O'REILLY"

1

Programming
Fundamentals
with Swif

SWIFT, XCODE, AND COCOA BASICS

Matt Neuburg

vww .allitebooks.cond



http://www.allitebooks.org

9

O'REILLY"

10S 12 Programming Fundamentals with Swift

Move into iOS development by getting a firm grasp of its fundamentals,
including the Xcode 10 IDE, Cocoa Touch, and the latest version of
Apple’s acclaimed programming language, Swift 4.2. With this thoroughly
updated guide, you'll learn the Swift language, understand Apple's Xcode
development tools, and discover the Cocoa framework.

Explore Swift's object-oriented concepts

Become familiar with built-in Swift types

Dive deep into Swift objects, protocols, and generics
Tour the lifecycle of an Xcode project

Learn how nibs are loaded

Understand Cocoa's event-driven design

Communicate with C and Objective-C

In this edition, catch up on the latest iOS programming features.

m Self-synthesizing protocols

m Conditional conformance

m Dynamic member lookup

m Multiple selection

m Source control improvements
|

And more!

Once you master the fundamentals, you'll be ready to tackle
the details of iOS app development with author Matt
Neuburg's companion guide.

&
Programming

i0S 12

Programmingios 12
(978-1-492-04463-5)

“Neuburg is my favorite
programming book
writer, period.”

—John Gruber
Daring Fireball

Matt Neuburg has a PhDin
Classics and has taught at many
colleges and universities. He

has served as editor of MacTech
magazine and as contributing
editor for TidBITS. He has written
many macOS and iOS applications.
Previous books include several
editions of iOS Programming
Fundamentals and Programming
i0S, as well as REALbasic: The
Definitive Guide and AppleScript:
The Definitive Guide (all O'Reilly).

US $59.99 CAN $79.99
ISBN: 978-1-492-04455-0

VNN i
| RATAAY M

81492

vww allitebooks.conl

Twitter: @oreillymedia
facebook.com/oreilly


http://www.allitebooks.org

FIFTH EDITION

10S 12 Programming
Fundamentals with Swift

Swift, Xcode, and Cocoa Basics

Matt Neuburg

Beijing + Boston + Farnham - Sebastopol + Tokyo KOA{={|HAE

vww allitebooks.cond



http://www.allitebooks.org

i0S 12 Programming Fundamentals with Swift, Fifth Edition
by Matt Neuburg

Copyright © 2018 Matt Neuburg. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis Cover Designer: Karen Montgomery
Production Editor: Kristen Brown Interior Designer: David Futato
Proofreader: O’Reilly Production Services lllustrator: Matt Neuburg

Indexer: Matt Neuburg

April 2015: First Edition
October 2015: Second Edition
October 2016: Third Edition
October 2017: Fourth Edition

September 2018: Fifth Edition

Revision History for the Fifth Edition
2018-09-26: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781492044550 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. iOS 12 Programming Fundamentals
with Swift, the image of a harp seal, and related trade dress are trademarks of O’'Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

ISBN: 978-1-492-04455-0
[LST]

vww allitebooks.cond



http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781492044550
http://www.allitebooks.org

Table of Contents

Preface. ...oovn xiii
Partl. Llanguage
1. The Architecture of Swift............oooiiiiiiiiiiiiiiii 3
Ground of Being 3
Everything Is an Object? 5
Three Flavors of Object Type 6
Variables 6
Functions 8
The Structure of a Swift File 9
Scope and Lifetime 11
Object Members 13
Namespaces 13
Modules 14
Instances 15
Why Instances? 17
The Keyword self 19
Privacy 20
Design 22
Object Types and APIs 23
Instance Creation, Scope, and Lifetime 25
Summary and Conclusion 25
2. FUNCHIONS. ..o 27
Function Parameters and Return Value 27
Void Return Type and Parameters 31
Function Signature 32
External Parameter Names 32

vww allitebooks.cond



http://www.allitebooks.org

Overloading 34

Default Parameter Values 35
Variadic Parameters 35
Ignored Parameters 36
Modifiable Parameters 37
Function in Function 40
Recursion 42
Function As Value 42
Anonymous Functions 45
Define-and-Call 51
Closures 52
How Closures Improve Code 54
Function Returning Function 55
Closure Setting a Captured Variable 58
Closure Preserving Its Captured Environment 59
Escaping Closures 60
Curried Functions 60
Function References and Selectors 62
Function Reference Scope 64
Selectors 65
3. Variablesand Simple Types. .....oovvniiiiiiiiii ittt i it ieeenns 69
Variable Scope and Lifetime 69
Variable Declaration 71
Computed Initializer 74
Computed Variables 76
Setter Observers 79
Lazy Initialization 80
Built-In Simple Types 82
Bool 82
Numbers 84
String 92
Character and String Index 96
Range 101
Tuple 103
Optional 105
171 g 7 T3 119
Object Type Declarations and Features 119
Initializers 121
Properties 127
Methods 130

iv | Tableof Contents



Subscripts 132

Nested Object Types 135
Instance References 135
Enums 137
Raw Values 138
Associated Values 140
Enum Case Iteration 142
Enum Initializers 143
Enum Properties 144
Enum Methods 145
Why Enums? 146
Structs 147
Struct Initializers, Properties, and Methods 147
Struct As Namespace 149
Classes 149
Value Types and Reference Types 150
Subclass and Superclass 156
Class Initializers 161
Class Deinitializer 169
Class Properties and Methods 170
Polymorphism 172
Casting 175
Casting Down 176
Type Testing and Casting Down Safely 176
Type Testing and Casting Optionals 178
Bridging to Objective-C 178
Type References 180
From Instance to Type 180
Type as Value 181
The Keyword Self 183
Comparing Types 184
Summary of Type Terminology 185
Protocols 186
Why Protocols? 187
Protocol Type Testing and Casting 189
Declaring a Protocol 190
Protocol Composition 191
Optional Protocol Members 192
Class Protocol 194
Implicitly Required Initializers 195
Literal Convertibles 196
Generics 197

Table of Contents | v



Generic Declarations
Contradictory Resolution
Type Constraints
Explicit Specialization
Generic Invariance
Associated Type Chains
Where Clauses
Extensions
Extending Object Types
Extending Protocols
Extending Generics
Umbrella Types
Any
AnyObject
AnyClass
Collection Types
Array
Dictionary
Set

. FlowControland More. .......ooviririniiiiiiiininennnnenes

Flow Control
Branching
Loops
Jumping
Privacy
Private and Fileprivate
Public and Open
Privacy Rules
Introspection
Operators
Synthesized Protocol Implementations
Key Paths
Dynamic Member Lookup
Memory Management
Memory Management of Reference Types
Exclusive Access to Value Types

200
202
203
205
207
208
210
213
213
215
217
219
219
221
223
224
224
240
247

253
253
254
266
271
286
288
289
290
290
291
295
298
300
301
301
308

Partll. IDE

| Table of Contents



6. Anatomy of an Xcode Project...................

New Project

The Project Window
The Navigator Pane
The Utilities Pane
The Editor

The Project File and Its Dependents

What’s In the Project Folder

Groups
The Target

Build Phases

Build Settings

Configurations

Schemes and Destinations
From Project to Built App

Build Settings

Property List Settings

Nib Files

Additional Resources

Code Files

Frameworks and SDKs
The App Launch Process

The Entry Point

UlApplicationMain

App Without a Storyboard
Renaming Parts of a Project

7. NibManagement..............ccovvvevnnnnnn.

The Nib Editor Interface
Document Outline
Canvas
Inspectors and Libraries

Nib Loading
When Nibs Are Loaded
Manual Nib Loading

Connections
Outlets
The Nib Owner

Automatically Configured Nibs

Misconfigured Outlets
Deleting an Outlet
More Ways to Create Outlets

313
315
317
322
323
325
326
327
328
328
330
331
333
335
338
338
339
340
342
343
345
345
346
348
349

............................. 351

352
353
356
358
359
360
361
363
363
364
368
369
371
372

Table of Contents | vii



Outlet Collections
Action Connections
More Ways to Create Actions
Misconfigured Actions
Connections Between Nibs — Not!
Additional Configuration of Nib-Based Instances

Documentation. .....o.vvrviriiiiiiii ittt

The Documentation Window
Class Documentation Pages
Quick Help

Symbol Declarations

Header Files

Sample Code

Internet Resources

LifeCydeofaProject........ccoovvvviiiiiiiiiiiiiiiiiinnnn,

Environmental Dependencies
Permissible Runtime Environment
Backward Compatibility
Device Type
Arguments and Environment Variables
Conditional Compilation

Version Control

Editing and Navigating Your Code
Autocompletion
Snippets
Fix-it and Live Syntax Checking
Navigation
Finding
Refactoring

Running in the Simulator

Debugging
Caveman Debugging
The Xcode Debugger

Testing
Unit Tests
Interface Tests

Clean

Running on a Device
Obtaining a Developer Program Membership
Signing an App

374
375
377
379
379
380

385
385
386
390
392
393
394
394

397
397
398
398
400
401
402
404
407
409
410
412
413
415
416
416
417
417
420
427
428
431
433
433
434
435

viii

| Table of Contents



Automatic Signing 436
Manual Signing 439
Running the App 441
Managing Development Certificates and Devices 442
Profiling 442
Gauges 442
Memory Debugging 444
Instruments 445
Localization 448
Distribution 453
Making an Archive 453
The Distribution Certificate 454
The Distribution Profile 456
Distribution for Testing 457
Final App Preparations 458
Screenshots and Video Previews 461
Property List Settings 463
Submission to the App Store 464
Partlll. Cocoa

10. C0c0aClasses.........ooovvviiiiiiiiiiiiiiiiiiiiiiiii 469
Subclassing 469
Categories and Extensions 472
How Swift Uses Extensions 472
How You Use Extensions 473
How Cocoa Uses Categories 473
Protocols 475
Informal Protocols 477
Optional Methods 477
Some Foundation Classes 480
NSRange and NSNotFound 481
NSString and Friends 483
NSDate and Friends 486
NSNumber 487
NSValue 489
NSData 490
NSMeasurement and Friends 491
Equality, Hashability, and Comparison 491
NSArray and NSMutableArray 494
NSDictionary and NSMutableDictionary 496

Table of Contents

| ix



1.

12.

NSSet and Friends
NSIndexSet

NSNull

Immutable and Mutable
Property Lists

Codable

Accessors, Properties, and Key-Value Coding

Swift Accessors
Key-Value Coding
Uses of Key-Value Coding
KVC and Outlets
Cocoa Key Paths

The Secret Life of NSObject

C0C0A EVENTES. . ov vttt it iit ittt ieiieieeneeneennennes

Reasons for Events
Subclassing
Notifications
Receiving a Notification
Unregistering
Posting a Notification
Timer
Delegation
Cocoa Delegation
Implementing Delegation
Data Sources
Actions
The Responder Chain
Deferring Responsibility
Nil-Targeted Actions
Key-Value Observing
Registration and Notification
Unregistering
Key-Value Observing Example
Swamped by Events
Delayed Performance

Memory Management............ccoviiiiiiiiiiiniiniennens

Principles of Cocoa Memory Management
Rules of Cocoa Memory Management
What ARC Is and What It Does

How Cocoa Objects Manage Memory

496
497
498
498
500
501
504
505
507
508
510
510
511

513
513
514
516
517
519
520
521
523
523
525
527
527
530
531
532
533
534
535
536
537
540

543
543
544
545
546

X

Table of Contents



13.

A. C, Objective-C, and Swift

Autorelease Pool

Memory Management of Instance Properties

Retain Cycles and Weak References
Unusual Memory Management Situations

Notification Observers

KVO Observers

Timers

Other Unusual Situations
Nib Loading and Memory Management
Memory Management of CFTypeRefs
Property Memory Management Policies
Debugging Memory Management Mistakes

Communication Between Objects. ........covviiiiniiiiiieiieeneeneennnnns

Visibility by Instantiation

Visibility by Relationship

Global Visibility

Notifications and Key-Value Observing
Model-View-Controller

547
549
550
552
552
554
554
556
556
557
559
561

563
564
566
567
569
569

Table of Contents

| xi






Preface

On June 2, 2014, Apple’s WWDC keynote address ended with a shocking announce-
ment: “We have a new programming language” This came as a huge surprise to the
developer community, which was accustomed to Objective-C, warts and all, and
doubted that Apple could ever possibly relieve them from the weight of its venerable
legacy. The developer community, it appeared, had been wrong.

Having picked themselves up off the floor, developers immediately began to consider
this new language — Swift — studying it, critiquing it, and deciding whether to use it.
My own first move was to translate all my existing iOS apps into Swift; this was
enough to convince me that Swift deserved to be, and probably would be, adopted by
new students of iOS programming, and that my books, therefore, should henceforth
assume that readers are using Swift.

That decision has proven prophetic. Programmers of iOS have flocked to Swift in
increasing numbers, and Swift itself has only improved. My iOS apps (such as Diabel-
li's Theme, LinkSame, Zotz!, TidBITS News, and my Latin and Greek flashcard apps)
have all been rewritten in Swift, and are far easier for me to understand and maintain
than their Objective-C originals.

Xcode 10 comes with Swift 4.2. The language has evolved greatly in its details and in
the nature of its integration with the Cocoa libraries that underlie iOS programming,
but its spirit has remained constant. The Swift language is designed from the ground
up with these salient features:

Object-orientation
Swift is a modern, object-oriented language. It is purely object-oriented: “Every-
thing is an object”

Clarity
Swift is easy to read and easy to write. Its syntax is clear, consistent, and explicit,
with few hidden shortcuts and minimal syntactic trickery.
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Safety
Swift enforces strong typing to ensure that it knows, and that you know, what the
type of every object reference is at every moment.

Economy
Swift is a fairly small language, providing some basic types and functionalities
and no more. The rest must be provided by your code, or by libraries of code that
you use — such as Cocoa.

Memory management
Swift manages memory automatically. You will rarely have to concern yourself
with memory management.

Cocoa compatibility
The Cocoa APIs are written primarily in C and Objective-C. Swift is explicitly
designed to interface with most of the Cocoa APIs.

These features make Swift an excellent language for learning to program iOS.

The alternative, Objective-C, still exists, and you can use it if you like. Indeed, it is
easy to write an app that includes both Swift code and Objective-C code; and you may
have reason to do so. Objective-C, however, lacks the very advantages that Swift
offers. Objective-C agglomerates object-oriented features onto C. It is therefore only
partially object-oriented; it has both objects and scalar data types, and its objects have
to be slotted into one particular C data type (pointers). Its syntax can be difficult and
tricky; reading and writing nested method calls can make one’s eyes glaze over, and it
invites hacky habits such as implicit nil-testing. Its type checking can be and fre-
quently is turned off, resulting in programmer errors where a message is sent to the
wrong type of object and the program crashes.

Recent revisions and additions to Objective-C — ARG, synthesis and autosynthesis,
improved literal array and dictionary syntax, blocks — have made it easier and more
convenient, but such patches have also made the language even larger and possibly
even more confusing. Because Objective-C must encompass C, there are limits to
how far it can be extended and revised. Swift, on the other hand, is a clean start. If
you were to dream of completely revising Objective-C to create a better Objective-C,
Swift might be what you would dream of. It puts a modern, rational front end
between you and the Cocoa Objective-C APIs.

Still, the reader may also need some awareness of Objective-C (including C). The
Foundation and Cocoa APIs, the built-in commands with which your code must
interact in order to make anything happen on an iOS device, are still written in C and
Objective-C. In order to interact with them, you might have to know what those lan-
guages would expect.
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Therefore, although I do not attempt to teach Objective-C in this book, I do describe
it in enough detail to allow you to read it when you encounter it in the documenta-
tion and on the Internet, and I occasionally show some Objective-C code. Part III, on
Cocoa, is really all about learning to think the way Objective-C thinks — because the
structure and behavior of the Cocoa APIs are fundamentally based on Objective-C.
And the book ends with an appendix that details how Swift and Objective-C commu-
nicate with one another, as well as explaining how your app can be written partly in
Swift and partly in Objective-C.

The Scope of This Book

This book is actually one of a pair with my Programming iOS 12, which picks up
exactly where this book leaves off. They complement and supplement one another.
The two-book architecture should, I believe, render the size and scope of each book
tractable for readers. Together, they provide a complete grounding in the knowledge
needed to begin writing iOS apps; thus, when you do start writing iOS apps, you'll
have a solid and rigorous understanding of what you are doing and where you are
heading. If writing an iOS program is like building a house of bricks, this book
teaches you what a brick is and how to handle it, while Programming iOS 12 hands
you some actual bricks and tells you how to assemble them.

When you have read this book, you'll know about Swift, Xcode, and the underpin-
nings of the Cocoa framework, and you will be ready to proceed directly to Program-
ming iOS 12. Conversely, Programming iOS 12 assumes a knowledge of this book; it
begins, like Homer’s Iliad, in the middle of the story, with the reader jumping with all
four feet into views and view controllers, and with a knowledge of the language and
the Xcode IDE already presupposed. If you started reading Programming iOS 12 and
wondered about such unexplained matters as Swift language basics, the
UIApplicationMain function, the nib-loading mechanism, Cocoa patterns of delega-
tion and notification, and retain cycles, wonder no longer — I didn't explain them
there because I do explain them here.

The three parts of this book teach the underlying basis of all iOS programming:

o Part [ introduces the Swift language, from the ground up — I do not assume that
you know any other programming languages. My way of teaching Swift is differ-
ent from other treatments, such as Apple’s; it is systematic and Euclidean, with
pedagogical building blocks piled on one another in what I regard as the most
helpful order. At the same time, I have tried to confine myself to the essentials.
Swift is not a big language, but it has some subtle and unusual corners. You don't
need to dive deep into all of these, and my discussion will leave many of them
unexplored. You will probably never encounter them, and if you do, you will
have entered an advanced Swift world outside the scope of this discussion. To
give an obvious example, readers may be surprised to find that I never mention
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Swift playgrounds or the REPL. My focus here is real-life iOS programming, and
my explanation of Swift therefore concentrates on those common, practical
aspects of the language that, in my experience, actually come into play in the
course of programming iOS.

o Part II turns to Xcode, the world in which all iOS programming ultimately takes
place. It explains what an Xcode project is and how it is transformed into an app,
and how to work comfortably and nimbly with Xcode to consult the documenta-
tion and to write, navigate, and debug code, as well as how to bring your app
through the subsequent stages of running on a device and submission to the App
Store. There is also a very important chapter on nibs and the nib editor (Interface
Builder), including outlets and actions as well as the mechanics of nib loading;
however, such specialized topics as autolayout constraints in the nib are post-
poned to the other book.

o Part ITI introduces the Cocoa Touch framework. When you program for iOS, you
take advantage of a suite of frameworks provided by Apple. These frameworks,
taken together, constitute Cocoa; the brand of Cocoa that provides the API for
programming iOS is Cocoa Touch. Your code will ultimately be almost entirely
about communicating with Cocoa. The Cocoa Touch frameworks provide the
underlying functionality that any iOS app needs to have. But to use a framework,
you have to think the way the framework thinks, put your code where the frame-
work expects it, and fulfill many obligations imposed on you by the framework.
To make things even more interesting, Cocoa uses Objective-C, while you’ll be
using Swift: you need to know how your Swift code will interface with Cocoa’s
features and behaviors. Cocoa provides important foundational classes and adds
linguistic and architectural devices such as categories, protocols, delegation, and
notifications, as well as the pervasive responsibilities of memory management.
Key-value coding and key-value observing are also discussed here.

The reader of this book will thus get a thorough grounding in the fundamental
knowledge and techniques that any good iOS programmer needs. The book itself
doesn’t show how to write any particularly interesting iOS apps, but it does constantly
use my own real apps and real programming situations to illustrate and motivate its
explanations. And then you’ll be ready for Programming iOS 12, of course!

Versions
This book is geared to Swift 4.2, 10S 12, and Xcode 10.

In general, only very minimal attention is given to earlier versions of iOS and Xcode.
It is not my intention to embrace in this book any detailed knowledge about earlier
versions of the software, which is, after all, readily and compendiously available in my
earlier books. The book does contain, nevertheless, a few words of advice about back-
ward compatibility (especially in Chapter 9).
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A word about method names. I generally give method names in Swift, in the style of a
function reference (as described in Chapter 2) — that is, the name plus parentheses
containing the parameter labels followed by colon. Now and then, if a method is
already under discussion and there is no ambiguity, I'll use the bare name. In a few
places, such as Appendix A, where the Objective-C language is explicitly under dis-
cussion, I use Objective-C method names.

Please bear in mind that Apple continues to make adjustments to the Swift language.
I have tried to keep my code up-to-date right up to the moment when the manuscript
left my hands; but if, at some future time, a new version of Xcode is released along
with a new version of Swift, some of the code in this book, and even some informa-
tion about Swift itself, might be slightly incorrect. Please make allowances, and be
prepared to compensate.

Screenshots of Xcode were taken using Xcode 10 under macOS 10.13 High Sierra. I
have not upgraded my machine to macOS 10.14 Mojave, because at the time of this
writing it was too new to be trusted with mission-critical work. If you are braver than
I am and running Mojave, your interface may naturally look slightly different from
the screenshots (especially if youre using “dark mode”), but this difference will be
minimal and shouldn’t cause any confusion.

Acknowledgments
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ing a book so delightfully easy: Rachel Roumeliotis, Sarah Schneider, Kristen Brown,
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From the Programming i0S 4 Preface

A programming framework has a kind of personality, an overall flavor that provides
an insight into the goals and mindset of those who created it. When I first encoun-
tered Cocoa Touch, my assessment of its personality was: “Wow, the people who
wrote this are really clever!” On the one hand, the number of built-in interface
objects was severely and deliberately limited; on the other hand, the power and flexi-
bility of some of those objects, especially such things as UlTableView, was greatly
enhanced over their OS X counterparts. Even more important, Apple created a partic-
ularly brilliant way (UIViewController) to help the programmer make entire blocks
of interface come and go and supplant one another in a controlled, hierarchical man-
ner, thus allowing that tiny iPhone display to unfold virtually into multiple interface
worlds within a single app without the user becoming lost or confused.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the
fold many new programmers who see programming for these devices as worthwhile
and doable, even though they may not have felt the same way about OS X. Apple’s
own annual WWDC developer conventions have reflected this trend, with their
emphasis shifted from OS X to i0S instruction.

The widespread eagerness to program iOS, however, though delightful on the one
hand, has also fostered a certain tendency to try to run without first learning to walk.
iOS gives the programmer mighty powers that can seem as limitless as imagination
itself, but it also has fundamentals. I often see questions online from programmers
who are evidently deep into the creation of some interesting app, but who are stymied
in a way that reveals quite clearly that they are unfamiliar with the basics of the very
world in which they are so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of iOS. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Here I have attempted to marshal and expound, in what I hope is a pedagogi-
cally helpful and instructive yet ruthlessly Euclidean and logical order, the principles
and elements on which sound iOS programming rests. My hope, as with my previous
books, is that you will both read this book cover to cover (learning something new
often enough to keep you turning the pages) and keep it by you as a handy reference.
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This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time
goes on. I have depended heavily on them in the preparation of this book. But I also
find that they don't fulfill the same function as a reasoned, ordered presentation of
the facts. The online documentation must make assumptions as to how much you
already know; it can’t guarantee that you'll approach it in a given order. And online
documentation is more suitable to reference than to instruction. A fully written
example, no matter how well commented, is difficult to follow; it demonstrates, but it
does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can
assume you know views before you know view controllers for the simple reason that
Part I precedes Part II. And along with facts, I also bring to the table a degree of expe-
rience, which I try to communicate to you. Throughout this book you’ll find me
referring to “common beginner mistakes”; in most cases, these are mistakes that I
have made myself, in addition to seeing others make them. I try to tell you what the
pitfalls are because I assume that, in the course of things, you will otherwise fall into
them just as naturally as I did as I was learning. You'll also see me construct many
examples piece by piece or extract and explain just one tiny portion of a larger app. It
is not a massive finished program that teaches programming, but an exposition of the
thought process that developed that program. It is this thought process, more than
anything else, that I hope you will gain from reading this book.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.
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S This element signifies a general note.

/%‘ This element indicates a warning or caution.

N

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://github.com/mattneub/Programming-iOS-Book-Examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “/OS 12 Programming Fundamentals
with  Swift by Matt Neuburg (O'Reilly). Copyright 2018 Matt Neuburg,
978-1-492-04455-0”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari (formerly Safari Books Online) is a membership-
‘ based training and reference platform for enterprise, gov-
ernment, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’'Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.
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For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/ios12-prog-fundamentals.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART |
Language

This part of the book teaches the Swift language, from the ground up. The descrip-
tion is rigorous and orderly. Here you'll become sufficiently conversant with Swift to
be comfortable with it, so that you can proceed to the practical business of actual
programming.

« Chapter 1 surveys the structure of a Swift program, both physically and concep-
tually. You'll learn how Swift code files are organized, and you'll be introduced to
the most important underlying concepts of the object-oriented Swift language:
variables and functions, scopes and namespaces, object types and their instances.

o Chapter 2 explores Swift functions. We start with the basics of how functions are
declared and called; then we discuss parameters — external parameter names,
default parameters, and variadic parameters. Then we dive deep into the power
of Swift functions, with an explanation of functions inside functions, functions as
first-class values, anonymous functions, functions as closures, curried functions,
and function references and selectors.

o Chapter 3 starts with Swift variables — their scope and lifetime, and how they are
declared and initialized, along with features such as computed variables and set-
ter observers. Then some important built-in Swift types are introduced, includ-
ing Booleans, numbers, strings, ranges, tuples, and Optionals.

o Chapter 4 is all about Swift object types — classes, structs, and enums. It explains
how these three object types work, and how you declare, instantiate, and use
them. Then it proceeds to polymorphism and casting, protocols, generics, and
extensions. The chapter concludes with a discussion of Swift's umbrella types,



such as Any and AnyObject, and collection types — Array, Dictionary, and Set
(including option sets).

Chapter 5 is a miscellany. We start with Swift’s flow control structures for branch-
ing, looping, and jumping, including error handling. Then I describe Swift access
control (privacy), introspection (reflection), and how to create your own opera-
tors. There follows a discussion of some recently added Swift language features:
synthesized protocol implementations, key paths, and dynamic member lookup.
The chapter concludes by considering Swift memory management.



CHAPTER 1
The Architecture of Swift

It will be useful at the outset for you to have a general sense of how the Swift language
is constructed and what a Swift-based iOS program looks like. This chapter will sur-
vey the overall architecture and nature of the Swift language. Subsequent chapters
will fill in the details.

Ground of Being

A complete Swift command is a statement. A Swift text file consists of multiple lines
of text. Line breaks are meaningful. The typical layout of a program is one statement,
one line:

print("hello")
print("world")

(The print command provides instant feedback in the Xcode console.)

You can combine more than one statement on a line, but then you need to put a
semicolon between them:

print("hello"); print("world")

You are free to put a semicolon at the end of a statement that is last or alone on its
line, but no one ever does (except out of habit, because C and Objective-C require the
semicolon):

print("hello");

print("world");
Conversely, a single statement can be broken into multiple lines, in order to prevent
long statements from becoming long lines. But you should try to do this at sensible
places so as not to confuse Swift. For example, after an opening parenthesis is a good
place:




print(
"world")

Comments are everything after two slashes in a line (so-called C++-style comments):
print("world") // this is a comment, so Swift ignores it

You can also enclose comments in /*...*/, as in C. Unlike C, C-style comments can
be nested.

Many constructs in Swift use curly braces as delimiters:

class Dog {
func bark() {
print("woof")
}
}
By convention, the contents of curly braces are preceded and followed by line breaks
and are indented for clarity, as shown in the preceding code. Xcode will help impose
this convention, but the truth is that Swift doesn’t care, and layouts like this are legal
(and are sometimes more convenient):

class Dog { func bark() { print("woof") }}

Swift is a compiled language. This means that your code must build — passing
through the compiler and being turned from text into some lower-level form that a
computer can understand — before it can run and actually do the things it says to do.
The Swift compiler is very strict; in the course of writing a program, you will often try
to build and run, only to discover that you can't even build in the first place, because
the compiler will flag some error, which you will have to fix if you want the code to
run. Less often, the compiler will let you off with a warning; the code can run, but in
general you should take warnings seriously and fix whatever they are telling you
about. The strictness of the compiler is one of Swift’s greatest strengths, and provides
your code with a large measure of audited correctness even before it ever runs.

The Swift compiler’s error and warning messages, however, range from the insightful
to the obtuse to the downright misleading. You will often know that something is
wrong with a line of code, but the Swift compiler will not be telling you clearly exactly
what is wrong or even where in the line to focus your attention. My advice in these
situations is to pull the line apart into several lines of simpler code until you reach a
point where you can guess what the issue is. Try to love the compiler despite the occa-
sional unhelpful nature of its messages. Remember, it knows more than you do, even
if it is sometimes rather inarticulate about its knowledge.
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Everything Is an Object?

In Swift, “everything is an object” That’s a boast common to various modern object-
oriented languages, but what does it mean? Well, that depends on what you mean by
“object” — and what you mean by “everything”

Let’s start by stipulating that an object, roughly speaking, is something you can send a
message to. A message, roughly speaking, is an imperative instruction. For example,
you can give commands to a dog: “Bark!” “Sit!” In this analogy, those phrases are
messages, and the dog is the object to which you are sending those messages.

In Swift, the syntax of message-sending is dot-notation. We start with the object; then
there’s a dot (a period); then there’s the message. (Some messages are also followed by
parentheses, but ignore them for now; the full syntax of message-sending is one of
those details we'll be filling in later.) This is valid Swift syntax:

fido.bark()

rover.sit()
The idea of everything being an object is a way of suggesting that even “primitive” lin-
guistic entities can be sent messages. Take, for example, 1. It appears to be a literal
digit and no more. It will not surprise you, if you've ever used any programming lan-
guage, that you can say things like this in Swift:

let sum = 1 + 2

But it is surprising to find that 1 can be followed by a dot and a message. This is legal
and meaningful in Swift (don’t worry about what it actually means):

let s = 1.description

But we can go further. Return to that innocent-looking 1 + 2 from our earlier code.
It turns out that this is actually a kind of syntactic trickery, a convenient way of
expressing and hiding what’s really going on. Just as 1 is actually an object, + is
actually a message; but it's a message with special syntax (operator syntax). In Swift,
every noun is an object, and every verb is a message.

Perhaps the ultimate acid test for whether something is an object in Swift is whether
you can modify it. An object type can be extended in Swift, meaning that you can
define your own messages on that type. For example, you can’t normally send the say-
Hello message to a number. But you can change a number type so that you can:

extension Int {
func sayHello() {
print("Hello, I'm \(self)")
}

}
1.sayHello() // outputs: "Hello, I'm 1"
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In Swift, then, 1 is an object. In some languages, such as Objective-C, it clearly is not;
it is a “primitive” or scalar built-in data type. So the distinction being drawn here is
between object types on the one hand and scalars on the other. In Swift, there are no
scalars; all types are ultimately object types. That's what “everything is an object”
really means.

Three Flavors of Object Type

If you know Objective-C or some other object-oriented language, you may be sur-
prised by Swift's notion of what kind of object 1 is. In many languages, such as
Objective-C, an object is a class or an instance of a class (I'll explain later what an
instance is). Swift has classes, but 1 in Swift is not a class or an instance of a class: the
type of 1, namely Int, is a struct, and 1 is an instance of a struct. And Swift has yet
another kind of thing you can send messages to, called an enum.

So Swift has three kinds of object type: classes, structs, and enums. I like to refer to
these as the three flavors of object type. Exactly how they differ from one another will
emerge in due course. But they are all very definitely object types, and their similari-
ties to one another are far stronger than their differences. For now, just bear in mind
that these three flavors exist.

(The fact that a struct or enum is an object type in Swift will surprise you particularly
if you know Objective-C. Objective-C has structs and enums, but they are not objects.
Swift structs, in particular, are much more important and pervasive than Objective-C
structs. This difference between how Swift views structs and enums and how
Objective-C views them can matter when you are talking to Cocoa.)

Variables

A variable is a name for an object. Technically, it refers to an object; it is an object
reference. Nontechnically, you can think of it as a shoebox into which an object is
placed. The object may undergo changes, or it may be replaced inside the shoebox by
another object, but the name has an integrity all its own. The object to which the vari-
able refers is the variable’s value.

In Swift, no variable comes implicitly into existence; all variables must be declared. If
you need a name for something, you must say “I'm creating a name.” You do this with
one of two keywords: let or var. In Swift, declaration is usually accompanied by ini-
tialization — you use an equal sign to give the variable a value immediately, as part of
the declaration. These are both variable declarations (and initializations):

1
2

let one
var two
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Once the name exists, you are free to use it. For example, we can change the value of
two to be the same as the value of one:
let one =

var two
two = one

1
2

The last line of that code uses both the name one and the name two declared in the
first two lines: the name one, on the right side of the equal sign, is used merely to refer
to the value inside the shoebox one (namely 1); but the name two, on the left side of
the equal sign, is used to replace the value inside the shoebox two. A statement like
that, with a variable name on the left side of an equal sign, is called an assignment,
and the equal sign is the assignment operator. The equal sign is not an assertion of
equality, as it might be in an algebraic formula; it is a command. It means: “Get the
value of what’s on the right side of me, and use it to replace the value of what’s on the
left side of me?”

The two kinds of variable declaration differ in that a name declared with let cannot
have its value replaced. A variable declared with let is a constant; its value is assigned
once and stays. This won't even compile:

let one = 1

var two = 2

one = two // compile error
It is always possible to declare a name with var to give yourself the most flexibility,
but if you know you’re never going to replace the initial value of a variable, it’s better
to use let, as this permits Swift to behave more efficiently — so much more effi-
ciently, in fact, that the Swift compiler will actually call your attention to any case of
your using var where you could have used let, offering to change it for you.

Variables also have a type. This type is established when the variable is declared and
can never change. For example, this won’'t compile:

var two = 2
two = "hello" // compile error

Once two is declared and initialized as 2, it is a number (properly speaking, an Int)
and it must always be so. You can replace its value with 1 because that’s also an Int,

but you can'’t replace its value with "hello" because that’s a string (properly speaking,
a String) — and a String is not an Int.

Variables literally have a life of their own — more accurately, a lifetime of their own.
As long as a variable exists, it keeps its value alive. Thus, a variable can be not only a
way of conveniently naming something, but also a way of preserving it. I'll have more
to say about that later.
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tal letter; variable names start with a small letter. Do not violate this convention. If
you do, your code might still compile and run just fine, but I will personally send
agents to your house to remove your kneecaps in the dead of night.

% By convention, type names such as String or Int (or Dog or Cat) start with a capi-

Functions

Executable code, like fido.bark() or one = two, cannot go just anywhere in your
program. (Failure to appreciate this fact is a common beginner mistake, and can
result in a mysterious compile error message such as “Expected declaration.”) In gen-
eral, executable code must live inside the body of a function. A function is a batch of
code that can be told, as a batch, to run. Typically, a function has a name, and it gets
that name through a function declaration. Function declaration syntax is another of
those details that will be filled in later, but here’s an example:

func go() {
let one = 1
var two = 2
two = one

}

That describes a sequence of things to do — declare one, declare two, change the
value of two to match the value of one — and it gives that sequence a name, go; but it
doesn’t perform the sequence. The sequence is performed when someone calls the
function. Thus, we might say, elsewhere:

go()

That is a command to the go function that it should actually run. But again, that com-
mand is itself executable code, so it cannot live on its own either. It might live in the
body of a different function:

func doGo() {
90()

}
But wait! This is getting a little nutty. That, too, is just a function declaration; to run
it, someone must call doGo by saying doGo() — and that’s executable code too. This
seems like some kind of infinite regression; it looks like none of our code will ever
run. If all executable code has to live in a function, who will tell any function to run?
The initial impetus must come from somewhere.

In real life, fortunately, this regression problem doesn’t arise. Remember that your
goal is ultimately to write an iOS app. Thus, your app will be run on an iOS device (or
the Simulator) by a runtime that already wants to call certain functions. So you start
by writing special functions that you know the runtime itself will call. That gives your
app a way to get started and gives you places to put functions that will be called by the
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runtime at key moments — such as when the app launches, or when the user taps a
button in your app’s interface.

Swift also has a special rule that a file called main.swift, exceptionally, can have
executable code at its top level, outside any function body, and this is the code
that actually runs when the program runs. You can construct your app with a
main.swift file, but in general you won’t need to.

The Structure of a Swift File

A Swift program can consist of one file or many files. In Swift, a file is a meaningful
unit, and there are definite rules about the structure of the Swift code that can go
inside it. (I'm assuming that we are not in a main.swift file.) Only certain things can
go at the top level of a Swift file — chiefly the following:

Module import statements
A module is an even higher-level unit than a file. A module can consist of multi-
ple files, and these can all see each other automatically; but a module can't see
another module without an import statement. For example, that is how you are
able to talk to Cocoa in an iOS program: the first line of your file says import
UIKit.

Variable declarations
A variable declared at the top level of a file is a global variable: all code will be
able to see and access it, without explicitly sending a message to any object, and it
lives as long as the program runs.

Function declarations
A function declared at the top level of a file is a global function: all code will be
able to see and call it, without explicitly sending a message to any object.

Object type declarations
The declaration for a class, a struct, or an enum.

For example, this is a legal Swift file containing (just to demonstrate that it can be
done) an import statement, a variable declaration, a function declaration, a class dec-
laration, a struct declaration, and an enum declaration:

import UIKit

var one =1

func changeOne() {
}

class Manny {

}
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struct Moe {

}

enum Jack {

}

That’s a very silly and mostly empty example, but remember, our goal is to survey the
parts of the language and the structure of a file, and the example shows them.

Furthermore, the curly braces for each of the things in that example can all have vari-
able declarations, function declarations, and object type declarations within them!
Indeed, any structural curly braces can contain such declarations.

You'll notice that I did not say that executable code can go at the top level of a file.
That’s because it can't! Only a function body can contain executable code. A statement
like one = two or print(name) is executable code, and can’t go at the top level of a
file. But in our previous example, func changeOne() is a function declaration, so exe-
cutable code can go inside its curly braces, because they constitute a function body:

var one =1
/] executable code can't go here
func changeOne() {
let two = 2 // executable code
one = two // executable code

}

Executable code also can’t go directly inside the curly braces that accompany the
class Manny declaration; that’s the top level of a class declaration, not a function
body. But a class declaration can contain a function declaration, and that function
declaration can contain executable code:

class Manny {
let name = "manny"
/] executable code can't go here
func sayName() {
print(name) // executable code
}
}

To sum up, Example 1-1 is a legal Swift file, schematically illustrating the structural
possibilities. (Ignore the hanky-panky with the name variable declaration inside the
enum declaration for Jack; enum top-level variables have some special rules that I'll
explain later.)

Example 1-1. Schematic structure of a legal Swift file

import UIKit

var one =1

func changeOne() {
let two = 2
func sayTwo() {
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print(two)
}
class Klass {}
struct Struct {}
enum Enum {}
one = two
}
class Manny {
let name = "manny"
func sayName() {
print(name)
}
class Klass {}
struct Struct {}
enum Enum {}
}
struct Moe {
let name = "moe"
func sayName() {
print(name)
}
class Klass {}
struct Struct {}
enum Enum {}
}
enum Jack {
var name : String {
return "jack"

}

func sayName() {
print(name)

}

class Klass {}
struct Struct {}
enum Enum {}

}

Obviously, we can recurse down as far we like: we could have a class declaration con-
taining a class declaration containing a class declaration, and so on. But there’s no
point illustrating that.

Scope and Lifetime

In a Swift program, things have a scope. This refers to their ability to be seen by other
things. Things are nested inside of other things, making a nested hierarchy of things.
The rule is that things can see things at their own level and at a higher level containing
them. The levels are:

o A module is a scope.

o Afileis a scope.
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o Curly braces are a scope.

When something is declared, it is declared at some level within that hierarchy. Its
place in the hierarchy — its scope — determines whether it can be seen by other
things.

Look again at Example 1-1. Inside the declaration of Manny is a name variable decla-
ration and a sayName function declaration; the code inside sayName’s curly braces can
see things outside those curly braces at a higher containing level, and can therefore see
the name variable. Similarly, the code inside the body of the changeOne function can
see the one variable declared at the top level of the file; indeed, everything throughout
this file can see the one variable declared at the top level of the file.

Scope is thus a very important way of sharing information. Two different functions
declared inside Manny would both be able to see the name declared at Manny’s top
level. Code inside Jack and code inside Moe can both see the one declared at the file’s
top level.

Things also have a lifetime, which is effectively equivalent to their scope. A thing lives
as long as its surrounding scope lives. Thus, in Example 1-1, the variable one lives as
long as the file lives — namely, as long the program runs. It is global and persistent.
But the variable name declared at the top level of Manny exists only so long as a
Manny instance exists (I'll talk in a moment about what that means).

Things declared at a deeper level live even shorter lifetimes. Consider this code:

func silly() {
if true {
class Cat {}
var one =1
one = one + 1

}

That code is silly, but it’s legal: remember, I said that variable declarations, function
declarations, and object type declarations can appear in any structural curly braces. In
that code, the class Cat and the variable one will not even come into existence until
someone calls the silly function, and even then they will exist only during the brief
instant that the path of code execution passes through the if construct. So, suppose
the function silly is called; the path of execution then enters the if construct. Here,
Cat is declared and comes into existence; then one is declared and comes into exis-
tence; then the executable line one = one + 1 is executed; and then the scope ends
and both Cat and one vanish in a puff of smoke. And throughout their brief lives, Cat
and one were completely invisible to the rest of the program. (Do you see why?)
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Object Members

Inside the three object types (class, struct, and enum), things declared at the top level
have special names, mostly for historical reasons. Let’s use the Manny class as an
example:

class Manny {

let name = "manny"
func sayName() {
print(name)
}
}
In that code:

o name is a variable declared at the top level of an object declaration, so it is called a
property of that object.

 sayName is a function declared at the top level of an object declaration, so it is
called a method of that object.

Things declared at the top level of an object declaration — properties, methods, and
any objects declared at that level — are collectively the members of that object. Mem-
bers have a special significance, because they define the messages you are allowed to
send to that object!

Namespaces

A namespace is a named region of a program. The names of things inside a name-
space cannot be reached by things outside it without somehow first passing through
the barrier of saying that regions name. This is a good thing because it allows the
same name to be used in different places without a conflict. Clearly, namespaces and
scopes are closely related notions.

Namespaces help to explain the significance of declaring an object at the top level of
an object, like this:

class Manny {
class Klass {}
}

This way of declaring Klass makes Klass a nested type. It effectively “hides” Klass
inside Manny. Manny is a namespace! Code inside Manny can see (and say) Klass
directly. But code outside Manny can't do that. It has to specify the namespace explic-
itly in order to pass through the barrier that the namespace represents. To do so, it
must say Manny’s name first, followed by a dot, followed by the term Klass. In short,
it has to say Manny.Klass.
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The namespace does not, of itself, provide secrecy or privacy; it’s a convenience.
Thus, in Example 1-1, I gave Manny a Klass class, and I also gave Moe a Klass class.
But they don’t conflict, because they are in different namespaces, and I can differenti-
ate them, if necessary, as Manny .Klass and Moe.Klass.

It will not have escaped your attention that the syntax for diving explicitly into a
namespace is the message-sending dot-notation syntax. They are, in fact, the same
thing.

In effect, message-sending allows you to see into scopes you can’t see into otherwise.
Code inside Moe can’t automatically see the Klass declared inside Manny, but it can
see it by taking one easy extra step, namely by speaking of Manny.Klass. It can do that
because it can see Manny (because Manny is declared at a level that code inside Moe
can see).

Modules

The top-level namespaces are modules. By default, your app is a module and hence a
namespace; that namespace’s name is, roughly speaking, the name of the app. For
example, if my app is called MyApp, then if I declare a class Manny at the top level of a
file, that class’s real name is MyApp.Manny. But I don't usually need to use that real
name, because my code is already inside the same namespace, and can see the name
Manny directly.

Frameworks are also modules, and hence they are also namespaces. When you
import a module, all the top-level declarations of that module become visible to your
code, without your having to use the module’s namespace explicitly to refer to them.

For example, Cocoa’s Foundation framework, where NSString lives, is a module.
When you program iOS, you will say import Foundation (or, more likely, you'll say
import UIKit, which itself imports Foundation), thus allowing you to speak of
NSString  without  saying  Foundation.NSString. But you could say
Foundation.NSString, and if you were so silly as to declare a different NSString in
your own module, you would have to say Foundation.NSString, in order to differen-
tiate them. You can also create your own frameworks, and these, too, will be modules.

Swift itself is defined in a module — the Swift module. Your code always implicitly
imports the Swift module. You could make this explicit by starting a file with the line
import Swift; there is no need to do this, but it does no harm either.

That fact is important, because it solves a major mystery: where do things like print
come from, and why is it possible to use them outside of any message to any object?
printisin fact a function declared at the top level of the Swift module, and your code
can see the Swift module’s top-level declarations because it imports Swift. The print
function thus becomes, as far as your code is concerned, an ordinary top-level func-

14 | Chapter 1: The Architecture of Swift



tion like any other; it is global to your code, and your code can speak of it without
specifying its namespace. You can specify its namespace — it is perfectly legal to say
things like Swift.print("hello") — but you probably never will, because there’s no
name conflict to resolve.

and this can be a useful thing to do. For example, to see the declaration of print,
Command-Control-click the term print in your code. Alternatively, explicitly
import Swift and Command-Control-click the term Swift. Behold, there are
the Swift top-level declarations! You won't see any executable Swift code here, but
you will see the declarations for all the available Swift terms, including top-level
functions like print, operators like +, and built-in types such as Int and String
(look for struct Int, struct String, and so on).

g You can actually see the Swift top-level declarations and read and study them,

Instances

Object types — class, struct, and enum — have an important feature in common: they
can be instantiated. In effect, when you declare an object type, you are only defining a
type. To instantiate a type is to make a thing — an instance — of that type.

So, for example, I can declare a Dog class, and I can give my class a method:

class Dog {
func bark() {
print("woof")
}
}
But I don’t actually have any Dog objects in my program yet. I have merely described
the type of thing a Dog would be if I had one. To get an actual Dog, I have to make
one. The process of making an actual Dog object whose type is the Dog class is the
process of instantiating Dog. The result is a new object — a Dog instance.

In Swift, instances can be created by using the object type’s name as a function name
and calling the function. This involves using parentheses. When you append paren-
theses to the name of an object type, you are sending a very special kind of message
to that object type: Instantiate yourself!

So now I'm going to make a Dog instance:
let fido = Dog()

There’s a lot going on in that code! I did two things. I instantiated Dog, thus causing
me to end up with a Dog instance. I also put that Dog instance into a shoebox called
fido — I declared a variable and initialized the variable by assigning my new Dog
instance to it. Now fido is a Dog instance. (Moreover, because I used let, fido will
always be this same Dog instance. I could have used var instead, but even then,
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Figure 1-1. Making an instance and calling an instance method

initializing fido as a Dog instance would have meant fido could only be some Dog
instance after that.)

Now that I have a Dog instance, I can send instance messages to it. And what do you
suppose they are? They are Dog’s properties and methods! For example:

let fido = Dog()
fido.bark()

That code is legal. Not only that, it is effective: it actually does cause "woof" to appear
in the console. I made a Dog and I made it bark! (See Figure 1-1.)

There’s an important lesson here, so let me pause to emphasize it. By default, proper-
ties and methods are instance properties and methods. You can’t use them as mes-
sages to the object type itself; you have to have an instance to send those messages to.
As things stand, this is illegal and won’t compile:

Dog.bark() // compile error

It is possible to declare a function bark in such a way that saying Dog.bark() is legal,
but that would be a different kind of function — a class function or a static function
— and you would need to say so when you declare it.

The same thing is true of properties. To illustrate, let’s give Dog a name property:

class Dog {
var name =

}

That allows me to set a Dog’s name, but it needs to be an instance of Dog:
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let fido = Dog()
fido.name = "Fido"

It is possible to declare a property name in such a way that saying Dog.name is legal,
but that would be a different kind of property — a class property or a static property
— and you would need to say so when you declare it.

Why Instances?

Even if there were no such thing as an instance, an object type is itself an object. We
know this because it is possible to send a message to an object type (the phrase
Manny.Klass is a case in point). Why, then, do instances exist at all?

The answer has mostly to do with the nature of instance properties. The value of an
instance property is defined with respect to a particular instance. This is where
instances get their real usefulness and power.

Consider again our Dog class. I'll give it a name property and a bark method; remem-
ber, these are an instance property and an instance method:

class Dog {
var name =

func bark() {
print("woof")

}
}

A Dog instance comes into existence with a blank name (an empty string). But its
name property is a var, so once we have any Dog instance, we can assign to its name a
new String value:

let dogl = Dog()
dogl.name = "Fido"

We can also ask for a Dog instance’s name:

let dogl = Dog()
dogl.name = "Fido"
print(dogl.name) // "Fido"

The important thing is that we can make more than one Dog instance, and that two
different Dog instances can have two different name property values (Figure 1-2):

let dogl = Dog()

dogl.name = "Fido"
let dog2 = Dog()
dog2.name = "Rover"

print(dogl.name) // "Fido"
print(dog2.name) // "Rover"
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Figure 1-2. Two dogs with different property values

Note that a Dog instance’s name property has nothing to do with the name of the vari-
able to which a Dog instance is assigned. The variable is just a shoebox. You can pass
an instance from one shoebox to another. But the instance itself maintains its own
internal integrity:

let dogl = Dog()

dogl.name = "Fido"

var dog2 = Dog()

dog2.name = "Rover"

print(dogl.name) // "Fido"

print(dog2.name) // "Rover"

dog2 = dogl

print(dog2.name) // "Fido"
That code didn’t change Rover’s name; it changed which dog was inside the dog2 shoe-
box, replacing Rover with Fido.

The full power of object-based programming has now emerged. There is a Dog object
type which defines what it is to be a Dog. Our declaration of Dog says that a Dog
instance — any Dog instance, every Dog instance — has a name property and a bark
method. But each Dog instance can have its own name property value. They are differ-
ent instances and maintain their own internal state. So multiple instances of the same
object type behave alike — both Fido and Rover can bark, and will do so when they
are sent the bark message — but they are different instances and can have different
property values: Fido's name is "Fido" while Rover’s name is "Rover".
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So an instance is a reflection of the instance methods of its type, but that isn't all it is;
it’s also a collection of instance properties. The object type is responsible for what
properties the instance has, but not necessarily for the values of those properties. The
values can change as the program runs, and apply only to a particular instance. An
instance is a cluster of particular property values.

An instance is responsible not only for the values but also for the lifetimes of its prop-
erties. Suppose we bring a Dog instance into existence and assign to its name property
the value "Fido". Then this Dog instance is keeping the string "Fido" alive just so
long as we do not replace the value of its name with some other value — and just so
long as this instance lives.

In short, an instance is both code and data. The code it gets from its type and in a
sense is shared with all other instances of that type, but the data belong to it alone.
The data can persist as long as the instance persists. The instance has, at every
moment, a state — the complete collection of its own personal property values. An
instance is a device for maintaining state. It’s a box for storage of data.

The Keyword self

An instance is an object, and an object is the recipient of messages. Thus, an instance
needs a way of sending a message to itself. This is made possible by the keyword self.
This word can be used wherever an instance of the appropriate type is expected.

For example, let’s say I want to keep the thing that a Dog says when it barks, such as
"woof", in a property. Then in my implementation of bark I need to refer to that
property. I can do it like this:

class Dog {
var name =
var whatADogSays = "woof"
func bark() {
print(self.whatADogSays)

}
}

Similarly, let’s say I want to write an instance method speak which is merely a syno-
nym for bark. My speak implementation can consist of simply calling my own bark
method. I can do it like this:

class Dog {
var name =
var whatADogSays = "woof"
func bark() {
print(self.whatADogSays)

}
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func speak() {
self.bark()

}
}

Observe that the term self in that example appears only in instance methods. When
an instance’s code says self, it is referring to this instance. If the expression

self.name appears in a Dog instance method’s code, it means the name of this Dog
instance, the one whose code is running at that moment.

It turns out that every use of the word self I've just illustrated is completely optional.
You can omit it and all the same things will happen:

class Dog {
var name =
var whatADogSays = "woof"
func bark() {

print(whatADogSays)
}
func speak() {

bark()
}

}

The reason is that if you omit the message recipient and the message youre sending
can be sent to self, the compiler supplies self as the message’s recipient under the
hood. However, I never do that (except by mistake). As a matter of style, I like to be
explicit in my use of self. I find code that omits self harder to read and understand.
And there are situations where you must say self, so I prefer to use it whenever I'm
allowed to.

Privacy

Earlier, I said that a namespace is not, of itself, an insuperable barrier to accessing the
names inside it. But such a barrier is sometimes desirable. For example, not all data
stored by an instance is intended for alteration by, or even visibility to, another
instance. And not every instance method is intended to be called by other instances.
Any decent object-based programming language needs a way to endow its object
members with privacy — a way of making it harder for other objects to see those
members if they are not supposed to be seen.

Consider, for example:

class Dog {
var name =
var whatADogSays = "woof"
func bark() {
print(self.whatADogSays)

}
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func speak() {
print(self.whatADogSays)
}
}

Here, other objects can come along and change my property whatADogSays. Since
that property is used by both bark and speak, we could easily end up with a Dog that,
when told to bark, says "meow". That seems somehow undesirable:

let dogl = Dog()
dog1.whatADogSays = "meow"
dogl.bark() // meow

You might reply: Well, silly, why did you declare whatADogSays with var? Declare it
with let instead. Make it a constant! Now no one can change it:

class Dog {
var name =
let whatADogSays = "woof"
func bark() {
print(self.whatADogSays)

}
func speak() {
print(self.whatADogSays)
}
}

That is a good answer, but it is not quite good enough. There are two problems. Sup-
pose I want a Dog instance itself to be able to change its own whatADogSays — by
assigning to self.whatADogSays. Then whatADogSays has to be a var; otherwise,
even the instance itself can’t change it. Also, suppose I don’t want any other object to
know what this Dog says, except by calling bark or speak. Even when declared with
Llet, other objects can still read the value of whatADogSays. Maybe I don't like that.

To solve this problem, Swift provides the private keyword. I'll talk later about all the
ramifications of this keyword, but for now its enough to know that it solves the
problem:

class Dog {
var name =
private var whatADogSays = "woof"
func bark() {
print(self.whatADogSays)

}
func speak() {
print(self.whatADogSays)
}
}

Now name is a public property, but whatADogSays is a private property: it can’t be seen
by other types of object. A Dog instance can speak of self.whatADogSays, but a Cat
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Reserved Words

Certain terms, like class and func and var and let and if and private and import,
are reserved in Swift; they are part of the language. That means you can’t use them as
identifiers — as the name of a class, a function, or a variable, for example. If you try to
do so, you'll get a compile error.

To force a reserved word to be an identifier, surround it by backticks (*). This (extra-
ordinarily confusing) code is legal:

class “func' {
func "if () {
let ‘class” =1

}

instance with a reference to a Dog instance as fido cannot say fido.whatADogSays.
The important lesson here is that object members are public by default, and if you
want privacy, you have to ask for it.

To sum up: A class declaration defines a namespace. This namespace requires that
other objects use an extra level of dot-notation to refer to what’s inside the name-
space, but other objects can still refer to what’s inside the namespace; the namespace
does not, in and of itself, close any doors of visibility. The private keyword lets you
close those doors.

Design

What object types will your program need, what methods and properties should they
have, when and how will they be instantiated, and what should you do with those
instances when you have them? Those aren't easy decisions, and there are no clear-cut
answers. Object-based programming is an art.

In real life, when youre programming iOS, many object types you'll be working with
will not be yours but Apple’s. Swift itself comes with a few useful object types, such as
String and Int; you'll also import UIKit, which includes a huge number of object
types, all of which spring to life in your program. You didn’t create any of those object
types, so their design is not your problem; instead, you must learn to use them.
Apple’s object types are aimed at enabling the general functionality that any app might
need. At the same time, your app will probably have specific functionality, unique to
its purpose, and you will have to design object types to serve that purpose.

Object-based program design must be founded upon a secure understanding of the
nature of objects. You want to design object types that encapsulate the right sort of
functionality (methods) accompanied by the right set of data (properties). Then,
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when you instantiate those object types, you want to make sure that your instances
have the right lifetimes, sufficient exposure to one another, and an appropriate ability
to communicate with one another.

Object Types and APIs

Your program files will have very few, if any, top-level functions and variables. Meth-
ods and properties of object types — in particular, instance methods and instance
properties — will be where most of the action is. Object types give each actual
instance its specialized abilities. They also help to organize your program’s code
meaningfully and maintainably.

We may summarize the nature of objects in two phrases: encapsulation of functional-
ity, and maintenance of state. (I first used this summary many years ago in my book
REALbasic: The Definitive Guide.)

Encapsulation of functionality
Each object does its own job, and presents to the rest of the world — to other
objects, and indeed in a sense to the programmer — an opaque wall whose only
entrances are the methods to which it promises to respond and the actions it
promises to perform when the corresponding messages are sent to it. The details
of how, behind the scenes, it actually implements those actions are secreted
within itself; no other object needs to know them.

Maintenance of state
Each individual instance is a bundle of data that it maintains. Often that data is
private, so it's encapsulated as well; no other object knows what that data is or in
what form it is kept. The only way to discover from outside what private data an
object is maintaining is if there’s a public method or property that reveals it.

As an example, imagine an object whose job is to implement a stack — it might be an
instance of a Stack class. A stack is a data structure that maintains a set of data in
LIFO order (last in, first out). It responds to just two messages: push and pop. Push
means to add a given piece of data to the set. Pop means to remove from the set the
piece of data that was most recently pushed and hand it out. It’s like a stack of plates:
plates are placed onto the top of the stack or removed from the top of the stack one
by one, so the first plate to go onto the stack can’t be retrieved until all other subse-
quently added plates have been removed (Figure 1-3).

The stack object illustrates encapsulation of functionality because the outside world
knows nothing of how the stack is actually implemented. It might be an array, it
might be a linked list, it might be any of a number of other implementations. But a
client object — an object that actually sends a push or pop message to the stack object
— knows nothing of this and cares less, provided the stack object adheres to its con-
tract of behaving like a stack. This is also good for the programmer, who can, as the
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Figure 1-3. A stack

program develops, safely substitute one implementation for another without harming
the vast machinery of the program as a whole.

The stack object illustrates maintenance of state because it isn’t just the gateway to the
stack data — it is the stack data. Other objects can get access to that data, but only by
virtue of having access to the stack object itself, and only in the manner that the stack
object permits. The stack data is effectively inside the stack object; no one else can see
it. All that another object can do is push or pop.

The sum total of messages that each object type is eligible to be sent by other objects
— its API (application programming interface) — is like a list or menu of things you
can ask this type of object to do. Your object types divide up your code; their APIs
form the basis of communication between those divisions. The same is true of objects
that you didn’t design. Apple’s Cocoa documentation consists largely of lists of object
APIs. For example, to know what messages you can send to an NSString instance,
youd start by studying the NSString class documentation. That page is really just a
big list of properties and methods, so it tells you what an NSString object can do —
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and thus constitutes the bulk of what you need to know in order to use NSStrings in
your program.

