
Matt Neuburg

 iOS 12
Programming
Fundamentals
 with Swift
SWIFT, XCODE, AND COCOA BASICS

Covers iOS 12,

Xcode 10, and Swift 4.2

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Matt Neuburg

Boston

iOS 12 Programming
Fundamentals with Swift

Swift, Xcode, and Cocoa Basics

FIFTH EDITION

www.allitebooks.com

http://www.allitebooks.org

ISBN: 978-1-492-04455-0

[LSI]

iOS 12 Programming Fundamentals with Swift, Fifth Edition
by Matt Neuburg

Copyright © 2018 Matt Neuburg. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Kristen Brown
Proofreader: O’Reilly Production Services
Indexer: Matt Neuburg

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Matt Neuburg

April 2015: First Edition
October 2015: Second Edition
October 2016: Third Edition
October 2017: Fourth Edition
September 2018: Fifth Edition

Revision History for the Fifth Edition
2018-09-26: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781492044550 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. iOS 12 Programming Fundamentals
with Swift, the image of a harp seal, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781492044550
http://www.allitebooks.org

Table of Contents

Preface. xiii

Part I. Language

1. The Architecture of Swift. 3
Ground of Being 3
Everything Is an Object? 5
Three Flavors of Object Type 6
Variables 6
Functions 8
The Structure of a Swift File 9
Scope and Lifetime 11
Object Members 13
Namespaces 13
Modules 14
Instances 15
Why Instances? 17
The Keyword self 19
Privacy 20
Design 22

Object Types and APIs 23
Instance Creation, Scope, and Lifetime 25
Summary and Conclusion 25

2. Functions. 27
Function Parameters and Return Value 27

Void Return Type and Parameters 31
Function Signature 32

External Parameter Names 32

iii

www.allitebooks.com

http://www.allitebooks.org

Overloading 34
Default Parameter Values 35
Variadic Parameters 35
Ignored Parameters 36
Modifiable Parameters 37
Function in Function 40
Recursion 42
Function As Value 42
Anonymous Functions 45
Define-and-Call 51
Closures 52

How Closures Improve Code 54
Function Returning Function 55
Closure Setting a Captured Variable 58
Closure Preserving Its Captured Environment 59
Escaping Closures 60

Curried Functions 60
Function References and Selectors 62

Function Reference Scope 64
Selectors 65

3. Variables and Simple Types. 69
Variable Scope and Lifetime 69
Variable Declaration 71
Computed Initializer 74
Computed Variables 76
Setter Observers 79
Lazy Initialization 80
Built-In Simple Types 82

Bool 82
Numbers 84
String 92
Character and String Index 96
Range 101
Tuple 103
Optional 105

4. Object Types. 119
Object Type Declarations and Features 119

Initializers 121
Properties 127
Methods 130

iv | Table of Contents

Subscripts 132
Nested Object Types 135
Instance References 135

Enums 137
Raw Values 138
Associated Values 140
Enum Case Iteration 142
Enum Initializers 143
Enum Properties 144
Enum Methods 145
Why Enums? 146

Structs 147
Struct Initializers, Properties, and Methods 147
Struct As Namespace 149

Classes 149
Value Types and Reference Types 150
Subclass and Superclass 156
Class Initializers 161
Class Deinitializer 169
Class Properties and Methods 170

Polymorphism 172
Casting 175

Casting Down 176
Type Testing and Casting Down Safely 176
Type Testing and Casting Optionals 178
Bridging to Objective-C 178

Type References 180
From Instance to Type 180
Type as Value 181
The Keyword Self 183
Comparing Types 184
Summary of Type Terminology 185

Protocols 186
Why Protocols? 187
Protocol Type Testing and Casting 189
Declaring a Protocol 190
Protocol Composition 191
Optional Protocol Members 192
Class Protocol 194
Implicitly Required Initializers 195
Literal Convertibles 196

Generics 197

Table of Contents | v

Generic Declarations 200
Contradictory Resolution 202
Type Constraints 203
Explicit Specialization 205
Generic Invariance 207
Associated Type Chains 208
Where Clauses 210

Extensions 213
Extending Object Types 213
Extending Protocols 215
Extending Generics 217

Umbrella Types 219
Any 219
AnyObject 221
AnyClass 223

Collection Types 224
Array 224
Dictionary 240
Set 247

5. Flow Control and More. 253
Flow Control 253

Branching 254
Loops 266
Jumping 271

Privacy 286
Private and Fileprivate 288
Public and Open 289
Privacy Rules 290

Introspection 290
Operators 291
Synthesized Protocol Implementations 295
Key Paths 298
Dynamic Member Lookup 300
Memory Management 301

Memory Management of Reference Types 301
Exclusive Access to Value Types 308

Part II. IDE

vi | Table of Contents

6. Anatomy of an Xcode Project. 313
New Project 313
The Project Window 315

The Navigator Pane 317
The Utilities Pane 322
The Editor 323

The Project File and Its Dependents 325
What’s In the Project Folder 326
Groups 327

The Target 328
Build Phases 328
Build Settings 330
Configurations 331
Schemes and Destinations 333

From Project to Built App 335
Build Settings 338
Property List Settings 338
Nib Files 339
Additional Resources 340
Code Files 342
Frameworks and SDKs 343

The App Launch Process 345
The Entry Point 345
UIApplicationMain 346
App Without a Storyboard 348

Renaming Parts of a Project 349

7. Nib Management. 351
The Nib Editor Interface 352

Document Outline 353
Canvas 356
Inspectors and Libraries 358

Nib Loading 359
When Nibs Are Loaded 360
Manual Nib Loading 361

Connections 363
Outlets 363
The Nib Owner 364
Automatically Configured Nibs 368
Misconfigured Outlets 369
Deleting an Outlet 371
More Ways to Create Outlets 372

Table of Contents | vii

Outlet Collections 374
Action Connections 375
More Ways to Create Actions 377
Misconfigured Actions 379
Connections Between Nibs — Not! 379

Additional Configuration of Nib-Based Instances 380

8. Documentation. 385
The Documentation Window 385
Class Documentation Pages 386
Quick Help 390
Symbol Declarations 392
Header Files 393
Sample Code 394
Internet Resources 394

9. Life Cycle of a Project. 397
Environmental Dependencies 397

Permissible Runtime Environment 398
Backward Compatibility 398
Device Type 400
Arguments and Environment Variables 401
Conditional Compilation 402

Version Control 404
Editing and Navigating Your Code 407

Autocompletion 409
Snippets 410
Fix-it and Live Syntax Checking 412
Navigation 413
Finding 415
Refactoring 416

Running in the Simulator 416
Debugging 417

Caveman Debugging 417
The Xcode Debugger 420

Testing 427
Unit Tests 428
Interface Tests 431

Clean 433
Running on a Device 433

Obtaining a Developer Program Membership 434
Signing an App 435

viii | Table of Contents

Automatic Signing 436
Manual Signing 439
Running the App 441
Managing Development Certificates and Devices 442

Profiling 442
Gauges 442
Memory Debugging 444
Instruments 445

Localization 448
Distribution 453

Making an Archive 453
The Distribution Certificate 454
The Distribution Profile 456
Distribution for Testing 457
Final App Preparations 458
Screenshots and Video Previews 461
Property List Settings 463
Submission to the App Store 464

Part III. Cocoa

10. Cocoa Classes. 469
Subclassing 469
Categories and Extensions 472

How Swift Uses Extensions 472
How You Use Extensions 473
How Cocoa Uses Categories 473

Protocols 475
Informal Protocols 477
Optional Methods 477

Some Foundation Classes 480
NSRange and NSNotFound 481
NSString and Friends 483
NSDate and Friends 486
NSNumber 487
NSValue 489
NSData 490
NSMeasurement and Friends 491
Equality, Hashability, and Comparison 491
NSArray and NSMutableArray 494
NSDictionary and NSMutableDictionary 496

Table of Contents | ix

NSSet and Friends 496
NSIndexSet 497
NSNull 498
Immutable and Mutable 498
Property Lists 500
Codable 501

Accessors, Properties, and Key–Value Coding 504
Swift Accessors 505
Key–Value Coding 507
Uses of Key–Value Coding 508
KVC and Outlets 510
Cocoa Key Paths 510

The Secret Life of NSObject 511

11. Cocoa Events. 513
Reasons for Events 513
Subclassing 514
Notifications 516

Receiving a Notification 517
Unregistering 519
Posting a Notification 520
Timer 521

Delegation 523
Cocoa Delegation 523
Implementing Delegation 525

Data Sources 527
Actions 527
The Responder Chain 530

Deferring Responsibility 531
Nil-Targeted Actions 532

Key–Value Observing 533
Registration and Notification 534
Unregistering 535
Key–Value Observing Example 536

Swamped by Events 537
Delayed Performance 540

12. Memory Management. 543
Principles of Cocoa Memory Management 543
Rules of Cocoa Memory Management 544
What ARC Is and What It Does 545
How Cocoa Objects Manage Memory 546

x | Table of Contents

Autorelease Pool 547
Memory Management of Instance Properties 549
Retain Cycles and Weak References 550
Unusual Memory Management Situations 552

Notification Observers 552
KVO Observers 554
Timers 554
Other Unusual Situations 556

Nib Loading and Memory Management 556
Memory Management of CFTypeRefs 557
Property Memory Management Policies 559
Debugging Memory Management Mistakes 561

13. Communication Between Objects. 563
Visibility by Instantiation 564
Visibility by Relationship 566
Global Visibility 567
Notifications and Key–Value Observing 569
Model–View–Controller 569

A. C, Objective-C, and Swift. 573

Index. 607

Table of Contents | xi

Preface

On June 2, 2014, Apple’s WWDC keynote address ended with a shocking announce‐
ment: “We have a new programming language.” This came as a huge surprise to the
developer community, which was accustomed to Objective-C, warts and all, and
doubted that Apple could ever possibly relieve them from the weight of its venerable
legacy. The developer community, it appeared, had been wrong.

Having picked themselves up off the floor, developers immediately began to consider
this new language — Swift — studying it, critiquing it, and deciding whether to use it.
My own first move was to translate all my existing iOS apps into Swift; this was
enough to convince me that Swift deserved to be, and probably would be, adopted by
new students of iOS programming, and that my books, therefore, should henceforth
assume that readers are using Swift.

That decision has proven prophetic. Programmers of iOS have flocked to Swift in
increasing numbers, and Swift itself has only improved. My iOS apps (such as Diabel‐
li’s Theme, LinkSame, Zotz!, TidBITS News, and my Latin and Greek flashcard apps)
have all been rewritten in Swift, and are far easier for me to understand and maintain
than their Objective-C originals.

Xcode 10 comes with Swift 4.2. The language has evolved greatly in its details and in
the nature of its integration with the Cocoa libraries that underlie iOS programming,
but its spirit has remained constant. The Swift language is designed from the ground
up with these salient features:

Object-orientation
Swift is a modern, object-oriented language. It is purely object-oriented: “Every‐
thing is an object.”

Clarity
Swift is easy to read and easy to write. Its syntax is clear, consistent, and explicit,
with few hidden shortcuts and minimal syntactic trickery.

xiii

Safety
Swift enforces strong typing to ensure that it knows, and that you know, what the
type of every object reference is at every moment.

Economy
Swift is a fairly small language, providing some basic types and functionalities
and no more. The rest must be provided by your code, or by libraries of code that
you use — such as Cocoa.

Memory management
Swift manages memory automatically. You will rarely have to concern yourself
with memory management.

Cocoa compatibility
The Cocoa APIs are written primarily in C and Objective-C. Swift is explicitly
designed to interface with most of the Cocoa APIs.

These features make Swift an excellent language for learning to program iOS.

The alternative, Objective-C, still exists, and you can use it if you like. Indeed, it is
easy to write an app that includes both Swift code and Objective-C code; and you may
have reason to do so. Objective-C, however, lacks the very advantages that Swift
offers. Objective-C agglomerates object-oriented features onto C. It is therefore only
partially object-oriented; it has both objects and scalar data types, and its objects have
to be slotted into one particular C data type (pointers). Its syntax can be difficult and
tricky; reading and writing nested method calls can make one’s eyes glaze over, and it
invites hacky habits such as implicit nil-testing. Its type checking can be and fre‐
quently is turned off, resulting in programmer errors where a message is sent to the
wrong type of object and the program crashes.

Recent revisions and additions to Objective-C — ARC, synthesis and autosynthesis,
improved literal array and dictionary syntax, blocks — have made it easier and more
convenient, but such patches have also made the language even larger and possibly
even more confusing. Because Objective-C must encompass C, there are limits to
how far it can be extended and revised. Swift, on the other hand, is a clean start. If
you were to dream of completely revising Objective-C to create a better Objective-C,
Swift might be what you would dream of. It puts a modern, rational front end
between you and the Cocoa Objective-C APIs.

Still, the reader may also need some awareness of Objective-C (including C). The
Foundation and Cocoa APIs, the built-in commands with which your code must
interact in order to make anything happen on an iOS device, are still written in C and
Objective-C. In order to interact with them, you might have to know what those lan‐
guages would expect.

xiv | Preface

Therefore, although I do not attempt to teach Objective-C in this book, I do describe
it in enough detail to allow you to read it when you encounter it in the documenta‐
tion and on the Internet, and I occasionally show some Objective-C code. Part III, on
Cocoa, is really all about learning to think the way Objective-C thinks — because the
structure and behavior of the Cocoa APIs are fundamentally based on Objective-C.
And the book ends with an appendix that details how Swift and Objective-C commu‐
nicate with one another, as well as explaining how your app can be written partly in
Swift and partly in Objective-C.

The Scope of This Book
This book is actually one of a pair with my Programming iOS 12, which picks up
exactly where this book leaves off. They complement and supplement one another.
The two-book architecture should, I believe, render the size and scope of each book
tractable for readers. Together, they provide a complete grounding in the knowledge
needed to begin writing iOS apps; thus, when you do start writing iOS apps, you’ll
have a solid and rigorous understanding of what you are doing and where you are
heading. If writing an iOS program is like building a house of bricks, this book
teaches you what a brick is and how to handle it, while Programming iOS 12 hands
you some actual bricks and tells you how to assemble them.

When you have read this book, you’ll know about Swift, Xcode, and the underpin‐
nings of the Cocoa framework, and you will be ready to proceed directly to Program‐
ming iOS 12. Conversely, Programming iOS 12 assumes a knowledge of this book; it
begins, like Homer’s Iliad, in the middle of the story, with the reader jumping with all
four feet into views and view controllers, and with a knowledge of the language and
the Xcode IDE already presupposed. If you started reading Programming iOS 12 and
wondered about such unexplained matters as Swift language basics, the
UIApplicationMain function, the nib-loading mechanism, Cocoa patterns of delega‐
tion and notification, and retain cycles, wonder no longer — I didn’t explain them
there because I do explain them here.

The three parts of this book teach the underlying basis of all iOS programming:

• Part I introduces the Swift language, from the ground up — I do not assume that
you know any other programming languages. My way of teaching Swift is differ‐
ent from other treatments, such as Apple’s; it is systematic and Euclidean, with
pedagogical building blocks piled on one another in what I regard as the most
helpful order. At the same time, I have tried to confine myself to the essentials.
Swift is not a big language, but it has some subtle and unusual corners. You don’t
need to dive deep into all of these, and my discussion will leave many of them
unexplored. You will probably never encounter them, and if you do, you will
have entered an advanced Swift world outside the scope of this discussion. To
give an obvious example, readers may be surprised to find that I never mention

Preface | xv

http://shop.oreilly.com/product/0636920208662.do

Swift playgrounds or the REPL. My focus here is real-life iOS programming, and
my explanation of Swift therefore concentrates on those common, practical
aspects of the language that, in my experience, actually come into play in the
course of programming iOS.

• Part II turns to Xcode, the world in which all iOS programming ultimately takes
place. It explains what an Xcode project is and how it is transformed into an app,
and how to work comfortably and nimbly with Xcode to consult the documenta‐
tion and to write, navigate, and debug code, as well as how to bring your app
through the subsequent stages of running on a device and submission to the App
Store. There is also a very important chapter on nibs and the nib editor (Interface
Builder), including outlets and actions as well as the mechanics of nib loading;
however, such specialized topics as autolayout constraints in the nib are post‐
poned to the other book.

• Part III introduces the Cocoa Touch framework. When you program for iOS, you
take advantage of a suite of frameworks provided by Apple. These frameworks,
taken together, constitute Cocoa; the brand of Cocoa that provides the API for
programming iOS is Cocoa Touch. Your code will ultimately be almost entirely
about communicating with Cocoa. The Cocoa Touch frameworks provide the
underlying functionality that any iOS app needs to have. But to use a framework,
you have to think the way the framework thinks, put your code where the frame‐
work expects it, and fulfill many obligations imposed on you by the framework.
To make things even more interesting, Cocoa uses Objective-C, while you’ll be
using Swift: you need to know how your Swift code will interface with Cocoa’s
features and behaviors. Cocoa provides important foundational classes and adds
linguistic and architectural devices such as categories, protocols, delegation, and
notifications, as well as the pervasive responsibilities of memory management.
Key–value coding and key–value observing are also discussed here.

The reader of this book will thus get a thorough grounding in the fundamental
knowledge and techniques that any good iOS programmer needs. The book itself
doesn’t show how to write any particularly interesting iOS apps, but it does constantly
use my own real apps and real programming situations to illustrate and motivate its
explanations. And then you’ll be ready for Programming iOS 12, of course!

Versions
This book is geared to Swift 4.2, iOS 12, and Xcode 10.

In general, only very minimal attention is given to earlier versions of iOS and Xcode.
It is not my intention to embrace in this book any detailed knowledge about earlier
versions of the software, which is, after all, readily and compendiously available in my
earlier books. The book does contain, nevertheless, a few words of advice about back‐
ward compatibility (especially in Chapter 9).

xvi | Preface

A word about method names. I generally give method names in Swift, in the style of a
function reference (as described in Chapter 2) — that is, the name plus parentheses
containing the parameter labels followed by colon. Now and then, if a method is
already under discussion and there is no ambiguity, I’ll use the bare name. In a few
places, such as Appendix A, where the Objective-C language is explicitly under dis‐
cussion, I use Objective-C method names.

Please bear in mind that Apple continues to make adjustments to the Swift language.
I have tried to keep my code up-to-date right up to the moment when the manuscript
left my hands; but if, at some future time, a new version of Xcode is released along
with a new version of Swift, some of the code in this book, and even some informa‐
tion about Swift itself, might be slightly incorrect. Please make allowances, and be
prepared to compensate.

Screenshots of Xcode were taken using Xcode 10 under macOS 10.13 High Sierra. I
have not upgraded my machine to macOS 10.14 Mojave, because at the time of this
writing it was too new to be trusted with mission-critical work. If you are braver than
I am and running Mojave, your interface may naturally look slightly different from
the screenshots (especially if you’re using “dark mode”), but this difference will be
minimal and shouldn’t cause any confusion.

Acknowledgments
My thanks go first and foremost to the people at O’Reilly Media who have made writ‐
ing a book so delightfully easy: Rachel Roumeliotis, Sarah Schneider, Kristen Brown,
Dan Fauxsmith, Adam Witwer, and Sanders Kleinfeld come particularly to mind.
And let’s not forget my first and long-standing editor, Brian Jepson, whose influence
is present throughout.

As in the past, I have been greatly aided by some fantastic software, whose excellences
I have appreciated at every moment of the process of writing this book. I should like
to mention, in particular:

• git (http://git-scm.com)
• Sourcetree (http://www.sourcetreeapp.com)
• TextMate (http://macromates.com)
• AsciiDoc (http://www.methods.co.nz/asciidoc)
• Asciidoctor (http://asciidoctor.org)
• BBEdit (http://barebones.com/products/bbedit/)
• EasyFind (http://www.devontechnologies.com/products/freeware.html)
• Snapz Pro X (http://www.ambrosiasw.com)
• GraphicConverter (http://www.lemkesoft.com)

Preface | xvii

http://git-scm.com
http://www.sourcetreeapp.com
http://macromates.com
http://www.methods.co.nz/asciidoc
http://asciidoctor.org
http://barebones.com/products/bbedit/
http://www.devontechnologies.com/products/freeware.html
http://www.ambrosiasw.com
http://www.lemkesoft.com

• OmniGraffle (http://www.omnigroup.com)
The book was typed and edited entirely on my faithful Unicomp Model M keyboard
(http://pckeyboard.com), without which I could never have done so much writing over
so long a period so painlessly. For more about my physical work environment, see
http://matt.neuburg.usesthis.com.

From the Programming iOS 4 Preface
A programming framework has a kind of personality, an overall flavor that provides
an insight into the goals and mindset of those who created it. When I first encoun‐
tered Cocoa Touch, my assessment of its personality was: “Wow, the people who
wrote this are really clever!” On the one hand, the number of built-in interface
objects was severely and deliberately limited; on the other hand, the power and flexi‐
bility of some of those objects, especially such things as UITableView, was greatly
enhanced over their OS X counterparts. Even more important, Apple created a partic‐
ularly brilliant way (UIViewController) to help the programmer make entire blocks
of interface come and go and supplant one another in a controlled, hierarchical man‐
ner, thus allowing that tiny iPhone display to unfold virtually into multiple interface
worlds within a single app without the user becoming lost or confused.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the
fold many new programmers who see programming for these devices as worthwhile
and doable, even though they may not have felt the same way about OS X. Apple’s
own annual WWDC developer conventions have reflected this trend, with their
emphasis shifted from OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one
hand, has also fostered a certain tendency to try to run without first learning to walk.
iOS gives the programmer mighty powers that can seem as limitless as imagination
itself, but it also has fundamentals. I often see questions online from programmers
who are evidently deep into the creation of some interesting app, but who are stymied
in a way that reveals quite clearly that they are unfamiliar with the basics of the very
world in which they are so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of iOS. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Here I have attempted to marshal and expound, in what I hope is a pedagogi‐
cally helpful and instructive yet ruthlessly Euclidean and logical order, the principles
and elements on which sound iOS programming rests. My hope, as with my previous
books, is that you will both read this book cover to cover (learning something new
often enough to keep you turning the pages) and keep it by you as a handy reference.

xviii | Preface

http://www.omnigroup.com
http://pckeyboard.com
http://matt.neuburg.usesthis.com

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time
goes on. I have depended heavily on them in the preparation of this book. But I also
find that they don’t fulfill the same function as a reasoned, ordered presentation of
the facts. The online documentation must make assumptions as to how much you
already know; it can’t guarantee that you’ll approach it in a given order. And online
documentation is more suitable to reference than to instruction. A fully written
example, no matter how well commented, is difficult to follow; it demonstrates, but it
does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can
assume you know views before you know view controllers for the simple reason that
Part I precedes Part II. And along with facts, I also bring to the table a degree of expe‐
rience, which I try to communicate to you. Throughout this book you’ll find me
referring to “common beginner mistakes”; in most cases, these are mistakes that I
have made myself, in addition to seeing others make them. I try to tell you what the
pitfalls are because I assume that, in the course of things, you will otherwise fall into
them just as naturally as I did as I was learning. You’ll also see me construct many
examples piece by piece or extract and explain just one tiny portion of a larger app. It
is not a massive finished program that teaches programming, but an exposition of the
thought process that developed that program. It is this thought process, more than
anything else, that I hope you will gain from reading this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

Preface | xix

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://github.com/mattneub/Programming-iOS-Book-Examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “iOS 12 Programming Fundamentals
with Swift by Matt Neuburg (O’Reilly). Copyright 2018 Matt Neuburg,
978-1-492-04455-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari (formerly Safari Books Online) is a membership-
based training and reference platform for enterprise, gov‐
ernment, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

xx | Preface

http://github.com/mattneub/Programming-iOS-Book-Examples
mailto:permissions@oreilly.com
http://safaribooksonline.com

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/ios12-prog-fundamentals.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xxi

http://oreilly.com/safari
http://bit.ly/ios12-prog-fundamentals
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Language

This part of the book teaches the Swift language, from the ground up. The descrip‐
tion is rigorous and orderly. Here you’ll become sufficiently conversant with Swift to
be comfortable with it, so that you can proceed to the practical business of actual
programming.

• Chapter 1 surveys the structure of a Swift program, both physically and concep‐
tually. You’ll learn how Swift code files are organized, and you’ll be introduced to
the most important underlying concepts of the object-oriented Swift language:
variables and functions, scopes and namespaces, object types and their instances.

• Chapter 2 explores Swift functions. We start with the basics of how functions are
declared and called; then we discuss parameters — external parameter names,
default parameters, and variadic parameters. Then we dive deep into the power
of Swift functions, with an explanation of functions inside functions, functions as
first-class values, anonymous functions, functions as closures, curried functions,
and function references and selectors.

• Chapter 3 starts with Swift variables — their scope and lifetime, and how they are
declared and initialized, along with features such as computed variables and set‐
ter observers. Then some important built-in Swift types are introduced, includ‐
ing Booleans, numbers, strings, ranges, tuples, and Optionals.

• Chapter 4 is all about Swift object types — classes, structs, and enums. It explains
how these three object types work, and how you declare, instantiate, and use
them. Then it proceeds to polymorphism and casting, protocols, generics, and
extensions. The chapter concludes with a discussion of Swift’s umbrella types,

such as Any and AnyObject, and collection types — Array, Dictionary, and Set
(including option sets).

• Chapter 5 is a miscellany. We start with Swift’s flow control structures for branch‐
ing, looping, and jumping, including error handling. Then I describe Swift access
control (privacy), introspection (reflection), and how to create your own opera‐
tors. There follows a discussion of some recently added Swift language features:
synthesized protocol implementations, key paths, and dynamic member lookup.
The chapter concludes by considering Swift memory management.

CHAPTER 1

The Architecture of Swift

It will be useful at the outset for you to have a general sense of how the Swift language
is constructed and what a Swift-based iOS program looks like. This chapter will sur‐
vey the overall architecture and nature of the Swift language. Subsequent chapters
will fill in the details.

Ground of Being
A complete Swift command is a statement. A Swift text file consists of multiple lines
of text. Line breaks are meaningful. The typical layout of a program is one statement,
one line:

print("hello")
print("world")

(The print command provides instant feedback in the Xcode console.)

You can combine more than one statement on a line, but then you need to put a
semicolon between them:

print("hello"); print("world")

You are free to put a semicolon at the end of a statement that is last or alone on its
line, but no one ever does (except out of habit, because C and Objective-C require the
semicolon):

print("hello");
print("world");

Conversely, a single statement can be broken into multiple lines, in order to prevent
long statements from becoming long lines. But you should try to do this at sensible
places so as not to confuse Swift. For example, after an opening parenthesis is a good
place:

3

print(
 "world")

Comments are everything after two slashes in a line (so-called C++-style comments):

print("world") // this is a comment, so Swift ignores it

You can also enclose comments in /*...*/, as in C. Unlike C, C-style comments can
be nested.

Many constructs in Swift use curly braces as delimiters:

class Dog {
 func bark() {
 print("woof")
 }
}

By convention, the contents of curly braces are preceded and followed by line breaks
and are indented for clarity, as shown in the preceding code. Xcode will help impose
this convention, but the truth is that Swift doesn’t care, and layouts like this are legal
(and are sometimes more convenient):

class Dog { func bark() { print("woof") }}

Swift is a compiled language. This means that your code must build — passing
through the compiler and being turned from text into some lower-level form that a
computer can understand — before it can run and actually do the things it says to do.
The Swift compiler is very strict; in the course of writing a program, you will often try
to build and run, only to discover that you can’t even build in the first place, because
the compiler will flag some error, which you will have to fix if you want the code to
run. Less often, the compiler will let you off with a warning; the code can run, but in
general you should take warnings seriously and fix whatever they are telling you
about. The strictness of the compiler is one of Swift’s greatest strengths, and provides
your code with a large measure of audited correctness even before it ever runs.

The Swift compiler’s error and warning messages, however, range from the insightful
to the obtuse to the downright misleading. You will often know that something is
wrong with a line of code, but the Swift compiler will not be telling you clearly exactly
what is wrong or even where in the line to focus your attention. My advice in these
situations is to pull the line apart into several lines of simpler code until you reach a
point where you can guess what the issue is. Try to love the compiler despite the occa‐
sional unhelpful nature of its messages. Remember, it knows more than you do, even
if it is sometimes rather inarticulate about its knowledge.

4 | Chapter 1: The Architecture of Swift

Everything Is an Object?
In Swift, “everything is an object.” That’s a boast common to various modern object-
oriented languages, but what does it mean? Well, that depends on what you mean by
“object” — and what you mean by “everything.”

Let’s start by stipulating that an object, roughly speaking, is something you can send a
message to. A message, roughly speaking, is an imperative instruction. For example,
you can give commands to a dog: “Bark!” “Sit!” In this analogy, those phrases are
messages, and the dog is the object to which you are sending those messages.

In Swift, the syntax of message-sending is dot-notation. We start with the object; then
there’s a dot (a period); then there’s the message. (Some messages are also followed by
parentheses, but ignore them for now; the full syntax of message-sending is one of
those details we’ll be filling in later.) This is valid Swift syntax:

fido.bark()
rover.sit()

The idea of everything being an object is a way of suggesting that even “primitive” lin‐
guistic entities can be sent messages. Take, for example, 1. It appears to be a literal
digit and no more. It will not surprise you, if you’ve ever used any programming lan‐
guage, that you can say things like this in Swift:

let sum = 1 + 2

But it is surprising to find that 1 can be followed by a dot and a message. This is legal
and meaningful in Swift (don’t worry about what it actually means):

let s = 1.description

But we can go further. Return to that innocent-looking 1 + 2 from our earlier code.
It turns out that this is actually a kind of syntactic trickery, a convenient way of
expressing and hiding what’s really going on. Just as 1 is actually an object, + is
actually a message; but it’s a message with special syntax (operator syntax). In Swift,
every noun is an object, and every verb is a message.

Perhaps the ultimate acid test for whether something is an object in Swift is whether
you can modify it. An object type can be extended in Swift, meaning that you can
define your own messages on that type. For example, you can’t normally send the say-
Hello message to a number. But you can change a number type so that you can:

extension Int {
 func sayHello() {
 print("Hello, I'm \(self)")
 }
}
1.sayHello() // outputs: "Hello, I'm 1"

Everything Is an Object? | 5

In Swift, then, 1 is an object. In some languages, such as Objective-C, it clearly is not;
it is a “primitive” or scalar built-in data type. So the distinction being drawn here is
between object types on the one hand and scalars on the other. In Swift, there are no
scalars; all types are ultimately object types. That’s what “everything is an object”
really means.

Three Flavors of Object Type
If you know Objective-C or some other object-oriented language, you may be sur‐
prised by Swift’s notion of what kind of object 1 is. In many languages, such as
Objective-C, an object is a class or an instance of a class (I’ll explain later what an
instance is). Swift has classes, but 1 in Swift is not a class or an instance of a class: the
type of 1, namely Int, is a struct, and 1 is an instance of a struct. And Swift has yet
another kind of thing you can send messages to, called an enum.

So Swift has three kinds of object type: classes, structs, and enums. I like to refer to
these as the three flavors of object type. Exactly how they differ from one another will
emerge in due course. But they are all very definitely object types, and their similari‐
ties to one another are far stronger than their differences. For now, just bear in mind
that these three flavors exist.

(The fact that a struct or enum is an object type in Swift will surprise you particularly
if you know Objective-C. Objective-C has structs and enums, but they are not objects.
Swift structs, in particular, are much more important and pervasive than Objective-C
structs. This difference between how Swift views structs and enums and how
Objective-C views them can matter when you are talking to Cocoa.)

Variables
A variable is a name for an object. Technically, it refers to an object; it is an object
reference. Nontechnically, you can think of it as a shoebox into which an object is
placed. The object may undergo changes, or it may be replaced inside the shoebox by
another object, but the name has an integrity all its own. The object to which the vari‐
able refers is the variable’s value.

In Swift, no variable comes implicitly into existence; all variables must be declared. If
you need a name for something, you must say “I’m creating a name.” You do this with
one of two keywords: let or var. In Swift, declaration is usually accompanied by ini‐
tialization — you use an equal sign to give the variable a value immediately, as part of
the declaration. These are both variable declarations (and initializations):

let one = 1
var two = 2

6 | Chapter 1: The Architecture of Swift

Once the name exists, you are free to use it. For example, we can change the value of
two to be the same as the value of one:

let one = 1
var two = 2
two = one

The last line of that code uses both the name one and the name two declared in the
first two lines: the name one, on the right side of the equal sign, is used merely to refer
to the value inside the shoebox one (namely 1); but the name two, on the left side of
the equal sign, is used to replace the value inside the shoebox two. A statement like
that, with a variable name on the left side of an equal sign, is called an assignment,
and the equal sign is the assignment operator. The equal sign is not an assertion of
equality, as it might be in an algebraic formula; it is a command. It means: “Get the
value of what’s on the right side of me, and use it to replace the value of what’s on the
left side of me.”

The two kinds of variable declaration differ in that a name declared with let cannot
have its value replaced. A variable declared with let is a constant; its value is assigned
once and stays. This won’t even compile:

let one = 1
var two = 2
one = two // compile error

It is always possible to declare a name with var to give yourself the most flexibility,
but if you know you’re never going to replace the initial value of a variable, it’s better
to use let, as this permits Swift to behave more efficiently — so much more effi‐
ciently, in fact, that the Swift compiler will actually call your attention to any case of
your using var where you could have used let, offering to change it for you.

Variables also have a type. This type is established when the variable is declared and
can never change. For example, this won’t compile:

var two = 2
two = "hello" // compile error

Once two is declared and initialized as 2, it is a number (properly speaking, an Int)
and it must always be so. You can replace its value with 1 because that’s also an Int,
but you can’t replace its value with "hello" because that’s a string (properly speaking,
a String) — and a String is not an Int.

Variables literally have a life of their own — more accurately, a lifetime of their own.
As long as a variable exists, it keeps its value alive. Thus, a variable can be not only a
way of conveniently naming something, but also a way of preserving it. I’ll have more
to say about that later.

Variables | 7

By convention, type names such as String or Int (or Dog or Cat) start with a capi‐
tal letter; variable names start with a small letter. Do not violate this convention. If
you do, your code might still compile and run just fine, but I will personally send
agents to your house to remove your kneecaps in the dead of night.

Functions
Executable code, like fido.bark() or one = two, cannot go just anywhere in your
program. (Failure to appreciate this fact is a common beginner mistake, and can
result in a mysterious compile error message such as “Expected declaration.”) In gen‐
eral, executable code must live inside the body of a function. A function is a batch of
code that can be told, as a batch, to run. Typically, a function has a name, and it gets
that name through a function declaration. Function declaration syntax is another of
those details that will be filled in later, but here’s an example:

func go() {
 let one = 1
 var two = 2
 two = one
}

That describes a sequence of things to do — declare one, declare two, change the
value of two to match the value of one — and it gives that sequence a name, go; but it
doesn’t perform the sequence. The sequence is performed when someone calls the
function. Thus, we might say, elsewhere:

go()

That is a command to the go function that it should actually run. But again, that com‐
mand is itself executable code, so it cannot live on its own either. It might live in the
body of a different function:

func doGo() {
 go()
}

But wait! This is getting a little nutty. That, too, is just a function declaration; to run
it, someone must call doGo by saying doGo() — and that’s executable code too. This
seems like some kind of infinite regression; it looks like none of our code will ever
run. If all executable code has to live in a function, who will tell any function to run?
The initial impetus must come from somewhere.

In real life, fortunately, this regression problem doesn’t arise. Remember that your
goal is ultimately to write an iOS app. Thus, your app will be run on an iOS device (or
the Simulator) by a runtime that already wants to call certain functions. So you start
by writing special functions that you know the runtime itself will call. That gives your
app a way to get started and gives you places to put functions that will be called by the

8 | Chapter 1: The Architecture of Swift

runtime at key moments — such as when the app launches, or when the user taps a
button in your app’s interface.

Swift also has a special rule that a file called main.swift, exceptionally, can have
executable code at its top level, outside any function body, and this is the code
that actually runs when the program runs. You can construct your app with a
main.swift file, but in general you won’t need to.

The Structure of a Swift File
A Swift program can consist of one file or many files. In Swift, a file is a meaningful
unit, and there are definite rules about the structure of the Swift code that can go
inside it. (I’m assuming that we are not in a main.swift file.) Only certain things can
go at the top level of a Swift file — chiefly the following:

Module import statements
A module is an even higher-level unit than a file. A module can consist of multi‐
ple files, and these can all see each other automatically; but a module can’t see
another module without an import statement. For example, that is how you are
able to talk to Cocoa in an iOS program: the first line of your file says import
UIKit.

Variable declarations
A variable declared at the top level of a file is a global variable: all code will be
able to see and access it, without explicitly sending a message to any object, and it
lives as long as the program runs.

Function declarations
A function declared at the top level of a file is a global function: all code will be
able to see and call it, without explicitly sending a message to any object.

Object type declarations
The declaration for a class, a struct, or an enum.

For example, this is a legal Swift file containing (just to demonstrate that it can be
done) an import statement, a variable declaration, a function declaration, a class dec‐
laration, a struct declaration, and an enum declaration:

import UIKit
var one = 1
func changeOne() {
}
class Manny {
}

The Structure of a Swift File | 9

struct Moe {
}
enum Jack {
}

That’s a very silly and mostly empty example, but remember, our goal is to survey the
parts of the language and the structure of a file, and the example shows them.

Furthermore, the curly braces for each of the things in that example can all have vari‐
able declarations, function declarations, and object type declarations within them!
Indeed, any structural curly braces can contain such declarations.

You’ll notice that I did not say that executable code can go at the top level of a file.
That’s because it can’t! Only a function body can contain executable code. A statement
like one = two or print(name) is executable code, and can’t go at the top level of a
file. But in our previous example, func changeOne() is a function declaration, so exe‐
cutable code can go inside its curly braces, because they constitute a function body:

var one = 1
// executable code can't go here
func changeOne() {
 let two = 2 // executable code
 one = two // executable code
}

Executable code also can’t go directly inside the curly braces that accompany the
class Manny declaration; that’s the top level of a class declaration, not a function
body. But a class declaration can contain a function declaration, and that function
declaration can contain executable code:

class Manny {
 let name = "manny"
 // executable code can't go here
 func sayName() {
 print(name) // executable code
 }
}

To sum up, Example 1-1 is a legal Swift file, schematically illustrating the structural
possibilities. (Ignore the hanky-panky with the name variable declaration inside the
enum declaration for Jack; enum top-level variables have some special rules that I’ll
explain later.)

Example 1-1. Schematic structure of a legal Swift file

import UIKit
var one = 1
func changeOne() {
 let two = 2
 func sayTwo() {

10 | Chapter 1: The Architecture of Swift

 print(two)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
 one = two
}
class Manny {
 let name = "manny"
 func sayName() {
 print(name)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
}
struct Moe {
 let name = "moe"
 func sayName() {
 print(name)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
}
enum Jack {
 var name : String {
 return "jack"
 }
 func sayName() {
 print(name)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
}

Obviously, we can recurse down as far we like: we could have a class declaration con‐
taining a class declaration containing a class declaration, and so on. But there’s no
point illustrating that.

Scope and Lifetime
In a Swift program, things have a scope. This refers to their ability to be seen by other
things. Things are nested inside of other things, making a nested hierarchy of things.
The rule is that things can see things at their own level and at a higher level containing
them. The levels are:

• A module is a scope.
• A file is a scope.

Scope and Lifetime | 11

• Curly braces are a scope.
When something is declared, it is declared at some level within that hierarchy. Its
place in the hierarchy — its scope — determines whether it can be seen by other
things.

Look again at Example 1-1. Inside the declaration of Manny is a name variable decla‐
ration and a sayName function declaration; the code inside sayName’s curly braces can
see things outside those curly braces at a higher containing level, and can therefore see
the name variable. Similarly, the code inside the body of the changeOne function can
see the one variable declared at the top level of the file; indeed, everything throughout
this file can see the one variable declared at the top level of the file.

Scope is thus a very important way of sharing information. Two different functions
declared inside Manny would both be able to see the name declared at Manny’s top
level. Code inside Jack and code inside Moe can both see the one declared at the file’s
top level.

Things also have a lifetime, which is effectively equivalent to their scope. A thing lives
as long as its surrounding scope lives. Thus, in Example 1-1, the variable one lives as
long as the file lives — namely, as long the program runs. It is global and persistent.
But the variable name declared at the top level of Manny exists only so long as a
Manny instance exists (I’ll talk in a moment about what that means).

Things declared at a deeper level live even shorter lifetimes. Consider this code:

func silly() {
 if true {
 class Cat {}
 var one = 1
 one = one + 1
 }
}

That code is silly, but it’s legal: remember, I said that variable declarations, function
declarations, and object type declarations can appear in any structural curly braces. In
that code, the class Cat and the variable one will not even come into existence until
someone calls the silly function, and even then they will exist only during the brief
instant that the path of code execution passes through the if construct. So, suppose
the function silly is called; the path of execution then enters the if construct. Here,
Cat is declared and comes into existence; then one is declared and comes into exis‐
tence; then the executable line one = one + 1 is executed; and then the scope ends
and both Cat and one vanish in a puff of smoke. And throughout their brief lives, Cat
and one were completely invisible to the rest of the program. (Do you see why?)

12 | Chapter 1: The Architecture of Swift

Object Members
Inside the three object types (class, struct, and enum), things declared at the top level
have special names, mostly for historical reasons. Let’s use the Manny class as an
example:

class Manny {
 let name = "manny"
 func sayName() {
 print(name)
 }
}

In that code:

• name is a variable declared at the top level of an object declaration, so it is called a
property of that object.

• sayName is a function declared at the top level of an object declaration, so it is
called a method of that object.

Things declared at the top level of an object declaration — properties, methods, and
any objects declared at that level — are collectively the members of that object. Mem‐
bers have a special significance, because they define the messages you are allowed to
send to that object!

Namespaces
A namespace is a named region of a program. The names of things inside a name‐
space cannot be reached by things outside it without somehow first passing through
the barrier of saying that region’s name. This is a good thing because it allows the
same name to be used in different places without a conflict. Clearly, namespaces and
scopes are closely related notions.

Namespaces help to explain the significance of declaring an object at the top level of
an object, like this:

class Manny {
 class Klass {}
}

This way of declaring Klass makes Klass a nested type. It effectively “hides” Klass
inside Manny. Manny is a namespace! Code inside Manny can see (and say) Klass
directly. But code outside Manny can’t do that. It has to specify the namespace explic‐
itly in order to pass through the barrier that the namespace represents. To do so, it
must say Manny’s name first, followed by a dot, followed by the term Klass. In short,
it has to say Manny.Klass.

Object Members | 13

The namespace does not, of itself, provide secrecy or privacy; it’s a convenience.
Thus, in Example 1-1, I gave Manny a Klass class, and I also gave Moe a Klass class.
But they don’t conflict, because they are in different namespaces, and I can differenti‐
ate them, if necessary, as Manny.Klass and Moe.Klass.

It will not have escaped your attention that the syntax for diving explicitly into a
namespace is the message-sending dot-notation syntax. They are, in fact, the same
thing.

In effect, message-sending allows you to see into scopes you can’t see into otherwise.
Code inside Moe can’t automatically see the Klass declared inside Manny, but it can
see it by taking one easy extra step, namely by speaking of Manny.Klass. It can do that
because it can see Manny (because Manny is declared at a level that code inside Moe
can see).

Modules
The top-level namespaces are modules. By default, your app is a module and hence a
namespace; that namespace’s name is, roughly speaking, the name of the app. For
example, if my app is called MyApp, then if I declare a class Manny at the top level of a
file, that class’s real name is MyApp.Manny. But I don’t usually need to use that real
name, because my code is already inside the same namespace, and can see the name
Manny directly.

Frameworks are also modules, and hence they are also namespaces. When you
import a module, all the top-level declarations of that module become visible to your
code, without your having to use the module’s namespace explicitly to refer to them.

For example, Cocoa’s Foundation framework, where NSString lives, is a module.
When you program iOS, you will say import Foundation (or, more likely, you’ll say
import UIKit, which itself imports Foundation), thus allowing you to speak of
NSString without saying Foundation.NSString. But you could say
Foundation.NSString, and if you were so silly as to declare a different NSString in
your own module, you would have to say Foundation.NSString, in order to differen‐
tiate them. You can also create your own frameworks, and these, too, will be modules.

Swift itself is defined in a module — the Swift module. Your code always implicitly
imports the Swift module. You could make this explicit by starting a file with the line
import Swift; there is no need to do this, but it does no harm either.

That fact is important, because it solves a major mystery: where do things like print
come from, and why is it possible to use them outside of any message to any object?
print is in fact a function declared at the top level of the Swift module, and your code
can see the Swift module’s top-level declarations because it imports Swift. The print
function thus becomes, as far as your code is concerned, an ordinary top-level func‐

14 | Chapter 1: The Architecture of Swift

tion like any other; it is global to your code, and your code can speak of it without
specifying its namespace. You can specify its namespace — it is perfectly legal to say
things like Swift.print("hello") — but you probably never will, because there’s no
name conflict to resolve.

You can actually see the Swift top-level declarations and read and study them,
and this can be a useful thing to do. For example, to see the declaration of print,
Command-Control-click the term print in your code. Alternatively, explicitly
import Swift and Command-Control-click the term Swift. Behold, there are
the Swift top-level declarations! You won’t see any executable Swift code here, but
you will see the declarations for all the available Swift terms, including top-level
functions like print, operators like +, and built-in types such as Int and String
(look for struct Int, struct String, and so on).

Instances
Object types — class, struct, and enum — have an important feature in common: they
can be instantiated. In effect, when you declare an object type, you are only defining a
type. To instantiate a type is to make a thing — an instance — of that type.

So, for example, I can declare a Dog class, and I can give my class a method:

class Dog {
 func bark() {
 print("woof")
 }
}

But I don’t actually have any Dog objects in my program yet. I have merely described
the type of thing a Dog would be if I had one. To get an actual Dog, I have to make
one. The process of making an actual Dog object whose type is the Dog class is the
process of instantiating Dog. The result is a new object — a Dog instance.

In Swift, instances can be created by using the object type’s name as a function name
and calling the function. This involves using parentheses. When you append paren‐
theses to the name of an object type, you are sending a very special kind of message
to that object type: Instantiate yourself!

So now I’m going to make a Dog instance:

let fido = Dog()

There’s a lot going on in that code! I did two things. I instantiated Dog, thus causing
me to end up with a Dog instance. I also put that Dog instance into a shoebox called
fido — I declared a variable and initialized the variable by assigning my new Dog
instance to it. Now fido is a Dog instance. (Moreover, because I used let, fido will
always be this same Dog instance. I could have used var instead, but even then,

Instances | 15

Figure 1-1. Making an instance and calling an instance method

initializing fido as a Dog instance would have meant fido could only be some Dog
instance after that.)

Now that I have a Dog instance, I can send instance messages to it. And what do you
suppose they are? They are Dog’s properties and methods! For example:

let fido = Dog()
fido.bark()

That code is legal. Not only that, it is effective: it actually does cause "woof" to appear
in the console. I made a Dog and I made it bark! (See Figure 1-1.)

There’s an important lesson here, so let me pause to emphasize it. By default, proper‐
ties and methods are instance properties and methods. You can’t use them as mes‐
sages to the object type itself; you have to have an instance to send those messages to.
As things stand, this is illegal and won’t compile:

Dog.bark() // compile error

It is possible to declare a function bark in such a way that saying Dog.bark() is legal,
but that would be a different kind of function — a class function or a static function
— and you would need to say so when you declare it.

The same thing is true of properties. To illustrate, let’s give Dog a name property:

class Dog {
 var name = ""
}

That allows me to set a Dog’s name, but it needs to be an instance of Dog:

16 | Chapter 1: The Architecture of Swift

let fido = Dog()
fido.name = "Fido"

It is possible to declare a property name in such a way that saying Dog.name is legal,
but that would be a different kind of property — a class property or a static property
— and you would need to say so when you declare it.

Why Instances?
Even if there were no such thing as an instance, an object type is itself an object. We
know this because it is possible to send a message to an object type (the phrase
Manny.Klass is a case in point). Why, then, do instances exist at all?

The answer has mostly to do with the nature of instance properties. The value of an
instance property is defined with respect to a particular instance. This is where
instances get their real usefulness and power.

Consider again our Dog class. I’ll give it a name property and a bark method; remem‐
ber, these are an instance property and an instance method:

class Dog {
 var name = ""
 func bark() {
 print("woof")
 }
}

A Dog instance comes into existence with a blank name (an empty string). But its
name property is a var, so once we have any Dog instance, we can assign to its name a
new String value:

let dog1 = Dog()
dog1.name = "Fido"

We can also ask for a Dog instance’s name:

let dog1 = Dog()
dog1.name = "Fido"
print(dog1.name) // "Fido"

The important thing is that we can make more than one Dog instance, and that two
different Dog instances can have two different name property values (Figure 1-2):

let dog1 = Dog()
dog1.name = "Fido"
let dog2 = Dog()
dog2.name = "Rover"
print(dog1.name) // "Fido"
print(dog2.name) // "Rover"

Why Instances? | 17

Figure 1-2. Two dogs with different property values

Note that a Dog instance’s name property has nothing to do with the name of the vari‐
able to which a Dog instance is assigned. The variable is just a shoebox. You can pass
an instance from one shoebox to another. But the instance itself maintains its own
internal integrity:

let dog1 = Dog()
dog1.name = "Fido"
var dog2 = Dog()
dog2.name = "Rover"
print(dog1.name) // "Fido"
print(dog2.name) // "Rover"
dog2 = dog1
print(dog2.name) // "Fido"

That code didn’t change Rover’s name; it changed which dog was inside the dog2 shoe‐
box, replacing Rover with Fido.

The full power of object-based programming has now emerged. There is a Dog object
type which defines what it is to be a Dog. Our declaration of Dog says that a Dog
instance — any Dog instance, every Dog instance — has a name property and a bark
method. But each Dog instance can have its own name property value. They are differ‐
ent instances and maintain their own internal state. So multiple instances of the same
object type behave alike — both Fido and Rover can bark, and will do so when they
are sent the bark message — but they are different instances and can have different
property values: Fido’s name is "Fido" while Rover’s name is "Rover".

18 | Chapter 1: The Architecture of Swift

So an instance is a reflection of the instance methods of its type, but that isn’t all it is;
it’s also a collection of instance properties. The object type is responsible for what
properties the instance has, but not necessarily for the values of those properties. The
values can change as the program runs, and apply only to a particular instance. An
instance is a cluster of particular property values.

An instance is responsible not only for the values but also for the lifetimes of its prop‐
erties. Suppose we bring a Dog instance into existence and assign to its name property
the value "Fido". Then this Dog instance is keeping the string "Fido" alive just so
long as we do not replace the value of its name with some other value — and just so
long as this instance lives.

In short, an instance is both code and data. The code it gets from its type and in a
sense is shared with all other instances of that type, but the data belong to it alone.
The data can persist as long as the instance persists. The instance has, at every
moment, a state — the complete collection of its own personal property values. An
instance is a device for maintaining state. It’s a box for storage of data.

The Keyword self
An instance is an object, and an object is the recipient of messages. Thus, an instance
needs a way of sending a message to itself. This is made possible by the keyword self.
This word can be used wherever an instance of the appropriate type is expected.

For example, let’s say I want to keep the thing that a Dog says when it barks, such as
"woof", in a property. Then in my implementation of bark I need to refer to that
property. I can do it like this:

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
}

Similarly, let’s say I want to write an instance method speak which is merely a syno‐
nym for bark. My speak implementation can consist of simply calling my own bark
method. I can do it like this:

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }

The Keyword self | 19

 func speak() {
 self.bark()
 }
}

Observe that the term self in that example appears only in instance methods. When
an instance’s code says self, it is referring to this instance. If the expression
self.name appears in a Dog instance method’s code, it means the name of this Dog
instance, the one whose code is running at that moment.

It turns out that every use of the word self I’ve just illustrated is completely optional.
You can omit it and all the same things will happen:

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(whatADogSays)
 }
 func speak() {
 bark()
 }
}

The reason is that if you omit the message recipient and the message you’re sending
can be sent to self, the compiler supplies self as the message’s recipient under the
hood. However, I never do that (except by mistake). As a matter of style, I like to be
explicit in my use of self. I find code that omits self harder to read and understand.
And there are situations where you must say self, so I prefer to use it whenever I’m
allowed to.

Privacy
Earlier, I said that a namespace is not, of itself, an insuperable barrier to accessing the
names inside it. But such a barrier is sometimes desirable. For example, not all data
stored by an instance is intended for alteration by, or even visibility to, another
instance. And not every instance method is intended to be called by other instances.
Any decent object-based programming language needs a way to endow its object
members with privacy — a way of making it harder for other objects to see those
members if they are not supposed to be seen.

Consider, for example:

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }

20 | Chapter 1: The Architecture of Swift

 func speak() {
 print(self.whatADogSays)
 }
}

Here, other objects can come along and change my property whatADogSays. Since
that property is used by both bark and speak, we could easily end up with a Dog that,
when told to bark, says "meow". That seems somehow undesirable:

let dog1 = Dog()
dog1.whatADogSays = "meow"
dog1.bark() // meow

You might reply: Well, silly, why did you declare whatADogSays with var? Declare it
with let instead. Make it a constant! Now no one can change it:

class Dog {
 var name = ""
 let whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
 func speak() {
 print(self.whatADogSays)
 }
}

That is a good answer, but it is not quite good enough. There are two problems. Sup‐
pose I want a Dog instance itself to be able to change its own whatADogSays — by
assigning to self.whatADogSays. Then whatADogSays has to be a var; otherwise,
even the instance itself can’t change it. Also, suppose I don’t want any other object to
know what this Dog says, except by calling bark or speak. Even when declared with
let, other objects can still read the value of whatADogSays. Maybe I don’t like that.

To solve this problem, Swift provides the private keyword. I’ll talk later about all the
ramifications of this keyword, but for now it’s enough to know that it solves the
problem:

class Dog {
 var name = ""
 private var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
 func speak() {
 print(self.whatADogSays)
 }
}

Now name is a public property, but whatADogSays is a private property: it can’t be seen
by other types of object. A Dog instance can speak of self.whatADogSays, but a Cat

Privacy | 21

Reserved Words
Certain terms, like class and func and var and let and if and private and import,
are reserved in Swift; they are part of the language. That means you can’t use them as
identifiers — as the name of a class, a function, or a variable, for example. If you try to
do so, you’ll get a compile error.

To force a reserved word to be an identifier, surround it by backticks (`). This (extra‐
ordinarily confusing) code is legal:

class `func` {
 func `if`() {
 let `class` = 1
 }
}

instance with a reference to a Dog instance as fido cannot say fido.whatADogSays.
The important lesson here is that object members are public by default, and if you
want privacy, you have to ask for it.

To sum up: A class declaration defines a namespace. This namespace requires that
other objects use an extra level of dot-notation to refer to what’s inside the name‐
space, but other objects can still refer to what’s inside the namespace; the namespace
does not, in and of itself, close any doors of visibility. The private keyword lets you
close those doors.

Design
What object types will your program need, what methods and properties should they
have, when and how will they be instantiated, and what should you do with those
instances when you have them? Those aren’t easy decisions, and there are no clear-cut
answers. Object-based programming is an art.

In real life, when you’re programming iOS, many object types you’ll be working with
will not be yours but Apple’s. Swift itself comes with a few useful object types, such as
String and Int; you’ll also import UIKit, which includes a huge number of object
types, all of which spring to life in your program. You didn’t create any of those object
types, so their design is not your problem; instead, you must learn to use them.
Apple’s object types are aimed at enabling the general functionality that any app might
need. At the same time, your app will probably have specific functionality, unique to
its purpose, and you will have to design object types to serve that purpose.

Object-based program design must be founded upon a secure understanding of the
nature of objects. You want to design object types that encapsulate the right sort of
functionality (methods) accompanied by the right set of data (properties). Then,

22 | Chapter 1: The Architecture of Swift

when you instantiate those object types, you want to make sure that your instances
have the right lifetimes, sufficient exposure to one another, and an appropriate ability
to communicate with one another.

Object Types and APIs
Your program files will have very few, if any, top-level functions and variables. Meth‐
ods and properties of object types — in particular, instance methods and instance
properties — will be where most of the action is. Object types give each actual
instance its specialized abilities. They also help to organize your program’s code
meaningfully and maintainably.

We may summarize the nature of objects in two phrases: encapsulation of functional‐
ity, and maintenance of state. (I first used this summary many years ago in my book
REALbasic: The Definitive Guide.)

Encapsulation of functionality
Each object does its own job, and presents to the rest of the world — to other
objects, and indeed in a sense to the programmer — an opaque wall whose only
entrances are the methods to which it promises to respond and the actions it
promises to perform when the corresponding messages are sent to it. The details
of how, behind the scenes, it actually implements those actions are secreted
within itself; no other object needs to know them.

Maintenance of state
Each individual instance is a bundle of data that it maintains. Often that data is
private, so it’s encapsulated as well; no other object knows what that data is or in
what form it is kept. The only way to discover from outside what private data an
object is maintaining is if there’s a public method or property that reveals it.

As an example, imagine an object whose job is to implement a stack — it might be an
instance of a Stack class. A stack is a data structure that maintains a set of data in
LIFO order (last in, first out). It responds to just two messages: push and pop. Push
means to add a given piece of data to the set. Pop means to remove from the set the
piece of data that was most recently pushed and hand it out. It’s like a stack of plates:
plates are placed onto the top of the stack or removed from the top of the stack one
by one, so the first plate to go onto the stack can’t be retrieved until all other subse‐
quently added plates have been removed (Figure 1-3).

The stack object illustrates encapsulation of functionality because the outside world
knows nothing of how the stack is actually implemented. It might be an array, it
might be a linked list, it might be any of a number of other implementations. But a
client object — an object that actually sends a push or pop message to the stack object
— knows nothing of this and cares less, provided the stack object adheres to its con‐
tract of behaving like a stack. This is also good for the programmer, who can, as the

Design | 23

http://oreilly.com/catalog/9780596001773/

Figure 1-3. A stack

program develops, safely substitute one implementation for another without harming
the vast machinery of the program as a whole.

The stack object illustrates maintenance of state because it isn’t just the gateway to the
stack data — it is the stack data. Other objects can get access to that data, but only by
virtue of having access to the stack object itself, and only in the manner that the stack
object permits. The stack data is effectively inside the stack object; no one else can see
it. All that another object can do is push or pop.

The sum total of messages that each object type is eligible to be sent by other objects
— its API (application programming interface) — is like a list or menu of things you
can ask this type of object to do. Your object types divide up your code; their APIs
form the basis of communication between those divisions. The same is true of objects
that you didn’t design. Apple’s Cocoa documentation consists largely of lists of object
APIs. For example, to know what messages you can send to an NSString instance,
you’d start by studying the NSString class documentation. That page is really just a
big list of properties and methods, so it tells you what an NSString object can do —

24 | Chapter 1: The Architecture of Swift

and thus constitutes the bulk of what you need to know in order to use NSStrings in
your program.

Instance Creation, Scope, and Lifetime
The important moment-to-moment entities in a Swift program are mostly instances.
Object types define what kinds of instances there can be and how each kind of
instance behaves. But the actual instances of those types are the state-carrying indi‐
vidual “things” that the program is all about, and instance methods and properties are
messages that can be sent to instances. So there need to be instances in order for the
program to do anything.

By default, however, there are no instances! Looking back at Example 1-1, we defined
some object types, but we made no instances of them. If we were to run this program,
our object types would exist from the get-go, but that’s all that would exist. We’ve cre‐
ated a world of pure potentiality — some types of object that might exist. In that
world, nothing would actually happen.

Instances do not come into being by magic. You have to instantiate a type in order to
obtain an instance. Much of the action of your program, therefore, will consist of
instantiating types. And of course you will want those instances to persist, so you will
also assign each newly created instance to a variable as a shoebox to hold it, name it,
and give it a lifetime. The instance will persist according to the lifetime of the variable
that refers to it. And the instance will be visible to other instances according to the
scope of the variable that refers to it.

Much of the art of object-based programming involves giving instances a sufficient
lifetime and making them visible to one another. You will often put an instance into a
particular shoebox — assigning it to a particular variable, declared at a certain scope
— exactly so that, thanks to the rules of variable lifetime and scope, this instance will
persist long enough to keep being useful to your program while it will still be needed,
and so that other code can get a reference to this instance and talk to it later.

Planning how you’re going to create instances, and working out the lifetimes and
communication between those instances, may sound daunting. Fortunately, in real
life, when you’re programming iOS, the Cocoa framework itself will provide an initial
scaffolding for you. Before you write a single line of code, the framework ensures that
your app, as it launches, is given some instances that will persist for the lifetime of the
app, providing the basis of your app’s visible interface and giving you an initial place
to put your own instances and give them sufficiently long lifetimes.

Summary and Conclusion
As we imagine constructing an object-based program for performing a particular
task, we bear in mind the nature of objects. There are types and instances. A type is a

Design | 25

set of methods describing what all instances of that type can do (encapsulation of
functionality). Instances of the same type differ only in the value of their properties
(maintenance of state). We plan accordingly. Objects are an organizational tool, a set
of boxes for encapsulating the code that accomplishes a particular task. They are also
a conceptual tool. The programmer, being forced to think in terms of discrete objects,
must divide the goals and behaviors of the program into discrete tasks, each task
being assigned to an appropriate object.

At the same time, no object is an island. Objects can cooperate with one another,
namely by communicating with one another — that is, by sending messages to one
another. The ways in which appropriate lines of communication can be arranged are
innumerable. Coming up with an appropriate arrangement — an architecture — for
the cooperative and orderly relationship between objects is one of the most challeng‐
ing aspects of object-based programming. In iOS programming, you get a boost from
the Cocoa framework, which provides an initial set of object types and a practical
basic architectural scaffolding.

Using object-based programming effectively to make a program do what you want it
to do while keeping it clear and maintainable is itself an art; your abilities will
improve with experience. Eventually, you may want to do some further reading on
effective planning and construction of the architecture of an object-based program. I
recommend in particular two classic, favorite books. Refactoring, by Martin Fowler
(Addison-Wesley, 1999), describes why you might need to rearrange what methods
belong to what classes (and how to conquer your fear of doing so). Design Patterns,
by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (also known as
“the Gang of Four”), is the bible on architecting object-based programs, listing all the
ways you can arrange objects with the right powers and the right knowledge of one
another (Addison-Wesley, 1994).

26 | Chapter 1: The Architecture of Swift

CHAPTER 2

Functions

Nothing is so characteristic of Swift syntax as the way you declare and call functions.
Probably nothing is so important, either! As I said in Chapter 1, all your code is going
to be in functions; they are where the action is.

Function Parameters and Return Value
A function is like one of those pseudoscientific machines for processing miscellane‐
ous stuff that you probably drew in your math textbook in elementary school. You
know the ones I mean: with a funnel-like “hopper” at the top, and then a bunch of
gears and cranks, and then a tube at the bottom where something is produced. A
function is a machine like that: you feed some stuff in, the stuff is processed in
accordance with what this particular machine does, and something is produced.

The stuff that goes in is the input; what comes out is the output. More technically, a
function that expects input has parameters; a function that produces output has a
result. For example, here’s a silly but valid function that expects two Int values, adds
them together, and produces that sum:

func sum (_ x:Int, _ y:Int) -> Int {
 let result = x + y
 return result
}

The syntax here is very strict and well-defined, and you can’t use Swift unless you
understand it perfectly. Let’s pause to appreciate it in full detail; I’ll break the first line
into pieces so that I can call them out individually:

27

func sum
 (_ x:Int, _ y:Int)
 -> Int {
 let result = x + y
 return result
}

The declaration starts with the keyword func, followed by the name of this func‐
tion; here, it’s sum. This is the name that must be used in order to call the function
— that is, in order to run the code that the function contains.

The name of the function is followed by its parameter list. It consists, minimally,
of parentheses. If this function takes parameters (input), they are listed inside the
parentheses, separated by a comma. Each parameter has a strict format: the name
of the parameter, a colon, and the type of the parameter.

This particular function declaration also has an underscore (_) and a space
before each parameter name in the parameter list. I’m not going to explain that
underscore yet. I need it for the example, so just trust me for now.

If the function is to return a value, then after the parentheses is an arrow operator
(->) followed by the type of value that this function will return.

Then we have curly braces enclosing the body of the function — its actual code.

Within the curly braces, in the function body, the variables defined as the param‐
eter names have sprung to life, with the types specified in the parameter list.

If the function is to return a value, it must do so with the keyword return fol‐
lowed by that value. And, not surprisingly, the type of that value must match the
type declared earlier for the return value (after the arrow operator).

Here are some further points to note about the parameters and return type of our
function:

Parameters
Our sum function expects two parameters — an Int, to which it gives the name x,
and another Int, to which it gives the name y. The function body code won’t run
unless code elsewhere calls this function and actually passes values of the speci‐
fied types for its parameters. (In fact, if I were to try to call this function without
providing a value for each of these two parameters, or if either of the values I
provide were not an Int, the compiler would stop me with an error.) In the body
of the function, therefore, we can confidently use those values, referring to them
by those names, secure in the knowledge that such values will exist and that they
will be Int values, as specified by our parameter list. This provides certainty for
not only the programmer, but also the compiler.

28 | Chapter 2: Functions

Observe that these names, x and y, are arbitrary and purely local (internal) to this
function. They are different from any other x and y that may be used in other
functions or at a higher level of scope. These names are defined purely so that the
parameter values can be referred to in the code within the function body. The
parameter declaration is, indeed, a kind of variable declaration: we are declaring
variables x and y for use inside this function.

Return type
The last statement of our sum function’s body returns the value of a variable called
result; this variable was created by adding two Int values together, so it is an Int,
which is what this function is supposed to produce. If I tried to return a String
(return "howdy"), or if I were to omit the return statement altogether, the com‐
piler would stop me with an error.

Note that the keyword return actually does two things. It returns the accompa‐
nying value, and it also halts execution of the function. It is permitted for more
lines of code to follow a return statement, but the compiler will warn if this
means that those lines of code can never be executed.

The function declaration before the curly braces is, in short, a contract about what
kinds of values will be used as input and about what kind of output will be produced.
According to this contract, the function expects a certain number of parameters, each
of a certain type, and yields a certain type of result. Everything must correspond to
this contract. The function body, inside the curly braces, can use the parameters as
local variables. The returned value must match the declared return type.

