portion of a URI, which consists of the
schema type (such as http or https), a host, and optionally a path and port. The Prefixes
property returns a System.Net.HttpListenerPrefixCollection collection to which you can
add URI prefixes using the Add method. Each prefix must end with a forward slash (/), or a
System.ArgumentException is thrown. If you specify a URL prefix that is already being handled,
a System.Net.HttpListenerException is thrown. When a client makes a request, the request
will be handled by the listener configured with the prefix that most closely matches the
client’s requested URL.

3. Start the HttpListener object by calling its Start method. You must call Start before the
HttpListener object can accept and process HTTP requests.

4. Accept client requests using the GetContext method of the HttpListener object. The GetContext
method will block the calling thread until a request is received and then returns a System.
Net.HttpListenerContext object. Alternatively, you can use the BeginGetContext and
EndGetContext methods to listen for requests on a thread-pool thread. When a request is
received, the System.AsynchCallback delegate specified as the argument to the BeginGetContext
method will be called and passed the HttpListenerContext object. Regardless of how it is
obtained, the HttpListenerContext objects implements three read-only properties critical to
the handling of a client request:

• The Request property returns a System.Net.HttpListenerRequest through which you can
access details of the client’s request.

• The Response property returns a System.Net.HttpListenerResponse through which you
can configure the response to send to the client.

• The User property returns an instance of a type implementing System.Security.Principal.
IPrincipal, which you can use to obtain identity, authentication, and authorization infor-
mation about the user associated with the request.

5. Configure the HTTP response through the members of the HttpListenerResponse object
accessible through the HttpListenerContext.Response property.

6. Send the response by calling the Close method of the HttpListenerResponse object.

7. Once you have finished processing HTTP requests, call Stop on the HttpListener object to
stop accepting more requests and pause the listener. Call Close to shut down the HttpListener
object, which will wait until all outstanding requests have been processed, or call Abort to
terminate the HttpListener object without waiting for requests to be complete.

386 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

The Code

The following example demonstrates how to use the HttpListener class to process HTTP requests.
The example starts listening for five requests concurrently using the asynchronous BeginGetContext
method and handles the response to each request by calling the RequestHandler method. Each time
a request is handled, a new call is made to BeginGetContext so that you always have the capacity to
handle up to five requests.

To open a connection to the example from your browser, enter the URL http://localhost:19080/
VisualBasicRecipes/ or http://localhost:20000/Recipe10-05/, and you will see the response from
the appropriate request handler.

Imports System
Imports System.IO
Imports System.Net
Imports System.Text
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_05

 Public Shared Sub Main()

 ' Quit gracefully if this feature is not supported.
 If Not HttpListener.IsSupported Then
 Console.WriteLine("You must be running this example on Windows" & ➥
" XP SP2, Windows Server 2003, or higher to create an HttpListener.")

 Exit Sub
 End If

 ' Create the HttpListener.
 listener = New HttpListener

 ' Configure the URI prefixes that will map to the HttpListener.
 listener.Prefixes.Add("http://localhost:19080/VisualBasicRecipes/")
 listener.Prefixes.Add("http://localhost:20000/Recipe10-05/")

 ' Start the HttpListener before listening for incoming requests.
 Console.WriteLine("Starting HTTP Server")
 listener.Start()
 Console.WriteLine("HTTP Server started")
 Console.WriteLine(Environment.NewLine)

 ' Create a number of asynchronous request handlers up to
 ' the configurable maximum. Give each a unique identifier.
 For count As Integer = 1 To maxRequestHandlers
 listener.BeginGetContext(AddressOf RequestHandler, ➥
"RequestHandler_" & Interlocked.Increment(requestHandlerID))
 Next

 ' Wait for the user to stop the HttpListener.
 Console.WriteLine("Press Enter to stop the HTTP Server.")
 Console.ReadLine()

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 387

 ' Stop accepting new requests.
 listener.Stop()

 ' Terminate the HttpListener without processing current requests.
 listener.Abort()

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' Configure the maximum number of requests that can be
 ' handled concurrently.
 Private Shared maxRequestHandlers As Integer = 5

 ' An integer used to assign each HTTP request handler a unique
 ' identifier.
 Private Shared requestHandlerID As Integer = 0

 ' The HttpListener is the class that provides all the
 ' capabilities to receive and process HTTP requests.
 Private Shared listener As HttpListener

 ' A method to asynchronously process individual requests
 ' and send responses.
 Private Shared Sub RequestHandler(ByVal result As IAsyncResult)

 Console.WriteLine("{0}: Activated.", result.AsyncState)

 Try
 ' Obtain the HttpListenerContext for the new request.
 Dim context As HttpListenerContext = listener.EndGetContext(result)

 Console.WriteLine("{0}: Processing HTTP Request from {1} ({2}).", ➥
result.AsyncState, context.Request.UserHostName, context.Request.RemoteEndPoint)

 ' Build the response using a StreamWriter feeding the
 ' Response.OutputStream.
 Dim sw As New StreamWriter(context.Response.OutputStream, ➥
Encoding.UTF8)

 sw.WriteLine("<html>")
 sw.WriteLine("<head>")
 sw.WriteLine("<title>Visual Basic Recipes</title>")
 sw.WriteLine("</head>")
 sw.WriteLine("<body>")
 sw.WriteLine("Recipe 10-5: " & result.AsyncState)
 sw.WriteLine("</body>")
 sw.WriteLine("</html>")
 sw.Flush()

388 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Configure the response.
 context.Response.ContentType = "text/html"
 context.Response.ContentEncoding = Encoding.UTF8

 ' Close the response to send it to the client.
 context.Response.Close()

 Console.WriteLine("{0}: Sent HTTP response.", result.AsyncState)
 Catch ex As ObjectDisposedException
 Console.WriteLine("{0}: HttpListener disposed--shutting down.", ➥
result.AsyncState)
 Finally
 ' Start another handler unless the HttpListener is closing.
 If listener.IsListening Then
 Console.WriteLine("{0}: Creating new request handler.", ➥
result.AsyncState)

 listener.BeginGetContext(AddressOf RequestHandler, ➥
"RequestHandler_" & Interlocked.Increment(requestHandlerID))
 End If
 End Try

 End Sub

 End Class
End Namespace

10-6. Get an HTML Page from a Site
That Requires Authentication

Problem
You need to retrieve a file from a web site, but the web site requires that you provide credentials for
the purpose of authentication.

Solution
Use the System.Net.WebRequest and System.Net.WebResponse classes as described in recipe 10-4.
Before making the request, configure the WebRequest.Credentials and WebRequest.Certificates
properties with the necessary authentication information.

■Tip You could also use the System.Net.WebClient class (discussed in recipe 10-3). It also has Credentials
and Certificates properties that allow you to associate user credentials with a web request.

How It Works
Some web sites require user authentication information. When connecting through a browser, this
information might be submitted transparently (for example, on a local intranet site that uses Integrated

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 389

Windows authentication), or the browser might request this information with a login dialog box.
When accessing a web page programmatically, your code needs to submit this information. The
approach you use depends on the type of authentication implemented by the web site:

• If the web site is using basic or digest authentication, you can transmit a username and
password combination by manually creating a new System.Net.NetworkCredential object,
which implements the ICredentials and ICredentialsByHost interface, and assigning it to
the WebRequest.Credentials property. With digest authentication, you may also supply a
domain name.

• If the web site is using Integrated Windows authentication, you can take the same approach
and manually create a new System.Net.NetworkCredential object. Alternatively, you can
retrieve the current user login information from the System.Net.CredentialCache object
using the DefaultCredentials property.

• If the web site requires a client certificate, you can load the certificate from a file using the
System.Security.Cryptography.X509Certificates.X509Certificate2 class and add that to
the HttpWebRequest.ClientCertificates collection.

• In .NET Framework 2.0, you can load an X.509 certificate from a certificate store using the
class System.Security.Cryptography.X509Certificates.X509Store defined in the System.
Security.dll assembly. You can either find a certificate in the store programmatically using
the X509Store.Certificates.Find method or present users with a Windows dialog box and
allow them to select the certificate. To present a dialog box, pass a collection of X.509 certifi-
cates contained in an X509Certificate2Collection object to the SelectFromCollection
method of the System.Security.Cryptography.X509Certificates.X509Certificate2UI class.

The Code

The following example demonstrates all four of the basic approaches described previously. Note
that you need to add a reference to the System.Security.dll assembly.

Imports System
Imports System.Net
Imports System.Security.Cryptography.X509Certificates

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_06

 Public Shared Sub Main()

 ' Create a WebRequest that authenticates the user with a
 ' username and password combination over basic authentication.
 Dim requestA As WebRequest = WebRequest.Create("http:" & ➥
"//www.somesite.com")
 requestA.Credentials = New NetworkCredential("username", "password")

 ' Create a WebRequest that authenticates the current user
 ' with Integrated Windows authentication.
 Dim requestB As WebRequest = WebRequest.Create("http:" & ➥
"//www.somesite.com")
 requestB.Credentials = CredentialCache.DefaultCredentials

390 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Create a WebRequest that authenticates the use with a client
 ' certificate loaded from a file.
 Dim requestC As HttpWebRequest = ➥
DirectCast(WebRequest.Create("http:"//www.somesite.com"), HttpWebRequest)
 Dim cert1 = X509Certificate.CreateFromCertFile("..\..\" & ➥
"TestCertificate.cer")
 requestC.ClientCertificates.Add(cert1)

 ' Create a WebRequest that authenticates the user with a client
 ' certificate loaded from a certificate store. Try to find a
 ' certificate with a specific subject, but if it is not found,
 ' present the user with a dialog so he can select the certificate
 ' to use from his personal store.
 Dim requestD As HttpWebRequest = ➥
DirectCast(WebRequest.Create("http://www.somesite.com"), HttpWebRequest)
 Dim store As New X509Store
 Dim certs As X509Certificate2Collection = ➥
store.Certificates.Find(X509FindType.FindBySubjectName, "Todd Herman", False)

 If certs.Count = 1 Then
 requestD.ClientCertificates.Add(certs(0))
 Else
 certs = X509Certificate2UI.SelectFromCollection(➥
store.Certificates,"Select Certificate", "Select the certificate to use for " & ➥
"authentication.", X509SelectionFlag.SingleSelection)

 If Not certs.Count = 0 Then
 requestD.ClientCertificates.Add(certs(0))
 End If
 End If

 ' Now issue the request and process the responses...

 End Sub

 End Class
End Namespace

10-7. Send E-mail Using SMTP

Problem
You need to send e-mail using an SMTP server.

Solution
Use the SmtpClient and MailMessage classes in the System.Net.Mail namespace.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 391

■Note In version 1.0 and 1.1 of the .NET Framework, you would send SMTP mail using the SmtpMail and
MailMessage classes in the System.Web.Mail namespace from the System.Web.dll assembly. Both of these
classes have been made obsolete. The SmtpClient and MailMessage classes discussed in this recipe are new
to the System.dll assembly in .NET Framework 2.0, and both simplify and extend the functionality provided by
earlier versions.

How It Works
An instance of the SmtpClient class provides the mechanism through which you communicate with
the SMTP server. You configure the SmtpClient using the properties described in Table 10-3.

■Tip You can specify default settings for the SmtpClient in the <mailSettings> section of your machine or
application configuration files. Configurable default values include the host, port, username, password, and whether
or not the default credentials should be used.

Mail messages are represented by MailMessage objects, which you instantiate and then
configure using the members summarized in Table 10-4.

Table 10-3. Properties of the SmtpClient Class

Property Description

ClientCertificates Gets a System.Security.Cryptography.X509Certificates.
X509CertificatesCollection to which you add the certificates
to use for communicating with the SMTP server (if required).

Credentials Gets or sets an implementation of the System.Net.ICredentialsByHost
interface that represents the credentials to use to gain access to the
SMTP server. The CredentialCache and NetworkCredential classes
implement the ICredentialsByHost interface. Use NetworkCredential
if you want to specify a single set of credentials and CredentialCache
if you want to specify more than one.

EnableSsl Gets or sets a Boolean value that indicates whether the SmtpClient
should use Secure Sockets Layer (SSL) to communicate with the
SMTP server.

Host Gets or sets a String containing the host name or IP address of the
SMTP server to use to send e-mail.

Port Gets or sets an Integer value containing the port number to connect
to on the SMTP server. The default value is 25.

Timeout Gets or sets an Integer value containing the time-out in milliseconds
when attempting to send e-mail. The default is 100 seconds.

UseDefaultCredentials Gets or sets a Boolean value indicating whether the default user
credentials are used when communicating with the SMTP server. If true,
the credentials passed to the SMTP server are automatically obtained
from the Shared property CredentialCache.DefaultCredentials.

392 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

■Tip For simple mail messages, the MailMessage class provides a constructor that allows you to specify the
from, to, subject, and body information for the mail message as String arguments. This allows you to create a
complete mail message in a single call.

Once you have configured the SmtpClient, you can send your MailMessage objects using the
SmtpClient.Send method, which will cause your code to block until the send operation is completed
or fails. Alternatively, you can send mail using a thread from the thread pool by calling the SendAsync
method. When you call SendAsync, your code will be free to continue other processing while the
e-mail is sent. Add an event handler to the SendCompleted event to receive notification that the asyn-
chronous send has completed.

Table 10-4. Properties of the MailMessage Class

Property Description

Attachments Gets or sets a System.Net.Mail.AttachmentCollection containing the set
of attachments for the e-mail message. A System.Net.Mail.Attachment
object represents each attachment. You can create Attachment objects
from files or streams, and you can configure the encoding and content
type for each attachment.

Bcc Gets or sets a System.Net.Mail.MailAddressCollection containing
the blind carbon copy addresses for the e-mail message. The
MailAddressCollection contains one or more MailAddress objects.

Body Gets or sets a String value that contains the body text of the e-mail message.

BodyEncoding Gets or sets a System.Text.Encoding object that specifies the encoding for
the body of the e-mail message. The default value is Nothing, resulting in
a default encoding of us-ascii, which is equivalent to the Encoding object
returned by the Shared property Encoding.ASCII.

CC Gets or sets a System.Net.Mail.MailAddressCollection containing
the carbon copy addresses for the e-mail message. The
MailAddressCollection contains one or more MailAddress objects.

From Gets or sets a System.Net.Mail.MailAddress containing the from address
for the e-mail message.

IsBodyHtml Gets or sets a Boolean value identifying whether the body of the e-mail
message contains HTML.

ReplyTo Gets or sets a System.Net.Mail.MailAddress containing the reply address
for the e-mail message.

Subject Gets or sets a String containing the subject for the e-mail message.

SubjectEncoding Gets or sets a System.Text.Encoding object that specifies the encoding
used to encode the subject of the e-mail subject. The default value is
Nothing, resulting in a default encoding of us-ascii, which is equivalent to
the Encoding object returned by the Shared property Encoding.ASCII.

To Gets or sets a System.Net.Mail.MailAddressCollection containing the
destination addresses for the e-mail message. The MailAddressCollection
contains one or more MailAddress objects.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 393

■Note You cannot use SMTP to retrieve e-mail. For this task, you need the Post Office Protocol 3 (POP3) or the
Internet Message Access Protocol (IMAP), neither of which is exposed natively in the .NET Framework.

The Code

The following example demonstrates how to use the SmtpClient class to send an e-mail message
with multiple attachments to a set of recipients whose e-mail addresses are specified as command-
line arguments.

Imports System
Imports System.Net
Imports System.Net.Mail

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_07

 Public Shared Sub Main(ByVal args As String())

 ' Create and configure the SmtpClient that will send the mail.
 ' Specify the host name of the SMTP server and the port used
 ' to send mail.
 Dim client As New SmtpClient("mail.somecompany.com", 25)

 ' Configure the SmtpClient with the credentials used to connect
 ' to the SMTP server.
 client.Credentials = New NetworkCredential("user@somecompany.com", ➥
"password")

 ' Create the MailMessage to represent the e-mail being sent.
 Using msg As New MailMessage

 ' Configure the e-mail sender and subject.
 msg.From = New MailAddress("author@visual-basic-recipes.com")
 msg.Subject = "Greetings from Visual Basic Recipes"

 ' Configure the e-mail body.
 msg.Body = "This is a message from Recipe 10-07 of Visual " & ➥
"Basic Recipes. Attached is the source file and the binary for the recipe."

 ' Attach the files to the e-mail message and set their MIME type.
 msg.Attachments.Add(New Attachment("..\..\Recipe10-07.vb", ➥
"text/plain"))
 msg.Attachments.Add(New Attachment("Recipe10-07.exe", ➥
"application/octet-stream"))

 ' Iterate through the set of recipients specified on the
 ' command line. Add all addresses with the correct structure
 ' as recipients.
 For Each arg As String In args
 ' Create a MailAdress from each value on the command line
 ' and add it to the set of recipients.

394 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 Try
 msg.To.Add(New MailAddress(arg))
 Catch ex As FormatException
 ' Proceed to the next specified recipient.
 Console.WriteLine("{0}: Error -- {1}", arg, ex.Message)
 Continue For
 End Try

 ' Send the message.
 client.Send(msg)
 Next

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

10-8. Resolve a Host Name to an IP Address

Problem
You want to determine the IP address for a computer based on its fully qualified domain name by
performing a DNS query.

Solution
In .NET Framework 2.0, use the method GetHostEntry of the System.Net.Dns class, and pass the
computer’s fully qualified domain name as a string parameter.

■Note In version 1.0 and 1.1 of the .NET Framework, you would use the method GetHostByName of the Dns
class. This method is marked as obsolete in .NET Framework 2.0.

How It Works
On the Internet, the human-readable names that refer to computers are mapped to IP addresses,
which is what TCP/IP requires in order to communicate between computers. For example, the name
www.apress.com might be mapped to the IP address 65.19.150.100. To determine the IP address for a
given name, the computer contacts a DNS server. The name or IP address of the DNS server contacted is
configured as part of a computer’s network configuration.

The entire process of name resolution is transparent if you use the System.Net.Dns class, which
allows you to retrieve the IP address for a host name by calling GetHostEntry.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 395

■Tip The Dns class also provides the BeginGetHostEntry and EndGetHostEntry methods, which allow you
to resolve IP addresses asynchronously. Also, the static method GetHostName returns the computer name of the
local machine.

The Code

The following example retrieves the IP addresses of all computers whose fully qualified domain
names are specified as command-line arguments.

Imports System
Imports System.Net

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_08

 Public Shared Sub Main(ByVal args As String())

 For Each comp As String In args

 Try
 ' Retrieve the DNS entry for the specified computer.
 Dim dnsEntry As IPHostEntry = Dns.GetHostEntry(comp)

 ' The DNS entry may contain more than one IP address. Iterate
 ' through them and display each one along with the type of
 ' address (AddressFamily).
 For Each address As IPAddress In dnsEntry.AddressList
 Console.WriteLine("{0} = {1} ({2})", comp, address, ➥
address.AddressFamily)
 Next
 Catch ex As Exception
 Console.WriteLine("{0} = Error ({1})", comp, ex.Message)
 End Try
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Running the example with the following command line:

recipe10-08 www.apress.com www.microsoft.com localhost somejunk

will produce the following output. Notice that multiple IP addresses are returned for some host names.

396 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

www.apress.com = 65.19.150.101 (InterNetwork)
www.microsoft.com = 207.46.20.60 (InterNetwork)
www.microsoft.com = 207.46.198.30 (InterNetwork)
www.microsoft.com = 207.46.198.60 (InterNetwork)
www.microsoft.com = 207.46.199.30 (InterNetwork)
www.microsoft.com = 207.46.225.60 (InterNetwork)
www.microsoft.com = 207.46.18.30 (InterNetwork)
www.microsoft.com = 207.46.19.30 (InterNetwork)
www.microsoft.com = 207.46.19.60 (InterNetwork)
localhost = 127.0.0.1 (InterNetwork)
somejunk = Error (No such host is known)

10-9. Ping an IP Address

Problem
You want to check to see whether a computer is online and accessible and gauge its response time.

Solution
Send a ping message. This message is sent using the ICMP, accessible through the Send method of
the System.Net.NetworkInformation.Ping class.

■Note The Ping class is new to .NET Framework 2.0. To send a ping message in earlier versions of the .NET
Framework, you had to undertake significant effort to manually create an ICMP request message using raw sockets
and lengthy code.

How It Works
A ping message contacts a device at a specific IP address, passing it a test packet, and requests that
the remote device respond by echoing back the packet. To gauge the connection latency between
two computers, you can measure the time taken for a ping response to be received.

■Caution Many commercial web sites do not respond to ping requests because they represent an unnecessary
processing overhead and are often used in denial of service attacks. The firewall that protects the site will usually
filter out ping requests before they reach the specified destination. This will cause your ping request to time out.

The Ping class allows you to send ping messages using the Send method. The Send method
provides a number of overloads, which allow you to specify the following:

• The IP address or host name of the target computer. You can specify this as a String or a
System.Net.IPAddress object.

• The number of milliseconds to wait for a response before the request times out (specified as
an Integer). The default is set to 5000.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 397

• A Byte array of up to 65,500 data bytes that is sent with the ping request and that should be
returned in the response.

• A System.Net.NetworkInformation.PingOptions object that specifies time-to-live and frag-
mentation options for the transmission of the ping message.

The Send method will return a System.Net.NetworkInformation.PingReply object. The Status
property of the PingReply will contain a value from the System.Net.NetworkInformation.IPStatus
enumeration from which you can determine the result of the ping request. The most common values
will be Success and TimedOut. If the host name you pass to the Send method cannot be resolved, Send will
throw an exception, but you must look at the InnerException to determine the cause of the problem.

The Ping class also provides a SendAsync method that performs the ping request using a thread-pool
thread so that the calling thread does not block. When the ping is finished or fails because of a time-out,
the thread raises the PingCompleted event on the Ping object, which you can handle using a method that
matches the signature of the System.Net.NetworkInformation.PingCompletedEventHandler delegate.
However, the Ping object can handle only a single concurrent request; otherwise, it will throw a System.
InvalidOperationException.

■Tip The Ping class derives from System.ComponentModel.Component, so you can add it to the Visual
Studio 2005 Form Designer Toolbox. This will allow you to easily set the properties or define the event handlers in
a Windows Forms–based application.

The Code

The following example pings the computers whose domain names or IP addresses are specified as
command-line arguments.

Imports System
Imports System.Net.NetworkInformation

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_09

 Public Shared Sub Main(ByVal args As String())

 ' Create an instance of the Ping class.
 Using png As New Ping
 Console.WriteLine("Pinging:")

 For Each comp As String In args

 Try
 Console.Write(" {0}...", comp)

 ' Ping the specified computer with a time-out of 100ms.
 Dim reply As PingReply = png.Send(comp, 100)

398 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 If reply.Status = IPStatus.Success Then
 Console.WriteLine("Success - IP Address:{0} " & ➥
"Time:{1}ms", reply.Address, reply.RoundtripTime)
 Else
 Console.WriteLine(reply.Status.ToString)
 End If

 Catch ex As Exception
 Console.WriteLine("Error ({0})", ex.InnerException.Message)
 End Try

 Next

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Running the example with the following command line:

recipe10-09 www.apress.com www.google.com localhost somejunk

will produce the following output:

Pinging:
 www.apress.com...TimedOut
 www.google.com...Success - IP Address:216.239.59.104 Time:42ms
 localhost...Success - IP Address:127.0.0.1 Time:0ms
 somejunk...Error (No such host is known)

10-10. Communicate Using TCP

Problem
You need to send data between two computers on a network using a TCP/IP connection.

Solution
One computer (the server) must begin listening using the System.Net.Sockets.TcpListener class.
Another computer (the client) connects to it using the System.Net.Sockets.TcpClient class. Once a
connection is established, both computers can communicate using the
System.Net.Sockets.NetworkStream class.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 399

How It Works
TCP is a reliable, connection-oriented protocol that allows two computers to communicate over a
network. It provides built-in flow control, sequencing, and error handling, which make it reliable
and easy to program.

To create a TCP connection, one computer must act as the server and start listening on a specific
endpoint. (An endpoint is a combination of an IP address and a port number.) The other computer
must act as a client and send a connection request to the endpoint on which the first computer is
listening. Once the connection is established, the two computers can take turns exchanging messages.
The .NET Framework makes this process easy through its stream abstraction. Both computers simply
write to and read from a System.Net.Sockets.NetworkStream to transmit data.

■Note Even though a TCP connection always requires a server and a client, an individual application could be
both. For example, in a peer-to-peer application, one thread is dedicated to listening for incoming requests (acting
as a server), and another thread is dedicated to initiating outgoing connections (acting as a client). In the examples
in this chapter, the client and server are provided as separate applications and are placed in separate subdirectories.

Once a TCP connection is established, the two computers can send any type of data by writing
it to the NetworkStream. However, it’s a good idea to begin designing a networked application by
defining the application-level protocol that clients and servers will use to communicate. This protocol
includes constants that represent the allowable commands, ensuring that your application code
doesn’t include hard-coded communication strings.

The Code

In this recipe’s example, the defined protocol is basic. You would add more constants depending on
the type of application. For example, in a file transfer application, you might include a client message
for requesting a file. The server might then respond with an acknowledgment and return file details
such as the file size. These constants should be compiled into a separate class library assembly,
which must be referenced by both the client and server. Here is the code for the shared protocol:

Namespace Apress.VisualBasicRecipes.Chapter10

 Public Class Recipe10_10Shared

 Public Const AcknowledgeOK As String = "OK"
 Public Const AcknowledgeCancel = "Cancel"
 Public Const Disconnect As String = "Bye"
 Public Const RequestConnect As String = "Hello"

 End Class

End Namespace

The following code is a template for a basic TCP server. It listens on a fixed port, accepts the first
incoming connection using the TcpListener.AcceptTcpClient method, and then waits for the client
to request a disconnect. At this point, the server could call the AcceptTcpClient method again to wait
for the next client, but instead it simply shuts down.

400 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

Imports System
Imports System.IO
Imports System.Net
Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter10

 Public Class Recipe10_10Server

 Public Shared Sub Main()

 ' Create a new listener on port 8000.
 Dim listener As New TcpListener(IPAddress.Parse("127.0.0.1"), 8000)

 Console.WriteLine("About to initialize port.")
 listener.Start()
 Console.WriteLine("Listening for a connection...")

 Try
 ' Wait for a connection request, and return a TcpClient
 ' initialized for communication.
 Using client As TcpClient = listener.AcceptTcpClient
 Console.WriteLine("Connection accepted.")

 ' Retrieve the network stream.
 Dim stream As NetworkStream = client.GetStream()

 ' Create a BinaryWriter for writing to the stream.
 Using w As New BinaryWriter(stream)
 ' Create a BinaryReader for reading from the stream.
 Using r As New BinaryReader(stream)

 If r.ReadString = Recipe10_10Shared.RequestConnect Then
 w.Write(Recipe10_10Shared.AcknowledgeOK)
 Console.WriteLine("Connection completed.")

 While Not r.ReadString = ➥
Recipe10_10Shared.Disconnect
 End While

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Disconnect request received.")
 Else
 Console.WriteLine("Can't complete connection.")
 End If

 End Using
 End Using
 End Using

 Console.WriteLine("Connection closed.")

 Catch ex As Exception
 Console.WriteLine(ex.ToString)

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 401

 Finally
 ' Close the underlying socket (stop listening for
 ' new requests).
 listener.Stop()
 Console.WriteLine("Listener stopped.")
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

The following code is a template for a basic TCP client. It contacts the server at the specified IP
address and port. In this example, the loopback address (127.0.0.1) is used, which always points to
the local computer. Keep in mind that a TCP connection requires two ports: one at the server end
and one at the client end. However, only the server port to connect to needs to be specified. The
outgoing client port can be chosen dynamically at runtime from the available ports, which is what
the TcpClient class will do by default.

Imports System
Imports System.IO
Imports System.Net
Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_10Client

 Public Shared Sub Main()

 Dim client As New TcpClient

 Try

 Console.WriteLine("Attempting to connect to the server on " & ➥
"port 8000.")
 client.Connect(IPAddress.Parse("127.0.0.1"), 8000)
 Console.WriteLine("Connection established.")

 ' Retrieve the network stream.
 Dim stream As NetworkStream = client.GetStream()

 ' Create a BinaryWriter for writing to the stream.
 Using w As New BinaryWriter(stream)
 ' Create a BinaryReader for reading from the stream.
 Using r As New BinaryReader(stream)

 ' Start a dialogue.
 w.Write(Recipe10_10Shared.RequestConnect)

402 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 If r.ReadString = Recipe10_10Shared.AcknowledgeOK Then
 Console.WriteLine("Connected.")
 Console.WriteLine("Press Enter to disconnect.")
 Console.ReadLine()
 Console.WriteLine("Disconnecting...")
 w.Write(Recipe10_10Shared.Disconnect)
 Else
 Console.WriteLine("Connection not completed.")
 End If

 End Using
 End Using

 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 Finally
 ' Close the connection socket.
 client.Close()
 Console.WriteLine("Port closed.")
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Here’s a sample connection transcript on the server side:

About to initialize port.
Listening for a connection...
Connection accepted.
Connection completed.

Disconnect request received.
Connection closed.
Listener stopped.

And here’s a sample connection transcript on the client side:

Attempting to connect to the server on port 8000.
Connection established.
Connected.
Press Enter to disconnect.

Disconnecting...
Port closed.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 403

10-11. Create a Multithreaded TCP Server That
Supports Asynchronous Communications

Problem
You need to handle multiple network requests concurrently or perform a network data transfer as a
background task while your program continues with other processing.

Solution
Use the AcceptTcpClient method of the System.Net.Sockets.TcpListener class to accept connec-
tions. Every time a new client connects, start a new thread to handle the connection. Alternatively,
use the TcpListener.BeginAcceptTcpClient to accept a new client connection on a thread-pool
thread using the asynchronous execution pattern (discussed in recipe 4-2).

To start a background task to handle the asynchronous sending of data, you can use the BeginWrite
method of the System.Net.Sockets.NetworkStream class and supply a callback method—each time
the callback is triggered, send more data.

How It Works
A single TCP endpoint (IP address and port) can serve multiple connections. In fact, the operating
system takes care of most of the work for you. All you need to do is create a worker object on the
server that will handle each connection on a separate thread. The TcpListener.AcceptTcpClient
method returns a TcpClient when a connection is established. This should be passed off to a threaded
worker object so that the worker can communicate with the remote client.

Alternatively, call the TcpListener.BeginAcceptTcpClient method to start an asynchronous
operation using a thread-pool thread that waits in the background for a client to connect.
BeginAcceptTcpClient follows the asynchronous execution pattern, allowing you to wait for the
operation to complete or specify a callback that the .NET runtime will call when a client connects.
(See recipe 4-2 for details on the options available.) Whichever mechanism you use, once
BeginAcceptTcpClient has completed, call EndAcceptTcpClient to obtain the newly created
TcpClient object.

To exchange network data asynchronously, you can use the NetworkStream class, which includes
basic support for asynchronous communication through the BeginRead and BeginWrite methods.
Using these methods, you can send or receive a block of data on one of the threads provided by the
thread pool, without blocking your code. When sending data asynchronously, you must send raw
binary data (an array of bytes). It’s up to you to choose the amount you want to send or receive at
a time.

One advantage of this approach when sending files is that the entire content of the file does not
have to be held in memory at once. Instead, it is retrieved just before a new block is sent. Another
advantage is that the server can abort the transfer operation easily at any time.

The Code

The following example demonstrates various techniques for handling network connections and
communications asynchronously. The server (Recipe10-11Server) starts a thread-pool thread
listening for new connections using the TcpListener.BeginAcceptTcpClient method and specifying
a callback method to handle the new connections. Every time a client connects to the server, the

404 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

callback method obtains the new TcpClient object and passes it to a new threaded ClientHandler
object to handle client communications.

The ClientHandler object waits for the client to request data and then sends a large amount of
data (read from a file) to the client. This data is sent asynchronously, which means ClientHandler
could continue to perform other tasks. In this example, it simply monitors the network stream for
messages sent from the client. The client reads only a third of the data before sending a disconnect
message to the server, which terminates the remainder of the file transfer and drops the client
connection.

Here is the code for the shared protocol:

Namespace Apress.VisualBasicRecipes.Chapter10

 Public Class Recipe10_11Shared

 Public Const AcknowledgeOK As String = "OK"
 Public Const AcknowledgeCancel = "Cancel"
 Public Const Disconnect As String = "Bye"
 Public Const RequestConnect As String = "Hello"
 Public Const RequestData = "Data"

 End Class

End Namespace

Here is the server code:

Imports System
Imports System.IO
Imports System.Net
Imports System.Threading
Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_11Server

 ' A flag used to indicate whether the server is shutting down.
 Private Shared m_Terminate As Boolean
 Public Shared ReadOnly Property Terminate() As Boolean
 Get
 Return m_Terminate
 End Get
 End Property

 ' A variable to track the identity of each client connection.
 Private Shared ClientNumber As Integer = 0

 ' A single TcpListener will accept all incoming client connections.
 Private Shared listener As TcpListener

 Public Shared Sub Main()

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 405

 ' Create a 100KB test file for use in the example. This file will
 ' be sent to clients that connect.
 Using fs As New FileStream("test.bin", FileMode.Create)
 fs.SetLength(100000)
 End Using

 Try
 ' Create a TcpListener that will accept incoming client
 ' connections on port 8000 of the local machine.
 listener = New TcpListener(IPAddress.Parse("127.0.0.1"), 8000)

 Console.WriteLine("Starting TcpListener...")

 ' Start the TcpListener accepting connections.
 m_Terminate = False
 listener.Start()

 ' Begin asynchronously listening for client connections. When a
 ' new connection is established, call the ConnectionHandler method
 ' to process the new connection.
 listener.BeginAcceptTcpClient(AddressOf ConnectionHandler, Nothing)

 ' Keep the server active until the user presses Enter.
 Console.WriteLine("Server awaiting connections. Press Enter " & ➥
"to stop server.")
 Console.ReadLine()

 Finally
 ' Shut down the TcpListener. This will cause any outstanding
 ' asynchronous requests to stop and throw an exception in
 ' the ConnectionHandler when EndAcceptTcpClient is called.
 ' A more robust termination synchronization may be desired here,
 ' but for the purpose of this example, ClientHandler threads
 ' are all background threads and will terminate automatically when
 ' the main thread terminates. This is suitable for our needs.
 Console.WriteLine("Server stopping...")
 m_Terminate = True
 If listener IsNot Nothing Then listener.Stop()

 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' A method to handle the callback when a connection is established
 ' from a client. This is a simple way to implement a dispatcher
 ' but lacks the control and scalability required when implementing
 ' full-blown asynchronous server applications.
 Private Shared Sub ConnectionHandler(ByVal result As IAsyncResult)

406 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 Dim client As TcpClient = Nothing

 ' Always end the asynchronous operation to avoid leaks.
 Try
 ' Get the TcpClient that represents the new client connection.
 client = listener.EndAcceptTcpClient(result)
 Catch ex As ObjectDisposedException
 ' The server is shutting down and the outstanding asynchronous
 ' request calls the completion method with this exception.
 ' The exception is thrown when EndAcceptTcpClient is called.
 ' Do nothing and return.
 Exit Sub
 End Try

 Console.WriteLine("Dispatcher: New connection accepted.")

 ' Begin asynchronously listening for the next client
 ' connection.
 listener.BeginAcceptTcpClient(AddressOf ConnectionHandler, Nothing)

 If client IsNot Nothing Then
 ' Determine the identifier for the new client connection.
 Interlocked.Increment(ClientNumber)

 Dim clientName As String = "Client " & ClientNumber.ToString

 Console.WriteLine("Dispatcher: Creating client handler ({0})", ➥
clientName)

 ' Create a new ClientHandler to handle this connection.
 Dim blah As New ClientHandler(client, clientName)

 End If

 End Sub

 End Class

 ' A class that encapsulates the logic to handle a client connection.
 Public Class ClientHandler

 ' The TcpClient that represents the connection to the client.
 Private client As TcpClient

 ' A name that uniquely identifies this ClientHandler.
 Private clientName As String

 ' The amount of data that will be written in one block (2KB).
 Private bufferSize As Integer = 2048

 ' The buffer that holds the data to write.
 Private buffer As Byte()

 ' Used to read data from the local file.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 407

 Private testFile As FileStream

 ' A signal to stop sending data to the client.
 Private stopDataTransfer As Boolean

 Public Sub New(ByVal cli As TcpClient, ByVal cliID As String)

 Me.buffer = New Byte(bufferSize) {}
 Me.client = cli
 Me.clientName = cliID

 ' Create a new background thread to handle the client connection
 ' so that we do not consume a thread-pool thread for a long time
 ' and also so that it will be terminated when the main thread ends.
 Dim newThread As New Thread(AddressOf ProcessConnection)
 newThread.IsBackground = True
 newThread.Start()

 End Sub

 Private Sub ProcessConnection()

 Using client

 ' Create a BinaryReader to receive messages from the client. At
 ' the end of the using block, it will close both the BinaryReader
 ' and the underlying NetworkStream.
 Using reader As New BinaryReader(client.GetStream)

 If reader.ReadString = Recipe10_11Shared.RequestConnect Then

 ' Create a BinaryWriter to send messages to the client.
 ' At the end of the using block, it will close both the
 ' BinaryWriter and the underlying NetworkStream.
 Using writer As New BinaryWriter(client.GetStream)

 writer.Write(Recipe10_11Shared.AcknowledgeOK)
 Console.WriteLine(clientName & ": Connection " & ➥
"established.")

 Dim message As String = ""

 While Not message = Recipe10_11Shared.Disconnect

 Try
 ' Read the message from the client.
 message = reader.ReadString
 Catch ex As Exception
 ' For the purpose of the example,
 ' any exception should be taken
 ' as a client disconnect.
 message = Recipe10_11Shared.Disconnect
 End Try

408 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 If message = Recipe10_11Shared.RequestData Then

 Console.WriteLine(clientName & ":" & ➥
"Requested data.", "Sending...")

 ' The filename could be supplied by the client,
 ' but in this example, a test file is
 ' hard-coded.
 testFile = New FileStream("test.bin", ➥
FileMode.Open, FileAccess.Read)

 ' Send the file size. This is how the client
 ' knows how much to read.
 writer.Write(testFile.Length.ToString)

 ' Start an asynchronous send operation.
 stopDataTransfer = False
 StreamData(Nothing)
 ElseIf message = Recipe10_11Shared.Disconnect Then
 Console.WriteLine(clientName & ": Client " & ➥
"disconnecting...")
 stopDataTransfer = True
 Else
 Console.WriteLine(clientName & ": Unknown " & ➥
"command.")
 End If
 End While
 End Using
 Else
 Console.WriteLine(clientName & ": Could not establish " & ➥
"connection.")
 End If
 End Using
 End Using
 Console.WriteLine(clientName & ": Client connection closed.")

 End Sub

 Private Sub StreamData(ByVal asyncResult As IAsyncResult)

 ' Always complete outstanding asynchronous operations to avoid
 ' leaks.
 If asyncResult IsNot Nothing Then

 Try
 client.GetStream.EndWrite(asyncResult)
 Catch ex As Exception
 ' For the purpose of the example, any exception obtaining
 ' or writing to the network should just terminate the
 ' download.
 testFile.Close()
 Exit Sub
 End Try

 End If

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 409

 ' Check if the code has been triggerd to stop.
 If Not stopDataTransfer And Not Recipe10_11Server.Terminate Then
 ' Read the next block from the file.
 Dim bytesRead As Integer = testFile.Read(buffer, 0, buffer.Length)

 ' If no bytes are read, the stream is at the end of the file.
 If bytesRead > 0 Then
 Console.WriteLine(clientName & ": Streaming next block.")

 ' Write the next block to the network stream.
 client.GetStream.BeginWrite(buffer, 0, buffer.Length, ➥
AddressOf StreamData, Nothing)
 Else
 ' End the operation.
 Console.WriteLine(clientName & ": File streaming complete.")
 testFile.Close()
 End If
 Else
 ' Client disconnected.
 Console.WriteLine(clientName & ": Client disconnected.")
 testFile.Close()
 End If

 End Sub
 End Class

End Namespace

And here is the client code:

Imports System
Imports System.IO
Imports System.Net
Imports System.Net.Sockets

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_11Client

 Public Shared Sub Main()

 Using client As New TcpClient

 Console.WriteLine("Attempting to connect to the server on " & ➥
"port 8000.")

 ' Connect to the server.
 client.Connect(IPAddress.Parse("127.0.0.1"), 8000)

 ' Create a BinaryWriter for writing to the stream.
 Using writer As New BinaryWriter(client.GetStream)

 ' Start a dialogue.
 writer.Write(Recipe10_11Shared.RequestConnect)

410 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Create a BinaryReader for reading from the stream.
 Using reader As New BinaryReader(client.GetStream)

 If reader.ReadString = Recipe10_11Shared.AcknowledgeOK Then
 Console.WriteLine("Connection established. Press " & ➥
"Enter to download data.")
 Console.ReadLine()

 ' Send message requesting data to server.
 writer.Write(Recipe10_11Shared.RequestData)

 ' The server should respond with the size of
 ' the data it will send. Assume it does.
 Dim fileSize As Integer = ➥
Integer.Parse(reader.ReadString())

 ' Only get part of the data, then carry out a
 ' premature disconnect.
 For i As Integer = 1 To fileSize / 3
 Console.Write(client.GetStream.ReadByte)
 Next

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Press Enter to disconnect.")
 Console.ReadLine()
 Console.WriteLine("Disconnecting...")

 writer.Write(Recipe10_11Shared.Disconnect)
 Else
 Console.WriteLine("Connection not completed.")
 End If

 End Using
 End Using
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

10-12. Communicate Using UDP

Problem
You need to send data between two computers on a network using a UDP stream.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 411

Solution
Use the System.Net.Sockets.UdpClient class, and use two threads: one to send data and the other to
receive it.

How It Works
UDP is a connectionless protocol that doesn’t include any flow control or error checking. Unlike
TCP, UDP shouldn’t be used where reliable communication is required. However, because of its
lower overhead, UDP is often used for “chatty” applications where it is acceptable to lose some
messages. For example, imagine you want to create a network in which individual clients send infor-
mation about the current temperature at their locations to a server every few minutes. You might use
UDP in this case because the communication frequency is high and the damage caused by losing a
packet is trivial (because the server can just continue to use the last received temperature reading).

The Code

The application shown in the following code uses two threads: one to receive messages and one to
send them. The application stops when the user presses the Enter key without any text to send.
Notice that UDP applications cannot use the NetworkStream abstraction that TCP applications can.
Instead, they must convert all data to a stream of bytes using an encoding class, as described in
recipe 2-2.

Imports System
Imports System.Text
Imports System.Net
Imports System.Net.Sockets
Imports System.Threading

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_12

 Private Shared localPort As Integer

 Public Shared Sub Main()

 ' Define the endpoint where messages are sent.
 Console.Write("Connect to IP: ")
 Dim ip As String = Console.ReadLine
 Console.Write("Connect to port: ")
 Dim port As Integer = Int32.Parse(Console.ReadLine)

 Dim remoteEndPoint As New IPEndPoint(IPAddress.Parse(ip), port)

 ' Define the local endpoint (where messages are received).
 Console.Write("Local port for listening: ")
 localPort = Int32.Parse(Console.ReadLine)

 ' Create a new thread for receiving incoming messages.
 Dim receiveThread As New Thread(AddressOf ReceiveData)
 receiveThread.IsBackground = True
 receiveThread.Start()

412 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 Using client As New UdpClient
 Console.WriteLine("Type message and press Enter to send:")

 Try
 Dim txt As String

 Do
 txt = Console.ReadLine

 ' Send the text to the remote client.
 If Not txt.Length = 0 Then
 ' Encode the data to binary using UTF8 encoding.
 Dim data As Byte() = Encoding.UTF8.GetBytes(txt)

 ' Send the text to the remote client.
 client.Send(data, data.Length, remoteEndPoint)
 End If
 Loop While Not txt.Length = 0
 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 Finally
 client.Close()
 End Try
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 Private Shared Sub ReceiveData()

 Using client As New UdpClient(localPort)
 ' This is an endless loop, but since it is running in
 ' a background thread, it will be destroyed when the
 ' application (the main thread) ends.
 While True

 Try
 ' Receive bytes.
 Dim anyIP As New IPEndPoint(IPAddress.Any, 0)
 Dim data As Byte() = client.Receive(anyIP)

 ' Convert bytes to text using UTF8 encoding.
 Dim txt As String = Encoding.UTF8.GetString(data)

 ' Display the retrieved text.
 Console.WriteLine(">> " & txt)

 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 End Try

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 413

 End While
 End Using

 End Sub

 End Class
End Namespace

Usage

To test this application, load two instances at the same time. On computer A, specify the IP address
and port for computer B. On computer B, specify the IP address and port for computer A. You can
then send text messages back and forth at will. You can test this application with clients on the local
computer using the loopback alias 127.0.0.1, provided you use different listening ports. For example,
imagine a situation with two UDP clients, client A and client B. Here’s a sample transcript for client A:

Connect to IP: 127.0.0.1
Connect to port: 8001
Local port for listening: 8080
Type message and press Enter to send:
Hi there!

And here’s the corresponding transcript for client B (with the received message):

Connect to IP: 127.0.0.1
Connect to port: 8080
Local port for listening: 8001
Type message and press Enter to send:
>> Hi there!

10-13. Avoid Hard-Coding the Web Service URL

Problem
You need to use a web service located at a URL that might change after you deploy the client application.

Solution
Use a dynamic URL, which will be retrieved automatically from the client application’s configuration
file. You can configure a dynamic URL in the URL Behavior section of a Web Reference’s properties
in Microsoft Visual Studio or by using the /urlkey parameter with the Web Services Description
Language tool (wsdl.exe).

How It Works
When you create a web reference in Visual Studio 2005, the automatically generated proxy class is
configured to use a dynamic URL as the address of the referenced web service. This allows you to
specify an alternate URL without having to recompile your code, which contains the original URL to
the service. This alternate URL, used to contact the web service at runtime, is read from your appli-
cation’s configuration file. The automatically generated configuration section looks something like
the following, where the value element contains the URL of the web service:

414 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 <applicationSettings>
 <Recipe10_13.My.MySettings>
 <setting name="Recipe10_13_MyWebService_MyWebService" ➥
serializeAs="String">
 <value>http://localhost/TestWebService/MyWebService.asmx</value>
 </setting>
 </Recipe10_13.My.MySettings>
 </applicationSettings>

■Note The name attribute in the configuration file, as shown in the preceding example, is automatically generated
based on the application name and the web service’s namespace and class name, respectively.

In previous releases of Visual Studio, dynamic URLs were not the default behavior. In these
cases, you can configure the setting through the URL Behavior option in the Properties window for
the web reference, as shown in Figure 10-2.

Figure 10-2. Configuring a dynamic URL for a web service in Visual Studio

If you use wsdl.exe from the command line to generate your web service proxy class, it uses a
static URL by default. To configure wsdl.exe to use a dynamic URL, you must use the /urlkey parameter
and specify the configuration setting name that the proxy class should read from the configuration file.
Here is an example:

wsdl http://localhost/TestWebService/MyWebService.asmx?WSDL /urlkey:MyWebService

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 415

Whether you’re using Visual Studio or wsdl.exe, the automatically generated proxy class is
coded in such a way that if the class doesn’t find the configuration parameter containing a dynamic
URL, it defaults to the static URL that was used during development.

■Tip You can always manually override the URL setting in your code by modifying the Url property of the proxy
class after you instantiate it.

10-14. Set Authentication Credentials
for a Web Service

Problem
You want a web service client to submit logon credentials for IIS authentication.

Solution
Configure the Credentials and Certificates properties of the web service’s proxy class with the
appropriate credentials prior to calling a web service method.

How It Works
You can configure web services, like web pages, to require users to authenticate using credentials
such as usernames and passwords or X.509 certificates. Unlike web pages, web services have no
built-in method for retrieving authentication information from the client, because web services are
executed by other applications, not directly by the user. Thus, the application that’s interacting with
the web service bears the responsibility for submitting any required authentication information.

Similar to the System.Net.WebRequest discussed in recipe 10-4, the web service proxy classes
automatically generated by Visual Studio and the Web Services Description Language tool (wsdl.exe)
implement Credentials and ClientCertificates properties. Using these properties allows you to
associate user credentials with web method calls. The approach you use depends on the type of
authentication implemented by the web service:

• If the web service is using basic or digest authentication, you can transmit a username and
password combination by manually creating a new System.Net.NetworkCredential object
and assigning it to the proxy’s Credentials property. With digest authentication, you may
also supply a domain name.

• If the web service is using Integrated Windows authentication, you can take the same approach
and manually create a new NetworkCredential object. Alternatively, you can configure the
proxy to use the current user login information by setting the proxy’s UseDefaultCredentials
property to True.

• If the web service requires a client certificate, you can load the certificate from a file using the
System.Security.Cryptography.X509Certificates.X509Certificate2 class and add that to
the proxy’s ClientCertificates collection.

416 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

• In .NET Framework 2.0, you can load an X.509 certificate from a certificate store using the
class System.Security.Cryptography.X509Certificates.X509Store. You can either find a
certificate in the store programmatically using the X509Store.Certificates.Find method or
present the users with a Windows dialog box using X509Store.Certificates.Select and allow
them to select the certificate.

■Tip To add more than one set of credentials to a proxy, create a CredentialCache object and add multiple
NetworkCredential objects to the credential collection using the Add method. Add also allows you to specify the
URI, port, and authentication mechanism for which each NetworkCredential object should be used. Then assign
the CredentialCache object to the proxy’s Credentials property.

The Code

The following web service provides a simple user authentication test. GetIISUser returns the user
that was authenticated by IIS. If anonymous access is allowed, the result will be an empty string
because no authentication will be performed. If anonymous access is denied, the result will be a
string in the form [DomainName]\[UserName] or [ComputerName]\[UserName].

<WebMethod()> _
Public Function GetIISUser() As String
 Return User.Identity.Name
End Function

The following example shows how a client can access a web service that uses basic authentica-
tion, Integrated Windows authentication, and X.509 certificate–based authentication:

Imports System
Imports System.Net
Imports Recipe10_14.MyWebService
Imports System.Security.Cryptography.X509Certificates

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_14

 Public Shared Sub Main()

 ' Create a web service proxy. For the purpose of the example, set
 ' the ConnectionGroupName to a unique value to stop the
 ' ServicePointManager reusing the connection in future requests.
 Dim proxy1 As New MyWebService.MyWebService
 proxy1.ConnectionGroupName = "Test1"

 ' Configure the proxy with a set of credentials for use over basic
 ' authentication.
 Dim cache As New CredentialCache
 cache.Add(New Uri(proxy1.Url), "Basic", New NetworkCredential("user", ➥
"password"))
 proxy1.Credentials = cache

 ' Try to call the GetIISUser web method.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 417

 Try
 Console.WriteLine("Authenticated user = {0}", proxy1.GetIISUser)
 Catch ex As WebException
 Console.WriteLine("Basic authentication failed")
 End Try

 ' Create a proxy that authenticates the current user
 ' with Integrated Windows authentication.
 Dim proxy2 As New MyWebService.MyWebService
 proxy2.ConnectionGroupName = "Test2"
 proxy2.Credentials = Nothing
 proxy2.UseDefaultCredentials = True

 Try
 Console.WriteLine("Authenticated user = {0}", proxy2.GetIISUser)
 Catch ex As WebException
 Console.WriteLine("Integrated Windows authentication failed")
 End Try

 ' Create a proxy that authenticates the user with a client
 ' certificate loaded from a file.
 Dim proxy3 As New MyWebService.MyWebService
 proxy3.ConnectionGroupName = "Test3"
 Dim cert1 As X509Certificate = ➥
X509Certificate.CreateFromCertFile("..\..\TestCertificate.cer")
 proxy3.ClientCertificates.Add(cert1)

 Try
 Console.WriteLine("Authenticated user = {0}", proxy3.GetIISUser)
 Catch ex As WebException
 Console.WriteLine("Certificate authentication failed")
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes
When you want to use the credentials of the currently logged-on user, you should set the
UseDefaultCredentials property to True. This is demonstrated in the preceding example. However,
if you do this while Credentials is set to something other than DefaultCredentials or Nothing, an
InvalidOperationException will be thrown.

418 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

10-15. Call a Web Method Asynchronously

Problem
You need to invoke a web method on another thread so that your program can continue with other
tasks (such as updating the user interface) while waiting for the response.

Solution
Use the proxy class’s built-in asynchronous method and asynchronous completion event, which are
automatically generated for every web method supported by the web service. The method is named
XXXAsync, and the completion event is named XXXCompleted, where XXX is the name of the original,
synchronous method.

How It Works
The automatically generated proxy class has the features you need to call any web method asynchro-
nously. For example, consider the Wait web method shown in the following code, which pauses for
a random number of seconds between a lower and an upper value:

' Returns the specified string after a random delay
' between a lower and upper bound.
<WebMethod()> _
Public Function Echo(ByVal str As String, ByVal lower As Integer, ➥
ByVal upper As Integer) As String

 ' Sleep for a random period of time between the specified
 ' lower and upper boundaries.
 Dim rand As New Random
 System.Threading.Thread.Sleep(rand.Next(lower, upper))

 ' Echo back the specified string.
 Return str

End Function

The proxy class generated for the web service that exposes the Echo method will also implement
a method named EchoAsync, an event named EchoCompleted, an event argument data class named
EchoCompletedEventArgs, and a delegate named EchoCompletedEventHandler. Together, these
program elements allow you to call the Echo web method asynchronously and handle the result—
regardless of whether the call fails or succeeds. All web methods follow the same model; only the
names are changed. Each of these elements is described here:

• The EchoAsync method takes the same arguments as the Echo method, with the option of
providing an additional Object argument that can be used for general state information. This
extra state is passed to the EchoCompletedEventHandler (described next) when the asynchro-
nous call completes and is often used to match completed events to original calls. When you
call EchoAsync, the .NET Framework returns control immediately to the calling code so that it
can continue processing, but executes the method on a thread from the thread pool.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 419

• When the EchoAsync method completes, the proxy raises the EchoCompleted event using a thread
from the thread pool. To handle these events, you must add an EchoCompletedEventHandler
delegate to the event. The EchoCompletedEventHandler delegate declares two arguments. The
first argument is an object that is a reference to the sender (or source) of the event, which is the
proxy object. The second argument is an EchoCompletedEventArgs object, which is discussed next.

• The EchoCompletedEventArgs class provides access to the result of the asynchronous opera-
tion. The Cancelled property indicates whether the operation was canceled by a call to the
CancelAsynch method, which was included in the proxy class. The Error property contains
any exception that was raised that caused the asynchronous operation to fail, UserState contains
the user state Object (if any) that was passed to the EchoAsync method, and Result is of the
same type returned by Echo and contains the result of the asynchronous call if it succeeded.

■Note The asynchronous model described in this recipe is new to the web service proxy code generated by Visual
Studio 2005. In earlier versions of Visual Studio and in the code generated by the Web Services Description
Language tool (wsdl.exe), a different asynchronous model is implemented. Instead of an XXXAsync method and the
use of events, the proxy would have BeginXXX and EndXXX methods. This old approach had the benefit of providing
you with System.Threading.WaitHandle objects for the asynchronous operations, which you could use for
multithreaded synchronization.

The Code

The following example demonstrates how to call a web method named Echo asynchronously using
the automatically generated EchoAsync method of the proxy. The EchoAsync method is called three times,
and the second instance is canceled before it has a chance to complete. The EchoCompletedHandler
method processes the results of the three asynchronous method calls.

Imports System
Imports System.Threading
Imports Recipe10_15.MyWebService

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_15

 Public Shared Sub Main()

 ' Create a proxy through which to execute the methods of
 ' the web service.
 Dim proxy As New MyWebService.MyWebService

 ' Add an event handler to the EchoCompleted event.
 AddHandler proxy.EchoCompleted, AddressOf EchoCompletedHandler

 ' Call the Echo three times asynchronously.
 proxy.EchoAsync("Echo String 1", 7000, 10000, "Test1")
 proxy.EchoAsync("Echo String 2", 5000, 10000, "Test2")
 proxy.EchoAsync("Echo String 3", 1000, 10000, "Test3")

 ' Quickly cancel the second asynchronous operation.
 proxy.CancelAsync("Test2")

420 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' A method to handle asynchronous Echo completion events.
 Private Shared Sub EchoCompletedHandler(ByVal sender As Object, ➥
ByVal args As EchoCompletedEventArgs)

 If args.Error IsNot Nothing Then
 Console.WriteLine("{0}: {1}", args.UserState, args.Error.Message)
 ElseIf args.Cancelled Then
 Console.WriteLine("{0}: operation cancelled before completion.", ➥
args.UserState)
 Else
 Console.WriteLine("{0}: Succeeded, echoed string = {1}.", ➥
args.UserState, args.Result)
 End If

 End Sub

 End Class
End Namespace

10-16. Make an Object Remotable

Problem
You need to create a class that can be accessed from another application or another computer on the
network. However, you don’t need cross-platform compatibility, and you want optimum performance.

Solution
Make the class remotable by deriving from System.MarshalByRefObject, and create a component
host that registers the class with the .NET Remoting infrastructure.

How It Works
Remoting allows you to make an object accessible across process and machine boundaries. While
web services are ideal when you need to share functionality across platforms or trust boundaries,
Remoting is the best-performing choice for a closed system in which all components are built on
.NET and the Windows operating system. To use .NET Remoting, you need the following ingredients,
each of which must reside in a separate assembly:

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 421

• A remotable object: This object can be accessed from other applications and computers and
must derive from the System.MarshalByRefObject.

• A component host: This application registers the remotable type with the .NET Remoting
infrastructure using the RemotingConfiguration class from the System.Runtime.Remoting
namespace. You can use any type of long-running .NET Framework application for a component
host (including Windows Forms–based applications, Windows services, console applications,
and even IIS). As long as the component host is running, remote clients can create or connect
to existing instances of the remotable object. The component host never interacts with the
remotable objects directly. All it does is register the appropriate types with the .NET Remoting
infrastructure. After this point, clients can create object instances, and the server application
can continue with other tasks. However, when the component host is closed, any remotable
objects will be destroyed, and no more hosted objects can be created.

• A client application: This application can create or connect to instances of the remotable class in
the component host process and interact with them. The client uses the RemotingConfiguration
class to register the types it wants to access remotely. The client application uses the
RemotingConfiguration.Configure method to register the remote objects it wants to call.
Once this step is taken, the client can create the object exactly as it would create a local object.
However, the object will actually be created in the component host.

Figure 10-3 shows how these three parts interact. This example has only one client. However,
it’s also possible for multiple clients to create instances of the remotable class at the same time. In
this case, you can configure the Remoting host, whether each client has its own remotable object
instance or all clients share a single instance.

Figure 10-3. Using a remotable class

■Note Ideally, the remote object won’t retain any state. This characteristic allows you to use single-call activa-
tion, in which object instances are created at the beginning of each method call and released at the end, much like
a web service. This ensures your objects consume the fewest possible server resources and saves you from the
added complexity of implementing a lease policy to configure object lifetime.

The Code

The following example demonstrates the declaration of a remotable class that reads data from the
Person.Contact table of the AdventureWorks database and returns a System.Data.DataTable. Notice
that the only Remoting-specific code is the derivation of the class from the System.MarshalByRef class.

Ordinary Object

Client Application

Remotable Object
Cross-application Call

Component Host
(Server Application)

Herman_852-0C10.fm Page 421 Friday, May 18, 2007 4:27 AM

422 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

Imports System
Imports System.Data
Imports System.Data.SqlClient

Namespace Apress.VisualBasicRecipes.Chapter10

 ' Define a class that extends MarshalByRefObject, making it remotable.
 Public Class Recipe10_16
 Inherits MarshalByRefObject

 Private Shared connectionString As String = "Data Source=.\sqlexpress;" & ➥
"Initial Catalog=AdventureWorks;Integrated Security=SSPI;"

 ' The DataTable returned by this method is serializable, meaning that the
 ' data will be physically passed back to the caller across the network.
 Public Function GetContacts() As DataTable

 Dim SQL As String = "SELECT * FROM Person.Contact;"

 ' Create ADO.NET objects to execute the DB query.
 Using con As New SqlConnection(connectionString)
 Using com As New SqlCommand(SQL, con)
 Dim adapter As New SqlDataAdapter(com)
 Dim ds As New DataSet

 ' Execute the command.
 Try
 con.Open()
 adapter.Fill(ds, "Contacts")
 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 Finally
 con.Close()
 End Try

 ' Return the first DataTable in the DataSet to the caller.
 Return ds.Tables(0)

 End Using
 End Using

 End Function

 ' This method allows you to verify that the object is running remotely.
 Public Function GetHostLocation() As String
 Return AppDomain.CurrentDomain.FriendlyName
 End Function

 End Class
End Namespace

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 423

Usage

To use the Recipe10_16 class remotely, you must host it and then create a client that uses the remote
object. Here is the code for a simple console component host:

Imports System
Imports System.Runtime.Remoting

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_16Host

 Public Shared Sub Main()

 ' Register the remotable classes defined in the specified
 ' configuration file.
 RemotingConfiguration.Configure("Recipe10-16Host.exe.config", False)

 ' As long as this application is running, the registered remote
 ' objects will be accessible.
 Console.Clear()
 Console.WriteLine("Press Enter to shut down the host.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

The component host uses a new section in the standard configuration file (in this case Recipe10-16
Host.exe.config) to configure the classes it will support, the ports it will support for network
communication, and the URI that the client will use to access the object. The host application must
have a reference to the assembly, the Recipe10-16 assembly in this case, containing the implemen-
tation of the remote object class. The configuration file also configures the remote object to use
single-call activation, meaning that a new object is created for each client call.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>

 <!-- Define the remotable types. -->
 <service>
 <wellknown
 mode = "SingleCall"
 type = "Apress.VisualBasicRecipes.Chapter10.Recipe10_16, Recipe10-16"
 objectUri = "Recipe10-16.rem" />
 </service>

 <!-- Define the protocol used for network access.
 You can use tcp or http channels. -->
 <channels>
 <channel ref="tcp" port="19080" />
 </channels>

424 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

 </application>
 </system.runtime.remoting>
</configuration>

The following sample code shows a simple client that uses the remote object created earlier.
Notice that in this example, the configuration of the Remoting infrastructure is performed program-
matically instead of using the configuration file. You should avoid such an approach when using
shared configuration values because using configuration files provides more flexibility. If you did use
a configuration file for the client, it would look similar to this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>

 <client>
 <wellknown
 type="Apress.VisualBasicRecipes.Chapter10.Recipe10_16,Recipe10_16"
 url="tcp://localhost:19080/Recipe10-16.rem" />
 </client>

 </application>
 </system.runtime.remoting>
</configuration>

However, if you want to dynamically configure the Remoting infrastructure, you will need to be
familiar with the approach demonstrated here. For detailed information, see Advanced .NET Remoting,
Second Edition by Ingo Rammer and Mario Szpuszta (Apress, 2005). Note that as with the host, the
assembly containing the declaration of the class that will be accessed remotely must still be explicitly
referenced by the application.

Imports System
Imports System.Runtime.Remoting
Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.Tcp
Imports System.Data

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_16Client

 Public Shared Sub Main()

 ' Register a new TCP Remoting channel to communicate with the
 ' remote object.
 ChannelServices.RegisterChannel(New TcpChannel, False)

 ' Register the classes that will be accessed remotely.
 RemotingConfiguration.RegisterWellKnownClientType(➥
GetType(Recipe10_16), "tcp://localhost:19080/Recipe10-16.rem")

 ' Now any attempts to instantiate the Recipe10_16 class
 ' will actually create a proxy to a remote instance.

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 425

 ' Interact with the remote object through a proxy.
 Dim proxy As New Recipe10_16

 Try
 ' Display the name of the component host application domain
 ' where the object executes.
 Console.WriteLine("Object executing in: " & proxy.GetHostLocation)
 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 End Try

 ' Get the DataTable from the remote object and display its contents.
 Dim dt As DataTable = proxy.GetContacts

 For Each row As DataRow In dt.Rows
 Console.WriteLine("{0}, {1}", row("LastName"), row("FirstName"))
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

10-17. Register All the Remotable Classes
in an Assembly

Problem
You want to register all the remotable classes that are defined in an assembly without having to
specify them in a configuration file.

Solution
Load the assembly with the remotable classes using reflection. Loop through all its Public types, and
use the RemotingConfiguration.RegisterWellKnownServiceType method to register every remotable
class.

How It Works
.NET makes it equally easy to register remotable classes through a configuration file or program-
matically with code. The type being registered must extend MarshalByRefObject, and then you
call RemotingConfiguration.RegisterWellKnownServiceType, passing on the type, the URI on
which remote clients can connect to the type, and a value of the System.Runtime.Remoting.
WellKnownObjectMode enumeration, which describes how the Remoting infrastructure should map
client calls to object instances. The possible values are SingleCall, in which every incoming call is

426 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

serviced by a new object, and Singleton, in which every incoming call is serviced by the same object.
When using singleton objects, accurate state management and thread synchronization become critical.

The Code

The following server code searches for remotable classes in an assembly that is specified as a
command-line argument. Each class derived from MarshalByRefObject is registered, and then the
example displays the channel where the remotable object is available.

Imports System
Imports System.Reflection
Imports System.Runtime.Remoting
Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.Tcp

Namespace Apress.VisualBasicRecipes.Chapter10
 Public Class Recipe10_17

 Public Shared Sub Main(ByVal args As String())

 ' Ensure there is an argument. We assume it is a valid
 ' filename.
 If Not args.Length = 1 Then Exit Sub

 ' Register a new TCP Remoting channel to communicate with
 ' the remote object.
 ChannelServices.RegisterChannel(New TcpChannel(19080), False)

 ' Get the registered Remoting channel.
 Dim channel As TcpChannel = ➥
DirectCast(ChannelServices.RegisteredChannels(0), TcpChannel)

 ' Create an Assembly object representing the assembly
 ' where remotable classes are defined.
 Dim remoteAssembly As Assembly = Assembly.LoadFrom(args(0))

 ' Process all the public types in the specified assembly.
 For Each remType As Type In remoteAssembly.GetExportedTypes()

 ' Check if type is remotable.
 If remType.IsSubclassOf(GetType(MarshalByRefObject)) Then
 ' Register each type using the type name as the URI.
 Console.WriteLine("Registering {0}", remType.Name)
 RemotingConfiguration.RegisterWellKnownServiceType(remType, ➥
remType.Name, WellKnownObjectMode.SingleCall)

 ' Determine the URL where this type is published.
 Dim urls As String() = channel.GetUrlsForUri(remType.Name)
 Console.WriteLine("Url: {0}", urls(0))
 End If

 Next

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 427

 ' As long as this application is running, the registered remote
 ' objects will be accessible.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Press Enter to shut down the host.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Place the Recipe10-16.exe assembly in the directory where this recipe is and run the following
command line:

recipe10-17 recipe10-16.exe

This will produce results similar to the following output:

Registering Recipe10_16
Url: tcp://192.168.239.80:19080/Recipe10_16

Notes
The preceding code determines if a class is remotable by examining whether it derives from
MarshalByRefObject. This approach always works, but it could lead you to expose some types that
you don’t want to make remotable. For example, the System.Windows.Forms.Form object derives
indirectly from MarshalByRefObject. This means that if your remote object library contains any
forms, they will be exposed remotely. To avoid this problem, don’t include remotable types in your
assembly unless you want to make them publicly available. Alternatively, identify the types you want
to register with a custom attribute. You could then check for this attribute before registering a type.