Instance Creation, Scope, and Lifetime

The important moment-to-moment entities in a Swift program are mostly instances.
Object types define what kinds of instances there can be and how each kind of
instance behaves. But the actual instances of those types are the state-carrying indi-
vidual “things” that the program is all about, and instance methods and properties are
messages that can be sent to instances. So there need to be instances in order for the
program to do anything.

By default, however, there are no instances! Looking back at Example 1-1, we defined
some object types, but we made no instances of them. If we were to run this program,
our object types would exist from the get-go, but that’s all that would exist. We've cre-
ated a world of pure potentiality — some types of object that might exist. In that
world, nothing would actually happen.

Instances do not come into being by magic. You have to instantiate a type in order to
obtain an instance. Much of the action of your program, therefore, will consist of
instantiating types. And of course you will want those instances to persist, so you will
also assign each newly created instance to a variable as a shoebox to hold it, name it,
and give it a lifetime. The instance will persist according to the lifetime of the variable
that refers to it. And the instance will be visible to other instances according to the
scope of the variable that refers to it.

Much of the art of object-based programming involves giving instances a sufficient
lifetime and making them visible to one another. You will often put an instance into a
particular shoebox — assigning it to a particular variable, declared at a certain scope
— exactly so that, thanks to the rules of variable lifetime and scope, this instance will
persist long enough to keep being useful to your program while it will still be needed,
and so that other code can get a reference to this instance and talk to it later.

Planning how youre going to create instances, and working out the lifetimes and
communication between those instances, may sound daunting. Fortunately, in real
life, when you’re programming iOS, the Cocoa framework itself will provide an initial
scaffolding for you. Before you write a single line of code, the framework ensures that
your app, as it launches, is given some instances that will persist for the lifetime of the
app, providing the basis of your app’s visible interface and giving you an initial place
to put your own instances and give them sufficiently long lifetimes.

Summary and Conclusion

As we imagine constructing an object-based program for performing a particular
task, we bear in mind the nature of objects. There are types and instances. A type is a
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set of methods describing what all instances of that type can do (encapsulation of
functionality). Instances of the same type differ only in the value of their properties
(maintenance of state). We plan accordingly. Objects are an organizational tool, a set
of boxes for encapsulating the code that accomplishes a particular task. They are also
a conceptual tool. The programmer, being forced to think in terms of discrete objects,
must divide the goals and behaviors of the program into discrete tasks, each task
being assigned to an appropriate object.

At the same time, no object is an island. Objects can cooperate with one another,
namely by communicating with one another — that is, by sending messages to one
another. The ways in which appropriate lines of communication can be arranged are
innumerable. Coming up with an appropriate arrangement — an architecture — for
the cooperative and orderly relationship between objects is one of the most challeng-
ing aspects of object-based programming. In iOS programming, you get a boost from
the Cocoa framework, which provides an initial set of object types and a practical
basic architectural scaffolding.

Using object-based programming effectively to make a program do what you want it
to do while keeping it clear and maintainable is itself an art; your abilities will
improve with experience. Eventually, you may want to do some further reading on
effective planning and construction of the architecture of an object-based program. I
recommend in particular two classic, favorite books. Refactoring, by Martin Fowler
(Addison-Wesley, 1999), describes why you might need to rearrange what methods
belong to what classes (and how to conquer your fear of doing so). Design Patterns,
by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (also known as
“the Gang of Four”), is the bible on architecting object-based programs, listing all the
ways you can arrange objects with the right powers and the right knowledge of one
another (Addison-Wesley, 1994).
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CHAPTER 2
Functions

Nothing is so characteristic of Swift syntax as the way you declare and call functions.
Probably nothing is so important, either! As I said in Chapter 1, all your code is going
to be in functions; they are where the action is.

Function Parameters and Return Value

A function is like one of those pseudoscientific machines for processing miscellane-
ous stuff that you probably drew in your math textbook in elementary school. You
know the ones I mean: with a funnel-like “hopper” at the top, and then a bunch of
gears and cranks, and then a tube at the bottom where something is produced. A
function is a machine like that: you feed some stuff in, the stuff is processed in
accordance with what this particular machine does, and something is produced.

The stuff that goes in is the input; what comes out is the output. More technically, a
function that expects input has parameters; a function that produces output has a
result. For example, here’s a silly but valid function that expects two Int values, adds
them together, and produces that sum:

func sum (_ x:Int, _ y:Int) -> Int {
let result = x +y
return result

}

The syntax here is very strict and well-defined, and you can’t use Swift unless you
understand it perfectly. Let’s pause to appreciate it in full detail; I'll break the first line
into pieces so that I can call them out individually:
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func sum
(_ x:Int, _ y:Int)
-> Int {
let result = x + vy
return result

9@880

}

The declaration starts with the keyword func, followed by the name of this func-
tion; here, it’s sum. This is the name that must be used in order to call the function
— that is, in order to run the code that the function contains.

The name of the function is followed by its parameter list. It consists, minimally,
of parentheses. If this function takes parameters (input), they are listed inside the
parentheses, separated by a comma. Each parameter has a strict format: the name
of the parameter, a colon, and the type of the parameter.

This particular function declaration also has an underscore (_) and a space

before each parameter name in the parameter list. I'm not going to explain that
underscore yet. I need it for the example, so just trust me for now.

If the function is to return a value, then after the parentheses is an arrow operator
(->) followed by the type of value that this function will return.

Then we have curly braces enclosing the body of the function — its actual code.

Within the curly braces, in the function body, the variables defined as the param-
eter names have sprung to life, with the types specified in the parameter list.

If the function is to return a value, it must do so with the keyword return fol-
lowed by that value. And, not surprisingly, the type of that value must match the
type declared earlier for the return value (after the arrow operator).

Here are some further points to note about the parameters and return type of our
function:

Parameters

Our sum function expects two parameters — an Int, to which it gives the name x,
and another Int, to which it gives the name y. The function body code won’t run
unless code elsewhere calls this function and actually passes values of the speci-
fied types for its parameters. (In fact, if I were to try to call this function without
providing a value for each of these two parameters, or if either of the values I
provide were not an Int, the compiler would stop me with an error.) In the body
of the function, therefore, we can confidently use those values, referring to them
by those names, secure in the knowledge that such values will exist and that they
will be Int values, as specified by our parameter list. This provides certainty for
not only the programmer, but also the compiler.
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Observe that these names, x and y, are arbitrary and purely local (internal) to this
function. They are different from any other x and y that may be used in other
functions or at a higher level of scope. These names are defined purely so that the
parameter values can be referred to in the code within the function body. The
parameter declaration is, indeed, a kind of variable declaration: we are declaring
variables x and y for use inside this function.

Return type
The last statement of our sum function’s body returns the value of a variable called
result; this variable was created by adding two Int values together, so it is an Int,
which is what this function is supposed to produce. If I tried to return a String
(return "howdy"), or if I were to omit the return statement altogether, the com-
piler would stop me with an error.

Note that the keyword return actually does two things. It returns the accompa-
nying value, and it also halts execution of the function. It is permitted for more
lines of code to follow a return statement, but the compiler will warn if this
means that those lines of code can never be executed.

The function declaration before the curly braces is, in short, a contract about what
kinds of values will be used as input and about what kind of output will be produced.
According to this contract, the function expects a certain number of parameters, each
of a certain type, and yields a certain type of result. Everything must correspond to
this contract. The function body, inside the curly braces, can use the parameters as
local variables. The returned value must match the declared return type.

The same contract applies to code elsewhere that calls this function. Here’s some code
that calls our sum function:

let z = sum(4,5)

Focus your attention on the right side of the equal sign — sum(4,5). That’s the func-
tion call. How is it constructed? It uses the name of the function; that name is fol-
lowed by parentheses; and inside those parentheses, separated by a comma, are the
values to be passed to each of the function’s parameters. Technically, these values are
called arguments. Here, I'm using literal Int values, but I'm perfectly free to use Int
variables instead; the only requirement is that I use things that have the correct type:

let x = 4
lety =5
let z = sum(y,x)

In that code, I purposely used the names x and y for the variables whose values are
passed as arguments, and I purposely reversed them in the call, to emphasize that
these names have nothing to do with the names x and y inside the function parameter
list and the function body. Argument names do not magically make their way to the
function. Their values are all that matter; their values are the arguments.
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What about the value returned by the function? That value is magically substituted for
the function call, at the point where the function call is made. It happens that in the
preceding code, the result is 9. So the last line is exactly as if I had said:

let z =9

The programmer and the compiler both know what type of thing this function
returns, so they also know where it is and isn't legal to call this function. It’s fine to
call this function as the initialization part of the declaration of the variable z, just as it
would be to use 9 as the initialization part of that declaration: in both cases, we have
an Int, and so z ends up being declared as an Int. But it would not be legal to write
this:

let z = sum(4,5) + "howdy" // compile error

Because sum returns an Int, that's the same as trying to add an Int to a String — and
by default, you can’t do that in Swift.

Observe that it is legal to ignore the value returned from a function call:
sum(4,5)

That code is sort of silly in this particular situation, because we have made our sum
function go to all the trouble of adding 4 and 5 for us and we have then thrown away
the answer without capturing or using it. The compiler knows this, and will warn that
we are failing to use the result of our function call. Nevertheless, a warning is not an
error; that code is legal. There are, in fact, lots of situations where it is perfectly rea-
sonable to ignore the value returned from a function call; in particular, the function
may do other things (technically called side effects) in addition to returning a value,
and the purpose of your call to that function may be those other things.

If you're ignoring a function call result deliberately, you can silence the compiler
warning by assigning the function call to _ (a variable without a name) — for
example, _ = sum(4,5). Alternatively, if the function being called is your own,
you can prevent the warning by marking the function declaration with
@discardableResult.

If you can call sum wherever you can use an Int, and if the parameters of sum have to
be Int values, doesn't that mean you can call sum inside a call to sum? Of course it
does! This is perfectly legal (and reasonable):

let z = sum(4,sum(5,6))

The only argument against writing code like that is that you might confuse yourself
and that it might make things harder to debug later. But technically it’s legal and quite
normal.
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Void Return Type and Parameters

Let’s return to our function declaration. With regard to a function’s parameters and
return type, there are two degenerate cases that allow us to express a function decla-
ration more briefly:

A function without a return type
No law says that a function must return a value. A function may be declared to
return no value. In that case, there are three ways to write the declaration: you
can write it as returning Void; you can write it as returning (), an empty pair of
parentheses; or you can omit the arrow operator and the return type entirely.
These are all legal:

func say1(_ s:String) -> Void { print(s) }
func say2(_ s:String) -> () { print(s) }
func say3(_ s:String) { print(s) }

If a function returns no value, then its body need not contain a return statement.
If it does contain a return statement, its purpose will be purely to end execution
of the function at that point.

A call to a function that returns no value is made purely for the function’s side
effects; it has no useful return value that can be made part of a larger expression,
so the statement that calls the function will usually consist of the function call
and nothing else.

A function without any parameters
No law says that a function must take any parameters. If it doesn’t, the parameter
list in the function declaration can be completely empty. But you can't omit the
parameter list parentheses themselves! They will be present in the function decla-
ration, after the function’s name:

func greet1() -> String { return "howdy" }

Obviously a function can lack both a return value and parameters; these are all ways
of expressing the same thing:

func greet1() -> Void { print("howdy") }
func greet2() -> () { print("howdy") }
func greet3() { print("howdy") }

Just as you cannot omit the parentheses (the parameter list) from a function declara-
tion, you cannot omit the parentheses from a function call. Those parentheses will be
empty if the function takes no parameters, but they must be present. For example:

greet1()

Notice the parentheses!
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Function Signature

If we ignore the parameter names in the function declaration, we can completely
characterize a function by the types of its inputs and its output. To do so, we write the
parameter types in parentheses, followed by the arrow operator and the output type,
like this:

(Int, Int) -> Int

That is a legal expression in Swift; it is the signature of a function. In this case, it’s the
signature of a function that takes two Int parameters and returns an Int. In fact, it’s
the signature of our sum function! Of course, there can be other functions that take
two Int parameters and return an Int — and that’s just the point. This signature char-
acterizes all functions that have this number of parameters, of these types, and that
return a result of this type. A function’s signature is, in effect, its type — the type of
the function. The fact that functions have types will be of great importance later on.

The signature of a function must include both the parameter list (without parameter
names) and the return type, even if one or both of those is empty; so, the signature of
a function that takes no parameters and returns no value may be written () -> Void

or() -> ().

External Parameter Names

A function can externalize the names of its parameters. The external names must
then appear in a call to the function as labels to the arguments. There are several rea-
sons why this is a good thing:

o It clarifies the purpose of each argument; each argument label can give a clue as
to how that argument contributes to the behavior of the function.

o It distinguishes one function from another; two functions with the same name
(before the parentheses) and the same signature but different externalized
parameter names are two distinct functions.

o It helps Swift to interface with Objective-C and Cocoa, where method parameters
nearly always have externalized names.

Externalized parameter names are so standard in Swift that there’s a rule: by default,
all parameter names are externalized automatically, using the internal name as the
externalized name. Thus, if you want a parameter name to be externalized, and if you
want the externalized name to be the same as the internal name, do nothing — that
will happen all by itself.

If you want to depart from the default behavior, you can do either of the following in
your function declaration:
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Change the name of an external parameter
If you want the external name of a parameter to be different from its internal
name, precede the internal name with the external name and a space.

Suppress the externalization of a parameter
To suppress a parameter’s external name, precede the internal name with an
underscore and a space.

(That explains my declaration func sum (_ x:Int, _ y:Int) -> Int at the
start of this chapter: I was suppressing the externalization of the parameter
names, so as not to have to explain argument labels at the outset.)

Heres the declaration for a function that concatenates a string with itself a given
number of times:

func echoString(_ s:String, times:Int) -> String {
var result = ""
for _ in 1...times { result += s }
return result

}
That function’s first parameter has an internal name only, but its second parameter

has an external name, which will be the same as its internal name, namely times. And
here’s how to call it:

let s = echoString("hi", times:3)

In the call, as you can see, the external name precedes the argument as a label, separa-
ted by a colon.

Now lets say that in our echoString function we prefer to use times purely as an
external name for the second parameter, with a different name — say, n — as the
internal name. And let’s strip the string off the function’s name (before the parenthe-

ses) and make it the external name of the first parameter. Then the declaration would
look like this:

func echo(string s:String, times n:Int) -> String {
var result = ""
for _ in 1...n { result += s }
return result

}

In the body of that function, there is now no times variable available; times is purely
an external name, for use in the call. The internal name is n, and that’s the name the
code refers to. And here’s how to call it:

let s = echo(string:"hi", times:3)
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The existence of external names doesn’t mean that the call can use a different
parameter order from the declaration. For example, our echo(string:times:)
expects a String parameter and an Int parameter, in that order. The order can’t be
different in the call, even though the label might appear to disambiguate which
argument goes with which parameter.

Overloading

In Swift, function overloading is legal (and common). This means that two functions
with exactly the same name, including their external parameter names, can coexist as
long as they have different signatures.

(Two functions with the same name before the parentheses but different external
parameter names do not constitute a case of overloading; they are simply two differ-
ent functions with two different names.)

Thus, for example, these two functions can coexist:

func say (_ what:String) {

}
func say (_ what:Int) {

}
The reason overloading works is that Swift has strict typing. A String parameter is not
an Int parameter. Swift can tell them apart in the declaration, and Swift can tell them
apart in a function call. Thus, Swift knows unambiguously that say("what") is differ-
ent from say(1).

Overloading works for the return type as well. Two functions with the same name
and parameter types can have different return types. But the context of the call must
disambiguate; that is, it must be clear what return type the caller is expecting.

For example, these two functions can coexist:

func say() -> String {
return "one"

}

func say() -> Int {
return 1

}

But now you can’t call say like this:
let result = say() // compile error

The call is ambiguous, and the compiler tells you so. The call must be used in a con-
text where the expected return type is clear. For example, suppose we have another
function that is not overloaded, and that expects a String parameter:
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func giveMeAString(_ s:String) {
print("thanks!")
}
Then giveMeAString(say()) is legal, because only a String can go in this spot, so we
must be calling the say that returns a String. Similarly:

let result = say() + "two"

Only a String can be “added” to a String, so this must be the say() that returns a
String.

The legality of overloading in Swift is particularly striking if youre coming from
Objective-C, where overloading is not legal. If you tried to declare two overloaded
versions of the same method in Objective-C, youd get a “Duplicate declaration” com-
pile error.

Default Parameter Values

A parameter can have a default value. This means that the caller can omit the param-
eter entirely, supplying no argument for it; the value will then be the default.

To specify a default value in a function declaration, append = and the default value
after the parameter type:
class Dog {
func say(_ s:String, times:Int = 1) {
for _ in 1...times {
print(s)
}

}

In effect, there are now two functions — say(_:) and say(_:times:). If you just
want to say something once, you can call say(_:) with a single unlabeled argument,
and a times: parameter value of 1 will be supplied for you:

let d = Dog()
d.say("woof") // same as saying d.say("woof", times:1)

If you want repetition, call say(_:times:):

let d = Dog()
d.say("woof", times:3)

Variadic Parameters

A parameter can be variadic. This means that the caller can supply as many values of
this parameter’s type as desired, separated by a comma; the function body will receive
these values as an array.
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To indicate in a function declaration that a parameter is variadic, follow it with three
dots, like this:

func sayStrings(_ arrayOfStrings:String ...) {
for s in array0fStrings { print(s) }
}

And here’s how to call it:
sayStrings("hey", "ho", "nonny nonny no")

The global print function takes a variadic first parameter, so you can output multiple
values with a single command:

print("Manny", 3, true) // Manny 3 true

The print function’s default parameters dictate further details of the output. The
default separator: (for when you provide multiple values) is a space, and the default
terminator: is a newline; you can change either or both:

print("Manny", "Moe", separator:",
print("Jack")
// output is "Manny, Moe, Jack" on one line

, terminator:", ")

A function can declare a maximum of one variadic parameter (because otherwise it
might be impossible to determine where the list of values ends).

array into a comma-separated list of arguments (comparable to splatting in
Ruby). If what you're starting with is an array of some type, you can’t use it where
a variadic of that type is expected.

% Unfortunately, there’s a hole in the Swift language: there’s no way to convert an

Ignored Parameters

A parameter whose local name is an underscore is ignored. The caller must supply an
argument, but it has no name within the function body and cannot be referred to
there. For example:

func say(_ s:String, times:Int, loudly _:Bool) {

No loudly parameter makes its way into the function body, but the caller must still
provide the third parameter:

say("hi", times:3, loudly:true)

The declaration needn’t have an externalized name for the ignored parameter:
func say(_ s:String, times:Int, _:Bool) {

But the caller must still supply it:

say("hi", times:3, true)
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What's the purpose of this feature? It isn’t to satisfy the compiler, because the compiler
doesn’'t complain if a parameter is never referred to in the function body. I use it pri-
marily as a kind of note to myself, a way of saying, “Yes, I know there is a parameter
here, and I am deliberately not using it for anything”

Modifiable Parameters

In the body of a function, a parameter is essentially a local variable. By default, it’s a
variable implicitly declared with let. You can’t assign to it:

func say(_ s:String, times:Int, loudly:Bool) {
loudly = true // compile error

}

If your code needs to assign to a parameter name within the body of a function,
declare a var local variable inside the function body and assign the parameter value
to it; your local variable can even have the same name as the parameter:

func say(_ s:String, times:Int, loudly:Bool) {
var loudly = loudly
loudly = true // no problem

}

In that code, loudly is a local variable; assigning to it doesn’t change the value of any
variable outside the function body. However, it is also possible to configure a parame-
ter in such a way that assigning to it does modify the value of a variable outside the
function body! One typical use case is that you want your function to return more
than one result. For example, here I'll write a rather advanced function that removes
all occurrences of a given character from a given string and returns the number of
occurrences that were removed:

func removeCharacter(_ c:Character, from s:String) -> Int {
var s = s
var howMany = 0
while let ix = s.firstIndex(of:c) {
s.remove(at:ix)
howMany += 1

}

return howMany

}
And you call it like this:

let s = "hello"
let result = removeCharacter("l", from:s) // 2

That’s nice, but we forgot one little thing: the original string, s, is still "hello"! In the
function body, we removed all occurrences of the character from the local copy of the
String parameter, but this change didn't affect the original string.
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If we want our function to alter the original value of an argument passed to it, we
must do the following:

o The type of the parameter we intend to modify must be declared inout.

o When we call the function, the variable holding the value we intend to tell it to
modify must be declared with var, not let.

o Instead of passing the variable as an argument, we must pass its address. This is
done by preceding its name with an ampersand (&).

Our removeCharacter(_:from:) now looks like this:

func removeCharacter(_ c:Character, from s: inout String) -> Int {
var howMany = 0
while let ix = s.firstIndex(of:c) {
s.remove(at:ix)
howMany += 1
}

return howMany

}
And our call to removeCharacter(_:from:) now looks like this:

var s = "hello"
let result = removeCharacter("l", from:&s)

After the call, result is 2 and s is "heo". Notice the ampersand before the name s
when we pass it as the from: argument. It is required; if you omit it, the compiler will
stop you. I like this requirement, because it forces us to acknowledge explicitly to the
compiler, and to ourselves, that were about to do something potentially dangerous:
we're letting this function, as a side effect, modify a value outside of itself.

When a function with an inout parameter is called, the variable whose address
was passed as argument to that parameter is always set, even if the function
makes no changes to that parameter.

You may encounter variations on this pattern when you're using Cocoa. The Cocoa
APIs are written in C and Objective-C, so instead of the Swift term inout, you'll
probably see some mysterious type such as UnsafeMutablePointer. From your point
of view as the caller, however, it’s the same thing: you'll prepare a var variable and
pass its address.

For instance, consider the problem of learning a UIColor’s RGBA components. There
are four such components: the color’s red, green, blue, and alpha values. A function
that, given a UIColor, returned the components of that color, would need to return
four values at once — and that is something that Objective-C cannot do. So a differ-
ent strategy is used. The UIColor method getRed(_:green:blue:alpha:) returns
only a Bool reporting whether the component extraction succeeded. Instead of
returning the actual components, it says: “You hand me four CGFloats as arguments,
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and I will modify them for you so that they are the results of this operation.” Here’s
roughly how the declaration for getRed(_:green:blue:alpha:) appears in Swift:

func getRed(_ red: UnsafeMutablePointer<CGFloat>,
green: UnsafeMutablePointer<CGFloat>,
blue: UnsafeMutablePointer<CGFloat>,
alpha: UnsafeMutablePointer<CGFloat>) -> Bool

How would you call this function? The parameters are each an UnsafeMutablePointer
to a CGFloat. You'll create four var CGFloat variables beforehand, giving them each
some value even though that value will be replaced when you call get-
Red(_:green:blue:alpha:). Youll pass the addresses of those variables as argu-
ments. Those variables are where the component values will be after the call; and
you'll probably be so sure that the component extraction will succeed, that you won't
even bother to capture the call’s actual result! So, for example:

let ¢ = UIColor.purple
var r : CGFloat = 0

var g : CGFloat = 0

var b : CGFloat = 0

var a : CGFloat = 0

c.getRed(&r, green: &g, blue: &b, alpha: &a)
// now r, g, b, a are 0.5, 0.0, 0.5, 1.0

Sometimes, Cocoa will call your function with an UnsafeMutablePointer parameter,
and you will want to change its value. To do this, you cannot assign directly to it, as
we did with the {inout wvariable s in our implementation of
remove(from:character:). You're talking to Objective-C, not to Swift, and this is an
UnsafeMutablePointer, not an inout parameter. The technique here is to assign to the
UnsafeMutablePointer’s pointee property. Here (without further explanation) is an
example from my own code:

func popoverPresentationController(
_ popoverPresentationController: UIPopoverPresentationController,
willRepositionPopoverTo rect: UnsafeMutablePointer<CGRect>,
in view: AutoreleasingUnsafeMutablePointer<UIView>) {
view.pointee = self.button2
rect.pointee = self.button2.bounds

}
There is one very common situation where your function can modify a parameter
without declaring it as inout — namely, when the parameter is an instance of a class.
This is a special feature of classes, as opposed to the other two object type flavors,
enum and struct. String isn’t a class; it’s a struct. That’s why we had to use inout in
order to modify a String parameter. So I'll illustrate by declaring a Dog class with a
name property:
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class Dog {
var name = ""

}

Here’s a function that takes a Dog instance parameter and a String, and sets that Dog
instance’s name to that String. Notice that no inout is involved:

func changeName(of d:Dog, to newName:String) {
d.name = newName

}

Here’s how to call it. There’s no inout, so we pass a Dog instance directly:

let d = Dog()

d.name = "Fido"
print(d.name) // "Fido"
changeName(of:d, to:"Rover")
print(d.name) // "Rover"

Observe that we were able to change a property of our Dog instance d, even though it
wasn't passed as an inout parameter, and even though it was declared originally with
let, not var. This appears to be an exception to the rules about modifying parame-
ters — but it isn't. It’s a feature of class instances, namely that they are themselves
mutable. In changeName(of: to:), we didn't actually attempt to assign a different Dog
instance to the parameter. To do that, the Dog parameter would need to be declared
inout (and d would have to be declared with var and we would have to pass its
address as argument).

Technically, we say that classes are reference types, whereas the other object type
flavors are value types. When you pass an instance of a struct as an argument to a
function, you effectively wind up with a separate copy of the struct instance.
But when you pass an instance of a class as an argument to a function, you
pass a reference to the class instance itself. I'll discuss this topic in more detail in
Chapter 4.

Function in Function

A function can be declared anywhere, including inside the body of a function. A
function declared in the body of a function (also called a local function) is available to
be called by later code within the same scope, but is completely invisible elsewhere.

This feature is an elegant architecture for functions whose sole purpose is to assist
another function. If only function A ever needs to call function B, function B might
as well be packaged inside function A.

Here’s a typical example from one of my apps (I've omitted everything except the
structure):
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func checkPair(_ pil:Piece, and p2:Piece) -> Path? {

/] ...

func addPathIfValid(_ midpti:Point, _ midpt2:Point) {
/] ...

}

for y in -1..._yct {
addPathIfvalid((ptl.x,y),(pt2.x,y))

}

for x in -1..._xct {
addPathIfvalid((x,ptl.y),(x,pt2.y))

}

/...

}

What 'm doing in the first for loop (for y) and what I'm doing in the second for
loop (for x) are the same — but with a different set of starting values. We could write
out the functionality in full inside each for loop, but that would be an unnecessary
and confusing repetition. (Such a repetition would violate the principle often referred
to as DRY, for “Don’t Repeat Yourself”) To prevent that repetition, we could refactor
the repeated code into an instance method to be called by both for loops, but that
exposes this functionality more broadly than we need, as it is called only by these two
for loops inside checkPatir. A local function is the perfect compromise.

Sometimes, it's worth using a local function even when that function will be called in
only one place. Here’s another example from my code (it’s actually another part of the
same function):

func checkPair(_ pl:Piece, and p2:Piece) -> Path? {
/] ...
if arr.count > 0 {
func distance(_ ptil:Point, _ pt2:Point) -> Double {

// utility to learn physical distance between two points
let deltax = pt1.0 - pt2.0
let deltay = pt1.1 - pt2.1
return Double(deltax * deltax + deltay * deltay).squareRoot()

for thisPath in arr {
var thisLength = 0.0
for ix in thisPath.indices.dropLast() {
thisLength += distance(thisPath[ix],thisPath[ix+1])
}
/] ...

}
/...
}
Again, the structure is clear (even though the code uses some Swift features I haven't
discussed yet). Deep inside the function checkPatir, a moment comes when I have an
array (arr) of paths, and I need to know the length of every path. Each path is itself

Functionin Function | 41



an array of points, so to learn its length, I need to sum the distances between each
pair of points. To get the distance between a pair of points, I use the Pythagorean the-
orem. I could apply the Pythagorean theorem and express the calculation right there
inside the for loop (for 1ix). Instead, I've expressed the Pythagorean theorem as a
local function, distance, and then inside the for loop I call that function.

There is no savings whatever in the number of lines of code; in fact, declaring
distance makes my code longer! Nor, strictly speaking, am I in danger of repeating
myself; the application of the Pythagorean theorem is repeated many times, but it
occurs at only one spot in my code, namely inside this one for loop. Nevertheless,
abstracting the code into a more general distance-calculation utility makes my code
much clearer: in effect, I announce in general form what I'm about to do (“Look! I'm
going to calculate distances between points now!”), and then I do it. The function
name, distance, gives my code meaning; it is more understandable and maintainable
than if I had directly written out the steps of the distance calculation inline.

Local functions are really local variables with function values (a notion that I'll
explain later in this chapter). Therefore, a local function can’t have the same
name as a local variable in the same scope, and two local functions can’t have the
same name as one another in the same scope.

Recursion

A function can call itself. This is called recursion. Recursion seems a little scary, rather
like jumping off a cliff, because of the danger of creating an infinite loop; but if you
write the function correctly, you will always have a “stopper” condition that handles
the degenerate case and prevents the loop from being infinite:

func countDownFrom(_ ix:Int) {
print(ix)
if ix > 0 { // stopper
countDownFrom(ix-1) // recurse!
}

}
countDownFrom(5) // 5, 4, 3, 2, 1, 0

Function As Value

If you've never used a programming language where functions are first-class citizens,
perhaps youd better sit down now, because what I'm about to tell you might make
you feel a little faint: In Swift, a function is a first-class citizen. This means that a
function can be used wherever a value can be used. For example, a function can be
assigned to a variable; a function can be passed as an argument in a function call; a
function can be returned as the result of a function.
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Swift has strict typing. You can only assign a value to a variable or pass a value into or
out of a function if it is the right type of value. In order for a function to be used as a
value, it needs to have a type. And indeed it does: a function’s signature is its type.

The chief purpose of using a function as a value is so that this function can later be
called without a definite knowledge of what function it is. Here’s the world’s simplest
(and silliest) example, just to show the syntax and structure:

func doThis(_ f:() -> ()) {
fO

}
That is a function doThis that takes one parameter (and returns no value). The
parameter, f, is itself a function; we know this because the type of the parameter is
given as a function signature, () -> (), meaning (as you know) a function that takes
no parameters and returns no value. The function doThis then calls the function f
that it received as its parameter, by saying f().

Having declared the function doThis, how would you call it? To do so, youd need to
pass it a function as argument. Here’s one way to do that:

func doThis(_ f:() -> ()) {
O

}

func whatToDo() { @
print("I did it")

}

doThis(whatToDo) @

@ First, we declare a function (whatToDo) of the proper type — a function that takes
no parameters and returns no value.

® Then, we call doThts, passing as argument a function reference — in effect, the
bare name of the function. Notice that we are not calling whatToDo here; we are
passing it.

Sure enough, this works: we pass whatToDo as argument to doThis; doThis calls the
function that it receives as its parameter; and the string "I did it" appears in the
console.

But what’s the point of being able to do that? If our goal is to call whatToDo, why don’t
we just call it? What’s useful about being able to tell some other function to call it? In
the example I just gave, there is nothing useful about it; I was just showing you the
syntax and structure. But in real life, this is a very valuable thing to do. Encapsulating
function-calling in a function can reduce repetition and opportunity for error. More-
over, the other function may call the parameter function in some special way; for
example, it might call it after doing other things, or at some later time.
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Here’s a case from my own code. A common thing to do in Cocoa is to draw an
image, directly, in code. This involves four steps:

let size = CGSize(width:45, height:20)
UIGraphicsBeginImageContextWithOptions(size, false, 0) @
let p = UIBezierPath(

roundedRect: CGRect(x:0, y:0, width:45, height:20), cornerRadius: 8)
p.stroke() @
let result = UIGraphicsGetImageFromCurrentImageContext()! @
UIGraphicsEndImageContext() @

Open an image context.

(1]
® Draw into the context.
© Extract the image.

(4]

Close the image context.

That’s terribly ugly. The sole purpose of all that code is to obtain result, the image;
but that purpose is buried in all the other code. At the same time, the entire structure
is boilerplate; every time I do this in any app, step 1, step 3, and step 4 are exactly the
same. Moreover, I live in mortal fear of forgetting a step; for example, if I were to
omit step 4 by mistake, the universe would explode.

The only thing that’s different every time I draw is step 2. Thus, step 2 is the only part
I should have to write out! The entire problem is solved by writing a utility function
expressing the boilerplate:

func imageOfSize(_ size:CGSize, _ whatToDraw:() -> ()) -> UIImage {
UIGraphicsBeginImageContextWithOptions(size, false, 0)
whatToDraw()
let result = UIGraphicsGetImageFromCurrentImageContext()!
UIGraphicsEndImageContext()
return result

}

My imageOfSize utility is so useful that I declare it at the top level of a file, where all
my files can see it. To make an image, I perform step 2 (the actual drawing) in a func-
tion and pass that function as argument to the image0fSize utility:

func drawing() {
let p = UIBezierPath(
roundedRect: CGRect(x:0, y:0, width:45, height:20),
cornerRadius: 8)
p.stroke()
}
let image = imageOfSize(CGSize(width:45, height:20), drawing)

Now that is a beautifully expressive and clear way to turn drawing instructions into
an image.
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Evidently Apple agrees with my criticism of UIGraphicsBeginImageContextWith-
Options, because in iOS 10 a new class was introduced, UlGraphicsImageRen-
derer, that expresses itself using syntax similar to my imageOfSize. Nevertheless,
I'll continue using imageOfSize in this chapter, because it illustrates important
aspects of Swift functions.

The Cocoa API is full of situations where you’ll pass a function to be called by the
runtime in some special way or at some later time. Some common Cocoa situations
even involve passing two functions. For instance, when you perform view animation,
you'll often pass one function prescribing the action to be animated and another
function saying what to do afterward:

func whatToAnimate() { // self.myButton is a button in the interface
self.myButton.frame.origin.y += 20

}

func whatToDoLater(finished:Bool) {
print("finished: \(finished)")

}

UIView.animate(withDuration:0.4,
animations: whatToAnimate, completion: whatToDolLater)

That means: Change the frame origin (that is, the position) of this button in the inter-
face, but do it over time (four-tenths of a second); and then, when that’s finished,
print a log message in the console saying whether the animation was performed or
not.

The Cocoa documentation will often describe a function to be passed in this way as a
handler, and will refer it as a block, because that’s the Objective-C syntactic construct
needed here. In Swift, it’s a function.

Anonymous Functions

Consider once again this example:

func whatToAnimate() { // self.myButton is a button in the interface
self.myButton.frame.origin.y += 20

}

func whatToDoLater(finished:Bool) {
print("finished: \(finished)")

}

UIView.animate(withDuration:0.4,
animations: whatToAnimate, completion: whatToDoLater)

There’s a slight bit of ugliness in that code. I'm declaring functions whatToAnimate
and whatToDoLater, just because I want to pass those functions in the last line. But I
don’t really need the names whatToAnimate and whatToDoLater for anything, except
to refer to them in the last line; neither the names nor the functions will ever be used
again. In my call to UIView.animate(withDuration:animations:completion:), it
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Type Aliases Can Clarify Function Types

To make function type specifiers clearer, we can take advantage of Swift’s type alias
feature to give a function type a name. The name can be descriptive, and the possibly
confusing arrow operator notation is avoided. For example, if we say typealias Void-
VoidFunction = () -> (), we can then say VoidVoidFunction wherever we need to
specify a function type with that signature.

Thus, earlier we declared a function like this:

func doThis(_ f:() -> ()) {
Q)
}

We could have declared it like this:

typealias VoidVoidFunction = () -> ()

func dothis(_ f:VoidVoidFunction) {
fO

}

would be nice to be able to pass just the body of those functions without a declared
name.

That’s called an anonymous function, and it’s legal and common in Swift. To form an
anonymous function, you do two things:

1. Create the function body itself, including the surrounding curly braces, but with
no function declaration.

2. If necessary, express the function’s parameter list and return type as the first thing
inside the curly braces, followed by the keyword in.

Let’s practice by transforming our named function declarations into anonymous
functions. Here’s the named function declaration for whatToAnimate:

func whatToAnimate() {
self.myButton.frame.origin.y += 20

}
Here’s an anonymous function that does the same thing. Notice how I've moved the
parameter list and return type inside the curly braces:
{
0O ->01in
self.myButton.frame.origin.y += 20

}

Here’s the named function declaration for whatToDoLater:
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func whatToDoLater(finished:Bool) {
print("finished: \(finished)")

}
Here’s an anonymous function that does the same thing:
{
(finished:Bool) -> () in
print("finished: \(finished)")
}

Now that we know how to make anonymous functions, lets use them. The point
where we need the functions is the point where were passing the second and third
arguments to animate(withDuration:animations:completion:). We can create and
pass anonymous functions right at that point, like this:

UIView.animate(withDuration:0.4,
animations: {
O ->0 in
self.myButton.frame.origin.y += 20

1

completion: {
(finished:Bool) -> () in
print("finished: \(finished)")

)

We can make the same improvement in the way we call the image0OfSize function
from the preceding section. Earlier, we called that function like this:

func drawing() {
let p = UIBezierPath(
roundedRect: CGRect(x:0, y:0, width:45, height:20),
cornerRadius: 8)
p.stroke()

}
let image = imageOfSize(CGSize(width:45, height:20), drawing)

We now know, however, that we don't need to declare the drawing function sepa-
rately. We can call imageOfSize with an anonymous function:

let image = imageOfSize(CGSize(width:45, height:20), {
O ->01in
let p = UIBezierPath(
roundedRect: CGRect(x:0, y:0, width:45, height:20),
cornerRadius: 8)
p.stroke()
b

Anonymous functions are very commonly used in Swift, so make sure you can read
and write that code! Anonymous functions, in fact, are so common and so important,
that some shortcuts for writing them are provided:
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Omission of the return type
If the anonymous function’s return type is already known to the compiler, you
can omit the arrow operator and the specification of the return type:

UIView.animate(withDuration:0.4,
animations: {
Oin /] *
self.myButton.frame.origin.y += 20
}, completion: {
(finished:Bool) in // *
print("finished: \(finished)")
D)

Omission of the in expression when there are no parameters
If the anonymous function takes no parameters, and if the return type can be
omitted, the in expression itself can be omitted:

UIView.animate(withDuration:0.4,
animations: { // *
self.myButton.frame.origin.y += 20
}, completion: {
(finished:Bool) in
print("finished: \(finished)")
D)

Omission of the parameter types
If the anonymous function takes parameters and their types are already known to
the compiler, the types can be omitted:

UIView.animate(withDuration:0.4,
animations: {
self.myButton.frame.origin.y += 20
}, completion: {
(finished) in // *
print("finished: \(finished)")
b

Omission of the parentheses
If the parameter types are omitted, the parentheses around the parameter list can
be omitted:

UIView.animate(withDuration:0.4,
animations: {
self.myButton.frame.origin.y += 20
}, completion: {
finished in // *
print("finished: \(finished)")
b
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Omission of the in expression even when there are parameters
If the return type can be omitted, and if the parameter types are already known
to the compiler, you can omit the in expression and refer to the parameters
directly within the body of the anonymous function by using the magic names
$0, $1, and so on, in order:

UIView.animate(withDuration:0.4,
animations: {
self.myButton.frame.origin.y += 20
}, completion: {
print("finished: \($0)") // *
b

Omission of the parameter names
If the anonymous function body doesn’t need to refer to a parameter, you can
substitute an underscore for its name in the parameter list in the in expression:

UIView.animate(withDuration:0.4,
animations: {
self.myButton.frame.origin.y += 20
}, completion: {
_in//*
print("finished!")
i)
But note that if the anonymous function takes parameters, you must acknowl-
edge them somehow. You can omit the in expression and use the parameters by
the magic names $0 and so on, or you can keep the in expression and ignore the
parameters with an underscore, but you can't omit the in expression altogether
and not use the parameters by their magic names! If you do, your code won’t
compile.

Omission of the function argument label
If, as will just about always be the case, your anonymous function is the last argu-
ment being passed in this function call, you can close the function call with a
right parenthesis before this last argument, and then put just the anonymous
function body without a label (this is called a trailing function):

UIView.animate(withDuration:0.4,
animations: {
self.myButton.frame.origin.y += 20
b/~

in

print("finished!")
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Omission of the calling function parentheses
If you use the trailing function syntax, and if the function you are calling takes no
parameters other than the function you are passing to it, you can omit the empty
parentheses from the call. This is the only situation in which you can omit the
parentheses from a function call! To illustrate, T'll declare and call a different
function:

func doThis(_ f:() -> ()) {
O

}

doThis { // no parentheses!
print("Howdy")

}

Omission of the keyword return
If the anonymous function body consists of exactly one statement and that state-
ment consists of returning a value with the keyword return, the keyword return
can be omitted. To put it another way, in a context that expects a function that
returns a value, if an anonymous function body consists of exactly one expres-
sion with no return, Swift assumes that this expression’s value is to be returned
from the anonymous function:

func greeting() -> String {
return "Howdy"

}

func performAndPrint(_ f:()->String) {
let s = f()
print(s)

}

performAndPrint {
greeting() // meaning: return greeting()

}

When writing anonymous functions, you will frequently find yourself taking advan-
tage of all the omissions you are permitted. In addition, you'll often shorten the lay-
out of the code (though not the code itself) by putting the whole anonymous function
together with the function call on one line. Thus, Swift code involving anonymous
functions can be extremely compact.

Here’s a typical example. We start with an array of Int values and generate a new array
consisting of all those values multiplied by 2, by calling the map(_:) instance method.
The map(_:) method of an array takes a function that takes one parameter of the
same type as the array’s elements, and returns a new value; here, our array is made of
Int values, and we are passing to the map(_:) method a function that takes one Int
parameter and returns an Int. We could write out the whole function, like this:
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let arr = [2, 4, 6, 8]
func doubleMe(i:Int) -> Int {
return i1*2

{et arr2 = arr.map(doubleMe) // [4, 8, 12, 16]
That, however, is not very Swifty. We don’t need the name doubleMe for anything else,
so this may as well be an anonymous function:
let arr = [2, 4, 6, 8]
let arr2 = arr.map ({
(i:Int) -> Int in
return i*2
b
Fine, but now let’s start shortening our anonymous function. Its parameter type is
known in advance, so we don't need to specify that. Its return type is known by
inspection of the function body, so we don’t need to specify that. There’s just one
parameter and we are going to use it, so we don't need the in expression as long we
refer to the parameter as $0. Our function body consists of just one statement, and it
is a return statement, so we can omit return. And map(_:) doesn't take any other
parameters, so we can omit the parentheses and follow the name directly with a trail-
ing function:

let arr = [2, 4, 6, 8]
let arr2 = arr.map {$0*2}

It doesn't get any Swiftier than that!

Define-and-Call

A pattern that’s surprisingly common in Swift is to define an anonymous function
and call it, all in one move:

{

// ... code goes here
30
Notice the parentheses after the curly braces! The curly braces define an anonymous
function body; the parentheses call that anonymous function.

Why would anyone do such a thing? If you want to run some code, you can just run
it; why would you embed it in a deeper level as a function body, only to turn around
and run that function body immediately?

For one thing, an anonymous function can be a good way to make your code less
imperative and more, well, functional: an action can be taken at the point where it is
needed, rather than in a series of preparatory steps. Here’s a common Cocoa example:
we create and configure an NSMutableParagraphStyle and then use it as an argument
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in a call to the NSMutableAttributedString method addAttribute(_:value:range:),
like this:

let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10

// ... more configuration of para ...
content.addAttribute( // content is an NSMutableAttributedString
.paragraphStyle,

value:para,
range:NSRange(location:0, length:1))

I find that code ugly. We don't need para except to pass it as the value: argument
within the call to addAttribute(_:value:range:), so it would be much nicer to cre-
ate and configure it right there within the call, as the value: argument. That sounds
like an anonymous function — except that the value: parameter is not a function,
but an NSMutableParagraphStyle object. We can solve the problem by providing, as
the value: argument, an anonymous function that produces an NSMutablePara-
graphStyle object and calling it so that it does produce an NSMutableParagraphStyle
object:

content.addAttribute(

.paragraphStyle,

value: {
let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
// ... more configuration of para ...
return para

10,
range:NSRange(location:0, length:1))

I'll demonstrate some further uses of define-and-call in Chapter 3.

Closures

Swift functions are closures. This means they can capture references to external vari-
ables in scope within the body of the function. What do I mean by that? Well, recall
from Chapter 1 that code in curly braces constitutes a scope, and this code can “see”
variables and functions declared in a surrounding scope:

class Dog {
var whatThisDogSays = "woof"
func bark() {
print(self.whatThisDogSays)
}
}

In that code, the body of the function bark refers to a variable whatThisDogSays.
That variable is external to the body of the function, because it is declared outside the
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body of the function. It is in scope for the body of the function, because the code
inside the body of the function can see it. And the code inside the body of the func-
tion refers to it — it says, explicitly, whatThisDogSays.

So far, so good; but we now know that the function bark can be passed as a value. In
effect, it can travel from one environment to another. When it does, what happens to
that reference to whatThisDogSays? Let’s find out:

func doThis(_ f : () -> ()) {
fO

}

let d = Dog()

d.whatThisDogSays = "arf"

let barkFunction = d.bark

doThis(barkFunction) // arf

We run that code, and "arf" appears in the console!

Perhaps that result doesn’t seem very surprising to you. But think about it. We do not
directly call d.bark(). We make a Dog instance and pass its bark function as a value
into the function doThis. There, it is called. Now, whatThisDogSays is an instance
property of a particular Dog. Inside the function doThis there is no whatThisDog-
Says. Indeed, inside the function doThis there is no Dog instance! Nevertheless the
call f() still works. The function d.bark, as it is passed around, can still see that vari-
able whatThisDogSays, declared outside itself, even though it is called in an environ-
ment where there is no longer any Dog instance and no longer any instance property
whatThisDogSays.

But there’s more. I'll move the line where we set d.whatThisDogSays to after we
assign d.bark into our variable barkFunction:

func doThis(_ f : () -> ()) {
fO

}

let d = Dog()

let barkFunction = d.bark

d.whatThisDogSays = "arf" // *

doThis(barkFunction) // arf

Do you see what this proves? At the time we assigned d.bark to barkFunction,
d.whatThisDogSays was "woof". We then changed d.whatThisDogSays to "arf", and
passed barkFunction into doThis, where it was called — and we got "arf". This
proves that barkFunction is maintaining its reference to this actual Dog, the one that
we call d. The bark function, as it is passed around, is carrying its environment with it
— including the instance of which it is an instance method (because it refers, in its
body, to self). That environment is still there later when the bark function is called
in some other environment. So, by “capture” I mean that when a function is passed
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around as a value, it carries along its internal references to external variables. That is
what makes a function a closure.

How Closures Improve Code

Once you understand that functions are closures, you can take advantage of that fact
to improve your code’s syntax. Closures can help make your code more general, and
hence more useful. Here, once again, is my earlier example of a function that accepts
drawing instructions and performs them to generate an image:

func imageOfSize(_ size:CGSize, _ whatToDraw:() -> ()) -> UIImage {
UIGraphicsBeginImageContextWithOptions(size, false, 0)
whatToDraw()
let result = UIGraphicsGetImageFromCurrentImageContext()!
UIGraphicsEndImageContext()
return result

}
We can call image0fSize with a trailing anonymous function:

let image = imageOfSize(CGSize(width:45, height:20)) {
let p = UIBezierPath(
roundedRect: CGRect(x:0, y:0, width:45, height:20),
cornerRadius: 8)
p.stroke()
}

That code, however, contains an annoying repetition. This is a call to create an image
of a given size consisting of a rounded rectangle of that size. We are repeating the size;
the pair of numbers 45,20 appears twice. That’s silly. Let’s prevent the repetition by
putting the size into a variable at the outset:

let sz = CGSize(width:45, height:20)
let image = imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPoint.zero, size:sz),
cornerRadius: 8)
p.stroke()
}

The variable sz, declared outside our anonymous function at a higher level, is visible
inside it. Thus we can refer to it inside the anonymous function — and we do so. In
the fourth line, we are not calling CGRect(origin:size:) and passing the value of sz
to it now. Everything inside the curly braces is just a function body. It won’t be exe-
cuted until imageOfSize calls it. Nevertheless, the value of sz persists. The anony-
mous function is a function. Therefore it is a closure. Therefore the anonymous
function captures the reference to sz, and carries it on into the call to image0fSize.

Now let’s go further. So far, we've been hard-coding the size of the desired rounded
rectangle. Imagine, though, that creating images of rounded rectangles of various
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sizes is something we do often. It would make sense to package this code up as a
function, where sz is not a fixed value but a parameter; the function will then return
the image:
func makeRoundedRectangle(_ sz:CGSize) -> UIImage {
let image = imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPoint.zero, size:sz),
cornerRadius: 8)

p.stroke()
}

return image

}
In the expression CGRect(origin:CGPoint.zero, size:sz), we refer to sz. This
expression is part of an anonymous function to be passed to imageOfSize. The term
sz refers to the sz parameter that arrives into the surrounding function makeRounded-
Rectangle. A parameter of the surrounding function is a variable external to and in
scope within the anonymous function, and the anonymous function is a closure, so it
captures the reference to that parameter as it is passed to imageOfSize.

Our code is becoming beautifully compact. To call makeRoundedRectangle, supply a
size; an image is returned. Thus, I can perform the call, obtain the image, and display
that image, all in one move, like this (self.iv is a UllmageView in the interface):

self.iv.image = makeRoundedRectangle(CGSize(width:45, height:20))

Function Returning Function

But now let’s go even further! Instead of returning an image, our function can return
a function that makes rounded rectangles of the specified size. If you've never seen a
function returned as a value from a function, you may now be gasping for breath. But
a function, after all, can be used as a value. We have already passed a function into a
function as an argument in the function call; now we are going to receive a function
from a function call as its result:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage { @
func f () -> UIImage { ©®
let im = imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPoint.zero, size:sz),
cornerRadius: 8)

p.stroke()
}
return im
}
return f @

}
Let’s analyze that code slowly:
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@ The declaration is the hardest part. What on earth is the type (signature) of this
function makeRoundedRectangleMaker? It is (CGSize) -> () -> UIImage. That
expression has two arrow operators. To understand it, keep in mind that every-
thing after each arrow operator is the type of a returned value. So makeRounded-
RectangleMaker is a function that takes a CGSize parameter and returns a () ->
UIImage. Okay, and whats a () -> UIImage? We already know that: it’s a func-
tion that takes no parameters and returns a Ullmage. So makeRoundedRectangle-
Maker is a function that takes a CGSize parameter and returns a function — a
function that itself, when called with no parameters, will return a UIlmage.

® Now here we are in the body of the function makeRoundedRectangleMaker, and
our first step is to declare a function (a function-in-function, or local function) of
precisely the type we intend to return, namely, one that takes no parameters and
returns a Ullmage. Here, were naming this function f. The way this function
works is simple and familiar: it calls imageOfSize, passing it an anonymous func-
tion that makes an image of a rounded rectangle (im) — and then it returns the
image.

© Finally, we return the function we just made (f). We have thus fulfilled our con-
tract: we said we would return a function that takes no parameters and returns a
Ullmage, and we do so.

But perhaps you are still gazing open-mouthed at makeRoundedRectangleMaker,
wondering how you would ever call it and what you would get if you did. Let’s try it:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))

What is the variable maker after that code runs? It’s a function — a function that takes
no parameters and that, when called, produces the image of a rounded rectangle of
size 45,20. You don't believe me? I'll prove it — by calling the function that is now the
value of maker:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))
self.iv.image = maker()

Now that you've gotten over your stunned surprise at the notion of a function that
produces a function as its result, turn your attention once again to the implementa-
tion of makeRoundedRectangleMaker and let’s analyze it again, a different way.
Remember, I didn’t write that function to show you that a function can produce a
function. I wrote it to illustrate closures! Let’s think about how the environment gets
captured:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
func f () -> UIImage {
let im = imageOfSize(sz) { // *
let p = UIBezierPath(
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roundedRect: CGRect(origin:CGPoint.zero, size:sz), // *
cornerRadius: 8)

p.stroke()
}
return im
}
return f

}

The function f takes no parameters. Yet, twice within the function body of f (I've
marked the places with asterisk comments), there are references to a size value sz.
The body of the function f can see sz, the parameter of the surrounding function
makeRoundedRectangleMaker, because it is in a surrounding scope. The function f
captures the reference to sz at the time makeRoundedRectangleMaker is called, and
keeps that reference when f is returned and assigned to maker:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))

That is why maker is now a function that, when it is called, creates and returns an
image of the particular size 45,20 even though it itself will be called with no parame-
ters. The knowledge of what size of image to produce has been baked into the func-
tion referred to by maker.

Looking at it another way, makeRoundedRectangleMaker is a factory for creating a
whole family of functions similar to maker, each of which produces an image of one
particular size. That’s a dramatic illustration of the power of closures.

Before I leave makeRoundedRectangleMaker, I'd like to rewrite it in a Swiftier fashion.
Within f, there is no need to create im and then return it; we can return the result of
calling image0OfSize directly:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
func f () -> UIImage {
return imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPoint.zero, size:sz),
cornerRadius: 8)
p.stroke()
}
}

return f

}

But there is no need to declare f and then return it either; it can be an anonymous
function and we can return it directly:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
return {
return imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPoint.zero, size:sz),
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cornerRadius: 8)
p.stroke()

}

But our anonymous function consists of just one statement, returning the result of
the call to image0fSize. (The anonymous function parameter to imageOfSize con-
sists of multiple statements, but the image0OfSize call itself is still just one Swift state-
ment.) Thus there is no need to say return:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
return {
imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPoint.zero, size:sz),
cornerRadius: 8)
p.stroke()

}

Closure Setting a Captured Variable

The power that a closure gets through its ability to capture its environment is even
greater than I've shown so far. If a closure captures a reference to a variable outside
itself, and if that variable is settable, the closure can set the variable.

For example, let’s say I've declared this simple function. All it does is to accept a func-
tion that takes an Int parameter, and to call that function with an argument of 100:

func pass100 (_ f:(Int) -> ()) {
f(100)
}

Now, look closely at this code and try to guess what will happen when we run it:

var x = 0

print(x)

func setX(newX:Int) {
X = newX

iassl@@(setx)

print(x)
The first print(x) call obviously produces 0. The second print(x) call produces 100!
The pass100 function has reached into my code and changed the value of my variable
x. That’s because the function setX that I passed to pass100 contains a reference to x;
not only does it contain it, but it captures it; not only does it capture it, but it sets its
value. That x is my x. Thus, pass100 was able to set my x just as readily as I would
have set it by calling setX directly.
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Closure Preserving Its Captured Environment

When a closure captures its environment, it preserves that environment even if noth-
ing else does. Here’s an example calculated to blow your mind — a function that modi-
fies a function:

func countAdder(_ f: @escaping () -> ()) -> () -> () {
var ct = 0
return {
ct=ct+1
print("count is \(ct)")
fO

}

The function countAdder accepts a function as its parameter and returns a function
as its result. (I'll explain the @escaping attribute in the next section.) The function
that it returns calls the function that it accepts, with a little bit added: it increments a
variable and reports the result. So now try to guess what will happen when we run
this code:

func greet () {
print("howdy")
}
let countedGreet = countAdder(greet)

countedGreet()
countedGreet()
countedGreet()

What we've done here is to take a function greet, which prints "howdy", and pass it
through countAdder. What comes out the other side of countAdder is a new function,

which we've named countedGreet. We then call countedGreet three times. Here’s
what appears in the console:

count is 1
howdy
count is 2
howdy
count is 3
howdy

Clearly, countAdder has added to the functionality of the function that was passed
into it the ability to report how many times it is called. Now ask yourself: Where on
earth is the variable that maintains this count? Inside countAdder, it was a local vari-
able ct. But it isn’t declared inside the anonymous function that countAdder returns.
That’s deliberate! If it were declared inside the anonymous function, we would be set-
ting ct to 0 every time countedGreet is called — we wouldn't be counting. Instead, ct
is initialized to 0 once and then captured by the anonymous function. This variable is
thus preserved as part of the environment of countedGreet — it is outside counted-
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Greet in some mysterious environment-preserving world, so that it can be incremen-
ted every time countedGreet is called.

Escaping Closures

If a function passed as parameter to a function will be preserved for later execution,
rather than being called directly, its type must be marked @escaping, to signal that
this is a closure that captures and preserves its environment. The compiler will detect
violations of this rule, so if you find the rule confusing, don’t worry about it; just let
the compiler enforce it for you.

So, for example, this function is legal because it receives a function and calls it
directly:
func funcCaller(f:() -> ()) {
f0)
}
And this function is legal, even though it returns a function to be executed later,
because it also creates that function internally:
func funcMaker() -> () -> () {
return { print("hello world") }
}
But this function is illegal. It returns a function to be executed later, having acquired
that function as a parameter:

func funcPasser(f:() -> ()) -> () -> () { // compile error
return f

}
The solution is to mark the type of the incoming parameter f as @escaping, and the
compiler will prompt you to do so:

func funcPasser(f:@escaping () -> ()) -> () -> () {
return f

}

One secondary consequence of this distinction is that if an anonymous function
passed as an @escaping parameter refers to a property or method of self, the com-
piler will insist that you say self explicitly. That’s because such a reference captures
self, and the compiler wants you to acknowledge this fact by saying self.

Curried Functions

Return once more to makeRoundedRectangleMaker:
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func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
return {
imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPoint.zero, size:sz),
cornerRadius: 8)
p.stroke()

}

There’s something I don't like about this method: the size of the rounded rectangle
that it creates is a parameter (sz), but the cornerRadius of the rounded rectangle is
hard-coded as 8. Id like the ability to specify a value for the corner radius as well. I
can think of two ways to do it. One is to give makeRoundedRectangleMaker itself
another parameter:

func makeRoundedRectangleMaker(_ sz:CGSize,
return {
imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPoint.zero, size:sz),
cornerRadius: r)
p.stroke()

r:CGFloat) -> () -> UIImage {

}
And we would then call it like this:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20), 8)

But there’s another way. The function that we are returning from makeRounded-
RectangleMaker takes no parameters. Instead, it could take the extra parameter:

func makeRoundedRectangleMaker(_ sz:CGSize) -> (CGFloat) -> UIImage {
return { r in
imageOfSize(sz) {
let p = UIBezierPath(
roundedRect: CGRect(origin:CGPoint.zero, size:sz),
cornerRadius: r)
p.stroke()

}

Now makeRoundedRectangleMaker returns a function that, itself, takes one parame-
ter, so we must remember to supply that when we call it:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))
self.iv.image = maker(8)
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If we don’t need to conserve maker for anything, we can of course do all that in one
line — a function call that yields a function which we immediately call to obtain our
image:

self.iv.image = makeRoundedRectangleMaker (CGSize(width:45, height:20))(8)

When a function returns a function that takes a parameter in this way, it is called a
curried function (after the computer scientist Haskell Curry).