The same contract applies to code elsewhere that calls this function. Here’s some code
that calls our sum function:

let z = sum(4,5)

Focus your attention on the right side of the equal sign — sum(4,5). That’s the func‐
tion call. How is it constructed? It uses the name of the function; that name is fol‐
lowed by parentheses; and inside those parentheses, separated by a comma, are the
values to be passed to each of the function’s parameters. Technically, these values are
called arguments. Here, I’m using literal Int values, but I’m perfectly free to use Int
variables instead; the only requirement is that I use things that have the correct type:

let x = 4
let y = 5
let z = sum(y,x)

In that code, I purposely used the names x and y for the variables whose values are
passed as arguments, and I purposely reversed them in the call, to emphasize that
these names have nothing to do with the names x and y inside the function parameter
list and the function body. Argument names do not magically make their way to the
function. Their values are all that matter; their values are the arguments.

Function Parameters and Return Value | 29

What about the value returned by the function? That value is magically substituted for
the function call, at the point where the function call is made. It happens that in the
preceding code, the result is 9. So the last line is exactly as if I had said:

let z = 9

The programmer and the compiler both know what type of thing this function
returns, so they also know where it is and isn’t legal to call this function. It’s fine to
call this function as the initialization part of the declaration of the variable z, just as it
would be to use 9 as the initialization part of that declaration: in both cases, we have
an Int, and so z ends up being declared as an Int. But it would not be legal to write
this:

let z = sum(4,5) + "howdy" // compile error

Because sum returns an Int, that’s the same as trying to add an Int to a String — and
by default, you can’t do that in Swift.

Observe that it is legal to ignore the value returned from a function call:

sum(4,5)

That code is sort of silly in this particular situation, because we have made our sum
function go to all the trouble of adding 4 and 5 for us and we have then thrown away
the answer without capturing or using it. The compiler knows this, and will warn that
we are failing to use the result of our function call. Nevertheless, a warning is not an
error; that code is legal. There are, in fact, lots of situations where it is perfectly rea‐
sonable to ignore the value returned from a function call; in particular, the function
may do other things (technically called side effects) in addition to returning a value,
and the purpose of your call to that function may be those other things.

If you’re ignoring a function call result deliberately, you can silence the compiler
warning by assigning the function call to _ (a variable without a name) — for
example, _ = sum(4,5). Alternatively, if the function being called is your own,
you can prevent the warning by marking the function declaration with
@discardableResult.

If you can call sum wherever you can use an Int, and if the parameters of sum have to
be Int values, doesn’t that mean you can call sum inside a call to sum? Of course it
does! This is perfectly legal (and reasonable):

let z = sum(4,sum(5,6))

The only argument against writing code like that is that you might confuse yourself
and that it might make things harder to debug later. But technically it’s legal and quite
normal.

30 | Chapter 2: Functions

Void Return Type and Parameters
Let’s return to our function declaration. With regard to a function’s parameters and
return type, there are two degenerate cases that allow us to express a function decla‐
ration more briefly:

A function without a return type
No law says that a function must return a value. A function may be declared to
return no value. In that case, there are three ways to write the declaration: you
can write it as returning Void; you can write it as returning (), an empty pair of
parentheses; or you can omit the arrow operator and the return type entirely.
These are all legal:

func say1(_ s:String) -> Void { print(s) }
func say2(_ s:String) -> () { print(s) }
func say3(_ s:String) { print(s) }

If a function returns no value, then its body need not contain a return statement.
If it does contain a return statement, its purpose will be purely to end execution
of the function at that point.

A call to a function that returns no value is made purely for the function’s side
effects; it has no useful return value that can be made part of a larger expression,
so the statement that calls the function will usually consist of the function call
and nothing else.

A function without any parameters
No law says that a function must take any parameters. If it doesn’t, the parameter
list in the function declaration can be completely empty. But you can’t omit the
parameter list parentheses themselves! They will be present in the function decla‐
ration, after the function’s name:

func greet1() -> String { return "howdy" }

Obviously a function can lack both a return value and parameters; these are all ways
of expressing the same thing:

func greet1() -> Void { print("howdy") }
func greet2() -> () { print("howdy") }
func greet3() { print("howdy") }

Just as you cannot omit the parentheses (the parameter list) from a function declara‐
tion, you cannot omit the parentheses from a function call. Those parentheses will be
empty if the function takes no parameters, but they must be present. For example:

greet1()

Notice the parentheses!

Function Parameters and Return Value | 31

Function Signature
If we ignore the parameter names in the function declaration, we can completely
characterize a function by the types of its inputs and its output. To do so, we write the
parameter types in parentheses, followed by the arrow operator and the output type,
like this:

(Int, Int) -> Int

That is a legal expression in Swift; it is the signature of a function. In this case, it’s the
signature of a function that takes two Int parameters and returns an Int. In fact, it’s
the signature of our sum function! Of course, there can be other functions that take
two Int parameters and return an Int — and that’s just the point. This signature char‐
acterizes all functions that have this number of parameters, of these types, and that
return a result of this type. A function’s signature is, in effect, its type — the type of
the function. The fact that functions have types will be of great importance later on.

The signature of a function must include both the parameter list (without parameter
names) and the return type, even if one or both of those is empty; so, the signature of
a function that takes no parameters and returns no value may be written () -> Void
or () -> ().

External Parameter Names
A function can externalize the names of its parameters. The external names must
then appear in a call to the function as labels to the arguments. There are several rea‐
sons why this is a good thing:

• It clarifies the purpose of each argument; each argument label can give a clue as
to how that argument contributes to the behavior of the function.

• It distinguishes one function from another; two functions with the same name
(before the parentheses) and the same signature but different externalized
parameter names are two distinct functions.

• It helps Swift to interface with Objective-C and Cocoa, where method parameters
nearly always have externalized names.

Externalized parameter names are so standard in Swift that there’s a rule: by default,
all parameter names are externalized automatically, using the internal name as the
externalized name. Thus, if you want a parameter name to be externalized, and if you
want the externalized name to be the same as the internal name, do nothing — that
will happen all by itself.

If you want to depart from the default behavior, you can do either of the following in
your function declaration:

32 | Chapter 2: Functions

Change the name of an external parameter
If you want the external name of a parameter to be different from its internal
name, precede the internal name with the external name and a space.

Suppress the externalization of a parameter
To suppress a parameter’s external name, precede the internal name with an
underscore and a space.

(That explains my declaration func sum (_ x:Int, _ y:Int) -> Int at the
start of this chapter: I was suppressing the externalization of the parameter
names, so as not to have to explain argument labels at the outset.)

Here’s the declaration for a function that concatenates a string with itself a given
number of times:

func echoString(_ s:String, times:Int) -> String {
 var result = ""
 for _ in 1...times { result += s }
 return result
}

That function’s first parameter has an internal name only, but its second parameter
has an external name, which will be the same as its internal name, namely times. And
here’s how to call it:

let s = echoString("hi", times:3)

In the call, as you can see, the external name precedes the argument as a label, separa‐
ted by a colon.

Now let’s say that in our echoString function we prefer to use times purely as an
external name for the second parameter, with a different name — say, n — as the
internal name. And let’s strip the string off the function’s name (before the parenthe‐
ses) and make it the external name of the first parameter. Then the declaration would
look like this:

func echo(string s:String, times n:Int) -> String {
 var result = ""
 for _ in 1...n { result += s }
 return result
}

In the body of that function, there is now no times variable available; times is purely
an external name, for use in the call. The internal name is n, and that’s the name the
code refers to. And here’s how to call it:

let s = echo(string:"hi", times:3)

External Parameter Names | 33

The existence of external names doesn’t mean that the call can use a different
parameter order from the declaration. For example, our echo(string:times:)
expects a String parameter and an Int parameter, in that order. The order can’t be
different in the call, even though the label might appear to disambiguate which
argument goes with which parameter.

Overloading
In Swift, function overloading is legal (and common). This means that two functions
with exactly the same name, including their external parameter names, can coexist as
long as they have different signatures.

(Two functions with the same name before the parentheses but different external
parameter names do not constitute a case of overloading; they are simply two differ‐
ent functions with two different names.)

Thus, for example, these two functions can coexist:

func say (_ what:String) {
}
func say (_ what:Int) {
}

The reason overloading works is that Swift has strict typing. A String parameter is not
an Int parameter. Swift can tell them apart in the declaration, and Swift can tell them
apart in a function call. Thus, Swift knows unambiguously that say("what") is differ‐
ent from say(1).

Overloading works for the return type as well. Two functions with the same name
and parameter types can have different return types. But the context of the call must
disambiguate; that is, it must be clear what return type the caller is expecting.

For example, these two functions can coexist:

func say() -> String {
 return "one"
}
func say() -> Int {
 return 1
}

But now you can’t call say like this:

let result = say() // compile error

The call is ambiguous, and the compiler tells you so. The call must be used in a con‐
text where the expected return type is clear. For example, suppose we have another
function that is not overloaded, and that expects a String parameter:

34 | Chapter 2: Functions

func giveMeAString(_ s:String) {
 print("thanks!")
}

Then giveMeAString(say()) is legal, because only a String can go in this spot, so we
must be calling the say that returns a String. Similarly:

let result = say() + "two"

Only a String can be “added” to a String, so this must be the say() that returns a
String.

The legality of overloading in Swift is particularly striking if you’re coming from
Objective-C, where overloading is not legal. If you tried to declare two overloaded
versions of the same method in Objective-C, you’d get a “Duplicate declaration” com‐
pile error.

Default Parameter Values
A parameter can have a default value. This means that the caller can omit the param‐
eter entirely, supplying no argument for it; the value will then be the default.

To specify a default value in a function declaration, append = and the default value
after the parameter type:

class Dog {
 func say(_ s:String, times:Int = 1) {
 for _ in 1...times {
 print(s)
 }
 }
}

In effect, there are now two functions — say(_:) and say(_:times:). If you just
want to say something once, you can call say(_:) with a single unlabeled argument,
and a times: parameter value of 1 will be supplied for you:

let d = Dog()
d.say("woof") // same as saying d.say("woof", times:1)

If you want repetition, call say(_:times:):

let d = Dog()
d.say("woof", times:3)

Variadic Parameters
A parameter can be variadic. This means that the caller can supply as many values of
this parameter’s type as desired, separated by a comma; the function body will receive
these values as an array.

Default Parameter Values | 35

To indicate in a function declaration that a parameter is variadic, follow it with three
dots, like this:

func sayStrings(_ arrayOfStrings:String ...) {
 for s in arrayOfStrings { print(s) }
}

And here’s how to call it:

sayStrings("hey", "ho", "nonny nonny no")

The global print function takes a variadic first parameter, so you can output multiple
values with a single command:

print("Manny", 3, true) // Manny 3 true

The print function’s default parameters dictate further details of the output. The
default separator: (for when you provide multiple values) is a space, and the default
terminator: is a newline; you can change either or both:

print("Manny", "Moe", separator:", ", terminator:", ")
print("Jack")
// output is "Manny, Moe, Jack" on one line

A function can declare a maximum of one variadic parameter (because otherwise it
might be impossible to determine where the list of values ends).

Unfortunately, there’s a hole in the Swift language: there’s no way to convert an
array into a comma-separated list of arguments (comparable to splatting in
Ruby). If what you’re starting with is an array of some type, you can’t use it where
a variadic of that type is expected.

Ignored Parameters
A parameter whose local name is an underscore is ignored. The caller must supply an
argument, but it has no name within the function body and cannot be referred to
there. For example:

func say(_ s:String, times:Int, loudly _:Bool) {

No loudly parameter makes its way into the function body, but the caller must still
provide the third parameter:

say("hi", times:3, loudly:true)

The declaration needn’t have an externalized name for the ignored parameter:

func say(_ s:String, times:Int, _:Bool) {

But the caller must still supply it:

say("hi", times:3, true)

36 | Chapter 2: Functions

What’s the purpose of this feature? It isn’t to satisfy the compiler, because the compiler
doesn’t complain if a parameter is never referred to in the function body. I use it pri‐
marily as a kind of note to myself, a way of saying, “Yes, I know there is a parameter
here, and I am deliberately not using it for anything.”

Modifiable Parameters
In the body of a function, a parameter is essentially a local variable. By default, it’s a
variable implicitly declared with let. You can’t assign to it:

func say(_ s:String, times:Int, loudly:Bool) {
 loudly = true // compile error
}

If your code needs to assign to a parameter name within the body of a function,
declare a var local variable inside the function body and assign the parameter value
to it; your local variable can even have the same name as the parameter:

func say(_ s:String, times:Int, loudly:Bool) {
 var loudly = loudly
 loudly = true // no problem
}

In that code, loudly is a local variable; assigning to it doesn’t change the value of any
variable outside the function body. However, it is also possible to configure a parame‐
ter in such a way that assigning to it does modify the value of a variable outside the
function body! One typical use case is that you want your function to return more
than one result. For example, here I’ll write a rather advanced function that removes
all occurrences of a given character from a given string and returns the number of
occurrences that were removed:

func removeCharacter(_ c:Character, from s:String) -> Int {
 var s = s
 var howMany = 0
 while let ix = s.firstIndex(of:c) {
 s.remove(at:ix)
 howMany += 1
 }
 return howMany
}

And you call it like this:

let s = "hello"
let result = removeCharacter("l", from:s) // 2

That’s nice, but we forgot one little thing: the original string, s, is still "hello"! In the
function body, we removed all occurrences of the character from the local copy of the
String parameter, but this change didn’t affect the original string.

Modifiable Parameters | 37

If we want our function to alter the original value of an argument passed to it, we
must do the following:

• The type of the parameter we intend to modify must be declared inout.
• When we call the function, the variable holding the value we intend to tell it to

modify must be declared with var, not let.
• Instead of passing the variable as an argument, we must pass its address. This is

done by preceding its name with an ampersand (&).
Our removeCharacter(_:from:) now looks like this:

func removeCharacter(_ c:Character, from s: inout String) -> Int {
 var howMany = 0
 while let ix = s.firstIndex(of:c) {
 s.remove(at:ix)
 howMany += 1
 }
 return howMany
}

And our call to removeCharacter(_:from:) now looks like this:

var s = "hello"
let result = removeCharacter("l", from:&s)

After the call, result is 2 and s is "heo". Notice the ampersand before the name s
when we pass it as the from: argument. It is required; if you omit it, the compiler will
stop you. I like this requirement, because it forces us to acknowledge explicitly to the
compiler, and to ourselves, that we’re about to do something potentially dangerous:
we’re letting this function, as a side effect, modify a value outside of itself.

When a function with an inout parameter is called, the variable whose address
was passed as argument to that parameter is always set, even if the function
makes no changes to that parameter.

You may encounter variations on this pattern when you’re using Cocoa. The Cocoa
APIs are written in C and Objective-C, so instead of the Swift term inout, you’ll
probably see some mysterious type such as UnsafeMutablePointer. From your point
of view as the caller, however, it’s the same thing: you’ll prepare a var variable and
pass its address.

For instance, consider the problem of learning a UIColor’s RGBA components. There
are four such components: the color’s red, green, blue, and alpha values. A function
that, given a UIColor, returned the components of that color, would need to return
four values at once — and that is something that Objective-C cannot do. So a differ‐
ent strategy is used. The UIColor method getRed(_:green:blue:alpha:) returns
only a Bool reporting whether the component extraction succeeded. Instead of
returning the actual components, it says: “You hand me four CGFloats as arguments,

38 | Chapter 2: Functions

and I will modify them for you so that they are the results of this operation.” Here’s
roughly how the declaration for getRed(_:green:blue:alpha:) appears in Swift:

func getRed(_ red: UnsafeMutablePointer<CGFloat>,
 green: UnsafeMutablePointer<CGFloat>,
 blue: UnsafeMutablePointer<CGFloat>,
 alpha: UnsafeMutablePointer<CGFloat>) -> Bool

How would you call this function? The parameters are each an UnsafeMutablePointer
to a CGFloat. You’ll create four var CGFloat variables beforehand, giving them each
some value even though that value will be replaced when you call get-

Red(_:green:blue:alpha:). You’ll pass the addresses of those variables as argu‐
ments. Those variables are where the component values will be after the call; and
you’ll probably be so sure that the component extraction will succeed, that you won’t
even bother to capture the call’s actual result! So, for example:

let c = UIColor.purple
var r : CGFloat = 0
var g : CGFloat = 0
var b : CGFloat = 0
var a : CGFloat = 0
c.getRed(&r, green: &g, blue: &b, alpha: &a)
// now r, g, b, a are 0.5, 0.0, 0.5, 1.0

Sometimes, Cocoa will call your function with an UnsafeMutablePointer parameter,
and you will want to change its value. To do this, you cannot assign directly to it, as
we did with the inout variable s in our implementation of
remove(from:character:). You’re talking to Objective-C, not to Swift, and this is an
UnsafeMutablePointer, not an inout parameter. The technique here is to assign to the
UnsafeMutablePointer’s pointee property. Here (without further explanation) is an
example from my own code:

func popoverPresentationController(
 _ popoverPresentationController: UIPopoverPresentationController,
 willRepositionPopoverTo rect: UnsafeMutablePointer<CGRect>,
 in view: AutoreleasingUnsafeMutablePointer<UIView>) {
 view.pointee = self.button2
 rect.pointee = self.button2.bounds
}

There is one very common situation where your function can modify a parameter
without declaring it as inout — namely, when the parameter is an instance of a class.
This is a special feature of classes, as opposed to the other two object type flavors,
enum and struct. String isn’t a class; it’s a struct. That’s why we had to use inout in
order to modify a String parameter. So I’ll illustrate by declaring a Dog class with a
name property:

Modifiable Parameters | 39

class Dog {
 var name = ""
}

Here’s a function that takes a Dog instance parameter and a String, and sets that Dog
instance’s name to that String. Notice that no inout is involved:

func changeName(of d:Dog, to newName:String) {
 d.name = newName
}

Here’s how to call it. There’s no inout, so we pass a Dog instance directly:

let d = Dog()
d.name = "Fido"
print(d.name) // "Fido"
changeName(of:d, to:"Rover")
print(d.name) // "Rover"

Observe that we were able to change a property of our Dog instance d, even though it
wasn’t passed as an inout parameter, and even though it was declared originally with
let, not var. This appears to be an exception to the rules about modifying parame‐
ters — but it isn’t. It’s a feature of class instances, namely that they are themselves
mutable. In changeName(of:to:), we didn’t actually attempt to assign a different Dog
instance to the parameter. To do that, the Dog parameter would need to be declared
inout (and d would have to be declared with var and we would have to pass its
address as argument).

Technically, we say that classes are reference types, whereas the other object type
flavors are value types. When you pass an instance of a struct as an argument to a
function, you effectively wind up with a separate copy of the struct instance.
But when you pass an instance of a class as an argument to a function, you
pass a reference to the class instance itself. I’ll discuss this topic in more detail in
Chapter 4.

Function in Function
A function can be declared anywhere, including inside the body of a function. A
function declared in the body of a function (also called a local function) is available to
be called by later code within the same scope, but is completely invisible elsewhere.

This feature is an elegant architecture for functions whose sole purpose is to assist
another function. If only function A ever needs to call function B, function B might
as well be packaged inside function A.

Here’s a typical example from one of my apps (I’ve omitted everything except the
structure):

40 | Chapter 2: Functions

func checkPair(_ p1:Piece, and p2:Piece) -> Path? {
 // ...
 func addPathIfValid(_ midpt1:Point, _ midpt2:Point) {
 // ...
 }
 for y in -1..._yct {
 addPathIfValid((pt1.x,y),(pt2.x,y))
 }
 for x in -1..._xct {
 addPathIfValid((x,pt1.y),(x,pt2.y))
 }
 // ...
}

What I’m doing in the first for loop (for y) and what I’m doing in the second for
loop (for x) are the same — but with a different set of starting values. We could write
out the functionality in full inside each for loop, but that would be an unnecessary
and confusing repetition. (Such a repetition would violate the principle often referred
to as DRY, for “Don’t Repeat Yourself.”) To prevent that repetition, we could refactor
the repeated code into an instance method to be called by both for loops, but that
exposes this functionality more broadly than we need, as it is called only by these two
for loops inside checkPair. A local function is the perfect compromise.

Sometimes, it’s worth using a local function even when that function will be called in
only one place. Here’s another example from my code (it’s actually another part of the
same function):

func checkPair(_ p1:Piece, and p2:Piece) -> Path? {
 // ...
 if arr.count > 0 {
 func distance(_ pt1:Point, _ pt2:Point) -> Double {
 // utility to learn physical distance between two points
 let deltax = pt1.0 - pt2.0
 let deltay = pt1.1 - pt2.1
 return Double(deltax * deltax + deltay * deltay).squareRoot()
 }
 for thisPath in arr {
 var thisLength = 0.0
 for ix in thisPath.indices.dropLast() {
 thisLength += distance(thisPath[ix],thisPath[ix+1])
 }
 // ...
 }
 }
 // ...
}

Again, the structure is clear (even though the code uses some Swift features I haven’t
discussed yet). Deep inside the function checkPair, a moment comes when I have an
array (arr) of paths, and I need to know the length of every path. Each path is itself

Function in Function | 41

an array of points, so to learn its length, I need to sum the distances between each
pair of points. To get the distance between a pair of points, I use the Pythagorean the‐
orem. I could apply the Pythagorean theorem and express the calculation right there
inside the for loop (for ix). Instead, I’ve expressed the Pythagorean theorem as a
local function, distance, and then inside the for loop I call that function.

There is no savings whatever in the number of lines of code; in fact, declaring
distance makes my code longer! Nor, strictly speaking, am I in danger of repeating
myself; the application of the Pythagorean theorem is repeated many times, but it
occurs at only one spot in my code, namely inside this one for loop. Nevertheless,
abstracting the code into a more general distance-calculation utility makes my code
much clearer: in effect, I announce in general form what I’m about to do (“Look! I’m
going to calculate distances between points now!”), and then I do it. The function
name, distance, gives my code meaning; it is more understandable and maintainable
than if I had directly written out the steps of the distance calculation inline.

Local functions are really local variables with function values (a notion that I’ll
explain later in this chapter). Therefore, a local function can’t have the same
name as a local variable in the same scope, and two local functions can’t have the
same name as one another in the same scope.

Recursion
A function can call itself. This is called recursion. Recursion seems a little scary, rather
like jumping off a cliff, because of the danger of creating an infinite loop; but if you
write the function correctly, you will always have a “stopper” condition that handles
the degenerate case and prevents the loop from being infinite:

func countDownFrom(_ ix:Int) {
 print(ix)
 if ix > 0 { // stopper
 countDownFrom(ix-1) // recurse!
 }
}
countDownFrom(5) // 5, 4, 3, 2, 1, 0

Function As Value
If you’ve never used a programming language where functions are first-class citizens,
perhaps you’d better sit down now, because what I’m about to tell you might make
you feel a little faint: In Swift, a function is a first-class citizen. This means that a
function can be used wherever a value can be used. For example, a function can be
assigned to a variable; a function can be passed as an argument in a function call; a
function can be returned as the result of a function.

42 | Chapter 2: Functions

Swift has strict typing. You can only assign a value to a variable or pass a value into or
out of a function if it is the right type of value. In order for a function to be used as a
value, it needs to have a type. And indeed it does: a function’s signature is its type.

The chief purpose of using a function as a value is so that this function can later be
called without a definite knowledge of what function it is. Here’s the world’s simplest
(and silliest) example, just to show the syntax and structure:

func doThis(_ f:() -> ()) {
 f()
}

That is a function doThis that takes one parameter (and returns no value). The
parameter, f, is itself a function; we know this because the type of the parameter is
given as a function signature, () -> (), meaning (as you know) a function that takes
no parameters and returns no value. The function doThis then calls the function f
that it received as its parameter, by saying f().

Having declared the function doThis, how would you call it? To do so, you’d need to
pass it a function as argument. Here’s one way to do that:

func doThis(_ f:() -> ()) {
 f()
}
func whatToDo() {
 print("I did it")
}
doThis(whatToDo)

First, we declare a function (whatToDo) of the proper type — a function that takes
no parameters and returns no value.

Then, we call doThis, passing as argument a function reference — in effect, the
bare name of the function. Notice that we are not calling whatToDo here; we are
passing it.

Sure enough, this works: we pass whatToDo as argument to doThis; doThis calls the
function that it receives as its parameter; and the string "I did it" appears in the
console.

But what’s the point of being able to do that? If our goal is to call whatToDo, why don’t
we just call it? What’s useful about being able to tell some other function to call it? In
the example I just gave, there is nothing useful about it; I was just showing you the
syntax and structure. But in real life, this is a very valuable thing to do. Encapsulating
function-calling in a function can reduce repetition and opportunity for error. More‐
over, the other function may call the parameter function in some special way; for
example, it might call it after doing other things, or at some later time.

Function As Value | 43

Here’s a case from my own code. A common thing to do in Cocoa is to draw an
image, directly, in code. This involves four steps:

let size = CGSize(width:45, height:20)
UIGraphicsBeginImageContextWithOptions(size, false, 0)
let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20), cornerRadius: 8)
p.stroke()
let result = UIGraphicsGetImageFromCurrentImageContext()!
UIGraphicsEndImageContext()

Open an image context.

Draw into the context.

Extract the image.

Close the image context.

That’s terribly ugly. The sole purpose of all that code is to obtain result, the image;
but that purpose is buried in all the other code. At the same time, the entire structure
is boilerplate; every time I do this in any app, step 1, step 3, and step 4 are exactly the
same. Moreover, I live in mortal fear of forgetting a step; for example, if I were to
omit step 4 by mistake, the universe would explode.

The only thing that’s different every time I draw is step 2. Thus, step 2 is the only part
I should have to write out! The entire problem is solved by writing a utility function
expressing the boilerplate:

func imageOfSize(_ size:CGSize, _ whatToDraw:() -> ()) -> UIImage {
 UIGraphicsBeginImageContextWithOptions(size, false, 0)
 whatToDraw()
 let result = UIGraphicsGetImageFromCurrentImageContext()!
 UIGraphicsEndImageContext()
 return result
}

My imageOfSize utility is so useful that I declare it at the top level of a file, where all
my files can see it. To make an image, I perform step 2 (the actual drawing) in a func‐
tion and pass that function as argument to the imageOfSize utility:

func drawing() {
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
}
let image = imageOfSize(CGSize(width:45, height:20), drawing)

Now that is a beautifully expressive and clear way to turn drawing instructions into
an image.

44 | Chapter 2: Functions

Evidently Apple agrees with my criticism of UIGraphicsBeginImageContextWith-
Options, because in iOS 10 a new class was introduced, UIGraphicsImageRen‐
derer, that expresses itself using syntax similar to my imageOfSize. Nevertheless,
I’ll continue using imageOfSize in this chapter, because it illustrates important
aspects of Swift functions.

The Cocoa API is full of situations where you’ll pass a function to be called by the
runtime in some special way or at some later time. Some common Cocoa situations
even involve passing two functions. For instance, when you perform view animation,
you’ll often pass one function prescribing the action to be animated and another
function saying what to do afterward:

func whatToAnimate() { // self.myButton is a button in the interface
 self.myButton.frame.origin.y += 20
}
func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}
UIView.animate(withDuration:0.4,
 animations: whatToAnimate, completion: whatToDoLater)

That means: Change the frame origin (that is, the position) of this button in the inter‐
face, but do it over time (four-tenths of a second); and then, when that’s finished,
print a log message in the console saying whether the animation was performed or
not.

The Cocoa documentation will often describe a function to be passed in this way as a
handler, and will refer it as a block, because that’s the Objective-C syntactic construct
needed here. In Swift, it’s a function.

Anonymous Functions
Consider once again this example:

func whatToAnimate() { // self.myButton is a button in the interface
 self.myButton.frame.origin.y += 20
}
func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}
UIView.animate(withDuration:0.4,
 animations: whatToAnimate, completion: whatToDoLater)

There’s a slight bit of ugliness in that code. I’m declaring functions whatToAnimate
and whatToDoLater, just because I want to pass those functions in the last line. But I
don’t really need the names whatToAnimate and whatToDoLater for anything, except
to refer to them in the last line; neither the names nor the functions will ever be used
again. In my call to UIView.animate(withDuration:animations:completion:), it

Anonymous Functions | 45

Type Aliases Can Clarify Function Types
To make function type specifiers clearer, we can take advantage of Swift’s type alias
feature to give a function type a name. The name can be descriptive, and the possibly
confusing arrow operator notation is avoided. For example, if we say typealias Void-
VoidFunction = () -> (), we can then say VoidVoidFunction wherever we need to
specify a function type with that signature.

Thus, earlier we declared a function like this:

func doThis(_ f:() -> ()) {
 f()
}

We could have declared it like this:

typealias VoidVoidFunction = () -> ()
func dothis(_ f:VoidVoidFunction) {
 f()
}

would be nice to be able to pass just the body of those functions without a declared
name.

That’s called an anonymous function, and it’s legal and common in Swift. To form an
anonymous function, you do two things:

1. Create the function body itself, including the surrounding curly braces, but with
no function declaration.

2. If necessary, express the function’s parameter list and return type as the first thing
inside the curly braces, followed by the keyword in.

Let’s practice by transforming our named function declarations into anonymous
functions. Here’s the named function declaration for whatToAnimate:

func whatToAnimate() {
 self.myButton.frame.origin.y += 20
}

Here’s an anonymous function that does the same thing. Notice how I’ve moved the
parameter list and return type inside the curly braces:

{
 () -> () in
 self.myButton.frame.origin.y += 20
}

Here’s the named function declaration for whatToDoLater:

46 | Chapter 2: Functions

func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}

Here’s an anonymous function that does the same thing:

{
 (finished:Bool) -> () in
 print("finished: \(finished)")
}

Now that we know how to make anonymous functions, let’s use them. The point
where we need the functions is the point where we’re passing the second and third
arguments to animate(withDuration:animations:completion:). We can create and
pass anonymous functions right at that point, like this:

UIView.animate(withDuration:0.4,
 animations: {
 () -> () in
 self.myButton.frame.origin.y += 20
 },
 completion: {
 (finished:Bool) -> () in
 print("finished: \(finished)")
 }
)

We can make the same improvement in the way we call the imageOfSize function
from the preceding section. Earlier, we called that function like this:

func drawing() {
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
}
let image = imageOfSize(CGSize(width:45, height:20), drawing)

We now know, however, that we don’t need to declare the drawing function sepa‐
rately. We can call imageOfSize with an anonymous function:

let image = imageOfSize(CGSize(width:45, height:20), {
 () -> () in
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
})

Anonymous functions are very commonly used in Swift, so make sure you can read
and write that code! Anonymous functions, in fact, are so common and so important,
that some shortcuts for writing them are provided:

Anonymous Functions | 47

Omission of the return type
If the anonymous function’s return type is already known to the compiler, you
can omit the arrow operator and the specification of the return type:

UIView.animate(withDuration:0.4,
 animations: {
 () in // *
 self.myButton.frame.origin.y += 20
 }, completion: {
 (finished:Bool) in // *
 print("finished: \(finished)")
})

Omission of the in expression when there are no parameters
If the anonymous function takes no parameters, and if the return type can be
omitted, the in expression itself can be omitted:

UIView.animate(withDuration:0.4,
 animations: { // *
 self.myButton.frame.origin.y += 20
 }, completion: {
 (finished:Bool) in
 print("finished: \(finished)")
})

Omission of the parameter types
If the anonymous function takes parameters and their types are already known to
the compiler, the types can be omitted:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 (finished) in // *
 print("finished: \(finished)")
})

Omission of the parentheses
If the parameter types are omitted, the parentheses around the parameter list can
be omitted:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 finished in // *
 print("finished: \(finished)")
})

48 | Chapter 2: Functions

Omission of the in expression even when there are parameters
If the return type can be omitted, and if the parameter types are already known
to the compiler, you can omit the in expression and refer to the parameters
directly within the body of the anonymous function by using the magic names
$0, $1, and so on, in order:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 print("finished: \($0)") // *
})

Omission of the parameter names
If the anonymous function body doesn’t need to refer to a parameter, you can
substitute an underscore for its name in the parameter list in the in expression:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 _ in // *
 print("finished!")
})

But note that if the anonymous function takes parameters, you must acknowl‐
edge them somehow. You can omit the in expression and use the parameters by
the magic names $0 and so on, or you can keep the in expression and ignore the
parameters with an underscore, but you can’t omit the in expression altogether
and not use the parameters by their magic names! If you do, your code won’t
compile.

Omission of the function argument label
If, as will just about always be the case, your anonymous function is the last argu‐
ment being passed in this function call, you can close the function call with a
right parenthesis before this last argument, and then put just the anonymous
function body without a label (this is called a trailing function):

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }) { // *
 _ in
 print("finished!")
}

Anonymous Functions | 49

Omission of the calling function parentheses
If you use the trailing function syntax, and if the function you are calling takes no
parameters other than the function you are passing to it, you can omit the empty
parentheses from the call. This is the only situation in which you can omit the
parentheses from a function call! To illustrate, I’ll declare and call a different
function:

func doThis(_ f:() -> ()) {
 f()
}
doThis { // no parentheses!
 print("Howdy")
}

Omission of the keyword return
If the anonymous function body consists of exactly one statement and that state‐
ment consists of returning a value with the keyword return, the keyword return
can be omitted. To put it another way, in a context that expects a function that
returns a value, if an anonymous function body consists of exactly one expres‐
sion with no return, Swift assumes that this expression’s value is to be returned
from the anonymous function:

func greeting() -> String {
 return "Howdy"
}
func performAndPrint(_ f:()->String) {
 let s = f()
 print(s)
}
performAndPrint {
 greeting() // meaning: return greeting()
}

When writing anonymous functions, you will frequently find yourself taking advan‐
tage of all the omissions you are permitted. In addition, you’ll often shorten the lay‐
out of the code (though not the code itself) by putting the whole anonymous function
together with the function call on one line. Thus, Swift code involving anonymous
functions can be extremely compact.

Here’s a typical example. We start with an array of Int values and generate a new array
consisting of all those values multiplied by 2, by calling the map(_:) instance method.
The map(_:) method of an array takes a function that takes one parameter of the
same type as the array’s elements, and returns a new value; here, our array is made of
Int values, and we are passing to the map(_:) method a function that takes one Int
parameter and returns an Int. We could write out the whole function, like this:

50 | Chapter 2: Functions

let arr = [2, 4, 6, 8]
func doubleMe(i:Int) -> Int {
 return i*2
}
let arr2 = arr.map(doubleMe) // [4, 8, 12, 16]

That, however, is not very Swifty. We don’t need the name doubleMe for anything else,
so this may as well be an anonymous function:

let arr = [2, 4, 6, 8]
let arr2 = arr.map ({
 (i:Int) -> Int in
 return i*2
})

Fine, but now let’s start shortening our anonymous function. Its parameter type is
known in advance, so we don’t need to specify that. Its return type is known by
inspection of the function body, so we don’t need to specify that. There’s just one
parameter and we are going to use it, so we don’t need the in expression as long we
refer to the parameter as $0. Our function body consists of just one statement, and it
is a return statement, so we can omit return. And map(_:) doesn’t take any other
parameters, so we can omit the parentheses and follow the name directly with a trail‐
ing function:

let arr = [2, 4, 6, 8]
let arr2 = arr.map {$0*2}

It doesn’t get any Swiftier than that!

Define-and-Call
A pattern that’s surprisingly common in Swift is to define an anonymous function
and call it, all in one move:

{
 // ... code goes here
}()

Notice the parentheses after the curly braces! The curly braces define an anonymous
function body; the parentheses call that anonymous function.

Why would anyone do such a thing? If you want to run some code, you can just run
it; why would you embed it in a deeper level as a function body, only to turn around
and run that function body immediately?

For one thing, an anonymous function can be a good way to make your code less
imperative and more, well, functional: an action can be taken at the point where it is
needed, rather than in a series of preparatory steps. Here’s a common Cocoa example:
we create and configure an NSMutableParagraphStyle and then use it as an argument

Define-and-Call | 51

in a call to the NSMutableAttributedString method addAttribute(_:value:range:),
like this:

let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
// ... more configuration of para ...
content.addAttribute(// content is an NSMutableAttributedString
 .paragraphStyle,
 value:para,
 range:NSRange(location:0, length:1))

I find that code ugly. We don’t need para except to pass it as the value: argument
within the call to addAttribute(_:value:range:), so it would be much nicer to cre‐
ate and configure it right there within the call, as the value: argument. That sounds
like an anonymous function — except that the value: parameter is not a function,
but an NSMutableParagraphStyle object. We can solve the problem by providing, as
the value: argument, an anonymous function that produces an NSMutablePara‐
graphStyle object and calling it so that it does produce an NSMutableParagraphStyle
object:

content.addAttribute(
 .paragraphStyle,
 value: {
 let para = NSMutableParagraphStyle()
 para.headIndent = 10
 para.firstLineHeadIndent = 10
 // ... more configuration of para ...
 return para
 }(),
 range:NSRange(location:0, length:1))

I’ll demonstrate some further uses of define-and-call in Chapter 3.

Closures
Swift functions are closures. This means they can capture references to external vari‐
ables in scope within the body of the function. What do I mean by that? Well, recall
from Chapter 1 that code in curly braces constitutes a scope, and this code can “see”
variables and functions declared in a surrounding scope:

class Dog {
 var whatThisDogSays = "woof"
 func bark() {
 print(self.whatThisDogSays)
 }
}

In that code, the body of the function bark refers to a variable whatThisDogSays.
That variable is external to the body of the function, because it is declared outside the

52 | Chapter 2: Functions

body of the function. It is in scope for the body of the function, because the code
inside the body of the function can see it. And the code inside the body of the func‐
tion refers to it — it says, explicitly, whatThisDogSays.

So far, so good; but we now know that the function bark can be passed as a value. In
effect, it can travel from one environment to another. When it does, what happens to
that reference to whatThisDogSays? Let’s find out:

func doThis(_ f : () -> ()) {
 f()
}
let d = Dog()
d.whatThisDogSays = "arf"
let barkFunction = d.bark
doThis(barkFunction) // arf

We run that code, and "arf" appears in the console!

Perhaps that result doesn’t seem very surprising to you. But think about it. We do not
directly call d.bark(). We make a Dog instance and pass its bark function as a value
into the function doThis. There, it is called. Now, whatThisDogSays is an instance
property of a particular Dog. Inside the function doThis there is no whatThisDog-
Says. Indeed, inside the function doThis there is no Dog instance! Nevertheless the
call f() still works. The function d.bark, as it is passed around, can still see that vari‐
able whatThisDogSays, declared outside itself, even though it is called in an environ‐
ment where there is no longer any Dog instance and no longer any instance property
whatThisDogSays.

But there’s more. I’ll move the line where we set d.whatThisDogSays to after we
assign d.bark into our variable barkFunction:

func doThis(_ f : () -> ()) {
 f()
}
let d = Dog()
let barkFunction = d.bark
d.whatThisDogSays = "arf" // *
doThis(barkFunction) // arf

Do you see what this proves? At the time we assigned d.bark to barkFunction,
d.whatThisDogSays was "woof". We then changed d.whatThisDogSays to "arf", and
passed barkFunction into doThis, where it was called — and we got "arf". This
proves that barkFunction is maintaining its reference to this actual Dog, the one that
we call d. The bark function, as it is passed around, is carrying its environment with it
— including the instance of which it is an instance method (because it refers, in its
body, to self). That environment is still there later when the bark function is called
in some other environment. So, by “capture” I mean that when a function is passed

Closures | 53

around as a value, it carries along its internal references to external variables. That is
what makes a function a closure.

How Closures Improve Code
Once you understand that functions are closures, you can take advantage of that fact
to improve your code’s syntax. Closures can help make your code more general, and
hence more useful. Here, once again, is my earlier example of a function that accepts
drawing instructions and performs them to generate an image:

func imageOfSize(_ size:CGSize, _ whatToDraw:() -> ()) -> UIImage {
 UIGraphicsBeginImageContextWithOptions(size, false, 0)
 whatToDraw()
 let result = UIGraphicsGetImageFromCurrentImageContext()!
 UIGraphicsEndImageContext()
 return result
}

We can call imageOfSize with a trailing anonymous function:

let image = imageOfSize(CGSize(width:45, height:20)) {
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
}

That code, however, contains an annoying repetition. This is a call to create an image
of a given size consisting of a rounded rectangle of that size. We are repeating the size;
the pair of numbers 45,20 appears twice. That’s silly. Let’s prevent the repetition by
putting the size into a variable at the outset:

let sz = CGSize(width:45, height:20)
let image = imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
}

The variable sz, declared outside our anonymous function at a higher level, is visible
inside it. Thus we can refer to it inside the anonymous function — and we do so. In
the fourth line, we are not calling CGRect(origin:size:) and passing the value of sz
to it now. Everything inside the curly braces is just a function body. It won’t be exe‐
cuted until imageOfSize calls it. Nevertheless, the value of sz persists. The anony‐
mous function is a function. Therefore it is a closure. Therefore the anonymous
function captures the reference to sz, and carries it on into the call to imageOfSize.

Now let’s go further. So far, we’ve been hard-coding the size of the desired rounded
rectangle. Imagine, though, that creating images of rounded rectangles of various

54 | Chapter 2: Functions

sizes is something we do often. It would make sense to package this code up as a
function, where sz is not a fixed value but a parameter; the function will then return
the image:

func makeRoundedRectangle(_ sz:CGSize) -> UIImage {
 let image = imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 return image
}

In the expression CGRect(origin:CGPoint.zero, size:sz), we refer to sz. This
expression is part of an anonymous function to be passed to imageOfSize. The term
sz refers to the sz parameter that arrives into the surrounding function makeRounded-
Rectangle. A parameter of the surrounding function is a variable external to and in
scope within the anonymous function, and the anonymous function is a closure, so it
captures the reference to that parameter as it is passed to imageOfSize.

Our code is becoming beautifully compact. To call makeRoundedRectangle, supply a
size; an image is returned. Thus, I can perform the call, obtain the image, and display
that image, all in one move, like this (self.iv is a UIImageView in the interface):

self.iv.image = makeRoundedRectangle(CGSize(width:45, height:20))

Function Returning Function
But now let’s go even further! Instead of returning an image, our function can return
a function that makes rounded rectangles of the specified size. If you’ve never seen a
function returned as a value from a function, you may now be gasping for breath. But
a function, after all, can be used as a value. We have already passed a function into a
function as an argument in the function call; now we are going to receive a function
from a function call as its result:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 func f () -> UIImage {
 let im = imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 return im
 }
 return f
}

Let’s analyze that code slowly:

Closures | 55

The declaration is the hardest part. What on earth is the type (signature) of this
function makeRoundedRectangleMaker? It is (CGSize) -> () -> UIImage. That
expression has two arrow operators. To understand it, keep in mind that every‐
thing after each arrow operator is the type of a returned value. So makeRounded-
RectangleMaker is a function that takes a CGSize parameter and returns a () ->
UIImage. Okay, and what’s a () -> UIImage? We already know that: it’s a func‐
tion that takes no parameters and returns a UIImage. So makeRoundedRectangle-
Maker is a function that takes a CGSize parameter and returns a function — a
function that itself, when called with no parameters, will return a UIImage.

Now here we are in the body of the function makeRoundedRectangleMaker, and
our first step is to declare a function (a function-in-function, or local function) of
precisely the type we intend to return, namely, one that takes no parameters and
returns a UIImage. Here, we’re naming this function f. The way this function
works is simple and familiar: it calls imageOfSize, passing it an anonymous func‐
tion that makes an image of a rounded rectangle (im) — and then it returns the
image.

Finally, we return the function we just made (f). We have thus fulfilled our con‐
tract: we said we would return a function that takes no parameters and returns a
UIImage, and we do so.

But perhaps you are still gazing open-mouthed at makeRoundedRectangleMaker,
wondering how you would ever call it and what you would get if you did. Let’s try it:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))

What is the variable maker after that code runs? It’s a function — a function that takes
no parameters and that, when called, produces the image of a rounded rectangle of
size 45,20. You don’t believe me? I’ll prove it — by calling the function that is now the
value of maker:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))
self.iv.image = maker()

Now that you’ve gotten over your stunned surprise at the notion of a function that
produces a function as its result, turn your attention once again to the implementa‐
tion of makeRoundedRectangleMaker and let’s analyze it again, a different way.
Remember, I didn’t write that function to show you that a function can produce a
function. I wrote it to illustrate closures! Let’s think about how the environment gets
captured:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 func f () -> UIImage {
 let im = imageOfSize(sz) { // *
 let p = UIBezierPath(

56 | Chapter 2: Functions

 roundedRect: CGRect(origin:CGPoint.zero, size:sz), // *
 cornerRadius: 8)
 p.stroke()
 }
 return im
 }
 return f
}

The function f takes no parameters. Yet, twice within the function body of f (I’ve
marked the places with asterisk comments), there are references to a size value sz.
The body of the function f can see sz, the parameter of the surrounding function
makeRoundedRectangleMaker, because it is in a surrounding scope. The function f
captures the reference to sz at the time makeRoundedRectangleMaker is called, and
keeps that reference when f is returned and assigned to maker:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))

That is why maker is now a function that, when it is called, creates and returns an
image of the particular size 45,20 even though it itself will be called with no parame‐
ters. The knowledge of what size of image to produce has been baked into the func‐
tion referred to by maker.

Looking at it another way, makeRoundedRectangleMaker is a factory for creating a
whole family of functions similar to maker, each of which produces an image of one
particular size. That’s a dramatic illustration of the power of closures.

Before I leave makeRoundedRectangleMaker, I’d like to rewrite it in a Swiftier fashion.
Within f, there is no need to create im and then return it; we can return the result of
calling imageOfSize directly:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 func f () -> UIImage {
 return imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
 return f
}

But there is no need to declare f and then return it either; it can be an anonymous
function and we can return it directly:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 return {
 return imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),

Closures | 57

 cornerRadius: 8)
 p.stroke()
 }
 }
}

But our anonymous function consists of just one statement, returning the result of
the call to imageOfSize. (The anonymous function parameter to imageOfSize con‐
sists of multiple statements, but the imageOfSize call itself is still just one Swift state‐
ment.) Thus there is no need to say return:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 return {
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
}

Closure Setting a Captured Variable
The power that a closure gets through its ability to capture its environment is even
greater than I’ve shown so far. If a closure captures a reference to a variable outside
itself, and if that variable is settable, the closure can set the variable.

For example, let’s say I’ve declared this simple function. All it does is to accept a func‐
tion that takes an Int parameter, and to call that function with an argument of 100:

func pass100 (_ f:(Int) -> ()) {
 f(100)
}

Now, look closely at this code and try to guess what will happen when we run it:

var x = 0
print(x)
func setX(newX:Int) {
 x = newX
}
pass100(setX)
print(x)

The first print(x) call obviously produces 0. The second print(x) call produces 100!
The pass100 function has reached into my code and changed the value of my variable
x. That’s because the function setX that I passed to pass100 contains a reference to x;
not only does it contain it, but it captures it; not only does it capture it, but it sets its
value. That x is my x. Thus, pass100 was able to set my x just as readily as I would
have set it by calling setX directly.

58 | Chapter 2: Functions

Closure Preserving Its Captured Environment
When a closure captures its environment, it preserves that environment even if noth‐
ing else does. Here’s an example calculated to blow your mind — a function that modi‐
fies a function:

func countAdder(_ f: @escaping () -> ()) -> () -> () {
 var ct = 0
 return {
 ct = ct + 1
 print("count is \(ct)")
 f()
 }
}

The function countAdder accepts a function as its parameter and returns a function
as its result. (I’ll explain the @escaping attribute in the next section.) The function
that it returns calls the function that it accepts, with a little bit added: it increments a
variable and reports the result. So now try to guess what will happen when we run
this code:

func greet () {
 print("howdy")
}
let countedGreet = countAdder(greet)
countedGreet()
countedGreet()
countedGreet()

What we’ve done here is to take a function greet, which prints "howdy", and pass it
through countAdder. What comes out the other side of countAdder is a new function,
which we’ve named countedGreet. We then call countedGreet three times. Here’s
what appears in the console:

count is 1
howdy
count is 2
howdy
count is 3
howdy

Clearly, countAdder has added to the functionality of the function that was passed
into it the ability to report how many times it is called. Now ask yourself: Where on
earth is the variable that maintains this count? Inside countAdder, it was a local vari‐
able ct. But it isn’t declared inside the anonymous function that countAdder returns.
That’s deliberate! If it were declared inside the anonymous function, we would be set‐
ting ct to 0 every time countedGreet is called — we wouldn’t be counting. Instead, ct
is initialized to 0 once and then captured by the anonymous function. This variable is
thus preserved as part of the environment of countedGreet — it is outside counted-

Closures | 59

Greet in some mysterious environment-preserving world, so that it can be incremen‐
ted every time countedGreet is called.

Escaping Closures
If a function passed as parameter to a function will be preserved for later execution,
rather than being called directly, its type must be marked @escaping, to signal that
this is a closure that captures and preserves its environment. The compiler will detect
violations of this rule, so if you find the rule confusing, don’t worry about it; just let
the compiler enforce it for you.

So, for example, this function is legal because it receives a function and calls it
directly:

func funcCaller(f:() -> ()) {
 f()
}

And this function is legal, even though it returns a function to be executed later,
because it also creates that function internally:

func funcMaker() -> () -> () {
 return { print("hello world") }
}

But this function is illegal. It returns a function to be executed later, having acquired
that function as a parameter:

func funcPasser(f:() -> ()) -> () -> () { // compile error
 return f
}

The solution is to mark the type of the incoming parameter f as @escaping, and the
compiler will prompt you to do so:

func funcPasser(f:@escaping () -> ()) -> () -> () {
 return f
}

One secondary consequence of this distinction is that if an anonymous function
passed as an @escaping parameter refers to a property or method of self, the com‐
piler will insist that you say self explicitly. That’s because such a reference captures
self, and the compiler wants you to acknowledge this fact by saying self.

Curried Functions
Return once more to makeRoundedRectangleMaker:

60 | Chapter 2: Functions

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 return {
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
}

There’s something I don’t like about this method: the size of the rounded rectangle
that it creates is a parameter (sz), but the cornerRadius of the rounded rectangle is
hard-coded as 8. I’d like the ability to specify a value for the corner radius as well. I
can think of two ways to do it. One is to give makeRoundedRectangleMaker itself
another parameter:

func makeRoundedRectangleMaker(_ sz:CGSize, _ r:CGFloat) -> () -> UIImage {
 return {
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: r)
 p.stroke()
 }
 }
}

And we would then call it like this:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20), 8)

But there’s another way. The function that we are returning from makeRounded-
RectangleMaker takes no parameters. Instead, it could take the extra parameter:

func makeRoundedRectangleMaker(_ sz:CGSize) -> (CGFloat) -> UIImage {
 return { r in
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: r)
 p.stroke()
 }
 }
}

Now makeRoundedRectangleMaker returns a function that, itself, takes one parame‐
ter, so we must remember to supply that when we call it:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))
self.iv.image = maker(8)

Curried Functions | 61

If we don’t need to conserve maker for anything, we can of course do all that in one
line — a function call that yields a function which we immediately call to obtain our
image:

self.iv.image = makeRoundedRectangleMaker(CGSize(width:45, height:20))(8)

When a function returns a function that takes a parameter in this way, it is called a
curried function (after the computer scientist Haskell Curry).

Function References and Selectors
Throughout this chapter, wherever I wanted to refer to a function by name — for
example, in order to pass it as argument to another function — I’ve been using its
bare name, like this:

func whatToAnimate() { // self.myButton is a button in the interface
 self.myButton.frame.origin.y += 20
}
func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}
UIView.animate(withDuration:0.4,
 animations: whatToAnimate, completion: whatToDoLater) // *

A bare name like whatToAnimate or whatToDoLater is a function reference. Use of the
bare name as a function reference is legal because it’s unambiguous in this particular
context: thus, there’s only one function called whatToDoLater in scope, and I’m using
its name as argument in a function call where the parameter type is known (namely,
(Bool) -> ()).

But now consider the following situation. Just as I can pass a function as an argu‐
ment, I can assign a function as a value to a variable. And suppose I have two func‐
tions with the same name, one that takes a parameter, and one that doesn’t:

class Dog {
 func bark() {
 print("woof")
 }
 func bark(_ loudly:Bool) {
 if loudly {
 print("WOOF")
 } else {
 self.bark()
 }
 }
 func test() {
 let barkFunction = bark // compile error
 // ...
 }
}

62 | Chapter 2: Functions

That code won’t compile, because the bare name bark is ambiguous in this context:
which bark method does it refer to? To solve this problem, Swift provides a notation
allowing you to refer to a function more precisely. This notation has two parts:

Full name
The full name of a Swift function is the name that precedes the parentheses, plus
parentheses containing the external names of its parameters, each followed by
colon. (If the external name of a parameter is suppressed, we can represent its
external name as an underscore.) For example, a function declared func
say(_ s:String, times:Int) has the full name say(_:times:).

Signature
The signature of a Swift function may be appended to its bare name (or full
name) with the keyword as. For example, a function declared func

say(_ s:String, times:Int) may be referred to as say as (String,Int) ->
().

In our bark example, use of the full name solves the problem if the function to which
we want a reference is the one that takes a parameter:

class Dog {
 func bark() {
 // ... as before ...
 }
 func bark(loudly:Bool) {
 // ... as before ...
 }
 func test() {
 let barkFunction = bark(_:) // fine
 }
}

But use of the full name doesn’t solve the problem if the function to which we want a
reference is the one that takes no parameters, because in that case the full name is the
bare name, which is exactly what’s ambiguous in this context. Use of the signature
solves the problem:

class Dog {
 func bark() {
 // ... as before ...
 }
 func bark(loudly:Bool) {
 // ... as before ...
 }
 func test() {
 let barkFunction = bark as () -> () // fine
 }
}

Function References and Selectors | 63

Obviously, an explicit signature is needed also when a function is overloaded. For
example:

class Dog{
 func bark() {
 }
 func bark(_ loudly:Bool) {
 }
 func bark(_ times:Int) {
 }
 func test() {
 let barkFunction = bark(_:) // compile error
 }
}

Here, we have said that we want the bark that takes one parameter, but there are two
such bark functions, one whose parameter is a Bool, the other whose parameter is an
Int. The signature disambiguates (and we can use the bare name):

let barkFunction = bark as (Int) -> () // "times", not "loudly"

Function Reference Scope
In the foregoing examples of function references, there was no need to tell the com‐
piler where the function is defined. That’s because the function is already in scope at
the point where the function reference appears. If you can call the function without
supplying further information, you can form the function reference without supplying
further information.

However, a function reference can supply further information about where a function
is defined; and sometimes it must do so. This is done by prefixing an instance or class
to the function reference, using dot-notation. For example, there are situations where
the compiler would force you to use self to call a function; in those situations, you
will have to use self to refer to the function as well:

class Dog {
 func bark() {
 }
 func bark(_ loudly:Bool) {
 }
 func test() {
 let f = {
 return self.bark(_:) // self required here
 }
 }
}

To form a function reference to an instance method of another type, you have two
choices. If you have on hand an instance of that type, you can use dot-notation with a
reference to that instance:

64 | Chapter 2: Functions

class Cat {
 func purr() {
 }
}
class Dog {
 let cat = Cat()
 func test() {
 let purrFunction = cat.purr
 }
}

The other possibility is to use the type with dot-notation (this works even if the func‐
tion is an instance method):

class Cat {
 func purr() {
 }
}
class Dog {
 func bark() {
 }
 func test() {
 let barkFunction = Dog.bark // legal but not necessary
 let purrFunction = Cat.purr
 }
}

Selectors
In Objective-C, a selector is a kind of method reference. In iOS programming, you’ll
often have to call a Cocoa method that wants a selector as one of its parameters; very
typically, this parameter will be named either selector: or action:. Usually, such a
method also requires that you provide a target (an object reference); the idea is that
the runtime can later call the method by turning the selector into a message and
sending that message to that target.

Unfortunately, this architecture can be extremely risky. The reason is that to form the
selector, it is necessary to construct a literal string representing a method’s Objective-
C name. If you construct that name incorrectly, then when the time comes to send
the message to the target, the runtime will find that the target can’t handle that mes‐
sage, because it has no such method, and the app comes to a violent and premature
halt, dumping into the console the dreaded phrase “unrecognized selector.”

For example, here’s a typical recipe for failure:

class ViewController : UIViewController {
 @IBOutlet var button : UIButton!
 func viewDidLoad() {
 super.viewDidLoad()
 self.button.addTarget(// prepare to crash!
 self, action: "buttonPressed", for: .touchUpInside)

Function References and Selectors | 65

 }
 @objc func buttonPressed(_ sender: Any) {
 // ...
 }
}

In that code, self.button is a button in the interface, and we are configuring it by
calling addTarget(action:for:), so that when the button is tapped, our button-
Pressed method will be called. But we are configuring it incorrectly! Unfortunately,
"buttonPressed" is not the Objective-C name of our buttonPressed method; the
correct name would have been "buttonPressed:", with a colon. (I’ll explain why in
Appendix A.) Therefore, our app will crash when the user taps that button.

The point is that if you don’t know the rules for forming a selector string — or even if
you do, but you make a typing mistake — an “unrecognized selector” crash is likely to
result. Humans are fallible, and therefore “unrecognized selector” crashes have his‐
torically been extremely common among iOS programmers. The Swift compiler,
however, is not fallible in this way. Therefore, Swift provides a way to let the compiler
form the selector for you, by means of #selector syntax.

To ask the compiler to form an Objective-C selector for you, you use #selector(...)
with a function reference inside the parentheses. Thus, we would rewrite our button
action example like this:

class ViewController : UIViewController {
 @IBOutlet var button : UIButton!
 func viewDidLoad() {
 super.viewDidLoad()
 self.button.addTarget(
 self, action: #selector(buttonPressed), for: .touchUpInside)
 }
 @objc func buttonPressed(_ sender: Any) {
 // ...
 }
}

When you use that notation, two wonderful things happen:

The compiler validates the function reference
If your function reference isn’t valid, your code won’t even compile. The compiler
also checks that this function is exposed to Objective-C; there’s no point forming
a selector for a method that Objective-C can’t see, as your app would crash if
Objective-C were to try to call such a method. To ensure Objective-C visibility,
the method may need to be marked with the @objc attribute; the compiler will
enforce this requirement.

66 | Chapter 2: Functions

The compiler forms the Objective-C selector for you
If your code compiles, the actual selector that will be passed into this parameter is
guaranteed to be correct. You might form the selector incorrectly, but the com‐
piler won’t! Thus, it is impossible that the resulting selector should fail to match
the method, and there is no chance of an “unrecognized selector” crash.

Very rarely, you still might need to create a selector manually. You can use a literal
string, or you can instantiate Selector with the literal method name as argument —
for example, Selector("woohoo:").

You can still crash, even with #selector syntax, by sending an action message to
the wrong target. In the preceding example, if you changed self, the first argu‐
ment of the addTarget call, to self.button, you’d crash at runtime with “unrec‐
ognized selector” — because the buttonPressed method is declared in
ViewController, not in UIButton. Unfortunately, the compiler won’t help you
with this kind of mistake.

Function References and Selectors | 67

CHAPTER 3

Variables and Simple Types

A variable is a named “shoebox” whose contained value must be of a single well-
defined type. Every variable must be explicitly and formally declared. To put a value
into the shoebox, thus causing the variable name to refer to that value, you assign the
value to the variable. The variable name becomes a reference to that value.

This chapter goes into detail about declaration and initialization of variables. It
then discusses all the primary built-in Swift simple types. (I mean “simple” as
opposed to collections; the primary built-in collection types are discussed at the end
of Chapter 4.)

Variable Scope and Lifetime
A variable not only gives its referent a name; it also, by virtue of where it is declared,
endows its referent with a particular scope (visibility) and lifetime. Assigning a value
to a variable is a way of ensuring that this value can be seen by code that needs to see
it and that it persists long enough to serve its purpose.

In the structure of a Swift file (see Example 1-1), a variable can be declared just about
anywhere. It will be useful to distinguish several levels of variable scope and lifetime:

Global variables
A global variable, or simply a global, is a variable declared at the top level of a
Swift file. A global variable lives as long as the file lives, which is as long as the
program runs. A global variable is visible everywhere (that’s what “global”
means). It is visible to all code within the same file, because it is at top level, so
any other code in the same file must be at the same level or at a lower contained
level of scope. Moreover, it is visible (by default) to all code within any other file
in the same module, because Swift files in the same module can automatically see
one another, and hence can see one another’s top levels. For example:

69

// File1:
let globalVariable = "global"
class Dog {
 func printGlobal() {
 print(globalVariable) // *
 }
}
// File2:
class Cat {
 func printGlobal() {
 print(globalVariable) // *
 }
}

Properties
A property is a variable declared at the top level of an object type declaration (an
enum, struct, or class). There are two kinds of properties: instance properties and
static/class properties.

Instance properties
By default, a property is an instance property. Its value can differ for each
instance of this object type. Its lifetime is the same as the lifetime of the
instance. Recall from Chapter 1 that an instance comes into existence
through deliberate instantiation of an object type; the subsequent lifetime of
the instance, and hence of its instance properties, depends primarily on the
lifetime of the variable to which the instance itself is assigned.

Static/class properties
A property is a static/class property if its declaration is preceded by the key‐
word static or class. (I’ll go into detail about those terms in Chapter 4.) Its
lifetime is the same as the lifetime of the object type. If the object type is
declared at the top level of a file, the property lives as long as the program
runs.

A property is visible to code inside the object declaration. For example, an object’s
methods can see that object’s properties. Such code can refer to the property
using dot-notation with self, and I always do this as a matter of style, but self
can usually be omitted except for purposes of disambiguation. An instance prop‐
erty is also visible (by default) to other code, provided the other code has a refer‐
ence to this instance; in that case, the property can be referred to through dot-
notation with the instance reference. A static/class property is visible (by default)
to other code that can see the name of this object type; in that case, it can be
referred to through dot-notation with the object type. For example:

70 | Chapter 3: Variables and Simple Types

// File1:
class Dog {
 static let staticProperty = "staticProperty"
 let instanceProperty = "instanceProperty"
 func printInstanceProperty() {
 print(self.instanceProperty) // *
 }
}
// File2:
class Cat {
 func printDogStaticProperty() {
 print(Dog.staticProperty) // *
 }
 func printDogInstanceProperty() {
 let d = Dog()
 print(d.instanceProperty) // *
 }
}

Local variables
A local variable is a variable declared inside a function body. A local variable lives
only as long as its surrounding curly-braces scope lives: it comes into existence
when the path of execution passes into the scope and reaches the variable decla‐
ration, and it goes out of existence when the path of execution exits the scope.
Local variables are sometimes called automatic, to signify that they come into and
go out of existence automatically. A local variable can be seen only by subsequent
code within the same scope (including a subsequent deeper scope within the
same scope). For example:

class Dog {
 func printLocalVariable() {
 let localVariable = "local"
 print(localVariable) // *
 }
}

Variable Declaration
A variable is declared with let or var:

• With let, the variable becomes a constant — its value can never be changed after
the first assignment of a value.

• With var, the variable is a true variable, and its value can be changed by subse‐
quent assignment.

A variable declaration is usually accompanied by initialization — you use an equal
sign to assign the variable a value, as part of the declaration. That, however, is not a
requirement; it is legal to declare a variable without immediately initializing it.

Variable Declaration | 71

What is not legal is to declare a variable without giving it a type. A variable must have
a type from the outset, and that type can never be changed. A variable declared with
var can have its value changed by subsequent assignment, but the new value must
conform to the variable’s fixed type.

You can give a variable a type explicitly or implicitly:

Explicit variable type declaration
After the variable’s name in the declaration, add a colon and the name of the
type:

var x : Int

Implicit variable type by initialization
If you initialize the variable as part of the declaration, and if you provide no
explicit type, Swift will infer its type, based on the value with which it is initial‐
ized:

var x = 1 // and now x is an Int

It is perfectly possible to declare a variable’s type explicitly and assign it an initial
value, all in one move:

var x : Int = 1

In that example, the explicit type declaration is superfluous, because the type (Int)
would have been inferred from the initial value. Sometimes, however, providing an
explicit type, even while also assigning an initial value, is not superfluous. Here are
the main situations where that’s the case:

Swift’s inference would be wrong
A very common case in my own code is when I want to provide the initial value
as a numeric literal. Swift will infer either Int or Double, depending on whether
the literal contains a decimal point. But there are a lot of other numeric types!
When I mean one of those, I will provide the type explicitly, like this:

let separator : CGFloat = 2.0

Swift can’t infer the type
Sometimes, the type of the initial value is completely unknown to the compiler
unless you tell it. A very common case involves option sets (discussed in Chap‐
ter 4). This won’t compile:

var opts = [.autoreverse, .repeat] // compile error

The problem is that the name .autoreverse is a shortcut for UIView.Animation-
Options.autoreverse (and so too for .repeat), but Swift doesn’t know that
unless we tell it. Explicitly typing the variable is an elegant way of doing that:

let opts : UIView.AnimationOptions = [.autoreverse, .repeat]

72 | Chapter 3: Variables and Simple Types

The programmer can’t infer the type
I frequently include a superfluous explicit type declaration as a kind of note to
myself. Here’s an example from my own code:

let duration : CMTime = track.timeRange.duration

In that code, track is an AVAssetTrack. Swift knows perfectly well that the
duration property of an AVAssetTrack’s timeRange property is a CMTime. But I
don’t! In order to remind myself of that fact, I’ve shown the type explicitly.

Even if the compiler can in theory infer a variable’s type correctly from its initial
value, such inference takes time. You can reduce compilation times by providing
your variable declarations with explicit types.

As I’ve already said, a variable doesn’t have to be initialized when it is declared —
even if the variable is a constant. It is legal to write this:

let x : Int

Now x is an empty shoebox — an Int variable without an initial value. You can assign
this variable an initial value later. Since this particular variable is a constant, that ini‐
tial value will be its only value from then on.

In the case of an instance property of an object (at the top level of an enum, struct, or
class declaration), that sort of thing is quite normal, because the property can be ini‐
tialized in the object’s initializer function (I’ll have more to say about that in Chap‐
ter 4). For a local variable, however, such behavior is unusual, and I strongly urge you
to avoid it. It isn’t a disaster — the Swift compiler will stop you from trying to use a
variable that has never been assigned a value — but it’s not a good habit. A local vari‐
able should generally be initialized as part of its declaration.