10-18. Host a Remote Object in IIS

Problem
You want to create a remotable object in IIS (perhaps so that you can use SSL or IIS authentication)
instead of a dedicated component host.

Solution
Place the configuration file and assembly in a directory (configured as an application within IIS),
and modify the object URI so that it ends in .rem or .soap.

How It Works
Instead of creating a dedicated component host, you can host a remotable class in IIS. This allows
you to ensure that the remotable classes will always be available, and it allows you to use IIS features
such as SSL encryption and Integrated Windows authentication.

428 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

To host a remotable class in IIS, you must first create a virtual directory. The directory will
contain two things: a configuration file named Web.config that registers the remotable classes and a
Bin directory where you must place the corresponding class library assembly (or install the assembly
in the GAC).

The configuration file for hosting in IIS is quite similar to the configuration file you use with a
custom component host. However, you must follow several additional rules:

• You must use the HTTP channel (although you can use the binary formatter for smaller
message sizes).

• You cannot specify a specific port number for listening. IIS listens on all the ports you have config-
ured in IIS Manager. Typically, this will be ports 80 and 443 (for secure SSL communication).

• The object URI must end with .rem or .soap.

• When using IIS, you are stepping into ASP.NET territory. The configuration file you use here
for Remoting must be named Web.config, which is the configuration file used by ASP.NET
applications.

The Code

Here’s an example Web.config file that registers the remote class shown in recipe 10-16:

<?xml version="1.0"?>
<configuration>
 <system.runtime.remoting>
 <application>
 <!-- Define the remotable types. -->
 <service>
 <wellknown mode="SingleCall" ➥
type="Apress.VisualBasicRecipes.Chapter10.Recipe10_16,Recipe10-16" ➥
objectUri="Recipe10-16.rem" />
 </service>

 <!-- Define the protocol used for network access.
 You can use only the http channel. -->
 <channels>
 <channel ref="http" />
 </channels>

 <!-- Uncomment the following section if you want to use the
 binary formatter rather than the default SOAP formatter.-->
 <!--
 <serverProviders>
 <formatter ref="binary" />
 </serverProviders>
 -->
 </application>
 </system.runtime.remoting>
</configuration>

Usage

A client can use an object hosted in IIS in the same way as an object hosted in a custom component
host. However, the directory name will become part of the object URI. For example, if the Web.config

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 429

file shown in the preceding code is hosted in the directory http://localhost/RemoteObjects, the full
URL will be http://localhost/RemoteObjects/Recipe10-16.rem.

■Note When hosting an object with IIS, the account used to execute the object is the ASP.NET account defined
in the Machine.config file. If this account doesn’t have the rights to access the database (which is the default situation),
you will receive an error when you try this example. Look at the .NET Framework for documentation on the
<processModel> element.

10-19. Control the Lifetime of a Remote Object

Problem
You want to configure how long a singleton or client-activated object lives while not in use.

Solution
Configure a lease policy by using configuration file settings, override the MarshalByRefObject.
InitializeLifetimeService method, or implement a custom lease provider.

How It Works
If a remotable object uses single-call activation, it will be destroyed automatically at the end of each
method call. This behavior changes with client-activated and singleton objects, which are given a
longer lifetime dictated by a lifetime lease. With the default settings, a remote object will be automat-
ically destroyed if it’s inactive for 2 minutes, provided it has been in existence for at least 5 minutes.

The component host, remote object, and client each have the opportunity to change lifetime
settings, as described here:

• The component host can specify different lease lifetime defaults in the configuration file
using the <lifetime> element, which is a child of the <system.runtime.remoting> element.
The leaseTime attribute of the element specifies the default lifetime for all hosted objects. The
renewOnCallTime attribute specifies the amount of time by which the lease is extended when
a call is made against a hosted object. You can specify the values for both attributes as positive
integers with a time unit suffix for days (D), hours (H), minutes (M), or seconds (S). For example,
10 hours is 10H, and 30 seconds is 30S.

• The remote class can override its InitializeLifetimeService method (inherited from
MarshalByRefObject) to modify its initial lease settings by configuring and returning an object
that implements the System.Runtime.Remoting.Lifetime.ILease interface. You obtain an
ILease instance by calling the base class method InitializeLifetimeService. Then configure
the returned ILease by setting the InitialLeaseTime and RenewOnCallTime properties to the
desired values using System.TimeSpan objects. If you want the object to have an unlimited life-
time, simply return a Nothing reference instead of an ILease object. This is most commonly
the case if you are creating a singleton object that needs to run independently (and perma-
nently), even if clients aren’t currently using it.

• The client can call the MarshalByRefObject.GetLifetimeService method on a specific remote
object to retrieve an ILease instance. The client can then call the ILease.Renew method to
specify a minimum amount of time the object should be kept alive.

430 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

The Code

The following example demonstrates how to use a component host’s configuration file to control
lifetime leases. The configuration gives each hosted object an initial lifetime of 10 minutes, and each
time a member of the object is invoked, the lifetime is set to be at least 3 minutes.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>

 <!-- Define the remotable types. -->
 <service>
 <wellknown
 mode = "SingleCall"
 type = "Apress.VisualBasicRecipes.Chapter10.Recipe10_19, Recipe10-19"
 objectUri = "Recipe10-19" />
 </service>

 <!-- Define the protocol used for network access.
 You can use tcp or http channels. -->
 <channels>
 <channel ref="tcp" port="19080" />
 </channels>

 <lifetime leaseTime="10M" renewOnCallTime="3M" />

 </application>
 </system.runtime.remoting>
</configuration>

The following example demonstrates how to use the second approach outlined where the
remotable object overrides the InitializeLifetimeService method and takes control of its own life-
time. The example shows a remotable object that gives itself a default 10-minute lifetime and 3-minute
renewal time.

Imports System
Imports System.Runtime.Remoting.Lifetime

Namespace Apress.VisualBasicRecipes.Chapter10

 ' Define a class that extends MarshalByRefObject, making it remotable.
 Public Class Recipe10_19
 Inherits MarshalByRefObject

 Public Overrides Function InitializeLifetimeService() As Object

 Dim lease As ILease = DirectCast(MyBase.InitializeLifetimeService(), ➥
ILease)

CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G 431

 ' Lease can only be configured if it is in an initial state.
 If lease.CurrentState = LeaseState.Initial Then
 lease.InitialLeaseTime = TimeSpan.FromMinutes(10)
 lease.RenewOnCallTime = TimeSpan.FromMinutes(3)
 End If

 Return lease

 End Function

 ...

 End Class
End Namespace

10-20. Control Versioning for Remote Objects

Problem
You want to create a component host that can host more than one version of the same object.

Solution
Install all versions of the remotable object into the global assembly cache (GAC), and explicitly
register each version at a different URI endpoint. See recipe 1-14 for details on how to manage the
assemblies in the GAC.

How It Works
.NET Remoting doesn’t include any intrinsic support for versioning. When a client creates a remote
object, the component host automatically uses the version in the local directory or, in the case of a
shared assembly, the latest version from the GAC. To support multiple versions, you have three choices:

• Create separate component host applications: Each component host will host a different version
of the remote object assembly and will register its version with a different URI. This approach
forces you to run multiple component host applications at once and is most practical if you
are using IIS hosting (as described in recipe 10-18).

• Create an entirely new remote object assembly (instead of simply changing the version): You
can then register the classes from both assemblies at different URIs by using the same
component host.

• Install all versions of the remote object assembly in the GAC: You can now create a component
host that maps different URIs to specific versions of the remote object assembly.

432 CH AP T E R 1 0 ■ N E TW O R K I N G A N D R E M O T IN G

The Code

Installing all versions of the remote object assembly in the GAC is the most flexible approach in cases
where you need to support multiple versions. The following configuration file registers two versions of
the RemoteObjects assembly at two different endpoints. Notice that you need to include the exact version
number and public key token when using assemblies from the GAC. You can find this information by
viewing the assembly in the Windows Explorer GAC plug-in (browse to C:\[WindowsDir]\Assembly).
The client configuration file won’t change at all (aside from updating the URI, if required). The client
“chooses” the version it wants to use by using the corresponding URI.

<configuration>
 <system.runtime.remoting>
 <application>

 <service>

 <!-- The type information is split over two lines to accommodate the
 bounds of the page. In the configuration file, this information
 must all be placed on a single line. -->
 <wellknown mode="SingleCall"
 type="RemoteObjects.RemoteObject, RemoteObjects, Version 1.0.0.1,
 Culture=neutral, PublicKeyToken=8b5ed84fd25209e1"
 objectUri="RemoteObj_1.0" />

 <wellknown mode="SingleCall"
 type="RemoteObjects.RemoteObject, RemoteObjects, Version 2.0.0.1,
 Culture=neutral, PublicKeyToken=8b5ed84fd25209e1"
 objectUri="RemoteObj_2.0" />
 </service>

 <channels>
 <channel ref="tcp" port="19080" />
 </channels>

 </application>
 </system.runtime.remoting>
</configuration>

433

■ ■ ■

C H A P T E R 1 1

Security and Cryptography

A principal goal of the Microsoft .NET Framework is to make computing more secure, especially
with respect to the use of mobile code and distributed systems. Most modern operating systems
(including Microsoft Windows) support user-based security, allowing you to control the actions and
resources to which a user has access. However, in the highly connected world resulting from the
proliferation of computer networks, particularly the Internet, it’s insufficient to base security solely
on the identity of a system’s user. In the interest of security, code should not automatically receive
the same level of trust that you assign to the person running the code.

The .NET Framework incorporates two complementary security models that address many of
the issues associated with user and code security: code access security (CAS) and role-based security
(RBS). CAS and RBS do not replace or duplicate the security facilities provided by the underlying
operating system. They are platform-independent mechanisms that provide additional security
capabilities to augment and enhance the overall security of your managed solutions. CAS uses infor-
mation about the source and origin of an assembly (evidence) gathered at runtime to determine which
actions and resources code from the assembly can access (permissions). The .NET Framework security
policy—a hierarchical set of configurable rules—defines the mapping between evidence and
permissions. The building blocks of security policy are code groups, which allow you to configure the
mapping between evidence and permissions. The set of permissions granted to an assembly as a
result of the security policy is known as the assembly’s grant set.

The .NET Framework class library uses permission demands to protect its most important func-
tionality from unauthorized access. A demand forces the common language runtime (CLR) to ensure
that the whole stack of code calling a protected method has a specific permission. CAS ensures that
the runtime capabilities of code depend on the level of trust you place in the creator and source of the
code, not the level of trust you place in the user running the code.

Following a more traditional security model, RBS allows you to make runtime decisions based
on the identity and roles of the user on whose behalf an application is running. On the Windows
operating system, this equates to making decisions based on the Windows username and the Windows
groups to which that user belongs. However, RBS provides a generic security mechanism that is
independent of the underlying operating system, allowing you (with some development) to integrate
with any user account system.

Another important aspect of the security features provided by the .NET Framework is cryptography.
Cryptography is one of the most complex aspects of software development that any developer will
use. The theory of modern cryptographic techniques is extremely difficult to understand and requires a
level of mathematical knowledge that relatively few people have or need. Fortunately, the .NET Frame-
work class library provides easy-to-use implementations of the most commonly used cryptographic
techniques and support for the most popular and well-understood algorithms.

This chapter provides a wide variety of recipes that cover some of the more commonly used
security capabilities provided by the .NET Framework. As you read the recipes in this chapter and
think about how to apply the techniques to your own code, keep in mind that individual security

434 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

features are rarely effective when implemented in isolation. In particular, cryptography does not
equal security; the use of cryptography is merely one small element of creating a secure solution.

The recipes in this chapter describe how to do the following:

• Develop strong-named assemblies that can still be called by partially trusted code (recipe 11-1)

• Configure the .NET Framework security policy to turn off CAS completely or turn off only
execution permission checks (recipes 11-2 and 11-3)

• Request specific code access permissions for your assemblies, determine at runtime what
permissions the current assembly has, and inspect third-party assemblies to determine what
permissions they need in order to run correctly (recipes 11-4, 11-5, 11-6, and 11-7)

• Control inheritance and member overrides using CAS (recipe 11-8)

• Inspect the evidence presented by an assembly to the runtime when the assembly is loaded
(recipe 11-9)

• Integrate with Windows security to determine if a user is a member of a specific Windows
group, restrict which users can execute your code, and impersonate other Windows users
(recipes 11-10, 11-11, and 11-12)

• Generate random numbers that are nondeterministic and are suitable for use in security-
sensitive applications (recipe 11-13)

• Use hash codes and keyed hash codes to store user passwords and determine if files have
changed (recipes 11-14, 11-15, 11-16, and 11-17)

• Use encryption to protect sensitive data both in memory and when it is stored to disk (recipes
11-18 and 11-19)

■Note For a broader explanation of secure programming and where cryptography fits in the overall security
landscape, read Writing Secure Code, Second Edition, by Michael Howard and David LeBlanc (Microsoft Press, 2003),
a modern classic of computer literature that contains a wealth of practical field-tested information. For more comprehen-
sive coverage of the .NET security classes, see Programming .NET Security by Adam Freeman and Allen Jones
(O’Reilly and Associates, 2003). Although not yet updated for .NET Framework 2.0, Programming .NET Security
provides easily understood descriptions of security fundamentals, covers all the .NET security classes in detail, and
demonstrates how to extend most aspects of the security framework.

11-1. Allow Partially Trusted Code to Use Your
Strong-Named Assembly

Problem
You need to write a shared assembly that is accessible to code that is not fully trusted. By default,
the runtime does not allow partially trusted code to access the types and members contained in a
strong-named assembly.

Solution
Apply the assembly-level attribute System.Security.AllowPartiallyTrustedCallersAttribute to
your shared assembly.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 435

How It Works
To minimize the security risks posed by malicious code, the runtime does not allow assemblies
granted only partial trust to access strong-named assemblies. This restriction dramatically reduces
the opportunity for malicious code to attack your system, but the reasoning behind such a heavy-
handed approach requires some explanation.

Assemblies that contain important functionality that is shared between multiple applications
are usually strong-named and often installed in the global assembly cache (GAC). This is particularly
true of the assemblies that constitute the .NET Framework class library. Other strong-named assemblies
from well-known and widely distributed products will also be in the GAC and accessible to managed
applications. The high chance that certain assemblies will be present in the GAC, their easy accessibility,
and their importance to many different applications makes strong-named assemblies the most likely
target for any type of subversive activity by malicious managed code.

Generally, the code most likely to be malicious is that which is loaded from remote locations,
such as the Internet, over which you have little or no control. Under the default security policy in
versions 1.x and 2.0 of the .NET Framework, all code run from the local machine has full trust, whereas
code loaded from remote locations has only partial trust. Stopping partially trusted code from accessing
strong-named assemblies means that partially trusted code has no opportunity to use the features
of the assembly for malicious purposes, and cannot probe and explore the assembly to find exploitable
holes. Of course, this theory hinges on the assumption that you correctly administer your security
policy. If you simply assign all code full trust, not only will any assembly be able to access your strong-
named assembly, but the code will also be able to access all of the functionality of the .NET Framework
and even Win32 or any COM object through P/Invoke and COM Interop. That would be a security
disaster!

■Note If you design, implement, and test your shared assembly correctly using CAS to restrict access to important
members, you do not need to impose a blanket restriction to prevent partially trusted code from using your assembly.
However, for an assembly of any significance, it’s impossible to prove there are no security holes that malicious
code can exploit. Therefore, you should carefully consider the need to allow partially trusted code to access your
strong-named assembly before applying the AllowPartiallyTrustedCallers attribute. However, you might
have no choice. If you are exposing public classes that provide events, you must apply this attribute. If you do not,
an assembly that is not strong-named will be allowed to register a handler for one of your events, but when it is
called, a security exception will be thrown. Code in an assembly that is not strong-named is not allowed to call code
in a strong-named assembly.

The runtime stops partially trusted code from accessing strong-named assemblies by placing an
implicit LinkDemand for the FullTrust permission set on every Public and Protected member of every
publicly accessible type defined in the assembly. A LinkDemand verifies that the caller has the speci-
fied permissions, during just-in-time (JIT) compilation. This means that only assemblies granted the
permissions equivalent to the FullTrust permission set are able to access the types and members
from the strong-named assembly. Applying AllowPartiallyTrustedCallersAttribute to your strong-
named assembly signals the runtime not to enforce the LinkDemand on the contained types and members.

■Note The runtime is responsible for enforcing the implicit LinkDemand security actions required to protect
strong-named assemblies. The VB .NET assembler does not generate declarative LinkDemand statements at
compile time.

436 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

The Code

The following code fragment shows the application of the attribute AllowPartiallyTrustedCaller-
sAttribute. Notice that you must prefix the attribute with Assembly: to signal to the compiler that
the target of the attribute is the assembly (also called a global attribute). Because you target the
assembly, the attribute must be positioned after any top-level Imports statements, but before any
namespace or type declarations.

Imports System.Security

<Assembly: AllowPartiallyTrustedCallers()>

Namespace Apress.VisualBasicRecipes.Chapter11

 Public Class Recipe11_01
 ' Implementation code...
 End Class

End Namespace

■Tip It’s common practice to contain all global attributes in a file separate from the rest of your application code.
Microsoft Visual Studio uses this approach, creating a file named AssemblyInfo.vb (located in the My Projects folder,
which is hidden by default) to contain all global attributes.

Notes
If, after applying AllowPartiallyTrustedCallersAttribute to your assembly, you want to restrict
partially trusted code from calling only specific members, you should implement a LinkDemand for
the FullTrust permission set on the necessary members, as shown in the following code fragment.

<System.Security.Permissions.PermissionSet(SecurityAction.LinkDemand, ➥
Name:="FullTrust")> _
Public Sub SomeMethod()
 ' Method code...
End Sub

11-2. Disable Code Access Security

Problem
You need to turn off all code access security (CAS) checks for the purpose of testing or debugging an
application.

Solution
Use the Code Access Security Policy tool (Caspol.exe) and execute the command caspol -s off from
the command line to temporarily disable code access security checks.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 437

■Note You could permanently turn off CAS in .NET Framework 1.0 and 1.1 both programmatically and using
Caspol.exe. In .NET Framework 2.0, you can turn off CAS only temporarily and only by using Caspol.exe.

How It Works
In some cases, code-level security might not be of interest to you. For example, when you are debugging
code, you might want to exclude the possible interference caused by CAS. On rare occasions, the
need for performance might outweigh the need for security. CAS is a key element of the .NET runtime’s
security model and one that sets it apart from many other computing platforms. Although CAS was
implemented with performance in mind and has been used prudently throughout the .NET class
library, some overhead is associated with each security demand and resulting stack walk that the
runtime must execute to check every caller in the chain of execution.

■Caution You should disable CAS only for performance reasons after you have exhausted all other possible
measures to achieve the performance characteristics your application requires. Profiling your code will usually iden-
tify areas where you can improve performance significantly without the need to disable CAS. In addition, you should
ensure that your system resources have appropriate protection using operating system security mechanisms, such
as Windows access control lists (ACLs), before disabling CAS.

In these situations, you can temporarily disable CAS and remove the overhead and possible
interference caused by code-level security checks. Turning off CAS has the effect of giving all code
the ability to perform any action supported by the .NET Framework (equivalent to the FullTrust
permission set). This includes the ability to load other code, call native libraries, and use pointers to
access memory directly.

Caspol.exe is a utility provided with the .NET Framework that allows you to configure all aspects
of your CAS policy from the command line. When you enter the command caspol -s off from the
command line, you will see the following message indicating that CAS has been temporarily disabled.

Microsoft (r) .NET Framework CasPol 2.0.50727.42
Copyright (c) Microsoft Corporation. Al rights reserved.

CAS enforcement is being turned off temporarily. Press <enter> when you want to
restore the setting back on.

As the message states, CAS enforcement is off until you press Enter, or until the console in which
Caspol.exe is running terminates.

Notes
In versions 1.0 and 1.1 of the .NET Framework, running the command caspol -s off turned off CAS
enforcement permanently until you turned it on again using the command caspol -s on. In addition, it
was possible to turn CAS on and off programmatically using the System.Security.SecurityManager
class. The SecurityManager class contains a set of Shared methods and properties that provide access
to critical security functionality and data. For example, the SecurityEnabled property turns CAS checks
on and off.

To disable CAS, your code must run as a Windows Administrator and must have the ControlPolicy
element of the permission System.Security.Permissions.SecurityPermission. You do not need any
specific permissions to enable CAS.

438 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

Changing SecurityEnabled will not affect the enforcement of CAS in existing processes, nor will
it affect new processes until you call the SavePolicy method, which saves the state of SecurityEnabled to
the Windows registry. Unfortunately, the .NET Framework does not guarantee that changes to
SecurityEnabled will correctly affect the operation of CAS in the current process, so you must change
SecurityEnabled, and then launch a new process to achieve reliable and expected operation. The
current on/off state of CAS is stored in the Windows registry in the key HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\.NETFramework\Security\Policy as part of a set of flags contained in the
Global Settings value. If the key does not exist, CAS defaults to on. Because CAS can no longer be
permanently turned off in .NET Framework 2.0, this registry key is no longer used to control CAS.

The following example will work only on .NET Framework 1.0 and 1.1. It contains two methods
(CasOn and CasOff) that demonstrate the code required to turn CAS on and off programmatically and
persist the configuration change.

Imports System.Security

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_02

 ' A method to turn on CAS and persist the change.
 Public Sub CasOn()
 ' Turn on CAS checks.
 SecurityManager.SecurityEnabled = True

 ' Persist the configuration change.
 SecurityManager.SavePolicy()

 End Sub

 ' A method to turn off CAS and persist the change.
 Public Sub CasOff()
 ' Turn off CAS checks.
 SecurityManager.SecurityEnabled = False

 ' Persist the configuration change.
 SecurityManager.SavePolicy()

 End Sub

 End Class
End Namespace

11-3. Disable Execution Permission Checks

Problem
You need to load assemblies at runtime without the runtime checking them for execution permission.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 439

Solution
In code, set the property CheckExecutionRights of the class System.Security.SecurityManager to False
and persist the change by calling SecurityManager.SavePolicy. Alternatively, use the Code Access
Security Policy tool (Caspol.exe), and execute the command caspol -e off from the command line.

How It Works
As the runtime loads each assembly, it ensures that the assembly’s grant set (the permissions assigned to
the assembly based on the security policy) includes the Execution element of SecurityPermission.
The runtime implements a lazy policy resolution process, meaning that the grant set of an assembly
is not calculated until the first time a security demand is made against the assembly. Not only does
execution permission checking force the runtime to check that every assembly has the execution
permission, but it also indirectly causes policy resolution for every assembly loaded, effectively negating
the benefits of lazy policy resolution. These factors can introduce a noticeable delay as assemblies
are loaded, especially when the runtime loads a number of assemblies together, as it does at appli-
cation startup.

In many situations, simply allowing code to load and run is not a significant risk, as long as all
other important operations and resources are correctly secured using CAS and operating system
security. The SecurityManager class contains a set of Shared methods and properties that provide
access to critical security functionality and data. For example, the CheckExecutionRights property
turns on and off execution permission checks.

To modify the value of CheckExecutionRights, your code must have the ControlPolicy element
of SecurityPermission. The change will affect the current process immediately, allowing you to load
assemblies at runtime without the runtime checking them for execution permission. However, the
change will not affect other existing processes. You must call the SavePolicy method to persist the
change to the Windows registry for it to affect new processes.

The Code

The following example contains two methods (ExecutionCheckOn and ExecutionCheckOff) that
demonstrate the code required to turn on and off execution permission checks and persist the
configuration change.

Imports System.Security

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_03

 ' A method to turn on execution permission checking
 ' and persist the change.
 Public Sub ExecutionCheckOn()
 ' Turn on CAS checks.
 SecurityManager.CheckExecutionRights = True

 ' Persist the configuration change.
 SecurityManager.SavePolicy()

 End Sub

440 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

 ' A method to turn off execution permission checking
 ' and persist the change.
 Public Sub ExecutionCheckOff()
 ' Turn on CAS checks.
 SecurityManager.CheckExecutionRights = False

 ' Persist the configuration change.
 SecurityManager.SavePolicy()

 End Sub

 End Class
End Namespace

Notes
The .NET runtime allows you to turn off the automatic checks for execution permissions from within
code or by using Caspol.exe. When you enter the command caspol -e off or its counterpart caspol
-e on from the command line, the Caspol.exe utility actually sets the CheckExecutionRights property
of the SecurityManager class before calling SecurityManager.SavePolicy.

11-4. Ensure the Runtime Grants Specific
Permissions to Your Assembly

Problem
You need to ensure that the runtime grants your assembly those code access permissions that are
critical to the successful operation of your application.

Solution
In your assembly, use permission requests to specify the code access permissions that your assembly
must have. You declare permission requests using assembly-level code access permission
attributes.

How It Works
The name permission request is a little misleading given that the runtime will never grant permissions to
an assembly unless security policy dictates that the assembly should have those permissions. However,
naming aside, permission requests serve an essential purpose, and although the way the runtime
handles permission requests might initially seem strange, the nature of CAS does not allow for any
obvious alternative.

Permission requests identify permissions that your code must have to function. For example, if
you wrote a movie player that your customers could use to download and view movies from your
web server, it would be disastrous if the user’s security policy did not allow your player to open a
network connection to your media server. Your player would load and run, but as soon as the user tried
to connect to your server to play a movie, the application would crash with the exception System.
Security.SecurityException. The solution is to include in your assembly a permission request for
the code access permission required to open a network connection to your server (System.Net.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 441

WebPermission or System.Net.SocketPermission, depending on the type of connection you need
to open).

The runtime honors permission requests using the premise that it’s better that your code never
load than to load and fail sometime later when it tries to perform an action that it does not have
permission to perform. Therefore, if after security policy resolution the runtime determines that the
user does not have the appropriate permissions to satisfy the assembly’s permission requests, the
runtime will fail to load the assembly and will instead throw the exception System.Security.Policy.
PolicyException. Since your own code failed to load, the runtime will handle this security exception
during the assembly loading and transform it into a System.IO.FileLoadException exception that
will terminate your program.

When you try to load an assembly from within code (either automatically or manually), and the
loaded assembly contains permission requests that the security policy does not satisfy, the method
you use to load the assembly will throw a PolicyException exception, which you must handle
appropriately.

To declare a permission request, you must use the attribute counterpart of the code access
permission that you need to request. All code access permissions have an attribute counterpart that
you use to construct declarative security statements, including permission requests. For example,
the attribute counterpart of SocketPermission is SocketPermissionAttribute, and the attribute
counterpart of WebPermission is WebPermissionAttribute. All permissions and their attribute counter-
parts follow the same naming convention and are members of the same namespace.

When making a permission request, it’s important to remember the following:

• You must declare the permission request after any top-level Imports statements but before
any namespace or type declarations.

• The attribute must target the assembly, so you must prefix the attribute name with Assembly.

• You do not need to include the Attribute portion of an attribute’s name, although you can.

• You must specify SecurityAction.RequestMinimum as the first positional argument of the
attribute. This value identifies the statement as a permission request.

• You must configure the attribute to represent the code access permission you want to request
using the attribute’s properties. Refer to the .NET Framework SDK documentation for details
of the properties implemented by each code access security attribute.

• To make more than one permission request, simply include multiple permission request
statements.

The Code

The following example is a console application that includes two permission requests: one for
SocketPermission and the other for SecurityPermission. If you try to execute the
PermissionRequestExample application and your security policy does not grant the assembly the
requested permissions, you will get a FileLoadException exception, and the application will not
execute. Using the default security policy, this will happen if you run the assembly from a network
share, because assemblies loaded from the intranet zone are not granted SocketPermission.

Imports System
Imports System.Net
Imports System.Security.Permissions

' Permission request for SocketPermission that allows the code to
' open a TCP connection to the specified host and port.
<Assembly: SocketPermission(SecurityAction.RequestMinimum, Access:="Connect", ➥
Host:="www.fabrikam.com", Port:="3538", Transport:="Tcp")>

442 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

' Permission request for the UnmanagedCode element of SecurityPermission,
' which controls the code's ability to execute unmanaged code.
<Assembly: SecurityPermission(SecurityAction.RequestMinimum, UnmanagedCode:=True)>

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_04

 Public Shared Sub Main()

 ' Do something

 ' Wait to continue.
 Console.Write("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

11-5. Limit the Permissions Granted
to Your Assembly

Problem
You need to restrict the code access permissions granted to your assembly, ensuring that people and
other software can never use your code as a mechanism through which to perform undesirable or
malicious actions.

Solution
Use declarative security statements to specify optional permission requests and permission refusal
requests in your assembly. Optional permission requests define the maximum set of permissions
that the runtime will grant to your assembly. Permission refusal requests specify particular permis-
sions that the runtime should not grant to your assembly.

How It Works
In the interest of security, it’s ideal if your code has only those code access permissions required to
perform its function. This minimizes the opportunities for people and other code to use your code
to carry out malicious or undesirable actions. The problem is that the runtime resolves an assembly’s
permissions using security policy, which a user or an administrator configures. Security policy could
be different in every location where your application is run, and you have no control over what
permissions the security policy assigns to your code.

Although you cannot control security policy in all locations where your code runs, the .NET
Framework provides two mechanisms through which you can reject permissions granted to your
assembly:

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 443

• Refuse request: This allows you to identify specific permissions that you do not want the
runtime to grant to your assembly. After policy resolution, if the final grant set of an assembly
contains any permission specified in a refuse request, the runtime removes that permission.

• Optional permission request: This defines the maximum set of permissions that the runtime
can grant to your assembly. If the final grant set of an assembly contains any permissions
other than those specified in the optional permission request, the runtime removes those
permissions. Unlike as with a minimum permission request (discussed in recipe 11-4), the
runtime will not refuse to load your assembly if it cannot grant all of the permissions specified
in the optional request.

The approach you use depends on how many permissions you want to reject. If you want to
reject only a handful of permissions, a refuse request is easier to code. You just specify the permissions
that you do not want to grant to your assembly. However, if you want to reject a large number of
permissions, it’s easier to code an optional request for the few permissions that you do want; all
others not specified will be refused by the assembly.

You include optional and refuse requests in your code using declarative security statements with the
same syntax as the minimum permission requests discussed in recipe 11-4. The only difference is the
value of the System.Security.Permissions.SecurityAction that you pass to the permission attribute’s
constructor. Use SecurityAction.RequestOptional to declare an optional permission request and
SecurityAction.RequestRefuse to declare a refuse request. As with minimal permission requests, you
must declare optional and refuse requests as global attributes by beginning the permission attribute
name with the prefix Assembly. In addition, all requests must appear after any top-level Imports
statements but before any namespace or type declarations.

The Code

The code shown here demonstrates an optional permission request for the Internet permission set.
The Internet permission set is a named permission set defined by the default security policy. When
the runtime loads the example, it will not grant the assembly any permission that is not included
within the Internet permission set. (Consult the .NET Framework SDK documentation for details of
the permissions contained in the Internet permission set.)

Imports System.Security.Permissions

<Assembly: PermissionSet(SecurityAction.RequestOptional, Name:="Internet")>

Namespace Apress.VisualBasicRecipes.Chapter11

 Public Class Recipe11_05_OptionalRequest
 ' Class implementation...
 End Class

End Namespace

In contrast to the preceding example, the following example uses a refuse request to single out
the permission System.Security.Permissions.FileIOPermission—representing write access to the
C: drive—for refusal.

Imports System.Security.Permissions

<Assembly: FileIOPermission(SecurityAction.RequestRefuse, Write:="C:\")>

Namespace Apress.VisualBasicRecipes.Chapter11

444 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

 Public Class Recipe11_05_RefuseRequest
 ' Class implementation...
 End Class

End Namespace

11-6. View the Permissions Required
by an Assembly

Problem
You need to view the permissions that an assembly must be granted in order to run correctly.

Solution
Use the Permissions Calculator (Permcalc.exe) supplied with the .NET Framework SDK version 2.0
or the Permissions View tool (Permview.exe) supplied with the .NET Framework SDK versions 1.0
and 1.1.

How It Works
To configure security policy correctly, you need to know the code access permission requirements
of the assemblies you intend to run. This is true of both executable assemblies and libraries that you
access from your own applications. With libraries, it’s also important to know which permissions the
assembly refuses so that you do not try to use the library to perform a restricted action, which would
result in a System.Security.SecurityException exception.

The Permissions View tool (Permview.exe), supplied with the .NET Framework SDK versions 1.0
and 1.1, allows you to view the minimal, optional, and refuse permission requests made by an assembly.
By specifying the /decl switch, you can view all of the declarative security statements contained in
an assembly, including declarative demands and asserts. This can give you a good insight into what
the assembly is trying to do and allow you to configure security policy appropriately. However,
Permview.exe does not show the imperative security operations contained within the assembly.
Imperative security refers to statements in code that create and use an instance of the required
permissions object.

The Permissions Calculator (Permcalc.exe) supplied with the .NET Framework SDK version 2.0
overcomes this limitation. Permcalc.exe walks through an assembly and provides an estimate of the
permissions the assembly requires to run, regardless of whether they are declarative or imperative.

■Note The Permissions View tool (Permview.exe) is not supplied with the .NET Framework SDK version 2.0.
Permview.exe from previous versions of the .NET Framework does not work correctly with .NET 2.0 assemblies.
This is unfortunate, as Permcalc.exe does not provide a direct replacement for some of the useful functionality
provided by Permview.exe. Although Permcalc.exe can determine both the imperative and declarative demands an
assembly makes, it does not report the minimal, optional, and refusal requests made within an assembly.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 445

The Code

The following example shows a class that declares a minimum, optional, and refusal request, as well
as a number of imperative security demands.

Imports System
Imports System.Net
Imports System.Security.Permissions

' Minimum permission request for SocketPermission.
<Assembly: SocketPermission(SecurityAction.RequestMinimum, Unrestricted:=True)>

' Optional permission request for IsolatedStorageFilePermission.
<Assembly: IsolatedStorageFilePermission(SecurityAction.RequestOptional, ➥
Unrestricted:=True)>

' Refuse request for ReflectionPermission.
<Assembly: ReflectionPermission(SecurityAction.RequestRefuse, Unrestricted:=True)>

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Receipe11_06

 Public Shared Sub Main()

 ' Create and configure a FileIOPermission object that represents
 ' write access to the C:\Data folder.
 Dim fileIOPerm As New FileIOPermission(FileIOPermissionAccess.Write, ➥
"C:\Data")

 ' Make the demand.
 fileIOPerm.Demand()

 ' Do something...

 ' Wait to continue.
 Console.Write("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Executing the command permcalc -sandbox Recipe11-06.exe will generate a file named sandbox.
PermCalc.xml that contains XML representations of the permissions required by the assembly. The
sandbox parameter creates a private area (sandbox) for an application, with the minimum permis-
sions in which the application requires to run. Where the exact requirements of a permission cannot
be determined (because it is based on runtime data), Permcalc.exe reports that unrestricted permissions
of that type are required. You can instead default to the Internet zone permissions using the -Internet
flag. Here are the contents of sandbox.PermCalc.xml when run against the sample code.

446 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

<?xml version="1.0"?>
<Sandbox>
 <PermissionSet version="1" class="System.Security.PermissionSet">
 <IPermission Write="C:\Data" version="1"
 class="System.Security.Permissions.FileIOPermission, mscorlib,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" />
 <IPermission version="1"
 class="System.Security.Permissions.SecurityPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" Flags="Execution" />
 <IPermission version="1" class="System.Security.Permissions.UIPermission,
 mscorlib, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" Unrestricted="true" />
 <IPermission version="1" class="System.Net.SocketPermission, System,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
 Unrestricted="true" />
 </PermissionSet>
</Sandbox>

11-7. Determine at Runtime If Your Code Has a
Specific Permission

Problem
You need to determine at runtime if your assembly has a specific permission, such as write access
to files.

Solution
Instantiate and configure the permission you want to test for, and then pass it as an argument to the
Shared method IsGranted of the class System.Security.SecurityManager.

How It Works
Using minimum permission requests, you can ensure that the runtime grants your assembly a spec-
ified set of permissions. As a result, when your code is running, you can safely assume that it has the
requested minimum permissions. However, you might want to implement opportunistic function-
ality that your application offers only if the runtime grants your assembly appropriate permissions.
This approach is partially formalized using optional permission requests, which allow you to define
a set of permissions that your code could use if the security policy granted them, but are not essen-
tial for the successful operation of your code. (Recipe 11-5 provides more details on using optional
permission requests.)

The problem with optional permission requests is that the runtime has no ability to communi-
cate to your assembly which of the requested optional permissions it has granted. You can try to use a
protected operation and fail gracefully if the call results in the exception System.Security.
SecurityException. However, it’s more efficient to determine in advance if you have the necessary
permissions. You can then build logic into your code to avoid invoking secured members that will
cause stack walks and raise security exceptions.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 447

■Note IsGranted checks the grant set of only the calling assembly. It does not do a full stack walk to evaluate
the grant set of other assemblies on the call stack.

The Code

The following example demonstrates how to use the IsGranted method to determine if the assembly
has write permission to the directory C:\Data. You could make such a call each time you needed to
test for the permission, but it’s more efficient to use the returned Boolean value to set a configura-
tion flag indicating whether to allow users to save files.

Imports System.Security
Imports System.Security.Permissions

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_07
 ' Define a variable to indicate whether the assembly has write
 ' access to the C:\Data folder.
 Private canWrite As Boolean = False

 Public Sub New()
 ' Create and configure a FileIOPermission object that
 ' represents write access the the C:\Data folder.
 Dim fileIOPerm As New FileIOPermission(FileIOPermissionAccess.Write, ➥
"C:\Data")

 ' Test if the current assembly has the specified permission.
 canWrite = SecurityManager.IsGranted(fileIOPerm)

 End Sub

 End Class
End Namespace

11-8. Restrict Who Can Extend Your Classes and
Override Class Members

Problem
You need to control what code can extend your classes through inheritance and which class members a
derived class can override.

Solution
Use declarative security statements to apply the SecurityAction.InheritanceDemand to the declara-
tions of the classes and members that you need to protect.

448 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

■Note In .NET Framework 2.0, assemblies granted FullTrust can extend a class regardless of the security
demands implemented on the class. This means that the InheritanceDemand is useful in environments where
assembly permissions are closely managed, because you can still ensure that malicious or unauthorized code
cannot extend your critical business classes. However, the InheritanceDemand does not allow you to protect
classes that you develop and distribute to other environments, as part of a packaged product, for example. Although
this may seem like a useful feature has been lost, there were always ways for a determined programmer to write
and run fully trusted assemblies to overcome the InheritanceDemand. The approach taken in .NET 2.0 is simply
to avoid people placing too much confidence in a security feature that was at best an inconvenience to the deter-
mined hacker.

How It Works
Language modifiers such as NotOverridable, NotInheritable, Public, Private, and Overridable give
you a level of control over the ability of classes to inherit from your class and override its members.
However, these modifiers are inflexible, providing no selectivity in restricting which code can extend
a class or override its members. For example, you might want to allow only code written by your
company or department to extend business-critical classes. By applying an InheritanceDemand to
your class or member declaration, you can specify runtime permissions that a class must have to
extend your class or override particular members. Remember that the permissions of a class are the
permissions of the assembly in which the class is declared.

Although you can demand any permission or permission set in your InheritanceDemand, it’s
more common to demand identity permissions. Identity permissions represent evidence presented
to the runtime by an assembly. If an assembly presents certain types of evidence at load time, the
runtime will automatically assign the assembly the appropriate identity permission. Identity permissions
allow you to use regular imperative and declarative security statements to base security decisions
directly on code identity, without the need to evaluate evidence objects directly. Table 11-1 lists the
type of identity permission generated for each type of evidence. (Evidence types are members of the
System.Security.Policy namespace, and identity permission types are members of the System.
Security.Permissions namespace.)

■Note The runtime assigns identity permissions to an assembly based on the evidence presented by the assembly.
You cannot assign additional identity permissions to an assembly through the configuration of security policy.

Table 11-1. Evidence Classes That Generate Identity Permissions

Evidence Class Identity Permission

Publisher PublisherIdentityPermission

Site SiteIdentityPermission

StrongName StrongNameIdentityPermission

Url UrlIdentityPermission

Zone ZoneIdentityPermission

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 449

You must use declarative security syntax to implement an InheritanceDemand, and so you must
use the attribute counterpart of the permission class that you want to demand. All permission classes,
including InheritanceDemand, have an attribute counterpart that you use to construct declarative
security statements. For example, the attribute counterpart of PublisherIdentityPermission is
PublisherIdentityPermissionAttribute, and the attribute counterpart of
StrongNameIdentityPermission is StrongNameIdentityPermissionAttribute. All permissions and their
attribute counterparts follow the same naming convention and are members of the same namespace.

To control which code can extend your class, apply the InheritanceDemand to the class declara-
tion using one of the permissions listed in Table 11-1. To control which code can override specific
members of a class, apply the InheritanceDemand to the member declaration.

The Code

The following example demonstrates the use of an InheritanceDemand on both a class and a method.
Applying a PublisherIdentityPermissionAttribute to the Recipe11_08 class means only classes in
assemblies signed by the publisher certificate contained in the pubcert.cer file (or assemblies granted
FullTrust) can extend the class. The contents of the pubcert.cer file are read at compile time, and
the necessary certificate information is built into the assembly metadata. To demonstrate that other
permissions can also be used with an InheritanceDemand, the PermissionSetAttribute is used to
allow only classes granted the FullTrust permission set to override the method
SomeProtectedMethod.

Imports System.Security.Permissions
Namespace Apress.VisualBasicRecipes.Chapter11

 <PublisherIdentityPermission(SecurityAction.InheritanceDemand, ➥
CertFile:="pubcert.cer")> _
 Public Class Recipe11_08

 <PermissionSet(SecurityAction.InheritanceDemand, Name:="FullTrust")> _
 Public Sub SomeProtectedMethod()
 ' Method implementation...
 End Sub

 End Class
End Namespace

11-9. Inspect an Assembly’s Evidence

Problem
You need to inspect the evidence that the runtime assigned to an assembly.

Solution
Obtain a System.Reflection.Assembly object that represents the assembly in which you are interested.
Get the System.Security.Policy.Evidence collection from the Evidence property of the Assembly
object, and access the contained evidence objects using the GetEnumerator, GetHostEnumerator, or
GetAssemblyEnumerator method of the Evidence class.

450 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

How It Works
The Evidence class represents a collection of evidence objects. The read-only Evidence property of
the Assembly class returns an Evidence collection object that contains all of the evidence objects that
the runtime assigned to the assembly as the assembly was loaded.

The Evidence class actually contains two collections, representing different types of evidence:

• Host evidence includes those evidence objects assigned to the assembly by the runtime or the
trusted code that loaded the assembly.

• Assembly evidence represents custom evidence objects embedded into the assembly at
build time.

The Evidence class implements three methods for enumerating the evidence objects it contains:
GetEnumerator, GetHostEnumerator, and GetAssemblyEnumerator. The GetHostEnumerator and
GetAssemblyEnumerator methods return a System.Collections.IEnumerator instance that enumer-
ates only those evidence objects from the appropriate collection. The GetEnumerator method returns
an IEnumerator instance that enumerates all of the evidence objects contained in the Evidence collection.

■Note Evidence classes do not extend a standard base class or implement a standard interface. Therefore, when
working with evidence programmatically, you need to test the type of each object and know what particular types
you are seeking. (See recipe 3-11 for details on how to test the type of an object at runtime.)

The Code

The following example demonstrates how to display the host and assembly evidence of an assembly
on the console. The example relies on the fact that all standard evidence classes override the Object.
ToString method to display a useful representation of the evidence object’s state. Although inter-
esting, this example does not always show the evidence that an assembly would have when loaded
from within your program. The runtime host (such as the Microsoft ASP.NET or Internet Explorer
runtime host) is free to assign additional host evidence as it loads an assembly.

Imports System
Imports System.Reflection
Imports System.Collections
Imports System.Security.Policy

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_09

 Public Shared Sub Main(ByVal args As String())

 ' Load the specified assembly.
 Dim a As Assembly = Assembly.LoadFrom(args(0))

 ' Get the evidence collection from the
 ' loaded assembly.
 Dim e As Evidence = a.Evidence

 ' Display the host evidence.
 Dim x As IEnumerator = e.GetHostEnumerator

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 451

 Console.Write("HOST EVIDENCE COLLECTION:")

 While x.MoveNext
 Console.Write(x.Current.ToString)
 Console.Write("Press Enter to see next evidence.")
 Console.ReadLine()
 End While

 ' Display the assembly evidence.
 x = e.GetAssemblyEnumerator()

 Console.Write("ASSEMBLY EVIDENCE COLLECTION:")

 While x.MoveNext
 Console.Write(x.Current.ToString)
 Console.Write("Press Enter to see next evidence.")
 Console.ReadLine()
 End While

 ' Wait to continue.
 Console.Write("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note All of the standard evidence classes provided by the .NET Framework are immutable, ensuring that you
cannot change their values after the runtime has created them and assigned them to the assembly. In addition, you
cannot add or remove items while you are enumerating across the contents of a collection using an IEnumerator;
otherwise, the MoveNext method throws a System.InvalidOperationException exception.

11-10. Determine If the Current User Is a Member
of a Specific Windows Group

Problem
You need to determine if the current user of your application is a member of a specific Windows user
group.

Solution
Obtain a System.Security.Principal.WindowsIdentity object representing the current Windows
user by calling the Shared method WindowsIdentity.GetCurrent. Create a System.Security.Principal.
WindowsPrincipal class using the WindowsIdentity class, and then call the method IsInRole of
the WindowsPrincipal object.

452 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

How It Works
The role-based security (RBS) mechanism of the .NET Framework abstracts the user-based security
features of the underlying operating system through the following two key interfaces:

• The System.Security.Principal.IIdentity interface, which represents the entity on whose
behalf code is running; for example, a user or service account.

• The System.Security.Principal.IPrincipal interface, which represents the entity’s IIdentity
and the set of roles to which the entity belongs. A role is simply a categorization used to group
entities with similar security capabilities, such as a Windows user group.

To integrate RBS with Windows user security, the .NET Framework provides the following two
Windows-specific classes that implement the IIdentity and IPrincipal interfaces:

• System.Security.Principal.WindowsIdentity, which implements the IIdentity interface
and represents a Windows user.

• System.Security.Principal.WindowsPrincipal, which implements IPrincipal and repre-
sents the set of Windows groups to which the user belongs.

Because .NET RBS is a generic solution designed to be platform-independent, you have no
access to the features and capabilities of the Windows user account through the IIdentity and
IPrincipal interfaces, and you must frequently use the WindowsIdentity and WindowsPrincipal
objects directly.

To determine if the current user is a member of a specific Windows group, you must first call the
Shared method WindowsIdentity.GetCurrent. The GetCurrent method returns a WindowsIdentity
object that represents the Windows user on whose behalf the current thread is running. An overload
of the GetCurrent method new to .NET Framework 2.0 takes a Boolean argument and allows you to
control what is returned by GetCurrent if the current thread is impersonating a user different from
the one associated with the process. If the argument is True, GetCurrent returns a WindowsIdentity
representing the impersonated user, or it returns Nothing if the thread is not impersonating a user.
If the argument is False, GetCurrent returns the WindowsIdentity of the thread if it is not imperson-
ating a user, or it returns the WindowsIdentity of the process if the thread is currently impersonating
a user.

■Note The WindowsIdentity class provides overloaded constructors that, when running on Microsoft Windows
Server 2003 or later platforms, allow you to obtain a WindowsIdentity object representing a named user. You
can use this WindowsIdentity object and the process described in this recipe to determine if that user is a
member of a specific Windows group. If you try to use one of these constructors when running on an earlier version
of Windows, the WindowsIdentity constructor will throw an exception. On Windows platforms preceding Windows
Server 2003, you must use native code to obtain a Windows access token representing the desired user. You can
then use this access token to instantiate a WindowsIdentity object. Recipe 11-12 explains how to obtain Windows
access tokens for specific users.

Once you have a WindowsIdentity, instantiate a new WindowsPrincipal object, passing the
WindowsIdentity object as an argument to the constructor. Finally, call the IsInRole method of
the WindowsPrincipal object to test if the user is in a specific group (role). IsInRole returns True if the
user is a member of the specified group; otherwise, it returns False. The IsInRole method provides
four overloads:

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 453

• The first overload takes a String containing the name of the group for which you want to test.
The group name must be of the form [DomainName]\[GroupName] for domain-based groups
and [MachineName]\[GroupName] for locally defined groups. If you want to test for member-
ship of a standard Windows group, use the form BUILTIN\[GroupName] or the other overload
that takes a value from the System.Security.Principal.WindowsBuiltInRole enumeration.
IsInRole performs a case-insensitive test for the specified group name.

• The second IsInRole overload accepts an Integer, which specifies a Windows role identifier
(RID). RIDs provide a mechanism to identify groups that is independent of language and
localization.

• The third IsInRole overload accepts a member of the System.Security.Principal.Windows-
BuiltInRole enumeration. The WindowsBuiltInRole enumeration defines a set of members
that represent each of the built-in Windows groups. As with RIDs, these groups are indepen-
dent of language and localization.

• The fourth IsInRole overload (new to .NET Framework 2.0) accepts a System.Security.
Principal.SecurityIdentifier object that represents the security identifier (SID) of the
group for which you want to test.

Table 11-2 lists the name, RID, and WindowsBuiltInRole value for each of the standard Windows
groups.

The Code

The following example demonstrates how to test whether the current user is a member of a set of
named Windows groups. You specify the groups that you want to test for as command-line arguments.
Remember to prefix the group name with the machine or domain name, or BUILTIN for standard
Windows groups.

Table 11-2. Windows Built-In Account Names and Identifiers

Account Name RID (Hex) WindowsBuiltInRole Value

BUILTIN\Account Operators 0x224 AccountOperator

BUILTIN\Administrators 0x220 Administrator

BUILTIN\Backup Operators 0x227 BackupOperator

BUILTIN\Guests 0x222 Guest

BUILTIN\Power Users 0x223 PowerUser

BUILTIN\Print Operators 0x226 PrintOperator

BUILTIN\Replicators 0x228 Replicator

BUILTIN\Server Operators 0x225 SystemOperator

BUILTIN\Users 0x221 User

454 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

Imports System
Imports System.Security.Principal

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_10

 Public Shared Sub Main(ByVal args As String())

 ' Obtain a WindowsIdentity object representing the currently
 ' logged on Windows user.
 Dim identity As WindowsIdentity = WindowsIdentity.GetCurrent

 ' Create a Windows Principal object that represents the security
 ' capabilities of the specified WindowsIdentity; in this case,
 ' the Windows groups to which the current user belongs.
 Dim principal As New WindowsPrincipal(identity)

 ' Iterate through the group names specified as command-line
 ' arguments and test to see if the current user is a member of
 ' each one.
 For Each role As String In args
 Console.WriteLine("Is {0} a member of {1}? = {2}", identity.Name, ➥
role, principal.IsInRole(role))
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.Write("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

If you run this example as a user named Robb on a computer named MACHINE using this command:

Recipe11-10 BUILTIN\Administrators BUILTIN\Users MACHINE\Accountants

you will see console output similar to the following:

Is MACHINE\Robb a member of BUILTIN\Administrators? = False
Is MACHINE\Robb a member of BUILTIN\Users? = True
Is MACHINE\Robb a member of MACHINE\Accountants? = True

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 455

11-11. Restrict Which Users Can Execute
Your Code

Problem
You need to restrict which users can execute elements of your code based on the user’s name or the
roles of which the user is a member.

Solution
Use the permission class System.Security.Permissions.PrincipalPermission and its attribute
counterpart System.Security.Permissions.PrincipalPermissionAttribute to protect your program
elements with RBS demands.

How It Works
The .NET Framework supports both imperative and declarative RBS (refer to recipe 11-10) demands.
The class PrincipalPermission provides support for imperative security statements, and its attribute
counterpart PrincipalPermissionAttribute provides support for declarative security statements.
RBS demands use the same syntax as CAS demands, but RBS demands specify the name the current
user must have, or more commonly, the roles of which the user must be a member. An RBS demand
instructs the runtime to look at the name and roles of the current user, and if that user does not meet
the requirements of the demand, the runtime throws a System.Security.SecurityException exception.

To make an imperative security demand, you must first create a PrincipalPermission object
specifying the username or role name you want to demand, and then you must call its Demand method.
You can specify only a single username and role name per demand. If either the username or the role
name is Nothing, any value will satisfy the demand. Unlike with code access permissions, an RBS
demand does not result in a stack walk; the runtime evaluates only the username and roles of the
current user.

To make a declarative security demand, you must annotate the class or member you want to
protect with a correctly configured PrincipalPermissionAttribute attribute. Class-level demands
apply to all members of the class, unless a member-specific demand overrides the class demand.

Generally, you are free to choose whether to implement imperative or declarative demands.
However, imperative security demands allow you to integrate RBS demands with code logic to
achieve more sophisticated demand behavior. In addition, if you do not know the role or usernames
to demand at compile time, you must use imperative demands. Declarative demands have the
advantage that they are separate from code logic and easier to identify. In addition, you can view
declarative demands using the Permview.exe tool (discussed in recipe 11-6). Whether you imple-
ment imperative or declarative demands, you must ensure that the runtime has access to the name
and roles for the current user to evaluate the demand correctly.

The System.Threading.Thread class represents an operating system thread running managed
code. The Shared property CurrentPrincipal of the Thread class contains an IPrincipal instance
representing the roles on whose behalf the managed thread is running.

At the operating system level, each thread also has an associated Windows access token (repre-
sented by the WindowsIdentity class), which represents the Windows account on whose behalf the
thread is running. The IPrincipal instance and the Windows access token are two separate entities.
Windows uses its access token to enforce operating system security, whereas the .NET runtime uses
its IPrincipal instance to evaluate application-level RBS demands. The identity and principal are
separate entities, and they may represent different user accounts, as noted in recipe 11-12.

456 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

The benefit of this approach is that you can implement a user and an RBS model within your
application using a proprietary user accounts database, without the need for all users to have Windows
user accounts. This is a particularly useful approach in large-scale, publicly accessible Internet
applications.

By default, the Thread.CurrentPrincipal property is undefined. Because obtaining user-related
information can be time-consuming, and only a minority of applications use this information, the
.NET designers opted for lazy initialization of the CurrentPrincipal property. The first time code gets
the Thread.CurrentPrincipal property, the runtime assigns an IPrincipal instance to the property
using the following logic:

• If the application domain in which the current thread is executing has a default principal, the
runtime assigns this principal to the Thread.CurrentPrincipal property. By default, applica-
tion domains do not have default principals. You can set the default principal of an application
domain by calling the method SetThreadPrincipal on a System.AppDomain object that repre-
sents the application domain you want to configure. Code must have the ControlPrincipal
element of SecurityPermission to call SetThreadPrincipal. You can set the default principal
only once for each application domain; a second call to SetThreadPrincipal results in the
exception System.Security.Policy.PolicyException.

• If the application domain does not have a default principal, the application domain’s prin-
cipal policy determines which IPrincipal implementation to create and assign to Thread.
CurrentPrincipal. To configure principal policy for an application domain, obtain an
AppDomain object that represents the application domain and call the object’s
SetPrincipalPolicy method. The SetPrincipalPolicy method accepts a member of the
enumeration System.Security.Principal.PrincipalPolicy, which specifies the type of
IPrincipal object to assign to Thread.CurrentPrincipal. Code must have the
ControlPrincipal element of SecurityPermission to call SetPrincipalPolicy. Table 11-3 lists
the available PrincipalPolicy values; the default value is UnauthenticatedPrincipal.

• If your code has the ControlPrincipal element of SecurityPermission, you can instantiate
your own IPrincipal object and assign it to the Thread.CurrentPrincipal property directly.
This will prevent the runtime from assigning default IPrincipal objects or creating new ones
based on principal policy.

Whatever method you use to establish the IPrincipal for the current thread, you must do so
before you use RBS demands, or the correct user (IPrincipal) information will not be available for
the runtime to process the demand. Normally, when running on the Windows platform, you would
set the principal policy of an application domain to PrincipalPolicy.WindowsPrincipal (as shown
here) to obtain Windows user information.

Table 11-3. Members of the PrincipalPolicy Enumeration

Member Name Description

NoPrincipal No IPrincipal object is created. Thread.CurrentPrincipal
returns Nothing.

UnauthenticatedPrincipal An empty System.Security.Principal.GenericPrincipal
object is created and assigned to Thread.CurrentPrincipal.

WindowsPrincipal A WindowsPrincipal object representing the currently
logged-on Windows user is created and assigned to
Thread.CurrentPrincipal.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 457

' Obtain a reference to the current application domain.
Dim currentAppDomain As AppDomain = System.AppDomain.CurrentDomain

' Configure the current application domain to use Windows-based principals.
currentAppDomain.SetPrincipalPolicy(➥
Security.Principal.PrincipalPolicy.WindowsPrincipal)

The Code

The following example demonstrates the use of imperative and declarative RBS demands. The
example shows three methods protected using imperative RBS demands (Method1, Method2, and
Method3), and then three other methods protected using the equivalent declarative RBS demands
(Method4, Method5, and Method6).

Imports System
Imports System.Security.Permissions

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_11

 Public Shared Sub Method1()

 ' An imperative role-based security demand for the current
 ' principal to represent an identity with the name Amy. The
 ' roles of the principal are irrelevant.
 Dim perm As New PrincipalPermission("MACHINE\Amy", Nothing)

 ' Make the demand.
 perm.Demand()

 End Sub

 Public Shared Sub Method2()

 ' An imperative role-based security demand for the current
 ' principal to be a member of the roles Managers or Developers.
 ' If the principal is a member of either role, access is granted.
 ' Using the PrincipalPermission, you can express only an OR type
 ' relationship. This is because the PrincipalPolicy.Intersect method
 ' always returns an empty permission unless the two inputs are the
 ' same. However, you can use code logic to implement more complex
 ' conditions. In this case, the name of the identity is irrelevant.
 Dim perm1 As New PrincipalPermission(Nothing, "MACHINE\Managers")
 Dim perm2 As New PrincipalPermission(Nothing, "MACHINE\Developers")

 ' Make the demand.
 perm1.Union(perm2).Demand()

 End Sub

 Public Shared Sub Method3()

458 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

 ' An imperative role-based security demand for the current principal
 ' to represent an identity with the name Amy AND be a member of the
 ' Managers role.
 Dim perm As New PrincipalPermission("MACHINE\Amy", "MACHINE\Managers")

 ' Make the demand.
 perm.Demand()

 End Sub

 ' A declarative role-based security demand for the current principal
 ' to represent an identity with the name Amy.
 <PrincipalPermission(SecurityAction.Demand, Name:="MACHINE\Amy")> _
 Public Shared Sub Method4()

 ' Method implementation...

 End Sub

 ' A declarative role-based security demand for the current principal
 ' to be a member of the roles Managers OR Developers. If the principal
 ' is a member of either role, access is granted. You can express only
 ' an OR type relationship, not an AND relationship.
 <PrincipalPermission(SecurityAction.Demand, Role:="MACHINE\Managers"), ➥
PrincipalPermission(SecurityAction.Demand, Role:="MACHINE\Developers")> _
 Public Shared Sub Method5()

 ' Method implementation...

 End Sub

 ' A declarative role-based security demand for the current principal
 ' to represent an identity with the name Amy and be a member of the
 ' Managers role.
 <PrincipalPermission(SecurityAction.Demand, Name:="MACHINE\Amy", ➥
Role:="MACHINE\Managers")> _
 Public Shared Sub Method6()

 ' Method implementation...

 End Sub

 End Class
End Namespace

11-12. Impersonate a Windows User

Problem
You need your code to run in the context of a Windows user other than the currently active user account.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 459

Solution
Obtain a System.Security.Principal.WindowsIdentity object representing the Windows user you
need to impersonate, and then call the Impersonate method of the WindowsIdentity object.

How It Works
Every Windows thread has an associated access token, which represents the Windows account on
whose behalf the thread is running. The Windows operating system uses the access token to determine
whether a thread has the appropriate permissions to perform protected operations on behalf of the
account, such as read and write files, reboot the system, and change the system time.

By default, a managed application runs in the context of the Windows account that executed the
application. This is normally desirable behavior, but sometimes you will want to run an application
in the context of a different Windows account. This is particularly true in the case of server-side
applications that process transactions on behalf of the users remotely connected to the server.

It’s common for a server application to run in the context of a Windows account created specif-
ically for the application—a service account. This service account will have minimal permissions to
access system resources. Enabling the application to operate as though it were the connected user
permits the application to access the operations and resources appropriate to that user’s security
clearance. When an application assumes the identity of another user, it’s known as impersonation.
Correctly implemented, impersonation simplifies security administration and application design,
while maintaining user accountability.

■Note As discussed in recipe 11-11, a thread’s Windows access token and its .NET principal are separate entities and
can represent different users. The impersonation technique described in this recipe changes only the Windows
access token of the current thread; it does not change the thread’s principal. To change the thread’s principal, code
must have the ControlPrincipal element of SecurityPermission and assign a new System.Security.
Principal.IPrincipal object to the CurrentPrincipal property of the current System.Threading.Thread.

The System.Security.Principal.WindowsIdentity class provides the functionality through
which you invoke impersonation. However, the exact process depends on which version of Windows
your application is running. If it’s running on Windows Server 2003 or later, the WindowsIdentity
class supports constructor overloads that create WindowsIdentity objects based on the account
name of the user you want to impersonate. On all previous versions of Windows, you must first
obtain a System.IntPtr containing a reference to a Windows access token that represents the user to
impersonate. To obtain the access token reference, you must use a native method such as the Logo-
nUser function from the Win32 API.

■Caution A major issue with performing impersonation on Microsoft Windows 2000 and Windows NT is that
an account must have the Windows privilege SE_TCB_NAME to execute LogonUser. This requires you to configure
Windows security policy and grant the account the right to “act as part of operating system.” This grants the
account a very high level of trust. You should never grant the privilege SE_TCB_NAME directly to user accounts. The
requirement for an account to have the SE_TCB_NAME privilege no longer exists for Windows 2003, Windows XP,
and Windows Vista.

Once you have a WindowsIdentity object representing the user you want to impersonate, call its
Impersonate method. From that point on, all actions your code performs occur in the context of the
impersonated Windows account. The Impersonate method returns a System.Security.Principal.

460 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

WindowsSecurityContext object, which represents the active account prior to impersonation. To
revert to the original account, call the Undo method of this WindowsSecurityContext object.

The Code

The following example demonstrates impersonation of a Windows user. The example uses the LogonUser
function of the Win32 API to obtain a Windows access token for the specified user, impersonates the
user, and then reverts to the original user context.

Imports System
Imports System.IO
Imports System.Security.Principal
Imports System.Security.Permissions
Imports System.Runtime.InteropServices

' Ensure the assembly has permission to execute unmanaged code
' and control the thread principal.
<Assembly: SecurityPermission(SecurityAction.RequestMinimum, UnmanagedCode:=True, ➥
ControlPrincipal:=True)>
Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_12

 ' Define some constants for use with the LogonUser function.
 Const LOGON32_PROVIDER_DEFAULT As Integer = 0
 Const LOGON32_LOGON_INTERACTIVE As Integer = 2

 ' Import the Win32 LogonUser function from advapi32.dll. Specify
 ' "SetLastError = True" to correctly support access to Win32 error
 ' codes.
 <DllImport("advapi32.dll", SetLastError:=True, CharSet:=CharSet.Unicode)> _
 Private Shared Function LogonUser(ByVal userName As String, ➥
ByVal domain As String, ByVal password As String, ByVal logonType As Integer, ➥
ByVal logonProvider As Integer, ByRef accessToken As IntPtr) As Boolean
 End Function

 Public Shared Sub Main(ByVal args As String())

 ' Create a new IntPtr to hold the access token returned by the
 ' LogonUser function.
 Dim accessToken As IntPtr = IntPtr.Zero

 ' Call the LogonUser function to obtain an access token for the
 ' specified user. The accessToken variable is passed to LogonUser
 ' by reference and will contain a reference to the Windows access
 ' token if LogonUser is successful.
 Dim success As Boolean = LogonUser(args(0), ".", args(1), ➥
LOGON32_LOGON_INTERACTIVE, LOGON32_PROVIDER_DEFAULT, accessToken)

 ' If LogonUser returns false, an error has occurred.
 ' Display the error and exit.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 461

 If Not success Then
 Console.WriteLine("LogonUser returned error {0}", ➥
Marshal.GetLastWin32Error())
 Else
 ' Display the active identity.
 Console.WriteLine("Identity before impersonation = {0}", ➥
WindowsIdentity.GetCurrent.Name)
 ' Create a new WindowsIdentity from the Windows access token.
 Dim identity As New WindowsIdentity(accessToken)

 ' Impersonate the specified user, saving a reference to the
 ' returned WindowsImpersonationContext, which contains the
 ' information necessary to revert to the original user context.
 Dim impContext As WindowsImpersonationContext = ➥
identity.Impersonate

 ' Display the active identity.
 Console.WriteLine("Identity during impersonation = {0}", ➥
WindowsIdentity.GetCurrent.Name)

 ' Perform actions as the impersonated user...

 ' Revert to the original Windows user using the
 ' WindowsImpersonationContext object.
 impContext.Undo()

 ' Display the active identity.
 Console.WriteLine("Identity after impersonation = {0}", ➥
WindowsIdentity.GetCurrent.Name)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End If

 End Sub

 End Class
End Namespace

Usage

The example expects two command-line arguments: the account name of the user on the local
machine to impersonate and the account’s password. For example, the command Recipe11-12
Administrator password impersonates the user Administrator, as long as that user exists in the local
accounts database and has the password “password.”

462 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

11-13. Create a Cryptographically
Random Number

Problem
You need to create a random number that is suitable for use in cryptographic and security applications.

Solution
Use a cryptographic random number generator, derived from System.Security.Cryptography.
RandomNumberGenerator such as the System.Security.Cryptography.RNGCryptoServiceProvider class.

How It Works
The System.Random class is a pseudo-random number generator that uses a mathematical algorithm
to simulate the generation of random numbers. In fact, the algorithm it uses is deterministic, meaning
that you can always calculate what the next number will be based on the previously generated number.
This means that numbers generated by the Random class are unsuitable for use in situations in which
security is a priority, such as generating encryption keys and passwords.

When you need a nondeterministic random number for use in cryptographic or security-related
applications, you must use a random number generator derived from the class RandomNumberGenerator.
The RandomNumberGenerator class is an abstract (MustInherit) class from which all concrete .NET
random number generator classes should inherit. Currently, the RNGCryptoServiceProvider class is
the only concrete implementation provided. The RNGCryptoServiceProvider class provides a managed
wrapper around the CryptGenRandom function of the Win32 CryptoAPI, and you can use it to fill Byte
arrays with cryptographically random Byte values.

■Note The numbers produced by the RNGCryptoServiceProvider class are not truly random. However, they
are sufficiently random to meet the requirements of cryptography and security applications in most commercial and
government environments.