Function References and Selectors

Throughout this chapter, wherever I wanted to refer to a function by name — for
example, in order to pass it as argument to another function — I've been using its
bare name, like this:

func whatToAnimate() { // self.myButton is a button in the interface
self.myButton.frame.origin.y += 20

}

func whatToDoLater(finished:Bool) {
print("finished: \(finished)")

}

UIView.animate(withDuration:0.4,
animations: whatToAnimate, completion: whatToDoLater) // *

A bare name like whatToAnimate or whatToDoLater is a function reference. Use of the
bare name as a function reference is legal because it's unambiguous in this particular
context: thus, there’s only one function called whatToDoLater in scope, and I'm using
its name as argument in a function call where the parameter type is known (namely,
(Bool) -> ().

But now consider the following situation. Just as I can pass a function as an argu-
ment, I can assign a function as a value to a variable. And suppose I have two func-
tions with the same name, one that takes a parameter, and one that doesn’t:

class Dog {
func bark() {
print("woof")

}
func bark(_ loudly:Bool) {
if loudly {
print("WOOF")
} else {
self.bark()
}
}

func test() {
let barkFunction = bark // compile error

/...
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That code won’t compile, because the bare name bark is ambiguous in this context:
which bark method does it refer to? To solve this problem, Swift provides a notation
allowing you to refer to a function more precisely. This notation has two parts:

Full name
The full name of a Swift function is the name that precedes the parentheses, plus
parentheses containing the external names of its parameters, each followed by
colon. (If the external name of a parameter is suppressed, we can represent its
external name as an underscore.) For example, a function declared func
say(_ s:String, times:Int) has the full name say(_:times:).

Signature
The signature of a Swift function may be appended to its bare name (or full
name) with the keyword as. For example, a function declared func
say(_ s:String, times:Int) may be referred to as say as (String,Int) ->

0.

In our bark example, use of the full name solves the problem if the function to which
we want a reference is the one that takes a parameter:

class Dog {
func bark() {
// ... as before ...
}
func bark(loudly:Bool) {
// ... as before ...
}
func test() {
let barkFunction = bark(_:) // fine
}
}

But use of the full name doesn’t solve the problem if the function to which we want a
reference is the one that takes no parameters, because in that case the full name is the
bare name, which is exactly what’s ambiguous in this context. Use of the signature
solves the problem:

class Dog {
func bark() {
// ... as before ...
}
func bark(loudly:Bool) {
// ... as before ...
}
func test() {
let barkFunction = bark as () -> () // fine
}
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Obviously, an explicit signature is needed also when a function is overloaded. For
example:

class Dog{
func bark() {

}
func bark(_ loudly:Bool) {

}
func bark(_ times:Int) {

}
func test() {
let barkFunction = bark(_:) // compile error

}
}

Here, we have said that we want the bark that takes one parameter, but there are two

such bark functions, one whose parameter is a Bool, the other whose parameter is an
Int. The signature disambiguates (and we can use the bare name):

let barkFunction = bark as (Int) -> () // "times", not "loudly"

Function Reference Scope

In the foregoing examples of function references, there was no need to tell the com-
piler where the function is defined. That’s because the function is already in scope at
the point where the function reference appears. If you can call the function without
supplying further information, you can form the function reference without supplying
further information.

However, a function reference can supply further information about where a function
is defined; and sometimes it must do so. This is done by prefixing an instance or class
to the function reference, using dot-notation. For example, there are situations where
the compiler would force you to use self to call a function; in those situations, you
will have to use self to refer to the function as well:

class Dog {
func bark() {

}
func bark(_ loudly:Bool) {

}
func test() {
let f = {
return self.bark(_:) // self required here

3
}

To form a function reference to an instance method of another type, you have two
choices. If you have on hand an instance of that type, you can use dot-notation with a
reference to that instance:
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class Cat {
func purr() {

}
}
class Dog {
let cat = Cat()
func test() {
let purrFunction = cat.purr
}
}

The other possibility is to use the type with dot-notation (this works even if the func-
tion is an instance method):

class Cat {
func purr() {
}

}

class Dog {
func bark() {
}

func test() {
let barkFunction = Dog.bark // legal but not necessary
let purrFunction = Cat.purr

}

Selectors

In Objective-C, a selector is a kind of method reference. In iOS programming, you’ll
often have to call a Cocoa method that wants a selector as one of its parameters; very
typically, this parameter will be named either selector: or action:. Usually, such a
method also requires that you provide a target (an object reference); the idea is that
the runtime can later call the method by turning the selector into a message and
sending that message to that target.

Unfortunately, this architecture can be extremely risky. The reason is that to form the
selector, it is necessary to construct a literal string representing a method’s Objective-
C name. If you construct that name incorrectly, then when the time comes to send
the message to the target, the runtime will find that the target can’t handle that mes-
sage, because it has no such method, and the app comes to a violent and premature
halt, dumping into the console the dreaded phrase “unrecognized selector”

For example, here’s a typical recipe for failure:

class ViewController : UIViewController {
@IBOutlet var button : UIButton!
func viewDidLoad() {
super.viewDidLoad()
self.button.addTarget( // prepare to crash!
self, action: "buttonPressed", for: .touchUpInside)
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}
@objc func buttonPressed(_ sender: Any) {

/...
}
}
In that code, self.button is a button in the interface, and we are configuring it by
calling addTarget(action:for:), so that when the button is tapped, our button-
Pressed method will be called. But we are configuring it incorrectly! Unfortunately,
"buttonPressed" is not the Objective-C name of our buttonPressed method; the
correct name would have been "buttonPressed:", with a colon. (I'll explain why in
Appendix A.) Therefore, our app will crash when the user taps that button.

The point is that if you don’t know the rules for forming a selector string — or even if
you do, but you make a typing mistake — an “unrecognized selector” crash is likely to
result. Humans are fallible, and therefore “unrecognized selector” crashes have his-
torically been extremely common among iOS programmers. The Swift compiler,
however, is not fallible in this way. Therefore, Swift provides a way to let the compiler
form the selector for you, by means of #selector syntax.

To ask the compiler to form an Objective-C selector for you, you use #selector(...)
with a function reference inside the parentheses. Thus, we would rewrite our button
action example like this:

class ViewController : UIViewController {
@IBOutlet var button : UIButton!
func viewDidLoad() {
super.viewDidLoad()
self.button.addTarget(
self, action: #selector(buttonPressed), for: .touchUpInside)

}

@objc func buttonPressed(_ sender: Any) {
/]l ...

}

}

When you use that notation, two wonderful things happen:

The compiler validates the function reference
If your function reference isn’t valid, your code won't even compile. The compiler
also checks that this function is exposed to Objective-C; there’s no point forming
a selector for a method that Objective-C can’t see, as your app would crash if
Objective-C were to try to call such a method. To ensure Objective-C visibility,
the method may need to be marked with the @objc attribute; the compiler will
enforce this requirement.
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The compiler forms the Objective-C selector for you
If your code compiles, the actual selector that will be passed into this parameter is
guaranteed to be correct. You might form the selector incorrectly, but the com-
piler won't! Thus, it is impossible that the resulting selector should fail to match
the method, and there is no chance of an “unrecognized selector” crash.

Very rarely, you still might need to create a selector manually. You can use a literal
string, or you can instantiate Selector with the literal method name as argument —
for example, Selector("woohoo:").

You can still crash, even with #selector syntax, by sending an action message to

g‘L the wrong target. In the preceding example, if you changed self, the first argu-
ment of the addTarget call, to self.button, youd crash at runtime with “unrec-
ognized selector” — because the buttonPressed method is declared in
ViewController, not in UIButton. Unfortunately, the compiler won't help you
with this kind of mistake.
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CHAPTER 3
Variables and Simple Types

A variable is a named “shoebox” whose contained value must be of a single well-
defined type. Every variable must be explicitly and formally declared. To put a value
into the shoebox, thus causing the variable name to refer to that value, you assign the
value to the variable. The variable name becomes a reference to that value.

This chapter goes into detail about declaration and initialization of variables. It
then discusses all the primary built-in Swift simple types. (I mean “simple” as
opposed to collections; the primary built-in collection types are discussed at the end
of Chapter 4.)

Variable Scope and Lifetime

A variable not only gives its referent a name; it also, by virtue of where it is declared,
endows its referent with a particular scope (visibility) and lifetime. Assigning a value
to a variable is a way of ensuring that this value can be seen by code that needs to see
it and that it persists long enough to serve its purpose.

In the structure of a Swift file (see Example 1-1), a variable can be declared just about
anywhere. It will be useful to distinguish several levels of variable scope and lifetime:

Global variables

A global variable, or simply a global, is a variable declared at the top level of a
Swift file. A global variable lives as long as the file lives, which is as long as the
program runs. A global variable is visible everywhere (thats what “global”
means). It is visible to all code within the same file, because it is at top level, so
any other code in the same file must be at the same level or at a lower contained
level of scope. Moreover, it is visible (by default) to all code within any other file
in the same module, because Swift files in the same module can automatically see
one another, and hence can see one another’s top levels. For example:
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// Filel:
let globalvariable = "global"
class Dog {
func printGlobal() {
print(globalvariable) // *
}

}
/] File2:

class Cat {
func printGlobal() {
print(globalvariable) // *
}
}

Properties

A property is a variable declared at the top level of an object type declaration (an
enum, struct, or class). There are two kinds of properties: instance properties and
static/class properties.

Instance properties

By default, a property is an instance property. Its value can differ for each
instance of this object type. Its lifetime is the same as the lifetime of the
instance. Recall from Chapter 1 that an instance comes into existence
through deliberate instantiation of an object type; the subsequent lifetime of
the instance, and hence of its instance properties, depends primarily on the
lifetime of the variable to which the instance itself is assigned.

Static/class properties

A property is a static/class property if its declaration is preceded by the key-
word static or class. (I'll go into detail about those terms in Chapter 4.) Its
lifetime is the same as the lifetime of the object type. If the object type is
declared at the top level of a file, the property lives as long as the program
runs.

A property is visible to code inside the object declaration. For example, an object’s
methods can see that object’s properties. Such code can refer to the property
using dot-notation with self, and I always do this as a matter of style, but self

can usually be omitted except for purposes of disambiguation. An instance prop-
erty is also visible (by default) to other code, provided the other code has a refer-
ence to this instance; in that case, the property can be referred to through dot-

notation with the instance reference. A static/class property is visible (by default)
to other code that can see the name of this object type; in that case, it can be
referred to through dot-notation with the object type. For example:
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// Filel:

class Dog {
static let staticProperty = "staticProperty"
let instanceProperty = "instanceProperty"

func printInstanceProperty() {
print(self.instanceProperty) // *

}
}
// File2:
class Cat {
func printDogStaticProperty() {
print(Dog.staticProperty) // *
}
func printDogInstanceProperty() {
let d = Dog()
print(d.instanceProperty) // *
}
}

Local variables

A local variable is a variable declared inside a function body. A local variable lives
only as long as its surrounding curly-braces scope lives: it comes into existence
when the path of execution passes into the scope and reaches the variable decla-
ration, and it goes out of existence when the path of execution exits the scope.
Local variables are sometimes called automatic, to signify that they come into and
go out of existence automatically. A local variable can be seen only by subsequent
code within the same scope (including a subsequent deeper scope within the
same scope). For example:

class Dog {
func printLocalvariable() {
let localvariable = "local"
print(localvariable) // *

}

Variable Declaration

A variable is declared with let or var:

« With let, the variable becomes a constant — its value can never be changed after
the first assignment of a value.

« With var, the variable is a true variable, and its value can be changed by subse-
quent assignment.

A variable declaration is usually accompanied by initialization — you use an equal
sign to assign the variable a value, as part of the declaration. That, however, is not a
requirement; it is legal to declare a variable without immediately initializing it.
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What is not legal is to declare a variable without giving it a fype. A variable must have
a type from the outset, and that type can never be changed. A variable declared with
var can have its value changed by subsequent assignment, but the new value must
conform to the variable’s fixed type.

You can give a variable a type explicitly or implicitly:

Explicit variable type declaration
After the variable’s name in the declaration, add a colon and the name of the

type:
var x : Int

Implicit variable type by initialization
If you initialize the variable as part of the declaration, and if you provide no
explicit type, Swift will infer its type, based on the value with which it is initial-
ized:

var x =1 // and now x is an Int

It is perfectly possible to declare a variable’s type explicitly and assign it an initial
value, all in one move:

var x : Int =1

In that example, the explicit type declaration is superfluous, because the type (Int)
would have been inferred from the initial value. Sometimes, however, providing an
explicit type, even while also assigning an initial value, is not superfluous. Here are
the main situations where that’s the case:

Swift’s inference would be wrong
A very common case in my own code is when I want to provide the initial value
as a numeric literal. Swift will infer either Int or Double, depending on whether
the literal contains a decimal point. But there are a lot of other numeric types!
When I mean one of those, I will provide the type explicitly, like this:

let separator : CGFloat = 2.0

Swift can’t infer the type
Sometimes, the type of the initial value is completely unknown to the compiler
unless you tell it. A very common case involves option sets (discussed in Chap-
ter 4). This won’t compile:

var opts = [.autoreverse, .repeat] // compile error

The problem is that the name . autoreverse is a shortcut for UIView.Animation-
Options.autoreverse (and so too for .repeat), but Swift doesn’t know that
unless we tell it. Explicitly typing the variable is an elegant way of doing that:

let opts : UIView.AnimationOptions = [.autoreverse, .repeat]
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The programmer can’t infer the type
I frequently include a superfluous explicit type declaration as a kind of note to
myself. Here’s an example from my own code:

let duration : CMTime = track.timeRange.duration

In that code, track is an AVAssetTrack. Swift knows perfectly well that the
duration property of an AVAssetTrack’s timeRange property is a CMTime. But I
don’t! In order to remind myself of that fact, I've shown the type explicitly.

Even if the compiler can in theory infer a variable’s type correctly from its initial
value, such inference takes time. You can reduce compilation times by providing
your variable declarations with explicit types.

As T've already said, a variable doesn’t have to be initialized when it is declared —
even if the variable is a constant. It is legal to write this:

let x : Int

Now x is an empty shoebox — an Int variable without an initial value. You can assign
this variable an initial value later. Since this particular variable is a constant, that ini-
tial value will be its only value from then on.

In the case of an instance property of an object (at the top level of an enum, struct, or
class declaration), that sort of thing is quite normal, because the property can be ini-
tialized in the object’s initializer function (I'll have more to say about that in Chap-
ter 4). For a local variable, however, such behavior is unusual, and I strongly urge you
to avoid it. It isn’t a disaster — the Swift compiler will stop you from trying to use a
variable that has never been assigned a value — but it’s not a good habit. A local vari-
able should generally be initialized as part of its declaration.

The exception that proves the rule is what we might call conditional initialization.
Sometimes, we don’t know a variablé’s initial value until we've performed some sort of
conditional test. The variable itself, however, can be declared only once; so it must be
declared in advance and conditionally initialized afterward. This sort of thing is not
unreasonable — though there are other (possibly better) ways to write it, to which I'll
come in due course:

let timed : Bool

if val == 1 {
timed = true
} else {

timed = false

}

When a variable’s address is to be passed as argument to a function, the variable must
be declared and initialized beforehand, even if the initial value is fake. Recall this
example from Chapter 2:
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var r : CGFloat = 0
var g : CGFloat = 0
var b : CGFloat = 0

var a : CGFloat = 0
c.getRed(&r, green: &g, blue: &b, alpha: &a)

After that code runs, our four CGFloat 0 values will have been replaced; they were
just momentary placeholders, to satisty the compiler.

On rare occasions, you'll want to call a Cocoa method that returns a value immedi-
ately and later uses that value in a function passed to that same method. For example,
Cocoa has a UTApplication instance method declared like this:

func beginBackgroundTask(
expirationHandler handler: (() -> Void)? = nil)
-> UIBackgroundTaskIdentifier

beginBackgroundTask(expirationHandler:) returns an identifier object, and will
later call the expirationHandler: function passed to it — a function in which you
will want to use the identifier object that was returned at the outset. Swift’s safety rules
won't let you declare the variable that holds this identifier and use it in an anonymous
function all in the same statement:

let bti = UIApplication.shared.beginBackgroundTask {
UIApplication.shared.endBackgroundTask(bti)
} // error: variable used within its own initial value

Therefore, you need to declare the variable beforehand; but then Swift has another
complaint:

var bti : UIBackgroundTaskIdentifier

bti = UIApplication.shared.beginBackgroundTask {
UIApplication.shared.endBackgroundTask(bti)

} // error: variable captured by a closure before being initialized

One solution is to declare the variable beforehand and give it a fake initial value as a
placeholder:

var bti : UIBackgroundTaskIdentifier = .invalid
bti = UIApplication.shared.beginBackgroundTask {

UIApplication.shared.endBackgroundTask(bti)
}

(Alternatively, declaring bti as an Optional, discussed later in this chapter, might be
considered a slightly cleaner approach.)

Computed Initializer

Sometimes, youd like to run several lines of code in order to compute a variable’s ini-
tial value. A simple and compact way to express this is with a define-and-call anony-

74 | (Chapter3:Variables and Simple Types



mous function (see “Define-and-Call” on page 51). I'll illustrate by rewriting an
earlier example:

let timed : Bool = {

if val == 1 {
return true
} else {

return false
}
10

You can do the same thing when you're initializing an instance property. For example,
here’s a class with an image (a Ullmage) that I'm going to need many times later on. It
makes sense to create this image in advance as a constant instance property of the
class. To create it means to draw it. That takes several lines of code. So I declare and
initialize the property by defining and calling an anonymous function, like this (for
my imageOfSize utility, see Chapter 2):

class RootViewController : UITableViewController {
let cellBackgroundImage : UIImage = {
return imageOfSize(CGSize(width:320, height:44)) {
// ... drawing goes here ...

}
10

/] ... rest of class goes here ...

}

You might ask: Instead of a define-and-call initializer, why don’t I declare an instance
method and initialize the instance property by calling that method? The reason is that
that’s illegal:

class RootViewController : UITableViewController {
let cellBackgroundImage : UIImage = self.makeTheImage() // compile error
func makeTheImage() -> UIImage {
return imageOfSize(CGSize(width:320, height:44)) {
// ... drawing goes here ...

3
}

The problem is that, at the time of initializing the instance property, there is no
instance yet — the instance, after all, is what we are in the process of creating. A
define-and-call anonymous function can be a neat legal solution, letting us declare
and initialize an instance property with multiple lines of code. (Even so, there are lim-
itations on what you can say within a define-and-call anonymous function that initi-
alizes an instance property; I'll discuss those limitations, and provide a solution, a
little later in this chapter.)
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Computed Variables

The variables I've been describing so far in this chapter have all been stored variables.
The shoebox analogy applies. The variable is a name, like a shoebox; a value can be
put into the shoebox by assigning it to the variable, and it then sits there and can be
retrieved later by referring to the variable, for as long the variable lives.

Alternatively, a variable can be computed. This means that the variable, instead of
having a value, has functions. One function, the setter, is called when the variable is
assigned to. The other function, the getter, is called when the variable is referred to.
Here’s some code illustrating schematically the syntax for declaring a computed
variable:

var now : String { @

get { @
return Date().description @

}

set { @
print(newValue) @

}

}

@ The variable must be declared with var (not let). Its type must be declared
explicitly. The type is followed immediately by curly braces.

® The getter function is called get. There is no formal function declaration; the
word get is simply followed immediately by a function body in curly braces.

© The getter function must return a value of the same type as the variable.

O The setter function is called set. There is no formal function declaration; the
word set is simply followed immediately by a function body in curly braces.

O The setter behaves like a function taking one parameter. By default, this parame-
ter arrives into the setter function body with the local name newvalue.

Here’s some code that illustrates the use of our computed variable. You don’t treat it
any differently than any other variable! To assign to the variable, assign to it; to use
the variable, use it. Behind the scenes, though, the setter and getter functions are
called:

now = "Howdy" // Howdy @
print(now) // 2018-06-26 17:03:30 +0000 @

@ Assigning to now calls its setter. The argument passed into this call is the assigned
value; here, that’s "Howdy". That value arrives in the set function as newValue.
Our set function prints newValue to the console.

76 | Chapter3:Variables and Simple Types



® Fetching now calls its getter. Our get function obtains the current date-time and
translates it into a string, and returns the string. Our code then prints that string
to the console.

Observe that when we set now to "Howdy" in the first line, the string "Howdy" wasn’t
stored anywhere. It had no effect, for example, on the value of now in the second line.
A set function can store a value, but it can’t store it in this computed variable; a com-
puted variable isn't storage! It’s a shorthand for calling its getter and setter functions.

There are a couple of variants on the basic syntax I've just illustrated:

o The name of the set function parameter doesn’t have to be newvalue. To specify
a different name, put it in parentheses after the word set, like this:

set (val) { // now you can use "val" inside the setter function body

o There doesn’t have to be a setter. If the setter is omitted, this becomes a read-only
variable. This is the computed variable equivalent of a let variable: attempting to
assign to it is a compile error.

o There must always be a getter! However, if there is no setter, the word get and
the curly braces that follow it can be omitted. This is a legal declaration of a read-
only variable:

var now : String {
return Date().description

}

A computed variable can be useful in many ways. Here are the ones that occur most
frequently in my real programming life:

Fagade for a longer expression
When a value can be readily calculated or obtained each time it is needed, it often
makes for simpler syntax to express it as a read-only computed variable, which
effectively acts as a shorthand for a longer expression. Here’s an example from my
own code:

var mp : MPMusicPlayerController {
return MPMusicPlayerController.systemMusicPlayer

}
var nowPlayingItem : MPMedialtem? {
return self.mp.nowPlayingItem

}

No work is saved by these computed variables; each time we ask for self.now-
PlayingItem, we are fetching MPMusicPlayerController.systemMusic-
Player.nowPlayingItem. Still, the clarity and convenience of the resulting code
justifies the use of computed variables here.
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Fagade for an elaborate calculation

A computed variable getter can encapsulate multiple lines of code, in effect turn-
ing a method into a property. Here’s an example from my own code:

var authorOfItem : String? {
guard let authorNodes =
self.extensionElements(
withXMLNamespace: "http://www.tidbits.com/dummy",
elementName: "app_author_name")
else {return nil}
guard let authorNode = authorNodes.last as? FPExtensionNode
else {return nil}
return authorNode.stringValue

}
In that example, I'm diving into some parsed XML and extracting a value. I could
have declared this process as a method (func authorOfItem() -> String), but
this value is more naturally thought of as a thing, a feature of the instance self,
rather than as the output of a function. Thus it makes intuitive sense to charac-
terize it as a computed property.

Fagade for storage

A computed variable can sit in front of one or more stored variables, acting as a
gatekeeper on how those stored variables are set and fetched. This is comparable
to an accessor method in Objective-C. In the extreme case, a public computed
variable is backed by a private stored variable.

Here’s a practical example. My class has an instance property myBigData, holding
a very large stored piece of data, which can alternatively be nil (it's an Optional,
as I'll explain later). When my app goes into the background, I want to reduce
memory usage (because iOS kills backgrounded apps that use too much mem-
ory). So I plan to save the data of myBigData as a file to disk, and then set the
variable itself to nil, thus releasing its data from memory. Now consider what
should happen when my app comes back to the front and my code tries to fetch
myBigData. If it isn't nil, we just fetch its value. But if it is nil, this might be
because we saved its value to disk. So now I want to restore its value by reading it
from disk, and then fetch its value. This is a perfect use of a computed variable
facade:

private var _myBigData : Data! = nil
var myBigData : Data! {
set (newdata) {
self._myBigData = newdata
}
get {
if _myBigData == nil {
// ... get a reference to file on disk, f ...
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if let d = try? Data(contentsOf:f) {
self._myBigData = d
// ... erase the file ...

}
}
return self._myBigData

}

As the preceding examples have demonstrated, a computed instance property func-
tion can refer to other instance members. That's important, because in general the
initializer for a stored property can’t do that. The reason its legal for a computed
property is that its functions won't be called until the instance actually exists.

Setter Observers

Computed variables are not needed as a stored variable facade as often as you might
suppose. That's because Swift has another feature, which lets you inject functionality
into the setter of a stored variable — setter observers. These are functions that are
called just before and just after other code sets a stored variable.

The syntax for declaring a variable with a setter observer is very similar to the syntax
for declaring a computed variable; you can write a willSet function, a didSet func-
tion, or both:

var s = "whatever" { @
willSet { @
print(newValue) @
}
didset { @
print(oldvalue) @
// self.s = "something else"
}

}

©® The variable must be declared with var (not let). It can be assigned an initial
value. It is then followed immediately by curly braces.

® The willSet function, if there is one, is the word willSet followed immediately
by a function body in curly braces. It is called when other code sets this variable,
just before the variable actually receives its new value.

© By default, the willSet function receives the incoming new value as newValue.
You can change this name by writing a different name in parentheses after the
word willSet. The old value is still sitting in the stored variable, and the willSet
function can access it there.
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O The didSet function, if there is one, is the word didSet followed immediately by
a function body in curly braces. It is called when other code sets this variable, just
after the variable actually receives its new value.

© By default, the didSet function receives the old value, which has already been
replaced as the value of the variable, as oldValue. You can change this name by
writing a different name in parentheses after the word didSet. The new value is
already sitting in the stored variable, and the didSet function can access it there.
Moreover, it is legal for the didSet function to set the stored variable to a different
value.

Setter observer functions are not called when the stored variable is initialized or
when the didSet function changes the stored variable’s value. That would be
circular!

In practice, I find myself using setter observers, rather than a computed variable, in
the vast majority of situations where I would have used a setter override in Objective-
C. Here’s an example. This is an instance property of a view class. Every time this
property changes, we need to change the interface to reflect it. Not only do we change
the interface, but also we “clamp” the incoming value within a fixed limit:

var angle : CGFloat = 0 {
didSet {
// clamp! angle must not be smaller than 0 or larger than 5
self.angle = min(max(self.angle, 0), 5)
// modify interface to match
self.transform = CGAffineTransform(rotationAngle: self.angle)

}

A computed variable can't have setter observers. But it doesn’t need them! There’s a
setter function, so anything additional that needs to happen during setting can be
programmed directly into that setter function.

Lazy Initialization

The term lazy is not a pejorative puritanical judgment; it’s a formal description of an
important behavior. If a stored variable is assigned an initial value as part of its decla-
ration, and if it uses lazy initialization, then the initial value is not actually evaluated
and assigned until running code accesses the variable’s value.

There are three types of variable that can be initialized lazily in Swift:

Global variables
Global variables are automatically lazy. This makes sense if you ask yourself when
they should be initialized. As the app launches, files and their top-level code are
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encountered. It would make no sense to initialize globals now, because the app
isn’t even running yet. Thus global initialization must be postponed to some
moment that does make sense. Therefore, a global variable’s initialization doesn’t
happen until other code first refers to that global. Under the hood, this behavior
is implemented in such a way as to make initialization both singular (it can hap-
pen only once) and thread-safe.

Static properties
Static properties are automatically lazy. They behave exactly like global variables,
and for basically the same reason. (There are no stored class properties in Swift,
so class properties can’t be initialized and thus can’t have lazy initialization.)

Instance properties
An instance property is not lazy by default, but it may be made lazy by marking
its declaration with the keyword lazy. This property must be declared with var,
not let. The initializer for such a property might never be evaluated, namely if
code assigns the property a value before any code fetches the property’s value.

Lazy initialization is often used to implement singleton. Singleton is a pattern where
all code is able to get access to a single shared instance of a certain class:

class MyClass {
static let sharedSingleton = MyClass()

}

Now other code can obtain a reference to MyClasss singleton by saying
MyClass.sharedSingleton. The singleton instance is not created until the first time
other code says this; subsequently, no matter how many times other code may say
this, the instance returned is always that same instance. (That is not what would hap-
pen if this were a computed read-only property whose getter calls MyClass() and
returns that instance; do you see why?)

Now let’s talk about lazy initialization of instance properties. Why might you want
this? One reason is obvious: the initial value might be expensive to generate, so youd
like to avoid generating it unless it is actually needed. But there’s another reason that
turns out to be even more important: a lazy initializer can do things that a normal
initializer can’t.

In particular, a lazy initializer can refer to the instance. A normal initializer can’t do
that, because the instance doesn’t yet exist at the time that a normal initializer would
need to run (ex hypothesi, were in the middle of creating the instance, so it isn't ready
yet). A lazy initializer, by contrast, won't run until some time after the instance has
fully come into existence, so referring to the instance is fine. Thus you can call
instance methods and refer to instance properties of self in the initializer of a lazy
instance property, but you can’t do those things if the instance property isn’t lazy.
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For example, this code would be illegal (because you can’t call an instance method in
an instance property initializer) if the arrow property weren’t declared lazy:

class MyView : UIView {
lazy var arrow = self.arrowImage()
func arrowImage () -> UIImage {
// ... big image-generating code goes here ...
}
}

A very common idiom is to initialize a lazy instance property with a define-and-call
anonymous function whose code can refer to self:

lazy var prog : UIProgressView = {
let p = UIProgressView(progressViewStyle: .default)
p.alpha = 0.7
p.trackTintColor = UIColor.clear
p.progressTintColor = UIColor.black
p.frame = CGRect(x:0, y:0, width:self.view.bounds.size.width, height:20)
p.progress = 1.0
return p

10

Unlike automatically lazy global and static variables, an instance property

/g‘L marked lazy does not initialize itself in a thread-safe way. When used in a multi-
threaded context, lazy instance properties can cause multiple initialization and
even crashes. Also, lazy instance properties can’t have setter observers; and there’s
no lazy let for instance properties, so you can't readily make a lazy instance
property read-only.

Built-In Simple Types

Every variable, and every value, must have a type. But what types are there? Up to this
point, I've assumed the existence of some types, such as Int and String, without for-
mally telling you about them. Here’s a survey of the primary simple types provided by
Swift, along with some instance methods, global functions, and operators that apply
to them. (Collection types will be discussed at the end of Chapter 4.)

Bool

The Bool object type (a struct) has only two values, commonly regarded as true and
false (or yes and no). You can represent these values using the literal keywords true
and false, and it is natural to think of a Bool value as being either true or false:

var selected : Bool = false
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In that code, selected is a Bool variable initialized to false; it can subsequently be
set to false or true, and to no other values. Because of its simple yes-or-no state, a
Bool variable of this kind is often referred to as a flag.

Cocoa methods very often expect a Bool parameter or return a Bool value. For exam-
ple, when your app launches, Cocoa calls a method in your code declared like this:
func application(_ application: UIApplication,
didFinishLaunchingWithOptions
launchOptions: [UIApplication.LaunchOptionsKey : Any]?)
-> Bool {
You can do anything you like in that method; often, you will do nothing. But you
must return a Bool! And in real life, that Bool will probably be true. A minimal
implementation thus looks like this:
func application(_ application: UIApplication,
didFinishLaunchingWithOptions
launchOptions: [UIApplication.LaunchOptionsKey : Any]?)

-> Bool {
return true

}
A Bool is useful in conditions; as I'll explain in Chapter 5, when you say if
something, the something is the condition, and is a Bool — or an expression that
evaluates to a Bool. For example, when you compare two values with the equality
comparison operator ==, the result is a Bool — true if they are equal to each other,
false if they are not:

if meaningOfLife == 42 { // ...

(Tl talk more about equality comparison in a moment, when we come to discuss
types that can be compared, such as Int and String.)

When preparing a condition, you will sometimes find that it enhances clarity to store
the Bool value in a variable beforehand:

let comp = self.traitCollection.horizontalSizeClass == .compact

if comp { // ...
Observe that, when employing that idiom, we use the Bool variable comp directly as
the condition. There is no need to test explicitly whether a Bool equals true or false;
the conditional expression itself is already testing that. It is silly — and arguably
wrong — to say if comp == true, because if comp already means “if comp is true”

Since a Bool can be used as a condition, a call to a function that returns a Bool can be
used as a condition. Here’s an example from my own code. I've declared a function
that returns a Bool to say whether the cards the user has selected constitute a correct
answer to the puzzle:

func isCorrect(_ cells:[CardCell]) -> Bool { // ...
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Thus, elsewhere I can say this:
if self.isCorrect(cellsToTest) { // ...

Unlike many computer languages, nothing else in Swift is implicitly coerced to or
treated as a Bool. In C, for example, a boolean is actually a number, and 0 is false. But
in Swift, nothing is false but false, and nothing is true but true.

The type name, Bool, comes from the English mathematician George Boole; Boolean
algebra provides operations on logical values. Bool values are subject to these same
operations:

! (not)
The ! unary operator reverses the truth value of the Bool to which it is applied as
a prefix. If ok is true, !ok is false — and vice versa.

&& (logical-and)
Returns true only if both operands are true; otherwise, returns false. If the first

operand is false, the second operand is not even evaluated (thus avoiding possi-
ble side effects).

| | (logical-or)
Returns true if either operand is true; otherwise, returns false. If the first

operand is true, the second operand is not even evaluated (thus avoiding possi-
ble side effects).

If a logical operation is complicated or elaborate, parentheses around subexpressions
can help clarify both the logic and the order of operations.

A common situation is that we have a Bool stored in a var variable somewhere, and
we want to reverse its value — that is, make it true if it is false, and false if it is
true. The ! operator solves the problem; we fetch the variable’s value, reverse it
with !, and assign the result back into the variable:

v.1lsUserInteractionEnabled = !v.isUserInteractionEnabled

That, however, is cumbersome and error-prone. New in Swift 4.2, there’s a simpler
way — call the toggle method on the Bool variable:

v.isUserInteractionEnabled. toggle()

Numbers

The main numeric types are Int and Double — meaning that, left to your own devi-
ces, those are the types you'll use. Other numeric types exist mostly for compatibility
with the C and Objective-C APIs that Swift needs to be able to talk to when youre
programming iOS.
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Int

The Int object type (a struct) represents an integer between Int.max and Int.min
inclusive. The actual values of those limits might depend on the platform and archi-
tecture under which the app runs, so don’t count on them to be absolute; in my test-
ing at this moment, they are 2%-1 and -2% respectively (64-bit words).

The easiest way to represent an Int value is as a numeric literal. A simple numeric
literal without a decimal point is taken as an Int by default. Internal underscores are
legal; this is useful for making long numbers readable. Leading zeroes are legal; this is
useful for padding and aligning values in your code.

You can write an Int literal using binary, octal, or hexadecimal digits. To do so, start
the literal with 0b, 0o, or 0x respectively. Thus, for example, 0x10 is decimal 16.

Double

The Double object type (a struct) represents a floating-point number to a precision of
about 15 decimal places (64-bit storage).

The easiest way to represent a Double value is as a numeric literal. Any numeric lit-
eral containing a decimal point is taken as a Double by default. Internal underscores
and leading zeroes are legal.

A Double literal may not begin with a decimal point (unlike C and Objective-C). If
the value to be represented is between 0 and 1, start the literal with a leading 0.

You can write a Double literal using scientific notation. Everything after the letter e is
the exponent of 10. You can omit the decimal point if the fractional digits would be
zero. For example, 3e2 is 3 times 10* (300).

You can write a Double literal using hexadecimal digits. To do so, start the literal with
0x. You can use exponentiation here too (and again, you can omit the decimal point);
everything after the letter p is the exponent of 2. For example, 0x10p2 is decimal 64,
because you are multiplying 16 by 2%

There are static properties Double.infinity and Double.pi, and an instance prop-
erty isZero, among others.

Numeric coercion

Coercion is the conversion of a value from one type to another, and numeric coercion
is the conversion of a value from one numeric type to another. Swift doesn’t really
have explicit coercion, but it has something that serves the same purpose — instantia-
tion. To convert an Int explicitly into a Double, instantiate Double with an Int in the
parentheses. To convert a Double explicitly into an Int, instantiate Int with a Double

Built-In Simple Types | 85



in the parentheses; this will truncate the original value (everything after the decimal
point will be thrown away):

let i = 10

let x = Double(i)

print(x) // 10.0, a Double

let y = 3.8

let j = Int(y)

print(j) // 3, an Int
When numeric values are assigned to variables or passed as arguments to a function,
Swift can perform implicit coercion of literals only. This code is legal:

let d : Double = 10

But this code is not legal, because what you’re assigning is a variable (not a literal) of a
different type; the compiler will stop you:

let 1 = 10

let d : Double = 1 // compile error
The problem is that 1 is an Int and d is a Double, and never the twain shall meet. The
solution is to coerce explicitly as you assign or pass the variable:

let 1 = 10
let d : Double = Double(i)

The same rule holds when numeric values are combined by an arithmetic operation.

Swift will perform implicit coercion of literals only. The usual situation is an Int com-
bined with a Double; the Int is treated as a Double:

let x = 10/3.0

print(x) // 3.33333333333333
But variables of different numeric types must be coerced explicitly so that they are the
same type if you want to combine them in an arithmetic operation. Thus, for
example:

let 1 = 10
let n = 3.0
let x =1/ n // compile error; you need to say Double(i)

These rules are evidently a consequence of Swift’s strict typing; but (as far as I am
aware) they constitute very unusual treatment of numeric values for a modern com-
puter language, and will probably drive you mad in short order. The examples I've
given so far were easily solved, but things can become more complicated if an arith-
metic expression is longer, and the problem is compounded by the existence of other
numeric types that are needed for compatibility with Cocoa, as I shall now proceed to
explain.
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Other numeric types

If you weren’t programming iOS — if you were using Swift in some isolated, abstract
world — you could probably do all necessary arithmetic with Int and Double alone.
Unfortunately, to program iOS you need Cocoa, which is full of other numeric types;
and Swift has types that match every one of them. Thus, in addition to Int, there are
signed integer types of various sizes — Int8, Int16, Int32, Int64 — plus the unsigned
integer type Ulnt along with Ulnt8, Ulnt16, Ulnt32, and UInt64. In addition to Dou-
ble, there is the lower-precision Float (32-bit storage, about 6 or 7 decimal places of
precision) and the extended-precision Float80 — plus, in the Core Graphics frame-
work, CGFloat (whose size can be that of Float or Double, depending on the bitness
of the architecture).

You may also encounter a C numeric type when trying to interface with a C APIL
These types, as far as Swift is concerned, are just type aliases, meaning that they are
alternate names for another type; for example, a CDouble (corresponding to C’s
double) is just a Double by another name, a CLong (C’s long) is an Int, and so on.
Many other numeric type aliases will arise in various Cocoa frameworks; for example,
Timelnterval (Objective-C NSTimelnterval) is merely a type alias for Double.

Recall that you can’t assign, pass, or combine values of different numeric types using
variables; you have to coerce those values explicitly to the correct type. But now it
turns out that youre being flooded by Cocoa with numeric values of many types!
Cocoa will often hand you a numeric value that is neither an Int nor a Double — and
you won't necessarily realize this, until the compiler stops you dead in your tracks for
some sort of type mismatch. You must then figure out what you've done wrong and
coerce everything to the same type.

Here’s a typical example from one of my apps. A slider in the interface is a UISlider,
whose minimumValue and maximumValue are Floats. In this code, s is a UISlider, g is a
UlGestureRecognizer, and we're trying to use the gesture recognizer to move the slid-

>«

er’s “thumb” to wherever the user tapped within the slider:

let pt = g.location(in:s) @
let percentage = pt.x / s.bounds.size.width @
let delta = percentage * (s.maximumValue - s.minimumValue) // compile error @

That won’t compile. Here’s why:
@ ptisa CGPoint, and therefore pt.x is a CGFloat.

® Luckily, s.bounds.size.width is also a CGFloat, so the second line compiles;
percentage is now inferred to be a CGFloat.

® We now try to combine percentage with s.maximumValue and s.minimumValue
— and they are Floats, not CGFloats. That’s a compile error.
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Quick Help
let percentage = pt.x / s.bounds.size.width Declaration

let percentage: CGFloat

Figure 3-1. Quick Help displays a variables type

This sort of thing is not an issue in C or Objective-C, where there is implicit coercion;
but in Swift a CGFloat can’t be combined with Floats. We must coerce explicitly:

let delta = Float(percentage) * (s.maximumValue - s.minimumValue)

The good news here is that if you can get enough of your code to compile, Xcode’s
Quick Help feature will tell you what type Swift has inferred for a variable
(Figure 3-1). This can assist you in tracking down your issues with numeric types.

Another problem is that not every numeric value can be coerced to a numeric value
of a different type. In particular, integers of various sizes can be out of range with
respect to integer types of other sizes. For example, Int8.max is 127, so attempting to
assign a literal 128 or larger to an Int8 variable is illegal. Fortunately, the compiler will
stop you in that case, because it knows what the literal is. But now consider coercing a
variable value of a larger integer type to an Int8:

let i : Intl6 = 128

let 11 = Int8(1)
That code is legal — and will crash at runtime. One solution is to call the numeric
exactly: initializer; this is a failable initializer, meaning (as I'll explain in Chapter 4)
that you won't crash, but you’ll have to add code to test whether the coercion succee-

ded:

let 1 : Intl6 = 128

let 11 = Int8(exactly:1i)

if // ... test to learn whether i1i holds a real Int8
(You'll understand what the test would be when you've read the discussion of Option-
als later in this chapter.)

Yet another solution is to call the clamping: initializer; it always succeeds, because an
out of range value is forced to fall within range:

let 1 : Intl6 = 128

let i1 = Int8(clamping:i) // 127
When a floating-point type, such as a Double, is coerced to an integer type, the stuff
after the decimal point is thrown away first and then the coercion is attempted. Thus,
Int8(127.9) succeeds, because 127 is in bounds.
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Arithmetic operations

Swift’s arithmetic operators are as you would expect; they are familiar from other
computer languages as well as from real arithmetic:

+ (addition operator)
Add the second operand to the first and return the result.

- (subtraction operator)
Subtract the second operand from the first and return the result. A different
operator (unary minus), used as a prefix, looks the same; it returns the additive
inverse of its single operand. (There is, in fact, also a unary plus operator, which
returns its operand unchanged.)

* (multiplication operator)
Multiply the first operand by the second and return the result.

/ (division operator)
Divide the first operand by the second and return the result. As in C, division of
one Int by another Int yields an Int; any remaining fraction is stripped away. 10/3
is 3, not 3-and-one-third.

% (remainder operator)
Divide the first operand by the second and return the remainder. The result can
be negative, if the first operand is negative; if the second operand is negative, it is
treated as positive. For floating-point operands, use a method such as
remainder(dividingBy:) instead.

Integer types can be treated as binary bitfields and subjected to binary bitwise

operations:

& (bitwise-and)
A bit in the result is 1 if and only if that bit is 1 in both operands.

| (bitwise-or)
A bit in the result is 0 if and only if that bit is 0 in both operands.

~ (bitwise-or, exclusive)
A bit in the result is 1 if and only if that bit is not identical in both operands.

~ (bitwise-not)
Precedes its single operand; inverts the value of each bit and returns the result.

<< (shift left)
Shift the bits of the first operand leftward the number of times indicated by the
second operand.
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>> (shift right)
Shift the bits of the first operand rightward the number of times indicated by the
second operand.

Technically, the shift operators perform a logical shift if the integer is unsigned,
and an arithmetic shift if the integer is signed.

Integer overflow or underflow — for example, adding two Int values so as to exceed
Int.max — is a runtime error (your app will crash). In simple cases the compiler will
stop you, but you can get away with it easily enough:

let 1 = Int.max - 2

let j =1 + 12/2 // crash
Under certain circumstances you might want to force such an operation to succeed,
so special overflow/underflow methods are supplied. These methods return a tuple;
I'll show you an example even though I haven't discussed tuples yet:

let 1 = Int.max - 2

let (j, over) = i.addingReportingOverflow(12/2)
Now j is Int.min + 3 (because the value has wrapped around from Int.max to
Int.min) and over is an enum reporting that overflow occurred.

If you don’t care to hear about whether or not there was an overflow/underflow, spe-
cial arithmetic operators let you suppress the error: &+, &-, &*.

You will frequently want to combine the value of an existing variable arithmetically
with another value and store the result in the same variable. To do so, you will need to
have declared the variable as a var:

var i =1

i=1+7
As a shorthand, operators are provided that perform the arithmetic operation and the
assignment all in one move:

var i =1

1+=7
The shorthand (compound) assignment arithmetic operators are +=, -=, *=, /=, %=, &=,

| =, A=, <<=, >>=,

Operation precedence is largely intuitive: for example, * has a higher precedence than
+, so x+y*z multiplies y by z first, and then adds the result to x. Use parentheses to
disambiguate when in doubt; for example, (x+y)*z performs the addition first.

Global functions from the Swift standard library include abs (absolute value), max,
and min:
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let 1 -7

let j =6
print(abs(i)) // 7
print(max(i,j)) // 6

Other global mathematical functions, such as trigonometric sin and cos, come from
the C standard libraries that are visible because you've imported UIKit.

Doubles are also stocked with mathematical methods. Thus, for example, if d is a
Double, you can say d.squareRoot() or d.rounded(); if dd is also a Double, you can
say Double.maximum(d,dd).

New in Swift 4.2, numeric types have a random(in:) static method allowing genera-
tion of a random number. The parameter is a range representing the bounds within
which the random number should fall. (Ranges are discussed later in this chapter.)
This method is much easier to use correctly than the C library methods such as
arc4random_uniform, which should be avoided. For example:

// pick a number from 1 to 10
let 1 = Int.random(in: 1...10)

Comparison

Numbers are compared using the comparison operators, which return a Bool. For
example, the expression 1==]j tests whether 1 and j are equal; when 1 and j are num-
bers, “equal” means numerically equal. So 1==j is true only if 1 and j are “the same
number;” in exactly the sense you would expect.

The comparison operators are:

== (equality operator)
Returns true if its operands are equal.

!= (inequality operator)
Returns false if its operands are equal.

< (less-than operator)
Returns true if the first operand is less than the second operand.

<= (less-than-or-equal operator)
Returns true if the first operand is less than or equal to the second operand.

> (greater-than operator)
Returns true if the first operand is greater than the second operand.

>= (greater-than-or-equal operator)
Returns true if the first operand is greater than or equal to the second operand.
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Keep in mind that, because of the way computers store numbers, equality comparison
of Double values may not succeed where you would expect. To test whether two Dou-
bles are effectively equal, it can be more reliable to compare the difference between
them to a very small value (usually called an epsilon), though choosing an appropriate
value may not be easy:

let isEqual = abs(x - y) < 0.000001

String

The String object type (a struct) represents text. The simplest way to represent a
String value is with a literal, delimited by double quotes:

let greeting = "hello"

A Swift string is thoroughly modern; under the hood, it's Unicode, and you can
include any character directly in a string literal. If you don’t want to bother typing a
Unicode character whose codepoint you know, use the notation \u{...}, where
what’s between the curly braces is up to eight hex digits:

let leftTripleArrow = "\u{21DA}"

The backslash in that string representation is the escape character; it means, “I'm not
really a backslash; I indicate that the next character gets special treatment.” Various
nonprintable and ambiguous characters are entered as escaped characters; the most
important are:

\n

A Unix newline character

\t
A tab character

\ll
A quotation mark (escaped to show that this is not the end of the string literal)

\\

A backslash (escaped because a lone backslash is the escape character)

Starting in Swift 4, a literal string containing newline characters can be entered as
multiple lines (rather than a single-line expression containing "\n" characters). The
rules are:

o The multiline string literal must be delimited by a triple of double quotes (""") at
start and end.

 No material may follow the opening delimiter on the same line.

o No material other than whitespace may appear on the same line as the closing
delimiter.

92 | Chapter3:Variables and Simple Types



o The last implicit newline character before the closing delimiter is ignored.

+ The indentation of the closing delimiter dictates the indentation of the lines of
text, which must be indented at least as far as the closing delimiter (except for
completely empty lines).

For example:

func f() {
let s = """
Line 1
Line 2
Line 3
/...
}

In that code, the string s consists of three lines of text; lines 1 and 3 start with no
whitespace; line 2 starts with four spaces; and there are two newline characters,
namely after lines 1 and 2. To add a newline after line 3, you could enter a blank line,
or write it as an escaped \n.

In a multiline string literal, quotation marks do not have to be escaped. A line ending
with a backslash is joined with the following line. In this code, the string s consists of
just two lines of text; the second line consists of four spaces followed by “Line 2 and
this is still line 27

func () {
let s = """
Line "1"
Line 2 \
and this is still Line 2

/] ...
}
String interpolation permits you to embed any value that can be output with print
inside a literal string as a string, even if it is not itself a string. The notation is escaped
parentheses: \ (.. .). For example:

let n

=5
let s =

'You have \(n) widgets."

Now s is the string "You have 5 widgets." The example is not very compelling,
because we know what n is and could have typed 5 directly into our string; but imag-
ine that we don’t know what n is! Moreover, the stuff in escaped parentheses doesn’t
have to be the name of a variable; it can be almost any expression that evaluates as
legal Swift. If you don’t know how to add, this example is more compelling:
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letm =14
let n =35
let s = "You have \(m + n) widgets."

To combine (concatenate) two strings, the simplest approach is to use the + operator:

let s = "hello"
let s2 = " world"
let greeting = s + s2

This convenient notation is possible because the + operator is overloaded: it does one
thing when the operands are numbers (numeric addition) and another when the
operands are strings (concatenation). As I'll explain in Chapter 5, all operators can be
overloaded, and you can overload them to operate in some appropriate way on your
own types.

The + operator comes with a += assignment shortcut; naturally, the variable on the left
side must have been declared with var:

var s = "hello"
let s2 = " world"
S += s2

As an alternative to +=, you can call the append(_:) instance method:

var s = "hello"
let s2 = " world"
s.append(s2)

Another way of concatenating strings is with the joined(separator:) method. You
start with an array (yes, I know we haven’t gotten to arrays yet) of strings to be con-
catenated, and hand it the string that is to be inserted between all of them:

let s = "hello"
let s2 = "world"
let space = " "

let greeting = [s,s2].joined(separator:space)

The comparison operators are also overloaded so that they all work with String
operands. Two String values are equal (==) if they are, in the natural sense of the
words, “the same text” A String is less than another if it is alphabetically prior.

Some additional convenient instance methods and properties are provided. i{sEmpty
returns a Bool reporting whether this string is the empty string (""). hasPrefix(_:)
and hasSuffix(_:) report whether this string starts or ends with another string; for
example, "hello" .hasPrefix("he") is true. The uppercased and lowercased meth-
ods provide uppercase and lowercase versions of the original string.

Coercion between a String and an Int is possible. To make a string that represents an
Int, it is sufficient to use string interpolation; alternatively, use the Int as a String ini-
tializer, just as if you were coercing between numeric types:
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let 1
let s

7
String(i) // "7"

Your string can also represent an Int in some other base; supply a radix: argument
expressing the base:

let 1 = 31

let s = String(i, radix:16) // "1f"
A String that might represent a number can be coerced to a numeric type; an integer
type will accept a radix: argument expressing the base. The coercion might fail,
though, because the String might not represent a number of the specified type; so the
result is not a number but an Optional wrapping a number (I haven't talked about
Optionals yet, so you’ll have to trust me for now; failable initializers are discussed in
Chapter 4):

let s = "31"

let 1 = Int(s) // Optional(31)

let s2 = "1f"

let 12 = Int(s2, radix:16) // Optional(31)

The length of a String, in characters, is given by its count property:

let s = "hello"
let length = s.count // 5

This property is called count rather then length because a String doesn’t really have a
simple length. The String is stored as a sequence of Unicode codepoints, but multiple
Unicode codepoints can combine to form a character; so, in order to know how many
characters are represented by such a sequence, we actually have to walk through the
sequence and resolve it into the characters that it represents.

You, too, can walk through a String’s characters. The simplest way is with the
for...in construct (see Chapter 5). What you get when you do this are Character
objects; T'll talk more about Character objects later:

let s = "hello"
for c in s {
print(c) // print each Character on its own line

}

At an even deeper level, you can decompose a String into its UTF-8 codepoints or its
UTF-16 codepoints, using the utf8 and utf16 properties:

let s = "\u{BF}Qui\u{E9}n2"
for 1 in s.utf8 {
print(i) // 194, 191, 81, 117, 105, 195, 169, 110, 63
}
for 1 in s.utf16 {
print(i) // 191, 81, 117, 105, 233, 110, 63
}
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There is also a unicodeScalars property representing a collection (a String.Unicode-
ScalarView) of the String’s UTF-32 codepoints expressed as UnicodeScalar structs. To
illustrate, here’s a utility function that turns a two-letter country abbreviation into an
emoji representation of its flag:

func flag(country:String) -> String {
let base : UInt32 = 127397

var s =
for v in country.unicodeScalars {
s.unicodeScalars.append(UnicodeScalar(base + v.value)!)

}

return String(s)

}
// and here's how to use it:
let s = flag(country:"DE")

The curious thing is that there aren’t more methods for standard string manipulation.
How, for example, do you capitalize a string, or find out whether a string contains a
given substring? Most modern programming languages have a compact, convenient
way of doing things like that; Swift doesn’t. The reason appears to be that missing fea-
tures are provided by the Foundation framework, to which you’ll always be linked in
real life (importing UIKit imports Foundation). A Swift String is bridged to a Foun-
dation NSString. This means that, to a large extent, Foundation NSString properties
and methods magically spring to life whenever you are using a Swift String. For
example:

let s = "hello world"
let s2 = s.capitalized // "Hello World"

The capitalized property comes from the Foundation framework; it’s provided by
Cocoa, not by Swift. It's an NSString property; it appears tacked onto String “for free”
Similarly, here’s how to locate a substring of a string:

let s = "hello"

let range = s.range(of:"ell") // Optional(Range(...)) [details omitted]
I haven't explained yet what an Optional is or what a Range is (I'll talk about them
later in this chapter), but that innocent-looking code has made a remarkable round-
trip from Swift to Cocoa and back again: the Swift String s becomes an NSString, an
NSString method is called, a Foundation NSRange struct is returned, and the
NSRange is converted to a Swift Range and wrapped up in an Optional.

Character and String Index

You are more likely to be interested in a string’s characters than its codepoints. Code-
points are numbers, but what we naturally think of as characters are effectively mini-
mal strings: a character is a single “letter” or “symbol” — formally, a grapheme. The
equivalence between numeric codepoints and symbolic graphemes is provided, in
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The String—NSString Element Mismatch

Swift and Cocoa have different ideas of what the elements of a string are. The Swift
conception involves characters. The NSString conception involves UTF-16 code-
points. Each approach has its advantages. The NSString way makes for great speed
and efficiency in comparison to Swift, which must walk the string to investigate how
the characters are constructed; but the Swift way gives what you would intuitively
think of as the right answer. To emphasize this difference, a nonliteral Swift string has
no length property; its analog to an NSString’s length is its utf16.count.

Fortunately, the element mismatch doesn’t arise very often in practice; but it can arise.
Here’s a good test case:

let s = "Ha\u{030A}kon"

print(s.count) // 5

let length = (s as NSString).length // or: s.utf16.count
print(length) // 6

We've created our string (the Norwegian name Hakon) using a Unicode codepoint
that combines with the previous codepoint to form a character with a ring over it.

Swift walks the whole string, so it normalizes the combination and reports five char-
acters. Cocoa just sees at a glance that this string contains six 16-bit codepoints.

Unicode, by the notion of a grapheme cluster. To embody this equivalence, Swift pro-
vides the Character object type (a struct), representing a single grapheme cluster.

A String in Swift 4 and later simply is a character sequence — quite literally, a
Sequence of the Character objects that constitute it. That is why, as I mentioned ear-
lier, you can walk through a string with for...in to obtain the String’s Characters,
one by one; when you do that, youre walking through the string qua character
sequence:

let s = "hello"
for c in s {
print(c) // print each Character on its own line

}

It isn’t common to encounter Character objects outside of some character sequence of
which they are a part. There isn’t even a way to write a literal Character. To make a
Character from scratch, initialize it from a single-character String:

let ¢ = Character("h")

Similarly, you can pass a one-character String literal where a Character is expected,
and many examples in this section will do so.

By the same token, you can initialize a String from a Character:
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let ¢
let s

Character("h")
(String(c)).uppercased()

Characters can be compared for equality; “less than” means what you would expect it
to mean.

Formally, a String is both a Sequence of Characters and a Collection of Characters.
Sequence and Collection are protocols; I'll discuss protocols in Chapter 4, but what’s
important for now is that a String is endowed with methods and properties that it
gets by virtue of being a Sequence and a Collection.

For example, a String has a first and last property; the resulting Character is wrap-
ped in an Optional because the string might be empty:

let s = "hello"

let c1 = s.first // Optional("h")

let c2 = s.last // Optional("o")
The firstIndex(of:) method locates the first occurrence of a given character within
the sequence and returns its index. Again, this is an Optional, because the character
might be absent:

let s = "hello"

let firstL = s.firstIndex(of:"1") // Optional(2)
All Swift indexes are numbered starting with 0, so 2 means the third character. The
index value here, however, is not an Int; I'll explain in a moment what it is and what
it’s good for.

A related method, firstIndex(where:), takes a function that takes a Character and

returns a Bool. This code locates the first character smaller than "f":

let s = "hello"
let firstSmall = s.firstIndex {$0 < "f"} // Optional(1)

Those methods are matched by lastIndex(of:) and lastIndex(where:).

A String has a contains(_:) method that returns a Bool, reporting whether a certain
character is present:

let s = "hello"

let ok = s.contains("o") // true
Alternatively, contains(_:) can take a function that takes a Character and returns a
Bool. This code reports whether the target string contains a vowel:

let s = "hello"
let ok = s.contains {"aeiou".contains($0)} // true

The filter(_:) method, too, takes a function that takes a Character and returns a
Bool, effectively eliminating those characters for which false is returned. Here, we
delete all consonants from a string:
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let s = "hello"
let s2 = s.filter {"aeiou".contains($0)} // "eo"

The dropFirst and dropLast methods return, in effect, a new string without the first
or last character, respectively:

let s = "hello"
let s2 = s.dropFirst() // "ello"

I say “in effect” because a method that extracts a substring returns, in reality, a Sub-
string instance. The Substring struct is an efficient way of pointing at part of some
original String, rather than having to generate a new String. Thus, for example, when
we call s.dropFirst() on the string "hello", the resulting Substring points at the
"ello" part of "hello", which continues to exist; there is still only one string, and no
new string storage memory is required.