The exception that proves the rule is what we might call conditional initialization.
Sometimes, we don’t know a variable’s initial value until we’ve performed some sort of
conditional test. The variable itself, however, can be declared only once; so it must be
declared in advance and conditionally initialized afterward. This sort of thing is not
unreasonable — though there are other (possibly better) ways to write it, to which I’ll
come in due course:

let timed : Bool
if val == 1 {
 timed = true
} else {
 timed = false
}

When a variable’s address is to be passed as argument to a function, the variable must
be declared and initialized beforehand, even if the initial value is fake. Recall this
example from Chapter 2:

Variable Declaration | 73

var r : CGFloat = 0
var g : CGFloat = 0
var b : CGFloat = 0
var a : CGFloat = 0
c.getRed(&r, green: &g, blue: &b, alpha: &a)

After that code runs, our four CGFloat 0 values will have been replaced; they were
just momentary placeholders, to satisfy the compiler.

On rare occasions, you’ll want to call a Cocoa method that returns a value immedi‐
ately and later uses that value in a function passed to that same method. For example,
Cocoa has a UIApplication instance method declared like this:

func beginBackgroundTask(
 expirationHandler handler: (() -> Void)? = nil)
 -> UIBackgroundTaskIdentifier

beginBackgroundTask(expirationHandler:) returns an identifier object, and will
later call the expirationHandler: function passed to it — a function in which you
will want to use the identifier object that was returned at the outset. Swift’s safety rules
won’t let you declare the variable that holds this identifier and use it in an anonymous
function all in the same statement:

let bti = UIApplication.shared.beginBackgroundTask {
 UIApplication.shared.endBackgroundTask(bti)
} // error: variable used within its own initial value

Therefore, you need to declare the variable beforehand; but then Swift has another
complaint:

var bti : UIBackgroundTaskIdentifier
bti = UIApplication.shared.beginBackgroundTask {
 UIApplication.shared.endBackgroundTask(bti)
} // error: variable captured by a closure before being initialized

One solution is to declare the variable beforehand and give it a fake initial value as a
placeholder:

var bti : UIBackgroundTaskIdentifier = .invalid
bti = UIApplication.shared.beginBackgroundTask {
 UIApplication.shared.endBackgroundTask(bti)
}

(Alternatively, declaring bti as an Optional, discussed later in this chapter, might be
considered a slightly cleaner approach.)

Computed Initializer
Sometimes, you’d like to run several lines of code in order to compute a variable’s ini‐
tial value. A simple and compact way to express this is with a define-and-call anony‐

74 | Chapter 3: Variables and Simple Types

mous function (see “Define-and-Call” on page 51). I’ll illustrate by rewriting an
earlier example:

let timed : Bool = {
 if val == 1 {
 return true
 } else {
 return false
 }
}()

You can do the same thing when you’re initializing an instance property. For example,
here’s a class with an image (a UIImage) that I’m going to need many times later on. It
makes sense to create this image in advance as a constant instance property of the
class. To create it means to draw it. That takes several lines of code. So I declare and
initialize the property by defining and calling an anonymous function, like this (for
my imageOfSize utility, see Chapter 2):

class RootViewController : UITableViewController {
 let cellBackgroundImage : UIImage = {
 return imageOfSize(CGSize(width:320, height:44)) {
 // ... drawing goes here ...
 }
 }()
 // ... rest of class goes here ...
}

You might ask: Instead of a define-and-call initializer, why don’t I declare an instance
method and initialize the instance property by calling that method? The reason is that
that’s illegal:

class RootViewController : UITableViewController {
 let cellBackgroundImage : UIImage = self.makeTheImage() // compile error
 func makeTheImage() -> UIImage {
 return imageOfSize(CGSize(width:320, height:44)) {
 // ... drawing goes here ...
 }
 }
}

The problem is that, at the time of initializing the instance property, there is no
instance yet — the instance, after all, is what we are in the process of creating. A
define-and-call anonymous function can be a neat legal solution, letting us declare
and initialize an instance property with multiple lines of code. (Even so, there are lim‐
itations on what you can say within a define-and-call anonymous function that initi‐
alizes an instance property; I’ll discuss those limitations, and provide a solution, a
little later in this chapter.)

Computed Initializer | 75

Computed Variables
The variables I’ve been describing so far in this chapter have all been stored variables.
The shoebox analogy applies. The variable is a name, like a shoebox; a value can be
put into the shoebox by assigning it to the variable, and it then sits there and can be
retrieved later by referring to the variable, for as long the variable lives.

Alternatively, a variable can be computed. This means that the variable, instead of
having a value, has functions. One function, the setter, is called when the variable is
assigned to. The other function, the getter, is called when the variable is referred to.
Here’s some code illustrating schematically the syntax for declaring a computed
variable:

var now : String {
 get {
 return Date().description
 }
 set {
 print(newValue)
 }
}

The variable must be declared with var (not let). Its type must be declared
explicitly. The type is followed immediately by curly braces.

The getter function is called get. There is no formal function declaration; the
word get is simply followed immediately by a function body in curly braces.

The getter function must return a value of the same type as the variable.

The setter function is called set. There is no formal function declaration; the
word set is simply followed immediately by a function body in curly braces.

The setter behaves like a function taking one parameter. By default, this parame‐
ter arrives into the setter function body with the local name newValue.

Here’s some code that illustrates the use of our computed variable. You don’t treat it
any differently than any other variable! To assign to the variable, assign to it; to use
the variable, use it. Behind the scenes, though, the setter and getter functions are
called:

now = "Howdy" // Howdy
print(now) // 2018-06-26 17:03:30 +0000

Assigning to now calls its setter. The argument passed into this call is the assigned
value; here, that’s "Howdy". That value arrives in the set function as newValue.
Our set function prints newValue to the console.

76 | Chapter 3: Variables and Simple Types

Fetching now calls its getter. Our get function obtains the current date-time and
translates it into a string, and returns the string. Our code then prints that string
to the console.

Observe that when we set now to "Howdy" in the first line, the string "Howdy" wasn’t
stored anywhere. It had no effect, for example, on the value of now in the second line.
A set function can store a value, but it can’t store it in this computed variable; a com‐
puted variable isn’t storage! It’s a shorthand for calling its getter and setter functions.

There are a couple of variants on the basic syntax I’ve just illustrated:

• The name of the set function parameter doesn’t have to be newValue. To specify
a different name, put it in parentheses after the word set, like this:

set (val) { // now you can use "val" inside the setter function body

• There doesn’t have to be a setter. If the setter is omitted, this becomes a read-only
variable. This is the computed variable equivalent of a let variable: attempting to
assign to it is a compile error.

• There must always be a getter! However, if there is no setter, the word get and
the curly braces that follow it can be omitted. This is a legal declaration of a read-
only variable:

var now : String {
 return Date().description
}

A computed variable can be useful in many ways. Here are the ones that occur most
frequently in my real programming life:

Façade for a longer expression
When a value can be readily calculated or obtained each time it is needed, it often
makes for simpler syntax to express it as a read-only computed variable, which
effectively acts as a shorthand for a longer expression. Here’s an example from my
own code:

var mp : MPMusicPlayerController {
 return MPMusicPlayerController.systemMusicPlayer
}
var nowPlayingItem : MPMediaItem? {
 return self.mp.nowPlayingItem
}

No work is saved by these computed variables; each time we ask for self.now-
PlayingItem, we are fetching MPMusicPlayerController.systemMusic-

Player.nowPlayingItem. Still, the clarity and convenience of the resulting code
justifies the use of computed variables here.

Computed Variables | 77

Façade for an elaborate calculation
A computed variable getter can encapsulate multiple lines of code, in effect turn‐
ing a method into a property. Here’s an example from my own code:

var authorOfItem : String? {
 guard let authorNodes =
 self.extensionElements(
 withXMLNamespace: "http://www.tidbits.com/dummy",
 elementName: "app_author_name")
 else {return nil}
 guard let authorNode = authorNodes.last as? FPExtensionNode
 else {return nil}
 return authorNode.stringValue
}

In that example, I’m diving into some parsed XML and extracting a value. I could
have declared this process as a method (func authorOfItem() -> String), but
this value is more naturally thought of as a thing, a feature of the instance self,
rather than as the output of a function. Thus it makes intuitive sense to charac‐
terize it as a computed property.

Façade for storage
A computed variable can sit in front of one or more stored variables, acting as a
gatekeeper on how those stored variables are set and fetched. This is comparable
to an accessor method in Objective-C. In the extreme case, a public computed
variable is backed by a private stored variable.

Here’s a practical example. My class has an instance property myBigData, holding
a very large stored piece of data, which can alternatively be nil (it’s an Optional,
as I’ll explain later). When my app goes into the background, I want to reduce
memory usage (because iOS kills backgrounded apps that use too much mem‐
ory). So I plan to save the data of myBigData as a file to disk, and then set the
variable itself to nil, thus releasing its data from memory. Now consider what
should happen when my app comes back to the front and my code tries to fetch
myBigData. If it isn’t nil, we just fetch its value. But if it is nil, this might be
because we saved its value to disk. So now I want to restore its value by reading it
from disk, and then fetch its value. This is a perfect use of a computed variable
façade:

private var _myBigData : Data! = nil
var myBigData : Data! {
 set (newdata) {
 self._myBigData = newdata
 }
 get {
 if _myBigData == nil {
 // ... get a reference to file on disk, f ...

78 | Chapter 3: Variables and Simple Types

 if let d = try? Data(contentsOf:f) {
 self._myBigData = d
 // ... erase the file ...
 }
 }
 return self._myBigData
 }
}

As the preceding examples have demonstrated, a computed instance property func‐
tion can refer to other instance members. That’s important, because in general the
initializer for a stored property can’t do that. The reason it’s legal for a computed
property is that its functions won’t be called until the instance actually exists.

Setter Observers
Computed variables are not needed as a stored variable façade as often as you might
suppose. That’s because Swift has another feature, which lets you inject functionality
into the setter of a stored variable — setter observers. These are functions that are
called just before and just after other code sets a stored variable.

The syntax for declaring a variable with a setter observer is very similar to the syntax
for declaring a computed variable; you can write a willSet function, a didSet func‐
tion, or both:

var s = "whatever" {
 willSet {
 print(newValue)
 }
 didSet {
 print(oldValue)
 // self.s = "something else"
 }
}

The variable must be declared with var (not let). It can be assigned an initial
value. It is then followed immediately by curly braces.

The willSet function, if there is one, is the word willSet followed immediately
by a function body in curly braces. It is called when other code sets this variable,
just before the variable actually receives its new value.

By default, the willSet function receives the incoming new value as newValue.
You can change this name by writing a different name in parentheses after the
word willSet. The old value is still sitting in the stored variable, and the willSet
function can access it there.

Setter Observers | 79

The didSet function, if there is one, is the word didSet followed immediately by
a function body in curly braces. It is called when other code sets this variable, just
after the variable actually receives its new value.

By default, the didSet function receives the old value, which has already been
replaced as the value of the variable, as oldValue. You can change this name by
writing a different name in parentheses after the word didSet. The new value is
already sitting in the stored variable, and the didSet function can access it there.
Moreover, it is legal for the didSet function to set the stored variable to a different
value.

Setter observer functions are not called when the stored variable is initialized or
when the didSet function changes the stored variable’s value. That would be
circular!

In practice, I find myself using setter observers, rather than a computed variable, in
the vast majority of situations where I would have used a setter override in Objective-
C. Here’s an example. This is an instance property of a view class. Every time this
property changes, we need to change the interface to reflect it. Not only do we change
the interface, but also we “clamp” the incoming value within a fixed limit:

var angle : CGFloat = 0 {
 didSet {
 // clamp! angle must not be smaller than 0 or larger than 5
 self.angle = min(max(self.angle, 0), 5)
 // modify interface to match
 self.transform = CGAffineTransform(rotationAngle: self.angle)
 }
}

A computed variable can’t have setter observers. But it doesn’t need them! There’s a
setter function, so anything additional that needs to happen during setting can be
programmed directly into that setter function.

Lazy Initialization
The term lazy is not a pejorative puritanical judgment; it’s a formal description of an
important behavior. If a stored variable is assigned an initial value as part of its decla‐
ration, and if it uses lazy initialization, then the initial value is not actually evaluated
and assigned until running code accesses the variable’s value.

There are three types of variable that can be initialized lazily in Swift:

Global variables
Global variables are automatically lazy. This makes sense if you ask yourself when
they should be initialized. As the app launches, files and their top-level code are

80 | Chapter 3: Variables and Simple Types

encountered. It would make no sense to initialize globals now, because the app
isn’t even running yet. Thus global initialization must be postponed to some
moment that does make sense. Therefore, a global variable’s initialization doesn’t
happen until other code first refers to that global. Under the hood, this behavior
is implemented in such a way as to make initialization both singular (it can hap‐
pen only once) and thread-safe.

Static properties
Static properties are automatically lazy. They behave exactly like global variables,
and for basically the same reason. (There are no stored class properties in Swift,
so class properties can’t be initialized and thus can’t have lazy initialization.)

Instance properties
An instance property is not lazy by default, but it may be made lazy by marking
its declaration with the keyword lazy. This property must be declared with var,
not let. The initializer for such a property might never be evaluated, namely if
code assigns the property a value before any code fetches the property’s value.

Lazy initialization is often used to implement singleton. Singleton is a pattern where
all code is able to get access to a single shared instance of a certain class:

class MyClass {
 static let sharedSingleton = MyClass()
}

Now other code can obtain a reference to MyClass’s singleton by saying
MyClass.sharedSingleton. The singleton instance is not created until the first time
other code says this; subsequently, no matter how many times other code may say
this, the instance returned is always that same instance. (That is not what would hap‐
pen if this were a computed read-only property whose getter calls MyClass() and
returns that instance; do you see why?)

Now let’s talk about lazy initialization of instance properties. Why might you want
this? One reason is obvious: the initial value might be expensive to generate, so you’d
like to avoid generating it unless it is actually needed. But there’s another reason that
turns out to be even more important: a lazy initializer can do things that a normal
initializer can’t.

In particular, a lazy initializer can refer to the instance. A normal initializer can’t do
that, because the instance doesn’t yet exist at the time that a normal initializer would
need to run (ex hypothesi, we’re in the middle of creating the instance, so it isn’t ready
yet). A lazy initializer, by contrast, won’t run until some time after the instance has
fully come into existence, so referring to the instance is fine. Thus you can call
instance methods and refer to instance properties of self in the initializer of a lazy
instance property, but you can’t do those things if the instance property isn’t lazy.

Lazy Initialization | 81

For example, this code would be illegal (because you can’t call an instance method in
an instance property initializer) if the arrow property weren’t declared lazy:

class MyView : UIView {
 lazy var arrow = self.arrowImage()
 func arrowImage () -> UIImage {
 // ... big image-generating code goes here ...
 }
}

A very common idiom is to initialize a lazy instance property with a define-and-call
anonymous function whose code can refer to self:

lazy var prog : UIProgressView = {
 let p = UIProgressView(progressViewStyle: .default)
 p.alpha = 0.7
 p.trackTintColor = UIColor.clear
 p.progressTintColor = UIColor.black
 p.frame = CGRect(x:0, y:0, width:self.view.bounds.size.width, height:20)
 p.progress = 1.0
 return p
}()

Unlike automatically lazy global and static variables, an instance property
marked lazy does not initialize itself in a thread-safe way. When used in a multi‐
threaded context, lazy instance properties can cause multiple initialization and
even crashes. Also, lazy instance properties can’t have setter observers; and there’s
no lazy let for instance properties, so you can’t readily make a lazy instance
property read-only.

Built-In Simple Types
Every variable, and every value, must have a type. But what types are there? Up to this
point, I’ve assumed the existence of some types, such as Int and String, without for‐
mally telling you about them. Here’s a survey of the primary simple types provided by
Swift, along with some instance methods, global functions, and operators that apply
to them. (Collection types will be discussed at the end of Chapter 4.)

Bool
The Bool object type (a struct) has only two values, commonly regarded as true and
false (or yes and no). You can represent these values using the literal keywords true
and false, and it is natural to think of a Bool value as being either true or false:

var selected : Bool = false

82 | Chapter 3: Variables and Simple Types

In that code, selected is a Bool variable initialized to false; it can subsequently be
set to false or true, and to no other values. Because of its simple yes-or-no state, a
Bool variable of this kind is often referred to as a flag.

Cocoa methods very often expect a Bool parameter or return a Bool value. For exam‐
ple, when your app launches, Cocoa calls a method in your code declared like this:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplication.LaunchOptionsKey : Any]?)
 -> Bool {

You can do anything you like in that method; often, you will do nothing. But you
must return a Bool! And in real life, that Bool will probably be true. A minimal
implementation thus looks like this:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplication.LaunchOptionsKey : Any]?)
 -> Bool {
 return true
}

A Bool is useful in conditions; as I’ll explain in Chapter 5, when you say if
something, the something is the condition, and is a Bool — or an expression that
evaluates to a Bool. For example, when you compare two values with the equality
comparison operator ==, the result is a Bool — true if they are equal to each other,
false if they are not:

if meaningOfLife == 42 { // ...

(I’ll talk more about equality comparison in a moment, when we come to discuss
types that can be compared, such as Int and String.)

When preparing a condition, you will sometimes find that it enhances clarity to store
the Bool value in a variable beforehand:

let comp = self.traitCollection.horizontalSizeClass == .compact
if comp { // ...

Observe that, when employing that idiom, we use the Bool variable comp directly as
the condition. There is no need to test explicitly whether a Bool equals true or false;
the conditional expression itself is already testing that. It is silly — and arguably
wrong — to say if comp == true, because if comp already means “if comp is true.”

Since a Bool can be used as a condition, a call to a function that returns a Bool can be
used as a condition. Here’s an example from my own code. I’ve declared a function
that returns a Bool to say whether the cards the user has selected constitute a correct
answer to the puzzle:

func isCorrect(_ cells:[CardCell]) -> Bool { // ...

Built-In Simple Types | 83

Thus, elsewhere I can say this:

if self.isCorrect(cellsToTest) { // ...

Unlike many computer languages, nothing else in Swift is implicitly coerced to or
treated as a Bool. In C, for example, a boolean is actually a number, and 0 is false. But
in Swift, nothing is false but false, and nothing is true but true.

The type name, Bool, comes from the English mathematician George Boole; Boolean
algebra provides operations on logical values. Bool values are subject to these same
operations:

! (not)
The ! unary operator reverses the truth value of the Bool to which it is applied as
a prefix. If ok is true, !ok is false — and vice versa.

&& (logical-and)
Returns true only if both operands are true; otherwise, returns false. If the first
operand is false, the second operand is not even evaluated (thus avoiding possi‐
ble side effects).

|| (logical-or)
Returns true if either operand is true; otherwise, returns false. If the first
operand is true, the second operand is not even evaluated (thus avoiding possi‐
ble side effects).

If a logical operation is complicated or elaborate, parentheses around subexpressions
can help clarify both the logic and the order of operations.

A common situation is that we have a Bool stored in a var variable somewhere, and
we want to reverse its value — that is, make it true if it is false, and false if it is
true. The ! operator solves the problem; we fetch the variable’s value, reverse it
with !, and assign the result back into the variable:

v.isUserInteractionEnabled = !v.isUserInteractionEnabled

That, however, is cumbersome and error-prone. New in Swift 4.2, there’s a simpler
way — call the toggle method on the Bool variable:

v.isUserInteractionEnabled.toggle()

Numbers
The main numeric types are Int and Double — meaning that, left to your own devi‐
ces, those are the types you’ll use. Other numeric types exist mostly for compatibility
with the C and Objective-C APIs that Swift needs to be able to talk to when you’re
programming iOS.

84 | Chapter 3: Variables and Simple Types

Int

The Int object type (a struct) represents an integer between Int.max and Int.min
inclusive. The actual values of those limits might depend on the platform and archi‐
tecture under which the app runs, so don’t count on them to be absolute; in my test‐
ing at this moment, they are 263-1 and -263 respectively (64-bit words).

The easiest way to represent an Int value is as a numeric literal. A simple numeric
literal without a decimal point is taken as an Int by default. Internal underscores are
legal; this is useful for making long numbers readable. Leading zeroes are legal; this is
useful for padding and aligning values in your code.

You can write an Int literal using binary, octal, or hexadecimal digits. To do so, start
the literal with 0b, 0o, or 0x respectively. Thus, for example, 0x10 is decimal 16.

Double
The Double object type (a struct) represents a floating-point number to a precision of
about 15 decimal places (64-bit storage).

The easiest way to represent a Double value is as a numeric literal. Any numeric lit‐
eral containing a decimal point is taken as a Double by default. Internal underscores
and leading zeroes are legal.

A Double literal may not begin with a decimal point (unlike C and Objective-C). If
the value to be represented is between 0 and 1, start the literal with a leading 0.

You can write a Double literal using scientific notation. Everything after the letter e is
the exponent of 10. You can omit the decimal point if the fractional digits would be
zero. For example, 3e2 is 3 times 102 (300).

You can write a Double literal using hexadecimal digits. To do so, start the literal with
0x. You can use exponentiation here too (and again, you can omit the decimal point);
everything after the letter p is the exponent of 2. For example, 0x10p2 is decimal 64,
because you are multiplying 16 by 22.

There are static properties Double.infinity and Double.pi, and an instance prop‐
erty isZero, among others.

Numeric coercion
Coercion is the conversion of a value from one type to another, and numeric coercion
is the conversion of a value from one numeric type to another. Swift doesn’t really
have explicit coercion, but it has something that serves the same purpose — instantia‐
tion. To convert an Int explicitly into a Double, instantiate Double with an Int in the
parentheses. To convert a Double explicitly into an Int, instantiate Int with a Double

Built-In Simple Types | 85

in the parentheses; this will truncate the original value (everything after the decimal
point will be thrown away):

let i = 10
let x = Double(i)
print(x) // 10.0, a Double
let y = 3.8
let j = Int(y)
print(j) // 3, an Int

When numeric values are assigned to variables or passed as arguments to a function,
Swift can perform implicit coercion of literals only. This code is legal:

let d : Double = 10

But this code is not legal, because what you’re assigning is a variable (not a literal) of a
different type; the compiler will stop you:

let i = 10
let d : Double = i // compile error

The problem is that i is an Int and d is a Double, and never the twain shall meet. The
solution is to coerce explicitly as you assign or pass the variable:

let i = 10
let d : Double = Double(i)

The same rule holds when numeric values are combined by an arithmetic operation.
Swift will perform implicit coercion of literals only. The usual situation is an Int com‐
bined with a Double; the Int is treated as a Double:

let x = 10/3.0
print(x) // 3.33333333333333

But variables of different numeric types must be coerced explicitly so that they are the
same type if you want to combine them in an arithmetic operation. Thus, for
example:

let i = 10
let n = 3.0
let x = i / n // compile error; you need to say Double(i)

These rules are evidently a consequence of Swift’s strict typing; but (as far as I am
aware) they constitute very unusual treatment of numeric values for a modern com‐
puter language, and will probably drive you mad in short order. The examples I’ve
given so far were easily solved, but things can become more complicated if an arith‐
metic expression is longer, and the problem is compounded by the existence of other
numeric types that are needed for compatibility with Cocoa, as I shall now proceed to
explain.

86 | Chapter 3: Variables and Simple Types

Other numeric types
If you weren’t programming iOS — if you were using Swift in some isolated, abstract
world — you could probably do all necessary arithmetic with Int and Double alone.
Unfortunately, to program iOS you need Cocoa, which is full of other numeric types;
and Swift has types that match every one of them. Thus, in addition to Int, there are
signed integer types of various sizes — Int8, Int16, Int32, Int64 — plus the unsigned
integer type UInt along with UInt8, UInt16, UInt32, and UInt64. In addition to Dou‐
ble, there is the lower-precision Float (32-bit storage, about 6 or 7 decimal places of
precision) and the extended-precision Float80 — plus, in the Core Graphics frame‐
work, CGFloat (whose size can be that of Float or Double, depending on the bitness
of the architecture).

You may also encounter a C numeric type when trying to interface with a C API.
These types, as far as Swift is concerned, are just type aliases, meaning that they are
alternate names for another type; for example, a CDouble (corresponding to C’s
double) is just a Double by another name, a CLong (C’s long) is an Int, and so on.
Many other numeric type aliases will arise in various Cocoa frameworks; for example,
TimeInterval (Objective-C NSTimeInterval) is merely a type alias for Double.

Recall that you can’t assign, pass, or combine values of different numeric types using
variables; you have to coerce those values explicitly to the correct type. But now it
turns out that you’re being flooded by Cocoa with numeric values of many types!
Cocoa will often hand you a numeric value that is neither an Int nor a Double — and
you won’t necessarily realize this, until the compiler stops you dead in your tracks for
some sort of type mismatch. You must then figure out what you’ve done wrong and
coerce everything to the same type.

Here’s a typical example from one of my apps. A slider in the interface is a UISlider,
whose minimumValue and maximumValue are Floats. In this code, s is a UISlider, g is a
UIGestureRecognizer, and we’re trying to use the gesture recognizer to move the slid‐
er’s “thumb” to wherever the user tapped within the slider:

let pt = g.location(in:s)
let percentage = pt.x / s.bounds.size.width
let delta = percentage * (s.maximumValue - s.minimumValue) // compile error

That won’t compile. Here’s why:

pt is a CGPoint, and therefore pt.x is a CGFloat.

Luckily, s.bounds.size.width is also a CGFloat, so the second line compiles;
percentage is now inferred to be a CGFloat.

We now try to combine percentage with s.maximumValue and s.minimumValue
— and they are Floats, not CGFloats. That’s a compile error.

Built-In Simple Types | 87

Figure 3-1. Quick Help displays a variable’s type

This sort of thing is not an issue in C or Objective-C, where there is implicit coercion;
but in Swift a CGFloat can’t be combined with Floats. We must coerce explicitly:

let delta = Float(percentage) * (s.maximumValue - s.minimumValue)

The good news here is that if you can get enough of your code to compile, Xcode’s
Quick Help feature will tell you what type Swift has inferred for a variable
(Figure 3-1). This can assist you in tracking down your issues with numeric types.

Another problem is that not every numeric value can be coerced to a numeric value
of a different type. In particular, integers of various sizes can be out of range with
respect to integer types of other sizes. For example, Int8.max is 127, so attempting to
assign a literal 128 or larger to an Int8 variable is illegal. Fortunately, the compiler will
stop you in that case, because it knows what the literal is. But now consider coercing a
variable value of a larger integer type to an Int8:

let i : Int16 = 128
let ii = Int8(i)

That code is legal — and will crash at runtime. One solution is to call the numeric
exactly: initializer; this is a failable initializer, meaning (as I’ll explain in Chapter 4)
that you won’t crash, but you’ll have to add code to test whether the coercion succee‐
ded:

let i : Int16 = 128
let ii = Int8(exactly:i)
if // ... test to learn whether ii holds a real Int8

(You’ll understand what the test would be when you’ve read the discussion of Option‐
als later in this chapter.)

Yet another solution is to call the clamping: initializer; it always succeeds, because an
out of range value is forced to fall within range:

let i : Int16 = 128
let ii = Int8(clamping:i) // 127

When a floating-point type, such as a Double, is coerced to an integer type, the stuff
after the decimal point is thrown away first and then the coercion is attempted. Thus,
Int8(127.9) succeeds, because 127 is in bounds.

88 | Chapter 3: Variables and Simple Types

Arithmetic operations
Swift’s arithmetic operators are as you would expect; they are familiar from other
computer languages as well as from real arithmetic:

+ (addition operator)
Add the second operand to the first and return the result.

- (subtraction operator)
Subtract the second operand from the first and return the result. A different
operator (unary minus), used as a prefix, looks the same; it returns the additive
inverse of its single operand. (There is, in fact, also a unary plus operator, which
returns its operand unchanged.)

* (multiplication operator)
Multiply the first operand by the second and return the result.

/ (division operator)
Divide the first operand by the second and return the result. As in C, division of
one Int by another Int yields an Int; any remaining fraction is stripped away. 10/3
is 3, not 3-and-one-third.

% (remainder operator)
Divide the first operand by the second and return the remainder. The result can
be negative, if the first operand is negative; if the second operand is negative, it is
treated as positive. For floating-point operands, use a method such as
remainder(dividingBy:) instead.

Integer types can be treated as binary bitfields and subjected to binary bitwise
operations:

& (bitwise-and)
A bit in the result is 1 if and only if that bit is 1 in both operands.

| (bitwise-or)
A bit in the result is 0 if and only if that bit is 0 in both operands.

^ (bitwise-or, exclusive)
A bit in the result is 1 if and only if that bit is not identical in both operands.

~ (bitwise-not)
Precedes its single operand; inverts the value of each bit and returns the result.

<< (shift left)
Shift the bits of the first operand leftward the number of times indicated by the
second operand.

Built-In Simple Types | 89

>> (shift right)
Shift the bits of the first operand rightward the number of times indicated by the
second operand.

Technically, the shift operators perform a logical shift if the integer is unsigned,
and an arithmetic shift if the integer is signed.

Integer overflow or underflow — for example, adding two Int values so as to exceed
Int.max — is a runtime error (your app will crash). In simple cases the compiler will
stop you, but you can get away with it easily enough:

let i = Int.max - 2
let j = i + 12/2 // crash

Under certain circumstances you might want to force such an operation to succeed,
so special overflow/underflow methods are supplied. These methods return a tuple;
I’ll show you an example even though I haven’t discussed tuples yet:

let i = Int.max - 2
let (j, over) = i.addingReportingOverflow(12/2)

Now j is Int.min + 3 (because the value has wrapped around from Int.max to
Int.min) and over is an enum reporting that overflow occurred.

If you don’t care to hear about whether or not there was an overflow/underflow, spe‐
cial arithmetic operators let you suppress the error: &+, &-, &*.

You will frequently want to combine the value of an existing variable arithmetically
with another value and store the result in the same variable. To do so, you will need to
have declared the variable as a var:

var i = 1
i = i + 7

As a shorthand, operators are provided that perform the arithmetic operation and the
assignment all in one move:

var i = 1
i += 7

The shorthand (compound) assignment arithmetic operators are +=, -=, *=, /=, %=, &=,
|=, ^=, <<=, >>=.

Operation precedence is largely intuitive: for example, * has a higher precedence than
+, so x+y*z multiplies y by z first, and then adds the result to x. Use parentheses to
disambiguate when in doubt; for example, (x+y)*z performs the addition first.

Global functions from the Swift standard library include abs (absolute value), max,
and min:

90 | Chapter 3: Variables and Simple Types

let i = -7
let j = 6
print(abs(i)) // 7
print(max(i,j)) // 6

Other global mathematical functions, such as trigonometric sin and cos, come from
the C standard libraries that are visible because you’ve imported UIKit.

Doubles are also stocked with mathematical methods. Thus, for example, if d is a
Double, you can say d.squareRoot() or d.rounded(); if dd is also a Double, you can
say Double.maximum(d,dd).

New in Swift 4.2, numeric types have a random(in:) static method allowing genera‐
tion of a random number. The parameter is a range representing the bounds within
which the random number should fall. (Ranges are discussed later in this chapter.)
This method is much easier to use correctly than the C library methods such as
arc4random_uniform, which should be avoided. For example:

// pick a number from 1 to 10
let i = Int.random(in: 1...10)

Comparison
Numbers are compared using the comparison operators, which return a Bool. For
example, the expression i==j tests whether i and j are equal; when i and j are num‐
bers, “equal” means numerically equal. So i==j is true only if i and j are “the same
number,” in exactly the sense you would expect.

The comparison operators are:

== (equality operator)
Returns true if its operands are equal.

!= (inequality operator)
Returns false if its operands are equal.

< (less-than operator)
Returns true if the first operand is less than the second operand.

<= (less-than-or-equal operator)
Returns true if the first operand is less than or equal to the second operand.

> (greater-than operator)
Returns true if the first operand is greater than the second operand.

>= (greater-than-or-equal operator)
Returns true if the first operand is greater than or equal to the second operand.

Built-In Simple Types | 91

Keep in mind that, because of the way computers store numbers, equality comparison
of Double values may not succeed where you would expect. To test whether two Dou‐
bles are effectively equal, it can be more reliable to compare the difference between
them to a very small value (usually called an epsilon), though choosing an appropriate
value may not be easy:

let isEqual = abs(x - y) < 0.000001

String
The String object type (a struct) represents text. The simplest way to represent a
String value is with a literal, delimited by double quotes:

let greeting = "hello"

A Swift string is thoroughly modern; under the hood, it’s Unicode, and you can
include any character directly in a string literal. If you don’t want to bother typing a
Unicode character whose codepoint you know, use the notation \u{...}, where
what’s between the curly braces is up to eight hex digits:

let leftTripleArrow = "\u{21DA}"

The backslash in that string representation is the escape character; it means, “I’m not
really a backslash; I indicate that the next character gets special treatment.” Various
nonprintable and ambiguous characters are entered as escaped characters; the most
important are:

\n

A Unix newline character

\t

A tab character

\"

A quotation mark (escaped to show that this is not the end of the string literal)

\\

A backslash (escaped because a lone backslash is the escape character)

Starting in Swift 4, a literal string containing newline characters can be entered as
multiple lines (rather than a single-line expression containing "\n" characters). The
rules are:

• The multiline string literal must be delimited by a triple of double quotes (""") at
start and end.

• No material may follow the opening delimiter on the same line.
• No material other than whitespace may appear on the same line as the closing

delimiter.

92 | Chapter 3: Variables and Simple Types

• The last implicit newline character before the closing delimiter is ignored.
• The indentation of the closing delimiter dictates the indentation of the lines of

text, which must be indented at least as far as the closing delimiter (except for
completely empty lines).

For example:

func f() {
 let s = """
 Line 1
 Line 2
 Line 3
 """
 // ...
}

In that code, the string s consists of three lines of text; lines 1 and 3 start with no
whitespace; line 2 starts with four spaces; and there are two newline characters,
namely after lines 1 and 2. To add a newline after line 3, you could enter a blank line,
or write it as an escaped \n.

In a multiline string literal, quotation marks do not have to be escaped. A line ending
with a backslash is joined with the following line. In this code, the string s consists of
just two lines of text; the second line consists of four spaces followed by “Line 2 and
this is still line 2”:

func f() {
 let s = """
 Line "1"
 Line 2 \
 and this is still Line 2
 """
 // ...
}

String interpolation permits you to embed any value that can be output with print
inside a literal string as a string, even if it is not itself a string. The notation is escaped
parentheses: \(...). For example:

let n = 5
let s = "You have \(n) widgets."

Now s is the string "You have 5 widgets." The example is not very compelling,
because we know what n is and could have typed 5 directly into our string; but imag‐
ine that we don’t know what n is! Moreover, the stuff in escaped parentheses doesn’t
have to be the name of a variable; it can be almost any expression that evaluates as
legal Swift. If you don’t know how to add, this example is more compelling:

Built-In Simple Types | 93

let m = 4
let n = 5
let s = "You have \(m + n) widgets."

To combine (concatenate) two strings, the simplest approach is to use the + operator:

let s = "hello"
let s2 = " world"
let greeting = s + s2

This convenient notation is possible because the + operator is overloaded: it does one
thing when the operands are numbers (numeric addition) and another when the
operands are strings (concatenation). As I’ll explain in Chapter 5, all operators can be
overloaded, and you can overload them to operate in some appropriate way on your
own types.

The + operator comes with a += assignment shortcut; naturally, the variable on the left
side must have been declared with var:

var s = "hello"
let s2 = " world"
s += s2

As an alternative to +=, you can call the append(_:) instance method:

var s = "hello"
let s2 = " world"
s.append(s2)

Another way of concatenating strings is with the joined(separator:) method. You
start with an array (yes, I know we haven’t gotten to arrays yet) of strings to be con‐
catenated, and hand it the string that is to be inserted between all of them:

let s = "hello"
let s2 = "world"
let space = " "
let greeting = [s,s2].joined(separator:space)

The comparison operators are also overloaded so that they all work with String
operands. Two String values are equal (==) if they are, in the natural sense of the
words, “the same text.” A String is less than another if it is alphabetically prior.

Some additional convenient instance methods and properties are provided. isEmpty
returns a Bool reporting whether this string is the empty string (""). hasPrefix(_:)
and hasSuffix(_:) report whether this string starts or ends with another string; for
example, "hello".hasPrefix("he") is true. The uppercased and lowercased meth‐
ods provide uppercase and lowercase versions of the original string.

Coercion between a String and an Int is possible. To make a string that represents an
Int, it is sufficient to use string interpolation; alternatively, use the Int as a String ini‐
tializer, just as if you were coercing between numeric types:

94 | Chapter 3: Variables and Simple Types

let i = 7
let s = String(i) // "7"

Your string can also represent an Int in some other base; supply a radix: argument
expressing the base:

let i = 31
let s = String(i, radix:16) // "1f"

A String that might represent a number can be coerced to a numeric type; an integer
type will accept a radix: argument expressing the base. The coercion might fail,
though, because the String might not represent a number of the specified type; so the
result is not a number but an Optional wrapping a number (I haven’t talked about
Optionals yet, so you’ll have to trust me for now; failable initializers are discussed in
Chapter 4):

let s = "31"
let i = Int(s) // Optional(31)
let s2 = "1f"
let i2 = Int(s2, radix:16) // Optional(31)

The length of a String, in characters, is given by its count property:

let s = "hello"
let length = s.count // 5

This property is called count rather then length because a String doesn’t really have a
simple length. The String is stored as a sequence of Unicode codepoints, but multiple
Unicode codepoints can combine to form a character; so, in order to know how many
characters are represented by such a sequence, we actually have to walk through the
sequence and resolve it into the characters that it represents.

You, too, can walk through a String’s characters. The simplest way is with the
for...in construct (see Chapter 5). What you get when you do this are Character
objects; I’ll talk more about Character objects later:

let s = "hello"
for c in s {
 print(c) // print each Character on its own line
}

At an even deeper level, you can decompose a String into its UTF-8 codepoints or its
UTF-16 codepoints, using the utf8 and utf16 properties:

let s = "\u{BF}Qui\u{E9}n?"
for i in s.utf8 {
 print(i) // 194, 191, 81, 117, 105, 195, 169, 110, 63
}
for i in s.utf16 {
 print(i) // 191, 81, 117, 105, 233, 110, 63
}

Built-In Simple Types | 95

There is also a unicodeScalars property representing a collection (a String.Unicode‐
ScalarView) of the String’s UTF-32 codepoints expressed as UnicodeScalar structs. To
illustrate, here’s a utility function that turns a two-letter country abbreviation into an
emoji representation of its flag:

func flag(country:String) -> String {
 let base : UInt32 = 127397
 var s = ""
 for v in country.unicodeScalars {
 s.unicodeScalars.append(UnicodeScalar(base + v.value)!)
 }
 return String(s)
}
// and here's how to use it:
let s = flag(country:"DE")

The curious thing is that there aren’t more methods for standard string manipulation.
How, for example, do you capitalize a string, or find out whether a string contains a
given substring? Most modern programming languages have a compact, convenient
way of doing things like that; Swift doesn’t. The reason appears to be that missing fea‐
tures are provided by the Foundation framework, to which you’ll always be linked in
real life (importing UIKit imports Foundation). A Swift String is bridged to a Foun‐
dation NSString. This means that, to a large extent, Foundation NSString properties
and methods magically spring to life whenever you are using a Swift String. For
example:

let s = "hello world"
let s2 = s.capitalized // "Hello World"

The capitalized property comes from the Foundation framework; it’s provided by
Cocoa, not by Swift. It’s an NSString property; it appears tacked onto String “for free.”
Similarly, here’s how to locate a substring of a string:

let s = "hello"
let range = s.range(of:"ell") // Optional(Range(...)) [details omitted]

I haven’t explained yet what an Optional is or what a Range is (I’ll talk about them
later in this chapter), but that innocent-looking code has made a remarkable round-
trip from Swift to Cocoa and back again: the Swift String s becomes an NSString, an
NSString method is called, a Foundation NSRange struct is returned, and the
NSRange is converted to a Swift Range and wrapped up in an Optional.

Character and String Index
You are more likely to be interested in a string’s characters than its codepoints. Code‐
points are numbers, but what we naturally think of as characters are effectively mini‐
mal strings: a character is a single “letter” or “symbol” — formally, a grapheme. The
equivalence between numeric codepoints and symbolic graphemes is provided, in

96 | Chapter 3: Variables and Simple Types

The String–NSString Element Mismatch
Swift and Cocoa have different ideas of what the elements of a string are. The Swift
conception involves characters. The NSString conception involves UTF-16 code‐
points. Each approach has its advantages. The NSString way makes for great speed
and efficiency in comparison to Swift, which must walk the string to investigate how
the characters are constructed; but the Swift way gives what you would intuitively
think of as the right answer. To emphasize this difference, a nonliteral Swift string has
no length property; its analog to an NSString’s length is its utf16.count.

Fortunately, the element mismatch doesn’t arise very often in practice; but it can arise.
Here’s a good test case:

let s = "Ha\u{030A}kon"
print(s.count) // 5
let length = (s as NSString).length // or: s.utf16.count
print(length) // 6

We’ve created our string (the Norwegian name Håkon) using a Unicode codepoint
that combines with the previous codepoint to form a character with a ring over it.
Swift walks the whole string, so it normalizes the combination and reports five char‐
acters. Cocoa just sees at a glance that this string contains six 16-bit codepoints.

Unicode, by the notion of a grapheme cluster. To embody this equivalence, Swift pro‐
vides the Character object type (a struct), representing a single grapheme cluster.

A String in Swift 4 and later simply is a character sequence — quite literally, a
Sequence of the Character objects that constitute it. That is why, as I mentioned ear‐
lier, you can walk through a string with for...in to obtain the String’s Characters,
one by one; when you do that, you’re walking through the string qua character
sequence:

let s = "hello"
for c in s {
 print(c) // print each Character on its own line
}

It isn’t common to encounter Character objects outside of some character sequence of
which they are a part. There isn’t even a way to write a literal Character. To make a
Character from scratch, initialize it from a single-character String:

let c = Character("h")

Similarly, you can pass a one-character String literal where a Character is expected,
and many examples in this section will do so.

By the same token, you can initialize a String from a Character:

Built-In Simple Types | 97

let c = Character("h")
let s = (String(c)).uppercased()

Characters can be compared for equality; “less than” means what you would expect it
to mean.

Formally, a String is both a Sequence of Characters and a Collection of Characters.
Sequence and Collection are protocols; I’ll discuss protocols in Chapter 4, but what’s
important for now is that a String is endowed with methods and properties that it
gets by virtue of being a Sequence and a Collection.

For example, a String has a first and last property; the resulting Character is wrap‐
ped in an Optional because the string might be empty:

let s = "hello"
let c1 = s.first // Optional("h")
let c2 = s.last // Optional("o")

The firstIndex(of:) method locates the first occurrence of a given character within
the sequence and returns its index. Again, this is an Optional, because the character
might be absent:

let s = "hello"
let firstL = s.firstIndex(of:"l") // Optional(2)

All Swift indexes are numbered starting with 0, so 2 means the third character. The
index value here, however, is not an Int; I’ll explain in a moment what it is and what
it’s good for.

A related method, firstIndex(where:), takes a function that takes a Character and
returns a Bool. This code locates the first character smaller than "f":

let s = "hello"
let firstSmall = s.firstIndex {$0 < "f"} // Optional(1)

Those methods are matched by lastIndex(of:) and lastIndex(where:).

A String has a contains(_:) method that returns a Bool, reporting whether a certain
character is present:

let s = "hello"
let ok = s.contains("o") // true

Alternatively, contains(_:) can take a function that takes a Character and returns a
Bool. This code reports whether the target string contains a vowel:

let s = "hello"
let ok = s.contains {"aeiou".contains($0)} // true

The filter(_:) method, too, takes a function that takes a Character and returns a
Bool, effectively eliminating those characters for which false is returned. Here, we
delete all consonants from a string:

98 | Chapter 3: Variables and Simple Types

let s = "hello"
let s2 = s.filter {"aeiou".contains($0)} // "eo"

The dropFirst and dropLast methods return, in effect, a new string without the first
or last character, respectively:

let s = "hello"
let s2 = s.dropFirst() // "ello"

I say “in effect” because a method that extracts a substring returns, in reality, a Sub‐
string instance. The Substring struct is an efficient way of pointing at part of some
original String, rather than having to generate a new String. Thus, for example, when
we call s.dropFirst() on the string "hello", the resulting Substring points at the
"ello" part of "hello", which continues to exist; there is still only one string, and no
new string storage memory is required.

In general, the difference between a String and a Substring will make little practical
difference to you, because what you can do with a String, you can usually do also with
a Substring. Nevertheless, they are different classes; this code won’t compile:

var s = "hello"
let s2 = s.dropFirst()
s = s2 // compile error

To pass a Substring where a String is expected, coerce the Substring to a String
explicitly:

var s = "hello"
let s2 = s.dropFirst()
s = String(s2)

prefix(_:) and suffix(_:) extract a Substring of a given length from the start or
end of the original string:

var s = "hello"
s = String(s.prefix(4)) // "hell"

split(_:) breaks a string up into an array, according to a function that takes a Char‐
acter and returns a Bool. In this example, I obtain the words of a String, where a
“word” is simplemindedly defined as a run of Characters other than a space:

let s = "hello world"
let arr = s.split{$0 == " "} // ["hello", "world"]

The result is actually an array of Substrings. If we needed to get String objects, we
could apply the map(_:) function and coerce them all to Strings. I’ll talk about
map(_:) in Chapter 4, so you’ll have to trust me for now:

let s = "hello world"
let arr = s.split{$0 == " "}.map{String($0)} // ["hello", "world"]

Built-In Simple Types | 99

A String, qua character sequence, can also be manipulated similarly to an array. For
example, you can use subscripting to obtain the character at a certain position.
Unfortunately, this isn’t as easy as it might be. For example, what’s the second charac‐
ter of "hello"? This doesn’t compile:

let s = "hello"
let c = s[1] // compile error

The reason is that the indexes on a String (or its underlying character sequence) are
not Int values, but rather a special nested type, a String.Index (which is actually a type
alias for String.CharacterView.Index). To make an object of this type is rather tricky.
Start with a String’s (or a character sequence’s) startIndex or endIndex, or with the
return value from firstIndex or lastIndex; you can then call the index(_:offset-
By:) method to derive the index you want:

let s = "hello"
let ix = s.startIndex
let ix2 = s.index(ix, offsetBy:1)
let c = s[ix2] // "e"

The reason for this clumsy circumlocution is that Swift doesn’t know where the char‐
acters of a character sequence actually are until it walks the sequence; calling
index(_:offsetBy:) is how you make Swift do that.

To offset an index by a single position, you can obtain the next or preceding index
value with the index(after:) and index(before:) methods. Thus, I could have
written the preceding example like this:

let s = "hello"
let ix = s.startIndex
let c = s[s.index(after:ix)] // "e"

Another reason why it’s necessary to think of a string index as an offset from the
startIndex or endIndex is that those values, as Ints, may not be what you think they
are — in particular, when you’re dealing with a Substring. Consider, once again, the
following:

let s = "hello"
let s2 = s.dropFirst()

Now s2 is "ello". What, then, is s2.startIndex? Not 0, but 1 — because s2 is a Sub‐
string pointing into the original "hello", where the index of the "e" is 1. Similarly,
s2.firstIndex(of:"o") is not 3, but 4, because the index value is reckoned with
respect to the original "hello".

Once you’ve obtained a desired character index value, you can use it to modify the
String. For example, the insert(contentsOf:at:) method inserts a string into a
string:

100 | Chapter 3: Variables and Simple Types

var s = "hello"
let ix = s.index(s.startIndex, offsetBy:1)
s.insertContentsOf("ey, h", at: ix) // s is now "hey, hello"

Similarly, remove(at:) deletes a single character, and also returns that character.
(Manipulations involving longer character stretches require use of a Range, which is
the subject of the next section.)

Note that a character sequence can be coerced directly to an Array of Character
objects — for example, Array("hello") creates an array of the characters "h", "e",
and so on. It could be worth your while to do that, because array indexes are Ints, and
are thus easy to work with. Once you’ve manipulated the array of Characters, you can
coerce it directly to a String. I’ll give an example in the next section (and I’ll discuss
arrays, and say more about collections and sequences, in Chapter 4).

Range
The Range object type (a struct) represents a pair of endpoints. There are two opera‐
tors for forming a Range literal; you supply a start value and an end value, with one of
the Range operators between them:

... (closed range operator)
The notation a...b means “everything from a up to b, including b.”

..< (half-open range operator)
The notation a..<b means “everything from a up to but not including b.”

Spaces around a Range operator are legal.

The types of a Range’s endpoints will typically be some kind of number — most often,
Ints:

let r = 1...3

If the end value is a negative literal, it has to be enclosed in parentheses or preceded
by whitespace:

let r = -1000 ... -1

Starting in Swift 4, it is also possible to omit one of the end values from a Range lit‐
eral, thus specifying a partial range. I’ll give examples later.

A very common use of a Range is to loop through numbers with for...in:

for ix in 1...3 {
 print(ix) // 1, then 2, then 3
}

Built-In Simple Types | 101

There are no reverse Ranges: the start value of a Range can’t be greater than the end
value (the compiler won’t stop you, but you’ll crash at runtime). In practice, you can
use Range’s reversed() method to iterate from a higher value to a lower one:

for ix in (1...3).reversed() {
 print(ix) // 3, then 2, then 1
}

In Chapter 5 I’ll show how to create a custom operator that effectively generates a
reverse Range.

You can also use a Range’s contains(_:) instance method to test whether a value falls
within given limits:

let ix = // ... an Int ...
if (1...3).contains(ix) { // ...

For purposes of testing containment, a Range’s endpoints can be Doubles:

let d = // ... a Double ...
if (0.1...0.9).contains(d) { // ...

There are also methods for learning whether two ranges overlap, and for clamping
one range to another.

Another common use of a Range is to index into a sequence. For example, here’s one
way to get the second, third, and fourth characters of a String. As I suggested at the
end of the preceding section, we coerce the String to an Array of Character; we can
then use an Int Range as an index into that array, and coerce back to a String:

let s = "hello"
let arr = Array(s)
let result = arr[1...3]
let s2 = String(result) // "ell"

A String is itself a sequence — a character sequence — so you can use a Range to
index directly into a String; but then it has to be a Range of String.Index, which, as
I’ve already pointed out, is rather tricky to obtain. By manipulating String.Index val‐
ues, you can form a Range of the proper type and use it to extract a substring by
subscripting:

let s = "hello"
let ix1 = s.index(s.startIndex, offsetBy:1)
let ix2 = s.index(ix1, offsetBy:2)
let s2 = s[ix1...ix2] // "ell"

A partial range is a legal subscript value; the omitted endpoint is a shorthand for the
startIndex or endIndex:

let s = "hello"
let ix2 = s.index(before: s.endIndex)
let s2 = s[..<ix2] // "hell"

102 | Chapter 3: Variables and Simple Types

The replaceSubrange(_:with:) method splices into a range, thus modifying the
string:

var s = "hello"
let ix = s.startIndex
let r = s.index(ix, offsetBy:1)...s.index(ix, offsetBy:3)
s.replaceSubrange(r, with: "ipp") // s is now "hippo"

Similarly, you can delete a stretch of characters with the removeSubrange(_:)
method:

var s = "hello"
let ix = s.startIndex
let r = s.index(ix, offsetBy:1)...s.index(ix, offsetBy:3)
s.removeSubrange(r) // s is now "ho"

Tuple
A tuple is a lightweight custom ordered collection of multiple values. As a type, it is
expressed by surrounding the types of the contained values with parentheses, separa‐
ted by a comma. For example, here’s a declaration for a variable whose type is a tuple
of an Int and a String:

var pair : (Int, String)

The literal value of a tuple is expressed in the same way — the contained values, sur‐
rounded with parentheses and separated by a comma:

var pair : (Int, String) = (1, "Two")

Those types can be inferred, so there’s no need for the explicit type in the declaration:

var pair = (1, "Two")

Tuples are a pure Swift language feature; they are not compatible with Cocoa and
Objective-C, so you’ll use them only for values that Cocoa never sees. Within Swift,
however, they have many uses. For example, a tuple is an obvious solution to the
problem that a function can return only one value; a tuple is one value, but it contains
multiple values, so using a tuple as the return type of a function permits that function
to return multiple values.

Tuples come with numerous linguistic conveniences. You can assign to a tuple of
variable names as a way of assigning to multiple variables simultaneously:

let ix: Int
let s: String
(ix, s) = (1, "Two")

That’s such a convenient thing to do that Swift lets you do it in one line, declaring and
initializing multiple variables simultaneously:

let (ix, s) = (1, "Two")

Built-In Simple Types | 103

To ignore one of the assigned values, use an underscore to represent it in the receiv‐
ing tuple:

let pair = (1, "Two")
let (_, s) = pair // now s is "Two"

Assigning variable values to one another through a tuple swaps them safely:

var s1 = "hello"
var s2 = "world"
(s1, s2) = (s2, s1) // now s1 is "world" and s2 is "hello"

The enumerated method lets you walk a sequence with for...in and receive, on each
iteration, each successive element’s index number along with the element itself; this
double result comes to you as — you guessed it — a tuple:

let s = "hello"
for (ix,c) in s.enumerated() {
 print("character \(ix) is \(c)")
}

I also pointed out earlier that numeric instance methods such as addingReporting-
Overflow return a tuple.

You can refer to the individual elements of a tuple directly, in two ways. The first way
is by index number, using a literal number (not a variable value) as the name of a mes‐
sage sent to the tuple with dot-notation:

let pair = (1, "Two")
let ix = pair.0 // now ix is 1

If you have a var reference to a tuple, you can assign into it by the same means:

var pair = (1, "Two")
pair.0 = 2 // now pair is (2, "Two")

The second way to access tuple elements is to give them labels. The notation is like
that of function parameters, and must appear as part of the explicit or implicit type
declaration. Thus, here’s one way to establish tuple element labels:

let pair : (first:Int, second:String) = (1, "Two")

And here’s another way:

let pair = (first:1, second:"Two")

The labels are now part of the type of this value, and travel with it through subse‐
quent assignments. You can then use them as literal messages, just like (and together
with) the numeric literals:

var pair = (first:1, second:"Two")
let x = pair.first // 1
pair.first = 2
let y = pair.0 // 2

104 | Chapter 3: Variables and Simple Types

The tuple generated by the enumerated method has labels offset and element, so we
can rewrite an earlier example like this:

let s = "hello"
for t in s.enumerated() {
 print("character \(t.offset) is \(t.element)")
}

You can assign from a tuple without labels into a corresponding tuple with labels
(and vice versa):

let pair = (1, "Two")
let pairWithNames : (first:Int, second:String) = pair
let ix = pairWithNames.first // 1

You can also pass, or return from a function, a tuple without labels where a corre‐
sponding tuple with labels is expected:

func tupleMaker() -> (first:Int, second:String) {
 return (1, "Two") // no labels here
}
let ix = tupleMaker().first // 1

If you’re going to be using a certain type of tuple consistently throughout your pro‐
gram, it might be useful to give it a type name. To do so, define a type alias. For exam‐
ple, in my LinkSame app I have a Board class describing and manipulating the game
layout. The board is a grid of Piece objects. I need a way to describe positions of the
grid. That’s a pair of integers, so I define my own type as a tuple:

class Board {
 typealias Point = (x:Int, y:Int)
 // ...
}

The advantage of that notation is that it now becomes easy to use Points throughout
my code. For example, given a Point, I can fetch the corresponding Piece:

func piece(at p:Point) -> Piece? {
 let (i,j) = p
 // ... error-checking goes here ...
 return self.grid[i][j]
}

Void, the type of value returned by a function that doesn’t return a value, is
actually a type alias for an empty tuple. That’s why it is also notated as ().

Optional
The Optional object type (an enum) wraps another object of any type. What makes
an Optional optional is this: it might wrap another object, but then again it might not.

Built-In Simple Types | 105

Think of an Optional as being itself a kind of shoebox — a shoebox which can quite
legally be empty.

Let’s start by creating an Optional that does wrap an object. Suppose we want an
Optional wrapping the String "howdy". One way to create it is with the Optional
initializer:

var stringMaybe = Optional("howdy")

If we log stringMaybe to the console with print, we’ll see an expression identical to
the corresponding initializer: Optional("howdy").

After that declaration and initialization, stringMaybe is typed, not as a String, nor as
an Optional plain and simple, but as an Optional wrapping a String. This means that
any other Optional wrapping a String can be assigned to it — but not an Optional
wrapping some other type. This code is legal:

var stringMaybe = Optional("howdy")
stringMaybe = Optional("farewell")

This code, however, is not legal:

var stringMaybe = Optional("howdy")
stringMaybe = Optional(123) // compile error

Optional(123) is an Optional wrapping an Int, and you can’t assign an Optional
wrapping an Int where an Optional wrapping a String is expected.

Optionals are so important to Swift that special syntax for working with them is
baked into the language. The usual way to make an Optional is not to use the
Optional initializer (though you can certainly do that), but to assign or pass a value of
some type to a reference that is already typed as an Optional wrapping that type. This
seems as if it should not be legal — but it is. For example, once stringMaybe is typed
as an Optional wrapping a String, it is legal to assign a String directly to it. The out‐
come is that the assigned String is wrapped in an Optional for us, automatically:

var stringMaybe = Optional("howdy")
stringMaybe = "farewell" // now stringMaybe is Optional("farewell")

We also need a way of typing something explicitly as an Optional wrapping a String.
Otherwise, we cannot declare a variable or parameter with an Optional type. For‐
mally, an Optional is a generic, so an Optional wrapping a String is an
Optional<String> (I’ll explain that syntax in Chapter 4). However, you don’t have to
write that. The Swift language supports syntactic sugar for expressing an Optional
type: use the name of the wrapped type followed by a question mark. For example:

var stringMaybe : String?

Thus I don’t need to use the Optional initializer at all. I can type the variable as an
Optional wrapping a String and assign a String into it for wrapping, all in one move:

106 | Chapter 3: Variables and Simple Types

var stringMaybe : String? = "howdy"

That, in fact, is the normal way to make an Optional in Swift.

Once you’ve got an Optional wrapping a particular type, you can use it wherever an
Optional wrapping that type is expected — just like any other value. If a function
expects an Optional wrapping a String as its parameter, you can pass stringMaybe as
the argument:

func optionalExpecter(_ s:String?) {}
let stringMaybe : String? = "howdy"
optionalExpecter(stringMaybe)

Moreover, where an Optional wrapping a certain type of value is expected, you can
pass a value of that wrapped type instead. That’s because parameter passing is just like
assignment: an unwrapped value will be wrapped implicitly for you. For example, if a
function expects an Optional wrapping a String, you can pass a String argument,
which will be wrapped into an Optional in the received parameter:

func optionalExpecter(_ s:String?) {
 // ... here, s will be an Optional wrapping a String ...
 print(s)
}
optionalExpecter("howdy") // console prints: Optional("howdy")

But you cannot do the opposite — you cannot use an Optional wrapping a type
where the wrapped type is expected. This won’t compile:

func realStringExpecter(_ s:String) {}
let stringMaybe : String? = "howdy"
realStringExpecter(stringMaybe) // compile error

The error message reads: “Value of Optional type String? must be unwrapped.”
You’re going to be seeing that sort of message a lot in Swift, so get used to it! If you
want to use an Optional where the type of thing it wraps is expected, you must
unwrap the Optional — that is, you must reach inside it and retrieve the actual thing
that it wraps. Now I’m going to talk about how to do that.

Unwrapping an Optional
We have seen more than one way to wrap an object in an Optional. But what about
the opposite procedure? How do we unwrap an Optional to get at the object wrapped
inside it? One way is to use the unwrap operator (or forced unwrap operator), which is
a postfixed exclamation mark. For example:

func realStringExpecter(_ s:String) {}
let stringMaybe : String? = "howdy"
realStringExpecter(stringMaybe!)

In that code, the stringMaybe! syntax expresses the operation of reaching inside the
Optional stringMaybe, grabbing the wrapped value, and substituting it at that point.

Built-In Simple Types | 107

Since stringMaybe is an Optional wrapping a String, the thing inside it is a String.
That is exactly what the realStringExpecter function wants as its parameter! string-
Maybe is an Optional wrapping the String "howdy", but stringMaybe! is the String
"howdy".

If an Optional wraps a certain type, you cannot send it a message expected by that
type. You must unwrap it first. For example, let’s try to get an uppercase version of
stringMaybe:

let stringMaybe : String? = "howdy"
let upper = stringMaybe.uppercased() // compile error

The solution is to unwrap stringMaybe to get at the String inside it. We can do this
directly, in place, using the unwrap operator:

let stringMaybe : String? = "howdy"
let upper = stringMaybe!.uppercased()

If an Optional is to be used several times where the unwrapped type is expected, and
if you’re going to be unwrapping it with the unwrap operator each time, your code
can quickly start to look like the dialog from a 1960s Batman comic. For example, in
iOS programming, an app’s window is an Optional UIWindow property of the app
delegate (self.window):

// self.window is an Optional wrapping a UIWindow
self.window!.rootViewController = RootViewController()
self.window!.backgroundColor = UIColor.white
self.window!.makeKeyAndVisible()

That sort of thing soon gets old (or silly). One obvious alternative is to assign the
unwrapped value once to a variable of the wrapped type and then use that variable:

// self.window is an Optional wrapping a UIWindow
let window = self.window!
// now window (not self.window) is a UIWindow, not an Optional
window.rootViewController = RootViewController()
window.backgroundColor = UIColor.white
window.makeKeyAndVisible()

Implicitly unwrapped Optional
Swift provides another way of using an Optional where the wrapped type is expected:
you can declare the Optional type as being implicitly unwrapped. An implicitly
unwrapped Optional is an Optional, but the compiler permits some special magic
associated with it: its value can be used directly where the wrapped type is expected.
You can unwrap an implicitly unwrapped Optional explicitly, but you don’t have to,
because it will be unwrapped for you, automatically, if you try to use it where the
wrapped type is expected. Moreover, Swift provides syntactic sugar for expressing an
implicitly unwrapped Optional type. Just as an Optional wrapping a String can be

108 | Chapter 3: Variables and Simple Types

expressed as String?, an implicitly unwrapped Optional wrapping a String can be
expressed as String!. For example:

func realStringExpecter(_ s:String) {}
var stringMaybe : String! = "howdy"
realStringExpecter(stringMaybe) // no problem

Bear in mind that an implicitly unwrapped Optional is still an Optional. It’s just a con‐
venience. By declaring something as an implicitly unwrapped Optional, you are ask‐
ing the compiler, if you happen to use this value where the wrapped type is expected,
to forgive you and to unwrap the value for you.

In reality, an implicitly unwrapped Optional type is not really a distinct type; it is
merely an Optional marked in a special way that allows it to be used where the
unwrapped type is expected. For this reason, implicit unwrapping does not propagate
by assignment. Here’s a case in point. If self is a UIViewController, then self.view
is typed as UIView!. As a result, this expression is legal (assume v is a UIView):

self.view.addSubview(v)

But this is not legal:

let mainview = self.view
mainview.addSubview(v) // compile error

The problem is that, although self.view is an implicitly unwrapped Optional wrap‐
ping a UIView, mainview is a normal Optional wrapping a UIView, and so it would
have to be unwrapped explicitly before you could send it the addSubview message.
Alternatively, you could unwrap the implicitly unwrapped Optional explicitly at the
outset:

let mainview = self.view!
mainview.addSubview(v)

In real life, the only time you’re likely to declare an implicitly unwrapped Optional is
when an instance property’s initial value can’t be provided until after the instance
itself is created. I’ll give some examples at the end of this chapter.

The keyword nil
I have talked so far about Optionals that contain a wrapped value. But what about an
Optional that doesn’t contain any wrapped value? Such an Optional is, as I’ve already
said, a perfectly legal entity; that, indeed, is the whole point of Optionals.

You are going to need a way to ask whether an Optional contains a wrapped value,
and a way to specify an Optional without a wrapped value. Swift makes both of those
things easy, through the use of a special keyword, nil:

Built-In Simple Types | 109

To learn whether an Optional contains a wrapped value
Test the Optional for equality against nil. If the test succeeds, the Optional is
empty. An empty Optional is also reported in the console as nil.

To specify an Optional with no wrapped value
Assign or pass nil where the Optional type is expected. The result is an Optional
of the expected type, containing no wrapped value.

For example:

var stringMaybe : String? = "Howdy"
print(stringMaybe) // Optional("Howdy")
if stringMaybe == nil {
 print("it is empty") // does not print
}
stringMaybe = nil
print(stringMaybe) // nil
if stringMaybe == nil {
 print("it is empty") // prints
}

The keyword nil lets you express the concept, “an Optional wrapping the appropri‐
ate type, but not actually containing any object of that type.” Clearly, that’s very con‐
venient magic; you’ll want to take advantage of it. It is very important to understand,
however, that it is magic: nil in Swift is not a thing and is not a value. It is a short‐
hand. It is natural to think and speak as if this shorthand were real. For example, I
will say that something “is nil.” But in reality, nothing “is nil”; nil isn’t a thing. What
I really mean is that this thing is equatable with nil, because it is an Optional not
wrapping anything. (I’ll explain in Chapter 4 how nil, and Optionals in general,
really work.)

Because a variable typed as an Optional can be nil, Swift follows a special initializa‐
tion rule: a variable (var) typed as an Optional is nil, automatically. This is legal:

func optionalExpecter(_ s:String?) {}
var stringMaybe : String?
optionalExpecter(stringMaybe)

That code is interesting because it looks as if it should be illegal. We declared a vari‐
able stringMaybe, but we never assigned it a value. Nevertheless we are now passing
it around as if it were an actual thing. That’s because it is an actual thing. This variable
has been implicitly initialized — to nil. A variable (var) typed as an Optional is the
only sort of variable that gets implicit initialization in Swift.

We come now to perhaps the most important rule in all of Swift: You cannot unwrap
an Optional containing nothing (an Optional equatable with nil). Such an Optional
contains nothing; there’s nothing to unwrap. Like Oakland, there’s no there there. In

110 | Chapter 3: Variables and Simple Types

fact, explicitly unwrapping an Optional containing nothing will crash your program at
runtime:

var stringMaybe : String?
let s = stringMaybe! // crash

The crash message reads: “Fatal error: unexpectedly found nil while unwrapping an
Optional value.” Get used to it, because you’re going to be seeing it a lot. This is an
easy mistake to make. Unwrapping an Optional that contains no value is, in fact,
probably the most common way to crash a Swift program. You should look upon this
kind of crash as a blessing. Very often, in fact, you will want to crash if your Optional
contains no value, because it should contain a value, and the fact that it doesn’t indi‐
cates that you’ve made a mistake elsewhere.