As is the case with many of the .NET cryptography classes, the RandomNumberGenerator base class is
a factory for the concrete implementation classes that derive from it. Calling RandomNumberGenerator.
Create("System.Security.Cryptography.RNGCryptoServiceProvider") will return an instance of
RNGCryptoServiceProvider that you can use to generate random numbers. In addition, because
RNGCryptoServiceProvider is the only concrete implementation provided, it’s the default class
created if you call the Create method without arguments, as in RandomNumberGenerator.Create().

Once you have a RandomNumberGenerator instance, the method GetBytes fills a Byte array with
random Byte values. As an alternative, you can use the GetNonZeroBytes method if you need random
data that contains no zero values.

The Code

The following example instantiates an RNGCryptoServiceProvider object and uses it to generate
random values.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 463

Imports System
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_13

 Public Shared Sub Main()

 ' Create a byte array to hold the random data.
 Dim number As Byte() = New Byte(32) {}

 ' Instantiate the default random number generator.
 Dim rng As RandomNumberGenerator = RandomNumberGenerator.Create

 ' Generate 32 bytes of random data.
 rng.GetBytes(number)

 ' Display the random number.
 Console.WriteLine(BitConverter.ToString(number))

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method compelte. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

■Note The computational effort required to generate a random number with RNGCryptoServiceProvider
is significantly greater than that required by Random. For everyday purposes, the use of RNGCryptoServiceProvider
is overkill. You should consider the quantity of random numbers you need to generate and the purpose of the
numbers before deciding to use RNGCryptoServiceProvider. Excessive and unnecessary use of the
RNGCryptoServiceProvider class could have a noticeable effect on application performance if many random
numbers are generated.

11-14. Calculate the Hash Code of a Password

Problem
You need to store a user’s password securely so that you can use it to authenticate the user in the
future.

Solution
Create and store a cryptographic hash code of the password using a hashing algorithm class derived
from the System.Security.Cryptography.HashAlgorithm class. On future authentication attempts,
generate the hash of the password entered by the user and compare it to the stored hash code.

464 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

■Caution You should never store a user’s plaintext password, because it is a major security risk and one that
most users would not appreciate, given that many of them will use the same password to access multiple systems.

How It Works
Hashing algorithms are one-way cryptographic functions that take plaintext of variable length and
generate a fixed-size numeric value. They are one-way because it’s nearly impossible to derive the
original plaintext from the hash code. Hashing algorithms are deterministic; applying the same
hashing algorithm to a specific piece of plaintext always generates the same hash code. This makes
hash codes useful for determining if two blocks of plaintext (passwords in this case) are the same.
The design of hashing algorithms ensures that the chance of two different pieces of plaintext generating
the same hash code is extremely small (although not impossible). In addition, there is no correlation
between the similarity of two pieces of plaintext and their hash codes; minor differences in the plain-
text cause significant differences in the resulting hash codes.

When using passwords to authenticate a user, you are not concerned with the content of the
password that the user enters. You need to know only that the entered password matches the pass-
word that you have recorded for that user in your accounts database.

The nature of hashing algorithms makes them ideal for storing passwords securely. When the
user provides a new password, you must create the hash code of the password and store it, and then
discard the plaintext password. Each time the user tries to authenticate with your application, calculate
the hash code of the password that user provides and compare it with the hash code you have stored.

■Note People regularly ask how to obtain a password from a hash code. The simple answer is that you cannot.
The whole purpose of a hash code is to act as a token that you can freely store without creating security holes. If a
user forgets a password, you cannot derive it from the stored hash code. Rather, you must either reset the account
to some default value or generate a new password for the user.

Generating hash codes is simple in the .NET Framework. The MustInherit class HashAlgorithm
provides a base from which all concrete hashing algorithm implementations derive. The .NET
Framework class library includes the seven hashing algorithm implementations listed in Table 11-4;
each implementation class is a member of the System.Security.Cryptography namespace. The
classes with names ending in CryptoServiceProvider wrap functionality provided by the native
Win32 CryptoAPI, whereas those with names ending in Managed are fully implemented in managed
code. In the case of sha1, SHA1CryptoServiceProvider and SHA1Managed both implement the same algo-
rithm, but the SHA1Managed class uses the managed library rather than wrapping the CryptoAPI (CAPI).

Table 11-4. Hashing Algorithm Implementations

Algorithm Name Class Name Hash Code Size (in Bits)

MD5 MD5CryptoServiceProvider 128

RIPEMD160 or RIPEMD-160 RIPEMD160Managed 160

SHA or SHA1 SHA1CryptoServiceProvider 160

SHA1Managed SHA1Managed 160

SHA256 or SHA-256 SHA256Managed 256

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 465

Although you can create instances of the hashing algorithm classes directly, the HashAlgorithm
base class is a factory for the concrete implementation classes that derive from it. Calling the Shared
method HashAlgorithm.Create will return an object of the specified type. Using the factory approach
allows you to write generic code that can work with any hashing algorithm implementation. Note
that unlike in recipe 11-13, you do not pass the class name as parameter to the factory; instead, you
pass the algorithm name. If you do not specify an algorithm name, the default, SHA1Managed, is used.

Once you have a HashAlgorithm object, its ComputeHash method accepts a Byte array argument
containing plaintext and returns a new Byte array containing the generated hash code. Table 11-4
shows the size of hash code (in bits) generated by each hashing algorithm class.

■Note The SHA1Managed algorithm cannot be implemented using the factory approach. It must be instantiated
directly.

The Code

The example shown here demonstrates the creation of a hash code from a string, such as a password.
The application expects two command-line arguments: the name of the hashing algorithm to use
and the string from which to generate the hash. Because the HashAlgorithm.ComputeHash method
requires a Byte array, you must first byte-encode the input string using the class System.Text.
Encoding, which provides mechanisms for converting strings to and from various character-encoding
formats.

Imports System
imports System.Text
imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_14

 Public Shared Sub Main(ByVal args As String())

 ' Create a HashAlgorithm of the type specified by the first
 ' command-line argument.
 Dim hashAlg As HashAlgorithm = Nothing

 ' The SHA1Managed algorithm cannot be implemented using the
 ' factory approach. It must be instantiated directly.
 If args(0).CompareTo("SHA1Managed") = 0 The
 hashAlg = New SHA1Managed
 Else
 hashAlg = HashAlgorithm.Create(args(0))
 End If

SHA384 or SHA-384 SHA384Managed 384

SHA512 or SHA-512 SHA512Managed 512

Table 11-4. Hashing Algorithm Implementations

Algorithm Name Class Name Hash Code Size (in Bits)

466 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

 Using hashAlg

 ' Convert the password string, provided as the second
 ' command-line argument, to an array of bytes.
 Dim pwordData As Byte() = Encoding.Default.GetBytes(args(1))

 ' Generate the hash code of the password.
 Dim hash As Byte() = hashAlg.ComputeHash(pwordData)

 ' Display the hash code of the password to the console.
 Console.WriteLine(BitConverter.ToString(hash))

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Using

 End Sub

 End Class
End Namespace

Usage

Running the following command:

Recipe11-14 SHA1 ThisIsMyPassword

will display the following hash code to the console:

30-B8-BD-58-29-88-89-00-D1-5D-2B-BE-62-70-D9-BC-65-B0-70-2F

In contrast, executing this command:

Recipe11-14 RIPEMD-160 ThisIsMyPassword

will display the following hash code:

0C-39-3B-2E-8A-4E-D3-DD-FB-E3-C8-05-E4-62-6F-6B-76-7C-7A-49

11-15. Calculate the Hash Code of a File

Problem
You need to determine if the contents of a file have changed over time.

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 467

Solution
Create a cryptographic hash code of the file’s contents using the ComputeHash method of the System.
Security.Cryptography.HashAlgorithm class. Store the hash code for future comparison against
newly generated hash codes.

How It Works
As well as allowing you to store passwords securely (discussed in recipe 11-14), hash codes provide
an excellent means of determining if a file has changed. By calculating and storing the cryptographic
hash of a file, you can later recalculate the hash of the file to determine if the file has changed in the
interim. A hashing algorithm will produce a very different hash code even if the file has been changed
only slightly, and the chances of two different files resulting in the same hash code are extremely
small.

■Caution Standard hash codes are not suitable for sending with a file to ensure the integrity of the file’s contents. If
someone intercepts the file in transit, that person can easily change the file and recalculate the hash code, leaving
the recipient none the wiser. Recipe 11-17 discusses a variant of the hash code—a keyed hash code—that is suitable
for ensuring the integrity of a file in transit.

The HashAlgorithm class makes it easy to generate the hash code of a file. First, instantiate one
of the concrete hashing algorithm implementations derived from the HashAlgorithm class. To instantiate
the desired hashing algorithm class, pass the name of the hashing algorithm to the HashAlgorithm.
Create method, as described in recipe 11-14. See Table 11-4 for a list of valid hashing algorithm
names. Then, instead of passing a Byte array to the ComputeHash method, you pass a System.IO.
Stream object representing the file from which you want to generate the hash code. The HashAlgorithm
object handles the process of reading data from the Stream and returns a Byte array containing the
hash code for the file.

■Note The SHA1Managed algorithm cannot be implemented using the factory approach. It must be instantiated
directly.

The Code

The example shown here demonstrates the generation of a hash code from a file. The application
expects two command-line arguments: the name of the hashing algorithm to use and the name of
the file from which the hash is calculated.

Imports System
Imports System.IO
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_15

 Public Shared Sub Main(ByVal args As String())

468 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

 ' Create a HashAlgorithm of the type specified by the first
 ' command-line argument.
 Dim hashAlg As HashAlgorithm = Nothing

 ' The SHA1Managed algorithm cannot be implemented using the
 ' factory approach. It must be instantiated directly.
 If args(0).CompareTo("SHA1Managed") = 0 Then
 hashAlg = New SHA1Managed
 Else
 hashAlg = HashAlgorithm.Create(args(0))
 End If

 ' Open a FileStream to the file specified by the second
 ' command-line argument.
 Using fileArg As New FileStream(args(1), FileMode.Open, FileAccess.Read)

 ' Generate the hash code of the password.
 Dim hash As Byte() = hashAlg.ComputeHash(fileArg)

 ' Display the hash code of the password to the console.
 Console.WriteLine(BitConverter.ToString(hash))

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Using

 End Sub

 End Class
End Namespace

Usage

Running this command:

Recipe11-15 SHA1 Recipe11-15.exe

will display the following hash code to the console:

F9-0E-31-C7-57-82-11-A3-9B-9F-0C-A3-CB-54-4C-34-68-30-19-58

In contrast, executing this command:

Recipe11-15 RIPEMD-160 Recipe11-15.exe

will display the following hash code:

FB-21-82-E7-0F-BA-71-C4-0B-A0-9A-EB-BC-9D-D3-44-6E-D7-5A-CA

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 469

11-16. Verify a Hash Code

Problem
You need to verify a password or confirm that a file remains unchanged by comparing two hash codes.

Solution
Convert both the old and the new hash codes to hexadecimal code strings, Base64 strings, or Byte
arrays and compare them.

How It Works
You can use hash codes to determine if two pieces of data (such as passwords or files) are the same,
without the need to store, or even maintain access to, the original data. To determine if data changes
over time, you must generate and store the original data’s hash code. Later, you can generate another
hash code for the data and compare the old and new hash codes, which will show if any change has
occurred. The format in which you store the original hash code will determine the most appropriate
way to verify a newly generated hash code against the stored one.

■Note The recipes in this chapter use the ToString method of the class System.BitConverter to convert
Byte arrays to hexadecimal string values for display. Although easy to use and appropriate for display purposes,
this approach may be inappropriate for use when storing hash codes, because it places a hyphen (-) between each
byte value (for example, 4D-79-3A-C9-. . .). In addition, the BitConverter class does not provide a method to
parse such a string representation back into a Byte array.

Hash codes are often stored in text files, either as hexadecimal strings (for example,
89D22213170A9CFF09A392F00E2C6C4EDC1B0EF9), or as Base64-encoded strings (for example,
idIiExcKnP8Jo5LwDixsTtwbDvk=). Alternatively, hash codes may be stored in databases as raw byte
values. Regardless of how you store your hash code, the first step in comparing old and new hash
codes is to get them both into a common form.

The Code

This following example contains three methods that use different approaches to compare hash codes:

• VerifyHexHash: This method converts a new hash code (a Byte array) to a hexadecimal string
for comparison to an old hash code. Other than the BitConverter.ToString method, the .NET
Framework class library does not provide an easy method to convert a Byte array to a hexa-
decimal string. You must program a loop to step through the elements of the byte array, convert
each individual byte to a string, and append the string to the hexadecimal string representation
of the hash code. The use of a System.Text.StringBuilder avoids the unnecessary creation of
new strings each time the loop appends the next byte value to the result string. (See recipe 2-1 for
more details.)

• VerifyB64Hash: This method takes a new hash code as a Byte array and the old hash code as a
Base64-encoded string. The method encodes the new hash code as a Base64 string and performs
a straightforward string comparison of the two values.

470 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

• VerifyByteHash: This method compares two hash codes represented as Byte arrays. The .NET
Framework class library does not include a method that performs this type of comparison,
and so you must program a loop to compare the elements of the two arrays. This code uses a
few timesaving techniques, namely ensuring that the Byte arrays are the same length before
starting to compare them and returning False on the first difference found.

Imports System
Imports System.Text
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_16

 ' A method to compare a newly generated hash code with an
 ' existing hash code that's represented by a hex code string.
 Private Shared Function VerifyHexHash(ByVal hash As Byte(), ➥
ByVal oldHashString As String)

 ' Create a string representation of the hash code bytes.
 Dim newHashString As New StringBuilder(hash.Length)

 ' Append each byte as a two-character uppercase hex string.
 For Each b As Byte In hash
 newHashString.AppendFormat("{0:X2}", b)
 Next

 ' Compare the string representation of the old and new hash
 ' codes and return the result.
 Return oldHashString.Replace("-", "") = newHashString.ToString

 End Function

 ' A method to compare a newly generated hash code with an
 ' existing hash code that's represented by a Base64-encoded
 ' string.
 Private Shared Function VerifyB64Hash(ByVal hash As Byte(), ➥
ByVal oldHashString As String) As Boolean

 ' Create a Base64 representation of the hash code bytes.
 Dim newHashString As String = Convert.ToBase64String(hash)

 ' Compare the string representations of the old and new hash
 ' codes and return the result.
 Return oldHashString = newHashString

 End Function

 ' A method to compare a newly generated hash code with an
 ' existing hash code represented by a byte array.
 Private Shared Function VerifyByteHash(ByVal hash As Byte(), ➥
ByVal oldHash As Byte()) As Boolean

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 471

 ' If either array is nothing or the arrays are different lengths,
 ' then they are not equal.
 If hash Is Nothing Or oldHash Is Nothing Or Not (hash.Length = ➥
oldHash.Length) Then
 Return False
 End If

 ' Step through the byte arrays and compare each byte value.
 For count As Integer = 0 To hash.Length - 1
 If Not hash(count) = oldHash(count) Then Return False
 Next

 ' Hash codes are equal.
 Return True

 End Function

 End Class
End Namespace

11-17. Ensure Data Integrity Using
a Keyed Hash Code

Problem
You need to transmit a file to someone and provide the recipient with a means to verify the integrity
of the file and its source.

Solution
Share a secret key with the intended recipient. This key would ideally be a randomly generated
number, but it could also be a phrase that you and the recipient agree to use. Use the key with
one of the keyed hashing algorithm classes derived from the System.Security.Cryptography.
KeyedHashAlgorithm class to create a keyed hash code. Send the hash code with the file. On receipt of
the file, the recipient will generate the keyed hash code of the file using the shared secret key. If the
hash codes are equal, the recipient knows that the file is from you and that it has not changed in transit.

How It Works
Hash codes are useful for comparing two pieces of data to determine if they are the same, even if you
no longer have access to the original data. However, you cannot use a hash code to reassure the
recipient of data as to the data’s integrity. If someone could intercept the data, that person could
replace the data and generate a new hash code. When the recipient verifies the hash code, it will
seem correct, even though the data is actually nothing like what you sent originally.

A simple and efficient solution to the problem of data integrity is a keyed hash code. A keyed hash
code is similar to a normal hash code (discussed in recipes 11-14 and 11-15); however, the keyed hash
code incorporates an element of secret data—a key—known only to the sender and the receiver. Without
the key, a person cannot generate the correct hash code from a given set of data. When you success-
fully verify a keyed hash code, you can be certain that only someone who knows the secret key could
generate the hash code.

472 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

■Caution The secret key must remain secret. Anyone who knows the secret key can generate valid keyed hash
codes, meaning that you would be unable to determine if someone else who knew the key had changed the content
of a document. For this reason, you should not transmit or store the secret key with the document whose integrity
you are trying to protect.

Generating keyed hash codes is similar to generating normal hash codes. All HMAC algorithm
classes, excluding MACTripleDES, derive themselves from the HMAC base class, which inherits the
KeyedHashAlgorithm class, which inherits the HashAlgorithm class. MACTripleDES inherits the
KeyedHashAlgorithm base class directly. The .NET Framework class library includes the seven keyed
hashing algorithm implementations listed in Table 11-5. Each implementation is a member of the
namespace System.Security.Cryptography.

As with the standard hashing algorithms, you can either create keyed hashing algorithm objects
directly or use the Shared factory method KeyedHashAlgorithm.Create and pass the algorithm name
as an argument. Using the factory approach allows you to write generic code that can work with any
keyed hashing algorithm implementation, but as shown in Table 11-5, MACTripleDES supports fixed
key lengths that you must accommodate in generic code.

If you use constructors to instantiate a keyed hashing object, you can pass the secret key to the
constructor. Using the factory approach, you must set the key using the Key property inherited from
the KeyedHashAlgorithm class. Then call the ComputeHash method and pass either a Byte array or a
System.IO.Stream object. The keyed hashing algorithm will process the input data and return a Byte
array containing the keyed hash code. Table 11-5 shows the size of hash code generated by each
keyed hashing algorithm.

The Code

The following example demonstrates the generation of a keyed hash code from a file. The example
uses the given class to generate the keyed hash code, and then displays it to the console. The example
requires three command-line arguments: the name of the file from which the hash is calculated, the
name of the algorithm to instantiate, and the key to use when calculating the hash.

Table 11-5. Keyed Hashing Algorithm Implementations

Algorithm/Class Name Key Size (in Bits) Hash Code Size (in Bits)

HMACMD5 (new in .NET 2.0) Any 128

HMACRIPEMD160 (new in .NET 2.0) Any 160

HMACSHA1 Any 160

HMACSHA256 (new in .NET 2.0) Any 256

HMACSHA384 (new in .NET 2.0) Any 384

HMACSHA512 (new in .NET 2.0) Any 512

MACTripleDES 128, 192 64

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 473

Imports System
Imports System.IO
Imports System.Text
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_17

 Public Shared Sub Main(ByVal args As String())

 ' Create a byte array from the key string, which is the
 ' third command-line argument.
 Dim key As Byte() = Encoding.Default.GetBytes(args(2))

 ' Create a KeyedHashAlgorithm derived object to generate the keyed
 ' hash code for the input file. Pass the byte array representing
 ' the key to the constructor.
 Using hashAlg As KeyedHashAlgorithm = KeyedHashAlgorithm.Create(args(1))

 ' Assign the key.
 hashAlg.Key = key

 ' Open a FileStream to read the input file. The filename is
 ' specified by the first command-line argument.
 Using argFile As New FileStream(args(0), FileMode.Open, ➥
FileAccess.Read)

 ' Generate the keyed hash code of the file's contents.
 Dim hash As Byte() = hashAlg.ComputeHash(argFile)

 ' Display the keyed hash code to the console.
 Console.WriteLine(BitConverter.ToString(hash))

 End Using
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method compelte. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Executing the following command:

Recipe11-17 Recipe11-17.exe HMACSHA1 secretKey

will display the following hash code to the console:

474 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

53-E6-03-59-C8-BB-F6-74-51-BF-B6-C3-75-B2-78-0B-43-01-3A-E0

In contrast, executing this command:

Recipe11-17 Recipe11-17.exe HMACSHA1 anotherKey

will display the following hash code to the console:

70-2C-77-88-86-87-F4-89-0D-E2-DD-0A-B3-85-B7-4E-E6-7D-67-F6

11-18. Work with Security-Sensitive Strings
in Memory

Problem
You need to work with sensitive string data, such as passwords or credit card numbers, in memory
and need to minimize the risk of other people or processes accessing that data.

Solution
Use the class System.Security.SecureString to hold the sensitive data values in memory.

How It Works
Storing sensitive data such as passwords, personal details, and banking information in memory as
String objects is insecure for many reasons, including the following:

• String objects are not encrypted.

• The immutability of String objects means that whenever you change the String, the old
String value is left in memory until it is dereferenced by the garbage collector and eventually
overwritten.

• Because the garbage collector is free to reorganize the contents of the managed heap, multiple
copies of your sensitive data may be present on the heap.

• If part of your process address space is swapped to disk or a memory dump is written to disk,
a copy of your data may be stored on the disk.

Each of these factors increases the opportunities for others to access your sensitive data. In .NET
Framework versions 1.0 and 1.1, one solution to these problems is to use Byte arrays to hold an
encrypted version of the sensitive data. You have much better control over a Byte array than you do
with a String; principally, you can wipe the array any time you like. .NET Framework 2.0 introduces
the SecureString class to simplify the task of working with sensitive String data in memory.

You create a SecureString as either initially empty or from a pointer to a character (Char) array.
Then you manipulate the contents of the SecureString one character at a time using the methods
AppendChar, InsertAt, RemoveAt, and SetAt. As you add characters to the SecureString, they are
encrypted using the capabilities of the Data Protection API (DPAPI).

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 475

■Note The SecureString class uses features of the DPAPI and is available only on Windows 2000 SP3 and later
operating system versions.

The SecureString class also provides a method named MakeReadOnly. As the name suggests, calling
MakeReadOnly configures the SecureString to no longer allow its value to be changed. Attempting to
modify a SecureString marked as read-only results in the exception System.InvalidOperationException
being thrown. Once you have set the SecureString to read-only, it cannot be undone.

The SecureString class has a ToString method, but rather than retrieving a string representation of
the contained data, it returns only a representation of the type (System.Security.SecureString). Instead,
the class System.Runtime.InteropServices.Marshal implements a number of Shared methods that
take a SecureString object; decrypts it; converts it to a binary string, a block of ANSI, or a block of
Unicode data; and returns a System.IntPtr object that points to the converted data. The Marshal
class also offers Shared methods for displaying the contents referenced by an IntPtr. Here is a code
snippet to demonstrate this:

' Retrieve a pointer to the data contained in a
' SecureString.
Dim secureStringPtr As IntPtr = ➥
Marshal.SecureStringToGlobalAllocUnicode(mySecureString)

' Retrieve a string representation of the data
' referenced by a pointer.
Dim clearText As String = Marshal.PtrToStringAuto(secureStringPtr)

' Display the secure string contents in clear text.
Console.WriteLine(clearText))

At any time, you can call the SecureString.Clear method to clear the sensitive data, and when
you have finished with the SecureString object, call its Dispose method to clear the data and free the
memory. SecureString implements System.IDisposable.

■Note Although it might seem that the benefits of the SecureString class are limited, because there is no way
in Windows Forms applications to get such a secured string from the GUI without first retrieving a nonsecured
String through a TextBox or another control, it is likely that third parties and future additions to the .NET Frame-
work will use the SecureString class to handle sensitive data. This is already the case in System.Diagnostics.
ProcessStartInfo, where using a SecureString, you can set the Password property to the password of the user
context in which the new process should be run.

The Code

The following example reads a username and password from the console and starts Notepad.exe as
the specified user. The password is masked on input and stored in a SecureString in memory, maxi-
mizing the chances of the password remaining secret.

Imports System
Imports System.Security
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_18

476 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

 Public Shared Function ReadString() As SecureString

 ' Create a new empty SecureString.
 Dim str As New SecureString

 ' Read the string from the console one
 ' character at a time without displaying it.
 Dim nextChar As ConsoleKeyInfo = Console.ReadKey(True)

 ' Read characters until Enter is pressed.
 While Not nextChar.Key = ConsoleKey.Enter

 If nextChar.Key = ConsoleKey.Backspace Then
 If str.Length > 0 Then
 ' Backspace pressed. Remove the last character.
 str.RemoveAt(str.Length - 1)

 Console.Write(nextChar.KeyChar)
 Console.Write(" ")
 Console.Write(nextChar.KeyChar)
 Else
 Console.Beep()
 End If
 Else
 ' Append the character to the SecureString and
 ' display a masked character.
 str.AppendChar(nextChar.KeyChar)
 Console.Write("*")
 End If

 ' Read the next character.
 nextChar = Console.ReadKey(True)

 End While

 ' String entry finished. Make it read-only.
 str.MakeReadOnly()

 Return str

 End Function

 Public Shared Sub Main()

 Dim user As String = ""

 ' Get the username under which Notepad.exe will be run.
 Console.Write("Enter the user name: ")
 user = Console.ReadLine

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 477

 ' Get the user's password as a SecureString.
 Console.Write("Enter the user's password: ")
 Using pword As SecureString = ReadString()

 ' Start Notepad as the specified user.
 Dim startInfo As New ProcessStartInfo

 startInfo.FileName = "Notepad.exe"
 startInfo.UserName = user
 startInfo.Password = pword
 startInfo.UseShellExecute = False

 ' Create a new Process object.
 Using proc As New Process

 ' Assign the ProcessStartInfo to the Process object.
 proc.StartInfo = startInfo

 Try
 ' Start the new process.
 proc.Start()
 Catch ex As Exception
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Could not start Notepad process.")
 Console.WriteLine(ex.ToString)
 End Try

 End Using

 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

11-19. Encrypt and Decrypt Data Using the Data
Protection API

Problem
You need a convenient way to securely encrypt data without the headache associated with key
management.

478 CH AP T E R 1 1 ■ S E CU R I T Y AN D C R Y P T OG R A P HY

Solution
Use the ProtectedData and ProtectedMemory classes of the System.Security.Cryptography namespace
in .NET Framework 2.0 to access the encryption and key management capabilities provided by the
DPAPI.

How It Works
Given that the .NET Framework provides you with well-tested implementations of the most widely
used and trusted encryption algorithms, the biggest challenge you face when using cryptography is
key management—namely the effective generation, storage, and sharing of keys to facilitate the use
of cryptography. In fact, key management is the biggest problem facing most people when they want
to securely store or transmit data using cryptographic techniques. If implemented incorrectly, key
management can easily render useless all of your efforts to encrypt your data.

DPAPI provides encryption and decryption services without the need for you to worry about key
management. DPAPI automatically generates keys based on Windows user credentials, stores keys
securely as part of your profile, and even provides automated key expiry without losing access to
previously encrypted data.

■Note DPAPI is suitable for many common uses of cryptography in Windows applications, but will not help you
in situations that require you to distribute or share secret or public keys with other users.

In versions 1.0 and 1.1 of the .NET Framework, you needed to use P/Invoke to work with DPAPI.
.NET Framework 2.0 introduces in System.Security two managed classes that provide easy access to
the encryption and decryption capabilities of DPAPI: ProtectedData and ProtectedMemory. Both
classes allow you to encrypt a Byte array by passing it to the Shared method Protect, and decrypt a
Byte array of encrypted data by passing it the Shared method Unprotect. The difference in the classes
is in the scope that they allow you to specify when you encrypt and decrypt data.

■Caution You must use ProtectedData if you intend to store encrypted data and reboot your machine before
decrypting it. ProtectedMemory will be unable to decrypt data that was encrypted before a reboot.

When you call ProtectedData.Protect, you specify a value from the enumeration System.
Security.Cryptography.DataProtectionScope. The following are the possible values:

• CurrentUser, which means that only code running in the context of the current user can decrypt
the data

• LocalMachine, which means that any code running on the same computer can decrypt the data

When you call ProtectedMemory.Protect, you specify a value from the enumeration
System.Security.Cryptography.MemoryProtectionScope. The possible values are as follows:

• CrossProcess, which means that any code in any process can decrypt the encrypted data

• SameLogon, which means that only code running in the same user context can decrypt the data

• SameProcess, which means that only code running in the same process can decrypt the data

Both classes allow you to specify additional data (entropy) when you encrypt your data. This
entropy is used to further encrypt the data, making certain types of cryptographic attacks less likely

CH AP T E R 1 1 ■ S E CU R I T Y AN D CR Y P T OG R A P HY 479

to succeed. If you choose to use entropy when you protect data, you must use the same entropy value
when you unprotect the data. It is not essential that you keep the entropy data secret, so it can be
stored freely without encryption.

The Code

The following example demonstrates the use of the ProtectedData class to encrypt a string entered
at the console by the user. Note that you need to reference the System.Security assembly.

Imports System
Imports System.Text
Imports System.Security.Cryptography

Namespace Apress.VisualBasicRecipes.Chapter11
 Public Class Recipe11_19

 Public Shared Sub Main()

 ' Read the string from the console.
 Console.Write("Enter the string to encrypt: ")
 Dim str As String = Console.ReadLine

 ' Create a byte array of entropy to use in the encryption process.
 Dim entropy As Byte() = {0, 1, 2, 3, 4, 5, 6, 7, 8}

 ' Encrypt the entered string after converting it to a
 ' byte array. Use CurrentUser scope so that only the
 ' current user can decrypt the data.
 Dim enc As Byte() = ProtectedData.Protect(➥
Encoding.Default.GetBytes(str), entropy, DataProtectionScope.CurrentUser)

 ' Display the encrypted data to the console.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Encrypted string = {0}", BitConverter.ToString(enc))

 ' Attempt to decrypt the data using CurrentUser scope.
 Dim dec As Byte() = ProtectedData.Unprotect(enc, entropy, ➥
DataProtectionScope.CurrentUser)

 ' Display the data decrypted using CurrentUser scope.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Decrypted data using CurrentUser scope = {0}", ➥
Encoding.Default.GetString(dec))

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

481

■ ■ ■

C H A P T E R 1 2

Unmanaged Code Interoperability

The Microsoft .NET Framework is an extremely ambitious platform, combining a managed runtime
(the common language runtime, or CLR), a platform for hosting web applications (Microsoft ASP.NET),
and an extensive class library for building all types of applications. However, as expansive as the .NET
Framework is, it does not duplicate all the features that are available in unmanaged code. Currently,
the .NET Framework does not include every function that is available in the Win32 API, and many
businesses are using complex proprietary solutions that they have built with COM-based languages
such as Microsoft Visual Basic 6 (VB6) and Visual C++ 6.

Fortunately, Microsoft does not intend for businesses to abandon the code base they have built
up when they move to the .NET platform. Instead, the .NET Framework is equipped with interoper-
ability features that allow you to use legacy code from .NET Framework applications and even access
.NET assemblies as though they were COM components. The recipes in this chapter describe how to
do the following:

• Call functions defined in an unmanaged DLL, get the handles for a control or window, invoke
an unmanaged function that uses a structure, invoke unmanaged callback functions, and
retrieve unmanaged error information (recipes 12-1 through 12-5)

• Use COM components from .NET Framework applications, release COM components, and
use optional parameters (recipes 12-6 through 12-8)

• Use ActiveX controls from .NET Framework applications (recipe 12-9)

• Expose the functionality of a .NET assembly as a COM component (recipe 12-10)

■Note Managed code refers to code developed in a .NET language (such as VB .NET and C#). This code is compiled
to Microsoft Intermediary Language (MSIL) and runs within the CLR. When the code is executed, it is compiled to
machine language using the just-in-time (JIT) compiler. Unmanaged code refers to code developed in a non-.NET
language (such as C++ or VB6). This code is compiled directly to machine language. If you use Visual C++ .NET,
you can create managed or unmanaged code, depending on the project type you select.

12-1. Call a Function in an Unmanaged DLL

Problem
You need to call a function in a DLL. This function might be a part of the Win32 API or your own
legacy code.

482 CH AP T E R 1 2 ■ U N M AN A G E D CO D E I N T E R O PE R AB I L IT Y

Solution
Declare a method in your VB .NET code that you will use to access the unmanaged function. Declare
this method as Shared and apply the attribute System.Runtime.InteropServices.
DllImportAttribute to specify the DLL file and the name of the unmanaged function.

How It Works
To use a C function from an external library, all you need to do is declare it appropriately. The CLR
automatically handles the rest, including loading the DLL into memory when the function is called
and marshaling the parameters from .NET data types to C data types. The .NET service that supports
this cross-platform execution is named PInvoke (Platform Invoke), and the process is usually seam-
less. Occasionally, you will need to do a little more work, such as when you need to support in-memory
structures, callbacks, or mutable strings.

PInvoke is often used to access functionality in the Win32 API, particularly Win32 features that
are not present in the set of managed classes that make up the .NET Framework. Three core libraries
make up the Win32 API:

• Kernel32.dll includes operating system-specific functionality such as process loading, context
switching, and file and memory I/O.

• User32.dll includes functionality for manipulating windows, menus, dialog boxes, icons, and
so on.

• GDI32.dll includes graphical capabilities for drawing directly on windows, menus, and control
surfaces, as well as for printing.

As an example, consider the Win32 API functions used for writing and reading INI files, such as
GetPrivateProfileString and WritePrivateProfileString, in Kernel32.dll. The .NET Framework
does not include any classes that wrap this functionality. However, you can import these functions
using the attribute DllImportAttribute, like this:

<DllImport("kernel32.dll", EntryPoint:="WritePrivateProfileString")> _
Private Shared Function WritePrivateProfileString(ByVal lpAppName As String, ➥
 ByVal lpKeyName As String, ByVal lpString As String, ➥
 ByVal lpFileName As String) As Boolean
End Function

The arguments specified in the signature of the WritePrivateProfileString method must match
the DLL method, or a runtime error will occur when you attempt to invoke it. Remember that you do
not define any method body, because the declaration refers to a method in the DLL. The EntryPoint
portion of the attribute DllImportAttribute is optional in this example. You do not need to specify
the EntryPoint when the declared function name matches the function name in the external library.

The Code

The following is an example of using some Win32 API functions to get INI file information. It declares
the unmanaged functions used and exposes Public methods to call them. The code first displays the
current value of a key in the INI file, modifies it, retrieves the new value, and then writes the default
value.

Imports System
Imports System.Runtime.InteropServices
Imports System.Text

C H AP TE R 1 2 ■ U N M A N A G E D CO DE IN TE R OP E R A B IL I TY 483

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_01

 ' Declare the unmanaged functions
 <DllImport("kernel32.dll", EntryPoint:="GetPrivateProfileString")> _
 Private Shared Function GetPrivateProfileString(ByVal lpAppName As ➥
String, ByVal lpKeyName As String, ByVal lpDefault As String, ByVal ➥
lpReturnedString As StringBuilder, ByVal nSize As Integer, ByVal lpFileName As ➥
String) As Integer
 End Function

 <DllImport("kernel32.dll", EntryPoint:="WritePrivateProfileString")> _
 Private Shared Function WritePrivateProfileString(ByVal lpAppName As ➥
String, ByVal lpKeyName As String, ByVal lpString As String, ByVal lpFileName As ➥
String) As Boolean
 End Function

 Public Shared Sub main()

 Dim val As String

 ' Obtain current value.
 val = GetIniValue("SampleSection", "Key1", "initest.ini")
 Console.WriteLine("Value of Key1 in [SampleSection] is: {0}", val)

 ' Write a new value.
 WriteIniValue("SampleSection", "Key1", "New Value", "initest.ini")

 ' Obtain the new value.
 val = GetIniValue("SampleSection", "Key1", "initest.ini")
 Console.WriteLine("Value of Key1 in [SampleSection] is now: {0}", val)

 ' Write original value.
 WriteIniValue("SampleSection", "Key1", "Value1", "initest.ini")

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 Public Shared Function GetIniValue(ByVal section As String, ➥
ByVal key As String, ByVal fileName As String) As String

 Dim chars As Integer = 256
 Dim buffer As New StringBuilder(chars)

 If Not GetPrivateProfileString(section, key, "", buffer, chars, ➥
fileName) = 0 Then
 Return buffer.ToString
 Else
 Return Nothing
 End If

484 CH AP T E R 1 2 ■ U N M AN A G E D CO D E I N T E R O PE R AB I L IT Y

 End Function

 Public Shared Function WriteIniValue(ByVal section As String, ➥
ByVal key As String, ByVal value As String, ByVal fileName As String) As String
 Return WritePrivateProfileString(section, key, value, fileName)
 End Function

 End Class
End Namespace

■Note The GetPrivateProfileString method is declared with one StringBuilder parameter
(lpReturnedString). This is because this string must be mutable; when the call completes, it will contain the
returned INI file information. Whenever you need a mutable string, you must substitute StringBuilder in place of
the String class. Often, you will need to create the StringBuilder object with a character buffer of a set size,
and then pass the size of the buffer to the function as another parameter. You can specify the number of characters
in the StringBuilder constructor. See recipe 2-1 for more information about using the StringBuilder class.

Usage

You can test this program quite easily. First, in the application folder, create the inittest.ini file
shown here:

[SampleSection]
Key1=Value1

Now, execute Recipe12-01.exe. You will get an output such as this:

Value of Key1 in [SampleSection] is: Value1
Value of Key1 in [SampleSection] is now: New Value

Main method complete. Press Enter.

12-2. Get the Handle for a Control, Window,
or File

Problem
You need to call an unmanaged function, such as GetWindowText, that requires the handle for a
control, a window, or a file.

Solution
Many classes, including all Control-derived classes and the FileStream class, return the handle of
the unmanaged Windows object they are wrapping as an IntPtr through a property named Handle.
Other classes also provide similar information; for example, the System.Diagnostics.Process class
provides a Process.MainWindowHandle property in addition to the Handle property.

C H AP TE R 1 2 ■ U N M A N A G E D CO DE IN TE R OP E R A B IL I TY 485

How It Works
The .NET Framework does not hide underlying details such as the operating system handles used for
controls and windows. Although you usually will not use this information, you can retrieve it if you
need to call an unmanaged function that requires it. Many Microsoft Win32 API functions, for example,
require control or window handles.

The Code

As an example, consider the Windows-based application shown in Figure 12-1. It consists of a single
window that always stays on top of all other windows regardless of focus. (This behavior is enforced
by setting the Form.TopMost property to True.) The form also includes a timer that periodically calls
the unmanaged GetForegroundWindow and GetWindowText Win32 API functions to determine which
window is currently active and its caption, respectively.

Figure 12-1. Retrieving information about the active window

One additional detail in this example is that the code also uses the Form.Handle property to get
the handle of the main application form. It then compares it with the handle of the active form to test
if the current application has focus. The following is the complete code for this form.

Imports System
Imports System.Windows.Forms
Imports System.Runtime.InteropServices
Imports System.Text

' All designed code is stored in the autogenerated partial
' class called ActiveWindowInfo.Designer.vb. You can see this
' file by selecting Show All Files in Solution Explorer.
Partial Public Class ActiveWindowInfo

 ' Declare external functions.
 <DllImport("user32.dll")> _
 Private Shared Function GetForegroundWindow() As IntPtr
 End Function

 <DllImport("user32.dll")> _
 Private Shared Function GetWindowText(ByVal hWnd As IntPtr, ➥
ByVal text As StringBuilder, ByVal count As Integer) As Integer
 End Function

486 CH AP T E R 1 2 ■ U N M AN A G E D CO D E I N T E R O PE R AB I L IT Y

 Private Sub tmrRefresh_Tick(ByVal sender As System.Object, ➥
ByVal e As System.EventArgs) Handles tmrRefresh.Tick

 Dim chars As Integer = 256
 Dim buff As New StringBuilder(chars)

 ' Obtain the handle of the active window.
 Dim handle As IntPtr = GetForeGroundWindow()

 ' Update the controls.
 If GetWindowText(handle, buff, chars) > 0 Then
 lblCaption.Text = buff.ToString
 lblHandle.Text = handle.ToString

 If handle = Me.Handle Then
 lblCurrent.Text = "True"
 Else
 lblCurrent.Text = "False"
 End If

 End If

 End Sub
End Class

■Caution The Windows Forms infrastructure manages window handles for forms and controls transparently.
Changing some of their properties can force the CLR to create a new native window behind the scenes, and a new
handle gets wrapped with a different handle. For that reason, you should always retrieve the handle before you use
it (rather than storing it in a member variable for a long period of time).

12-3. Call an Unmanaged Function That Uses
a Structure

Problem
You need to call an unmanaged function, such as GetVersionEx, that accepts a structure as a parameter.

Solution
Define the structure in your VB .NET code. Use the attribute System.Runtime.InteropServices.
StructLayoutAttribute to configure how the structure fields are laid out in memory. Use the Shared
SizeOf method of the System.Runtime.InteropServices.Marshal class if you need to determine the
size of the unmanaged structure in bytes.

How It Works
In VB .NET code, you are not able to directly control how type fields are laid out once the memory is
allocated. Instead, the CLR is free to arrange fields to optimize performance, especially in the context of

C H AP TE R 1 2 ■ U N M A N A G E D CO DE IN TE R OP E R A B IL I TY 487

moving memory around during garbage collection. This can cause problems when interacting with
legacy functions, such as those written in C, that expect structures to be laid out sequentially in
memory to follow their definition in include files. Fortunately, the .NET Framework allows you to
solve this problem by using the attribute StructLayoutAttribute, which lets you specify how the
members of a given class or structure should be arranged in memory.

The Code

As an example, consider the unmanaged GetVersionEx function provided in the Kernel32.dll file.
This function accepts a pointer to an OSVERSIONINFO structure and uses it to return information
about the current operating system version. To use the OSVERSIONINFO structure in VB .NET code,
you must define it with the attribute StructLayoutAttribute, as shown here:

<StructLayout(LayoutKind.Sequential)> _
Public Structure OSVersionInfo

 Public dwOSVersionInfoSize As Integer
 Public dwMajorVersion As Integer
 Public dwMinorVersion As Integer
 Public dwBuildNumber As Integer
 Public dwPlatformId As Integer
 <MarshalAs(UnmanagedType.ByValTStr, SizeConst:=128)> _
 Public szCSDVersion As String

End Structure

Note that this structure also uses the attribute System.Runtime.InteropServices.
MarshalAsAttribute, which is required for fixed-length strings. In this example, MarshalAsAttribute
specifies the string will be passed by value and will contain a buffer of exactly 128 characters, as spec-
ified in the OSVERSIONINFO structure. This example uses sequential layout, which means the data
types in the structure are laid out in the order they are listed in the class or structure.

Instead of using sequential layout, you could use LayoutKind.Explicit; in which case, you must
define the byte offset of each field using FieldOffsetAttribute. This layout is useful when dealing
with an irregularly packed structure or one where you want to omit some of the fields that you do not
want to use. Here is an example that defines the OSVersionInfo class with an explicit layout:

<StructLayout(LayoutKind.Explicit)> _
Public Structure OSVersionInfo2

 <FieldOffset(0)> Public dwOSVersionInfoSize As Integer
 <FieldOffset(4)> Public dwMajorVersion As Integer
 <FieldOffset(8)> Public dwMinorVersion As Integer
 <FieldOffset(12)> Public dwBuildNumber As Integer
 <FieldOffset(16)> Public dwPlatformId As Integer
 <MarshalAs(UnmanagedType.ByValTStr, SizeConst:=128)> _
 <FieldOffset(20)> Public szCSDVersion As String

End Structure

Now that you’ve defined the structure used by the GetVersionEx function, you can declare the
function and then use it. The following console application shows all the code you will need. A parameter
marked with the InAttribute (<[In]()>) is marshaled from the calling assembly to the unmanaged
function, while one marked with the OutAttribute (<Out()>) is marshaled in the opposite direction.
If neither of these attributes is used, then marshaling is decided based on how the parameter is passed

488 CH AP T E R 1 2 ■ U N M AN A G E D CO D E I N T E R O PE R AB I L IT Y

(ByRef or ByVal). In this example, you need to make sure that OSVersionInfo is marshaled in both
directions, so both attributes are applied. In addition, the code uses the Marshal.SizeOf method to
calculate the size the marshaled structure will occupy in memory.

Imports System
Imports System.Runtime.InteropServices

Namespace Apress.VisualBasicRecipes.Chapter12

 <StructLayout(LayoutKind.Sequential)> _
 Public Structure OSVersionInfo

 Public dwOSVersionInfoSize As Integer
 Public dwMajorVersion As Integer
 Public dwMinorVersion As Integer
 Public dwBuildNumber As Integer
 Public dwPlatformId As Integer
 <MarshalAs(UnmanagedType.ByValTStr, SizeConst:=128)> _
 Public szCSDVersion As String

 End Structure

 Public Class Recipe12_03

 ' Declare the external function.
 <DllImport("kernel32.dll")> _
 Public Shared Function GetVersionEx(<[In](), Out()> ByRef osvi As ➥
OSVersionInfo) As Boolean
 End Function

 Public Shared Sub Main()

 Dim osvi As New OSVersionInfo

 osvi.dwOSVersionInfoSize = Marshal.SizeOf(osvi)

 ' Obtain the OS version information.
 GetVersionEx(osvi)

 ' Display the version information.
 Console.WriteLine("Class Size: " & osvi.dwOSVersionInfoSize.ToString)
 Console.WriteLine("Major Version: " & osvi.dwMajorVersion.ToString)
 Console.WriteLine("Minor Version: " & osvi.dwMinorVersion.ToString)
 Console.WriteLine("Build Number: " & osvi.dwBuildNumber.ToString)
 Console.WriteLine("Platform Id: " & osvi.dwPlatformId.ToString)
 Console.WriteLine("CSD Version: " & osvi.szCSDVersion.ToString)
 Console.WriteLine("Platform: " & ➥
Environment.OSVersion.Platform.ToString)
 Console.WriteLine("Version: " & Environment.OSVersion.Version.ToString)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

C H AP TE R 1 2 ■ U N M A N A G E D CO DE IN TE R OP E R A B IL I TY 489

 End Sub

 End Class
End Namespace

Usage

If you run this application on a Windows XP system, you will see information such as this:

Class Size: 148
Major Version: 5
Minor Version: 1
Build Number: 2600
Platform Id: 2
CSD Version: Service Pack 2
Platform: Win32NT
Version: 5.1.2600.131072

12-4. Call an Unmanaged Function That Uses
a Callback

Problem
You need to call an asynchronous unmanaged function, such as EnumWindows, and allow it to call a
method, or make a callback, in your code.

Solution
Create a delegate that has the required signature for the callback. Use this delegate when defining
and using the unmanaged function.

How It Works
Many of the Win32 API functions use callbacks. For example, if you want to retrieve the name of all
the top-level windows that are currently open, you can call the unmanaged EnumWindows function in
the User32.dll file. When calling EnumWindows, you need to supply a pointer to a function in your code.
The Windows operating system will then call this function repeatedly, once for each top-level window
that it finds, and pass the window handle to your code.

The .NET Framework allows you to handle callback scenarios like this without resorting to
pointers and unsafe code blocks. Instead, you can define and use a delegate that points to your call-
back function. When you pass the delegate to the EnumWindows function, for example, the CLR will
automatically marshal the delegate to the expected unmanaged function pointer.

The Code

Following is a console application that uses EnumWindows with a callback to display the name of every
open window.

490 CH AP T E R 1 2 ■ U N M AN A G E D CO D E I N T E R O PE R AB I L IT Y

Imports System
Imports System.Text
Imports System.Runtime.InteropServices

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_04

 ' The signature for the callback method.
 Public Delegate Function CallBack(ByVal hwnd As IntPtr, ➥
ByVal lParam As Integer) As Boolean

 ' The unmanaged function that will trigger the callback
 ' as it enumerates the open windows.
 <DllImport("user32.dll")> _
 Public Shared Function EnumWindows(ByVal windowCallback As CallBack, ➥
ByVal param As Integer) As Integer
 End Function

 <DllImport("user32.dll")> _
 Public Shared Function GetWindowText(ByVal hWnd As IntPtr, ➥
ByVal text As StringBuilder, ByVal count As Integer) As Integer
 End Function

 Public Shared Sub Main()

 ' Request that the operating system enumerate all windows,
 ' and trigger your callback with the handle of each one.
 EnumWindows(AddressOf DisplayWindowInfo, 0)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' The method that will receive the callback. The second
 ' parameter is not used, but is needed to match the
 ' callback's signature.
 Public Shared Function DisplayWindowInfo(ByVal hWnd As IntPtr, ➥
ByVal lParam As Integer) As Boolean

 Dim chars As Integer = 100
 Dim buf As New StringBuilder(chars)

 If Not GetWindowText(hWnd, buf, chars) = 0 Then
 Console.WriteLine(buf)
 End If
 Return True

 End Function

 End Class
End Namespace

C H AP TE R 1 2 ■ U N M A N A G E D CO DE IN TE R OP E R A B IL I TY 491

12-5. Retrieve Unmanaged Error Information

Problem
You need to retrieve error information (either an error code or a text message) explaining why a
Win32 API call failed.

Solution
On the declaration of the unmanaged method, set the SetLastError field of the DllImportAttribute
to True. If an error occurs when you execute the method, call the Shared Marshal.GetLastWin32Error
method to retrieve the error code. To get a text description for a specific error code, use the unmanaged
FormatMessage function.

How It Works
You cannot retrieve error information directly using the unmanaged GetLastError function. The
problem is that the error code returned by GetLastError might not reflect the error caused by the
unmanaged function you are using. Instead, it might be set by other .NET Framework classes or the
CLR. You can retrieve the error information safely using the Shared Marshal.GetLastWin32Error method.
This method should be called immediately after the unmanaged call, and it will return the error
information only once. (Subsequent calls to GetLastWin32Error will simply return the error code
127.) In addition, you must specifically set the SetLastError field of the DllImportAttribute to True
to indicate that errors from this function should be cached.

<DllImport("user32.dll", SetLastError:=True)>

You can extract additional information from the Win32 error code using the unmanaged
FormatMessage function from the Kernel32.dll file.

The Code

The following console application attempts to show a message box, but submits an invalid window
handle. The error information is retrieved with Marshal.GetLastWin32Error, and the corresponding
text information is retrieved using FormatMessage.

Imports System
Imports System.Runtime.InteropServices

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_05

 ' Declare the unmanaged functions.
 <DllImport("kernel32.dll")> _
 Private Shared Function FormatMessage(ByVal dwFlags As Integer, ➥
ByVal lpSource As Integer, ByVal dwMessage As Integer, ➥
ByVal dwLanguageId As Integer, ByRef lpBuffer As String, ByVal nSize As Integer, ➥
ByVal Arguments As Integer) As Integer
 End Function

492 CH AP T E R 1 2 ■ U N M AN A G E D CO D E I N T E R O PE R AB I L IT Y

 <DllImport("user32.dll", SetLastError:=True)> _
 Public Shared Function MessageBox(ByVal hWnd As IntPtr, ➥
ByVal pText As String, ByVal pCaption As String, ByVal uType As Integer) As Integer
 End Function

 Public Shared Sub Main()

 ' Invoke the MessageBox function passing an invalid
 ' window handle and thus forcing an error.
 Dim badWindowHandle As IntPtr = New IntPtr(-1)

 MessageBox(badWindowHandle, "Message", "Caption", 0)

 ' Obtain the error information.
 Dim errorCode As Integer = Marshal.GetLastWin32Error

 If Not errorCode = 0 Then
 Console.WriteLine(errorCode)
 Console.WriteLine(GetErrorMessage(errorCode))
 End If

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 ' GetErrorMessage formats and returns an error message
 ' corresponding to the input error code.
 Public Shared Function GetErrorMessage(ByVal errorCode As Integer) As String

 Dim FORMAT_MESSAGE_ALLOCATE_BUFFER As Integer = &H100
 Dim FORMAT_MESSAGE_IGNORE_INSERTS As Integer = &H200
 Dim FORMAT_MESSAGE_FROM_SYSTEM As Integer = &H1000

 Dim messageSize As Integer = 255
 Dim lpMsgBuf As String = ""
 Dim dwFlags As Integer = FORMAT_MESSAGE_ALLOCATE_BUFFER Or ➥
FORMAT_MESSAGE_FROM_SYSTEM Or FORMAT_MESSAGE_IGNORE_INSERTS

 Dim retVal As Integer = FormatMessage(dwFlags, 0, errorCode, 0, ➥
lpMsgBuf, messageSize, 0)
 If retVal = 0 Then
 Return Nothing
 Else
 Return lpMsgBuf
 End If

 End Function

 End Class
End Namespace

C H AP TE R 1 2 ■ U N M A N A G E D CO DE IN TE R OP E R A B IL I TY 493

 Usage

Here is the output generated by the preceding program:

1400
Invalid window handle.

12-6. Use a COM Component in a .NET Client

Problem
You need to use a COM component, such as the older ADODB components, in a .NET client.

Solution
Use a primary interop assembly (PIA), if one is available. Otherwise, generate a runtime callable
wrapper (RCW) using the Type Library Importer (Tlbimp.exe) or the Add Reference feature in Visual
Studio .NET.

How It Works
The .NET Framework includes extensive support for COM interoperability. To allow .NET clients to
interact with a COM component, .NET uses an RCW—a special .NET proxy class that sits between
your .NET code and the COM component. The RCW handles all the details, including marshaling
data types, using the traditional COM interfaces, and handling COM events.

You have the following three options for using an RCW:

• Obtain an RCW from the author of the original COM component. In this case, the RCW is
created from a PIA provided by the publisher, as Microsoft does for Microsoft Office.

• Generate an RCW using the Tlbimp.exe command-line utility or Visual Studio .NET.

• Create your own RCW using the types in the System.Runtime.InteropServices namespace.
(This can be an extremely tedious and complicated process.)

If you want to use Visual Studio .NET to generate an RCW, you simply need to select Add Reference
from the Project menu, and then select the appropriate component from the COM tab. When you
click OK, the PIA will be generated and added to your project references. After that, you can use the
Object Browser to inspect the namespaces and classes that are available.

If possible, you should always use a PIA instead of generating your own RCW. PIAs are more
likely to work as expected, because they are created and digitally signed by the original component
publisher. They might also include additional .NET refinements or enhancements. If a PIA is regis-
tered on your system for a COM component, Visual Studio .NET will automatically use that PIA when
you add a reference to the COM component. For example, the .NET Framework includes an adodb.dll
assembly that allows you to use the ADO classic COM objects. If you add a reference to the Microsoft
ActiveX Data Objects component, this PIA will be used automatically; no new RCW will be generated.
Similarly, Microsoft Office 2003 provides a PIA that improves .NET support for Office Automation.
However, you must download this assembly from the MSDN web site (at http://msdn.microsoft.com/
downloads/list/office.asp).

494 CH AP T E R 1 2 ■ U N M AN A G E D CO D E I N T E R O PE R AB I L IT Y

If you are not using Visual Studio .NET, you can create a wrapper assembly using the Tlbimp.exe
command-line utility that is included with the .NET Framework. The only mandatory piece of infor-
mation is the filename that contains the COM component. For example, the following statement
creates an RCW with the default filename and namespace, assuming that the MyCOMComponent.dll file
is in the current directory.

tlbimp MyCOMComponent.dll

Assuming that MyCOMComponent.dll has a type named MyClasses, the generated RCW file
will have the name MyClasses.dll and will expose its classes through a namespace named MyClasses.
You can also configure these options with command-line parameters, as described in the MSDN
reference. For example, you can use /out:[Filename] to specify a different assembly filename and
/namespace:[Namespace] to set a different namespace for the generated classes. You can also specify
a key file using /keyfile[keyfilename] so that the component will be signed and given a strong
name, allowing it to be placed in the global assembly cache (GAC). Use the /primary parameter to
create a PIA.

The Code

The following example shows how you can use COM Interop to access the classic ADO objects from
a .NET Framework application.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter12
 Public Class Recipe12_06

 ' Be sure to add a reference to ADODB (runtime version 1.1.4322)
 ' to the project.
 Public Shared Sub Main()

 ' This example assumes that you have the AdventureWorks
 ' sample database installed. If you don't, you will need
 ' to change the connectionString accordingly.

 ' Create a new ADODB connection.
 Dim con As New ADODB.Connection
 Dim connectionString As String = "Provider=SQLOLEDB.1;Data " & ➥
Source=.\sqlexpress;Initial Catalog=AdventureWorks;Integrated Security=SSPI;"

 con.Open(connectionString, Nothing, Nothing, 0)

 ' Execute a SELECT query.
 Dim recordsAffected As Object = Nothing
 Dim rs As ADODB.Recordset = con.Execute("SELECT * FROM " & ➥
HumanResources.Employee;", recordsAffected, 0)

 ' Print out the results.
 While Not rs.EOF = True

 Console.WriteLine(rs.Fields("EmployeeID").Value)
 rs.MoveNext()

 End While

C H AP TE R 1 2 ■ U N M A N A G E D CO DE IN TE R OP E R A B IL I TY 495

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

12-7. Release a COM Component Quickly

Problem
You need to ensure that a COM component is removed from memory immediately, without waiting
for garbage collection to take place, or you need to make sure that COM objects are released in a
specific order.

Solution
Release the reference to the underlying COM object using the Shared Marshal.FinalReleaseComObject
method and passing the appropriate RCW reference.

How It Works
COM uses reference counting to determine when objects should be released. When you use an RCW,
the reference will be held to the underlying COM object, even when the object variable goes out of
scope. The reference will be released only when the garbage collector disposes of the RCW object. As
a result, you cannot control when or in what order COM objects will be released from memory.

To get around this limitation, you usually use the Marshal.ReleaseComObject method. However,
if the COM object’s pointer is marshaled several times, you need to repeatedly call this method to
decrease the count to zero. However, the FinalReleaseComObject method allows you to release all
references in one go, by setting the reference count of the supplied RCW to zero. This means that you
do not need to loop and invoke ReleaseComObject to completely release an RCW. Once an object is
released in this manner, it can no longer be used unless it’s re-created.

For example, in the ADO example in recipe 12-6, you could release the underlying ADO
Recordset and Connection objects by adding these two lines to the end of your code:

System.Runtime.InteropServices.Marshal.FinalReleaseComObject(rs)
System.Runtime.InteropServices.Marshal.FinalReleaseComObject(con)

■Note The ReleaseComObject method does not actually release the COM object; it just decrements the refer-
ence count. If the reference count reaches zero, the COM object will be released. FinalReleaseComObject
works by setting the reference count of an RCW to zero. It thus bypasses the internal count logic and releases all
references.

496 CH AP T E R 1 2 ■ U N M AN A G E D CO D E I N T E R O PE R AB I L IT Y

12-8. Use Optional Parameters

Problem
You need to call a method in a COM component without supplying all the required parameters.

Solution
Use the Type.Missing field.

How It Works
The .NET Framework is designed with a heavy use of method overloading. Most methods are over-
loaded several times so that you can call the version that requires only the parameters you choose to
supply. COM, on the other hand, does not support method overloading. Instead, COM components
usually use methods with a long list of optional parameters. You do not need to specify values for the
optional parameters. For example, if a method includes three optional parameters, you can assign a
value to the first and third one, skipping the second one. Passing Nothing to the second optional
parameter would have the same effect. However, COM parameters are often passed by reference,
which means your code cannot simply pass a Nothing reference. Instead, it must declare an object
variable and then pass that variable.

You can mitigate the problem to some extent by supplying the Type.Missing field whenever you
wish to omit an optional parameter. If you need to pass a parameter by reference, you can simply
declare a single object variable, set it equal to Type.Missing, and use it in all cases, like this:

Private Shared n As Object = Type.Missing

The Code

The following example uses the Microsoft Word COM objects to programmatically create and show
a document. Many of the methods the example uses require optional parameters passed by refer-
ence. You will notice that the use of the Type.Missing field simplifies this code greatly. Each use is
emphasized in the code listing.

Imports System
Imports Microsoft.Office.Interop

Namespace Apress.VisualBasicRecipes.Chapter12

 ' This recipe requires a reference to Word and
 ' Microsoft.Office.Core.
 Public Class Recipe12_08

 Private Shared n As Object = Type.Missing

 Public Shared Sub Main()

 ' Start Word in the background.
 Dim app As New Word.Application
 app.DisplayAlerts = Word.WdAlertLevel.wdAlertsNone

C H AP TE R 1 2 ■ U N M A N A G E D CO DE IN TE R OP E R A B IL I TY 497

 ' Create a new document (this is not visible to the user).
 Dim doc As Word.Document = app.Documents.Add(n, n, n, n)

 Console.WriteLine()
 Console.WriteLine("Creating new document.")
 Console.WriteLine()

 ' Add a heading and two lines of text.
 Dim range As Word.Range = doc.Paragraphs.Add(n).Range

 range.InsertBefore("Test Document")
 range.Style = "Heading 1"

 range = doc.Paragraphs.Add(n).Range
 range.InsertBefore("Line one." & ControlChars.CrLf & "Line two.")
 range.Font.Bold = 1

 ' Show a print preview, and make Word visible.
 doc.PrintPreview()
 app.Visible = True

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

12-9. Use an ActiveX Control in a .NET Client

Problem
You need to place an ActiveX control on a form or a user control in a .NET Framework application.

Solution
Use an RCW exactly as you would with an ordinary COM component (see recipe 12-6). To work with
the ActiveX control at design time, add it to the Visual Studio .NET Toolbox.

How It Works
As with COM components, the .NET Framework fully supports the use of ActiveX controls. When
working with COM (detailed in recipe 12-6), an RCW is required to allow communication between
your code and the COM object. An ActiveX control differs in that it requires two RCWs. The first RCW
provides communication between the COM object and the second RCW. The second RCW is required to
communicate between the first COM object and your Windows form.

This extra wrapper is required because any control you use on your form must derive from
System.Windows.Forms.Control. The second wrapper derives from the System.Windows.Forms.AxHost

498 CH AP T E R 1 2 ■ U N M AN A G E D CO D E I N T E R O PE R AB I L IT Y

class, which derives from System.Windows.Forms.Control. This provides the standard .NET control
properties, methods, and events (such as Location, Size, Anchor, and so on).

Several methods are available for creating the necessary RCWs. One method is to use the
Aximp.exe command-line utility. This tool is the equivalent to Tlbimp.exe, which is used to generate
an RCW for COM components. You just run aximp and supply the path to the ActiveX component.
The following is an example of using this tool on the Microsoft Masked Edit control.

aximp c:\windows\system32\msmask32.ocx

This will generate MSMask.dll, the first wrapper, and AxMSMask.dll, the second wrapper. The
MSMask.dll file is identical to the RCW that Tlbimp.exe would have produced for a COM component.
The main component of the AxMSMask.dll file is the AxMaskEdBox class, which is part of the AxMSMask
namespace. The Ax prefix represents the word ActiveX and indicates which wrapper derives from the
AxHost class. To use the control in your project, you just need to add a reference to both these assem-
blies, and then create an instance of the control. The following code snippet demonstrates creating
an instance of the control and adding it to a form:

' Create a new instance of the ActiveX control.
Dim AxMaskEdBox1 As New AxMSMask.AxMaskEdBox

' Set some properties.
AxMaskEdBox1.Location = New Point(0, 0)
AxMaskEdBox1.Size = New Size(200, 50)

' Add the control to the form.
Me.Controls.Add(AxMaskEdBox1)

The .NET Framework also offers the AxImporter class, found in the System.Windows.Forms.
Design namespace. This class lets you generate the appropriate wrapper assemblies by using the
GenerateFromFile or GenerateFromTypeLibrary method. Both methods return the assembly qualified
name for the ActiveX control defined by the newly created assemblies. The AxImporter constructor
takes an AxImporter.Option class instance. This class contains several properties that represent
options the importer will use, but only the OutputDirectory property is required. You then use one
of the methods, such as GenerateFromFile, to create the necessary wrappers. Once the assemblies
have been generated, you can reference them at design time, as you would any other component, or
you can reference them at runtime using reflection (described in Chapter 3). The following sample code
demonstrates using AxImporter to create and use an instance of the Masked Edit control at runtime.

' Create the AxImporter options and set the output
' directory.
Dim axOptions As New AxImporter.Options
axOptions.outputDirectory = "C:\"

' Create the AxImporter object and generate the wrappers
' for the c:\windows\system32\msmask32.ocx file.
Dim aximp As New AxImporter(axOptions)
Dim fi As New FileInfo("C:\windows\system32\msmask32.ocx")
Dim assemblyName As String = aximp.GenerateFromFile(fi)

' Load the ActiveX RCW and create an instance of the control
' type named in assemblyName (which is "AxMSMask.AxMaskEdBox,AxMSMask").
Dim MSMaskAssembly As Assembly = Assembly.LoadFrom("C:\AxMSMask.dll")
Dim AxMaskEdBox1 As Object = ➥
MSMaskAssembly.CreateInstance(assemblyName.Substring(0, ➥

C H AP TE R 1 2 ■ U N M A N A G E D CO DE IN TE R OP E R A B IL I TY 499

assemblyName.IndexOf(",")))

' Set some properties.
AxMaskEdBox1.Location = New Point(0, 0)
AxMaskEdBox1.Size = New Size(200, 50)

' Add the control to the form.
Me.Controls.Add(AxMaskEdBox1)

The simplest method, if you are using Visual Studio, is to add the ActiveX control to the Toolbox.
You do this by selecting Choose Toolbox Items from the Tools menu. This will add an icon representing
the ActiveX control to the Toolbox. Once you place the control on your form, the required RCWs will
be created, and the appropriate references will be added to your project. The only difference between
these generated files and those created by the two previous methods are the names. This method will
name the files AxInterop.MSMask.dll and Interop.MSMask.dll.

Adding the control in this manner will automatically generate code in the hidden designer region of
your form. That code will look similar to this:

Me.AxMaskEdBox1 = New AxMSMask.AxMaskEdBox
CType(Me.AxMaskEdBox1, System.ComponentModel.ISupportInitialize).BeginInit()
'
'AxMaskEdBox1
'
Me.AxMaskEdBox1.Location = New System.Drawing.Point(10, 15)
Me.AxMaskEdBox1.Name = "AxMaskEdBox1"
Me.AxMaskEdBox1.OcxState = CType(resources.GetObject("AxMaskEdBox1.OcxState"), ➥
System.Windows.Forms.AxHost.State)
Me.AxMaskEdBox1.Size = New System.Drawing.Size(247, 43)
Me.AxMaskEdBox1.TabIndex = 0
Me.Controls.Add(Me.AxMaskEdBox1)

12-10. Expose a .NET Component to COM

Problem
You need to create a .NET component that can be called by a COM client.

Solution
Create an assembly that follows certain restrictions identified in this recipe. Export a type library for
this assembly using the Type Library Exporter (Tlbexp.exe) command-line utility.

How It Works
The .NET Framework includes support for COM clients to use .NET components. When a COM client
needs to create a .NET object, the CLR creates the managed object and a COM callable wrapper
(CCW) that wraps the object. The COM client interacts with the managed object through the CCW.
No matter how many COM clients are attempting to access a managed object, only one CCW is
created for it.

500 CH AP T E R 1 2 ■ U N M AN A G E D CO D E I N T E R O PE R AB I L IT Y

Types that need to be accessed by COM clients must meet certain requirements:

• The managed type (class, interface, struct, or enum) must be Public.

• If the COM client needs to create the object, it must have a Public default constructor. COM
does not support parameterized constructors.

• The members of the type that are being accessed must be Public instance members. Private,
Protected, Friend, and Shared members are not accessible to COM clients.

In addition, you should consider the following recommendations:

• You should not create inheritance relationships between classes, because these relationships
will not be visible to COM clients (although .NET will attempt to simulate this by declaring a
shared base class interface).