In general, the difference between a String and a Substring will make little practical
difference to you, because what you can do with a String, you can usually do also with
a Substring. Nevertheless, they are different classes; this code won't compile:

var s = "hello"

let s2 = s.dropFirst()

s = s2 // compile error
To pass a Substring where a String is expected, coerce the Substring to a String
explicitly:

var s = "hello"

let s2 = s.dropFirst()

s = String(s2)
prefix(_:) and suffix(_:) extract a Substring of a given length from the start or
end of the original string:

var s = "hello"

s = String(s.prefix(4)) // "hell"
split(_:) breaks a string up into an array, according to a function that takes a Char-
acter and returns a Bool. In this example, I obtain the words of a String, where a
“word” is simplemindedly defined as a run of Characters other than a space:

let s = "hello world"

let arr = s.split{s$0 == " "} // ["hello", "world"]
The result is actually an array of Substrings. If we needed to get String objects, we
could apply the map(_:) function and coerce them all to Strings. I'll talk about
map(_:) in Chapter 4, so you'll have to trust me for now:

let s = "hello world"
let arr = s.split{$0 == " "}.map{String($0)} // ["hello", "world"]
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A String, qua character sequence, can also be manipulated similarly to an array. For
example, you can use subscripting to obtain the character at a certain position.
Unfortunately, this isn’t as easy as it might be. For example, what’s the second charac-
ter of "hello"? This doesn’t compile:

"hello"
s[1] // compile error

let s
let c

The reason is that the indexes on a String (or its underlying character sequence) are
not Int values, but rather a special nested type, a String.Index (which is actually a type
alias for String.CharacterView.Index). To make an object of this type is rather tricky.
Start with a String’s (or a character sequence’s) startIndex or endIndex, or with the
return value from firstIndex or lastIndex; you can then call the index(_:offset-
By:) method to derive the index you want:

let s = "hello"

let ix = s.startIndex

let ix2 = s.index(ix, offsetBy:1)

let ¢ = s[ix2] // "e"
The reason for this clumsy circumlocution is that Swift doesn’t know where the char-
acters of a character sequence actually are until it walks the sequence; calling
index(_:offsetBy:) is how you make Swift do that.

To offset an index by a single position, you can obtain the next or preceding index
value with the index(after:) and index(before:) methods. Thus, I could have
written the preceding example like this:

let s = "hello"

let ix = s.startIndex

let ¢ = s[s.index(after:ix)] // "e"
Another reason why it’s necessary to think of a string index as an offset from the
startIndex or endIndex is that those values, as Ints, may not be what you think they
are — in particular, when you’re dealing with a Substring. Consider, once again, the
following:

let s = "hello"

let s2 = s.dropFirst()
Now s2 is "ello". What, then, is s2.startIndex? Not 0, but 1 — because s2 is a Sub-
string pointing into the original "hello", where the index of the "e" is 1. Similarly,
s2.firstIndex(of:"o") is not 3, but 4, because the index value is reckoned with
respect to the original "hello".

Once you've obtained a desired character index value, you can use it to modify the
String. For example, the insert(contentsOf:at:) method inserts a string into a
string:
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var s = "hello"

let ix = s.index(s.startIndex, offsetBy:1)

s.insertContentsOf("ey, h", at: ix) // s is now "hey, hello"
Similarly, remove(at:) deletes a single character, and also returns that character.
(Manipulations involving longer character stretches require use of a Range, which is
the subject of the next section.)

Note that a character sequence can be coerced directly to an Array of Character
objects — for example, Array("hello") creates an array of the characters "h", "e",
and so on. It could be worth your while to do that, because array indexes are Ints, and
are thus easy to work with. Once you've manipulated the array of Characters, you can
coerce it directly to a String. I'll give an example in the next section (and I'll discuss

arrays, and say more about collections and sequences, in Chapter 4).

Range

The Range object type (a struct) represents a pair of endpoints. There are two opera-
tors for forming a Range literal; you supply a start value and an end value, with one of
the Range operators between them:

... (closed range operator)
The notation a. ..b means “everything from a up to b, including b”

. .< (half-open range operator)
The notation a. .<b means “everything from a up to but not including b

Spaces around a Range operator are legal.

The types of a Range’s endpoints will typically be some kind of number — most often,
Ints:

letr =1...3

If the end value is a negative literal, it has to be enclosed in parentheses or preceded
by whitespace:

let r = -1000 ... -1
Starting in Swift 4, it is also possible to omit one of the end values from a Range lit-
eral, thus specifying a partial range. I'll give examples later.

A very common use of a Range is to loop through numbers with for...1in:

for ix in 1...3 {
print(ix) // 1, then 2, then 3
}
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There are no reverse Ranges: the start value of a Range can’t be greater than the end
value (the compiler won't stop you, but you'll crash at runtime). In practice, you can
use Range’s reversed() method to iterate from a higher value to a lower one:

for ix in (1...3).reversed() {
print(ix) // 3, then 2, then 1
}
In Chapter 5 TI'll show how to create a custom operator that effectively generates a
reverse Range.

You can also use a Range’s contains(_:) instance method to test whether a value falls
within given limits:

let ix = // ... an Int ...
if (1...3).contains(ix) { // ...

For purposes of testing containment, a Range’s endpoints can be Doubles:

let d =// ... a Double ...
if (0.1...0.9).contains(d) { // ...

There are also methods for learning whether two ranges overlap, and for clamping
one range to another.

Another common use of a Range is to index into a sequence. For example, here’s one
way to get the second, third, and fourth characters of a String. As I suggested at the
end of the preceding section, we coerce the String to an Array of Character; we can
then use an Int Range as an index into that array, and coerce back to a String:

let s = "hello"

let arr = Array(s)

let result = arr[1...3]

let s2 = String(result) // "ell"

A String is itself a sequence — a character sequence — so you can use a Range to
index directly into a String; but then it has to be a Range of String.Index, which, as
I've already pointed out, is rather tricky to obtain. By manipulating String.Index val-
ues, you can form a Range of the proper type and use it to extract a substring by
subscripting:

let s = "hello"

let ix1 = s.index(s.startIndex, offsetBy:1)

let ix2 = s.index(ix1, offsetBy:2)

let s2 = s[ix1...ix2] // "ell"
A partial range is a legal subscript value; the omitted endpoint is a shorthand for the
startIndex or endIndex:

let s = "hello"

let 1x2 = s.index(before: s.endIndex)
let s2 = s[..<ix2] // "hell"
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The replaceSubrange(_:with:) method splices into a range, thus modifying the
string:

var s = "hello"

let ix = s.startIndex

let r = s.index(ix, offsetBy:1)...s.index(ix, offsetBy:3)

s.replaceSubrange(r, with: "ipp") // s is now "hippo"
Similarly, you can delete a stretch of characters with the removeSubrange(_:)
method:

var s = "hello"

let ix = s.startIndex

let r = s.index(ix, offsetBy:1)...s.index(ix, offsetBy:3)
s.removeSubrange(r) // s is now "ho"

Tuple

A tuple is a lightweight custom ordered collection of multiple values. As a type, it is
expressed by surrounding the types of the contained values with parentheses, separa-
ted by a comma. For example, here’s a declaration for a variable whose type is a tuple
of an Int and a String:

var pair : (Int, String)

The literal value of a tuple is expressed in the same way — the contained values, sur-
rounded with parentheses and separated by a comma:

var patir : (Int, String) = (1, "Two")
Those types can be inferred, so there’s no need for the explicit type in the declaration:
var pair = (1, "Two")

Tuples are a pure Swift language feature; they are not compatible with Cocoa and
Objective-C, so you'll use them only for values that Cocoa never sees. Within Swift,
however, they have many uses. For example, a tuple is an obvious solution to the
problem that a function can return only one value; a tuple is one value, but it contains
multiple values, so using a tuple as the return type of a function permits that function
to return multiple values.

Tuples come with numerous linguistic conveniences. You can assign to a tuple of
variable names as a way of assigning to multiple variables simultaneously:

let ix: Int
let s: String
(ix, s) = (1, "Two")

That’s such a convenient thing to do that Swift lets you do it in one line, declaring and
initializing multiple variables simultaneously:

let (ix, s) = (1, "Two")
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To ignore one of the assigned values, use an underscore to represent it in the receiv-
ing tuple:

let pair

= (1, "Two")
let (_, s) =

pair // now s is "Two"
Assigning variable values to one another through a tuple swaps them safely:

var s1 = "hello"
var s2 = "world"
(s1, s2) = (s2, s1) // now s1 is "world" and s2 is "hello"

The enumerated method lets you walk a sequence with for...1in and receive, on each
iteration, each successive element’s index number along with the element itself; this
double result comes to you as — you guessed it — a tuple:

let s = "hello"
for (ix,c) in s.enumerated() {
print("character \(ix) is \(c)")
}
I also pointed out earlier that numeric instance methods such as addingReporting-
Overflow return a tuple.

You can refer to the individual elements of a tuple directly, in two ways. The first way
is by index number, using a literal number (not a variable value) as the name of a mes-
sage sent to the tuple with dot-notation:

let pair = (1, "Two")
let ix = pair.0 // now ix is 1

If you have a var reference to a tuple, you can assign into it by the same means:

var pair = (1, "Two")

pair.0 = 2 // now pair is (2, "Two")
The second way to access tuple elements is to give them labels. The notation is like
that of function parameters, and must appear as part of the explicit or implicit type
declaration. Thus, here’s one way to establish tuple element labels:

let pair : (first:Int, second:String) = (1, "Two")
And here’s another way:
let pair = (first:1, second:"Two")

The labels are now part of the type of this value, and travel with it through subse-
quent assignments. You can then use them as literal messages, just like (and together
with) the numeric literals:

var pair = (first:1, second:"Two")
let x = pair.first // 1

pair.first = 2

let y = pair.0 // 2
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The tuple generated by the enumerated method has labels of fset and element, so we
can rewrite an earlier example like this:

let s = "hello"
for t in s.enumerated() {

print("character \(t.offset) is \(t.element)")
}

You can assign from a tuple without labels into a corresponding tuple with labels
(and vice versa):
let pair = (1, "Two")

let pairWithNames : (first:Int, second:String) = pair
let ix = pairWithNames.first // 1

You can also pass, or return from a function, a tuple without labels where a corre-
sponding tuple with labels is expected:

func tupleMaker() -> (first:Int, second:String) {
return (1, "Two") // no labels here

}
let ix = tupleMaker().first // 1

If youre going to be using a certain type of tuple consistently throughout your pro-
gram, it might be useful to give it a type name. To do so, define a type alias. For exam-
ple, in my LinkSame app I have a Board class describing and manipulating the game
layout. The board is a grid of Piece objects. I need a way to describe positions of the
grid. That’s a pair of integers, so I define my own type as a tuple:

class Board {
typealias Point = (x:Int, y:Int)
/...
}
The advantage of that notation is that it now becomes easy to use Points throughout
my code. For example, given a Point, I can fetch the corresponding Piece:

func pilece(at p:Point) -> Piece? {
let (1,3) =p
/] ... error-checking goes here ...
return self.grid[i][j]

Void, the type of value returned by a function that doesn’t return a value, is
actually a type alias for an empty tuple. That’s why it is also notated as ().

Optional

The Optional object type (an enum) wraps another object of any type. What makes
an Optional optional is this: it might wrap another object, but then again it might not.
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Think of an Optional as being itself a kind of shoebox — a shoebox which can quite
legally be empty.

Lets start by creating an Optional that does wrap an object. Suppose we want an
Optional wrapping the String "howdy". One way to create it is with the Optional
initializer:

var stringMaybe = Optional("howdy")

If we log stringMaybe to the console with print, we'll see an expression identical to
the corresponding initializer: Optional("howdy").

After that declaration and initialization, stringMaybe is typed, not as a String, nor as
an Optional plain and simple, but as an Optional wrapping a String. This means that
any other Optional wrapping a String can be assigned to it — but not an Optional
wrapping some other type. This code is legal:

var stringMaybe = Optional("howdy")
stringMaybe = Optional("farewell")

This code, however, is not legal:

var stringMaybe = Optional("howdy")

stringMaybe = Optional(123) // compile error
Optional(123) is an Optional wrapping an Int, and you can’t assign an Optional
wrapping an Int where an Optional wrapping a String is expected.

Optionals are so important to Swift that special syntax for working with them is
baked into the language. The usual way to make an Optional is not to use the
Optional initializer (though you can certainly do that), but to assign or pass a value of
some type to a reference that is already typed as an Optional wrapping that type. This
seems as if it should not be legal — but it is. For example, once stringMaybe is typed
as an Optional wrapping a String, it is legal to assign a String directly to it. The out-
come is that the assigned String is wrapped in an Optional for us, automatically:

var stringMaybe = Optional("howdy")

stringMaybe = "farewell" // now stringMaybe is Optional("farewell")
We also need a way of typing something explicitly as an Optional wrapping a String.
Otherwise, we cannot declare a variable or parameter with an Optional type. For-
mally, an Optional is a generic, so an Optional wrapping a String is an
Optional<String> (T'll explain that syntax in Chapter 4). However, you don’t have to
write that. The Swift language supports syntactic sugar for expressing an Optional
type: use the name of the wrapped type followed by a question mark. For example:

var stringMaybe : String?

Thus I don’t need to use the Optional initializer at all. I can type the variable as an
Optional wrapping a String and assign a String into it for wrapping, all in one move:
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var stringMaybe : String? = "howdy"
That, in fact, is the normal way to make an Optional in Swift.

Once you've got an Optional wrapping a particular type, you can use it wherever an
Optional wrapping that type is expected — just like any other value. If a function
expects an Optional wrapping a String as its parameter, you can pass stringMaybe as
the argument:

func optionalExpecter(_ s:String?) {}

let stringMaybe : String? = "howdy"

optionalExpecter(stringMaybe)
Moreover, where an Optional wrapping a certain type of value is expected, you can
pass a value of that wrapped type instead. Thats because parameter passing is just like
assignment: an unwrapped value will be wrapped implicitly for you. For example, if a
function expects an Optional wrapping a String, you can pass a String argument,
which will be wrapped into an Optional in the received parameter:

func optionalExpecter(_ s:String?) {
// ... here, s will be an Optional wrapping a String ...
print(s)

}

optionalExpecter("howdy") // console prints: Optional("howdy")

But you cannot do the opposite — you cannot use an Optional wrapping a type
where the wrapped type is expected. This won’t compile:

func realStringExpecter(_ s:String) {}
let stringMaybe : String? = "howdy"
realStringExpecter(stringMaybe) // compile error

The error message reads: “Value of Optional type String? must be unwrapped”
You're going to be seeing that sort of message a lot in Swift, so get used to it! If you
want to use an Optional where the type of thing it wraps is expected, you must
unwrap the Optional — that is, you must reach inside it and retrieve the actual thing
that it wraps. Now I'm going to talk about how to do that.

Unwrapping an Optional

We have seen more than one way to wrap an object in an Optional. But what about
the opposite procedure? How do we unwrap an Optional to get at the object wrapped
inside it? One way is to use the unwrap operator (or forced unwrap operator), which is
a postfixed exclamation mark. For example:

func realStringExpecter(_ s:String) {}

let stringMaybe : String? = "howdy"

realStringExpecter(stringMaybe!)
In that code, the stringMaybe! syntax expresses the operation of reaching inside the
Optional stringMaybe, grabbing the wrapped value, and substituting it at that point.
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Since stringMaybe is an Optional wrapping a String, the thing inside it is a String.

That is exactly what the realStringExpecter function wants as its parameter! string-
Maybe is an Optional wrapping the String "howdy", but stringMaybe! is the String

"howdy".

If an Optional wraps a certain type, you cannot send it a message expected by that
type. You must unwrap it first. For example, let’s try to get an uppercase version of
stringMaybe:

let stringMaybe : String? = "howdy"
let upper = stringMaybe.uppercased() // compile error

The solution is to unwrap stringMaybe to get at the String inside it. We can do this
directly, in place, using the unwrap operator:

let stringMaybe : String? = "howdy"

let upper = stringMaybe!.uppercased()
If an Optional is to be used several times where the unwrapped type is expected, and
if you're going to be unwrapping it with the unwrap operator each time, your code
can quickly start to look like the dialog from a 1960s Batman comic. For example, in
iOS programming, an apps window is an Optional UIWindow property of the app
delegate (self.window):

// self.window is an Optional wrapping a UIWindow
self.window!.rootViewController = RootViewController()
self.window!.backgroundColor = UIColor.white
self.window!.makeKeyAndVisible()

That sort of thing soon gets old (or silly). One obvious alternative is to assign the
unwrapped value once to a variable of the wrapped type and then use that variable:

// self.window is an Optional wrapping a UIWindow

let window = self.window!

// now window (not self.window) is a UIWindow, not an Optional
window.rootViewController = RootViewController()
window.backgroundColor = UIColor.white
window.makeKeyAndVisible()

Implicitly unwrapped Optional

Swift provides another way of using an Optional where the wrapped type is expected:
you can declare the Optional type as being implicitly unwrapped. An implicitly
unwrapped Optional is an Optional, but the compiler permits some special magic
associated with it: its value can be used directly where the wrapped type is expected.
You can unwrap an implicitly unwrapped Optional explicitly, but you don’t have to,
because it will be unwrapped for you, automatically, if you try to use it where the
wrapped type is expected. Moreover, Swift provides syntactic sugar for expressing an
implicitly unwrapped Optional type. Just as an Optional wrapping a String can be
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expressed as String?, an implicitly unwrapped Optional wrapping a String can be
expressed as String!. For example:

func realStringExpecter(_ s:String) {}

var stringMaybe : String! = "howdy"

realStringExpecter(stringMaybe) // no problem
Bear in mind that an implicitly unwrapped Optional is still an Optional. It’s just a con-
venience. By declaring something as an implicitly unwrapped Optional, you are ask-
ing the compiler, if you happen to use this value where the wrapped type is expected,
to forgive you and to unwrap the value for you.

In reality, an implicitly unwrapped Optional type is not really a distinct type; it is
merely an Optional marked in a special way that allows it to be used where the
unwrapped type is expected. For this reason, implicit unwrapping does not propagate
by assignment. Here’s a case in point. If self is a UIViewController, then self.view
is typed as UIView!. As a result, this expression is legal (assume v is a UIView):

self.view.addSubview(v)
But this is not legal:

let mainview = self.view

mainview.addSubview(v) // compile error
The problem is that, although self.view is an implicitly unwrapped Optional wrap-
ping a UIView, mainview is a normal Optional wrapping a UIView, and so it would
have to be unwrapped explicitly before you could send it the addSubview message.
Alternatively, you could unwrap the implicitly unwrapped Optional explicitly at the
outset:

let mainview = self.view!
mainview.addSubview(v)
In real life, the only time you're likely to declare an implicitly unwrapped Optional is

when an instance property’s initial value can’t be provided until after the instance
itself is created. I'll give some examples at the end of this chapter.

The keyword nil

I have talked so far about Optionals that contain a wrapped value. But what about an
Optional that doesn’t contain any wrapped value? Such an Optional is, as I've already
said, a perfectly legal entity; that, indeed, is the whole point of Optionals.

You are going to need a way to ask whether an Optional contains a wrapped value,
and a way to specify an Optional without a wrapped value. Swift makes both of those
things easy, through the use of a special keyword, nil:
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To learn whether an Optional contains a wrapped value
Test the Optional for equality against nil. If the test succeeds, the Optional is
empty. An empty Optional is also reported in the console as nil.

To specify an Optional with no wrapped value
Assign or pass nil where the Optional type is expected. The result is an Optional
of the expected type, containing no wrapped value.

For example:

var stringMaybe : String? = "Howdy"
print(stringMaybe) // Optional("Howdy")
if stringMaybe == nil {
print("it is empty") // does not print
}
stringMaybe = nil
print(stringMaybe) // nil
if stringMaybe == nil {
print("it is empty") // prints
}
The keyword nil lets you express the concept, “an Optional wrapping the appropri-
ate type, but not actually containing any object of that type.” Clearly, thats very con-
venient magic; you'll want to take advantage of it. It is very important to understand,
however, that it is magic: nil in Swift is not a thing and is not a value. It is a short-
hand. Tt is natural to think and speak as if this shorthand were real. For example, I
will say that something “is nil.” But in reality, nothing “is nil”; nil isn't a thing. What
I really mean is that this thing is equatable with nil, because it is an Optional not
wrapping anything. (T'll explain in Chapter 4 how nil, and Optionals in general,
really work.)

Because a variable typed as an Optional can be nil, Swift follows a special initializa-
tion rule: a variable (var) typed as an Optional is nil, automatically. This is legal:

func optionalExpecter(_ s:String?) {}

var stringMaybe : String?

optionalExpecter(stringMaybe)
That code is interesting because it looks as if it should be illegal. We declared a vari-
able stringMaybe, but we never assigned it a value. Nevertheless we are now passing
it around as if it were an actual thing. That’s because it is an actual thing. This variable
has been implicitly initialized — to nil. A variable (var) typed as an Optional is the
only sort of variable that gets implicit initialization in Swift.

We come now to perhaps the most important rule in all of Swift: You cannot unwrap
an Optional containing nothing (an Optional equatable with nil). Such an Optional
contains nothing; there’s nothing to unwrap. Like Oakland, there’s no there there. In
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fact, explicitly unwrapping an Optional containing nothing will crash your program at
runtime:

var stringMaybe : String?

let s = stringMaybe! // crash
The crash message reads: “Fatal error: unexpectedly found nil while unwrapping an
Optional value” Get used to it, because youre going to be seeing it a lot. This is an
easy mistake to make. Unwrapping an Optional that contains no value is, in fact,
probably the most common way to crash a Swift program. You should look upon this
kind of crash as a blessing. Very often, in fact, you will want to crash if your Optional
contains no value, because it should contain a value, and the fact that it doesn’t indi-
cates that you've made a mistake elsewhere.

In the long run, however, crashing is bad. To eliminate this kind of crash, you need to
ensure that your Optional contains a value, and don’t unwrap it if it doesn’t! Ensuring
that an Optional contains a value before attempting to unwrap it is clearly a very
important thing to do. Accordingly, Swift provides several convenient ways of doing
it. 'll describe some of them now, and I'll discuss others in Chapter 5.

One obvious approach is to test your Optional against nil explicitly before you
unwrap it:
var stringMaybe : String?
// ... stringMaybe might be assigned a real value here ...
if stringMaybe != nil {
let s = stringMaybe!
/...
}

But there’s a more elegant way, as I shall now explain.

Optional chains

A common situation is that you want to send a message to the value wrapped inside
an Optional. You cannot send such a message to the Optional itself. If you try to do so,
you will get an error message from the compiler:

let stringMaybe : String? = "howdy"

let upper = stringMaybe.uppercased() // compile error
You must unwrap the Optional first, so that you can send that message to the actual
thing wrapped inside. Conveniently, you can unwrap the Optional in place. I gave an
example earlier:

let stringMaybe : String? = "howdy"

let upper = stringMaybe!.uppercased()
That form of code is called an Optional chain. In the middle of a chain of dot-
notation, you have unwrapped an Optional.
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We have already seen, however, that if you unwrap an Optional that contains no
wrapped object, you'll crash. So what if youre not sure whether this Optional contains
a wrapped object? How can you send a message to the value inside an Optional in
that situation?

Swift provides a special shorthand for exactly this purpose. To send a message safely
to the value wrapped inside an Optional that might be empty, you can unwrap the
Optional optionally. To do so, unwrap the Optional with the question mark postfix
operator instead of the exclamation mark:

var stringMaybe : String?

// ... stringMaybe might be assigned a real value here ...

let upper = stringMaybe?.uppercased()
That’s an Optional chain in which you used a question mark to unwrap the Optional.
By using that notation, you have unwrapped the Optional optionally — meaning con-
ditionally. The condition in question is one of safety; a test for nil is performed for
us. Our code means: “If stringMaybe contains a String, unwrap it and send that
String the uppercased message. If it doesn't (that is, if it equates to nil), do not
unwrap it and do not send it any messages!”

Such code is a double-edged sword. On the one hand, if stringMaybe is nil, you
won't crash at runtime. On the other hand, if stringMaybe is nil, that line of code
won't do anything useful — you won’t get any uppercase string.

But now there’s a new question. In that code, we initialized a variable upper to an
expression that involves sending the uppercased message. Now it turns out that the
uppercased message might not even be sent. So what, exactly, is upper initialized to?

To handle this situation, Swift has a special rule. If an Optional chain contains an
optionally unwrapped Optional, and if this Optional chain produces a value, that
value is itself wrapped in an Optional. Thus, upper is typed as an Optional wrapping a
String. This works brilliantly, because it covers both possible cases. Let’s say, first, that
stringMaybe contains a String:

var stringMaybe : String?

stringMaybe = "howdy"

let upper = stringMaybe?.uppercased()
After that code, upper is not a String; it is not "HOWDY". It is an Optional wrapping
"HOWDY".

On the other hand, if the attempt to unwrap the Optional fails, the Optional chain
can return nil instead:

var stringMaybe : String?
let upper = stringMaybe?.uppercased()
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After that code, upper is typed as an Optional wrapping a String, but it wraps no
string; its value is nil.

Unwrapping an Optional optionally in this way is elegant and safe; even if string-
Maybe is nil, we won't crash at runtime. On the other hand, we've ended up with yet
another Optional on our hands! upper is typed as an Optional wrapping a String, and
in order to use that String, we're going to have to unwrap upper. And we don’t know
whether upper is nil, so we have exactly the same problem we had before — we need
to make sure that we unwrap upper safely, and that we don’t accidentally unwrap an
empty Optional.

Longer Optional chains are legal. No matter how many Optionals are unwrapped in
the course of the chain, if any of them is unwrapped optionally, the entire expression
produces an Optional wrapping the type it would have produced if the Optionals
were unwrapped normally, and is free to fail safely at any point along the way. For
example:

// self is a UIViewController
let f = self.view.window?.rootViewController?.view.frame

The frame property of a view is a CGRect. But after that code, f is not a CGRect. It’s
an Optional wrapping a CGRect. If any of the optional unwrapping along the chain
fails (because the Optional we propose to unwrap is nil), f will be nil to indicate
failure.

(Observe that the preceding code does not end up nesting Optionals; it doesn’t pro-
duce a CGRect wrapped in an Optional wrapped in an Optional, merely because
there are two Optionals being optionally unwrapped in the chain! However, it is pos-
sible, for other reasons, to end up with an Optional wrapped in an Optional. I'll give
an example in Chapter 4.)

If a function call returns an Optional, you can unwrap the result and use it. You don’t
necessarily have to capture the result in order to do that; you can unwrap it in place,
by putting an exclamation mark or a question mark after the function call (that is,
after the closing parenthesis). That’s really no different from what we've been doing
all along, except that instead of an Optional property or variable, this is a function
call that returns an Optional. For example:

class Dog {
var noise : String?
func speak() -> String? {
return self.noise
}

}
let d = Dog()
let bigname = d.speak()?.uppercased()

After that, don't forget, bigname is not a String — it's an Optional wrapping a String.
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You can also assign safely into an Optional chain. If any of the optionally unwrapped
Optionals in the chain turns out to be nil, nothing happens:

/] self is a UIViewController
self.navigationController?.hidesBarsOnTap = true

A view controller might or might not have a navigation controller, so its navigation-
Controller property is an Optional. In that code, we are setting our navigation con-
troller’s hidesBarsOnTap property safely; if we happen to have no navigation
controller, no harm is done — because nothing happens.

When assigning into an Optional chain, if you also want to know whether the assign-
ment succeeded, you can capture the result of the assignment as an Optional wrap-
ping a Void and test it for nil. For example:

let ok : Void? = self.navigationController?.hidesBarsOnTap = true

Now, if ok is not nil, self.navigationController was safely unwrapped and the
assignment succeeded.

The ! and ? postfix operators, which respectively unconditionally and condition-
ally unwrap an Optional, have basically nothing to do with the ! and ? used with
type names as syntactic sugar for expressing Optional types (such as String?
and ‘String!). The outward similarity has confused many a beginner.

Optional map and flatMap

Optional chaining helps to solve the problem that you cannot send a message to the
value wrapped in an Optional without (safely) unwrapping the Optional. But some-
times you do want to send a message to the value wrapped in an Optional and you
dor’t want to unwrap it: you want to preserve optionality. You want to start with an
Optional and end with an Optional, but in between, you want to send a message to
the wrapped value.

Swift provides two methods that elegantly permit you to do that: map(_:) and flat-
Map(_:). These are methods of Optional itself, so its fine to send them to an
Optional. The parameter is a function that you supply (usually as an anonymous
function) that takes whatever type is wrapped in the Optional; the unwrapped value is
passed to this function, and now you can send a message to it. The result of the func-
tion is then wrapped as an Optional, so that optionality is preserved.

For example:

let s : String? = "howdy"
let s2 = s.map {$0.uppercased()}

After that, s2 is an Optional wrapping a String, which is the uppercased version of the
String wrapped in s1.
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The output Optional type doesn’t have to the same as the input Optional type.
Indeed, it commonly is not; map(_:) and flatMap(_:) are often used when the goal
is to coerce (or cast, as discussed in Chapter 4). For example:

let s : String? = // whatever

let 1 = s.flatMap {Int($0)}
In that code, we unwrap an Optional String and attempt to coerce it to an Int. The
result is an Optional Int, which will be nil if the coercion fails (because the string
doesn’t represent an integer).

That example also illustrates the difference between map and flatMap. If the map
function itself produces an Optional, flatMap unwraps it before wrapping the result
in an Optional. map doesn’t do that, so if we had used map here, we would have ended
up with a double-wrapped Optional.

The important thing here is that map(_:) and flatMap(_:) are safe. If they are sent to
an Optional with no wrapped value — that is, to nil — no message is sent, and the
result is nil (of the proper Optional type). In the first example, if s is nil, s2 is a nil
Optional String. In the second example, if s is nil, 1 is a nil Optional Int.

Comparison with Optional

In an equality comparison with something other than nil, an Optional gets special
treatment: the wrapped value, not the Optional itself, is compared. So, for example,
this works:

let s : String? = "Howdy"

if s == "Howdy" { // ... they _are_ equal!
That shouldn’t work — how can an Optional be the same as a String? — but it does.
Instead of comparing the Optional itself with "Howdy", Swift automagically (and
safely) compares its wrapped value (if there is one) with "Howdy". If the wrapped
value is "Howdy", the comparison succeeds. If the wrapped value is not "Howdy", the
comparison fails. If there is no wrapped value (s is nil), the comparison fails too —
safely! Thus, you can compare s to nil or to a String, and the comparison works cor-
rectly in all cases.

The same, however, is not true for an inequality comparison, using the greater-than
and less-than operators:

let 1 : Int? =2
if 1 <3 { // compile error

To perform that sort of comparison, you can unwrap safely and perform the compari-
son directly on the unwrapped value:

ifi!=nil & 1! <3 {// ... it _is_ less
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Do not compare an implicitly unwrapped Optional with anything; you can crash
at runtime.

Why Optionals?

Now that you know how to use an Optional, you are probably wondering why to use
an Optional. Why does Swift have Optionals at all? What are they good for?

One very important purpose of Optionals is to provide interchange of object values
with Objective-C. In Objective-C, any object reference can be nil. You thus need a
way to send nil to Objective-C and to receive nil from Objective-C. Swift Optionals
provide your only way to do that.

Swift will typically assist you by a judicious use of appropriate types in the Cocoa
APIs. For example, consider a UIView’s backgroundColor property. It's a UIColor,
but it can be nil, and you are allowed to set it to nil. Thus, it is typed as a UIColor?.
You don’t need to work directly with Optionals in order to set such a value! Remem-
ber, assigning the wrapped type to an Optional is legal, as the assigned value will be
wrapped for you. Thus, you can set myView.backgroundColor to a UIColor — or to
nil. But if you get a UIView’s backgroundColor, you now have an Optional wrapping
a UIColor, and you must be conscious of that fact, for all the reasons I've already dis-
cussed: if youre not, surprising things can happen:

let v = UIView()
let ¢ = v.backgroundColor
let c2 = c.withAlphaComponent(0.5) // compile error

You're trying to send the withAlphaComponent message to c, as if it were a UIColor. It
isn’t a UIColor. It's an Optional wrapping a UIColor. Xcode will try to help you in this
situation; if you use code completion (Chapter 9) to enter the name of the withAlpha-
Component method, Xcode will insert a question mark after c, thus (optionally)
unwrapping the Optional and giving you legal code:

let v = UIView()
let ¢ = v.backgroundColor
let c2 = c?.withAlphaComponent(0.5)

In the vast majority of situations, however, a Cocoa object type will not be marked as
an Optional. Thats because, although in theory it could be nil (because any
Objective-C object reference can be nil), in practice it won’t be. Swift thus saves you
a step by treating the value as the object type itself. This magic is performed by hand-
tweaking the Cocoa APIs (also called auditing). In the very first public version of
Swift (in June of 2014), all object values received from Cocoa were typed as Optionals
(usually implicitly unwrapped Optionals); but then Apple embarked on the massive
project of hand-tweaking the APIs to eliminate Optionals that didn’t need to be
Optionals, and that project is now essentially complete.
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Another important use of Optionals is to defer initialization of an instance property.
If a variable (declared with var) is typed as an Optional, it has a value even if you
don’t initialize it — namely nil. That comes in very handy in situations where you
know something will have a value, but not right away. A typical example in real-life
iOS programming is an outlet, which is a reference to something in your interface
such as a button:

class ViewController: UIViewController {
@IBOutlet var myButton: UIButton!

/...
}

Ignore, for now, the @IBOutlet designation, which is an internal hint to Xcode (as I'll
explain in Chapter 7). The important thing is that this property, myButton, won’t have
a value when our ViewController instance first comes into existence, but shortly
thereafter the view controller’s view will be loaded and myButton will be set so that it
points to an actual UIButton object in the interface. Therefore, the variable is typed as
an implicitly unwrapped Optional:

o It’s an Optional because we need a placeholder value (namely nil) for myButton
when the ViewController instance first comes into existence.

o It’s implicitly unwrapped so that in our code, once self.myButton has been
assigned a UIButton value, we can treat it as a reference to an actual UIButton,
passing through the Optional without noticing that it is an Optional. Moreover,
none of this view controller’s code will run before the view is loaded and the
actual button is assigned to myButton, so the implicitly unwrapped Optional is
generally safe.

A closely related situation is when a variable, again typically an instance property,
represents data that will take time to acquire. For example, in my Albumen app, as we
launch, I create an instance of my root view controller. I also want to gather a bunch
of data about the user’s music library and store that data in instance properties of the
root view controller instance. But gathering that data will take time. Therefore I must
instantiate the root view controller first and gather the data later, because if we pause
to gather the data before instantiating the root view controller, the app will take too
long to launch — the delay will be perceptible, and we might even crash (because iOS
forbids long launch times). Therefore the data properties are all typed as Optionals;
they are nil until the data are gathered, at which time they are assigned their “real”
values:

class RootViewController : UITableViewController {
var albums : [MPMedialtemCollection]! // initialized to nil

/...

Finally, one of the most important uses of Optionals is to permit a value to be marked
as empty or erroneous. The preceding code is a good illustration. When my Albumen
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app launches, it displays a table listing all the user’s music albums. At launch time,
however, that data has not yet been gathered. My table-display code tests albums to
see whether it’s nil and, if it is, displays an empty table. After gathering the data, I tell
my table to display its data again. This time, the table-display code finds that albums
is not nil, but rather consists of actual data — and it now displays that data. The use
of an Optional allows one and the same value, albums, to store the data or to state
that there is no data.

Many built-in Swift functions use an Optional in a similar way. For example:

let arr = [1,2,3]

let ix = arr.firstIndex(of:4)

if ix=nil { // ...
Swift's firstIndex(of:) method returns an Optional because the object sought
might not be present, in which case it has no index. The type returned cannot be an
Int, because there is no Int value that can be taken to mean, “I didn’t find this object
at all” Returning an Optional solves the problem neatly: nil means “I didn't find the
object,” and otherwise the actual Int result is sitting there wrapped up in the Optional.
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CHAPTER 4

Object Types

In the preceding chapter, I discussed some built-in object types. But I have not yet
explained object types themselves. As I mentioned in Chapter 1, Swift object types
come in three flavors: enum, struct, and class. What are the differences between
them? And how would you create your own object type?

In this chapter, I'll describe object types in general, and then each of the three flavors.
Then T'll explain three Swift ways of giving an object type greater flexibility: proto-
cols, generics, and extensions. Finally, the survey of Swift’s built-in types will con-
clude with three umbrella types and three collection types.

Object Type Declarations and Features

Object types are declared with the flavor of the object type (enum, struct, or class),
the name of the object type (which should start with a capital letter), and curly braces:

class Manny {

}

struct Moe {

}

enum Jack {

}
The visibility of an object type by other code — its scope — depends upon where its
declaration appears:
o Object types declared at the top level of a file will, by default, be visible to all files
in the same module. This is the usual place for object type declarations.

« Sometimes it’s useful to declare a type inside the declaration of another type, thus
giving it a namespace. This is called a nested type.
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o An object type declared within the body of a function will exist only inside the

scope of the curly braces that surround it; such declarations are legal but rare.

Declarations for any object type may contain within their curly braces the following
things:

Initializers

An object type is merely the type of an object. The purpose of declaring an object
type will usually (though not always) be so that you can make an actual object —
an instance — that has this type. An initializer is a function, declared and called
in a special way, allowing you to do that.

Properties

A variable declared at the top level of an object type declaration is a property. By
default, it is an instance property. An instance property is scoped to an instance: it
is accessed through a particular instance of this type, and its value can be differ-
ent for every instance of this type.

Alternatively, a property can be a static/class property. For an enum or struct, it is
declared with the keyword static; for a class, it may instead be declared with the
keyword class. Such a property belongs to the object type itself: it is accessed
through the type, and it has just one value, associated with the type.

Methods

A function declared at the top level of an object type declaration is a method. By
default, it is an instance method. it is called by sending a message to a particular
instance of this type. Inside an instance method, self is the instance.

Alternatively, a method can be a static/class method. For an enum or struct, it is
declared with the keyword static; for a class, it may be declared instead with the
keyword class. It is called by sending a message to the type. Inside a static/class
method, self is the type.

Subscripts

A subscript is a special kind of instance method, called by appending square
brackets to an instance reference.

Object type declarations

An object type declaration can contain an object type declaration — a nested
type. From inside the containing object type, the nested type is in scope; from
outside the containing object type, the nested type must be referred to through
the containing object type. Thus, the containing object type is a namespace for
the nested type.
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Initializers

An initializer is a function called in order to bring an instance of an object type into
existence. Strictly speaking, it is a static/class method, because it is called by talking to
the object type. It is usually called using special syntax: the name of the type is fol-
lowed directly by parentheses, as if the type itself were a function. When an initializer
is called, a new instance is created and returned as a result. You will usually do some-
thing with the returned instance, such as assigning it to a variable, in order to pre-
serve it and work with it in subsequent code.

For example, suppose we have a Dog class:

class Dog {
}

Then we can make a Dog instance like this:

Dog()

That code, however, though legal, is silly — so silly that it warrants a warning from
the compiler. We have created a Dog instance, but there is no reference to that
instance. Without such a reference, the Dog instance comes into existence and then
immediately vanishes in a puff of smoke. The usual sort of thing is more like this:

let fido = Dog()

Now our Dog instance will persist as long as the variable fido persists (see Chapter 3)
— and the variable fido gives us a reference to our Dog instance, so that we can use
it.

Observe that Dog() calls an initializer even though our Dog class doesn’t declare any
initializers! The reason is that object types may have implicit initializers. These are a

convenience that save you the trouble of writing your own initializers. But you can
write your own initializers, and you will often do so.

How to write an initializer

An initializer is a kind of function, and its declaration syntax is rather like that of a
function. To declare an initializer, you use the keyword init followed by a parameter
list, followed by curly braces containing the code. An object type can have multiple
initializers, distinguished by their parameters. A frequent use of the parameters is to
set the values of instance properties.

For example, here’s a Dog class with two instance properties, name (a String) and
license (an Int). We give these instance properties default values that are effectively
placeholders — an empty string and the number zero. Then we declare three initializ-
ers, so that the caller can create a Dog instance in three different ways: by supplying a
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name, by supplying a license number, or by supplying both. In each initializer, the
parameters supplied are used to set the values of the corresponding properties:

class Dog {

var name = ""

var license = 0

init(name:String) {
self.name = name

}

init(license:Int) {
self.license = license

}

init(name:String, license:Int) {
self.name = name
self.license = license

}

Observe that in that code, in each initializer, I've given each parameter the same name
as the property to which it corresponds. There’s no reason to do that apart from sty-
listic clarity. In the code for each initializer, I can distinguish the parameter from the
property by using self to access the property.

The result of that declaration is that I can create a Dog in three different ways:

let fido = Dog(name:"Fido")
let rover = Dog(license:1234)
let spot = Dog(name:"Spot", license:1357)

But now I can’t create a Dog with no initializer parameters. I wrote initializers, so my
implicit initializer went away. This code is no longer legal:

let puff = Dog() // compile error

Of course, I could make that code legal by explicitly declaring an initializer with no
parameters:

class Dog {

var name = ""

var license = 0

intt() {

}

init(name:String) {
self.name = name

}

init(license:Int) {
self.license = license

}

init(name:String, license:Int) {
self.name = name
self.license = license
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Now, the truth is that we don’t need those four initializers, because an initializer is a
function, and a function’s parameters can have default values. Thus, I can condense
all that code into a single initializer, like this:

class Dog {
var name = ""
var license = 0
init(name:String = "", license:Int = 0) {

self.name = name
self.license = license

}

I can still make an actual Dog instance in four different ways:

let fido = Dog(name:"Fido")

let rover = Dog(license:1234)

let spot = Dog(name:"Spot", license:1357)
let puff = Dog()

Now comes the really interesting part. In my property declarations, I can eliminate
the assignment of default initial values (as long as I declare explicitly the type of each

property):

class Dog {
var name : String // no default value!
var license : Int // no default value!
init(name:String = "", license:Int = 0) {
self.name = name
self.license = license

}

That code is legal (and common) — because an initializer initializes! In other words, I
don’t have to give my properties initial values in their declarations, provided I give
them initial values in all initializers. That way, I am guaranteed that all my instance
properties have values when the instance comes into existence, which is what matters.
Conversely, an instance property without an initial value when the instance comes
into existence is illegal. A property must be initialized either as part of its declaration
or by every initializer, and the compiler will stop you otherwise.

The Swift compiler’s insistence that all instance properties be properly initialized is a
valuable feature of Swift. (Contrast Objective-C, where instance properties can go
uninitialized — and often do, leading to mysterious errors later.) Don’t fight the com-
piler; work with it. The compiler will help you by giving you an error message
(“Return from initializer without initializing all stored properties”) until all your ini-
tializers initialize all your instance properties:
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class Dog {
var name : String
var license : Int
init(name:String = "") {
self.name = name // compile error
}
}

Because setting an instance property in an initializer counts as initialization, it is legal
even if the instance property is a constant declared with let:

class Dog {
let name : String
let license : Int
init(name:String = "", license:Int = 0) {
self.name = name
self.license = license

}

In our artificial examples, we have been very generous with our initializer: we are let-
ting the caller instantiate a Dog without supplying a name: argument or a license:
argument. Usually, however, the purpose of an initializer is just the opposite: we want
to force the caller to supply all needed information at instantiation time. Thus, in real
life, it is much more likely that our Dog class would look like this:

class Dog {
let name : String
let license : Int
init(name:String, license:Int) {
self.name = name
self.license = license

}

In that code, our Dog has a name property and a license property, and values for
these must be supplied at instantiation time (there are no default values), and those
values can never be changed thereafter (these properties are constants). In this way,
we enforce a rule that every Dog must have a meaningful name and license. There is
now only one way to make a Dog:

let spot = Dog(name:"Spot", license:1357)

Optional properties

Sometimes, there is no meaningful value that can be assigned to an instance property
during initialization. Perhaps the initial value of this property will not be obtained
until some time has elapsed after this instance has come into existence. This situation
conflicts with the requirement that all instance properties be initialized either in their
declaration or through an initializer. You could circumvent the problem by assigning
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a default initial value anyway; but this fails to communicate to your own code the fact
that this isn’t a “real” value.

A common solution, as I explained in Chapter 3, is to declare your instance property
as a var having an Optional type. An Optional has a value, namely nil, signifying
that no “real” value has been supplied; and an Optional var is initialized to nil auto-
matically. Thus, your code can test this instance property against nil and, if it is nil,
it won’t use the property. Later, the property will be given its “real” value. Of course,
that value is now wrapped in an Optional; but if you declare this property as an
implicitly unwrapped Optional, you can use the wrapped value directly, without
explicitly unwrapping it — as if this weren't an Optional at all — once you're sure it is
safe to do so:

// this property will be set automatically when the nib loads
@IBOutlet var myButton: UIButton!

// this property will be set after time-consuming gathering of data
var albums : [MPMedialtemCollection]!

Referring to self

An initializer may refer to an already initialized instance property, and may refer to
an uninitialized instance property in order to initialize it. Otherwise, an initializer
may not refer to self, explicitly or implicitly, until all instance properties have been
initialized. This rule guarantees that the instance is fully formed before it is used. This
code, for example, is illegal:

struct Cat {
var name : String
var license : Int
init(name:String, license:Int) {
self.name = name
meow() // too soon - compile error
self.license = license
}
func meow() {
print("meow")
}
}

The call to the instance method meow is implicitly a reference to self — it means
self.meow(). The initializer can say that, but not until it has fulfilled its primary con-
tract of initializing all uninitialized properties. The call to the instance method meow
simply needs to be moved down one line, so that it comes after both name and
license have been initialized.
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Delegating initializers

Initializers within an object type can call one another by using the syntax
self.init(...). An initializer that calls another initializer is called a delegating ini-
tializer. When an initializer delegates, the other initializer — the one that it delegates
to — must completely initialize the instance first, and then the delegating initializer
can work with the fully initialized instance, possibly setting again a var property that
was already set by the initializer that it delegated to.

A delegating initializer appears to be an exception to the rule against saying self too
early. But it isn't, because it is saying self in order to delegate — and delegating will
cause all instance properties to be initialized. In fact, the rules about a delegating ini-
tializer saying self are even more stringent: a delegating initializer cannot refer to
self at all, not even to set a property, until after the call to the other initializer. For
example:

struct Digit {
var number : Int
var meaningOfLife : Bool
init(number:Int) {
self.number = number
self.meaningOfLife = false

}

init() { // this is a delegating initializer
self.init(number:42)
self.meaningOfLife = true

}

Moreover, a delegating initializer cannot set a constant property (a let variable). That
is because it cannot refer to the property until after it has called the other initializer,
and at that point the instance is fully formed — initialization proper is over, and the
door for initialization of immutable properties has closed. Thus, the preceding code
would be illegal if meaningOfLife were declared with let, because the second initial-
izer is a delegating initializer and cannot set a constant property.

Be careful not to delegate recursively! If you tell an initializer to delegate to itself, or if
you create a vicious circle of delegating initializers, the compiler won’t stop you, but
your running app will hang. For example, don’t say this:

struct Digit { // do not do this!
var number : Int = 100
init(value:Int) {
self.init(number:value)
}
init(number:Int) {
self.init(value:number)

}
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Failable initializers

An initializer can return an Optional wrapping the new instance. In this way, nil can
be returned to signal failure. An initializer that behaves this way is a failable initial-
izer. To mark an initializer as failable when declaring it, put a question mark after the
keyword intit. If your failable initializer needs to return nil, explicitly write return
nil. It is up to the caller to test the resulting Optional for equivalence with nil,
unwrap it, and so forth, as with any Optional.

Here’s a version of Dog with an initializer that returns an Optional, returning nil if
the name: or license: arguments are invalid:

class Dog {
let name : String
let license : Int
init?(name:String, license:Int) {
if name.isEmpty {

return nil

}

if license <= 0 {
return nil

}

self.name = name
self.license = license

}

The resulting value is typed as an Optional wrapping a Dog, and the caller will need
to unwrap that Optional (if isn’t n11) before sending any messages to it.

Cocoa and Objective-C conventionally return nil from initializers to signal failure;
the API for such initializers has been hand-tweaked as a Swift failable initializer if ini-
tialization really might fail. For example, the Ullmage initializer init?(named:) is a
failable initializer, because there might be no image with the given name. The result-
ing value is a UIImage?, and will typically have to be unwrapped before using it.
(Most Objective-C initializers, however, are not bridged as failable initializers, even
though in theory any Objective-C initializer might return nil. This is essentially the
same hand-tweaking policy I described in “Why Optionals?” on page 116.)

Properties

A property is a variable — one that happens to be declared at the top level of an object
type declaration. This means that everything said about variables in Chapter 3
applies. A property has a fixed type; it can be declared with var or let; it can be
stored or computed; it can have setter observers. An instance property can also be
declared lazy.
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How properties are accessed

If a property is an instance property (the default), it can be accessed only through an
instance, and its value is separate for each instance. For example, let’s start once again
with a Dog class:

class Dog {
let name : String
let license : Int
init(name:String, license:Int) {
self.name = name
self.license = license

}

Our Dog class has a name instance property. Then we can make two different Dog
instances with two different name values, and we can access each Dog instance’s name
through the instance:

let fido = Dog(name:"Fido", license:1234)
let spot = Dog(name:"Spot", license:1357)
let aName = fido.name // "Fido"

let anotherName = spot.name // "Spot"

A static/class property, on the other hand, is accessed through the type, and is scoped

to the type, which usually means that it is global and unique. I'll use a struct as an
example:

struct Greeting {
static let friendly = "hello there"
static let hostile = "go away"

}

Now code elsewhere can fetch the values of Greeting.friendly and
Greeting.hostile. That example is neither artificial nor trivial; immutable static
properties are a convenient and effective way to supply your code with nicely name-
spaced constants.

Property initialization

A stored instance property must be given an initial value. But, as I explained a
moment ago, this doesn’t have to be through assignment in the declaration; it can be
through an initializer instead. Setter observers are not called during initialization of
properties.

A property declaration that assigns an initial value to the property cannot fetch an
instance property or call an instance method. Such behavior would require a reference,
explicit or implicit, to self; and during initialization, there is no self yet — self is
exactly what we are in the process of initializing. Making this mistake can result in
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some of Swift’s most perplexing compile error messages. For example, this is illegal
(and removing the explicit references to self doesn't make it legal):

class Moi {
let first = "Matt"
let last = "Neuburg"
let whole = self.first + " " + self.last // compile error

}

There are two common solutions in that situation:

Make this a computed property
A computed property can refer to self because the computation won't actually
be performed until after self exists:

class Moi {
let first = "Matt"
let last = "Neuburg"
var whole : String {
return self.first + " " + self.last
}
}

Declare this property as lazy
Like a computed property, a lazy property can refer to self legally because that
reference won't be performed until after self exists:

class Moi {
let first = "Matt"
let last = "Neuburg"
lazy var whole = self.first + " " + self.last

}

As I demonstrated in Chapter 3, a variable can be initialized as part of its declaration
using multiple lines of code by means of a define-and-call anonymous function. If
this variable is an instance property, and if the function code refers to self, the vari-
able must be declared lazy:

class Moi {
let first = "Matt"
let last = "Neuburg"
lazy var whole : String = {
var s = self.first

s.append(" ")
s.append(self.last)
return s

10
}

Unlike instance properties, static properties can be initialized with reference to one
another; the reason is that static property initializers are lazy (see Chapter 3):
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struct Greeting {
static let friendly = "hello there"
static let hostile = "go away"
static let ambivalent = friendly + " but " + hostile

}

Notice the lack of self in that code. In static/class code, self means the type itself. I
like to use self explicitly wherever it would be implicit, but here I can’t use it without
arousing the ire of the compiler (I regard this as a bug). To clarify the status of the
terms friendly and hostile, I can use the name of the type, just as any other code
would do:

struct Greeting {
static let friendly = "hello there"
static let hostile = "go away"
static let ambivalent = Greeting.friendly + " but " + Greeting.hostile

}

On the other hand, if I write ambivalent as a computed property, I can use self:

struct Greeting {
static let friendly = "hello there"
static let hostile = "go away"
static var ambivalent : String {
return self.friendly + " but " + self.hostile

}
}

On the other other hand, I'm not allowed to use self when the initial value is set by a
define-and-call anonymous function (again, I regard this as a bug):

struct Greeting {
static let friendly = "hello there"
static let hostile = "go away"
static var ambivalent : String = {
return self.friendly + " but " + self.hostile // compile error
1O
}

Methods

A method is a function — one that happens to be declared at the top level of an object
type declaration. This means that everything said about functions in Chapter 2
applies.

By default, a method is an instance method. This means that it can be accessed only
through an instance. Within the body of an instance method, self is the instance. To
illustrate, let’s continue to develop our Dog class:
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class Dog {
let name : String
let license : Int
let whatDogsSay = "woof"
init(name:String, license:Int) {
self.name = name
self.license = license

}
func bark() {
print(self.whatDogsSay)

}
func speak() {

self.bark()
print("I'm \(self.name)")

}

Now I can make a Dog instance and tell it to speak:

let fido = Dog(name:"Fido", license:1234)

fido.speak() // woof I'm Fido
In my Dog class, the speak method calls the instance method bark by way of self,
and obtains the value of the instance property name by way of self; and the bark
instance method obtains the value of the instance property whatDogsSay by way of
self. This is because instance code can use self to refer to this instance. Such code
can omit self if the reference is unambiguous; thus, for example, I could have writ-
ten this:

func speak() {
bark()
print("I'm \(name)")
}
But I never write code like that (except by accident). Omitting self, in my view,
makes the code harder to read and maintain; the loose terms bark and name seem
mysterious and confusing. Moreover, sometimes self cannot be omitted. For exam-
ple, in my implementation of init(name:license:), I must use self to disambiguate
between the parameter name and the property self.name.

A static/class method is accessed through the type. Within the body of a static/class
method, self means the type. I'll use our Greeting struct as an example:

struct Greeting {
static let friendly = "hello there"

static let hostile = "go away"
static var ambivalent : String {
return self.friendly + " but

+ self.hostile

}
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static func beFriendly() {
print(self.friendly)
}
}

And here’s how to call the static beFriendly method:
Greeting.beFriendly() // hello there

There is a kind of conceptual wall between static/class members, on the one hand,
and instance members on the other; even though they may be declared within the
same object type declaration, they inhabit different worlds. A static/class method can’t
refer to “the instance” because there is no instance; thus, a static/class method cannot
directly refer to any instance properties or call any instance methods. An instance
method, on the other hand, can refer to the type, and can thus access static/class
properties and can call static/class methods.

For example, let’s return to our Dog class and grapple with the question of what dogs
say. Presume that all dogs say the same thing. Wed prefer, therefore, to express what-
DogsSay not at instance level but at class level. This would be a good use of a static
property. Here’s a simplified Dog class that illustrates:

class Dog {
static var whatDogsSay = "woof"
func bark() {
print(Dog.whatDogsSay)
}
}

Now we can make a Dog instance and tell it to bark:

let fido = Dog()
fido.bark() // woof

('l talk later in this chapter about another way in which an instance method can
refer to the type.)

Subscripts

A subscript is an instance method that is called in a special way — by appending
square brackets to an instance reference. The square brackets can contain arguments
to be passed to the subscript method. You can use this feature for whatever you like,
but it is suitable particularly for situations where this is an object type with elements
that can be appropriately accessed by key or by index number. I have already
described (in Chapter 3) the use of this syntax with strings, and it is familiar also
from dictionaries and arrays; you can use square brackets with strings and dictionar-
ies and arrays exactly because Swift’s String and Dictionary and Array types declare
subscript methods.
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The Secret Life of Instance Methods

Here’s a secret: instance methods are actually static/class methods. For example, this is
legal (but strange):

class MyClass {
var s = ""
func store(_ s:String) {
self.s = s
}

}
let m

let f

MyClass()
MyClass.store(m) // what just happened!?

Even though store is an instance method, we are able to call it as a class method —
with a parameter that is an instance of this class! The reason is that an instance
method is actually a curried static/class method composed of two functions — one
function that takes an instance, and another function that takes the parameters of the
instance method. Thus, after that code, f is the second of those functions, and can be
called as a way of passing a parameter to the store method of the instance m:

f("howdy")
print(m.s) // howdy

The syntax for declaring a subscript method is somewhat like a function declaration
and somewhat like a computed property declaration. That’s no coincidence! A sub-
script is like a function in that it can take parameters: arguments can appear in the
square brackets when a subscript method is called. A subscript is like a computed
property in that the call is used like a reference to a property: you can fetch its value
Or you can assign into it.

To illustrate, I'll write a struct that treats an integer as if it were a digit sequence,
returning a digit that can be specified by an index number in square brackets; for
simplicity, I'm deliberately omitting any sort of error-checking:

struct Digit {
var number : Int
init(_ n:Int) {
self.number = n

}
subscript(ix:Int) -> Int { @ @
get { ©
let s = String(self.number)
return Int(String(s[s.index(s.startIndex, offsetBy:1x)]))!
}
}
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After the keyword subscript we have a parameter list stating what parameters
are to appear inside the square brackets. By default, parameter names are not
externalized; if you want a parameter name to be externalized, your declaration
must include an external name before the internal name, even if they are the
same name — for example, subscript(ix ix:Int). This is different from how
externalized names work everywhere else in Swift (and therefore I regard it as a
bug in the language).

Then we have the type of value that is passed out (when the getter is called) or in
(when the setter is called); this is parallel to the type declared for a computed
property. Oddly, however, the type is preceded by the arrow operator instead of a
colon (I regard that as a bug too).

Finally, we have curly braces whose contents are exactly like those of a computed
property. You can have get and curly braces for the getter, and set and curly
braces for the setter. The setter can be omitted (as here); in that case, the word
get and its curly braces can be omitted. The setter receives the new value as new-
Value, but you can change that name by supplying a different name in parenthe-
ses after the word set.

Here’s an example of calling the getter; the instance with appended square brackets
containing the arguments is used just as if you were getting a property value:

var d = Digit(1234)
let aDigit = d[1] // 2

Now TI'll expand my Digit struct so that its subscript method includes a setter (and
again I'll omit error-checking):

struct Digit {

var number : Int
init(_ n:Int) {
self.number = n

}
subscript(ix:Int) -> Int {
get {
let s = String(self.number)
return Int(String(s[s.index(s.startIndex, offsetBy:1x)]))!
}
set {
var s = String(self.number)
let 1 = s.index(s.startIndex, offsetBy:ix)
s.replaceSubrange(i...i, with: String(newValue))
self.number = Int(s)!
}
}
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And here’s an example of calling the setter; the instance with appended square brack-
ets containing the arguments is used just as if you were setting a property value:

var d = Digit(1234)

d[e] = 2 // now d.number is 2234
An object type can declare multiple subscript methods, distinguished by their
parameters.

Nested Object Types

An object type may be declared inside an object type declaration, forming a nested
type:

class Dog {
struct Noise {
static var noise = "woof"

}
func bark() {
print(Dog.Noise.noise)
}
}

A nested object type is no different from any other object type, but the rules for refer-
ring to it from the outside are changed; the surrounding object type acts as a name-
space, and must be referred to explicitly in order to access the nested object type:

Dog.Noise.noise = "arf"

Here, the Noise struct is namespaced inside the Dog class. This namespacing pro-
vides clarity: the name Noise does not float free, but is explicitly associated with the
Dog class to which it belongs. Namespacing also allows more than one Noise struct to
exist, without any clash of names. Swift built-in object types often take advantage of
namespacing; for example, the String struct is one of several structs that contain an
Index struct, with no clash of names.

Instance References

On the whole, the names of object types will be global, and you will be able to refer to
them simply by using their names. Instances, however, are another story. Instances
must be deliberately created, one by one. That is what instantiation is for. Moreover,
once you have created an instance, it is up to you to cause that instance to persist, by
storing the instance in a variable with sufficient lifetime. Subsequently, using that
variable as a reference, you can send instance messages to that instance, accessing
instance properties and calling instance methods.