In the long run, however, crashing is bad. To eliminate this kind of crash, you need to
ensure that your Optional contains a value, and don’t unwrap it if it doesn’t! Ensuring
that an Optional contains a value before attempting to unwrap it is clearly a very
important thing to do. Accordingly, Swift provides several convenient ways of doing
it. I’ll describe some of them now, and I’ll discuss others in Chapter 5.

One obvious approach is to test your Optional against nil explicitly before you
unwrap it:

var stringMaybe : String?
// ... stringMaybe might be assigned a real value here ...
if stringMaybe != nil {
 let s = stringMaybe!
 // ...
}

But there’s a more elegant way, as I shall now explain.

Optional chains
A common situation is that you want to send a message to the value wrapped inside
an Optional. You cannot send such a message to the Optional itself. If you try to do so,
you will get an error message from the compiler:

let stringMaybe : String? = "howdy"
let upper = stringMaybe.uppercased() // compile error

You must unwrap the Optional first, so that you can send that message to the actual
thing wrapped inside. Conveniently, you can unwrap the Optional in place. I gave an
example earlier:

let stringMaybe : String? = "howdy"
let upper = stringMaybe!.uppercased()

That form of code is called an Optional chain. In the middle of a chain of dot-
notation, you have unwrapped an Optional.

Built-In Simple Types | 111

We have already seen, however, that if you unwrap an Optional that contains no
wrapped object, you’ll crash. So what if you’re not sure whether this Optional contains
a wrapped object? How can you send a message to the value inside an Optional in
that situation?

Swift provides a special shorthand for exactly this purpose. To send a message safely
to the value wrapped inside an Optional that might be empty, you can unwrap the
Optional optionally. To do so, unwrap the Optional with the question mark postfix
operator instead of the exclamation mark:

var stringMaybe : String?
// ... stringMaybe might be assigned a real value here ...
let upper = stringMaybe?.uppercased()

That’s an Optional chain in which you used a question mark to unwrap the Optional.
By using that notation, you have unwrapped the Optional optionally — meaning con‐
ditionally. The condition in question is one of safety; a test for nil is performed for
us. Our code means: “If stringMaybe contains a String, unwrap it and send that
String the uppercased message. If it doesn’t (that is, if it equates to nil), do not
unwrap it and do not send it any messages!”

Such code is a double-edged sword. On the one hand, if stringMaybe is nil, you
won’t crash at runtime. On the other hand, if stringMaybe is nil, that line of code
won’t do anything useful — you won’t get any uppercase string.

But now there’s a new question. In that code, we initialized a variable upper to an
expression that involves sending the uppercased message. Now it turns out that the
uppercased message might not even be sent. So what, exactly, is upper initialized to?

To handle this situation, Swift has a special rule. If an Optional chain contains an
optionally unwrapped Optional, and if this Optional chain produces a value, that
value is itself wrapped in an Optional. Thus, upper is typed as an Optional wrapping a
String. This works brilliantly, because it covers both possible cases. Let’s say, first, that
stringMaybe contains a String:

var stringMaybe : String?
stringMaybe = "howdy"
let upper = stringMaybe?.uppercased()

After that code, upper is not a String; it is not "HOWDY". It is an Optional wrapping
"HOWDY".

On the other hand, if the attempt to unwrap the Optional fails, the Optional chain
can return nil instead:

var stringMaybe : String?
let upper = stringMaybe?.uppercased()

112 | Chapter 3: Variables and Simple Types

After that code, upper is typed as an Optional wrapping a String, but it wraps no
string; its value is nil.

Unwrapping an Optional optionally in this way is elegant and safe; even if string-
Maybe is nil, we won’t crash at runtime. On the other hand, we’ve ended up with yet
another Optional on our hands! upper is typed as an Optional wrapping a String, and
in order to use that String, we’re going to have to unwrap upper. And we don’t know
whether upper is nil, so we have exactly the same problem we had before — we need
to make sure that we unwrap upper safely, and that we don’t accidentally unwrap an
empty Optional.

Longer Optional chains are legal. No matter how many Optionals are unwrapped in
the course of the chain, if any of them is unwrapped optionally, the entire expression
produces an Optional wrapping the type it would have produced if the Optionals
were unwrapped normally, and is free to fail safely at any point along the way. For
example:

// self is a UIViewController
let f = self.view.window?.rootViewController?.view.frame

The frame property of a view is a CGRect. But after that code, f is not a CGRect. It’s
an Optional wrapping a CGRect. If any of the optional unwrapping along the chain
fails (because the Optional we propose to unwrap is nil), f will be nil to indicate
failure.

(Observe that the preceding code does not end up nesting Optionals; it doesn’t pro‐
duce a CGRect wrapped in an Optional wrapped in an Optional, merely because
there are two Optionals being optionally unwrapped in the chain! However, it is pos‐
sible, for other reasons, to end up with an Optional wrapped in an Optional. I’ll give
an example in Chapter 4.)

If a function call returns an Optional, you can unwrap the result and use it. You don’t
necessarily have to capture the result in order to do that; you can unwrap it in place,
by putting an exclamation mark or a question mark after the function call (that is,
after the closing parenthesis). That’s really no different from what we’ve been doing
all along, except that instead of an Optional property or variable, this is a function
call that returns an Optional. For example:

class Dog {
 var noise : String?
 func speak() -> String? {
 return self.noise
 }
}
let d = Dog()
let bigname = d.speak()?.uppercased()

After that, don’t forget, bigname is not a String — it’s an Optional wrapping a String.

Built-In Simple Types | 113

You can also assign safely into an Optional chain. If any of the optionally unwrapped
Optionals in the chain turns out to be nil, nothing happens:

// self is a UIViewController
self.navigationController?.hidesBarsOnTap = true

A view controller might or might not have a navigation controller, so its navigation-
Controller property is an Optional. In that code, we are setting our navigation con‐
troller’s hidesBarsOnTap property safely; if we happen to have no navigation
controller, no harm is done — because nothing happens.

When assigning into an Optional chain, if you also want to know whether the assign‐
ment succeeded, you can capture the result of the assignment as an Optional wrap‐
ping a Void and test it for nil. For example:

let ok : Void? = self.navigationController?.hidesBarsOnTap = true

Now, if ok is not nil, self.navigationController was safely unwrapped and the
assignment succeeded.

The ! and ? postfix operators, which respectively unconditionally and condition‐
ally unwrap an Optional, have basically nothing to do with the ! and ? used with
type names as syntactic sugar for expressing Optional types (such as String?
and `String!). The outward similarity has confused many a beginner.

Optional map and flatMap
Optional chaining helps to solve the problem that you cannot send a message to the
value wrapped in an Optional without (safely) unwrapping the Optional. But some‐
times you do want to send a message to the value wrapped in an Optional and you
don’t want to unwrap it: you want to preserve optionality. You want to start with an
Optional and end with an Optional, but in between, you want to send a message to
the wrapped value.

Swift provides two methods that elegantly permit you to do that: map(_:) and flat-
Map(_:). These are methods of Optional itself, so it’s fine to send them to an
Optional. The parameter is a function that you supply (usually as an anonymous
function) that takes whatever type is wrapped in the Optional; the unwrapped value is
passed to this function, and now you can send a message to it. The result of the func‐
tion is then wrapped as an Optional, so that optionality is preserved.

For example:

let s : String? = "howdy"
let s2 = s.map {$0.uppercased()}

After that, s2 is an Optional wrapping a String, which is the uppercased version of the
String wrapped in s1.

114 | Chapter 3: Variables and Simple Types

The output Optional type doesn’t have to the same as the input Optional type.
Indeed, it commonly is not; map(_:) and flatMap(_:) are often used when the goal
is to coerce (or cast, as discussed in Chapter 4). For example:

let s : String? = // whatever
let i = s.flatMap {Int($0)}

In that code, we unwrap an Optional String and attempt to coerce it to an Int. The
result is an Optional Int, which will be nil if the coercion fails (because the string
doesn’t represent an integer).

That example also illustrates the difference between map and flatMap. If the map
function itself produces an Optional, flatMap unwraps it before wrapping the result
in an Optional. map doesn’t do that, so if we had used map here, we would have ended
up with a double-wrapped Optional.

The important thing here is that map(_:) and flatMap(_:) are safe. If they are sent to
an Optional with no wrapped value — that is, to nil — no message is sent, and the
result is nil (of the proper Optional type). In the first example, if s is nil, s2 is a nil
Optional String. In the second example, if s is nil, i is a nil Optional Int.

Comparison with Optional

In an equality comparison with something other than nil, an Optional gets special
treatment: the wrapped value, not the Optional itself, is compared. So, for example,
this works:

let s : String? = "Howdy"
if s == "Howdy" { // ... they _are_ equal!

That shouldn’t work — how can an Optional be the same as a String? — but it does.
Instead of comparing the Optional itself with "Howdy", Swift automagically (and
safely) compares its wrapped value (if there is one) with "Howdy". If the wrapped
value is "Howdy", the comparison succeeds. If the wrapped value is not "Howdy", the
comparison fails. If there is no wrapped value (s is nil), the comparison fails too —
safely! Thus, you can compare s to nil or to a String, and the comparison works cor‐
rectly in all cases.

The same, however, is not true for an inequality comparison, using the greater-than
and less-than operators:

let i : Int? = 2
if i < 3 { // compile error

To perform that sort of comparison, you can unwrap safely and perform the compari‐
son directly on the unwrapped value:

if i != nil && i! < 3 { // ... it _is_ less

Built-In Simple Types | 115

Do not compare an implicitly unwrapped Optional with anything; you can crash
at runtime.

Why Optionals?
Now that you know how to use an Optional, you are probably wondering why to use
an Optional. Why does Swift have Optionals at all? What are they good for?

One very important purpose of Optionals is to provide interchange of object values
with Objective-C. In Objective-C, any object reference can be nil. You thus need a
way to send nil to Objective-C and to receive nil from Objective-C. Swift Optionals
provide your only way to do that.

Swift will typically assist you by a judicious use of appropriate types in the Cocoa
APIs. For example, consider a UIView’s backgroundColor property. It’s a UIColor,
but it can be nil, and you are allowed to set it to nil. Thus, it is typed as a UIColor?.
You don’t need to work directly with Optionals in order to set such a value! Remem‐
ber, assigning the wrapped type to an Optional is legal, as the assigned value will be
wrapped for you. Thus, you can set myView.backgroundColor to a UIColor — or to
nil. But if you get a UIView’s backgroundColor, you now have an Optional wrapping
a UIColor, and you must be conscious of that fact, for all the reasons I’ve already dis‐
cussed: if you’re not, surprising things can happen:

let v = UIView()
let c = v.backgroundColor
let c2 = c.withAlphaComponent(0.5) // compile error

You’re trying to send the withAlphaComponent message to c, as if it were a UIColor. It
isn’t a UIColor. It’s an Optional wrapping a UIColor. Xcode will try to help you in this
situation; if you use code completion (Chapter 9) to enter the name of the withAlpha-
Component method, Xcode will insert a question mark after c, thus (optionally)
unwrapping the Optional and giving you legal code:

let v = UIView()
let c = v.backgroundColor
let c2 = c?.withAlphaComponent(0.5)

In the vast majority of situations, however, a Cocoa object type will not be marked as
an Optional. That’s because, although in theory it could be nil (because any
Objective-C object reference can be nil), in practice it won’t be. Swift thus saves you
a step by treating the value as the object type itself. This magic is performed by hand-
tweaking the Cocoa APIs (also called auditing). In the very first public version of
Swift (in June of 2014), all object values received from Cocoa were typed as Optionals
(usually implicitly unwrapped Optionals); but then Apple embarked on the massive
project of hand-tweaking the APIs to eliminate Optionals that didn’t need to be
Optionals, and that project is now essentially complete.

116 | Chapter 3: Variables and Simple Types

Another important use of Optionals is to defer initialization of an instance property.
If a variable (declared with var) is typed as an Optional, it has a value even if you
don’t initialize it — namely nil. That comes in very handy in situations where you
know something will have a value, but not right away. A typical example in real-life
iOS programming is an outlet, which is a reference to something in your interface
such as a button:

class ViewController: UIViewController {
 @IBOutlet var myButton: UIButton!
 // ...
}

Ignore, for now, the @IBOutlet designation, which is an internal hint to Xcode (as I’ll
explain in Chapter 7). The important thing is that this property, myButton, won’t have
a value when our ViewController instance first comes into existence, but shortly
thereafter the view controller’s view will be loaded and myButton will be set so that it
points to an actual UIButton object in the interface. Therefore, the variable is typed as
an implicitly unwrapped Optional:

• It’s an Optional because we need a placeholder value (namely nil) for myButton
when the ViewController instance first comes into existence.

• It’s implicitly unwrapped so that in our code, once self.myButton has been
assigned a UIButton value, we can treat it as a reference to an actual UIButton,
passing through the Optional without noticing that it is an Optional. Moreover,
none of this view controller’s code will run before the view is loaded and the
actual button is assigned to myButton, so the implicitly unwrapped Optional is
generally safe.

A closely related situation is when a variable, again typically an instance property,
represents data that will take time to acquire. For example, in my Albumen app, as we
launch, I create an instance of my root view controller. I also want to gather a bunch
of data about the user’s music library and store that data in instance properties of the
root view controller instance. But gathering that data will take time. Therefore I must
instantiate the root view controller first and gather the data later, because if we pause
to gather the data before instantiating the root view controller, the app will take too
long to launch — the delay will be perceptible, and we might even crash (because iOS
forbids long launch times). Therefore the data properties are all typed as Optionals;
they are nil until the data are gathered, at which time they are assigned their “real”
values:

class RootViewController : UITableViewController {
 var albums : [MPMediaItemCollection]! // initialized to nil
 // ...

Finally, one of the most important uses of Optionals is to permit a value to be marked
as empty or erroneous. The preceding code is a good illustration. When my Albumen

Built-In Simple Types | 117

app launches, it displays a table listing all the user’s music albums. At launch time,
however, that data has not yet been gathered. My table-display code tests albums to
see whether it’s nil and, if it is, displays an empty table. After gathering the data, I tell
my table to display its data again. This time, the table-display code finds that albums
is not nil, but rather consists of actual data — and it now displays that data. The use
of an Optional allows one and the same value, albums, to store the data or to state
that there is no data.

Many built-in Swift functions use an Optional in a similar way. For example:

let arr = [1,2,3]
let ix = arr.firstIndex(of:4)
if ix == nil { // ...

Swift’s firstIndex(of:) method returns an Optional because the object sought
might not be present, in which case it has no index. The type returned cannot be an
Int, because there is no Int value that can be taken to mean, “I didn’t find this object
at all.” Returning an Optional solves the problem neatly: nil means “I didn’t find the
object,” and otherwise the actual Int result is sitting there wrapped up in the Optional.

118 | Chapter 3: Variables and Simple Types

CHAPTER 4

Object Types

In the preceding chapter, I discussed some built-in object types. But I have not yet
explained object types themselves. As I mentioned in Chapter 1, Swift object types
come in three flavors: enum, struct, and class. What are the differences between
them? And how would you create your own object type?

In this chapter, I’ll describe object types in general, and then each of the three flavors.
Then I’ll explain three Swift ways of giving an object type greater flexibility: proto‐
cols, generics, and extensions. Finally, the survey of Swift’s built-in types will con‐
clude with three umbrella types and three collection types.

Object Type Declarations and Features
Object types are declared with the flavor of the object type (enum, struct, or class),
the name of the object type (which should start with a capital letter), and curly braces:

class Manny {
}
struct Moe {
}
enum Jack {
}

The visibility of an object type by other code — its scope — depends upon where its
declaration appears:

• Object types declared at the top level of a file will, by default, be visible to all files
in the same module. This is the usual place for object type declarations.

• Sometimes it’s useful to declare a type inside the declaration of another type, thus
giving it a namespace. This is called a nested type.

119

• An object type declared within the body of a function will exist only inside the
scope of the curly braces that surround it; such declarations are legal but rare.

Declarations for any object type may contain within their curly braces the following
things:

Initializers
An object type is merely the type of an object. The purpose of declaring an object
type will usually (though not always) be so that you can make an actual object —
an instance — that has this type. An initializer is a function, declared and called
in a special way, allowing you to do that.

Properties
A variable declared at the top level of an object type declaration is a property. By
default, it is an instance property. An instance property is scoped to an instance: it
is accessed through a particular instance of this type, and its value can be differ‐
ent for every instance of this type.

Alternatively, a property can be a static/class property. For an enum or struct, it is
declared with the keyword static; for a class, it may instead be declared with the
keyword class. Such a property belongs to the object type itself: it is accessed
through the type, and it has just one value, associated with the type.

Methods
A function declared at the top level of an object type declaration is a method. By
default, it is an instance method: it is called by sending a message to a particular
instance of this type. Inside an instance method, self is the instance.

Alternatively, a method can be a static/class method. For an enum or struct, it is
declared with the keyword static; for a class, it may be declared instead with the
keyword class. It is called by sending a message to the type. Inside a static/class
method, self is the type.

Subscripts
A subscript is a special kind of instance method, called by appending square
brackets to an instance reference.

Object type declarations
An object type declaration can contain an object type declaration — a nested
type. From inside the containing object type, the nested type is in scope; from
outside the containing object type, the nested type must be referred to through
the containing object type. Thus, the containing object type is a namespace for
the nested type.

120 | Chapter 4: Object Types

Initializers
An initializer is a function called in order to bring an instance of an object type into
existence. Strictly speaking, it is a static/class method, because it is called by talking to
the object type. It is usually called using special syntax: the name of the type is fol‐
lowed directly by parentheses, as if the type itself were a function. When an initializer
is called, a new instance is created and returned as a result. You will usually do some‐
thing with the returned instance, such as assigning it to a variable, in order to pre‐
serve it and work with it in subsequent code.

For example, suppose we have a Dog class:

class Dog {
}

Then we can make a Dog instance like this:

Dog()

That code, however, though legal, is silly — so silly that it warrants a warning from
the compiler. We have created a Dog instance, but there is no reference to that
instance. Without such a reference, the Dog instance comes into existence and then
immediately vanishes in a puff of smoke. The usual sort of thing is more like this:

let fido = Dog()

Now our Dog instance will persist as long as the variable fido persists (see Chapter 3)
— and the variable fido gives us a reference to our Dog instance, so that we can use
it.

Observe that Dog() calls an initializer even though our Dog class doesn’t declare any
initializers! The reason is that object types may have implicit initializers. These are a
convenience that save you the trouble of writing your own initializers. But you can
write your own initializers, and you will often do so.

How to write an initializer
An initializer is a kind of function, and its declaration syntax is rather like that of a
function. To declare an initializer, you use the keyword init followed by a parameter
list, followed by curly braces containing the code. An object type can have multiple
initializers, distinguished by their parameters. A frequent use of the parameters is to
set the values of instance properties.

For example, here’s a Dog class with two instance properties, name (a String) and
license (an Int). We give these instance properties default values that are effectively
placeholders — an empty string and the number zero. Then we declare three initializ‐
ers, so that the caller can create a Dog instance in three different ways: by supplying a

Object Type Declarations and Features | 121

name, by supplying a license number, or by supplying both. In each initializer, the
parameters supplied are used to set the values of the corresponding properties:

class Dog {
 var name = ""
 var license = 0
 init(name:String) {
 self.name = name
 }
 init(license:Int) {
 self.license = license
 }
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

Observe that in that code, in each initializer, I’ve given each parameter the same name
as the property to which it corresponds. There’s no reason to do that apart from sty‐
listic clarity. In the code for each initializer, I can distinguish the parameter from the
property by using self to access the property.

The result of that declaration is that I can create a Dog in three different ways:

let fido = Dog(name:"Fido")
let rover = Dog(license:1234)
let spot = Dog(name:"Spot", license:1357)

But now I can’t create a Dog with no initializer parameters. I wrote initializers, so my
implicit initializer went away. This code is no longer legal:

let puff = Dog() // compile error

Of course, I could make that code legal by explicitly declaring an initializer with no
parameters:

class Dog {
 var name = ""
 var license = 0
 init() {
 }
 init(name:String) {
 self.name = name
 }
 init(license:Int) {
 self.license = license
 }
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

122 | Chapter 4: Object Types

Now, the truth is that we don’t need those four initializers, because an initializer is a
function, and a function’s parameters can have default values. Thus, I can condense
all that code into a single initializer, like this:

class Dog {
 var name = ""
 var license = 0
 init(name:String = "", license:Int = 0) {
 self.name = name
 self.license = license
 }
}

I can still make an actual Dog instance in four different ways:

let fido = Dog(name:"Fido")
let rover = Dog(license:1234)
let spot = Dog(name:"Spot", license:1357)
let puff = Dog()

Now comes the really interesting part. In my property declarations, I can eliminate
the assignment of default initial values (as long as I declare explicitly the type of each
property):

class Dog {
 var name : String // no default value!
 var license : Int // no default value!
 init(name:String = "", license:Int = 0) {
 self.name = name
 self.license = license
 }
}

That code is legal (and common) — because an initializer initializes! In other words, I
don’t have to give my properties initial values in their declarations, provided I give
them initial values in all initializers. That way, I am guaranteed that all my instance
properties have values when the instance comes into existence, which is what matters.
Conversely, an instance property without an initial value when the instance comes
into existence is illegal. A property must be initialized either as part of its declaration
or by every initializer, and the compiler will stop you otherwise.

The Swift compiler’s insistence that all instance properties be properly initialized is a
valuable feature of Swift. (Contrast Objective-C, where instance properties can go
uninitialized — and often do, leading to mysterious errors later.) Don’t fight the com‐
piler; work with it. The compiler will help you by giving you an error message
(“Return from initializer without initializing all stored properties”) until all your ini‐
tializers initialize all your instance properties:

Object Type Declarations and Features | 123

class Dog {
 var name : String
 var license : Int
 init(name:String = "") {
 self.name = name // compile error
 }
}

Because setting an instance property in an initializer counts as initialization, it is legal
even if the instance property is a constant declared with let:

class Dog {
 let name : String
 let license : Int
 init(name:String = "", license:Int = 0) {
 self.name = name
 self.license = license
 }
}

In our artificial examples, we have been very generous with our initializer: we are let‐
ting the caller instantiate a Dog without supplying a name: argument or a license:
argument. Usually, however, the purpose of an initializer is just the opposite: we want
to force the caller to supply all needed information at instantiation time. Thus, in real
life, it is much more likely that our Dog class would look like this:

class Dog {
 let name : String
 let license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

In that code, our Dog has a name property and a license property, and values for
these must be supplied at instantiation time (there are no default values), and those
values can never be changed thereafter (these properties are constants). In this way,
we enforce a rule that every Dog must have a meaningful name and license. There is
now only one way to make a Dog:

let spot = Dog(name:"Spot", license:1357)

Optional properties
Sometimes, there is no meaningful value that can be assigned to an instance property
during initialization. Perhaps the initial value of this property will not be obtained
until some time has elapsed after this instance has come into existence. This situation
conflicts with the requirement that all instance properties be initialized either in their
declaration or through an initializer. You could circumvent the problem by assigning

124 | Chapter 4: Object Types

a default initial value anyway; but this fails to communicate to your own code the fact
that this isn’t a “real” value.

A common solution, as I explained in Chapter 3, is to declare your instance property
as a var having an Optional type. An Optional has a value, namely nil, signifying
that no “real” value has been supplied; and an Optional var is initialized to nil auto‐
matically. Thus, your code can test this instance property against nil and, if it is nil,
it won’t use the property. Later, the property will be given its “real” value. Of course,
that value is now wrapped in an Optional; but if you declare this property as an
implicitly unwrapped Optional, you can use the wrapped value directly, without
explicitly unwrapping it — as if this weren’t an Optional at all — once you’re sure it is
safe to do so:

// this property will be set automatically when the nib loads
@IBOutlet var myButton: UIButton!
// this property will be set after time-consuming gathering of data
var albums : [MPMediaItemCollection]!

Referring to self
An initializer may refer to an already initialized instance property, and may refer to
an uninitialized instance property in order to initialize it. Otherwise, an initializer
may not refer to self, explicitly or implicitly, until all instance properties have been
initialized. This rule guarantees that the instance is fully formed before it is used. This
code, for example, is illegal:

struct Cat {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 meow() // too soon - compile error
 self.license = license
 }
 func meow() {
 print("meow")
 }
}

The call to the instance method meow is implicitly a reference to self — it means
self.meow(). The initializer can say that, but not until it has fulfilled its primary con‐
tract of initializing all uninitialized properties. The call to the instance method meow
simply needs to be moved down one line, so that it comes after both name and
license have been initialized.

Object Type Declarations and Features | 125

Delegating initializers
Initializers within an object type can call one another by using the syntax
self.init(...). An initializer that calls another initializer is called a delegating ini‐
tializer. When an initializer delegates, the other initializer — the one that it delegates
to — must completely initialize the instance first, and then the delegating initializer
can work with the fully initialized instance, possibly setting again a var property that
was already set by the initializer that it delegated to.

A delegating initializer appears to be an exception to the rule against saying self too
early. But it isn’t, because it is saying self in order to delegate — and delegating will
cause all instance properties to be initialized. In fact, the rules about a delegating ini‐
tializer saying self are even more stringent: a delegating initializer cannot refer to
self at all, not even to set a property, until after the call to the other initializer. For
example:

struct Digit {
 var number : Int
 var meaningOfLife : Bool
 init(number:Int) {
 self.number = number
 self.meaningOfLife = false
 }
 init() { // this is a delegating initializer
 self.init(number:42)
 self.meaningOfLife = true
 }
}

Moreover, a delegating initializer cannot set a constant property (a let variable). That
is because it cannot refer to the property until after it has called the other initializer,
and at that point the instance is fully formed — initialization proper is over, and the
door for initialization of immutable properties has closed. Thus, the preceding code
would be illegal if meaningOfLife were declared with let, because the second initial‐
izer is a delegating initializer and cannot set a constant property.

Be careful not to delegate recursively! If you tell an initializer to delegate to itself, or if
you create a vicious circle of delegating initializers, the compiler won’t stop you, but
your running app will hang. For example, don’t say this:

struct Digit { // do not do this!
 var number : Int = 100
 init(value:Int) {
 self.init(number:value)
 }
 init(number:Int) {
 self.init(value:number)
 }
}

126 | Chapter 4: Object Types

Failable initializers

An initializer can return an Optional wrapping the new instance. In this way, nil can
be returned to signal failure. An initializer that behaves this way is a failable initial‐
izer. To mark an initializer as failable when declaring it, put a question mark after the
keyword init. If your failable initializer needs to return nil, explicitly write return
nil. It is up to the caller to test the resulting Optional for equivalence with nil,
unwrap it, and so forth, as with any Optional.

Here’s a version of Dog with an initializer that returns an Optional, returning nil if
the name: or license: arguments are invalid:

class Dog {
 let name : String
 let license : Int
 init?(name:String, license:Int) {
 if name.isEmpty {
 return nil
 }
 if license <= 0 {
 return nil
 }
 self.name = name
 self.license = license
 }
}

The resulting value is typed as an Optional wrapping a Dog, and the caller will need
to unwrap that Optional (if isn’t nil) before sending any messages to it.

Cocoa and Objective-C conventionally return nil from initializers to signal failure;
the API for such initializers has been hand-tweaked as a Swift failable initializer if ini‐
tialization really might fail. For example, the UIImage initializer init?(named:) is a
failable initializer, because there might be no image with the given name. The result‐
ing value is a UIImage?, and will typically have to be unwrapped before using it.
(Most Objective-C initializers, however, are not bridged as failable initializers, even
though in theory any Objective-C initializer might return nil. This is essentially the
same hand-tweaking policy I described in “Why Optionals?” on page 116.)

Properties
A property is a variable — one that happens to be declared at the top level of an object
type declaration. This means that everything said about variables in Chapter 3
applies. A property has a fixed type; it can be declared with var or let; it can be
stored or computed; it can have setter observers. An instance property can also be
declared lazy.

Object Type Declarations and Features | 127

How properties are accessed
If a property is an instance property (the default), it can be accessed only through an
instance, and its value is separate for each instance. For example, let’s start once again
with a Dog class:

class Dog {
 let name : String
 let license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

Our Dog class has a name instance property. Then we can make two different Dog
instances with two different name values, and we can access each Dog instance’s name
through the instance:

let fido = Dog(name:"Fido", license:1234)
let spot = Dog(name:"Spot", license:1357)
let aName = fido.name // "Fido"
let anotherName = spot.name // "Spot"

A static/class property, on the other hand, is accessed through the type, and is scoped
to the type, which usually means that it is global and unique. I’ll use a struct as an
example:

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
}

Now code elsewhere can fetch the values of Greeting.friendly and
Greeting.hostile. That example is neither artificial nor trivial; immutable static
properties are a convenient and effective way to supply your code with nicely name‐
spaced constants.

Property initialization
A stored instance property must be given an initial value. But, as I explained a
moment ago, this doesn’t have to be through assignment in the declaration; it can be
through an initializer instead. Setter observers are not called during initialization of
properties.

A property declaration that assigns an initial value to the property cannot fetch an
instance property or call an instance method. Such behavior would require a reference,
explicit or implicit, to self; and during initialization, there is no self yet — self is
exactly what we are in the process of initializing. Making this mistake can result in

128 | Chapter 4: Object Types

some of Swift’s most perplexing compile error messages. For example, this is illegal
(and removing the explicit references to self doesn’t make it legal):

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 let whole = self.first + " " + self.last // compile error
}

There are two common solutions in that situation:

Make this a computed property
A computed property can refer to self because the computation won’t actually
be performed until after self exists:

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 var whole : String {
 return self.first + " " + self.last
 }
}

Declare this property as lazy
Like a computed property, a lazy property can refer to self legally because that
reference won’t be performed until after self exists:

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 lazy var whole = self.first + " " + self.last
}

As I demonstrated in Chapter 3, a variable can be initialized as part of its declaration
using multiple lines of code by means of a define-and-call anonymous function. If
this variable is an instance property, and if the function code refers to self, the vari‐
able must be declared lazy:

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 lazy var whole : String = {
 var s = self.first
 s.append(" ")
 s.append(self.last)
 return s
 }()
}

Unlike instance properties, static properties can be initialized with reference to one
another; the reason is that static property initializers are lazy (see Chapter 3):

Object Type Declarations and Features | 129

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static let ambivalent = friendly + " but " + hostile
}

Notice the lack of self in that code. In static/class code, self means the type itself. I
like to use self explicitly wherever it would be implicit, but here I can’t use it without
arousing the ire of the compiler (I regard this as a bug). To clarify the status of the
terms friendly and hostile, I can use the name of the type, just as any other code
would do:

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static let ambivalent = Greeting.friendly + " but " + Greeting.hostile
}

On the other hand, if I write ambivalent as a computed property, I can use self:

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static var ambivalent : String {
 return self.friendly + " but " + self.hostile
 }
}

On the other other hand, I’m not allowed to use self when the initial value is set by a
define-and-call anonymous function (again, I regard this as a bug):

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static var ambivalent : String = {
 return self.friendly + " but " + self.hostile // compile error
 }()
}

Methods
A method is a function — one that happens to be declared at the top level of an object
type declaration. This means that everything said about functions in Chapter 2
applies.

By default, a method is an instance method. This means that it can be accessed only
through an instance. Within the body of an instance method, self is the instance. To
illustrate, let’s continue to develop our Dog class:

130 | Chapter 4: Object Types

class Dog {
 let name : String
 let license : Int
 let whatDogsSay = "woof"
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 func bark() {
 print(self.whatDogsSay)
 }
 func speak() {
 self.bark()
 print("I'm \(self.name)")
 }
}

Now I can make a Dog instance and tell it to speak:

let fido = Dog(name:"Fido", license:1234)
fido.speak() // woof I'm Fido

In my Dog class, the speak method calls the instance method bark by way of self,
and obtains the value of the instance property name by way of self; and the bark
instance method obtains the value of the instance property whatDogsSay by way of
self. This is because instance code can use self to refer to this instance. Such code
can omit self if the reference is unambiguous; thus, for example, I could have writ‐
ten this:

func speak() {
 bark()
 print("I'm \(name)")
}

But I never write code like that (except by accident). Omitting self, in my view,
makes the code harder to read and maintain; the loose terms bark and name seem
mysterious and confusing. Moreover, sometimes self cannot be omitted. For exam‐
ple, in my implementation of init(name:license:), I must use self to disambiguate
between the parameter name and the property self.name.

A static/class method is accessed through the type. Within the body of a static/class
method, self means the type. I’ll use our Greeting struct as an example:

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static var ambivalent : String {
 return self.friendly + " but " + self.hostile
 }

Object Type Declarations and Features | 131

 static func beFriendly() {
 print(self.friendly)
 }
}

And here’s how to call the static beFriendly method:

Greeting.beFriendly() // hello there

There is a kind of conceptual wall between static/class members, on the one hand,
and instance members on the other; even though they may be declared within the
same object type declaration, they inhabit different worlds. A static/class method can’t
refer to “the instance” because there is no instance; thus, a static/class method cannot
directly refer to any instance properties or call any instance methods. An instance
method, on the other hand, can refer to the type, and can thus access static/class
properties and can call static/class methods.

For example, let’s return to our Dog class and grapple with the question of what dogs
say. Presume that all dogs say the same thing. We’d prefer, therefore, to express what-
DogsSay not at instance level but at class level. This would be a good use of a static
property. Here’s a simplified Dog class that illustrates:

class Dog {
 static var whatDogsSay = "woof"
 func bark() {
 print(Dog.whatDogsSay)
 }
}

Now we can make a Dog instance and tell it to bark:

let fido = Dog()
fido.bark() // woof

(I’ll talk later in this chapter about another way in which an instance method can
refer to the type.)

Subscripts
A subscript is an instance method that is called in a special way — by appending
square brackets to an instance reference. The square brackets can contain arguments
to be passed to the subscript method. You can use this feature for whatever you like,
but it is suitable particularly for situations where this is an object type with elements
that can be appropriately accessed by key or by index number. I have already
described (in Chapter 3) the use of this syntax with strings, and it is familiar also
from dictionaries and arrays; you can use square brackets with strings and dictionar‐
ies and arrays exactly because Swift’s String and Dictionary and Array types declare
subscript methods.

132 | Chapter 4: Object Types

The Secret Life of Instance Methods
Here’s a secret: instance methods are actually static/class methods. For example, this is
legal (but strange):

class MyClass {
 var s = ""
 func store(_ s:String) {
 self.s = s
 }
}
let m = MyClass()
let f = MyClass.store(m) // what just happened!?

Even though store is an instance method, we are able to call it as a class method —
with a parameter that is an instance of this class! The reason is that an instance
method is actually a curried static/class method composed of two functions — one
function that takes an instance, and another function that takes the parameters of the
instance method. Thus, after that code, f is the second of those functions, and can be
called as a way of passing a parameter to the store method of the instance m:

f("howdy")
print(m.s) // howdy

The syntax for declaring a subscript method is somewhat like a function declaration
and somewhat like a computed property declaration. That’s no coincidence! A sub‐
script is like a function in that it can take parameters: arguments can appear in the
square brackets when a subscript method is called. A subscript is like a computed
property in that the call is used like a reference to a property: you can fetch its value
or you can assign into it.

To illustrate, I’ll write a struct that treats an integer as if it were a digit sequence,
returning a digit that can be specified by an index number in square brackets; for
simplicity, I’m deliberately omitting any sort of error-checking:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 subscript(ix:Int) -> Int {
 get {
 let s = String(self.number)
 return Int(String(s[s.index(s.startIndex, offsetBy:ix)]))!
 }
 }
}

Object Type Declarations and Features | 133

After the keyword subscript we have a parameter list stating what parameters
are to appear inside the square brackets. By default, parameter names are not
externalized; if you want a parameter name to be externalized, your declaration
must include an external name before the internal name, even if they are the
same name — for example, subscript(ix ix:Int). This is different from how
externalized names work everywhere else in Swift (and therefore I regard it as a
bug in the language).

Then we have the type of value that is passed out (when the getter is called) or in
(when the setter is called); this is parallel to the type declared for a computed
property. Oddly, however, the type is preceded by the arrow operator instead of a
colon (I regard that as a bug too).

Finally, we have curly braces whose contents are exactly like those of a computed
property. You can have get and curly braces for the getter, and set and curly
braces for the setter. The setter can be omitted (as here); in that case, the word
get and its curly braces can be omitted. The setter receives the new value as new-
Value, but you can change that name by supplying a different name in parenthe‐
ses after the word set.

Here’s an example of calling the getter; the instance with appended square brackets
containing the arguments is used just as if you were getting a property value:

var d = Digit(1234)
let aDigit = d[1] // 2

Now I’ll expand my Digit struct so that its subscript method includes a setter (and
again I’ll omit error-checking):

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 subscript(ix:Int) -> Int {
 get {
 let s = String(self.number)
 return Int(String(s[s.index(s.startIndex, offsetBy:ix)]))!
 }
 set {
 var s = String(self.number)
 let i = s.index(s.startIndex, offsetBy:ix)
 s.replaceSubrange(i...i, with: String(newValue))
 self.number = Int(s)!
 }
 }
}

134 | Chapter 4: Object Types

And here’s an example of calling the setter; the instance with appended square brack‐
ets containing the arguments is used just as if you were setting a property value:

var d = Digit(1234)
d[0] = 2 // now d.number is 2234

An object type can declare multiple subscript methods, distinguished by their
parameters.

Nested Object Types
An object type may be declared inside an object type declaration, forming a nested
type:

class Dog {
 struct Noise {
 static var noise = "woof"
 }
 func bark() {
 print(Dog.Noise.noise)
 }
}

A nested object type is no different from any other object type, but the rules for refer‐
ring to it from the outside are changed; the surrounding object type acts as a name‐
space, and must be referred to explicitly in order to access the nested object type:

Dog.Noise.noise = "arf"

Here, the Noise struct is namespaced inside the Dog class. This namespacing pro‐
vides clarity: the name Noise does not float free, but is explicitly associated with the
Dog class to which it belongs. Namespacing also allows more than one Noise struct to
exist, without any clash of names. Swift built-in object types often take advantage of
namespacing; for example, the String struct is one of several structs that contain an
Index struct, with no clash of names.

Instance References
On the whole, the names of object types will be global, and you will be able to refer to
them simply by using their names. Instances, however, are another story. Instances
must be deliberately created, one by one. That is what instantiation is for. Moreover,
once you have created an instance, it is up to you to cause that instance to persist, by
storing the instance in a variable with sufficient lifetime. Subsequently, using that
variable as a reference, you can send instance messages to that instance, accessing
instance properties and calling instance methods.

Instantiation may happen because you call an initializer, or the instance may be cre‐
ated for you in some other way. A simple example is what happens when you manip‐
ulate a String, like this:

Object Type Declarations and Features | 135

let s = "Hello, world"
let s2 = s.uppercased()

In that code, we end up with two String instances. The first one, s, we created using a
string literal. The second one, s2, was created for us when we called the first string’s
uppercased method. Thus we have two instances, and they will persist independently
as long as our references to them persist; but we didn’t get either of them by explicitly
calling an initializer.

It is of great importance to distinguish between situations where you need to create an
instance and situations where the instance you are interested in exists in some persis‐
tent fashion already. The problem, in the latter case, will be to find a way of getting a
reference to that existing instance — and you must not confuse this with instantiation.

Let’s say, for example, that this is a real-life iOS app. You will certainly have a root
view controller, which will be an instance of some type of UIViewController. Let’s say
it’s an instance of the ViewController class. Once your app is up and running, this
instance already exists. It would then be utterly counterproductive to attempt to
speak to the root view controller by instantiating the ViewController class:

let theVC = ViewController() // legal but stupid

That code exemplifies a very common beginner mistake. All it does is to make a sec‐
ond, different instance of the ViewController class, and your messages to that instance
will be wasted, as it is not the particular already existing instance of ViewController
that you wanted to talk to. What you want is to get a reference to that already existing
instance.

How? Well, let’s start with a reference to an instance that we know how to get — the
application:

let app = UIApplication.shared

Now we have a reference to the application instance. The application instance has a
keyWindow property:

let window = app.keyWindow

Now we have a reference to our app’s key window. That window owns the root view
controller, and will hand us a reference to it through its rootViewController prop‐
erty; the app’s keyWindow is an Optional, so to get at its rootViewController we must
unwrap the Optional:

let vc = window?.rootViewController

And voilà, we have a reference to our app’s root view controller. To obtain the refer‐
ence to this persistent instance, we created, in effect, a chain leading from the known
to the unknown, from a globally available class to the particular desired instance.

136 | Chapter 4: Object Types

In general, figuring out how to get a reference to an already existing instance can be
an interesting problem — so interesting, in fact, that I’ll discuss it at some length in
Chapter 13. But the point is: when what you really want is a reference to an already
existing instance, do not instantiate! Instead, get the reference.

Enums
An enum is an object type whose instances represent distinct predefined alternative
values. Think of it as a list of known possibilities. An enum is the Swift way to express
a set of constants that are alternatives to one another. An enum declaration includes
case statements. Each case is the name of one of the alternatives. An instance of an
enum will represent exactly one alternative — one case.

For example, in my Albumen app, different instances of the same view controller can
list any of four different sorts of music library contents: albums, playlists, podcasts, or
audiobooks. The view controller’s behavior is slightly different in each case. So I need
a sort of four-way switch that I can set once when the view controller is instantiated,
saying which sort of contents this view controller is to display. That sounds like an
enum!

Here’s the basic declaration for that enum; I call it Filter, because each case represents
a different way of filtering the contents of the music library:

enum Filter {
 case albums
 case playlists
 case podcasts
 case books
}

That enum doesn’t have an initializer. You can write an initializer for an enum, as I’ll
demonstrate in a moment; but there is a default mode of initialization that you’ll
probably use most of the time — the name of the enum followed by dot-notation and
one of the cases. For example, here’s how to make an instance of Filter representing
the albums case:

let type = Filter.albums

As a shortcut, if the type is known in advance, you can omit the name of the enum;
the bare case must still be preceded by a dot. For example:

let type : Filter = .albums

You can’t say .albums just anywhere out of the blue, because Swift doesn’t know what
enum it belongs to. But in that code, the variable is explicitly declared as a Filter, so
Swift knows what .albums means. A similar thing happens when passing an enum
instance as an argument in a function call:

Enums | 137

func filterExpecter(_ type:Filter) {}
filterExpecter(.albums)

In the second line, I create an instance of Filter and pass it, all in one move, without
having to include the name of the enum. That’s because Swift knows from the func‐
tion declaration that a Filter is expected here.

In real life, the space savings when omitting the enum name can be considerable —
especially because, when talking to Cocoa, the enum type names are often long. For
example:

let v = UIView()
v.contentMode = .center

A UIView’s contentMode property is typed as a UIView.ContentMode enum. Our
code is neater and simpler because we don’t have to include the type name explicitly
here; .center is nicer than UIView.ContentMode.center. But either is legal.

Instances of an enum with the same case are regarded as equal. Thus, you can com‐
pare an enum instance for equality against a case. Again, the type of enum is known
from the first term in the comparison, so the second term can omit the enum name:

func filterExpecter(_ type:Filter) {
 if type == .albums {
 print("it's albums")
 }
}
filterExpecter(.albums) // "it's albums"

Raw Values
Optionally, when you declare an enum, you can add a type declaration. The cases
then all carry with them a fixed (constant) value of that type. The types attached to an
enum in this way are limited to numbers and strings, and the values assigned must be
literals.

If the type is an integer numeric type, the values can be implicitly assigned, and will
start at zero by default. For example:

enum PepBoy : Int {
 case manny
 case moe
 case jack
}

In that code, .manny carries a value of 0, .moe carries of a value of 1, and so on.

If the type is String, the implicitly assigned values are the string equivalents of the
case names. For example:

138 | Chapter 4: Object Types

enum Filter : String {
 case albums
 case playlists
 case podcasts
 case books
}

In that code, .albums carries a value of "albums", and so on.

Regardless of the type, you can assign values explicitly as part of the case declarations,
like this:

enum Normal : Double {
 case fahrenheit = 98.6
 case centigrade = 37
}
enum PepBoy : Int {
 case manny = 1
 case moe // 2 implicitly
 case jack = 4
}
enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
}

The values carried by the cases are their raw values. That’s because an enum with a
type declaration automatically adopts the RawRepresentable protocol. This means
simply that such an enum has a rawValue property and an init(rawValue:) initial‐
izer. (I’ll explain later what a protocol is.) An instance of an enum has just one case,
so it has just one fixed raw value, which can be retrieved with its rawValue property:

let type = Filter.albums
print(type.rawValue) // Albums

Having each case carry a fixed raw value can be quite useful. In my Albumen app, the
Filter cases really do have those String values, and type is a view controller property;
and so when the view controller wants to know what title string to put at the top of
the screen, it simply retrieves self.type.rawValue.

The raw value associated with each case must be unique within this enum; the com‐
piler will enforce this rule. Therefore, the mapping works the other way: given a raw
value, you can derive the case; in particular, you can instantiate an enum that has raw
values by using its init(rawValue:) initializer:

let type = Filter(rawValue:"Albums")

However, the attempt to instantiate the enum in this way might fail, because you
might supply a raw value corresponding to no case; therefore, this is a failable

Enums | 139

Inference of Type Name with Static/Class Members
Just as you can use the bare name of an enum case, preceded by a dot, where an
instance of that enum is expected, you can do the same thing when referring to a
type’s static/class member whose value is an instance of that type. For example,
UIColor has many class properties that produce a UIColor instance, so you can omit
UIColor where a UIColor is expected:

p.trackTintColor = .red // instead of UIColor.red

Similarly, suppose we have a struct Thing with static constants whose values are
Thing instances:

struct Thing : RawRepresentable {
 let rawValue : Int
 static let one : Thing = Thing(rawValue:1)
 static let two : Thing = Thing(rawValue:2)
}

Then we can refer to Thing.one as .one where a Thing instance is expected:

let thing : Thing = .one

Many Objective-C enums are bridged to Swift as this kind of struct; I’ll talk about that
later in this chapter.

initializer, and the value returned is an Optional. In that code, type is not a Filter; it’s
an Optional wrapping a Filter. This might not be terribly important, however, because
the thing you are most likely to want to do with an enum is to compare it for equality
with a case of the enum; you can do that with an Optional without unwrapping it.
This code is legal and works correctly:

let type = Filter(rawValue:"Albums")
if type == .albums { // ...

Associated Values
The raw values discussed in the preceding section are fixed in the enum’s declaration:
a given case carries with it a certain raw value, and that’s that. Alternatively, you can
construct a case whose constant value can be set when the instance is created. To do so,
do not declare any type for the enum as a whole; instead, append a tuple type to the
name of the case. There will usually be just one type in this tuple, so what you’ll write
will look like a type name in parentheses. Any type may be declared. Here’s an
example:

140 | Chapter 4: Object Types

enum MyError {
 case number(Int)
 case message(String)
 case fatal
}

That code means that, at instantiation time, a MyError instance with the .number case
must be assigned an Int value, a MyError instance with the .message case must be
assigned a String value, and a MyError instance with the .fatal case can’t be
assigned any value. Instantiation with assignment of a value is really a way of calling
an initialization function, so to supply the value, you pass it as an argument in paren‐
theses:

let err : MyError = .number(4)

The attached value here is called an associated value. What you are supplying as you
specify the associated value is actually a tuple, so it can contain literal values or value
references; this is legal:

let num = 4
let err : MyError = .number(num)

The tuple can contain more than one value, with or without labels; if the values have
labels, they must be used at initialization time:

enum MyError2 {
 case number(Int)
 case message(String)
 case fatal(n:Int, s:String)
}
let err : MyError2 = .fatal(n:-12, s:"Oh the horror")

At the risk of sounding like a magician explaining his best trick, I can now reveal
how an Optional works. An Optional is simply an enum with two cases: .none
and .some. If it is .none, it carries no associated value, and it equates to nil. If it
is .some, it carries the wrapped value as its associated value!

By default, the == operator cannot be used to compare cases of an enum if any case of
that enum has an associated value:

if err == MyError.fatal { // compile error

The reason, ultimately, is that two instances of the same case of this enum can have
different associated values, so Swift doesn’t know what constitutes equality. The solu‐
tion, introduced in Swift 4.1, is to declare this enum explicitly as adopting the Equata‐
ble protocol (discussed later in this chapter):

Enums | 141

enum MyError : Equatable { // *
 case number(Int)
 case message(String)
 case fatal
}

Now it becomes legal to say if err == MyError.fatal; I’ll explain why in Chapter 5.

I’ll also explain in Chapter 5 how to check the case of an instance of an enum that has
an associated value case, as well as how to extract the associated value from an enum
instance that has one.

Enum Case Iteration
It is often useful to have a list — that is, an array — of all the cases of an enum. You
could define this list manually as a static property of the enum:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 static let cases : [Filter] = [.albums, .playlists, .podcasts, .books]
}

That, however, is error-prone and hard to maintain; if, as you develop your program,
you modify the enum’s cases, you must remember to modify the cases property to
match. New in Swift 4.2, the list of cases can be generated for you automatically. Sim‐
ply have your enum adopt the CaseIterable protocol (adoption of protocols is
explained later in this chapter); now the list of cases springs to life as a static property
called allCases:

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 // static allCases is now [.albums, .playlists, .podcasts, .books]
}

I’ll put this feature to use in the next section.

Automatic generation of allCases is impossible if any of the enum’s cases has an
associated value, as it would then be unclear how that case should be defined in
the list.

142 | Chapter 4: Object Types

Enum Initializers
An explicit enum initializer must do what default initialization does: it must return a
particular case of this enum. To do so, set self to the case. In this example, I’ll
expand my Filter enum so that it can be initialized with a numeric argument:

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 init(_ ix:Int) {
 self = Filter.allCases[ix]
 }
}

Now there are three ways to make a Filter instance:

let type1 = Filter.albums
let type2 = Filter(rawValue:"Playlists")!
let type3 = Filter(2) // .podcasts

In that example, we’ll crash in the third line if the caller passes a number that’s out of
range (less than 0 or greater than 3). If we want to avoid that, we can make this a
failable initializer and return nil if the number is out of range:

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 init?(_ ix:Int) {
 if !Filter.allCases.indices.contains(ix) {
 return nil
 }
 self = Filter.allCases[ix]
 }
}

An enum can have multiple initializers. Enum initializers can delegate to one another
by saying self.init(...). The only requirement is that, at some point in the chain
of calls, self must be set to a case; if that doesn’t happen, your enum won’t compile.

In this example, I improve my Filter enum so that it can be initialized with a String
raw value without having to say rawValue: in the call. To do so, I declare a failable
initializer with a string parameter that delegates to the built-in failable rawValue:
initializer:

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"

Enums | 143

 case books = "Audiobooks"
 init?(_ ix:Int) {
 if !Filter.allCases.indices.contains(ix) {
 return nil
 }
 self = Filter.allCases[ix]
 }
 init?(_ rawValue:String) {
 self.init(rawValue:rawValue)
 }
}

Now there are four ways to make a Filter instance:

let type1 = Filter.albums
let type2 = Filter(rawValue:"Playlists")!
let type3 = Filter(2)
let type4 = Filter("Audiobooks")!

Enum Properties
An enum can have instance properties and static properties, but there’s a limitation:
an enum instance property can’t be a stored property. Computed instance properties
are fine, however, and the value of the property can vary by rule in accordance with
the case of self. In this example from my real code, I’ve associated an MPMedia‐
Query (obtained by calling an MPMediaQuery factory class method) with each case
of my Filter enum, suitable for fetching the songs of that type from the music library:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 var query : MPMediaQuery {
 switch self {
 case .albums:
 return .albums()
 case .playlists:
 return .playlists()
 case .podcasts:
 return .podcasts()
 case .books:
 return .audiobooks()
 }
 }
}

If an enum instance property is a computed variable with a setter, other code can
assign to this property. However, that code’s reference to the enum instance must be a
variable (var), not a constant (let). If you try to assign to an enum instance property
through a let reference, you’ll get a compile error.

144 | Chapter 4: Object Types

Enum Methods
An enum can have instance methods (including subscripts) and static methods. Writ‐
ing an enum method is straightforward. Here’s an example from my own code. In a
card game, the cards draw themselves as rectangles, ellipses, or diamonds. I’ve
abstracted the drawing code into an enum that draws itself as a rectangle, an ellipse,
or a diamond, depending on its case:

enum Shape {
 case rectangle
 case ellipse
 case diamond
 func addShape (to p: CGMutablePath, in r: CGRect) -> () {
 switch self {
 case .rectangle:
 p.addRect(r)
 case .ellipse:
 p.addEllipse(in:r)
 case .diamond:
 p.move(to: CGPoint(x:r.minX, y:r.midY))
 p.addLine(to: CGPoint(x: r.midX, y: r.minY))
 p.addLine(to: CGPoint(x: r.maxX, y: r.midY))
 p.addLine(to: CGPoint(x: r.midX, y: r.maxY))
 p.closeSubpath()
 }
 }
}

An enum instance method that modifies the enum itself must be marked as
mutating. For example, an enum instance method might assign to an instance prop‐
erty of self; even though this is a computed property, such assignment is illegal
unless the method is marked as mutating. An enum instance method can even
change the case of self, by assigning to self; but again, the method must be marked
as mutating. The caller of a mutating instance method must have a variable reference
to the instance (var), not a constant reference (let).

In this example, I add an advance method to my Filter enum. The idea is that the
cases constitute a sequence, and the sequence can cycle. By calling advance, I trans‐
form a Filter instance into an instance of the next case in the sequence:

enum Filter : String, CaseIterable {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 mutating func advance() {
 var ix = Filter.allCases.firstIndex(of:self)!

Enums | 145

 ix = (ix + 1) % Filter.allCases.count
 self = Filter.allCases[ix]
 }
}

And here’s how to call it:

var type = Filter.books
type.advance() // type is now Filter.albums

(A subscript setter is always considered mutating and does not have to be specially
marked.)

Why Enums?
An enum is a switch whose states have names. There are many situations where that’s
a desirable thing. You could implement a multistate value yourself; for example, if
there are five possible states, you could use an Int whose values can be 0 through 4.
But then you would have to provide a lot of additional overhead, interpreting those
numeric values correctly and making sure that no other values are used. A list of five
named cases is much better!

Even when there are only two states, an enum is often better than, say, a mere Bool,
because the enum’s states have names. With a Bool, you have to know what true and
false signify in a particular usage; with an enum, the name of the enum and the
names of its cases tell you its significance. Moreover, you can store extra information
in an enum’s associated value or raw value; you can’t do that with a mere Bool.

For example, in my LinkSame app, the user can play a real game with a timer or a
practice game without a timer. At various places in the code, I need to know which
type of game this is. The game types are the cases of an enum:

enum InterfaceMode : Int {
 case timed = 0
 case practice = 1
}

The current game type is stored in an instance property interfaceMode, whose value
is an InterfaceMode. Thus, it’s easy to set the game type by case name:

// ... initialize new game ...
self.interfaceMode = .timed

And it’s easy to examine the game type by case name:

// notify of high score only if user is not just practicing
if self.interfaceMode == .timed { // ...

So what are the raw value integers for? That’s the really clever part. They correspond
to the segment indexes of a UISegmentedControl in the interface! Whenever I change
the interfaceMode property, a setter observer also selects the corresponding segment

146 | Chapter 4: Object Types

of the UISegmentedControl (self.timedPractice), simply by fetching the rawValue
of the current enum case:

var interfaceMode : InterfaceMode = .timed {
 willSet (mode) {
 self.timedPractice?.selectedSegmentIndex = mode.rawValue
 }
}

Structs
A struct is the Swift object type par excellence. An enum, with its fixed set of cases, is a
reduced, specialized kind of object. A class, at the other extreme, will often turn out
to be overkill; it has some features that a struct lacks (I’ll talk later about what they
are), but if you don’t need those features, a struct may be preferable.

Of the hundred-odd object types declared in the Swift header, basically only one is a
class. A dozen or so are enums. All the rest, the vast majority of the built-in object
types provided by Swift itself, are structs. A String is a struct. An Int is a struct. A
Range is a struct. An Array is a struct. And so on. That shows how powerful a struct
can be.

Struct Initializers, Properties, and Methods
A struct that doesn’t have an explicit initializer and that doesn’t need an explicit ini‐
tializer — because it has no stored properties, or because all its stored properties are
assigned default values as part of their declaration — automatically gets an implicit
initializer with no parameters, init(). For example:

struct Digit {
 var number = 42
}

That struct can be initialized by saying Digit(). But if you add any explicit initializers
of your own, you lose that implicit initializer:

struct Digit {
 var number = 42
 init(number:Int) {
 self.number = number
 }
}

Now you can say Digit(number:42), but you can’t say Digit() any longer. Of course,
you can add an explicit initializer that does the same thing:

Structs | 147

struct Digit {
 var number = 42
 init() {}
 init(number:Int) {
 self.number = number
 }
}

Now you can say Digit() once again, as well as Digit(number:42).

A struct that has stored properties and that doesn’t have an explicit initializer auto‐
matically gets an implicit initializer derived from its instance properties. This is called
the memberwise initializer. For example:

struct Digit {
 var number : Int // could use "let" here instead
}

That struct is legal — indeed, it is legal even if the number property is declared with
let instead of var — even though it seems we have not fulfilled the contract requir‐
ing us to initialize all stored properties in their declaration or in an initializer. The
reason is that this struct automatically has a memberwise initializer which does initi‐
alize all its properties. In this case, the memberwise initializer is init(number:), and
you can say Digit(number:42).

The memberwise initializer exists even for var stored properties that are assigned a
default value in their declaration; this struct therefore has a memberwise initializer
init(number:), in addition to its implicit init() initializer:

struct Digit {
 var number = 42
}

But if you add any explicit initializers of your own, you lose the memberwise initial‐
izer (though of course you can write an explicit initializer that does the same thing).

If a struct has any explicit initializers, then they must fulfill the contract that all stored
properties must be initialized either by direct initialization in the declaration or by all
initializers. If a struct has multiple explicit initializers, they can delegate to one
another by saying self.init(...).

A struct can have instance properties and static properties, and they can be stored or
computed variables. If other code wants to set a property of a struct instance, its ref‐
erence to that instance must be a variable (var), not a constant (let).

A struct can have instance methods (including subscripts) and static methods. If an
instance method sets a property, it must be marked as mutating, and the caller’s refer‐
ence to the struct instance must be a variable (var), not a constant (let). A mutating
instance method can even replace this instance with another instance, by setting self

148 | Chapter 4: Object Types

to a different instance of the same struct. (A subscript setter is always considered
mutating and does not have to be specially marked.)

Struct As Namespace
I very often use a degenerate struct as a handy namespace for constants. I call such a
struct “degenerate” because it consists entirely of static members; I don’t intend to use
this object type to make any instances.

For example, let’s say I’m going to be storing user preference information in Cocoa’s
UserDefaults. UserDefaults is a kind of dictionary: each item is accessed through a
key. The keys are typically strings. A common programmer mistake is to write out
these string keys literally every time a key is used; if you then misspell a key name,
there’s no penalty at compile time, but your code will mysteriously fail to work cor‐
rectly. A better approach is to embody those keys as constant strings and use the
names of the strings; if you make a mistake typing a name, the compiler can catch
you. A struct with static members is a great way to define constant strings and clump
their names into a namespace:

struct Default {
 static let rows = "CardMatrixRows"
 static let columns = "CardMatrixColumns"
 static let hazyStripy = "HazyStripy"
}

That code means that I can now refer to a UserDefaults key with a name, such as
Default.hazyStripy.

Classes
A class is similar to a struct, with the following key differences:

Reference type
Classes are reference types. This means, among other things, that a class instance
has two remarkable features that are not true of struct or enum instances:

Mutability
A class instance is mutable in place. Even if your reference to an instance of a
class is a constant (let), you can change the value of an instance property
through that reference. An instance method of a class never has to be
marked mutating (and cannot be).

Multiple references
When a given instance of a class is assigned to multiple variables or passed as
argument to a function, you get multiple references to one and the same
object.

Classes | 149

Inheritance
A class can have a superclass. A class that has a superclass is a subclass of that
superclass, and inherits its superclass’s members. Class types can thus form a
hierarchical tree.

In Objective-C, classes are the only object type. Some built-in Swift struct types are
magically bridged to Objective-C class types, but your custom struct types don’t have
that magic. Thus, when programming iOS with Swift, one reason for declaring a
class, rather than a struct, is as a form of interchange with Objective-C and Cocoa.

Value Types and Reference Types
A major difference between enums and structs, on the one hand, and classes, on the
other, is that enums and structs are value types, whereas classes are reference types. I
will now explain what that means.

Reference type instances are mutable
A value type is not mutable in place, even though it seems to be. For example, con‐
sider a struct. A struct is a value type:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
}

Now, Swift’s syntax of assignment would lead us to believe that changing a Digit’s
number is possible:

var d = Digit(123)
d.number = 42

But in reality, when you apparently mutate an instance of a value type, you are
actually replacing that instance with a different instance. To see that this is true, add a
setter observer:

var d : Digit = Digit(123) {
 didSet {
 print("d was set")
 }
}
d.number = 42 // "d was set"

That explains why it is impossible to mutate a value type instance if the reference to
that instance is declared with let:

150 | Chapter 4: Object Types

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
}
let d = Digit(123)
d.number = 42 // compile error

Under the hood, this change would require us to replace the Digit instance pointed to
by d with another Digit instance — and we can’t do that, because it would mean
assigning into d, which is exactly what the let declaration forbids.

An instance method of a struct or enum that sets a property of the instance must be
marked explicitly with the mutating keyword. For example:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 mutating func changeNumberTo(_ n:Int) {
 self.number = n
 }
}

Without the mutating keyword, that code won’t compile. The mutating keyword
assures the compiler that you understand what’s really happening here. If that method
is called, it replaces the instance; therefore, it can be called only on a reference
declared with var, not let:

let d = Digit(123)
d.changeNumberTo(42) // compile error

None of that applies to class instances! Class instances are reference types, not value
types. A reference to a class instance does not have to be declared with var in order to
set a var property through that reference:

class Dog {
 var name : String = "Fido"
}
let rover = Dog()
rover.name = "Rover" // fine

In the last line of that code, the class instance pointed to by rover is being mutated in
place. No implicit assignment to rover is involved, and so the let declaration is pow‐
erless to prevent the mutation. A setter observer on a Dog variable is not called when
a property is set:

Classes | 151

var rover : Dog = Dog() {
 didSet {
 print("did set rover")
 }
}
rover.name = "Rover" // nothing in console

The setter observer would be called if we were to set rover explicitly (to another Dog
instance), but it is not called merely because we change a property of the Dog
instance already pointed to by rover.

Those examples involve a declared variable reference. Exactly the same difference
between a value type and a reference type may be seen with a parameter of a function
call. When we receive an instance of a value type as a parameter into a function body,
the compiler will stop us in our tracks if we try to assign to its instance property. This
doesn’t compile:

func digitChanger(_ d:Digit) {
 d.number = 42 // compile error
}

But this does compile:

func dogChanger(_ d:Dog) {
 d.name = "Rover"
}

Reference type instances are pointers
With a reference type, there is a concealed level of indirection between your reference
to the instance and the instance itself; the reference actually holds a pointer to the
instance. This means that when a class instance is assigned to a variable or passed as
an argument to a function or as the result of a function, you can wind up with multi‐
ple references to the same object. That is not true of structs and enums. Thus:

• When an enum instance or a struct instance is assigned or passed, what is
assigned or passed is essentially a new copy of that instance. (I say “essentially”
because, behind the scenes, there can be some efficiency, preventing a new copy
from actually being formed unless it is needed.)

• When a class instance is assigned or passed, what is assigned or passed is a refer‐
ence to the same instance.

To prove it, I’ll assign one reference to another, and then mutate the second reference
— and then I’ll examine what happened to the first reference. Let’s start with the
struct:

152 | Chapter 4: Object Types

Mutating Captured Self
An @escaping closure (“Escaping Closures” on page 60) is subject to restrictions with
respect to its ability to capture self, if self is a value type. To demonstrate, here’s a
Digit struct:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 mutating func changeNumberTo(_ n:Int) {
 self.number = n
 }
 mutating func callAnotherFunction() {
 otherFunction {
 self.changeNumberTo(345)
 }
 }
}

Whether that’s legal depends on whether otherFunction declares its function param‐
eter @escaping. If it does, the compiler will stop us:

func otherFunction(_ f: @escaping ()->()) { // compile error
}

The call to self.changeNumberTo(345) in callAnotherFunction warrants a compile
error (“closure cannot implicitly capture a mutating self parameter”), because we are
threatening to mutate a persisting captured self at some later time. That would
involve replacing the captured self with a different Digit — and that’s incoherent. No
such problem arises if Digit is a class, because the persistent captured self can then
be mutated in place.

var d = Digit(123)
print(d.number) // 123
var d2 = d // assignment!
d2.number = 42
print(d.number) // 123

In that code, we changed the number property of d2, a struct instance; but nothing
happened to the number property of d. Now let’s try the class:

var fido = Dog()
print(fido.name) // Fido
var rover = fido // assignment!
rover.name = "Rover"
print(fido.name) // Rover

Classes | 153

In that code, we changed the name property of rover, a class instance — and the name
property of fido was changed as well! That’s because, after the assignment in the
third line, fido and rover refer to one and the same instance.

The same thing is true of parameter passing. With a class instance, what is passed is a
reference to the same instance:

func dogChanger(_ d:Dog) {
 d.name = "Rover"
}
var fido = Dog()
print(fido.name) // "Fido"
dogChanger(fido)
print(fido.name) // "Rover"

The change made to d inside the function dogChanger affected our Dog instance
fido! You can’t do that with an enum or struct instance parameter — unless it’s an
inout parameter — because the instance is effectively copied as it is passed. But hand‐
ing a class instance to a function does not copy that instance; it is more like lending
that instance to the function.