• The classes you are exposing should implement an interface. If they don’t implement an
interface, one will be generated automatically. Changing the class in the future may cause
versioning issues, so implementing your own interface is highly suggested. You use the
ClassInterfaceAttribute to turn off the automatic generation of the interface and specify
your own. For added versioning control, you can use the attribute System.Runtime.
InteropServices.GuidAttribute to specify the GUID that should be assigned to an interface.

• Ideally, you should give the managed assembly a strong name so that it can be installed into
the GAC and shared among multiple clients.

In order for a COM client to create the .NET object, it requires a type library (a .tlb file). The type
library can be generated from an assembly using the Tlbexp.exe command-line utility. Here is an
example of the syntax you use:

tlbexp ManagedLibrary.dll

Tlbexp.exe includes several options that affect how the tool runs and the output is produced.
For example, you can use /out to specify the path and/or name produced by the utility. If you don’t
use this option, the file is created in the current directory with a name based on the assembly name
and ending with .tlb. For automation purposes, you could use the /silent option to suppress all
messages.

Once you generate the type library, you can reference it from the unmanaged development tool.
With Visual Basic 6, you reference the .tlb file from the Project➤References dialog box. In Visual C++ 6,
you can use the #import statement to import the type definitions from the type library.

501

■ ■ ■

C H A P T E R 1 3

Commonly Used Interfaces
and Patterns

The recipes in this chapter show you how to implement patterns you will use frequently during the
development of Microsoft .NET Framework applications. Some of these patterns are formalized
using interfaces defined in the .NET Framework class library. Others are less rigid, but still require
you to take specific approaches to their design and implementation of your types. The recipes in this
chapter describe how to do the following:

• Create serializable types that you can easily store to disk, send across the network, or pass by
value across application domain boundaries (recipe 13-1)

• Provide a mechanism that creates accurate and complete copies (clones) of objects
(recipe 13-2)

• Implement types that are easy to compare and sort (recipe 13-3)

• Support the enumeration of the elements contained in custom collections by creating a
custom iterator (recipe 13-4)

• Ensure that a type that uses unmanaged resources correctly releases those resources when
they are no longer needed (recipe 13-5)

• Display string representations of objects that vary based on format specifiers (recipe 13-6)

• Correctly implement custom exception and event argument types, which you will use frequently
in the development of your applications (recipes 13-7 and 13-8)

• Implement the commonly used Singleton and Observer design patterns using the built-in
features of VB .NET and the .NET Framework class library (recipes 13-9 and 13-10)

13-1. Implement a Serializable Type

Problem
You need to implement a custom type that is serializable, allowing you to do the following:

• Store instances of the type to persistent storage (for example, a file or a database).

• Transmit instances of the type across a network.

• Pass instances of the type “by value” across application domain boundaries.

502 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

Solution
For serialization of simple types, apply the attribute System.SerializableAttribute to the type
declaration. For types that are more complex, or to control the content and structure of the serialized
data, implement the interface System.Runtime.Serialization.ISerializable.

How It Works
Recipe 2-13 showed how to serialize and deserialize an object using the formatter classes provided
with the .NET Framework class library. However, types are not serializable by default. To implement
a custom type that is serializable, you must apply the attribute SerializableAttribute to your type
declaration. As long as all of the data fields in your type are serializable types, applying
SerializableAttribute is all you need to do to make your custom type serializable. If you are imple-
menting a custom class that derives from a base class, the base class must also be serializable.

■Caution Classes that derive from a serializable type don’t inherit the attribute SerializableAttribute.
To make derived types serializable, you must explicitly declare them as serializable by applying the
SerializableAttribute attribute.

Each formatter class contains the logic necessary to serialize types decorated with
SerializableAttribute and will correctly serialize all Public, Protected, and Private fields. You can
exclude specific fields from serialization by applying the attribute System.NonSerializedAttribute
to those fields. As a rule, you should exclude the following fields from serialization:

• Fields that contain nonserializable data types

• Fields that contain values that might be invalid when the object is deserialized, such as
memory addresses, thread IDs, and unmanaged resource handles

• Fields that contain sensitive or secret information, such as passwords, encryption keys, and
the personal details of people and organizations

• Fields that contain data that is easily re-creatable or retrievable from other sources, especially
if the data is large

If you exclude fields from serialization, you must implement your type to compensate for the
fact that some data will not be present when an object is deserialized. Unfortunately, you cannot
create or retrieve the missing data fields in an instance constructor, because formatters do not call
constructors during the process of deserializing objects. The best approach for achieving fine-grained
control of the serialization of your custom types is to use the attributes from the System.Runtime.
Serialization namespace described in Table 13-1. These attributes allow you to identify methods of
the serializable type that the serialization process should execute before and after serialization and
deserialization. Any method annotated with one of these attributes must take a single System.
Runtime.Serialization.StreamingContext argument, which contains details about the source or
intended destination of the serialized object so that you can determine what to serialize. For example,
you might be happy to serialize secret data if it’s destined for another application domain in the same
process, but not if the data will be written to a file.

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 503

As types evolve, you often add new member variables to support new features. This new state
causes a problem when deserializing old objects because the new member variables are not part of
the serialized object. .NET Framework 2.0 introduces the attribute System.Runtime.Serialization.
OptionalFieldAttribute. When you create a new version of a type and add data members, annotate
them with OptionalFieldAttribute, and the deserialization process will not fail if they are not present.
You can then annotate new methods with OnDeserializedAttribute (see Table 13-1) to configure the
new member variables appropriately.

For the majority of custom types, the mechanisms described will be sufficient to meet your seri-
alization needs. If you require more control over the serialization process, you can implement the
interface ISerializable. The formatter classes use different logic when serializing and deserializing
instances of types that implement ISerializable. To implement ISerializable correctly you must
do the following:

• Declare that your type implements ISerializable.

• Apply the attribute SerializableAttribute to your type declaration as just described. What
gets serialized is determined by the GetObjectData method, rather than relying on automatic
serialization. For this reason, you shouldn’t use NonSerializedAttribute because it will have
no effect.

• Implement the ISerializable.GetObjectData method (used during serialization), which
takes the argument types System.Runtime.Serialization.SerializationInfo and System.
Runtime.Serialization.StreamingContext.

• Implement a nonpublic constructor (used during deserialization) that accepts the same argu-
ments as the GetObjectData method. Remember that if you plan to derive classes from your
serializable class, you should make the constructor Protected.

• If you are creating a serializable class from a base class that also implements ISerializable,
your type’s GetObjectData method and deserialization constructor must call the equivalent
method and constructor in the base class.

Table 13-1. Attributes to Customize the Serialization and Deserialization Processs

Attribute Description

OnSerializingAttribute Apply this attribute to a method to have it executed before the
object is serialized. This is useful if you need to modify object
state before it is serialized. For example, you may need to convert a
DateTime field to UTC time for storage.

OnSerializedAttribute Apply this attribute to a method to have it executed after the
object is serialized. This is useful in case you need to revert the
object state to what it was before the method annotated with
OnSerializingAttribute was run.

OnDeserializingAttribute Apply this attribute to a method to have it executed before the
object is deserialized. This is useful if you need to modify the
object state prior to deserialization.

OnDeserializedAttribute Apply this attribute to a method to have it executed after the
object is deserialized. This is useful if you need to re-create addi-
tional object state that depends on the data that was deserialized
with the object or modify the deserialized state before the object
is used.

504 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

During serialization, the formatter calls the GetObjectData method and passes it
SerializationInfo and StreamingContext references as arguments. Your type must populate
the SerializationInfo object with the data you want to serialize. The SerializationInfo class acts
as a list of field/value pairs and provides the AddValue method to let you store a field with its value.
In each call to AddValue, you must specify a name for the field/value pair; you use this name during
deserialization to retrieve the value of each field. The AddValue method has 16 overloads that allow
you to add values of different data types to the SerializationInfo object.

When a formatter deserializes an instance of your type, it calls the deserialization constructor,
again passing a SerializationInfo and a StreamingContext reference as arguments. Your type must
extract the serialized data from the SerializationInfo object using one of the SerializationInfo.
Get* methods; for example, using GetString, GetInt32, or GetBoolean. The StreamingContext object
provides information about the purpose and destination of the serialized data, allowing you to
choose which data to serialize. During deserialization, the StreamingContext object provides infor-
mation about the source of the serialized data, allowing you to mirror the logic you implemented for
serialization.

■Note During standard serialization operations, the formatters do not use the capabilities of the StreamingContext
object to provide specifics about the source, destination, and purpose of serialized data. However, if you wish to
perform customized serialization, your code can configure the formatter’s StreamingContext object prior to initiating
serialization and deserialization. Consult the .NET Framework SDK documentation for details of the StreamingContext
class.

The Code

The following example demonstrates a serializable Employee class that implements the ISerializable
interface. In this example, the Employee class does not serialize the Address property if the provided
StreamingContext object specifies that the destination of the serialized data is a file. The Main method
demonstrates the serialization and deserialization of an Employee object.

Imports System
Imports System.IO
Imports System.Text
Imports System.Runtime.Serialization
Imports System.Runtime.Serialization.Formatters.Binary

Namespace Apress.VisualBasicRecipes.Chapter13

 <Serializable()> _
 Public Class Employee
 Implements ISerializable

 Private m_Name As String
 Private m_Age As Integer
 Private m_Address As String

 ' Simple Employee constructor.
 Public Sub New(ByVal name As String, ByVal age As Integer, ➥
ByVal address As String)

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 505

 m_Name = name
 m_Age = age
 m_Address = address

 End Sub

 ' Constructor required to enable a formatter to deserialize an
 ' Employee object. You should declare the constructor protected
 ' to help ensure it is not called unnecessarily.
 Private Sub New(ByVal info As SerializationInfo, ➥
ByVal context As StreamingContext)

 ' Extract the name and age of the employee, which will always be
 ' present in the serialized data regardless of the value of the
 ' StreamingContext.
 m_Name = info.GetString("Name")
 m_Age = info.GetInt32("Age")

 ' Attempt to extract the employee's address and fail gracefully
 ' if it is not available.
 Try
 m_Address = info.GetString("Address")
 Catch ex As SerializationException
 m_Address = Nothing
 End Try

 End Sub

 ' Public property to provide access to the employee's name.
 Public Property Name() As String
 Get
 Return m_Name
 End Get
 Set(ByVal Value As String)
 m_Name = Value
 End Set
 End Property

 ' Public property to provide access to the employee's age.
 Public Property Age() As Integer
 Get
 Return m_Age
 End Get
 Set(ByVal value As Integer)
 m_Age = value
 End Set
 End Property

 ' Public property to provide access to the employee's address.
 ' Uses lazy initialization to establish address because a
 ' deserialized object will not have an address value.

506 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 Public Property Address() As String
 Get
 If m_Address Is Nothing Then
 ' Load the address from persistent storage.
 ' In this case, set it to an empty string.
 m_Address = String.Empty
 End If

 Return m_Address
 End Get
 Set(ByVal value As String)
 m_Address = value
 End Set
 End Property

 ' Declared by the ISerializable interface, the GetObjectData method
 ' provides the mechanism with which a formatter obtains the object
 ' data that it should serialize.
 Public Sub GetObjectData(ByVal info As SerializationInfo, ➥
ByVal context As StreamingContext) Implements.ISerializable.GetObjectData

 ' Always serialize the employee's name and age.
 info.AddValue("Name", Name)
 info.AddValue("Age", Age)

 ' Don't serialize the employee's address if the StreamingContext
 ' indicates that the serialized data is to be written to a file.
 If (context.State And StreamingContextStates.File) = 0 Then
 info.AddValue("Address", Address)
 End If

 End Sub

 ' Override Object.ToString to return a string representation of the
 ' Employee state.
 Public Overrides Function ToString() As String

 Dim str As New StringBuilder

 str.AppendFormat("Name: {0}{1}", Name, ControlChars.CrLf)
 str.AppendFormat("Age: {0}{1}", Age, ControlChars.CrLf)
 str.AppendFormat("Address: {0}{1}", Address, ControlChars.CrLf)

 Return str.ToString

 End Function

 End Class

 ' A class to demonstrate the use of Employee.
 Public Class Recipe13_01

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 507

 Public Shared Sub Main()

 ' Create an Employee object representing an employee named Alex.
 Dim emp As New Employee("Alex", 35, "Retroville")

 ' Display Employee object.
 Console.WriteLine(emp.ToString())

 ' Serialize the Employee object specifying another application domain
 ' as the destination of the serialized data. All data including the
 ' employee's address is serialized.
 Dim str As Stream = File.Create("Alex.bin")
 Dim bf As New BinaryFormatter
 bf.Context = New StreamingContext(StreamingContextStates.CrossAppDomain)
 bf.Serialize(str, emp)
 str.Close()

 ' Deserialize and display the Employee object.
 str = File.OpenRead("Alex.bin")
 bf = New BinaryFormatter
 emp = DirectCast(bf.Deserialize(str), Employee)
 str.Close()
 Console.WriteLine(emp.ToString())

 ' Serialize the Employee object specifying a file as the destination
 ' of the serialized data. In this case, the employee's address is not
 ' included in the serialized data.
 str = File.Create("Alex.bin")
 bf = New BinaryFormatter
 bf.Context = New StreamingContext(StreamingContextStates.File)
 bf.Serialize(str, emp)
 str.Close()

 ' Deserialize and display the Employee.
 str = File.OpenRead("Alex.bin")
 bf = New BinaryFormatter
 emp = DirectCast(bf.Deserialize(str), Employee)
 str.Close()
 Console.WriteLine(emp.ToString())

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

508 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

13-2. Implement a Cloneable Type

Problem
You need to create a custom type that provides a simple mechanism for programmers to create
copies of type instances.

Solution
Implement the System.ICloneable interface.

How It Works
When you assign one value type to another, you create a copy of the value. No link exists between the
two values—a change to one will not affect the other. However, when you assign one reference type
to another (excluding strings, which receive special treatment by the runtime), you do not create a
new copy of the reference type. Instead, both reference types refer to the same object, and changes
to the value of the object are reflected in both references. To create a true copy of a reference type,
you must clone the object to which it refers.

The ICloneable interface identifies a type as cloneable and declares the Clone method as the
mechanism through which you obtain a clone of an object. The Clone method takes no arguments
and returns a System.Object, regardless of the implementing type. This means that once you clone
an object, you must explicitly cast the clone to the correct type.

The approach you take to implementing the Clone method for a custom type depends on the
data members declared within the type. If the custom type contains only value-type (Integer, Byte,
and so on) and System.String data members, you can implement the Clone method by instantiating
a new object and setting its data members to the same values as the current object. The Object class
(from which all types derive) includes the Protected method MemberwiseClone, which automates this
process.

If your custom type contains reference-type data members, you must decide whether your
Clone method will perform a shallow copy or a deep copy. A shallow copy means that any reference-
type data members in the clone will refer to the same objects as the equivalent reference-type data
members in the original object. A deep copy means that you must create clones of the entire object
graph so that the reference-type data members of the clone refer to physically independent copies
(clones) of the objects referenced by the original object.

A shallow copy is easy to implement by calling the MemberwiseClone method from within your
Clone method. However, a deep copy is often what programmers expect when they first clone an
object, but it’s rarely what they get. This is especially true of the collection classes in the System.
Collections namespace, which all implement shallow copies in their Clone methods. Although it
would often be useful if these collections implemented a deep copy, there are two key reasons why
types (especially generic collection classes) do not implement deep copies:

• Creating a clone of a large object graph is processor-intensive and memory-intensive.

• General-purpose collections can contain wide and deep object graphs consisting of any type
of object. Creating a deep-copy implementation to cater to such variety is not feasible because
some objects in the collection might not be cloneable, and others might contain circular
references, which would send the cloning process into an infinite loop.

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 509

For strongly typed collections in which the nature of the contained elements are understood
and controlled, a deep copy can be a very useful feature; for example, the System.Xml.XmlNode imple-
ments a deep copy in its Clone method. This allows you to create true copies of entire XML object
hierarchies with a single statement.

■Tip If you need to clone an object that does not implement ICloneable but is serializable, you can often serialize
and then deserialize the object to achieve the same result as cloning. However, be aware that the serialization
process might not serialize all data members (as discussed in recipe 13-1). Likewise, if you create a custom serial-
izable type, you can potentially use the serialization process just described to perform a deep copy within your
ICloneable.Clone method implementation. To clone a serializable object, use the class System.Runtime.
Serialization.Formatters.Binary.BinaryFormatter to serialize the object to, and then deserialize the
object from a System.IO.MemoryStream object.

The Code

The following example demonstrates various approaches to cloning. The simple class named
Employee contains only String and Integer members, and so relies on the inherited MemberwiseClone
method to create a clone. The Team class contains an implementation of the Clone method that
performs a deep copy. The Team class contains a collection of Employee objects, representing a team
of people. When you call the Clone method of a Team object, the method creates a clone of every
contained Employee object and adds it to the cloned Team object. The Team class provides a Private
constructor to simplify the code in the Clone method. The use of constructors is a common approach
to simplify the cloning process.

Imports System
Imports System.Text
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter13

 Public Class Employee
 Implements ICloneable

 Public Name As String
 Public Title As String
 Public Age As Integer

 ' Simple Employee constructor.
 Public Sub New(ByVal _name As String, ByVal _title As String, ➥
ByVal _age As Integer)

 Name = _name
 Title = _title
 Age = _age

 End Sub

 ' Create a clone using the Object.MemberwiseClone method because
 ' the Employee class contains only string and value types.
 Public Function Clone() As Object Implements System.ICloneable.Clone
 Return Me.MemberwiseClone
 End Function

510 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' Returns a string representation of the Employee object.
 Public Overrides Function ToString() As String
 Return String.Format("{0} ({1}) - Age {2}", Name, Title, Age)
 End Function

 End Class

 Public Class Team
 Implements ICloneable

 ' A List to hold the Employee team members.
 Public TeamMembers As New List(Of Employee)

 Public Sub New()
 End Sub

 ' Adds an Employee object to the team.
 Public Sub AddMember(ByVal member As Employee)
 TeamMembers.Add(member)
 End Sub

 ' Override Object.ToString to return a string representation
 ' of the entire team.
 Public Overrides Function ToString() As String

 Dim str As New StringBuilder

 For Each e As Employee In TeamMembers
 str.AppendFormat(" {0}{1}", e, ControlChars.CrLf)
 Next

 Return str.ToString

 End Function

 ' Implementation of ICloneable.Clone.
 Public Function Clone() As Object Implements System.ICloneable.Clone

 ' Create a deep copy of the team.
 Dim newTeam As New Team

 For Each e As Employee In Me.TeamMembers
 ' Clone the individual Employee objects and
 ' add them to the List.
 newTeam.AddMember(DirectCast(e.Clone, Employee))
 Next

 Return newTeam

 End Function

 End Class

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 511

 ' A class to demonstrate the use of Employee.
 Public Class Recipe13_02

 Public Shared Sub Main()

 ' Create the original team.
 Dim newTeam As New Team
 newTeam.AddMember(New Employee("Dave", "Architect", 34))
 newTeam.AddMember(New Employee("Alex", "Designer", 35))
 newTeam.AddMember(New Employee("Robb", "Developer", 25))

 ' Clone the original team.
 Dim clonedTeam As Team = DirectCast(newTeam.Clone, Team)

 ' Display the original team.
 Console.WriteLine("Original Team:")
 Console.WriteLine(newTeam)

 ' Display the cloned team.
 Console.WriteLine("Cloned Team:")
 Console.WriteLine(clonedTeam)

 ' Make change.
 Console.WriteLine("*** Make a change to original team ***")
 Console.WriteLine(Environment.NewLine)

 newTeam.TeamMembers(0).Name = "Jason"
 newTeam.TeamMembers(0).Title = "Supervisor"
 newTeam.TeamMembers(0).Age = 30

 ' Display the original team.
 Console.WriteLine("Original Team:")
 Console.WriteLine(newTeam)

 ' Display the cloned team.
 Console.WriteLine("Cloned Team:")
 Console.WriteLine(clonedTeam)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.Read()

 End Sub

 End Class
End Namespace

512 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

13-3. Implement a Comparable Type

Problem
You need to provide a mechanism that allows you to compare custom types, enabling you to easily
sort collections containing instances of those types.

Solution
To provide a standard comparison mechanism for a type, implement the generic System.IComparable<T>
interface. To support the comparison of a type based on more than one characteristic, create separate
types that implement the generic System.Collections.Generic.IComparer<T> interface.

■Caution The System.IComparable and System.Collections.IComparer interfaces available prior to
.NET Framework 2.0 do not use generics to ensure type safety. When working with .NET Framework 1.0 or 1.1, you must
take extra precautions to ensure the objects passed to the methods of these interfaces are of the appropriate type.

How It Works
If you need to sort your type into only a single order, such as ascending ID number or alphabetically
based on surname, you should implement the IComparable(Of T) interface. IComparable(Of T)
defines a single method named CompareTo, shown here:

Public Function CompareTo(ByVal other As T) As Integer
End Function

According to the specification of the CompareTo method, the object (other) passed to the method
must be an object of the same type as that being called, or CompareTo must throw a System.
ArgumentException exception. This is less important in .NET Framework 2.0, given that the imple-
mentation of IComparable uses generics and is type-safe, ensuring that the argument is of the correct
type. The value returned by CompareTo should be calculated as follows:

• If the current object is less than other, return less than zero (for example, –1).

• If the current object has the same value as other, return zero.

• If the current object is greater than other, return greater than zero (for example, 1).

What these comparisons mean depends on the type implementing the IComparable interface.
For example, if you were sorting people based on their surname, you would do a String comparison
on this field. However, if you wanted to sort by birthday, you would need to perform a comparison
of the corresponding System.DateTime fields.

To support a variety of sort orders for a particular type, you must implement separate helper
types that implement the IComparer(Of T) interface, which defines the Compare method shown here:
Public Function CompareTo(ByVal x As T, ByVal y As T) As Integer
End Function

These helper types must encapsulate the necessary logic to compare two objects and return a
value based on the following logic:

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 513

• If x is less than y, return less than zero (for example, –1).

• If x has the same value as y, return zero.

• If x is greater than y, return greater than zero (for example, 1).

The Code

The Newspaper class listed here demonstrates the implementation of both the IComparable and
IComparer interfaces. The Newspaper.CompareTo method performs a case-insensitive comparison
of two Newspaper objects based on their Name properties. A Private nested class named
AscendingCirculationComparer implements IComparer and compares two Newspaper objects based
on their Circulation properties. An AscendingCirculationComparer object is obtained using the
Shared Newspaper.CirculationSorter property.

The Main method shown here demonstrates the comparison and sorting capabilities provided by
implementing the IComparable and IComparer interfaces. The method creates a System.Collections.
ArrayList collection containing five Newspaper objects. Main then sorts the ArrayList twice using the
ArrayList.Sort method. The first Sort operation uses the default Newspaper comparison mechanism
provided by the IComparable.CompareTo method. The second Sort operation uses an
AscendingCirculationComparer object to perform comparisons through its implementation of the
IComparer.Compare method.

Imports System
Imports System.Collections.Generic

Namespace Apress.VisualBasicRecipes.Chapter13
 Public Class Newspaper
 Implements IComparable(Of Newspaper)

 Private _name As String
 Private _circulation As Integer

 ' Simple Newspaper constructor.
 Public Sub New(ByVal name As String, ByVal circulation As Integer)

 _name = name
 _circulation = circulation

 End Sub

 ' Declare a read-only property that returns an instance of the
 ' AscendingCirculationComparer.
 Public Shared ReadOnly Property CirculationSorter() As ➥
IComparer(Of Newspaper)
 Get
 Return New AscendingCirculationComparer
 End Get
 End Property

 ' Declare a read-only property to access _name field.
 Public ReadOnly Property Name() As String
 Get
 Return _name
 End Get
 End Property

514 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' Declare a read-only property to access _circulation field.
 Public ReadOnly Property Circulation() As String
 Get
 Return _circulation
 End Get
 End Property

 ' Override Object.ToString.
 Public Overrides Function ToString() As String
 Return String.Format("{0}: Circulation = {1}", _name, _circulation)
 End Function

 ' Implementation of IComparable.CompareTo. The generic definition
 ' of IComparable allows us to ensure that the argument provided
 ' must be a Newspaper object. Comparison is based on a case-
 ' insensitive comparison of the Newspaper names.
 Public Function CompareTo(ByVal other As Newspaper) As Integer ➥
Implements System.IComparable(Of Newspaper).CompareTo

 ' IComparable dictates that an object is always considered
 ' greater than nothing.
 If other Is Nothing Then Return 1

 ' Short-circuit the case where the other Newspaper object is a
 ' reference to this one.
 If other Is Me Then Return 0

 ' Calculate return value by performing a case-insensitive
 ' comparison of the Newspaper names.

 ' Because the Newspaper name is a string, the easiest approach
 ' is to reply on the comparison capabilities of the string
 ' class, which perform culture-sensitive string comparisons.
 Return String.Compare(Me.Name, other.Name, True)

 End Function

 Private Class AscendingCirculationComparer
 Implements IComparer(Of Newspaper)

 ' Implementation of IComparer.Compare. The generic definition of
 ' IComparer allows us to ensure both arguments are Newspaper
 ' objects.
 Public Function Compare(ByVal x As Newspaper, ➥
ByVal y As Newspaper) As Integer Implements ➥
System.Collections.Generic.IComparer(Of Newspaper).Compare

 ' Handle logic for nothing reference as dictated by the
 ' IComparer interface. Nothing is considered less than
 ' any other value.
 If x Is Nothing And y Is Nothing Then
 Return 0

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 515

 ElseIf x Is Nothing Then
 Return -1
 ElseIf y Is Nothing Then
 Return 1
 End If

 ' Short-circuit condition where x and y are references.
 ' to the same object.
 If x Is y Then
 Return 0
 End If

 ' Compare the circulation figures. IComparer dictates that:
 ' return less than zero if x < y
 ' return zero if x = y
 ' return greater than zero if x > y
 ' This logic is easily implemented using integer arithmetic.
 Return x.Circulation - y.Circulation

 End Function

 End Class
 End Class

 ' A class to demonstrate the use of Newspaper.
 Public Class Recipe13_03

 Public Shared Sub Main()

 Dim newspapers As New List(Of Newspaper)

 newspapers.Add(New Newspaper("The Washington Post", 125780))
 newspapers.Add(New Newspaper("The Times", 55230))
 newspapers.Add(New Newspaper("The Sun", 88760))
 newspapers.Add(New Newspaper("The Herald", 5670))
 newspapers.Add(New Newspaper("The Gazette", 235950))

 Console.Clear()
 Console.WriteLine("Unsorted newspaper list:")

 For Each n As Newspaper In newspapers
 Console.WriteLine(" {0}", n)
 Next

 ' Sort the newspaper list using the object's implementation
 ' of IComparable.CompareTo.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Newspaper list sorted by name (default order):")
 newspapers.Sort()

 For Each n As Newspaper In newspapers
 Console.WriteLine(" {0}", n)
 Next

516 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' Sort the newspaper list using the supplied IComparer object.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Newspaper list sorted by circulation:")
 newspapers.Sort(Newspaper.CirculationSorter)

 For Each n As Newspaper In newspapers
 Console.WriteLine(" {0}", n)
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Running the example will produce the results shown here. The first list of newspapers is unsorted,
the second is sorted using the IComparable interface, and the third is sorted using a comparer class
that implements IComparer.

Unsorted newspaper list:
 The Washington Post: Circulation = 125780
 The Times: Circulation = 55230
 The Sun: Circulation = 88760
 The Herald: Circulation = 5670
 The Gazette: Circulation = 235950

Newspaper list sorted by name (default order):
 The Gazette: Circulation = 235950
 The Herald: Circulation = 5670
 The Sun: Circulation = 88760
 The Times: Circulation = 55230
 The Washington Post: Circulation = 125780

Newspaper list sorted by circulation:
 The Herald: Circulation = 5670
 The Times: Circulation = 55230
 The Sun: Circulation = 88760
 The Washington Post: Circulation = 125780
 The Gazette: Circulation = 235950

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 517

13-4. Implement an Enumerable Type Using a
Custom Iterator

Problem
You need to create a collection type whose contents you can enumerate using a For Each statement.

Solution
Implement the interface System.Collections.IEnumerable or System.Collections.Generic.
IEnumerable(Of T) on your collection type. The GetEnumerator method of the IEnumerable interface
returns an enumerator, which is an object that implements either the System.Collections.IEnumerator
or System.Collections.Generic.IEnumerator(Of T) interface, respectively. The IEnumerator interface
defines the methods used by the For Each statement to enumerate the collection.

Implement a private inner class within the enumerable type that implements the interface
IEnumerator and can iterate over the enumerable type while maintaining appropriate state informa-
tion. In the GetEnumerator method of the enumerable type, create and return an instance of the
iterator class.

■Caution The IEnumerable and IEnumerator interfaces from the System.Collections.Generic
namespace mentioned in this recipe are new to .NET Framework 2.0. The interfaces from which these two inter-
faces inherit are also named IEnumerable and IEnumerator but are located in the System.Collections
namespace. This recipe will work using.NET Framework 1.0 or 1.1, but generic collections are not supported.

How It Works
A numeric indexer allows you to iterate through the elements of most standard collections using a
For loop. However, this technique does not always provide an appropriate abstraction for nonlinear
data structures, such as trees and multidimensional collections. The For Each statement provides
an easy-to-use and syntactically elegant mechanism for iterating through a collection of objects,
regardless of their internal structures.

In order to support For Each semantics, the type containing the collection of objects should
implement the IEnumerable interface. The IEnumerable interface declares a single method named
GetEnumerator, which does not take any arguments and returns an object that implements
IEnumerator.

The next step is to implement a separate class that implements the IEnumerator interface.
The IEnumerator interface provides a read-only, forward-only cursor for accessing the members
of the underlying collection. Table 13-2 describes the members of the IEnumerator interface. The
IEnumerator instance returned by GetEnumerator is your custom iterator—the object that actually
supports enumeration of the collection’s data elements.

If your collection class contains different types of data that you want to enumerate separately,
implementing the IEnumerable interface on the collection class is insufficient. In this case, you would
implement a number of properties that returned different IEnumerator instances that handle each
specific data type. For example, you might have a class that includes a collection of employees and a
collection of tasks. You would create the Employees property, which would return an IEnumerator for
the employee collection and the Tasks property, which would return an IEnumerator for the task
collection.

518 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

The Code

The TeamMember, Team, and TeamMemberEnumerator classes in the following example demonstrate
the implementation of a custom iterator using the IEnumerable and IEnumerator interfaces. The
TeamMember class represents a member of a team. The Team class, which represents a team of people,
is a collection of TeamMember objects. Team implements the IEnumerable interface and declares a sepa-
rate class, named TeamMemberEnumerator, to provide enumeration functionality. Team implements
the Observer pattern using delegate and event members to notify all TeamMemberEnumerator objects if
their underlying Team changes. (See recipe 13-10 for a detailed description of the Observer pattern.)
The TeamMemberEnumerator class is a Private nested class, so you cannot create instances of it other
than through the Team.GetEnumerator method.

This example also demonstrates what happens when you attempt to change the collection you
are enumerating through. In this case, an InvalidOperationException is thrown.

Imports System
Imports System.Collections.Generic
Imports System.Text.RegularExpressions

Namespace Apress.VisualBasicRecipes.Chapter13

 ' The TeamMember class represents an individual team member.
 Public Class TeamMember

 Public Name As String
 Public Title As String

 ' Simple TeamMember constructor.
 Public Sub New(ByVal _name As String, ByVal _title As String)

 Me.Name = _name
 Me.Title = _title

 End Sub

Table 13-2. Members of the IEnumerator Interface

Member Description

Current Property that returns the current data element. When the enumerator is created,
Current refers to a position preceding the first data element. This means you must
call MoveNext before using Current. If Current is called and the enumerator is posi-
tioned before the first element or after the last element in the data collection,
Current must throw a System.InvalidOperationException.

MoveNext Method that moves the enumerator to the next data element in the collection.
Returns True if there are more elements; otherwise, it returns False. If the under-
lying source of data changes during the life of the enumerator, MoveNext must
throw an InvalidOperationException.

Reset Method that moves the enumerator to a position preceding the first element in
the data collection. If the underlying source of data changes during the life of the
enumerator, Reset must throw an InvalidOperationException.

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 519

 ' Returns a string representation of the TeamMember.
 Public Overrides Function ToString() As String
 Return String.Format("{0} ({1})", Name, Title)
 End Function

 End Class

 ' Team class represents a collection of TeamMember objects.
 ' It implements the IEnumerable interface to support enumerating
 ' TeamMember objects.
 Public Class Team
 Implements IEnumerable

 ' A delegate that specifies the signature that all team change
 ' event handler methods must implement.
 Public Delegate Sub TeamChangedEventHandler(ByVal source As Team, ➥
ByVal e As EventArgs)

 ' A List to contain the TeamMember objects.
 Private teamMembers As List(Of TeamMember)

 ' The event used to notify that the Team has changed.
 Public Event TeamChange As TeamChangedEventHandler

 ' Team constructor.
 Public Sub New()
 teamMembers = New List(Of TeamMember)
 End Sub

 ' Implement the IEnumerable.GetEnumerator method.
 Public Function GetEnumerator() As System.Collections.IEnumerator ➥
Implements System.Collections.IEnumerable.GetEnumerator
 Return New TeamMemberEnumerator(Me)
 End Function

 ' Adds a TeamMember object to the Team.
 Public Sub AddMember(ByVal member As TeamMember)

 teamMembers.Add(member)

 ' Notify listeners that the list has changed.
 RaiseEvent TeamChange(Me, EventArgs.Empty)

 End Sub

 ' TeamMemberEnumerator is a private nested class that provides
 ' the functionality to enumerate the TeamMembers contained in
 ' a Team collection. As a nested class, TeamMemberEnumerator
 ' has access to the private members of the Team class.
 Private Class TeamMemberEnumerator
 Implements IEnumerator

520 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' The Team that this object is enumerating.
 Private sourceTeam As Team

 ' Boolean to indicate whether underlying Team has changed
 ' and so is invalid for further enumeration.
 Private teamInvalid As Boolean = False

 ' Integer to identify the current TeamMember. Provides
 ' the index of the TeamMember in the underlying List
 ' used by the Team collection. Initialize to -1, which is
 ' the index prior to the first element.
 Private currentMember As Integer = -1

 ' The constructor takes a reference to the Team that is
 ' the source of the enumerated data.
 Friend Sub New(ByVal _team As Team)

 Me.sourceTeam = _team

 ' Register with sourceTeam for change notifications.
 AddHandler Me.sourceTeam.TeamChange, AddressOf Me.TeamChange

 End Sub

 ' Implement the IEnumerator.Current property.
 Public ReadOnly Property Current() As Object Implements ➥
System.Collections.IEnumerator.Current
 Get
 ' If the TeamMemberEnumerator is positioned before
 ' the first element or after the last element, then
 ' throw an exception.
 If currentMember = -1 Or currentMember > ➥
(sourceTeam.teamMembers.Count - 1) Then
 Throw New InvalidOperationException
 End If

 ' Otherwise, return the current TeamMember.
 Return sourceTeam.teamMembers(currentMember)

 End Get
 End Property

 ' Implement the IEnumerator.MoveNext method.
 Public Function MoveNext() As Boolean Implements ➥
System.Collections.IEnumerator.MoveNext

 ' If underlying Team is invalid, throw exception.
 If teamInvalid Then
 Throw New InvalidOperationException("Team modified")
 End If

 ' Otherwise, progress to the next TeamMember.
 currentMember += 1

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 521

 ' Return false if we have moved past the last TeamMember.
 If currentMember > (sourceTeam.teamMembers.Count - 1) Then
 Return False
 Else
 Return True
 End If

 End Function

 ' Implement the IEnumerator.Reset method. This method
 ' resets the position of the TeamMemberEnumerator to
 ' the beginning of the TeamMembers collection.
 Public Sub Reset() Implements System.Collections.IEnumerator.Reset

 ' If underlying Team is invalid, throw exception.
 If teamInvalid Then
 Throw New InvalidOperationException("Team modified")
 End If

 ' Move the currentMember pointer back to the index
 ' preceding the first element.
 currentMember = -1

 End Sub

 ' An event handler to handle notification that the underlying
 ' Team collection has changed.
 Friend Sub TeamChange(ByVal source As Team, ByVal e As EventArgs)

 ' Signal that the underlying Team is now invalid.
 teamInvalid = True

 End Sub

 End Class
 End Class

 ' A class to demonstrate the use of Team.
 Public Class Recipe13_04

 Public Shared Sub Main()

 ' Create a new Team.
 Dim newTeam As New Team

 newTeam.AddMember(New TeamMember("Kevin", "Ninja"))
 newTeam.AddMember(New TeamMember("Vicky", "Magician"))
 newTeam.AddMember(New TeamMember("Richard", "Paladin"))

 ' Enumerate the Team.
 Console.Clear()
 Console.WriteLine("Enumerate with a for each loop:")

522 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 For Each member As TeamMember In newTeam
 Console.WriteLine(member.ToString)
 Next

 ' Enumerate using a while loop.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Enumerate with while loop:")

 Dim e As IEnumerator = newTeam.GetEnumerator

 While e.MoveNext
 Console.WriteLine(e.Current)
 End While

 ' Enumerate the Team and try to add a Team Member.
 ' (This will cause an exception to be thrown.)
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Modify while enumerating:")

 For Each member As TeamMember In newTeam
 Console.WriteLine(member.ToString)
 newTeam.AddMember(New TeamMember("Harry", "Wizard"))
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes
The preceding example demonstrates creating your own iterator for a custom collection. You could
have simply created a new collection that inherits from one of the base generic classes, such as
List(Of T). Since the base class is already enumerable, your class would automatically have this
ability. You would not need to create your own enumerator class as required in the previous example.
If you wanted to try this, you would replace the entire Team class with this version:

' Team class represents a generic collection of TeamMember objects.
' It inherits the List(Of TeamMember) class so it automatically
' supports enumerating TeamMember objects.
Public Class Team
 Inherits List(Of TeamMember)

 ' A delegate that specifies the signature that all Team change
 ' event handler methods must implement.
 Public Delegate Sub TeamChangedEventHandler(ByVal source As Team, ➥
ByVal e As EventArgs)

 ' The event used to notify that the Team has changed.

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 523

 Public Event TeamChange As TeamChangedEventHandler

 ' Team constructor.
 Public Sub New()
 End Sub

 ' Adds a TeamMember object to the Team.
 Public Overloads Sub Add(ByVal member As TeamMember)

 MyBase.Add(member)

 ' Notify listeners that the list has changed.
 RaiseEvent TeamChange(Me, EventArgs.Empty)

 End Sub

End Class

Here, to mimic the main example, you override the base Add method so you can raise the
TeamChange event. This means you need to replace calls to the AddMembers method with calls to the Add
method.

13-5. Implement a Disposable Class

Problem
You need to create a class that references unmanaged resources and provide a mechanism for users
of the class to free those unmanaged resources deterministically.

Solution
Implement the System.IDisposable interface, and release the unmanaged resources when client
code calls the IDisposable.Dispose method.

How It Works
An unreferenced object continues to exist on the managed heap and consume resources until the
garbage collector releases the object and reclaims the resources. The garbage collector will automat-
ically free managed resources (such as memory), but it will not free unmanaged resources (such as
file handles and database connections) referenced by managed objects. If an object contains data
members that reference unmanaged resources, the object must free those resources explicitly or
they will remain in memory for an unknown length of time.

One solution is to declare a destructor—or finalizer—for the class (destructor is a C++ term
equivalent to the more general .NET term finalizer). Prior to reclaiming the memory consumed by
an instance of the class, the garbage collector calls the object’s finalizer. The finalizer can take the
necessary steps to release any unmanaged resources. Unfortunately, because the garbage collector
uses a single thread to execute all finalizers, use of finalizers can have a detrimental effect on the effi-
ciency of the garbage collection process, which will affect the performance of your application. In
addition, you cannot control when the runtime frees unmanaged resources because you cannot call
an object’s finalizer directly, and you have only limited control over the activities of the garbage
collector using the System.GC class.

524 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

As a complementary mechanism to using finalizers, the .NET Framework defines the Dispose
pattern as a means to provide deterministic control over when to free unmanaged resources. To
implement the Dispose pattern, a class must implement the IDisposable interface, which declares a
single method named Dispose. In the Dispose method, you must implement the code necessary to
release any unmanaged resources and remove the object from the list of objects eligible for finaliza-
tion if a finalizer has been defined.

Instances of classes that implement the Dispose pattern are called disposable objects. When
code has finished with a disposable object, it calls the object’s Dispose method to free all resources
and make it unusable, but still relies on the garbage collector to eventually release the object memory.
It’s important to understand that the runtime does not enforce disposal of objects; it’s the responsi-
bility of the client to call the Dispose method. However, because the .NET Framework class library
uses the Dispose pattern extensively, VB .NET provides the Using statement to simplify the correct
use of disposable objects. The following code shows the structure of a Using statement:

Using fs As New FileStream("SomeFile.txt", FileMode.Open)
End Using

When the code reaches the end of the block in which the disposable object was declared, the
object’s Dispose method is automatically called, even if an exception is raised. Furthermore, once
you leave the Using block, the object is out of scope and can no longer be accessed, so you cannot use
a disposed object accidentally.

Here are some points to consider when implementing the Dispose pattern:

• Client code should be able to call the Dispose method repeatedly with no adverse effects.

• In multithreaded applications, it’s important that only one thread execute the Dispose
method concurrently. It’s normally the responsibility of the client code to ensure thread
synchronization, although you could decide to implement synchronization within the
Dispose method.

• The Dispose method should not throw exceptions.

• Because the Dispose method does all necessary cleaning up, you do not need to call the object’s
finalizer. Your Dispose method should call the GC.SuppressFinalize method to ensure the
finalizer is not called during garbage collection.

• Implement a finalizer that calls the unmanaged cleanup part of your Dispose method as a
safety mechanism in case client code does not call Dispose correctly. However, avoid refer-
encing managed objects in finalizers, because you cannot be certain of the object’s state.

• If a disposable class extends another disposable class, the Dispose method of the child must
call the Dispose method of its base class. Wrap the child’s code in a Try block and call the
parent’s Dispose method in a Finally clause to ensure execution.

• Other instance methods and properties of the class should throw a System.
ObjectDisposedException exception if client code attempts to execute a method on an already
disposed object.

The Code

The following example demonstrates a common implementation of the Dispose pattern.

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 525

Imports System
Namespace Apress.VisualBasicRecipes.Chapter13

 ' Implement the IDisposable interface in an
 ' example class.
 Public Class DisposeExample
 Implements IDisposable

 ' Private data member to signal if the object has already
 ' been disposed.
 Private isDisposed As Boolean = False

 ' Private data member that holds the handle to an unmanaged
 ' resource.
 Private resourceHandle As IntPtr

 ' Constructor.
 Public Sub New()

 ' Constructor code obtains reference to an unmanaged
 ' resource.
 resourceHandle = IntPtr.Zero

 End Sub

 ' Protected overload of the Dispose method. The disposing argument
 ' signals whether the method is called by consumer code (true), or by
 ' the garbage collector (false). Note that this method is not part
 ' of the IDisposable interface because it has a different signature to
 ' the parameterless Dispose method.
 Protected Overridable Sub Dispose(ByVal disposing As Boolean)

 ' Don't try to dispose of the object twice.
 If Not Me.isDisposed Then

 ' Determine if consumer code or the garbage collector is
 ' calling. Avoid referencing other managed objects during
 ' finalization.
 If disposing Then
 ' Method called by consumer code. Call the Dispose method
 ' of any managed data members that implement the IDisposable
 ' interface.
 ' ...
 End If

 ' Whether called by consumer code or the garbage collector,
 ' free all unmanaged resources and set the value of managed
 ' data members to nothing. In the case of an inherited type,
 ' call base.Dispose(disposing).
 End If

 ' Signal that this object has been disposed.
 Me.isDisposed = True
 End Sub

526 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' Public implementation of the IDisposable.Dispose method, called
 ' by the consumer of the object in order to free unmanaged resources.
 Public Sub Dispose() Implements IDisposable.Dispose

 ' Call the protected Dispose overload and pass a value of "True"
 ' to indicate that Dispose is being called by consumer code, not
 ' by the garbage collector.
 Dispose(True)

 ' Because the Dispose method performs all necessary cleanup,
 ' ensure the garbage collector does not call the class destructor.
 GC.SuppressFinalize(Me)

 End Sub

 ' Destructor / Finalizer. Because Dispose calls GC.SuppressFinalize,
 ' this method is called by the garbage collection process only if
 ' the consumer of the object does not call Dispose as it should.
 Protected Overrides Sub Finalize()

 ' Call the Dispose method as opposed to duplicating the code to
 ' clean up any unmanaged resources. Use the protected Dispose
 ' overload and pass a value of "False" to indicate that Dispose is
 ' being called during the garbage collection process, not by the
 ' consumer code.
 Dispose(False)

 End Sub

 ' Before executing any functionality, ensure that Dispose had not
 ' already been executed on the object.
 Public Sub SomeMethod()

 ' Throw an exception if the object has already been disposed.
 If isDisposed Then
 Throw New ObjectDisposedException("DisposeExample")
 End If

 ' Execute method functionality.
 ' ...

 End Sub

 End Class

 ' A class to demonstrate the use of DisposeExample.
 Public Class Recipe13_05

 Public Shared Sub Main()

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 527

 ' The Using statement ensures the Dispose method is called
 ' even if an exception occurs.
 Using d As New DisposeExample
 ' Do something with d.
 End Using

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

13-6. Implement a Formattable Type

Problem
You need to implement a type that can create different string representations of its content based on
the use of format specifiers, for use in formatted strings.

Solution
Implement the System.IFormattable interface.

How It Works
The following code fragment demonstrates the use of format specifiers in the WriteLine method of
the System.Console class. The codes in the braces (emphasized in the example) are the format specifiers.

Dim a As Double = 345678.5678
Dim b As UInteger = 12000
Dim c As Byte = 254

Console.WriteLine("a = {0}, b = {1}, and c = {2}", a, b, c)
Console.WriteLine("a = {0:c0}, b = {1:n4}, and c = {2,10:x5}", a, b, c)

When run on a machine configured with English (United States) regional settings, this code will
result in the output shown here:

a = 345678.5678, b = 12000, and c = 254
a = $345,679, b = 12,000.0000, and c = 000fe

As you can see, changing the contents of the format specifiers changes the format of the output
significantly, even though the data has not changed. To enable support for format specifiers in your
own types, you must implement the IFormattable interface. IFormattable declares a single method
named ToString with the following signature:

528 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

Public Function ToString(ByVal format As String, ByVal formatProvider As ➥
IFormatProvider) As String
End Function

The format argument is a System.String containing a format string. The format string is the
portion of the format specifier that follows the colon. For example, in the format specifier {2,10:x5}
used in the previous example, x5 is the format string. The format string contains the instructions the
IFormattable instance should use when it’s generating the string representation of its content. The
.NET Framework documentation for IFormattable states that types that implement IFormattable
must support the G (general) format string, but that the other supported format strings depend on
the implementation. The format argument will be Nothing if the format specifier does not include a
format string component; for example, {0} or {1,20}.

The formatProvider argument is a reference to an instance of a type that implements System.
IFormatProvider and that provides access to information about the cultural and regional prefer-
ences to use when generating the string representation of the IFormattable object. This information
includes data such as the appropriate currency symbol or number of decimal places to use. By
default, formatProvider is Nothing, which means you should use the current thread’s regional and
cultural settings, available through the Shared method CurrentCulture of the System.Globalization.
CultureInfo class. Some methods that generate formatted strings, such as String.Format, allow you
to specify an alternative IFormatProvider to use, such as CultureInfo, DateTimeFormatInfo or
NumberFormatInfo.

The .NET Framework uses IFormattable primarily to support the formatting of value types, but
it can be used to good effect with any type.

The Code

The following example contains a class named Person that implements the IFormattable interface.
The Person class contains the title and names of a person and will render the person’s name in
different formats depending on the format strings provided. The Person class does not make use of
regional and cultural settings provided by the formatProvider argument. The Main method demon-
strates how to use the formatting capabilities of the Person class.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter13
 Public Class Person
 Implements IFormattable

 ' Private members to hold the person's title and name details.
 Private title As String
 Private names As String()

 ' Constructor used to set the person's title and names.
 Public Sub New(ByVal _title As String, ByVal ParamArray _names As String())

 Me.title = _title
 Me.names = _names

 End Sub

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 529

 ' Override the Object.ToString method to return the person's
 ' name using the general format.
 Public Overrides Function ToString() As String
 Return ToString("G", Nothing)
 End Function

 ' Implementation of the IFormattable.ToString method to return the
 ' person's name in different forms based on the format string
 ' provided.
 Public Overloads Function ToString(ByVal format As String, ➥
ByVal formatProvider As System.IFormatProvider) As String ➥
Implements System.IFormattable.ToString

 Dim result As String = Nothing

 ' Use the general format if none is specified.
 If format Is Nothing Then format = "G"

 ' The contents of the format string determine the format of the
 ' name returned.
 Select Case format.ToUpper()(0)
 Case "S"
 ' Use short form - first initial and surname if a surname
 ' was supplied.
 If names.Length > 1 Then
 result = names(0)(0) & ". " & names(names.Length - 1)
 Else
 result = names(0)
 End If
 Case "P"
 ' Use polite form - title, initials, and surname.
 ' Add the person's title to the result.
 If title IsNot Nothing And Not title.Length = 0 Then
 result = title & ". "
 End If

 ' Add the person's initials and surname.
 For count As Integer = 0 To names.Length - 1

 If Not count = (names.Length - 1) Then
 result += names(count)(0) & ". "
 Else
 result += names(count)
 End If

 Next
 Case "I"
 ' Use informal form - first name only.
 result = names(0)

530 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 Case Else
 ' Use general.default form - first name and surname (if
 ' a surname is supplied).
 If names.Length > 1 Then
 result = names(0) & " " & names(names.Length - 1)
 Else
 result = names(0)
 End If
 End Select

 Return result

 End Function

 ' A class to demonstrate the use of Person.
 Public Class Recipe13_06

 Public Shared Sub Main()
 ' Create a Person object representing a man with the name
 ' Dr. Gaius Baltar.
 Dim newPerson As New Person("Dr", "Gaius", "Baltar")

 ' Display the person's name using a variety of format strings.
 Console.WriteLine("Dear {0:G}", newPerson)
 Console.WriteLine("Dear {0:P}", newPerson)
 Console.WriteLine("Dear {0:I},", newPerson)
 Console.WriteLine("Dear {0}", newPerson)
 Console.WriteLine("Dear {0:S},", newPerson)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class

 End Class
End Namespace

Usage

When executed, the preceding example produces the following output:

Dear Gaius Baltar
Dear Dr. G. Baltar
Dear Gaius,
Dear Gaius Baltar
Dear G. Baltar,

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 531

13-7. Implement a Custom Exception Class

Problem
You need to create a custom exception class so that you can use the runtime’s exception-handling
mechanism to handle application-specific exceptions.

Solution
Create a serializable class that extends the System.Exception class or inherits from it. Add support
for any custom data members required by the exception, including constructors and properties
required to manipulate the data members.

■Tip If you need to define a number of custom exceptions for use in a single application or library, you should
define a single custom exception that extends System.Exception and use this as a common base class for all of
your other custom exceptions. There is very little point in extending System.ApplicationException, as is often
recommended. Doing so simply introduces another level in your exception hierarchy and provides little if any benefit
when handling your exception classes—after all, catching a nonspecific exception like ApplicationException
is just as bad a practice as catching Exception.

How It Works
Exception classes are unique in the fact that you do not declare new classes solely to implement new
or extended functionality. The runtime’s exception-handling mechanism—exposed by the VB .NET
statements Try, Catch, and Finally—works based on the type of exception thrown, not the functional
or data members implemented by the thrown exception.

If you need to throw an exception, you should use an existing exception class from the .NET
Framework class library, if a suitable one exists. For example, some useful exceptions include the
following:

• System.ArgumentNullException, thrown when code passes a Nothing argument value to your
method that does not support Nothing arguments

• System.ArgumentOutOfRangeException, thrown when code passes an inappropriately large or
small argument value to your method

• System.FormatException, thrown when code attempts to pass your method a String argument
containing incorrectly formatted data

If none of the existing exception classes meets your needs, or you feel your application would
benefit from using application-specific exceptions, it’s a simple matter to create your own exception
class. In order to integrate your custom exception with the runtime’s exception-handling mecha-
nism and remain consistent with the pattern implemented by .NET Framework–defined exception
classes, you should do the following:

• Give your exception class a meaningful name ending in the word Exception, such as
TypeMismatchException or RecordNotFoundException.

• Mark your exception class as NotInheritable if you do not intend other exception classes to
extend it.

532 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

• Implement additional data members and properties to support custom information that the
exception class should provide.

• Implement at least one of the Public constructors with the signatures shown here and ensure
they call the base class constructor. Best practices dictate that you should implement the first
three constructors. The last constructor is used if your type is serializable.

Public Sub New
 MyBase.New
End Sub

Public Sub New(ByVal msg As String)
 MyBase.New(msg)
End Sub

Public Sub New(ByVal msg As String, ByVal inner As Exception)
 MyBase.New(msg, inner)
End Sub
Public Sub New(ByVal info As SerializationInfo, ➥
ByVal context As StreamingContext)
 MyBase.New(info, context)
End Sub

• Make your exception class serializable so that the runtime can marshal instances of your
exception across application domain and machine boundaries. Applying the attribute
System.SerializableAttribute is sufficient for exception classes that do not implement
custom data members. However, because Exception implements the interface System.
Runtime.Serialization.ISerializable, if your exception declares custom data members,
you must override the ISerializable.GetObjectData method of the Exception class as well as
implement a deserialization constructor with this signature. If your exception class is
NotInheritable, mark the deserialization constructor as Private; otherwise, mark it as
Protected. The GetObjectData method and deserialization constructor must call the equiva-
lent base class method to allow the base class to serialize and deserialize its data correctly.
(See recipe 13-1 for details on making classes serializable.)

■Tip In large applications, you will usually implement quite a few custom exception classes. It pays to put signif-
icant thought into how you organize your custom exceptions and how code will use them. Generally, avoid creating
new exception classes unless code will make specific efforts to catch that exception; use data members, not addi-
tional exception classes, to achieve informational granularity.

The Code

The following example is a custom exception named CustomException that extends Exception and
declares two custom data members: a String named stringInfo and a Boolean named booleanInfo.

Imports System
Imports System.Runtime.Serialization

Namespace Apress.VisualBasicRecipes.Chapter13

 ' Mark CustomException as Serializable.

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 533

 <Serializable()> _
 Public NotInheritable Class CustomException
 Inherits Exception

 ' Custom data members for CustomException.
 Private m_StringInfo As String
 Private m_BooleanInfo As Boolean

 ' Three standard constructors that simply call the base
 ' class constructor or System.Exception.
 Public Sub New()
 MyBase.New()
 End Sub

 Public Sub New(ByVal message As String)
 MyBase.New(message)
 End Sub

 Public Sub New(ByVal message As String, ByVal inner As Exception)
 MyBase.New(message, inner)
 End Sub

 ' The deserialization constructor required by the ISerialization
 ' interface. Because CustomException is NotInheritable, this constructor
 ' is private. If CustomException were not NotInheritable, this constructor
 ' should be declared as protected so that derived classes can call
 ' it during deserialization.
 Private Sub New(ByVal info As SerializationInfo, ➥
ByVal context As StreamingContext)
 MyBase.New(info, context)

 ' Deserialize each custom data member.
 m_StringInfo = info.GetString("StringInfo")
 m_BooleanInfo = info.GetBoolean("BooleanInfo")

 End Sub

 ' Additional constructors to allow code to set the custom data
 ' members.
 Public Sub New(ByVal _message As String, ByVal _StringInfo As String, ➥
ByVal _BooleanInfo As Boolean)
 MyBase.New(_message)

 m_StringInfo = _StringInfo
 m_BooleanInfo = _BooleanInfo

 End Sub

 Public Sub New(ByVal _message As String, ByVal inner As Exception, ➥
ByVal _stringinfo As String, ByVal _booleanInfo As Boolean)
 MyBase.New(_message, inner)

534 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 m_StringInfo = _stringinfo
 m_BooleanInfo = _booleanInfo

 End Sub

 ' Read-only properties that provide access to the custom data members.
 Public ReadOnly Property StringInfo() As String
 Get
 Return m_StringInfo
 End Get
 End Property

 Public ReadOnly Property BooleanInfo() As Boolean
 Get
 Return m_BooleanInfo
 End Get
 End Property

 ' The GetObjectData method (declared in the ISerializable interface)
 ' is used during serialization of CustomException. Because
 ' CustomException declares custom data members, it must override
 ' the base class implementation of GetObjectData.
 Public Overrides Sub GetObjectData(ByVal info As SerializationInfo, ➥
ByVal context As StreamingContext)

 ' Serialize the custom data members.
 info.AddValue("StringInfo", m_StringInfo)
 info.AddValue("BooleanInfo", m_BooleanInfo)

 ' Call the base class to serialize its members.
 MyBase.GetObjectData(info, context)

 End Sub

 ' Override the base class Message property to include the custom data
 ' members.
 Public Overrides ReadOnly Property Message() As String
 Get
 Dim msg As String = MyBase.Message

 If StringInfo IsNot Nothing Then
 msg += Environment.NewLine & StringInfo & " = " & BooleanInfo
 End If

 Return msg
 End Get
 End Property

 End Class

 ' A class to demonstrate the use of CustomException.
 Public Class Recipe13_07

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 535

 Public Shared Sub Main()

 Try
 ' Create and throw a CustomException object.
 Throw New CustomException("Some error", "SomeCustomMessage", True)
 Catch ex As CustomException
 Console.WriteLine(ex.Message)
 End Try

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

13-8. Implement a Custom Event Argument

Problem
When you raise an event, you need to pass an object that contains data related to the event that
would be useful when handling it. For example, the MouseEventArgs class (used by the MouseDown
event) includes the Button property, which indicates which mouse button was pressed.

Solution
Create a custom event argument class derived from the System.EventArg class. When you raise the
event, create an instance of your event argument class and pass it to the event handlers.

How It Works
When you declare your own event types, you will often want to pass event-specific state to any
listening event handlers. To create a custom event argument class that complies with the Event
pattern defined by the .NET Framework, you should do the following:

• Derive your custom event argument class from the EventArgs class. The EventArgs class
contains no data and is used with events that do not need to pass event state.

• Give your event argument class a meaningful name ending in EventArgs, such as
DiskFullEventArgs or MailReceivedEventArgs.

• Mark your argument class as NotInheritable if you do not intend other event argument
classes to extend it.

• Implement additional data members and properties to support event state that you need to
pass to event handlers. It’s best to make event state immutable, so you should use Private
ReadOnly data members and use Public properties to provide read-only access to the data
members.

536 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

• Implement a Public constructor that allows you to set the initial configuration of the event state.

• Make your event argument class serializable so that the runtime can marshal instances of it
across application domain and machine boundaries. Applying the attribute System.
SerializableAttribute is usually sufficient for event argument classes. However, if your class
has special serialization requirements, you must also implement the interface System.
Runtime.Serialization.ISerializable. (See recipe 13-1 for details on making classes
serializable.)

The Code

The following example demonstrates the implementation of an event argument class named
MailReceivedEventArgs. Theoretically, an e-mail server passes instances of the MailReceivedEventArgs
class to event handlers in response to the receipt of an e-mail message. The MailReceivedEventArgs
class contains information about the sender and subject of the received e-mail message.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter13

 <Serializable()> _
 Public NotInheritable Class MailReceivedEventArgs
 Inherits EventArgs

 ' Private read-only members that hold the event state that is to be
 ' distributed to all event handlers. The MailReceivedEventArgs class
 ' will specify who sent the received mail and what the subject is.
 Private ReadOnly m_From As String
 Private ReadOnly m_Subject As String

 ' Constuctor, initializes event state.
 Public Sub New(ByVal _from As String, ByVal _subject As String)

 Me.m_From = _from
 Me.m_Subject = _subject

 End Sub

 ' Read-only properties to provide access to event state.
 Public ReadOnly Property From() As String
 Get
 Return m_From
 End Get
 End Property

 Public ReadOnly Property Subject() As String
 Get
 Return m_Subject
 End Get
 End Property

 End Class

 ' A class to demonstrate the use of MailReceivedEventArgs.

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 537

 Public Class Recipe13_08

 Public Shared Sub Main()

 Dim args As New MailReceivedEventArgs("Mike", "Work Plan")

 Console.WriteLine("From: {0}, Subject: {1}", args.From, args.Subject)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Notes
The preceding example mainly deals with creating a custom EventArgs class. If the example were
part of a full application, you would most likely have an event (such as MailReceived) that would
accept an instance of MailReceivedEventArgs as the second parameter. Your Mail class would appro-
priately raise this event, passing an instance of MailReceivedEventArgs. Recipe 13-10 goes into more
detail on handling custom events and even arguments this way.

13-9. Implement the Singleton Pattern

Problem
You need to ensure that only a single instance of a type exists at any given time and that the single
instance is accessible to all elements of your application.

Solution
Implement the type using the Singleton pattern.

How It Works
Of all the identified patterns, the Singleton pattern is perhaps the most widely known and commonly
used. The purpose of the Singleton pattern is to ensure that only one instance of a type exists at a
given time and to provide global access to the functionality of that single instance. You can imple-
ment the type using the Singleton pattern by doing the following:

• Implement a Private Shared member within the type to hold a reference to the single instance of
the type.

• Implement a publicly accessible Shared property in the type to provide read-only access to
the singleton instance.

• Implement only a Private constructor so that code cannot create additional instances of
the type.

538 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

The Code

The following example demonstrates an implementation of the Singleton pattern for a class named
SingletonExample.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter13
 Public Class SingletonExample

 ' A shared member to hold a reference to the singleton instance.
 Private Shared m_Instance As SingletonExample

 ' A shared constructor to create the singleton instance. Another
 ' alternative is to use lazy initialization in the Instance property.
 Shared Sub New()
 m_Instance = New SingletonExample
 End Sub

 ' A private constructor to stop code from creating additional
 ' instances of the singleton type.
 Private Sub New()
 End Sub

 ' A public property to provide access to the singleton instance.
 Public Shared ReadOnly Property Instance() As SingletonExample
 Get
 Return m_Instance
 End Get
 End Property

 ' Public methods that provide singleton functionality.
 Public Sub TestMethod1()
 Console.WriteLine("Test Method 1 ran.")
 End Sub

 Public Sub TestMethod2()
 Console.WriteLine("Test Method 2 ran.")
 End Sub

 End Class
End Namespace

Usage

To invoke the functionality of the SingletonExample class, you can obtain a reference to the singleton
using the Instance property and then call its methods. Alternatively, you can execute members of
the singleton directly through the Instance property. The following code shows both approaches.

Public Class Recipe13_09
 Public Shared Sub Main()

 ' Obtain reference to a singleton and invoke methods.
 Dim s As SingletonExample = SingletonExample.Instance
 s.TestMethod1()

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 539

 ' Execute singleton functionality without a reference.
 SingletonExample.Instance.TestMethod2()

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub
End Class

13-10. Implement the Observer Pattern

Problem
You need to implement an efficient mechanism for an object (the subject) to notify other objects (the
observers) about changes to its state.

Solution
Implement the Observer pattern using delegate types as type-safe function pointers and event types
to manage and notify the set of observers.

How It Works
The traditional approach to implementing the Observer pattern is to implement two interfaces: one
to represent an observer (IObserver) and the other to represent the subject (ISubject). Objects that
implement IObserver register with the subject, indicating that they want to be notified of important
events (such as state changes) affecting the subject. The subject is responsible for managing the list
of registered observers and notifying them in response to events affecting the subject. The subject
usually notifies observers by calling a Notify method declared in the IObserver interface. The subject
might pass data to the observer as part of the Notify method, or the observer might need to call a
method declared in the ISubject interface to obtain additional details about the event.

Although you are free to implement the Observer pattern in VB .NET using the approach just
described, the Observer pattern is so pervasive in modern software solutions that VB .NET and the
.NET Framework include event and delegate types to simplify its implementation. The use of events
and delegates means that you do not need to declare IObserver and ISubject interfaces. In addition, you
do not need to implement the logic necessary to manage and notify the set of registered observers—the
area where most coding errors occur.

The .NET Framework uses one particular implementation of the event-based and delegate-
based Observer pattern so frequently that it has been given its own name: the Event pattern. (Pattern
purists might prefer the name Event idiom, but Event pattern is the name most commonly used in
Microsoft documentation.)

The Code

The example for this recipe contains a complete implementation of the Event pattern, which includes
the following types:

540 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

• Thermostat class (the subject of the example), which keeps track of the current temperature
and notifies observers when a temperature change occurs

• TemperatureChangedEventArgs class, which is a custom implementation of the System.
EventArgs class used to encapsulate temperature change data for distribution during the
notification of observers

• TemperatureChangedEventHandler delegate, which defines the signature of the method that all
observers of a Thermostat object should implement if they want to be notified in the event of
temperature changes

• TemperatureChangeObserver and TemperatureAverageObserver classes, which are observers of
the Thermostat class

The TemperatureChangedEventArgs class (in the following listing) derives from the class System.
EventArgs. The custom event argument class should contain all of the data that the subject needs to
pass to its observers when it notifies them of an event. If you do not need to pass data with your event
notifications, you do not need to define a new argument class; simply pass EventArgs.Empty or
Nothing as the argument when you raise the event. (See recipe 13-8 for details on implementing
custom event argument classes.)

Namespace Apress.VisualBasicRecipes.Chapter13

 ' An event argument class that contains information about a temperature
 ' change event. An instance of this class is passed with every event.
 <Serializable()> _
 Public Class TemperatureChangedEventArgs
 Inherits EventArgs

 ' Private data members contain the old and new temperature readings.
 Private ReadOnly m_OldTemperature As Integer
 Private ReadOnly m_NewTemperature As Integer

 ' Constructor that takes the old and new temperature values.
 Public Sub New(ByVal oldTemp As Integer, ByVal newTemp As Integer)

 m_OldTemperature = oldTemp
 m_NewTemperature = newTemp

 End Sub

 ' Read-only properties provide access to the temperature values.
 Public ReadOnly Property OldTemperature()
 Get
 Return m_OldTemperature
 End Get
 End Property

 Public ReadOnly Property NewTemperature()
 Get
 Return m_NewTemperature
 End Get
 End Property

 End Class
End NameSpace

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 541

The following code shows the declaration of the TemperatureChangedEventHandler delegate.
Based on this declaration, all observers must implement a subroutine (the name is unimportant),
which takes two arguments: an Object instance as the first argument and a
TemperatureChangedEventArgs object as the second. During notification, the Object argument is a
reference to the Thermostat object that raises the event, and the TemperatureChangedEventArgs
argument contains data about the old and new temperature values.

Namespace Apress.VisualBasicRecipes.Chapter13

 ' A delegate that specifies the signature that all temperature event
 ' handler methods must implement.
 Public Delegate Sub TemperatureChangedEventHandler(ByVal sender As Object, ➥
ByVal args As TemperatureChangedEventArgs)

End NameSpace

For the purpose of demonstrating the Observer pattern, the example contains two different
observer types: TemperatureAverageObserver and TemperatureChangeObserver. Both classes have the
same basic implementation. TemperatureAverageObserver keeps a count of the number of tempera-
ture change events and the sum of the temperature values, and displays an average temperature
when each event occurs. TemperatureChangeObserver displays information about the change in
temperature each time a temperature change event occurs.