Instantiation may happen because you call an initializer, or the instance may be cre-
ated for you in some other way. A simple example is what happens when you manip-
ulate a String, like this:
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let s = "Hello, world"
let s2 = s.uppercased()

In that code, we end up with two String instances. The first one, s, we created using a
string literal. The second one, s2, was created for us when we called the first string’s
uppercased method. Thus we have two instances, and they will persist independently
as long as our references to them persist; but we didn't get either of them by explicitly
calling an initializer.

It is of great importance to distinguish between situations where you need to create an
instance and situations where the instance you are interested in exists in some persis-
tent fashion already. The problem, in the latter case, will be to find a way of getting a
reference to that existing instance — and you must not confuse this with instantiation.

Let’s say, for example, that this is a real-life iOS app. You will certainly have a root
view controller, which will be an instance of some type of UIViewController. Let’s say
it’s an instance of the ViewController class. Once your app is up and running, this
instance already exists. It would then be utterly counterproductive to attempt to
speak to the root view controller by instantiating the ViewController class:

let theVC = ViewController() // legal but stupid

That code exemplifies a very common beginner mistake. All it does is to make a sec-
ond, different instance of the ViewController class, and your messages to that instance
will be wasted, as it is not the particular already existing instance of ViewController
that you wanted to talk to. What you want is to get a reference to that already existing
instance.

How? Well, let’s start with a reference to an instance that we know how to get — the
application:

let app = UIApplication.shared
Now we have a reference to the application instance. The application instance has a
keyWindow property:

let window = app.keyWindow

Now we have a reference to our app’s key window. That window owns the root view
controller, and will hand us a reference to it through its rootViewController prop-
erty; the apps keyWindow is an Optional, so to get at its rootViewController we must
unwrap the Optional:

let vc = window?.rootViewController

And voila, we have a reference to our app’s root view controller. To obtain the refer-
ence to this persistent instance, we created, in effect, a chain leading from the known
to the unknown, from a globally available class to the particular desired instance.
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In general, figuring out how to get a reference to an already existing instance can be
an interesting problem — so interesting, in fact, that I'll discuss it at some length in
Chapter 13. But the point is: when what you really want is a reference to an already
existing instance, do not instantiate! Instead, get the reference.

Enums

An enum is an object type whose instances represent distinct predefined alternative
values. Think of it as a list of known possibilities. An enum is the Swift way to express
a set of constants that are alternatives to one another. An enum declaration includes
case statements. Each case is the name of one of the alternatives. An instance of an
enum will represent exactly one alternative — one case.

For example, in my Albumen app, different instances of the same view controller can
list any of four different sorts of music library contents: albums, playlists, podcasts, or
audiobooks. The view controller’s behavior is slightly different in each case. So I need
a sort of four-way switch that I can set once when the view controller is instantiated,
saying which sort of contents this view controller is to display. That sounds like an
enum!

Here’s the basic declaration for that enum; I call it Filter, because each case represents
a different way of filtering the contents of the music library:

enum Filter {
case albums
case playlists
case podcasts
case books

}
That enum doesn’t have an initializer. You can write an initializer for an enum, as I'll
demonstrate in a moment; but there is a default mode of initialization that you’ll
probably use most of the time — the name of the enum followed by dot-notation and
one of the cases. For example, here’s how to make an instance of Filter representing
the albums case:

let type = Filter.albums

As a shortcut, if the type is known in advance, you can omit the name of the enum;
the bare case must still be preceded by a dot. For example:

let type : Filter = .albums

You can't say .albums just anywhere out of the blue, because Swift doesn’t know what
enum it belongs to. But in that code, the variable is explicitly declared as a Filter, so
Swift knows what .albums means. A similar thing happens when passing an enum
instance as an argument in a function call:
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func filterExpecter(_ type:Filter) {}
filterExpecter(.albums)

In the second line, I create an instance of Filter and pass it, all in one move, without
having to include the name of the enum. That’s because Swift knows from the func-
tion declaration that a Filter is expected here.

In real life, the space savings when omitting the enum name can be considerable —
especially because, when talking to Cocoa, the enum type names are often long. For
example:

let v = UIView()
v.contentMode = .center

A UlIView’s contentMode property is typed as a UIView.ContentMode enum. Our
code is neater and simpler because we don’t have to include the type name explicitly
here; . center is nicer than UIView.ContentMode.center. But either is legal.

Instances of an enum with the same case are regarded as equal. Thus, you can com-
pare an enum instance for equality against a case. Again, the type of enum is known
from the first term in the comparison, so the second term can omit the enum name:

func filterExpecter(_ type:Filter) {
if type == .albums {
print("it's albums")
}

}
filterExpecter(.albums) // "it's albums"

Raw Values

Optionally, when you declare an enum, you can add a type declaration. The cases
then all carry with them a fixed (constant) value of that type. The types attached to an
enum in this way are limited to numbers and strings, and the values assigned must be
literals.

If the type is an integer numeric type, the values can be implicitly assigned, and will
start at zero by default. For example:

enum PepBoy : Int {
case manny
case moe
case jack

}

In that code, .manny carries a value of 0, .moe carries of a value of 1, and so on.

If the type is String, the implicitly assigned values are the string equivalents of the
case names. For example:
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enum Filter : String {
case albums
case playlists
case podcasts
case books

}

In that code, .albums carries a value of "albums", and so on.

Regardless of the type, you can assign values explicitly as part of the case declarations,
like this:

enum Normal : Double {
case fahrenheit = 98.6
case centigrade = 37

}

enum PepBoy : Int {
case manny = 1
case moe // 2 implicitly
case jack = 4

}

enum Filter : String {
case albums = "Albums"
case playlists = "Playlists"
case podcasts = "Podcasts"
case books = "Audiobooks"

}

The values carried by the cases are their raw values. That’s because an enum with a
type declaration automatically adopts the RawRepresentable protocol. This means
simply that such an enum has a rawvalue property and an init(rawValue:) initial-
izer. (T'll explain later what a protocol is.) An instance of an enum has just one case,
so it has just one fixed raw value, which can be retrieved with its rawValue property:

let type = Filter.albums

print(type.rawvalue) // Albums
Having each case carry a fixed raw value can be quite useful. In my Albumen app, the
Filter cases really do have those String values, and type is a view controller property;
and so when the view controller wants to know what title string to put at the top of
the screen, it simply retrieves self.type.rawvalue.

The raw value associated with each case must be unique within this enum; the com-
piler will enforce this rule. Therefore, the mapping works the other way: given a raw
value, you can derive the case; in particular, you can instantiate an enum that has raw
values by using its init(rawvalue:) initializer:

let type = Filter(rawValue:"Albums")

However, the attempt to instantiate the enum in this way might fail, because you
might supply a raw value corresponding to no case; therefore, this is a failable
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Inference of Type Name with Static/Class Members

Just as you can use the bare name of an enum case, preceded by a dot, where an
instance of that enum is expected, you can do the same thing when referring to a
type’s static/class member whose value is an instance of that type. For example,
UIColor has many class properties that produce a UIColor instance, so you can omit
UIColor where a UIColor is expected:

p.trackTintColor = .red // instead of UIColor.red

Similarly, suppose we have a struct Thing with static constants whose values are
Thing instances:

struct Thing : RawRepresentable {
let rawValue : Int
static let one : Thing
static let two : Thing

Thing(rawvalue:1)
Thing(rawValue:2)

}
Then we can refer to Thing.one as .one where a Thing instance is expected:
let thing : Thing = .one

Many Objective-C enums are bridged to Swift as this kind of struct; I'll talk about that
later in this chapter.

initializer, and the value returned is an Optional. In that code, type is not a Filter; it’s
an Optional wrapping a Filter. This might not be terribly important, however, because
the thing you are most likely to want to do with an enum is to compare it for equality
with a case of the enum; you can do that with an Optional without unwrapping it.
This code is legal and works correctly:

let type = Filter(rawValue:"Albums")
if type == .albums { // ...

Associated Values

The raw values discussed in the preceding section are fixed in the enum’s declaration:
a given case carries with it a certain raw value, and that’s that. Alternatively, you can
construct a case whose constant value can be set when the instance is created. To do so,
do not declare any type for the enum as a whole; instead, append a tuple type to the
name of the case. There will usually be just one type in this tuple, so what you’ll write
will look like a type name in parentheses. Any type may be declared. Here’s an
example:
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enum MyError {
case number(Int)
case message(String)
case fatal

}

That code means that, at instantiation time, a MyError instance with the .number case
must be assigned an Int value, a MyError instance with the .message case must be
assigned a String value, and a MyError instance with the .fatal case cant be
assigned any value. Instantiation with assignment of a value is really a way of calling
an initialization function, so to supply the value, you pass it as an argument in paren-
theses:

let err : MyError = .number(4)

The attached value here is called an associated value. What you are supplying as you
specify the associated value is actually a tuple, so it can contain literal values or value
references; this is legal:

let num = 4
let err : MyError = .number(num)

The tuple can contain more than one value, with or without labels; if the values have
labels, they must be used at initialization time:

enum MyError2 {
case number(Int)
case message(String)
case fatal(n:Int, s:String)

}
let err : MyError2 = .fatal(n:-12, s:"Oh the horror")

At the risk of sounding like a magician explaining his best trick, I can now reveal
how an Optional works. An Optional is simply an enum with two cases: .none
and .some. If it is .none, it carries no associated value, and it equates to nil. If it
is . some, it carries the wrapped value as its associated value!

By default, the == operator cannot be used to compare cases of an enum if any case of
that enum has an associated value:

if err == MyError.fatal { // compile error

The reason, ultimately, is that two instances of the same case of this enum can have
different associated values, so Swift doesn't know what constitutes equality. The solu-
tion, introduced in Swift 4.1, is to declare this enum explicitly as adopting the Equata-
ble protocol (discussed later in this chapter):
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enum MyError : Equatable { // *
case number(Int)
case message(String)
case fatal

}
Now it becomes legal to say if err == MyError.fatal; I'll explain why in Chapter 5.

I'll also explain in Chapter 5 how to check the case of an instance of an enum that has
an associated value case, as well as how to extract the associated value from an enum
instance that has one.

Enum Case Iteration

It is often useful to have a list — that is, an array — of all the cases of an enum. You
could define this list manually as a static property of the enum:

enum Filter : String {
case albums = "Albums"
case playlists = "Playlists"
case podcasts = "Podcasts"
case books = "Audiobooks"
static let cases : [Filter] = [.albums, .playlists, .podcasts, .books]

}

That, however, is error-prone and hard to maintain; if, as you develop your program,
you modify the enum’s cases, you must remember to modify the cases property to
match. New in Swift 4.2, the list of cases can be generated for you automatically. Sim-
ply have your enum adopt the Caselterable protocol (adoption of protocols is
explained later in this chapter); now the list of cases springs to life as a static property
called allCases:

enum Filter : String, CaseIterable {
case albums = "Albums"
case playlists = "Playlists"
case podcasts = "Podcasts"
case books = "Audiobooks"
// static allCases is now [.albums, .playlists, .podcasts, .books]

}

I’ll put this feature to use in the next section.

Automatic generation of allCases is impossible if any of the enum’s cases has an
associated value, as it would then be unclear how that case should be defined in
the list.
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Enum Initializers

An explicit enum initializer must do what default initialization does: it must return a
particular case of this enum. To do so, set self to the case. In this example, T'll
expand my Filter enum so that it can be initialized with a numeric argument:

enum Filter : String, Caselterable {

case albums = "Albums"
case playlists = "Playlists"
case podcasts = "Podcasts"

case books = "Audiobooks"
init(_ ix:Int) {
self = Filter.allCases[ix]
}
}

Now there are three ways to make a Filter instance:

let typel = Filter.albums
let type2 = Filter(rawValue:"Playlists")!
let type3 = Filter(2) // .podcasts

In that example, we'll crash in the third line if the caller passes a number that’s out of
range (less than 0 or greater than 3). If we want to avoid that, we can make this a
failable initializer and return nil if the number is out of range:

enum Filter : String, Caselterable {
case albums = "Albums"
case playlists = "Playlists"
case podcasts = "Podcasts"
case books = "Audiobooks"
intt?(_ ix:Int) {
if !Filter.allCases.indices.contains(ix) {
return nil

}
self = Filter.allCases[ix]

}

An enum can have multiple initializers. Enum initializers can delegate to one another
by saying self.init(...). The only requirement is that, at some point in the chain
of calls, self must be set to a case; if that doesn’t happen, your enum won’t compile.

In this example, I improve my Filter enum so that it can be initialized with a String
raw value without having to say rawvalue: in the call. To do so, I declare a failable
initializer with a string parameter that delegates to the built-in failable rawvalue:
initializer:

enum Filter : String, Caselterable {

case albums = "Albums"
case playlists = "Playlists"
case podcasts = "Podcasts"
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case books = "Audiobooks"
init?(_ ix:Int) {
if !Filter.allCases.indices.contains(ix) {
return nil
}
self = Filter.allCases[ix]
}
init?(_ rawValue:String) {
self.init(rawvalue:rawvalue)
}
}

Now there are four ways to make a Filter instance:

let typel = Filter.albums

let type2 = Filter(rawValue:"Playlists")!
let type3 = Filter(2)

let type4 = Filter("Audiobooks")!

Enum Properties

An enum can have instance properties and static properties, but there’s a limitation:
an enum instance property can't be a stored property. Computed instance properties
are fine, however, and the value of the property can vary by rule in accordance with
the case of self. In this example from my real code, I've associated an MPMedia-
Query (obtained by calling an MPMediaQuery factory class method) with each case
of my Filter enum, suitable for fetching the songs of that type from the music library:

enum Filter : String {

case albums = "Albums"
case playlists = "Playlists"
case podcasts = "Podcasts"

case books = "Audiobooks"
var query : MPMediaQuery {
switch self {
case .albums:
return .albums()
case .playlists:
return .playlists()
case .podcasts:
return .podcasts()
case .books:
return .audiobooks()

3
}

If an enum instance property is a computed variable with a setter, other code can
assign to this property. However, that code’s reference to the enum instance must be a
variable (var), not a constant (let). If you try to assign to an enum instance property
through a let reference, you'll get a compile error.
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Enum Methods

An enum can have instance methods (including subscripts) and static methods. Writ-
ing an enum method is straightforward. Here’s an example from my own code. In a
card game, the cards draw themselves as rectangles, ellipses, or diamonds. I've
abstracted the drawing code into an enum that draws itself as a rectangle, an ellipse,
or a diamond, depending on its case:

enum Shape {
case rectangle
case ellipse
case diamond
func addShape (to p: CGMutablePath, in r: CGRect) -> () {
switch self {
case .rectangle:
p.addRect(r)
case .ellipse:
p.addEllipse(in:r)
case .diamond:
.move(to: CGPoint(x:r.minX, y:r.midY))
.addLine(to: CGPoint(x: r.midX, y: r.minY))
.addLine(to: CGPoint(x: r.maxX, y: r.midY))
.addLine(to: CGPoint(x: r.midX, y: r.maxY))
.closeSubpath()
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}

An enum instance method that modifies the enum itself must be marked as
mutating. For example, an enum instance method might assign to an instance prop-
erty of self; even though this is a computed property, such assignment is illegal
unless the method is marked as mutating. An enum instance method can even
change the case of self, by assigning to self; but again, the method must be marked
as mutating. The caller of a mutating instance method must have a variable reference
to the instance (var), not a constant reference (let).

In this example, I add an advance method to my Filter enum. The idea is that the
cases constitute a sequence, and the sequence can cycle. By calling advance, I trans-
form a Filter instance into an instance of the next case in the sequence:

enum Filter : String, Caselterable {

case albums = "Albums"
case playlists = "Playlists"
case podcasts = "Podcasts"

case books = "Audiobooks"
mutating func advance() {
var ix = Filter.allCases.firstIndex(of:self)!
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ix = (ix + 1) % Filter.allCases.count
self = Filter.allCases[ix]

}
And here’s how to call it:

var type = Filter.books
type.advance() // type is now Filter.albums

(A subscript setter is always considered mutating and does not have to be specially
marked.)

Why Enums?

An enum is a switch whose states have names. There are many situations where that’s
a desirable thing. You could implement a multistate value yourself; for example, if
there are five possible states, you could use an Int whose values can be 0 through 4.
But then you would have to provide a lot of additional overhead, interpreting those
numeric values correctly and making sure that no other values are used. A list of five
named cases is much better!

Even when there are only two states, an enum is often better than, say, a mere Bool,
because the enum’s states have names. With a Bool, you have to know what true and
false signify in a particular usage; with an enum, the name of the enum and the
names of its cases tell you its significance. Moreover, you can store extra information
in an enums’s associated value or raw value; you can’t do that with a mere Bool.

For example, in my LinkSame app, the user can play a real game with a timer or a
practice game without a timer. At various places in the code, I need to know which
type of game this is. The game types are the cases of an enum:
enum InterfaceMode : Int {
case timed = 0
case practice =1
}
The current game type is stored in an instance property interfaceMode, whose value
is an InterfaceMode. Thus, it’s easy to set the game type by case name:

// ... initialize new game ...
self.interfaceMode = .timed

And it’s easy to examine the game type by case name:

// notify of high score only if user is not just practicing

if self.interfaceMode == .timed { // ...
So what are the raw value integers for? That’s the really clever part. They correspond
to the segment indexes of a UISegmentedControl in the interface! Whenever I change
the interfaceMode property, a setter observer also selects the corresponding segment
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of the UISegmentedControl (self.timedPractice), simply by fetching the rawvalue
of the current enum case:

var interfaceMode : InterfaceMode = .timed {
willSet (mode) {
self.timedPractice?.selectedSegmentIndex = mode.rawValue

}
}

Structs

A struct is the Swift object type par excellence. An enum, with its fixed set of cases, is a
reduced, specialized kind of object. A class, at the other extreme, will often turn out
to be overkill; it has some features that a struct lacks (I'll talk later about what they
are), but if you don’t need those features, a struct may be preferable.

Of the hundred-odd object types declared in the Swift header, basically only one is a
class. A dozen or so are enums. All the rest, the vast majority of the built-in object
types provided by Swift itself, are structs. A String is a struct. An Int is a struct. A
Range is a struct. An Array is a struct. And so on. That shows how powerful a struct
can be.

Struct Initializers, Properties, and Methods

A struct that doesn’t have an explicit initializer and that doesn’t need an explicit ini-
tializer — because it has no stored properties, or because all its stored properties are
assigned default values as part of their declaration — automatically gets an implicit
initializer with no parameters, init(). For example:

struct Digit {
var number = 42

}

That struct can be initialized by saying Digit(). But if you add any explicit initializers
of your own, you lose that implicit initializer:

struct Digit {
var number = 42
init(number:Int) {
self.number = number
}
}

Now you can say Digit(number:42), but you can’t say Digit() any longer. Of course,
you can add an explicit initializer that does the same thing:
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struct Digit {
var number = 42
init() {1}
init(number:Int) {
self.number = number

}
}

Now you can say Digit() once again, as well as Digit(number:42).

A struct that has stored properties and that doesn’t have an explicit initializer auto-
matically gets an implicit initializer derived from its instance properties. This is called
the memberwise initializer. For example:

struct Digit {
var number : Int // could use "let" here instead

}

That struct is legal — indeed, it is legal even if the number property is declared with
let instead of var — even though it seems we have not fulfilled the contract requir-
ing us to initialize all stored properties in their declaration or in an initializer. The
reason is that this struct automatically has a memberwise initializer which does initi-
alize all its properties. In this case, the memberwise initializer is init(number:), and
you can say Digit(number:42).

The memberwise initializer exists even for var stored properties that are assigned a
default value in their declaration; this struct therefore has a memberwise initializer
init(number:), in addition to its implicit init() initializer:

struct Digit {

var number = 42

}
But if you add any explicit initializers of your own, you lose the memberwise initial-
izer (though of course you can write an explicit initializer that does the same thing).

If a struct has any explicit initializers, then they must fulfill the contract that all stored
properties must be initialized either by direct initialization in the declaration or by all
initializers. If a struct has multiple explicit initializers, they can delegate to one
another by saying self.init(...).

A struct can have instance properties and static properties, and they can be stored or
computed variables. If other code wants to set a property of a struct instance, its ref-
erence to that instance must be a variable (var), not a constant (let).

A struct can have instance methods (including subscripts) and static methods. If an
instance method sets a property, it must be marked as mutating, and the caller’s refer-
ence to the struct instance must be a variable (var), not a constant (let). A mutating
instance method can even replace this instance with another instance, by setting self
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to a different instance of the same struct. (A subscript setter is always considered
mutating and does not have to be specially marked.)

Struct As Namespace

I very often use a degenerate struct as a handy namespace for constants. I call such a
struct “degenerate” because it consists entirely of static members; I don’t intend to use
this object type to make any instances.

For example, let’s say I'm going to be storing user preference information in Cocoa’s
UserDefaults. UserDefaults is a kind of dictionary: each item is accessed through a
key. The keys are typically strings. A common programmer mistake is to write out
these string keys literally every time a key is used; if you then misspell a key name,
there’s no penalty at compile time, but your code will mysteriously fail to work cor-
rectly. A better approach is to embody those keys as constant strings and use the
names of the strings; if you make a mistake typing a name, the compiler can catch
you. A struct with static members is a great way to define constant strings and clump
their names into a namespace:

struct Default {
static let rows = "CardMatrixRows"
static let columns = "CardMatrixColumns"
static let hazyStripy = "HazyStripy"

}

That code means that I can now refer to a UserDefaults key with a name, such as
Default.hazyStripy.

Classes

A class is similar to a struct, with the following key differences:

Reference type
Classes are reference types. This means, among other things, that a class instance
has two remarkable features that are not true of struct or enum instances:

Mutability
A class instance is mutable in place. Even if your reference to an instance of a
class is a constant (let), you can change the value of an instance property
through that reference. An instance method of a class never has to be
marked mutating (and cannot be).

Multiple references
When a given instance of a class is assigned to multiple variables or passed as
argument to a function, you get multiple references to one and the same
object.
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Inheritance
A class can have a superclass. A class that has a superclass is a subclass of that
superclass, and inherits its superclass’s members. Class types can thus form a
hierarchical tree.

In Objective-C, classes are the only object type. Some built-in Swift struct types are
magically bridged to Objective-C class types, but your custom struct types don’t have
that magic. Thus, when programming iOS with Swift, one reason for declaring a
class, rather than a struct, is as a form of interchange with Objective-C and Cocoa.

Value Types and Reference Types

A major difference between enums and structs, on the one hand, and classes, on the
other, is that enums and structs are value types, whereas classes are reference types. 1
will now explain what that means.

Reference type instances are mutable

A value type is not mutable in place, even though it seems to be. For example, con-
sider a struct. A struct is a value type:

struct Digit {
var number : Int
init(_ n:Int) {
self.number = n
}
}

Now, Swifts syntax of assignment would lead us to believe that changing a Digit’s
number is possible:

var d = Digit(123)

d.number = 42
But in reality, when you apparently mutate an instance of a value type, you are
actually replacing that instance with a different instance. To see that this is true, add a
setter observer:

var d : Digit = Digit(123) {

didSet {
print("d was set")

}

}
d.number = 42 // "d was set"

That explains why it is impossible to mutate a value type instance if the reference to
that instance is declared with let:
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struct Digit {
var number : Int
init(_ n:Int) {
self.number = n

}
}
let d = Digit(123)
d.number = 42 // compile error
Under the hood, this change would require us to replace the Digit instance pointed to
by d with another Digit instance — and we can’'t do that, because it would mean
assigning into d, which is exactly what the let declaration forbids.

An instance method of a struct or enum that sets a property of the instance must be
marked explicitly with the mutating keyword. For example:

struct Digit {
var number : Int
init(_ n:Int) {
self.number = n

}
mutating func changeNumberTo(_ n:Int) {
self.number = n
}
}
Without the mutating keyword, that code won't compile. The mutating keyword
assures the compiler that you understand what’s really happening here. If that method
is called, it replaces the instance; therefore, it can be called only on a reference
declared with var, not let:
let d = Digit(123)
d.changeNumberTo(42) // compile error
None of that applies to class instances! Class instances are reference types, not value
types. A reference to a class instance does not have to be declared with var in order to
set a var property through that reference:

class Dog {
var name : String = "Fido"
}
let rover = Dog()
rover.name = "Rover" [/ fine

In the last line of that code, the class instance pointed to by rover is being mutated in
place. No implicit assignment to rover is involved, and so the let declaration is pow-
erless to prevent the mutation. A setter observer on a Dog variable is not called when
a property is set:
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var rover : Dog = Dog() {
didSet {
print("did set rover")
}
}

rover.name = "Rover" // nothing in console

The setter observer would be called if we were to set rover explicitly (to another Dog
instance), but it is not called merely because we change a property of the Dog
instance already pointed to by rover.

Those examples involve a declared variable reference. Exactly the same difference
between a value type and a reference type may be seen with a parameter of a function
call. When we receive an instance of a value type as a parameter into a function body,
the compiler will stop us in our tracks if we try to assign to its instance property. This
doesn’t compile:

func digitChanger(_ d:Digit) {
d.number = 42 // compile error

}

But this does compile:

func dogChanger(_ d:Dog) {
d.name = "Rover"

}

Reference type instances are pointers

With a reference type, there is a concealed level of indirection between your reference
to the instance and the instance itself; the reference actually holds a pointer to the
instance. This means that when a class instance is assigned to a variable or passed as
an argument to a function or as the result of a function, you can wind up with multi-
ple references to the same object. That is not true of structs and enums. Thus:

o When an enum instance or a struct instance is assigned or passed, what is
assigned or passed is essentially a new copy of that instance. (I say “essentially”
because, behind the scenes, there can be some efficiency, preventing a new copy
from actually being formed unless it is needed.)

o When a class instance is assigned or passed, what is assigned or passed is a refer-
ence to the same instance.

To prove it, I'll assign one reference to another, and then mutate the second reference
— and then I'll examine what happened to the first reference. Let’s start with the
struct:
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Mutating Captured Self

An @escaping closure (“Escaping Closures” on page 60) is subject to restrictions with
respect to its ability to capture self, if self is a value type. To demonstrate, heres a
Digit struct:

struct Digit {
var number : Int
init(_ n:Int) {
self.number = n

}
mutating func changeNumberTo(_ n:Int) {
self.number = n

}
mutating func callAnotherFunction() {
otherFunction {
self.changeNumberTo(345)

}
}

Whether that’s legal depends on whether otherFunction declares its function param-
eter @escaping. If it does, the compiler will stop us:

func otherFunction(_ f: @escaping ()->()) { // compile error

}

The call to self.changeNumberTo(345) in callAnotherFunction warrants a compile
error (“closure cannot implicitly capture a mutating self parameter”), because we are
threatening to mutate a persisting captured self at some later time. That would
involve replacing the captured self with a different Digit — and that’s incoherent. No
such problem arises if Digit is a class, because the persistent captured self can then
be mutated in place.

var d = Digit(123)
print(d.number) // 123
var d2 = d // assignment!
d2.number = 42
print(d.number) // 123

In that code, we changed the number property of d2, a struct instance; but nothing
happened to the number property of d. Now let’s try the class:

var fido = Dog()
print(fido.name) // Fido

var rover = fido // assignment!
rover.name = "Rover"
print(fido.name) // Rover
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In that code, we changed the name property of rover, a class instance — and the name
property of fido was changed as well! That’s because, after the assignment in the
third line, fido and rover refer to one and the same instance.

The same thing is true of parameter passing. With a class instance, what is passed is a
reference to the same instance:

func dogChanger(_ d:Dog) {
d.name = "Rover"

}

var fido = Dog()
print(fido.name) // "Fido"
dogChanger(fido)
print(fido.name) // "Rover"

The change made to d inside the function dogChanger affected our Dog instance
fido! You can’t do that with an enum or struct instance parameter — unless it’s an
inout parameter — because the instance is effectively copied as it is passed. But hand-
ing a class instance to a function does not copy that instance; it is more like lending
that instance to the function.

Advantages of value types vs. reference types

The ability to generate multiple references to the same instance is significant particu-
larly in a world of object-based programming, where objects persist and can have
properties that persist along with them. If object A and object B are both long-lived
objects, and if they both have a Dog property (where Dog is a class), and if they have
each been handed a reference to one and the same Dog instance, then either object A
or object B can mutate its Dog, and this mutation will affect the other’s Dog. You can
thus be holding on to an object, only to discover that it has been mutated by someone
else behind your back. If that happens unexpectedly, it can put your program into an
invalid state.

Class instances are also more complicated behind the scenes. Swift has to manage
their memory (as I'll explain in detail in Chapter 12), precisely because there can be
multiple references to the same object; this management can involve quite a bit of
overhead. At an even lower level, the mere storage of class instances in memory
entails some necessary overhead.

On the whole, therefore, you should prefer a value type (such as a struct) to a refer-
ence type (a class) wherever possible. Struct instances are not shared between refer-
ences, and so you are relieved from any worry about such an instance being mutated
behind your back; moreover, under the hood, storage and memory management are
far simpler as well. The Swift language itself will help you by imposing value types in
front of many Cocoa Foundation reference types. For example, Objective-C NSDate
and NSData are classes, but Swift will steer you toward using struct types Date and
Data instead. (I'll talk about these types in detail in Chapter 10.)
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But don’t get the wrong idea. Classes are not bad; theyre good! For one thing, a class
instance is very efficient to pass around, because all youre passing is a pointer. No
matter how big and complicated a class instance may be, no matter how many prop-
erties it may have containing vast amounts of data, passing the instance is incredibly
fast and efficient.

Moreover, there are many situations where the independent identity of a class
instance, no matter how many times it is referred to, is exactly what you want. The
extended lifetime of a class instance, as it is passed around, can be crucial to its func-
tionality and integrity. In particular, only a class instance can successfully represent
an independent reality. For example, a UIView needs to be a class, not a struct,
because an individual UIView instance, no matter how it gets passed around, must
continue to represent the same single real and persistent view in your running app’s
interface.

Still another reason for preferring a class over a struct or enum is when you need
recursive references. A value type cannot be structurally recursive: a stored instance
property of a value type cannot be an instance of the same type. This code won't
compile:

struct Dog { // compile error

var puppy : Dog?

}
More complex circular chains, such as a Dog with a Puppy property and a Puppy
with a Dog property, are similarly illegal. But if Dog is a class instead of a struct,
there’s no error. This is a consequence of the nature of memory management of value
types as opposed to reference types.

An enum case’s associated value can be an instance of that enum, provided the
case (or the entire enum) is marked indirect:
enum Node {
case none(Int)
indirect case left(Int, Node)
indirect case right(Int, Node)
indirect case both(Int, Node, Node)
}

Functions are reference types

The countAdded and greet example, earlier (“Closure Preserving Its Captured Envi-
ronment” on page 59), demonstrates that functions are themselves reference types. To
show what I mean, I'll start with a contrasting situation. Two separate calls to a func-
tion factory method produce two different functions, as you would expect:
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let countedGreet = countAdder(greet)
let countedGreet2 = countAdder(greet)
countedGreet() // count is 1
countedGreet2() // count is 1

The two functions countedGreet and countedGreet2, in that code, are maintaining
their counts separately. But simple assignment or parameter passing results in a new
reference to the same function, maintaining the same count:

let countedGreet = countAdder(greet)
let countedGreet2 = countedGreet
countedGreet() // count is 1
countedGreet2() // count is 2

Subclass and Superclass

Two classes can be subclass and superclass of one another. (For example, we might
have a class Quadruped and a class Dog, with Quadruped as the superclass of Dog.) A
class may have many subclasses, but a class can have only one immediate superclass. I
say “immediate” because that superclass might itself have a superclass, and so on until
we get to the ultimate superclass, called the base class, or root class. Because a class
can have many subclasses but only one superclass, there is a hierarchical tree of sub-
classes, each branching from its superclass, and so on, with a single class, the base
class, at the top.

A class declaration can prevent the class from being subclassed by preceding the
class declaration with the final keyword.

As far as the Swift language itself is concerned, there is no requirement that a class
should have any superclass, or, if it does have a superclass, that it should ultimately be
descended from any particular base class. Thus, a Swift program can have many
classes that have no superclass, and it can have many independent hierarchical sub-
class trees, each descended from a different base class.

Cocoa, however, doesn’t work that way. In Cocoa, there is effectively just one base
class — NSObject, which embodies all the functionality necessary for a class to be a
class in the first place — and all other classes are subclasses, at some level, of that one
base class. Cocoa thus consists of one huge tree of hierarchically arranged classes,
even before you write a single line of code or create any classes of your own.

We can imagine diagramming this tree as an outline. And in fact Xcode will show you
this outline (Figure 4-1): in an iOS project window, choose View — Navigators —
Show Symbol Navigator and click Hierarchical, with the first and third icons in the
filter bar selected (blue). Now locate NSObject in the list; the Cocoa classes are the
part of the tree descending from it.
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» [3 UINavigationBar
» [E UlPickerView

Figure 4-1. Part of the Cocoa class hierarchy as shown in Xcode

Inheritance

The reason for having a superclass-subclass relationship in the first place is to allow
related classes to share functionality. Suppose, for example, we have a Dog class and a
Cat class, and we are considering declaring a walk method for both of them. We
might reason that both a dog and a cat walk in pretty much the same way, by virtue of
both being quadrupeds. So it might make sense to declare walk as a method of the
Quadruped class, and make both Dog and Cat subclasses of Quadruped. The result is
that both Dog and Cat can be sent the walk message, even if neither of them has a
walk method, because each of them has a superclass that does have a walk method.
We say that a subclass inherits the methods of its superclass.

To declare that a certain class is a subclass of a certain superclass, add a colon and the
superclass name after the class’s name in its declaration. So, for example:

class Quadruped {
func walk () {
print("walk walk walk")
}
}
class Dog : Quadruped {}
class Cat : Quadruped {}
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Now let’s prove that Dog has indeed inherited walk from Quadruped:

let fido = Dog()
fido.walk() // walk walk walk

Observe that, in that code, the walk message can be sent to a Dog instance just as if
the walk instance method were declared in the Dog class, even though the walk
instance method is in fact declared in a superclass of Dog. That’s inheritance at work.

Additional functionality

The purpose of subclassing is not merely so that a class can inherit another class’s
methods; it’s so that it can also declare methods of its own. Typically, a subclass con-
sists of the methods inherited from its superclass and then some. If Dog has no meth-
ods of its own, after all, it's hard to see why it should exist separately from
Quadruped. But if a Dog knows how to do something that not every Quadruped
knows how to do — let’s say, bark — then it makes sense as a separate class. If we
declare bark in the Dog class, and walk in the Quadruped class, and make Dog a sub-
class of Quadruped, then Dog inherits the ability to walk from the Quadruped class
and also knows how to bark:

class Quadruped {
func walk () {
print("walk walk walk")
}

}
class Dog : Quadruped {

func bark () {
print("woof")
}
}

Again, let’s prove that it works:

let fido = Dog()
fido.walk() // walk walk walk
fido.bark() // woof

Within a class, it is a matter of indifference whether that class has an instance method
because that method is declared in that class or because the method is declared in a
superclass and inherited. A message to self works equally well either way. In this
code, we have declared a barkAndwalk instance method that sends two messages to

self, without regard to where the corresponding methods are declared (one is native
to the subclass, one is inherited from the superclass):

class Quadruped {
func walk () {
print("walk walk walk")
}
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class Dog : Quadruped {
func bark () {
print("woof")
}
func barkAndWalk() {
self.bark()
self.walk()

}
And here’s proof that it works:

let fido = Dog()

fido.barkAndWalk() // woof walk walk walk

Overriding

It is also permitted for a subclass to redefine a method inherited from its superclass.
For example, perhaps some dogs bark differently from other dogs. We might have a
class NoisyDog, for instance, that is a subclass of Dog. Dog declares bark, but Noisy-
Dog also declares bark, and defines it differently from how Dog defines it. This is
called overriding. The very natural rule is that if a subclass overrides a method inher-
ited from its superclass, then when the corresponding message is sent to an instance

of that subclass, it is the subclass’s version of that method that is called.

In Swift, when you override something inherited from a superclass, you must explic-
itly acknowledge this fact by preceding its declaration with the keyword override. So,

for example:

class Quadruped {
func walk () {
print("walk walk walk")
}

}
class Dog : Quadruped {

func bark () {
print("woof")
}
}
class NoisyDog : Dog {
override func bark () {
print("woof woof woof")
}
}

And let’s try it:

let fido = Dog()

fido.bark() // woof

let rover = NoisyDog()
rover.bark() // woof woof woof
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Observe that a subclass method by the same name as a superclass’s method is not nec-
essarily, of itself, an override. Recall that Swift can distinguish two functions with the
same name, provided they have different signatures. Those are different functions,
and so an implementation of one in a subclass is not an override of the other in a
superclass. An override situation exists only when the subclass redefines the same
method that it inherits from a superclass — using the same name, including the
external parameter names, and the same signature.

However, a method override need not have exactly the same signature as the overrid-
den method. In particular, in a method override, a parameter may be overridden with
a superclass, or with an Optional wrapping the superclass of its type. For example, if
we have a Cat class and its Kitten subclass, the following is legal:

class Dog {
func barkAt(cat:Kitten) {}

}
class NoisyDog : Dog {
override func barkAt(cat:Cat) {} // or Cat?

}

Moreover, a parameter may be overridden with an Optional wrapping its type, and an
Optional parameter may be overridden with an Optional wrapping its wrapped type’s
superclass:

class Dog {
func barkAt(cat:Cat) {} // or Kitten, or Kitten?

}
class NoisyDog : Dog {

override func barkAt(cat:Cat?) {}
}
There are further rules along the same lines, but I won't try to list them all here; you
probably won't need to take advantage of them, and in any case the compiler will tell
you if your override is illegal.

Along with methods, a subclass also inherits its superclass’s properties. Naturally, the
subclass may also declare additional properties of its own. It is possible to override an
inherited property (with some restrictions that I'll talk about later).

I’ll have more to say about the implications of overriding when I talk about polymor-
phism, later in this chapter.

A class declaration can prevent a class member from being overridden by a sub-
class by preceding the member’s declaration with the final keyword.
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The keyword super

It often happens that we want to override something in a subclass and yet access the
thing overridden in the superclass. This is done by sending a message to the keyword
super. Our bark implementation in NoisyDog is a case in point. What NoisyDog
really does when it barks is the same thing Dog does when it barks, but more times.
Wed like to express that relationship in our implementation of NoisyDog’s bark. To
do so, we have NoisyDog’s bark implementation send the bark message, not to self
(which would be circular), but to super; this causes the search for a bark instance
method implementation to start in the superclass rather than in our own class:

class Dog : Quadruped {
func bark () {
print("woof")
}
}
class NoisyDog : Dog {
override func bark () {
for _ in 1...3 {
super.bark()
}

}
And it works:

let fido = Dog()

fido.bark() // woof

let rover = NoisyDog()
rover.bark() // woof woof woof

A subscript function is a method. If a superclass declares a subscript, the subclass
can declare a subscript with the same signature, provided it designates it with the
override keyword. To call the superclass subscript implementation, the subclass
can use square brackets after the keyword super (e.g. super[3]).

Class Initializers

Initialization of a class instance is considerably more complicated than initialization
of a struct or enum instance, because of the existence of class inheritance. The chief
task of an initializer is to ensure that all properties have an initial value, thus making
the instance well-formed as it comes into existence; and an initializer may have other
tasks to perform that are essential to the initial state and integrity of this instance. A
class, however, may have a superclass, which may have properties and initializers of
its own. Thus we must somehow ensure that when a subclass is initialized, its super-
class’s properties are initialized and the tasks of its initializers are performed in good
order, in addition to those of the subclass itself.
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Swift solves this problem coherently and reliably — and ingeniously — by enforcing
some clear and well-defined rules about what a class initializer must do.

Kinds of class initializer

The rules begin with a distinction between the kinds of initializer that a class can
have:

Designated initializer
A class initializer, by default, is a designated initializer. A class with any stored
properties that are not initialized as part of their declaration must have at least
one designated initializer, and when the class is instantiated, exactly one of its
designated initializers must be called, and must see to it that all stored properties
are initialized. A designated initializer may not delegate to another initializer in
the same class; it is illegal for a designated initializer to use the phrase
self.init(...).

Convenience initializer
A convenience initializer is marked with the keyword convenience. It is a delegat-
ing initializer; it must contain the phrase self.init(...). Moreover, a conve-
nience initializer must ultimately delegate to a designated initializer: when it says
self.init(...), it must call a designated initializer in the same class — or, if it
calls another convenience initializer in the same class, the chain of convenience
initializers must end by calling a designated initializer in the same class.

Implicit initializer
A class with no stored properties, or with stored properties all of which are ini-
tialized as part of their declaration, and that has no explicit designated initializers,
has an implicit designated initializer init().

Here are some examples. This class has no stored properties, so it has an implicit
init() designated initializer:

class Dog {
}
let d = Dog()

This class’s stored properties have default values, so it has an implicit init() designa-
ted initializer too:

class Dog {
var name = "Fido'

}
let d = Dog()

This class’s stored properties have default values, but it has no implicit init() initial-
izer because it has an explicit designated initializer:
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class Dog {
var name = "Fido"
init(name:String) {self.name = name}
}
let d = Dog(name:"Rover") // ok
let d2 = Dog() // compile error

This class’s stored properties have default values, and it has an explicit initializer, but
it also has an implicit init() initializer because its explicit initializer is a convenience
initializer. Moreover, the implicit init() initializer is a designated initializer, so the
convenience initializer can delegate to it:

class Dog {
var name = "Fido"
convenience init(name:String) {
self.init()
self.name = name
}
}
let d = Dog(name:"Rover")
let d2 = Dog()

This class has stored properties without default values; it has an explicit designated
initializer, and all of those properties are initialized in that designated initializer:

class Dog {
var name : String
var license : Int
init(name:String, license:Int) {
self.name = name
self.license = license
}
}

let d = Dog(name:"Rover", license:42)

This class is similar to the previous example, but it also has convenience initializers
forming a chain that ends with a designated initializer:

class Dog {

var name : String

var license : Int

init(name:String, license:Int) {
self.name = name
self.license = license

}

convenience init(license:Int) {
self.init(name:"Fido", license:license)

}

convenience init() {
self.init(license:1)

}

}
let d = Dog()

Classes | 163



Note that the rules about what else an initializer can say and when it can say it, as I
described them earlier in this chapter, are still in force:

o A designated initializer cannot, except in order to initialize a property (or to

fetch the value of a property that is already initialized), say self, implicitly or
explicitly, until all of this class’s properties have been initialized.

A convenience initializer is a delegating initializer, so it cannot say self for any

purpose until after it has called, directly or indirectly, a designated initializer (and
cannot set a constant property at all).

Subdlass initializers

Having defined and distinguished between designated initializers and convenience
initializers, we are ready for the rules about what happens with regard to initializers
when a class is itself a subclass of some other class:

No declared initializers

If a subclass doesn’t have to have any initializers of its own, and if it declares no
initializers of its own, then its initializers consist of the initializers inherited from
its superclass. (A subclass thus has no implicit init() initializer unless it inherits
it from its superclass.)

Convenience initializers only

If a subclass doesn’t have to have any initializers of its own, it is eligible to declare
convenience initializers, and these work exactly as convenience initializers always
do, because inheritance supplies the designated initializers that the convenience
initializers must call by saying self.init(...).

Designated initializers

If a subclass declares any designated initializers of its own, the entire game
changes drastically. Now, no initializers are inherited! The existence of an explicit
designated initializer blocks initializer inheritance. The only initializers the sub-
class now has are the initializers that you explicitly write (with one exception that
I'll mention later).

(This rule may seem surprising, even harsh. But it would be terrible if a caller
could bypass a subclass’s designated initializer by explicitly calling an initializer
inherited from its superclass. This rule rightly makes that impossible. I'll give an
example in a moment.)

Every designated initializer in the subclass now has an extra requirement: it must
call one of the superclasss designated initializers, by saying super.init(...).
Moreover, the rules about saying self continue to apply. Thus, a subclass desig-
nated initializer must do things in this order:

1. It must ensure that all properties of this class (the subclass) are initialized.
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2. It must call super.init(...), and the initializer that it calls must be a desig-
nated initializer.

3. Only then may this initializer say self for such purposes as to call an
instance method or to access an inherited property.

called implicitly if possible. (I don’t like this feature of Swift: in my view, Swift
should not indulge in secret behavior, even if that behavior might be considered
“helpful”)

% If a designated initializer doesn’t call super.init(...), then super.init() is

Designated and convenience initializers
If a subclass declares both designated and convenience initializers, the conve-
nience initializers in the subclass are still subject to the rules I've already outlined.
They must call self.init(...), calling a designated initializer directly or
(through a chain of convenience initializers) indirectly. There are no inherited
initializers, so the designated initializer must be explicitly declared in the
subclass.

Override initializers
Superclass initializers can be overridden in the subclass, in accordance with these
restrictions:

o An initializer whose parameters match a convenience initializer of the super-
class can be a designated initializer or a convenience initializer, and is not
marked override.

o An initializer whose parameters match a designated initializer of the super-
class can be a designated initializer or a convenience initializer, and must be
marked override. An override designated initializer must still call some
superclass designated initializer (possibly even the one that it overrides) with
super.init(...).

Generally, as I've already said, if a subclass has any designated initializers, #no ini-
tializers are inherited. But there’s an exception: if a subclass overrides all of its
superclass’s designated initializers, then the subclass does inherit the superclass’s
convenience initializers.

Failable initializers
If an initializer called by a failable initializer is failable, the calling syntax does not
change, and no additional test is needed — if a failable initializer fails, the whole
initialization process will fail (and will be aborted) immediately.

There are some additional restrictions on failable initializers:

e init can override init?, but not vice versa.
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e init? can call init.

o init can call init? by saying init and unwrapping the result with an excla-
mation mark (and if the init? fails, you'll crash).

At no time can a subclass initializer set a constant (let) property of a superclass.
This is because, by the time the subclass is allowed to do anything other than ini-
tialize its own properties and call another initializer, the superclass has finished
its own initialization and the door for initializing its constants has closed.

Here are some basic examples. We start with a subclass that has no explicit initializers
of its own:

class Dog {

var name : String

var license : Int

init(name:String, license:Int) {
self.name = name
self.license = license

}

convenience init(license:Int) {
self.init(name:"Fido", license:license)

}
}
class NoisyDog : Dog {
}

Given that code, you can make a NoisyDog like this:

let nd1 = NoisyDog(name:"Fido", license:1)
let nd2 = NoisyDog(license:2)

That code is legal, because NoisyDog inherits its superclass’s initializers. However,
you can’t make a NoisyDog like this:

let nd3 = NoisyDog() // compile error

That code is illegal. Even though a NoisyDog has no properties of its own, it has no
implicit init() initializer; its initializers are its inherited initializers, and its super-
class, Dog, has no implicit init() initializer to inherit.

Now here is a subclass whose only explicit initializer is a convenience initializer:

class Dog {

var name : String

var license : Int

init(name:String, license:Int) {
self.name = name
self.license = license

}

convenience init(license:Int) {
self.init(name:"Fido", license:license)

}
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}
class NoisyDog : Dog {
convenience init(name:String) {
self.init(name:name, license:1)
}
}

let nd1 = NoisyDog(name:"Fido", license:1)
let nd2 = NoisyDog(license:2)
let nd3 = NoisyDog(name:"Rover")

Next, here is a subclass that declares a designated initializer:

class Dog {
var name : String
var license : Int
init(name:String, license:Int) {
self.name = name
self.license = license
}
convenience init(license:Int) {
self.init(name:"Fido", license:license)
}
}
class NoisyDog : Dog {
init(name:String) {
super.init(name:name, license:1)
}
}

let nd1 = NoisyDog(name:"Rover")

class Dog {
let name : String
init(name:String) {
self.name = name
}
}

class RoverDog : Dog {

Observe how NoisyDogs convenience initializer fulfills its contract by calling
self.init(...) to call a designated initializer — which it happens to have inherited.
Given that code, there are three ways to make a NoisyDog, just as you would expect:

NoisyDog’s explicit initializer is now a designated initializer. It fulfills its contract by
calling a designated initializer in super. NoisyDog has now cut off inheritance of all
initializers; the only way to make a NoisyDog is like this:

And this restriction is clearly right, because it would be terrible if the caller could
bypass NoisyDog’s designated initializer by using an inherited Dog initializer instead.
NoisyDog’s initializer enforces a rule that a NoisyDog can only have a license value
of 1; if you could say NoisyDog(license:2), youd bypass that rule. Here’s an example
that makes the point a little more realistically:
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intt() {
super.init(name:"Rover")
}
}

let fido = RoverDog(name:"Fido") // compile error

Clearly that last line needs to be an error; otherwise, a RoverDog could be named
Fido, undermining the point of the subclass.

Finally, here is a subclass that overrides its designated initializers:

class Dog {
var name : String
var license : Int
init(name:String, license:Int) {
self.name = name
self.license = license
}
convenience init(license:Int) {
self.init(name:"Fido", license:license)
}
}
class NoisyDog : Dog {
override init(name:String, license:Int) {
super.init(name:name, license:license)
}
}

NoisyDog has overridden all of its superclass’s designated initializers, so it inherits its
superclass’s convenience initializers. There are thus two ways to make a NoisyDog:

let nd1 = NoisyDog(name:"Rover", license:1)
let nd2 = NoisyDog(license:2)

Those examples illustrate the main rules that you should keep in your head. You
probably don't need to memorize the remaining rules, because the compiler will
enforce them, and will keep slapping you down until you get them right.

Required initializers

There’s one more thing to know about class initializers: a class initializer may be pre-
ceded by the keyword required. This means that a subclass may not lack this initial-
izer. This, in turn, means that if a subclass implements designated initializers, thus
blocking inheritance, it must override this initializer and mark the override required.
Here’s a (rather pointless) example:

class Dog {
var name : String
required init(name:String) {
self.name = name

}
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class NoisyDog : Dog {
var obedient = false
init(obedient:Bool) {
self.obedient = obedient
super.init(name:"Fido")
}

} // compile error

That code wont compile. Dog’s init(name:) is marked required; thus, our code
won’t compile unless we inherit or override init(name:) in NoisyDog. But we cannot
inherit it, because, by implementing the NoisyDog designated initializer
init(obedient:), we have blocked inheritance. Therefore we must override it:

class Dog {
var name : String
required init(name:String) {
self.name = name
}
}
class NoisyDog : Dog {
var obedient = false
init(obedient:Bool) {
self.obedient = obedient
super.init(name:"Fido")
}
required init(name:String) {
super.init(name:name)
}
}

Observe that our overridden required initializer is not marked with override, but is
marked with required, thus guaranteeing that the requirement continues drilling
down to any further subclasses.

I have explained what declaring an initializer as required does, but I have not
explained why youd need to do it. I'll give examples later in this chapter.

Class Deinitializer

A class can have a deinitializer. This is a function declared with the keyword deinit
followed by curly braces containing the function body. You never call this function
yourself; it is called by the runtime when an instance of this class goes out of exis-
tence. If a class has a superclass, the subclass’s deinitializer (if any) is called before the
superclass’s deinitializer (if any).

A deinitializer is a class feature only; a struct or enum has no deinitializer. That’s
because a class is a reference type (as I explained earlier in this chapter). The idea is
that you might want to perform some cleanup, or just log to the console to prove to
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yourself that your instance is going out of existence in good order. I'll take advantage
of deinitializers when I discuss memory management issues in Chapter 5.

Class Properties and Methods

A subclass can override its inherited properties. The override must have the same
name and type as the inherited property, and must be marked with override. (A
property cannot have the same name as an inherited property but a different type, as
there is no way to distinguish them.)

The chief restriction here is that an override property cannot be a stored property.
More specifically:

o If the superclass property is writable (a stored property or a computed property
with a setter), the subclass’s override may consist of adding setter observers to
this property.

o Alternatively, the subclass’s override may be a computed property. In that case:

= If the superclass property is stored, the subclass’s computed property override
must have both a getter and a setter.

= If the superclass property is computed, the subclass’s computed property over-
ride must have at least a getter, and:

o If the superclass property has a setter, the override must have a setter.
o If the superclass property has no setter, the override can add one.

The overriding property’s functions may refer to — and may read from and write to
— the inherited property, through the super keyword.

A class can have static members, marked stattic, just like a struct or an enum. It can
also have class members, marked class. Both static and class members are inherited
by subclasses.

The chief difference between static and class methods, from the programmer’s point
of view, is that a static method cannot be overridden; it is as if static were a syno-
nym for class final.

Here, for example, I'll use a static method to express what dogs say:

class Dog {
static func whatDogsSay() -> String {
return "woof"
}
func bark() {
print(Dog.whatDogsSay())
}
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A subclass now inherits whatDogsSay, but can't override it. No subclass of Dog may
contain any implementation of a class method or a static method whatDogsSay with
this same signature.

Now I'll use a class method to express what dogs say:

class Dog {
class func whatDogsSay() -> String {
return "woof"

}
func bark() {
print(Dog.whatDogsSay())
}
}

A subclass inherits whatDogsSay, and can override it, either as a class method or as a
static method:

class NoisyDog : Dog {
override class func whatDogsSay() -> String {
return "WOOF"

}
}

The difference between static properties and class properties is similar, but with an
additional, rather dramatic qualification: a static property can be stored, but a class
property can only be computed.

Here, I'll use a static class property to express what dogs say:

class Dog {
static var whatDogsSay = "woof"
func bark() {
print(Dog.whatDogsSay)
}
}

A subclass inherits whatDogsSay, but can’t override it; no subclass of Dog can declare
a class or static property whatDogsSay.

Now I'll use a class property to express what dogs say. It cannot be a stored property,
so I'll have to use a computed property instead:

class Dog {
class var whatDogsSay : String {
return "woof"
}
func bark() {
print(Dog.whatDogsSay)
}
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A subclass inherits whatDogsSay and can override it either as a class property or as a
static property. But the rule about property overrides not being stored is still in force,
even if the override is a static property:

class NoisyDog : Dog {
override static var whatDogsSay : String {
return "WOOF"

}
}

Polymorphism

When a computer language has a hierarchy of types and subtypes, it must resolve the
question of what such a hierarchy means for the relationship between the type of an
object and the declared type of a reference to that object. Swift obeys the principles of
polymorphism. In my view, it is polymorphism that turns an object-based language
into a full-fledged object-oriented language. We may summarize Swift’s polymor-
phism principles as follows:

Substitution
Wherever a certain type is expected, a subtype of that type may be used instead.

Internal identity
An object’s type is a matter of its internal nature, regardless of how the object is
referred to.

To see what these principles mean in practice, imagine we have a Dog class, along
with its subclass, NoisyDog:

class Dog {

}
class NoisyDog : Dog {

}

let d : Dog = NoisyDog()
The substitution rule says that the last line is legal: we can assign a NoisyDog instance
to a reference, d, that is typed as a Dog. The internal identity rule says that, under the
hood, d now is a NoisyDog.

You may be asking: How is the internal identity rule manifested? If a reference to a
NoisyDog is typed as a Dog, in what sense is this “really” a NoisyDog? To illustrate,
let’s examine what happens when a subclass overrides an inherited method. I'll rede-
fine Dog and NoisyDog to demonstrate:

class Dog {
func bark() {
print("woof")

}
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class NoisyDog : Dog {
override func bark() {
for _ in 1...3 {
super.bark()
}

}

Now try to guess what happens when this code runs:

func tellToBark(_ d:Dog) {
d.bark()

}
var nd = NoisyDog()

tellToBark(nd)

That code is legal, because, by the substitution principle, we can pass nd, typed as a
NoisyDog, where a Dog is expected. Now, inside the tellToBark function, d is typed
as a Dog. How will it react to being told to bark? On the one hand, d is typed as a
Dog, and a Dog barks by saying "woof" once. On the other hand, in our code, when
tellToBark is called, what is really passed is a NoisyDog instance, and a NoisyDog
barks by saying "woof" three times. What will happen? Let’s find out:

func tellToBark(_ d:Dog) {
d.bark()

}
var nd = NoisyDog()

tellToBark(nd) // woof woof woof

The result is "woof woof woof". The internal identity rule says that what matters
when a message is sent is not how the recipient of that message is typed through this
or that reference, but what that recipient actually is. What arrives inside tellToBark is
a NoisyDog, regardless of the type of variable that holds it; thus, the bark message
causes this object to say "woof" three times.

Here’s another important consequence of polymorphism — the meaning of the key-
word self. It means the actual instance, and thus its meaning depends upon the type
of the actual instance — even if the word self appears in a superclasss code. For
example:

class Dog {
func bark() {
print("woof")
}
func speak() {
self.bark()
}
}
class NoisyDog : Dog {
override func bark() {
for _ in 1...3 {
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super.bark()

}
What happens when we tell a NoisyDog to speak? Let’s try it:

let nd = NoisyDog()

nd.speak() // woof woof woof
The speak method is declared in Dog, the superclass — not in NoisyDog. The speak
method calls the bark method. It does this by way of the keyword self. (I could have
omitted the explicit reference to self here, but self would still be involved implicitly,
so 'm not cheating by making self explicit.) There’s a bark method in Dog, and an
override of the bark method in NoisyDog. Which bark method will be called?

The word self is encountered within the Dog class’s implementation of speak. But
what matters is not where the word self appears but what it means. It means this
instance. And the internal identity principle tells us that this instance is a NoisyDog!
Thus, it is NoisyDog’s override of bark that is called when Dog’s speak says
self.bark().

Polymorphism applies to Optional types in the same way that it applies to the type of
thing wrapped by the Optional. Suppose we have a reference typed as an Optional
wrapping a Dog. You already know that you can assign a Dog to it. Well, you can also
assign a NoisyDog, or an Optional wrapping a NoisyDog, and the underlying wrap-
ped object will maintain its integrity:

var d : Dog?

d = Dog()
d = NoisyDog()
d = Optional(NoisyDog())

(The applicability of polymorphism to Optionals derives from a special dispensation
of the Swift language: Optionals are covariant. I'll talk more about that later in this
chapter.)

Thanks to polymorphism, you can take advantage of subclasses to add power and
customization to existing classes. This is important particularly in the world of iOS
programming, where most of the classes are defined by Cocoa and don’t belong to
you. The UIViewController class, for example, is defined by Cocoa; it has lots of
built-in methods that Cocoa will call, and these methods perform various important
tasks — but in a generic way. In real life, you’ll make a UIViewController subclass,
and you’'ll override those methods to do the tasks appropriate to your particular app.
This won't bother Cocoa in the slightest, because (substitution principle) wherever
Cocoa expects to receive or to be talking to a UIViewController, it will accept without
question an instance of your UIViewController subclass. And this substitution will
also work as expected, because (internal identity principle) whenever Cocoa calls one
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of those UIViewController methods on your subclass, it is your subclass’s override
that will be called. I'll talk more about subclassing Cocoa classes in Chapter 10.