Advantages of value types vs. reference types
The ability to generate multiple references to the same instance is significant particu‐
larly in a world of object-based programming, where objects persist and can have
properties that persist along with them. If object A and object B are both long-lived
objects, and if they both have a Dog property (where Dog is a class), and if they have
each been handed a reference to one and the same Dog instance, then either object A
or object B can mutate its Dog, and this mutation will affect the other’s Dog. You can
thus be holding on to an object, only to discover that it has been mutated by someone
else behind your back. If that happens unexpectedly, it can put your program into an
invalid state.

Class instances are also more complicated behind the scenes. Swift has to manage
their memory (as I’ll explain in detail in Chapter 12), precisely because there can be
multiple references to the same object; this management can involve quite a bit of
overhead. At an even lower level, the mere storage of class instances in memory
entails some necessary overhead.

On the whole, therefore, you should prefer a value type (such as a struct) to a refer‐
ence type (a class) wherever possible. Struct instances are not shared between refer‐
ences, and so you are relieved from any worry about such an instance being mutated
behind your back; moreover, under the hood, storage and memory management are
far simpler as well. The Swift language itself will help you by imposing value types in
front of many Cocoa Foundation reference types. For example, Objective-C NSDate
and NSData are classes, but Swift will steer you toward using struct types Date and
Data instead. (I’ll talk about these types in detail in Chapter 10.)

154 | Chapter 4: Object Types

But don’t get the wrong idea. Classes are not bad; they’re good! For one thing, a class
instance is very efficient to pass around, because all you’re passing is a pointer. No
matter how big and complicated a class instance may be, no matter how many prop‐
erties it may have containing vast amounts of data, passing the instance is incredibly
fast and efficient.

Moreover, there are many situations where the independent identity of a class
instance, no matter how many times it is referred to, is exactly what you want. The
extended lifetime of a class instance, as it is passed around, can be crucial to its func‐
tionality and integrity. In particular, only a class instance can successfully represent
an independent reality. For example, a UIView needs to be a class, not a struct,
because an individual UIView instance, no matter how it gets passed around, must
continue to represent the same single real and persistent view in your running app’s
interface.

Still another reason for preferring a class over a struct or enum is when you need
recursive references. A value type cannot be structurally recursive: a stored instance
property of a value type cannot be an instance of the same type. This code won’t
compile:

struct Dog { // compile error
 var puppy : Dog?
}

More complex circular chains, such as a Dog with a Puppy property and a Puppy
with a Dog property, are similarly illegal. But if Dog is a class instead of a struct,
there’s no error. This is a consequence of the nature of memory management of value
types as opposed to reference types.

An enum case’s associated value can be an instance of that enum, provided the
case (or the entire enum) is marked indirect:

enum Node {
 case none(Int)
 indirect case left(Int, Node)
 indirect case right(Int, Node)
 indirect case both(Int, Node, Node)
}

Functions are reference types

The countAdded and greet example, earlier (“Closure Preserving Its Captured Envi‐
ronment” on page 59), demonstrates that functions are themselves reference types. To
show what I mean, I’ll start with a contrasting situation. Two separate calls to a func‐
tion factory method produce two different functions, as you would expect:

Classes | 155

let countedGreet = countAdder(greet)
let countedGreet2 = countAdder(greet)
countedGreet() // count is 1
countedGreet2() // count is 1

The two functions countedGreet and countedGreet2, in that code, are maintaining
their counts separately. But simple assignment or parameter passing results in a new
reference to the same function, maintaining the same count:

let countedGreet = countAdder(greet)
let countedGreet2 = countedGreet
countedGreet() // count is 1
countedGreet2() // count is 2

Subclass and Superclass
Two classes can be subclass and superclass of one another. (For example, we might
have a class Quadruped and a class Dog, with Quadruped as the superclass of Dog.) A
class may have many subclasses, but a class can have only one immediate superclass. I
say “immediate” because that superclass might itself have a superclass, and so on until
we get to the ultimate superclass, called the base class, or root class. Because a class
can have many subclasses but only one superclass, there is a hierarchical tree of sub‐
classes, each branching from its superclass, and so on, with a single class, the base
class, at the top.

A class declaration can prevent the class from being subclassed by preceding the
class declaration with the final keyword.

As far as the Swift language itself is concerned, there is no requirement that a class
should have any superclass, or, if it does have a superclass, that it should ultimately be
descended from any particular base class. Thus, a Swift program can have many
classes that have no superclass, and it can have many independent hierarchical sub‐
class trees, each descended from a different base class.

Cocoa, however, doesn’t work that way. In Cocoa, there is effectively just one base
class — NSObject, which embodies all the functionality necessary for a class to be a
class in the first place — and all other classes are subclasses, at some level, of that one
base class. Cocoa thus consists of one huge tree of hierarchically arranged classes,
even before you write a single line of code or create any classes of your own.

We can imagine diagramming this tree as an outline. And in fact Xcode will show you
this outline (Figure 4-1): in an iOS project window, choose View → Navigators →
Show Symbol Navigator and click Hierarchical, with the first and third icons in the
filter bar selected (blue). Now locate NSObject in the list; the Cocoa classes are the
part of the tree descending from it.

156 | Chapter 4: Object Types

Figure 4-1. Part of the Cocoa class hierarchy as shown in Xcode

Inheritance
The reason for having a superclass–subclass relationship in the first place is to allow
related classes to share functionality. Suppose, for example, we have a Dog class and a
Cat class, and we are considering declaring a walk method for both of them. We
might reason that both a dog and a cat walk in pretty much the same way, by virtue of
both being quadrupeds. So it might make sense to declare walk as a method of the
Quadruped class, and make both Dog and Cat subclasses of Quadruped. The result is
that both Dog and Cat can be sent the walk message, even if neither of them has a
walk method, because each of them has a superclass that does have a walk method.
We say that a subclass inherits the methods of its superclass.

To declare that a certain class is a subclass of a certain superclass, add a colon and the
superclass name after the class’s name in its declaration. So, for example:

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {}
class Cat : Quadruped {}

Classes | 157

Now let’s prove that Dog has indeed inherited walk from Quadruped:

let fido = Dog()
fido.walk() // walk walk walk

Observe that, in that code, the walk message can be sent to a Dog instance just as if
the walk instance method were declared in the Dog class, even though the walk
instance method is in fact declared in a superclass of Dog. That’s inheritance at work.

Additional functionality
The purpose of subclassing is not merely so that a class can inherit another class’s
methods; it’s so that it can also declare methods of its own. Typically, a subclass con‐
sists of the methods inherited from its superclass and then some. If Dog has no meth‐
ods of its own, after all, it’s hard to see why it should exist separately from
Quadruped. But if a Dog knows how to do something that not every Quadruped
knows how to do — let’s say, bark — then it makes sense as a separate class. If we
declare bark in the Dog class, and walk in the Quadruped class, and make Dog a sub‐
class of Quadruped, then Dog inherits the ability to walk from the Quadruped class
and also knows how to bark:

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {
 func bark () {
 print("woof")
 }
}

Again, let’s prove that it works:

let fido = Dog()
fido.walk() // walk walk walk
fido.bark() // woof

Within a class, it is a matter of indifference whether that class has an instance method
because that method is declared in that class or because the method is declared in a
superclass and inherited. A message to self works equally well either way. In this
code, we have declared a barkAndWalk instance method that sends two messages to
self, without regard to where the corresponding methods are declared (one is native
to the subclass, one is inherited from the superclass):

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}

158 | Chapter 4: Object Types

class Dog : Quadruped {
 func bark () {
 print("woof")
 }
 func barkAndWalk() {
 self.bark()
 self.walk()
 }
}

And here’s proof that it works:

let fido = Dog()
fido.barkAndWalk() // woof walk walk walk

Overriding
It is also permitted for a subclass to redefine a method inherited from its superclass.
For example, perhaps some dogs bark differently from other dogs. We might have a
class NoisyDog, for instance, that is a subclass of Dog. Dog declares bark, but Noisy‐
Dog also declares bark, and defines it differently from how Dog defines it. This is
called overriding. The very natural rule is that if a subclass overrides a method inher‐
ited from its superclass, then when the corresponding message is sent to an instance
of that subclass, it is the subclass’s version of that method that is called.

In Swift, when you override something inherited from a superclass, you must explic‐
itly acknowledge this fact by preceding its declaration with the keyword override. So,
for example:

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {
 func bark () {
 print("woof")
 }
}
class NoisyDog : Dog {
 override func bark () {
 print("woof woof woof")
 }
}

And let’s try it:

let fido = Dog()
fido.bark() // woof
let rover = NoisyDog()
rover.bark() // woof woof woof

Classes | 159

Observe that a subclass method by the same name as a superclass’s method is not nec‐
essarily, of itself, an override. Recall that Swift can distinguish two functions with the
same name, provided they have different signatures. Those are different functions,
and so an implementation of one in a subclass is not an override of the other in a
superclass. An override situation exists only when the subclass redefines the same
method that it inherits from a superclass — using the same name, including the
external parameter names, and the same signature.

However, a method override need not have exactly the same signature as the overrid‐
den method. In particular, in a method override, a parameter may be overridden with
a superclass, or with an Optional wrapping the superclass of its type. For example, if
we have a Cat class and its Kitten subclass, the following is legal:

class Dog {
 func barkAt(cat:Kitten) {}
}
class NoisyDog : Dog {
 override func barkAt(cat:Cat) {} // or Cat?
}

Moreover, a parameter may be overridden with an Optional wrapping its type, and an
Optional parameter may be overridden with an Optional wrapping its wrapped type’s
superclass:

class Dog {
 func barkAt(cat:Cat) {} // or Kitten, or Kitten?
}
class NoisyDog : Dog {
 override func barkAt(cat:Cat?) {}
}

There are further rules along the same lines, but I won’t try to list them all here; you
probably won’t need to take advantage of them, and in any case the compiler will tell
you if your override is illegal.

Along with methods, a subclass also inherits its superclass’s properties. Naturally, the
subclass may also declare additional properties of its own. It is possible to override an
inherited property (with some restrictions that I’ll talk about later).

I’ll have more to say about the implications of overriding when I talk about polymor‐
phism, later in this chapter.

A class declaration can prevent a class member from being overridden by a sub‐
class by preceding the member’s declaration with the final keyword.

160 | Chapter 4: Object Types

The keyword super
It often happens that we want to override something in a subclass and yet access the
thing overridden in the superclass. This is done by sending a message to the keyword
super. Our bark implementation in NoisyDog is a case in point. What NoisyDog
really does when it barks is the same thing Dog does when it barks, but more times.
We’d like to express that relationship in our implementation of NoisyDog’s bark. To
do so, we have NoisyDog’s bark implementation send the bark message, not to self
(which would be circular), but to super; this causes the search for a bark instance
method implementation to start in the superclass rather than in our own class:

class Dog : Quadruped {
 func bark () {
 print("woof")
 }
}
class NoisyDog : Dog {
 override func bark () {
 for _ in 1...3 {
 super.bark()
 }
 }
}

And it works:

let fido = Dog()
fido.bark() // woof
let rover = NoisyDog()
rover.bark() // woof woof woof

A subscript function is a method. If a superclass declares a subscript, the subclass
can declare a subscript with the same signature, provided it designates it with the
override keyword. To call the superclass subscript implementation, the subclass
can use square brackets after the keyword super (e.g. super[3]).

Class Initializers
Initialization of a class instance is considerably more complicated than initialization
of a struct or enum instance, because of the existence of class inheritance. The chief
task of an initializer is to ensure that all properties have an initial value, thus making
the instance well-formed as it comes into existence; and an initializer may have other
tasks to perform that are essential to the initial state and integrity of this instance. A
class, however, may have a superclass, which may have properties and initializers of
its own. Thus we must somehow ensure that when a subclass is initialized, its super‐
class’s properties are initialized and the tasks of its initializers are performed in good
order, in addition to those of the subclass itself.

Classes | 161

Swift solves this problem coherently and reliably — and ingeniously — by enforcing
some clear and well-defined rules about what a class initializer must do.

Kinds of class initializer
The rules begin with a distinction between the kinds of initializer that a class can
have:

Designated initializer
A class initializer, by default, is a designated initializer. A class with any stored
properties that are not initialized as part of their declaration must have at least
one designated initializer, and when the class is instantiated, exactly one of its
designated initializers must be called, and must see to it that all stored properties
are initialized. A designated initializer may not delegate to another initializer in
the same class; it is illegal for a designated initializer to use the phrase
self.init(...).

Convenience initializer
A convenience initializer is marked with the keyword convenience. It is a delegat‐
ing initializer; it must contain the phrase self.init(...). Moreover, a conve‐
nience initializer must ultimately delegate to a designated initializer: when it says
self.init(...), it must call a designated initializer in the same class — or, if it
calls another convenience initializer in the same class, the chain of convenience
initializers must end by calling a designated initializer in the same class.

Implicit initializer
A class with no stored properties, or with stored properties all of which are ini‐
tialized as part of their declaration, and that has no explicit designated initializers,
has an implicit designated initializer init().

Here are some examples. This class has no stored properties, so it has an implicit
init() designated initializer:

class Dog {
}
let d = Dog()

This class’s stored properties have default values, so it has an implicit init() designa‐
ted initializer too:

class Dog {
 var name = "Fido"
}
let d = Dog()

This class’s stored properties have default values, but it has no implicit init() initial‐
izer because it has an explicit designated initializer:

162 | Chapter 4: Object Types

class Dog {
 var name = "Fido"
 init(name:String) {self.name = name}
}
let d = Dog(name:"Rover") // ok
let d2 = Dog() // compile error

This class’s stored properties have default values, and it has an explicit initializer, but
it also has an implicit init() initializer because its explicit initializer is a convenience
initializer. Moreover, the implicit init() initializer is a designated initializer, so the
convenience initializer can delegate to it:

class Dog {
 var name = "Fido"
 convenience init(name:String) {
 self.init()
 self.name = name
 }
}
let d = Dog(name:"Rover")
let d2 = Dog()

This class has stored properties without default values; it has an explicit designated
initializer, and all of those properties are initialized in that designated initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}
let d = Dog(name:"Rover", license:42)

This class is similar to the previous example, but it also has convenience initializers
forming a chain that ends with a designated initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
 convenience init() {
 self.init(license:1)
 }
}
let d = Dog()

Classes | 163

Note that the rules about what else an initializer can say and when it can say it, as I
described them earlier in this chapter, are still in force:

• A designated initializer cannot, except in order to initialize a property (or to
fetch the value of a property that is already initialized), say self, implicitly or
explicitly, until all of this class’s properties have been initialized.

• A convenience initializer is a delegating initializer, so it cannot say self for any
purpose until after it has called, directly or indirectly, a designated initializer (and
cannot set a constant property at all).

Subclass initializers
Having defined and distinguished between designated initializers and convenience
initializers, we are ready for the rules about what happens with regard to initializers
when a class is itself a subclass of some other class:

No declared initializers
If a subclass doesn’t have to have any initializers of its own, and if it declares no
initializers of its own, then its initializers consist of the initializers inherited from
its superclass. (A subclass thus has no implicit init() initializer unless it inherits
it from its superclass.)

Convenience initializers only
If a subclass doesn’t have to have any initializers of its own, it is eligible to declare
convenience initializers, and these work exactly as convenience initializers always
do, because inheritance supplies the designated initializers that the convenience
initializers must call by saying self.init(...).

Designated initializers
If a subclass declares any designated initializers of its own, the entire game
changes drastically. Now, no initializers are inherited! The existence of an explicit
designated initializer blocks initializer inheritance. The only initializers the sub‐
class now has are the initializers that you explicitly write (with one exception that
I’ll mention later).

(This rule may seem surprising, even harsh. But it would be terrible if a caller
could bypass a subclass’s designated initializer by explicitly calling an initializer
inherited from its superclass. This rule rightly makes that impossible. I’ll give an
example in a moment.)

Every designated initializer in the subclass now has an extra requirement: it must
call one of the superclass’s designated initializers, by saying super.init(...).
Moreover, the rules about saying self continue to apply. Thus, a subclass desig‐
nated initializer must do things in this order:

1. It must ensure that all properties of this class (the subclass) are initialized.

164 | Chapter 4: Object Types

2. It must call super.init(...), and the initializer that it calls must be a desig‐
nated initializer.

3. Only then may this initializer say self for such purposes as to call an
instance method or to access an inherited property.

If a designated initializer doesn’t call super.init(...), then super.init() is
called implicitly if possible. (I don’t like this feature of Swift: in my view, Swift
should not indulge in secret behavior, even if that behavior might be considered
“helpful.”)

Designated and convenience initializers
If a subclass declares both designated and convenience initializers, the conve‐
nience initializers in the subclass are still subject to the rules I’ve already outlined.
They must call self.init(...), calling a designated initializer directly or
(through a chain of convenience initializers) indirectly. There are no inherited
initializers, so the designated initializer must be explicitly declared in the
subclass.

Override initializers
Superclass initializers can be overridden in the subclass, in accordance with these
restrictions:

• An initializer whose parameters match a convenience initializer of the super‐
class can be a designated initializer or a convenience initializer, and is not
marked override.

• An initializer whose parameters match a designated initializer of the super‐
class can be a designated initializer or a convenience initializer, and must be
marked override. An override designated initializer must still call some
superclass designated initializer (possibly even the one that it overrides) with
super.init(...).

Generally, as I’ve already said, if a subclass has any designated initializers, no ini‐
tializers are inherited. But there’s an exception: if a subclass overrides all of its
superclass’s designated initializers, then the subclass does inherit the superclass’s
convenience initializers.

Failable initializers
If an initializer called by a failable initializer is failable, the calling syntax does not
change, and no additional test is needed — if a failable initializer fails, the whole
initialization process will fail (and will be aborted) immediately.

There are some additional restrictions on failable initializers:

• init can override init?, but not vice versa.

Classes | 165

• init? can call init.
• init can call init? by saying init and unwrapping the result with an excla‐

mation mark (and if the init? fails, you’ll crash).

At no time can a subclass initializer set a constant (let) property of a superclass.
This is because, by the time the subclass is allowed to do anything other than ini‐
tialize its own properties and call another initializer, the superclass has finished
its own initialization and the door for initializing its constants has closed.

Here are some basic examples. We start with a subclass that has no explicit initializers
of its own:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
}

Given that code, you can make a NoisyDog like this:

let nd1 = NoisyDog(name:"Fido", license:1)
let nd2 = NoisyDog(license:2)

That code is legal, because NoisyDog inherits its superclass’s initializers. However,
you can’t make a NoisyDog like this:

let nd3 = NoisyDog() // compile error

That code is illegal. Even though a NoisyDog has no properties of its own, it has no
implicit init() initializer; its initializers are its inherited initializers, and its super‐
class, Dog, has no implicit init() initializer to inherit.

Now here is a subclass whose only explicit initializer is a convenience initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }

166 | Chapter 4: Object Types

}
class NoisyDog : Dog {
 convenience init(name:String) {
 self.init(name:name, license:1)
 }
}

Observe how NoisyDog’s convenience initializer fulfills its contract by calling
self.init(...) to call a designated initializer — which it happens to have inherited.
Given that code, there are three ways to make a NoisyDog, just as you would expect:

let nd1 = NoisyDog(name:"Fido", license:1)
let nd2 = NoisyDog(license:2)
let nd3 = NoisyDog(name:"Rover")

Next, here is a subclass that declares a designated initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
 init(name:String) {
 super.init(name:name, license:1)
 }
}

NoisyDog’s explicit initializer is now a designated initializer. It fulfills its contract by
calling a designated initializer in super. NoisyDog has now cut off inheritance of all
initializers; the only way to make a NoisyDog is like this:

let nd1 = NoisyDog(name:"Rover")

And this restriction is clearly right, because it would be terrible if the caller could
bypass NoisyDog’s designated initializer by using an inherited Dog initializer instead.
NoisyDog’s initializer enforces a rule that a NoisyDog can only have a license value
of 1; if you could say NoisyDog(license:2), you’d bypass that rule. Here’s an example
that makes the point a little more realistically:

class Dog {
 let name : String
 init(name:String) {
 self.name = name
 }
}
class RoverDog : Dog {

Classes | 167

 init() {
 super.init(name:"Rover")
 }
}
let fido = RoverDog(name:"Fido") // compile error

Clearly that last line needs to be an error; otherwise, a RoverDog could be named
Fido, undermining the point of the subclass.

Finally, here is a subclass that overrides its designated initializers:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
 override init(name:String, license:Int) {
 super.init(name:name, license:license)
 }
}

NoisyDog has overridden all of its superclass’s designated initializers, so it inherits its
superclass’s convenience initializers. There are thus two ways to make a NoisyDog:

let nd1 = NoisyDog(name:"Rover", license:1)
let nd2 = NoisyDog(license:2)

Those examples illustrate the main rules that you should keep in your head. You
probably don’t need to memorize the remaining rules, because the compiler will
enforce them, and will keep slapping you down until you get them right.

Required initializers
There’s one more thing to know about class initializers: a class initializer may be pre‐
ceded by the keyword required. This means that a subclass may not lack this initial‐
izer. This, in turn, means that if a subclass implements designated initializers, thus
blocking inheritance, it must override this initializer and mark the override required.
Here’s a (rather pointless) example:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
}

168 | Chapter 4: Object Types

class NoisyDog : Dog {
 var obedient = false
 init(obedient:Bool) {
 self.obedient = obedient
 super.init(name:"Fido")
 }
} // compile error

That code won’t compile. Dog’s init(name:) is marked required; thus, our code
won’t compile unless we inherit or override init(name:) in NoisyDog. But we cannot
inherit it, because, by implementing the NoisyDog designated initializer
init(obedient:), we have blocked inheritance. Therefore we must override it:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
}
class NoisyDog : Dog {
 var obedient = false
 init(obedient:Bool) {
 self.obedient = obedient
 super.init(name:"Fido")
 }
 required init(name:String) {
 super.init(name:name)
 }
}

Observe that our overridden required initializer is not marked with override, but is
marked with required, thus guaranteeing that the requirement continues drilling
down to any further subclasses.

I have explained what declaring an initializer as required does, but I have not
explained why you’d need to do it. I’ll give examples later in this chapter.

Class Deinitializer
A class can have a deinitializer. This is a function declared with the keyword deinit
followed by curly braces containing the function body. You never call this function
yourself; it is called by the runtime when an instance of this class goes out of exis‐
tence. If a class has a superclass, the subclass’s deinitializer (if any) is called before the
superclass’s deinitializer (if any).

A deinitializer is a class feature only; a struct or enum has no deinitializer. That’s
because a class is a reference type (as I explained earlier in this chapter). The idea is
that you might want to perform some cleanup, or just log to the console to prove to

Classes | 169

yourself that your instance is going out of existence in good order. I’ll take advantage
of deinitializers when I discuss memory management issues in Chapter 5.

Class Properties and Methods
A subclass can override its inherited properties. The override must have the same
name and type as the inherited property, and must be marked with override. (A
property cannot have the same name as an inherited property but a different type, as
there is no way to distinguish them.)

The chief restriction here is that an override property cannot be a stored property.
More specifically:

• If the superclass property is writable (a stored property or a computed property
with a setter), the subclass’s override may consist of adding setter observers to
this property.

• Alternatively, the subclass’s override may be a computed property. In that case:
▪ If the superclass property is stored, the subclass’s computed property override

must have both a getter and a setter.
▪ If the superclass property is computed, the subclass’s computed property over‐

ride must have at least a getter, and:
⚬ If the superclass property has a setter, the override must have a setter.
⚬ If the superclass property has no setter, the override can add one.

The overriding property’s functions may refer to — and may read from and write to
— the inherited property, through the super keyword.

A class can have static members, marked static, just like a struct or an enum. It can
also have class members, marked class. Both static and class members are inherited
by subclasses.

The chief difference between static and class methods, from the programmer’s point
of view, is that a static method cannot be overridden; it is as if static were a syno‐
nym for class final.

Here, for example, I’ll use a static method to express what dogs say:

class Dog {
 static func whatDogsSay() -> String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay())
 }
}

170 | Chapter 4: Object Types

A subclass now inherits whatDogsSay, but can’t override it. No subclass of Dog may
contain any implementation of a class method or a static method whatDogsSay with
this same signature.

Now I’ll use a class method to express what dogs say:

class Dog {
 class func whatDogsSay() -> String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay())
 }
}

A subclass inherits whatDogsSay, and can override it, either as a class method or as a
static method:

class NoisyDog : Dog {
 override class func whatDogsSay() -> String {
 return "WOOF"
 }
}

The difference between static properties and class properties is similar, but with an
additional, rather dramatic qualification: a static property can be stored, but a class
property can only be computed.

Here, I’ll use a static class property to express what dogs say:

class Dog {
 static var whatDogsSay = "woof"
 func bark() {
 print(Dog.whatDogsSay)
 }
}

A subclass inherits whatDogsSay, but can’t override it; no subclass of Dog can declare
a class or static property whatDogsSay.

Now I’ll use a class property to express what dogs say. It cannot be a stored property,
so I’ll have to use a computed property instead:

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay)
 }
}

Classes | 171

A subclass inherits whatDogsSay and can override it either as a class property or as a
static property. But the rule about property overrides not being stored is still in force,
even if the override is a static property:

class NoisyDog : Dog {
 override static var whatDogsSay : String {
 return "WOOF"
 }
}

Polymorphism
When a computer language has a hierarchy of types and subtypes, it must resolve the
question of what such a hierarchy means for the relationship between the type of an
object and the declared type of a reference to that object. Swift obeys the principles of
polymorphism. In my view, it is polymorphism that turns an object-based language
into a full-fledged object-oriented language. We may summarize Swift’s polymor‐
phism principles as follows:

Substitution
Wherever a certain type is expected, a subtype of that type may be used instead.

Internal identity
An object’s type is a matter of its internal nature, regardless of how the object is
referred to.

To see what these principles mean in practice, imagine we have a Dog class, along
with its subclass, NoisyDog:

class Dog {
}
class NoisyDog : Dog {
}
let d : Dog = NoisyDog()

The substitution rule says that the last line is legal: we can assign a NoisyDog instance
to a reference, d, that is typed as a Dog. The internal identity rule says that, under the
hood, d now is a NoisyDog.

You may be asking: How is the internal identity rule manifested? If a reference to a
NoisyDog is typed as a Dog, in what sense is this “really” a NoisyDog? To illustrate,
let’s examine what happens when a subclass overrides an inherited method. I’ll rede‐
fine Dog and NoisyDog to demonstrate:

class Dog {
 func bark() {
 print("woof")
 }
}

172 | Chapter 4: Object Types

class NoisyDog : Dog {
 override func bark() {
 for _ in 1...3 {
 super.bark()
 }
 }
}

Now try to guess what happens when this code runs:

func tellToBark(_ d:Dog) {
 d.bark()
}
var nd = NoisyDog()
tellToBark(nd)

That code is legal, because, by the substitution principle, we can pass nd, typed as a
NoisyDog, where a Dog is expected. Now, inside the tellToBark function, d is typed
as a Dog. How will it react to being told to bark? On the one hand, d is typed as a
Dog, and a Dog barks by saying "woof" once. On the other hand, in our code, when
tellToBark is called, what is really passed is a NoisyDog instance, and a NoisyDog
barks by saying "woof" three times. What will happen? Let’s find out:

func tellToBark(_ d:Dog) {
 d.bark()
}
var nd = NoisyDog()
tellToBark(nd) // woof woof woof

The result is "woof woof woof". The internal identity rule says that what matters
when a message is sent is not how the recipient of that message is typed through this
or that reference, but what that recipient actually is. What arrives inside tellToBark is
a NoisyDog, regardless of the type of variable that holds it; thus, the bark message
causes this object to say "woof" three times.

Here’s another important consequence of polymorphism — the meaning of the key‐
word self. It means the actual instance, and thus its meaning depends upon the type
of the actual instance — even if the word self appears in a superclass’s code. For
example:

class Dog {
 func bark() {
 print("woof")
 }
 func speak() {
 self.bark()
 }
}
class NoisyDog : Dog {
 override func bark() {
 for _ in 1...3 {

Polymorphism | 173

 super.bark()
 }
 }
}

What happens when we tell a NoisyDog to speak? Let’s try it:

let nd = NoisyDog()
nd.speak() // woof woof woof

The speak method is declared in Dog, the superclass — not in NoisyDog. The speak
method calls the bark method. It does this by way of the keyword self. (I could have
omitted the explicit reference to self here, but self would still be involved implicitly,
so I’m not cheating by making self explicit.) There’s a bark method in Dog, and an
override of the bark method in NoisyDog. Which bark method will be called?

The word self is encountered within the Dog class’s implementation of speak. But
what matters is not where the word self appears but what it means. It means this
instance. And the internal identity principle tells us that this instance is a NoisyDog!
Thus, it is NoisyDog’s override of bark that is called when Dog’s speak says
self.bark().

Polymorphism applies to Optional types in the same way that it applies to the type of
thing wrapped by the Optional. Suppose we have a reference typed as an Optional
wrapping a Dog. You already know that you can assign a Dog to it. Well, you can also
assign a NoisyDog, or an Optional wrapping a NoisyDog, and the underlying wrap‐
ped object will maintain its integrity:

var d : Dog?
d = Dog()
d = NoisyDog()
d = Optional(NoisyDog())

(The applicability of polymorphism to Optionals derives from a special dispensation
of the Swift language: Optionals are covariant. I’ll talk more about that later in this
chapter.)

Thanks to polymorphism, you can take advantage of subclasses to add power and
customization to existing classes. This is important particularly in the world of iOS
programming, where most of the classes are defined by Cocoa and don’t belong to
you. The UIViewController class, for example, is defined by Cocoa; it has lots of
built-in methods that Cocoa will call, and these methods perform various important
tasks — but in a generic way. In real life, you’ll make a UIViewController subclass,
and you’ll override those methods to do the tasks appropriate to your particular app.
This won’t bother Cocoa in the slightest, because (substitution principle) wherever
Cocoa expects to receive or to be talking to a UIViewController, it will accept without
question an instance of your UIViewController subclass. And this substitution will
also work as expected, because (internal identity principle) whenever Cocoa calls one

174 | Chapter 4: Object Types

of those UIViewController methods on your subclass, it is your subclass’s override
that will be called. I’ll talk more about subclassing Cocoa classes in Chapter 10.

Polymorphism is cool, but in the grand scheme of things it is also relatively slow.
It requires dynamic dispatch, meaning that the compiler can’t perform certain
optimizations, and that the runtime has to think about what a message to a class
instance means. You can reduce the need for dynamic dispatch by declaring a
class or a class member final or private. Or use a struct, if appropriate; structs
don’t need dynamic dispatch.

Casting
The Swift compiler, with its strict typing, imposes severe restrictions on what mes‐
sages can be sent to an object reference. The messages that the compiler will permit to
be sent to an object reference depend upon the reference’s declared type. But the
internal identity principle of polymorphism says that, under the hood, an object may
have a real type that is different from its reference’s declared type. Such an object may
thus be capable of receiving messages that the compiler won’t permit us to send.

To illustrate, let’s give NoisyDog a method that Dog doesn’t have:

class Dog {
 func bark() {
 print("woof")
 }
}
class NoisyDog : Dog {
 override func bark() {
 super.bark(); super.bark()
 }
 func beQuiet() {
 self.bark()
 }
}

In that code, we configure a NoisyDog so that we can tell it to beQuiet. Now look at
what happens when we try to tell an object typed as a Dog to be quiet:

func tellToHush(_ d:Dog) {
 d.beQuiet() // compile error
}
let nd = NoisyDog()
tellToHush(nd)

Our code doesn’t compile. We can’t send the beQuiet message to the reference d
inside the function body, because it is typed as a Dog — and a Dog has no beQuiet
method. But there is a certain irony here: for once, we happen to know more than the
compiler does — namely, that this object is in fact a NoisyDog and does have a
beQuiet method! Our code would run correctly — because d really is a NoisyDog —

Casting | 175

if only we could get our code to compile in the first place. We need a way to say to the
compiler, “Look, compiler, just trust me: this thing is going to turn out to be a Noisy‐
Dog when the program actually runs, so let me send it this message.”

There is in fact a way to do this — casting. To cast, you use a form of the keyword as
followed by the name of the type you claim something really is.

Casting Down
Swift will not let you cast just any old type to any old other type — for example, you
can’t cast a String to an Int — but it will let you cast a superclass to a subclass. This is
called casting down. When you cast down, the form of the keyword as that you must
use is as! with an exclamation mark. The exclamation mark reminds you that you are
forcing the compiler to do something it would rather not do:

func tellToHush(_ d:Dog) {
 (d as! NoisyDog).beQuiet()
}
let nd = NoisyDog()
tellToHush(nd)

That code compiles, and works. A useful way to rewrite the example is like this:

func tellToHush(_ d:Dog) {
 let d2 = d as! NoisyDog
 d2.beQuiet()
 // ... other NoisyDog messages to d2 can go here ...
}
let nd = NoisyDog()
tellToHush(nd)

The reason that way of rewriting the code is useful is in case we have other NoisyDog
messages to send to this object. Instead of casting every time we want to send a mes‐
sage to it, we cast the object once to its internal identity type, and assign it to a vari‐
able. Now that variable’s type — inferred, in this case, from the cast — is the internal
identity type, and we can send multiple messages to the variable.

Type Testing and Casting Down Safely
A moment ago, I said that the as! operator’s exclamation mark reminds you that you
are forcing the compiler’s hand. It also serves as a warning: your code can now crash!
The reason is that you might be lying to the compiler. Casting down is a way of telling
the compiler to relax its strict type checking and to let you call the shots. If you use
casting to make a false claim, the compiler may permit it, but you will crash when the
app runs:

176 | Chapter 4: Object Types

func tellToHush(_ d:Dog) {
 (d as! NoisyDog).beQuiet() // compiles, but prepare to crash...!
}
let d = Dog()
tellToHush(d)

In that code, we told the compiler that this object would turn out to be a NoisyDog,
and the compiler obediently took its hands off and allowed us to send the beQuiet
message to it. But in fact, this object was a Dog when our code ran, and so we ulti‐
mately crashed when the cast failed because this object was not a NoisyDog.

To prevent yourself from lying accidentally, you can test the type of an instance at
runtime. One way to do this is with the keyword is. You can use is in a condition; if
the condition passes, then cast, in the knowledge that your cast is safe:

func tellToHush(_ d:Dog) {
 if d is NoisyDog {
 let d2 = d as! NoisyDog
 d2.beQuiet()
 }
}

The result is that we won’t cast d to a NoisyDog unless it really is a NoisyDog.

An alternative way to solve the same problem is to use Swift’s as? operator. This casts
down, but with the option of failure; therefore what it casts to is (you guessed it) an
Optional — and now we are on familiar ground, because we know how to deal safely
with an Optional:

func tellToHush(_ d:Dog) {
 let noisyMaybe = d as? NoisyDog // an Optional wrapping a NoisyDog
 if noisyMaybe != nil {
 noisyMaybe!.beQuiet()
 }
}

That doesn’t look much cleaner or shorter than our previous approach. But remem‐
ber that we can safely send a message to an Optional by optionally unwrapping the
Optional! Thus we can skip the assignment and condense to a single line:

func tellToHush(_ d:Dog) {
 (d as? NoisyDog)?.beQuiet()
}

First we use the as? operator to obtain an Optional wrapping a NoisyDog (or nil).
Then we optionally unwrap that Optional and send a message to it. If d isn’t a Noisy‐
Dog, the Optional will be nil and the message won’t be sent. If d is a NoisyDog, the
Optional will be unwrapped and the message will be sent. Thus, that code is safe.

Casting | 177

Type Testing and Casting Optionals
The is, as!, and as? operators work with Optionals in the same way that comparison
operators do (Chapter 3): they are automatically applied to the object wrapped by the
Optional.

Let’s start with is. Consider an Optional d ostensibly wrapping a Dog (that is, d is a
Dog? object). It might, in actual fact, be wrapping either a Dog or a NoisyDog. To find
out which it is, you might be tempted to use is. But can you? After all, an Optional is
neither a Dog nor a NoisyDog — it’s an Optional! Nevertheless, Swift knows what
you mean; when the thing on the left side of is is an Optional, Swift pretends that it’s
the value wrapped in the Optional. This works just as you would hope:

let d : Dog? = NoisyDog()
if d is NoisyDog { // it is!

When using is with an Optional, the test fails in good order if the Optional is nil.
Thus our is test really does two things: it checks whether the Optional is nil, and if it
is not, it then checks whether the wrapped value is the type we specify.

What about casting? You can’t really cast an Optional to anything. Nevertheless, Swift
knows what you mean; you can use the as! operator with an Optional. When the
thing on the left side of as! is an Optional, Swift treats it as the wrapped type. More‐
over, the consequence of applying the as! operator is that two things happen: Swift
unwraps first, and then casts. This code works, because d is unwrapped to give us d2,
which is a NoisyDog:

let d : Dog? = NoisyDog()
let d2 = d as! NoisyDog
d2.beQuiet()

That code, however, is not safe. You shouldn’t cast like that, without testing first,
unless you are very sure of your ground. If d were nil, you’d crash in the second line
because you’re trying to unwrap a nil Optional. And if d were a Dog, not a Noisy‐
Dog, you’d still crash in the second line when the cast fails. That’s why there’s also an
as? operator, which is safe — but yields an Optional:

let d : Dog? = NoisyDog()
let d2 = d as? NoisyDog
d2?.beQuiet()

Bridging to Objective-C
Another way you’ll use casting is during a value interchange between Swift and
Objective-C when two types are equivalent. For example, you can cast a Swift String
to a Cocoa NSString, and vice versa. That’s not because one is a subclass of the other,
but because they are bridged to one another; in a very real sense, they are the same

178 | Chapter 4: Object Types

type. When you cast from String to NSString, you’re not casting down, and what
you’re doing is not dangerous, so you use the as operator, with no exclamation mark.

In general, to cross the bridge from a Swift type to a bridged Objective-C type, you
will need to cast explicitly (except in the case of a string literal):

let s : NSString = "howdy" // literal string to NSString
let s2 = "howdy"
let s3 : NSString = s2 as NSString // String to NSString
let i : NSNumber = 1 as NSNumber // Int to NSNumber

That sort of code, however, is rather artificial. In real life, you won’t be casting all that
often, because the Cocoa API will present itself to you in terms of Swift types. For
example, this is legal with no cast:

let name = "MyNib" // Swift String
let vc = ViewController(nibName:name, bundle:nil)

The UIViewController class comes from Cocoa, and its nibName property is an
Objective-C NSString — not a Swift String. But you don’t have to help the Swift
String name across the bridge by casting, because, in the Swift world, nibName: is
typed as a Swift String (actually, an Optional wrapping a String). The bridge, in effect,
is crossed later.

Similarly, no cast is required here:

let ud = UserDefaults.standard
let s = "howdy"
ud.set(s, forKey:"greeting")

You don’t have to help the Swift String s across the bridge by casting, because the first
argument of set(_:forKey:) is typed as a Swift type, namely Any (actually, an
Optional wrapping Any) — and any Swift type can be used, without casting, where an
Any is expected. I’ll talk more about Any later in this chapter.

Coming back the other way, it is possible that you’ll receive from Objective-C a value
about whose real underlying type Swift has no information. In that case, you’ll proba‐
bly want to cast explicitly to the underlying type — and now you are casting down,
with all that that implies. For example, here’s what happens when we go to retrieve the
"howdy" that we put into UserDefaults in the previous example:

let ud = UserDefaults.standard
let test = ud.object(forKey:"greeting") as! String

When we call ud.object(forKey:), Swift has no type information; the result is an
Any (actually, an Optional wrapping Any). But we know that this particular call
should yield a string — because that’s what we put in to begin with. So we can force-
cast this value down to a String — and it works. However, if ud.object(for-
Key:"greeting") were not a string (or if it were nil), we’d crash. If you’re not sure of

Casting | 179

your ground, use is or as? to be safe. I’ll discuss this kind of downcasting in more
detail later on.

Type References
This section talks about the ways in which Swift can refer to the type of an object,
other than saying the bare type literally.

From Instance to Type
It can be useful, given an instance, to refer to its type. Indeed, it can be useful for an
instance to refer to its own type — for example, to send a message to that type. In an
earlier example, a Dog instance method fetched a Dog class property by sending a
message to the Dog type explicitly by using the word Dog:

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay)
 }
}

The expression Dog.whatDogsSay seems clumsy and inflexible. Why should we have
to hard-code into Dog a knowledge of what class it is? It has a class; it should just
know what it is.

In Swift, you can access the type of an object reference’s underlying object through
the type(of:) function. Thus, if you don’t like the notion of a Dog instance calling a
Dog class method by saying Dog explicitly, there’s another way:

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(type(of:self).whatDogsSay)
 }
}

An important thing about using type(of:) instead of hard-coding a class name is
that it obeys polymorphism:

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(type(of:self).whatDogsSay)

180 | Chapter 4: Object Types

 }
}
class NoisyDog : Dog {
 override class var whatDogsSay : String {
 return "woof woof woof"
 }
}

Now watch what happens:

let nd = NoisyDog()
nd.bark() // woof woof woof

If we tell a NoisyDog instance to bark, it says "woof woof woof". The reason is that
type(of:) means, “The type that this object actually is, right now.” We send the bark
message to a NoisyDog instance. The bark implementation refers to type(of:self);
even though the bark implementation is inherited from Dog, self means this
instance, which is a NoisyDog, and so type(of:self) is the NoisyDog class, and it is
NoisyDog’s version of whatDogsSay that is fetched.

Type as Value
In some situations, you may want to treat an object type as a value. That is legal; an
object type is itself an object, so it can be assigned to a variable or passed as a parame‐
ter. Here’s what you need to know:

• To declare that an object type is acceptable — for example, when declaring the
type of a variable or parameter — use dot-notation with the name of the type and
the keyword Type.

• To use an object type as a value — for example, to assign a type to a variable or
pass it as a parameter — use dot-notation with the name of the type and the key‐
word self, or hand an object to type(of:).

For example, here’s a function dogTypeExpecter that accepts a Dog type as its
parameter:

func dogTypeExpecter(_ whattype:Dog.Type) {
}

And here’s an example of calling that function:

dogTypeExpecter(Dog.self)

Or you could call it like this:

let d = Dog()
dogTypeExpecter(type(of:d))

The substitution principle applies, so you could call dogTypeExpecter starting with a
NoisyDog instead:

Type References | 181

dogTypeExpecter(NoisyDog.self)
let nd = NoisyDog()
dogTypeExpecter(type(of:nd))

Why might you want to do something like that? A typical situation is that your func‐
tion is a factory for instances: given a type, it creates an instance of that type, possibly
prepares it in some way, and returns it. You can use a variable reference to a type —
what Swift calls a metatype — to make an instance of that type, by explicitly sending it
an init(...) message.

For example, here’s a Dog class with an init(name:) initializer, and its NoisyDog
subclass:

class Dog {
 var name : String
 init(name:String) {
 self.name = name
 }
}
class NoisyDog : Dog {
}

And here’s a factory method that creates a Dog or a NoisyDog, as specified by its
parameter, gives it a name, and returns it:

func dogMakerAndNamer(_ whattype:Dog.Type) -> Dog {
 let d = whattype.init(name:"Fido") // compile error
 return d
}

However, there’s a problem: the code doesn’t compile. The reason is that the compiler
is in doubt as to whether the init(name:) initializer is implemented by every possi‐
ble subtype of Dog. To reassure it, we must declare that initializer with the required
keyword:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
}
class NoisyDog : Dog {
}

I promised earlier that I’d tell you why you might need to declare an initializer as
required; now I’m fulfilling that promise! The required designation reassures the
compiler; every subclass of Dog must inherit or reimplement init(name:), so it’s
legal to send the init(name:) message to a type reference that might refer to Dog or
some subclass of Dog. Now our code compiles, and we can call our function:

182 | Chapter 4: Object Types

let d = dogMakerAndNamer(Dog.self) // d is a Dog named Fido
let d2 = dogMakerAndNamer(NoisyDog.self) // d2 is a NoisyDog named Fido

The Keyword Self
In a class method, self stands for the class polymorphically. This means that, in a
class method, you can send a message to self to call an initializer polymorphically.
Here’s an example. Let’s say we want to move our instance factory method into Dog
itself, as a class method. Let’s call this class method makeAndName. We want this class
method to create and return a named Dog of whatever class we send the makeAndName
message to. If we say Dog.makeAndName(), we should get a Dog. If we say Noisy-
Dog.makeAndName(), we should get a NoisyDog. So our makeAndName class method
initializes polymorphic self:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
 class func makeAndName() -> Dog {
 let d = self.init(name:"Fido")
 return d
 }
}
class NoisyDog : Dog {
}

It works as expected:

let d = Dog.makeAndName() // d is a Dog named Fido
let d2 = NoisyDog.makeAndName() // d2 is a NoisyDog named Fido

Although the preceding example does work, there’s a problem. Although d2 is in fact
a NoisyDog, it is typed as a Dog. This is because our makeAndName class method is
declared as returning a Dog. That isn’t what we want to declare. What we want to
declare is that this method returns an instance of the same type as the class to which
the makeAndName message was originally sent. In other words, we need a polymorphic
type declaration! That type is Self (notice the capitalization). The Self type is used
as a return type in a method declaration to mean “an instance of whatever type this is
at runtime.” Thus:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
 class func makeAndName() -> Self {
 let d = self.init(name:"Fido")
 return d

Type References | 183

 }
}
class NoisyDog : Dog {
}

Now when we call NoisyDog.makeAndName() we get a NoisyDog typed as a Noisy‐
Dog.

(Our earlier example, the global factory function dogMakerAndNamer, displays the
same problem — it too returns an object typed as Dog, even if the underlying
instance is in fact a NoisyDog. We can’t use Self to solve the problem here, because
there’s no type for it to refer to. Swift does have a solution, however — generics. I’ll
discuss generic functions later in this chapter.)

Self also works for instance method declarations. Therefore, we can write an
instance method version of our factory method. Here, we start with a Dog or a Noisy‐
Dog and tell it to have a puppy of the same type as itself:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
 func havePuppy(name:String) -> Self {
 return type(of:self).init(name:name)
 }
}
class NoisyDog : Dog {
}

And here’s some code to test it:

let d = Dog(name:"Fido")
let d2 = d.havePuppy(name:"Fido Junior")
let nd = NoisyDog(name:"Rover")
let nd2 = nd.havePuppy(name:"Rover Junior")

As expected, d2 is a Dog, but nd2 is a NoisyDog typed as a NoisyDog.

Comparing Types
Type references can be compared to one another. On the right side of an == compari‐
son, you can use the name of a type with .self; on the right side of an is compari‐
son, you can use the name of a type with .Type. The difference, as you might expect,
is that == tests for absolutely identical types, whereas is permits subtypes. In this
example, if the parameter whattype is Dog.self, both equality and typology are
true; if the parameter is NoisyDog.self, equality is false but typology is still true:

184 | Chapter 4: Object Types

func dogTypeExpecter(_ whattype:Dog.Type) {
 let equality = whattype == Dog.self
 let typology = whattype is Dog.Type
}

(In real life, the second line is silly, because we know that whattype will always be
some sort of Dog type — and the compiler tells you so. But suppose we had three
classes: Dog, its subclass NoisyDog, and its subclass VeryNoisyDog. Now it would be
useful to ask whether whattype is NoisyDog.Type, meaning NoisyDog or a subclass
thereof.)

In that example, whattype might be replaced on the left side of the comparisons by
the result of a call to type(of:) (or by a type name qualified by .self, though that
would be pointless); and Dog.self might be replaced on the right side of the == com‐
parison by whattype or the result of a call to type(of:). But neither whattype nor
type(of:) can appear on the right side of an is comparison; is requires a literal type
as its second operand.

Summary of Type Terminology
All this terminology can get a bit confusing, so here’s a quick summary:

type(of:)

Applied to an object: the polymorphic (internal) type of the object, regardless of
how a reference is typed. Static/class members are accessible by passing an object
to type(of:). Usable on the right side of ==.

.Type

Sent to a type in a type declaration: the polymorphic type. For example, in a func‐
tion parameter declaration, Dog means a Dog instance is expected (or an instance
of one its subclasses), but Dog.Type means that the Dog type itself is expected (or
the type of one of its subclasses). Usable on the right side of is.

.self

Sent to a type: the type. For example, to pass the Dog type where Dog.Type is
expected, you can pass Dog.self. Usable on the right side of ==.

self

In instance code, this instance, polymorphically. In static/class code, this type,
polymorphically; self.init(...) instantiates the type.

Self

In a method declaration, when specifying the return type, this class or this
instance’s class, polymorphically.

Type References | 185

Protocols
A protocol is a way of expressing commonalities between otherwise unrelated types.
For example, a Bee object and a Bird object might need to have certain features in
common by virtue of the fact that both a bee and a bird can fly. Thus, it might be
useful to define a Flier type. The question is: In what sense can both Bee and Bird be
Fliers?

One possibility, of course, is class inheritance. If Bee and Bird are both classes, there’s
a class hierarchy of superclasses and subclasses. So Flier could be the superclass of
both Bee and Bird. The problem is that there may be other reasons why Flier can’t be
the superclass of both Bee and Bird. A Bee is an Insect; a Bird isn’t. Yet they both have
the power of flight — independently. We need a type that cuts across the class hierar‐
chy somehow, tying remote classes together.

Moreover, what if Bee and Bird are not both classes? In Swift, that’s a very real possi‐
bility. Important and powerful objects can be structs instead of classes. But there is no
struct hierarchy of superstructs and substructs! That, after all, is one of the major dif‐
ferences between structs and classes. Yet structs need the ability to possess and
express formal commonalities every bit as much as classes do. How can a Bee struct
and a Bird struct both be Fliers?

Swift solves this problem through the use of protocols. Protocols are tremendously
important in Swift; the Swift header defines about 60 of them! Moreover, Objective-C
has protocols as well; Swift protocols correspond roughly to these, and can inter‐
change with them. Cocoa makes heavy use of protocols.

A protocol is an object type, but there are no protocol objects — you can’t instantiate a
protocol. A protocol is much more lightweight than that. A protocol declaration is
just a list of properties and methods. The properties have no values, and the methods
have no code! The idea is that a “real” object type can formally declare that it belongs
to a protocol type; this is called adopting the protocol. An object type that adopts a
protocol is signing a contract stating that it actually implements the properties and
methods listed by the protocol. And it must fulfill that contract! This is called con‐
forming to the protocol.

For example, let’s say that being a Flier consists of no more than implementing a fly
method. Then a Flier protocol could specify that there must be a fly method; to do
so, it lists the fly method with no function body, like this:

protocol Flier {
 func fly()
}

Any type — an enum, a struct, a class, or even another protocol — can then adopt
this protocol. To do so, it lists the protocol after a colon after its name in its declara‐

186 | Chapter 4: Object Types

tion. (If the adopter is a class with a superclass, the protocol comes after a comma
after the superclass specification.)

Let’s say Bird is a struct. Then it can adopt Flier like this:

struct Bird : Flier {
} // compile error

So far, so good. But that code won’t compile. The Bird struct has made a promise to
implement the features listed in the Flier protocol. Now it must keep that promise!
The fly method is the only requirement of the Flier protocol. To satisfy that require‐
ment, I’ll just give Bird an empty fly method:

protocol Flier {
 func fly()
}
struct Bird : Flier {
 func fly() {
 }
}

That’s all there is to it! We’ve defined a protocol, and we’ve made a struct adopt and
conform to that protocol. Of course, in real life you’ll probably want to make the
adopter’s implementation of the protocol’s methods do something; but the protocol
says nothing about that.

A protocol can also declare a method and provide its implementation, thanks to
protocol extensions, which I’ll discuss later in this chapter.

Why Protocols?
Perhaps at this point you’re scratching your head over why this is a useful thing to do.
We made a Bird a Flier, but so what? If we wanted a Bird to know how to fly, why
didn’t we just give Bird a fly method without adopting any protocol? The answer has
to do with types. Don’t forget, a protocol is a type. Our protocol, Flier, is a type.
Therefore, I can use Flier as a type — to declare the type of a variable, for example, or
the type of a function parameter:

func tellToFly(_ f:Flier) {
 f.fly()
}

Think about that code for a moment, because it embodies the entire point of proto‐
cols. A protocol is a type — so polymorphism applies. Protocols give us another way of
expressing the notion of type and subtype. This means that, by the substitution prin‐
ciple, a Flier here could be an instance of any object type — an enum, a struct, or a
class. It doesn’t matter what object type it is, as long as it adopts the Flier protocol. If it
adopts the Flier protocol, it can be passed where a Flier is expected. Moreover, if it

Protocols | 187

adopts the Flier protocol, then it must have a fly method, because that’s exactly what
it means to adopt the Flier protocol! Therefore the compiler is willing to let us send
the fly message to this object.

The converse, however, is not true: an object with a fly method is not automatically a
Flier. It isn’t enough to obey the requirements of a protocol; the object type must for‐
mally adopt the protocol. This code won’t compile:

func tellToFly(_ f:Flier) {
 f.fly()
}
struct Bee {
 func fly() {
 }
}
let b = Bee()
tellToFly(b) // compile error

A Bee can be sent the fly message, qua Bee. But tellToFly doesn’t take a Bee param‐
eter; it takes a Flier parameter. Formally, a Bee is not a Flier. To make a Bee a Flier,
simply declare formally that Bee adopts the Flier protocol. This code does compile:

func tellToFly(_ f:Flier) {
 f.fly()
}
struct Bee : Flier {
 func fly() {
 }
}
let b = Bee()
tellToFly(b)

Enough of birds and bees; we’re ready for a real-life example! As I’ve already said,
Swift is chock full of protocols already. Let’s make one of our own object types adopt
one. The CustomStringConvertible protocol requires that we implement a
description String property. If we do that, a wonderful thing happens: when an
instance of this type is used in string interpolation, or with print (or the po com‐
mand in the console), or in the String initializer init(describing:), the
description property value is used automatically to represent it.

Recall, for example, the Filter enum, from earlier in this chapter. I’ll add a
description property to it:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 var description : String { return self.rawValue }
}

188 | Chapter 4: Object Types

But that isn’t enough, in and of itself, to give Filter the power of the CustomString‐
Convertible protocol; to do that, we also need to adopt the CustomStringConvertible
protocol formally. There is already a colon and a type in the Filter declaration, so an
adopted protocol comes after a comma:

enum Filter : String, CustomStringConvertible {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 var description : String { return self.rawValue }
}

We have now made Filter formally adopt the CustomStringConvertible protocol. The
CustomStringConvertible protocol requires that we implement a description String
property; we do implement a description String property, so our code compiles.
Now we can interpolate a Filter into a string, or hand it over to print, or coerce it to a
String, and its description will be used automatically:

let type = Filter.albums
print("It is \(type)") // It is Albums
print(type) // Albums
let s = String(describing:type) // Albums

Behold the power of protocols. You can give any object type the power of string con‐
version in exactly the same way.

Note that a type can adopt more than one protocol! For example, the built-in Double
type adopts CustomStringConvertible, Hashable, Strideable, and several other built-
in protocols. To declare adoption of multiple protocols, list each one after the first
protocol in the declaration, separated by a comma. For example:

struct MyType : CustomStringConvertible, TextOutputStreamable, Strideable {
 // ...
}

(Of course, that code won’t compile unless I also declare, in MyType, any required
properties and methods, so that MyType actually conforms to those protocols.)

Protocol Type Testing and Casting
A protocol is a type, and an adopter of a protocol is its subtype. Polymorphism
applies. Therefore, the operators for mediating between an object’s declared type and
its real type work when the object is declared as a protocol type. For example, given a
protocol Flier that is adopted by both Bird and Bee, we can use the is operator to test
whether a particular Flier is in fact a Bird:

func isBird(_ f:Flier) -> Bool {
 return f is Bird
}

Protocols | 189

Similarly, as! and as? can be used to cast an object declared as a protocol type down
to its actual type. This is important to be able to do, because the adopting object will
typically be able to receive messages that the protocol can’t receive. For example, let’s
say that a Bird can get a worm:

struct Bird : Flier {
 func fly() {
 }
 func getWorm() {
 }
}

A Bird can fly qua Flier, but it can getWorm only qua Bird. Thus, you can’t tell just
any old Flier to get a worm:

func tellGetWorm(_ f:Flier) {
 f.getWorm() // compile error
}

But if this Flier is a Bird, clearly it can get a worm. That is exactly what casting is all
about:

func tellGetWorm(f:Flier) {
 (f as? Bird)?.getWorm()
}

Declaring a Protocol
Protocol declaration can take place only at the top level of a file. To declare a proto‐
col, use the keyword protocol followed by the name of the protocol, which, being an
object type, should start with a capital letter. Then come curly braces which may con‐
tain the following:

Properties
A property declaration in a protocol consists of var (not let), the property
name, a colon, its type, and curly braces containing the word get or the words
get set. In the former case, the adopter’s implementation of this property can be
writable, while in the latter case, it must be: the adopter may not implement a get
set property as a read-only computed property or as a constant (let) stored
property.

To declare a static/class property, precede it with the keyword static. A class
adopter is free to implement this as a class property.

Methods
A method declaration in a protocol is a function declaration without a function
body — that is, it has no curly braces and thus it has no code. Any object func‐
tion type is legal, including init and subscript. (The syntax for declaring a sub‐

190 | Chapter 4: Object Types

script in a protocol is the same as the syntax for declaring a subscript in an object
type, except that there will be no function bodies, so the curly braces, like those
of a property declaration in a protocol, will contain get or get set.)

To declare a static/class method, precede it with the keyword static. A class
adopter is free to implement this as a class method.

To permit an enum or struct adopter to declare a method mutating, declare it
mutating in the protocol. An adopter cannot add mutating if the protocol lacks
it, but the adopter may omit mutating if the protocol has it.

A protocol can itself adopt one or more protocols; the syntax is just as you would
expect — a colon after the protocol’s name in the declaration, followed by a comma-
separated list of the protocols it adopts. In effect, this gives you a way to create an
entire secondary hierarchy of types! The Swift headers make heavy use of this.

A protocol that adopts another protocol may repeat the contents of the adopted pro‐
tocol’s curly braces, for clarity; but it doesn’t have to, as this repetition is implicit. An
object type that adopts a protocol must satisfy the requirements of this protocol and
all protocols that the protocol adopts.

Protocol Composition
If the only purpose of a protocol is to combine other protocols by adopting all of
them, without adding any new requirements, you can avoid formally declaring the
protocol in the first place by specifying the combining protocol on the fly. To do so,
join the protocol names with &. This is called protocol composition. For example:

func f(_ x: CustomStringConvertible & CustomDebugStringConvertible) {
}

That is a function declaration with a parameter whose type is specified as being some
object type that adopts both the CustomStringConvertible protocol and the Custom‐
DebugStringConvertible protocol.

Starting in Swift 4, a type can also be specified as a composite of a class and a protocol
(or multiple protocols). A typical case in point might look something like this:

protocol MyViewProtocol : class {
 func doSomethingCool()
}
class ViewController: UIViewController {
 var v: (UIView & MyViewProtocol)?
 // ...
}

In that code, ViewController’s v property is typed as an Optional wrapping a compo‐
site of UIView and MyViewProtocol. To be assigned to the v property, an object
would need to be an instance of a UIView subclass that is also an adopter of MyView‐

Protocols | 191

Protocol. UIView itself belongs to Cocoa and does not adopt MyViewProtocol; but
we might easily subclass UIView and make that subclass adopt it (or, as I’ll explain
later, we might extend a built-in UIView subclass to adopt it).

In this way, we guarantee to the compiler that both UIView messages and MyView‐
Protocol messages can be sent to a ViewController’s v. That, it turns out, is a fairly
common thing to want to be able to do; without this feature, you’d have to type v as a
MyViewProtocol and then cast to UIView in order to send it UIView messages, even
if you knew that v would in fact always be a UIView.

Optional Protocol Members
In Objective-C, a protocol member can be declared optional, meaning that this mem‐
ber doesn’t have to be implemented by the adopter, but it may be. For compatibility
with Objective-C, Swift allows optional protocol members, but only in a protocol
explicitly bridged to Objective-C by preceding its declaration with the @objc
attribute. In such a protocol, an optional member is declared by preceding its decla‐
ration with the keywords @objc optional:

@objc protocol Flier {
 @objc optional var song : String {get}
 @objc optional func sing()
}

(The @objc markings are needed because optional protocol members are not really a
Swift feature; they are an Objective-C feature! Therefore, everything about an
optional protocol member must be explicitly exposed to Objective-C, so that
Objective-C can implement it. I’ll explain in Chapter 10 how Objective-C implements
optional protocol members.)

Only a class can adopt such a protocol:

class Bird : Flier {
 func sing() {
 print("tweet")
 }
}

An optional member is not guaranteed to be implemented by the adopter, so Swift
doesn’t know whether it’s safe to send a Flier either the song message or the sing
message. How Swift solves that problem depends on whether this is an optional prop‐
erty or an optional method.

In the case of an optional property like song, Swift solves the problem by wrapping its
fetched value in an Optional. If the Flier adopter doesn’t implement the property, the
result is nil and no harm done:

let f : Flier = Bird()
let s = f.song // s is an Optional wrapping a String

192 | Chapter 4: Object Types

This is one of those rare situations where you can wind up with a double-wrapped
Optional. For example, if the value of the optional property song were itself a
String?, then fetching its value from a Flier would yield a String??:

@objc protocol Flier {
 @objc optional var song : String? {get}
 @objc optional func sing()
}
let f : Flier = Bird()
let s = f.song // s is an Optional wrapping an Optional wrapping a String

In the case of an optional method like sing, things are more elaborate. If the method
is not implemented, we must not be permitted to call it in the first place. To handle
this situation, the method itself is automatically typed as an Optional version of its
declared type. To send the sing message to a Flier, therefore, you must unwrap it. The
safe approach is to unwrap it optionally, with a question mark:

let f : Flier = Bird()
f.sing?()

That code compiles — and it also runs safely. The effect is to send the sing message
to f only if this Flier adopter implements sing. If this Flier adopter doesn’t implement
sing, nothing happens. You could have force-unwrapped the call — f.sing!() — but
then your app would crash if the adopter doesn’t implement sing.

If an optional method returns a value, that value is wrapped in an Optional as well.
For example:

@objc protocol Flier {
 @objc optional var song : String {get}
 @objc optional func sing() -> String
}

If we now call sing?() on a Flier, the result is an Optional wrapping a String:

let f : Flier = Bird()
let s = f.sing?() // s is an Optional wrapping a String

If we force-unwrap the call — sing!() — the result is either a String (if the adopter
implements sing) or a crash (if it doesn’t).

Many Cocoa protocols have optional members. For example, your iOS app will have
an app delegate class that adopts the UIApplicationDelegate protocol; this protocol
has many methods, all of them optional. That fact, however, will have no effect on
how you implement those methods; either you implement a method or you don’t. (I’ll
talk more about Cocoa protocols in Chapter 10, and about delegate protocols in
Chapter 11.)

Protocols | 193

An optional property can be declared {get set} by its protocol, but there is no
legal syntax for setting such a property in an object of that protocol type. For
example, if f is a Flier and song is declared {get set}, you can’t set f.song. I
regard this as a bug in the language.

Class Protocol
A protocol declared with the keyword class after the colon after its name is a class
protocol, meaning that it can be adopted only by class object types:

protocol SecondViewControllerDelegate : class {
 func accept(data:Any!)
}

(There is no need to say class if this protocol is already marked @objc; the @objc
attribute implies that this is also a class protocol, because classes are the only
Objective-C object type.)

A typical reason for declaring a class protocol is to take advantage of special memory
management features that apply only to classes. I haven’t discussed memory manage‐
ment yet, but I’ll continue the example anyway (and I’ll repeat it when I talk about
memory management in Chapter 5):

class SecondViewController : UIViewController {
 weak var delegate : SecondViewControllerDelegate?
 // ...
}

The keyword weak marks the delegate property as having special memory manage‐
ment that applies only to class instances. The delegate property is typed as a proto‐
col, and a protocol might be adopted by a struct or an enum type. So to satisfy the
compiler that this object will in fact be a class instance, and not a struct or enum
instance, the protocol is declared as a class protocol.

In Swift 4 or later, you might alternatively take advantage of class–protocol composi‐
tion to accomplish the same thing:

class SecondViewController : UIViewController {
 weak var delegate : (NSObject & SecondViewControllerDelegate)?
 // ...
}

That’s legal even if SecondViewControllerDelegate has no class designation, because
the compiler knows that the object assigned to the delegate property will derive
from NSObject, in which case it is a class instance.

194 | Chapter 4: Object Types

Implicitly Required Initializers
Suppose that a protocol declares an initializer. And suppose that a class adopts this
protocol. By the terms of this protocol, this class and any subclass it may ever have
must implement this initializer. Therefore, the class must not only implement the ini‐
tializer, but it must also mark it as required. An initializer declared in a protocol is
thus implicitly required, and the class is forced to make that requirement explicit.

Consider this simple example, which won’t compile:

protocol Flier {
 init()
}
class Bird : Flier {
 init() {} // compile error
}

That code generates an elaborate but perfectly informative compile error message:
“Initializer requirement init() can only be satisfied by a required initializer in non-
final class Bird.” To compile our code, we must designate our initializer as required:

protocol Flier {
 init()
}
class Bird : Flier {
 required init() {}
}

The alternative, as the compile error message informs us, would be to mark the Bird
class as final. This would mean that it cannot have any subclasses — thus guarantee‐
ing that the problem will never arise in the first place. If Bird were marked final,
there would be no need to mark its init as required.

In the above code, Bird is not marked as final, and its init is marked as required.
This, as I’ve already explained, means that any subclass of Bird that implements any
designated initializers — and thus loses initializer inheritance — must implement the
required initializer and mark it required as well.

That fact is responsible for a strange and annoying feature of real-life iOS program‐
ming with Swift. Let’s say you subclass the built-in Cocoa class UIViewController —
something that you are extremely likely to do. And let’s say you give your subclass an
initializer — something that you are also extremely likely to do:

class ViewController: UIViewController {
 init() {
 super.init(nibName: "ViewController", bundle: nil)
 }
}

Protocols | 195

That code won’t compile. The compile error says: “required initializer init(coder:)
must be provided by subclass of UIViewController.”

What’s going on here? It turns out that UIViewController adopts a protocol, NSCod‐
ing. And this protocol requires an initializer init(coder:). None of that is your
doing; UIViewController and NSCoding are declared by Cocoa, not by you. But that
doesn’t matter! This is the same situation I was just describing. Your UIView‐
Controller subclass must either inherit init(coder:) or must explicitly implement it
and mark it required. Well, your subclass has implemented a designated initializer of
its own — thus cutting off initializer inheritance. Therefore it must implement
init(coder:) and mark it required.