The following listing shows the TemperatureChangeObserver and TemperatureAverageObserver
classes. Notice that the constructors take references to the Thermostat object that the
TemperatureChangeObserver or TemperatureAverageObserver object should observe. When you
instantiate an observer, pass it a reference to the subject. The observer’s constructor must handle
the observer’s event by using AddHandler and specifying the delegate method preceded by the
AddressOf keyword.

Once the TemperatureChangeObserver or TemperatureAverageObserver object has registered its
delegate instance with the Thermostat object, you need to maintain a reference to this Thermostat
object only if you want to stop observing it later on. In addition, you do not need to maintain a refer-
ence to the subject, because a reference to the event source is included as the first argument each
time the Thermostat object raises an event through the TemperatureChange method.

Namespace Apress.VisualBasicRecipes.Chapter13

 ' A thermostat observer that displays information about the change in
 ' temperature when a temperature change event occurs.
 Public Class TemperatureChangeObserver

 ' A constructor that takes a reference to the Thermostat object that
 ' the TemperatureChangeObserver object should observe.
 Public Sub New(ByVal t As Thermostat)

 ' Add a handler for the TemperatureChanged event.
 AddHandler t.TemperatureChanged, AddressOf Me.TemperatureChange

 End Sub

 ' The method to handle temperature change events.
 Public Sub TemperatureChange(ByVal sender As Object, ➥
ByVal args As TemperatureChangedEventArgs)
 Console.WriteLine("ChangeObserver: Old={0}, New={1}, Change={2}", ➥

542 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

args.OldTemperature, args.NewTemperature, args.NewTemperature - args.OldTemperature)
 End Sub

 End Class

 ' A Thermostat observer that displays information about the average
 ' temperature when a temperature change event occurs.
 Public Class TemperatureAverageObserver

 ' Sum contains the running total of temperature readings.
 ' Count contains the number of temperature events received.
 Private sum As Integer = 0
 Private count As Integer = 0

 ' A constructor that takes a reference to the Thermostat object that
 ' the TemperatureAverageObserver object should observe.
 Public Sub New(ByVal T As Thermostat)
 ' Add a handler for the TemperatureChanged event.
 AddHandler T.TemperatureChanged, AddressOf Me.TemperatureChange
 End Sub

 ' The method to handle temperature change events.
 Public Sub TemperatureChange(ByVal sender As Object, ➥
ByVal args As TemperatureChangedEventArgs)

 count += 1
 sum += args.NewTemperature

 Console.WriteLine("AverageObserver: Average={0:F}", ➥
CDbl(sum) / CDbl(count))

 End Sub

 End Class
End NameSpace

Finally, the Thermostat class is the observed object in this Observer (Event) pattern. In theory, a
monitoring device sets the current temperature by calling the Temperature property on a Thermostat
object. This causes the Thermostat object to raise its TemperatureChange event and send a
TemperatureChangedEventArgs object to each observer.

The example contains a Recipe13_10 class that defines a Main method to drive the example. After
creating a Thermostat object and two different observer objects, the Main method repeatedly prompts you
to enter a temperature. Each time you enter a new temperature, the Thermostat object notifies the
listeners, which display information to the console. The following is the code for the Thermostat class.

Namespace Apress.VisualBasicRecipes.Chapter13

 ' A class that represents a Thermostat, which is the source of temperature
 ' change events. In the Observer pattern, a Thermostat object is the
 ' subject that observers listen to for change notifications.
 Public Class Thermostat

 ' Private field to hold current temperature.
 Private m_Temperature As Integer = 0

CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S 543

 ' The event used to maintain a list of observer delegates and raise
 ' a temperature change event when a temperature change occurs.
 Public Event TemperatureChanged As TemperatureChangedEventHandler

 ' A protected method used to raise the TemperatureChanged event.
 ' Because events can be triggered only from within the containing
 ' type, using a protected method to raise the event allows derived
 ' classes to provide customized behavior and still be able to raise
 ' the base class event.
 Protected Overridable Sub OnTemperatureChanged(ByVal args As➥
 TemperatureChangedEventArgs)

 ' Notify all observers.
 RaiseEvent TemperatureChanged(Me, args)

 End Sub

 ' Public property to get and set the current temperature. The "set"
 ' side of the property is responsible for raising the temperature
 ' change event to notify all observers of a change in temperature.
 Public Property Temperature() As Integer
 Get
 Return m_Temperature
 End Get
 Set(ByVal value As Integer)
 ' Create a new event argument object containing the old and
 ' new temperatures.
 Dim args As New TemperatureChangedEventArgs(m_Temperature, value)

 ' Update the current temperature.
 m_Temperature = value

 ' Raise the temperature change event.
 OnTemperatureChanged(args)

 End Set
 End Property

 End Class

 ' A class to demonstrate the use of the Observer pattern.
 Public Class Recipe13_10

 Public Shared Sub Main()

 ' Create a Thermostat instance.
 Dim myThemoStat As New Thermostat

 ' Create the Thermostat observers.
 Dim changeObserver As New TemperatureChangeObserver(myThemoStat)
 Dim averageObserver As New TemperatureAverageObserver(myThemoStat)

544 CH AP T E R 1 3 ■ C OM M ON L Y U S E D IN T E R F AC E S AN D P AT T E R N S

 ' Loop, getting temperature readings from the user.
 ' Any non-integer value will terminate the loop.
 Do
 Console.WriteLine(Environment.NewLine)
 Console.Write("Enter current temperature: ")

 Try
 ' Convert the user's input to an integer and use it to set
 ' the current temperature of the Thermostat.
 myThemoStat.Temperature = Int32.Parse(Console.ReadLine)
 Catch ex As Exception
 ' Use the exception condition to trigger termination.
 Console.WriteLine("Terminating Observer Pattern Example.")

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()
 Return

 End Try
 Loop While True

 End Sub

 End Class
End Namespace

Usage

The following listing shows the kind of output you should expect if you build and run the previous
example. The bold values show your input.

Enter current temperature: 35
ChangeObserver: Old=0, New=35, Change=35
AverageObserver: Average=35.00

Enter current temperature: 37
ChangeObserver: Old=35, New=37, Change=2
AverageObserver: Average=36.00

Enter current temperature: 40
ChangeObserver: Old=37, New=40, Change=3
AverageObserver: Average=37.33

545

■ ■ ■

C H A P T E R 1 4

Windows Integration

The intention of the Microsoft .NET Framework is to run on a wide variety of operating systems to
improve code mobility and simplify cross-platform integration. At the time this book was written,
versions of the .NET Framework were available for various operating systems, including Microsoft
Windows, FreeBSD, Linux, and Mac OS X. However, many of these implementations are yet to be
widely adopted. Microsoft Windows is currently the operating system on which the .NET Frame-
work is most commonly installed.

The .NET Framework includes functionality for working with several components (such as the
registry and event log) that are integrated with the Windows operating system. While other platforms
may provide equivalent functionality, the recipes in this chapter focus specifically on the Windows
implementations and cover the following topics:

• Retrieve runtime environment information (recipes 14-1 and 14-2)

• Write to the Windows event log (recipe 14-3)

• Read, write, and search the Windows registry (recipe 14-4 and 14-5)

• Create and install Windows services (recipes 14-6 and 14-7)

• Create a shortcut on the Windows Start menu or desktop (recipe 14-8)

■Note The majority of functionality discussed in this chapter is protected by code access security permissions
enforced by the common language runtime (CLR). See the .NET Framework software development kit (SDK) docu-
mentation for the specific permissions required to execute each member.

14-1. Access Runtime Environment Information

Problem
You need to access information about the runtime environment and platform in which your appli-
cation is running.

Solution
Use the members of the System.Environment class.

546 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

How It Works
The Environment class provides a set of Shared members that you can use to obtain (and in some
cases modify) information about the environment in which an application is running. Table 14-1
describes some of the most commonly used Environment members.

Table 14-1. Commonly Used Members of the Environment Class

Member Description

Properties

CommandLine Gets a String containing the command line used to execute
the current application, including the application name. (See
recipe 1-5 for details.)

CurrentDirectory Gets and sets a String containing the current application
directory. Initially, this property will contain the name of
the directory in which the application was started.

HasShutdownStarted Gets a Boolean that indicates whether the CLR has started to shut
down or the current application domain has started unloading.

MachineName Gets a String containing the name of the machine.

OSVersion Gets a System.OperatingSystem object that contains information
about the platform and version of the underlying operating
system. See the paragraph following this table for more details.

ProcessorCount Gets the number of processors on the machine.

SystemDirectory Gets a String containing the fully qualified path of the system
directory; that is, the system32 subdirectory of the Windows
installation folder.

TickCount Gets an Integer representing the number of milliseconds that
have elapsed since the system was started.

UserDomainName Gets a String containing the Windows domain name to which
the current user belongs. This will be the same as MachineName
if the user has logged in on a machine account instead of a
domain account.

UserInteractive Gets a Boolean indicating whether the application is running
in user interactive mode; in other words, its forms and message
boxes will be visible to the logged-on user. UserInteractive
will return False when the application is running as a service
or is a web application.

UserName Gets a String containing the name of the user that started the
current thread, which can be different from the logged-on user
in case of impersonation.

Version Gets a System.Version object that contains information about
the version of the CLR.

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 547

The System.OperatingSystem object returned by OSVersion contains four properties:

• The Platform property returns a value of the System.PlatformID enumeration identifying the
current operating system; valid values are Unix, Win32NT, Win32S, Win32Windows, and WinCE.

• The ServicePack property returns a String identifying the service pack level installed on the
computer. If no service packs are installed, or service packs are not supported, an empty
String is returned.

• The Version property returns a System.Version object that identifies the specific operating
system version. This class includes the Build, Major, MajorRevision, Minor, MinorRevision,
and Revision properties, which allow you to get each specific part of the complete version
number.

• The VersionString property returns a concatenated string summary of the Platform,
ServicePack, and Version properties.

To determine the operating system on which you are running, you must use both the platform
and the version information, as detailed in Table 14-2.

Methods

ExpandEnvironmentVariables Replaces the names of environment variables in a String with
the value of the variable. (See recipe 14-2 for details.)

GetCommandLineArgs Returns a String array containing all elements of the command
line used to execute the current application, including the
application name. (See recipe 1-5 for details.)

GetEnvironmentVariable Returns a String containing the value of a specified environ-
ment variable. (See recipe 14-2 for details.)

GetEnvironmentVariables Returns an object implementing System.Collections.
IDictionary, which contains all environment variables and
their values. (See recipe 14-2 for details.)

GetFolderPath Returns a String containing the path to a special system folder
specified using the System.Environment.SpecialFolder
enumeration. This includes folders for the Internet cache,
cookies, history, desktop, and favorites. (See the .NET Frame-
work SDK documentation for a complete list of values.)

GetLogicalDrives Returns a String array containing the names of all logical
drives, including network mapped drives. Note that each drive
has the following syntax: <drive letter>:\.

Table 14-1. Commonly Used Members of the Environment Class

Member Description

548 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

The Code

The following example uses the Environment class to display information about the current environ-
ment to the console.

Imports System

Namespace Apress.VisualBasicRecipes.Chapter14
 Public Class Recipe14_01

 Public Shared Sub Main()

 ' Command line.
 Console.WriteLine("Command line : " & Environment.CommandLine)

 ' OS and CLR version information.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("OS PlatformID : " & Environment.OSVersion.Platform)
 Console.WriteLine("OS Major Version : " & ➥
Environment.OSVersion.Version.Major)
 Console.WriteLine("OS Minor Version : " & ➥
Environment.OSVersion.Version.Minor)
 Console.WriteLine("CLR Version : " & Environment.Version.ToString)

 ' User, machine and domain name information.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("User Name : " & Environment.UserName)
 Console.WriteLine("Domain Name : " & Environment.UserDomainName)
 Console.WriteLine("Machine Name : " & Environment.MachineName)

 ' Other environment information.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Is interactive? : " & Environment.UserInteractive)
 Console.WriteLine("Shutting down? : " & Environment.HasShutdownStarted)
 Console.WriteLine("Ticks since startup : " & Environment.TickCount)

 ' Display the names of all logical drives.
 Console.WriteLine(Environment.NewLine)

Table 14-2. Determining the Current Operating System

PlatformID Major Version Minor Version Operating System

Win32Windows 4 10 Windows 98

Win32Windows 4 90 Windows ME

Win32NT 4 0 Windows NT 4

Win32NT 5 0 Windows 2000

Win32NT 5 1 Windows XP

Win32NT 5 2 Windows Server 2003

Win32NT 6 0 Windows Vista

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 549

 For Each s As String In Environment.GetLogicalDrives
 Console.WriteLine("Logical drive : " & s)
 Next

 ' Standard folder information.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Current folder : " & Environment.CurrentDirectory)
 Console.WriteLine("System folder : " & Environment.SystemDirectory)

 ' Enumerate all special folders and display them.
 Console.WriteLine(Environment.NewLine)
 For Each s As Environment.SpecialFolder In ➥
[Enum].GetValues(GetType(Environment.SpecialFolder))
 Console.WriteLine("{0} folder : {1}", s, ➥
Environment.GetFolderPath(s))
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

14-2. Retrieve the Value of
an Environment Variable

Problem
You need to retrieve the value of an environment variable for use in your application.

Solution
Use the GetEnvironmentVariable, GetEnvironmentVariables, and ExpandEnvironmentVariables
methods of the Environment class.

How It Works
The GetEnvironmentVariable method allows you to retrieve a string containing the value of a single
named environment variable, whereas the GetEnvironmentVariables method returns an object
implementing IDictionary that contains the names and values of all environment variables as
strings. .NET Framework 2.0 introduces additional overloads of the GetEnvironmentVariable and
GetEnvironmentVariables methods, which take a System.EnvironmentVariableTarget argument,
allowing you to specify a subset of environment variables to return based on the target of the variable:
Machine, Process, or User.

550 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

The ExpandEnvironmentVariables method provides a simple mechanism for substituting the
value of an environment variable into a string by including the variable name enclosed in percent
signs (%) within the string.

The Code

Here is an example that demonstrates how to use all three methods:

Imports System
Imports System.Collections

Namespace Apress.VisualBasicRecipes.Chapter14
 Public Class Recipe14_02

 Public Shared Sub Main()

 ' Retrieve a named environment variable.
 Console.WriteLine("Path = " & GetEnvironmentVariable("Path"))
 Console.WriteLine(Environment.NewLine)

 ' Substitute the value of named environment variables.
 Console.WriteLine(ExpandEnvironmentVariables("The Path on " & ➥
"%computername% is %path%"))

 ' Retrieve all environment variables targeted at the process and
 ' display the values of all that begin with the letter U.
 Dim vars As IDictionary = ➥
GetEnvironmentVariables(EnvironmentVariableTarget.Process)

 For Each s As String In vars.Keys
 If s.ToUpper.StartsWith("U") Then
 Console.WriteLine(s & " = " & vars(s))
 End If
 Next

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

14-3. Write an Event to the Windows Event Log

Problem
You need to write an event to the Windows event log.

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 551

Solution
Use the members of the System.Diagnostics.EventLog class to create a log (if required), register an
event source, and write events.

How It Works
You can write to the Windows event log using the Shared methods of the EventLog class, or you can
create an EventLog object and use its members. Whichever approach you choose, before writing to
the event log, you must decide which log you will use and register an event source against that log.
The event source is simply a string that uniquely identifies your application. An event source may be
registered against only one log at a time.

By default, the event log contains three separate logs: Application, System, and Security. Usually,
you will write to the Application log, but you might decide your application warrants a custom log in
which to write events. You do not need to explicitly create a custom log; when you register an event
source against a log, if the specified log doesn’t exist, it’s created automatically.

Once you have decided on the destination log and registered an event source, you can start to
write event log entries using the WriteEntry method. WriteEntry provides a variety of overloads that
allow you to specify some or all of the following values:

• A String containing the event source for the log entry (Shared versions of WriteEntry only).

• A String containing the message for the log entry.

• A value from the System.Diagnostics.EventLogEntryType enumeration, which identifies the
type of log entry. Valid values are Error, FailureAudit, Information, SuccessAudit, and Warning.

• An Integer that specifies an application-specific event ID for the log entry.

• A Short that specifies an application-specific subcategory for the log entry.

• A Byte array containing any raw data to associate with the log entry.

■Note The methods of the EventLog class also provide overloads that support the writing of events to the event
log of remote machines. See the .NET Framework SDK documentation for more information.

The Code

The following example demonstrates how to use the Shared members of EventLog class to write an
entry to the event log of the local machine.

Imports System
Imports System.Diagnostics

Namespace Apress.VisualBasicRecipes.Chapter14
 Public Class Recipe14_03

 Public Shared Sub Main()

 ' If it does not exist, register an event source for this
 ' application against the Application log of the local machine.
 ' Trying to register an event source that already exists on the
 ' specified machine will throw a System.ArgumentException.
 If Not EventLog.SourceExists("Visual Basic 2005 Recipes") Then

552 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

 EventLog.CreateEventSource("Visual Basic 2005 Recipes", ➥
"Application")
 End If

 ' Write an event to the event log.
 EventLog.WriteEntry("Visual Basic 2005 Recipes", ➥
"A simple test event.", EventLogEntryType.Information, 1, 0, ➥
New Byte() {10, 55, 200})

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 ' Remove the event source.
 EventLog.DeleteEventSource("Visual Basic 2005 Recipes")

 End Sub

 End Class
End Namespace

Usage

After you run the sample code, launch the Event Viewer (EventVwr.exe) and find the last entry with
a source of “Visual Basic 2005 Recipes.” Figure 14-1 shows how the log entry will look.

Figure 14-1. Custom message written to the event log

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 553

14-4. Read and Write to the Windows Registry

Problem
You need to read information from, or write information to, the Windows registry.

Solution
Use the methods GetValue and SetValue of the Microsoft.Win32.Registry class.

■Tip The GetValue and SetValue methods open a registry key, get or set its value, and close the key each
time they are called. This means they are inefficient when used to perform many read or write operations. The
GetValue and SetValue methods of the Microsoft.Win32.RegistryKey class, discussed in recipe 14-5,
will provide better performance if you need to perform many read or write operations on the registry.

How It Works
The GetValue and SetValue methods (new to .NET 2.0) allow you to read and write named values in
named registry keys. GetValue takes three arguments:

• A String containing the fully qualified name of the key you want to read. The key name must
start with one of the following root key names:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_CONFIG

• HKEY_CURRENT_USER

• HKEY_DYN_DATA

• HKEY_LOCAL_MACHINE

• HKEY_PERFORMANCE_DATA

• HKEY_USERS

• A String containing the name of the value in the key you want to read.

• An Object containing the default value to return if the named value is not present in the key.

GetValue returns an Object containing either the data read from the registry or the default value
specified as the third argument if the named value is not found. If the specified key does not exist,
GetValue returns Nothing.

SetValue offers two overloads. The most functional expects the following arguments:

• A String containing the fully qualified name of the key you want to write. The key must start
with one of the root key names specified previously. If the registry key does not exist, it is
created automatically.

• A String containing the name of the value in the key you want to write.

• An Object containing the value to write.

• An element of the Microsoft.Win32.RegistyValueKind enumeration that specifies the registry
data type that should be used to hold the data.

554 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

The second overload allows you to call the SetValue method without specifying the
RegistryValueKind argument. In this case, SetValue attempts to automatically determine what the
data type should be, based on the data type of the Object argument. A 32-bit integer type will be
inferred as a Dword value, and any other numeric type will be inferred as a String. Environment variables,
such as %PATH%, will be ignored by this overload and inferred as a normal String. Use the previously
mentioned overload if you need to ensure the correct data type is used.

The My object offers the My.Computer.Registry class as an alternative. This class includes only
two methods: SetValue and GetValue, which are identical to the SetValue and GetValue methods
from the Microsoft.Win32.Registry class. (Refer to Chapter 5 for more information about the My
object.)

The Code

The following example demonstrates how to use GetValue and SetValue to read from and write to the
registry. Every time the example is run, it reads usage information from the registry and displays it to
the screen. The example also updates the stored usage information, which you can see the next time
you run the example.

Imports System
Imports Microsoft.Win32

Namespace Apress.VisualBasicRecipes.Chapter14
 Public Class Recipe14_04

 Public Shared Sub Main()

 ' Variables to hold usage information read from registry.
 Dim lastUser As String
 Dim lastRun As String
 Dim runCount As Integer

 ' Read the name of the last user to run the application from the
 ' registry. This is stored as the default value of the key and is
 ' accessed by not specifying a value name. Cast the returned object
 ' to a string.
 lastUser = DirectCast(Registry.GetValue("HKEY_CURRENT_USER\" & ➥
"Software\Apress\Visual Basic 2005 Recipes", "", "Nobody"), String)

 ' If lastUser is Nothing, it means that the specified registry key
 ' does not exist.
 If lastUser Is Nothing Then
 lastUser = "Nobody"
 lastRun = "Never"
 runCount = 0
 Else
 ' Read the last run date and specify a default value of
 ' Never. Cast the returned Object to a String.
 lastRun = DirectCast(Registry.GetValue("HKEY_CURRENT_USER\" & ➥
"Software\Apress\Visual Basic 2005 Recipes", "LastRun", "Never"), String)

 ' Read the run count value and specify a default value of
 ' 0 (zero). Cast the returned Object to an Integer.
 runCount = DirectCast(Registry.GetValue("HKEY_CURRENT_USER\" & ➥

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 555

"Software\Apress\Visual Basic 2005 Recipes", "RunCount", 0), Integer)
 End If

 ' Display the usage information.
 Console.WriteLine("Last user name: " & lastUser)
 Console.WriteLine("Last run date/time: " & lastRun)
 Console.WriteLine("Previous executions: " & runCount)

 ' Update the usage information. It doesn't matter if the registry
 ' key exists or not; SetValue will automatically create it.

 ' Update the last user information with the current username.
 ' Specifiy that this should be stored as the default value
 ' for the key by using an empty string as the value name.
 Registry.SetValue("HKEY_CURRENT_USER\Software\Apress\Visual Basic " & ➥
"2005 Recipes", "", Environment.UserName, RegistryValueKind.String)

 ' Update the last run information with the current date and time.
 ' Specify that this should be stored as a String value in the
 ' registry.
 Registry.SetValue("HKEY_CURRENT_USER\Software\Apress\Visual Basic " & ➥
"2005 Recipes", "LastRun", DateTime.Now.ToString, RegistryValueKind.String)

 ' Update the usage count information. Specify that this should
 ' be stored as an Integer value in the registry.
 runCount += 1
 Registry.SetValue("HKEY_CURRENT_USER\Software\Apress\Visual Basic " & ➥
"2005 Recipes", "RunCount", runCount, RegistryValueKind.DWord)

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

When you execute Recipe14-04.exe for the first time, you will get output such as this:

Last user name: Nobody
Last run date/time: Never
Previous executions: 0

Subsequent executions will result in output such as this:

Last user name: Administrator
Last run date/time: 5/10/2007 9:42:38 PM
Previous executions: 1

556 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

14-5. Search the Windows Registry

Problem
You need to search the Windows registry for a key that contains a specific value or content.

Solution
Use the Microsoft.Win32.Registry class to obtain a Microsoft.Win32.RegistryKey object that repre-
sents the root key of a registry hive you want to search. Use the members of this RegistryKey object
to navigate through and enumerate the registry key hierarchy, as well as to read the names and
content of values held in the keys.

How It Works
You must first obtain a RegistryKey object that represents a base-level key and navigate through the
hierarchy of RegistryKey objects as required. The Registry class implements a set of seven Shared
properties that return RegistryKey objects representing base-level registry keys; Table 14-3 describes
the registry location to where each of these fields maps. The My object offers the My.Computer.Registry
class, which includes an identical set of properties that provide the same functionality as their
Microsoft.Win32.Registry counterparts. (Refer to Chapter 5 for more information about the My object.)

■Tip The Shared method RegistryKey.OpenRemoteBaseKey allows you to open a registry base key on a
remote machine. See the .NET Framework SDK documentation for details of its use.

Once you have the base-level RegistryKey object, you must navigate through its child subkeys
recursively. To support navigation, the RegistryKey class allows you to do the following:

Table 14-3. Shared Fields of the Registry Class

Field Registry Mapping

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfig HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

DynData HKEY_DYN_DATA

LocalMachine HKEY_LOCAL_MACHINE

PerformanceData HKEY_PERFORMANCE_DATA

Users HKEY_USERS

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 557

• Get the number of immediate subkeys using the SubKeyCount property.

• Get a String array containing the names of all subkeys using the GetSubKeyNames method.

• Get a RegistryKey reference to a subkey using the OpenSubKey method. The OpenSubKey method
provides two overloads: the first opens the named key as read-only, and the second accepts a
Boolean argument that, if true, will open a writable RegistryKey object.

Once you obtain a RegistryKey, you can create, read, update, and delete subkeys and values
using the methods listed in Table 14-4. Methods that modify the contents of the key require you to
have a writable RegistryKey object.

The RegistryKey class implements IDisposable. You should call the IDisposable.Dispose
method to free operating system resources when you have finished with the RegistryKey object.

The Code

The following example takes a single command-line argument and recursively searches the CurrentUser
hive of the registry looking for keys with names matching the supplied argument. When the example
finds a match, it displays all String type values contained in the key to the console.

Table 14-4. RegistryKey Methods to Create, Read, Update, and Delete Registry Keys and Values

Method Description

CreateSubKey Creates a new subkey with the specified name and returns a writable
RegistryKey object. If the specified subkey already exists, CreateSubKey
returns a writable reference to the existing subkey.

DeleteSubKey Deletes the subkey with the specified name, which must be empty of
subkeys (but not values); otherwise, a System.InvalidOperationException
is thrown.

DeleteSubKeyTree Deletes the subkey with the specified name along with all of its subkeys.

DeleteValue Deletes the value with the specified name from the current key.

GetValue Returns the value with the specified name from the current key. The
value is returned as an Object, which you must cast to the appropriate
type. The simplest form of GetValue returns Nothing if the specified
value doesn’t exist. An overload allows you to specify a default value
to return (instead of Nothing) if the named value doesn’t exist.

GetValueKind Returns the registry data type of the value with the specified name in the
current key. The value is returned as a member of the Microsoft.Win32.
RegistryValueKind enumeration.

GetValueNames Returns a String array containing the names of all values in the current
registry key. If the key includes a default value, represented by an empty
string, the empty string will be included in the array of names returned
by this method.

SetValue Creates (or updates) the value with the specified name. In .NET 2.0, you
can specify the data type used to store the value with the overload that
takes a RegistryValueKind as the last parameter. If you don’t provide
such a value, one will be calculated automatically, based on the managed
type of the object you pass as the value to set.

558 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

Imports System
Imports Microsoft.Win32

Namespace Apress.VisualBasicRecipes.Chapter14
 Public Class Recipe14_05

 Public Shared Sub SearchSubKeys(ByVal root As RegistryKey, ➥
ByVal searchKey As String)

 ' Loop through all subkeys contained in the current key.
 For Each keyName As String In root.GetSubKeyNames

 Try
 Using key As RegistryKey = root.OpenSubKey(keyName)
 If keyName = searchKey Then printkeyvalues(key)
 SearchSubKeys(key, searchKey)
 End Using
 Catch ex As Security.SecurityException
 ' Ignore SecurityException for the purpose of this example.
 ' Some subkeys of HKEY_CURRENT_USER are secured and will
 ' throw a SecurityException when opened.
 End Try
 Next

 End Sub

 Public Shared Sub PrintKeyValues(ByVal key As RegistryKey)

 ' Display the name of the matching subkey and the number of
 ' values it contains.
 Console.WriteLine("Registry key found : {0} contains {1} values", ➥
key.Name, key.ValueCount)

 ' Loop through the values and display.
 For Each valueName As String In key.GetValueNames

 If TypeOf key.GetValue(valueName) Is String Then
 Console.WriteLine(" Value : {0} = {1}", valueName, ➥
key.GetValue(valueName))
 End If

 Next

 End Sub

 Public Shared Sub Main(ByVal args As String())

 If args.Length > 0 Then
 ' Open the CurrentUser base key.
 Using root As RegistryKey = Registry.CurrentUser
 ' Search recursively through the registry for any keys
 ' with the specified name.
 SearchSubKeys(root, args(0))
 End Using
 End If

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 559

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

Usage

Running the example using the command Recipe14-05 Environment will display output similar to
the following when executed using the command on a machine running Windows XP:

Registry key found : HKEY_CURRENT_USER\Environment contains 2 values
 Value : TEMP = C:\Documents and Settings\Allen\Local Settings\Temp
 Value : TMP = C:\Documents and Settings\Allen\Local Settings\Temp

14-6. Create a Windows Service

Problem
You need to create an application that will run as a Windows service.

Solution
Create a class that extends System.ServiceProcess.ServiceBase. Use the inherited properties to
control the behavior of your service, and override inherited methods to implement the functionality
required. Implement a Main method that creates an instance of your service class and passes it to the
Shared ServiceBase.Run method.

■Note The ServiceBase class is defined in the System.ServiceProcess assembly, so you must include a
reference to this assembly when you build your service class.

How It Works
To create a Windows service manually, you must implement a class derived from the ServiceBase
class. The ServiceBase class provides the base functionality that allows the Windows Service Control
Manager (SCM) to configure the service, operate the service as a background task, and control the
life cycle of the service. The SCM also controls how other applications can manage the service
programmatically.

■Tip If you are using Microsoft Visual Studio, you can use the Windows Service project template to create a
Windows service. The template provides the basic code infrastructure required by a Windows service class, which
you can extend with your custom functionality.

560 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

To control your service, the SCM uses the eight Protected methods inherited from ServiceBase
class described in Table 14-5. You should override these virtual methods to implement the function-
ality and behavior required by your service. Not all services must support all control messages. The
CanXXX properties inherited from the ServiceBase class declare to the SCM which control messages
your service supports. Table 14-5 specifies the property that controls each operation.

As mentioned in Table 14-5, the OnStart method is expected to return within 30 seconds, so
you should not use OnStart to perform lengthy initialization tasks when you can avoid it. A service
class should implement a constructor that performs initialization, including configuring the inher-
ited properties of the ServiceBase class. In addition to the properties that declare the control messages
supported by a service, the ServiceBase class implements three other important properties:

Table 14-5. Methods That Control the Operation of a Service

Method Description

OnStart All services must support the OnStart method, which the SCM calls to
start the service. The SCM passes a String array containing arguments
specified for the service. These arguments can be specified when the
ServiceController.Start method is called and are usually configured in
the service’s property window in Windows Control Panel. However, they
are rarely used because it is better for the service to retrieve its configura-
tion information directly from a configuration file or the Windows registry.
The OnStart method must normally return within 30 seconds, or the SCM
will abort the service. Your service must call the RequestAdditionalTime
method of the ServiceBase class if it requires more time; specify the addi-
tional milliseconds required as an Integer.

OnStop Called by the SCM to stop a service. The SCM will call OnStop only if the
CanStop property is set to True, which it is by default.

OnPause Called by the SCM to pause a service. The SCM will call OnPause only if the
CanPauseAndContinue property, which is False by default, is set to True.

OnContinue Called by the SCM to continue a paused service. The SCM will call OnContinue
only if the CanPauseAndContinue property, which is False by default, is set
to True.

OnShutdown Called by the SCM when the system is shutting down. The SCM will call
OnShutdown only if the CanShutdown property, which is False by default, is
set to True.

OnPowerEvent Called by the SCM when a system-level power status change occurs, such
as a laptop going into suspend mode. The SCM will call OnPowerEvent only
if the CanHandlePowerEvent property, which is False by default, is set to True.

OnCustomCommand Allows you to extend the service control mechanism with custom control
messages. See the .NET Framework SDK documentation for more details.

OnSessionChange Called by the SCM when a change event is received from the Terminal
Services session or when users log on and off the local machine. A System.
ServiceProcess.SessionChangeDescription object passed as an argument
by the SCM contains details of what type of session change occurred. The
SCM will call OnSessionChange only if the CanHandleSessionChangeEvent
property, which is False by default, is set to True. This method is new in
.NET Framework 2.0.

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 561

• ServiceName is the name used internally by the SCM to identify the service and must be set
before the service is run.

• AutoLog controls whether the service automatically writes entries to the event log when it
receives any of the OnStart, OnStop, OnPause, and OnContinue control messages (see Table 14-5).

• EventLog provides access to an EventLog object that’s preconfigured with an event source
name that’s the same as the ServiceName property registered against the Application log.
(See recipe 14-3 for more information about the EventLog class.)

The final step in creating a service is to implement a Shared Main method. The Main method must
create an instance of your service class and pass it as an argument to the Shared method ServiceBase.Run.

The Code

The following Windows service example uses a configurable System.Timers.Timer to write an entry
to the Windows event log periodically. You can start, pause, and stop the service using the Services
application in the Control Panel.

Imports System
Imports System.Timers
Imports System.ServiceProcess

Namespace Apress.VisualBasicRecipes.Chapter14

 Class Recipe14_06
 Inherits ServiceBase

 ' A timer that controls how frequenty the example writes to the
 ' event log.
 Private serviceTimer As Timer

 Public Sub New()

 ' Set the ServiceBase.ServiceName property.
 ServiceName = "Recipe 14_06 Service"

 ' Configure the level of control available on the service.
 CanStop = True
 CanPauseAndContinue = True
 CanHandleSessionChangeEvent = True

 ' Configure the service to log important events to the
 ' Application event log automatically.
 AutoLog = True

 End Sub

 ' The method executed when the timer expires and writes an
 ' entry to the Application event log.
 Private Sub WriteLogEntry(ByVal sender As Object, ➥
ByVal e As ElapsedEventArgs)

562 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

 ' In case this is a long-running process, stop the timer
 ' so it won't attempt to execute multiple times.
 serviceTimer.Stop()

 ' Use the EventLog object automatically configured by the
 ' ServiceBase class to write to the event log.
 EventLog.WriteEntry("Recipe14_06 Service active : " & e.SignalTime)

 ' Restart the timer.
 serviceTimer.Start()

 End Sub

 Protected Overrides Sub OnStart(ByVal args() As String)

 ' Obtain the interval between log entry writes from the first
 ' argument. Use 5000 milliseconds by default and enforce a 1000
 ' millisecond minimum.
 Dim interval As Double

 Try
 interval = Double.Parse(args(0))
 interval = Math.Max(1000, interval)
 Catch ex As Exception
 interval = 5000
 End Try

 EventLog.WriteEntry(String.Format("Recipe14_06 Service starting. " & ➥
"Writing log entries every {0} milliseconds...", interval))

 ' Create, configure and start a System.Timers.Timer to
 ' periodically call the WriteLogEntry method. The Start
 ' and Stop methods of the System.Timers.Timer class
 ' make starting, pausing, resuming and stopping the
 ' service straightforward.
 serviceTimer = New Timer
 serviceTimer.Interval = interval
 serviceTimer.AutoReset = True
 AddHandler serviceTimer.Elapsed, AddressOf WriteLogEntry
 serviceTimer.Start()

 End Sub

 Protected Overrides Sub OnStop()

 EventLog.WriteEntry("Recipe14_06 Service stopping...")
 serviceTimer.Stop()

 ' Free system resources used by the Timer object.
 serviceTimer.Dispose()
 serviceTimer = Nothing

 End Sub

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 563

 Protected Overrides Sub OnPause()

 If serviceTimer IsNot Nothing Then
 EventLog.WriteEntry("Recipe14_06 Service pausing...")
 serviceTimer.Stop()
 End If

 End Sub

 Protected Overrides Sub OnContinue()

 If serviceTimer IsNot Nothing Then
 EventLog.WriteEntry("Recipe14_06 Service resuming...")
 serviceTimer.Start()
 End If

 End Sub

 Protected Overrides Sub OnSessionChange(ByVal changeDescription As ➥
System.ServiceProcess.SessionChangeDescription)

 EventLog.WriteEntry("Recipe14_06 Session change..." & ➥
changeDescription.Reason)

 End Sub

 Public Shared Sub Main()

 ' Create an instance of the Recipe14_06 class that will write
 ' an entry to the Application event log. Pass the object to the
 ' shared ServiceBase.Run method.
 ServiceBase.Run(New Recipe14_06)

 End Sub

 End Class
End Namespace

Usage

If you want to run multiple services in a single process, you must create an array of ServiceBase
objects and pass it to the ServiceBase.Run method. Although service classes have a Main method,
you can’t execute service code directly. Attempting to run a service class directly results in Windows
displaying the Windows Service Start Failure message box, as shown in Figure 14-2. Recipe 14-7
describes what you must do to install your service before it will execute.

Figure 14-2. The Windows Service Start Failure message box

564 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

14-7. Create a Windows Service Installer

Problem
You have created a Windows service application and need to install it.

Solution
Add a new class to your Windows service project that extends the System.Configuration.Install.
Installer class to create an installer class containing the information necessary to install and
configure your service class. Use the Installer tool (Installutil.exe) to perform the installation, which
is installed as part of the .NET Framework.

■Note You must create the installer class in the same assembly as the service class for the service to install and
function correctly.

How It Works
As stated in recipe 14-6, you cannot run service classes directly. The high level of integration with the
Windows operating system and the information stored about the service in the Windows registry
means services require explicit installation.

If you have Microsoft Visual Studio, you can create an installation component for your service
automatically by right-clicking in the design view of your service class and selecting Add Installer
from the context menu. This will generate a class called ProjectInstaller. ServiceProcessInstaller
and ServiceInstaller components will be added to the class and configured for your service auto-
matically. You can call this installation class by using deployment projects or by using the Installer
tool to install your service.

You can also create installer components for Windows services manually by following these
steps:

1. In your project, create a class derived from the Installer class.

2. Apply the attribute System.ComponentModel.RunInstallerAttribute(True) to the installer class.

3. In the constructor of the installer class, create a single instance of the System.ServiceProcess.
ServiceProcessInstaller class. Set the Account, Username, and Password properties
of ServiceProcessInstaller to configure the account under which your service will run. The
Account property is set to one of the values of the ServiceAccount enumerator that represents
the type of account the service will run under: LocalService, LocalSystem, NetworkService,
or User. The default is User and means that you must specify an account to be used via the
Username and Password properties.

4. In the constructor of the installer class, create one instance of the System.ServiceProcess.
ServiceInstaller class for each individual service you want to install. Use the properties
of the ServiceInstaller objects to configure information about each service, including
the following:

• ServiceName, which specifies the name Windows uses internally to identify the service.
This must be the same as the value assigned to the ServiceBase.ServiceName property.

• DisplayName, which provides a user-friendly name for the service. This property will use
the value of ServiceName by default.

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 565

• StartType, which uses values of the System.ServiceProcess.ServiceStartMode enumera-
tion to control whether the service is started automatically or manually or is disabled.

• ServiceDependsUpon, which allows you to provide a string array containing a set of service
names that must be started before this service can start.

5. Add the ServiceProcessInstaller object and all ServiceInstaller objects to the System.
Configuration.Install.InstallerCollection object accessed through the Installers
property, which is inherited by your installer class from the Installer base class.

The Code

The following example is an installer for the Recipe14_06 Windows service created in recipe 14-6.
The sample project contains the code from recipe 14-6 and for the installer class. This is necessary
for the service installation to function correctly. To compile the example, you must reference two
additional assemblies: System.Configuration.Install.dll and System.ServiceProcess.dll.

Imports System.Configuration.Install
Imports System.ServiceProcess
Imports System.ComponentModel

Namespace Apress.VisualBasicRecipes.Chapter14

 <RunInstaller(True)> _
 Public Class Recipe14_07
 Inherits Installer

 Public Sub New()

 ' Instantiate and configure a ServiceProcessInstaller.
 Dim ServiceExampleProcess As New ServiceProcessInstaller
 ServiceExampleProcess.Account = ServiceAccount.LocalSystem

 ' Instantiate and configure a ServiceInstaller.
 Dim ServiceExampleInstaller As New ServiceInstaller
 ServiceExampleInstaller.DisplayName = "Visual Basic 2005 Recipes " & ➥
"Service Example"
 ServiceExampleInstaller.ServiceName = "Recipe 14_06 Service"
 ServiceExampleInstaller.StartType = ServiceStartMode.Automatic

 ' Add both the ServiceProcessInstaller and ServiceInstaller to
 ' the installers collection, which is inherited from the
 ' Installer base class.
 Installers.Add(ServiceExampleInstaller)
 Installers.Add(ServiceExampleProcess)

 End Sub

 End Class
End Namespace

566 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

Usage

To install the Recipe14_06 service, build the project, navigate to the directory where Recipe14-07.exe
is located (bin\Debug by default), and execute the command Installutil Recipe14-07.exe. You will
see output similar to the following:

Microsoft (R) .NET Framework Installation utility Version 2.0.50727.42
Copyright (c) Microsoft Corporation. All rights reserved.

Running a transacted installation.

Beginning the Install phase of the installation.
See the contents of the log file for the C:\Recipe14-07\Recipe14-07.exe assembly's
progress.
The file is located at C:\Recipe14-07\Recipe14-07.InstallLog.
Installing assembly 'C:\Recipe14-07\Recipe14-07.exe'.
Affected parameters are:
 logtoconsole =
 assemblypath = C:\Recipe14-07\Recipe14-07.exe
 logfile = C:\Recipe14-07\Recipe14-07.InstallLog
Installing service Recipe 14_06 Service...
Service Recipe 14_06 Service has been successfully installed.
Creating EventLog source Recipe 14_06 Service in log Application...

The Install phase completed successfully, and the Commit phase is beginning.
See the contents of the log file for the C:\Recipe14-07\Recipe14-07.exe assembly's
progress.
The file is located at C:\Recipe14-07\Recipe14-07.InstallLog.
Committing assembly 'C:\Recipe14-07\Recipe14-07.exe'.
Affected parameters are:
 logtoconsole =
 assemblypath = C:\Recipe14-07\Recipe14-07.exe
 logfile = C:\Recipe14-07\Recipe14-07.InstallLog

The Commit phase completed successfully.

The transacted install has completed.

■Note You can use your ServiceInstaller instance automatically with a Visual Studio Setup project. Details
on how to do this can be found at http://support.microsoft.com/kb/317421.

You can then see and control the Recipe14_06 service using the Windows Computer Manage-
ment console. However, despite specifying a StartType of Automatic, the service is initially installed
unstarted. You must start the service manually (or restart your computer) before the service will
write entries to the event log. Once the service is running, you can view the entries it writes to the
Application event log using the Event Viewer application. To uninstall the Recipe14_06 service, add
the /u switch to the Installutil command as follows: Installutil /u Recipe14-07.exe. You will get
output similar to the following:

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 567

Microsoft (R) .NET Framework Installation utility Version 2.0.50727.42
Copyright (c) Microsoft Corporation. All rights reserved.

The uninstall is beginning.
See the contents of the log file for the C:\Recipe14-07\Recipe14-07.exe assembly's
progress.
The file is located at C:\Recipe14-07\Recipe14-07.InstallLog.
Uninstalling assembly 'C:\Recipe14-07\Recipe14-07.exe'.
Affected parameters are:
 logtoconsole =
 assemblypath = C:\Recipe14-07\Recipe14-07.exe
 logfile = C:\Recipe14-07\Recipe14-07.InstallLog
Removing EventLog source Recipe 14_06 Service.
Service Recipe 14_06 Service is being removed from the system...
Service Recipe 14_06 Service was successfully removed from the system.

The uninstall has completed.

■Note If you have the Service application from the Control Panel open when you uninstall the service, the service
will not uninstall completely until you close the Service application. Once you close the Service application, you can
reinstall the service; otherwise, you will get an error telling you that the installation failed because the service is
scheduled for deletion.

14-8. Create a Shortcut on the Desktop
or Start Menu

Problem
You need to create a shortcut on the user’s Windows desktop or Start menu.

Solution
Use COM Interop to access the functionality of the Windows Script Host. Create and configure an
IWshShortcut instance that represents the shortcut. The folder in which you save the shortcut deter-
mines whether it appears on the desktop or in the Start menu.

How It Works
The .NET Framework class library does not include the functionality to create desktop or Start menu
shortcuts; however, this is relatively easy to do using the Windows Script Host component accessed
through COM Interop. Chapter 12 describes how to create an interop assembly that provides access
to a COM component. If you are using Visual Studio, add a reference to the Windows Script Host
Object Model listed in the COM tab of the Add Reference dialog box. If you don’t have Visual Studio,
use the Type Library Importer (Tlbimp.exe) to create an interop assembly for the wshom.ocx file,
which is usually located in the Windows\System32 folder. (You can obtain the latest version of the
Windows Script Host from http://www.microsoft.com/downloads/details.aspx?FamilyId=
C717D943-7E4B-4622-86EB-95A22B832CAA. At the time of this writing, the latest version is 5.6.)

568 CH AP T E R 1 4 ■ W I N D OW S IN TE G R A T I O N

Once you have generated and imported the interop assembly into your project, follow these
steps to create a desktop or Start menu shortcut.

1. Instantiate a WshShell object, which provides access to the Windows shell.

2. Use the SpecialFolders property of the WshShell object to determine the correct path of the
folder where you want to put the shortcut. You must specify the name of the folder you want
as an index to the SpecialFolders property. To create a desktop shortcut, specify the value
Desktop; to create a Start menu shortcut, specify StartMenu. Using the SpecialFolders property,
you can obtain the path to any of the special system folders. If the specified folder does not
exist on the platform you are running on, SpecialFolders returns an empty String. Other
commonly used values include AllUsersDesktop and AllUsersStartMenu. You can find the
full list of special folder names in the section on the SpecialFolders property in the Windows
Script Host documentation.

3. Call the CreateShortcut method of the WshShell object, and provide the fully qualified
filename of the shortcut file you want to create. The file should have the extension .lnk.
CreateShortcut will return an IWshShortcut instance.

4. Use the properties of the IWshShortcut instance to configure the shortcut. You can configure
properties such as the executable that the shortcut references, a description for the shortcut,
a hotkey sequence, and the icon displayed for the shortcut.

5. Call the Save method of the IWshShortcut instance to write the shortcut to disk. The shortcut
will appear either on the desktop or in the Start menu (or elsewhere), depending on the path
specified when the IWshShortcut instance was created.

The Code

The following example class creates a shortcut to Notepad.exe on both the desktop and Start menu
of the current user. The example creates both shortcuts by calling the CreateShortcut method and
specifying a different destination folder for each shortcut file. This approach makes it possible to
create the shortcut file in any of the special folders returned by the WshShell.SpecialFolders property.

Imports System
Imports System.IO
Imports IWshRuntimeLibrary

Namespace Apress.VisualBasicRecipes.Chapter14
 Public Class Recipe14_08

 Public Shared Sub CreateShortcut(ByVal destination As String)

 ' Create a WshShell instance through which to access the
 ' functionality of the Windows shell.
 Dim hostShell As New WshShell

 ' Assemble a fully qualified name that places the Notepad.lnk
 ' file in the specified destination folder. You could use the
 ' System.Environment.GetFolderPath method to obtain a path, but
 ' the WshShell.SpecialFolders method provides access to a wider
 ' range of folders. You need to create a temporary object
 ' reference to the destination string to satisfy the requirements of
 ' the item method signature.
 Dim destFolder As Object = DirectCast(destination, Object)
 Dim fileName As String = ➥

C H AP TE R 1 4 ■ W IN D O W S I N T E G R A T I ON 569

Path.Combine(DirectCast(hostShell.SpecialFolders.Item(destFolder), String), ➥
"Notepad.lnk")

 ' Create the shortcut object. Nothing is created in the
 ' destination folder until the shortcut is saved.
 Dim shortcut As IWshShortcut = ➥
DirectCast(hostShell.CreateShortcut(fileName), IWshShortcut)

 ' Configure the fully qualified name to the executable.
 ' Use the Environment class for simplicity.
 shortcut.TargetPath = ➥
Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.System), ➥
"notepad.exe")

 ' Set the working directory to the Personal (My Documents) folder.
 shortcut.WorkingDirectory = ➥
Environment.GetFolderPath(Environment.SpecialFolder.Personal)

 ' Provide a description for the shortcut.
 shortcut.Description = "Notepad Text Editor"

 ' Assign a hotkey to the shortcut.
 shortcut.Hotkey = "CTRL+ALT+N"

 ' Configure Notepad to always start maximized.
 shortcut.WindowStyle = 3

 ' Configure the shortcut to display the first icon in Notepad.exe.
 shortcut.IconLocation = "notepad.exe,0"

 ' Save the configured shortcut file.
 shortcut.Save()

 End Sub

 Public Shared Sub Main()

 ' Create the Notepad shortcut on the desktop.
 CreateShortcut("Desktop")

 ' Create the Notepad shortcut on the Windows Start menu of
 ' the current user.
 CreateShortcut("StartMenu")

 ' Wait to continue.
 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("Main method complete. Press Enter.")
 Console.ReadLine()

 End Sub

 End Class
End Namespace

571

■ ■ ■

C H A P T E R 1 5

Language Integrated Query (LINQ)

A key element of almost any application is data. Inevitably, data needs to be listed, sorted, analyzed,
or displayed in some fashion. It is the nature of what we, as programmers, do. We accomplish this by
manually performing the appropriate operations and relying on the current functionality provided
by the existing .NET Framework. We also rely heavily on the use of external data sources, such as SQL
Server or XML files.

Chapter 9 covers writing applications that use SQL Server as the data source. If you look at the
recipes in that chapter, you will notice that there is a major flaw in how applications are forced to
handle data: a separation of functionality and control between the application and the data source.
ADO.NET makes things fairly painless, but it requires that developers have intimate knowledge of
the data source and its respective query language to be able to accomplish their goals.

We have all become used to working with data in this manner and have adapted appropriately.
We have been doing it for years. Well, that’s all about to change, thanks to Language Integrated
Query, or LINQ (pronounced Link). LINQ is part of .NET Framework 3.5, which will be included with
the next release of Visual Studio (code-named Orcas) and VB 9.0. VB 9.0 is currently in beta, but
Microsoft hopes to have a final release available by the end of 2007.

■Note The contents of this chapter are based on the Beta 1 release of Visual Studio, code-named Orcas. This is
available as a Microsoft Virtual Server image or standard install version, which can be downloaded from http://
msdn2.microsoft.com/en-us/vstudio/aa700831.aspx. While much care was taken to ensure the overall
accuracy of the information, it is subject to change in the final release of the product.

LINQ, at its core, is a set of features which, when used together, provide the ability to query any
data source. Data can be easily queried and joined from multiple and varying data sources, such as
joining data gathered from a SQL Server database and an XML file. The initial release of VB 9.0 includes
several APIs that extend LINQ and provide support for the most common data sources, as listed in
Table 15-1. LINQ was designed to be easily extended, which you can take advantage of to create full
query support for any other data sources not covered by the included APIs.

Table 15-1. APIs That Extend LINQ

Name Namespace Supported Data Source

LINQ to Objectsa System.Linq Collections that implement IEnumerable(Of T)

LINQ to XML System.Xml.Linq XML documents

LINQ to SQL System.Data.Linq SQL Server databases

572 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

a LINQ to Objects does support querying collections that implement IEnumerable rather than IEnumerable(Of T).
However, this requires extra steps, which are demonstrated in recipe 15-6.

b EDM is new to Visual Studio (code-named Orcas) and provides the ability to easily design and model the
data layer of an application.

The first several recipes of this chapter cover some of the new features of VB 9.0 that make LINQ
possible and which you will need to understand to use LINQ. The rest of the recipes concentrate on
the LINQ to Objects API.

The recipes in this chapter describe how to do the following:

• Understand the basics of using LINQ (recipes 15-1, 15-2, 15-3, and 15-4)

• Query data in a collection (recipes 15-5 and 15-6)

• Sort and filter data in collections (recipes 15-7 and 15-8)

• Query data in multiple collections (recipe 15-9)

• Perform aggregate functions on collections (recipe 15-10)

• Retrieve a subset of data from a collection (recipe 15-11)

• Use paging to display the contents of a collection (recipe 15-12)

15-1. Use Implicitly Typed Variables

Problem
You need to create a strongly typed variable without explicitly declaring its type.

Solution
Ensure Option Infer is On, and then create a variable and assign it a value without using As and specifying
a type.

How It Works
VB 9.0 allows you to create strongly typed variables without explicitly setting their data type. You
could do this in previous versions of VB .NET, if Option Strict was set to Off, but the variable was
always typed as an Object. In this case, its type is automatically inferred based on its value.

To use this new functionality, Option Infer must be set to On. You can specify this setting in the
project settings dialog box or by adding Option Infer On to the top of your code. If you create a new
project in the new version of Visual Studio, the project settings will have Option Infer set to On by
default. Any projects that you migrate from previous Visual Studio versions will have Option Infer
set to Off. If you are compiling your code using the VB compiler (vbc), you can use the /optioninfer
option.

The following example demonstrates the use of type inference or implicit typing.

LINQ to DataSet System.Data ADO.NET datasets

LINQ to Entities System.Data.Objects Entity Data Model (EDM) objectsb

Table 15-1. APIs That Extend LINQ (Continued)

Name Namespace Supported Data Source

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 573

Dim name = "Todd"
Dim birthDay = #7/12/1971#
Dim age = 35
Dim people = New Person() {New Person("Todd"), New Person("Robb"), ➥
New Person("Alex")}

If you hover your cursor over any of the variables in the preceding example in the Visual Studio
IDE, you will see a tool tip that shows that they are actually being strongly typed. name is inferred as a
String, birthday is a Date, age is an Integer, and, as shown in Figure 15-1, people is an array of Person
objects.

Figure 15-1. A tool tip showing inferred type

When your code is compiled to Microsoft Intermediate Language (MSIL), all variables are strongly
typed. (See recipes 1-3 and 2-6 for more information about MSIL.) If you looked at this compiled
MSIL code, using the MSIL Disassembler tool (Ildasm.exe), you would see that it has explicitly and
correctly typed each variable. The following output was taken from the Ildasm.exe results for the
sample code shown previously.

.locals init ([0] int32 age,
 [1] valuetype [mscorlib]System.DateTime birthDay,
 [2] string name,
 [3] class Recipe1.Samples/Person[] people,
 [4] class Recipe1.Samples/Person[] VBt_arrayS0)

Implicitly typing variables is an important part of creating and using LINQ queries. It keeps the
query statement concise and less cluttered. Also, you may not know the exact data type being retrieved
from a given data source. Without the ability to infer the type of a data source field, it might be impossible
to efficiently query on that data source. It is also a required component of anonymous types, which
are discussed in recipe 15-3.

574 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

15-2. Use Object Initializers

Problem
You need to initialize the properties of a class when it is first instantiated, without relying on the class
constructor or default values.

Solution
Instantiate a new class instance and initialize any writable public fields or properties using the With
keyword.

How It Works
VB 9.0 includes the ability to initialize the writable public fields or properties of a class when it is first
instantiated. When you use object initializers, the default constructor of the class is called automat-
ically. This means any class you wish to use object initializers for must have a default constructor.
Any properties or fields that you do not initialize retain their default values.

Object initialization is made possible by the use of the With keyword. With is not new to VB .NET
but was not previously usable in this manner. Here is a simple example of a class:

Public Class Person

 Private m_FirstName As String
 Private m_LastName As String

 Public Sub New()
 m_FirstName = String.Empty
 m_LastName = String.Empty
 End Sub

 Public Property FirstName() As String
 Get
 Return m_FirstName
 End Get
 Set(ByVal value As String)
 m_FirstName = value
 End Set
 End Property

 Public Property LastName() As String
 Get
 Return m_LastName
 End Get
 Set(ByVal value As String)
 m_LastName = value
 End Set
 End Property

End Class

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 575

In previous versions of VB .NET, you would instantiate and set property values like this:

Dim todd = New Person

With todd
 .FirstName = "Todd"
 .LastName = "Herman"
End With

The other option, if you had access to modify the class, is to use constructors to pass the prop-
erty values. However, this method can become cumbersome quickly if you have a class with many
properties. You further complicate things if you use an array, like this:

Dim people As Person() = New Person(2) {New Person, New Person, New Person}

With people(0)
 .FirstName = "Todd"
 .LastName = "Herman"
End With

With people(1)
 .FirstName = "Alex"
 .LastName = "Hughes"
End With

With people(2)
 .FirstName = "Robb"
 .LastName = "Zinn"
End With

Object initializers simplify this by allowing you to specify values during instantiation, like this:

Dim todd = New Person With {.FirstName = "Todd", .LastName = "Herman"}

or like this:

Dim people = New Person() {New Person With {.FirstName = "Todd", _
 .LastName = "Herman"}, _
 New Person With {.FirstName = "Alex", _
 .LastName = "Hughes"}, _
 New Person With {.FirstName = "Robb", _
 .LastName = "Zinn"}}

■Note Both of the preceding examples of object initialization use type inference (see recipe 15-1), rather than
rely on explicit typing. This is not required but fits with the overall purpose of the chapter.

As the examples show, you use the With keyword followed by a comma-delimited list of fields or
properties and their values. The objects being initialized and their values should be surrounded by
curly braces ({}). As shown in Figure 15-2, the VB 9.0 IDE provides IntelliSense for all objects that can
be initialized.

576 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

Figure 15-2. IntelliSense for object initializers

Object initializers are a key component to using anonymous types (see recipe 15-3) and making
LINQ queries concise and efficient.

15-3. Use Anonymous Types

Problem
You need to use a basic type class that doesn’t exist, and you don’t want to define it yourself.

Solution
Instantiate a class as you would normally, using the New keyword, but do not specify a type. You must
also use object initialization (see recipe 15-2) to specify at least one property.

How It Works
When you use the New keyword to instantiate an object, you typically specify the name of the type
you wish to create. In VB 9.0, when you omit this name, the compiler automatically generates the
class for you. This class inherits from Object and overloads the ToString, GetHashCode, and Equals
methods. The overloaded version of ToString returns a string representing all of the properties
concatenated together. The overloaded Equals method returns True if all property comparisons are
True and there are the same number of properties in the same order with the same names.

Figure 15-3 shows the MSIL Disassembler tool (Ildasm.exe) displaying the MSIL that the compiler
would automatically generate for the following example (see recipes 1-3 and 2-6 for more informa-
tion about MSIL):

Dim person = New With {.FirstName = "Todd", .LastName = "Herman"}

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 577

Figure 15-3. MSIL Disassembler tool view of an anonymous type

Creating anonymous types relies on several other new features of VB 9.0. As the name implies,
the real name of an anonymous type is unknown. You will not be able to access it directly by its name
and must rely on the variable used to first instantiate the class. This means you can’t explicitly cast
the person variable using As; you must rely on type inference (see recipe 15-1). Furthermore, an
anonymous type must have at least one property. Properties for anonymous types are created by
using object initializers (see recipe 15-2). The new version of Visual Studio fully supports the use of
anonymous types by correctly displaying appropriate IntelliSense, as shown in Figure 15-4.

Figure 15-4. IntelliSense support for anonymous types

578 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

Anonymous types can also infer property names from object initializers, as in this example:

Dim person = New With {DateTime.Now, .FirstName = "Todd", .LastName = "Herman"}

In this case, the anonymous type created by the compiler would have the FirstName, LastName,
and Now properties.

Anonymous types are a powerful new feature available in VB 9.0 and are used extensively in
LINQ queries (see recipe 15-5) for returning strongly typed data.

15-4. Create Extension Methods

Problem
You need to extend the functionality of a class without relying on inheritance.

Solution
Create the method (a Sub or Function) that you wish to add, and then apply the ExtensionAttribute
attribute to it.

How It Works
The key to using extension methods is the attribute ExtensionAttribute, which is new to VB 9.0 and
located in the System.Runtime.CompilerServices namespace. You must apply this attribute to any
method that you wish to use as an extension method. Furthermore, you can apply the attribute only
to methods defined within a Module.

An extension method extends the functionality of a specific class without actually modifying it.
The class being extended is referenced by the first parameter of the extension method. Because of
this, all extension methods must have at least one parameter, and it must refer to the class being
extended. Let’s revisit the code that reverses a string (shown in recipe 2-1) and turn it into an exten-
sion method.

<System.Runtime.CompilerServices.Extension()> _
Public Function Reverse(ByVal s As String) As String

 Dim reversed As New Text.StringBuilder(s.Length)
 Dim chars As Char() = s.ToCharArray

 For count As Integer = chars.Length - 1 To 0 Step -1
 reversed.Append(chars(count))
 Next

 Return reversed.ToString()

End Function

The Reverse method is an extension method because it has the ExtensionAttribute attribute
applied to it. You also know that it extends the String class because the first parameter is a String.
Using an extension method is the same as calling any other method, and the Visual Studio IDE
supports this via IntelliSense, as shown in Figure 15-5.

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 579

Figure 15-5. IntelliSense support for extension methods

In the case of the preceding example, you would create a String and then call the Reverse method,
like this:

Dim testString As String = "This is a test message!"
Console.WriteLine(testString.Reverse)

This would produce the following result:

!egassem tset a si sihT

It is perfectly legitimate to call an extension method directly. When used in this manner, the first
parameter of the method is used as an actual parameter. For example, you would get the same results
if you changed the example to this:

Console.WriteLine(Reverse(testString))

The preceding example is fairly simple but demonstrates how easy it is to extend the function-
ality of a class without directly modifying it. What makes extension methods even more powerful is
that they can also be used to extend base classes or even interfaces.

Extension methods are another key component of LINQ queries. Most of the operators used to
form a LINQ query, such as Select (see recipe 15-5) and Where (see recipe 15-8) are actually extension
methods of the Enumerable type.

15-5. Query an IEnumerable(Of T) Collection

Problem
You need to query data that is stored in a collection that implements IEnumerable(Of T).

580 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

Solution
Create a LINQ query that iterates through the data stored in the target collection and returns the
appropriate information.

How It Works
LINQ provides SQL-like functionality for querying virtually any data source. VB 9.0 incorporates several
APIs that extend the core LINQ framework. LINQ to Objects, found in the System.Linq namespace,
provides the support for querying collections that implement IEnumerable or IEnumerable(Of T).
Querying IEnumerable collections is a special case and is covered in recipe 15-6.

If you have any familiarity with SQL, you will quickly recognize the standard query operators
used by LINQ. A basic query uses the most recognizable operators: From and Select. While these
operators are virtually identical to their SQL counterparts, LINQ orders them differently by requiring
the From to come before the Select. The main reason for this is that the data source must be known
prior to selecting any return data, or IntelliSense wouldn’t work. Here is an example query, assuming
names is an IEnumerable(Of String):

Dim query = From name In names Select name

The first part of this query, From name In names, is responsible for designating the source of the
data. In this case, it is the names collection. This is structured in the same way as a For. . .Next loop.
name is the iterator, and its type is inferred (see recipe 15-1) as a String. It is possible to use multiple
data sources in a single From clause, which would allow you to query on each source or the combina-
tion of both (see recipe 15-9).

The second part of the sample query, Select name, is responsible for specifying what data is
returned. In this case, an instance of the iterator object, name, is returned. You are not forced to return
just the iterator or a single field of the iterator, if it was a class. You can return calculated data or even
an anonymous type that contains properties based on data from the iterator (see recipe 15-3). If
multiple items are used in the Select clause, then a new anonymous type is created and returned,
with each item being a property of the new class. If the Select clause is omitted from a query, the
query defaults to returning all iterators that were part of the From clause. For example, if you removed
Select from the preceding query, it would still return the same information; Select name would be
the default.

Like name, the data type for query is also being inferred. The data type depends on what is returned
by the Select operator. In this case, that would be IEnumerable(Of String). When creating queries,
you are not required to use type inference. You could have used:

Dim query As IEnumerable(Of String) = From name As String In names Select name

While that would work, type inference makes the query appear much cleaner and easier to
follow. Furthermore, if you happened to return an anonymous type from the Select clause, you
couldn’t use the previously discussed method, because you wouldn’t know the name of the type.

Queries can return a sequence of values, such as in the previous examples, in which case the
query does not actually execute until you iterate through its results. They can also return a single
value, in which case the query syntax would specify an aggregate operator, such as Count or Max (see
recipe 15-10).

Since the example returns a sequence of values, you execute the query by iterating through it
using a For ... Next loop, as shown here:

For Each name in query
 ...
Next

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 581

The Code

The following example calls three methods that each use LINQ to query a list of Employee objects. The
EmployeeList method returns all of the objects and displays information. The EmployeeNames method
returns and displays only the FirstName. The EmployeeInfo method returns an anonymous type that
has the properties DaysSinceHired and FullName. DaysSinceHired is calculated by subtracting the
employee’s HireDate from the current date, and FullName is calculated by combining the employee’s
FirstName and LastName.

The Employee class is a simple class that represents an employee. HelperMethods.GetEmployees
simply generates some sample employees, which are returned as IEnumerable(Of Employee), to use
with the code. Both of these belong to the SampleData namespace. This namespace is not shown
here; its purpose is only to provide sample data for the recipe. It is provided with the downloadable
source code.

Imports System
Imports System.Linq

Public Class Recipe15_5

 ' Load sample data to be used for this recipe.
 Private Shared employees As List(Of SampleData.Employee) = ➥
SampleData.HelperMethods.GetEmployees

 ' Show a list of employees.
 Private Shared Sub EmployeeList()

 Console.WriteLine("List of employees:")

 ' Create a query that will simply return all
 ' employee objects. In this case, query is
 ' inferred as IEnumerable(Of SampleData.Employee).
 Dim query = From emp In employees
 Select emp

 ' Execute the query and iterate through each
 ' employee object returned and display the
 ' information.
 For Each emp In query
 Console.WriteLine(" [{0}] {1} {2} {3} {4}", emp.EmployeeID, ➥
emp.FirstName, emp.LastName, emp.WorkGroup, emp.HireDate.ToString("MM/dd/yyyy"))
 Next

 Console.WriteLine(Environment.NewLine)

 End Sub

 ' Show a list of employee names.
 Private Shared Sub EmployeeNames()

 Console.WriteLine("List of employee first names:")

582 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

 ' Create a query that will return just the name
 ' for the employee object. In this case, query
 ' is inferred as IEnumerable(Of String).
 Dim query = From emp In employees _
 Select emp.FirstName

 ' Execute the query and iterate through each
 ' employee name returned and display the
 ' information.
 For Each name In query
 Console.WriteLine(name)
 Next

 Console.WriteLine(Environment.NewLine)

 End Sub

 ' Show a list of employee full names (first and
 ' last) and how long (in days) since each was
 ' hired.
 Private Shared Sub EmployeeInfo()

 Console.WriteLine("List of employee full names and how long since " & ➥
"they were hired:")

 ' Create a query that will return the full name and
 ' number of days since hired for each employee. In
 ' this case, query is inferred as IEnumerable(Of
 ' <anonymous type>).
 Dim query = From emp In employees _
 Select DaysSinceHired = _
 DateTime.Now.Subtract(emp.HireDate).Days, _
 FullName = emp.LastName & ", " & emp.FirstName

 ' Execute the query and iterate through each
 ' object returned and display the information.
 For Each emp In query
 Console.WriteLine(" {0} was hired {1} day(s) ago.", emp.FullName, ➥
emp.DaysSinceHired)
 Next

 Console.WriteLine(Environment.NewLine)

 End Sub

 Public Shared Sub Main()

 ' Call each sample method that demonstrates basic
 ' LINQ query expressions.
 Call EmployeeList()
 Call EmployeeNames()
 Call EmployeeInfo()

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 583

 Console.WriteLine("End of samples reached. Press Enter.")
 Console.ReadLine()

 End Sub

End Class

Usage

When you run the preceding code, you will receive the following results:

List of employees:
 [1] Todd Herman Developer 02/21/2007
 [2] Robb Smith Developer 05/18/2006
 [3] Dick Edwards Manager 03/18/2001
 [4] Kevin Jones Technical Support Engineer 02/21/2007
 [5] Mike Newtron Developer 10/18/2005
 [6] Harry Dresden Technical Support Engineer 01/12/2007
 [7] Jason Holmes Supervisor 03/17/2007
 [8] Dave Turner Engineer 08/18/2002
 [9] Alex Simpson Engineer 03/13/2007
 [10] Vicky Bobby Technical Support Engineer 05/22/2006
 [11] Ardy Reznor Technical Support Engineer 03/18/1992

List of employee first names:
 Todd
 Robb
 Dick
 Kevin
 Mike
 Harry
 Jason
 Dave
 Alex
 Vicky
 Ardy

List of employee full names and how long since they were hired:
 Herman, Todd was hired 25 day(s) ago.
 Smith, Robb was hired 304 day(s) ago.
 Edwards, Dick was hired 2191 day(s) ago.
 Jones, Kevin was hired 25 day(s) ago.
 Newtron, Mike was hired 516 day(s) ago.
 Dresden, Harry was hired 65 day(s) ago.
 Holmes, Jason was hired 1 day(s) ago.
 Turner, Dave was hired 1673 day(s) ago.
 Simpson, Alex was hired 5 day(s) ago.
 Bobby, Vicky was hired 300 day(s) ago.
 Reznor, Ardy was hired 5478 day(s) ago.