Polymorphism is cool, but in the grand scheme of things it is also relatively slow.
It requires dynamic dispatch, meaning that the compiler can’t perform certain
optimizations, and that the runtime has to think about what a message to a class
instance means. You can reduce the need for dynamic dispatch by declaring a
class or a class member final or private. Or use a struct, if appropriate; structs
don’t need dynamic dispatch.

Casting

The Swift compiler, with its strict typing, imposes severe restrictions on what mes-
sages can be sent to an object reference. The messages that the compiler will permit to
be sent to an object reference depend upon the reference’s declared type. But the
internal identity principle of polymorphism says that, under the hood, an object may
have a real type that is different from its reference’s declared type. Such an object may
thus be capable of receiving messages that the compiler won’t permit us to send.

To illustrate, let’s give NoisyDog a method that Dog doesn’t have:

class Dog {
func bark() {
print("woof")
}
}
class NoisyDog : Dog {
override func bark() {
super.bark(); super.bark()
}
func beQuiet() {
self.bark()
}
}

In that code, we configure a NoisyDog so that we can tell it to beQuiet. Now look at
what happens when we try to tell an object typed as a Dog to be quiet:

func tellToHush(_ d:Dog) {
d.beQuiet() // compile error

}
let nd = NoisyDog()
tellToHush(nd)

Our code doesn’t compile. We can’t send the beQuiet message to the reference d
inside the function body, because it is typed as a Dog — and a Dog has no beQuiet
method. But there is a certain irony here: for once, we happen to know more than the
compiler does — namely, that this object is in fact a NoisyDog and does have a
beQuiet method! Our code would run correctly — because d really is a NoisyDog —
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if only we could get our code to compile in the first place. We need a way to say to the
compiler, “Look, compiler, just trust me: this thing is going to turn out to be a Noisy-
Dog when the program actually runs, so let me send it this message”

There is in fact a way to do this — casting. To cast, you use a form of the keyword as
followed by the name of the type you claim something really is.

Casting Down

Swift will not let you cast just any old type to any old other type — for example, you
can’t cast a String to an Int — but it will let you cast a superclass to a subclass. This is
called casting down. When you cast down, the form of the keyword as that you must
use is as! with an exclamation mark. The exclamation mark reminds you that you are
forcing the compiler to do something it would rather not do:

func tellToHush(_ d:Dog) {
(d as! NoisyDog).beQuiet()

}
let nd = NoisyDog()
tellToHush(nd)

That code compiles, and works. A useful way to rewrite the example is like this:

func tellToHush(_ d:Dog) {
let d2 = d as! NoisyDog
d2.beQuiet()

// ... other NoisyDog messages to d2 can go here ...
}
let nd = NoisyDog()
tellToHush(nd)

The reason that way of rewriting the code is useful is in case we have other NoisyDog
messages to send to this object. Instead of casting every time we want to send a mes-
sage to it, we cast the object once to its internal identity type, and assign it to a vari-
able. Now that variable’s type — inferred, in this case, from the cast — is the internal
identity type, and we can send multiple messages to the variable.

Type Testing and Casting Down Safely

A moment ago, I said that the as! operator’s exclamation mark reminds you that you
are forcing the compiler’s hand. It also serves as a warning: your code can now crash!
The reason is that you might be lying to the compiler. Casting down is a way of telling
the compiler to relax its strict type checking and to let you call the shots. If you use
casting to make a false claim, the compiler may permit it, but you will crash when the
app runs:
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func tellToHush(_ d:Dog) {
(d as! NoisyDog).beQuiet() // compiles, but prepare to crash...!

}
let d = Dog()
tellToHush(d)

In that code, we told the compiler that this object would turn out to be a NoisyDog,
and the compiler obediently took its hands off and allowed us to send the beQuiet
message to it. But in fact, this object was a Dog when our code ran, and so we ulti-
mately crashed when the cast failed because this object was not a NoisyDog.

To prevent yourself from lying accidentally, you can fest the type of an instance at
runtime. One way to do this is with the keyword is. You can use is in a condition; if
the condition passes, then cast, in the knowledge that your cast is safe:

func tellToHush(_ d:Dog) {
if d is NoisyDog {
let d2 = d as! NoisyDog
d2.beQuiet()

}

The result is that we won't cast d to a NoisyDog unless it really is a NoisyDog.

An alternative way to solve the same problem is to use Swift’s as? operator. This casts
down, but with the option of failure; therefore what it casts to is (you guessed it) an
Optional — and now we are on familiar ground, because we know how to deal safely
with an Optional:

func tellToHush(_ d:Dog) {
let noisyMaybe = d as? NoisyDog // an Optional wrapping a NoisyDog
if noisyMaybe != nil {
noisyMaybe! .beQuiet()
}
}
That doesn’t look much cleaner or shorter than our previous approach. But remem-
ber that we can safely send a message to an Optional by optionally unwrapping the
Optional! Thus we can skip the assignment and condense to a single line:
func tellToHush(_ d:Dog) {
(d as? NoisyDog)?.beQuiet()
}
First we use the as? operator to obtain an Optional wrapping a NoisyDog (or nil).
Then we optionally unwrap that Optional and send a message to it. If d isn’t a Noisy-
Dog, the Optional will be nil and the message won't be sent. If d is a NoisyDog, the
Optional will be unwrapped and the message will be sent. Thus, that code is safe.
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Type Testing and Casting Optionals

The is, as!, and as? operators work with Optionals in the same way that comparison
operators do (Chapter 3): they are automatically applied to the object wrapped by the
Optional.

Let’s start with is. Consider an Optional d ostensibly wrapping a Dog (that is, d is a
Dog? object). It might, in actual fact, be wrapping either a Dog or a NoisyDog. To find
out which it is, you might be tempted to use is. But can you? After all, an Optional is
neither a Dog nor a NoisyDog — it's an Optional! Nevertheless, Swift knows what
you mean; when the thing on the left side of is is an Optional, Swift pretends that it’s
the value wrapped in the Optional. This works just as you would hope:

let d : Dog? = NoisyDog()

if d is NoisyDog { // it 1is!
When using is with an Optional, the test fails in good order if the Optional is nil.
Thus our 1is test really does two things: it checks whether the Optional is nil, and if it
is not, it then checks whether the wrapped value is the type we specity.

What about casting? You can't really cast an Optional to anything. Nevertheless, Swift
knows what you mean; you can use the as! operator with an Optional. When the
thing on the left side of as! is an Optional, Swift treats it as the wrapped type. More-
over, the consequence of applying the as! operator is that two things happen: Swift
unwraps first, and then casts. This code works, because d is unwrapped to give us d2,
which is a NoisyDog:

let d : Dog? = NoisyDog()

let d2 = d as! NoisyDog

d2.beQuiet()
That code, however, is not safe. You shouldn’t cast like that, without testing first,
unless you are very sure of your ground. If d were nil, youd crash in the second line
because you're trying to unwrap a nil Optional. And if d were a Dog, not a Noisy-
Dog, youd still crash in the second line when the cast fails. That’s why there’s also an
as? operator, which is safe — but yields an Optional:

let d : Dog? = NoisyDog()

let d2 = d as? NoisyDog
d2?.beQuiet()

Bridging to Objective-C

Another way you’ll use casting is during a value interchange between Swift and
Objective-C when two types are equivalent. For example, you can cast a Swift String
to a Cocoa NSString, and vice versa. That’s not because one is a subclass of the other,
but because they are bridged to one another; in a very real sense, they are the same
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type. When you cast from String to NSString, youre not casting down, and what
you’re doing is not dangerous, so you use the as operator, with no exclamation mark.

In general, to cross the bridge from a Swift type to a bridged Objective-C type, you
will need to cast explicitly (except in the case of a string literal):

let s : NSString = "howdy" // literal string to NSString

let s2 = "howdy"

let s3 : NSString = s2 as NSString // String to NSString

let 1 : NSNumber = 1 as NSNumber // Int to NSNumber
That sort of code, however, is rather artificial. In real life, you won't be casting all that
often, because the Cocoa API will present itself to you in terms of Swift types. For
example, this is legal with no cast:

let name = "MyNib" // Swift String
let vc = ViewController(nibName:name, bundle:nil)

The UlViewController class comes from Cocoa, and its nibName property is an
Objective-C NSString — not a Swift String. But you don’t have to help the Swift
String name across the bridge by casting, because, in the Swift world, nibName: is
typed as a Swift String (actually, an Optional wrapping a String). The bridge, in effect,
is crossed later.

Similarly, no cast is required here:

let ud = UserDefaults.standard
let s = "howdy"
ud.set(s, forKey:"greeting")

You don’t have to help the Swift String s across the bridge by casting, because the first
argument of set(_:forKey:) is typed as a Swift type, namely Any (actually, an

Optional wrapping Any) — and any Swift type can be used, without casting, where an
Any is expected. I'll talk more about Any later in this chapter.

Coming back the other way, it is possible that you'll receive from Objective-C a value
about whose real underlying type Swift has no information. In that case, you'll proba-
bly want to cast explicitly to the underlying type — and now you are casting down,
with all that that implies. For example, here’s what happens when we go to retrieve the
"howdy" that we put into UserDefaults in the previous example:

let ud = UserDefaults.standard
let test = ud.object(forKey:"greeting") as! String

When we call ud.object(forKey:), Swift has no type information; the result is an
Any (actually, an Optional wrapping Any). But we know that this particular call
should yield a string — because that’s what we put in to begin with. So we can force-
cast this value down to a String — and it works. However, if ud.object(for-
Key:"greeting") were not a string (or if it were nil), wed crash. If youre not sure of
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your ground, use is or as? to be safe. I'll discuss this kind of downcasting in more
detail later on.

Type References

This section talks about the ways in which Swift can refer to the type of an object,
other than saying the bare type literally.

From Instance to Type

It can be useful, given an instance, to refer to its type. Indeed, it can be useful for an
instance to refer to its own type — for example, to send a message to that type. In an
earlier example, a Dog instance method fetched a Dog class property by sending a
message to the Dog type explicitly by using the word Dog:

class Dog {
class var whatDogsSay : String {
return "woof"
}
func bark() {
print(Dog.whatDogsSay)
}
}

The expression Dog.whatDogsSay seems clumsy and inflexible. Why should we have
to hard-code into Dog a knowledge of what class it is? It has a class; it should just
know what it is.

In Swift, you can access the type of an object reference’s underlying object through
the type(of:) function. Thus, if you don't like the notion of a Dog instance calling a
Dog class method by saying Dog explicitly, there’s another way:

class Dog {
class var whatDogsSay : String {
return "woof"
}
func bark() {
print(type(of:self).whatDogsSay)
}
}

An important thing about using type(of:) instead of hard-coding a class name is
that it obeys polymorphism:

class Dog {
class var whatDogsSay : String {
return "woof"
}
func bark() {
print(type(of:self).whatDogsSay)
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}
}
class NoisyDog : Dog {
override class var whatDogsSay : String {
return "woof woof woof"

}
}

Now watch what happens:

let nd = NoisyDog()

nd.bark() // woof woof woof
If we tell a NoisyDog instance to bark, it says "woof woof woof". The reason is that
type(of:) means, “The type that this object actually is, right now.” We send the bark
message to a NoisyDog instance. The bark implementation refers to type(of:self);
even though the bark implementation is inherited from Dog, self means this
instance, which is a NoisyDog, and so type(of:self) is the NoisyDog class, and it is
NoisyDog’s version of whatDogsSay that is fetched.

Type as Value

In some situations, you may want to treat an object type as a value. That is legal; an
object type is itself an object, so it can be assigned to a variable or passed as a parame-
ter. Here’s what you need to know:

o To declare that an object type is acceptable — for example, when declaring the
type of a variable or parameter — use dot-notation with the name of the type and
the keyword Type.

» To use an object type as a value — for example, to assign a type to a variable or
pass it as a parameter — use dot-notation with the name of the type and the key-
word self, or hand an object to type(of:).

For example, here’s a function dogTypeExpecter that accepts a Dog type as its
parameter:

func dogTypeExpecter(_ whattype:Dog.Type) {
}

And here’s an example of calling that function:
dogTypeExpecter(Dog.self)
Or you could call it like this:

let d = Dog()
dogTypeExpecter(type(of:d))

The substitution principle applies, so you could call dogTypeExpecter starting with a
NoisyDog instead:
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dogTypeExpecter(NoisyDog.self)

let nd = NoisyDog()

dogTypeExpecter(type(of:nd))
Why might you want to do something like that? A typical situation is that your func-
tion is a factory for instances: given a type, it creates an instance of that type, possibly
prepares it in some way, and returns it. You can use a variable reference to a type —
what Swift calls a metatype — to make an instance of that type, by explicitly sending it
an init(...) message.

For example, here’s a Dog class with an init(name:) initializer, and its NoisyDog
subclass:

class Dog {
var name : String
init(name:String) {
self.name = name

}
}
class NoisyDog : Dog {
}

And here’s a factory method that creates a Dog or a NoisyDog, as specified by its
parameter, gives it a name, and returns it:

func dogMakerAndNamer(_ whattype:Dog.Type) -> Dog {
let d = whattype.init(name:"Fido") // compile error
return d

}
However, there’s a problem: the code doesn’t compile. The reason is that the compiler
is in doubt as to whether the init(name:) initializer is implemented by every possi-
ble subtype of Dog. To reassure it, we must declare that initializer with the required
keyword:
class Dog {
var name : String

required init(name:String) {
self.name = name

}
}
class NoisyDog : Dog {
}

I promised earlier that I'd tell you why you might need to declare an initializer as
required; now I'm fulfilling that promise! The required designation reassures the
compiler; every subclass of Dog must inherit or reimplement init(name:), so it’s
legal to send the init(name:) message to a type reference that might refer to Dog or
some subclass of Dog. Now our code compiles, and we can call our function:
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let d = dogMakerAndNamer(Dog.self) // d is a Dog named Fido
let d2 = dogMakerAndNamer(NoisyDog.self) // d2 is a NoisyDog named Fido

The Keyword Self

In a class method, self stands for the class polymorphically. This means that, in a
class method, you can send a message to self to call an initializer polymorphically.
Here’s an example. Let’s say we want to move our instance factory method into Dog
itself, as a class method. Let’s call this class method makeAndName. We want this class
method to create and return a named Dog of whatever class we send the makeAndName
message to. If we say Dog.makeAndName(), we should get a Dog. If we say Noisy-
Dog.makeAndName(), we should get a NoisyDog. So our makeAndName class method
initializes polymorphic self:
class Dog {
var name : String
required init(name:String) {
self.name = name

}
class func makeAndName() -> Dog {
let d = self.init(name:"Fido")

return d
}
}
class NoisyDog : Dog {
}

It works as expected:

let d = Dog.makeAndName() // d is a Dog named Fido
let d2 = NoisyDog.makeAndName() // d2 is a NoisyDog named Fido

Although the preceding example does work, there’s a problem. Although d2 is in fact
a NoisyDog, it is typed as a Dog. This is because our makeAndName class method is
declared as returning a Dog. That isn't what we want to declare. What we want to
declare is that this method returns an instance of the same type as the class to which
the makeAndName message was originally sent. In other words, we need a polymorphic
type declaration! That type is Self (notice the capitalization). The Self type is used
as a return type in a method declaration to mean “an instance of whatever type this is
at runtime.” Thus:

class Dog {

var name : String

required init(name:String) {
self.name = name

}

class func makeAndName() -> Self {
let d = self.init(name:"Fido")
return d
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}
}
class NoisyDog : Dog {

}

Now when we call NoisyDog.makeAndName() we get a NoisyDog typed as a Noisy-
Dog.

(Our earlier example, the global factory function dogMakerAndNamer, displays the
same problem — it too returns an object typed as Dog, even if the underlying
instance is in fact a NoisyDog. We can’t use Self to solve the problem here, because
there’s no type for it to refer to. Swift does have a solution, however — generics. I'll
discuss generic functions later in this chapter.)

Self also works for instance method declarations. Therefore, we can write an
instance method version of our factory method. Here, we start with a Dog or a Noisy-
Dog and tell it to have a puppy of the same type as itself:

class Dog {
var name : String
required init(name:String) {
self.name = name
}
func havePuppy(name:String) -> Self {
return type(of:self).init(name:name)

}
}
class NoisyDog : Dog {
}

And here’s some code to test it:

let d = Dog(name:"Fido")

let d2 = d.havePuppy(name:"Fido Junior")
let nd = NoisyDog(name:"Rover")

let nd2 = nd.havePuppy(name:"Rover Junior")

As expected, d2 is a Dog, but nd2 is a NoisyDog typed as a NoisyDog.

Comparing Types

Type references can be compared to one another. On the right side of an == compari-
son, you can use the name of a type with .self; on the right side of an is compari-
son, you can use the name of a type with . Type. The difference, as you might expect,
is that == tests for absolutely identical types, whereas is permits subtypes. In this
example, if the parameter whattype is Dog.self, both equality and typology are
true; if the parameter is NoisyDog.self, equality is false but typology is still true:
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func dogTypeExpecter(_ whattype:Dog.Type) {
let equality = whattype == Dog.self
let typology = whattype is Dog.Type

}

(In real life, the second line is silly, because we know that whattype will always be
some sort of Dog type — and the compiler tells you so. But suppose we had three
classes: Dog, its subclass NoisyDog, and its subclass VeryNoisyDog. Now it would be
useful to ask whether whattype is NoisyDog.Type, meaning NoisyDog or a subclass
thereof.)

In that example, whattype might be replaced on the left side of the comparisons by
the result of a call to type(of:) (or by a type name qualified by .self, though that
would be pointless); and Dog. self might be replaced on the right side of the == com-
parison by whattype or the result of a call to type(of:). But neither whattype nor
type(of:) can appear on the right side of an is comparison; is requires a literal type
as its second operand.

Summary of Type Terminology

All this terminology can get a bit confusing, so here’s a quick summary:

type(of:)
Applied to an object: the polymorphic (internal) type of the object, regardless of
how a reference is typed. Static/class members are accessible by passing an object
to type(of:). Usable on the right side of ==.

.Type
Sent to a type in a type declaration: the polymorphic type. For example, in a func-

tion parameter declaration, Dog means a Dog instance is expected (or an instance
of one its subclasses), but Dog. Type means that the Dog type itself is expected (or
the type of one of its subclasses). Usable on the right side of is.

.self
Sent to a type: the type. For example, to pass the Dog type where Dog.Type is
expected, you can pass Dog. self. Usable on the right side of ==.

self
In instance code, this instance, polymorphically. In static/class code, this type,
polymorphically; self.init(...) instantiates the type.

Self
In a method declaration, when specifying the return type, this class or this
instance’s class, polymorphically.
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Protocols

A protocol is a way of expressing commonalities between otherwise unrelated types.
For example, a Bee object and a Bird object might need to have certain features in
common by virtue of the fact that both a bee and a bird can fly. Thus, it might be
useful to define a Flier type. The question is: In what sense can both Bee and Bird be
Fliers?

One possibility, of course, is class inheritance. If Bee and Bird are both classes, there’s
a class hierarchy of superclasses and subclasses. So Flier could be the superclass of
both Bee and Bird. The problem is that there may be other reasons why Flier can’t be
the superclass of both Bee and Bird. A Bee is an Insect; a Bird isn't. Yet they both have
the power of flight — independently. We need a type that cuts across the class hierar-
chy somehow, tying remote classes together.

Moreover, what if Bee and Bird are not both classes? In Swift, that’s a very real possi-
bility. Important and powerful objects can be structs instead of classes. But there is no
struct hierarchy of superstructs and substructs! That, after all, is one of the major dif-
ferences between structs and classes. Yet structs need the ability to possess and
express formal commonalities every bit as much as classes do. How can a Bee struct
and a Bird struct both be Fliers?

Swift solves this problem through the use of protocols. Protocols are tremendously
important in Swift; the Swift header defines about 60 of them! Moreover, Objective-C
has protocols as well; Swift protocols correspond roughly to these, and can inter-
change with them. Cocoa makes heavy use of protocols.

A protocol is an object type, but there are no protocol objects — you can’t instantiate a
protocol. A protocol is much more lightweight than that. A protocol declaration is
just a list of properties and methods. The properties have no values, and the methods
have no code! The idea is that a “real” object type can formally declare that it belongs
to a protocol type; this is called adopting the protocol. An object type that adopts a
protocol is signing a contract stating that it actually implements the properties and
methods listed by the protocol. And it must fulfill that contract! This is called con-
forming to the protocol.

For example, let’s say that being a Flier consists of no more than implementing a fly
method. Then a Flier protocol could specify that there must be a fly method; to do
so, it lists the fly method with no function body, like this:

protocol Flier {

func fly()
}

Any type — an enum, a struct, a class, or even another protocol — can then adopt
this protocol. To do so, it lists the protocol after a colon after its name in its declara-
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tion. (If the adopter is a class with a superclass, the protocol comes after a comma
after the superclass specification.)

Let’s say Bird is a struct. Then it can adopt Flier like this:

struct Bird : Flier {
} // compile error

So far, so good. But that code won’t compile. The Bird struct has made a promise to
implement the features listed in the Flier protocol. Now it must keep that promise!
The fly method is the only requirement of the Flier protocol. To satisfy that require-
ment, I'll just give Bird an empty fly method:

protocol Flier {
func fly()
itruct Bird : Flier {
func fly() {
}
}
That’s all there is to it! We've defined a protocol, and we've made a struct adopt and
conform to that protocol. Of course, in real life you’ll probably want to make the
adopter’s implementation of the protocol’s methods do something; but the protocol
says nothing about that.

A protocol can also declare a method and provide its implementation, thanks to
protocol extensions, which T'll discuss later in this chapter.

Why Protocols?

Perhaps at this point you're scratching your head over why this is a useful thing to do.
We made a Bird a Flier, but so what? If we wanted a Bird to know how to fly, why
didn’t we just give Bird a fly method without adopting any protocol? The answer has
to do with types. Don’t forget, a protocol is a type. Our protocol, Flier, is a type.
Therefore, I can use Flier as a type — to declare the type of a variable, for example, or
the type of a function parameter:

func tellToFly(_ f:Flier) {
f.fly()
}

Think about that code for a moment, because it embodies the entire point of proto-
cols. A protocol is a type — so polymorphism applies. Protocols give us another way of
expressing the notion of type and subtype. This means that, by the substitution prin-
ciple, a Flier here could be an instance of any object type — an enum, a struct, or a
class. It doesn’t matter what object type it is, as long as it adopts the Flier protocol. If it
adopts the Flier protocol, it can be passed where a Flier is expected. Moreover, if it
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adopts the Flier protocol, then it must have a fly method, because that’s exactly what
it means to adopt the Flier protocol! Therefore the compiler is willing to let us send
the fly message to this object.

The converse, however, is not true: an object with a fly method is not automatically a
Flier. It isn’t enough to obey the requirements of a protocol; the object type must for-
mally adopt the protocol. This code won't compile:

func tellToFly(_ f:Flier) {
f.fly()

}

struct Bee {
func fly() {
}

}

let b = Bee()

tellToFly(b) // compile error

A Bee can be sent the fly message, qua Bee. But tellToFly doesn’t take a Bee param-
eter; it takes a Flier parameter. Formally, a Bee is not a Flier. To make a Bee a Flier,
simply declare formally that Bee adopts the Flier protocol. This code does compile:

func tellToFly(_ f:Flier) {
f.fly()

}

struct Bee : Flier {
func fly() {

}
}
let b = Bee()
tellToFly(b)

Enough of birds and bees; were ready for a real-life example! As I've already said,
Swift is chock full of protocols already. Let's make one of our own object types adopt
one. The CustomStringConvertible protocol requires that we implement a
description String property. If we do that, a wonderful thing happens: when an
instance of this type is used in string interpolation, or with print (or the po com-
mand in the console), or in the String initializer init(describing:), the
description property value is used automatically to represent it.

Recall, for example, the Filter enum, from earlier in this chapter. T'll add a
description property to it:

enum Filter : String {

case albums = "Albums"
case playlists = "Playlists"
case podcasts = "Podcasts"

case books = "Audiobooks"
var description : String { return self.rawValue }
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But that isn’t enough, in and of itself, to give Filter the power of the CustomString-
Convertible protocol; to do that, we also need to adopt the CustomStringConvertible
protocol formally. There is already a colon and a type in the Filter declaration, so an
adopted protocol comes after a comma:

enum Filter : String, CustomStringConvertible {
case albums = "Albums"
case playlists = "Playlists"
case podcasts = "Podcasts"
case books = "Audiobooks"
var description : String { return self.rawValue }

}
We have now made Filter formally adopt the CustomStringConvertible protocol. The
CustomStringConvertible protocol requires that we implement a description String
property; we do implement a description String property, so our code compiles.
Now we can interpolate a Filter into a string, or hand it over to print, or coerce it to a
String, and its description will be used automatically:

let type = Filter.albums

print("It is \(type)") // It is Albums
print(type) // Albums

let s = String(describing:type) // Albums

Behold the power of protocols. You can give any object type the power of string con-
version in exactly the same way.

Note that a type can adopt more than one protocol! For example, the built-in Double
type adopts CustomStringConvertible, Hashable, Strideable, and several other built-
in protocols. To declare adoption of multiple protocols, list each one after the first
protocol in the declaration, separated by a comma. For example:

struct MyType : CustomStringConvertible, TextOutputStreamable, Strideable {
/...
}
(Of course, that code won’t compile unless I also declare, in MyType, any required
properties and methods, so that MyType actually conforms to those protocols.)

Protocol Type Testing and Casting

A protocol is a type, and an adopter of a protocol is its subtype. Polymorphism
applies. Therefore, the operators for mediating between an object’s declared type and
its real type work when the object is declared as a protocol type. For example, given a
protocol Flier that is adopted by both Bird and Bee, we can use the is operator to test
whether a particular Flier is in fact a Bird:

func isBird(_ f:Flier) -> Bool {
return f is Bird

}
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Similarly, as! and as? can be used to cast an object declared as a protocol type down
to its actual type. This is important to be able to do, because the adopting object will
typically be able to receive messages that the protocol can’t receive. For example, let’s
say that a Bird can get a worm:

struct Bird : Flier {
func fly() {

}
func getWorm() {

}
}
A Bird can fly qua Flier, but it can getWorm only qua Bird. Thus, you can't tell just
any old Flier to get a worm:
func tellGetWorm(_ f:Flier) {
f.getWorm() // compile error
}
But if this Flier is a Bird, clearly it can get a worm. That is exactly what casting is all
about:
func tellGetWorm(f:Flier) {

(f as? Bird)?.getWorm()
}

Declaring a Protocol

Protocol declaration can take place only at the top level of a file. To declare a proto-
col, use the keyword protocol followed by the name of the protocol, which, being an
object type, should start with a capital letter. Then come curly braces which may con-
tain the following:

Properties

A property declaration in a protocol consists of var (not let), the property
name, a colon, its type, and curly braces containing the word get or the words
get set. In the former case, the adopter’s implementation of this property can be
writable, while in the latter case, it must be: the adopter may not implement a get
set property as a read-only computed property or as a constant (let) stored
property.

To declare a static/class property, precede it with the keyword static. A class
adopter is free to implement this as a class property.

Methods
A method declaration in a protocol is a function declaration without a function
body — that is, it has no curly braces and thus it has no code. Any object func-
tion type is legal, including init and subscript. (The syntax for declaring a sub-
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script in a protocol is the same as the syntax for declaring a subscript in an object
type, except that there will be no function bodies, so the curly braces, like those
of a property declaration in a protocol, will contain get or get set.)

To declare a static/class method, precede it with the keyword static. A class
adopter is free to implement this as a class method.

To permit an enum or struct adopter to declare a method mutating, declare it
mutating in the protocol. An adopter cannot add mutating if the protocol lacks
it, but the adopter may omit mutating if the protocol has it.

A protocol can itself adopt one or more protocols; the syntax is just as you would
expect — a colon after the protocol’s name in the declaration, followed by a comma-
separated list of the protocols it adopts. In effect, this gives you a way to create an
entire secondary hierarchy of types! The Swift headers make heavy use of this.

A protocol that adopts another protocol may repeat the contents of the adopted pro-
tocol’s curly braces, for clarity; but it doesn’t have to, as this repetition is implicit. An
object type that adopts a protocol must satisfy the requirements of this protocol and
all protocols that the protocol adopts.

Protocol Composition

If the only purpose of a protocol is to combine other protocols by adopting all of
them, without adding any new requirements, you can avoid formally declaring the
protocol in the first place by specifying the combining protocol on the fly. To do so,
join the protocol names with &. This is called protocol composition. For example:

func f(_ x: CustomStringConvertible & CustomDebugStringConvertible) {
}

That is a function declaration with a parameter whose type is specified as being some
object type that adopts both the CustomStringConvertible protocol and the Custom-
DebugStringConvertible protocol.

Starting in Swift 4, a type can also be specified as a composite of a class and a protocol
(or multiple protocols). A typical case in point might look something like this:

protocol MyViewProtocol : class {
func doSomethingCool()

}

class ViewController: UIViewController {
var v: (UIView & MyViewProtocol)?
/...

}

In that code, ViewController’s v property is typed as an Optional wrapping a compo-
site of UIView and MyViewProtocol. To be assigned to the v property, an object
would need to be an instance of a UIView subclass that is also an adopter of MyView-
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Protocol. UIView itself belongs to Cocoa and does not adopt MyViewProtocol; but
we might easily subclass UIView and make that subclass adopt it (or, as I'll explain
later, we might extend a built-in UI'View subclass to adopt it).

In this way, we guarantee to the compiler that both UIView messages and MyView-
Protocol messages can be sent to a ViewController’s v. That, it turns out, is a fairly
common thing to want to be able to do; without this feature, youd have to type v as a
MyViewProtocol and then cast to UIView in order to send it UIView messages, even
if you knew that v would in fact always be a UIView.

Optional Protocol Members

In Objective-C, a protocol member can be declared optional, meaning that this mem-
ber doesn’t have to be implemented by the adopter, but it may be. For compatibility
with Objective-C, Swift allows optional protocol members, but only in a protocol
explicitly bridged to Objective-C by preceding its declaration with the @objc
attribute. In such a protocol, an optional member is declared by preceding its decla-
ration with the keywords @objc optional:

@objc protocol Flier {
@objc optional var song : String {get}
@objc optional func sing()

}

(The @objc markings are needed because optional protocol members are not really a
Swift feature; they are an Objective-C feature! Therefore, everything about an
optional protocol member must be explicitly exposed to Objective-C, so that
Objective-C can implement it. I'll explain in Chapter 10 how Objective-C implements
optional protocol members.)

Only a class can adopt such a protocol:

class Bird : Flier {
func sing() {
print("tweet")
}
}
An optional member is not guaranteed to be implemented by the adopter, so Swift
doesn't know whether it’s safe to send a Flier either the song message or the sing
message. How Swift solves that problem depends on whether this is an optional prop-
erty or an optional method.

In the case of an optional property like song, Swift solves the problem by wrapping its
fetched value in an Optional. If the Flier adopter doesn’t implement the property, the
result is nil and no harm done:

let f : Flier = Bird()
let s = f.song // s is an Optional wrapping a String
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This is one of those rare situations where you can wind up with a double-wrapped
Optional. For example, if the value of the optional property song were itself a
String?, then fetching its value from a Flier would yield a String??:

@objc protocol Flier {
@objc optional var song : String? {get}
@objc optional func sing()

}

let f : Flier = Bird()

let s = f.song // s is an Optional wrapping an Optional wrapping a String
In the case of an optional method like sing, things are more elaborate. If the method
is not implemented, we must not be permitted to call it in the first place. To handle
this situation, the method itself is automatically typed as an Optional version of its
declared type. To send the sing message to a Flier, therefore, you must unwrap it. The
safe approach is to unwrap it optionally, with a question mark:

let f : Flier = Bird()

f.sing?()
That code compiles — and it also runs safely. The effect is to send the sing message
to f only if this Flier adopter implements sing. If this Flier adopter doesn’t implement
sing, nothing happens. You could have force-unwrapped the call — f.sing!() — but
then your app would crash if the adopter doesn’t implement sing.

If an optional method returns a value, that value is wrapped in an Optional as well.
For example:

@objc protocol Flier {
@objc optional var song : String {get}
@objc optional func sing() -> String

}

If we now call sing?() on a Flier, the result is an Optional wrapping a String:

let f : Flier = Bird()

let s = f.sing?() // s is an Optional wrapping a String
If we force-unwrap the call — sing!() — the result is either a String (if the adopter
implements sing) or a crash (if it doesn’t).

Many Cocoa protocols have optional members. For example, your iOS app will have
an app delegate class that adopts the UIApplicationDelegate protocol; this protocol
has many methods, all of them optional. That fact, however, will have no effect on
how you implement those methods; either you implement a method or you don't. (I'll
talk more about Cocoa protocols in Chapter 10, and about delegate protocols in
Chapter 11.)
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An optional property can be declared {get set} by its protocol, but there is no

7, legal syntax for setting such a property in an object of that protocol type. For
example, if f is a Flier and song is declared {get set}, you can't set f.song. I
regard this as a bug in the language.

Class Protocol

A protocol declared with the keyword class after the colon after its name is a class
protocol, meaning that it can be adopted only by class object types:

protocol SecondViewControllerDelegate : class {
func accept(data:Any!)
}

(There is no need to say class if this protocol is already marked @objc; the @objc
attribute implies that this is also a class protocol, because classes are the only
Objective-C object type.)

A typical reason for declaring a class protocol is to take advantage of special memory
management features that apply only to classes. I haven't discussed memory manage-
ment yet, but I'll continue the example anyway (and I'll repeat it when I talk about
memory management in Chapter 5):

class SecondViewController : UIViewController {
weak var delegate : SecondViewControllerDelegate?

/] ...
}
The keyword weak marks the delegate property as having special memory manage-
ment that applies only to class instances. The delegate property is typed as a proto-
col, and a protocol might be adopted by a struct or an enum type. So to satisfy the
compiler that this object will in fact be a class instance, and not a struct or enum
instance, the protocol is declared as a class protocol.

In Swift 4 or later, you might alternatively take advantage of class—protocol composi-
tion to accomplish the same thing:

class SecondViewController : UIViewController {
weak var delegate : (NSObject & SecondViewControllerDelegate)?
/...

}
That’s legal even if SecondViewControllerDelegate has no class designation, because
the compiler knows that the object assigned to the delegate property will derive
from NSObject, in which case it is a class instance.
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Implicitly Required Initializers

Suppose that a protocol declares an initializer. And suppose that a class adopts this
protocol. By the terms of this protocol, this class and any subclass it may ever have
must implement this initializer. Therefore, the class must not only implement the ini-
tializer, but it must also mark it as required. An initializer declared in a protocol is
thus implicitly required, and the class is forced to make that requirement explicit.

Consider this simple example, which won’t compile:

protocol Flier {
init()
}
class Bird : Flier {
init() {3} // compile error
}

That code generates an elaborate but perfectly informative compile error message:
“Initializer requirement init() can only be satisfied by a required initializer in non-
final class Bird.” To compile our code, we must designate our initializer as required:

protocol Flier {
init()
}

class Bird : Flier {
required init() {}
}
The alternative, as the compile error message informs us, would be to mark the Bird
class as final. This would mean that it cannot have any subclasses — thus guarantee-
ing that the problem will never arise in the first place. If Bird were marked final,
there would be no need to mark its init as required.

In the above code, Bird is not marked as final, and its init is marked as required.
This, as I've already explained, means that any subclass of Bird that implements any
designated initializers — and thus loses initializer inheritance — must implement the
required initializer and mark it required as well.

That fact is responsible for a strange and annoying feature of real-life iOS program-
ming with Swift. Let’s say you subclass the built-in Cocoa class UIViewController —
something that you are extremely likely to do. And let’s say you give your subclass an
initializer — something that you are also extremely likely to do:

class ViewController: UIViewController {
intt() {
super.init(nibName: "ViewController", bundle: nil)

}
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That code won't compile. The compile error says: “required initializer init(coder:)
must be provided by subclass of UIViewController”

What's going on here? It turns out that UI'ViewController adopts a protocol, NSCod-
ing. And this protocol requires an initializer init(coder:). None of that is your
doing; UIViewController and NSCoding are declared by Cocoa, not by you. But that
doesn't matter! This is the same situation I was just describing. Your UIView-
Controller subclass must either inherit init(coder:) or must explicitly implement it
and mark it required. Well, your subclass has implemented a designated initializer of
its own — thus cutting off initializer inheritance. Therefore it must implement
init(coder:) and mark it required.

But that makes no sense if you are not expecting init(coder:) ever to be called on
your UIViewController subclass. You are being forced to write an initializer for which
you can provide no meaningful functionality! Fortunately, Xcode’s Fix-it feature will
offer to write the initializer for you, like this:

required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")
}
That code satisfies the compiler. (I'll explain in Chapter 5 why it’s a legal initializer
even though it doesn’t fulfill an initializer’s contract.) It also deliberately crashes if it is
ever called — which is fine, because ex hypothesi you don’t expect it ever to be called.

If, on the other hand, you do have functionality for this initializer, you will delete the
fatalError line and insert that functionality in its place. A minimum meaningful
implementation would be to call super.init(coder:aDecoder), but of course if your
class has properties that need initialization, you will need to initialize them first.

Not only UIViewController but lots of built-in Cocoa classes adopt NSCoding. You
will encounter this problem if you subclass any of those classes and implement your
own initializer. It’s just something you’ll have to get used to.

Literal Convertibles

One of the wonderful things about Swift is that so many of its features, rather than
being built-in and accomplished by magic, are exposed to view in the Swift header.
Literals are a case in point. The reason you can say 5 to make an Int whose value is 5,
instead of formally initializing Int by saying Int(5), is not because of magic (or at
least, not entirely because of magic). It’s because Int adopts a protocol, Expressible-
BylntegerLiteral. Not only Int literals, but all literals work this way. The following
protocols are declared in the Swift header:

 ExpressibleByNilLiteral
» ExpressibleByBooleanLiteral
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o ExpressibleByIntegerLiteral

« ExpressibleByFloatLiteral
 ExpressibleByStringLiteral

o ExpressibleByExtendedGraphemeClusterLiteral
« ExpressibleByUnicodeScalarLiteral

o ExpressibleByArrayLiteral

o ExpressibleByDictionaryLiteral

Your own object type can adopt a literal convertible protocol as well. This means that
a literal can appear where an instance of your object type is expected! For example,
here we declare a Nest type that contains some number of eggs (its eggCount):

struct Nest : ExpressibleByIntegerLiteral {
var eggCount : Int = 0
init() {}
init(integerLiteral val: Int) {
self.eggCount = val

}
}
Because Nest adopts ExpressibleByIntegerLiteral, we can pass an Int where a Nest is
expected, and our init(integerLiteral:) will be called automatically, causing a
new Nest object with the specified eggCount to come into existence at that moment:

func reportEggs(_ nest:Nest) {
print("this nest contains \(nest.eggCount) eggs")

}
reportEggs(4) // this nest contains 4 eggs

Generics

A generic is a sort of placeholder for a type, into which an actual type will be slotted
later. In particular, there are situations where you want to say that a certain same type
is to be used in several places, without specifying precisely what type this is to be.
Swift generics allow you to say that, without sacrificing or evading Swift’s fundamen-
tal strict typing.

A motivating case in point arose earlier in this chapter, when we wrote a global fac-
tory method for dogs:

func dogMakerAndNamer(_ whattype:Dog.Type) -> Dog {
let d = whattype.init(name:"Fido")
return d

}

That works, but it isn't quite what wed like to say. In the first line, the function’s
declared return type after the arrow operator is Dog. So if we are passed a Dog sub-

Generics | 197



class such as NoisyDog as the parameter, we will instantiate that type (which is good)
but then return that instance typed as Dog (which is bad). Instead, wed like the type
declared as the return type after the arrow operator to be the same type that we were
passed as a parameter in the first line and that we instantiated in the second line —
whatever that type may be. Generics provide us with a way to express that notion:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {
let d = WhatType.init(name:"Fido")
return d

}

That’s a generic function. I haven't yet explained the syntax used here, but already you
can see the point. The type WhatType is a generic type — a placeholder. First, it is
declared as being a placeholder; that’s what the expression in angle brackets does:
<WhatType:Dog>. Then, it is used in the course of the declaration, in three places: as
the type passed in as parameter, as the type instantiated in the second line, and as the
declared type of the returned instance (after the arrow operator). The generic func-
tion thus specifies that this is the same type throughout, without having to specify
exactly what type it is (beyond the fact that it is Dog or a Dog subclass).

However, Swift has strict typing, so in order to let us call this function, the compiler
needs to know the real type that WhatType stands for. But in fact it knows this from
looking at the call itself! For example:

let dog = dogMakerAndNamer (NoisyDog.self)

In that call, we pass NoisyDog.self as the parameter. That tells the compiler what
WhatType is! It is NoisyDog. In effect, the compiler now substitutes NoisyDog for
WhatType throughout the generic, like this (pseudocode):

func dogMakerAndNamer(_:NoisyDog.Type) -> NoisyDog {
let d = NoisyDog.init(name:"Fido")
return d

}

That process of substitution is called resolving (or specializing) the generic. The type
in question is unambiguously clear for this call to our function, and the compiler is
satisfied. And this resolution extends beyond the generic itself. For example, now that
the compiler knows that this call to our function will return a NoisyDog instance, it
can type the variable initialized to the result of the call as a NoisyDog by inference:

let dog = dogMakerAndNamer(NoisyDog.self) // dog is typed as NoisyDog

Here’s another motivating case in point: an Optional. Any type of value can be wrap-
ped up in an Optional. Yet there is no doubt as to what type is wrapped up in a partic-
ular Optional. How can this be? It's because Optional is a generic! Here’s how an
Optional works.
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I have already said that an Optional is an enum, with two cases: .none and .some. If
an Optional’s case is .some, it has an associated value — the value that is wrapped by
this Optional. But what is the type of that associated value? On the one hand, one
wants to say that it can be any type; that, after all, is why anything can be wrapped up
in an Optional. On the other hand, any particular Optional can wrap a value only of
some one specific known type. That sounds like a generic! The declaration for the
Optional enum in the Swift header starts like this:

enum Optional<Wrapped> : ExpressibleByNilLiteral {
case none
case some(Wrapped)
init(_ some: Wrapped)
/...
}
Again, the angle-bracket syntax <Wrapped> declares that Wrapped is a placeholder.
The rest of the enum declaration proceeds to use the placeholder. Besides the
case .none, there’s also a case .some, which has an associated value — of type Wrap-
ped. And there’s an initializer, which takes a parameter — of type Wrapped. Thus, the
type with which we are initialized — whatever type that may be — is type Wrapped,
and thus is the type of value that is associated with the .some case.

And how will this placeholder be resolved? Well, when an Optional is created, it will
be initialized with an actual value of some definite type:

let s = Optional("howdy")

We're calling init(_ some: Wrapped), so "howdy" is being supplied here as a Wrap-
ped instance, thus resolving the generic as String. The compiler now knows that
Wrapped is String throughout this particular Optional<Wrapped>; the declaration for
the particular Optional referred to by the variable s looks, in the compiler’s mind, like
this (pseudocode):

enum Optional<String> {
case none
case some(String)
init(_ some: String)
/...
}
That is the pseudocode declaration of an Optional whose Wrapped placeholder has
been replaced everywhere with the String type. We can summarize this by saying that
s is an Optional<String>. In fact, that is legal syntax! We can create the same
Optional like this:

let s : Optional<String> = "howdy"

As T've shown, generics do not in any way relax Swift’s strict typing. In particular, they
do not postpone resolution of a type until runtime. When you use a generic, your
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code will still specify its real type; that real type is known with complete specificity at
compile time! The particular region of your code where the type is expected uses a
generic so that it doesn’t have to specify the type fully, but at the point where that
code is used by other code, the type is specified. The placeholder is generic, but it is
resolved to an actual specific type whenever the generic is used.

Generic Declarations

Here’s a list of places where generics, in one form or another, can be declared in Swift:

Generic protocol with Self

In a protocol, use of the keyword Self (note the capitalization) turns the proto-
col into a generic. Self is a placeholder meaning the type of the adopter. For
example, here’s a Flier protocol that declares a method that takes a Self
parameter:

protocol Flier {
func flockTogetherWith(_ f:Self)
}
That means that if the Bird object type were to adopt the Flier protocol, its imple-
mentation of flockTogetherWith would need to declare its parameter as a Bird.

Generic protocol with associated type

A protocol can declare an associated type using an associatedtype statement.
This turns the protocol into a generic; the associated type name is a placeholder.
For example:

protocol Flier {
associatedtype Other
func flockTogetherWith(_ f:Other)
func mateWith(_ f:O0ther)

}
An adopter will declare some particular type where the generic uses the associ-
ated type name, thus resolving the placeholder. If the Bird struct adopts the Flier
protocol and declares the parameter of flockTogetherWith as a Bird, that decla-
ration resolves Other to Bird for this particular adopter — and now Bird must
declare the parameter for mateWith as a Bird as well:

struct Bird : Flier {

func flockTogetherWith(_ f:Bird) {}
func mateWith(_ f:Bird) {}
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Generic functions
A function declaration can use a generic placeholder type for any of its parame-
ters, for its return type, and within its body. The placeholder name is declared in
angle brackets after the function name:

func takeAndReturnSameThing<T> (_ t:T) -> T {
return t

}
The caller will use some particular type where the placeholder appears in the
function declaration, thus resolving the placeholder:

let thing = takeAndReturnSameThing("howdy")

Here, the type of the argument "howdy" used in the call resolves T to String;
therefore this call to takeAndReturnSameThing will also return a String, and the
variable capturing the result, thing, is inferred to String as well.

Generic object types
An object type declaration can use a generic placeholder type anywhere within its
curly braces. The placeholder name is declared in angle brackets after the object
type name:
struct HolderOfTwoSameThings<T> {
var firstThing : T
var secondThing : T
init(thingOne:T, thingTwo:T) {
self.firstThing = thingOne
self.secondThing = thingTwo

}

A user of this object type will use some particular type where the placeholder
appears in the object type declaration, thus resolving the placeholder:

let holder = HolderOfTwoSameThings(thingOne:"howdy", thingTwo:"getLost")

Here, the type of the thingOne argument, "howdy", used in the initializer call,
resolves T to String; therefore thingTwo must also be a String, and the properties
firstThing and secondThing are Strings as well.

For generic functions and object types, which use the angle bracket syntax, the angle
brackets may contain multiple placeholder names, separated by a comma. For exam-
ple:

func flockTwoTogether<T, U>(_ f1:T, _ f2:U) {}

The two parameters of flockTwoTogether can now be resolved to two different types
(though they do not have to be different).
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Inside a generic’s code, the generic placeholder is a type reference standing for the
resolved type, which can be interrogated using type reference comparison, as
described earlier in this chapter. For example:

func takeAndReturnSameThing<T> (_ t:T) -> T {
if T.self is String.Type {
/] ...
}

return t

}
If we call takeAndReturnSameThing("howdy"), the condition will be true. That sort of

thing, however, is unusual; a generic whose behavior depends on interrogation of the
placeholder type may need to be rewritten in some other way.

Contradictory Resolution

Because the use of a generic resolves the generic, the compiler can prevent a resolu-
tion that would contradict itself. To illustrate, I'll return to an earlier example:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {

let d = WhatType.init(name:"Fido")
return d

}

Now consider this code:
let d : NoisyDog = dogMakerAndNamer(Dog.self)

That code makes no sense. On the one hand, the parameter Dog. self resolves What-
Type to Dog. On the other hand, the explicit type of the result d resolves WhatType to
NoisyDog. Those two resolutions contradict one another.

The brilliant thing is that the compiler knows this, and stops you in your tracks:
let d : NoilsyDog = dogMakerAndNamer(Dog.self) // compile error

Contradictory resolution of a generic is thus impossible as a consequence of Swift’s
strict typing. A generic placeholder must be resolved consistently throughout the
generic, or it cannot be resolved at all. That, after all, is the point of the generic.

Similarly, recall this example:

protocol Flier {
associatedtype Other
func flockTogetherWith(_ f:0ther)
func mateWith(_ f:Other)

}

The placeholder Other may be resolved to any type, but it must be the same type. This
is a legal adoption of Flier:
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struct Bird : Flier {
func flockTogetherWith(_ f: String) {}
func mateWith(_ f:String) {}

}

But this is not:

struct Bird : Flier { // compile error
func flockTogetherWith(_ f: String) {}
func mateWith(_ f:Int) {}

}

The compiler stops you, complaining that Bird does not conform to Flier.

Type Constraints

A generic declaration can limit the types that are eligible to be used for resolving a
particular placeholder. This is called a type constraint.

The simplest form of type constraint is to put a colon and a type name after the place-
holder’s name when it first appears. The type name after the colon can be a class
name or a protocol name:

Class name
A class name means that this type must be this class or a subclass of this class.

Protocol name
A protocol name means that this type must be an adopter of this protocol.

For a protocol associated type, the type constraint appears as part of the
associatedtype declaration. For example:

protocol Flier {
func fly()

}

protocol Flocker {
associatedtype Other : Flier // *
func flockTogetherWith(f:0ther)

}
struct Bird : Flocker, Flier {
func fly() {3}
func flockTogetherWith(f:Bird) {}

}
In that example, Flocker’s associated type Other is constrained to be an adopter of
Flier. Bird is an adopter of Flier; therefore it can also adopt Flocker while specifying
that the parameter type in its flockTogetherWith implementation is Bird.

Observe that we could not have achieved the same effect without the associated type,
by declaring Flocker like this:
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protocol Flocker {
func flockTogetherWith(f:Flier)
}

That’s not the same thing! That requires that a Flocker adopter specify the parameter
for flockTogetherWith as Flier. We would then have had to write Bird like this:

struct Bird : Flocker, Flier {

func fly() {3

func flockTogetherWith(f:Flier) {}
}

The constrained associated type, on the other hand, requires that a Flocker adopter
specify the parameter for flockTogetherWith as some Flier adopter (such as Bird).

For a generic function or a generic object type, the type constraint appears in the
angle brackets. The global function declaration earlier in this chapter, func dogMaker -
AndNamer<WhatType:Dog>, is an example; Dog is a class, so the constraint says that
WhatType must be Dog or a Dog subclass. Here’s another example, using a protocol
as a constraint:

func flockTwoTogether<T:Flier>(_ f1:T, _ f2:T) {}

In that example, Flier is a protocol, so the constraint says that T must be a Flier
adopter. If Bird and Insect both adopt Flier, this flockTwoTogether function can be
called with two Bird arguments or with two Insect arguments — but not with a Bird
and an Insect, because T is just one placeholder, signifying one Flier adopter type.
And you can’t call flockTwoTogether with two String parameters, because a String is
not a Flier.

A type constraint on a placeholder is often used as a way of assuring the compiler that
some message can be sent to an instance of the placeholder type. For example, let’s say
we want to implement a function myMin that returns the smallest from a list of the
same type. Here’s a promising implementation as a generic function, but there’s one
problem — it doesn’t compile:

func myMin<T>(_ things:T...) -> T {
var minimum = things.first!
for item in things.dropFirst() {
if item < minimum { // compile error
minimum = item
}
}

return minimum

}

The problem is the comparison things[ix] < minimum. How does the compiler
know that the type T, the type of things[ix] and minimum, will be resolved to a type
that can in fact be compared using the less-than operator in this way? It doesn’t, and
that’s exactly why it rejects that code. The solution is to promise the compiler that the
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resolved type of T will in fact work with the less-than operator. The way to do that, it
turns out, is to constrain T to Swift’s built-in Comparable protocol; adoption of the
Comparable protocol exactly guarantees that the adopter does work with the less-than
operator:

func myMin<T:Comparable>(_ things:T...) -> T {

Now myMin compiles, because it cannot be called except by resolving T to an object
type that adopts Comparable and hence can be compared with the less-than operator.
Naturally, built-in object types that you think should be comparable, such as Int,
Double, String, and Character, do in fact adopt the Comparable protocol! If you look
in the Swift headers, you'll find that the built-in min global function is declared in just
this way, and for just this reason.

A generic protocol (a protocol whose declaration mentions Self or has an asso-

/g‘L ciated type) can be used as a type only in a generic as a type constraint. If you try
to use it in any other way, you'll get a compile error: “Protocol can only be used
as a generic constraint.” This restriction can be quite frustrating. The standard
way of circumventing it is called type erasure; for an excellent discussion, see
http://robnapier.net/erasure.

Explicit Specialization

In the generic examples so far, the placeholder’s type has been resolved mostly
through inference. For example, we initialize an Optional with a literal string, so its
Wrapped type is resolved to String:

let s = Optional("howdy")

But there’s another way to perform resolution: we can resolve the type manually. For
example, we can actually declare, as we use the generic, what the placeholder type is:

let s : Optional<String> = "howdy"

This is called explicit specialization. In some situations, explicit specialization is
mandatory — namely, if the placeholder type cannot be resolved through inference.
There are two forms of explicit specialization:

Generic protocol with associated type
The adopter of a protocol can resolve an associated type manually through a type
alias defining the associated type as some explicit type. For example:

protocol Flier {
associatedtype Other

}

struct Bird : Flier {
typealias Other = String

}
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Generic object type
The user of a generic object type can resolve a placeholder type manually using
the same angle bracket syntax used to declare the generic in the first place, with
the type name in the angle brackets. For example:

class Dog<T> {
var name : T?

}
let d = Dog<String>()

You cannot explicitly specialize a generic function. You can, however, write a generic

function that takes a type parameter resolving the generic. That’s what I did in my
earlier dogMakerAndNamer example:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {
let d = WhatType.init(name:"Fido")
return d

}

The parameter to dogMakerAndNamer is never used within the function body, which is
why it has no name (just an underscore). It does, however, serve to resolve the
generic!

Another way to specialize a generic function is not to use a generic function in the
first place: use a generic object type instead, because a generic object type can be
resolved explicitly. We declare a generic type wrapping a nongeneric function that
uses the generic type’s placeholder; explicit specialization of the generic type resolves
the placeholder, and thus resolves the function:

protocol Flier {

init()

}

struct Bird : Flier {
init() {1}

}

struct FlierMaker<T:Flier> {
static func makeFlier() -> T {
return T()
}

}
let f = FlierMaker<Bird>.makeFlier() // returns a Bird

When a class is generic, you can subclass it, provided you resolve the generic. You can
do this either through a matching generic subclass or by resolving the superclass
generic explicitly. For example, here’s a generic Dog:

class Dog<T> {
func speak(_ what:T) {}
}

You can subclass it as a generic whose placeholder matches that of the superclass:
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class NoisyDog<T> : Dog<T> {}

That’s legal because the resolution of the NoisyDog placeholder T will resolve the Dog
placeholder T. The alternative is to subclass an explicitly specialized Dog:

class NoisyDog : Dog<String> {}

In that case, a method override in the subclass can use the specialized type where the
superclass uses the generic:

class NoisyDog : Dog<String> {
override func speak(_ what:String) {}

}

Generic Invariance

In general, a generic type specialized to a subtype is not polymorphic with respect to
the same generic type specialized to a supertype. For example, suppose we have a
simple generic Wrapper struct along with a Cat class and its CalicoCat subclass:

struct Wrapper<T> {

}
class Cat {

}
class CalicoCat : Cat {

}

Then you can’t assign a Wrapper specialized to CalicoCat where a Wrapper special-
ized to Cat is expected:

let w : Wrapper<Cat> = Wrapper<CalicoCat>() // compile error

It appears that polymorphism is failing here — but it isn’t. The two generic types,
Wrapper<Cat> and Wrapper<CalicoCat>, are not superclass and subclass. Rather, if
this assignment were possible, we would say that the types are covariant, meaning
that the polymorphic relationship between the specializations of the placeholders is
applied to the generic types themselves. Certain Swift built-in generic types are cova-
riant; Optional is a clear example! But it's not a general language feature, and there’s
no way for you to specify that your generic types should be covariant.

One workaround is to have your generic placeholder constrained to a protocol, and
have your types adopt that protocol. For example:

protocol Meower {
func meow()

}

struct Wrapper<T:Meower> {
let meower : T

}

class Cat : Meower {
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func meow() { print("meow") }

}
class CalicoCat : Cat {

}

Now it is legal to say:

let w : Wrapper<Cat> = Wrapper(meower:CalicoCat())

Associated Type Chains

When a generic placeholder is constrained to a generic protocol with an associated
type, you can refer to that type using a dot-notation chain: the placeholder name, a
dot, and the associated type name.

Here’s an example. Imagine that in a game program, soldiers and archers are enemies
of one another. I'll express this by subsuming a Soldier struct and an Archer struct
under a Fighter protocol that has an Enemy associated type, which is itself con-
strained to be a Fighter:

protocol Fighter {
associatedtype Enemy : Fighter

}
I'll resolve that associated type manually for both the Soldier and the Archer structs:

struct Soldier : Fighter {
typealias Enemy = Archer

}
struct Archer : Fighter {
typealias Enemy = Soldier

}

Now I'll create a generic struct to express the opposing camps of these fighters:

struct Camp<T:Fighter> {
}

Now suppose that a camp may contain a spy from the opposing camp. What is the
type of that spy? Well, if this is a Soldier camp, it’s an Archer; and if it's an Archer
camp, it’s a Soldier. More generally, since T is a Fighter, it’s the type of the Enemy of
this adopter of Fighter. I can express that neatly by a chain consisting of the place-
holder name T, a dot, and the associated type name Enemy:

struct Camp<T:Fighter> {

var spy : T.Enemy?

}
The result is that if, for a particular Camp, T is resolved to Soldier, T.Enemy means
Archer — and vice versa. We have created a correct and inviolable rule for the type
that a Camp’s spy must be. This won't compile:
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var c
c.spy

Camp<Soldier>()
Soldier() // compile error

We've tried to assign an object of the wrong type to this Camp’s spy property. But this
does compile:

var ¢ = Camp<Soldier>()
c.spy = Archer()

Longer chains of associated type names are possible — in particular, when a generic
protocol has an associated type which is itself constrained to a generic protocol with
an associated type. For example, let’s give each type of Fighter a characteristic
weapon: a soldier has a sword, while an archer has a bow. I'll make a Sword struct and
a Bow struct, and I'll unite them under a Wieldable protocol:

protocol Wieldable {

}

struct Sword : Wieldable {
}

struct Bow : Wieldable {

}

I'll add a Weapon associated type to Fighter, which is constrained to be a Wieldable,
and once again I'll resolve it manually for each type of Fighter:

protocol Fighter {
associatedtype Enemy : Fighter
associatedtype Weapon : Wieldable

}

struct Soldier : Fighter {
typealias Weapon = Sword
typealias Enemy = Archer

}

struct Archer : Fighter {
typealias Weapon = Bow
typealias Enemy = Soldier

}
Now let’s say that every Fighter has the ability to steal his enemy’s weapon. T'll give the
Fighter generic protocol a steal(weapon:from:) method. How can the Fighter
generic protocol express the parameter types in a way that causes its adopter to
declare this method with the proper types?