But that makes no sense if you are not expecting init(coder:) ever to be called on
your UIViewController subclass. You are being forced to write an initializer for which
you can provide no meaningful functionality! Fortunately, Xcode’s Fix-it feature will
offer to write the initializer for you, like this:

required init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
}

That code satisfies the compiler. (I’ll explain in Chapter 5 why it’s a legal initializer
even though it doesn’t fulfill an initializer’s contract.) It also deliberately crashes if it is
ever called — which is fine, because ex hypothesi you don’t expect it ever to be called.

If, on the other hand, you do have functionality for this initializer, you will delete the
fatalError line and insert that functionality in its place. A minimum meaningful
implementation would be to call super.init(coder:aDecoder), but of course if your
class has properties that need initialization, you will need to initialize them first.

Not only UIViewController but lots of built-in Cocoa classes adopt NSCoding. You
will encounter this problem if you subclass any of those classes and implement your
own initializer. It’s just something you’ll have to get used to.

Literal Convertibles
One of the wonderful things about Swift is that so many of its features, rather than
being built-in and accomplished by magic, are exposed to view in the Swift header.
Literals are a case in point. The reason you can say 5 to make an Int whose value is 5,
instead of formally initializing Int by saying Int(5), is not because of magic (or at
least, not entirely because of magic). It’s because Int adopts a protocol, Expressible‐
ByIntegerLiteral. Not only Int literals, but all literals work this way. The following
protocols are declared in the Swift header:

• ExpressibleByNilLiteral
• ExpressibleByBooleanLiteral

196 | Chapter 4: Object Types

• ExpressibleByIntegerLiteral
• ExpressibleByFloatLiteral
• ExpressibleByStringLiteral
• ExpressibleByExtendedGraphemeClusterLiteral
• ExpressibleByUnicodeScalarLiteral
• ExpressibleByArrayLiteral
• ExpressibleByDictionaryLiteral

Your own object type can adopt a literal convertible protocol as well. This means that
a literal can appear where an instance of your object type is expected! For example,
here we declare a Nest type that contains some number of eggs (its eggCount):

struct Nest : ExpressibleByIntegerLiteral {
 var eggCount : Int = 0
 init() {}
 init(integerLiteral val: Int) {
 self.eggCount = val
 }
}

Because Nest adopts ExpressibleByIntegerLiteral, we can pass an Int where a Nest is
expected, and our init(integerLiteral:) will be called automatically, causing a
new Nest object with the specified eggCount to come into existence at that moment:

func reportEggs(_ nest:Nest) {
 print("this nest contains \(nest.eggCount) eggs")
}
reportEggs(4) // this nest contains 4 eggs

Generics
A generic is a sort of placeholder for a type, into which an actual type will be slotted
later. In particular, there are situations where you want to say that a certain same type
is to be used in several places, without specifying precisely what type this is to be.
Swift generics allow you to say that, without sacrificing or evading Swift’s fundamen‐
tal strict typing.

A motivating case in point arose earlier in this chapter, when we wrote a global fac‐
tory method for dogs:

func dogMakerAndNamer(_ whattype:Dog.Type) -> Dog {
 let d = whattype.init(name:"Fido")
 return d
}

That works, but it isn’t quite what we’d like to say. In the first line, the function’s
declared return type after the arrow operator is Dog. So if we are passed a Dog sub‐

Generics | 197

class such as NoisyDog as the parameter, we will instantiate that type (which is good)
but then return that instance typed as Dog (which is bad). Instead, we’d like the type
declared as the return type after the arrow operator to be the same type that we were
passed as a parameter in the first line and that we instantiated in the second line —
whatever that type may be. Generics provide us with a way to express that notion:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {
 let d = WhatType.init(name:"Fido")
 return d
}

That’s a generic function. I haven’t yet explained the syntax used here, but already you
can see the point. The type WhatType is a generic type — a placeholder. First, it is
declared as being a placeholder; that’s what the expression in angle brackets does:
<WhatType:Dog>. Then, it is used in the course of the declaration, in three places: as
the type passed in as parameter, as the type instantiated in the second line, and as the
declared type of the returned instance (after the arrow operator). The generic func‐
tion thus specifies that this is the same type throughout, without having to specify
exactly what type it is (beyond the fact that it is Dog or a Dog subclass).

However, Swift has strict typing, so in order to let us call this function, the compiler
needs to know the real type that WhatType stands for. But in fact it knows this from
looking at the call itself! For example:

let dog = dogMakerAndNamer(NoisyDog.self)

In that call, we pass NoisyDog.self as the parameter. That tells the compiler what
WhatType is! It is NoisyDog. In effect, the compiler now substitutes NoisyDog for
WhatType throughout the generic, like this (pseudocode):

func dogMakerAndNamer(_:NoisyDog.Type) -> NoisyDog {
 let d = NoisyDog.init(name:"Fido")
 return d
}

That process of substitution is called resolving (or specializing) the generic. The type
in question is unambiguously clear for this call to our function, and the compiler is
satisfied. And this resolution extends beyond the generic itself. For example, now that
the compiler knows that this call to our function will return a NoisyDog instance, it
can type the variable initialized to the result of the call as a NoisyDog by inference:

let dog = dogMakerAndNamer(NoisyDog.self) // dog is typed as NoisyDog

Here’s another motivating case in point: an Optional. Any type of value can be wrap‐
ped up in an Optional. Yet there is no doubt as to what type is wrapped up in a partic‐
ular Optional. How can this be? It’s because Optional is a generic! Here’s how an
Optional works.

198 | Chapter 4: Object Types

I have already said that an Optional is an enum, with two cases: .none and .some. If
an Optional’s case is .some, it has an associated value — the value that is wrapped by
this Optional. But what is the type of that associated value? On the one hand, one
wants to say that it can be any type; that, after all, is why anything can be wrapped up
in an Optional. On the other hand, any particular Optional can wrap a value only of
some one specific known type. That sounds like a generic! The declaration for the
Optional enum in the Swift header starts like this:

enum Optional<Wrapped> : ExpressibleByNilLiteral {
 case none
 case some(Wrapped)
 init(_ some: Wrapped)
 // ...
}

Again, the angle-bracket syntax <Wrapped> declares that Wrapped is a placeholder.
The rest of the enum declaration proceeds to use the placeholder. Besides the
case .none, there’s also a case .some, which has an associated value — of type Wrap‐
ped. And there’s an initializer, which takes a parameter — of type Wrapped. Thus, the
type with which we are initialized — whatever type that may be — is type Wrapped,
and thus is the type of value that is associated with the .some case.

And how will this placeholder be resolved? Well, when an Optional is created, it will
be initialized with an actual value of some definite type:

let s = Optional("howdy")

We’re calling init(_ some: Wrapped), so "howdy" is being supplied here as a Wrap‐
ped instance, thus resolving the generic as String. The compiler now knows that
Wrapped is String throughout this particular Optional<Wrapped>; the declaration for
the particular Optional referred to by the variable s looks, in the compiler’s mind, like
this (pseudocode):

enum Optional<String> {
 case none
 case some(String)
 init(_ some: String)
 // ...
}

That is the pseudocode declaration of an Optional whose Wrapped placeholder has
been replaced everywhere with the String type. We can summarize this by saying that
s is an Optional<String>. In fact, that is legal syntax! We can create the same
Optional like this:

let s : Optional<String> = "howdy"

As I’ve shown, generics do not in any way relax Swift’s strict typing. In particular, they
do not postpone resolution of a type until runtime. When you use a generic, your

Generics | 199

code will still specify its real type; that real type is known with complete specificity at
compile time! The particular region of your code where the type is expected uses a
generic so that it doesn’t have to specify the type fully, but at the point where that
code is used by other code, the type is specified. The placeholder is generic, but it is
resolved to an actual specific type whenever the generic is used.

Generic Declarations
Here’s a list of places where generics, in one form or another, can be declared in Swift:

Generic protocol with Self
In a protocol, use of the keyword Self (note the capitalization) turns the proto‐
col into a generic. Self is a placeholder meaning the type of the adopter. For
example, here’s a Flier protocol that declares a method that takes a Self
parameter:

protocol Flier {
 func flockTogetherWith(_ f:Self)
}

That means that if the Bird object type were to adopt the Flier protocol, its imple‐
mentation of flockTogetherWith would need to declare its parameter as a Bird.

Generic protocol with associated type
A protocol can declare an associated type using an associatedtype statement.
This turns the protocol into a generic; the associated type name is a placeholder.
For example:

protocol Flier {
 associatedtype Other
 func flockTogetherWith(_ f:Other)
 func mateWith(_ f:Other)
}

An adopter will declare some particular type where the generic uses the associ‐
ated type name, thus resolving the placeholder. If the Bird struct adopts the Flier
protocol and declares the parameter of flockTogetherWith as a Bird, that decla‐
ration resolves Other to Bird for this particular adopter — and now Bird must
declare the parameter for mateWith as a Bird as well:

struct Bird : Flier {
 func flockTogetherWith(_ f:Bird) {}
 func mateWith(_ f:Bird) {}
}

200 | Chapter 4: Object Types

Generic functions
A function declaration can use a generic placeholder type for any of its parame‐
ters, for its return type, and within its body. The placeholder name is declared in
angle brackets after the function name:

func takeAndReturnSameThing<T> (_ t:T) -> T {
 return t
}

The caller will use some particular type where the placeholder appears in the
function declaration, thus resolving the placeholder:

let thing = takeAndReturnSameThing("howdy")

Here, the type of the argument "howdy" used in the call resolves T to String;
therefore this call to takeAndReturnSameThing will also return a String, and the
variable capturing the result, thing, is inferred to String as well.

Generic object types
An object type declaration can use a generic placeholder type anywhere within its
curly braces. The placeholder name is declared in angle brackets after the object
type name:

struct HolderOfTwoSameThings<T> {
 var firstThing : T
 var secondThing : T
 init(thingOne:T, thingTwo:T) {
 self.firstThing = thingOne
 self.secondThing = thingTwo
 }
}

A user of this object type will use some particular type where the placeholder
appears in the object type declaration, thus resolving the placeholder:

let holder = HolderOfTwoSameThings(thingOne:"howdy", thingTwo:"getLost")

Here, the type of the thingOne argument, "howdy", used in the initializer call,
resolves T to String; therefore thingTwo must also be a String, and the properties
firstThing and secondThing are Strings as well.

For generic functions and object types, which use the angle bracket syntax, the angle
brackets may contain multiple placeholder names, separated by a comma. For exam‐
ple:

func flockTwoTogether<T, U>(_ f1:T, _ f2:U) {}

The two parameters of flockTwoTogether can now be resolved to two different types
(though they do not have to be different).

Generics | 201

Inside a generic’s code, the generic placeholder is a type reference standing for the
resolved type, which can be interrogated using type reference comparison, as
described earlier in this chapter. For example:

func takeAndReturnSameThing<T> (_ t:T) -> T {
 if T.self is String.Type {
 // ...
 }
 return t
}

If we call takeAndReturnSameThing("howdy"), the condition will be true. That sort of
thing, however, is unusual; a generic whose behavior depends on interrogation of the
placeholder type may need to be rewritten in some other way.

Contradictory Resolution
Because the use of a generic resolves the generic, the compiler can prevent a resolu‐
tion that would contradict itself. To illustrate, I’ll return to an earlier example:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {
 let d = WhatType.init(name:"Fido")
 return d
}

Now consider this code:

let d : NoisyDog = dogMakerAndNamer(Dog.self)

That code makes no sense. On the one hand, the parameter Dog.self resolves What‐
Type to Dog. On the other hand, the explicit type of the result d resolves WhatType to
NoisyDog. Those two resolutions contradict one another.

The brilliant thing is that the compiler knows this, and stops you in your tracks:

let d : NoisyDog = dogMakerAndNamer(Dog.self) // compile error

Contradictory resolution of a generic is thus impossible as a consequence of Swift’s
strict typing. A generic placeholder must be resolved consistently throughout the
generic, or it cannot be resolved at all. That, after all, is the point of the generic.

Similarly, recall this example:

protocol Flier {
 associatedtype Other
 func flockTogetherWith(_ f:Other)
 func mateWith(_ f:Other)
}

The placeholder Other may be resolved to any type, but it must be the same type. This
is a legal adoption of Flier:

202 | Chapter 4: Object Types

struct Bird : Flier {
 func flockTogetherWith(_ f: String) {}
 func mateWith(_ f:String) {}
}

But this is not:

struct Bird : Flier { // compile error
 func flockTogetherWith(_ f: String) {}
 func mateWith(_ f:Int) {}
}

The compiler stops you, complaining that Bird does not conform to Flier.

Type Constraints
A generic declaration can limit the types that are eligible to be used for resolving a
particular placeholder. This is called a type constraint.

The simplest form of type constraint is to put a colon and a type name after the place‐
holder’s name when it first appears. The type name after the colon can be a class
name or a protocol name:

Class name
A class name means that this type must be this class or a subclass of this class.

Protocol name
A protocol name means that this type must be an adopter of this protocol.

For a protocol associated type, the type constraint appears as part of the
associatedtype declaration. For example:

protocol Flier {
 func fly()
}
protocol Flocker {
 associatedtype Other : Flier // *
 func flockTogetherWith(f:Other)
}
struct Bird : Flocker, Flier {
 func fly() {}
 func flockTogetherWith(f:Bird) {}
}

In that example, Flocker’s associated type Other is constrained to be an adopter of
Flier. Bird is an adopter of Flier; therefore it can also adopt Flocker while specifying
that the parameter type in its flockTogetherWith implementation is Bird.

Observe that we could not have achieved the same effect without the associated type,
by declaring Flocker like this:

Generics | 203

protocol Flocker {
 func flockTogetherWith(f:Flier)
}

That’s not the same thing! That requires that a Flocker adopter specify the parameter
for flockTogetherWith as Flier. We would then have had to write Bird like this:

struct Bird : Flocker, Flier {
 func fly() {}
 func flockTogetherWith(f:Flier) {}
}

The constrained associated type, on the other hand, requires that a Flocker adopter
specify the parameter for flockTogetherWith as some Flier adopter (such as Bird).

For a generic function or a generic object type, the type constraint appears in the
angle brackets. The global function declaration earlier in this chapter, func dogMaker-
AndNamer<WhatType:Dog>, is an example; Dog is a class, so the constraint says that
WhatType must be Dog or a Dog subclass. Here’s another example, using a protocol
as a constraint:

func flockTwoTogether<T:Flier>(_ f1:T, _ f2:T) {}

In that example, Flier is a protocol, so the constraint says that T must be a Flier
adopter. If Bird and Insect both adopt Flier, this flockTwoTogether function can be
called with two Bird arguments or with two Insect arguments — but not with a Bird
and an Insect, because T is just one placeholder, signifying one Flier adopter type.
And you can’t call flockTwoTogether with two String parameters, because a String is
not a Flier.

A type constraint on a placeholder is often used as a way of assuring the compiler that
some message can be sent to an instance of the placeholder type. For example, let’s say
we want to implement a function myMin that returns the smallest from a list of the
same type. Here’s a promising implementation as a generic function, but there’s one
problem — it doesn’t compile:

func myMin<T>(_ things:T...) -> T {
 var minimum = things.first!
 for item in things.dropFirst() {
 if item < minimum { // compile error
 minimum = item
 }
 }
 return minimum
}

The problem is the comparison things[ix] < minimum. How does the compiler
know that the type T, the type of things[ix] and minimum, will be resolved to a type
that can in fact be compared using the less-than operator in this way? It doesn’t, and
that’s exactly why it rejects that code. The solution is to promise the compiler that the

204 | Chapter 4: Object Types

resolved type of T will in fact work with the less-than operator. The way to do that, it
turns out, is to constrain T to Swift’s built-in Comparable protocol; adoption of the
Comparable protocol exactly guarantees that the adopter does work with the less-than
operator:

func myMin<T:Comparable>(_ things:T...) -> T {

Now myMin compiles, because it cannot be called except by resolving T to an object
type that adopts Comparable and hence can be compared with the less-than operator.
Naturally, built-in object types that you think should be comparable, such as Int,
Double, String, and Character, do in fact adopt the Comparable protocol! If you look
in the Swift headers, you’ll find that the built-in min global function is declared in just
this way, and for just this reason.

A generic protocol (a protocol whose declaration mentions Self or has an asso‐
ciated type) can be used as a type only in a generic as a type constraint. If you try
to use it in any other way, you’ll get a compile error: “Protocol can only be used
as a generic constraint.” This restriction can be quite frustrating. The standard
way of circumventing it is called type erasure; for an excellent discussion, see
http://robnapier.net/erasure.

Explicit Specialization
In the generic examples so far, the placeholder’s type has been resolved mostly
through inference. For example, we initialize an Optional with a literal string, so its
Wrapped type is resolved to String:

let s = Optional("howdy")

But there’s another way to perform resolution: we can resolve the type manually. For
example, we can actually declare, as we use the generic, what the placeholder type is:

let s : Optional<String> = "howdy"

This is called explicit specialization. In some situations, explicit specialization is
mandatory — namely, if the placeholder type cannot be resolved through inference.
There are two forms of explicit specialization:

Generic protocol with associated type
The adopter of a protocol can resolve an associated type manually through a type
alias defining the associated type as some explicit type. For example:

protocol Flier {
 associatedtype Other
}
struct Bird : Flier {
 typealias Other = String
}

Generics | 205

http://robnapier.net/erasure

Generic object type
The user of a generic object type can resolve a placeholder type manually using
the same angle bracket syntax used to declare the generic in the first place, with
the type name in the angle brackets. For example:

class Dog<T> {
 var name : T?
}
let d = Dog<String>()

You cannot explicitly specialize a generic function. You can, however, write a generic
function that takes a type parameter resolving the generic. That’s what I did in my
earlier dogMakerAndNamer example:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {
 let d = WhatType.init(name:"Fido")
 return d
}

The parameter to dogMakerAndNamer is never used within the function body, which is
why it has no name (just an underscore). It does, however, serve to resolve the
generic!

Another way to specialize a generic function is not to use a generic function in the
first place: use a generic object type instead, because a generic object type can be
resolved explicitly. We declare a generic type wrapping a nongeneric function that
uses the generic type’s placeholder; explicit specialization of the generic type resolves
the placeholder, and thus resolves the function:

protocol Flier {
 init()
}
struct Bird : Flier {
 init() {}
}
struct FlierMaker<T:Flier> {
 static func makeFlier() -> T {
 return T()
 }
}
let f = FlierMaker<Bird>.makeFlier() // returns a Bird

When a class is generic, you can subclass it, provided you resolve the generic. You can
do this either through a matching generic subclass or by resolving the superclass
generic explicitly. For example, here’s a generic Dog:

class Dog<T> {
 func speak(_ what:T) {}
}

You can subclass it as a generic whose placeholder matches that of the superclass:

206 | Chapter 4: Object Types

class NoisyDog<T> : Dog<T> {}

That’s legal because the resolution of the NoisyDog placeholder T will resolve the Dog
placeholder T. The alternative is to subclass an explicitly specialized Dog:

class NoisyDog : Dog<String> {}

In that case, a method override in the subclass can use the specialized type where the
superclass uses the generic:

class NoisyDog : Dog<String> {
 override func speak(_ what:String) {}
}

Generic Invariance
In general, a generic type specialized to a subtype is not polymorphic with respect to
the same generic type specialized to a supertype. For example, suppose we have a
simple generic Wrapper struct along with a Cat class and its CalicoCat subclass:

struct Wrapper<T> {
}
class Cat {
}
class CalicoCat : Cat {
}

Then you can’t assign a Wrapper specialized to CalicoCat where a Wrapper special‐
ized to Cat is expected:

let w : Wrapper<Cat> = Wrapper<CalicoCat>() // compile error

It appears that polymorphism is failing here — but it isn’t. The two generic types,
Wrapper<Cat> and Wrapper<CalicoCat>, are not superclass and subclass. Rather, if
this assignment were possible, we would say that the types are covariant, meaning
that the polymorphic relationship between the specializations of the placeholders is
applied to the generic types themselves. Certain Swift built-in generic types are cova‐
riant; Optional is a clear example! But it’s not a general language feature, and there’s
no way for you to specify that your generic types should be covariant.

One workaround is to have your generic placeholder constrained to a protocol, and
have your types adopt that protocol. For example:

protocol Meower {
 func meow()
}
struct Wrapper<T:Meower> {
 let meower : T
}
class Cat : Meower {

Generics | 207

 func meow() { print("meow") }
}
class CalicoCat : Cat {
}

Now it is legal to say:

let w : Wrapper<Cat> = Wrapper(meower:CalicoCat())

Associated Type Chains
When a generic placeholder is constrained to a generic protocol with an associated
type, you can refer to that type using a dot-notation chain: the placeholder name, a
dot, and the associated type name.

Here’s an example. Imagine that in a game program, soldiers and archers are enemies
of one another. I’ll express this by subsuming a Soldier struct and an Archer struct
under a Fighter protocol that has an Enemy associated type, which is itself con‐
strained to be a Fighter:

protocol Fighter {
 associatedtype Enemy : Fighter
}

I’ll resolve that associated type manually for both the Soldier and the Archer structs:

struct Soldier : Fighter {
 typealias Enemy = Archer
}
struct Archer : Fighter {
 typealias Enemy = Soldier
}

Now I’ll create a generic struct to express the opposing camps of these fighters:

struct Camp<T:Fighter> {
}

Now suppose that a camp may contain a spy from the opposing camp. What is the
type of that spy? Well, if this is a Soldier camp, it’s an Archer; and if it’s an Archer
camp, it’s a Soldier. More generally, since T is a Fighter, it’s the type of the Enemy of
this adopter of Fighter. I can express that neatly by a chain consisting of the place‐
holder name T, a dot, and the associated type name Enemy:

struct Camp<T:Fighter> {
 var spy : T.Enemy?
}

The result is that if, for a particular Camp, T is resolved to Soldier, T.Enemy means
Archer — and vice versa. We have created a correct and inviolable rule for the type
that a Camp’s spy must be. This won’t compile:

208 | Chapter 4: Object Types

var c = Camp<Soldier>()
c.spy = Soldier() // compile error

We’ve tried to assign an object of the wrong type to this Camp’s spy property. But this
does compile:

var c = Camp<Soldier>()
c.spy = Archer()

Longer chains of associated type names are possible — in particular, when a generic
protocol has an associated type which is itself constrained to a generic protocol with
an associated type. For example, let’s give each type of Fighter a characteristic
weapon: a soldier has a sword, while an archer has a bow. I’ll make a Sword struct and
a Bow struct, and I’ll unite them under a Wieldable protocol:

protocol Wieldable {
}
struct Sword : Wieldable {
}
struct Bow : Wieldable {
}

I’ll add a Weapon associated type to Fighter, which is constrained to be a Wieldable,
and once again I’ll resolve it manually for each type of Fighter:

protocol Fighter {
 associatedtype Enemy : Fighter
 associatedtype Weapon : Wieldable
}
struct Soldier : Fighter {
 typealias Weapon = Sword
 typealias Enemy = Archer
}
struct Archer : Fighter {
 typealias Weapon = Bow
 typealias Enemy = Soldier
}

Now let’s say that every Fighter has the ability to steal his enemy’s weapon. I’ll give the
Fighter generic protocol a steal(weapon:from:) method. How can the Fighter
generic protocol express the parameter types in a way that causes its adopter to
declare this method with the proper types?

The from: parameter type is this Fighter’s Enemy. We already know how to express
that: it’s the placeholder plus dot-notation with the associated type name. Here, the
placeholder is the adopter of this protocol — namely, Self. So the from: parameter
type is Self.Enemy. And what about the weapon: parameter type? That’s the Weapon
of that Enemy! So the weapon: parameter type is Self.Enemy.Weapon:

Generics | 209

protocol Fighter {
 associatedtype Enemy : Fighter
 associatedtype Weapon : Wieldable
 func steal(weapon:Self.Enemy.Weapon, from:Self.Enemy)
}

(We could omit Self from that code, and it would compile and would mean the same
thing. But Self would still be the implicit start of the chain, and I think explicit Self
makes the meaning of the code clearer.)

The result is that the following declarations for Soldier and Archer correctly adopt
the Fighter protocol, and the compiler approves:

struct Soldier : Fighter {
 typealias Weapon = Sword
 typealias Enemy = Archer
 func steal(weapon:Bow, from:Archer) {
 }
}
struct Archer : Fighter {
 typealias Weapon = Bow
 typealias Enemy = Soldier
 func steal(weapon:Sword, from:Soldier) {
 }
}

Where Clauses
The most flexible way to express a type constraint is to add a where clause:

• For a generic function, a where clause may appear after the signature declaration
(after the parameter list, following the arrow operator and return type if
included).

• For a generic type, a where clause may appear after the type declaration, before
the curly braces.

• For a generic protocol, a where clause may appear after the protocol declaration,
before the curly braces.

• For an associated type in a generic protocol, a where clause may appear at the end
of the associated type declaration.

What sorts of thing can appear in a where clause? One possibility is a comma-
separated list of additional constraints on an already declared placeholder. For exam‐
ple, you already know that we can constrain a placeholder at the point of declaration,
using a colon and a type (which might be a protocol composition):

func flyAndWalk<T: Flier> (_ f:T) {}
func flyAndWalk2<T: Flier & Walker> (_ f:T) {}
func flyAndWalk3<T: Flier & Dog> (_ f:T) {}

210 | Chapter 4: Object Types

Using a where clause, we can move those constraints out of the angle brackets. No
new functionality is gained, but the resulting notation is arguably neater:

func flyAndWalk<T> (_ f:T) where T: Flier {}
func flyAndWalk2<T> (_ f:T) where T: Flier & Walker {}
func flyAndWalk2a<T> (_ f:T) where T: Flier, T: Walker {}
func flyAndWalk3<T> (_ f:T) where T: Flier & Dog {}
func flyAndWalk3a<T> (_ f:T) where T: Flier, T: Dog {}

The real power of where clauses emerges when a constraint on a placeholder is a
generic protocol with an associated type. You can then use an associated type chain to
impose additional constraints on the associated type. This pseudocode shows what I
mean (I’ve omitted the content of the where clause, to focus on what the where clause
will be constraining):

protocol Flier {
 associatedtype Other
}
func flockTogether<T> (_ f:T) where T:Flier, T.Other /* ... */ {}

In that pseudocode, the placeholder T is constrained to be a Flier — and Flier is itself
a generic protocol, with an associated type Other. Therefore, whatever type resolves T
will resolve Other. We can thus proceed to constrain the types eligible to resolve
T.Other! This, in turn, will further constrain by implication the types eligible to
resolve T.

So now let’s fill in the blank in our pseudocode. What sort of restriction are we
allowed to impose here? One possibility is a colon expression, as for any type con‐
straint. For example:

protocol Flier {
 associatedtype Other
}
struct Bird : Flier {
 typealias Other = String
}
struct Insect : Flier {
 typealias Other = Bird
}
func flockTogether<T> (_ f:T) where T:Flier, T.Other:Equatable {}

Both Bird and Insect adopt Flier. The flockTogether function can be called with a
Bird argument, because a Bird’s Other associated type is resolved to String, which
adopts the built-in Equatable protocol. But flockTogether can’t be called with an
Insect argument, because an Insect’s Other associated type is resolved to Bird, which
doesn’t adopt the Equatable protocol:

flockTogether(Bird()) // okay
flockTogether(Insect()) // compile error

Generics | 211

The other possibility is the equality operator == followed by a type. The type on the
right side can then be a struct or an associated type chain, and the constrained type
must match it exactly. For example:

protocol Flier {
 associatedtype Other
}
struct Bird : Flier {
 typealias Other = String
}
struct Insect : Flier {
 typealias Other = Int
}
func flockTwoTogether<T,U> (_ f1:T, _ f2:U)
 where T:Flier, U:Flier, T.Other == U.Other {}

The flockTwoTogether function can be called with a Bird and a Bird, and it can be
called with an Insect and an Insect, but it can’t be called with an Insect and a Bird,
because they don’t resolve the Other associated type to the same type.

The Swift header makes extensive use of where clauses with an == operator, especially
as a way of restricting a sequence type. Take, for example, the String
append(contentsOf:) method, declared like this:

mutating func append<S>(contentsOf newElements: S)
 where S:Sequence, S.Element == Character

A sequence’s element type is its Element associated type. The where clause thus means
that a sequence of characters — but not a sequence of something else, such as Int —
can be concatenated to a String:

var s = "hello"
s.append(contentsOf: Array(" world")) // "hello world"
s.append(contentsOf: ["!" as Character, "?" as Character])

The Array append(contentsOf:) method is declared a little differently:

mutating func append<S>(contentsOf newElements: S)
 where S:Sequence, S.Element == Self.Element

An array is a sequence; its element type is its Element associated type. The where
clause thus means that you can append to an Array the elements of any sort of
Sequence, but only if they are the same kind of element as the elements of this array.
If the array consists of String elements, you can add more String elements to it, but
not Int elements.

(Actually, the append(contentsOf:) declaration in the Swift header doesn’t say
S.Element == Self.Element; it says Element == S.Element. But they are equivalent
expressions. Self can be omitted at the start of an associated type chain (as I’ve
already mentioned), and == is commutative: the equated types can be written in either
order.)

212 | Chapter 4: Object Types

Starting in Swift 4, a generic protocol or its associated type can have a where clause.
The chief effect is to reduce the length of associated type chains. For example, the
Sequence generic protocol has an associated type Iterator, which is constrained to be
an adopter of the generic IteratorProtocol, which in turn has an associated type Ele‐
ment. Thus, the Swift headers used to be peppered with where clauses constraining a
type to a sequence’s Iterator.Element. In Swift 4 and later, however, the introduction
of associated type where clauses means that a Sequence itself can have an Element
associated type which simply is its Iterator.Element:

protocol Sequence {
 associatedtype Element where Self.Element == Self.Iterator.Element
 // ...
}

As a result, wherever the Swift header used to say Iterator.Element, it can now say
simply Element instead (as in the String and Array append(contentsOf:) declara‐
tions I cited a moment ago).

Extensions
An extension is a way of injecting your own code into an object type that has already
been declared elsewhere; you are extending an existing object type. You can extend
your own object types; you can also extend one of Swift’s object types or one of
Cocoa’s object types, in which case you are adding functionality to a type that doesn’t
belong to you!

Extension declaration can take place only at the top level of a file. To declare an
extension, put the keyword extension followed by the name of an existing object
type, then optionally a colon plus the names of any protocols you want to add to the
list of those adopted by this type, and finally curly braces containing the usual things
that go inside an object type declaration — with the following restrictions:

• An extension can’t override an existing member (but it can overload an existing
method).

• An extension can’t declare a stored property (but it can declare a computed
property).

• An extension of a class can’t declare a designated initializer or a deinitializer (but
it can declare a convenience initializer).

Extending Object Types
In my real programming life, I sometimes extend a built-in Swift or Cocoa type just
to encapsulate some missing functionality by expressing it as a property or method.

Extensions | 213

For example, Cocoa’s Core Graphics framework has many useful functions associated
with the CGRect struct, and Swift already extends CGRect to add some helpful prop‐
erties and methods; but there’s no shortcut for getting the center point (a CGPoint) of
a CGRect, something that in practice is often needed. I extend CGRect to give it a
center property:

extension CGRect {
 var center : CGPoint {
 return CGPoint(x:self.midX, y:self.midY)
 }
}

String ranges, as we’ve already seen, are hard to construct, because they are a range of
String.Index rather than Int. Let’s extend String with methods that take an Int index
and a count, yielding a Swift Range; while we’re up, let’s permit a negative index, as
most modern languages do:

extension String {
 func range(_ start:Int, _ count:Int) -> Range<String.Index> {
 let i = self.index(start >= 0 ?
 self.startIndex :
 self.endIndex, offsetBy: start)
 let j = self.index(i, offsetBy: count)
 return i..<j
 }
}

Here’s some sample input and output:

let s = "abcdefg"
let r1 = s.range(2,2)
let r2 = s.range(-3,2)
print(s[r1]) // cd
print(s[r2]) // ef

An extension can declare a static or class member; this can be a good way to slot a
global function into an appropriate namespace. For example, in one of my apps, I
find myself frequently using a certain color (a UIColor). Instead of creating that color
repeatedly, it makes sense to encapsulate the instructions for generating it in a global
function. But instead of making that function completely global, I make it — appro‐
priately enough — a read-only class variable of UIColor:

extension UIColor {
 class var myGolden : UIColor {
 return self.init(
 red:1.000, green:0.894, blue:0.541, alpha:0.900
)
 }
}

214 | Chapter 4: Object Types

Now I can use that color throughout my code as UIColor.myGolden, completely par‐
allel to built-in class properties such as UIColor.red.

Extensions on one’s own object types can help to organize one’s code. A frequently
used convention is to add an extension for each protocol one’s object type needs to
adopt, like this:

class ViewController: UIViewController {
 // ... UIViewController method overrides go here ...
}
extension ViewController : UIPopoverPresentationControllerDelegate {
 // ... UIPopoverPresentationControllerDelegate methods go here ...
}
extension ViewController : UIToolbarDelegate {
 // ... UIToolbarDelegate methods go here ...
}

An extension on your own object type can also be a way to spread your definition of
that object type over multiple files, if you feel that several shorter files are better than
one long file.

When you extend a Swift struct, a curious thing happens with initializers: it becomes
possible to declare an initializer and keep the implicit initializers:

struct Digit {
 var number : Int
}
extension Digit {
 init() {
 self.init(number:42)
 }
}

In that code, the explicit declaration of an initializer through an extension did not
cause us to lose the implicit memberwise initializer, as would have happened if we
had declared the same initializer inside the original struct declaration. Now we can
instantiate a Digit by calling the explicitly declared initializer — Digit() — or by
calling the implicit memberwise initializer — Digit(number:7).

Extending Protocols
When you extend a protocol, you can add methods and properties to the protocol,
just as for any object type. Unlike a protocol declaration, these methods and proper‐
ties are not mere requirements, to be fulfilled by the adopter of the protocol; they are
actual methods and properties, to be inherited by the adopter of the protocol! For
example:

Extensions | 215

protocol Flier {
}
extension Flier {
 func fly() {
 print("flap flap flap")
 }
}
struct Bird : Flier {
}

Observe that Bird can now adopt Flier without implementing the fly method. That’s
because the Flier protocol extension supplies the fly method! Bird thus inherits an
implementation of fly:

let b = Bird()
b.fly() // flap flap flap

Of course, an adopter can still provide its own implementation of a method inherited
from a protocol extension:

protocol Flier {
}
extension Flier {
 func fly() {
 print("flap flap flap")
 }
}
struct Insect : Flier {
 func fly() {
 print("whirr")
 }
}
let i = Insect()
i.fly() // whirr

But be warned: this kind of inheritance is not polymorphic. The adopter’s implemen‐
tation is not an override; it is merely another implementation. The internal identity
rule does not apply; it matters how a reference is typed:

let f : Flier = Insect()
f.fly() // flap flap flap (!!)

Even though f is internally an Insect (as we can discover with the is operator), the
fly message is being sent to an object reference typed as a Flier, so it is Flier’s imple‐
mentation of the fly method that is called, not Insect’s implementation.

To get something that looks like polymorphic inheritance, we must also declare fly
as a requirement in the original protocol:

protocol Flier {
 func fly() // *
}
extension Flier {

216 | Chapter 4: Object Types

 func fly() {
 print("flap flap flap")
 }
}
struct Insect : Flier {
 func fly() {
 print("whirr")
 }
}

Now an Insect maintains its internal integrity:

let f : Flier = Insect()
f.fly() // whirr

The Swift standard library makes heavy use of protocol extensions as a way of making
things nicely object-oriented. For example, before protocol extensions were intro‐
duced (in Swift 2.0), the only way to apply a function to a Sequence and only to a
Sequence would be to declare a global generic function with a constraint restricting
the parameter to Sequence adopters:

func enumerated<T:Sequence>(_ seq:T) -> EnumeratedSequence<T>

Protocol extensions allow such functions to be moved to an appropriate scope as
Sequence methods:

extension Sequence {
 func enumerated() -> EnumeratedSequence<Self>
}

Extending Generics
When you extend a generic type, the placeholder type names are visible to your
extension declaration. That’s good, because you might need to use them; but it can
make your code a little mystifying, because you seem to be using an undefined type
name out of the blue. It might be a good idea to add a comment, to remind yourself
what you’re up to:

class Dog<T> {
 var name : T?
}
extension Dog {
 func sayYourName() -> T? { // T? is the type of self.name
 return self.name
 }
}

A generic type extension declaration can include a where clause. This has the same
effect as any generic constraint: it limits which resolvers of the generic can call the
code injected by this extension, and assures the compiler that your code is legal for
those resolvers.

Extensions | 217

As with protocol extensions, this allows code to be moved into an appropriate scope.
Recall this example from earlier in this chapter:

func myMin<T:Comparable>(_ things:T...) -> T {
 var minimum = things.first!
 for item in things.dropFirst() {
 if item < minimum {
 minimum = item
 }
 }
 return minimum
}

That’s a global function. I’d prefer to inject it into Array as a method. Array is a
generic struct whose placeholder type is called Element. To make this work, I need
somehow to bring along the Comparable type constraint that makes this code legal;
without it, as you remember, my use of < won’t compile. I can do that with a where
clause:

extension Array where Element:Comparable {
 func myMin() -> Element? {
 var minimum = self.first
 for item in self.dropFirst() {
 if item < minimum! {
 minimum = item
 }
 }
 return minimum
 }
}

The where clause is a constraint guaranteeing that this array’s elements adopt Compa‐
rable, so the compiler permits the use of the < operator — and it doesn’t permit the
myMin method to be called on an array whose elements don’t adopt Comparable. The
Swift standard library makes heavy use of that sort of thing, and in fact Sequence has
a min method declared like myMin.

Starting in Swift 4.1, the same syntax can be used to express conditional conformance
to a protocol. The idea is that a generic type should adopt a certain protocol only if
something is true of its placeholder type — and the extension then contains whatever
is needed to satisfy the protocol requirements when that’s the case.

In the standard library, conditional conformance fills what used to be a serious hole
in the Swift language. For example, an Array can consist of Equatable elements, and
in that case it is possible to compare two arrays for equality:

let arr1 = [1,2,3]
let arr2 = [1,2,3]
if arr1 == arr2 { // ...

218 | Chapter 4: Object Types

It’s clear what array equality should consist of: the two arrays should consist of the
same elements in the same order. The elements must be Equatable so as to guarantee
the meaningfulness of the notion “same elements.”

Ironically, however, there was, before Swift 4.1, no way to compare two arrays of
arrays:

let arr1 = [[1], [2], [3]]
let arr2 = [[1], [2], [3]]
let arr1 == arr2 { // compile error before Swift 4.1

That’s because there was no coherent way to make Array itself Equatable — because
there was no way to assert that Array should be Equatable only just in case its ele‐
ments are Equatable. That’s conditional conformance! Now that conditional con‐
formance exists, the standard library says:

extension Array : Equatable where Element : Equatable {
 // ...
}

And so comparing arrays of arrays becomes legal:

let arr1 = [[1], [2], [3]]
let arr2 = [[1], [2], [3]]
let arr1 == arr2 { // fine

Umbrella Types
Swift provides a few built-in types as general umbrella types, capable of embracing
multiple real types under a single heading.

Any
The Any type is the universal Swift umbrella type. Where an Any object is expected,
absolutely any object or function can be passed, without casting:

func anyExpecter(_ a:Any) {}
anyExpecter("howdy") // a struct instance
anyExpecter(String.self) // a struct type
anyExpecter(Dog()) // a class instance
anyExpecter(Dog.self) // a class type
anyExpecter(anyExpecter) // a function

Going the other way, if you want to type an Any object as a more specific type, you
will generally have to cast down. Such a cast is legal for any specific object type or
function type. A forced cast isn’t safe, but you can easily make it safe, because you can
also test an Any object against any specific object type or function type. Here,
anything is typed as Any:

Umbrella Types | 219

if anything is String {
 let s = anything as! String
 // ...
}

The Any umbrella type is of great importance because it is the general medium of
interchange between Swift and the Cocoa Objective-C APIs. When an Objective-C
object type is nonspecific (Objective-C id), it will appear to Swift as Any. Commonly
encountered examples are UserDefaults and key–value coding (Chapter 10); these
allow you to pass an object of indeterminate class along with a string key name, and
they allow you to retrieve an object of indeterminate class by a string key name. That
object is typed, in Swift, as Any (or as an Optional wrapping Any, so that it can be
nil).

For example:

let ud = UserDefaults.standard
ud.set(Date(), forKey:"now") // Date to Any

The first parameter of UserDefaults set(_:forKey:) is typed as Any. Thus, Any func‐
tions as a general conduit for crossing the bridge between the Swift world and Cocoa’s
Objective-C world.

When a Swift object is assigned or passed to an Any that acts as a conduit to
Objective-C, it crosses the bridge to Objective-C. Even though you don’t have to cast
it, if the object’s type is not an Objective-C type (a class derived from NSObject), it
will be transformed in order to cross the bridge. If this type is automatically bridged
to an Objective-C class type, it becomes that type; other types are boxed up in a way
that allows them to survive the journey into Objective-C’s world, even though
Objective-C can’t deal with them directly. (For full details, see Appendix A.)

To illustrate, suppose we have an Objective-C class Thing with a method take1id:,
declared like this:

- (void) take1id: (id) anid;

That appears to Swift as:

func take1id(_ anid: Any)

When we pass an object to take1Id(_:) as its parameter, it crosses the bridge:

let t = Thing()
t.take1id("howdy") // String to NSString
t.take1id(1) // Int to NSNumber
t.take1id(CGRect()) // CGRect to NSValue
t.take1id(Date()) // Date to NSDate
t.take1id(Bird()) // Bird (struct) to boxed type

Coming back the other way, if Objective-C hands you an Any object, you will need to
cast it down to its underlying type in order to do anything useful with it:

220 | Chapter 4: Object Types

let ud = UserDefaults.standard
let d = ud.object(forKey:"now")
if d is Date {
 let d = d as! Date
 // ...
}

The result returned from UserDefaults object(forKey:) is typed as Any — actually,
as an Optional wrapping an Any, because UserDefaults might need to return nil to
indicate that no object exists for that key. But you know that it’s supposed to be a date,
so you cast it down to Date.

AnyObject
AnyObject is an empty protocol with the special feature that all class types conform to
it automatically. Although Objective-C APIs present Objective-C id as Any in Swift,
Swift AnyObject is Objective-C id. AnyObject is useful primarily when you want to
take advantage of the behavior of Objective-C id, as I’ll demonstrate in a moment.

A class type can be assigned directly where an AnyObject is expected; to retrieve it as
its original type, you’ll need to cast down:

class Dog {
}
let d = Dog()
let anyo : AnyObject = d
let d2 = anyo as! Dog

Assigning a nonclass type to an AnyObject requires casting (with as). The bridge to
Objective-C is then crossed immediately, as I described for Any in the preceding
section:

let s = "howdy" as AnyObject // String to NSString to AnyObject
let i = 1 as AnyObject // Int to NSNumber to AnyObject
let r = CGRect() as AnyObject // CGRect to NSValue to AnyObject
let d = Date() as AnyObject // Date to NSDate to AnyObject
let b = Bird() as AnyObject // Bird (struct) to boxed type to AnyObject

Suppressing type checking

Because AnyObject is Objective-C id, it can be used, like Objective-C id, to suspend
the compiler’s judgment as to whether a certain message can be sent to an object.
Thus, you can send a message to an AnyObject without bothering to cast down to its
real type.

You can’t send just any old message to an AnyObject; the message must correspond to
a class member that meets one of the following criteria:

• It is a member of an Objective-C class.

Umbrella Types | 221

• It is a member of your own Swift subclass of an Objective-C class.
• It is a member of your own Swift extension of an Objective-C class.
• It is a member of a Swift class or protocol marked @objc.

This feature is fundamentally parallel to optional protocol members, which I dis‐
cussed earlier in this chapter. Let’s start with two classes:

class Dog {
 @objc var noise : String = "woof"
 @objc func bark() -> String {
 return "woof"
 }
}
class Cat {}

The Dog property noise and the Dog method bark are marked @objc, so they are
visible as potential messages to be sent to an AnyObject. To prove it, I’ll type a Cat as
an AnyObject and send it one of these messages. Let’s start with the noise property:

let c : AnyObject = Cat()
let s = c.noise

That code, amazingly, compiles. Moreover, it doesn’t crash when the code runs! The
noise property has been typed as an Optional wrapping its original type. Here, that’s
an Optional wrapping a String. If the object typed as AnyObject doesn’t implement
noise, the result is nil and no harm done.

Now let’s try it with a method call:

let c : AnyObject = Cat()
let s = c.bark?()

Again, that code compiles and is safe. If the Object typed as AnyObject doesn’t imple‐
ment bark, no bark() call is performed; the method result type has been wrapped in
an Optional, so s is typed as String? and has been set to nil. If the AnyObject turns
out to have a bark method (for example, if it had been a Dog), the result is an
Optional wrapping the returned String. If you call bark!() on the AnyObject instead,
the result will be a String, but you’ll crash if the AnyObject doesn’t implement bark.
Unlike an optional protocol member, you can even send the message with no unwrap‐
ping. This is legal:

let c : AnyObject = Cat()
let s = c.bark()

That’s just like force-unwrapping the call: the result is a String, but it’s possible to
crash.

222 | Chapter 4: Object Types

Don’t make a habit of sending messages to an AnyObject; because it involves
dynamic lookup, it’s expensive at build time and expensive at runtime.

Object identity
Sometimes, what you want to know is not what type an object is, but whether an
object itself is the particular object you think it is. This problem can’t arise with a
value type, but it can arise with a reference type — in particular, with class instances.

Swift’s solution is the identity operator (===). Its operands are typed as AnyObject?,
meaning an object whose type is a class or an Optional whose wrapped type is a class;
it compares one object reference with another. This is not a comparison of values, like
the equality operator (==); you’re asking whether two object references refer to one
and the same object. There is also a negative version (!==) of the identity operator.

A typical use case is that a class instance arrives from Cocoa, and you need to know
whether it is in fact a particular object to which you already have a reference. For
example, a Notification has an object property that helps identify the notification
(usually, it is the original sender of the notification). We can use === to test whether
this object is the same as some object to which we already have a reference. How‐
ever, object is typed as Any (actually, as an Optional wrapping Any), so we must cast
to AnyObject in order to take advantage of the identity operator:

@objc func changed(_ n:Notification) {
 let player = MPMusicPlayerController.applicationMusicPlayer
 if n.object as AnyObject === player {
 // ...
 }
}

AnyClass
AnyClass is the type of AnyObject. It corresponds to the Objective-C Class type. It
arises typically in declarations where a Cocoa API wants to say that a class is
expected.

For example, the UIView layerClass class property is declared, in its Swift transla‐
tion, like this:

class var layerClass : AnyClass {get}

That means: if you override this class property, implement your getter to return a
class. This will presumably be a CALayer subclass. For example:

override class var layerClass : AnyClass {
 return CATiledLayer.self
}

Umbrella Types | 223

A reference to an AnyClass object behaves much like a reference to an AnyObject
object. You can send it any Objective-C message that Swift knows about — any
Objective-C class message. To illustrate, once again I’ll start with two classes:

class Dog {
 @objc static var whatADogSays : String = "woof"
}
class Cat {}

Objective-C can see whatADogSays, and it sees it as a class property. Therefore you
can send whatADogSays to an AnyClass reference:

let c : AnyClass = Cat.self
let s = c.whatADogSays

Collection Types
Swift, in common with most modern computer languages, has built-in collection
types Array and Dictionary, along with a third type, Set. Array and Dictionary are
sufficiently important that the language accommodates them with some special
syntax.

Array
An array (Array, a struct) is an ordered collection of object instances (the elements of
the array) accessible by index number, where an index number is an Int numbered
from 0. Thus, if an array contains four elements, the first has index 0 and the last has
index 3. A Swift array cannot be sparse: if there is an element with index 3, there is
also an element with index 2 and so on.

The salient feature of Swift arrays is their strict typing. Unlike some other computer
languages, a Swift array’s elements must be uniform — that is, the array must consist
solely of elements of the same definite type. Even an empty array must have a definite
element type, despite lacking elements at this moment. An array is itself typed in
accordance with its element type. Two arrays whose elements are of different types
are considered, themselves, to be of two different types: an array of Int elements has a
different type from an array of String elements.

If all this reminds you of Optionals, it should. Like an Optional, a Swift array is a
generic. It is declared as Array<Element>, where the placeholder Element is the type
of a particular array’s elements. And, like an Optional, Array types are covariant,
meaning that they behave polymorphically in accordance with their element types: if
NoisyDog is a subclass of Dog, then an array of NoisyDog can be used where an array
of Dog is expected.

To declare or state the type of a given array’s elements, you could explicitly resolve the
generic placeholder; an array of Int elements would thus be an Array<Int>. However,

224 | Chapter 4: Object Types

Swift offers syntactic sugar for stating an array’s element type, using square brackets
around the name of the element type, like this: [Int]. That’s the syntax you’ll use
most of the time.

A literal array is represented as square brackets containing a list of its elements sepa‐
rated by a comma (and optional spaces): for example, [1,2,3]. The literal for an
empty array is empty square brackets: [].

Array’s default initializer init(), called by appending empty parentheses to the
array’s type, yields an empty array of that type. Thus, you can create an empty array of
Int like this:

var arr = [Int]()

Alternatively, if a reference’s type is known in advance, the empty array [] can be
inferred to that type. Thus, you can also create an empty array of Int like this:

var arr : [Int] = []

If you’re starting with a literal array containing elements, you won’t usually need to
declare the array’s type, because Swift will infer it by looking at the elements. For
example, Swift will infer that [1,2,3] is an array of Int. If the array element types
consist of a class and its subclasses, like Dog and NoisyDog, Swift will infer the com‐
mon superclass as the array’s type. However, in some cases you will need to declare an
array reference’s type explicitly even while assigning a literal to that array:

let arr : [Any] = [1, "howdy"] // mixed bag
let arr2 : [Flier] = [Insect(), Bird()] // protocol adopters

Array also has an initializer whose parameter is a sequence. This means that if a type
is a sequence, you can split an instance of it into the elements of an array. For
example:

• Array(1...3) generates the array of Int [1,2,3].
• Array("hey") generates the array of Character ["h","e","y"].
• Array(d), where d is a Dictionary, generates an array of tuples of the key–value

pairs of d.
Another Array initializer, init(repeating:count:), lets you populate an array with
the same value. In this example, I create an array of 100 Optional strings initialized to
nil:

let strings : [String?] = Array(repeating:nil, count:100)

That’s the closest you can get in Swift to a sparse array; we have 100 slots, each of
which might or might not contain a string (and to start with, none of them do).

Collection Types | 225

But beware of using init(repeating:count:) with a reference type! If Dog is a
class, and you say let dogs = Array(repeating:Dog(), count:3), you don’t
have an array of three Dogs; you have an array consisting of three references to
one Dog. I’ll give a workaround later.

Array casting and type testing
When you assign, pass, or cast an array of a certain type to another array type, you
are really operating on the individual elements of the array. Thus, for example:

let arr : [Int?] = [1,2,3]

That code is actually syntactic sugar: assigning an array of Int where an array of
Optionals wrapping Int is expected constitutes a request that each individual Int in
the original array should be wrapped in an Optional. And that is exactly what
happens:

let arr : [Int?] = [1,2,3]
print(arr) // [Optional(1), Optional(2), Optional(3)]

Similarly, suppose we have a Dog class and its NoisyDog subclass; then this code is
legal:

let dog1 : Dog = NoisyDog()
let dog2 : Dog = NoisyDog()
let arr = [dog1, dog2]
let arr2 = arr as! [NoisyDog]

In the third line, we have an array of Dog. In the fourth line, we apparently cast this
array down to an array of NoisyDog — which really means that we cast each individ‐
ual Dog in the first array to a NoisyDog. We can crash when we do that, but we won’t
if each element of the first array really is a NoisyDog.

Similarly, the as? operator will cast an array to an Optional wrapping an array, which
will be nil if the requested cast cannot be performed for each element individually:

let dog1 : Dog = NoisyDog()
let dog2 : Dog = NoisyDog()
let dog3 : Dog = Dog()
let arr = [dog1, dog2]
let arr2 = arr as? [NoisyDog] // Optional wrapping an array of NoisyDog
let arr3 = [dog2, dog3]
let arr4 = arr3 as? [NoisyDog] // nil

Finally, you can test each element of an array with the is operator by testing the array
itself. For example, given the array of Dog from the previous code, you can say:

if arr is [NoisyDog] { // ...

That will be true if each element of the array is in fact a NoisyDog.

226 | Chapter 4: Object Types

Array comparison
Array equality works just as you would expect: two arrays are equal if they contain
the same number of elements and all the elements are pairwise equal in order. Of
course, this presupposes that the notion “equal” is meaningful for these elements:

let i1 = 1
let i2 = 2
let i3 = 3
let arr : [Int] = [1,2,3]
if arr == [i1,i2,i3] { // they are equal!

Two arrays don’t have to be of the same type to be compared against one another for
equality, but the test won’t succeed unless they do in fact contain objects that are
equal to one another. Here, I compare a Dog array against a NoisyDog array; this is
legal if equatability is defined for two Dogs. (For example, Dog might be an NSObject
subclass; or you might make Dog adopt Equatable, as I’ll explain in Chapter 5.) The
two arrays are in fact equal, because the dogs they contain are the same dogs in the
same order:

let nd1 = NoisyDog()
let d1 = nd1 as Dog
let nd2 = NoisyDog()
let d2 = nd2 as Dog
if [d1,d2] == [nd1,nd2] { // they are equal!

Arrays are value types
Because an array is a struct, it is a value type, not a reference type. This means that
every time an array is assigned to a variable or passed as argument to a function, it is
effectively copied. I do not mean to imply, however, that merely assigning or passing
an array is expensive, or that a lot of actual copying takes place every time. If the ref‐
erence to an array is a constant, clearly no copying is necessary; and even operations
that yield a new array derived from another array, or that mutate an array, may be
quite efficient. You just have to trust that the designers of Swift have thought about
these problems and have implemented arrays efficiently behind the scenes.

Although an array itself is a value type, its elements are treated however those ele‐
ments would normally be treated. In particular, an array of class instances, assigned
to multiple variables, results in multiple references to the same instances.

Array subscripting
The Array struct implements subscript methods to allow access to elements using
square brackets after a reference to an array. You can use an Int inside the square
brackets. For example, in an array consisting of three elements, if the array is referred
to by a variable arr, then arr[1] accesses the second element.

Collection Types | 227

You can also use a Range of Int inside the square brackets. For example, if arr is an
array with three elements, then arr[1...2] signifies the second and third elements.

Technically, an expression like arr[1...2] yields something called an ArraySlice,
which stands in relation to Array much as Substring stands in relation to String
(Chapter 3). It’s very similar to an array, and in general you will probably pretend that
an ArraySlice is an array. For example, you can subscript an ArraySlice in just the
same ways you would subscript an array, and an ArraySlice can be passed where an
array is expected. Nevertheless, they are not the same thing. An ArraySlice is not a
new array; it’s just a way of pointing into a section of the original array. For this rea‐
son, its index numbers are those of the original array. For example:

let arr = ["manny", "moe", "jack"]
let slice = arr[1...2] // ["moe", "jack"]
print(slice[1]) // moe

The ArraySlice slice consists of two elements, "moe" and "jack", of which "moe" is
the first element. But these are not merely "moe" and "jack" taken from the original
array, but the "moe" and "jack" in the original array. For this reason, their index
numbers are not 0 and 1, but rather 1 and 2, just as in the original array. If you want
to extract a new array based on this slice, coerce the slice to an Array:

let arr2 = Array(slice) // ["moe", "jack"]
print(arr2[1]) // jack

If the reference to an array is mutable (var, not let), then a subscript expression can
be assigned to. This alters what’s in that slot. Of course, what is assigned must accord
with the type of the array’s elements:

var arr = [1,2,3]
arr[1] = 4 // arr is now [1,4,3]

If the subscript is a range, what is assigned must be a slice. You can assign a literal
array, because it will be coerced for you to an ArraySlice; but if what you’re starting
with is an array reference, you’ll have to coerce it to a slice yourself. Such assignment
can change the length of the array being assigned to:

var arr = [1,2,3]
arr[1..<2] = [7,8] // arr is now [1,7,8,3]
arr[1..<2] = [] // arr is now [1,8,3]
arr[1..<1] = [10] // arr is now [1,10,8,3] (no element was removed!)
let arr2 = [20,21]
// arr[1..<1] = arr2 // compile error! You have to say this:
arr[1..<1] = ArraySlice(arr2) // arr is now [1,20,21,10,8,3]

It is a runtime error to access an element by a number larger than the largest element
number or smaller than the smallest element number. If arr has three elements,
speaking of arr[-1] or arr[3] is not illegal linguistically, but your program will
crash.

228 | Chapter 4: Object Types

Subscripting an array with a Range is an opportunity to use partial range notation.
The missing value is taken to be the array’s first or last index. For example, if arr is
[1,2,3], then arr[1...] is [2,3], and arr[...1] is [1,2]. Similarly, you can assign
into a range specified as a partial range:

var arr = [1,2,3]
arr[1...] = [4,5] // arr is now [1,4,5]

Nested arrays
It is legal for the elements of an array to be arrays. For example:

let arr = [[1,2,3], [4,5,6], [7,8,9]]

That’s an array of arrays of Int. Its type declaration, therefore, is [[Int]]. (No law says
that the contained arrays have to be the same length; that’s just something I did for
clarity.)

To access an individual Int inside those nested arrays, you can chain subscripts:

let arr = [[1,2,3], [4,5,6], [7,8,9]]
let i = arr[1][1] // 5

If the outer array reference is mutable, you can also write into a nested array:

var arr = [[1,2,3], [4,5,6], [7,8,9]]
arr[1][1] = 100

You can modify the inner arrays in other ways as well; for example, you can insert
additional elements into them.

Thanks to conditional conformance (discussed earlier in this chapter), nested arrays
can be compared with == as long as the inner array’s elements are Equatable. For
example, if arr and arr2 are both [[Int]], you can compare them by saying arr ==
arr2.

Basic array properties and methods
An array is a Collection, which is itself a Sequence. If those terms have a familiar ring,
they should: the same is true of a String’s underlying character sequence, which I dis‐
cussed in Chapter 3. For this reason, an array and a character sequence bear some
striking similarities to one another.

As a collection, an array’s count read-only property reports the number of elements it
contains. If an array’s count is 0, its isEmpty property is true.

An array’s first and last read-only properties return its first and last elements, but
they are wrapped in an Optional because the array might be empty and so these prop‐
erties would need to be nil. (This is one of those rare situations in Swift where you
can wind up with an Optional wrapping an Optional. For example, consider an array

Collection Types | 229

of Optionals wrapping Ints, and what happens when you get the last property of
such an array.)

An array’s largest accessible index is one less than its count. You may find yourself
calculating index values with reference to the count; for example, to refer to the last
two elements of arr, you might say:

let arr = [1,2,3]
let slice = arr[arr.count-2...arr.count-1] // [2,3]

Swift doesn’t adopt the modern convention of letting you use negative numbers as a
shorthand for that calculation. On the other hand, for the common case where you
want the last n elements of an array, you can use the suffix(_:) method:

let arr = [1,2,3]
let slice = arr.suffix(2) // [2,3]

Both suffix(_:) and its companion prefix(_:) yield ArraySlices, and have the
remarkable feature that there is no penalty for going out of range:

let arr = [1,2,3]
let slice = arr.suffix(10) // [1,2,3] (and no crash)

Instead of describing the size of the suffix or prefix by its count, you can express the
limit of the suffix or prefix by its index. And partial range notation may provide yet
another useful alternative:

let arr = [1,2,3]
let slice = arr.suffix(from:1) // [2,3]
let slice2 = arr[1...] // [2,3]
let slice3 = arr.prefix(upTo:1) // [1]
let slice4 = arr.prefix(through:1) // [1,2]

An array’s startIndex property is 0, and its endIndex property is its count. An array’s
indices property is a half-open range whose endpoints are the array’s startIndex
and endIndex — that is, a range accessing the entire array. Moreover, these values are
Ints, so you can use ordinary arithmetic operations on them:

let arr = [1,2,3]
let slice = arr[arr.endIndex-2..<arr.endIndex] // [2,3]

But the startIndex, endIndex, and indices of an ArraySlice are measured against
the original array; for example, after the previous code, slice.indices is 1..<3, and
slice.startIndex is 1.

The firstIndex(of:) method reports the index of the first occurrence of an element
in an array, but it is wrapped in an Optional so that nil can be returned if the element
doesn’t appear in the array. In general, the comparison uses == behind the scenes to
identify the element being sought, and therefore the array elements must adopt
Equatable (otherwise the compiler will stop you):

230 | Chapter 4: Object Types

let arr = [1,2,3]
let ix = arr.firstIndex(of:2) // Optional wrapping 1

Alternatively, you can call firstIndex(where:), supplying your own function that
takes an element type and returns a Bool, and you’ll get back the index of the first
element for which that Bool is true. In this example, my Bird struct has a name String
property:

let aviary = [Bird(name:"Tweety"), Bird(name:"Flappy"), Bird(name:"Lady")]
let ix = aviary.firstIndex {$0.name.count < 5} // Optional(2)

If what you want is not the index but the object itself, the first(where:) method
returns it — wrapped, naturally, in an Optional. These methods are matched by last-
Index(of:), lastIndex(where:), and last(where:).

As a sequence, an array’s contains(_:) method reports whether it contains an ele‐
ment. Again, you can rely on the == operator if the elements are Equatable, or you
can supply your own function that takes an element type and returns a Bool:

let arr = [1,2,3]
let ok = arr.contains(2) // true
let ok2 = arr.contains {$0 > 3} // false

The starts(with:) method reports whether an array’s starting elements match the
elements of a given sequence of the same type. Once more, you can rely on the ==
operator for Equatable elements, or you can supply a function that takes two values of
the element type and returns a Bool stating whether they match:

let arr = [1,2,3]
let ok = arr.starts(with:[1,2]) // true
let ok2 = arr.starts(with:[1,-2]) {abs($0) == abs($1)} // true

The min and max methods return the smallest or largest element in an array, wrapped
in an Optional in case the array is empty. If the array consists of Comparable ele‐
ments, you can let the < operator do its work; alternatively, you can call min(by:) or
max(by:), supplying a function that returns a Bool stating whether the smaller of two
given elements is the first:

let arr = [3,1,-2]
let min = arr.min() // Optional(-2)
let min2 = arr.min {abs($0)<abs($1)} // Optional(1)

If the reference to an array is mutable, the append(_:) and append(contentsOf:)
instance methods add elements to the end of it. The difference between them is that
append(_:) takes a single value of the element type, while append(contentsOf:)
takes a sequence of the element type. For example:

var arr = [1,2,3]
arr.append(4)
arr.append(contentsOf:[5,6])
arr.append(contentsOf:7...8) // arr is now [1,2,3,4,5,6,7,8]

Collection Types | 231

The + operator is overloaded to behave like append(contentsOf:) (not append(_:)!)
when the left-hand operand is an array, except that it generates a new array, so it
works even if the reference to the array is a constant (let). If the reference to the
array is mutable (var), you can append to it in place with the += operator. Thus:

let arr = [1,2,3]
let arr2 = arr + [4] // arr2 is now [1,2,3,4]
var arr3 = [1,2,3]
arr3 += [4] // arr3 is now [1,2,3,4]

If the reference to an array is mutable, the instance method insert(at:) inserts a
single element at the given index. To insert multiple elements at once, call the
insert(contentsOf:at:) method. Assignment into a range-subscripted array, which
I described earlier, is even more flexible.

If the reference to an array is mutable, the instance method remove(at:) removes the
element at that index; the instance method removeLast removes the last element.
These methods also return the value that was removed from the array; you can ignore
the returned value if you don’t need it. These methods do not wrap the returned value
in an Optional, and accessing an out-of-range index will crash your program. On the
other hand, popLast does wrap the returned value in an Optional, and is thus safe
even if the array is empty.

Similar to removeLast and popLast are removeFirst and popFirst. Alternate forms
removeFirst(_:) and removeLast(_:) allow you to specify how many elements to
remove, but return no value; they, too, can crash if there aren’t as many elements as
you specify. popFirst, remarkably, operates on a slice, not an array, presumably for
the sake of efficiency: all it has to do is increase the slice’s startIndex, whereas with
an array, the whole array must be renumbered.

Even if the reference is not mutable, you can use the dropFirst and dropLast meth‐
ods to return a slice with the end element removed. Again, you can supply a parame‐
ter stating how many elements to drop. And again, there is no penalty for dropping
too many elements; you simply end up with an empty slice.

The joined(separator:) instance method starts with an array of arrays. It extracts
their individual elements, and interposes between each sequence of extracted ele‐
ments the elements of the separator:. The result is an intermediate sequence called a
JoinSequence, which might have to be coerced further to an Array if that’s what you
were after. For example:

let arr = [[1,2], [3,4], [5,6]]
let joined = Array(arr.joined(separator:[10,11]))
// [1, 2, 10, 11, 3, 4, 10, 11, 5, 6]

232 | Chapter 4: Object Types

Calling joined() with no separator: is a way to flatten an array of arrays. Again, it
returns an intermediate sequence (or collection), so you might want to coerce to an
Array:

let arr = [[1,2], [3,4], [5,6]]
let arr2 = Array(arr.joined())
// [1, 2, 3, 4, 5, 6]

The split instance method breaks an array into an array of slices at elements match‐
ing the parameter, if you call split(separator:), or at elements that pass a specified
test, if you call split(isSeparator:); in the latter, the parameter is a function that
takes a value of the element type and returns a Bool. The separator elements them‐
selves are eliminated:

let arr = [1,2,3,4,5,6]
let arr2 = arr.split {$0 % 2 == 0} // split at evens: [[1], [3], [5]]

The reversed instance method yields a new array whose elements are in the opposite
order from the original.