End of samples reached. Press Enter.

584 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

15-6. Query a Nongeneric Collection

Problem
You need to query data that is stored in a collection that implements IEnumerable, such as an ArrayList,
rather than IEnumerable(Of T).

Solution
Create a standard LINQ query, as described in recipe 15-5, but strongly type the iterator variable
used in the From expression.

How It Works
LINQ queries support collections that implement IEnumerable(Of T) by default. Nongeneric collec-
tions, such as ArrayList collections, are not supported by default. A typical query, assuming names
implements IEnumerable(Of T), looks something like this:

Dim query = From name In names Select name

If names were an ArrayList, the query would not function properly because name is not strongly
typed. This is due to the inability to infer the type of a collection that implements IEnumerable rather
than the generic version, IEnumerable(Of T). You can make the query work by ensuring it is strongly
typed, like this:

Dim query = From name As String In names Select name

The Code

The following example calls the EmployeeNames method. This method uses LINQ to query an
ArrayList of Employee objects and returns a list of their names.

The Employee class is a simple class that represents an employee. HelperMethods.GetEmployees2
simply generates some sample employees, which are returned in an ArrayList, to use with the code.
Both of these belong to the SampleData namespace. This namespace is not shown here; its purpose
is only to provide sample data for the recipe. It is provided with the downloadable source code.

Imports System
Imports System.Linq

Public Class Recipe15_6

 ' Load sample data to be used for this recipe.
 Public Shared employees As ArrayList = SampleData.HelperMethods.GetEmployees2
 Public Shared Sub EmployeeNames()

 Console.WriteLine("List of employee names:")

 ' Create a query that will simply return all
 ' employee objects. In this case, query is
 ' inferred as IEnumerable(Of String).
 ' For LINQ to work with an ArrayList, you need to
 ' ensure you strongly type the iterator.
 Dim query = From emp As SampleData.Employee In employees

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 585

 Select FullName = emp.LastName & ", " & emp.FirstName

 ' Execute the query and iterate through each
 ' employee object returned and display the
 ' information.
 For Each name In query
 Console.WriteLine(" {0}", name)
 Next

 Console.WriteLine(Environment.NewLine)

 End Sub
 Public Shared Sub Main()

 ' Call the method that demonstrates using basic
 ' LINQ query expressions over nongeneric IEnumerable
 ' collections.
 Call EmployeeNames()

 Console.WriteLine("End of samples reached. Press Enter.")
 Console.ReadLine()

 End Sub

End Class

Usage

When you run the preceding code, you will receive the following results:

List of employee names:
 Herman, Todd
 Smith, Robb
 Edwards, Dick
 Jones, Kevin
 Newtron, Mike
 Dresden, Harry
 Holmes, Jason
 Turner, Dave
 Simpson, Alex
 Bobby, Vicky
 Reznor, Ardy

End of samples reached. Press Enter.

15-7. Sort Data Using LINQ

Problem
You need to sort the data returned by a LINQ query.

586 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

Solution
Create a LINQ query (as shown in recipe 15-5) and use the Order By operator followed by a field
name to ensure the data is properly ordered.

How It Works
If you are familiar with query languages, you should recognize the Order By operator. This is used to
specify how the data returned from a query is sorted. The Order By operator supports the optional
Ascending and Descending keywords, which specify in which direction the data is sorted. If omitted,
Ascending is used by default. An Order By clause might look something like this:

Order By emp.FirstName Ascending

The Order By operator always comes after the From operator, but it can come before or after the
Select operator. You use Order By before Select when you want to sort on data related to the iterator
used by the From operator. If you want to sort on the data returned by the Select operator, then Order
By must come after Select.

You can sort on multiple fields by separating them with commas, like this:

Order By emp.FirstName, emp.LastName Descending

The Code

The following example calls two methods that each uses LINQ to query and sort a list of Employee
objects. The SortByLastName method returns all of the objects, sorts them in ascending order by the
LastName property, and displays the information. The SortByFullName method returns an anonymous
type that has the properties DaysSinceHired and FullName. DaysSinceHired is calculated by subtracting
the employee’s HireDate from the current date, and FullName is calculated by combining the employee’s
FirstName and LastName. The data is sorted in descending order by the DaysSinceHired property.

The Employee class is a simple class that represents an employee. HelperMethods.GetEmployees
simply generates some sample employees to use with the code. Both of these belong to the SampleData
namespace, which is not shown here; its purpose is only to provide sample data for the recipe. It is
provided with the downloadable source code.

Imports System
Imports System.Linq

Public Class Recipe15_7

 ' Load sample data to be used for this recipe.
 Public Shared employees As List(Of SampleData.Employee) = ➥
SampleData.HelperMethods.GetEmployees

 ' Show a list of employees ordered by their last
 ' names.
 Private Shared Sub SortByLastName()

 Console.WriteLine("List of employees:")
 Console.WriteLine(" - Ordered by LastName (Ascending)")
 Console.WriteLine(Environment.NewLine)

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 587

 ' Create a query that will simply return all
 ' employee objects and sort them by the
 ' LastName property. In this case, query is
 ' inferred as IEnumerable(Of SampleData.Employee).
 Dim query = From emp In employees _
 Order By emp.LastName Ascending
 Select emp

 ' Execute the query and iterate through each
 ' employee name returned and display the
 ' information.
 For Each emp In query
 Console.WriteLine(" [{0}] {1} {2} {3} {4}", emp.EmployeeID, ➥
emp.FirstName, emp.LastName, emp.WorkGroup, emp.HireDate.ToString("MM/dd/yyy"))
 Next

 Console.WriteLine(Environment.NewLine)

 End Sub

 ' Show a list of employee full names (first and
 ' last) and how long (in days) since each was
 ' hired.
 Private Shared Sub SortByFullName()

 Console.WriteLine("List of employee full names and how long since " & ➥
"they were hired:")
 Console.WriteLine(" - Ordered by DaysSinceHired (Descending)")
 Console.WriteLine(Environment.NewLine)

 ' Create a query that will return the full name and
 ' number of days since hired for each employee and sort
 ' them by the DaysSinceHired property. In this case,
 ' query is inferred as IEnumerable(Of <anonymous type>).
 Dim query = From emp In employees _
 Select DaysSinceHired = _
 DateTime.Now.Subtract(emp.HireDate).Days,
 FullName = emp.LastName & ", " & emp.FirstName
 Order By DaysSinceHired Descending

 ' Execute the query and iterate through each
 ' object returned and display the information.
 For Each emp In query
 Console.WriteLine(" {0} was hired {1} day(s) ago.", emp.FullName, ➥
emp.DaysSinceHired)
 Next

 Console.WriteLine(Environment.NewLine)

 End Sub

588 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

 Public Shared Sub Main()

 ' Call each sample method that demonstrates sorting
 ' with LINQ expressions.
 Call SortByLastName()
 Call SortByFullName()

 Console.WriteLine("End of samples reached. Press Enter.")
 Console.ReadLine()

 End Sub

End Class

Usage

When you run the preceding code, you will receive the following results:

List of employees:
 - Ordered by LastName (Ascending)

 [10] Vicky Bobby Technical Support Engineer 05/23/2006
 [6] Harry Dresden Technical Support Engineer 01/13/2007
 [3] Dick Edwards Manager 03/19/2001
 [1] Todd Herman Developer 02/22/2007
 [7] Jason Holmes Supervisor 03/18/2007
 [4] Kevin Jones Technical Support Engineer 02/22/2007
 [5] Mike Newtron Developer 10/19/2005
 [11] Ardy Reznor Technical Support Engineer 03/19/1992
 [9] Alex Simpson Engineer 03/14/2007
 [2] Robb Smith Developer 05/19/2006
 [8] Dave Turner Engineer 08/19/2002

List of employee full names and how long since they were hired:
 - Ordered by DaysSinceHired (Descending)

 Reznor, Ardy was hired 5478 day(s) ago.
 Edwards, Dick was hired 2191 day(s) ago.
 Turner, Dave was hired 1673 day(s) ago.
 Newtron, Mike was hired 516 day(s) ago.
 Smith, Robb was hired 304 day(s) ago.
 Bobby, Vicky was hired 300 day(s) ago.
 Dresden, Harry was hired 65 day(s) ago.
 Herman, Todd was hired 25 day(s) ago.
 Jones, Kevin was hired 25 day(s) ago.
 Simpson, Alex was hired 5 day(s) ago.
 Holmes, Jason was hired 1 day(s) ago.

End of samples reached. Press Enter.

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 589

15-8. Filter Data Using LINQ

Problem
You need to apply some constraint, or a filter, to a LINQ query.

Solution
Create a LINQ query (as shown in recipe 15-5) and use the Where operator followed by one or more
Boolean expressions.

How It Works
While the Select operator is responsible for transforming or returning data from a LINQ query, the
Where operator is responsible for filtering what data is available to be returned. If you are familiar
with SQL, the LINQ Where operator is virtually indistinguishable from the like-named operator in
SQL. A Boolean expression, which performs the filtering on the data, comes after the Where operator.
The operator itself must come between the From and Select clauses.

Dim names() As String = {"Todd", "Tom", "Mike", "Archie", "Veronica", "Jughead"}
Dim query = From name In names Select name

The preceding example creates a strongly typed array. You are able to query arrays because they
implement IEnumerable. However, as discussed in recipe 15-6, you must ensure the IEnumerable data
being queried is strongly typed. As the example stands now, name is inferred as a String, and names
is an array of Strings. If you attempted to infer the type of names() by removing the As String, you
would break the strong typing, unless the iterator used in the query were strongly typed. If you executed
the preceding query, you would get back every name stored in the array.

Now, let’s change the query to use the Where operator.

Dim query = From name In names Where name.StartsWith("T") Select name

If you executed this new query, you would get back only the first two names in the array: Todd
and Tom.

The Code

The following example calls two methods that each uses LINQ to query a list of Employee objects. The
ListManagers method returns information only for the employees who have a WorkGroup value of
Manager. The ListTechEngineers method returns information only for employees who have a WorkGroup
value of Technical Support Engineer and were hired during the current year.

The Employee class is a simple class that represents an employee. HelperMethods.GetEmployees
simply generates some sample employees to use with the code. Both of these belong to the SampleData
namespace, which is not shown here; its purpose is only to provide sample data for the recipe. It is
provided with the downloadable source code.

590 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

Imports System
Imports System.Linq

Public Class Recipe15_8

 ' Load sample data to be used for this recipe.
 Public Shared employees As List(Of SampleData.Employee) = ➥
SampleData.HelperMethods.GetEmployees

 ' Show a list of employees that belong to the
 ' "Manager" workgroup.
 Private Shared Sub ListManagers()

 Console.WriteLine("List of Managers:")

 ' Create a query that will return employee objects
 ' that have a WorkGroup value of "Manager". In this
 ' case, query is inferred as IEnumerable(Of
 ' SampleData.Employee).
 Dim query = From emp In employees
 Where emp.WorkGroup = "Manager"
 Select emp

 ' Execute the query and iterate through each
 ' employee name returned and display the
 ' information.
 For Each emp In query
 Console.WriteLine(" [{0}] {1} {2}", emp.EmployeeID, emp.FirstName, ➥
emp.LastName)
 Next

 Console.WriteLine(Environment.NewLine)

 End Sub

 ' Show a list of employees that belong to the
 ' "Technical Support Engineer" workgroup and
 ' were hired this year.
 Private Shared Sub ListTechEngineers()

 Console.WriteLine("List of Technical Support Engineers hired in {0}:", ➥
DateTime.Now.Year.ToString)

 ' Create a query that will return employee objects that
 ' have a WorkGroup value of "Technical Support Engineer"
 ' and were hired sometime this year. In this case,
 ' query is inferred as IEnumerable(Of SampleData.Employee).
 Dim query = From emp In employees _
 Where emp.WorkGroup = "Technical Support Engineer"
 And emp.HireDate.Year = DateTime.Now.Year
 Select emp

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 591

 ' Execute the query and iterate through each
 ' employee name returned and display the
 ' information.
 For Each emp In query
 Console.WriteLine(" [{0}] {1} {2} - Hired on {3}", emp.EmployeeID, ➥
emp.FirstName, emp.LastName, emp.HireDate.ToString("MM/dd/yyyy"))
 Next

 Console.WriteLine(Environment.NewLine)

 End Sub

 Public Shared Sub Main()

 ' Call each sample method that demonstrates sorting
 ' with LINQ expressions.
 Call ListManagers()
 Call ListTechEngineers()

 Console.WriteLine("End of samples reached. Press Enter.")
 Console.ReadLine()

 End Sub

End Class

Usage

When you run the preceding code, you will receive the following results:

List of Managers:
 [3] Dick Edwards

List of Technical Support Engineers hired in 2007:
 [4] Kevin Jones - Hired on 02/22/2007
 [6] Harry Dresden - Hired on 01/13/2007

End of samples reached. Press Enter.

15-9. Query Data from Multiple Collections

Problem
You need to query and combine data from multiple collections.

Solution
Create a LINQ query that references all required data sources in the From clause (see recipe 15-5).
Then use the Where clause (see recipe 15-8) to merge the data based on a common element.

592 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

How It Works
The From operator allows you to specify more then one iteration statement. All listed collections will
be queried, and all properties are available to be used as part of the query syntax.

Dim words() As String = {"Apple", "Bat", "Cat", "Dog", "Egg", "Frog"}
Dim searchCriteria() As String = {"C", "D"}

Dim wordSearch = From word In words, crit In searchCriteria _
 Where word.StartsWith(crit) _
 Select Word = word, Crit = crit

For Each match In wordSearch
 Console.WriteLine("{0} matches the search criteria of {1}.", match.Word, ➥
match.Crit)
Next

The preceding example creates two arrays: words contains a list of words, and searchCriteria
contains a list of letters. The query collects data from both sources but uses the Where clause to return
only the words that start with the letters specified in the searchCriteria array. The Select clause
creates and returns an anonymous type that includes the Word and Crit properties. If you ran this
example, it would produce the following output:

Cat matches the search criteria of C.
Dog matches the search criteria of D.

If the data sources queried have a common element, you can use the Where clause to more
tightly join the data (as demonstrated in this recipe’s code). In previous versions of VB, performing
actions like this took a lot of code—so much that it was more common to move data into a data
source that would support querying, such as SQL Server.

■Note Using multiple data sources in a From clause works for joining data, but it is somewhat limited. It is impor-
tant to note that, like SQL, LINQ supports Join On and Group By. These query operators provide the necessary
functionality to perform advanced joins and data grouping. However, these operators are not usable in the release
of Visual Studio used for this chapter. They should work in the version available by the time this book is published.

The Code

The following example calls two methods that demonstrate how to use LINQ to join data from two
related sources. The EmployeeTasks method joins a collection of Employee objects to a collection of
Task objects based on the EmployeeID property. The employee’s name and task title are displayed in
the console. The OpenTasksForThisYear method performs the same join, but it returns only data for
employees who were hired this year and have open tasks.

The Employee and Task classes are simple classes that represent an employee and a specific task,
respectively. HelperMethods.GetEmployees generates some sample employees to use with the code,
and HelperMethods.GetTasks generates tasks. These classes and methods belong to the SampleData
namespace, which is not shown here; its purpose is only to provide sample data for the recipe. It is
provided with the downloadable source code.

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 593

Imports System
Imports System.Linq

Public Class Recipe15_9

 Public Shared employees As List(Of SampleData.Employee) = ➥
SampleData.HelperMethods.GetEmployees
 Public Shared tasks As List(Of SampleData.Task) = ➥
SampleData.HelperMethods.GetTasks

 Private Shared Sub EmployeeTasks()

 Console.WriteLine("List of employees and their tasks:")
 Console.WriteLine(Environment.NewLine)

 ' Create a query that will join employee and task data,
 ' returning the first name and task title for each employee.
 Dim query = From emp In employees, task In tasks
 Where emp.EmployeeID = task.EmployeeID
 Select emp.FirstName, task.Title
 Order By FirstName

 For Each rec In query
 Console.WriteLine(" {0} - {1}", rec.FirstName, rec.Title)
 Next

 Console.WriteLine(Environment.NewLine)

 End Sub

 Private Shared Sub OpenTasksForThisYear()

 Console.WriteLine("List of employees hired this year with open tasks:")
 Console.WriteLine(Environment.NewLine)

 ' Create a query that will join employee and task data,
 ' returning the first name and task title for each employee.
 Dim query = From emp In employees, task In tasks
 Where emp.EmployeeID = task.EmployeeID And
 emp.HireDate.Year = DateTime.Now.Year And
 task.Status = SampleData.Task.TaskStatus.Open
 Select FullName = emp.LastName & ", " & emp.FirstName,
 task.Title
 Order By FullName

 For Each rec In query
 Console.WriteLine(" {0} - {1}", rec.FullName, rec.Title)
 Next

 Console.WriteLine(Environment.NewLine)

 End Sub

594 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

 Public Shared Sub Main()

 Call EmployeeTasks()
 Call OpenTasksForThisYear()

 Console.WriteLine("End of samples reached. Press Enter.")
 Console.ReadLine()

 End Sub

End Class

Usage

When you run the preceding code, you will receive the following results:

List of employees and their tasks:

 Alex - Sample Task 11
 Ardy - Sample Task 7
 Dave - Sample Task 9
 Dick - Sample Task 2
 Harry - Sample Task 15
 Kevin - Sample Task 5
 Mike - Sample Task 4
 Mike - Sample Task 13
 Robb - Sample Task 8
 Robb - Sample Task 10
 Todd - Sample Task 1
 Todd - Sample Task 3
 Todd - Sample Task 6
 Todd - Sample Task 12
 Vicky - Sample Task 14

List of employees hired this year with open tasks:

 Dresden, Harry - Sample Task 15
 Herman, Todd - Sample Task 1
 Herman, Todd - Sample Task 6
 Herman, Todd - Sample Task 12
 Simpson, Alex - Sample Task 11

End of samples reached. Press Enter.

15-10. Perform Aggregate Operations
on Collections

Problem
You need to perform basic aggregate operations (such as Max or Min) on data stored in a collection.

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 595

Solution
Call one of the aggregate methods, available to all IEnumerable(Of T) collections, to perform the
required calculation.

How It Works
.NET Framework 3.5 offers several methods that perform aggregate calculations on a group of data.
Table 15-2 shows the most commonly used methods.

These methods are defined in System.Linq.Enumerable and are actually extension methods (see
recipe 15-4) of the IEnumerable(Of T) class. Any object that derives from IEnumerable(Of T) will have
access to these methods. Here is an example:

Dim numbers() As Integer = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Console.WriteLine("There are {0} numbers in the array.", numbers.Count.ToString)
Console.WriteLine("The MIN is {0}.", numbers.Min.ToString)
Console.WriteLine("The MAX is {0}.", numbers.Max.ToString)
Console.WriteLine("The AVG is {0}.", numbers.Average.ToString)
Console.WriteLine("The SUM is {0}.", numbers.Sum.ToString)

This example creates an array of Integers called numbers. Since numbers derives from Enumerable,
you have access to the desired extension methods. The code would produce the following results:

There are 10 numbers in the array.
The MIN is 1.
The MAX is 10.
The AVG is 5.5.
The SUM is 55.

A typical LINQ query returns some type of collection. The query is executed only when you
attempt to iterate through that collection. Since any collection returned by a LINQ query derives
from IEnumerable(Of T), the .NET Framework 3.5 aggregate methods are available. The form is to
surround the query in parentheses and use dot notation to access the required method. You can
convert part of the previous example into a LINQ query like this:

Dim numbers() As Integer = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Dim avg = (From num In numbers
 Select num).Average

Table 15-2. Common Aggregate Operators

Method Description

Count Returns the number of items

Sum Returns the sum of the specified field

Max Returns the maximum value in the specified field

Min Returns the minimum value in the specified field

Average Returns the average value in the specified field

596 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

Using aggregate methods in this manner forces the LINQ query to execute immediately, and
only a single value, the aggregate value, is returned.

The Code

The following example calls five methods that demonstrate how to use LINQ to perform each of the
aggregate operations listed in Table 15-2.

The Employee class is a simple class that represents an employee. HelperMethods.GetEmployees
simply generates some sample employees to use with the code. Both of these belong to the SampleData
namespace, which is not shown here; its purpose is only to provide sample data for the recipe. It is
provided with the downloadable source code.

Imports System
Imports System.Linq

Public Class Recipe15_10

 Public Shared employees As List(Of SampleData.Employee) = ➥
SampleData.HelperMethods.GetEmployees

 Private Shared Sub ShowMaxWage()

 ' Create a query that executes immediately and returns
 ' the maximum hourly wage.
 Dim wageMax = (From emp In employees
 Select emp.HourlyWage).Max

 Console.WriteLine("Maximum Hourly Wage: {0}", wageMax.ToString("$###.#0"))

 End Sub

 Private Shared Sub ShowMinWage()

 ' Create a query that executes immediately and returns
 ' the minimum hourly wage.
 Dim wageMin = (From emp In employees
 Select emp.HourlyWage).Min

 Console.WriteLine("Minimum Hourly Wage: {0}", wageMin.ToString("$###.#0"))

 End Sub

 Private Shared Sub ShowWageSum()

 ' Create a query that executes immediately and returns
 ' the sum of all wages.
 Dim wageSum = (From emp In employees
 Select emp.HourlyWage).Sum

 Console.WriteLine("Total Wage: {0}", wageSum.ToString("$###.#0"))

 End Sub

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 597

 Private Shared Sub ShowAvgWage()

 ' Create a query that executes immediately and returns
 ' the average hourly wage.
 Dim wageAvg = (From emp In employees
 Select emp.HourlyWage).Average

 Console.WriteLine("Average Wage: {0}", wageAvg.ToString("$###.#0"))

 End Sub

 Private Shared Sub HiredThisYear()

 ' Create a query that executes immediately and returns
 ' the number of employees that were hired in the current
 ' year.
 Dim cnt = (From emp In employees
 Where emp.HireDate.Year = DateTime.Now.Year
 Select emp).Count

 Console.WriteLine("{0} employees were hired this year.", cnt.ToString)

 End Sub

 Public Shared Sub Main()

 Call ShowMaxWage()
 Call ShowMinWage()
 Call ShowWageSum()
 Call ShowAvgWage()
 Call HiredThisYear()

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("End of samples reached. Press Enter.")
 Console.ReadLine()

 End Sub

End Class

Usage

When you run the preceding code, you will receive the following results:

Maximum Hourly Wage: $200.00
Minimum Hourly Wage: $10.75
Total Wage: $778.94
Average Wage: $70.81
5 employees were hired this year.

End of samples reached. Press Enter.

598 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

15-11. Retrieve a Subset of Data from a Collection

Problem
You need to retrieve specific elements or groups of elements from a collection.

Solution
Call one of the methods (such as First or Last), available to all IEnumerable(Of T) collections, to
partition the data as required.

How It Works
Similar to the aggregate methods discussed in recipe 15-10, .NET Framework 3.5 also offers several
methods that assist in retrieving certain data from a collection. Table 15-3 shows the most commonly
used methods.

a This method is not currently supported in the version of Visual Studio used for this chapter.

These methods are defined in System.Linq.Enumerable and are actually extension methods (see
recipe 15-4) of the IEnumerable(Of T) class. Any object that derives from IEnumerable(Of T) will have
access to these methods. Here is an example:

Dim grades() As Integer = {95, 85, 90, 72, 60, 89, 94, 99, 87, 100}

Console.WriteLine("First five grades:")
Dim firstFiveGrades = grades.Take(5)
For Each grade In firstFiveGrades
 Console.WriteLine(" {0}", grade.ToString)
Next

Table 15-3. Common Partitioning Methods

Method Description

Take Returns the specified number of items from the beginning of the collection

TakeWhilea Returns the specified number of items from the beginning of the collection
while the specified condition is True

Skip Skips the specified number of items from the beginning of the collection and
returns the rest

SkipWhilea Skips the specified number of items from the beginning of the collection and
returns the rest while the specified condition is True

ElementAt Returns the item at the specified index in the collection; since the collection is
zero-based, the first element is at index 0

First Returns the first item in the collection

Last Returns the last item in the collection

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 599

This example creates an array of Integers called grades. Since grades derives from
IEnumerable(Of T), you have access to the desired extension methods. This example uses Take to
return the first five elements of the collection:

First five grades:
 95
 85
 90
 72
 60

Here is an example that uses the Skip method:

Console.WriteLine("All other grades:")
Dim lastFiveGrades = grades.Skip(5)
For Each grade In lastFiveGrades
 Console.WriteLine(" {0}", grade.ToString)
Next

Skip is the opposite of Take. It skips the first five elements in the collection and returns the
remaining elements:

All other grades:
 89
 94
 99
 87
 100

The Take (or TakeWhile) and Skip (or SkipWhile) methods work using deferred execution. This
means that the query does not execute until you attempt to iterate through the collection subset
returned by the method. Some partitioning methods (such as First, Last, and ElementAt) force the
query to execute immediately and return only a single value. Here is an example of using the same
grades array shown in the preceding examples:

Dim firstGrade = grades.First
Dim lastGrade = grades.Last
Dim seventhGrade = grades.ElementAt(7)

Console.WriteLine("First grade: {0}", firstGrade)
Console.WriteLine("Last grade: {0}", lastGrade)
Console.WriteLine("The 7th grade: {0}", seventhGrade)

Running this new example would produce the following results:

First grade: 95
Last grade: 100
The 7th grade: 99

600 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

Since any collection returned by a LINQ query derives from IEnumerable(Of T), the partitioning
methods are available. The form is to surround the query in parentheses and use dot notation to
access the required method. You would convert the previous example of using Take to a LINQ query
like this:

Dim firstFiveGrades = (From grade in grades).Take(5)

15-12. Display Collection Data Using Paging

Problem
You need to segment data from a collection into pages.

Solution
Combine and use the Skip and Take extension methods (discussed in recipe 15-11) of an
IEnumerable(Of T) instance to segment the data into a page. Call the Skip and Take methods in a
loop, changing the parameter used with Skip to get and display each page.

How It Works
It is common to divide large amounts of data into manageable chunks, or pages. This is accomplished
with LINQ by using a combination of the Skip and Take methods. As discussed in recipe 15-11, Skip
and Take are extension methods of IEnumerable(Of T). Since Skip returns an IEnumerable(Of T)
instance, Take can be used in conjunction with it, as shown here:

Dim page1 = procs.Skip(0).Take(10)

Assuming procs is an IEnumerable(Of T) collection, this statement would return the first ten
items. For paging purposes, the parameter passed to Skip can be thought of as the starting point for
a given page, and the parameter passed to Take represents the page size. With this in mind, if you
wanted the second page of data, you would use this:

Dim page2 = procs.Skip(10).Take(10)

The Code

The following example uses LINQ to query the processes that are using more than 5 MB of memory.
ToList, another IEnumerable(Of T) extension method, is used to force the query to execute immedi-
ately and return a List(Of Process) collection. A page, which consists of ten items, is retrieved by
using Skip and Take as described in this recipe. The example loops through each page, displaying the
data until there is no more.

Imports System
Imports System.Linq
Imports System.Diagnostics

Public Class Recipe15_12

 ' This constant holds the size of each page.
 Private Const PAGE_SIZE = 10

C HA P TE R 1 5 ■ L AN G U A G E I N T E G R A TE D Q U E R Y (L I N Q) 601

 ' A constant to hold a number representing 5 MB (in
 ' bytes). This is used in the LINQ query to check
 ' memory usage.
 Private Const FIVE_MB = 5 * (1024 * 1024)

 Public Shared Sub Main()

 ' Use LINQ to retrieve an IEnumerable(Of Process) List of
 ' processes that are using more than 5 MB of memory. The
 ' ToList method is used to force the query to execute immediately.
 Dim procs = (From proc In Process.GetProcesses.ToList
 Where proc.WorkingSet64 > FIVE_MB
 Order By proc.ProcessName
 Select proc).ToList

 ' Calculate the total number of pages by dividing the count of
 ' processes by the page size.
 Dim totalPages As Integer = procs.Count / PAGE_SIZE

 Console.WriteLine("LIST OF PROCESSES WITH MEMORY USAGE OVER 5 MB:")
 Console.WriteLine(Environment.NewLine)

 ' Loop and display each page of data.
 For i = 0 To totalPages - 1
 Console.WriteLine("PAGE {0} OF {1}", i + 1.ToString(), ➥
totalPages.ToString())

 ' Loop through all of the process records for this page.
 ' A combination of the Skip and Take methods is used to
 ' accomplish paging on our data.
 For Each proc In procs.Skip(i * PAGE_SIZE).Take(PAGE_SIZE)
 Console.WriteLine("{0,-20} - {1,5} MB", proc.ProcessName, ➥
(proc.WorkingSet64 / 1048576).ToString("##.##"))
 Next

 ' Check if there are any more pages.
 If Not i = totalPages - 1 Then
 Console.WriteLine("Press Enter for the next page.")
 Console.ReadLine()
 End If
 Next

 Console.WriteLine(Environment.NewLine)
 Console.WriteLine("No more data available. Press Enter to end.")
 Console.ReadLine()

 End Sub

End Class

602 CH AP T E R 1 5 ■ L A N G U AG E IN TE G R AT E D QU E R Y (L IN Q)

Usage

When you run the preceding code, you will receive results similar to the following:

LIST OF PROCESSES WITH MEMORY USAGE OVER 5 MB:

PAGE 1 OF 5
Apache - 8.28 MB
Apache - 14.68 MB
Apache - 6.55 MB
backupserver - 7.21 MB
bagent - 16.27 MB
csrss - 5.11 MB
ctfmon - 5.23 MB
CTHELPER - 6.78 MB
CTSysVol - 5.55 MB
devenv - 79.44 MB
Press Enter for the next page.

. . .

PAGE 5 OF 5
svchost - 5.56 MB
svchost - 13.51 MB
taskmgr - 6.07 MB
TimounterMonitor - 5.72 MB
wcescomm - 6.81 MB
WDEzLink - 18.77 MB

No more data available. Press Enter to end.

603

■ ■ ■

A P P E N D I X

Acronyms

ACL
access control list

API
application programming interface

ASCII
American Standard Code for Information Interchange

CA
certificate authority

CAS
code access security

CCW
COM callable wrapper

CLR
common language runtime

COM
Component Object Model

CPU
central processing unit

CSP
cryptographic service provider

CSS
Cascading Style Sheets

604 AP P E N D I X ■ A CR O N Y M S

CTP
Community Technology Preview

DCOM
Distributed Component Object Model

DLL
dynamic link library

DNS
Domain Name System

DOM
Document Object Model

DPAPI
Data Protection Application Programming Interface

EDM
Entity Data Model

FTP
File Transfer Protocol

GAC
global assembly cache

GC
garbage collection

GDI
Graphics Device Interface

GUI
graphical user interface

HTML
Hypertext Markup Language

HTTP
Hypertext Transfer Protocol

HTTPS
Hypertext Transfer Protocol over Secure Sockets Layer (HTTP over SSL)

AP P E N D IX ■ AC R ON Y M S 605

I/O
input/output

ICMP
Internet Control Message Protocol

IIS
Internet Information Services

IL
intermediate language

ILDASM
Intermediate Language Disassembler

IMAP
Internet Message Access Protocol

IP
Internet Protocol

JIT
just in time

LINQ
Language Integrated Query

MAPI
Messaging Application Programming Interface

MBR
marshal by reference

MBV
marshal by value

MDI
Multiple Document Interface

MIME
Multipurpose Internet Mail Extensions

MSDN
Microsoft Developer Network

606 AP P E N D I X ■ A CR O N Y M S

MSIL
Microsoft Intermediate Language

OS
operating system

PIA
primary interop assembly

PID
process identifier

POP3
Post Office Protocol 3

RBS
role-based security

RCW
runtime callable wrapper

RFC
Request For Comment

RID
role identifier

RPC
remote procedure call

SCM
Service Control Manager

SDK
software development kit

SID
security identifier

SMTP
Simple Mail Transfer Protocol

SOAP
Simple Object Access Protocol

AP P E N D IX ■ AC R ON Y M S 607

SPC
software publisher certificate

SQL
Structured Query Language

SSL
Secure Sockets Layer

TCP
Transmission Control Protocol

TLBEXP
Type Library Exporter

TLBIMP
Type Library Importer

TSQL
Transact-SQL

UDP
User Datagram Protocol

URI
uniform resource identifier

URL
uniform resource locator

URN
uniform resource name

UTF
Unicode Transformation Format

W3C
World Wide Web Consortium

WMI
Windows Management Instrumentation

WSDL
Web Service Description Language

608 AP P E N D I X ■ A CR O N Y M S

XML
Extensible Markup Language

XSD
XML Schema Definition

XSL
Extensible Style Language

XSLT
Extensible Style Language Transformation

609

Index

■Symbols
- (subtraction) operator, 59
- (unary negation) operator, 59
/ expression, XPath, 224
// expression, XPath, 224
< (less than) operator, 59
<= (less than or equal to) operator, 59
<> (inequality) operator, 59
> (greater than) operator, 59
>= (greater than or equal to) operator, 59
$ element, regular expressions, 51
* element, regular expressions, 51
* expression, XPath, 224
* placeholder for element names, 221
+ (addition) operator, 59
+ (unary plus) operator, 59
+ element, regular expressions, 51
. element, regular expressions, 51
. expression, XPath, 224
.. expression, XPath, 224
= (assignment) operator, 59
= (equality) operator, 59
? element, regular expressions, 51
@ expression, XPath, 224
^ element, regular expressions, 51
{} element, regular expressions, 51
| element, regular expressions, 51
| expression, XPath, 224

■A
A element, regular expressions, 51
Abort method

HttpListenerContext class, 385
Thread class, 96, 149

absolute path, XPath, 224
abstract classes, 226
AcceptTcpClient method, TcpListener class,

399, 403
access control lists (ACLs), 207–209
access tokens, 459
accessing command-line arguments, 11–13
Account property, ServiceProcessInstaller

 class, 564
AccountOperator value, WindowsBuiltInRole

enumeration, 453
ACLs (access control lists), 207–209

Activator class, 105
ActiveMovie COM component, 311, 313
ActiveMovie Quartz library, 311
ActiveX controls

using in .NET clients, 497–499
Add method

Controls property, 245
creating parameter objects, 352
CredentialCache class, 416
HttpListenerPrefixCollection, 385
Interlocked class, 146
Parameters collection, 351, 352, 366

AddAccessRule method, FileSecurity class, 207
AddAttribute method, XmlHelper class, 219
AddClosedCurve method, GraphicsPath

class, 295
AddElement method, XmlHelper class, 217
AddEllipse method, GraphicsPath class, 295
addition (+) operator, 59
addmodule compiler switch, 8, 9
AddPrinterConnection method, Win32_Printer

class, 334
AddRectangle method, GraphicsPath class, 295
AddressOf keyword

implementing Observer pattern, 541
AddressOf operator, 112
AddString method, GraphicsPath class, 295
AddValue method, SerializationInfo class, 504
AddXyz methods, DateTime structure

adding/subtracting/comparing dates and
times, 59

Administrator value, WindowsBuiltInRole
enumeration, 453

ADO classic COM objects
using COM component in .NET client, 493

ADO objects
accessing, using COM Interop, 494

ADO.NET
accessing data sources, 335
writing generic ADO.NET code, 366–370

ADO.NET recipes see recipes, database access
AdventureWorks database, 336
aggregate operations

performing on collections, 594–597
al.exe (Assembly Linker tool), 35

610 ■IN D E X

algorithms
hash code algorithm, 190
keyed hashing algorithm

implementations, 472
all tag, 229
AllDirectories value, SearchOption

enumeration, 189
AllowDrop property, Control class, 281
AllowMultiple property,

AttributeUsageAttribute class, 106
AllowNavigation property, WebBrowser

control, 285
AllowPartiallyTrustedCallersAttribute, 434,

435, 436
And bitwise operator, 167
AND operator, 14, 16
AndAlso operator, 14
animated system tray icon, creating, 277–279
animation

playing video with DirectShow, 313–316
anonymous types, using, 576–578
antialiasing, 307
APP_CONFIG_FILE key, 81
AppDomain class, 80

BaseDirectory property, 81
CreateDomain method, 80
CreateInstance method, 89, 90
CreateInstanceAndUnwrap method, 89
CreateInstanceFrom method, 89
CreateInstanceFromAndUnwrap method,

87, 89
ExecuteAssembly method, 82, 83, 89
ExecuteAssemblyByName method, 82
GetData method, 81, 93, 94
IsFinalizingForUnload method, 96
maintaining reference to instance of, 82
RelativeSearchPath property, 81
restricting which users can execute code, 456
SetData method, 93, 94
SetPrincipalPolicy method, 456
SetThreadPrincipal method, 456
Unload method, 96
using isolated file storage, 201, 202

AppDomainSetup class, 80
passing data between application

domains, 94
properties, 81

AppendChar method, SecureString class, 474
AppendChild method, XmlNode class, 215
Application class, 4

OpenForms property, 249, 250
Run method, 4

Application class, My, 161, 250
application development tools, .NET, 1

application development recipes, 1–38
see also recipes, application development

application domain/reflection/metadata
recipes, 77–108

see also recipes, application
domain/reflection/metadata

application domains
accessing objects outside, 85
configuration information for, 80
instantiating controller class in, 89
passing MBV references across, 84
Type instances in assemblies, 100

Application Settings functionality, 255, 256
ApplicationBase property, AppDomainSetup

class, 81
ApplicationException class, 531
applications

see also Windows Forms application
ensuring only one instance executing,

158–159
responding to HTTP requests from, 384–388
start application running in new process,

152–155
terminating process, 155–157

ApplicationSettings property, 255
apply templates command, 239
args argument, 11
ArgumentException class

copying contents of collection to array, 62
implementing comparable type, 512
responding to HTTP requests from

application, 385
ArgumentNullException class, 531

instantiating objects using reflection, 102
ArgumentOutOfRangeException class, 531

manipulating contents of String object, 40
arguments

accessing command-line arguments, 11–13
passing data between application

domains, 94
Arguments property, ProcessStartInfo class, 154
Array class, 61
ArrayList class, 94

implementing comparable type, 513
querying nongeneric collection, 584
Sort method, 61, 513
storing serializable object with state to

file, 69
ToArray method, 62

arrays
copying contents of collection to array,

62–63
sorting contents of array or ArrayList

collection, 61–62

611■I N D E X

Find it faster at http://superindex.apress.com

Ascending keyword
sorting data using LINQ, 586

ASCII encoding, 178
ASCII property

ASCIIEncoding class, 42
Encoding class, 392

ASCIIEncoding class, 42
aspect ratio

creating thumbnail for existing image, 307
assemblies

allowing partially trusted code to use
strong-named assemblies, 434–436

creating application domain, 80–82
creating SPC to test Authenticode signing of,

29–31
delay signing assemblies, 23
embedding resource file in, 35–38
executing in remote application domain,

82–84
fully qualified name, 78
giving strong name to, 19–21
inspecting assembly’s evidence, 449–451
limiting permissions granted to, 442–444
loading into current application domain,

77–80
loading unnecessary assemblies into

application domains, 84–85
managing Global Assembly Cache, 31
preventing decompilation of, 32
registering remotable classes in, 425–427
rejecting permissions granted to, 442
runtime granting specific permissions to,

440–442
signing with Authenticode, 25–29
specifying publisher policy in, 78
strong-naming, 78
Type instances in application domains, 100
unload assemblies or application domains at

runtime, 96
verifying strong-named assembly not

modified, 22–23
viewing permissions required by, 444–445

Assembly class, 78
Evidence property, 449, 450
GetType/GetTypes methods, 97, 98
inspecting assembly’s evidence, 449
Load/LoadFrom methods, 78, 79
loading assembly into current application

domain, 78
LoadWithPartialName method, 78

assembly evidence collection, 450
Assembly Information dialog box, 22
Assembly Linker tool (al.exe), 35
assembly manifest, 9
Assembly prefix (Assembly:), 436
AssemblyCultureAttribute, 20

AssemblyDelaySignAttribute, 24
AssemblyKeyFileAttribute, 20
AssemblyKeyNameAttribute, 20
AssemblyName class, 55, 64
AssemblyQualifiedName column, 368
AssemblyVersionAttribute, 20
assignment (=) operator, 59
asterisk placeholder for element name, 221
Asterisk property, SystemSounds class, 309
AsyncCallback delegate, 116, 363
AsyncCompletedEventHandler delegate, 380
AsyncExampleDelegate delegate, 117
AsynchCallback delegate, 385
asynchronization

see also synchronization
asynchronous communications using TCP,

403–410
blocking, 116, 363
callbacks, 117, 363
calling unmanaged function that uses

callback, 489–490
calling web service method asynchronously,

418–420
determining if asynchronous method

finished, 116, 363
executing database operations

asynchronously, 362–365
executing method asynchronously, 115–123
inadvertent disposal of objects, 364
polling, 116, 363
reading files asynchronously, 185–188
SqlCommand class, 362, 363
waiting, 116, 363
WebClient class, 382

AsyncProcessor class, 186, 187
AsyncWaitHandle property, IAsyncResult, 116
Attachment/AttachmentCollection classes

sending e-mail using SMPT, 392
Attachments property, MailMessage class, 392
Attribute class, 105
attribute of node

XPath expression syntax, 224
attributes

creating custom attributes, 105–107
decorating types with custom attribute, 107
inspecting value of custom attributes at

runtime, 107–109
selectively including code at build time

using, 13–17
serialization and deserialization, 503
setting file or directory attributes, 167–168

Attributes property
DirectoryInfo class, 163, 167
FileInfo class, 163, 167
XmlNode class, 212

612 ■IN D E X

AttributeTargets enumeration, 106
AttributeUsageAttribute, 105, 106
Audio class, My see under My classes
audio files, 311–313
AudioPlayMode enumerated type

PlayMode parameter, 310
authentication

getting HTML page from site requiring,
388–390

setting authentication credentials for web
service, 415–417

Authenticode
creating SPC to test signing of assembly,

29–31
signing assembly with, 25–29

AuthorAttribute, 106, 107
AutoCompleteComboBox control, 262, 263, 264
AutoCompleteMode property, ComboBox

control, 262
autocompletion

creating autocomplete combo box, 262–264
AutoLog property, ServiceBase class, 561
AutoResetEvent class, 128, 137
AutoScroll property, Panel control

adding controls to forms at runtime, 245
creating scrollable image, 301
finding all installed fonts, 290

AvailableFreeSpace property, DriveInfo class,
163, 196, 197

Average method, 595
AxHost class, 498
Aximp.exe, 498
AxImporter/AxMaskEdBox classes, 498
AxMSMask.dll file, 498

■B
background threads, 115
Background value, 310
BackgroundColor property, 33
BackgroundImage property, 296
BackgroundLoop value, 310
backslash character (\), 13
BackupOperator value, 453
bag, 67
Base64 array

converting binary data to/from, 46–50
Base64 encoding, 50
BaseDirectory property, AppDomain class, 81
BC30420 compilation error, 3
Bcc property, MailMessage class, 392
Beep method, Console class, 308, 309
BeepOnError property, MaskedTextBox

control, 260
BeforeExpand event, TreeView control, 175

BeginAcceptTcpClient method, TcpListener
class, 403

BeginExecuteNonQuery method, SqlCommand
class, 362, 363

BeginExecuteReader method, SqlCommand
class, 362, 363

BeginExecuteXmlReader method,
SqlCommand class, 362, 363

BeginGetContext method, HttpListener class,
385, 386

BeginGetHostEntry method, Dns class, 395
BeginInvoke method, 115, 116, 117
BeginPrint event, PrintDocument class, 319
BeginRead method

FileStream class, 185
NetworkStream class, 403

BeginWrite method, NetworkStream class, 403
BigEndianUnicode property, UnicodeEncoding

class, 42
binary data/file

converting to/from Base64 array, 46–50
reading and writing binary files, 180–181

Binary namespace see
System.Runtime.Serialization.
Formatters.Binary

BinaryFormatter class, 69
implementing cloneable type, 509
storing serializable object with state to file,

69, 71
BinaryReader class, 180

converting byte array to Decimal type, 45
downloading file and processing, using

stream, 383
BinaryWriter class, 180

converting Decimal type to byte array, 45
bindingRedirect elements, 78
BitConverter class, 44

converting bool/int types to/from byte array,
45–46

GetBytes method, 44
ToBoolean method, 45
ToInt32 method, 45
ToString method, 46, 469
verifying hash codes, 469

Bitmap class, 303
BitVector32 class, 152
blocking, 111

determining if asynchronous method
finished, 363

executing methods asynchronously, 116
threads, 133

BlockingExample method, 117
Body property, MailMessage class, 392
BodyEncoding property, MailMessage

class, 392

613■I N D E X

Find it faster at http://superindex.apress.com

bool type
converting to/from byte array using

BitConverter class, 45–46
borderless form

creating movable borderless form, 275–277
boundaries, application domains

creating type that can cross, 86–89
creating type that can’t cross, 85–86
MBR (marshal-by-reference) types, 86
MBV (marshal-by-value) types, 86

boundaries, cross-platform
web services and, 373

BufferHeight property, Console class, 33
buffering

using double buffering to increase redraw
speed, 304–307

BufferWidth property, Console class, 33
build time

selectively including code at, 13–17
BUILTIN prefix for Windows groups, 453
ByRef keyword, 145
byte arrays

Base64 encoding/decoding using Convert
class, 47

converting to hexadecimal string values for
display, 469

converting value types to/from byte arrays,
44–46

bytes
little-endian byte ordering, 44

■C
C function

using from external library, 482
C.E. (Common Era), 59
CA (certificate authority), 25
cache

passing data between application
domains, 94

CallbackExample method, 117
CallbackHandler method, 117
callbacks

calling unmanaged function that uses,
489–490

determining if asynchronous method
finished, 363

executing methods asynchronously, 117
camel casing, 235
CancelAllJobs method, Win32_Printer

class, 334
CancelAsync method, WebClient class, 380, 419
Cancelled property, EchoCompletedEventArgs

class, 419
CanGoBack property, WebBrowser control, 285

CanGoForward property, WebBrowser
control, 285

CanHandlePowerEvent property, ServiceBase
class, 560

CanHandleSessionChangeEvent property,
ServiceBase class, 560

CannotUnloadAppDomainException class, 96
CanPauseAndContinue property, ServiceBase

class, 560
CanShutdown property, ServiceBase class, 560
CanStop property, ServiceBase class, 560
Capacity property, StringBuilder class, 40
CAS (code access security), 433

allowing partially trusted code to use
strong-named assemblies, 435

disabling code access security, 436–438
disabling execution permission checks,

438–440
limiting permissions granted to

assembly, 442
runtime granting specific permissions to

assembly, 440
turning CAS on and off

programmatically, 438
turning off, 437

case sensitivity
regular expressions, 50

CasOff/CasOn methods, 438
caspol.exe tool, 437

disabling code access security, 436
disabling execution permission checks,

439, 440
e option, 439, 440
s option, 436, 437
turning off CAS, 437

casting
specialized collection classes, 152
TryCast keyword, 99

CC property, MailMessage class, 392
CCW (COM callable wrapper), 499
cert2spc.exe, 29

see also SPC
certificate authority (CA), 25
Certificate Creation tool (makecert.exe)

creating test X.509 certificate, 29
switches used with, 30

Certificates class
Find method, 389, 416
Select method, 416

Certificates property
web service proxy class, 415
WebClient class, 388
WebRequest class, 388

Certificates.Find method, X509Store class, 416
Certificates.Select method, X509Store class, 416

614 ■IN D E X

Change method, Timer class, 124
Changed event, FileSystemWatcher class, 203
ChangeExtension method, Path class, 191, 192
char array

converting binary data to/from, 47
Char class, 261
character-encoding classes, 42
checkboxes

dynamically generated checkbox list, 246
CheckExecutionRights property,

SecurityManager class, 439, 440
CheckFileExists property, OpenFileDialog

class, 198
ChildNodes property, XmlNode class, 212
classes

see also objects
.NET classes, 237–238
abstract classes, 226
character-encoding classes, 42
class member name casing, 235
collection classes, 151–152
command classes, 347–351
connection string builder classes, 343
controller classes, 89
controlling inheritance and member

overrides using CAS, 447–449
custom exception, implementing, 531–535
data reader classes, 355–358
database connection classes, 337, 348
disposable class, implementing, 523–527
event argument classes, 535, 537
exception classes, 531–535
factory classes, 367
generating .NET class from schema, 237–238
I/O classes, 161
My classes see under My classes
networking classes, .NET Framework, 373
parameter classes, 351–355
passing objects by reference/value, 87
serializable classes, 531

classes, list of
for more locators, see also classes by

individual name
see also controls; collections, list of
Activator, 105
AppDomain, 80
AppDomainSetup, 80
Application, 4
ApplicationException, 531
ArgumentException, 62, 385, 512
ArgumentNullException, 102, 531
ArgumentOutOfRangeException, 40, 531
Array, 61
ArrayList, 94

ASCIIEncoding, 42
Assembly, 78
AssemblyName, 55, 64
AsyncProcessor, 186, 187
Attribute, 105
AutoResetEvent, 128, 137
AxHost, 498
AxImporter, 498
AxMaskEdBox, 498
BinaryFormatter, 69
BinaryReader, 180
BinaryWriter, 180
BitConverter, 44
Bitmap, 303
BitVector32, 152
CannotUnloadAppDomainException, 96
Certificates, 389, 416
Char, 261
ClientHandler, 404
CommonDialog, 198
Component, 86
ConditionalAttribute, 13
Configuration, 345
ConfigurationManager, 345
ConnectionStringSettings, 345
Console, 33
ConsoleKeyInfo, 72
ConsoleUtils, 3
ConstructorInfo, 101, 102
Container, 244
Control, 281
ControlCollection, 244
controller, 89
Convert, 47
CredentialCache, 389
CultureInfo, 528
DataRow, 370
DataSet, 84
DataTable, 368
DateTime, 56–60
DateTimeFormatInfo, 57, 528
DbConnection, 337
DbConnectionStringBuilder, 342, 343
DbDataReader, 355–358
DbParameterCollection, 348
DbProviderFactories, 368
DbProviderFactory, 366
DbTransaction, 348
Debug, 17
Dictionary, 64
Directory, 189
DirectoryInfo, 162
DirectoryNotFoundException, 164
DirectorySecurity, 207

615■I N D E X

Find it faster at http://superindex.apress.com

disposable, implementing, 523–527
Dns, 394, 395
DocumentElement, 212
DragEventArgs, 282
DriveInfo, 162
EchoCompletedEventArgs, 418, 419
Encoding, 42
Enum, 101
Environment, 11
EventArgs, 535
EventLog, 550–552
EventWaitHandle, 137, 138
Evidence, 80
Exception, 531–535
FieldOffsetAttribute, 487
File, 166
FileInfo, 161
FileIOPermission, 200
FileLoadException, 22, 441
FileNotFoundException, 10, 78, 164
FileSecurity, 207
FileStream, 69
FileSystemEventArgs, 203
FileSystemWatcher, 202, 203
FileVersionInfo, 173
FileWebRequest, 383
FilgraphManager, 313
FolderBrowserDialog, 198, 199
FontCollection, 290
FontFamily, 290
Form, 4
FormatException, 57, 531
FormCollection, 249, 250
FtpWebRequest, 383
GC, 523, 524
Graphics, 303
GraphicsPath, 292, 295
GuidAttribute, 500
HashAlgorithm, 190
Hashtable, 152
HtmlDocument, 285
HttpListener, 385, 386
HttpListenerContext, 385
HttpListenerException, 385
HttpListenerPrefixCollection, 385
HttpListenerRequest, 385
HttpListenerResponse, 385
HttpWebRequest, 383, 389
Image, 292, 307
InnerException, 397
InstalledFontCollection, 290
Installer, 564, 565
InstallerCollection, 565
Interlocked, 145, 146

IntPtr, 475, 484
InvalidCastException, 62, 99
InvalidOperationException, 397
IOException, 196
IPGlobalProperties, 374
IsolatedStorageFile, 200
IsolatedStorageFileStream, 200
IsolatedStoragePermission, 201
KeyedHashAlgorithm, 471, 472
KeyPressEventArgs, 261
Label, 276, 290
ListViewItem, 247
ListViewItemComparer, 265
MACTripleDES, 472
MailAddress, 392
MailAddressCollection, 392
MailMessage, 390
MalformedLineException, 182, 183
ManualResetEvent, 128, 137
Marshal, 312
MarshalByRef, 421
MarshalByRefObject, 85
MemoryStream, 44
MenuItem, 247
MessageBox, 247
MessageInfo, 113
MethodBase, 108
MissingMethodException, 82
Monitor, 132
MouseEventArgs, 535
Mutex, 128
My classes see under My classes
NetworkAvailabilityEventArgs, 377
NetworkChange, 377
NetworkCredential, 389
NetworkInterface, 374
NetworkStream, 398
Object, 64
ObjectDisposedException, 524
ObjectHandle, 84, 89
OdbcCommand, 348
OdbcConnection, 337
OdbcConnectionStringBuilder, 343
OdbcDataReader, 356
OdbcFactory, 367
OdbcParameter, 352
OleDbCommand, 348
OleDbConnection, 337, 338
OleDbConnectionStringBuilder, 343
OleDbDataReader, 356
OleDbFactory, 367
OleDbParameter, 352
OpenFileDialog, 198, 199
OperatingSystem, 546, 547

616 ■IN D E X

OptionalFieldAttribute, 503
OracleClientFactory, 367
OracleCommand, 348, 349
OracleConnection, 337
OracleConnectionStringBuilder, 343
OracleDataReader, 356, 357
OracleParameter, 352
OSVersionInfo, 487
OutOfMemoryException, 307
Path, 191
PermissionSetAttribute, 449
PhysicalAddress, 375
Ping, 396, 397
PingOptions, 397
PingReply, 397
PlatformNotSupportedException, 385
PluginManager, 90
Point, 292
PolicyException, 441, 456
PrincipalPermission, 455
PrincipalPermissionAttribute, 455
PrintDialog, 317, 319
PrintDocument, 317
PrinterSettings, 316, 317
PrintPageEventArgs, 321, 322
PrintPreviewControl, 327, 328
PrintPreviewDialog, 327, 328
Process, 155
ProcessInfo, 153
ProcessStartInfo, 153, 475
Product, 234, 238
ProductCatalog, 234, 237
ProjectInstaller, 564
ProtectedData, 478, 479
ProtectedMemory, 478
Publisher, 448
Quartz interop, 312
Random, 462
RandomNumberGenerator, 462
Rectangle, 292, 295
Regex, 52
RegexCompilationInfo, 55
Region, 292, 295
RegisteredWaitHandle, 128
Registry, 553
RegistryKey, 553
RemotingConfiguration, 421, 425
RenamedEventArgs, 203
ResourceManager, 35
RichTextBox, 199
RIPEMD160Managed, 465
RNGCryptoServiceProvider, 462, 463
RsaProtectedConfigurationProvider, 345
SaveFileDialog, 198, 199

SecureString, 153
SecurityException, 440
SecurityIdentifier, 453
SecurityManager, 437
SecurityPermission, 437
Semaphore, 128, 143
serializable, 531
SerializableAttribute, 85
SerializationException, 94
SerializationInfo, 503, 504
SerialPort, 205
ServiceBase, 559
ServiceController, 560
ServiceInstaller, 564, 565
ServiceProcessInstaller, 564, 565
SessionChangeDescription, 560
SHA1CryptoServiceProvider, 464, 465
SHA1Managed, 464, 465
SHA256Managed, 465
SHA384Managed, 465
Site, 448
SmtpClient, 390
SmtpMail, 391
SoapFormatter, 69
SocketPermission, 441
SocketPermissionAttribute, 441
SqlCeCommand, 348
SqlCeConnection, 337
SqlCeDataReader, 356
SqlCeParameter, 352
SqlClientFactory, 367, 368
SqlCommand, 348
SqlConnection, 337
SqlConnectionStringBuilder, 343–344
SqlDataReader, 356, 357
SqlDataSourceEnumerator, 370, 371
SqlParameter, 352, 353
Stream, 67
StreamingContext, 502
StreamReader, 177
StreamWriter, 177, 178
String, 39
StringBuilder, 39
StrongName, 448
StructLayoutAttribute, 486, 487
TcpClient, 398, 401
TcpListener, 398
TextDocument, 321, 322
TextFieldParser, 170, 182–185
TextReader, 86
TextWriter, 86
Thread, 96
ThreadAbortException, 149
ThreadPool, 112

617■I N D E X

Find it faster at http://superindex.apress.com

ThreadStart, 129
ThreadState, 130
ThreadStateException, 130
Timeout, 124, 125
Timer, 123
Trace, 17
TreeNode, 211, 247
Type, 62
UdpClient, 411
UnicodeEncoding, 42
Url, 448
UTF7Encoding, 42
UTF8Encoding, 42
Version, 546
WaitHandle, 116
WebClient, 379
WebException, 383
WebPermission, 441
WebPermissionAttribute, 441
WebRequest, 86
WebResponse, 86
Win32_Printer, 330, 334
Win32_PrintJob, 330
WindowsIdentity, 451
WindowsPrincipal, 451, 452
WindowsSecurityContext, 459, 460
WshShell, 568
X509Certificate2, 389, 415
X509Certificate2UI, 389
X509CertificatesCollection, 391
X509Store, 389, 416
XmlDocument, 212
XmlElement, 212, 220
XmlHelper, 217, 219
XmlNode, 212
XmlNodeList, 219
XmlReader, 225
XmlReaderSettings, 228
XmlSerializer, 233
XmlWriter, 225
XslCompiledTransform, 238
XslTransform, 240
Zone, 448

ClassesRoot field, RegistryKey class, 556
Clear method, Console class, 34
Clear method, SecureString class, 475
Click event handler, 279
client application, 421
ClientCertificates collection

getting HTML page from site requiring
authentication, 389

setting authentication credentials for web
service, 415

ClientCertificates property
SmtpClient class, 391
web service proxy class, 415

ClientHandler class, 404
ClientRectangle property, Control class, 297
Clone method, ICloneable, 508, 509
cloneable types, implementing, 508–511
CloneMenu method, MenuItem class, 269
CloneNode method, XmlNode class

appending nodes in XML document,
217, 219

Close method
data reader classes, 357
database connection classes, 337
HttpListenerContext class, 385

CloseAllFigures method, GraphicsPath
class, 295

Closed event, Form class, 252
CloseMainWindow method, Process class,

155, 156
Closing event, Form class, 252
CLR (common language runtime)

calling unmanaged function that uses
structure, 486

using C function from external library, 482
code

critical section of code, 133
managed code, 481
preventing decompilation of assemblies, 32
selectively including code at build time,

13–17
unmanaged code interoperability recipes,

481–500
code access security see CAS
Code Access Security Policy tool

see caspol.exe tool
code groups, 433
code library, creating, 10–11
code module, creating, 8–10
codeBase elements, 78
collection classes, 151–152
collections

assembly evidence collection, 450
copying contents to array, 62–63
creating generic type, 66–68
displaying collection data using paging,

600–602
filtering data using LINQ, 589–591
performing aggregate operations on,

594–597
predefined generic collections, 64
querying data from multiple collections,

591–594
querying IEnumerable(Of T) collection,

579–583

618 ■IN D E X

querying nongeneric collection, 584–585
retrieving subset of data from, 598–600
sorting, 512–516
sorting contents of ArrayList collection,

61–62
sorting data using LINQ, 585–588
using strongly typed collection, 64–65

collections, list of
ArrayList, 61–62
AttachmentCollection, 392
ClientCertificates, 389, 415
ConnectionStringsSection, 345
ControlCollection, 244, 245, 248
DbParameterCollection, 348
Dictionary, 64, 252
FileNames, 198
FontCollection, 290
FormCollection, 249, 250
HttpListenerPrefixCollection, 385
InstalledFontCollection, 290
InstalledPrinters, 316, 317
InstallerCollection, 565
LinkedList, 64
List, 64
MailAddressCollection, 392
Parameters, 351, 352, 366
Queue, 62, 64
Stack, 62, 64
X509CertificatesCollection, 391
XmlNodeList, 212

Collections namespace see System.Collections
Column property, ListViewItemComparer

class, 265
ColumnCount property, TableLayoutPanel

container, 268
COM callable wrapper (CCW), 499
COM clients

accessing types, 500
exposing .NET component to COM, 499–500

COM components
calling method in (without required

parameters), 496–497
releasing quickly, 495
using ActiveX control in .NET clients, 497
using in .NET client, 493–495

COM Interop
accessing ADO objects, 494
assigning all code full trust, 435
creating shortcut on desktop or Start

menu, 567
COM objects

RCW (runtime callable wrapper), 312
reference counting, 495

COM port
listing all available COM ports, 205
writing to COM/serial port, 205–206

Combine method, Path class, 191, 192
CombinePath method, FileSystem class, 192
ComboBox control

AutoCompleteComboBox control, 262,
263, 264

AutoCompleteMode property, 262
creating autocomplete combo box, 262–264
events and methods, 262

command classes
data providers, 348
ExecuteXyz methods, 349
executing SQL command or stored

procedure, 347–351
properties, 348

command line
accessing command-line arguments, 11–13
creating code library, 10–11
creating code module, 8–10
creating console application, 2–4
creating Windows Forms application, 4–7
selectively including code at build time,

13–17
CommandLine property, Environment class,

12, 546
command-line utilities see executable files
commands

IDbCommand interface, 366
CommandText property, command classes,

347, 348
CommandTimeout property, command

classes, 348
CommandType enumeration, 348
CommandType property, command classes,

347, 348
CommentTokens property, TextFieldParser

class, 182, 183
Common namespace see

System.Data.Common
CommonDialog class, 198
Compact Framework data provider, 335
comparable types, implementing, 512–516
Compare method, IComparer, 265, 512, 513
CompareExchange method, Interlocked

class, 146
CompareTo method, IComparable, 512, 513
Compiled option, RegexOptions

enumeration, 54
compiler directives, 13–17
CompilerServices namespace see

System.Runtime.CompilerServices
CompileToAssembly method, Regex class,

54, 55

619■I N D E X

Find it faster at http://superindex.apress.com

complex data types, XML schema, 229
Component class

classes deriving from
MarshalByRefObject, 86

pinging IP addresses, 397
WebClient class and, 380

component hosts, 421
controlling versioning for remote objects, 431

ComponentModel namespace
see System.ComponentModel

ComputeHash method, HashAlgorithm class
calculating hash code of files, 467
calculating hash code of password, 465
ensuring data integrity using keyed hash

code, 472
testing two files for equality, 190

Computer class, My, 161
Computer.Audio class, My see under My classes
Computer.FileSystem class, My see under My

classes
Computer.Network class, My see under

My classes
Computer.Ports class, My, 205
Computer.Registry class, My, 554, 556
conditional compilation directives, overuse

of, 14
ConditionalAttribute class

selectively including code at build time,
13, 14

used by Trace and Debug classes, 17
Configuration class, 345
configuration data

AppDomainSetup class, 80
passing data between application domains,

93–95
Configuration namespace see

System.Configuration
configuration settings

saving configuration settings for forms,
255–258

specifying, 78, 80
ConfigurationFile property, AppDomainSetup

class, 81
ConfigurationManager class, 345
ConfigurationUserLevel enumeration, 347
Configure method, RemotingConfiguration

class, 421
connection classes see database

connection classes
Connection Lifetime setting, 340
connection pooling, 340–342

configuration of connection pool, 341
connection string settings controlling, 340
creating connections, 340
data provider support for, 340, 342
settings, 341

Connection property, command classes, 348
Connection Reset setting, 340
connection string builder classes, 343
connection strings, 337

creating database connections, 336–339
creating programmatically, 342–344
security, 345
settings controlling connection pooling, 340
storing securely, 344–347
storing unencrypted connection strings, 345
writing encrypted connection string, 345

connections
connection pooling, 340–342
detecting changes in network connectivity,

377–379
IDbConnection interface, 366

ConnectionString property, 337
creating database connection string

programmatically, 343
storing database connection string

securely, 345
ConnectionStrings property, 345
ConnectionStringSettings class, 345
ConnectionStringsSection collection, 345
console see Windows console
console application

creating from command line, 2–4
Console class, 33

Beep method, 308, 309
implementing formattable type, 527
KeyAvailable method, 73
manipulating appearance of console, 34
playing beep or system-defined sound, 309
properties and methods, 33
Read method, 72
ReadKey method, 72, 73
ReadLine method, 72
Write method, 7
WriteLine method, 7, 527

ConsoleColor enumeration, 33
ConsoleKey enumeration, 73
ConsoleKeyInfo class, 72
ConsoleModifiers enumeration, 73
ConsoleUtils class, 3, 4

creating code library from command line, 10
#Const directive, 13, 14
ConstructorInfo class, 101, 102
Container class, 244
Contains method, Rectangle struct, 292
context menu

using part of main menu in, 269–271
ContextMenu property, NotifyIcon control, 278
context-sensitive help, 283

620 ■IN D E X

Control class
AllowDrop property, 281
ClientRectangle property, 297
creating movable shape, 297
DoDragDrop method, 281
DragDrop event, 281, 282
DragEnter event, 281
Handle property, 314, 484
MouseDown event, 275, 281
MouseMove/MouseUp events, 275
Region property, 295, 297
Tag property, 246
using ActiveX control in .NET clients, 497