The from: parameter type is this Fighter’s Enemy. We already know how to express
that: it’s the placeholder plus dot-notation with the associated type name. Here, the
placeholder is the adopter of this protocol — namely, Self. So the from: parameter
type is Self.Enemy. And what about the weapon: parameter type? That’s the Weapon
of that Enemy! So the weapon: parameter type is Self.Enemy.Weapon:
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protocol Fighter {
associatedtype Enemy : Fighter
associatedtype Weapon : Wieldable
func steal(weapon:Self.Enemy.Weapon, from:Self.Enemy)

}

(We could omit Self from that code, and it would compile and would mean the same
thing. But Self would still be the implicit start of the chain, and I think explicit Self
makes the meaning of the code clearer.)

The result is that the following declarations for Soldier and Archer correctly adopt
the Fighter protocol, and the compiler approves:

struct Soldier : Fighter {
typealias Weapon = Sword
typealias Enemy = Archer
func steal(weapon:Bow, from:Archer) {
}

}
struct Archer : Fighter {

typealias Weapon = Bow
typealias Enemy = Soldier
func steal(weapon:Sword, from:Soldier) {
}
}

Where Clauses
The most flexible way to express a type constraint is to add a where clause:

o For a generic function, a where clause may appear after the signature declaration
(after the parameter list, following the arrow operator and return type if
included).

o For a generic type, a where clause may appear after the type declaration, before
the curly braces.

o For a generic protocol, a where clause may appear after the protocol declaration,
before the curly braces.

o For an associated type in a generic protocol, a where clause may appear at the end
of the associated type declaration.

What sorts of thing can appear in a where clause? One possibility is a comma-
separated list of additional constraints on an already declared placeholder. For exam-
ple, you already know that we can constrain a placeholder at the point of declaration,
using a colon and a type (which might be a protocol composition):

func flyAndWalk<T: Flier> (_ f:T) {}

func flyAndWalk2<T: Flier & Walker> (_ f:T) {}
func flyAndWalk3<T: Flier & Dog> (_ f:T) {}
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Using a where clause, we can move those constraints out of the angle brackets. No
new functionality is gained, but the resulting notation is arguably neater:

func flyAndWalk<T> (_ f:T) where T: Flier {}

func flyAndWalk2<T> (_ f:T) where T: Flier & Walker {}
func flyAndWalk2a<T> (_ f:T) where T: Flier, T: Walker {}
func flyAndWalk3<T> (_ f:T) where T: Flier & Dog {}

func flyAndWalk3a<T> (_ f:T) where T: Flier, T: Dog {}

The real power of where clauses emerges when a constraint on a placeholder is a
generic protocol with an associated type. You can then use an associated type chain to
impose additional constraints on the associated type. This pseudocode shows what I
mean (I've omitted the content of the where clause, to focus on what the where clause
will be constraining):

protocol Flier {
associatedtype Other
}

func flockTogether<T> (_ f:T) where T:Flier, T.Other /* ... */ {}
In that pseudocode, the placeholder T is constrained to be a Flier — and Flier is itself
a generic protocol, with an associated type Other. Therefore, whatever type resolves T
will resolve Other. We can thus proceed to constrain the types eligible to resolve
T.Other! This, in turn, will further constrain by implication the types eligible to
resolve T.

So now let’s fill in the blank in our pseudocode. What sort of restriction are we
allowed to impose here? One possibility is a colon expression, as for any type con-
straint. For example:

protocol Flier {
associatedtype Other

}
struct Bird : Flier {
typealias Other = String

}

struct Insect : Flier {
typealias Other = Bird
}

func flockTogether<T> (_ f:T) where T:Flier, T.Other:Equatable {}
Both Bird and Insect adopt Flier. The flockTogether function can be called with a
Bird argument, because a Birds Other associated type is resolved to String, which
adopts the built-in Equatable protocol. But flockTogether cant be called with an
Insect argument, because an Insect’s Other associated type is resolved to Bird, which
doesn’t adopt the Equatable protocol:

flockTogether(Bird()) // okay
flockTogether(Insect()) // compile error
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The other possibility is the equality operator == followed by a type. The type on the
right side can then be a struct or an associated type chain, and the constrained type
must match it exactly. For example:

protocol Flier {
associatedtype Other
}

struct Bird : Flier {
typealias Other = String
}

struct Insect : Flier {
typealias Other = Int

}
func flockTwoTogether<T,Us> (_ f1:T, _ f2:U)
where T:Flier, U:Flier, T.Other == U.Other {}

The flockTwoTogether function can be called with a Bird and a Bird, and it can be
called with an Insect and an Insect, but it can’t be called with an Insect and a Bird,
because they don't resolve the Other associated type to the same type.

The Swift header makes extensive use of where clauses with an == operator, especially
as a way of restricting a sequence type. Take, for example, the String
append(contentsOf:) method, declared like this:

mutating func append<S>(contentsOf newElements: S)
where S:Sequence, S.Element == Character
A sequence’s element type is its Element associated type. The where clause thus means
that a sequence of characters — but not a sequence of something else, such as Int —
can be concatenated to a String:

var s = "hello"
s.append(contentsOf: Array(" world")) // "hello world"
s.append(contentsOf: ["!" as Character, "?" as Character])

The Array append(contentsOf:) method is declared a little differently:

mutating func append<S>(contentsOf newElements: S)
where S:Sequence, S.Element == Self.Element

An array is a sequence; its element type is its Element associated type. The where
clause thus means that you can append to an Array the elements of any sort of
Sequence, but only if they are the same kind of element as the elements of this array.

If the array consists of String elements, you can add more String elements to it, but
not Int elements.

(Actually, the append(contentsOf:) declaration in the Swift header doesnt say
S.Element == Self.Element; it says Element == S.Element. But they are equivalent
expressions. Self can be omitted at the start of an associated type chain (as I've
already mentioned), and == is commutative: the equated types can be written in either
order.)
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Starting in Swift 4, a generic protocol or its associated type can have a where clause.
The chief effect is to reduce the length of associated type chains. For example, the
Sequence generic protocol has an associated type Iterator, which is constrained to be
an adopter of the generic IteratorProtocol, which in turn has an associated type Ele-
ment. Thus, the Swift headers used to be peppered with where clauses constraining a
type to a sequence’s Iterator.Element. In Swift 4 and later, however, the introduction
of associated type where clauses means that a Sequence itself can have an Element
associated type which simply is its Iterator.Element:

protocol Sequence {
associatedtype Element where Self.Element == Self.Iterator.Element

/...
}

As a result, wherever the Swift header used to say Iterator.Element, it can now say

simply Element instead (as in the String and Array append(contentsOf:) declara-

tions I cited a moment ago).

Extensions

An extension is a way of injecting your own code into an object type that has already
been declared elsewhere; you are extending an existing object type. You can extend
your own object types; you can also extend one of Swift’s object types or one of
Cocoa’s object types, in which case you are adding functionality to a type that doesn’t
belong to you!

Extension declaration can take place only at the top level of a file. To declare an
extension, put the keyword extension followed by the name of an existing object
type, then optionally a colon plus the names of any protocols you want to add to the
list of those adopted by this type, and finally curly braces containing the usual things
that go inside an object type declaration — with the following restrictions:

o An extension can’t override an existing member (but it can overload an existing
method).

o An extension can't declare a stored property (but it can declare a computed
property).

 An extension of a class can't declare a designated initializer or a deinitializer (but
it can declare a convenience initializer).

Extending Object Types

In my real programming life, I sometimes extend a built-in Swift or Cocoa type just
to encapsulate some missing functionality by expressing it as a property or method.
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For example, Cocoa’s Core Graphics framework has many useful functions associated
with the CGRect struct, and Swift already extends CGRect to add some helpful prop-
erties and methods; but there’s no shortcut for getting the center point (a CGPoint) of
a CGRect, something that in practice is often needed. I extend CGRect to give it a
center property:

extension CGRect {
var center : CGPoint {
return CGPoint(x:self.midX, y:self.midY)
}
}

String ranges, as we've already seen, are hard to construct, because they are a range of
String.Index rather than Int. Let’s extend String with methods that take an Int index
and a count, yielding a Swift Range; while were up, let’s permit a negative index, as
most modern languages do:

extension String {
func range(_ start:Int, _ count:Int) -> Range<String.Index> {
let 1 = self.index(start >= 0 ?
self.startIndex :
self.endIndex, offsetBy: start)
let j = self.index(i, offsetBy: count)
return i..<j

}

Here’s some sample input and output:

let s = "abcdefg"

let r1 = s.range(2,2)
let r2 = s.range(-3,2)
print(s[r1]) // cd
print(s[r2]) // ef

An extension can declare a static or class member; this can be a good way to slot a
global function into an appropriate namespace. For example, in one of my apps, I
find myself frequently using a certain color (a UIColor). Instead of creating that color
repeatedly, it makes sense to encapsulate the instructions for generating it in a global
function. But instead of making that function completely global, I make it — appro-
priately enough — a read-only class variable of UIColor:

extension UIColor {
class var myGolden : UIColor {
return self.init(
red:1.000, green:0.894, blue:0.541, alpha:0.900

)
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Now I can use that color throughout my code as UIColor.myGolden, completely par-
allel to built-in class properties such as UIColor.red.

Extensions on one’s own object types can help to organize one’s code. A frequently
used convention is to add an extension for each protocol one’s object type needs to
adopt, like this:

class ViewController: UIViewController {
// ... UIViewController method overrides go here ...

}

extension ViewController : UIPopoverPresentationControllerDelegate {
// ... UIPopoverPresentationControllerDelegate methods go here ...

}

extension ViewController : UIToolbarDelegate {
// ... UlToolbarDelegate methods go here ...
}
An extension on your own object type can also be a way to spread your definition of
that object type over multiple files, if you feel that several shorter files are better than
one long file.

When you extend a Swift struct, a curious thing happens with initializers: it becomes
possible to declare an initializer and keep the implicit initializers:

struct Digit {
var number : Int

}
extension Digit {
init() {
self.init(number:42)
}
}

In that code, the explicit declaration of an initializer through an extension did not
cause us to lose the implicit memberwise initializer, as would have happened if we
had declared the same initializer inside the original struct declaration. Now we can
instantiate a Digit by calling the explicitly declared initializer — Digit() — or by
calling the implicit memberwise initializer — Digit(number:7).

Extending Protocols

When you extend a protocol, you can add methods and properties to the protocol,
just as for any object type. Unlike a protocol declaration, these methods and proper-
ties are not mere requirements, to be fulfilled by the adopter of the protocol; they are
actual methods and properties, to be inherited by the adopter of the protocol! For
example:
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protocol Flier {
}
extension Flier {
func fly() {
print("flap flap flap")

}
}
struct Bird : Flier {
}

Observe that Bird can now adopt Flier without implementing the fly method. That’s
because the Flier protocol extension supplies the fly method! Bird thus inherits an
implementation of fly:

let b = Bird()
b.fly() // flap flap flap

Of course, an adopter can still provide its own implementation of a method inherited
from a protocol extension:

protocol Flier {
}

extension Flier {
func fly() {
print("flap flap flap")
}
}

struct Insect : Flier {
func fly() {
print("whirr")
}

}
let 1 = Insect()

i.fly() // whirr
But be warned: this kind of inheritance is not polymorphic. The adopter’s implemen-

tation is not an override; it is merely another implementation. The internal identity
rule does not apply; it matters how a reference is typed:

let f : Flier = Insect()
f.fly() // flap flap flap (!!)
Even though f is internally an Insect (as we can discover with the is operator), the

fly message is being sent to an object reference typed as a Flier, so it is Flier’s imple-
mentation of the fly method that is called, not Insect’s implementation.

To get something that looks like polymorphic inheritance, we must also declare fly
as a requirement in the original protocol:

protocol Flier {
func fly() // *
}

extension Flier {
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func fly() {
print("flap flap flap")
}
}

struct Insect : Flier {
func fly() {
print("whirr")
}
}

Now an Insect maintains its internal integrity:

let f : Flier = Insect()
f.fly() // whirr

The Swift standard library makes heavy use of protocol extensions as a way of making
things nicely object-oriented. For example, before protocol extensions were intro-
duced (in Swift 2.0), the only way to apply a function to a Sequence and only to a
Sequence would be to declare a global generic function with a constraint restricting
the parameter to Sequence adopters:

func enumerated<T:Sequence>(_ seq:T) -> EnumeratedSequence<T>

Protocol extensions allow such functions to be moved to an appropriate scope as
Sequence methods:

extension Sequence {
func enumerated() -> EnumeratedSequence<Self>

}

Extending Generics

When you extend a generic type, the placeholder type names are visible to your
extension declaration. That’s good, because you might need to use them; but it can
make your code a little mystifying, because you seem to be using an undefined type
name out of the blue. It might be a good idea to add a comment, to remind yourself
what you're up to:

class Dog<T> {
var name : T?

}

extension Dog {
func sayYourName() -> T? { // T? is the type of self.name
return self.name

}
}
A generic type extension declaration can include a where clause. This has the same
effect as any generic constraint: it limits which resolvers of the generic can call the
code injected by this extension, and assures the compiler that your code is legal for
those resolvers.
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As with protocol extensions, this allows code to be moved into an appropriate scope.
Recall this example from earlier in this chapter:

func myMin<T:Comparable>(_ things:T...) -> T {
var minimum = things.first!
for item in things.dropFirst() {
if item < minimum {
minimum = item
}
}

return minimum

}

That’s a global function. I'd prefer to inject it into Array as a method. Array is a
generic struct whose placeholder type is called Element. To make this work, I need
somehow to bring along the Comparable type constraint that makes this code legal;
without it, as you remember, my use of < won't compile. I can do that with a where
clause:

extension Array where Element:Comparable {
func myMin() -> Element? {
var minimum = self.first
for item in self.dropFirst() {
if item < minimum! {
minimum = item
}
}

return minimum

}

The where clause is a constraint guaranteeing that this array’s elements adopt Compa-
rable, so the compiler permits the use of the < operator — and it doesn’t permit the
myMin method to be called on an array whose elements don’t adopt Comparable. The
Swift standard library makes heavy use of that sort of thing, and in fact Sequence has
a min method declared like myMin.

Starting in Swift 4.1, the same syntax can be used to express conditional conformance
to a protocol. The idea is that a generic type should adopt a certain protocol only if
something is true of its placeholder type — and the extension then contains whatever
is needed to satisfy the protocol requirements when that’s the case.

In the standard library, conditional conformance fills what used to be a serious hole
in the Swift language. For example, an Array can consist of Equatable elements, and
in that case it is possible to compare two arrays for equality:

let arrl = [1,2,3]
let arr2 = [1,2,3]
if arrl == arr2 { // ...
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It's clear what array equality should consist of: the two arrays should consist of the
same elements in the same order. The elements must be Equatable so as to guarantee
the meaningfulness of the notion “same elements.”

Ironically, however, there was, before Swift 4.1, no way to compare two arrays of
arrays:
let arrl = [[1], [2]1, [31]

let arr2 = [[1], [2], [3]]
let arrl == arr2 { // compile error before Swift 4.1

That’s because there was no coherent way to make Array itself Equatable — because
there was no way to assert that Array should be Equatable only just in case its ele-
ments are Equatable. That’s conditional conformance! Now that conditional con-
formance exists, the standard library says:

extension Array : Equatable where Element : Equatable {
/] ...
}

And so comparing arrays of arrays becomes legal:

let arrl = [[1], [2], [3]]
let arr2 = [[1], [2], [3]]
let arrl == arr2 { // fine

Umbrella Types

Swift provides a few built-in types as general umbrella types, capable of embracing
multiple real types under a single heading.

Any

The Any type is the universal Swift umbrella type. Where an Any object is expected,
absolutely any object or function can be passed, without casting:

func anyExpecter(_ a:Any) {}

anyExpecter("howdy") // a struct instance
anyExpecter(String.self) // a struct type
anyExpecter(Dog()) // a class instance

anyExpecter(Dog.self) // a class type
anyExpecter(anyExpecter) // a function

Going the other way, if you want to type an Any object as a more specific type, you
will generally have to cast down. Such a cast is legal for any specific object type or
function type. A forced cast isn’t safe, but you can easily make it safe, because you can
also test an Any object against any specific object type or function type. Here,
anything is typed as Any:
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if anything is String {
let s = anything as! String
/] ...
}
The Any umbrella type is of great importance because it is the general medium of
interchange between Swift and the Cocoa Objective-C APIs. When an Objective-C
object type is nonspecific (Objective-C id), it will appear to Swift as Any. Commonly
encountered examples are UserDefaults and key-value coding (Chapter 10); these
allow you to pass an object of indeterminate class along with a string key name, and
they allow you to retrieve an object of indeterminate class by a string key name. That
object is typed, in Swift, as Any (or as an Optional wrapping Any, so that it can be
nil).

For example:

let ud = UserDefaults.standard
ud.set(Date(), forKey:"now") // Date to Any

The first parameter of UserDefaults set(_:forKey:) is typed as Any. Thus, Any func-
tions as a general conduit for crossing the bridge between the Swift world and Cocoa’s
Objective-C world.

When a Swift object is assigned or passed to an Any that acts as a conduit to
Objective-C, it crosses the bridge to Objective-C. Even though you don't have to cast
it, if the object’s type is not an Objective-C type (a class derived from NSObject), it
will be transformed in order to cross the bridge. If this type is automatically bridged
to an Objective-C class type, it becomes that type; other types are boxed up in a way
that allows them to survive the journey into Objective-C’s world, even though
Objective-C can’t deal with them directly. (For full details, see Appendix A.)

To illustrate, suppose we have an Objective-C class Thing with a method takelid:,
declared like this:
- (void) takelid: (id) anid;
That appears to Swift as:
func takelid(_ anid: Any)
When we pass an object to take1Id(_:) as its parameter, it crosses the bridge:

let t = Thing()

t.takelid("howdy") // String to NSString
t.takelid(1) // Int to NSNumber
t.take1id(CGRect()) // CGRect to NSValue
t.takelid(Date()) // Date to NSDate
t.takelid(Bird()) // Bird (struct) to boxed type

Coming back the other way, if Objective-C hands you an Any object, you will need to
cast it down to its underlying type in order to do anything useful with it:
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let ud = UserDefaults.standard
let d = ud.object(forKey: "now"
if d is Date {

let d = d as! Date

/...
}

The result returned from UserDefaults object(forKey:) is typed as Any — actually,

as an Optional wrapping an Any, because UserDefaults might need to return nil to

indicate that no object exists for that key. But you know that it's supposed to be a date,

so you cast it down to Date.

AnyObject

AnyObject is an empty protocol with the special feature that all class types conform to
it automatically. Although Objective-C APIs present Objective-C id as Any in Swift,
Swift AnyObject is Objective-C id. AnyObject is useful primarily when you want to
take advantage of the behavior of Objective-C id, as I'll demonstrate in a moment.

A class type can be assigned directly where an AnyObject is expected; to retrieve it as
its original type, you'll need to cast down:

class Dog {
}
let d = Dog()

let anyo : AnyObject = d
let d2 = anyo as! Dog

Assigning a nonclass type to an AnyObject requires casting (with as). The bridge to
Objective-C is then crossed immediately, as I described for Any in the preceding
section:

let s = "howdy" as AnyObject // String to NSString to AnyObject

let 1 = 1 as AnyObject // Int to NSNumber to AnyObject

let r = CGRect() as AnyObject // CGRect to NSValue to AnyObject

let d = Date() as AnyObject // Date to NSDate to AnyObject

let b = Bird() as AnyObject // Bird (struct) to boxed type to AnyObject

Suppressing type checking

Because AnyObject is Objective-C id, it can be used, like Objective-C id, to suspend
the compiler’s judgment as to whether a certain message can be sent to an object.
Thus, you can send a message to an AnyObject without bothering to cast down to its
real type.

You can't send just any old message to an AnyObject; the message must correspond to
a class member that meets one of the following criteria:

o Itis a member of an Objective-C class.
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o Itis a member of your own Swift subclass of an Objective-C class.
« It is a member of your own Swift extension of an Objective-C class.
o Itis a member of a Swift class or protocol marked @objc.

This feature is fundamentally parallel to optional protocol members, which I dis-
cussed earlier in this chapter. Let’s start with two classes:

class Dog {
@objc var noise : String = "woof"
@objc func bark() -> String {
return "woof"
}
}
class Cat {}
The Dog property noise and the Dog method bark are marked @objc, so they are
visible as potential messages to be sent to an AnyObject. To prove it, I'll type a Cat as
an AnyObject and send it one of these messages. Let’s start with the noise property:
let c : AnyObject = Cat()
let s = c.noise
That code, amazingly, compiles. Moreover, it doesn’t crash when the code runs! The
noise property has been typed as an Optional wrapping its original type. Here, that’s
an Optional wrapping a String. If the object typed as AnyObject doesn’t implement
notise, the result is nil and no harm done.

Now let’s try it with a method call:

let c : AnyObject = Cat()

let s = c.bark?()
Again, that code compiles and is safe. If the Object typed as AnyObject doesn’t imple-
ment bark, no bark() call is performed; the method result type has been wrapped in
an Optional, so s is typed as String? and has been set to nil. If the AnyObject turns
out to have a bark method (for example, if it had been a Dog), the result is an
Optional wrapping the returned String. If you call bark! () on the AnyObject instead,
the result will be a String, but you'll crash if the AnyObject doesn’t implement bark.
Unlike an optional protocol member, you can even send the message with no unwrap-
ping. This is legal:

let ¢ : AnyObject = Cat()

let s = c.bark()

That’s just like force-unwrapping the call: the result is a String, but it’s possible to
crash.
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Don’t make a habit of sending messages to an AnyObject; because it involves
dynamic lookup, it’s expensive at build time and expensive at runtime.

Object identity

Sometimes, what you want to know is not what type an object is, but whether an
object itself is the particular object you think it is. This problem can’t arise with a
value type, but it can arise with a reference type — in particular, with class instances.

Swifts solution is the identity operator (===). Its operands are typed as AnyObject?,
meaning an object whose type is a class or an Optional whose wrapped type is a class;
it compares one object reference with another. This is not a comparison of values, like
the equality operator (==); youre asking whether two object references refer to one
and the same object. There is also a negative version (!==) of the identity operator.

A typical use case is that a class instance arrives from Cocoa, and you need to know
whether it is in fact a particular object to which you already have a reference. For
example, a Notification has an object property that helps identify the notification
(usually, it is the original sender of the notification). We can use === to test whether
this object is the same as some object to which we already have a reference. How-
ever, object is typed as Any (actually, as an Optional wrapping Any), so we must cast
to AnyObject in order to take advantage of the identity operator:

@objc func changed(_ n:Notification) {
let player = MPMusicPlayerController.applicationMusicPlayer
if n.object as AnyObject === player {
!/l ...
}
}

AnyClass

AnyClass is the type of AnyObject. It corresponds to the Objective-C Class type. It
arises typically in declarations where a Cocoa API wants to say that a class is
expected.

For example, the UIView layerClass class property is declared, in its Swift transla-
tion, like this:

class var layerClass : AnyClass {get}

That means: if you override this class property, implement your getter to return a
class. This will presumably be a CALayer subclass. For example:

override class var layerClass : AnyClass {
return CATiledLayer.self

}
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A reference to an AnyClass object behaves much like a reference to an AnyObject
object. You can send it any Objective-C message that Swift knows about — any
Objective-C class message. To illustrate, once again I'll start with two classes:

class Dog {
@objc static var whatADogSays : String = "woof"
}

class Cat {}
Objective-C can see whatADogSays, and it sees it as a class property. Therefore you
can send whatADogSays to an AnyClass reference:

let ¢ : AnyClass = Cat.self
let s = c.whatADogSays

Collection Types

Swift, in common with most modern computer languages, has built-in collection
types Array and Dictionary, along with a third type, Set. Array and Dictionary are
sufficiently important that the language accommodates them with some special
syntax.

Array

An array (Array, a struct) is an ordered collection of object instances (the elements of
the array) accessible by index number, where an index number is an Int numbered
from 0. Thus, if an array contains four elements, the first has index @ and the last has
index 3. A Swift array cannot be sparse: if there is an element with index 3, there is
also an element with index 2 and so on.

The salient feature of Swift arrays is their strict typing. Unlike some other computer
languages, a Swift array’s elements must be uniform — that is, the array must consist
solely of elements of the same definite type. Even an empty array must have a definite
element type, despite lacking elements at this moment. An array is itself typed in
accordance with its element type. Two arrays whose elements are of different types
are considered, themselves, to be of two different types: an array of Int elements has a
different type from an array of String elements.

If all this reminds you of Optionals, it should. Like an Optional, a Swift array is a
generic. It is declared as Array<Element>, where the placeholder Element is the type
of a particular array’s elements. And, like an Optional, Array types are covariant,
meaning that they behave polymorphically in accordance with their element types: if
NoisyDog is a subclass of Dog, then an array of NoisyDog can be used where an array
of Dog is expected.

To declare or state the type of a given array’s elements, you could explicitly resolve the
generic placeholder; an array of Int elements would thus be an Array<Int>. However,
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Swift offers syntactic sugar for stating an array’s element type, using square brackets
around the name of the element type, like this: [Int]. Thats the syntax you'll use
most of the time.

A literal array is represented as square brackets containing a list of its elements sepa-
rated by a comma (and optional spaces): for example, [1,2,3]. The literal for an
empty array is empty square brackets: [ ].

Array’s default initializer init(), called by appending empty parentheses to the
array’s type, yields an empty array of that type. Thus, you can create an empty array of
Int like this:

var arr = [Int]()

Alternatively, if a reference’s type is known in advance, the empty array [] can be
inferred to that type. Thus, you can also create an empty array of Int like this:

var arr : [Int] = []

If you're starting with a literal array containing elements, you won't usually need to
declare the array’s type, because Swift will infer it by looking at the elements. For
example, Swift will infer that [1,2,3] is an array of Int. If the array element types
consist of a class and its subclasses, like Dog and NoisyDog, Swift will infer the com-
mon superclass as the array’s type. However, in some cases you will need to declare an
array reference’s type explicitly even while assigning a literal to that array:

let arr : [Any] = [1, "howdy"] // mixed bag

let arr2 : [Flier] = [Insect(), Bird()] // protocol adopters
Array also has an initializer whose parameter is a sequence. This means that if a type
is a sequence, you can split an instance of it into the elements of an array. For
example:

o Array(1...3) generates the array of Int [1,2,3].
o Array("hey") generates the array of Character ["h","e","y"].

o Array(d), where d is a Dictionary, generates an array of tuples of the key-value
pairs of d.

Another Array initializer, init(repeating:count:), lets you populate an array with
the same value. In this example, I create an array of 100 Optional strings initialized to
nil:

let strings : [String?] = Array(repeating:nil, count:100)

That's the closest you can get in Swift to a sparse array; we have 100 slots, each of
which might or might not contain a string (and to start with, none of them do).
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But beware of using init(repeating:count:) with a reference type! If Dog is a
class, and you say let dogs = Array(repeating:Dog(), count:3), you don’t
have an array of three Dogs; you have an array consisting of three references to
one Dog. I'll give a workaround later.

Array casting and type testing

When you assign, pass, or cast an array of a certain type to another array type, you
are really operating on the individual elements of the array. Thus, for example:

let arr : [Int?] = [1,2,3]

That code is actually syntactic sugar: assigning an array of Int where an array of
Optionals wrapping Int is expected constitutes a request that each individual Int in
the original array should be wrapped in an Optional. And that is exactly what
happens:

let arr : [Int?] = [1,2,3]

print(arr) // [Optional(1), Optional(2), Optional(3)]
Similarly, suppose we have a Dog class and its NoisyDog subclass; then this code is
legal:

let dogl : Dog = NoisyDog()

let dog2 : Dog = NoisyDog()

let arr = [dogl, dog2]

let arr2 = arr as! [NoisyDog]
In the third line, we have an array of Dog. In the fourth line, we apparently cast this
array down to an array of NoisyDog — which really means that we cast each individ-
ual Dog in the first array to a NoisyDog. We can crash when we do that, but we won’t
if each element of the first array really is a NoisyDog.

Similarly, the as? operator will cast an array to an Optional wrapping an array, which
will be nil if the requested cast cannot be performed for each element individually:

let dogl : Dog = NoisyDog()
let dog2 : Dog = NoisyDog()
let dog3 : Dog = Dog()
let arr = [dogl, dog2]

let arr2 = arr as? [NoisyDog] // Optional wrapping an array of NoisyDog
let arr3 = [dog2, dog3]
let arr4 = arr3 as? [NoisyDog] // nil

Finally, you can test each element of an array with the is operator by testing the array
itself. For example, given the array of Dog from the previous code, you can say:

if arr is [NoisyDog] { // ...

That will be true if each element of the array is in fact a NoisyDog.
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Array comparison

Array equality works just as you would expect: two arrays are equal if they contain
the same number of elements and all the elements are pairwise equal in order. Of
course, this presupposes that the notion “equal” is meaningful for these elements:

let i1 = 1

let 12 = 2

let i3 =3

let arr : [Int] = [1,2,3]

if arr == [11,12,13] { // they are equal!
Two arrays don’t have to be of the same type to be compared against one another for
equality, but the test won’t succeed unless they do in fact contain objects that are
equal to one another. Here, I compare a Dog array against a NoisyDog array; this is
legal if equatability is defined for two Dogs. (For example, Dog might be an NSObject
subclass; or you might make Dog adopt Equatable, as I'll explain in Chapter 5.) The
two arrays are in fact equal, because the dogs they contain are the same dogs in the
same order:

let nd1 = NoisyDog()
let d1 = nd1 as Dog
let nd2 = NoisyDog()
let d2 = nd2 as Dog
if [d1,d2] == [nd1,nd2] { // they are equal!

Arrays are value types

Because an array is a struct, it is a value type, not a reference type. This means that
every time an array is assigned to a variable or passed as argument to a function, it is
effectively copied. I do not mean to imply, however, that merely assigning or passing
an array is expensive, or that a lot of actual copying takes place every time. If the ref-
erence to an array is a constant, clearly no copying is necessary; and even operations
that yield a new array derived from another array, or that mutate an array, may be
quite efficient. You just have to trust that the designers of Swift have thought about
these problems and have implemented arrays efficiently behind the scenes.

Although an array itself is a value type, its elements are treated however those ele-
ments would normally be treated. In particular, an array of class instances, assigned
to multiple variables, results in multiple references to the same instances.

Array subscripting

The Array struct implements subscript methods to allow access to elements using
square brackets after a reference to an array. You can use an Int inside the square
brackets. For example, in an array consisting of three elements, if the array is referred
to by a variable arr, then arr[1] accesses the second element.
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You can also use a Range of Int inside the square brackets. For example, if arr is an
array with three elements, then arr[1...2] signifies the second and third elements.

Technically, an expression like arr[1...2] yields something called an ArraySlice,
which stands in relation to Array much as Substring stands in relation to String
(Chapter 3). It’s very similar to an array, and in general you will probably pretend that
an ArraySlice is an array. For example, you can subscript an ArraySlice in just the
same ways you would subscript an array, and an ArraySlice can be passed where an
array is expected. Nevertheless, they are not the same thing. An ArraySlice is not a
new array; it’s just a way of pointing into a section of the original array. For this rea-
son, its index numbers are those of the original array. For example:

let arr = ["manny", "moe", "jack"]
let slice = arr[1...2] // ["moe", "jack"]
print(slice[1]) // moe

The ArraySlice slice consists of two elements, "moe" and "jack", of which "moe" is
the first element. But these are not merely "moe" and "jack" taken from the original
array, but the "moe" and "jack" in the original array. For this reason, their index
numbers are not 0 and 1, but rather 1 and 2, just as in the original array. If you want
to extract a new array based on this slice, coerce the slice to an Array:

let arr2 = Array(slice) // ["moe", "jack"]
print(arr2[1]) // jack

If the reference to an array is mutable (var, not let), then a subscript expression can
be assigned to. This alters what's in that slot. Of course, what is assigned must accord
with the type of the array’s elements:

var arr = [1,2,3]
arr[1] = 4 // arr is now [1,4,3]

If the subscript is a range, what is assigned must be a slice. You can assign a literal
array, because it will be coerced for you to an ArraySlice; but if what you're starting
with is an array reference, you'll have to coerce it to a slice yourself. Such assignment
can change the length of the array being assigned to:

var arr = [1,2,3]

arr[1..<2] = [7,8] // arr is now [1,7,8,3]

arr[1..<2] [] // arr is now [1,8,3]

arr[1..<1] [10] // arr is now [1,10,8,3] (no element was removed!)
let arr2 = [20,21]

// arr[1..<1] = arr2 // compile error! You have to say this:
arr[1..<1] = ArraySlice(arr2) // arr is now [1,20,21,10,8,3]

It is a runtime error to access an element by a number larger than the largest element
number or smaller than the smallest element number. If arr has three elements,
speaking of arr[-1] or arr[3] is not illegal linguistically, but your program will
crash.
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Subscripting an array with a Range is an opportunity to use partial range notation.
The missing value is taken to be the array’s first or last index. For example, if arr is
[1,2,3],thenarr[1...]is [2,3],and arr[...1]is [1,2]. Similarly, you can assign
into a range specified as a partial range:

var arr = [1,2,3]
arr[1...] = [4,5] // arr is now [1,4,5]

Nested arrays
It is legal for the elements of an array to be arrays. For example:
let arr = [[1,2,3], [4,5,6], [7,8,9]]

That’s an array of arrays of Int. Its type declaration, therefore, is [[Int]]. (No law says
that the contained arrays have to be the same length; that’s just something I did for
clarity.)

To access an individual Int inside those nested arrays, you can chain subscripts:

let arr = [[1’2;3]; [4,5,6], [718’9]]
let 1 = arr[1][1] // 5

If the outer array reference is mutable, you can also write into a nested array:

var arr = [[1,2,3], [4,5,6], [7,8,9]]

arr[1][1] = 100
You can modify the inner arrays in other ways as well; for example, you can insert
additional elements into them.

Thanks to conditional conformance (discussed earlier in this chapter), nested arrays
can be compared with == as long as the inner array’s elements are Equatable. For
example, if arr and arr2 are both [[Int]], you can compare them by saying arr ==
arr2.

Basic array properties and methods

An array is a Collection, which is itself a Sequence. If those terms have a familiar ring,
they should: the same is true of a String’s underlying character sequence, which I dis-
cussed in Chapter 3. For this reason, an array and a character sequence bear some
striking similarities to one another.

As a collection, an array’s count read-only property reports the number of elements it
contains. If an array’s count is 0, its {sEmpty property is true.

An array’s first and last read-only properties return its first and last elements, but
they are wrapped in an Optional because the array might be empty and so these prop-
erties would need to be nil. (This is one of those rare situations in Swift where you
can wind up with an Optional wrapping an Optional. For example, consider an array
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of Optionals wrapping Ints, and what happens when you get the last property of
such an array.)

An array’s largest accessible index is one less than its count. You may find yourself
calculating index values with reference to the count; for example, to refer to the last
two elements of arr, you might say:

let arr = [1,2,3]

let slice = arr[arr.count-2...arr.count-1] // [2,3]
Swift doesn’t adopt the modern convention of letting you use negative numbers as a
shorthand for that calculation. On the other hand, for the common case where you
want the last n elements of an array, you can use the suffix(_:) method:

let arr = [1,2,3]

let slice = arr.suffix(2) // [2,3]
Both suffix(_:) and its companion prefix(_:) yield ArraySlices, and have the
remarkable feature that there is no penalty for going out of range:

let arr = [1,2,3]

let slice = arr.suffix(10) // [1,2,3] (and no crash)
Instead of describing the size of the suffix or prefix by its count, you can express the
limit of the suffix or prefix by its index. And partial range notation may provide yet
another useful alternative:

let arr = [1,2,3]

let slice = arr.suffix(from:1) /] [2,3]

let slice2 = arr[1...] // [2,3]

let slice3 = arr.prefix(upTo:1) /] [1]

let slice4 = arr.prefix(through:1) // [1,2]
An array’s startIndex property is 0, and its endIndex property is its count. An array’s
indices property is a half-open range whose endpoints are the array’s startIndex
and endIndex — that is, a range accessing the entire array. Moreover, these values are
Ints, so you can use ordinary arithmetic operations on them:

let arr = [1,2,3]

let slice = arr[arr.endIndex-2..<arr.endIndex] // [2,3]
But the startIndex, endIndex, and indices of an ArraySlice are measured against
the original array; for example, after the previous code, slice.indices is 1..<3, and
slice.startIndexis 1.

The firstIndex(of:) method reports the index of the first occurrence of an element
in an array, but it is wrapped in an Optional so that nil can be returned if the element
doesn't appear in the array. In general, the comparison uses == behind the scenes to
identify the element being sought, and therefore the array elements must adopt
Equatable (otherwise the compiler will stop you):
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let arr = [1,2,3]

let ix = arr.firstIndex(of:2) // Optional wrapping 1
Alternatively, you can call firstIndex(where:), supplying your own function that
takes an element type and returns a Bool, and you’ll get back the index of the first
element for which that Bool is true. In this example, my Bird struct has a name String

property:

let aviary = [Bird(name:"Tweety"), Bird(name:"Flappy"), Bird(name:"Lady")]
let ix = aviary.firstIndex {$0.name.count < 5} // Optional(2)

If what you want is not the index but the object itself, the first(where:) method
returns it — wrapped, naturally, in an Optional. These methods are matched by last-
Index(of:), lastIndex(where:), and last(where:).

As a sequence, an array’s contains(_:) method reports whether it contains an ele-
ment. Again, you can rely on the == operator if the elements are Equatable, or you
can supply your own function that takes an element type and returns a Bool:

let arr = [1,2,3]
let ok = arr.contains(2) // true
let ok2 = arr.contains {$0 > 3} // false

The starts(with:) method reports whether an array’s starting elements match the
elements of a given sequence of the same type. Once more, you can rely on the ==
operator for Equatable elements, or you can supply a function that takes two values of
the element type and returns a Bool stating whether they match:

let arr = [1,2,3]
let ok = arr.starts(with:[1,2]) // true
let ok2 = arr.starts(with:[1,-2]) {abs($0) == abs($1)} // true

The min and max methods return the smallest or largest element in an array, wrapped
in an Optional in case the array is empty. If the array consists of Comparable ele-
ments, you can let the < operator do its work; alternatively, you can call min(by:) or
max(by: ), supplying a function that returns a Bool stating whether the smaller of two
given elements is the first:

let arr = [3,1,-2]
let min = arr.min() // Optional(-2)
let min2 = arr.min {abs($0)<abs($1)} // Optional(1l)

If the reference to an array is mutable, the append(_:) and append(contentsOf:)
instance methods add elements to the end of it. The difference between them is that

append(_:) takes a single value of the element type, while append(contentsOf:)
takes a sequence of the element type. For example:

var arr = [1,2,3]

arr.append(4)

arr.append(contentsOf:[5,6])

arr.append(contentsOf:7...8) // arr is now [1,2,3,4,5,6,7,8]
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The + operator is overloaded to behave like append(contentsOf:) (not append(_:)!)
when the left-hand operand is an array, except that it generates a new array, so it
works even if the reference to the array is a constant (let). If the reference to the
array is mutable (var), you can append to it in place with the += operator. Thus:

let arr = [1,2,3]

let arr2 = arr + [4] // arr2 is now [1,2,3,4]

var arr3 = [1,2,3]

arr3 += [4] // arr3 is now [1,2,3,4]
If the reference to an array is mutable, the instance method insert(at:) inserts a
single element at the given index. To insert multiple elements at once, call the
insert(contentsOf:at:) method. Assignment into a range-subscripted array, which
I described earlier, is even more flexible.

If the reference to an array is mutable, the instance method remove(at:) removes the
element at that index; the instance method removelast removes the last element.
These methods also return the value that was removed from the array; you can ignore
the returned value if you don’t need it. These methods do not wrap the returned value
in an Optional, and accessing an out-of-range index will crash your program. On the
other hand, popLast does wrap the returned value in an Optional, and is thus safe
even if the array is empty.

Similar to removelast and poplLast are removeFirst and popFirst. Alternate forms
removeFirst(_:) and removeLast(_:) allow you to specify how many elements to
remove, but return no value; they, too, can crash if there aren’t as many elements as
you specify. popFirst, remarkably, operates on a slice, not an array, presumably for
the sake of efficiency: all it has to do is increase the slice’s startIndex, whereas with
an array, the whole array must be renumbered.

Even if the reference is not mutable, you can use the dropFirst and dropLast meth-
ods to return a slice with the end element removed. Again, you can supply a parame-
ter stating how many elements to drop. And again, there is no penalty for dropping
too many elements; you simply end up with an empty slice.

The joined(separator:) instance method starts with an array of arrays. It extracts
their individual elements, and interposes between each sequence of extracted ele-
ments the elements of the separator:. The result is an intermediate sequence called a
JoinSequence, which might have to be coerced further to an Array if that's what you
were after. For example:

let arr = [[1,2], [3,4], [5,6]]
let joined = Array(arr.joined(separator:[10,11]))
// [1, 2, 10, 11, 3, 4, 10, 11, 5, 6]
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Calling joined() with no separator: is a way to flatten an array of arrays. Again, it
returns an intermediate sequence (or collection), so you might want to coerce to an
Array:

let arr = [[1,2], [3,4], [5,6]]

let arr2 = Array(arr.joined())

// [1 E 2 E 3 1 4) 5 E 6]
The split instance method breaks an array into an array of slices at elements match-
ing the parameter, if you call split(separator:), or at elements that pass a specified
test, if you call split(isSeparator:); in the latter, the parameter is a function that
takes a value of the element type and returns a Bool. The separator elements them-
selves are eliminated:

let arr = [1,2,3,4,5,6]

let arr2 = arr.split {$0 % 2 == 0} // split at evens: [[1], [3], [5]]
The reversed instance method yields a new array whose elements are in the opposite
order from the original.

The sort and sorted instance methods respectively sort the original array (if the ref-
erence to it is mutable) and yield a new sorted array based on the original. Once
again, you get two choices: if this is an array of Comparable elements, you can let the
< operator dictate the new order; alternatively, you can call sort(by:) or
sorted(by:), supplying a function that takes two parameters of the element type and
returns a Bool stating whether the first parameter should be ordered before the sec-
ond (just like min and max). For example:

var arr = [4,3,5,2,6,1]

arr.sort() // [1, 2, 3, 4, 5, 6]

arr.sort {$0 > $1} // [6, 5, 4, 3, 2, 1]
In that last line, I provided an anonymous function. Alternatively, of course, you can
pass as argument the name of a declared function. In Swift, comparison operators are
the names of functions! Therefore, I can do the same thing like this:

var arr = [4,3,5,2,6,1]

arr.sort(by: >) // [6, 5, 4, 3, 2, 1]
The swapAt method accepts two Int index numbers and interchanges those elements
of a mutable array:

var arr = [1,2,3]

arr.swapAt(0,2) // [3,2,1]
New in Swift 4.2 are methods for randomizing an array. The shuffle and shuffled
methods sort the array in random order; the randomElement method generates a valid

index at random and hands you the element at that index (wrapped in an Optional, in
case the array is empty).
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Array enumeration and transformation

An array is a sequence, and so you can enumerate it, inspecting or operating with
each element in turn. The simplest way is by means of a for. . .in loop; I'll have more
to say about this construct in Chapter 5:

let pepboys = ["Manny", "Moe", "Jack"]
for pepboy in pepboys {

print(pepboy) // prints Manny, then Moe, then Jack
}

Alternatively, you can use the forEach(_:) instance method. Its parameter is a func-
tion that takes an element and returns no value. Think of it as the functional equiva-
lent of the imperative for...1in loop:

let pepboys = ["Manny", "Moe", "Jack"]

pepboys.forEach {print($0)} // prints Manny, then Moe, then Jack
If you need the index numbers as well as the elements, call the enumerated instance
method and loop on the result; what you get on each iteration is a tuple with labels
offset and element:

let pepboys = ["Manny", "Moe", "Jack"]
for (ix,pepboy) in pepboys.enumerated() {
print("Pep boy \(ix) is \(pepboy)") // Pep boy 0 is Manny, etc.
}
/] or:
pepboys.enumerated().forEach {
print("Pep boy \($0.offset) is \($0.element)")
}

New in Swift 4.2, the allSatisfy(_:) method tells you whether all elements pass
some test; you supply a function that takes an element and returns a Bool:
let pepboys = ["Manny", "Moe", "Jack"]

let ok = pepboys.allSatisfy {$0.hasPrefix("M")} // false
let ok2 = pepboys.allSatisfy {$0.hasPrefix("M") || $0.hasPrefix("31")} // true

Swift also provides some powerful array transformation instance methods. Like for -
Each(_:) and allSatisfy(_:), these methods all enumerate the array for you, so
that the loop is buried implicitly inside the method call, making your code tighter and
cleaner.

The filter(_:) instance method yields a new array, each element of which is an ele-
ment of the old array, in the same order; but some of the elements of the old array
may be omitted — they were filtered out. What filters them out is a function that you
supply; it accepts a parameter of the element type and returns a Bool stating whether
this element should go into the new array. For example:

let pepboys = ["Manny", "Moe", "Jack"]
let pepboys2 = pepboys.filter {$0.hasPrefix("M")} // ["Manny", "Moe"]
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If the function is effectively negative, and if the reference to the collection is mutable,
you should call removeAll(where:) rather whan filter(_:). For example:

var pepboys = ["Manny", "Jack", "Moe"]

pepboys.removeAll{$0.hasPrefix("M")} // pepboys is now ["Jack"]

That’s better in general than saying pepboys.filter{!$0.hasPrefix("M")} because
of efficiencies achieved under the hood.

Similar to filter(_:) is prefix(while:). The difference is that prefix(while:)
stops looping as soon as it encounters an element for which supplied function returns
false (and returns a slice). The complement of prefix(while:) is drop(while:); it
stops where prefix(while:) stops, but it returns the rest of the original array:

let pepboys = ["Manny", "Jack", "Moe"]

let arrl = pepboys.filter{$0.hasPrefix("M")} // ["Manny", "Moe"]

let arr2 = pepboys.prefix{$0.hasPrefix("M")} // ["Manny"]
let arr3 = pepboys.drop{$0.hasPrefix("M")} // ["Jack", "Moe"]

The map(_:) instance method yields a new array, each element of which is the result
of passing the corresponding element of the old array through a function that you
supply. This function accepts a parameter of the element type and returns a result
which may be of some other type; Swift can usually infer the type of the resulting
array elements by looking at the type returned by the function.

For example, here’s how to multiply every element of an array by 2:

let arr = [1,2,3]

let arr2 = arr.map {$0 * 2} // [2,4,6]
Here’s another example, to illustrate the fact that map(_:) can yield an array with a
different element type:

let arr = [1,2,3]

let arr2 = arr.map {Double($0)} // [1.0, 2.0, 3.0]
Here’s a real-life example showing how neat and compact your code can be when you
use map(_:). In order to remove all the table cells in a section of a UITableView, I
have to specify the cells as an array of IndexPath objects. If sec is the section number,
I can form those IndexPath objects individually like this:

let path® = IndexPath(row:0, section:sec)
let pathl = IndexPath(row:1, section:sec)
/...

Hmmm, I think I see a pattern here! I could generate my array of IndexPath objects
by looping through the row values using for...1in. But with map(_:), there’s a much
tighter way to express the same loop — namely, to loop through the range 0..<ct
(where ct is the number of rows in the section). Since map(_:) is a Collection
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instance method, and a Range is itself a Collection, I can call map(_:) directly on the
range:

let paths = (0..<ct).map {IndexPath(row:$0, section:sec)}

The map(_:) method provides a neat alternative to init(repeating:count:) with a
reference type:

let dogs = Array(repeating:Dog(), count:3)

You probably wanted an array of three Dogs. But if Dog is a class, the array consists of
three references to one and the same Dog instance! Instead, generate the array using
map(_:), like this:

let dogs = (0..<3).map {_ in Dog()}

The map(_:) method has a specialized companion, flatMap(_:). Applied to an array,
flatMap(_:) first calls map(_:), and then, if the map function produces an array of
arrays, flattens it. For instance, [[1],[2]].flatMap{$0} is [1,2]. Here’s a more inter-
esting example:

let arr = [[1, 2], [3, 4]]

let arr2 = arr.flatMap{$0.map{String($0)}} // ["1", "2", "3", "4"]
First our map function calls map(_:) to coerce the individual elements of each inner
array to a string, thus yielding an array of arrays of String: [["1", "2"], ["3",
"4"1]. Then flatMap(_:) flattens the array of arrays, and we end up with a simple
array of String.

Another specialized map(_:) companion is compactMap(_:). (Before Swift 4.1, this
was another form of flatMap(_:).) Given a map function that produces an array of
Optionals, compactMap(_:) safely unwraps them by first eliminating any nil ele-
ments. This neatly solves a large class of commonly encountered problem. In particu-
lar, we can coerce or cast an array safely by eliminating those elements that can’t be
coerced or cast.

For example, suppose I have a mixed bag of strings, some of which represent integers.
I'd like to coerce to Int those that can be coerced to Int, and eliminate the others. Int
coercion of a String yields an Optional, so the compactMap(_:) lightbulb should go
on in our heads:

'Let arr = [H1I|’ Ilheyﬂ’ I|2ll’ |lh0||]

let arr2 = arr.compactMap{Int($0)} // [1, 2]
First we map the original array to an array of Optionals wrapping Int, by coercing:
[Optional(1), nil, Optional(2), nil]. Then compactMap(_:) removes the nil
elements and unwraps the remaining elements, resulting in an array of Int.

Finally, we come to the reduce instance method. If you've learned LISP or Scheme,
youre probably accustomed to reduce; otherwise, it can be a bit mystifying at first.
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It's a way of combining all the elements of an array (actually, a sequence) into a single
value. This value’s type — the result type — doesn’t have to be the same as the array’s
element type. You supply, as the second parameter, a function that takes two parame-
ters; the first is of the result type, the second is of the element type, and the function’s
result is the combination of those two parameters, as the result type. The result of
your function on each iteration becomes the function’s first parameter in the next
iteration, along with the next element of the array as the second parameter. Thus, the
output of combining pairs accumulates, and the final accumulated value is the final
output of the function. However, that doesn’t explain where the first parameter for
the first iteration comes from. The answer is that you have to supply it as the first
argument of the reduce call.

That will all be easier to understand with a simple example. Lets assume we've got an
array of Int. Then we can use reduce to sum the elements of the array. Here’s some
pseudocode where I've left out the first argument of the call, so that you can think
about what it needs to be:

let sum = arr.reduce(/* ... */) {$0 + $1}

Each pair of parameters will be added together to get the first parameter ($0) on the
next iteration. The second parameter on every iteration ($1) is a successive element of
the array. So the remaining question is: What should the first element of the array be
added to? We want the actual sum of all the elements, no more and no less; so clearly
the first element of the array should be added to 0! So here’s actual working code:

let arr
let sum

[1, 4, 9, 13, 112]
arr.reduce(0) {$0 + $1} // 139

The + operator is the name of a function of the required type, so here’s another way to
write the same thing:

let sum = arr.reduce(0, +)

There is also reduce(into:), which greatly improves efficiency when the goal is to
build a collection such as an array or a dictionary. The into: argument is passed into
your function as an inout parameter, and persists through each iteration; instead of
returning a value, your function modifies it, and the final result is its final value.

For example, suppose we have an array of integers, and our goal is to “deal” them into
two piles consisting of the even elements and the odd elements respectively. You can’t
do that with a single call to map; youd have to cycle through the original array twice.
With reduce(into:), both target arrays are constructed while cycling through the
original array once:
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let nums = [1,3,2,4,5]
let result = nums.reduce(into: [[],[]1]) { temp, 1 in
temp[i%2].append(i)

}/ result is now [[2, 4], [1, 3, 5]]
In my real iOS programming life, I depend heavily on all of these methods, often
using two or even all three of them together, nested or chained or both. Here’s an
example. I have a table view that displays data divided into sections. Under the hood,
the data is an array of arrays of String — a [[String]] — where each subarray repre-
sents the rows of a section. Now I want to filter that data to eliminate all strings that
don’t contain a certain substring. I want to keep the sections intact, but if removing
strings removes all of a section’s strings, I want to eliminate that section array entirely.

The heart of the action is the test for whether a string contains a substring. I'm going
to use a Cocoa method for that, in part because it lets me do a case-insensitive search.
If s is a string from my array, and target is the substring we're looking for, then the
code for looking to see whether s contains target case-insensitively is as follows:

let found = s.range(of:target, options:.caselnsensitive)

Recall the discussion of range(of:) in Chapter 3. If found is not nil, the substring
was found. Here, then, is the actual code, preceded by some sample data for exercis-
ing it:

let arr = [["Manny", "Moe", "Jack"], ["Harpo", "Chico", "Groucho"]]

let target = "m
let arr2 = arr.map {
$0.filter {
let found = $0.range(of:target, options:.caselnsensitive)
return (found != nil)

}
}.filter {$0.count > 0}

/1 [["Manny", "Moe"]]
Once the first two lines have finished setting up the sample data, what remains is a
single statement — a map call, whose function consists of a filter call, with a filter
call chained to it. If that code doesn’t prove to you that Swift is cool, nothing will.

Swift Array and Objective-C NSArray

When youre programming iOS, you import the Foundation framework (or UIKit,
which imports Foundation) and thus the Objective-C NSArray type. Swift Array is
bridged to Objective-C NSArray. The most general medium of array interchange is
[Any]; if an Objective-C API specifies an NSArray, with no further type information,
Swift will see this as an array of Any. This reflects the fact that Objective-C’s rules for
what can be an element of an NSArray are looser than Swift’s: the elements of an
NSArray do not all have to be of the same type. On the other hand, the elements of an
Objective-C NSArray must be Objective-C objects — that is, they must be class types.
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Passing a Swift array to Objective-C is thus usually easy. Typically, you'll just pass the
array, either by assignment or as an argument in a function call:

let arr = [UIBarButtonItem(), UIBarButtonItem()]
self.navigationItem.leftBarButtonItems = arr

The objects that you pass as elements of the array will cross the bridge to Objective-C
in the usual way. For example:

let lay = CAGradientLayer()
lay.locations = [0.25, 0.5, 0.75]

CAGradientLayer’s locations property needs to be an array of NSNumber. But we
can pass an array of Double, because Double is bridged to NSNumber.

To call an NSArray method on a Swift array, you may have to cast to NSArray:

let arr = ["Manny", "Moe", "Jack"]
let s = (arr as NSArray).componentsJoined(by:", ")
// s is "Manny, Moe, Jack"

A Swift Array seen through a var reference is mutable, but an NSArray isn’t mutable
no matter how you see it. For mutability in Objective-C, you need an NSMutable-
Array, a subclass of NSArray. You can’t cast, assign, or pass a Swift array as an
NSMutableArray; you have to coerce. The best way is to call the NSMutableArray ini-
tializer init(array:), to which you can pass a Swift array directly. To convert back
from an NSMutableArray to a Swift array, you can cast:

var arr = ["Manny", "Moe", "Jack"]
let arr2 = NSMutableArray(array:arr)
arr2.remove('"Moe")

arr = arr2 as! [String]

Now let’s talk about what happens when an NSArray arrives from Objective-C into

Swift. There won't be any problem crossing the bridge: the NSArray will arrive safely
as a Swift Array. But a Swift Array of what?

Of itself, an NSArray carries no information about what type of element it contains.
Starting in Xcode 7, however, the Objective-C language was modified so that the dec-
laration of an NSArray, NSDictionary, or NSSet — the three collection types that are
bridged to Swift — can include element type information. (Objective-C calls this a
lightweight generic.) Thus, for the most part, the arrays you receive from Cocoa will be
correctly typed.

For example, this elegant code was previously impossible:

let arr = UIFont.familyNames.map {
UIFont.fontNamesForFamilyName($0)
}
The result is an array of arrays of String, listing all available fonts grouped by family.
That code is possible because both of those UIFont class methods are now seen by

Collection Types | 239



Swift as returning an array of String. Previously, those arrays were untyped, and cast-
ing down to an array of String was up to you.

However, lightweight generics are not omnipresent. You might read an array from
a .plist file stored on disk with NSArray’s initializer init(contentsOf:); you might
retrieve an array from UserDefaults; you might even be dealing with an Objective-C
API that hasn't been updated to use lightweight generics. In such a situation, youre
going to end up with a plain vanilla NSArray or a Swift array of Any. If that happens,
you will usually want to cast down or otherwise transform this array into an array of
some specific Swift type. Here’s an Objective-C class containing a method whose
return type of NSArray hasn’t been marked up with an element type:

@implementation Pep
- (NSArray*) boys {

return @[@"Manny", @"Moe", @"Jack"];
}

@end
To call that method and do anything useful with the result, it will be necessary to cast
that result down to an array of String. If 'm sure of my ground, I can force the cast:

let p = Pep()

let boys = p.boys() as! [String]
As with any cast, though, be sure you don’t lie! An Objective-C array can contain
more than one type of object. Don’t force such an array to be cast down to a type to
which not all the elements can be cast, or you’ll crash when the cast fails; you’ll need a
more deliberate strategy (possibly involving compactMap) for eliminating or otherwise
transforming the problematic elements.

Dictionary

A dictionary (Dictionary, a struct) is an unordered collection of object pairs. In each
pair, the first object is the key; the second object is the value. The idea is that you use a
key to access a value. Keys are usually strings, but they don’t have to be; the formal
requirement is that they be types that are Equatable and also Hashable, meaning that
they implement an Int hashvalue property such that equal keys have equal hash val-
ues. Thus, the hash values can be used behind the scenes for rapid key access. Most
Swift standard types are Hashable.

As with arrays, a given dictionary’s types must be uniform. The key type and the
value type don’t have to be the same as one another, and they often will not be. But
within any dictionary, all keys must be of the same type, and all values must be of the
same type. Formally, a dictionary is a generic, and its placeholder types are ordered
key type, then value type: Dictionary<Key,Value>. As with arrays, Swift provides
syntactic sugar for expressing a dictionary’s type, which is what youll usually use:
[Key: Value]. Thats square brackets containing a colon (and optional spaces) sepa-
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rating the key type from the value type. This code creates an empty dictionary whose
keys (when they exist) will be Strings and whose values (when they exist) will be
Strings:

var d = [String:String]()

The colon is used also between each key and value in the literal syntax for expressing
a dictionary. The key-value pairs appear between square brackets, separated by a
comma, just like an array. This code creates a dictionary by describing it literally (and
the dictionary’s type of [String:String] is inferred):

var d = ["CA": "California", "NY": "New York"]

The literal for an empty dictionary is square brackets containing just a colon: [:].
This notation can be used provided the dictionary’s type is known in some other way.
This is another way to create an empty [String:String] dictionary:

var d : [String:String] = [:]

You can also initialize a dictionary from a sequence of key-value tuples. This is useful
particularly if you're starting with two sequences. Suppose, for example, that we hap-
pen to have state abbreviations in one array and state names in another:

let abbrevs = ["CA", "NY"]
let names = ["California", "New York"]

We can then form those two arrays into a single array of tuples and call init(unique-
KeysWithValues:) to generate a dictionary:

let tuples = (abbrevs.indices).map{(abbrevs[$0],names[$0])}
let d = Dictionary(uniqueKeysWithValues: tuples)
// ["NY": "New York", "CA": "California"]

There is actually a simpler way to form those tuples — the global zip function, which
takes two sequences and yields a sequence of tuples:

let tuples = zip(abbrevs, names)
let d = Dictionary(uniqueKeysWithValues: tuples)

A nice feature of zip is that if one sequence is longer than the other, the extra ele-
ments of the longer sequence are ignored — tuple formation simply stops when the
end of the shorter sequence is reached. Thus, for example, one of the zipped sequen-
ces can be a partial range; in theory the range is infinite, but in fact the end of the
other sequence ends the range as well:

letr =1...

let names = ["California", "New York"]

let d = Dictionary(uniqueKeysWithValues: zip(r,names))
// [2: "New York", 1: "California"]

If the keys in the tuple sequence are not unique, youll crash at runtime when
init(uniqueKeysWithvalues:) is called. To work around that, you can use
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init(_:uniquingKeysWith:) instead. The second parameter is a function taking two
values — the existing value for this key, and the new incoming value for the same key
— and returning the value that should actually be used for this key. I'll give an exam-
ple later.