The sort and sorted instance methods respectively sort the original array (if the ref‐
erence to it is mutable) and yield a new sorted array based on the original. Once
again, you get two choices: if this is an array of Comparable elements, you can let the
< operator dictate the new order; alternatively, you can call sort(by:) or
sorted(by:), supplying a function that takes two parameters of the element type and
returns a Bool stating whether the first parameter should be ordered before the sec‐
ond (just like min and max). For example:

var arr = [4,3,5,2,6,1]
arr.sort() // [1, 2, 3, 4, 5, 6]
arr.sort {$0 > $1} // [6, 5, 4, 3, 2, 1]

In that last line, I provided an anonymous function. Alternatively, of course, you can
pass as argument the name of a declared function. In Swift, comparison operators are
the names of functions! Therefore, I can do the same thing like this:

var arr = [4,3,5,2,6,1]
arr.sort(by: >) // [6, 5, 4, 3, 2, 1]

The swapAt method accepts two Int index numbers and interchanges those elements
of a mutable array:

var arr = [1,2,3]
arr.swapAt(0,2) // [3,2,1]

New in Swift 4.2 are methods for randomizing an array. The shuffle and shuffled
methods sort the array in random order; the randomElement method generates a valid
index at random and hands you the element at that index (wrapped in an Optional, in
case the array is empty).

Collection Types | 233

Array enumeration and transformation
An array is a sequence, and so you can enumerate it, inspecting or operating with
each element in turn. The simplest way is by means of a for...in loop; I’ll have more
to say about this construct in Chapter 5:

let pepboys = ["Manny", "Moe", "Jack"]
for pepboy in pepboys {
 print(pepboy) // prints Manny, then Moe, then Jack
}

Alternatively, you can use the forEach(_:) instance method. Its parameter is a func‐
tion that takes an element and returns no value. Think of it as the functional equiva‐
lent of the imperative for...in loop:

let pepboys = ["Manny", "Moe", "Jack"]
pepboys.forEach {print($0)} // prints Manny, then Moe, then Jack

If you need the index numbers as well as the elements, call the enumerated instance
method and loop on the result; what you get on each iteration is a tuple with labels
offset and element:

let pepboys = ["Manny", "Moe", "Jack"]
for (ix,pepboy) in pepboys.enumerated() {
 print("Pep boy \(ix) is \(pepboy)") // Pep boy 0 is Manny, etc.
}
// or:
pepboys.enumerated().forEach {
 print("Pep boy \($0.offset) is \($0.element)")
}

New in Swift 4.2, the allSatisfy(_:) method tells you whether all elements pass
some test; you supply a function that takes an element and returns a Bool:

let pepboys = ["Manny", "Moe", "Jack"]
let ok = pepboys.allSatisfy {$0.hasPrefix("M")} // false
let ok2 = pepboys.allSatisfy {$0.hasPrefix("M") || $0.hasPrefix("J")} // true

Swift also provides some powerful array transformation instance methods. Like for-
Each(_:) and allSatisfy(_:), these methods all enumerate the array for you, so
that the loop is buried implicitly inside the method call, making your code tighter and
cleaner.

The filter(_:) instance method yields a new array, each element of which is an ele‐
ment of the old array, in the same order; but some of the elements of the old array
may be omitted — they were filtered out. What filters them out is a function that you
supply; it accepts a parameter of the element type and returns a Bool stating whether
this element should go into the new array. For example:

let pepboys = ["Manny", "Moe", "Jack"]
let pepboys2 = pepboys.filter {$0.hasPrefix("M")} // ["Manny", "Moe"]

234 | Chapter 4: Object Types

If the function is effectively negative, and if the reference to the collection is mutable,
you should call removeAll(where:) rather whan filter(_:). For example:

var pepboys = ["Manny", "Jack", "Moe"]
pepboys.removeAll{$0.hasPrefix("M")} // pepboys is now ["Jack"]

That’s better in general than saying pepboys.filter{!$0.hasPrefix("M")} because
of efficiencies achieved under the hood.

Similar to filter(_:) is prefix(while:). The difference is that prefix(while:)
stops looping as soon as it encounters an element for which supplied function returns
false (and returns a slice). The complement of prefix(while:) is drop(while:); it
stops where prefix(while:) stops, but it returns the rest of the original array:

let pepboys = ["Manny", "Jack", "Moe"]
let arr1 = pepboys.filter{$0.hasPrefix("M")} // ["Manny", "Moe"]
let arr2 = pepboys.prefix{$0.hasPrefix("M")} // ["Manny"]
let arr3 = pepboys.drop{$0.hasPrefix("M")} // ["Jack", "Moe"]

The map(_:) instance method yields a new array, each element of which is the result
of passing the corresponding element of the old array through a function that you
supply. This function accepts a parameter of the element type and returns a result
which may be of some other type; Swift can usually infer the type of the resulting
array elements by looking at the type returned by the function.

For example, here’s how to multiply every element of an array by 2:

let arr = [1,2,3]
let arr2 = arr.map {$0 * 2} // [2,4,6]

Here’s another example, to illustrate the fact that map(_:) can yield an array with a
different element type:

let arr = [1,2,3]
let arr2 = arr.map {Double($0)} // [1.0, 2.0, 3.0]

Here’s a real-life example showing how neat and compact your code can be when you
use map(_:). In order to remove all the table cells in a section of a UITableView, I
have to specify the cells as an array of IndexPath objects. If sec is the section number,
I can form those IndexPath objects individually like this:

let path0 = IndexPath(row:0, section:sec)
let path1 = IndexPath(row:1, section:sec)
// ...

Hmmm, I think I see a pattern here! I could generate my array of IndexPath objects
by looping through the row values using for...in. But with map(_:), there’s a much
tighter way to express the same loop — namely, to loop through the range 0..<ct
(where ct is the number of rows in the section). Since map(_:) is a Collection

Collection Types | 235

instance method, and a Range is itself a Collection, I can call map(_:) directly on the
range:

let paths = (0..<ct).map {IndexPath(row:$0, section:sec)}

The map(_:) method provides a neat alternative to init(repeating:count:) with a
reference type:

let dogs = Array(repeating:Dog(), count:3)

You probably wanted an array of three Dogs. But if Dog is a class, the array consists of
three references to one and the same Dog instance! Instead, generate the array using
map(_:), like this:

let dogs = (0..<3).map {_ in Dog()}

The map(_:) method has a specialized companion, flatMap(_:). Applied to an array,
flatMap(_:) first calls map(_:), and then, if the map function produces an array of
arrays, flattens it. For instance, [[1],[2]].flatMap{$0} is [1,2]. Here’s a more inter‐
esting example:

let arr = [[1, 2], [3, 4]]
let arr2 = arr.flatMap{$0.map{String($0)}} // ["1", "2", "3", "4"]

First our map function calls map(_:) to coerce the individual elements of each inner
array to a string, thus yielding an array of arrays of String: [["1", "2"], ["3",
"4"]]. Then flatMap(_:) flattens the array of arrays, and we end up with a simple
array of String.

Another specialized map(_:) companion is compactMap(_:). (Before Swift 4.1, this
was another form of flatMap(_:).) Given a map function that produces an array of
Optionals, compactMap(_:) safely unwraps them by first eliminating any nil ele‐
ments. This neatly solves a large class of commonly encountered problem. In particu‐
lar, we can coerce or cast an array safely by eliminating those elements that can’t be
coerced or cast.

For example, suppose I have a mixed bag of strings, some of which represent integers.
I’d like to coerce to Int those that can be coerced to Int, and eliminate the others. Int
coercion of a String yields an Optional, so the compactMap(_:) lightbulb should go
on in our heads:

let arr = ["1", "hey", "2", "ho"]
let arr2 = arr.compactMap{Int($0)} // [1, 2]

First we map the original array to an array of Optionals wrapping Int, by coercing:
[Optional(1), nil, Optional(2), nil]. Then compactMap(_:) removes the nil
elements and unwraps the remaining elements, resulting in an array of Int.

Finally, we come to the reduce instance method. If you’ve learned LISP or Scheme,
you’re probably accustomed to reduce; otherwise, it can be a bit mystifying at first.

236 | Chapter 4: Object Types

It’s a way of combining all the elements of an array (actually, a sequence) into a single
value. This value’s type — the result type — doesn’t have to be the same as the array’s
element type. You supply, as the second parameter, a function that takes two parame‐
ters; the first is of the result type, the second is of the element type, and the function’s
result is the combination of those two parameters, as the result type. The result of
your function on each iteration becomes the function’s first parameter in the next
iteration, along with the next element of the array as the second parameter. Thus, the
output of combining pairs accumulates, and the final accumulated value is the final
output of the function. However, that doesn’t explain where the first parameter for
the first iteration comes from. The answer is that you have to supply it as the first
argument of the reduce call.

That will all be easier to understand with a simple example. Let’s assume we’ve got an
array of Int. Then we can use reduce to sum the elements of the array. Here’s some
pseudocode where I’ve left out the first argument of the call, so that you can think
about what it needs to be:

let sum = arr.reduce(/* ... */) {$0 + $1}

Each pair of parameters will be added together to get the first parameter ($0) on the
next iteration. The second parameter on every iteration ($1) is a successive element of
the array. So the remaining question is: What should the first element of the array be
added to? We want the actual sum of all the elements, no more and no less; so clearly
the first element of the array should be added to 0! So here’s actual working code:

let arr = [1, 4, 9, 13, 112]
let sum = arr.reduce(0) {$0 + $1} // 139

The + operator is the name of a function of the required type, so here’s another way to
write the same thing:

let sum = arr.reduce(0, +)

There is also reduce(into:), which greatly improves efficiency when the goal is to
build a collection such as an array or a dictionary. The into: argument is passed into
your function as an inout parameter, and persists through each iteration; instead of
returning a value, your function modifies it, and the final result is its final value.

For example, suppose we have an array of integers, and our goal is to “deal” them into
two piles consisting of the even elements and the odd elements respectively. You can’t
do that with a single call to map; you’d have to cycle through the original array twice.
With reduce(into:), both target arrays are constructed while cycling through the
original array once:

Collection Types | 237

let nums = [1,3,2,4,5]
let result = nums.reduce(into: [[],[]]) { temp, i in
 temp[i%2].append(i)
}
// result is now [[2, 4], [1, 3, 5]]

In my real iOS programming life, I depend heavily on all of these methods, often
using two or even all three of them together, nested or chained or both. Here’s an
example. I have a table view that displays data divided into sections. Under the hood,
the data is an array of arrays of String — a [[String]] — where each subarray repre‐
sents the rows of a section. Now I want to filter that data to eliminate all strings that
don’t contain a certain substring. I want to keep the sections intact, but if removing
strings removes all of a section’s strings, I want to eliminate that section array entirely.

The heart of the action is the test for whether a string contains a substring. I’m going
to use a Cocoa method for that, in part because it lets me do a case-insensitive search.
If s is a string from my array, and target is the substring we’re looking for, then the
code for looking to see whether s contains target case-insensitively is as follows:

let found = s.range(of:target, options:.caseInsensitive)

Recall the discussion of range(of:) in Chapter 3. If found is not nil, the substring
was found. Here, then, is the actual code, preceded by some sample data for exercis‐
ing it:

let arr = [["Manny", "Moe", "Jack"], ["Harpo", "Chico", "Groucho"]]
let target = "m"
let arr2 = arr.map {
 $0.filter {
 let found = $0.range(of:target, options:.caseInsensitive)
 return (found != nil)
 }
}.filter {$0.count > 0}
// [["Manny", "Moe"]]

Once the first two lines have finished setting up the sample data, what remains is a
single statement — a map call, whose function consists of a filter call, with a filter
call chained to it. If that code doesn’t prove to you that Swift is cool, nothing will.

Swift Array and Objective-C NSArray
When you’re programming iOS, you import the Foundation framework (or UIKit,
which imports Foundation) and thus the Objective-C NSArray type. Swift Array is
bridged to Objective-C NSArray. The most general medium of array interchange is
[Any]; if an Objective-C API specifies an NSArray, with no further type information,
Swift will see this as an array of Any. This reflects the fact that Objective-C’s rules for
what can be an element of an NSArray are looser than Swift’s: the elements of an
NSArray do not all have to be of the same type. On the other hand, the elements of an
Objective-C NSArray must be Objective-C objects — that is, they must be class types.

238 | Chapter 4: Object Types

Passing a Swift array to Objective-C is thus usually easy. Typically, you’ll just pass the
array, either by assignment or as an argument in a function call:

let arr = [UIBarButtonItem(), UIBarButtonItem()]
self.navigationItem.leftBarButtonItems = arr

The objects that you pass as elements of the array will cross the bridge to Objective-C
in the usual way. For example:

let lay = CAGradientLayer()
lay.locations = [0.25, 0.5, 0.75]

CAGradientLayer’s locations property needs to be an array of NSNumber. But we
can pass an array of Double, because Double is bridged to NSNumber.

To call an NSArray method on a Swift array, you may have to cast to NSArray:

let arr = ["Manny", "Moe", "Jack"]
let s = (arr as NSArray).componentsJoined(by:", ")
// s is "Manny, Moe, Jack"

A Swift Array seen through a var reference is mutable, but an NSArray isn’t mutable
no matter how you see it. For mutability in Objective-C, you need an NSMutable‐
Array, a subclass of NSArray. You can’t cast, assign, or pass a Swift array as an
NSMutableArray; you have to coerce. The best way is to call the NSMutableArray ini‐
tializer init(array:), to which you can pass a Swift array directly. To convert back
from an NSMutableArray to a Swift array, you can cast:

var arr = ["Manny", "Moe", "Jack"]
let arr2 = NSMutableArray(array:arr)
arr2.remove("Moe")
arr = arr2 as! [String]

Now let’s talk about what happens when an NSArray arrives from Objective-C into
Swift. There won’t be any problem crossing the bridge: the NSArray will arrive safely
as a Swift Array. But a Swift Array of what?

Of itself, an NSArray carries no information about what type of element it contains.
Starting in Xcode 7, however, the Objective-C language was modified so that the dec‐
laration of an NSArray, NSDictionary, or NSSet — the three collection types that are
bridged to Swift — can include element type information. (Objective-C calls this a
lightweight generic.) Thus, for the most part, the arrays you receive from Cocoa will be
correctly typed.

For example, this elegant code was previously impossible:

let arr = UIFont.familyNames.map {
 UIFont.fontNamesForFamilyName($0)
}

The result is an array of arrays of String, listing all available fonts grouped by family.
That code is possible because both of those UIFont class methods are now seen by

Collection Types | 239

Swift as returning an array of String. Previously, those arrays were untyped, and cast‐
ing down to an array of String was up to you.

However, lightweight generics are not omnipresent. You might read an array from
a .plist file stored on disk with NSArray’s initializer init(contentsOf:); you might
retrieve an array from UserDefaults; you might even be dealing with an Objective-C
API that hasn’t been updated to use lightweight generics. In such a situation, you’re
going to end up with a plain vanilla NSArray or a Swift array of Any. If that happens,
you will usually want to cast down or otherwise transform this array into an array of
some specific Swift type. Here’s an Objective-C class containing a method whose
return type of NSArray hasn’t been marked up with an element type:

@implementation Pep
- (NSArray*) boys {
 return @[@"Manny", @"Moe", @"Jack"];
}
@end

To call that method and do anything useful with the result, it will be necessary to cast
that result down to an array of String. If I’m sure of my ground, I can force the cast:

let p = Pep()
let boys = p.boys() as! [String]

As with any cast, though, be sure you don’t lie! An Objective-C array can contain
more than one type of object. Don’t force such an array to be cast down to a type to
which not all the elements can be cast, or you’ll crash when the cast fails; you’ll need a
more deliberate strategy (possibly involving compactMap) for eliminating or otherwise
transforming the problematic elements.

Dictionary
A dictionary (Dictionary, a struct) is an unordered collection of object pairs. In each
pair, the first object is the key; the second object is the value. The idea is that you use a
key to access a value. Keys are usually strings, but they don’t have to be; the formal
requirement is that they be types that are Equatable and also Hashable, meaning that
they implement an Int hashValue property such that equal keys have equal hash val‐
ues. Thus, the hash values can be used behind the scenes for rapid key access. Most
Swift standard types are Hashable.

As with arrays, a given dictionary’s types must be uniform. The key type and the
value type don’t have to be the same as one another, and they often will not be. But
within any dictionary, all keys must be of the same type, and all values must be of the
same type. Formally, a dictionary is a generic, and its placeholder types are ordered
key type, then value type: Dictionary<Key,Value>. As with arrays, Swift provides
syntactic sugar for expressing a dictionary’s type, which is what you’ll usually use:
[Key: Value]. That’s square brackets containing a colon (and optional spaces) sepa‐

240 | Chapter 4: Object Types

rating the key type from the value type. This code creates an empty dictionary whose
keys (when they exist) will be Strings and whose values (when they exist) will be
Strings:

var d = [String:String]()

The colon is used also between each key and value in the literal syntax for expressing
a dictionary. The key–value pairs appear between square brackets, separated by a
comma, just like an array. This code creates a dictionary by describing it literally (and
the dictionary’s type of [String:String] is inferred):

var d = ["CA": "California", "NY": "New York"]

The literal for an empty dictionary is square brackets containing just a colon: [:].
This notation can be used provided the dictionary’s type is known in some other way.
This is another way to create an empty [String:String] dictionary:

var d : [String:String] = [:]

You can also initialize a dictionary from a sequence of key–value tuples. This is useful
particularly if you’re starting with two sequences. Suppose, for example, that we hap‐
pen to have state abbreviations in one array and state names in another:

let abbrevs = ["CA", "NY"]
let names = ["California", "New York"]

We can then form those two arrays into a single array of tuples and call init(unique-
KeysWithValues:) to generate a dictionary:

let tuples = (abbrevs.indices).map{(abbrevs[$0],names[$0])}
let d = Dictionary(uniqueKeysWithValues: tuples)
// ["NY": "New York", "CA": "California"]

There is actually a simpler way to form those tuples — the global zip function, which
takes two sequences and yields a sequence of tuples:

let tuples = zip(abbrevs, names)
let d = Dictionary(uniqueKeysWithValues: tuples)

A nice feature of zip is that if one sequence is longer than the other, the extra ele‐
ments of the longer sequence are ignored — tuple formation simply stops when the
end of the shorter sequence is reached. Thus, for example, one of the zipped sequen‐
ces can be a partial range; in theory the range is infinite, but in fact the end of the
other sequence ends the range as well:

let r = 1...
let names = ["California", "New York"]
let d = Dictionary(uniqueKeysWithValues: zip(r,names))
// [2: "New York", 1: "California"]

If the keys in the tuple sequence are not unique, you’ll crash at runtime when
init(uniqueKeysWithValues:) is called. To work around that, you can use

Collection Types | 241

init(_:uniquingKeysWith:) instead. The second parameter is a function taking two
values — the existing value for this key, and the new incoming value for the same key
— and returning the value that should actually be used for this key. I’ll give an exam‐
ple later.

Another way to form a dictionary is init(grouping:by:). This is useful for forming
a dictionary whose values are arrays. You start with a sequence of the elements of the
arrays, and the initializer clumps them into arrays for you, in accordance with a func‐
tion that generates the corresponding key from each value.

For example, suppose I have a list (states) of the 50 U.S. states in alphabetical order
as an array of strings, and I want to group them by the letter they start with. Here’s a
possible strategy based on two arrays (an array of String and an array of arrays of
String) which I construct separately as I loop through the list and then zip together to
form the dictionary:

var sectionNames = [String]()
var cellData = [[String]]()
var previous = ""
for aState in states {
 // get the first letter
 let c = String(aState.prefix(1))
 // only add a letter to sectionNames when it's a different letter
 if c != previous {
 previous = c
 sectionNames.append(c.uppercased())
 // and in that case also add new subarray to our array of subarrays
 cellData.append([String]())
 }
 cellData[cellData.count-1].append(aState)
}
let d = Dictionary(uniqueKeysWithValues: zip(sectionNames,cellData))
// ["H": ["Hawaii"], "V": ["Vermont", "Virginia"], ...

But with init(grouping:by:), that becomes effectively a one-liner:

let d = Dictionary(grouping: states) {$0.prefix(1).uppercased()}

Dictionary subscripting
Access to a dictionary’s contents is usually by subscripting. To fetch a value by key,
use the key as a subscript:

let d = ["CA": "California", "NY": "New York"]
let state = d["CA"]

If you try to fetch a value through a nonexistent key, there is no error, but Swift needs
a way to report failure; therefore, by default, it returns nil. This, in turn, implies that
the value returned when you successfully access a value through a key must be an

242 | Chapter 4: Object Types

Optional wrapping the real value. After that code, therefore, state is not a String —
it’s an Optional wrapping a String! Forgetting this is a common beginner mistake.

Starting in Swift 4, you can change that behavior by supplying a default value as part
of the subscript. If the key isn’t found in the dictionary, the default value is returned,
and so there is no need for the returned value to be wrapped in an Optional. For
example:

let d = ["CA": "California", "NY": "New York"]
let state = d["MD", default:"N/A"] // state is a String (not an Optional)

If the reference to a dictionary is mutable, you can also assign into a key subscript
expression. If the key already exists, its value is replaced. If the key doesn’t already
exist, it is created and the value is attached to it:

var d = ["CA": "California", "NY": "New York"]
d["CA"] = "Casablanca"
d["MD"] = "Maryland"
// d is now ["MD": "Maryland", "NY": "New York", "CA": "Casablanca"]

As with fetching a value by key, you can supply a default value when assigning into a
key subscript expression. This can be a source of great economy of expression. For
example, consider the common task of collecting a histogram: we want to know how
many times each element appears in a sequence:

let sentence = "how much wood would a wood chuck chuck"
let words = sentence.split(separator: " ").map{String($0)}

Our goal is now to make a dictionary pairing each word with the number of times it
appears. Before Swift 4, a typical approach would be rather laborious, along these
lines:

var d = [String:Int]()
for word in words {
 let ct = d[word]
 if ct != nil {
 d[word]! += 1
 } else {
 d[word] = 1
 }
}
// d is now ["how": 1, "wood": 2, "a": 1, "chuck": 2, "would": 1, "much": 1]

In Swift 4 and later, however, it’s effectively a one-liner:

var d = [String:Int]()
words.forEach {d[$0, default:0] += 1}

Earlier, I promised to give an example of init(_:uniquingKeysWith:), so here it is,
forming the same histogram in a silly but interesting way; I start with a values array
of ones, and sum the values whenever a duplicate key is encountered:

Collection Types | 243

let ones = Array(repeating: 1, count: words.count)
let d = Dictionary(zip(words,ones)){$0+$1}

Instead of assigning into a subscript expression, you can call updateValue(forKey:);
it has the advantage that it returns the old value.

By a kind of shorthand, assigning nil into a key subscript expression removes that
key–value pair if it exists:

var d = ["CA": "California", "NY": "New York"]
d["NY"] = nil // d is now ["CA": "California"]

Alternatively, call removeValue(forKey:); it has the advantage that it returns the
removed value before it removes the key–value pair.

Dictionary casting and comparison
As with arrays, a dictionary type is legal for casting down, meaning that the individ‐
ual elements will be cast down. Typically, only the value types will differ:

let dog1 : Dog = NoisyDog()
let dog2 : Dog = NoisyDog()
let d = ["fido": dog1, "rover": dog2]
let d2 = d as! [String : NoisyDog]

As with arrays, is can be used to test the actual types in the dictionary, and as? can
be used to test and cast safely.

Dictionary equality is like array equality. Key types are necessarily Equatable, because
they are Hashable. Value types are not necessarily Equatable, but if they are Equata‐
ble, == and != are defined as you would expect.

Basic dictionary properties and enumeration

A dictionary has a count property reporting the number of key–value pairs it con‐
tains, and an isEmpty property reporting whether that number is 0.

A dictionary has a keys property reporting all its keys, and a values property report‐
ing all its values. These are effectively opaque structs providing a specialized view of
the dictionary itself. You can’t assign one to a variable, or print it out, but you can
work with them as collections. For example, you can enumerate them with for...in
(though you should not expect them to arrive in any particular order, as a dictionary
is unordered):

var d = ["CA": "California", "NY": "New York"]
for s in d.keys {
 print(s) // NY, then CA
}

You can coerce them to an array:

244 | Chapter 4: Object Types

var d = ["CA": "California", "NY": "New York"]
var keys = Array(d.keys) // ["NY", "CA"]

You can sort them, filter them, or map them (yielding an array). You can take their
min or max. You can reduce them. You can compare keys of different dictionaries for
equality:

let d : [String:Int] = ["one":1, "two":2, "three":3]
let keysSorted = d.keys.sorted() // ["one", "three", "two"]
let arr = d.values.filter{$0 < 2} // [1]
let min = d.values.min() // Optional(1)
let sum = d.values.reduce(0, +) // 6
let ok = d.keys == ["one":1, "three":3, "two":2].keys // true

You can also enumerate a dictionary itself. Each iteration provides a key–value tuple
(again, arriving in no particular order, because a dictionary is unordered):

var d = ["CA": "California", "NY": "New York"]
for (abbrev, state) in d {
 print("\(abbrev) stands for \(state)")
}

The tuple members have labels key and value, so the preceding example can be
rewritten like this:

var d = ["CA": "California", "NY": "New York"]
for pair in d {
 print("\(pair.key) stands for \(pair.value)")
}

You can extract a dictionary’s entire contents at once as an array (of key–value tuples)
by coercing the dictionary to an array:

var d = ["CA": "California", "NY": "New York"]
let arr = Array(d)
// [(key: "NY", value: "New York"), (key: "CA", value: "California")]

When you apply filter to a dictionary, what you get is a dictionary. In addition,
there’s a mapValues method that yields a dictionary with its values changed according
to your map function. So, for example:

let d = ["CA": "California", "NY": "New York"]
let d2 = d.filter {$0.value > "New Jersey"}.mapValues{$0.uppercased()}
// ["NY": "NEW YORK"]

You can combine two dictionaries with the merging(_:uniquingKeysWith:) method
— or, if your reference to the first dictionary is mutable, you can call merge to modify
it directly. The second parameter is like the second parameter of init(_:uniquing-
KeysWith:), saying what the value should be in case the second dictionary has a key
matching an existing key in the first dictionary:

Collection Types | 245

let d1 = ["CA": "California", "NY": "New York"]
let d2 = ["MD": "Maryland", "NY": "New York"]
let d3 = d1.merging(d2){orig, _ in orig}
// ["MD": "Maryland", "NY": "New York", "CA": "California"]

Swift Dictionary and Objective-C NSDictionary
The Foundation framework dictionary type is NSDictionary, and Swift Dictionary is
bridged to it. The untyped API characterization of an NSDictionary will be [Any-
Hashable:Any] (AnyHashable is a type eraser, so that we can cope with the possibil‐
ity, legal in Objective-C, that the keys may be of different hashable types).

Like NSArray element types, NSDictionary key and value types can be marked in
Objective-C. The most common key type in a real-life Cocoa NSDictionary is
NSString, so you might well receive an NSDictionary as a [String:Any]. Specific typ‐
ing of an NSDictionary’s values is much rarer, because dictionaries that you pass to
and receive from Cocoa will very often have values of multiple types. It is not at all
surprising to have a dictionary whose keys are strings but whose values include a
string, a number, a color, and an array. For this reason, you will usually not cast down
the entire dictionary’s type; instead, you’ll work with the dictionary as having Any
values, and cast when fetching an individual value from the dictionary. Since the
value returned from subscripting a key is itself an Optional, you will typically unwrap
and cast the value as a standard single move.

Here’s an example. A Cocoa Notification object comes with a userInfo property. It is
an NSDictionary that might itself be nil, so the Swift API characterizes it as [Any-
Hashable:Any]?. Let’s say I’m expecting this dictionary to be present and to contain a
"progress" key whose value is an NSNumber containing a Double. My goal is to
extract that NSNumber and assign the Double that it contains to a property,
self.progress. Here’s one way to do that safely, using optional unwrapping and
optional casting (n is the Notification object):

let prog = n.userInfo?["progress"] as? Double
if prog != nil {
 self.progress = prog!
}

The variable prog is implicitly typed as an Optional wrapping a Double. The code is
safe, because if there is no userInfo dictionary, or if it doesn’t contain a "progress"
key, or if that key’s value isn’t a Double, nothing happens, and prog will be nil. I then
test prog to see whether it is nil; if it isn’t, I know that it’s safe to force-unwrap it, and
that the unwrapped value is the Double I’m after.

(In Chapter 5 I’ll describe another syntax for accomplishing the same goal, using con‐
ditional binding.)

246 | Chapter 4: Object Types

Conversely, here’s a typical example of creating a dictionary and handing it off to
Cocoa. This dictionary is a mixed bag: its values are a UIFont, a UIColor, and an
NSShadow. Its keys are all strings, which I obtain as constants from Cocoa. I form the
dictionary as a literal and pass it, all in one move, with no need to cast anything:

UINavigationBar.appearance().titleTextAttributes = [
 .font: UIFont(name: "ChalkboardSE-Bold", size: 20)!,
 .foregroundColor: UIColor.darkText,
 .shadow.: {
 let shad = NSShadow()
 shad.shadowOffset = CGSize(width:1.5,height:1.5)
 return shad
 }()
]

As with NSArray and NSMutableArray, if you want Cocoa to mutate a dictionary, you
must coerce to NSDictionary’s subclass NSMutableDictionary:

var d1 = ["NY":"New York", "CA":"California"]
let d2 = ["MD":"Maryland"]
let mutd1 = NSMutableDictionary(dictionary:d1)
mutd1.addEntries(from:d2)
d1 = mutd1 as! [String:String]
// d1 is now ["MD": "Maryland", "NY": "New York", "CA": "California"]

Set
A set (Set, a struct) is an unordered collection of unique objects. Its elements must be
all of one type; it has a count and an isEmpty property; it can be initialized from any
sequence; you can cycle through its elements with for...in (though the order of ele‐
ments is not guaranteed).

The uniqueness of set elements is implemented by constraining their type to be Hash‐
able (and hence Equatable), just like the keys of a dictionary, so that the hash values
can be used behind the scenes for rapid access. Checking whether a set contains a
given element, which you can do with the contains(_:) instance method, is very
efficient — far more efficient than doing the same thing with an array. Therefore, if
element uniqueness is acceptable (or desirable) and you don’t need indexing or a
guaranteed order, a set can be a much better choice of collection than an array.

The only problem is that making your own types conform to Hashable, so as to be
able to put them into sets, is an extremely daunting proposition — or it was, until
Swift 4.1 and 4.2 innovations made it nearly trivial. As long as your type’s properties
are themselves Hashable, all you have to do in most cases is adopt Hashable and let
the compiler do the rest. For example:

Collection Types | 247

struct Person : Hashable {
 let firstName: String
 let lastName: String
}

The mere declaration of Hashable adoption causes the compiler to make Person
actually hashable. Two Person objects are considered equal if their firstName and
lastName properties are equal; and Person has a hashValue (calculated in some sensi‐
ble way that you don’t need to know about) and is thus eligible to be an element of a
Set. I’ll talk more in Chapter 5 about the underlying mechanism, and what to do if
you don’t want some of your properties to be taken into account in determining
uniqueness.

There are no set literals in Swift, but you won’t need them because you can pass an
array literal where a set is expected. There is no syntactic sugar for expressing a set
type, but the Set struct is a generic, so you can express the type by explicitly specializ‐
ing the generic:

let set : Set<Int> = [1, 2, 3, 4, 5]

In that particular example, however, there was no real need to specialize the generic,
as the Int type can be inferred from the array.

It sometimes happens (more often than you might suppose) that you want to examine
one element of a set as a kind of sample. Order is meaningless, so it’s sufficient to
obtain any element, such as the first element. For this purpose, use the first instance
property; it returns an Optional, just in case the set is empty.

The distinctive feature of a set is the uniqueness of its objects. If an object is added to
a set and that object is already present, it isn’t added a second time. Conversion from
an array to a set and back to an array is thus a quick and reliable way of uniquing the
array — though of course order is not preserved:

let arr = [1,2,1,3,2,4,3,5]
let set = Set(arr)
let arr2 = Array(set) // [5, 2, 3, 1, 4], perhaps

A set is a Collection and a Sequence, so it is analogous to an array or a dictionary, and
what I have already said about those types generally applies to a set as well. For exam‐
ple, Set has a map(_:) instance method; it returns an array, but of course you can turn
that right back into a set if you need to:

let set : Set = [1,2,3,4,5]
let set2 = Set(set.map {$0+1}) // Set containing 2, 3, 4, 5, 6

On the other hand, applying filter to a Set yields a Set directly:

let set : Set = [1,2,3,4,5]
let set2 = set.filter {$0>3} // Set containing 4, 5

If the reference to a set is mutable, a number of instance methods spring to life.

248 | Chapter 4: Object Types

You can add an object with insert(_:); there is no penalty for trying to add an
object that’s already in the set (and you can learn what actually happened by captur‐
ing and examining the result of the call). Alternatively, call update(with:); the differ‐
ence is that if you’re trying to add an object that already has an equivalent in the set,
the former doesn’t insert the new object, but the latter replaces the old object with the
new one. For example, suppose a Dog struct has a name and a license property, but
two Dogs are considered equivalent if just their name is identical. Then:

var set : Set = [Dog(name:"Fido", license:1)]
let d = Dog(name:"Fido", license:2)
set.insert(d) // [Dog(name: "Fido", license: 1)]
set.update(with:d) // [Dog(name: "Fido", license: 2)]

You can remove an object and return it by specifying the object itself, or something
equatable to it, with the remove(_:) method; it returns the object wrapped in an
Optional, or nil if the object was not present. You can remove and return an arbi‐
trary object from the set with removeFirst; it crashes if the set is empty, so take pre‐
cautions — or use popFirst, which is safe.

Equality comparison (==) is defined for sets as you would expect; two sets are equal if
every element of each is also an element of the other.

If the notion of a set brings to your mind visions of Venn diagrams from elementary
school, that’s good, because sets have instance methods giving you all those set opera‐
tions you remember so fondly. The parameter can be a set, or it can be any sequence,
which will be converted to a set; for example, it might be an array, a range, or even a
character sequence:

intersection(_:), formIntersection(_:)
Yields the elements of this set that also appear in the parameter. The first forms a
new Set; the second is mutating.

union(_:), formUnion(_:)
Yields the elements of this set along with the (unique) elements of the parameter.
The first forms a new Set; the second is mutating.

symmetricDifference(_:), formSymmetricDifference(_:)
Yields the elements of this set that don’t appear in the parameter, plus the
(unique) elements of the parameter that don’t appear in this set. The first forms a
new Set; the second is mutating.

subtracting(_:), subtract(_:)
Yields the elements of this set except for those that appear in the parameter. The
first forms a new Set; the second is mutating.

Collection Types | 249

isSubset(of:), isStrictSubset(of:)
isSuperset(of:), isStrictSuperset(of:)

Returns a Bool reporting whether the elements of this set are respectively
embraced by or embrace the elements of the parameter. The “strict” variant yields
false if the two sets consist of the same elements.

isDisjoint(with:)

Returns a Bool reporting whether this set and the parameter have no elements in
common.

Here’s a real-life example of elegant Set usage from one of my apps. I have a lot of
numbered pictures, of which we are to choose one randomly. But I don’t want to
choose a picture that has recently been chosen. Therefore, I keep a list of the numbers
of all recently chosen pictures. When it’s time to choose a new picture, I convert the
list of all possible numbers to a Set, convert the list of recently chosen picture num‐
bers to a Set, and call subtracting(_:) to get a list of unused picture numbers! Now I
choose a picture number at random and add it to the list of recently chosen picture
numbers:

let ud = UserDefaults.standard
var recents = ud.object(forKey:Defaults.recents) as? [Int]
if recents == nil {
 recents = []
}
var forbiddenNumbers = Set(recents!)
let legalNumbers = Set(1...PIXCOUNT).subtracting(forbiddenNumbers)
let newNumber = legalNumbers.randomElement()!
forbiddenNumbers.insert(newNumber)
ud.set(Array(forbiddenNumbers), forKey:Defaults.recents)

Option sets
An option set (OptionSet struct) is Swift’s way of treating as a struct a certain type of
Cocoa enumeration. It is not, strictly speaking, a Set; but it is deliberately set-like,
sharing common features with Set through the SetAlgebra protocol. Thus, an option
set has contains(_:), insert(_:), and remove(_:) methods, along with all the vari‐
ous set operation methods.

The purpose of option sets is to help you grapple with Objective-C bitmasks. A bit‐
mask is an integer whose bits are used as switches when multiple options are to be
specified simultaneously. Such bitmasks are very common in Cocoa. In Objective-C,
bitmasks are manipulated through the arithmetic bitwise-or and bitwise-and opera‐
tors. Such manipulation can be mysterious and error-prone. But in Swift, thanks to
option sets, bitmasks can be manipulated easily through set operations instead.

250 | Chapter 4: Object Types

For example, when specifying how a UIView is to be animated, you are allowed to
pass an options: argument whose value comes from the UIView.AnimationOptions
enumeration, whose definition (in Objective-C) begins as follows:

typedef NS_OPTIONS(NSUInteger, UIViewAnimationOptions) {
 UIViewAnimationOptionLayoutSubviews = 1 << 0,
 UIViewAnimationOptionAllowUserInteraction = 1 << 1,
 UIViewAnimationOptionBeginFromCurrentState = 1 << 2,
 UIViewAnimationOptionRepeat = 1 << 3,
 UIViewAnimationOptionAutoreverse = 1 << 4,
 // ...
};

Pretend that an NSUInteger is 8 bits (it isn’t, but let’s keep things simple and short).
Then this enumeration means that (in Swift) the following name–value pairs are
defined:

UIView.AnimationOptions.layoutSubviews 0b00000001
UIView.AnimationOptions.allowUserInteraction 0b00000010
UIView.AnimationOptions.beginFromCurrentState 0b00000100
UIView.AnimationOptions.repeat 0b00001000
UIView.AnimationOptions.autoreverse 0b00010000

These values can be combined into a single value — a bitmask — that you pass as the
options: argument for your animation. All Cocoa has to do to understand your
intentions is to look to see which bits in the value that you pass are set to 1. So, for
example, 0b00011000 would mean that UIView.AnimationOptions.repeat and
UIView.AnimationOptions.autoreverse are both true (and that the others are all
false).

The question is how to form the value 0b00011000 in order to pass it. You could form
it directly as a literal and set the options: argument to UIView.Animation-
Options(rawValue:0b00011000); but that’s not a very good idea, because it’s error-
prone and makes your code incomprehensible. In Objective-C, you’d use the
arithmetic bitwise-or operator, analogous to this Swift code:

let val =
 UIView.AnimationOptions.autoreverse.rawValue |
 UIView.AnimationOptions.repeat.rawValue
let opts = UIView.AnimationOptions(rawValue: val)

That’s rather ugly! However, help is on the way: The UIView.AnimationOptions type
is an option set struct in Swift (because it is marked as NS_OPTIONS in Objective-C),
and therefore can be treated much like a Set. For example, given a UIView.Animation‐
Options value, you can add an option to it using insert(_:):

var opts = UIView.AnimationOptions.autoreverse
opts.insert(.repeat)

Alternatively, you can start with an array literal, just as if you were initializing a Set:

Collection Types | 251

let opts : UIView.AnimationOptions = [.autoreverse, .repeat]

To indicate that no options are to be set, pass an empty option set ([]) or, where
permitted, omit the options: parameter altogether.

The inverse situation is that Cocoa hands you a bitmask, and you want to know
whether a certain bit is set. In this example from a UITableViewCell subclass, the cell’s
state comes to us as a bitmask; we want to know about the bit indicating that the cell
is showing its edit control. The Objective-C way is to extract the raw values and use
the bitwise-and operator:

override func didTransition(to state: UITableViewCell.StateMask) {
 let editing = UITableViewCell.StateMask.showingEditControl.rawValue
 if state.rawValue & editing != 0 {
 // ... the ShowingEditControl bit is set ...
 }
}

That’s a tricky formula, all too easy to get wrong. But in Swift this is an option set, so
the contains(_:) method tells you the answer:

override func didTransition(to state: UITableViewCell.StateMask) {
 if state.contains(.showingEditControl) {
 // ... the ShowingEditControl bit is set ...
 }
}

Swift Set and Objective-C NSSet
Swift’s Set type is bridged to Objective-C NSSet. The untyped medium of interchange
is Set<AnyHashable>. Coming back from Objective-C, if Objective-C doesn’t know
what this is a set of, you would probably cast down as needed. As with NSArray, how‐
ever, NSSet can be marked up to indicate its element type, in which case no casting
will be necessary:

override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {
 let t = touches.first // an Optional wrapping a UITouch
 // ...
}

252 | Chapter 4: Object Types

CHAPTER 5

Flow Control and More

This chapter is a miscellany, presenting various remaining aspects of the Swift lan‐
guage. I’ll start by describing the syntax of Swift’s flow control constructs for branch‐
ing, looping, and jumping. Then I’ll summarize Swift’s privacy and introspection
features, and talk about how to override operators and how to create your own opera‐
tors. Next I’ll discuss some recently added Swift language features: synthesized proto‐
col implementations, key paths, and dynamic members. Finally, I’ll explain some
specialized aspects of Swift memory management.

Flow Control
A computer program has a path of execution through its code statements. Normally,
this path follows a simple rule: execute each statement in succession. But there is
another possibility. Flow control can be used to make the path of execution skip some
code statements, or go back and repeat some code statements. Flow control is what
makes a computer program “intelligent.” By testing the truth value of a condition —
an expression that evaluates to a Bool and is thus true or false — the program
decides at that moment how to proceed. Flow control based on testing a condition
may be divided into two general types:

Branching
The code is divided into alternative chunks, like roads that diverge in a wood,
and the program is presented with a choice of possible ways to go; the truth of a
condition is used to determine which chunk will actually be executed.

Looping
A chunk of code is marked off for possible repetition; the truth of a condition is
used to determine whether the chunk should be executed, and then whether it
should be executed again. Each repetition is called an iteration.

253

The chunks of code in flow control, which I refer to as blocks, are demarcated by curly
braces. These curly braces constitute a scope. New local variables can be declared
here, and go out of existence automatically when the path of execution exits the curly
braces (Chapter 3). For a loop, this means that local variables come into existence and
go out of existence on each iteration. As with any scope, code inside the curly braces
can see the surrounding higher scope (Chapter 1).

Swift flow control is fairly simple, and by and large is similar to flow control in C and
related languages. There are two fundamental syntactic differences between Swift and
C, both of which make Swift simpler and clearer:

• A condition does not have to be wrapped in parentheses in Swift.
• The curly braces can never be omitted in Swift.

Moreover, Swift adds some specialized flow control features to help you grapple more
conveniently with Optionals, and boasts a particularly powerful form of switch
statement.

Branching
Swift has two forms of branching: the if construct, and the switch statement. I’ll also
discuss conditional evaluation, a compact form of if construct.

If construct

The Swift branching construct with if is similar to C. Many examples of if constructs
have appeared already in this book. The construct may be formally summarized as
shown in Example 5-1.

Example 5-1. The Swift if construct

if condition {
 statements
}

if condition {
 statements
} else {
 statements
}

if condition {
 statements
} else if condition {
 statements
} else {
 statements
}

254 | Chapter 5: Flow Control and More

The third form, containing else if, can have as many else if blocks as needed, and
the final else block may be omitted.

Here’s a real-life if construct that lies at the heart of one of my apps:

// okay, we've tapped a tile; there are three cases
if self.selectedTile == nil { // no selected tile: select and play this tile
 self.select(tile:tile)
 self.play(tile:tile)
} else if self.selectedTile == tile { // selected tile tapped: deselect it
 self.deselectAll()
 self.player?.pause()
} else { // there was a selected tile, another tile was tapped: swap them
 self.swap(self.selectedTile, with:tile, check:true, fence:true)
}

Conditional binding

In Swift, if can be followed immediately by a variable declaration and assignment —
that is, by let or var and a new local variable name, possibly followed by a colon and
a type declaration, then an equal sign and a value, as follows:

if let var = val {

This syntax, called a conditional binding, is actually a shorthand for conditionally
unwrapping an Optional. The assigned value (val) is expected to be an Optional —
the compiler will stop you if it isn’t — and this is what happens:

• If the Optional (val) is nil, the condition fails and the block is not executed.
• If the Optional is not nil, then:

1. The Optional is unwrapped.
2. The unwrapped value is assigned to the declared local variable (var).
3. The block is executed with the local variable in scope.

Thus, a conditional binding is a convenient shorthand for safely passing an unwrap‐
ped Optional into a block. The Optional is unwrapped, and the block is executed,
only if the Optional can be unwrapped.

It is perfectly reasonable for the local variable in a conditional binding to have the
same name as an existing variable in the surrounding scope. It can even have the
same name as the Optional being unwrapped! There is then no need to make up a
new name, and inside the block the unwrapped value of the Optional overshadows
the original Optional, which thus cannot be accessed accidentally.

Here’s an example of a conditional binding. Recall this code from Chapter 4, where I
optionally unwrap a Notification’s userInfo dictionary, attempt to fetch a value from
the dictionary using the "progress" key, and proceed only if that value turns out to
be an NSNumber that can be cast down to a Double:

Flow Control | 255

let prog = n.userInfo?["progress"] as? Double
if prog != nil {
 self.progress = prog!
}

We can rewrite that code as a conditional binding:

if let prog = n.userInfo?["progress"] as? Double {
 self.progress = prog
}

It is also possible to nest conditional bindings. To illustrate, I’ll rewrite the previous
example to use a separate conditional binding for each Optional in the chain:

if let ui = n.userInfo {
 if let prog = ui["progress"] as? Double {
 self.progress = prog
 }
}

The result, if the chain involves many optional unwrappings, can be somewhat ver‐
bose and the nest can become deeply indented — Swift programmers like to call this
the “pyramid of doom”. To help avoid the indentation, successive conditional bind‐
ings can be combined into a condition list, with each condition separated by a comma:

if let ui = n.userInfo, let prog = ui["progress"] as? Double {
 self.progress = prog
}

In that code, the assignment to prog won’t even be attempted if the assignment to ui
fails (because n.userInfo is nil).

Condition lists do not have to consist solely of conditional bindings. They can
include ordinary conditions. The important thing is the left-to-right order of evalua‐
tion, which allows each condition to depend upon the previous one. Thus it would be
possible (though not as elegant) to rewrite the previous example like this:

if let ui = n.userInfo, let prog = ui["progress"], prog is Double {
 self.progress = prog as! Double
}

Nevertheless, I am not fond of this kind of extended condition list. I actually prefer
the pyramid of doom; I find it considerably more legible, because the structure
reflects perfectly the successive stages of testing. If I want to avoid the pyramid of
doom, I can use a sequence of guard statements (“Guard” on page 284):

guard let ui = n.userInfo else {return}
guard let prog = ui["progress"] as? Double else {return}
self.progress = prog

256 | Chapter 5: Flow Control and More

Switch statement

A switch statement is a neater way of writing an extended if...else if...else con‐
struct. In C (and Objective-C), a switch statement contains hidden traps; Swift elimi‐
nates those traps, and adds power and flexibility. As a result, switch statements are
commonly used in Swift (whereas they are relatively rare in my Objective-C code).

In a switch statement, the condition involves the comparison of different possible val‐
ues, called cases, against a single value, called the tag. The case comparisons are per‐
formed successively in order. As soon as a case comparison succeeds, that case’s code is
executed and the entire switch statement is exited. The schema is shown in
Example 5-2; there can be as many cases as needed, and the default case can be
omitted (subject to restrictions that I’ll explain in a moment).

Example 5-2. The Swift switch statement

switch tag {
case pattern1:
 statements
case pattern2:
 statements
default:
 statements
}

Here’s an actual example:

switch i {
case 1:
 print("You have 1 thingy!")
case 2:
 print("You have 2 thingies!")
default:
 print("You have \(i) thingies!")
}

In that code, a variable i functions as the tag. The value of i is first compared to the
value 1. If it is 1, that case’s code is executed and that’s all. If it is not 1, it is compared
to the value 2. If it is 2, that case’s code is executed and that’s all. If the value of i
matches neither of those, the default case’s code is executed.

In Swift, a switch statement must be exhaustive. This means that every possible value
of the tag must be covered by a case. The compiler will stop you if you try to violate
this rule. The rule makes intuitive sense when a value’s type allows only a limited
number of possibilities; the usual example is an enum, which itself has a small, fixed
set of cases as its possible values. But when, as in the preceding example, the tag is an
Int, there is an infinite number of possible individual cases. Thus, a “mop-up” case

Flow Control | 257

must appear, to mop up all the cases that you didn’t write explicitly. A common way
to write a “mop-up” case is to use a default case.

Each case’s code can consist of multiple lines; it doesn’t have to be a single line, as the
cases in the preceding example happen to be. However, it must consist of at least a
single line; it is illegal for a Swift switch case to be completely empty. It is legal for the
first (or only) line of a case’s code to appear on the same line as the case, after the
colon; thus, I could have written the preceding example like this:

switch i {
case 1: print("You have 1 thingy!")
case 2: print("You have 2 thingies!")
default: print("You have \(i) thingies!")
}

The minimum single line of case code is the keyword break; used in this way, break
acts as a placeholder meaning, “Do nothing.” It is very common for a switch state‐
ment to include a default (or other “mop-up” case) consisting of nothing but the
keyword break; in this way, you exhaust all possible values of the tag, but if the value
is one that no case explicitly covers, you do nothing.

Now let’s focus on the comparison between the tag value and the case value. In the
preceding example, it works like an equality comparison (==); but that isn’t the only
possibility. In Swift, a case value is actually a special expression called a pattern, and
the pattern is compared to the tag value using a “secret” pattern-matching operator,
~=. The more you know about the syntax for constructing a pattern, the more power‐
ful your case values and your switch statements will be.

A pattern can include an underscore (_) to absorb all values without using them. An
underscore case is thus an alternative form of “mop-up” case:

switch i {
case 1:
 print("You have 1 thingy!")
case _:
 print("You have many thingies!")
}

A pattern can include a declaration of a local variable name (an unconditional bind‐
ing) to absorb all values and use the actual value. This is another alternative form of
“mop-up” case:

switch i {
case 1:
 print("You have 1 thingy!")
case let n:
 print("You have \(n) thingies!")
}

258 | Chapter 5: Flow Control and More

When the tag is a Comparable, a case can include a Range; the test involves sending
the Range the contains message:

switch i {
case 1:
 print("You have 1 thingy!")
case 2...10:
 print("You have \(i) thingies!")
default:
 print("You have more thingies than I can count!")
}

When the tag is an Optional, a case can test it against nil. Moreover, appending ? to
a case pattern safely unwraps an Optional tag. Thus, if i is an Optional wrapping an
Int:

switch i {
case 1?:
 print("You have 1 thingy!")
case let n?:
 print("You have \(n) thingies!")
case nil: break
}

When the tag is a Bool, a case can test it against a condition. Thus, by a clever perver‐
sion, you can use the cases to test any conditions you like — by using true as the tag!
A switch statement thus becomes a genuine substitute for an extended if...else if
construct. In this example from my own code, I could have used if...else if, but
each case is just one line, so a switch statement seems clearer:

func position(for bar: UIBarPositioning) -> UIBarPosition {
 switch true {
 case bar === self.navbar: return .topAttached
 case bar === self.toolbar: return .bottom
 default: return .any
 }
}

A pattern can include a where clause adding a condition to limit the truth value of the
case. This is often, though not necessarily, used in combination with a binding; the
condition can refer to the variable declared in the binding:

switch i {
case let j where j < 0:
 print("i is negative")
case let j where j > 0:
 print("i is positive")
case 0:
 print("i is 0")
default:break
}

Flow Control | 259

That example, however, is rather silly, as the binding isn’t actually needed. A neater
approach here would be to use partial range syntax:

switch i {
case ..<0:
 print("i is negative")
case 1...:
 print("i is positive")
case 0:
 print("i is 0")
default:break
}

A pattern can include the is operator to test the tag’s type. In this example, we have a
Dog class and its NoisyDog subclass, and d is typed as Dog:

switch d {
case is NoisyDog:
 print("You have a noisy dog!")
case _:
 print("You have a dog.")
}

A pattern can include a cast with the as (not as?) operator. Typically, you’ll combine
this with a binding that declares a local variable; despite the use of unconditional as,
the value is conditionally cast and, if the cast succeeds, the local variable carries the
cast value into the case code. Again, d is typed as Dog; assume that Dog implements
bark and that NoisyDog implements beQuiet:

switch d {
case let nd as NoisyDog:
 nd.beQuiet()
case let d:
 d.bark()
}

You can also use as (not as?) to cast down the tag (and possibly unwrap it) condi‐
tionally as part of a test against a specific match. In this example, i might be an Any
or an Optional wrapping an Any:

switch i {
case 0 as Int:
 print("It is 0")
default:break
}

You can perform multiple tests at once by expressing the tag as a tuple and wrapping
the corresponding tests in a tuple. The case passes only if every test in the case tuple
succeeds against the corresponding member of the tag tuple. In this example, we start
with a dictionary d typed as [String:Any]. Using a tuple, we can safely attempt to
fetch and cast two values at once:

260 | Chapter 5: Flow Control and More

switch (d["size"], d["desc"]) {
case let (size as Int, desc as String):
 print("You have size \(size) and it is \(desc)")
default:break
}

When a tag is an enum, the cases can be cases of the enum. A switch statement is thus
an excellent way to handle an enum. Here’s the Filter enum from Chapter 4:

enum Filter {
 case albums
 case playlists
 case podcasts
 case books
}

And here’s a switch statement, where the tag, type, is a Filter; no mop-up is needed,
because I’ve exhausted the cases:

switch type {
case .albums:
 print("Albums")
case .playlists:
 print("Playlists")
case .podcasts:
 print("Podcasts")
case .books:
 print("Books")
}

A switch statement provides a way to extract an associated value from an enum case.
Recall this enum from Chapter 4:

enum MyError {
 case number(Int)
 case message(String)
 case fatal
}

To extract the error number from a MyError whose case is .number, or the message
string from a MyError whose case is .message, I can use a switch statement. Recall
that the associated value is actually a tuple. A tuple of patterns after the matched case
name is applied to the associated value. If a pattern is a binding variable, it captures
the associated value. The let (or var) can appear inside the parentheses or after the
case keyword; this code illustrates both alternatives:

switch err {
case .number(let theNumber):
 print("It is a number: \(theNumber)")
case let .message(theMessage):

Flow Control | 261

 print("It is a message: \(theMessage)")
case .fatal:
 print("It is fatal")
}

If the let (or var) appears after the case keyword, I can add a where clause:

switch err {
case let .number(n) where n > 0:
 print("It's a positive error number \(n)")
case let .number(n) where n < 0:
 print("It's a negative error number \(n)")
case .number(0):
 print("It's a zero error number")
default:break
}

If I don’t want to extract the error number but just want to match against it, I can use
some other pattern inside the parentheses:

switch err {
case .number(1...):
 print("It's a positive error number")
case .number(..<0):
 print("It's a negative error number")
case .number(0):
 print("It's a zero error number")
default:break
}

This same pattern also gives us yet another way to deal with an Optional tag. An
Optional, as I explained in Chapter 4, is in fact an enum. It has two cases, .none
and .some, where the wrapped value is the .some case’s associated value. But now we
know how to extract the associated value! Thus we can rewrite yet again the earlier
example where i is an Optional wrapping an Int:

switch i {
case .none: break
case .some(1):
 print("You have 1 thingy!")
case .some(let n):
 print("You have \(n) thingies!")
}

To combine switch case tests (with an implicit logical-or), separate them with a
comma:

switch i {
case 1,3,5,7,9:
 print("You have a small odd number of thingies.")
case 2,4,6,8,10:

262 | Chapter 5: Flow Control and More

 print("You have a small even number of thingies.")
default:
 print("You have too many thingies for me to count.")
}

In this example, i is declared as an Any:

switch i {
case is Int, is Double:
 print("It's some kind of number.")
default:
 print("I don't know what it is.")
}

A comma can even combine patterns that declare binding variables, provided they
declare the same variable of the same type (err is our MyError once again):

switch err {
case let .number(n) where n > 0, let .number(n) where n < 0:
 print("It's a nonzero error number \(n)")
case .number(0):
 print("It's a zero error number")
default:break
}

Another way of combining cases is to jump from one case to the next by using a
fallthrough statement. When a fallthrough statement is encountered, the current
case code is aborted immediately and the next case code runs unconditionally. The
test of the next case is not performed, so the next case can’t declare any binding vari‐
ables, because they would never be set. It is not uncommon for a case to consist
entirely of a fallthrough statement:

switch pep {
case "Manny": fallthrough
case "Moe": fallthrough
case "Jack":
 print("\(pep) is a Pep boy")
default:
 print("I don't know who \(pep) is")
}

If case
When all you want to do is extract an associated value from an enum, a full switch
statement may seem a bit heavy-handed. The lightweight if case construct lets you
use in a condition the same sort of pattern syntax you’d use in a case of a switch state‐
ment. The structural difference is that, whereas a switch case pattern is compared
against a previously stated tag, an if case pattern is followed by an equal sign and
then the tag.

Flow Control | 263

For example, this is another way to extract an associated value from an enum; err is
our MyError enum once again:

if case let .number(n) = err {
 print("The error number is \(n)")
}

The condition starting with case can be part of a longer comma-separated condition
list:

if case let .number(n) = err, n < 0 {
 print("The negative error number is \(n)")
}

Conditional evaluation
An interesting problem arises when you’d like to decide what value to use — for
example, what value to assign to a variable. This seems like a good use of a branching
construct. You can, of course, declare the variable first without initializing it, and
then set it from within a subsequent branching construct. It would be nice, however,
to use a branching construct as the variable’s value. Here, for example, I try (and fail)
to write a variable assignment where the equal sign is followed directly by a branch‐
ing construct:

let title = switch type { // compile error
case .albums:
 "Albums"
case .playlists:
 "Playlists"
case .podcasts:
 "Podcasts"
case .books:
 "Books"
}

There are languages that let you talk that way, but Swift is not one of them. However,
an easy workaround does exist — use a define-and-call anonymous function, as I sug‐
gested in Chapter 2:

let title : String = {
 switch type {
 case .albums:
 return "Albums"
 case .playlists:
 return "Playlists"
 case .podcasts:
 return "Podcasts"
 case .books:
 return "Books"
 }
}()

264 | Chapter 5: Flow Control and More

In the special case where a value can be decided by a two-pronged condition, Swift
provides the C ternary operator (?:). Its scheme is as follows:

condition ? exp1 : exp2

If the condition is true, the expression exp1 is evaluated and the result is used; other‐
wise, the expression exp2 is evaluated and the result is used. Thus, you can use the
ternary operator while performing an assignment, using this schema:

let myVariable = condition ? exp1 : exp2

What myVariable gets initialized to depends on the truth value of the condition. I use
the ternary operator heavily in my own code. Here’s an example:

cell.accessoryType =
 ix.row == self.currow ? .checkmark : .disclosureIndicator

The context needn’t be an assignment; here, we’re deciding what value to pass as a
function argument:

context.setFillColor(self.hilite ? purple.cgColor : beige.cgColor)

The ternary operator can also be used to determine the receiver of a message. In this
example, one of two UIViews will have its background color set:

(self.firstRed ? v1 : v2).backgroundColor = .red

In Objective-C, there’s a collapsed form of the ternary operator that allows you to test
a value against nil. If it is nil, you get to supply a substitute value. If it isn’t nil, the
tested value itself is used. In Swift, the analogous operation would involve testing an
Optional: if the tested Optional is nil, use the substitute value; if it isn’t nil, unwrap
the Optional and use the unwrapped value. Swift has such an operator — the ?? oper‐
ator (called the nil-coalescing operator).

Here’s a real-life example from my own code:

func tableView(_ tv: UITableView, numberOfRowsInSection sec: Int) -> Int {
 return self.titles?.count ?? 0
}

In that example, self.titles is of type [String]?. If it’s not nil, I want to unwrap
the array and return its count. But if it is nil, there is no data and thus no table to
display — but I must return some number, so clearly I want to return zero. The nil-
coalescing operator lets me express all that very neatly.

The nil-coalescing operator together with the Optional map(_:) method neatly solves
a class of problem where your goal is to process the wrapped value of an Optional or,
if it is nil, to assign some default value. For example, suppose our goal is to produce a
string expressing the index of target within arr if it is present, or "NOT FOUND" if it is
not:

Flow Control | 265

let arr = ["Manny", "Moe", "Jack"]
let target = // some string
let pos = arr.firstIndex(of:target)
let s = pos != nil ? String(pos!) : "NOT FOUND"

That works, but it’s ugly. Here’s a more elegant way:

let arr = ["Manny", "Moe", "Jack"]
let target = // some string
let s = arr.firstIndex(of:target).map {String($0)} ?? "NOT FOUND"

Expressions using ?? can be chained:

let someNumber = i1 as? Int ?? i2 as? Int ?? 0

That code tries to cast i1 to an Int and use that Int. If that fails, it tries to cast i2 to an
Int and use that Int. If that fails, it gives up and uses 0.

Loops
The usual purpose of a loop is to repeat a block of code with some simple difference
on each iteration. This difference will typically serve also as a signal for when to stop
the loop. Swift provides two basic loop structures: while loops and for loops.

While loops
A while loop comes in two forms, schematized in Example 5-3.

Example 5-3. The Swift while loop

while condition {
 statements
}

repeat {
 statements
} while condition

The chief difference between the two forms is the timing of the test. In the second
form, the condition is tested after the block has executed — meaning that the block
will be executed at least once.

Usually, the code inside the block will change something that alters the environment
and hence the value of the condition, thus eventually bringing the loop to an end.
Here’s a typical example from my own code (movenda is an array):

while self.movenda.count > 0 {
 let p = self.movenda.removeLast()
 // ...
}

266 | Chapter 5: Flow Control and More

Each iteration removes an element from movenda, so eventually its count, evaluated
in the condition, falls to 0 and the loop is no longer executed; execution then pro‐
ceeds to the next line after the closing curly braces.

In its first form, a while loop can involve a conditional binding of an Optional. This
provides a compact way of safely unwrapping an Optional and looping until the
Optional is nil; the local variable containing the unwrapped Optional is in scope
inside the curly braces. Thus, my code can be rewritten more compactly:

while let p = self.movenda.popLast() {
 // ...
}

There is no Swift repeat...until construct; instead, negate the condition. In my
own code, for example, I commonly need to walk my way up or down a hierarchy.
Here, textField is a subview, at some depth, of some table view cell, and I want to
know which table view cell it is a subview of. So I keep walking up the view hierarchy,
investigating each superview in turn, until either I reach a table view cell or I hit the
top of the view hierarchy:

var v : UIView? = textField
repeat {v = v?.superview} while !(v is UITableViewCell || v == nil)
if let c = v as? UITableViewCell {
 // ... if we get here, c is the cell
}

Similar to the if case construct, while case lets you use a switch case pattern. In
this rather artificial example, we have an array of various MyError enums:

let arr : [MyError] = [
 .message("ouch"), .message("yipes"), .number(10), .number(-1), .fatal
]

We can extract the .message associated string values from the start of the array, like
this:

var i = 0
while case let .message(message) = arr[i] {
 print(message) // "ouch", then "yipes"; then the loop stops
 i += 1
}

For loops
The Swift for loop is schematized in Example 5-4.

Example 5-4. The Swift for loop

for variable in sequence {
 statements
}

Flow Control | 267

The for...in construct that forms the basis of Swift’s for loop is similar to Objective-
C’s for...in construct. In Objective-C, this syntax is available whenever a class con‐
forms to the NSFastEnumeration protocol. In Swift, it is available whenever a type
adopts the Sequence protocol.

In the for...in construct, the variable is implicitly declared with let on each itera‐
tion; it is thus immutable by default. If you need to assign to the variable within the
block, write for var. The variable is also local to the block. On each iteration, a suc‐
cessive element of the sequence is used to initialize the variable, which is then in
scope inside the block.

A common use of for loops is to iterate through successive numbers. This is easy in
Swift, because you can readily create a sequence of numbers on the fly — a Range:

for i in 1...5 {
 print(i) // 1, 2, 3, 4, 5
}

Under the hood, a Sequence has a makeIterator method which yields an iterator
object adopting IteratorProtocol. According to this protocol, the iterator has a mutat‐
ing next method that returns the next object in the sequence wrapped in an Optional,
or nil if there is no next object. Thus, for...in is actually a kind of while loop:

var g = (1...5).makeIterator()
while let i = g.next() {
 print(i) // 1, 2, 3, 4, 5
}

Sometimes you may find that writing out the while loop explicitly in that way makes
the loop easier to control and to customize.

The sequence will often be an existing value. It might be a string, in which case the
variable values are the successive characters. It might be an array, in which case the
variable values are the successive elements. It might be a dictionary, in which case the
variable values are key–value tuples (in no particular order). Many examples have
already appeared in earlier chapters.