ControlBox property, Form class, 274
ControlCollection class, 244, 245, 248
controller classes, 89
ControlPolicy element, SecurityPermission

class, 437, 439
ControlPrincipal element, SecurityPermission

class, 456, 459
controls

ActiveX, 497–499
AutoCompleteComboBox, 262, 263, 264
ComboBox, 262–264
creating irregularly shaped, 295–296
EllipseShape, 298, 299, 300
getting handle for, 484–486
ListBox, 258–259, 283
ListView, 264–268
MaskedTextBox, 259, 260, 261, 279
NotifyIcon, 278
Panel, 290, 301
PictureBox, 301, 313, 314
TextBox, 248, 259–261, 269, 281
TreeView, 175–177, 211–215
WebBrowser, 240, 241, 284, 285
Windows Forms, 115, 244–249, 268–269,

279–281
Controls property

Add method, 245
adding controls to forms at runtime, 244
processing all controls on forms, 248

Convert class, 47
Convert method, Encoding class, 44
Copy method, DirectoryInfo class, 170
CopyDirectory method, FileSystem class,

169, 171
CopyFile method, FileSystem class, 169
CopyFromScreen method, Graphics class, 303
copying file or directory, 168–171
copying type instances

implementing cloneable type, 508–511
CopyTo method

FileInfo class, 169
ICollection, 62

count expression, XPath, 225
Count method, 595
Covington, Michael A., 159
Create method

DirectoryInfo class, 169
FileInfo class, 169
HashAlgorithm class

calculating hash code of files, 467
calculating hash code of password, 465
testing two files for equality, 190

KeyedHashAlgorithm class, 472
RandomNumberGenerator class, 462
WebRequest class, 383
XmlReader class, 226, 228, 230
XmlWriter class, 226

CreateAdapter method, DbProviderFactory
class, 367

CreateCommand method, 348, 366
CreateConnection method, DbProviderFactory

class, 366
Created event, FileSystemWatcher class, 203
CreateDirectory method, FileSystem class, 170
CreateDomain method, AppDomain class, 80
CreateInstance method

Activator class, 105
AppDomain class, 89, 90

CreateInstanceAndUnwrap method,
AppDomain class, 89

CreateInstanceFrom method
Activator class, 105
AppDomain class, 89

CreateInstanceFromAndUnwrap method,
AppDomain class, 87, 89

CreateParameter method, 352, 366
CreatePrompt property, SaveFileDialog

class, 198
CreateShortcut method, WshShell class, 568
CreateSubdirectory method, DirectoryInfo

class, 163, 169
CreateSubKey method, RegistryKey class, 557
CreateText method

File class, 177
FileInfo class, 169

CreateXyz methods, XmlDocument class, 215
CreationTime property

DirectoryInfo class, 163
FileInfo class, 163

CredentialCache class, 389, 391
Add method, 416

Credentials property
SmtpClient class, 391
web service proxy class, 415
WebClient class, 388
WebRequest class, 388, 389

credit card number, regular expressions, 52, 55

621■I N D E X

Find it faster at http://superindex.apress.com

critical section of code, 133
CrossProcess value, MemoryProtectionScope

enumeration, 478
CryptGenRandom function, 462
CryptoAPI, 18
cryptography, 433

see also encryption
calculating hash code of files, 466–468
calculating hash code of password, 463–466
creating cryptographically random number,

462–463
ensuring data integrity using keyed hash

code, 471–474
further reading on, 434
protecting sensitive strings in memory,

474–477
verifying hash codes, 469–471

Cryptography namespace see
System.Security.Cryptography

cryptography recipes see recipes, security and
cryptography

CSP (cryptographic service provider), 18, 20
CultureInfo class, 528
current (default) node, XPath, 224
Current property, IEnumerator, 518
CurrentConfig field, RegistryKey class, 556
CurrentCulture method, CultureInfo class, 528
CurrentDirectory property, Environment

class, 546
CurrentPrincipal property, Thread class, 455,

456, 459
CurrentUICulture property, Thread class, 273
CurrentUser field, RegistryKey class, 556
CurrentUser value, DataProtectionScope

enumeration, 478
CursorXyz properties, Console class, 33
custom attributes

creating custom attributes, 105–107
inspecting value of custom attributes at

runtime, 107–109
naming conventions, 105

custom event argument, implementing,
535–537

custom exception class, implementing, 531–535
custom types

implementing cloneable type, 508–511
implementing serializable types, 501–507

■D
D element, regular expressions, 51
d element, regular expressions, 51
data

see also querying data
displaying collection data using paging,

600–602

filtering data using LINQ, 589–591
reading and writing data from streams, 161
retrieving subset of data from collection,

598–600
sorting data using LINQ, 585–588
synchronizing access to shared data,

145–147
data adapters

IDataAdapter interface, 367
data integrity

ensuring, using keyed hash code, 471–474
data manipulation recipes, 39–75

see also recipes, data manipulation
Data namespace see System.Data
data objects see objects
data parameter classes see parameter classes
Data property, DragEventArgs class, 282
Data Protection API see DPAPI
data provider interfaces, 366
data providers

.NET Framework, 335
accessing data sources, 335
command classes, 348
connection string builder classes, 343
creating database connection string

programmatically, 343
data reader classes, 356
database connection classes, 337
factory classes, 367
portability of code, 336

data reader classes
Close method, 357
data providers, 356
GetXyz methods, 357
IDataReader interface, 367
methods, 356
processing results of SQL query using,

355–358
properties, 356

data sources, 335
data types

converting value types to/from byte arrays,
44–46

XML schema, 229
database access, 335, 336
database access recipes, 335–371

see also recipes, database access
database connection classes

Close method, 337
ConnectionString property, 337
CreateCommand method, 348
data providers, 337
Dispose method, 337
Open method, 337

622 ■IN D E X

database connection strings
see connection strings

database connections
connection pooling, 340–342
creating, 336–339
scalability of, 337

databases
executing SQL command or stored

procedure, 347–351
writing database-independent code,

366–370
writing generic ADO.NET code, 366–370

DataProtectionScope enumeration, 478
DataRow class, 370
DataSet class, 84

IDataAdapter interface, 367
DataTable class

discovering all instances of SQL Server on
network, 370

GetFactoryClasses method returning
columns, 368

making objects remotable, 421
dates and times

adding/subtracting/comparing, 58–60
creating DateTime objects from strings,

56–58
representing a period of time, 58
representing a specific time, 58

DateTime class
creating DateTime objects from strings, 56–58
mathematically manipulating DateTime

objects, 58–60
Parse/ParseExact methods, 56, 57

DateTime structure, 125, 163
adding/subtracting/comparing dates and

times, 58–60
AddXyz methods, 59
implementing comparable type, 512
operators supported by, 59

DateTimeFormatInfo class, 57, 528
DbConnection class, 337
DbConnectionStringBuilder class, 342, 343
DbDataReader class, 355–358

ExecuteReader method returning, 349
DbParameterCollection class, 348
DbProviderFactories class, 368
DbProviderFactory class

CreateAdapter method, 367
CreateCommand method, 366
CreateConnection method, 366
CreateParameter method, 366
creating parameter objects, 352
factory classes, 367
IDbConnection interface, 367
instantiating, 368

DbTransaction class, 348
DbType enumeration, 353, 367
DbType property, parameter classes, 353
DCOM (Distributed Component Object

Model), 373
Debug class, 17
DEBUG symbol, 15
decimal type

Base64 encoding/decoding using Convert
class, 47

converting to byte array, 44, 45
reading, using BinaryReader instance, 45

decl switch, Permview.exe, 444
declarative security, 444, 455
decompilation

preventing decompilation of assemblies, 32
Decrement method, Interlocked class, 146
Decrypt method, FileInfo class, 169
deep copy, 508, 509
Default property, Encoding class, 42
DefaultCredentials property, CredentialCache

class, 391, 389
DefaultPageSettings property, PrintDocument

class, 319
define switch, 13, 14
delay signing assemblies, 23
delaysign switch, 23, 24
DelegateAsyncState parameter, 117
delegates

AddressOf operator, 112
calling unmanaged function that uses

callback, 489
executing methods asynchronously, 115
implementing Observer pattern, 539, 540

delegates, list of
AsyncCallback, 116, 363
AsyncCompletedEventHandler, 380
AsyncExampleDelegate, 117
AsynchCallback, 385
EchoCompletedEventHandler, 418, 419
NetworkAvailabilityChangedEventHandler,

377
ParameterizedThreadStart, 129, 130
PingCompletedEventHandler, 397
ThreadStart, 130
TimerCallback, 123, 124, 125
WaitCallback, 112, 113
WaitOrTimerCallback, 127, 128

Delete method
DirectoryInfo class, 169
FileInfo class, 169

Deleted event, FileSystemWatcher class, 203
DeleteDirectory method, FileSystem class, 170
DeleteFile method, FileSystem class, 170

623■I N D E X

Find it faster at http://superindex.apress.com

DeleteSubKey method, RegistryKey class, 557
DeleteSubKeyTree method, RegistryKey

class, 557
DeleteValue method, RegistryKey class, 557
deleting

deleting file or directory, 168–171
Delimiters property, TextFieldParser class,

182, 183
Demand method, PrincipalPermission

class, 455
demands

declarative demands, 455
permission demands, 433

Descending keyword
sorting data using LINQ, 586

Description column, DataTable class, 368
Description property, NetworkInterface

class, 375
deserialization

attributes, 503
implementing custom exception class, 532

Deserialize method, 69
Design namespace see

System.Windows.Forms.Design
desktop

creating shortcut on, 567–569
performing screen capture, 303–304

destructor, 523
Diagnostics namespace see System.Diagnostics
dialog boxes

using common file dialog boxes, 197–200
Dictionary class/collection, 64

determining forms owned by
application, 252

digest authentication, 389, 415
digital signatures, 25–29
Direction property, parameter classes, 353
directives, compiler, 13–17
directories

calculating size of all files in, 171–173
copying/moving/deleting, 168–171
determining if path is directory or file, 193
modifying ACL of, 207–209
performing file system operations, 161
retrieving directory information, 162–166
setting directory attributes, 167–168

Directory class
determining if path is directory or file, 193
Exists method, 193
finding files matching wildcard

expressions, 189
GetAccessControl method, 207
GetCurrentDirectory method, 194
GetLogicalDrives method, 196
modifying ACL of file/directory, 207

retrieving directory information, 166
SetAccessControl method, 207
SetCurrentDirectory method, 194
working with relative paths, 194

Directory property, FileInfo class, 163
directory recipes see recipes,

files/directories/IO
directory tree

displaying in TreeView control, 175–177
DirectoryExists method, FileSystem class, 193
DirectoryInfo class

Attributes property, 167
calculating size of all files in directory, 172
copy method, helper function for, 170
copying/moving/deleting file/directory, 168
FileSystemInfo class and, 164
finding files matching wildcard expressions,

188, 189
GetDirectories method, 189
GetFiles method, 188, 189
methods, 162, 169
performing file system operations, 161
properties, 162
Refresh method, 164
retrieving file/directory/drive

information, 162
setting file or directory attributes, 167
using Directory class instead, 166

DirectoryName property, FileInfo class, 163
DirectoryNotFoundException class, 164
DirectorySecurity class, 207
DirectShow, playing video with, 313–316
DisallowPublisherPolicy property,

AppDomainSetup class, 81
DisplayName property, ServiceInstaller

class, 564
disposable class, implementing, 523–527
disposable objects, 524
Dispose method

database connection classes, 337
implementing disposable class, 523, 524, 557
SecureString class, 475
Timer class, 124

Dispose pattern, implementation of, 524–527
Distributed Component Object Model

(DCOM), 373
DLL

calling functions defined in unmanaged
DLL, 481–484

DllImportAttribute, 482
calling functions defined in unmanaged

DLL, 482
EntryPoint portion, 482
SetLastError field, 491

624 ■IN D E X

DNS (Domain Name System)
resolving host name to IP address using,

394–395
Dns class

BeginGetHostEntry method, 395
EndGetHostEntry method, 395
GetHostByName method, 394
GetHostEntry method, 394
GetHostName method, 395
resolving host name to IP address using

DNS, 394
Document property

displaying web page in Windows
application, 285

PrintDialog class, 319
PrintPreviewControl class, 327
PrintPreviewDialog class, 327

DocumentCompleted event, WebBrowser
control, 285

DocumentElement class, 212
DocumentElement property, XmlDocument

class, 212
documents

printing documents in any application, 318
printing multiple-page document, 321–324
printing simple document, 318–321
showing dynamic print preview, 327–330

DocumentText property, WebBrowser class,
241, 285

DoDragDrop method, Control class, 281
DOM (W3C Document Object Model), 212
Domain property, ProcessStartInfo class, 154
domain-based groups

IsInRole method overloads, 453
domains

creating application domain, 80–82
double buffering, 305

increasing redraw speed, 304–307
double quotes (")

accessing command-line arguments, 13
DoubleBuffered property, Form class, 305
DownloadData method, WebClient class, 380
DownloadDataAsync method, WebClient

class, 380
DownloadDataCompleted event, WebClient

class, 380
DownloadFile method

My.Computer.Network class, 379, 380, 382
WebClient class, 380

DownloadFileAsync method, WebClient
class, 380

DownloadFileCompleted event, WebClient
class, 380

downloading
downloading data over HTTP or FTP,

379–382
downloading file and processing, using

stream, 382–384
getting HTML page from site requiring

authentication, 388–390
DownloadString method, WebClient class, 380
DownloadStringAsync method, WebClient

class, 380
DownloadStringCompleted event, WebClient

class, 380
DPAPI (Data Protection API)

encryption/decryption using, 477–479
protecting sensitive data in memory, 474

DPAPIProtectedConfigurationProvider
class, 345

drag-and-drop functionality, supporting,
281–283

DragDrop event, Control class, 281, 282
DragEnter event, Control class, 281
DragEventArgs class, 282
DrawImage method, Graphics class, 319
Drawing namespace see System.Drawing
Drawing2D namespace see

System.Drawing.Drawing2D
DrawString method, Graphics class

creating scrollable image, 302
printing simple document, 319
printing wrapped text, 324

DriveInfo class
accessing properties, 164
AvailableFreeSpace property, 196, 197
determining free space on drive, 196
example, 197
GetDrives method, 196
IsReady property, 164
properties and classes, 162
retrieving file/directory/drive

information, 162
TotalFreeSpace property, 197

drives
accessing unavailable network drive, 196
determining free space on, 196–197
retrieving drive information, 162–166

DriveType enumeration, 163
DriveType property, DriveInfo class, 163
DumpState method, ConditionalAttribute

class, 15, 16
dynamic URLs

avoiding hard-coding web service URL,
413–415

DynData field, RegistryKey class, 556

625■I N D E X

Find it faster at http://superindex.apress.com

■E
e option, caspol command, 439, 440
e switch, Certificate Creation tool, 30
Echo/EchoAsync method

calling web service method asynchronously,
418, 419

EchoCompleted event, 418, 419
EchoCompletedEventArgs class, 418, 419
EchoCompletedEventHandler delegate,

418, 419
EchoCompletedHandler method, 419
EDM (Entity Data Model), 572
Effect property, DragEventArgs class, 282
element in path, XPath, 224
element, regular expressions, 51
ElementAt method, collections, 598, 599
elements

accessing program element named as
VB.NET keyword, 17

count expression, XPath, 225
position expression, XPath, 225
searching XML document for elements using

XPath, 222–225
starts-with expression, XPath, 225

ELEMENTS keyword
retrieving results of SQL query as XML, 359

elements, XML document
searching XML document for elements by

name, 219–220
searching XML document for nodes by

namespace, 221–222
#Elif directive, 13
EllipseShape control, 298, 299, 300
#Else directive, 13
e-mail

retrieving, 393
sending, using SMPT, 390–394

e-mail address, regular expression for, 52
EmptyTypes field, Type class, 102
EnableRaisingEvents property,

FileSystemWatcher class, 203
EnableSsl property, SmtpClient class, 391
encoding

.NET Framework classes, 178
common string encodings, 178
converting binary data to/from Base64 array,

46–50
encoding strings using alternate character

encoding, 42–44
UTF-16 encoding, 44

Encoding class
ASCII property, 392
calculating hash code of password, 465
Convert method, 44
Default property, 42

encoding string using alternate character
encoding, 42

GetBytes/GetEncoding/GetString
methods, 42

reading and writing binary files, 180
sending e-mail using SMPT, 392

Encrypt method, FileInfo class, 169
encryption

see also cryptography
CSP (cryptographic service provider), 18, 20
encryption/decryption using data

protection API, 477–479
entropy, 478
protecting sensitive strings in memory,

474–477
EndAcceptTcpClient method, TcpListener

class, 403
EndExecuteNonQuery method, SqlCommand

class, 362, 363
EndExecuteReader method, SqlCommand

class, 362, 363
EndExecuteXmlReader method, SqlCommand

class, 362, 363
EndGetContext method, HttpListener class, 385
EndGetHostEntry method, Dns class, 395
#Endif directive, 13, 14
EndInvoke method, 115, 116, 117
EndOfData property, TextFieldParser class, 182
endpoint, 399
EndPrint event, PrintDocument class, 319
EndRead method, FileStream class, 185
Enter method, Monitor class, 132, 133
entropy, 478
EntryPoint portion, DllImportAttribute, 482
Enum class, 101
Enumerable namespace see

System.Linq.Enumerable
enumerable type

implementing, using custom iterator,
517–523

enumerations, list of
AttributeTargets, 106
CommandType, 348
ConfigurationUserLevel, 347
ConsoleColor, 33
ConsoleKey, 73
ConsoleModifiers, 73
DataProtectionScope, 478
DbType, 353, 367
DriveType, 163
EnvironmentVariableTarget, 549
EventLogEntryType, 551
EventResetMode, 138
FileAttributes, 163
IPStatus, 397

626 ■IN D E X

MemoryProtectionScope, 478
NetworkInterfaceComponent, 375
NetworkInterfaceType, 375
NotifyFilters, 203
OperationalStatus, 375
ParameterDirection, 353
PrincipalPolicy, 456
ProcessWindowStyle, 154
RegexOptions, 54, 55
RegistryValueKind, 553, 557
SearchOption, 188, 189
SecurityAction, 441, 443, 447
SpecialFolder, 547
ThreadState, 130
WellKnownObjectMode, 425
WindowsBuiltInRole, 453
XmlNodeType, 212

enumerator, 517
EnumWindows function, 489
Environment class

accessing command-line arguments, 11
accessing runtime environment

information, 545–549
CommandLine property, 12
ExpandEnvironmentVariables method, 549
GetCommandLineArgs method, 11
GetEnvironmentVariable method, 549
GetEnvironmentVariables method, 549
methods, 547
properties, 546
retrieving value of environment variable,

549–550
SpecialFolder enumeration, 547

environment variables
retrieving value of, 549–550
setting, 1

EnvironmentVariableTarget enumeration, 549
equality (=) operator, 59
equality, testing two files for, 190–191
Equals method, 576
Error event, FileSystemWatcher class, 203
Error property, EchoCompletedEventArgs

class, 419
ErrorDialog property, ProcessStartInfo

class, 154
ErrorLine property, TextFieldParser class,

182, 183
ErrorLineNumber property, TextFieldParser

class, 182, 183
ErrorProvider component, 279, 281
errors

retrieving unmanaged error information,
491–493

validating user input and reporting errors,
279–281

escaping characters, 13
event argument classes, 535, 537
event arguments, 535–537
event log, 551

writing event to Windows event log, 550–552
Event pattern

implementing custom event argument, 535
implementing Observer pattern, 539

EventArgs class
implementing custom event argument, 535
implementing Observer pattern, 540, 541

EventLog class, 550–552
EventLog property, ServiceBase class, 561
EventLogEntryType enumeration, 551
EventResetMode enumeration, 138
events

FileSystemWatcher class, 202, 203
manipulating state between signaled and

unsignaled, 137
synchronizing multiple threads using event,

137–140
writing event to Windows event log, 550–552

EventWaitHandle class, 137, 138
evidence, 80, 433

assembly evidence collection, 450
evidence classes generating identity

permissions, 448
host evidence collection, 450
inspecting assembly’s evidence, 449–451
specifying, 80

Evidence class
collections, 450
creating application domain, 80
inspecting assembly’s evidence, 449, 450
methods, 449, 450

evidence classes, 450
immutability, 451
overriding ToString method, 450

Evidence property, Assembly class, 449, 450
Exception class, 531–535
exception classes, implementing, 531–535
exception classes

ApplicationException, 531
ArgumentException, 62, 385, 512
ArgumentNullException, 102, 531
ArgumentOutOfRangeException, 40, 531
CannotUnloadAppDomainException, 96
DirectoryNotFoundException, 164
Exception, 531–535
FileLoadException, 22, 441
FileNotFoundException, 10, 78, 164
FormatException, 57, 531
HttpListenerException, 385
InnerException, 397

627■I N D E X

Find it faster at http://superindex.apress.com

InvalidCastException, 62, 99
InvalidOperationException, 397, 451, 475, 518
IOException, 196
MalformedLineException, 182, 183
MissingMethodException, 82
ObjectDisposedException, 524
OutOfMemoryException, 307
PlatformNotSupportedException, 385
PolicyException, 441, 456
SecurityException, 440, 444, 446, 455
SerializationException, 94
ThreadAbortException, 149
ThreadStateException, 130
WebException, 383

ExceptionState property,
ThreadAbortException class, 149

Exchange method, Interlocked class, 146
executable files

al.exe, 35
Aximp.exe, 498
caspol.exe, 436, 437, 439, 440
cert2spc.exe, 29
gacutil.exe, 31
Ildasm.exe, 9
Installutil.exe, 564, 566
makecert.exe, 29, 30
Permcalc.exe, 444
Permview.exe, 444
resgen.exe, 35
setreg.exe, 29, 31
signtool.exe, 25, 26, 27, 28, 29
sn.exe, 18–19, 22, 23, 24
Tlbexp.exe, 499, 500
Tlbimp.exe, 311, 493, 494, 498
vbc.exe, 2
xsd.exe, 237, 238

ExecuteAssembly method, AppDomain class,
82, 83, 89

ExecuteAssemblyByName method,
AppDomain class, 82

ExecuteNonQuery method, command classes,
347, 349

ExecuteReader method
command classes, 347, 349
DbCommand class, 355–358
IDbCommand interface, 367

ExecuteScalar method, command classes,
347, 349

ExecuteXmlReader method, SqlCommand
class, 359, 360

Execution element, SecurityPermission
class, 439

execution permissions
disabling execution permission checks,

438–440

ExecutionCheckOff/ExecutionCheckOn
methods

disabling execution permission checks, 439
Exists method, Directory/File classes, 193
Exists property, DirectoryInfo/FileInfo classes,

163, 164
Exit method, Monitor class, 132, 133
ExpandEnvironmentVariables method,

Environment class, 547, 549, 550
Explicit property, LayoutKind class, 487
expression, XPath, 225
extension methods, 578–579, 595
Extension property, FileInfo class, 163
ExtensionAttribute, 578

■F
factory classes, 367
Families property, FontCollection class, 290
FieldCount property, data reader classes, 356
FieldOffsetAttribute class, 487
FieldWidths property, TextFieldParser class,

182, 183
File class

CreateText method, 177
determining if path is directory or file, 193
Exists method, 193
GetAccessControl method, 207
modifying ACL of file/directory, 207
OpenText method, 177
retrieving file/directory/drive

information, 166
SetAccessControl method, 207

file dialog boxes, 197–200
File Selection screen, Sign Tool, 26
File Signing tool

signing assemblies with Authenticode, 25
file system

monitoring for changes, 202–205
FileAttributes enumeration, 163
FileExists method, FileSystem class, 193
FileInfo class

Attributes property, 167
copying/moving/deleting file/directory, 168
FileSystemInfo class and, 164
finding files matching wildcard

expressions, 189
Length property, 172
linking data objects to controls, 247
methods, 162, 169
performing file system operations, 161
properties, 162
Refresh method, 164
retrieving file/directory/drive

information, 162
setting file or directory attributes, 167
using File class instead, 166

628 ■IN D E X

FileIOPermission class, 200, 201
limiting permissions granted to

assemblies, 443
FileLoadException class, 22, 441
FileName property

OpenFileDialog class, 198
ProcessStartInfo class, 154
SaveFileDialog class, 198

FileNames collection, 198
FileNotFoundException class, 10, 78, 164
files

calculating hash code of, 466–468
calculating size of all files in directory,

171–173
copying/moving/deleting, 168–171
creating temporary files, 195–196
determining if path is directory or file, 193
finding files matching wildcard expressions,

188–189
generating random filenames, 206
getting handle for, 484–486
manipulating strings representing file

path/name, 191–192
modifying ACL of, 207–209
monitoring file system for changes, 202–205
parsing contents of delimited text file,

182–185
performing file system operations, 161
reading and writing binary files, 180–181
reading and writing data from streams, 161
reading and writing text files, 177–180
reading asynchronously, 185–188
retrieving file information, 162–166
retrieving file version information, 173–174
setting file/directory attributes, 167–168
testing two files for equality, 190–191
using isolated file storage, 200–202
verifying hash codes, 469–471

FileSecurity class, 207
files/directories/IO recipes, 161–207

see also recipes, files/directories/IO
FileStream class

BeginRead method, 185
EndRead method, 185
Handle property, 484
reading and writing binary files, 180
reading and writing text files, 177
reading files asynchronously, 185
storing serializable object with state to

file, 69
FileSystem class, My see under My classes
FileSystemEventArgs class, 203
FileSystemWatcher class, 202, 203
FileVersionInfo class, 173

FileWebRequest class, 383
FilgraphManager class, 313
Fill method, TreeView control, 175
Filter property

FileSystemWatcher class, 203
OpenFileDialog class, 198

filtering data using LINQ, 589–591
filters

finding files matching wildcard expressions,
188–189

finalizer, 523
SuppressFinalize method, GC class, 524

Finally block
releasing locks in, 133

FinalReleaseComObject method, Marshal
class, 495

Find method, Certificates class, 389, 416
FindTypes method, Module class, 97, 98
First method, collections, 598, 599
FlowDirection property, FlowLayoutPanel

container, 268
FlowLayoutPanel container, 268
FolderBrowserDialog class, 198, 199
FontCollection class, 290
FontFamily class, 290
fonts

finding all installed fonts, 290–291
list of installed fonts, 291

For loops
implementing enumerable type using

custom iterator, 517
querying IEnumerable(Of T) collection, 580

FOR XML clause, 359, 360
AUTO/EXPLICIT variations, 359

foreground threads, 115
ForegroundColor property, Console class, 33
Form class

BackgroundImage property, 296
Closed event, 252
Closing event, 252
ControlBox property, 274
creating Windows Forms application, 4, 5
DoubleBuffered property, 305
FormBorderStyle property, 274
Handle property, 484, 485
Language property, 272
Load event, 175, 252
Localizable property, 272
MaximizeBox property, 274
MdiChildren property, 253
MdiParent property, 253
MinimizeBox property, 274
MouseMove event, 292
Paint event handler, 292, 305

629■I N D E X

Find it faster at http://superindex.apress.com

Region property, 295
registering remotable classes in

assembly, 427
SetStyle method, 305
Text property, 274
TopMost property, 485
TransparentKey property, 296

format argument, 528
Format method, String class, 528
format string, 528
FormatException class, 57, 531
FormatMessage function, 491
formatProvider argument, 528
formattable type, implementing, 527–530
formatter, 69
FormBorderStyle property, Form class, 274
FormCollection class, 249, 250
forms

creating irregularly shaped form or control,
295–296

creating Windows Forms application from
command line, 4–7

determining forms owned by
application, 252

processing all controls on forms, 248–249
Forms class, My, 161, 250
Forms namespace see System.Windows.Forms
Forms recipes see recipes, Windows Forms
free space, determining on drive, 196–197
Friend members, 9
From clause

querying data from multiple collections, 592
querying IEnumerable(Of T) collection, 580
querying nongeneric collection, 584

From property, MailMessage class, 392
FromBase64CharArray method, Convert

class, 47
FromBase64String method, Convert class, 47
FromDays property, TimeSpan structure, 125
FromFile method, Image class, 307
FTP

downloading data over HTTP or FTP,
379–382

uploading data over HTTP or FTP, 382
FtpWebRequest class, 383
Full Unicode encoding, 178
FullName property, DirectoryInfo class, 163
FullName property, FileInfo class, 163
FullTrust permission, 435, 436, 437, 448, 449
fully qualified name, assemblies, 78
functions

calling functions defined in unmanaged
DLL, 481–484

calling unmanaged function that uses
callback, 489–490

calling unmanaged function that uses
structure, 486–489

getting handle for control/window/file,
484–486

■G
GAC (Global Assembly Cache)

allowing partially trusted code to use
strong-named assemblies, 435

controlling versioning for remote objects,
431, 432

managing Global Assembly Cache, 31
specifying publisher policy, 78

gacutil.exe (Global Assembly Cache tool), 31
garbage collector, 523
GC class

implementing disposable class, 523
SuppressFinalize method, 524

GDI32.dll, 482
GenerateFromFile method, 498
GenerateFromTypeLibrary method, 498
generic collections, 64

implementing enumerable type using
custom iterator, 517

Generic namespace see
System.Collections.Generic

generic types, creating, 66–68
Get accessor, XmlSerializer class, 233
GetAccessControl method, Directory/File

classes, 207
GetAddressBytes method, PhysicalAddress

class, 375
GetAllNetworkInterfaces method,

NetworkInterface class, 374, 377
GetAssemblyEnumerator method, Evidence

class, 449, 450
GetAttribute method, XmlReader class, 226
GetAvailableThreads method, ThreadPool

class, 115
GetBounds method, Image class, 292
GetBytes method

BitConverter class, 44
Encoding class, 42
RandomNumberGenerator class, 462

GetCommandLineArgs method, Environment
class, 11, 547

GetConstructor method, Type class, 101, 102
GetContext method, HttpListener class, 385
GetCurrent method, WindowsIdentity class,

451, 452
GetCurrentDirectory method, Directory

class, 194
GetCurrentProcess method, Process class, 156
GetCustomAttributes method, 108

630 ■IN D E X

GetData method
passing data between application domains,

93, 94
reading configuration file name, 81
supporting drag-and-drop functionality, 282

GetDataPresent method, 282
GetDataSources method, 370
GetDataTypeName method, 356
GetDirectories method, DirectoryInfo class,

163, 189
GetDirectoryInfo method,

My.Computer.FileSystem class, 162
GetDirectoryName method, Path class, 192
GetDriveInfo method,

My.Computer.FileSystem class, 162
GetDrives method, DriveInfo class, 163, 196
GetElementsById method, XmlElement

class, 220
GetElementsByTagName method

XmlDocument class, 219, 220, 221
XmlElement class, 220

GetEncoding method, 42
GetEnumerator method

Evidence class, 449, 450
IEnumerable interface, 517, 518

GetEnvironmentVariable method, 547, 549
GetEnvironmentVariables method, 547, 549
GetExtension method, Path class, 192
GetFactory method, DbProviderFactories

class, 368
GetFactoryClasses method,

DbProviderFactories class, 368
GetFieldType method, data reader classes, 356
GetFileInfo method, My.Computer.FileSystem

class, 162
GetFileName method, Path class, 191
GetFileNameWithoutExtension method, Path

class, 192
GetFiles method

DirectoryInfo class, 163, 188, 189
FileSystem class, 189

GetFolderPath method, Environment class, 547
GetForegroundWindow function, 485
GetFullPath method, Path class, 192, 194
GetHashCode method, 576
GetHostByName method, Dns class, 394
GetHostEntry method, Dns class, 394
GetHostEnumerator method, Evidence class,

449, 450
GetHostName method, Dns class, 395
GetIISUser function, 416
GetInvalidPathChars method, Path class, 192
GetIPProperties method, NetworkInterface

class, 375

GetIPv4Statistics method, NetworkInterface
class, 375

GetIsNetworkAvailable method,
NetworkInterface class, 375

GetLastWin32Error method, Marshal class, 491
GetLifetimeService method,

MarshalByRefObject class, 429
GetLogicalDrives method

Directory class, 196
Environment class, 547

GetName method, data reader classes, 356
GetNestedType method, Type class, 97, 98
GetNestedTypes method, Type class, 97, 98
GetNonZeroBytes method,

RandomNumberGenerator class, 462
GetObject method, ResourceManager class, 35
GetObjectData method

Exception class, 532
ISerializable interface, 503, 504, 532

GetOracleLob method, OracleDataReader
class, 357

GetOracleMonthSpan method,
OracleDataReader class, 357

GetOracleNumber method, OracleDataReader
class, 357

GetOrdinal method, data reader classes, 356
GetParentPath method, FileSystem class, 192
GetPathRoot method, Path class, 192
GetPhysicalAddress method, NetworkInterface

class, 375
GetPortNames method, SerialPort class, 205
GetPrivateProfileString method, 482, 484
GetProcessById method, Process class, 156
GetProcesses method, Process class, 156
GetProcessesByName method, Process

class, 156
GetRandomFileName method, Path class, 206
GetResponse method, WebRequest class, 383
GetResponseStream method, WebResponse

class, 383
GetSchemaTable method, data reader

classes, 356
GetSqlByte method, SqlDataReader class, 357
GetSqlDecimal method, SqlDataReader

class, 357
GetSqlMoney method, SqlDataReader

class, 357
GetStore method, IsolatedStorageFile class, 202
GetString method

Encoding class, 42
ResourceManager class, 35

GetSubKeyNames method, RegistryKey
class, 557

GetTempFileName method, Path class, 195, 206
GetThumbnailImage method, Image class, 307

631■I N D E X

Find it faster at http://superindex.apress.com

GetType method
Assembly class, 97, 98
Module class, 97, 98
Object class, 97, 99
Type class, 97, 98, 99

GetType operator, 97, 98
GetTypes method

Assembly class, 97, 98
Module class, 97, 98

GetUnderlyingType method, Enum class, 101
GetUserStoreForDomain method,

IsolatedStorageFile class, 202
GetValue method

My.Computer.Registry class, 554
Registry class, 553, 554
RegistryKey class, 553, 557

GetValueKind method, RegistryKey class, 557
GetValueNames method, RegistryKey class, 557
GetVersionEx function, 487
GetVersionInfo method, FileVersionInfo

class, 173
GetWindowText function, 485
GetXyz methods

data reader classes, 357
SerializationInfo class, 504

Global Assembly Cache see GAC
Global Assembly Cache tool (gacutil.exe), 31
global attributes

allowing partially trusted code to use
strong-named assemblies, 436

Globalization namespace see
System.Globalization

GoBack/GoForward/GoHome methods,
WebBrowser control, 285

grant set, 433
Graphics class

CopyFromScreen method, 303
DrawImage method, 319
DrawString method, 302, 319, 324
printing simple document, 319

GraphicsPath class
CloseAllFigures method, 295
creating irregularly shaped form or

control, 295
hit testing with GraphicsPath object, 295
IsVisible method, 292

greater than (>, >=) operators, 59
Group By operator, 592
groups, Windows, 451–454
GrowStyle property, TableLayoutPanel

container, 268
Guest value, WindowsBuiltInRole

enumeration, 453
GuidAttribute class, 500

■H
Handle property

Control class, 314, 484
FileStream class, 484
Form class, 484, 485
PictureBox control, 313

Handled property, KeyPressEventArgs
class, 261

handles, 484–486
HasAttributes property, XmlReader class, 226
HasExited property, Process class, 156
HasExtension property, Path class, 192
HasFieldsEnclosedInQuotes property,

TextFieldParser class, 182
Hash Algorithm screen, Sign Tool, 29
hash codes

algorithm, testing two files for equality, 190
calculating for files, 466–468
calculating for password, 463–466
data integrity using keyed hash code,

471–474
hashing algorithm implementations, 464
VerifyB64Hash method, 469
VerifyByteHash method, 470
VerifyHexHash method, 469
verifying, 469–471

HashAlgorithm class
calculating hash code of files, 467
calculating hash code of password, 463, 464
ComputeHash method, 190, 465, 467, 472
Create method, 190, 465, 467
data integrity using keyed hash code, 472
testing two files for equality, 190

Hashtable class, 152
HasMorePages property, PrintPageEventArgs

class, 321, 322
HasShutdownStarted property, Environment

class, 546
help, context-sensitive, 283
HelpProvider component

HelpKeyword property, 283
HelpNamespace property, 283
HelpNavigator property, 283
providing context-sensitive help to

users, 283
hit testing, 292–295
HKEY_CURRENT_USER registry key, 154
HKEY_XYZ registry keys, 553
HMAC algorithm classes, 472
host evidence collection, Evidence class, 450
host names

resolving to IP address using DNS, 394–395
Host property, SmtpClient class, 391

632 ■IN D E X

HTML pages
getting from site requiring authentication,

388–390
HtmlDocument class, 285
HTTP

downloading data over HTTP or FTP,
379–382

responding to HTTP requests from
application, 384–388

uploading data over HTTP or FTP, 382
HTTP/HTTPS URL, regular expression for, 52
HttpListener class, 385, 386
HttpListenerContext class, 385
HttpListenerException class, 385
HttpListenerPrefixCollection class, 385
HttpListenerRequest class, 385
HttpListenerResponse class, 385
HttpWebRequest class, 383, 389

■I
IAsyncResult interface, 116, 362
IBasicAudio interface, 314
ICloneable interface, 508, 509
ICollection interface

CopyTo method, 62
IsSynchronized/SyncRoot properties, 152

IComparable interface
CompareTo method, 512, 513
implementing comparable type, 512,

513, 516
sorting contents of array or ArrayList

collection, 61
IComparer interface

Compare method, 265, 512, 513
implementing comparable type, 512,

513, 516
sorting contents of array or ArrayList

collection, 61
sorting ListView by any column, 265

Icon property, NotifyIcon control, 278
ICredential interface, 380
ICredentialsByHost interface, 391
ICustomAttributeProvider interface, 108
Id property, NetworkInterface class, 375
IDataAdapter interface, 367
IDataObject interface, 282
IDataParameter interface, 366, 352
IDataReader interface, 367, 356, 357

processing SQL results using data reader, 355
IDataRecord interface, 356
IDbCommand interface, 366

CreateParameter method, 366
ExecuteReader method, 367
executing SQL command or stored

procedure, 348

implementations, 349
Parameters collection, 351, 366

IDbConnection interface, 366
CreateCommand method, 348, 366
creating database connection, 337
DbProviderFactory class, 367

identity permissions, 448
IDisposable interface

creating generic type, 67
Dispose method, 523, 524, 557
IDataReader interface, 357
IDbConnection interface, 337
implementing disposable class, 523
protecting sensitive data in memory, 475
RegistryKey objects, 557

IEnumerable interface, 517, 518
displaying collection data using paging, 600
filtering data using LINQ, 589
performing aggregate operations on

collections, 595
querying IEnumerable(Of T) collection,

579–583
querying nongeneric collection, 584
retrieving subset of data from collection,

598, 600
IEnumerator interface, 517, 518

inspecting assembly’s evidence, 450
#If directive, 13, 14
#If . . #End If construct, 14, 16
IFormatProvider interface, 57, 528
IFormattable interface, 527, 528
IFormatter interface, 69
IIdentity interface, 452
IIS, hosting remote objects in, 427–429
Ildasm.exe, 9
ILease interface, 429
Image class, 307

performing hit testing with shapes, 292
images

creating scrollable image, 301–303
creating thumbnail for existing image, 307–308
printing simple document, 318–321

IMAP (Internet Message Access Protocol), 393
IMediaControl interface, 312, 313
immutability of objects

evidence classes, 451
protecting sensitive data in memory, 474
String class, 40

imperative security, 444, 455
Impersonate method, WindowsIdentity

class, 459
impersonation

impersonating Windows users, 458–461
on Windows 2000, 459

633■I N D E X

Find it faster at http://superindex.apress.com

implicit typing
using implicitly typed variables, 572–573

InAttribute, 487
Increment method, Interlocked class, 146
inequality (NOT) operator, 14
inequality (<>) operator, 59
Infinite property, Timeout class, 124, 125
information retrieval

retrieving file version information, 173–174
retrieving file/directory/drive information,

162–166
inheritance

accessing types using COM clients, 500
controlling inheritance and member

overrides using CAS, 447–449
GetType method, 99

InheritanceDemand value, SecurityAction
enumeration, 447, 448, 449

Inherited property, AttributeUsageAttribute
class, 106

InitializeLifetimeService method,
MarshalByRefObject class, 429, 430

initializers, 574–576
InitialLeaseTime property, ILease interface, 429
InnerException class, 397
InnerText property, XmlNode class, 212
InnerXml property, XmlNode class, 212
input see user input
InsertAfter method, XmlNode class, 215
InsertAt method, SecureString class, 474
InsertBefore method, XmlNode class, 215
Install namespace see

System.Configuration.Install
InstalledFontCollection class, 290
InstalledPrinters collection, PrinterSettings

class, 316, 317
Installer class, 564, 565
Installer tool (Installutil.exe), 564, 566
InstallerCollection class, 565
Installers property, Installer class, 565
Installutil.exe, 564, 566
Instance property

implementing Singleton pattern, 538
SqlDataSourceEnumerator class, 370

InstanceName column, DataRow class, 370
instantiating objects using reflection, 101–105
int type

converting to/from byte array using
BitConverter class, 45–46

Integer type
Base64 encoding/decoding using Convert

class, 47
Integrated Windows authentication, 389
integration see recipes, Windows integration

IntelliSense
creating extension methods, 579
using anonymous types, 577
using object initializers, 576

interface and pattern recipes, 501–544
see also recipes, interface and pattern

interfaces
data provider interfaces, 366
exposing .NET component to COM, 500

Interlocked class, 145, 146
Internet flag, permcalc command, 445
Internet permission set, 443
interoperability see recipes, unmanaged code

interoperability
InteropServices namespace see

System.Runtime.InteropServices
IntPtr class

getting handle for control/window/file, 484
protecting sensitive data in memory, 475

IntPtr type, 459
InvalidCastException class

copying contents of collection to array, 62
testing object type, 99

InvalidOperationException class, 518
inspecting assembly’s evidence, 451
pinging IP addresses, 397
protecting sensitive data in memory, 475

InvariantName column, DataTable class, 368
Invoke method, ConstructorInfo class, 101, 102
I/O classes, categories for, 161
I/O recipes see recipes, files/directories/IO
IO namespace see System.IO
IObserver interface, 539
IOException class, 196
IP addresses

endpoint, 399
pinging IP addresses, 396–398
resolving host name to IP address using

DNS, 394–395
IPGlobalProperties class, 374
IPlugin interface, 90, 103
IPrincipal interface

impersonating Windows users, 459
responding to HTTP requests from

application, 385
restricting which users can execute code,

455, 456
role-based security, 452
WindowsPrincipal class, 452

IPStatus enumeration, 397
Is operator, 99
IsAlive property, Thread class, 147, 148
IsAvailable property,

NetworkAvailabilityEventArgs
class, 377

634 ■IN D E X

IsBodyHtml property, MailMessage class, 392
IsBusy property, WebBrowser control, 285
IsClosed property, data reader classes, 356
IsClustered column, DataRow class, 370
IsCompleted property, IAsyncResult

instance, 116
IsControl method, Char class, 261
IsDBNull method, data reader classes, 356
IsDefined method,

ICustomAttributeProvider, 108
IsDigit method, Char class, 261
ISerializable interface

GetObjectData method, 503, 532
implementing custom event argument, 536
implementing custom exception class, 532
implementing serializable types, 502,

503, 504
IsFinalizingForUnload method, AppDomain

class, 96
IsGranted method, SecurityManager class,

446, 447
IsInRole method, WindowsPrincipal class,

451, 452
IsMatch method, Regex class, 52
IsNot operator, 99
IsNullable property, parameter classes, 353
isolated file storage, 200–202
IsolatedStorage namespace see

System.IO.IsolatedStorage
IsolatedStorageFile class

GetStore method, 202
GetUserStoreForDomain method, 202
Roaming flag, 201
using isolated file storage, 200

IsolatedStorageFileStream class, 200
IsolatedStoragePermission class, 201
IsPathRooted property, Path class, 192
IsPublic property, RegexCompilationInfo

class, 55
IsReadOnly property, FileInfo class, 163
IsReady property, DriveInfo class, 164
IsReceiveOnly property, NetworkInterface

class, 375
IsSubClassOf method, Type class, 99
IsSupported property, HttpListener class, 385
IsSynchronized property, collection classes, 151
ISubject interface, 539
IsVisible method

GraphicsPath class, 292
Region class, 292

Item element, xslt stylesheet templates, 239
Item property, data reader classes, 356
iterator

implementing enumerable type using,
517–523

IVideoWindow interface, 313, 314
IWshShortcut interface, 567, 568

■J
JIT (just-in-time) compilation, 54, 481
JIT directory tree, 175–177
Join method, Thread class

knowing when thread finished, 147, 148
synchronizing multiple threads using

event, 138
synchronizing multiple threads using

mutex, 141
synchronizing multiple threads using

semaphore, 143
Join On operator, 592

■K
KeepAlive (mutex) statement, 159
Kernel32.dll file, 482

FormatMessage function, 491
GetVersionEx function, 487

key pairs
creating strong-named key pairs, 18–19

Key property
ConsoleKeyInfo class, 73
KeyedHashAlgorithm class, 472

KeyAvailable method, Console class, 73
KeyChar property

ConsoleKeyInfo class, 73
KeyPressEventArgs class, 261

keycontainer compiler switch, 20
keyed hash code

ensuring data integrity using, 471–474
keyed hashing algorithm

implementations, 472
KeyedHashAlgorithm class, 471, 472
keyfile compiler switch, 20
KeyPress event

ComboBox control, 262
TextBox control, 261

KeyPressEventArgs class, 261
keywords

accessing program element named as
VB.NET keyword, 17

Kill method, Process class, 155, 156

■L
Label class

MouseMove event, 276
MouseUp event, 276
finding all installed fonts, 290

LabelText property, 253
Language Integrated Query see LINQ
Language Integrated Query recipes

see recipes, LINQ

635■I N D E X

Find it faster at http://superindex.apress.com

language modifiers, 448
Language property, Form class, 272
LargestWindowHeight property, Console class, 33
LargestWindowWidth property, Console class, 33
Last method, collections, 598, 599
LastAccessTime property

DirectoryInfo class, 163
FileInfo class, 163

LastWriteTime property
DirectoryInfo class, 163
FileInfo class, 163

LayoutKind class, 487
lazy policy resolution process, 439
leaseTime attribute, remote objects, 429
Length property

FileInfo class, 163, 172
StringBuilder class, 40

less than (<, <=) operators, 59
libpath switch, 11
libraries

creating code library from command line,
10–11

lifetime lease, remote objects, 429
Lifetime namespace see

System.Runtime.Remoting.Lifetime
LinkDemand security

FullTrust permission, 435, 436
LinkedList collection, 64
LINQ (Language Integrated Query)

APIs extending LINQ, 571
creating extension methods, 578–579
using anonymous types, 576–578
using implicitly typed variables, 572–573
using object initializers, 574–576

Linq namespace see System.Linq
LINQ recipes, 571–602

see also recipes, LINQ
List collection, 64
ListBox control, 258–259

providing context-sensitive help to
users, 283

ListView control, 264–268
ListViewItemSorter property, 265
Sort method, 264, 265

ListViewItem class, 247
ListViewItemComparer class, 265
ListViewItemSorter property, ListView

control, 265
literals, 50
little-endian byte ordering, 44
Load event, Form class

determining forms owned by application, 252
displaying directory tree in TreeView

control, 175

Load method
Assembly class, 78, 79
SoundPlayer class, 310
XmlDocument class, 212
XslCompiledTransform class, 238

LoadFrom method, Assembly class, 78, 79
LoadSync method, SoundPlayer class, 310
LoadUserProfile property, ProcessStartInfo

class, 154
LoadWithPartialName method, Assembly

class, 78
LoadXML method, XmlDocument class, 212
Localizable property, Form class, 272
localization

creating multilingual forms, 271–274
English and French localizations, 274

LocalMachine field, RegistryKey class, 556
LocalMachine value, DataProtectionScope

enumeration, 478
locks, 133
logical operators

supported by #If . . #End If directive, 14
LogonUser function, 459, 460
LongRunningMethod

executing methods asynchronously, 117
LoopbackInterfaceIndex property,

NetworkInterface class, 375

■M
m switch, Certificate Creation tool, 30
MachineName property, Environment

class, 546
MACTripleDES class, 472
Mail namespace see System.Net.Mail
MailAddress class, 392
MailAddressCollection class, 392
MailMessage class, 390, 391

properties, 392
main switch, 3
main menu

using part in context menu, 269–271
Main method, 4
MainWindowHandle property, Process

class, 484
makecert.exe, 29, 30
MakeReadOnly method, SecureString class, 475
MalformedLineException class, 182, 183
managed code, 481

RCW (runtime callable wrapper), 312
managed types

accessing types using COM clients, 500
ManualResetEvent class, 137

classes used as triggers, 128

636 ■IN D E X

Marshal class
calling unmanaged function that uses

structure, 486
FinalReleaseComObject method, 495
GetLastWin32Error method, 491
protecting sensitive data in memory, 475
ReleaseComObject method, 312, 495
SizeOf method, 486, 488

MarshalAsAttribute, 487
MarshalByRef class, 421
marshal-by-reference types see MBR types
MarshalByRefObject class, 85, 86

GetLifetimeService method, 429
InitializeLifetimeService method, 429, 430
making objects remotable, 420
registering remotable classes in assembly,

426, 427
marshal-by-value types see MBV types
Mask property, MaskedTextBox control, 259
MaskedTextBox control

BeepOnError property, 260
Mask property, 259
MaskInputRejected event, 260
restricting input to TextBox, 260, 261
solving user-input validation problems, 260
validating user input and reporting

errors, 279
MaskInputRejected event, MaskedTextBox

control, 260
Max method, collections, 595
Max Pool Size setting, 340
MaxCapacity property, StringBuilder class, 40
MaximizeBox property, Form class, 274
maxOccurs attribute, XSD, 229
MBR (marshal-by-reference) types, 86

see also passing objects by reference
controller class, 89
instantiating type in remote application

domain, 89
passing data between application

domains, 94
passing objects by reference, 87

MBV (marshal-by-value) types, 86
see also passing objects by value
instantiating type in remote application

domain, 89
passing data between application

domains, 94
passing MBV references across application

domains, 84
passing objects by value, 87

MD5 algorithm, 464
MD5CryptoServiceProvider class, 465
MDI (Multiple Document Interface)

application, 252–254

MdiChildren property, Form class, 253
MdiParent property, Form class, 253
Me keyword, 133
Media namespace see System.Media
member variable

terminating execution of thread, 149
MemberwiseClone method, Object class,

508, 509
memory

protecting sensitive strings in, 474–477
MemoryProtectionScope enumeration, 478
MemoryStream class, 44, 45

implementing cloneable type, 509
MenuItem class

CloneMenu method, 269
Tag property, 247

menus
using part of main menu in context menu,

269–271
MessageBox class, 247
MessageInfo class, 113
metacharacters, 50
metadata

assembly manifest, 9
creating custom attributes, 105–107
loading assembly into current application

domain, 78
Type class retrieving object type, 97

metadata recipes see recipes, application
domain/reflection/metadata

MethodBase class, 108
methods

creating extension methods, 578–579
executing asynchronously, 115–123
executing in separate thread at specific time,

125–127
executing in separate thread periodically,

123–125
executing when WaitHandle signalled,

127–129
executing, using new thread, 129–132
executing, using thread from thread pool,

112–115
partitioning methods, 598

Microsoft ActiveX Data Objects
component, 493

Microsoft ADO.NET see ADO.NET
Microsoft SQL Server 2005, 111
Microsoft.VisualBasic.FileIO namespace

TextFieldParser class, 182
Microsoft.Win32 namespace

Registry class, 553, 556
RegistryKey class, 553, 556
RegistryValueKind enumeration, 553, 557

MIME standards, 50

637■I N D E X

Find it faster at http://superindex.apress.com

Min method, collections, 595
Min Pool Size setting, 341
MinimizeBox property, Form class, 274
minOccurs attribute, XSD, 229
Missing field, Type class, 496
MissingMethodException class, 82
Modifiers property, ConsoleKeyInfo class, 73
modifiers, language, 448
Module class

FindTypes method, 97, 98
GetType/GetTypes methods, 97, 98

modules
creating code module from command line,

8–10
Monitor class

compared to Mutex class, 140
constructing in a Using statement, 159
Enter method, 132, 133
Exit method, 132, 133
Pulse method, 133, 134
PulseAll method, 133, 134
synchronizing multiple threads using

monitor, 132
Synclock statement, 133
Wait method, 133, 134

monitors, 133
synchronizing multiple threads using

monitor, 132–137
mouse events

creating movable shape, 297
MouseDown event, Control class, 275, 281
MouseEventArgs class, 535
MouseMove event

Control class, 275
Form class, 292
Label class, 276

MouseUp event
Control class, 275
Label class, 276

MoveDirectory method, FileSystem class, 170
MoveFile method, FileSystem class, 170
MoveNext method, IEnumerator, 518
MoveTo method

DirectoryInfo class, 169
FileInfo class, 169

moving
copying/moving/deleting file/directory,

168–171
MP3 files

playing sound file, 311–313
mscorlib assembly, 100
MSIL (Microsoft Intermediary Language)

managed code, 481
using anonymous types, 576
using implicitly typed variables, 573

MSIL Disassembler tool (Ildasm.exe), 9
MSMask.dll file, 498
multilingual forms, creating, 271–274
multimedia recipes, 289–334

see also recipes, multimedia
multiple threads

asynchronous communications using TCP,
403–410

executing method using thread from thread
pool, 114

synchronizing access to shared data,
145–147

synchronizing, using event, 137–140
synchronizing, using monitor, 132–137
synchronizing, using mutex, 140–143
synchronizing, using semaphore, 143–145

Multiselect property, OpenFileDialog class, 198
MustInherit keyword, 105
mutable strings

substituting StringBuilder for String, 484
Mutex class, 143

classes used as triggers, 128
ensuring only one instance of application

executing, 158–159
ReleaseMutex method, 141
synchronizing multiple threads using

mutex, 140
mutexes

ensuring only one instance of application
executing, 158–159

synchronizing multiple threads using,
140–143

System.GC.KeepAlive(mutex) statement, 159
My classes, 161, 162, 250

main root classes of My, 161
My.Application, 161, 250
My.Computer, 161
My.Computer.Audio, 309

Play method, 310, 311
playing WAV file, 310
PlaySystemSound method, 309
Stop method, 310

My.Computer.FileSystem, 161, 162
CombinePath method, 192
copying/moving/deleting file/

directory, 168
DirectoryExists method, 193
displaying directory tree in TreeView

control, 177
FileExists method, 193
GetDirectoryInfo method, 162
GetDriveInfo method, 162
GetFileInfo method, 162
GetFiles method, 189
GetParentPath method, 192
methods, 169
OpenTextFieldParser method, 182

638 ■IN D E X

OpenTextFileReader method, 178, 180
OpenTextFileWriter method, 178, 180
ReadAllText method, 179
retrieving file/directory/drive

information, 165
specifying invalid path/directory/drive, 164

My.Computer.Network
DownloadFile method, 379, 380, 382
NetworkAvailabilityChanged event,

377, 379
UploadFile method, 382

My.Computer.Ports, 205
My.Computer.Registry, 554, 556
My.Forms, 161, 250
My.Resources, 161
My.Settings, 161, 256
My.User, 161
My.WebServices, 161

MyCOMComponent.dll file, 494
MyGenericType class, 66

■N
n switch, Certificate Creation tool, 30
name attribute, configuration file, 414
Name column, DataTable class, 368
Name property

DirectoryInfo class, 163
FileInfo class, 163
NetworkInterface class, 375
RegexCompilationInfo class, 55
XmlNode class, 212
XmlReader class, 226

Namespace property, RegexCompilationInfo
class, 55

namespaces see namespace prefixed by System
name-value pairs

passing data between application
domains, 94

naming
accessing element named as VB.NET

keyword, 17
camel casing, 235
custom attribute classes, 105
giving strong name to assemblies, 19–21
Pascal casing, 235

Navigate method, WebBrowser control, 285
.NET classes

creating XML schema for, 237
generating from schema, 237–238

.NET Compact Framework data provider, 335

.NET data types
compared to XML schema data types, 229

.NET Framework, 481
accessing ADO objects, 494
calling unmanaged function that uses

callback, 489

data providers, 335
exposing .NET component to COM, 499–500
integration with XML, 211
interoperability features, 481
method overloading, 496
networking classes, 373
Permview.exe and, 444
protected configuration, 344
rejecting permissions granted to

assemblies, 442
role-based security, 452
security policy, 433
software development kit (SDK), 1
unmanaged code interoperability recipes,

481–500
using ActiveX control in .NET clients,

497–499
using COM component in .NET client,

493–495
Net namespace see System.Net
.NET Remoting, 86
.NET serialization

SoapFormatter class, 234
.NET services

PInvoke, 482
Network class, My see under My classes
NetworkAddressChanged event, 377
NetworkAvailabilityChanged event, 377, 379
NetworkAvailabilityChangedEventHandler

delegate, 377
NetworkAvailabilityEventArgs class, 377
NetworkChange class, 377
NetworkCredential class

getting HTML page from site requiring
authentication, 389

sending e-mail using SMPT, 391
setting authentication credentials for web

service, 415
UseDefaultCredentials property, 415, 417

networking and remoting recipes, 373–432
see also recipes, networking and remoting

networking classes, .NET Framework, 373
NetworkInformation namespace see

System.Net.NetworkInformation
NetworkInterface class

GetAllNetworkInterfaces method, 374, 377
methods and properties, 375
obtaining local network interface

information, 374, 376
NetworkInterfaceComponent

enumeration, 375
NetworkInterfaceType enumeration, 375
NetworkInterfaceType property,

NetworkInterface class, 375

639■I N D E X

Find it faster at http://superindex.apress.com

networks
detecting changes in network connectivity,

377–379
discovering all instances of SQL Server on,

370–371
obtaining local network interface

information, 374–377
NetworkStream class

asynchronous communications using
TCP, 403

BeginRead/BeginWrite methods, 403
communicating using TCP/IP, 398, 399
communicating using UDP datagrams, 411

New keyword, 576
NextResult method, data reader classes, 356
nodes, XML document

appending nodes in XML document, 217–219
inserting nodes in XML document, 215–217
searching XML document for nodes by

name, 219–220
searching XML document for nodes by

namespace, 221–222
searching XML document for nodes using

XPath, 222–225
showing XML document structure in

TreeView, 211–215
nodes, XPath, 224
NodeType property

XmlNode class, 212
XmlReader class, 226

nongeneric collections, querying, 584–585
nonremotable types, 86

see also remotable types
creating type not deriving from

MarshalByRefObject, 85
nonserializable objects

see also serializable objects
creating type not deriving from

MarshalByRefObject, 85
NonSerializedAttribute class, 502, 503
NoPrincipal value, PrincipalPolicy

enumeration, 456
NOT (inequality) operator, 14
NotifyFilter property, FileSystemWatcher

class, 203
NotifyFilters enumeration, 203
NotifyIcon control, 278
NotInheritable keyword

implementing custom event argument, 535
implementing custom exception class,

531, 532
Now property, DateTime structure, 125
NumberFormatInfo class, 528
numeric input, regular expression for, 52
Numeric property, ListViewItemComparer

class, 265

■O
obfuscation, 32
Object class

GetType method, 97, 99
implementing cloneable type, 508
MemberwiseClone method, 508, 509
retrieving object type, 97
using strongly typed collection, 64

ObjectDisposedException class, 524
ObjectHandle class, 84, 89
objects

see also classes
accessing objects outside application

domain, 85
immutability of, 40
instantiating objects using reflection,

101–105
linking data objects to controls, 246–248
locking current object, 133
making objects remotable, 420–425
methods returning Type objects, 98
retrieving object type, 97
storing serializable object with state to file,

68–72
testing object type, 99–101
using object initializers, 574–576

Observer pattern, 518, 539–544
ODBC data provider, 335

connection pooling, 342
Odbc namespace see System.Data.Odbc
OdbcCommand class, 348
OdbcConnection class, 337
OdbcConnectionStringBuilder class, 343
OdbcDataReader class, 356
OdbcFactory class, 367
OdbcParameter class, 352
Of keyword, 64, 66
Offset property, TextDocument class, 321
OLE DB data provider, 335

connection pooling, 342
OleDb namespace see System.Data.OleDb
OleDbCommand class, 348
OleDbConnection class, 337, 338
OleDbConnectionStringBuilder class, 343
OleDbDataReader class, 356
OleDbFactory class, 367
OleDbParameter class, 352
OnCompletedRead callback, 186
OnContinue method, ServiceBase class, 560
OnCustomCommand method, ServiceBase

class, 560
OnDeserializedAttribute, 503
OnDeserializingAttribute, 503
OnKeyPress method, ComboBox control, 262
OnPause method, ServiceBase class, 560

640 ■IN D E X

OnPowerEvent method, ServiceBase class, 560
OnSerializedAttribute, 503
OnSerializingAttribute, 503
OnSessionChange method, ServiceBase

class, 560
OnShutdown method, ServiceBase class, 560
OnStart method, ServiceBase class, 560
OnStop method, ServiceBase class, 560
OnTextChanged method, ComboBox

control, 262
OnXyz virtual methods

threads calling, 380
Open method

database connection classes, 337
FileInfo class, 169

OpenExeConfiguration method,
ConfigurationManager class, 345, 347

OpenExisting method, EventWaitHandle
class, 138

OpenFileDialog class, 198, 199
OpenForms property, Application class,

249, 250
OpenRead method

FileInfo class, 169
WebClient class, 383, 380

OpenReadAsync method, WebClient class, 380
OpenReadCompleted event, WebClient

class, 380
OpenRemoteBaseKey method, RegistryKey

class, 556
OpenSerialPort method, Ports class, 205
OpenSubKey method, RegistryKey class, 557
OpenText method

File class, 177
FileInfo class, 169

OpenTextFieldParser method, FileSystem class,
170, 182

OpenTextFileReader method, FileSystem class,
170, 178, 180

OpenTextFileWriter method, FileSystem class,
170, 178, 180

OpenWrite method
FileInfo class, 169
WebClient class, 382

OpenWriteAsync method, WebClient class, 382
operating system, determining current, 548
OperatingSystem class, 546, 547
OperationalStatus enumeration, 375
OperationalStatus property, NetworkInterface

class, 375
operators, DateTime and TimeSpan, 59
Option Infer/Option Strict, 572
optional permission request

.NET Framework security policy, 443
OptionalFieldAttribute class, 503

Options property, RegexCompilationInfo
class, 55

Options value, RegexOptions enumeration, 55
Or bitwise operator, 167
OR operator, 14
Oracle data provider, 335, 340
OracleClient namespace see

System.Data.OracleClient
OracleClientFactory class, 367
OracleCommand class, 348, 349
OracleConnection class, 337
OracleConnectionStringBuilder class, 343
OracleDataReader class, 356, 357
OracleParameter class, 352
Orcas, 571
Order By operator, LINQ, 586
Order element, xslt stylesheet templates, 239
OrElse operator, 14
OSVersion property, Environment class, 546
OSVersionInfo class, 487
OSVERSIONINFO structure, 487
out switch, 2
OutAttribute, 487
OuterXml property, XmlNode class, 212
OutOfMemoryException class, 307
overloading, .NET Framework, 496
overriding

controlling inheritance and member
overrides using CAS, 447–449

OverwritePrompt property, SaveFileDialog
class, 198

Owner property, IVideoWindow interface,
313, 314

■P
PageNumber property, TextDocument

class, 321
paging

displaying collection data using, 600–602
Paint event handler, Form class, 292, 305
Panel control, 290, 301
parameter classes

Add method, 352
CreateParameter method, 352
creating parameter objects, 352
IDataParameter interface, 366
properties, 353
using parameters in SQL command or stored

procedure, 351–355
ParameterDirection enumeration, 353
ParameterizedCommandExample method, 353
ParameterizedThreadStart delegate, 129, 130
ParameterName property, parameter

classes, 353

641■I N D E X

Find it faster at http://superindex.apress.com

parameters
calling method in COM component without,

496–497
common data type for, 367
IDataParameter interface, 366

Parameters collection
Add method, 351, 352, 366
IDbCommand interface, 351, 366

Parameters property, command classes, 348
parent node, XPath, 224
Parent property, DirectoryInfo class, 163
Parse method, DateTime class, 56, 57
ParseExact method, DateTime class, 56, 57
parsing

OpenTextFieldParser method, 170
parsing contents of delimited text file,

182–185
TextFieldParser class, 170

partially trusted code
allowing to use strong-named assemblies,

434–436
partitioning methods, 598
Pascal casing, 235
passing objects by reference

see also MBR (marshal-by-reference) types
creating classes passed by reference, 87
instantiating type in remote application

domain, 89
passing objects by value

see also MBV (marshal-by-value) types
creating classes passed by value, 87
instantiating type in remote application

domain, 89
Password property

ProcessStartInfo class, 154
ServiceProcessInstaller class, 564

passwords
calculating hash code of password, 463–466
regular expression for password, 52
verifying hash codes, 469–471

Path class
ChangeExtension method, 191
Combine method, 191, 192
creating temporary files, 195
generating random filenames, 206
GetFileName method, 191
GetFullPath method, 194
GetInvalidPathChars method, 192
GetRandomFileName method, 206
GetTempFileName method, 195, 206
manipulating strings representing file

path/name, 191
methods, 192
working with relative paths, 194

Path property, FileSystemWatcher class, 203
paths

caution using relative paths, 195
determining if path is directory or file, 193
manipulating strings representing, 191–192
monitoring file system for changes, 202–205
working with relative paths, 194–195
XPath expression syntax, 224

Pattern property, RegexCompilationInfo
class, 55

pattern recipes see recipes, interface and
pattern

patterns
Dispose pattern, 524–527
Event pattern, 535, 539
Observer pattern, 518, 539–544
Singleton pattern, 537–539

Pause method
IMediaControl interface, 312
Win32_Printer class, 330
Win32_PrintJob class, 330

people.bin file, 71
people.soap file, 72
performance

connection pooling, 340
non–thread-safe collections, 151
using compiled regular expressions, 54–56

PerformanceData field, RegistryKey class, 556
permcalc command, 445
Permcalc.exe, 444
permission request, 440
permissions

assemblies, 433
determining specific permissions at

runtime, 446–447
disabling execution permission checks,

438–440
giving strong name to assemblies, 19
identity permissions, 448
limiting permissions granted to assembly,

442–444
permission demands, 433
rejecting permissions granted to

assemblies, 442
runtime granting specific permissions to

assembly, 440–442
using isolated file storage, 200–202
viewing permissions required by assembly,

444–445
Permissions Calculator, 444
Permissions namespace see

System.Security.Permissions
Permissions View tool, 444
PermissionSetAttribute class, 449
Permview.exe, 444

642 ■IN D E X

PerUserRoaming value
writing encrypted connection string, 347

PhysicalAddress class, 375
PIA (primary interop assembly), 493, 494
PictureBox control

creating scrollable image, 301
Handle property, 313
SizeChanged event, 314

pictures see images
PIN, regular expression for, 52, 55
Ping class, 396, 397
PingCompleted event, Ping class, 397
PingCompletedEventHandler delegate, 397
pinging IP addresses, 396–398

web sites not responding to ping
requests, 396

PingOptions class, 397
PingReply class, 397
PInvoke

assigning all code full trust, 435
cross-platform execution, 482

pipe character (|), 199
Platform Invoke see PInvoke
Platform property, OperatingSystem class, 547
PlatformNotSupportedException class, 385
Play method