Another way to form a dictionary is init(grouping:by:). This is useful for forming
a dictionary whose values are arrays. You start with a sequence of the elements of the
arrays, and the initializer clumps them into arrays for you, in accordance with a func-
tion that generates the corresponding key from each value.

For example, suppose I have a list (states) of the 50 U.S. states in alphabetical order
as an array of strings, and I want to group them by the letter they start with. Here’s a
possible strategy based on two arrays (an array of String and an array of arrays of
String) which I construct separately as I loop through the list and then zip together to
form the dictionary:

var sectionNames = [String]()
var cellData = [[String]]()
var previous = ""
for aState in states {
// get the first letter
let ¢ = String(aState.prefix(1))
// only add a letter to sectionNames when it's a different letter
if c != previous {
previous = ¢
sectionNames.append(c.uppercased())
// and in that case also add new subarray to our array of subarrays
cellData.append([String]())
}
cellData[cellData.count-1].append(aState)
}

let d = Dictionary(uniqueKeysWithValues: zip(sectionNames,cellData))
// ["H": ["Hawaii"], "V": ["Vermont", "Virginia"], ...

But with init(grouping:by:), that becomes effectively a one-liner:

let d = Dictionary(grouping: states) {$0.prefix(1).uppercased()}

Dictionary subscripting

Access to a dictionary’s contents is usually by subscripting. To fetch a value by key,
use the key as a subscript:

let d = ["CA": "California", "NY": "New York"]

let state = d["CA"]
If you try to fetch a value through a nonexistent key, there is no error, but Swift needs

a way to report failure; therefore, by default, it returns nil. This, in turn, implies that
the value returned when you successfully access a value through a key must be an
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Optional wrapping the real value. After that code, therefore, state is not a String —
it’s an Optional wrapping a String! Forgetting this is a common beginner mistake.

Starting in Swift 4, you can change that behavior by supplying a default value as part
of the subscript. If the key isn't found in the dictionary, the default value is returned,
and so there is no need for the returned value to be wrapped in an Optional. For
example:

let d = ["CA": "California", "NY": "New York"]
let state = d["MD", default:"N/A"] // state is a String (not an Optional)

If the reference to a dictionary is mutable, you can also assign into a key subscript
expression. If the key already exists, its value is replaced. If the key doesn’t already
exist, it is created and the value is attached to it:

var d = ["CA": "California", "NY": "New York"]
d["CA"] = "Casablanca"

d["MD"] = "Maryland"

// d is now ["MD": "Maryland", "NY": "New York", "CA": "Casablanca"]

As with fetching a value by key, you can supply a default value when assigning into a
key subscript expression. This can be a source of great economy of expression. For
example, consider the common task of collecting a histogram: we want to know how
many times each element appears in a sequence:

let sentence = "how much wood would a wood chuck chuck"
let words = sentence.split(separator: " ").map{String($0)}

Our goal is now to make a dictionary pairing each word with the number of times it
appears. Before Swift 4, a typical approach would be rather laborious, along these
lines:

var d = [String:Int]()
for word in words {
let ct = d[word]
if ct !'= nil {
d[word]! += 1
} else {
d[word] =1
}
}

// d is now ["how": 1, "wood": 2, "a": 1, "chuck": 2, "would": 1, "much": 1]
In Swift 4 and later, however, it’s effectively a one-liner:

var d = [String:Int]()

words.forEach {d[$0, default:0] += 1}
Earlier, I promised to give an example of init(_:uniquingKeysWith:), so here it is,
forming the same histogram in a silly but interesting way; I start with a values array
of ones, and sum the values whenever a duplicate key is encountered:
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let ones = Array(repeating: 1, count: words.count)
let d = Dictionary(zip(words,ones)){$0+5$1}

Instead of assigning into a subscript expression, you can call updateValue(forKey:);
it has the advantage that it returns the old value.

By a kind of shorthand, assigning nil into a key subscript expression removes that
key-value pair if it exists:

var d

= ["CA": "California", "NY": "New York"]
d["NY"] =

nil // d is now ["CA": "California"]
Alternatively, call removeValue(forKey:); it has the advantage that it returns the
removed value before it removes the key-value pair.

Dictionary casting and comparison

As with arrays, a dictionary type is legal for casting down, meaning that the individ-
ual elements will be cast down. Typically, only the value types will differ:

let dogl : Dog = NoisyDog()

let dog2 : Dog = NoisyDog()

let d = ["fido": dogl, "rover": dog2]

let d2 = d as! [String : NoisyDog]
As with arrays, is can be used to test the actual types in the dictionary, and as? can
be used to test and cast safely.

Dictionary equality is like array equality. Key types are necessarily Equatable, because
they are Hashable. Value types are not necessarily Equatable, but if they are Equata-
ble, == and != are defined as you would expect.

Basic dictionary properties and enumeration

A dictionary has a count property reporting the number of key-value pairs it con-
tains, and an isEmpty property reporting whether that number is @.

A dictionary has a keys property reporting all its keys, and a values property report-
ing all its values. These are effectively opaque structs providing a specialized view of
the dictionary itself. You can't assign one to a variable, or print it out, but you can
work with them as collections. For example, you can enumerate them with for...1in
(though you should not expect them to arrive in any particular order, as a dictionary
is unordered):

var d = ["CA": "California", "NY": "New York"]

for s in d.keys {

print(s) // NY, then CA
}

You can coerce them to an array:
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var d = ["CA": "California", "NY": "New York"]
var keys = Array(d.keys) // ["NY", "CA"]

You can sort them, filter them, or map them (yielding an array). You can take their
min or max. You can reduce them. You can compare keys of different dictionaries for
equality:

let d : [String:Int] = ["one":1, "two":2, "three":3]

let keysSorted = d.keys.sorted() // ["one", "three", "two"]

let arr = d.values.filter{$0 < 2} // [1]

let min = d.values.min() // Optional(1)

let sum = d.values.reduce(0, +) // 6

let ok = d.keys == ["one":1, "three":3, "two":2].keys // true
You can also enumerate a dictionary itself. Each iteration provides a key-value tuple
(again, arriving in no particular order, because a dictionary is unordered):

var d = ["CA": "California", "NY": "New York"]
for (abbrev, state) in d {

print("\(abbrev) stands for \(state)")
}

The tuple members have labels key and value, so the preceding example can be
rewritten like this:

var d = ["CA": "California", "NY": "New York"]
for pair in d {
print("\(pair.key) stands for \(pair.value)")
}
You can extract a dictionary’s entire contents at once as an array (of key-value tuples)
by coercing the dictionary to an array:
var d = ["CA": "California", "NY": "New York"]

let arr = Array(d)
// [(key: "NY", value: "New York"), (key: "CA", value: "California")]

When you apply filter to a dictionary, what you get is a dictionary. In addition,
there’s a mapValues method that yields a dictionary with its values changed according
to your map function. So, for example:

let d = ["CA": "California", "NY": "New York"]

let d2 = d.filter {$0.value > "New Jersey"}.mapValues{$0.uppercased()}

// ["NY": "NEW YORK"]
You can combine two dictionaries with the merging(_:uniquingKeysWith:) method
— or, if your reference to the first dictionary is mutable, you can call merge to modify
it directly. The second parameter is like the second parameter of init(_:uniquing-

KeysWith:), saying what the value should be in case the second dictionary has a key
matching an existing key in the first dictionary:
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let d1 = ["CA": "California", "NY": "New York"]

let d2 = ["MD": "Maryland", "NY": "New York"]
let d3 = dil.merging(d2){orig, _ in orig}
// ["MD": "Maryland", "NY": "New York", "CA": "California"]

Swift Dictionary and Objective-C NSDictionary

The Foundation framework dictionary type is NSDictionary, and Swift Dictionary is
bridged to it. The untyped API characterization of an NSDictionary will be [Any-
Hashable:Any] (AnyHashable is a type eraser, so that we can cope with the possibil-
ity, legal in Objective-C, that the keys may be of different hashable types).

Like NSArray element types, NSDictionary key and value types can be marked in
Objective-C. The most common key type in a real-life Cocoa NSDictionary is
NSString, so you might well receive an NSDictionary as a [String:Any]. Specific typ-
ing of an NSDictionary’s values is much rarer, because dictionaries that you pass to
and receive from Cocoa will very often have values of multiple types. It is not at all
surprising to have a dictionary whose keys are strings but whose values include a
string, a number, a color, and an array. For this reason, you will usually not cast down
the entire dictionary’s type; instead, youw'll work with the dictionary as having Any
values, and cast when fetching an individual value from the dictionary. Since the
value returned from subscripting a key is itself an Optional, you will typically unwrap
and cast the value as a standard single move.

Here’s an example. A Cocoa Notification object comes with a userInfo property. It is
an NSDictionary that might itself be nil, so the Swift API characterizes it as [Any-
Hashable:Any]?. Let’s say I'm expecting this dictionary to be present and to contain a
"progress" key whose value is an NSNumber containing a Double. My goal is to
extract that NSNumber and assign the Double that it contains to a property,
self.progress. Here's one way to do that safely, using optional unwrapping and
optional casting (n is the Notification object):

let prog = n.userInfo?["progress"] as? Double
if prog != nil {
self.progress = prog!

}
The variable prog is implicitly typed as an Optional wrapping a Double. The code is
safe, because if there is no userInfo dictionary, or if it doesn’t contain a "progress"
key, or if that key’s value isn’t a Double, nothing happens, and prog will be nil. I then
test prog to see whether it is nil; if it isn’t, I know that it’s safe to force-unwrap it, and
that the unwrapped value is the Double I'm after.

(In Chapter 5 I'll describe another syntax for accomplishing the same goal, using con-
ditional binding.)
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Conversely, here’s a typical example of creating a dictionary and handing it off to
Cocoa. This dictionary is a mixed bag: its values are a UIFont, a UIColor, and an
NSShadow. Its keys are all strings, which I obtain as constants from Cocoa. I form the
dictionary as a literal and pass it, all in one move, with no need to cast anything:

UINavigationBar.appearance().titleTextAttributes = [
.font: UIFont(name: "ChalkboardSE-Bold", size: 20)!,
.foregroundColor: UIColor.darkText,
.shadow.: {
let shad = NSShadow()
shad.shadowOffset = CGSize(width:1.5,height:1.5)
return shad
10O
1
As with NSArray and NSMutableArray, if you want Cocoa to mutate a dictionary, you

must coerce to NSDictionary’s subclass NSMutableDictionary:

var d1 = ["NY":"New York", "CA":"California"]

let d2 = ["MD":"Maryland"]

let mutdl = NSMutableDictionary(dictionary:d1)
mutdl.addEntries(from:d2)

d1l = mutdl as! [String:String]

// d1 is now ["MD": "Maryland", "NY": "New York", "CA": "California"]

Set

A set (Set, a struct) is an unordered collection of unique objects. Its elements must be
all of one type; it has a count and an isEmpty property; it can be initialized from any
sequence; you can cycle through its elements with for...in (though the order of ele-
ments is not guaranteed).

The uniqueness of set elements is implemented by constraining their type to be Hash-
able (and hence Equatable), just like the keys of a dictionary, so that the hash values
can be used behind the scenes for rapid access. Checking whether a set contains a
given element, which you can do with the contains(_:) instance method, is very
efficient — far more efficient than doing the same thing with an array. Therefore, if
element uniqueness is acceptable (or desirable) and you don’t need indexing or a
guaranteed order, a set can be a much better choice of collection than an array.

The only problem is that making your own types conform to Hashable, so as to be
able to put them into sets, is an extremely daunting proposition — or it was, until
Swift 4.1 and 4.2 innovations made it nearly trivial. As long as your type’s properties
are themselves Hashable, all you have to do in most cases is adopt Hashable and let
the compiler do the rest. For example:
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struct Person : Hashable {
let firstName: String
let lastName: String
}
The mere declaration of Hashable adoption causes the compiler to make Person
actually hashable. Two Person objects are considered equal if their firstName and
lastName properties are equal; and Person has a hashvalue (calculated in some sensi-
ble way that you don’t need to know about) and is thus eligible to be an element of a
Set. T'll talk more in Chapter 5 about the underlying mechanism, and what to do if
you don’t want some of your properties to be taken into account in determining
uniqueness.

There are no set literals in Swift, but you won't need them because you can pass an
array literal where a set is expected. There is no syntactic sugar for expressing a set
type, but the Set struct is a generic, so you can express the type by explicitly specializ-
ing the generic:

let set : Set<Int> = [1, 2, 3, 4, 5]

In that particular example, however, there was no real need to specialize the generic,
as the Int type can be inferred from the array.

It sometimes happens (more often than you might suppose) that you want to examine
one element of a set as a kind of sample. Order is meaningless, so it’s sufficient to
obtain any element, such as the first element. For this purpose, use the first instance
property; it returns an Optional, just in case the set is empty.

The distinctive feature of a set is the uniqueness of its objects. If an object is added to
a set and that object is already present, it isn't added a second time. Conversion from
an array to a set and back to an array is thus a quick and reliable way of uniquing the
array — though of course order is not preserved:

let arr = [1,2,1,3,2,4,3,5]

let set = Set(arr)

let arr2 = Array(set) // [5, 2, 3, 1, 4], perhaps
A set is a Collection and a Sequence, so it is analogous to an array or a dictionary, and
what I have already said about those types generally applies to a set as well. For exam-
ple, Set has a map(_:) instance method; it returns an array, but of course you can turn
that right back into a set if you need to:

let set : Set = [1,2,3,4,5]
let set2 = Set(set.map {$0+1}) // Set containing 2, 3, 4, 5, 6

On the other hand, applying filter to a Set yields a Set directly:

let set : Set = [1,2,3,4,5]
let set2 = set.filter {$0>3} // Set containing 4, 5

If the reference to a set is mutable, a number of instance methods spring to life.
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You can add an object with insert(_:); there is no penalty for trying to add an
object that’s already in the set (and you can learn what actually happened by captur-
ing and examining the result of the call). Alternatively, call update(with:); the differ-
ence is that if you're trying to add an object that already has an equivalent in the set,
the former doesn’t insert the new object, but the latter replaces the old object with the
new one. For example, suppose a Dog struct has a name and a license property, but
two Dogs are considered equivalent if just their name is identical. Then:

var set : Set = [Dog(name:"Fido", license:1)]

let d = Dog(name:"Fido", license:2)

set.insert(d) // [Dog(name: "Fido", license: 1)]

set.update(with:d) // [Dog(name: "Fido", license: 2)]
You can remove an object and return it by specifying the object itself, or something
equatable to it, with the remove(_:) method; it returns the object wrapped in an
Optional, or nil if the object was not present. You can remove and return an arbi-
trary object from the set with removeFirst; it crashes if the set is empty, so take pre-
cautions — or use popFirst, which is safe.

Equality comparison (==) is defined for sets as you would expect; two sets are equal if
every element of each is also an element of the other.

If the notion of a set brings to your mind visions of Venn diagrams from elementary
school, that’s good, because sets have instance methods giving you all those set opera-
tions you remember so fondly. The parameter can be a set, or it can be any sequence,
which will be converted to a set; for example, it might be an array, a range, or even a
character sequence:

intersection(_:), formIntersection(_:)
Yields the elements of this set that also appear in the parameter. The first forms a
new Set; the second is mutating.

union(_:), formUnion(_:)
Yields the elements of this set along with the (unique) elements of the parameter.
The first forms a new Set; the second is mutating.

symmetricDifference(_:), formSymmetricDifference(_:)
Yields the elements of this set that dont appear in the parameter, plus the
(unique) elements of the parameter that don’t appear in this set. The first forms a
new Set; the second is mutating.

subtracting(_:), subtract(_:)
Yields the elements of this set except for those that appear in the parameter. The
first forms a new Set; the second is mutating.
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isSubset(of:), isStrictSubset(of:)

isSuperset(of:), isStrictSuperset(of:)
Returns a Bool reporting whether the elements of this set are respectively
embraced by or embrace the elements of the parameter. The “strict” variant yields
false if the two sets consist of the same elements.

isDisjoint(with:)
Returns a Bool reporting whether this set and the parameter have no elements in
common.

Here’s a real-life example of elegant Set usage from one of my apps. I have a lot of
numbered pictures, of which we are to choose one randomly. But I don’t want to
choose a picture that has recently been chosen. Therefore, I keep a list of the numbers
of all recently chosen pictures. When it’s time to choose a new picture, I convert the
list of all possible numbers to a Set, convert the list of recently chosen picture num-
bers to a Set, and call subtracting(_:) to get a list of unused picture numbers! Now I
choose a picture number at random and add it to the list of recently chosen picture
numbers:

let ud = UserDefaults.standard
var recents = ud.object(forKey:Defaults.recents) as? [Int]
if recents == nil {

recents = []

}

var forbiddenNumbers = Set(recents!)

let legalNumbers = Set(1...PIXCOUNT).subtracting(forbiddenNumbers)
let newNumber = legalNumbers.randomElement()!
forbiddenNumbers.insert(newNumber)

ud.set(Array(forbiddenNumbers), forKey:Defaults.recents)

Option sets

An option set (OptionSet struct) is Swift’s way of treating as a struct a certain type of
Cocoa enumeration. It is not, strictly speaking, a Set; but it is deliberately set-like,
sharing common features with Set through the SetAlgebra protocol. Thus, an option
set has contains(_:), insert(_:), and remove(_:) methods, along with all the vari-
ous set operation methods.

The purpose of option sets is to help you grapple with Objective-C bitmasks. A bit-
mask is an integer whose bits are used as switches when multiple options are to be
specified simultaneously. Such bitmasks are very common in Cocoa. In Objective-C,
bitmasks are manipulated through the arithmetic bitwise-or and bitwise-and opera-
tors. Such manipulation can be mysterious and error-prone. But in Swift, thanks to
option sets, bitmasks can be manipulated easily through set operations instead.
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For example, when specifying how a UIView is to be animated, you are allowed to
pass an options: argument whose value comes from the UIView.AnimationOptions
enumeration, whose definition (in Objective-C) begins as follows:

typedef NS_OPTIONS(NSUInteger, UIViewAnimationOptions) {
UIViewAnimationOptionLayoutSubviews =1 <<
UIViewAnimationOptionAllowUserInteraction =
UIViewAnimationOptionBeginFromCurrentState
UIViewAnimationOptionRepeat =
UIViewAnimationOptionAutoreverse =

/...
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<<

-
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Pretend that an NSUlInteger is 8 bits (it isn’t, but let’s keep things simple and short).
Then this enumeration means that (in Swift) the following name-value pairs are

defined:

UIView.AnimationOptions.layoutSubviews 0b0000OEO1
UIView.AnimationOptions.allowUserInteraction 0b00000010
UIView.AnimationOptions.beginFromCurrentState ©b0OOEO100
UIView.AnimationOptions.repeat 0b00001000
UIView.AnimationOptions.autoreverse 0b00010000
These values can be combined into a single value — a bitmask — that you pass as the
options: argument for your animation. All Cocoa has to do to understand your
intentions is to look to see which bits in the value that you pass are set to 1. So, for
example, 0b00011000 would mean that UIView.AnimationOptions.repeat and

UIView.AnimationOptions.autoreverse are both true (and that the others are all
false).

The question is how to form the value 6b00011000 in order to pass it. You could form
it directly as a literal and set the options: argument to UIView.Animation-
Options(rawValue:0b00011000); but that’s not a very good idea, because it’s error-
prone and makes your code incomprehensible. In Objective-C, youd use the
arithmetic bitwise-or operator, analogous to this Swift code:
let val =
UIView.AnimationOptions.autoreverse.rawValue |
UIView.AnimationOptions.repeat.rawValue
let opts = UIView.AnimationOptions(rawValue: val)
That’s rather ugly! However, help is on the way: The UIView.AnimationOptions type
is an option set struct in Swift (because it is marked as NS_OPTIONS in Objective-C),
and therefore can be treated much like a Set. For example, given a UIView.Animation-
Options value, you can add an option to it using insert(_:):

var opts = UIView.AnimationOptions.autoreverse
opts.insert(.repeat)

Alternatively, you can start with an array literal, just as if you were initializing a Set:
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let opts : UIView.AnimationOptions = [.autoreverse, .repeat]

To indicate that no options are to be set, pass an empty option set ([ 1) or, where
permitted, omit the options: parameter altogether.

The inverse situation is that Cocoa hands you a bitmask, and you want to know
whether a certain bit is set. In this example from a UITableViewCell subclass, the cell’s
state comes to us as a bitmask; we want to know about the bit indicating that the cell
is showing its edit control. The Objective-C way is to extract the raw values and use
the bitwise-and operator:

override func didTransition(to state: UITableViewCell.StateMask) {
let editing = UITableViewCell.StateMask.showingEditControl.rawValue
if state.rawValue & editing != 0 {
// ... the ShowingEditControl bit is set ...
}
}

That’s a tricky formula, all too easy to get wrong. But in Swift this is an option set, so
the contains(_:) method tells you the answer:

override func didTransition(to state: UITableViewCell.StateMask) {
if state.contains(.showingEditControl) {
// ... the ShowingEditControl bit is set ...
}
}

Swift Set and Objective-C NSSet

Swift’s Set type is bridged to Objective-C NSSet. The untyped medium of interchange
is Set<AnyHashable>. Coming back from Objective-C, if Objective-C doesn’t know
what this is a set of, you would probably cast down as needed. As with NSArray, how-
ever, NSSet can be marked up to indicate its element type, in which case no casting
will be necessary:

override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {
let t = touches.first // an Optional wrapping a UITouch
/...
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CHAPTER 5
Flow Control and More

This chapter is a miscellany, presenting various remaining aspects of the Swift lan-
guage. I'll start by describing the syntax of Swift’s flow control constructs for branch-
ing, looping, and jumping. Then I'll summarize Swift’s privacy and introspection
features, and talk about how to override operators and how to create your own opera-
tors. Next I'll discuss some recently added Swift language features: synthesized proto-
col implementations, key paths, and dynamic members. Finally, I'll explain some
specialized aspects of Swift memory management.

Flow Control

A computer program has a path of execution through its code statements. Normally,
this path follows a simple rule: execute each statement in succession. But there is
another possibility. Flow control can be used to make the path of execution skip some
code statements, or go back and repeat some code statements. Flow control is what
makes a computer program “intelligent” By testing the truth value of a condition —
an expression that evaluates to a Bool and is thus true or false — the program
decides at that moment how to proceed. Flow control based on testing a condition
may be divided into two general types:

Branching
The code is divided into alternative chunks, like roads that diverge in a wood,
and the program is presented with a choice of possible ways to go; the truth of a
condition is used to determine which chunk will actually be executed.

Looping
A chunk of code is marked off for possible repetition; the truth of a condition is
used to determine whether the chunk should be executed, and then whether it
should be executed again. Each repetition is called an iteration.
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The chunks of code in flow control, which I refer to as blocks, are demarcated by curly
braces. These curly braces constitute a scope. New local variables can be declared
here, and go out of existence automatically when the path of execution exits the curly
braces (Chapter 3). For a loop, this means that local variables come into existence and
go out of existence on each iteration. As with any scope, code inside the curly braces
can see the surrounding higher scope (Chapter 1).

Swift flow control is fairly simple, and by and large is similar to flow control in C and
related languages. There are two fundamental syntactic differences between Swift and
C, both of which make Swift simpler and clearer:

o A condition does not have to be wrapped in parentheses in Swift.
o The curly braces can never be omitted in Swift.

Moreover, Swift adds some specialized flow control features to help you grapple more
conveniently with Optionals, and boasts a particularly powerful form of switch
statement.

Branching

Swift has two forms of branching: the if construct, and the switch statement. I'll also
discuss conditional evaluation, a compact form of if construct.

If construct

The Swift branching construct with if is similar to C. Many examples of if constructs
have appeared already in this book. The construct may be formally summarized as
shown in Example 5-1.

Example 5-1. The Swift if construct

if condition {
statements

}

if condition {
statements

} else {
statements

}

if condition {
statements

} else if condition {
statements

} else {
statements

}
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The third form, containing else if, can have as many else if blocks as needed, and
the final else block may be omitted.

Here’s a real-life if construct that lies at the heart of one of my apps:

// okay, we've tapped a tile; there are three cases

if self.selectedTile == nil { // no selected tile: select and play this tile
self.select(tile:tile)
self.play(tile:tile)

} else if self.selectedTile == tile { // selected tile tapped: deselect it
self.deselectAll()
self.player?.pause()

} else { // there was a selected tile, another tile was tapped: swap them
self.swap(self.selectedTile, with:tile, check:true, fence:true)

}

Conditional binding

In Swift, if can be followed immediately by a variable declaration and assignment —
that is, by let or var and a new local variable name, possibly followed by a colon and
a type declaration, then an equal sign and a value, as follows:

if let var = val {

This syntax, called a conditional binding, is actually a shorthand for conditionally
unwrapping an Optional. The assigned value (val) is expected to be an Optional —
the compiler will stop you if it isn't — and this is what happens:

o Ifthe Optional (val) is nil, the condition fails and the block is not executed.
o If the Optional is not nil, then:

1. The Optional is unwrapped.

2. The unwrapped value is assigned to the declared local variable (var).

3. The block is executed with the local variable in scope.

Thus, a conditional binding is a convenient shorthand for safely passing an unwrap-
ped Optional into a block. The Optional is unwrapped, and the block is executed,
only if the Optional can be unwrapped.

It is perfectly reasonable for the local variable in a conditional binding to have the
same name as an existing variable in the surrounding scope. It can even have the
same name as the Optional being unwrapped! There is then no need to make up a
new name, and inside the block the unwrapped value of the Optional overshadows
the original Optional, which thus cannot be accessed accidentally.

Here’s an example of a conditional binding. Recall this code from Chapter 4, where I
optionally unwrap a Notification’s userInfo dictionary, attempt to fetch a value from
the dictionary using the "progress" key, and proceed only if that value turns out to
be an NSNumber that can be cast down to a Double:
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let prog = n.userInfo?["progress"] as? Double
if prog != nil {
self.progress = prog!

}

We can rewrite that code as a conditional binding:

if let prog = n.userInfo?["progress"] as? Double {
self.progress = prog
}
It is also possible to nest conditional bindings. To illustrate, I'll rewrite the previous
example to use a separate conditional binding for each Optional in the chain:

if let ul = n.userInfo {
if let prog = ui["progress"] as? Double {
self.progress = prog
}
}
The result, if the chain involves many optional unwrappings, can be somewhat ver-
bose and the nest can become deeply indented — Swift programmers like to call this
the “pyramid of doom”. To help avoid the indentation, successive conditional bind-
ings can be combined into a condition list, with each condition separated by a comma:

if let ui = n.userInfo, let prog = ui["progress"] as? Double {
self.progress = prog
}
In that code, the assignment to prog won't even be attempted if the assignment to ut
fails (because n.userInfois nil).

Condition lists do not have to consist solely of conditional bindings. They can
include ordinary conditions. The important thing is the left-to-right order of evalua-
tion, which allows each condition to depend upon the previous one. Thus it would be
possible (though not as elegant) to rewrite the previous example like this:

if let ul = n.userInfo, let prog = ui["progress"], prog is Double {
self.progress = prog as! Double

}
Nevertheless, I am not fond of this kind of extended condition list. I actually prefer
the pyramid of doom; I find it considerably more legible, because the structure
reflects perfectly the successive stages of testing. If I want to avoid the pyramid of
doom, I can use a sequence of guard statements (“Guard” on page 284):

guard let ui = n.userInfo else {return}

guard let prog = ui["progress"] as? Double else {return}
self.progress = prog
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Switch statement

A switch statement is a neater way of writing an extended if...else if...else con-
struct. In C (and Objective-C), a switch statement contains hidden traps; Swift elimi-
nates those traps, and adds power and flexibility. As a result, switch statements are
commonly used in Swift (whereas they are relatively rare in my Objective-C code).

In a switch statement, the condition involves the comparison of different possible val-
ues, called cases, against a single value, called the tag. The case comparisons are per-
formed successively in order. As soon as a case comparison succeeds, that case’s code is
executed and the entire switch statement is exited. The schema is shown in
Example 5-2; there can be as many cases as needed, and the default case can be
omitted (subject to restrictions that I'll explain in a moment).

Example 5-2. The Swift switch statement

switch tag {
case patterni:
statements
case pattern2:
statements
default:
statements

}

Here’s an actual example:

switch 1 {
case 1:
print("You have 1 thingy!")
case 2:
print("You have 2 thingies!")
default:
print("You have \(i) thingies!")
}
In that code, a variable i functions as the tag. The value of 1 is first compared to the
value 1. If it is 1, that case’s code is executed and that’s all. If it is not 1, it is compared
to the value 2. If it is 2, that case’s code is executed and that’s all. If the value of 1

matches neither of those, the default case’s code is executed.

In Swift, a switch statement must be exhaustive. This means that every possible value
of the tag must be covered by a case. The compiler will stop you if you try to violate
this rule. The rule makes intuitive sense when a value’s type allows only a limited
number of possibilities; the usual example is an enum, which itself has a small, fixed
set of cases as its possible values. But when, as in the preceding example, the tag is an
Int, there is an infinite number of possible individual cases. Thus, a “mop-up” case
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must appear, to mop up all the cases that you didn’t write explicitly. A common way
to write a “mop-up” case is to use a default case.

Each case’s code can consist of multiple lines; it doesn’t have to be a single line, as the
cases in the preceding example happen to be. However, it must consist of at least a
single line; it is illegal for a Swift switch case to be completely empty. It is legal for the
first (or only) line of a case’s code to appear on the same line as the case, after the
colon; thus, I could have written the preceding example like this:

switch 1 {

case 1: print("You have 1 thingy!")

case 2: print("You have 2 thingies!")
default: print("You have \(1) thingies!")
}

The minimum single line of case code is the keyword break; used in this way, break
acts as a placeholder meaning, “Do nothing” It is very common for a switch state-
ment to include a default (or other “mop-up” case) consisting of nothing but the
keyword break; in this way, you exhaust all possible values of the tag, but if the value
is one that no case explicitly covers, you do nothing.

Now let’s focus on the comparison between the tag value and the case value. In the
preceding example, it works like an equality comparison (==); but that isn’t the only
possibility. In Swift, a case value is actually a special expression called a pattern, and
the pattern is compared to the tag value using a “secret” pattern-matching operator,
~=. The more you know about the syntax for constructing a pattern, the more power-
ful your case values and your switch statements will be.

A pattern can include an underscore (_) to absorb all values without using them. An
underscore case is thus an alternative form of “mop-up” case:

switch 1 {
case 1:
print("You have 1 thingy!")
case _
print("You have many thingies!")

}

A pattern can include a declaration of a local variable name (an unconditional bind-
ing) to absorb all values and use the actual value. This is another alternative form of
“mop-up” case:

switch 1 {
case 1:
print("You have 1 thingy!")
case let n:
print("You have \(n) thingies!")
}
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When the tag is a Comparable, a case can include a Range; the test involves sending
the Range the contains message:

switch 1 {
case 1:
print("You have 1 thingy!")
case 2...10:
print("You have \(i) thingies!")
default:
print("You have more thingies than I can count!")

}

When the tag is an Optional, a case can test it against nil. Moreover, appending ? to
a case pattern safely unwraps an Optional tag. Thus, if 1 is an Optional wrapping an
Int:

switch 1 {
case 17?:
print("You have 1 thingy!")
case let n?:
print("You have \(n) thingies!")
case nil: break

}
When the tag is a Bool, a case can test it against a condition. Thus, by a clever perver-
sion, you can use the cases to test any conditions you like — by using true as the tag!
A switch statement thus becomes a genuine substitute for an extended if...else if
construct. In this example from my own code, I could have used if...else if, but
each case is just one line, so a switch statement seems clearer:

func position(for bar: UIBarPositioning) -> UIBarPosition {
switch true {

case bar === self.navbar: return .topAttached
case bar === self.toolbar: return .bottom
default: return .any

}

}

A pattern can include a where clause adding a condition to limit the truth value of the
case. This is often, though not necessarily, used in combination with a binding; the
condition can refer to the variable declared in the binding:

switch 1 {
case let j where j < 0:
print("i is negative")
case let j where j > 0:
print("i is positive")
case 0:
print("i is 0")
default:break
}
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That example, however, is rather silly, as the binding isn’t actually needed. A neater
approach here would be to use partial range syntax:

switch 1 {
case ..<0:

print("i is negative")
case 1...:

print("i is positive")
case 0:

print("i is 0")
default:break
}

A pattern can include the is operator to test the tag’s type. In this example, we have a
Dog class and its NoisyDog subclass, and d is typed as Dog:

switch d {
case is NoisyDog:
print("You have a noisy dog!")
case _
print("You have a dog.")
}

A pattern can include a cast with the as (not as?) operator. Typically, you'll combine
this with a binding that declares a local variable; despite the use of unconditional as,
the value is conditionally cast and, if the cast succeeds, the local variable carries the
cast value into the case code. Again, d is typed as Dog; assume that Dog implements
bark and that NoisyDog implements beQuiet:

switch d {

case let nd as NoisyDog:
nd.beQuiet()

case let d:
d.bark()

}

You can also use as (not as?) to cast down the tag (and possibly unwrap it) condi-
tionally as part of a test against a specific match. In this example, 1 might be an Any
or an Optional wrapping an Any:

switch 1 {

case 0 as Int:
print("It is 0")

default:break

}

You can perform multiple tests at once by expressing the tag as a tuple and wrapping
the corresponding tests in a tuple. The case passes only if every test in the case tuple
succeeds against the corresponding member of the tag tuple. In this example, we start
with a dictionary d typed as [String:Any]. Using a tuple, we can safely attempt to
fetch and cast two values at once:
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switch (d["size"], d["desc"]) {
case let (size as Int, desc as String):
print("You have size \(size) and it is \(desc)")
default:break
}

When a tag is an enum, the cases can be cases of the enum. A switch statement is thus
an excellent way to handle an enum. Here’s the Filter enum from Chapter 4:

enum Filter {
case albums
case playlists
case podcasts
case books

}

And here’s a switch statement, where the tag, type, is a Filter; no mop-up is needed,
because I've exhausted the cases:

switch type {

case .albums:
print("Albums")

case .playlists:
print("Playlists")

case .podcasts:
print("Podcasts")

case .books:
print("Books")

}

A switch statement provides a way to extract an associated value from an enum case.
Recall this enum from Chapter 4:

enum MyError {
case number(Int)
case message(String)
case fatal

}

To extract the error number from a MyError whose case is .number, or the message
string from a MyError whose case is .message, I can use a switch statement. Recall
that the associated value is actually a tuple. A tuple of patterns after the matched case
name is applied to the associated value. If a pattern is a binding variable, it captures
the associated value. The let (or var) can appear inside the parentheses or after the
case keyword; this code illustrates both alternatives:

switch err {
case .number(let theNumber):

print("It is a number: \(theNumber)")
case let .message(theMessage):
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print("It is a message: \(theMessage)")
case .fatal:

print("It is fatal")
}

If the let (or var) appears after the case keyword, I can add a where clause:

switch err {
case let .number(n) where n > 0:

print("It's a positive error number \(n)")
case let .number(n) where n < 0:

print("It's a negative error number \(n)")
case .number(0):

print("It's a zero error number")
default:break

}

If I don’t want to extract the error number but just want to match against it, I can use
some other pattern inside the parentheses:

switch err {
case .number(1...):

print("It's a positive error number")
case .number(..<0):

print("It's a negative error number")
case .number(0):

print("It's a zero error number")
default:break
}

This same pattern also gives us yet another way to deal with an Optional tag. An
Optional, as I explained in Chapter 4, is in fact an enum. It has two cases, .none
and .some, where the wrapped value is the .some case’s associated value. But now we
know how to extract the associated value! Thus we can rewrite yet again the earlier
example where 1 is an Optional wrapping an Int:

switch 1 {
case .none: break
case .some(1):
print("You have 1 thingy!")
case .some(let n):
print("You have \(n) thingies!")
}

To combine switch case tests (with an implicit logical-or), separate them with a
comma:

switch 1 {
case 1,3,5,7,9:

print("You have a small odd number of thingies.")
case 2,4,6,8,10:
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print("You have a small even number of thingies.")
default:
print("You have too many thingies for me to count.")

}

In this example, 1 is declared as an Any:

switch 1 {
case is Int, is Double:

print("It's some kind of number.")
default:

print("I don't know what it is.")

}

A comma can even combine patterns that declare binding variables, provided they
declare the same variable of the same type (err is our MyError once again):

switch err {

case let .number(n) where n > 0, let .number(n) where n < 0:
print("It's a nonzero error number \(n)")

case .number(0):
print("It's a zero error number")

default:break

}

Another way of combining cases is to jump from one case to the next by using a
fallthrough statement. When a fallthrough statement is encountered, the current
case code is aborted immediately and the next case code runs unconditionally. The
test of the next case is not performed, so the next case can’t declare any binding vari-
ables, because they would never be set. It is not uncommon for a case to consist
entirely of a fallthrough statement:

switch pep {

case "Manny": fallthrough
case "Moe": fallthrough

case "Jack":
print("\(pep) is a Pep boy")
default:
print("I don't know who \(pep) is")
}
If case

When all you want to do is extract an associated value from an enum, a full switch
statement may seem a bit heavy-handed. The lightweight 1f case construct lets you
use in a condition the same sort of pattern syntax youd use in a case of a switch state-
ment. The structural difference is that, whereas a switch case pattern is compared
against a previously stated tag, an if case pattern is followed by an equal sign and
then the tag.
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For example, this is another way to extract an associated value from an enum; err is
our MyError enum once again:

if case let .number(n) = err {
print("The error number is \(n)")

}

The condition starting with case can be part of a longer comma-separated condition
list:

if case let .number(n) = err, n < 0 {
print("The negative error number is \(n)")

}

Conditional evaluation

An interesting problem arises when youd like to decide what value to use — for
example, what value to assign to a variable. This seems like a good use of a branching
construct. You can, of course, declare the variable first without initializing it, and
then set it from within a subsequent branching construct. It would be nice, however,
to use a branching construct as the variable’s value. Here, for example, I try (and fail)
to write a variable assignment where the equal sign is followed directly by a branch-
ing construct:

let title = switch type { // compile error
case .albums:
"Albums"
case .playlists:
"Playlists"
case .podcasts:
"Podcasts"
case .books:
"Books"

}

There are languages that let you talk that way, but Swift is not one of them. However,
an easy workaround does exist — use a define-and-call anonymous function, as I sug-
gested in Chapter 2:

let title : String = {
switch type {
case .albums:
return "Albums"
case .playlists:
return "Playlists"
case .podcasts:
return "Podcasts"
case .books:
return "Books"
}
10
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In the special case where a value can be decided by a two-pronged condition, Swift
provides the C ternary operator (?:). Its scheme is as follows:

condition ? expl : exp2

If the condition is true, the expression exp1 is evaluated and the result is used; other-
wise, the expression exp2 is evaluated and the result is used. Thus, you can use the
ternary operator while performing an assignment, using this schema:

let myVariable = condition ? expl : exp2

What myVariable gets initialized to depends on the truth value of the condition. I use
the ternary operator heavily in my own code. Here’s an example:
cell.accessoryType =
ix.row == self.currow ? .checkmark : .disclosureIndicator

The context needn’t be an assignment; here, we're deciding what value to pass as a
function argument:

context.setFillColor(self.hilite ? purple.cgColor : beige.cgColor)

The ternary operator can also be used to determine the receiver of a message. In this
example, one of two UIViews will have its background color set:

(self.firstRed ? v1 : v2).backgroundColor = .red

In Objective-C, there’s a collapsed form of the ternary operator that allows you to test
a value against nil. If it is nil, you get to supply a substitute value. If it isn’t nil, the
tested value itself is used. In Swift, the analogous operation would involve testing an
Optional: if the tested Optional is nil, use the substitute value; if it isn’t nil, unwrap
the Optional and use the unwrapped value. Swift has such an operator — the ?? oper-
ator (called the nil-coalescing operator).

Here’s a real-life example from my own code:

func tableView(_ tv: UITableView, numberOfRowsInSection sec: Int) -> Int {
return self.titles?.count 2? 0

}

In that example, self.titles is of type [String]?. If it’s not nil, I want to unwrap
the array and return its count. But if it is nil, there is no data and thus no table to
display — but I must return some number, so clearly I want to return zero. The nil-
coalescing operator lets me express all that very neatly.

The nil-coalescing operator together with the Optional map(_: ) method neatly solves
a class of problem where your goal is to process the wrapped value of an Optional or,
ifitis nil, to assign some default value. For example, suppose our goal is to produce a
string expressing the index of target within arr if it is present, or "NOT FOUND" if it is
not:
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let arr = ["Manny", "Moe", "Jack"]

let target = // some string

let pos = arr.firstIndex(of:target)

let s = pos != nil ? String(pos!) : "NOT FOUND"

That works, but it’s ugly. Here’s a more elegant way:

let arr = ["Manny", "Moe", "Jack"]
let target = // some string
let s = arr.firstIndex(of:target).map {String($0)} ?? "NOT FOUND"

Expressions using ?? can be chained:
let someNumber = i1 as? Int ?? 12 as? Int 7?7 0

That code tries to cast 11 to an Int and use that Int. If that fails, it tries to cast 12 to an
Int and use that Int. If that fails, it gives up and uses 0.

Loops

The usual purpose of a loop is to repeat a block of code with some simple difference
on each iteration. This difference will typically serve also as a signal for when to stop
the loop. Swift provides two basic loop structures: while loops and for loops.

While loops

A while loop comes in two forms, schematized in Example 5-3.

Example 5-3. The Swift while loop

while condition {

statements
}
repeat {
statements

} while condition

The chief difference between the two forms is the timing of the test. In the second
form, the condition is tested after the block has executed — meaning that the block
will be executed at least once.

Usually, the code inside the block will change something that alters the environment
and hence the value of the condition, thus eventually bringing the loop to an end.
Here’s a typical example from my own code (movenda is an array):

while self.movenda.count > 0 {
let p = self.movenda.removelLast()

/] ...
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Each iteration removes an element from movenda, so eventually its count, evaluated
in the condition, falls to  and the loop is no longer executed; execution then pro-
ceeds to the next line after the closing curly braces.

In its first form, a while loop can involve a conditional binding of an Optional. This
provides a compact way of safely unwrapping an Optional and looping until the
Optional is nil; the local variable containing the unwrapped Optional is in scope
inside the curly braces. Thus, my code can be rewritten more compactly:

while let p = self.movenda.poplLast() {
/...

}
There is no Swift repeat...until construct; instead, negate the condition. In my
own code, for example, I commonly need to walk my way up or down a hierarchy.
Here, textField is a subview, at some depth, of some table view cell, and I want to
know which table view cell it is a subview of. So I keep walking up the view hierarchy,
investigating each superview in turn, until either I reach a table view cell or I hit the
top of the view hierarchy:

var v : UIView? = textField

repeat {v = v?.superview} while !(v is UITableViewCell || v == nil)
if let ¢ = v as? UITableViewCell {

// ... if we get here, c is the cell
}

Similar to the if case construct, while case lets you use a switch case pattern. In
this rather artificial example, we have an array of various MyError enums:

let arr : [MyError] = [
.message("ouch"), .message("yipes"), .number(10), .number(-1), .fatal

1

We can extract the .message associated string values from the start of the array, like
this:

var 1 =0

while case let .message(message) = arr[i] {
print(message) // "ouch", then "yipes"; then the loop stops
i+=1

}
For loops
The Swift for loop is schematized in Example 5-4.

Example 5-4. The Swift for loop

for variable in sequence {
statements

}
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The for...1in construct that forms the basis of Swift’s for loop is similar to Objective-
C’s for...1in construct. In Objective-C, this syntax is available whenever a class con-
forms to the NSFastEnumeration protocol. In Swift, it is available whenever a type
adopts the Sequence protocol.

In the for...1in construct, the variable is implicitly declared with let on each itera-
tion; it is thus immutable by default. If you need to assign to the variable within the
block, write for var. The variable is also local to the block. On each iteration, a suc-
cessive element of the sequence is used to initialize the variable, which is then in
scope inside the block.

A common use of for loops is to iterate through successive numbers. This is easy in
Swift, because you can readily create a sequence of numbers on the fly — a Range:

for 1 in 1...5 {
print(i) // 1, 2, 3, 4, 5
}
Under the hood, a Sequence has a makeIterator method which yields an iterator
object adopting IteratorProtocol. According to this protocol, the iterator has a mutat-
ing next method that returns the next object in the sequence wrapped in an Optional,
or nil if there is no next object. Thus, for. . .1in is actually a kind of while loop:

var g = (1...5).makeIterator()
while let 1 = g.next() {
print(i) // 1, 2, 3, 4, 5
}
Sometimes you may find that writing out the while loop explicitly in that way makes
the loop easier to control and to customize.

The sequence will often be an existing value. It might be a string, in which case the
variable values are the successive characters. It might be an array, in which case the
variable values are the successive elements. It might be a dictionary, in which case the
variable values are key-value tuples (in no particular order). Many examples have
already appeared in earlier chapters.

As I explained in Chapter 4, you may encounter an array coming from Objective-C
whose elements will need to be cast down from Any. If your goal is to iterate through
that array, you can cast down as part of the sequence specification:

let p = Pep()
// p.boys() is an array of Any, unfortunately
for boy in p.boys() as! [String] {
/] ...
}

The sequence enumerated method yields a succession of tuples in which each element
of the original sequence is preceded by its index number. In this example from my
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real code, tiles is an array of UIViews and centers is an array (with the same
length) of CGPoints saying where those views are to be positioned:

for (i,v) in self.tiles.enumerated() {
v.center = self.centers[i]

}

A for...in construct can take a where clause, allowing you to skip some values of
the sequence:

for 1 in 0...10 where 1 % 2 == 0 {
print(i) // 0, 2, 4, 6, 8, 10
}
Like 1f case and while case, theres also for case, permitting a switch case pattern
to be used a for loop. The tag is each successive value of the sequence, so no assign-
ment operator is used. To illustrate, let’s start again with an array of MyError enums:

let arr : [MyError] = [
.message("ouch"), .message("yipes"), .number(10), .number(-1), .fatal

1

Here we cycle through the whole array, extracting only the . number associated values:

for case let .number(i) in arr {
print(i) // 10, -1
}
Another common use of for case is to cast down conditionally, picking out only
those members of the sequence that can be cast down safely. For example, let’s say I
want to hide all subviews that happen to be buttons:

for case let b as UIButton in self.boardView.subviews {
b.isHidden = true

}

A sequence also has instance methods, such as map(_:), filter(_:), and reversed;
you can apply these to hone the sequence through which we will cycle. In this exam-
ple, I count backward by even numbers:

let range = (0...10).reversed().filter{$0 % 2 == 0}
for 1 in range {
print(i) // 10, 8, 6, 4, 2, 0

}
Yet another approach is to generate the sequence by calling either
stride(from:through:by) or stride(from:to:by:). These are global functions
applicable to adopters of the Strideable protocol, such as numeric types and anything
else that can be incremented and decremented. Which form you use depends on
whether you want the sequence to include the final value. The by: argument can be
negative:

Flow Control | 269



for 1 in stride(from: 10, through: 0, by: -2) {
print(i) // 10, 8, 6, 4, 2, 0

}
For maximum flexibility, you can use the global sequence function to generate your
sequence by rule. It takes two parameters — an initial value, and a generation func-
tion that returns the next value based on what has gone before. In theory, the
sequence generated by the sequence function can be infinite in length — though this
is not a problem, because the resulting sequence is “lazy;’ meaning that an element
isn’t generated until you ask for it. In reality, you’ll use one of two techniques to limit
the result. The generation function can limit the sequence by returning nil to signal
that the end has been reached:

let seq = sequence(first:1) {$0 >= 10 ? nil : $0 + 1}
for 1 in seq {

print(i) // 1,2,3,4,5,6,7,8,9,10
}

Alternatively you can request just a piece of the infinite sequence — for example, by
cycling through the sequence for a while and then stopping, or by taking a finite
prefix:

let seq = sequence(first:1) {$0 + 1}
for 1 in seq.prefix(5) {
print(i) // 1,2,3,4,5

}
The sequence function comes in two forms. The first form, sequence(first:next:),
initially hands first into the next: function and subsequently hands the previous
result of the next: function into the next: function, as illustrated in the preceding
examples. The second form, sequence(state:next:), is more general: it repeatedly
hands state into the next: function as an inout parameter; the next: function is
expected to set that parameter, using it as a scratchpad, in addition to returning the
next value in the sequence. An obvious illustration is the Fibonacci sequence:

let fib = sequence(state:(0,1)) { (pair: inout (Int,Int)) -> Int in
let n = pair.0 + pair.1
pair = (pair.1i,n)
return n
}
for 1 in fib.prefix(10) {
print(i) // 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
}
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Any sequence can be made “lazy” by asking for its lazy property. This can be a
source of efficiency if you're going to be looping through the sequence (explicitly
or implicitly) and potentially shortcircuiting the loop; there’s no point generating
more elements of the sequence than the loop will actually process, and that is
what lazy prevents. Importantly, laziness propagates through a chain of
sequence operations. I'll give an example in the next section.

Jumping

Although branching and looping constitute the bulk of the decision-making flow of
code execution, sometimes even they are insufficient to express the logic of what
needs to happen next. It can be useful, instead, to interrupt your code’s progress com-
pletely and jump to a different place within it.

The most general way to jump from anywhere to anywhere is the goto command,
common in early programming languages but now notoriously “considered harmful”
Swift doesn’t have a goto command, but it does provide a repertory of controlled
ways of jumping, which will, in practice, cover any real-life situation. Swifts modes of
jumping are all forms of early exit from the current flow of code.

The return statement may itself be considered a form of early exit. One function calls
another, which may call another, and so on, forming a call stack. When a return
statement is encountered, execution of this function is aborted immediately and the
path of execution jumps to the point at which the call was made in the function one
level up the call stack.

Shortcircuiting and labels

Swift has several ways of shortcircuiting the flow of branch and loop constructs:

fallthrough
A fallthrough statement in a switch case aborts execution of the current case
code and immediately begins executing the code of the next case. There must be a
next case or the compiler will stop you.

continue
A continue statement in a loop construct aborts execution of the current itera-
tion and proceeds to the next iteration:

o In a while loop, continue means to perform immediately the conditional
test.

o Ina for loop, continue means to proceed immediately to the next iteration if
there is one.

break
A break statement aborts the current construct:
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o In aloop, break aborts the loop completely.

« In a switch case, break aborts the entire switch construct.

When constructs are nested, you may need to specify which construct you want to
continue or break. Therefore, Swift permits you to put a label before the start of an if
construct, a switch statement, a while loop, or a for loop (or a do block, which T'll
describe later). The label is an arbitrary name followed by a colon. You can then use
that label name in a continue or break statement within the labeled construct at any
depth, to specify that this is the construct you are referring to.

For example, here’s a simple struct for generating prime numbers:

struct Primes {
static var primes = [2]
static func appendNextPrime() {
next: for 1 in (primes.last!+1)... {
let sqrt = Int(Double(i).squareRoot())
for prime in primes.lazy.prefix(while:{$0 <= sqrt}) {
if 1 % prime == 0 {
continue next

}
}
primes.append(i)
return

}

The algorithm is crude — it could be optimized further — but its effective and
straightforward. The struct maintains a list of the primes we've found so far, and
appendNextPrime basically just looks at each successive larger integer i to see
whether any of the primes we've already found (prime) divides it. If so, i is not a
prime, so we want to go on to the next i. But if we merely say continue, we'll jump to
the next prime, not to the next i. The label solves the problem.

(As promised, that example also demonstrates lazy. We want to keep
prefix(while:_) from working harder than it has to; there’s no point extracting all
the primes less than the square root of 1 in advance, because the loop might be short-
circuited. So we make primes lazy, which makes prefix(while:_) lazy, and so a
prime is tested against $0 <= sqrt only if it has to be.)

Throwing and catching errors

Sometimes a situation arises where further coherent progress is impossible: the entire
operation in which we are engaged has failed. It can then be desirable to abort the
current scope, and possibly the current function, and possibly even the function that
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called it, and so on, exiting to some point where we can acknowledge this failure and
proceed in good order in some other way.

For this purpose, Swift provides a mechanism for throwing and catching errors. In
keeping with its usual insistence on safety and clarity, Swift imposes certain strict
conditions on the use of this mechanism, and the compiler will ensure that you
adhere to them.

An error, in this sense, is a kind of message, presumably indicating what went wrong.
This message is passed up the nest of scopes and function calls as part of the error-
handling process, and the code that recovers from the failure can, if desired, read the
message and determine how to proceed.

In Swift, an error must be an object of a type that adopts the Error protocol, which
has just two requirements: a String _domain property and an Int _code property. The
purpose of those properties is to help errors cross the bridge between Swift and
Objective-C; in real life, you will be unaware of them (and in fact you won’t even see
them listed in the Swift header). The object will be one of the following:

A Swift type that adopts Error
As soon as a Swift type formally declares adoption of the Error protocol, it is
ready to be used as an error object; the protocol requirements are magically ful-
filled for you, behind the scenes. Typically, this type will be an enum, which will
communicate its message by means of its cases: different cases will distinguish
different kinds of possible failure, perhaps with raw values or associated types to
carry further information.

NSError
NSError is Cocoas class for communicating the nature of a problem; Swift
extends NSError to adopt Error and bridges them to one another. If your call to a
Cocoa method generates a failure, Cocoa will send you an NSError instance
typed as an Error.

There are two stages of the error mechanism to consider — throwing an error, and
catching an error:

o Throwing an error aborts the current path of execution and hands an error object
to the error mechanism.

o Catching an error receives that error object from the error mechanism and
responds in good order, with the path of execution resuming after the point of
catching. In effect, we have jumped from the throwing point to the catching
point.

To throw an error, use the keyword throw followed by an error object. That’s all it
takes! The current block of code is immediately aborted, and the error mechanism
takes over. However, to ensure that the throw command is used coherently, Swift
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imposes a rule that you can say throw only in a context where the error will be caught.
What is such a context?

The primary context for throwing and catching an error is the do. . .catch construct.
This consists of a do block and one or more catch blocks. It is legal to throw in the do
block; an accompanying catch block can then be fed any errors thrown from within
the do block. The do. . .catch construct’s schema looks like Example 5-5.

Example 5-5. The Swift do. . .catch construct

do {

statements [/ a throw can happen here
} catch errortype {

statements
} catch {

statements

}

A single do block can be accompanied by multiple catch blocks. Catch blocks are like
the cases of a switch statement, and will usually have the same logic: first, you might
have specialized catch blocks, each of which is designed to handle some limited set of
possible errors; finally, you might have a general catch block that acts as the default,
mopping up any errors that were not caught by any of the specialized catch blocks.

In fact, the syntax used by a catch block to specify what sorts of error it catches is the
pattern syntax used by a case in a switch statement! Imagine that this is a switch state-
ment, and that the tag is the error object. Then the matching of that error object to a
particular catch block is performed just as if you had written case instead of catch.
Typically, when the Error is an enum, a specialized catch block will state at least the
enum that it catches, and possibly also the case of that enum; it can have a binding, to
capture the enum or its associated type; and it can have a where clause to limit the
possibilities still further.

To illustrate, I'll start by defining a couple of errors:

enum MyFirstError : Error {
case firstMinorMistake
case firstMajorMistake
case firstFatalMistake

}

enum MySecondError : Error {
case secondMinorMistake(i:Int)
case secondMajorMistake(s:String)
case secondFatalMistake

}

And here’s a do...catch construct designed to demonstrate some of the different
ways we can catch different errors in different catch blocks:
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do {
// throw can happen here
} catch MyFirstError.firstMinorMistake {
|/ catches MyFirstError.firstMinorMistake
} catch let err as MyFirstError {
// catches all other cases of MyFirstError
} catch MySecondError.secondMinorMistake(let 1) where 1 < 0 {
|/ catches e.g. MySecondError.secondMinorMistake(i:-3)
} catch {
/] catches everything else

}

Now let’s talk about how the error object makes its way into each of the catch blocks:

o In a catch block with an accompanying pattern, it is up to you to capture in the
pattern any desired information about the error. For example, if you want the
error itself to travel as a variable into the catch block, you’ll need a binding in the
pattern.

o A catch block whose pattern is only a binding catches any error under that name;
for example, catch let mistake is a “mop-up” catch block that catches any
error and calls the error object mistake.

 In a “mop-up” catch block with no accompanying pattern (that is, the bare word
catch and no more), the error object arrives into the block automatically as a
variable called error.

Let’s look again at the previous example, but this time we'll note whether and how the
error object arrives into each catch block:

do {

// throw can happen here
} catch MyFirstError.firstMinorMistake {

// no error object, but we know it's MyFirstError.firstMinorMistake
} catch let err as MyFirstError {

/] MyFirstError arrives as err
} catch MySecondError.secondMinorMistake(let 1) where 1 < 0 {

// only 1 arrives, but we know it's MySecondError.secondMinorMistake
} catch {

// error object arrives as error

}

The do block of a do. . .catch construct is not the only place where throwing is legal.
There is another such place, because there’s something else that can happen to a
thrown error; instead of being caught directly, it can percolate up the call stack, leav-
ing the current function and arriving at the point where this function was called. In
this situation, the error won't be caught here, at the point of throwing; it needs to be
caught further up the call stack. Moreover, suppose a do...catch construct lacks a
“mop-up” catch block. Then a throw inside the do block might not be caught here,
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and again, the error will percolate up the call stack, and needs to be caught further up
the call stack.

We therefore need a way to say to the compiler: “Look, I understand that it looks like
this throw is not happening in a context where it will be caught, but thats only
because you're not looking far enough up the call stack. If you do look up far enough,
you'll see that a throw at this point is eventually caught” That way is the throws
keyword in a function declaration.

If you mark a function with the throws keyword, then its entire body becomes a legal
place for throwing. The syntax for declaring a throws function is that the keyword
throws appears immediately after the parameter list (and before the arrow operator, if
there is one). For example:

enum NotLongEnough : Error {
case 1SaidLongIMeantLong

}
func giveMeALongString(_ s:String) throws {
if s.count < 5 {
throw NotLongEnough.iSaidLongIMeantlLong

}
print("thanks for the string")

}

The addition of throws to a function decla