My.Computer.Audio class, 310, 311
SoundPlayer class, 310
SystemSound class, 308

PlayMode parameter, 310
PlaySync method, SoundPlayer class, 310
PlaySystemSound method,

My.Computer.Audio class, 309
PluginManager class, 90
Point class, 292
Policy namespace see System.Security.Policy
PolicyException class

restricting which users can execute code, 456
runtime granting specific permissions to

assembly, 441
polling

determining if asynchronous method
finished, 363

executing methods asynchronously, 116
PollingExample method, 117
Pooling setting, 341
POP3 (Post Office Protocol 3), 393
Port property, SmtpClient class, 391
portability of code, data providers and, 336
ports, 205–206
Ports class, My, 205
Ports namespace see System.IO.Ports
position expression, XPath, 225

PowerUser value, WindowsBuiltInRole
enumeration, 453

Prefixes property, HttpListener class, 385
previews

showing dynamic print preview, 327–330
primary interop assembly (PIA), 493, 494
Principal namespace see

System.Security.Principal
PrincipalPermission class, 455
PrincipalPermissionAttribute class, 455
PrincipalPolicy enumeration, 456
Print Preview window, 327
PrintDialog class, 317, 319
PrintDocument class

BeginPrint event, 319
DefaultPageSettings property, 319
EndPrint event, 319
PrinterSettings property, 319
printing document, 319
printing multiple-page document, 321, 322
PrintPage event, 319, 320, 321, 322
retrieving information about printers, 317
showing dynamic print preview, 327

PrinterName property, PrinterSettings
class, 317

PrinterSettings class, 316, 317
PrinterSettings property, PrintDocument

class, 319
printing

managing print jobs, 330–334
printing document, 318–321
printing multiple-page document, 321–324
printing wrapped text, 324–326
retrieving information about printers,

316–318
showing dynamic print preview, 327–330

Printing namespace see
System.Drawing.Printing

PrintOperator value, WindowsBuiltInRole
enumeration, 453

PrintPage event, PrintDocument class
printing document, 319, 320
printing multiple-page document, 321, 322

PrintPageEventArgs class, 321, 322
PrintPreviewControl class, 327, 328
PrintPreviewDialog class, 327, 328
PrintTestPage method, Win32_Printer

class, 334
private key

creating strong-named key pairs, 19
delay signing assemblies, 24

Private Key screen
Sign Tool, 28

Private members, 5
Private methods, 32

643■I N D E X

Find it faster at http://superindex.apress.com

PrivateBinPath property, AppDomainSetup
class, 81

privatePath attribute, 79
Process class

CloseMainWindow method, 155, 156
getting handle for control/window/file, 484
HasExited property, 156
Kill method, 155, 156
MainWindowHandle property, 484
methods, 156
processes running on a remote

computer, 153
start application running in new process, 153
Start method, 153, 154
WaitForExit method, 154, 156

process recipes see recipes,
threads/processes/synchronization

processes
considerations before using thread pool, 114
start application running in new process,

152–155
synchronization, 111
terminating processes, 155–157
threads and processes, 111

ProcessInfo class, 153
ProcessorCount property, Environment

class, 546
ProcessStartInfo class, 153, 475
ProcessWindowStyle enumeration, 154
Product class, 234, 238
ProductCatalog class, 234, 237
ProductCatalog_Invalid.xml file, 232, 238
ProjectInstaller class, 564
Protect method

ProtectedData class, 478
ProtectedMemory class, 478

protected configuration, .NET Framework, 344
Protected Friend members, 9
Protected members, 5
ProtectedData class, 478, 479
ProtectedMemory class, 478
ProtectSection method, SectionInformation

class, 345
ProviderName property,

ConnectionStringSettings class, 345
proxies, 86, 87
Public constructors, 532
public key

creating strong-named key pairs, 18
delay signing assemblies, 23

Publisher class, 448
publisher policy

DisallowPublisherPolicy property, 81
specifying in assemblies, 78

PublisherIdentityPermissionAttribute
class, 449

Pulse method, Monitor class, 133, 134
PulseAll method, Monitor class, 133, 134

■Q
Quartz interop class, 312
Quartz library

playing sound file, 311
playing video with DirectShow, 313

QuartzTypeLib, 314
querying data

querying data from multiple collections,
591–594

querying IEnumerable(Of T) collection,
579–583

querying nongeneric collection, 584–585
Queue collection, 64

ToArray method, 62
queues

managing print queues, 330
retrieving information from print queue, 334

QueueUserWorkItem method, ThreadPool
class, 112

■R
Random class, 462
random filenames, generating, 206
random numbers, creating, 462–463
RandomNumberGenerator class, 462
RBS (role-based security), 433

determining if user is member of Windows
group, 451–454

interfaces, 452
restricting which users can execute code,

455–458
RCW (runtime callable wrapper), 312

creating, 494
generating, using Visual Studio, 493
using ActiveX control in .NET clients, 497,

498, 499
using COM component in .NET client, 493

Read method
BinaryReader class, 180, 356
Console class, 72
StreamReader class, 177, 178
XmlReader class, 226, 228

ReadAllText method, FileSystem class, 179
ReadDecimal method, BinaryReader class, 180
ReadElementString method, XmlReader

class, 228
ReadFields method, TextFieldParser class,

182, 183

644 ■IN D E X

reading
reading and writing binary files, 180–181
reading and writing text files, 177–180
reading files asynchronously, 185–188
reading user input from Windows console,

72–75
reading XML, part document in memory,

225–228
ReadKey method, Console class, 72, 73
ReadLine method

Console class, 72
StreamReader class, 177, 178

ReadString method, BinaryReader class, 180
ReadToEnd method, StreamReader class, 178
ReadToXyz methods, XmlReader class, 228
recipes, application development, 1–38

accessing command-line arguments, 11–13
accessing element named as VB.NET

keyword, 17
creating code library from command line,

10–11
creating code module from command line,

8–10
creating console application from command

line, 2–4
creating SPC to test Authenticode signing of

assembly, 29–31
creating strong-named key pairs, 18–19
creating Windows Forms app. from

command line, 4–7
delay signing assemblies, 23–24
embedding resource file in assembly, 35–38
giving strong name to assemblies, 19–21
managing Global Assembly Cache, 31
manipulating appearance of console, 33–35
preventing decompilation of assemblies, 32
selectively including code at build time,

13–17
signing assemblies with Authenticode, 25–29
verifying strong-named assembly not

modified, 22–23
recipes, application

domain/reflection/metadata, 77–108
creating application domain, 80–82
creating custom attributes, 105–107
creating type can cross app. domain

boundaries, 86–89
creating type can’t cross app. domain

boundaries, 85–86
executing assembly in remote application

domain, 82–84
inspecting value of custom attributes at

runtime, 107–109
instantiating objects using reflection,

101–105

instantiating type in remote application
domain, 89–93

loading assembly into current application
domain, 77–80

loading unnecessary assemblies into app.
domains, 84–85

passing data between application domains,
93–95

retrieving object type, 97
testing object type, 99–101
unload assemblies or application domains at

runtime, 96
recipes, data manipulation, 39–75

converting binary data to/from Base64 array,
46–50

converting value types to/from byte arrays,
44–46

copying contents of collection to array,
62–63

creating DateTime objects from strings,
56–58

creating generic type, 66–68
encoding string using alternate character

encoding, 42–44
manipulating contents of String object,

39–41
mathematically manipulating DateTime

objects, 58–60
reading user input from Windows console,

72–75
sorting contents of array or ArrayList

collection, 61–62
storing serializable object with state to file,

68–72
using compiled regular expressions, 54–56
using strongly typed collection, 64–65
validating input using regular expressions,

50–53
recipes, database access, 335–371

connection pooling, 340–342
creating database connection string

programmatically, 342–344
creating database connections, 336–339
discovering all instances of SQL Server on

network, 370–371
executing database operations

asynchronously, 362–365
executing SQL command or stored

procedure, 347–351
processing results of SQL query using data

reader, 355–358
retrieving results of SQL query as XML,

358–362
storing database connection string securely,

344–347

645■I N D E X

Find it faster at http://superindex.apress.com

using parameters in SQL command or stored
procedure, 351–355

writing database-independent code,
366–370

recipes, files/directories/IO, 161–207
calculating size of all files in directory,

171–173
copying/moving/deleting file/directory,

168–171
creating temporary files, 195–196
determining free space on drive, 196–197
determining if path is directory or file, 193
displaying directory tree in TreeView

control, 175–177
finding files matching wildcard expressions,

188–189
generating random filenames, 206
manipulating strings representing file

path/name, 191–192
modifying ACL of file/directory, 207–209
monitoring file system for changes, 202–205
parsing contents of delimited text file,

182–185
reading and writing binary files, 180–181
reading and writing text files, 177–180
reading files asynchronously, 185–188
retrieving file version information, 173–174
retrieving file/directory/drive information,

162–166
setting file or directory attributes, 167–168
testing two files for equality, 190–191
using common file dialog boxes, 197–200
using isolated file storage, 200–202
working with relative paths, 194–195
writing to COM/serial port, 205–206

recipes, interface and pattern, 501–544
implementing cloneable type, 508–511
implementing comparable type, 512–516
implementing custom event argument,

535–537
implementing custom exception class,

531–535
implementing disposable class, 523–527
implementing enumerable type using

custom iterator, 517–523
implementing formattable type, 527–530
implementing Observer pattern, 539–544
implementing serializable types, 501–507
implementing Singleton pattern, 537–539

recipes, LINQ, 571–602
creating extension methods, 578–579
displaying collection data using paging,

600–602
filtering data using LINQ, 589–591

performing aggregate operations on
collections, 594–597

querying data from multiple collections,
591–594

querying IEnumerable(Of T) collection,
579–583

querying nongeneric collection, 584–585
retrieving subset of data from collection,

598–600
sorting data using LINQ, 585–588
using anonymous types, 576–578
using implicitly typed variables, 572–573
using object initializers, 574–576

recipes, multimedia, 289–334
creating irregularly shaped form or control,

295–296
creating movable shape, 297–301
creating scrollable image, 301–303
creating thumbnail for existing image,

307–308
finding all installed fonts, 290–291
managing print jobs, 330–334
performing hit testing with shapes, 292–295
performing screen capture, 303–304
playing beep or system-defined sound,

308–309
playing sound file, 311–313
playing video with DirectShow, 313–316
playing WAV file, 310–311
printing multiple-page document, 321–324
printing simple document, 318–321
printing wrapped text, 324–326
retrieving information about printers,

316–318
showing dynamic print preview, 327–330
using double buffering to increase redraw

speed, 304–307
recipes, networking and remoting, 373–432

asynchronous communications using TCP,
403–410

avoiding hard-coding web service URL,
413–415

calling web service method asynchronously,
418–420

communicating using TCP/IP, 398–402
communicating using UDP datagrams,

410–413
controlling lifetime of remote objects,

429–431
controlling versioning for remote objects,

431–432
detecting changes in network connectivity,

377–379
downloading data over HTTP or FTP,

379–382

646 ■IN D E X

downloading file and processing, using
stream, 382–384

getting HTML page from site requiring
authentication, 388–390

hosting remote objects in IIS, 427–429
making objects remotable, 420–425
obtaining local network interface

information, 374–377
pinging IP addresses, 396–398
registering remotable classes in assembly,

425–427
resolving host name to IP address using

DNS, 394–395
responding to HTTP requests from

application, 384–388
sending e-mail using SMPT, 390–394
setting authentication credentials for web

service, 415–417
uploading data over HTTP or FTP, 382

recipes, security and cryptography, 433–479
allowing partially trusted code to use

strong-named assemblies, 434–436
calculating hash code of files, 466–468
calculating hash code of password, 463–466
controlling inheritance and member

overrides using CAS, 447–449
creating cryptographically random number,

462–463
determining if user is member of Windows

group, 451–454
determining specific permissions at

runtime, 446–447
disabling code access security, 436–438
disabling execution permission checks,

438–440
encryption/decryption using data

protection API, 477–479
ensuring data integrity using keyed hash

code, 471–474
impersonating Windows users, 458–461
inspecting assembly’s evidence, 449–451
limiting permissions granted to assembly,

442–444
protecting sensitive strings in memory,

474–477
restricting which users can execute code,

455–458
runtime granting specific permissions to

assembly, 440–442
verifying hash codes, 469–471
viewing permissions required by assembly,

444–445
recipes, threads/processes/synchronization,

111–159
creating thread-safe collection instance,

151–152

ensuring only one instance of application
executing, 158–159

executing methods
asynchronously, 115–123
in separate thread at specific time, 125–127
in separate thread periodically, 123–125
using new thread, 129–132
using thread from thread pool, 112–115
when WaitHandle signalled, 127–129

knowing when thread finished, 147–149
start application running in new process,

152–155
synchronizing access to shared data,

145–147
synchronizing multiple threads

using event, 137–140
using monitor, 132–137
using mutex, 140–143
using semaphore, 143–145

terminating execution of thread, 149–151
terminating process, 155–157

recipes, unmanaged code interoperability,
481–500

calling functions defined in unmanaged
DLL, 481–484

calling method in COM component without
required parameters, 496–497

calling unmanaged function that uses
callback, 489–490

calling unmanaged function that uses
structure, 486–489

exposing .NET component to COM, 499–500
getting handle for control/window/file,

484–486
releasing COM components quickly, 495
retrieving unmanaged error information,

491–493
using ActiveX control in .NET clients,

497–499
using COM component in .NET client,

493–495
recipes, Windows Forms, 243–287

adding controls to forms at runtime, 244–246
arranging controls on form automatically,

268–269
creating animated system tray icon, 277–279
creating autocomplete combo box, 262–264
creating immovable form, 274–275
creating movable borderless form, 275–277
creating multilingual forms, 271–274
displaying web page in Windows

application, 284–287
finding all MDI child forms, 252–254
finding all open forms in application,

249–252
forcing list box to display most recently

added item, 258–259

647■I N D E X

Find it faster at http://superindex.apress.com

linking data objects to controls, 246–248
processing all controls on forms, 248–249
providing context-sensitive help to

users, 283
restricting input to TextBox, 259–261
saving configuration settings for forms,

255–258
sorting ListView by any column, 264–268
supporting drag-and-drop functionality,

281–283
using part of main menu in context menu,

269–271
validating user input and reporting errors,

279–281
recipes, Windows integration, 545–568

accessing runtime environment
information, 545–549

creating shortcut on desktop or Start menu,
567–569

creating Windows service, 559–563
creating Windows service installer, 564–567
reading and writing to Windows registry,

553–555
retrieving value of environment variable,

549–550
searching Windows registry, 556–559
writing event to Windows event log, 550–552

recipes, XML processing, 211–241
appending nodes in XML document,

217–219
creating XML schema for .NET class, 237
generating .NET class from XML schema,

237–238
inserting nodes in XML document, 215–217
performing XSL transform, 238–241
read/write XML, part document in memory,

225–228
searching XML document

for nodes by name, 219–220
for nodes by namespace, 221–222
for nodes using XPath, 222–225

serializing objects to/from XML, 233–236
showing XML document structure in

TreeView, 211–215
validating XML document against schema,

228–233
Rectangle class

hit testing with Rectangle object, 295
object description, 292

Rectangle struct, 292
redraw speed

using double buffering to increase, 304–307
reference counting, COM, 495
reference switch, 10, 11
reference types, 87

reflection
inspecting value of custom attributes at

runtime, 107–109
instantiating objects using, 101–105
Type class retrieving object type, 97

Reflection namespace see System.Reflection
reflection recipes see recipes, application

domain/reflection/metadata
Refresh method

DirectoryInfo class, 164
FileInfo class, 164

refuse request, .NET Framework security
policy, 443

Regex class
CompileToAssembly method, 54, 55
creating instance compiled to MSIL, 55
IsMatch method, 52
testing multiple strings, 53
using compiled regular expressions, 54
ValidateInput method, 52, 53
validating input using regular expressions,

52
RegexCompilationInfo class, 55
RegExDesigner.NET, 50
RegExLib.com, 50
RegexOptions enumeration, 54, 55
Region class, 292, 295
Region property

Control class, 295, 297
Form class, 295

RegisteredWaitHandle class, 128
RegisterWaitForSingleObject method,

ThreadPool class, 127, 128
RegisterWellKnownServiceType method,

RemotingConfiguration class, 425
Registry class

GetValue method, 553
reading and writing to Windows registry,

553–555
searching Windows registry, 556–559
SetValue method, 553

Registry class, My, 554, 556
RegistryKey class

GetSubKeyNames method, 557
GetValue method, 553
IDisposable interface, 557
methods, 557
navigating through child subkeys, 556
OpenRemoteBaseKey method, 556
OpenSubKey method, 557
searching Windows registry, 556–559
SetValue method, 553
shared fields, 556
SubKeyCount property, 557

RegistryValueKind enumeration, 553, 557

648 ■IN D E X

regular expressions
case sensitivity, 50
list of, 52
metacharacter elements, 50
using compiled regular expressions, 54–56
validating input using, 50–53

RegularExpressions namespace see
System.Text.RegularExpressions

Regulator, The, 50
relative path, XPath, 224
relative paths, 194–195

caution using, 195
RelativeSearchPath property, AppDomain

class, 81
Release method, Semaphore class, 143
ReleaseComObject method, Marshal class, 312

releasing COM components quickly, 495
ReleaseMutex method, Mutex class, 141
remotable objects, 421

controlling lifetime of remote objects,
429–431

controlling versioning for remote objects,
431–432

hosting remote objects in IIS, 427–429
making objects remotable, 420–425

remotable types
see also nonremotable types
instantiating type in remote application

domain, 89–93
remote application domains

executing assembly in, 82–84
RemoteObjects assembly, 432
remoting, 373

.NET Remoting, 86
controlling lifetime of remote objects,

429–431
controlling versioning for remote objects,

431–432
DCOM and, 373
hosting remote objects in IIS, 427–429
making objects remotable, 420–425
registering remotable classes in assembly,

425–427
Remoting namespace see

System.Runtime.Remoting
remoting recipes see recipes, networking and

remoting
RemotingConfiguration class

Configure method, 421
making objects remotable, 421
RegisterWellKnownServiceType

method, 425
RemoveAccessRule method, FileSecurity

class, 207

RemoveAccessRuleAll method, FileSecurity
class, 207

RemoveAccessRuleSpecific method,
FileSecurity class, 207

RemoveAt method, SecureString class, 474
Renamed event, FileSystemWatcher class, 203
RenamedEventArgs class, 203
RenderFile method, IMediaControl

interface, 312
Renew method, ILease interface, 429
renewOnCallTime attribute, 429
RenewOnCallTime property, ILease

interface, 429
Replace method, FileInfo class, 169
Replicator value, WindowsBuiltInRole

enumeration, 453
ReplyTo property, MailMessage class, 392
Request property, HttpListenerContext

class, 385
RequestAdditionalTime method, ServiceBase

class, 560
RequestHandler method, HttpListener

class, 386
RequestMinimum value, SecurityAction

enumeration, 441
RequestOptional value, SecurityAction

enumeration, 443
RequestRefuse value, SecurityAction

enumeration, 443
Reset method

Ienumerator interface, 518
ManualResetEvent class, 137

ResetAbort method, Thread class, 149, 150
ResetAccessRule method, FileSecurity

class, 207
ResetColor method, Console class, 34
resgen.exe (Resource Generator), 35
resource switch, 35
resource file, embedding in assembly, 35–38
Resource Generator (resgen.exe), 35
ResourceManager class, 35
Resources class, My, 161
Response property, HttpListenerContext

class, 385
Resume method

Win32_Printer class, 330
Win32_PrintJob class, 330

ResumeLayout method, Control class, 245
resx format, 35

embedding resource file in assembly, 38
retrieving handles, 486
return values

passing data between application
domains, 94

Reverse method, 578, 579

649■I N D E X

Find it faster at http://superindex.apress.com

ReverseString method, StringBuilder class, 40
RichTextBox class, 199
RID (Windows role identifier), 453
RIPEMD160 algorithm, 464
RIPEMD160Managed class, 465
RNGCryptoServiceProvider class, 462, 463
Roaming flag, IsolatedStorageFile class, 201
role-based security see RBS
Root property, DirectoryInfo class, 163
root test certificate, trusting, 29
RowCount property, TableLayoutPanel

container, 268
RsaProtectedConfigurationProvider class, 345
Run method

Application class, 4
IMediaControl interface, 312
ServiceBase class, 559, 561, 563

RunInstallerAttribute, 564
Running method, ThreadState class, 130
runtime

accessing runtime environment
information, 545–549

determining specific permissions at
runtime, 446–447

inspecting value of custom attributes at
runtime, 107–109

instantiating objects using reflection,
101–105

unload assemblies or application domains at
runtime, 96

runtime callable wrapper see RCW
runtime hosts, 111

■S
S element, regular expressions, 51
s element, regular expressions, 51
s option, caspol command, 436, 437
SameLogon value, MemoryProtectionScope

enumeration, 478
SameProcess value, MemoryProtectionScope

enumeration, 478
sandbox parameter, permcalc command, 445
Save method

Configuration class, 345
IWshShortcut interface, 568
My.Settings class, 256
XmlDocument class, 215

SaveFileDialog class, 198, 199
SavePolicy method, SecurityManager class

disabling code access security, 438
disabling execution permission checks,

439, 440
scalability

connection pooling, 340
database connections, 337

schemas see XML schemas
Schemas property, XmlDocument class, 233
SCM (Windows Service Control Manager),

559, 560
screen capture, performing, 303–304
scrollable image, creating, 301–303
SDK (software development kit) tools, 1
SE_TCB_NAME privilege, 459
SearchOption enumeration, 188, 189
secret key

ensuring data integrity using keyed hash
code, 471, 472

SectionInformation class, 345
SecureString class, 474, 475

start application running in new process, 153
security

CAS (code access security), 433
CLR using evidence, 80
cryptography, 433
database connection strings, 345
declarative security, 444
disabling code access security, 436–438
further reading on, 434
imperative security, 444
LinkDemand security, 435
RBS (role-based security), 433
using isolated file storage, 201

security and cryptography recipes, 433–479
see also recipes, security and cryptography

security identifier (SID), 453
Security namespace see System.Security
security policy, 433

disabling code access security, 436–438
optional permission request, 443
refuse request, 443

SecurityAction enumeration
InheritanceDemand value, 447
limiting permissions granted to

assemblies, 443
RequestMinimum value, 441

SecurityEnabled property, SecurityManager
class, 437, 438

SecurityException class
determining specific permissions at

runtime, 446
restricting which users can execute code, 455
runtime granting specific permissions to

assembly, 440
viewing permissions required by

assembly, 444
SecurityIdentifier class, 453
SecurityManager class

CheckExecutionRights property, 439, 440
determining specific permissions at

runtime, 446

650 ■IN D E X

disabling code access security, 437
IsGranted method, 446, 447
SavePolicy method, 438, 439, 440
SecurityEnabled property, 437, 438

SecurityPermission class
ControlPolicy element, 437, 439
ControlPrincipal element, 456, 459
disabling code access security, 437
Execution element, 439
runtime granting specific permissions to

assembly, 441
SecurityPermissionFlag, 69
Select clause

querying data from multiple collections, 592
querying IEnumerable(Of T) collection, 580

Select method, Certificates class, 416
SelectedPath property, FolderBrowserDialog

class, 198, 199
SelectFromCollection method,

X509Certificate2UI class, 389
selection criteria, XPath, 225
SelectNodes method, XmlDocument class,

222, 223
SelectSingleNode method, XmlDocument

class, 222
Semaphore class, 143

classes used as triggers, 128
semaphores

synchronizing multiple threads using,
143–145

Send method
Ping class, 396
SmtpClient class, 392

SendAsync method, Ping class
pinging IP addresses, 397
sending e-mail using SMPT, 392

SendCompleted event, 392
sequence tag, 229
sequential layout, 487
serial port, writing to, 205–206
serializable class, 531
serializable objects

see also nonserializable objects
implementing cloneable type, 509
implementing serializable types, 502
MBV (marshal-by-value) types, 86
passing objects by value, 86, 87
storing with state to file, 68–72

SerializableAttribute class
creating type can’t cross application domain

boundaries, 85
implementing custom event argument, 536
implementing custom exception class, 532
implementing serializable types, 502, 503

serialization
attributes, 503
implementing custom exception class, 532
implementing serializable types, 501–507
serializing objects to/from XML, 233–236
SoapFormatter class, 234

Serialization namespace see
System.Runtime.Serialization

Serialization namespace, XML see
System.Xml.Serialization

SerializationException class, 94
SerializationFormatter permission,

SecurityPerssionFlag, 69
SerializationInfo class, 503, 504
Serialize method

BinaryFormatter class, 69
IFormatter interface, 69
SoapFormatter class, 69

SerialPort class, 205
SerialPortNames property, Ports class, 205
ServerName column, DataRow class, 370
ServiceBase class

creating Windows service, 559, 563
events, 560
methods, 560
properties, 560
RequestAdditionalTime method, 560
Run method, 559, 561, 563

ServiceController class, 560
ServiceDependsUpon property,

ServiceInstaller class, 565
ServiceInstaller class, 564, 565
ServiceName property

ServiceBase class, 561
ServiceInstaller class, 564

ServicePack property, OperatingSystem
class, 547

ServiceProcess namespace see
System.ServiceProcess

ServiceProcessInstaller class, 564, 565
SessionChangeDescription class, 560
Set accessor, XmlSerializer class, 233
Set method

AutoResetEvent class, 137
ManualResetEvent class, 137

Set Registry tool (setreg.exe), 29, 31
SetAccessControl method

Directory class, 207
File class, 207

SetAt method, SecureString class, 474
SetCurrentDirectory method, Directory

class, 194
SetData method, AppDomain class, 93, 94
SetDefaultPrinter method, Win32_Printer

class, 334

651■I N D E X

Find it faster at http://superindex.apress.com

SetDelimiters method, TextFieldParser
class, 183

SetError method, ErrorProvider
component, 279

SetFieldWidths method, TextFieldParser
class, 183

SetLastError field, DllImportAttribute, 491
SetMaxThreads method, ThreadPool class,

114, 115
SetPrincipalPolicy method, AppDomain

class, 456
setreg.exe (Set Registry tool), 29, 31
SetStyle method, Form class, 305
SetThreadPrincipal method, AppDomain

class, 456
Settings class, My, 161, 256
SetValue method

My.Computer.Registry class, 554
Registry class, 553, 554
RegistryKey class, 553, 557

SetWindowPosition method,
IVideoWindow, 314

SetWindowSize method, Console class, 34
SHA algorithms, 464
SHA1CryptoServiceProvider class, 464, 465
SHA1Managed algorithm, 465, 467
SHA1Managed class, 464, 465
SHA256Managed class, 465
SHA384Managed class, 465
shallow copy, 508
shapes

creating movable shape, 297–301
performing hit testing with shapes, 292–295

shared assemblies
managing Global Assembly Cache, 31

shortcuts
creating on desktop or Start menu, 567–569

Show method
MessageBox class, 247
PrintPreviewDialog class, 327

ShowDialog method, OpenFileDialog class, 198
ShowNewFolderButton property,

FolderBrowserDialog class, 199
SID (security identifier)

IsInRole method overloads, 453
Sign Tool (signtool.exe)

File Selection screen, 26
Hash Algorithm screen, 29
Private Key screen, 28
prompt for password to private key, 28
Signature Certificate screen, 27
signing assemblies with Authenticode, 25,

26, 28, 29
Signing Options screen, 27

SignalAndWait method, WaitHandle class, 138

signalled state, 137
Signature Certificate screen, Sign Tool, 27
Signing Options screen, Sign Tool, 27
simple data types, XML schema, 229
single quotes (')

accessing command-line arguments, 13
single-call activation, 421

controlling lifetime of remote objects, 429
making objects remotable, 423

SingleCall value, WellKnownObjectMode
enumeration, 426

Singleton pattern, implementing, 537–539
Singleton value, WellKnownObjectMode

enumeration, 426
Site class, 448
SizeChanged event, PictureBox control, 314
SizeOf method, Marshal class, 486, 488
sk switch, Certificate Creation tool, 30
Skip/SkipWhile methods, collections, 598,

599, 600
Sleep method, Thread class, 116
SMTP, sending e-mail using, 390–394
SmtpClient class, 390, 391, 392, 393
SmtpMail class, 391
sn.exe see Strong Name tool
SOAP (Simple Object Access Protocol), 69
Soap namespace see

System.Runtime.Serialization.
Formatters.Soap

SoapFormatter class, 69
Deserialize method, 69
serialization, 234
Serialize method, 69
storing serializable object with state to file,

69, 71
SocketPermission class, 441
SocketPermissionAttribute class, 441
Sockets namespace see System.Net.Sockets
Software Publisher Certificate see SPC
SomeProtectedMethod method, 449
Sort method, Array class, 61
Sort method, ArrayList class, 61

implementing comparable type, 513
Sort method, ListView control, 264, 265
sorting collections, 512–516
sorting contents of array or ArrayList collection,

61–62
sorting data using LINQ, 585–588
sound

playing beep or system-defined sound,
308–309

playing sound file, 311–313
playing WAV file, 310–311

SoundPlayer class, 309, 310

652 ■IN D E X

SPC (Software Publisher Certificate)
generating from X.509 certificate, 29
obtaining, 25
signing assemblies with Authenticode, 25
testing Authenticode signing of assembly,

29–31
SpecialFolder enumeration, Environment

class, 547
SpecialFolders property, WshShell class, 568
Specialized namespace see

System.Collections.Specialized
Speed property, NetworkInterface class, 375
sprites, creating movable, 297–301
SQL commands

executing database operations
asynchronously, 362–365

executing, 347–351
using parameters in, 351–355

SQL queries
processing results using data reader,

355–358
retrieving results as XML, 358–362

SQL Server
discovering all instances on network,

370–371
executing database operations

asynchronously, 362–365
SQL Server CE data provider, 335, 342
SQL Server data provider, 335, 340
SqlCe prefix, 335
SqlCeCommand class, 348
SqlCeConnection class, 337
SqlCeDataReader class, 356
SqlCeParameter class, 352
SqlClient namespace see System.Data.SqlClient
SqlClientFactory class, 367, 368
SqlCommand class

asynchronous operations, 362, 363
command classes, 348
ExecuteXmlReader method, 359, 360
methods, 362
using parameters in SQL command or stored

procedure, 353
SqlConnection class

creating database connection, 338
database connection classes, 337
using parameters in SQL command or stored

procedure, 353
SqlConnectionStringBuilder class, 343–344
SqlDataReader class, 356, 357
SqlDataSourceEnumerator class, 370, 371
SqlParameter class, 352, 353
SqlServerCe namespace see

System.Data.SqlServerCe
ss switch, Certificate Creation tool, 30

Stack collection, 64
ToArray method, 62

Start menu, creating shortcut on, 567–569
Start method

HttpListener class, 385
Process class, 153, 154
ServiceController class, 560
Thread class, 129, 130, 149

StartProcess method, AsyncProcessor class, 186
starts-with expression, XPath, 225
StartType property, ServiceInstaller class,

565, 566
state

passing state between application domains,
93–95

remoting, 373
single-call activation, 421
web services, 373

Status property, PingReply class, 397
Stop method

My.Computer.Audio class, 310
IMediaControl interface, 312
WebBrowser control, 285

stored procedures
executing, 347–351
using parameters in, 351–355

StoredProcedure value, CommandType
enumeration, 348

StoredProcedureExample method, 353
storing files

using isolated file storage, 200–202
Stream class

calculating hash code of files, 467
classes deriving from

MarshalByRefObject, 86
creating generic type, 67
downloading data over HTTP or FTP, 380
ensuring data integrity using keyed hash

code, 472
StreamingContext class, 502, 503, 504
StreamReader class, 177, 178, 383
streams

downloading file and processing using,
382–384

reading and writing data from, 161
StreamWriter class, 177, 178
string based resource file

embedding resource file in assembly, 35–38
String class

creating database connection string
programmatically, 342

Format method, 528
immutability of objects, 40
implementing cloneable type, 508
implementing formattable type, 528

653■I N D E X

Find it faster at http://superindex.apress.com

manipulating contents of String object,
39–41

protecting sensitive strings in memory, 474
StringBuilder class

Capacity property, 40
instantiating objects using reflection, 102
Length property, 40
manipulating contents of String object,

39, 40
MaxCapacity property, 40
mutable strings, 484
performing XSL transform, 241
ReverseString method, 40
ToString method, 39, 40
verifying hash codes, 469

strings
Base64 encoding/decoding using Convert

class, 47
common encodings, 178
creating DateTime objects from, 56–58
determining if path is directory or file, 193
encoding, using alternate character

encoding, 42–44
fixed-length strings, 487
manipulating contents of String object,

39–41
manipulating strings representing file

path/name, 191–192
mutable strings, 484
protecting sensitive strings in memory,

474–477
working with relative paths, 194–195

Strong Name tool (sn.exe)
creating strong-named key pairs, 18–19
delay signing assemblies, 24
verifying strong-named assembly not

modified, 22
Vr switch, 23
Vu switch, 24

strongly typed collections, using, 64–65
StrongName class, 448
strong-named assemblies, 78

allowing partially trusted code to use,
434–436

creating strong-named key pairs, 18–19
delay signing assemblies, 23
giving strong name to assemblies, 19–21
verifying not modified, 22–23

strong-named key pairs, 18–19, 23
StrongNameIdentityPermissionAttribute

class, 449
StructLayoutAttribute class, 486, 487
structures

calling unmanaged function that uses,
486–489

stylesheet element, xslt stylesheet, 239
subexpression of regular expressions, 51
subject

implementing Observer pattern, 539
Subject property, MailMessage class, 392
SubjectEncoding property, MailMessage

class, 392
SubKeyCount property, RegistryKey class, 557
subtraction (-) operator, 59
Success value, IPStatus enumeration, 397
Sum method, 595
Supports method, NetworkInterface class, 375
SupportsMulticast property, NetworkInterface

class, 375
SuppressFinalize method, GC class, 524
SuspendLayout method, Control class, 245
sv switch, Certificate Creation tool, 30
synchronization

see also asynchronization
communicating using TCP/IP, 398–402
Interlocked class methods, 145
managed-code synchronization

mechanisms, 133
synchronizing access

to shared data, 145–147
to shared resource, 133

synchronizing multiple threads
using event, 137–140
using monitor, 132–137
using mutex, 140–143
using semaphore, 143–145

thread synchronization, 132
threads and processes, 111
WaitHandle methods, 137

synchronization recipes see recipes,
threads/processes/synchronization

Synchronized method, collections, 151
SyncLock statements, 133

creating thread-safe collection instance, 151
SyncRoot property, collections, 151, 152
System namespace

Activator class, 105
AppDomain class, 80, 456
AppDomainSetup class, 80
ApplicationException class, 531
ArgumentException class, 62, 385, 512
ArgumentNullException class, 102, 531
ArgumentOutOfRangeException class,

40, 531
AsyncCallback delegate, 363
AsynchCallback delegate, 385
Attribute class, 105
AttributeTargets enumeration, 106
AttributeUsageAttribute class, 105
BitConverter class, 44, 469

654 ■IN D E X

CannotUnloadAppDomainException
class, 96

classes deriving from
MarshalByRefObject, 86

Console class, 33, 72, 527
ConsoleColor enumeration, 33
ConsoleKeyInfo class, 72
Convert class, 47
DateTime class, 56
DateTime structure, 125, 163, 512
Enum class, 101
Environment class, 11, 545
EnvironmentVariableTarget

enumeration, 549
EventArgs class, 535, 540
Exception class, 531
FormatException class, 57, 531
GC class, 523
IAsyncResult interface, 362
ICloneable interface, 508
IComparable interface, 61, 512
IDisposable interface, 67, 475, 523
IFormatProvider interface, 528
IFormattable interface, 527
IntPtr class, 475
IntPtr type, 459
InvalidCastException class, 62, 99
InvalidOperationException class, 397, 451,

475, 518
MarshalByRef class, 421
MarshalByRefObject class, 86, 420
MissingMethodException class, 82
NonSerializedAttribute class, 502
Object class, 508
ObjectDisposedException class, 524
OperatingSystem class, 546
PlatformNotSupportedException class, 385
Random class, 462
SerializableAttribute class, 85, 502, 532, 536
String class, 508, 528
TimeSpan structure, 124, 429
Type class, 62
Version class, 546

system tray icon, creating animated, 277–279
System.Collections namespace, 151

ArrayList class, 69, 94, 513
deep copy, 508
IComparer interface, 61, 265, 512
IEnumerable interface, 517
IEnumerator interface, 450, 517
shallow copy, 508

System.Collections.Generic namespace, 151
Dictionary class, 252
generic collections, 64

IComparer interface, 512
IEnumerator interface, 517
synchronization mechanisms, 152
using strongly typed collection, 64

System.Collections.Specialized
namespace, 151

System.ComponentModel namespace
AsyncCompletedEventHandler delegate, 380
Component class, 380, 397
RunInstallerAttribute, 564

System.Configuration namespace
Configuration class, 345
ConfigurationManager class, 345
ConnectionStringSettings class, 345

System.Configuration.Install namespace
Installer class, 564
InstallerCollection class, 565

System.Data namespace
command classes, 348
CommandType enumeration, 348
connection string builder classes, 342
data providers and data sources, 335
data reader classes, 355
database connection classes, 337
DataRow class, 370
DataSet class, 84, 367
DataTable class, 368, 370, 421
DbParameterCollection class, 348
DbTransaction class, 348
DbType enumeration, 353
IDbCommand interface, 348
IDbConnection interface, 337
parameter classes, 352
ParameterDirection enumeration, 353
writing database-independent code, 366

System.Data.Common namespace
DbConnection class, 337
DbConnectionStringBuilder class, 342
DbProviderFactory class, 367

System.Data.Odbc namespace, 335
command class, 348
data reader class, 356
database connection class, 337
factory class, 367
parameter class, 352

System.Data.OleDb namespace, 335
command class, 348
data reader class, 356
database connection class, 337
factory class, 367
OleDbConnectionStringBuilder class, 343
parameter class, 352

655■I N D E X

Find it faster at http://superindex.apress.com

System.Data.OracleClient namespace, 335
command class, 348
data reader class, 356
database connection class, 337
factory class, 367
OracleConnectionStringBuilder class, 343
parameter class, 352

System.Data.SqlClient namespace, 335
command class, 348
data reader class, 356
database connection class, 337
factory class, 367
parameter class, 352
SqlCommand class, 362
SqlConnectionStringBuilder class, 343
SqlDataSourceEnumerator class, 370

System.Data.SqlServerCe namespace, 335
command class, 348
data reader class, 356
database connection class, 337
parameter class, 352

System.Diagnostics namespace
ConditionalAttribute class, 13
Debug class, 17
EventLog class, 551
EventLogEntryType enumeration, 551
FileVersionInfo class, 173
Process class, 153, 484
ProcessInfo class, 153
ProcessStartInfo class, 475
ProcessWindowStyle enumeration, 154
Trace class, 17

System.Drawing namespace, 289
Graphics class, 319
Image class, 307
Rectangle struct, 292
Region class, 292

System.Drawing.dll assembly
printing documents, 318

System.Drawing.Drawing2D namespace
GraphicsPath class, 292, 295

System.Drawing.Printing namespace, 289
PrintDocument class, 319
PrinterSettings class, 316

System.Drawing.Text namespace
InstalledFontCollection class, 290

System.GC.KeepAlive(mutex) statement, 159
System.Globalization namespace

CultureInfo class, 528
DateTimeFormatInfo class, 57

System.IO namespace
BinaryReader class, 45, 180, 383
BinaryWriter class, 45, 180

classes deriving from
MarshalByRefObject, 86

Directory class, 193, 194
DirectoryInfo class, 162, 167, 168, 188
DriveInfo class, 162
File class, 193
FileAttributes enumeration, 163
FileInfo class, 162, 167, 168, 247
FileLoadException class, 22, 441
FileNotFoundException class, 10, 78
FileStream class, 69, 177, 180
FileSystemWatcher class, 202
I/O operations, 161
IOException class, 196
MemoryStream class, 44, 509
NotifyFilters enumeration, 203
Path class, 191, 194, 195, 206
Stream class, 67, 380, 472
StreamReader class, 383
StreamWriter class, 177

System.IO.IsolatedStorage namespace
IsolatedStorageFile class, 200
IsolatedStorageFileStream class, 200

System.IO.Ports namespace
SerialPort class, 205

System.Linq namespace
querying IEnumerable(Of T) collection, 580

System.Linq.Enumerable namespace
partitioning methods, 598
performing aggregate operations on

collections, 595
System.Management.dll assembly

managing print jobs, 330
System.Media namespace, 289

classes, 308, 309
SoundPlayer class, 309, 310
SystemSound class, 309
SystemSounds class, 309

System.Net namespace
classes deriving from

MarshalByRefObject, 86
CredentialCache class, 389
Dns class, 394
HttpListener class, 385
HttpListenerContext class, 385
HttpListenerException class, 385
HttpListenerPrefixCollection class, 385
HttpListenerRequest class, 385
HttpListenerResponse class, 385
ICredential interface, 380
ICredentialsByHost interface, 391
IPAddress class, 396
NetworkCredential class, 389, 415
SocketPermission class, 441

656 ■IN D E X

WebClient class, 379, 383
WebException class, 383
WebPermission class, 441
WebRequest class, 383, 388, 415
WebResponse class, 383, 388

System.Net.Mail namespace
Attachment class, 392
AttachmentCollection class, 392
MailAddress class, 392
MailAddressCollection class, 392
MailMessage class, 390
SmtpClient class, 390

System.Net.NetworkInformation namespace
IPGlobalProperties class, 374
IPStatus enumeration, 397
NetworkChange class, 377
NetworkInterface class, 374
NetworkInterfaceComponent

enumeration, 375
NetworkInterfaceType enumeration, 375
OperationalStatus enumeration, 375
PhysicalAddress class, 375
Ping class, 396
PingCompletedEventHandler delegate, 397
PingOptions class, 397
PingReply class, 397

System.Net.Sockets namespace
NetworkStream class, 398, 399, 403
TcpClient class, 398
TcpListener class, 398, 403
UdpClient class, 411

System.Reflection namespace
Assembly class, 78, 449
AssemblyCultureAttribute attribute, 20
AssemblyDelaySignAttribute class, 24
AssemblyName class, 55
AssemblyVersionAttribute attribute, 20
ConstructorInfo class, 101
ICustomAttributeProvider interface, 108

System.Runtime.CompilerServices namespace
ExtensionAttribute attribute, 578

System.Runtime.InteropServices namespace
creating RCW, 493
DllImportAttribute class, 482
GuidAttribute, 500
Marshal class, 312, 475, 486
StructLayoutAttribute class, 486

System.Runtime.Remoting namespace
ObjectHandle class, 84
RemotingConfiguration class, 421
WellKnownObjectMode enumeration, 425

System.Runtime.Remoting.Lifetime
namespace

ILease interface, 429

System.Runtime.Serialization namespace
attributes, 502, 503
IFormatter interface, 69
implementing serializable types, 502
ISerializable interface, 502, 532, 536
OnDeserializedAttribute, 503
OptionalFieldAttribute class, 503
SerializationException class, 94
SerializationInfo class, 503
StreamingContext class, 502, 503

System.Runtime.Serialization.Formatters.
Binary namespace

BinaryFormatter class, 69, 509
System.Runtime.Serialization.Formatters.Soap

namespace
SoapFormatter class, 69

System.Security namespace
AllowPartiallyTrustedCallersAttribute

class, 434
SecureString class, 153, 474
SecurityException class, 440, 444, 446, 455
SecurityManager class, 437, 446

System.Security.Cryptography namespace
calculating hash code of password, 464
DataProtectionScope enumeration, 478
HashAlgorithm class, 190, 463, 467, 472
keyed hashing algorithm

implementations, 472
KeyedHashAlgorithm class, 471, 472
MemoryProtectionScope enumeration, 478
ProtectedData class, 478
ProtectedMemory class, 478
RandomNumberGenerator class, 462
RNGCryptoServiceProvider class, 462

System.Security.Cryptography.X509Certificates
namespace

ClientCertificates collection, 415
X509Certificate2 class, 389, 415
X509Certificate2UI class, 389
X509CertificatesCollection class, 391
X509Store class, 389, 416

System.Security.Permissions namespace
FileIOPermission class, 443
identity permission types, 448
PrincipalPermission class, 455
PrincipalPermissionAttribute class, 455
SecurityAction enumeration, 443
SecurityPermission class, 437

System.Security.Policy namespace
Evidence class, 80, 449
evidence classes generating identity

permissions, 448
PolicyException class, 441, 456

657■I N D E X

Find it faster at http://superindex.apress.com

System.Security.Principal namespace
IIdentity interface, 452
IPrincipal interface, 385, 452, 459
PrincipalPolicy enumeration, 456
SecurityIdentifier class, 453
WindowsBuiltInRole enumeration, 453
WindowsIdentity class, 451, 459
WindowsPrincipal class, 451
WindowsSecurityContext class, 459

System.ServiceProcess namespace
ServiceBase class, 559
ServiceProcessInstaller class, 564
SessionChangeDescription class, 560

System.Text namespace
.NET Framework encoding, 178
Encoding class, 42, 180, 392, 465
StringBuilder class, 39, 102, 469

System.Text.RegularExpressions namespace
Regex class, 52, 54
RegexCompilationInfo class, 55
RegexOptions enumeration, 54

System.Threading namespace
AutoResetEvent class, 137
EventResetMode enumeration, 138
EventWaitHandle class, 137
Interlocked class, 145
ManualResetEvent class, 137
Monitor class, 132
Mutex class, 140, 158
ParameterizedThreadStart delegate, 129
Semaphore class, 143
Thread class, 455
ThreadAbortException class, 149
ThreadStart class, 129
ThreadState enumeration, 130
ThreadStateException class, 130
Timeout class, 124
Timer class, 123, 125
TimerCallback delegate, 123, 125
WaitCallback delegate, 112
WaitHandle class, 116, 127, 363
WaitOrTimerCallback delegate, 127

System.Timers namespace
Timer class, 123, 561

System.Windows.Forms namespace
Application class, 4
AxHost class, 498
classes, 243
CommonDialog class, 198
Control class, 297, 497
control classes, 243
FolderBrowserDialog class, 198
Form class, 4, 427

HelpProvider component, 283
OpenFileDialog class, 198
Panel control, 301
PictureBox control, 301
PrintDialog class, 319
PrintPreviewControl class, 327
PrintPreviewDialog class, 327
SaveFileDialog class, 198
Timer class, 123
TreeNode class, 211

System.Windows.Forms.Design namespace
AxImporter class, 498

System.Xml namespace
.NET Framework integration with XML, 211
XmlDocument class, 211, 359
XmlNode class, 509
XmlNodeList class, 219
XmlNodeType enumeration, 212
XmlReader class, 359

System.Xml.Serialization namespace
attributes, 234
XmlSerializer class, 233

System.Xml.Xsl namespace
XslCompiledTransform class, 238

SystemDirectory property, Environment
class, 546

SystemOperator value, WindowsBuiltInRole
enumeration, 453

SystemSound class, 308, 309
SystemSounds class, 308, 309

■T
TableDirect value, CommandType

enumeration, 348
TableLayoutPanel container, 268
Tag property, Control class, 246, 248
Take/TakeWhile methods, collections, 598,

599, 600
target:exe switch, 2, 7
target:library switch, 10
target:module switch, 8, 9
target:winexe switch, 7
TCP/IP

asynchronous communications using TCP,
403–410

communicating using TCP/IP, 398–402
resolving host name to IP address using

DNS, 394
template for TCP client, 401–402
template for TCP server, 399–401

TcpClient class
communicating using TCP/IP, 398
template for TCP client, 401

658 ■IN D E X

TcpListener class
AcceptTcpClient method, 399, 403
asynchronous communications using

TCP, 403
BeginAcceptTcpClient method, 403
communicating using TCP/IP, 398
EndAcceptTcpClient method, 403

template elements, xslt stylesheet, 239
temporary files, creating, 195–196
testing

creating test X.509 certificate, 29
performing hit testing with shapes, 292–295

text
printing simple document, 318–321
printing wrapped text, 324–326

text file
parsing contents of delimited text file,

182–185
reading and writing text files, 177–180

Text namespace see System.Text
Text namespace, Drawing see

System.Drawing.Text
Text property

Form class, 274
TextDocument class, 321

Text value, CommandType enumeration, 348
TextBox control

KeyPress event, 261
processing all controls on forms, 248
restricting input to, 259–261
using part of main menu in context

menu, 269
validating user input and reporting

errors, 281
TextChanged event, ComboBox control, 262
TextDocument class, 321, 322
TextFieldParser class, 170, 182–185
TextFieldType property, TextFieldParser class,

182, 183
TextReader class, 86
TextWriter class, 86
The Regulator

validating input using regular
expressions, 50

Thread class
Abort method, 96, 149
creating and controlling threads, 130
CurrentPrincipal property, 455, 456, 459
CurrentUICulture property, 273
IsAlive property, 147, 148
Join method, 138, 141, 143, 147, 148
ResetAbort method, 149, 150
restricting which users can execute code, 455
Start method, 129, 130, 149

thread pool
considerations before using, 114
executing method using thread from, 112–115

thread synchronization, 132
ThreadAbortException class, 149
Threading namespace see System.Threading
ThreadPool class

executing method using thread from thread
pool, 112–115

GetAvailableThreads method, 115
QueueUserWorkItem method, 112
RegisterWaitForSingleObject method,

127, 128
SetMaxThreads method, 114, 115

threads
acquiring locks, 133
asynchronous communications using TCP,

403–410
background threads, 115
blocking, 111, 133, 363
calling OnXyz virtual methods, 380
creating thread-safe collection instance,

151–152
ensuring only one instance of application

executing, 158–159
executing methods

asynchronously, 115–123
in separate thread at specific time, 125–127
in separate thread periodically, 123–125
using new thread, 129–132
using thread from thread pool, 112–115
when WaitHandle signalled, 127–129

executing multiple threads, 111
foreground threads, 115
knowing when thread finished, 147–149
manipulating event state between signaled

and unsignaled, 137
multiple threads reading collection

classes, 151
operating system and managed threads, 111
polling, 363
processes and, 111
releasing locks, 133
synchronizing, 111

access to shared data, 145–147
access to shared resource, 133
multiple threads using event, 137–140
multiple threads using monitor, 132–137
multiple threads using mutex, 140–143
multiple threads using semaphore,

143–145
terminating execution of, 149–151
threads on lock wait queue, 133
WaitHandle methods for synchronizing

execution, 137
waiting, 363

659■I N D E X

Find it faster at http://superindex.apress.com

thread-safety, testing for, 151
threads/processes/synchronization recipes,

111–159
see also recipes,

threads/processes/synchronization
ThreadStart class, 129
ThreadStart delegate, 130
ThreadState class, 130
ThreadState enumeration, 130
ThreadStateException class, 130
thumbnails, creating for existing image,

307–308
TickCount property, Environment class, 546
ticks, 58
TimedOut value, IPStatus enumeration, 397
Timeout class, 124, 125
Timeout property

SmtpClient class, 391
WebRequest class, 383

Timer class
Change method, 124
creating Windows service, 561
Dispose method, 124
executing method in separate thread at

specific time, 125, 126
executing method in separate thread

periodically, 123
implementing timer, 123

TimerCallback delegate, 123, 124, 125
Timers namespace see System.Timers
times see dates and times
TimeSpan structure

adding/subtracting/comparing dates and
times, 58–60

controlling lifetime of remote objects, 429
executing method in separate thread at

specific time, 126
executing method in separate thread

periodically, 124
operators supported by, 59

Title property, Console class, 33
Tlbexp.exe, 499, 500
Tlbimp.exe, 498

playing sound file, 311
using COM component in .NET client,

493, 494
To property, MailMessage class, 392
ToArray method

MemoryStream class, 45
ArrayList class, 62
Queue collection, 62
Stack collection, 62

ToBase64CharArray method, Convert class, 47
ToBase64String method, Convert class, 47

ToBoolean method, BitConverter class, 45
ToInt32 method, BitConverter class, 45
ToList method, 600
tools, .NET SDK, 1
tools, command-line see executable files
TopIndex property, ListBox class, 258, 259
TopMost property, Form class, 485
ToString method

BitConverter class, 46, 469
IFormattable interface, 527
PhysicalAddress class, 375
Object class, 450
SecureString class, 475
StringBuilder class, 39, 40
using anonymous types, 576

TotalFreeSpace property, DriveInfo class, 197
Trace class, 17
Transaction property, command classes, 348
Transform method, XslCompiledTransform

class, 238, 241
transformations (XSL transforms), 238–241
TransparentKey property, Form class, 296
TreeNode class, 211

Tag property, 247
TreeView control

BeforeExpand event, 175
displaying directory tree in TreeView

control, 175–177
Fill method, 175
showing XML document structure in

TreeView, 211–215
triggers, classes used as, 128
trust

partially trusted code using strong-named
assemblies, 434–436

CAS (code access security), 433
Soap.dll assembly, 69

Try . . . Catch . . . Finally blocks, 531
TryCast keyword, 99
Type class

copying contents of collection to array, 62
EmptyTypes field, 102
GetConstructor method, 101, 102
GetNestedType method, 97, 98
GetNestedTypes method, 97, 98
GetType method, 97, 98
methods returning Type objects, 98
Missing field, 496
retrieving object type, 97

Type Library Exporter (Tlbexp.exe), 499, 500
Type Library Importer utility see Tlbimp.exe
TypeOf operator

determining whether control is TextBox, 248
testing object type, 99

660 ■IN D E X

types
creating generic type, 66–68
creating, can cross application domain

boundaries, 86–89
creating, can’t cross application domain

boundaries, 85–86
decorating with custom attribute, 107
GetType operator, 97, 98
implementing formattable type, 527–530
inheritance, 99
instantiating in remote application domain,

89–93
retrieving object type, 97, 98
testing object type, 99–101
using anonymous types, 576–578
using implicitly typed variables, 572–573

■U
u switch, Installutil command, 566
UDP (User Datagram Protocol)

communicating using UDP datagrams,
410–413

UdpClient class, 411
unary negation (-) operator, 59
unary plus (+) operator, 59
UnauthenticatedPrincipal value,

PrincipalPolicy enumeration, 456
Undo method, WindowsSecurityContext

class, 460
Unicode

common string encodings, 178
encoding string using alternate character

encoding, 42
Unicode property, UnicodeEncoding class, 42
UnicodeEncoding class, 42
Unload method, AppDomain class, 96
unmanaged code, 481
unmanaged code interoperability recipes,

481–500
see also recipes, unmanaged code

interoperability
unmanaged resources

freeing when referenced by managed
objects, 523

implementing disposable class, 523–527
Unprotect method

ProtectedData class, 478
ProtectedMemory class, 478
SectionInformation class, 345

unreferenced objects, 523
Unregister method, RegisteredWaitHandle

class, 128
unsignalled state, 137
UploadData method, WebClient class, 382

UploadDataAsync method, WebClient
class, 382

UploadFile method
My.Computer.Network class, 382
WebClient class, 382

UploadFileAsync method, WebClient class, 382
uploading data over HTTP or FTP, 382
UploadString method, WebClient class, 382
UploadStringAsync method, WebClient

class, 382
Url class, 448
Url property, WebBrowser control, 285
urlkey parameter, 413, 414
URLs

avoiding hard-coding web service URL,
413–415

reading web service URL from configuration
file, 413–415

UseDefaultCredentials property
NetworkCredential class, 415, 417
SmtpClient class, 391

User class, My, 161
user input

reading from Windows console, 72–75
validating, using regular expressions, 50–53
validating input and reporting errors,

279–281
User property, HttpListenerContext class, 385
User value, WindowsBuiltInRole

enumeration, 453
User32.dll, 482
UserDomainName property, Environment

class, 546
UserInteractive property, Environment

class, 546
UserName property

Environment class, 546
ProcessStartInfo class, 154
ServiceProcessInstaller class, 564

users
determining if member of Windows group,

451–454
impersonating Windows users, 458–461
restricting which users can execute code,

455–458
Users field, RegistryKey class, 556
UserState property, EchoCompletedEventArgs

class, 419
Using statement

constructing Monitor class in, 159
simplifying correct use of disposable

objects, 524
start application running in new process, 153

UTF-16 encoding, 42, 44, 178
UTF-32 Unicode encoding, 178

661■I N D E X

Find it faster at http://superindex.apress.com

UTF7 property, UTF7Encoding class, 42
UTF-7 Unicode encoding, 178
UTF7Encoding class, 42
UTF8 property, UTF8Encoding class, 42
UTF-8 Unicode encoding, 178
UTF8Encoding class, 42
utilities, command-line see executable files

■V
Validate method, XmlDocument class, 233
ValidateInput method, Regex class, 52, 53
ValidateXml method, 230
validation

solving user-input validation problems, 260
validating input using regular expressions,

50–53
validating XML document against schema,

228–233
ValidationEventHandler event, 228, 230
ValidOn property, AttributeUsageAttribute

class, 106
value of command, 239
Value property

parameter classes, 353
XmlNode class, 212
XmlReader class, 226

value types
converting to/from byte arrays, 44–46
passing objects by value, 87

VB.NET compiler, 2
vbc.exe, 2
vcvarsall.bat, 1
verification

signing assemblies with Authenticode, 25–29
verifying strong-named assembly not

modified, 22–23
VerifyB64Hash method, 469
VerifyByteHash method, 470
VerifyHexHash method, 469
Version class, 546
Version column, DataRow class, 370
version policy, configuration files, 78
Version property

Environment class, 546
OperatingSystem class, 547

versions
controlling versioning for remote objects,

431–432
retrieving file version information, 173–174

VersionString property, OperatingSystem
class, 547

video, playing with DirectShow, 313–316

Visual Studio
configuring Application Settings in, 255, 256
developing Windows Forms

applications, 244
generating RCWs, 493

Vr switch, Strong Name tool, 23
Vu switch, Strong Name tool, 24

■W
W element, regular expressions, 51
w element, regular expressions, 51
W3C Document Object Model (DOM), 212
Wait method, Monitor class, 133, 134
wait queue

threads on lock wait queue, 133
Wait web method, 418
WaitAll method, WaitHandle class, 138
WaitAllExample method, 117
WaitAny method, WaitHandle class, 138
WaitCallback delegate, 112, 113
WaitForExit method, Process class

start application running in new process, 154
terminating process, 156

WaitHandle class, 127, 363
executing method when WaitHandle

signalled, 127–129
executing methods asynchronously, 116
methods for synchronizing thread

execution, 137
synchronizing multiple threads using

mutex, 141
synchronizing multiple threads using

semaphore, 143
waiting

determining if asynchronous method
finished, 363

executing methods asynchronously, 116
WaitingExample method, 117
WaitOne method, WaitHandle class, 138
WaitOrTimerCallback delegate, 127, 128
WaitSleepJoin state, 133
WaitToComplete value, PlayMode

parameter, 310
WAV files, playing, 310–311

playing non-WAV file, 311–313
web methods

calling web service method asynchronously,
418–420

web pages
displaying in Windows application, 284–287

web services, 373
avoiding hard-coding web service URL,

413–415
calling web service method asynchronously,

418–420

662 ■IN D E X

reading web service URL from configuration
file, 413–415

setting authentication credentials for,
415–417

WebBrowser control
displaying web page in Windows

application, 284, 285
DocumentText property, 241, 285
members, 285
performing XSL transform, 240

WebClient class
CancelAsync method, 380
Certificates property, 388
Component class and, 380
Credentials property, 388
downloading data over HTTP or FTP,

379, 380
downloading file and processing, using

stream, 383
methods, 380
OpenRead method, 383
OpenWrite/OpenWriteAsync methods, 382
UploadData/UploadDataAsync

methods, 382
UploadFile/UploadFileAsync methods, 382
UploadString/UploadStringAsync

methods, 382
WebException class, 383
WebPermission class, 441
WebPermissionAttribute class, 441
WebRequest class

Certificates property, 388
classes deriving from

MarshalByRefObject, 86
Create method, 383
Credentials property, 388, 389
downloading file and processing, using

stream, 383
GetResponse method, 383
getting HTML page from site requiring

authentication, 388
setting authentication credentials for web

service, 415
Timeout property, 383

WebResponse class
classes deriving from

MarshalByRefObject, 86
downloading file and processing, using

stream, 383
GetResponseStream method, 383
getting HTML page from site requiring

authentication, 388
WebServices class, My, 161
WellKnownObjectMode enumeration, 425

Where operator
filtering data using LINQ, 589
querying data from multiple collections, 592

wildcards
finding files matching wildcard expressions,

188–189
Win32 API functions

calling unmanaged function that uses
callback, 489

core libraries, 482
using Win32 API functions, 482
writing and reading INI files, 482

Win32 CryptoAPI
CryptGenRandom function, 462

Win32_Printer class
managing print jobs, 330
methods, 334
Pause method, 330
Resume method, 330
WMI methods working with, 334

Win32_PrintJob class, 330
Win32NT platformID, 548
Win32Windows platformID, 548
WinAPI functions, 485
WindowHeight property, Console class, 33
Windows

determining if user is member of group,
451–454

getting handle for control/window/file,
484–486

impersonating Windows users, 458–461
Windows console

manipulating appearance of, 33–35
reading user input from Windows, 72–75

Windows event log
writing event to, 550–552

Windows Forms, 243
classes, 243
managing handles, 486

Windows Forms applications
creating from command line, 4–7
developing, 244
displaying web page in Windows

application, 284–287
finding all open forms in application,

249–252
Windows Forms controls

adding to forms at runtime, 244–246
arranging on form automatically, 268–269
linking data objects to, 246–248
processing all controls on forms, 248–249
using thread-pool threads with, 115
validating user input and reporting errors,

279–281

663■I N D E X

Find it faster at http://superindex.apress.com

Windows Forms recipes, 243–287
see also recipes, Windows Forms

Windows groups, 451–454
Windows integration recipes, 545–568

see also recipes, Windows integration
Windows Management Instrumentation

(WMI), 330, 334
Windows registry

reading and writing to, 553–555
searching, 556–559

Windows role identifier (RID), 453
Windows Script Host, 567
Windows service

creating Windows service, 559–563
creating Windows service installer, 564–567

Windows Service Control Manager (SCM),
559, 560

Windows Service Start Failure message box, 563
WindowsBuiltInRole enumeration, 453
WindowsIdentity class

determining if user is member of Windows
group, 451

GetCurrent method, 451, 452
Impersonate method, 459
impersonating Windows users, 459
overloaded constructors, 452
restricting which users can execute code, 455
role-based security, 452

WindowsPrincipal class, 451, 452
WindowsPrincipal value, PrincipalPolicy

enumeration, 456
WindowsSecurityContext class, 459, 460
WindowStyle property, ProcessStartInfo

class, 154
WindowWidth property, Console class, 34
With keyword, 574, 575
WM_CLOSE message, 156
WMI (Windows Management

Instrumentation), 330, 334
WorkingDirectory property, ProcessStartInfo

class, 154
WrapContents property, FlowLayoutPanel

container, 268
wrapped text, printing, 324–326
wrapper assembly, 494
Write method

BinaryWriter class, 180
Console class, 7
StreamWriter class, 177, 178

WriteAttributeString method, XmlWriter
class, 226

WriteElementString method, XmlWriter
class, 226

WriteEndDocument method, XmlWriter
class, 226

WriteEndElement method, XmlWriter class,
225, 226

WriteEntry method, EventLog class, 551
WriteLine method

Console class, 7, 527
StreamWriter class, 178

WritePrivateProfileString method, 482
WriteStartDocument method, XmlWriter

class, 226
WriteStartElement method, XmlWriter class,

225, 226
writing

reading and writing binary files, 180–181
reading and writing text files, 177–180
writing XML, part document in memory,

225–228
WSDL (Web Services Description

Language), 419
WshShell class, 568

■X
X.509 certificate, 29
X509Certificate2 class, 389, 415
X509Certificate2UI class, 389
X509Certificates namespace see

System.Security.Cryptography.
X509Certificates

X509CertificatesCollection class, 391
X509Store class, 389, 416
XML (Extensible Markup Language)

.NET Framework integration, 211
ValidateXml method, 230
XML tag name casing, 235

XML documents
appending nodes in, 217–219
inserting nodes in, 215–217
performing XSL transform, 238–241
read/write XML, part document in memory,

225–228
retrieving results of SQL query as XML,

358–362
searching for nodes

by name, 219–220
by namespace, 221–222
using XPath, 222–225

serializing objects to/from XML, 233–236
showing structure in TreeView, 211–215
validating against schema, 228–233
XmlNode class properties, 212

Xml namespace see System.Xml
XML processing recipes, 211–241

see also recipes, XML processing
XML Schema Definition (XSD), 228, 229
XML Schema Definition Tool (xsd.exe), 237, 238

664 ■IN D E X

XML schemas, 228
creating XML schema for .NET class, 237
data types, 229
generating .NET class from XML schema,

237–238
validating XML document against schema,

228–233
XML serialization, 233–236
XmlAttribute, 212, 234
XmlDocument class, 212

accessing nodes, 226
ChildNodes property, 212
CloneNode method, 217
CreateXyz methods, 215
DocumentElement property, 212
GetElementsByTagName method, 219, 221
inserting nodes in XML document, 215
Load/LoadXML methods, 212
retrieving results of SQL query as XML, 359
Save method, 215
Schemas property, 233
SelectNodes method, 222, 223
SelectSingleNode method, 222, 223
showing XML document structure in

TreeView, 211
Validate method, 233

XmlElement attribute, 234
XmlElement class

GetElementsById method, 220
GetElementsByTagName method, 220
XmlNode class properties, 212

XmlEnum attribute, 234
XmlHelper class

AddAttribute method, 219
AddElement method, 217

XmlIgnore attribute, 234
XmlNode class, 212

AppendChild method, 215
casting to XmlElement class, 220
CloneNode method, 219
implementing cloneable type, 509
InsertAfter method, 215
InsertBefore method, 215
properties, 212

XmlNodeList class, 219
XmlNodeList collection, 212
XmlNodeType enumeration, 212
XmlReader class, 225

accessing nodes, 226
Create method, 226, 228, 230
enforcing schema rules, 230

GetAttribute method, 226
HasAttributes property, 226
properties, 226
raising ValidationEventHandler event, 230
Read method, 226, 228
ReadElementString method, 228
reading XML, part document in memory,

225–228
ReadToXyz methods, 228
retrieving results of SQL query as XML, 359
validating XML document against

schema, 230
XmlReaderSettings class, 228
XmlRoot attribute, 234
XmlSerializer class

creating XML schema for .NET class, 237
generating .NET class from XML schema,

237, 238
Get/Set property accessors, 233
requirements for using, 233
serializing objects to/from XML, 233–236
translating XML into objects, 235

XmlWriter class, 225
Create method, 226
performing XSL transform, 241
writing XML, part document in memory,

225–228
WriteXyz methods, 225, 226

Xor bitwise operator, 167
XOR operator, 14
XPath

searching XML document for nodes using,
222–225

XPath expression syntax, 224
XSD (XML Schema Definition), 228, 229
xsd.exe (XML Schema Definition Tool), 237, 238
Xsl namespace see System.Xml.Xsl
XSL transforms (XSLT), 238–241
XslCompiledTransform class

Load method, 238
performing XSL transform, 240, 241
Transform method, 238, 241

XSLT (XSL transforms), 238–241
XSLT stylesheets, 239
XslTransform class, 240

■Z
z element, regular expressions, 51
Zone class, 448

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