As I explained in Chapter 4, you may encounter an array coming from Objective-C
whose elements will need to be cast down from Any. If your goal is to iterate through
that array, you can cast down as part of the sequence specification:

let p = Pep()
// p.boys() is an array of Any, unfortunately
for boy in p.boys() as! [String] {
 // ...
}

The sequence enumerated method yields a succession of tuples in which each element
of the original sequence is preceded by its index number. In this example from my

268 | Chapter 5: Flow Control and More

real code, tiles is an array of UIViews and centers is an array (with the same
length) of CGPoints saying where those views are to be positioned:

for (i,v) in self.tiles.enumerated() {
 v.center = self.centers[i]
}

A for...in construct can take a where clause, allowing you to skip some values of
the sequence:

for i in 0...10 where i % 2 == 0 {
 print(i) // 0, 2, 4, 6, 8, 10
}

Like if case and while case, there’s also for case, permitting a switch case pattern
to be used a for loop. The tag is each successive value of the sequence, so no assign‐
ment operator is used. To illustrate, let’s start again with an array of MyError enums:

let arr : [MyError] = [
 .message("ouch"), .message("yipes"), .number(10), .number(-1), .fatal
]

Here we cycle through the whole array, extracting only the .number associated values:

for case let .number(i) in arr {
 print(i) // 10, -1
}

Another common use of for case is to cast down conditionally, picking out only
those members of the sequence that can be cast down safely. For example, let’s say I
want to hide all subviews that happen to be buttons:

for case let b as UIButton in self.boardView.subviews {
 b.isHidden = true
}

A sequence also has instance methods, such as map(_:), filter(_:), and reversed;
you can apply these to hone the sequence through which we will cycle. In this exam‐
ple, I count backward by even numbers:

let range = (0...10).reversed().filter{$0 % 2 == 0}
for i in range {
 print(i) // 10, 8, 6, 4, 2, 0
}

Yet another approach is to generate the sequence by calling either
stride(from:through:by) or stride(from:to:by:). These are global functions
applicable to adopters of the Strideable protocol, such as numeric types and anything
else that can be incremented and decremented. Which form you use depends on
whether you want the sequence to include the final value. The by: argument can be
negative:

Flow Control | 269

for i in stride(from: 10, through: 0, by: -2) {
 print(i) // 10, 8, 6, 4, 2, 0
}

For maximum flexibility, you can use the global sequence function to generate your
sequence by rule. It takes two parameters — an initial value, and a generation func‐
tion that returns the next value based on what has gone before. In theory, the
sequence generated by the sequence function can be infinite in length — though this
is not a problem, because the resulting sequence is “lazy,” meaning that an element
isn’t generated until you ask for it. In reality, you’ll use one of two techniques to limit
the result. The generation function can limit the sequence by returning nil to signal
that the end has been reached:

let seq = sequence(first:1) {$0 >= 10 ? nil : $0 + 1}
for i in seq {
 print(i) // 1,2,3,4,5,6,7,8,9,10
}

Alternatively you can request just a piece of the infinite sequence — for example, by
cycling through the sequence for a while and then stopping, or by taking a finite
prefix:

let seq = sequence(first:1) {$0 + 1}
for i in seq.prefix(5) {
 print(i) // 1,2,3,4,5
}

The sequence function comes in two forms. The first form, sequence(first:next:),
initially hands first into the next: function and subsequently hands the previous
result of the next: function into the next: function, as illustrated in the preceding
examples. The second form, sequence(state:next:), is more general: it repeatedly
hands state into the next: function as an inout parameter; the next: function is
expected to set that parameter, using it as a scratchpad, in addition to returning the
next value in the sequence. An obvious illustration is the Fibonacci sequence:

let fib = sequence(state:(0,1)) { (pair: inout (Int,Int)) -> Int in
 let n = pair.0 + pair.1
 pair = (pair.1,n)
 return n
}
for i in fib.prefix(10) {
 print(i) // 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
}

270 | Chapter 5: Flow Control and More

Any sequence can be made “lazy” by asking for its lazy property. This can be a
source of efficiency if you’re going to be looping through the sequence (explicitly
or implicitly) and potentially shortcircuiting the loop; there’s no point generating
more elements of the sequence than the loop will actually process, and that is
what lazy prevents. Importantly, laziness propagates through a chain of
sequence operations. I’ll give an example in the next section.

Jumping
Although branching and looping constitute the bulk of the decision-making flow of
code execution, sometimes even they are insufficient to express the logic of what
needs to happen next. It can be useful, instead, to interrupt your code’s progress com‐
pletely and jump to a different place within it.

The most general way to jump from anywhere to anywhere is the goto command,
common in early programming languages but now notoriously “considered harmful.”
Swift doesn’t have a goto command, but it does provide a repertory of controlled
ways of jumping, which will, in practice, cover any real-life situation. Swift’s modes of
jumping are all forms of early exit from the current flow of code.

The return statement may itself be considered a form of early exit. One function calls
another, which may call another, and so on, forming a call stack. When a return
statement is encountered, execution of this function is aborted immediately and the
path of execution jumps to the point at which the call was made in the function one
level up the call stack.

Shortcircuiting and labels
Swift has several ways of shortcircuiting the flow of branch and loop constructs:

fallthrough

A fallthrough statement in a switch case aborts execution of the current case
code and immediately begins executing the code of the next case. There must be a
next case or the compiler will stop you.

continue

A continue statement in a loop construct aborts execution of the current itera‐
tion and proceeds to the next iteration:

• In a while loop, continue means to perform immediately the conditional
test.

• In a for loop, continue means to proceed immediately to the next iteration if
there is one.

break

A break statement aborts the current construct:

Flow Control | 271

• In a loop, break aborts the loop completely.
• In a switch case, break aborts the entire switch construct.

When constructs are nested, you may need to specify which construct you want to
continue or break. Therefore, Swift permits you to put a label before the start of an if
construct, a switch statement, a while loop, or a for loop (or a do block, which I’ll
describe later). The label is an arbitrary name followed by a colon. You can then use
that label name in a continue or break statement within the labeled construct at any
depth, to specify that this is the construct you are referring to.

For example, here’s a simple struct for generating prime numbers:

struct Primes {
 static var primes = [2]
 static func appendNextPrime() {
 next: for i in (primes.last!+1)... {
 let sqrt = Int(Double(i).squareRoot())
 for prime in primes.lazy.prefix(while:{$0 <= sqrt}) {
 if i % prime == 0 {
 continue next
 }
 }
 primes.append(i)
 return
 }
 }
}

The algorithm is crude — it could be optimized further — but it’s effective and
straightforward. The struct maintains a list of the primes we’ve found so far, and
appendNextPrime basically just looks at each successive larger integer i to see
whether any of the primes we’ve already found (prime) divides it. If so, i is not a
prime, so we want to go on to the next i. But if we merely say continue, we’ll jump to
the next prime, not to the next i. The label solves the problem.

(As promised, that example also demonstrates lazy. We want to keep
prefix(while:_) from working harder than it has to; there’s no point extracting all
the primes less than the square root of i in advance, because the loop might be short‐
circuited. So we make primes lazy, which makes prefix(while:_) lazy, and so a
prime is tested against $0 <= sqrt only if it has to be.)

Throwing and catching errors
Sometimes a situation arises where further coherent progress is impossible: the entire
operation in which we are engaged has failed. It can then be desirable to abort the
current scope, and possibly the current function, and possibly even the function that

272 | Chapter 5: Flow Control and More

called it, and so on, exiting to some point where we can acknowledge this failure and
proceed in good order in some other way.

For this purpose, Swift provides a mechanism for throwing and catching errors. In
keeping with its usual insistence on safety and clarity, Swift imposes certain strict
conditions on the use of this mechanism, and the compiler will ensure that you
adhere to them.

An error, in this sense, is a kind of message, presumably indicating what went wrong.
This message is passed up the nest of scopes and function calls as part of the error-
handling process, and the code that recovers from the failure can, if desired, read the
message and determine how to proceed.

In Swift, an error must be an object of a type that adopts the Error protocol, which
has just two requirements: a String _domain property and an Int _code property. The
purpose of those properties is to help errors cross the bridge between Swift and
Objective-C; in real life, you will be unaware of them (and in fact you won’t even see
them listed in the Swift header). The object will be one of the following:

A Swift type that adopts Error
As soon as a Swift type formally declares adoption of the Error protocol, it is
ready to be used as an error object; the protocol requirements are magically ful‐
filled for you, behind the scenes. Typically, this type will be an enum, which will
communicate its message by means of its cases: different cases will distinguish
different kinds of possible failure, perhaps with raw values or associated types to
carry further information.

NSError
NSError is Cocoa’s class for communicating the nature of a problem; Swift
extends NSError to adopt Error and bridges them to one another. If your call to a
Cocoa method generates a failure, Cocoa will send you an NSError instance
typed as an Error.

There are two stages of the error mechanism to consider — throwing an error, and
catching an error:

• Throwing an error aborts the current path of execution and hands an error object
to the error mechanism.

• Catching an error receives that error object from the error mechanism and
responds in good order, with the path of execution resuming after the point of
catching. In effect, we have jumped from the throwing point to the catching
point.

To throw an error, use the keyword throw followed by an error object. That’s all it
takes! The current block of code is immediately aborted, and the error mechanism
takes over. However, to ensure that the throw command is used coherently, Swift

Flow Control | 273

imposes a rule that you can say throw only in a context where the error will be caught.
What is such a context?

The primary context for throwing and catching an error is the do...catch construct.
This consists of a do block and one or more catch blocks. It is legal to throw in the do
block; an accompanying catch block can then be fed any errors thrown from within
the do block. The do...catch construct’s schema looks like Example 5-5.

Example 5-5. The Swift do...catch construct

do {
 statements // a throw can happen here
} catch errortype {
 statements
} catch {
 statements
}

A single do block can be accompanied by multiple catch blocks. Catch blocks are like
the cases of a switch statement, and will usually have the same logic: first, you might
have specialized catch blocks, each of which is designed to handle some limited set of
possible errors; finally, you might have a general catch block that acts as the default,
mopping up any errors that were not caught by any of the specialized catch blocks.

In fact, the syntax used by a catch block to specify what sorts of error it catches is the
pattern syntax used by a case in a switch statement! Imagine that this is a switch state‐
ment, and that the tag is the error object. Then the matching of that error object to a
particular catch block is performed just as if you had written case instead of catch.
Typically, when the Error is an enum, a specialized catch block will state at least the
enum that it catches, and possibly also the case of that enum; it can have a binding, to
capture the enum or its associated type; and it can have a where clause to limit the
possibilities still further.

To illustrate, I’ll start by defining a couple of errors:

enum MyFirstError : Error {
 case firstMinorMistake
 case firstMajorMistake
 case firstFatalMistake
}
enum MySecondError : Error {
 case secondMinorMistake(i:Int)
 case secondMajorMistake(s:String)
 case secondFatalMistake
}

And here’s a do...catch construct designed to demonstrate some of the different
ways we can catch different errors in different catch blocks:

274 | Chapter 5: Flow Control and More

do {
 // throw can happen here
} catch MyFirstError.firstMinorMistake {
 // catches MyFirstError.firstMinorMistake
} catch let err as MyFirstError {
 // catches all other cases of MyFirstError
} catch MySecondError.secondMinorMistake(let i) where i < 0 {
 // catches e.g. MySecondError.secondMinorMistake(i:-3)
} catch {
 // catches everything else
}

Now let’s talk about how the error object makes its way into each of the catch blocks:

• In a catch block with an accompanying pattern, it is up to you to capture in the
pattern any desired information about the error. For example, if you want the
error itself to travel as a variable into the catch block, you’ll need a binding in the
pattern.

• A catch block whose pattern is only a binding catches any error under that name;
for example, catch let mistake is a “mop-up” catch block that catches any
error and calls the error object mistake.

• In a “mop-up” catch block with no accompanying pattern (that is, the bare word
catch and no more), the error object arrives into the block automatically as a
variable called error.

Let’s look again at the previous example, but this time we’ll note whether and how the
error object arrives into each catch block:

do {
 // throw can happen here
} catch MyFirstError.firstMinorMistake {
 // no error object, but we know it's MyFirstError.firstMinorMistake
} catch let err as MyFirstError {
 // MyFirstError arrives as err
} catch MySecondError.secondMinorMistake(let i) where i < 0 {
 // only i arrives, but we know it's MySecondError.secondMinorMistake
} catch {
 // error object arrives as error
}

The do block of a do...catch construct is not the only place where throwing is legal.
There is another such place, because there’s something else that can happen to a
thrown error; instead of being caught directly, it can percolate up the call stack, leav‐
ing the current function and arriving at the point where this function was called. In
this situation, the error won’t be caught here, at the point of throwing; it needs to be
caught further up the call stack. Moreover, suppose a do...catch construct lacks a
“mop-up” catch block. Then a throw inside the do block might not be caught here,

Flow Control | 275

and again, the error will percolate up the call stack, and needs to be caught further up
the call stack.

We therefore need a way to say to the compiler: “Look, I understand that it looks like
this throw is not happening in a context where it will be caught, but that’s only
because you’re not looking far enough up the call stack. If you do look up far enough,
you’ll see that a throw at this point is eventually caught.” That way is the throws
keyword in a function declaration.

If you mark a function with the throws keyword, then its entire body becomes a legal
place for throwing. The syntax for declaring a throws function is that the keyword
throws appears immediately after the parameter list (and before the arrow operator, if
there is one). For example:

enum NotLongEnough : Error {
 case iSaidLongIMeantLong
}
func giveMeALongString(_ s:String) throws {
 if s.count < 5 {
 throw NotLongEnough.iSaidLongIMeantLong
 }
 print("thanks for the string")
}

The addition of throws to a function declaration creates a distinct function type. The
type of giveMeALongString is not (String) -> (), but rather (String) throws ->
(). If a function receives as parameter a function that can throw, that parameter’s type
needs to be specified accordingly:

func receiveThrower(_ f:(String) throws -> ()) {
 // ...
}

That function can now be called with giveMeALongString as argument:

func callReceiveThrower() {
 receiveThrower(giveMeALongString)
}

An anonymous function, if necessary, can include the keyword throws in its in
expression, in the same place where it would appear in a normal function declaration.
But this is not necessary if, as is usually the case, the anonymous function’s type is
known by inference:

func receiveThrower(_ f:(String) throws -> ()) {
 // ...
}
func callReceiveThrower() {
 receiveThrower {
 s in // can say "s throws in", but not required
 if s.count < 5 {

276 | Chapter 5: Flow Control and More

 throw NotLongEnough.iSaidLongIMeantLong
 }
 print("thanks for the string")
 }
}

Swift also imposes a requirement on the caller of a throws function: the caller must
precede the call with the keyword try. This keyword acknowledges, to the program‐
mer and to the compiler, that this function can throw. But since this function can
throw, there is a further requirement: this call must take place where throwing is
legal! A function called with try can throw, so saying try is just like saying throw:
you must say it either in the do block of a do...catch construct or in the body of a
throws function.

But Swift also provides a clever shorthand. If you are very sure that a throws function
will in fact not throw, then you can call it with the keyword try! instead of try. This
relieves you of all further responsibility: you can say try! anywhere, without catching
the possible throw. But be warned: if you’re wrong, and this function does throw
when your program runs, your program can crash at that moment, because you have
allowed an error to percolate, uncaught, all the way up to the top of the call stack.

In between try and try! is try?. This has the advantage that, like try!, you can use it
anywhere; but, like a do...catch construct, it catches the throw if there is one,
without crashing. If there’s a throw, you don’t receive any error information, as you
would with a do...catch construct; but try? tells you if there was a throw, by return‐
ing nil. Thus, try? is useful particularly in situations where its expression returns a
value. If there’s a throw, it returns nil. If there’s no throw, it wraps the returned value
in an Optional. Commonly, you’ll unwrap that Optional safely in the same line with a
conditional binding.

To illustrate, here’s an artificial test method that can either throw or return a String:

func canThrowOrReturnString(shouldThrow:Bool) throws -> String {
 enum Whoops : Error {
 case oops
 }
 if shouldThrow {
 throw Whoops.oops
 }
 return "Howdy"
}

We can call that method with try inside a do...catch construct:

Flow Control | 277

Rethrows
A function that receives a throws function parameter, and that calls that function
(with try), and that doesn’t throw for any other reason, may itself be marked as
rethrows instead of throws. The difference is that when a rethrows function is called,
the caller can pass as argument a function that does not throw, and in that case the
call doesn’t have to be marked with try (and the calling function doesn’t have to be
marked with throws):

func receiveThrower(_ f:(String) throws -> ()) rethrows {
 try f("ok?")
}
func callReceiveThrower() { // no throws needed
 receiveThrower { s in // no try needed
 print("thanks for the string!")
 }
}

do {
 let s = try self.canThrowOrReturnString(shouldThrow: true)
 print(s)
} catch {
 print(error)
}

At the other extreme, we can call that method with try! anywhere, but if the method
throws, we’ll crash:

let s = try! self.canThrowOrReturnString(shouldThrow: false)
print(s)

In between, we can call our method with try? anywhere. If the method doesn’t throw,
we’ll receive a String wrapped in an Optional; if it does throw, we won’t crash and
we’ll receive nil (but no error information):

if let s = try? self.canThrowOrReturnString(shouldThrow: true) {
 print(s)
} else {
 print("failed")
}

Even if your own code never uses the keyword throw explicitly, you’re still very likely,
in real life, to call Cocoa methods that are marked with throws. Therefore, you need
to know how Swift’s error mechanism relates to Cocoa and Objective-C. Recall that
an Objective-C method can return only one value (there are no tuples). So if a Cocoa
method that returns a value has a failure and wants to hand back an NSError, how
can it do it? Typically, such a method will return nil or false to indicate failure, and
will also take an NSError** parameter as a way of communicating an error to the

278 | Chapter 5: Flow Control and More

caller in addition to the method result; the NSError** parameter is similar to a Swift
inout parameter.

For example, NSString has an initializer declared in Objective-C like this:

- (instancetype)initWithContentsOfFile:(NSString *)path
 encoding:(NSStringEncoding)enc
 error:(NSError **)error;

Objective-C code that calls that initializer must test to see whether the resulting
NSString is in fact nil, and can examine the resulting error if it is:

NSError* err;
NSString* s =
 [[NSString alloc] initWithContentsOfFile:f
 encoding:NSUTF8StringEncoding
 error:&err];
if (s == nil) {
 NSLog(@"%@", err);
}

As you can see, the whole procedure is a lot like using a Swift inout parameter. An
NSError variable must be prepared beforehand, and its address must be passed to the
initializer as the error: argument. Then we have to test the initializer’s result for nil
explicitly, to see whether the initialization succeeded. This is an annoyingly elaborate
but necessary dance in Objective-C, and in Swift, prior to Swift 2.0, the dance was
effectively the same.

In modern Swift, however, there’s a different dance — a much simpler, more pleasant
one. Such an Objective-C method is automatically recast to take advantage of the
error mechanism. The error: parameter is stripped from the Swift translation of the
declaration, and is replaced by a throws marker:

init(contentsOfFile path: String, encoding enc: String.Encoding) throws

Thus there is no need to declare an NSError variable beforehand, and no need to
receive the NSError by indirection. Instead, you just call the method, within the con‐
trolled conditions dictated by Swift. (I’ll show an example in a moment.) The same
method bridging works also in reverse: a Swift throws method that is exposed to
Objective-C is seen as taking an NSError** parameter.

Objective-C NSError and Swift Error are bridged to one another. Swift helps you
cross the bridge by giving Error a localizedDescription property, allowing you to
read NSError’s localizedDescription. Moreover, you can catch a specific NSError
by its name. The name you’ll use is the NSError domain, and optionally (with dot-
notation) the Cocoa name of its code.

For example, let’s say we call init(contentsOfFile:) and we want specifically to
catch the error thrown when there is no such file. This NSError’s domain, according

Flow Control | 279

to Cocoa, is "NSCocoaErrorDomain"; Swift sees that as CocoaError. Its code is 260, for
which Cocoa provides the name NSFileReadNoSuchFileError (I found that out by
looking in the FoundationErrors.h header file in Objective-C); Swift sees that as .file-
ReadNoSuchFile. Thus we can catch this specific error under the name Cocoa-
Error.fileReadNoSuchFile, like this:

do {
 let f = // path to some file, maybe
 let s = try String(contentsOfFile: f)
 // ... if successful, do something with s ...
} catch CocoaError.fileReadNoSuchFile {
 print("no such file")
} catch {
 print(error)
}

Objective-C sees a Swift error coherently as well. By default, it receives a Swift error
as an NSError whose domain is the name of the Swift object type. If the Swift object
type is an enum, the NSError’s code is the index number of its case; otherwise, the
code is 1. When you want to provide Objective-C with a fuller complement of infor‐
mation, make your error type adopt one or both of these protocols:

LocalizedError
Adopts Error, adding three optional properties: errorDescription (NSError
localizedDescription), failureReason (NSError localizedFailureReason),
and recoverySuggestion (NSError localizedRecoverySuggestion). Observe
that these are String? properties; declaring them as simple String rather than
Optional fails to communicate the information to Objective-C, and is a common
mistake.

CustomNSError
Adopts Error, adding three properties with default implementations: error-
Domain, errorCode, and errorUserInfo, which Objective-C will see as the
NSError’s domain, code, and userInfo.

Nested scopes
Sometimes, when you know that a local variable needs to exist only for a few lines of
code, you might like to define an artificial scope — a custom nested scope, at the start
of which you can introduce your local variable, and at the end of which that variable
will be permitted to go out of scope, destroying its value automatically.

Swift does not permit you to use bare curly braces to do this. Instead, use a bare do
construct without a catch:

280 | Chapter 5: Flow Control and More

Failable Initializer or Throwing Initializer?
An initializer can throw — that is, the initializer’s declaration is marked throws. So in
designing an initializer, when should you prefer a failable initializer (init?) and when
should you prefer a throwing initializer (init...throws)? No hard and fast rule can
be given. Both in the Swift header and in the Swift Foundation overlay, init? vastly
outnumbers init...throws. In general, init? implies simple failure to create an
instance, whereas throws implies that there is useful information to be gleaned by
studying the error. (At least one initializer in the Swift Foundation overlay is both,
though that might be a mistake.)

do {
 var myVar = "howdy"
 // ... use myVar here ...
}
// now myVar is out of scope and its value is destroyed

Another use of a do block is to implement the simplest form of early exit. The do
block gives you a scope to jump out of; by labeling the do block and breaking to that
label, you can jump out of it:

out: do {
 // ...
 if somethingBadHappened {
 break out
 }
 // we won't get here if somethingBadHappened
}
// jump to here if somethingBadHappened

Defer statement
The purpose of the defer statement is to ensure that a certain block of code will be
executed at the time the path of execution exits the current scope, no matter how.

A defer statement applies to the scope in which it appears, such as a function body, a
while block, an if construct, a do block, and so on. Wherever you say defer, curly
braces surround it somehow; the defer block will be executed when the path of execu‐
tion leaves those curly braces. Leaving the curly braces can involve reaching the last
line of code within the curly braces, or any of the forms of early exit described earlier
in this section.

To see why this is useful, consider the following pair of commands:

UIApplication.shared.beginIgnoringInteractionEvents()

Stops all user touches from reaching any view of the application.

Flow Control | 281

UIApplication.shared.endIgnoringInteractionEvents()

Restores the ability of user touches to reach views of the application.

It can be valuable to turn off user interactions at the start of some slightly time-
consuming operation and then turn them back on after that operation, especially
when, during the operation, the interface or the app’s logic will be in some state where
the user’s tapping a button, say, could cause things to go awry. Thus, it is not uncom‐
mon for a method to be constructed like this:

func doSomethingTimeConsuming() {
 UIApplication.shared.beginIgnoringInteractionEvents()
 // ... do stuff ...
 UIApplication.shared.endIgnoringInteractionEvents()
}

All well and good — if we can guarantee that the only path of execution out of this
function will be by way of that last line. But what if we need to return early from this
function? Our code now looks like this:

func doSomethingTimeConsuming() {
 UIApplication.shared.beginIgnoringInteractionEvents()
 // ... do stuff ...
 if somethingHappened {
 return
 }
 // ... do more stuff ...
 UIApplication.shared.endIgnoringInteractionEvents()
}

Oops! We’ve just made a terrible mistake. By providing an additional path out of our
doSomethingTimeConsuming function, we’ve created the possibility that our code
might never encounter the call to endIgnoringInteractionEvents. We might leave
our function by way of the return statement — and the user will then be left unable
to interact with the interface. Obviously, we need to add another endIgnoring... call
inside the if construct, just before the return statement. But as we continue to
develop our code, we must remember, if we add further ways out of this function, to
add yet another endIgnoring... call for each of them. This is madness!

The defer statement solves the problem. It lets us specify once what should happen
when we leave this scope, no matter how. Our code now looks like this:

func doSomethingTimeConsuming() {
 defer {
 UIApplication.shared.endIgnoringInteractionEvents()
 }
 UIApplication.shared.beginIgnoringInteractionEvents()
 // ... do stuff ...
 if somethingHappened {

282 | Chapter 5: Flow Control and More

 return
 }
 // ... do more stuff ...
}

The endIgnoring... call in the defer block will be executed, not where it appears, but
before the return statement, or before the last line of the method — whichever path
of execution ends up leaving the function. The defer statement says: “Eventually, and
as late as possible, be sure to execute this code.” We have thus ensured the necessary
balance between turning off user interactions and turning them back on again. Most
uses of the defer statement will probably come under this same rubric: you’ll use it to
balance a command or restore a disturbed state.

Observe that in the preceding code, I placed the defer statement very early in its sur‐
rounding scope. This placement is important because a defer statement is itself, as a
whole, executable code. If a defer statement is not actually encountered by the path of
execution before we exit from the surrounding scope, its block won’t be executed. For
this reason, always place your defer statement as close to the start of its surrounding
block as you can, to ensure that it will in fact be encountered.

If the current scope has multiple defer blocks pending, they will be called in the
reverse of the order in which they were originally encountered. In effect, there is a
defer stack; each successive defer statement, as it is encountered, pushes its code onto
the top of the stack, and exiting the scope in which a defer statement appeared pops
that code and executes it.

Aborting the whole program
Aborting the whole program is an extreme form of flow control; the program stops
dead in its tracks. In effect, you have deliberately crashed your own program. This is
an unusual thing to do, but it can be useful as a way of raising a very red flag: you
don’t really want to abort, so if you do abort, things must be so bad that you’ve no
choice.

One way to abort is by calling the global function fatalError. It takes a String
parameter permitting you to provide a message to appear in the console. I’ve already
given this example:

required init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
}

That code says, in effect, that execution should never reach this point. We have
declared init(coder:) just because it is required, and we need to satisfy the com‐
piler; but we have no real implementation of init(coder:), and we do not expect to
be initialized this way. If we are initialized this way, something has gone very wrong,
and we want to crash, because our program has a serious bug.

Flow Control | 283

An initializer containing a fatalError call does not have to initialize any properties.
This is because fatalError is declared as returning the special Never enum type,
which causes the compiler to abandon any contextual requirements. Similarly, a func‐
tion that returns a value does not have to return any value if a fatalError call is
encountered.

You can also abort conditionally by calling the assert function. Its first parameter is
a condition — something that evaluates as a Bool. If the condition is false, we will
abort; the second parameter is a String message to appear in the console if we do
abort. The idea here is that you are making a bet (an assertion) that the condition is
true — a bet that you feel so strongly about that if the condition is false, there’s a
serious bug in your program and you want to crash so you can learn of this bug and
fix it.

By default, assert works only when you’re developing your program. When your
program is to be finalized and made public, you throw a different build switch, telling
the compiler that assert should be ignored. In effect, the conditions in your assert
calls are then disregarded; they are all seen as true. This means that you can safely
leave assert calls in your code. By the time your program ships, of course, none of
your assertions should be failing; any bugs that caused them to fail should already
have been ironed out.

The disabling of assertions in shipping code is performed in an interesting way. The
condition parameter is given an extra layer of indirection by declaring it as an
@autoclosure function. This means that, even though the parameter is not in fact a
function, the compiler will wrap it in a function; thus, the runtime needn’t call that
function unless it has to. In shipping code, the runtime will not call that function.
This mechanism averts expensive and unnecessary evaluation: an assert condition
test may involve side effects, but the test won’t even be performed when assertions are
turned off in your shipping program.

In addition, Swift provides the assertionFailure function. It’s like an assert that
always fails — and, like an assert, it doesn’t fail in your shipping program where
assertions are turned off. It’s a convenient synonym for assert(false), as a way of
assuring yourself that your code never goes where it’s never supposed to go.

Finally, precondition and preconditionFailure are similar to assert and
assertionFailure, except that they do fail even in a shipping program.

Guard
When your code needs to decide whether to exit early, Swift provides a special syntax
— the guard construct. In effect, a guard construct is an if construct where you exit
early if the condition fails. Its form is shown in Example 5-6.

284 | Chapter 5: Flow Control and More

Example 5-6. The Swift guard construct

guard condition else {
 statements
 exit
}

A guard construct consists solely of a condition and an else block. The else block
must jump out of the current scope, by any of the means that Swift provides, such as
return, break, continue, throw, or fatalError — anything that guarantees to the
compiler that, in case of failure of the condition, execution absolutely will not pro‐
ceed within the block that contains the guard construct.

An elegant consequence of this architecture is that, because the guard construct guar‐
antees an exit on failure of the condition, the compiler knows that the condition has
succeeded after the guard construct if we do not exit. Thus, a conditional binding in
the condition is in scope after the guard construct, without introducing a further nes‐
ted scope. For example:

guard let s = optionalString else {return}
// s is now a String (not an Optional)

In my own code, it’s not uncommon to have a series of guard constructs, one after
another. This may seem a rather clunky and imperative mode of expression, but I’m
fond of it nevertheless. It’s a nice alternative to a single elaborate if construct, or to the
“pyramid of doom” that I discussed earlier; and it looks like exactly what it is, a
sequence of gates through which the code must pass in order to proceed further.
Here’s an actual example from my real-life code:

@objc func tapField(_ g: Any) {
 // g must be a gesture recognizer
 guard let g = g as? UIGestureRecognizer else {return}
 // and that gesture recognizer must have a view
 guard g.view != nil else {return}
 // okay, now we can proceed...
}

It’s often possible to combine multiple guard statement conditions into a single con‐
dition list:

@objc func tapField(_ g: Any) {
 // g must be a gesture recognizer
 // and that gesture recognizer must have a view
 guard let g = g as? UIGestureRecognizer, g.view != nil
 else {return}
 // okay, now we can proceed...
}

Flow Control | 285

A guard construct will also come in handy in conjunction with try?. Let’s presume
we can’t proceed unless String(contentsOfFile:) succeeds. Then we can call it like
this:

let f = // path to some file, maybe
guard let s = try? String(contentsOfFile: f) else {return}
// s is now a String (not an Optional)

There is also a guard case construct, forming the logical inverse of if case. To illus‐
trate, we’ll use our MyError enum once again:

guard case let .number(n) = err else {return}
// n is now the extracted number

guard case helps to solve an interesting problem. Suppose we have a function whose
returned value we want to check in a guard statement:

guard howMany() > 10 else {return}

All well and good; but suppose also that in the next line we want to use the value
returned from that function. We don’t want to call the function again; it might be
time-consuming and it might have side effects. We want to capture the result of call‐
ing the function and pass that captured result on into the subsequent code. But we
can’t do that with guard let, because that requires an Optional, and our function how-
Many doesn’t return an Optional.

What should we do? guard case to the rescue:

guard case let output = howMany(), output > 10 else {return}
// now output is in scope

Note that a guard construct’s conditional binding can’t use, on the left side of the
equal sign, a name already declared in the same scope. This is illegal:

let s = // ... some Optional
guard let s = s else {return} // compile error

The reason is that guard let, unlike if let and while let, doesn’t declare the
bound variable for a nested scope; it declares it for this scope. Thus, we can’t declare s
here because s has already been declared in the same scope.

Privacy
Privacy (also known as access control) refers to the explicit modification of the normal
scope rules. I gave an example in Chapter 1:

286 | Chapter 5: Flow Control and More

class Dog {
 var name = ""
 private var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
}

The intention here is to limit how other objects can see the Dog property whatADog-
Says. It is a private property, intended primarily for the Dog class’s own internal use: a
Dog can speak of self.whatADogSays, but other objects should not be aware that it
even exists.

Swift has five levels of privacy:

internal

The default rule is that declarations are internal, meaning that they are globally
visible to all code in all files within the containing module. That is why Swift files
within the same module can see one another’s top-level contents automatically,
with no effort on your part. (That’s different from C and Objective-C, where files
can’t see each other at all unless you explicitly show them to one another through
include or import statements.)

fileprivate (narrower than internal)
A thing declared fileprivate is visible only within its containing file. For exam‐
ple, two object types declared in the same file can see one another’s members
declared fileprivate, but code in other files cannot see those members.

private (even narrower than fileprivate)
A thing declared private is visible only within its containing curly braces. In
effect, the visibility of an object type’s member declared private is limited to
code within this type declaration. (A private declaration at the top level of a file
is equivalent to fileprivate.)

public (wider than internal)
A thing declared public is visible even outside its containing module. Another
module must first import this module before it can see anything at all. But even
when another module has imported this module, it still won’t be able to see any‐
thing in this module that hasn’t been explicitly declared public. If you don’t write
any modules, you might never need to declare anything public. If you do write a
module, you must declare something public, or your module is useless.

open (even wider than public)
If a class is declared open, code in another module can subclass it; it can’t do that
if the class is declared merely public. If an open class member is declared open,

Privacy | 287

code in another module that subclasses this class can override this member; it
can’t do that if the member is declared merely public.

Private and Fileprivate
Declaring something private restricts its visibility. In this way, you specify by inver‐
sion what the public API of this object is. Here’s an example from my own code:

class CancelableTimer: NSObject {
 private var q = DispatchQueue(label: "timer")
 private var timer : DispatchSourceTimer!
 private var firsttime = true
 private var once : Bool
 private var handler : () -> ()
 init(once:Bool, handler:@escaping () -> ()) {
 // ...
 }
 func start(withInterval interval:Double) {
 // ...
 }
 func cancel() {
 // ...
 }
}

The initializer init(once:handler:) and the start(withInterval:) and cancel
methods, which are not marked private, are this class’s public API. They say, “Please
feel free to call me!” The properties, however, are all private; no other code can see
them, either to get them or to set them. They are purely for the internal use of the
methods of this class. They maintain state, but it is not a state that any other code
needs to know about.

Privacy is not magically violated by the existence of a special object relationship. For
example, even a subclass cannot see its superclass’s private members. (This comes as a
surprise to those coming from a language with a protected privacy level.) You can
work around this by declaring the class and its subclass in the same file and declaring
those members fileprivate instead of private.

An extension can see the private members of the type it extends, provided the type
and the extension are in the same file:

class Dog {
 private var whatADogSays = "woof"
}
extension Dog {
 func speak() {
 print(self.whatADogSays) // ok
 }
}

288 | Chapter 5: Flow Control and More

In effect, an extension sees its type’s private as meaning fileprivate. This lets you
break up a type into extensions without being forced to raise the type’s private mem‐
bers to fileprivate just so the extensions can see them.

It may be that on some occasions you will want to draw a distinction between the pri‐
vacy of a variable regarding setting and its privacy regarding getting. To draw this dis‐
tinction, place the word set in parentheses after its own privacy declaration. Thus,
private(set) var myVar means that the setting of this variable is restricted, but says
nothing about the getting of this variable, which is left at the default. Similarly, you
can say public private(set) var myVar to make getting this variable public, while
setting this variable is kept private. (You can use this same syntax with a subscript
function.)

Public and Open
If you write a module, you’ll need to specify at least some object type declaration as
public; otherwise, code that imports your module won’t be able to see that type.
Other declarations that are not declared public are internal, meaning that they are
private to the module. Thus, judicious use of public declarations configures the pub‐
lic API of your module.

For example, in my Zotz app, which is a card game, the object types for creating and
portraying cards and for combining them into a deck are bundled into a framework
called ZotzDeck. Many of these types, such as Card and Deck, are declared public.
Many utility object types, however, are not; the classes within the ZotzDeck module
can see and use them, but code outside the module doesn’t need to be aware of them
at all.

The members of a public object type are not, themselves, automatically public. If you
want a method to be public, you have to declare it public. This is an excellent default
behavior, because it means that these members are not shared outside the module
unless you want them to be. (As Apple puts it, you must “opt in to publishing” object
members.)

For example, in my ZotzDeck module, the Card class is declared public but its ini‐
tializer is not. Why not? Because it doesn’t need to be. The way you (meaning the
importer of the ZotzDeck module) get cards is by initializing a Deck; the initializer
for Deck is declared public, so you can do that. There is never any reason to make a
card independently of a Deck, and thanks to the privacy rules, you can’t.

If the only initializer for a public type is implicit, code in another module can’t
see it and thus cannot create an instance of this type. If you want other code to be
able to create an instance of this type, you must declare the initializer explicitly
and make it public.

Privacy | 289

The open access level draws a further distinction. It is applicable only to classes and to
members of open classes. A public class can’t be subclassed in another module that
can see this class; an open class can. A public member of an open class that has been
subclassed in another module can’t be overridden in that subclass; an open member
can.

Privacy Rules
There is an extensive set of rules for ensuring that the privacy level of related things is
coherent. For example:

• A variable can’t be public if its type is private, because other code wouldn’t be able
to use such a variable.

• A subclass can’t be public unless the superclass is public.
• A subclass can change an overridden member’s access level, but it cannot even

see its superclass’s private members unless they are declared in the same file
together.

And so on. I could proceed to list all the rules, but I won’t. There is no need for me to
enunciate them formally. They are spelled out in great detail in the Swift manual,
which you can consult if you need to. In general, you probably won’t need to; the
privacy rules make intuitive sense, and you can rely on the compiler to help you with
useful error messages if you violate one.

Introspection
Swift provides limited ability to introspect an object, letting an object display the
names and values of its properties. This feature is intended for debugging, not for use
in your program’s logic. For example, you can use it to modify the way your object is
displayed in the Xcode Debug pane.

To introspect an object, use it as the reflecting: parameter when you instantiate a
Mirror. The Mirror’s children will then be name–value tuples describing the original
object’s properties. Here, for example, is a Dog class with a description property that
takes advantage of introspection. Instead of hard-coding a list of the class’s instance
properties, we introspect the instance to obtain the names and values of the proper‐
ties. This means that we can later add more properties without having to modify our
description implementation:

struct Dog : CustomStringConvertible {
 var name = "Fido"
 var license = 1
 var description : String {
 var desc = "Dog ("
 let mirror = Mirror(reflecting:self)

290 | Chapter 5: Flow Control and More

 for (k,v) in mirror.children {
 desc.append("\(k!): \(v), ")
 }
 return desc.dropLast(2) + ")"
 }
}

If we now instantiate Dog and print that instance, this is what we see in the console:

Dog (name: Fido, license: 1)

The main use of Mirror is to generate the console output for the Swift dump function
(or the po command when debugging). By adopting the CustomReflectable protocol,
we can take charge of what a Mirror’s children are. To do so, we supply the custom-
Mirror property to return our own custom Mirror object whose children property
we have configured as a collection of name–value tuples.

In this (silly) example, we implement customMirror to supply altered names for our
properties:

struct Dog : CustomReflectable {
 var name = "Fido"
 var license = 1
 var customMirror: Mirror {
 let children : [Mirror.Child] = [
 ("ineffable name", self.name),
 ("license to kill", self.license)
]
 let m = Mirror(self, children:children)
 return m
 }
}

The outcome is that when our code says dump(Dog()), our custom property names
are displayed:

* Dog
 - ineffable name : "Fido"
 - license to kill : 1

Operators
Swift operators such as + and > are not magically baked into the language. They are,
in fact, functions; they are explicitly declared and implemented just like any other
function. That is why, as I pointed out in Chapter 4, the term + can be passed as the
second parameter in a reduce call; reduce expects a function taking two parameters
and returning a value whose type matches that of the first parameter, and + is in fact
the name of such a function. It also explains how Swift operators can be overloaded
for different value types. You can use + with numbers, strings, or arrays — with a dif‐
ferent meaning in each case — because Swift functions can be overloaded; there are

Operators | 291

multiple declarations of the + function, and from the parameter types, Swift is able to
determine which + function you are calling.

These facts are not merely an intriguing behind-the-scenes implementation detail.
They have practical implications for you and your code. You are free to overload
existing operators to apply to your object types. You can even invent new operators!
In this section, we’ll do both.

First, we must talk about how operators are declared. Clearly there is some sort of
syntactical hanky-panky (a technical computer science term), because you don’t call
an operator function in the same way as a normal function. You don’t say +(1,2); you
say 1+2. Even so, 1 and 2 in that second expression are the parameters to a + function
call. How does Swift know that the + function uses this special syntax?

To see the answer, look in the Swift header:

infix operator + : AdditionPrecedence

That is an operator declaration. An operator declaration announces that this symbol
is an operator, and tells how many parameters it has and what the usage syntax will be
in relation to those parameters. The really important part is the stuff before the colon:
the keyword operator, preceded by an operator type — here, infix — and followed
by the name of the operator. The types are:

infix

This operator takes two parameters and appears between them.

prefix

This operator takes one parameter and appears before it.

postfix

This operator takes one parameter and appears after it.

The term after the colon in an operator declaration is the name of a precedence
group. I’m not going to go into the details of how precedence groups are defined. The
Swift header declares about a dozen precedence groups, and you can easily see how
those declarations work. You will probably have no need to declare a new precedence
group; instead, you’ll just look for an operator similar to yours and copy its prece‐
dence group (or omit the colon and the precedence group from your declaration).

An operator is also a function, so you also need a function declaration stating the type
of the parameters and the result type of the function. Again, the Swift header shows
us an example:

func +(lhs: Int, rhs: Int) -> Int

That is one of many declarations for the + function in the Swift header. In particular,
it is the declaration for when the parameters are both Int. In that situation, the result

292 | Chapter 5: Flow Control and More

is itself an Int. (The local parameter names lhs and rhs, which don’t affect the special
calling syntax, presumably stand for “left-hand side” and “right-hand side.”)

An operator declaration must appear at the top level of a file. The corresponding
function declaration may appear either at the top level of a file or at the top level of a
type declaration; in the latter case, it must be marked static. If the operator is a
prefix or postfix operator, the function declaration must start with the word
prefix or postfix; the default is infix and can be omitted.

We now know enough to override an operator to work with an object type of our
own! As a simple example, imagine a Vial full of bacteria:

struct Vial {
 var numberOfBacteria : Int
 init(_ n:Int) {
 self.numberOfBacteria = n
 }
}

When two Vials are combined, you get a Vial with all the bacteria from both of them.
So the way to add two Vials is to add their bacteria:

extension Vial {
 static func +(lhs:Vial, rhs:Vial) -> Vial {
 let total = lhs.numberOfBacteria + rhs.numberOfBacteria
 return Vial(total)
 }
}

And here’s code to test our new + operator override:

let v1 = Vial(500_000)
let v2 = Vial(400_000)
let v3 = v1 + v2
print(v3.numberOfBacteria) // 900000

In the case of a compound assignment operator, the first parameter is the thing being
assigned to. Therefore, to implement such an operator, the first parameter must be
declared inout. Let’s do that for our Vial class:

extension Vial {
 static func +=(lhs:inout Vial, rhs:Vial) {
 let total = lhs.numberOfBacteria + rhs.numberOfBacteria
 lhs.numberOfBacteria = total
 }
}

Here’s code to test our += override:

var v1 = Vial(500_000)
let v2 = Vial(400_000)
v1 += v2
print(v1.numberOfBacteria) // 900000

Operators | 293

Next, let’s invent a completely new operator. As an example, I’ll inject an operator
into Int that raises one number to the power of another. As my operator symbol, I’ll
use ^^ (I’d like to use ^ but it’s already in use for something else). For simplicity, I’ll
omit error-checking for edge cases (such as exponents less than 1):

infix operator ^^
extension Int {
 static func ^^(lhs:Int, rhs:Int) -> Int {
 var result = lhs
 for _ in 1..<rhs {result *= lhs}
 return result
 }
}

That’s all it takes! Here’s some code to test it:

print(2^^2) // 4
print(2^^3) // 8
print(3^^3) // 27

Here’s another example. I’ve already illustrated the use of Range’s reversed method to
allow iteration from a higher value to a lower one. That works, but I find the notation
unpleasant. There’s an asymmetry with how you iterate up; the endpoints are in the
wrong order, and you have to remember to surround a literal range with parentheses:

let r1 = 1..<10
let r2 = (1..<10).reversed()

Let’s define a custom operator that calls reversed() for us:

infix operator >>> : RangeFormationPrecedence
func >>><Bound>(maximum: Bound, minimum: Bound)
 -> ReversedCollection<Range<Bound>>
 where Bound : Strideable {
 return (minimum..<maximum).reversed()
}

Now our expressions can be more symmetrical and compact:

let r1 = 1..<10
let r2 = 10>>>1

The Swift manual lists the special characters that can be used as part of a custom
operator name:

/ = - + ! * % < > & | ^ ? ~

An operator name can also contain many other symbol characters (that is, characters
that can’t be mistaken for some sort of alphanumeric) that are harder to type; see the
manual for a formal list.

294 | Chapter 5: Flow Control and More

Synthesized Protocol Implementations
A few protocols built into the Swift standard library have, starting in Swift 4.1, the
ability to synthesize implementations of their own requirements. Such a protocol can
supply code behind the scenes so that an object that adopts the protocol will satisfy
the protocol’s requirements automatically.

Equatable is one such protocol. That’s good, because making your custom type adopt
Equatable is often a really useful thing to do. Equatable adoption means that the ==
operator can be used to check whether two instances of this type are equal. The only
requirement of the Equatable protocol is that you do, in fact, define == for your type.
Using our Vial struct from the previous section, let’s first do that manually:

struct Vial {
 var numberOfBacteria : Int
 init(_ n:Int) {
 self.numberOfBacteria = n
 }
}
extension Vial : Equatable {
 static func ==(lhs:Vial, rhs:Vial) -> Bool {
 return lhs.numberOfBacteria == rhs.numberOfBacteria
 }
}

Now that Vial is an Equatable, not only can it be compared with ==, but also lots of
methods that need an Equatable parameter spring to life. For example, Vial becomes
a candidate for use with methods such as firstIndex(of:):

let v1 = Vial(500_000)
let v2 = Vial(400_000)
let arr = [v1,v2]
let ix = arr.firstIndex(of:v1) // Optional wrapping 0

What’s more, the complementary inequality operator != has sprung to life for Vial
automatically! That’s because it’s already defined for any Equatable in terms of the ==
operator.

Our implementation of == for Vial was not terribly difficult to write. But that’s mostly
because this struct has just one property! As soon as you have multiple properties,
writing == manually becomes tedious and possibly hard to maintain. You’re probably
going to want to define == in terms of the equality of all your type’s properties simul‐
taneously. Luckily, Swift will implement == automatically in exactly that way! All we
have to do is declare adoption of Equatable, like this:

Synthesized Protocol Implementations | 295

struct Vial : Equatable {
 var numberOfBacteria : Int
 init(_ n:Int) {
 self.numberOfBacteria = n
 }
}

That code compiles, even though we now have no implementation of ==. That’s
because the implementation has been synthesized for us.

For Equatable synthesis to operate, the following requirements must be met:

• Our object type is a struct or an enum.
• We have adopted Equatable, not in an extension.
• We have not supplied the implementation of the == operator required by Equata‐

ble.
• All of our struct’s stored property types are themselves Equatable. (For an enum,

the requirement here is that, if the enum has associated values, the types of those
associated values must be Equatable. If an enum has no associated values, then it
is already effectively Equatable and there is no need to adopt Equatable
explicitly.)

The synthesized implementation declares that two objects of this type are equal if and
only if the value of every stored property is equal for both objects. In the case of Vial,
we have just one stored property, numberOfBacteria, and its type is Int, which is
Equatable; thus we end up with an implicit == implementation such that two Vials are
equal if and only if their numberOfBacteria property values are equal — which is
exactly the implementation we supplied when we wrote the code explicitly.

If our type were an enum, then the implicit == implementation would assert that two
objects are equal if they are the same case and, if that case has an associated value,
that value is equal for both objects. For example:

enum MyError : Equatable {
 case number(Int)
 case message(String)
 case fatal
}
let err1 = MyError.number(1)
let err2 = MyError.number(1)
if err1 == err2 {
 // they are equal
}

Without the Equatable adoption, the comparison err1 == err2 would have been ille‐
gal (as I mentioned in Chapter 4). With it, the comparison is legal and gives the right
answer. The same is true for the second case, .message. The third case, .fatal, has

296 | Chapter 5: Flow Control and More

no associated value, so it is equal only to another .fatal — and so the entire enum
does in fact become Equatable.

If you don’t like the synthesized implementation of == (perhaps because there is a
property that you don’t want involved in the definition of equality), all you have to do
is write your own, explicitly. You lose the convenience of automatic synthesis, but
you’re no worse off than you were before automatic synthesis existed.

For example, let’s say we have a Dog struct with a name property and a license prop‐
erty and a color property. But let’s say we think two Dogs are equal just in case they
have the same name and license; we don’t care whether the colors are the same. Then
we just have to write the implementation of == ourselves, omitting color from the
calculation:

struct Dog : Equatable {
 let name : String
 let license : Int
 let color : UIColor
 static func ==(lhs:Dog,rhs:Dog) -> Bool {
 return lhs.name == rhs.name && lhs.license == rhs.license
 }
}

Another protocol that performs synthesis of its own implementation is Hashable.
Recall that a type must be Hashable to be used in a Set or as the key type of a Dictio‐
nary. A struct whose properties are all Hashable, or an enum whose associated values
are all Hashable, can conform to Hashable merely by declaring that it adopts
Hashable.

Hashable requires that its adopter, in addition to being Equatable, have a hashValue
Int property; the idea is that two equal objects should have equal hash values. The
implicit implementation combines the hashValue of the Hashable members (in some
unspecified way) to produce a hashValue for the object itself. That’s good, because
you would surely have no idea how to do that for yourself. Writing your own hash
function is a very tricky business! Thanks to this feature, you don’t have to.

But suppose you don’t like the synthesized implementation of hashValue. Then you
will have to calculate the hashValue yourself. Luckily, Swift 4.2 has introduced a way
to do that. You ignore hashValue, and instead implement the hash(into:) method.
There is then no need to implement hashValue, because it is autogenerated based on
the result of hash(into:). In that method, you are handed a Hasher object; you call
hash(into:) with that object on every property that you want included in the hash
calculation — and omit the ones you don’t. These should be the very same properties
you’ve included in the equality calculation.

So, for our Dog struct, we could write:

Synthesized Protocol Implementations | 297

struct Dog : Hashable { // and therefore Equatable
 let name : String
 let license : Int
 let color : UIColor
 static func ==(lhs:Dog,rhs:Dog) -> Bool {
 return lhs.name == rhs.name && lhs.license == rhs.license
 }
 func hash(into hasher: inout Hasher) {
 name.hash(into:&hasher)
 license.hash(into:&hasher)
 }
}

I’ll talk in Chapter 10 about a similar synthesis for the Encodable and Decodable
protocols.

Other protocols, alas, do not provide the same convenience. For example, if we want
our Vial struct to be Comparable, we must implement < explicitly. (And when we do,
the other three comparison operators spring to life automatically as well.)

Key Paths
Key paths, a language feature introduced in Swift 4, effectively stand in relation to
properties the way function references stand in relation to function calls — they are a
way of storing a reference to a property without actually accessing the property.

Suppose, for example, that we have a Person struct with a firstName property and a
lastName property, and that we want to access one of these properties on a Person p,
without knowing until runtime which property we are to access. We might write
something like this:

var getFirstName : Bool = // ...
let name : String = {
 if getFirstName {
 return p.firstName
 } else {
 return p.lastName
 }
}()

That’s not altogether atrocious, but it’s hardly elegant. If we do the same sort of thing
in several places, the same choice must somehow be repeated in each of those places
— and of course, the more choices there are, the more elaborate our code must be
each time.

Key paths solve the problem by permitting us to encapsulate the notion of accessing a
particular property of a type, such as Person’s firstName or lastName, without
actually performing the access. That notion is expressed as an instance; therefore, we

298 | Chapter 5: Flow Control and More

can store it as a variable, or pass it as a function parameter. That instance then acts as
a token that we can use to access the actual property on an actual instance of that type
at some future time.

The literal notation for constructing a key path is:

\Type.property.property...

We start with a backslash. Then we have the name of a type, which may be omitted if
the type can be inferred from the context (there are, it turns out, real-life contexts
where this is possible). Finally, we have a dot followed by a property name, and this
may be repeated if that property’s type itself has a property that we will want to access,
and so on.

Thus, in our simple case, we might store the notion of accessing a particular property
as a key path variable, like this:

var prop = \Person.firstName

To perform the actual access, start with a reference to a particular instance and fetch
its keyPath: subscript:

let whatname = p[keyPath:prop]

If p is a Person with a firstName of "Matt" and a lastName of "Neuburg", then
whatname is now "Matt". Moreover, whatname is inferred to be a String, because the
key path carries within itself information about the type of the property that it refers
to (it is a generic).

Now imagine substituting a different key path for the value of prop:

var prop = \Person.firstName
// ... time passes ...
prop = \Person.lastName

That substitution is legal, because Person is Person and both firstName and last-
Name are Strings. Instantly, throughout our program, all accesses performed through
the Person keyPath: subscript with prop take on a new meaning!

Moreover, if the property referenced by a key path is writable and you have a writable
object reference, then you can also set into the keyPath: subscript on that object, thus
changing the value of the property:

p[keyPath:prop] = "Ethan"

Here’s a more practical example. This is how you pin a view’s top and bottom edges to
those of its superview using autolayout:

let c1 = v2.topAnchor.constraint(equalTo:v1.topAnchor)
c1.isActive = true
let c2 = v2.bottomAnchor.constraint(equalTo:v1.bottomAnchor)
c2.isActive = true

Key Paths | 299

With key paths, the repetition can be rolled up into a loop:

for anch in [\UIView.topAnchor, \UIView.bottomAnchor] {
 let c = v2[keyPath:anch].constraint(equalTo:v1[keyPath:anch])
 c.isActive = true
}

In your real iOS programming life, you’ll probably use Swift key paths mostly to
replace Objective-C key paths (Chapter 10), especially in connection with key–value
observing (Chapter 11).

Dynamic Member Lookup
Dynamic member lookup, new in Swift 4.2, allows you to access a nonexistent
instance property of a type. Instead of the compiler stopping you because the instance
property doesn’t exist, the property is turned into a string and passed into a special
subscript function, which can then do anything it likes. This puts Swift on more of a
par with languages like Ruby with its method_missing method.

To implement dynamic member lookup, a type must be marked @dynamicMember-
Lookup, and must declare a subscript subscript(dynamicMember:) that takes a string
parameter. When other code attempts to access a nonexistent instance property of
this type, the corresponding subscript function — the getter or, if there is one, the
setter — is called with the name of the property as the parameter. A given type can
have more than one dynamicMember subscript, each returning (and possibly accept‐
ing) a different type.

To illustrate the syntax, I’ll make a struct act as a gatekeeper to a dictionary; its
dynamic properties are turned into dictionary keys:

@dynamicMemberLookup
struct Flock {
 var d = [String:String]()
 subscript(dynamicMember s:String) -> String? {
 get {
 return d[s]
 }
 set {
 d[s] = newValue
 }
 }
}

And here’s some code to exercise it:

300 | Chapter 5: Flow Control and More

var flock = Flock()
flock.chicken = "peep"
flock.partridge = "covey"
if let s = flock.partridge {
 print(s) // covey
}

I don’t necessarily recommend writing code like that; dynamic member lookup is
intended primarily to prepare for future Swift interoperability with languages like
Ruby, and it might be argued that it inherently violates the spirit of Swift, because
you’re asking the compiler to stop checking that your property accesses are valid.
Nevertheless, it is easy to imagine that dynamic member lookup, along with its
intended partner, dynamic callability (which will make it possible to call a nonexis‐
tent method), might allow Swift to be used for constructing convenient domain-
specific languages.

Memory Management
Swift memory management is handled automatically, and you will usually be unaware
of it. Objects come into existence when they are instantiated and go out of existence
as soon as they are no longer needed. Nevertheless, there are some memory manage‐
ment issues of which even a Swift user must be conscious.

Memory Management of Reference Types
Memory management of reference type objects is quite tricky under the hood; I’ll
devote Chapter 12 to a discussion of the underlying mechanism. Trouble typically
arises when two class instances have references to one another. When that’s the case,
you can have a retain cycle which will result in a memory leak, meaning that the two
instances never go out of existence. Some computer languages solve this sort of prob‐
lem with a periodic “garbage collection” phase that detects retain cycles and cleans
them up, but Swift doesn’t do that; you have to fend off retain cycles manually.

One way to test for and observe a memory leak is to implement a class’s deinit. This
method is called when the instance goes out of existence. If the instance never goes
out of existence, deinit is never called. That’s a bad sign, if you were expecting that
the instance should go out of existence.

Here’s an example. First, I’ll make two class instances and watch them go out of
existence:

func testRetainCycle() {
 class Dog {
 deinit {
 print("farewell from Dog")
 }
 }

Memory Management | 301

 class Cat {
 deinit {
 print("farewell from Cat")
 }
 }
 let d = Dog()
 let c = Cat()
}
testRetainCycle() // farewell from Cat, farewell from Dog

When we run that code, both “farewell” messages appear in the console. We created a
Dog instance and a Cat instance, but the only references to them are automatic (local)
variables inside the testRetainCycle function. When execution of that function’s
body comes to an end, all automatic variables are destroyed; that is what it means to
be an automatic variable. There are no other references to our Dog and Cat instances
that might make them persist, and so they are destroyed in good order.

Now I’ll change that code by giving the Dog and Cat objects references to each other:

func testRetainCycle() {
 class Dog {
 var cat : Cat?
 deinit {
 print("farewell from Dog")
 }
 }
 class Cat {
 var dog : Dog?
 deinit {
 print("farewell from Cat")
 }
 }
 let d = Dog()
 let c = Cat()
 d.cat = c // create a...
 c.dog = d // ...retain cycle
}
testRetainCycle() // nothing in console

When we run that code, neither “farewell” message appears in the console. The Dog
and Cat objects have references to one another. Those are persisting references (also
called strong references). A persisting reference sees to it that, for example, as long as
our Dog has a reference to a particular Cat, that Cat will not be destroyed. That’s a
good thing, and is a fundamental principle of sensible memory management. The bad
thing is that the Dog and the Cat have persisting references to one another. That’s a
retain cycle! Neither the Dog instance nor the Cat instance can be destroyed, because
neither of them can “go first” — it’s like Alphonse and Gaston who can never get
through the door because each requires the other to precede him. The Dog can’t be
destroyed first because the Cat has a persisting reference to it, and the Cat can’t be
destroyed first because the Dog has a persisting reference to it.

302 | Chapter 5: Flow Control and More

These objects are therefore now leaking. Our code is over; both d and c are gone.
There are no further references to either of these objects; neither object can ever be
referred to again. No code can mention them; no code can reach them. But they live
on, floating, useless, and taking up memory.

Weak references

One solution to a retain cycle is to mark the problematic reference as weak. This
means that the reference is not a persisting reference. It is a weak reference. The object
referred to can now go out of existence even while the referrer continues to exist. Of
course, this might present a danger, because now the object referred to may be
destroyed behind the referrer’s back. But Swift has a solution for that, too: only an
Optional reference can be marked as weak. That way, if the object referred to is
destroyed behind the referrer’s back, the referrer will see something coherent, namely
nil. Also, the reference must be a var reference, precisely because it can change
spontaneously to nil.

This code thus breaks the retain cycle and prevents the memory leak:

func testRetainCycle() {
 class Dog {
 weak var cat : Cat?
 deinit {
 print("farewell from Dog")
 }
 }
 class Cat {
 weak var dog : Dog?
 deinit {
 print("farewell from Cat")
 }
 }
 let d = Dog()
 let c = Cat()
 d.cat = c
 c.dog = d
}
testRetainCycle() // farewell from Cat, farewell from Dog

I’ve gone overboard in that code. To break the retain cycle, there’s no need to make
both Dog’s cat and Cat’s dog weak references; making just one of the two a weak ref‐
erence is sufficient to break the cycle. That, in fact, is the usual solution when a retain
cycle threatens. One of the pair will typically be more of an “owner” than the other;
the one that is not the “owner” will have a weak reference to its “owner.”

Value types are not subject to the same memory management issues as reference
types, but a value type can still be involved in a retain cycle with a class instance. In
my retain cycle example, if Dog is a class and Cat is a struct, we still get a retain cycle.

Memory Management | 303

The solution is the same: make Cat’s dog a weak reference. (You can’t make Dog’s cat
a weak reference if Cat is a struct; only a reference to a class type can be declared
weak.)

Do not use weak references unless you have to! Memory management is not to be
toyed with lightly. Nevertheless, there are real-life situations in which weak references
are the right thing to do, even when no retain cycle appears to threaten. The delega‐
tion pattern (Chapter 11) is a typical case in point; an object typically has no business
owning (retaining) its delegate.

Unowned references
There’s another Swift solution for retain cycles. Instead of marking a reference as
weak, you can mark it as unowned. This approach is useful in special cases where one
object absolutely cannot exist without a reference to another, but where this reference
need not be a persisting reference.

For example, let’s pretend that a Boy may or may not have a Dog, but every Dog must
have a Boy — and so I’ll give Dog an init(boy:) initializer. The Dog needs a refer‐
ence to its Boy, and the Boy needs a reference to his Dog if he has one; that’s poten‐
tially a retain cycle:

func testUnowned() {
 class Boy {
 var dog : Dog?
 deinit {
 print("farewell from Boy")
 }
 }
 class Dog {
 let boy : Boy
 init(boy:Boy) { self.boy = boy }
 deinit {
 print("farewell from Dog")
 }
 }
 let b = Boy()
 let d = Dog(boy: b)
 b.dog = d
}
testUnowned() // nothing in console

We can solve this by declaring Dog’s boy property unowned:

func testUnowned() {
 class Boy {
 var dog : Dog?
 deinit {
 print("farewell from Boy")
 }

304 | Chapter 5: Flow Control and More

 }
 class Dog {
 unowned let boy : Boy // *
 init(boy:Boy) { self.boy = boy }
 deinit {
 print("farewell from Dog")
 }
 }
 let b = Boy()
 let d = Dog(boy: b)
 b.dog = d
}
testUnowned() // farewell from Boy, farewell from Dog

An advantage of an unowned reference is that it doesn’t have to be an Optional — in
fact, it cannot be an Optional — and it can be a constant (let). But an unowned refer‐
ence is also genuinely dangerous, because the object referred to can go out of exis‐
tence behind the referrer’s back, and an attempt to use that reference will cause a
crash, as I can demonstrate by this rather forced code:

var b = Optional(Boy())
let d = Dog(boy: b!)
b = nil // destroy the Boy behind the Dog's back
print(d.boy) // crash

Thus, you should use unowned only if you are absolutely certain that the object
referred to will outlive the referrer.

Stored anonymous functions
A subtle variant of a retain cycle arises when an instance property holds a function
referring to the instance:

class FunctionHolder {
 var function : (() -> ())?
 deinit {
 print("farewell from FunctionHolder")
 }
}
func testFunctionHolder() {
 let fh = FunctionHolder()
 fh.function = {
 print(fh)
 }
}
testFunctionHolder() // nothing in console

Oops! I’ve created a retain cycle, by referring, inside the anonymous function, to the
object that is holding a reference to it. Because functions are closures, the Function‐
Holder instance fh, declared outside the anonymous function, is captured by the
anonymous function as a persisting reference when the anonymous function says

Memory Management | 305

print(fh). But the anonymous function has also been assigned to the function
property of the FunctionHolder instance fh, and that’s a persisting reference too. So
that’s a retain cycle: the FunctionHolder persistently refers to the function, which per‐
sistently refers to the FunctionHolder.

In this situation, I cannot break the retain cycle by declaring the function property as
weak or unowned. Only a reference to a class type can be declared weak or unowned,
and a function is not a class. Thus, I must declare the captured value fh inside the
anonymous function as weak or unowned instead.

Swift provides an ingenious syntax for doing that. At the very start of the anonymous
function body, you put square brackets containing a comma-separated list of any
problematic references that will be captured from the surrounding environment, each
reference preceded by weak or unowned. This list is called a capture list. If you have a
capture list, you must follow it with the keyword in if there’s no in expression
already:

class FunctionHolder {
 var function : (() -> ())?
 deinit {
 print("farewell from FunctionHolder")
 }
}
func testFunctionHolder() {
 let fh = FunctionHolder()
 fh.function = {
 [weak fh] in // *
 print(fh)
 }
}
testFunctionHolder() // farewell from FunctionHolder

This syntax solves the problem. But marking a reference as weak in a capture list has a
mild side effect that you will need to be aware of: such a reference passes into the
anonymous function as an Optional. This is good, because it means that if the object
referred to goes out of existence behind our back, the value of the Optional is nil.
But of course you must also adjust your code accordingly, unwrapping the Optional
as needed in order to use it. The usual technique is to perform the weak–strong dance:
you unwrap the Optional once, right at the start of the function, in a conditional
binding:

class FunctionHolder {
 var function : (() -> ())?
 deinit {
 print("farewell from FunctionHolder")
 }
}
func testFunctionHolder() {
 let fh = FunctionHolder()

306 | Chapter 5: Flow Control and More

 fh.function = { // here comes the weak–strong dance...
 [weak fh] in // weak
 guard let fh = fh else { return }
 print(fh) // strong
 }
}
testFunctionHolder() // farewell from FunctionHolder

The conditional binding let fh = fh accomplishes two goals. First, it unwraps the
Optional version of fh that arrived into the anonymous function. Second, it declares
another fh that is a normal (strong) reference. So if the unwrapping succeeds, this
new fh will persist for the rest of this scope.

In that particular example, there is no way on earth that this FunctionHolder
instance, fh, can go out of existence while the anonymous function lives on. There
are no other references to the anonymous function; it persists only as a property of
fh. Therefore I can avoid some behind-the-scenes bookkeeping overhead, as well as
the weak–strong dance, by declaring fh as unowned in my capture list instead. In real
life, my own most frequent use of unowned is precisely in this context. Very often, the
reference marked as unowned in the capture list will be self.

Don’t panic! Beginners have a tendency to backstop all their anonymous func‐
tions with [weak self]. That’s unnecessary and wrong. Only a stored function
can raise even the possibility of a retain cycle. Merely passing a function does not
introduce such a possibility, especially if the function being passed will be called
immediately. And even if a function is stored, if it is stored elsewhere, it might not
imply a retain cycle. Always confirm that you actually have a retain cycle before
concerning yourself with how to prevent it.

Memory management of protocol-typed references

Only a reference to an instance of a class type can be declared weak or unowned. A
reference to an instance of a struct or enum type cannot be so declared, because its
memory management doesn’t work the same way (and is not subject to retain cycles).
A reference that is declared as a protocol type, therefore, has a problem. A reference
typed as a protocol that might be adopted by a struct or an enum cannot be declared
weak or unowned. You can only declare a protocol-typed reference weak or unowned if
the compiler knows that only a class can adopt it. You can assure the compiler of that
by marking the protocol with @objc or class.

In this code, SecondViewControllerDelegate is a protocol that I’ve declared. This
code won’t compile unless SecondViewControllerDelegate is declared as a class
protocol:

Memory Management | 307

class SecondViewController : UIViewController {
 weak var delegate : SecondViewControllerDelegate?
 // ...
}

Here’s the actual declaration of SecondViewControllerDelegate; it is declared as a
class protocol, and that’s why the preceding code is legal:

protocol SecondViewControllerDelegate : class {
 func accept(data:Any!)
}

A protocol declared in Objective-C is implicitly marked as @objc and is a class proto‐
col. This declaration from my real-life code is legal:

weak var delegate : WKScriptMessageHandler?

WKScriptMessageHandler is a protocol declared by Cocoa (in particular, by the Web
Kit framework). Thus, it is implicitly marked @objc; only a class can adopt
WKScriptMessageHandler, and so the compiler is satisfied that the delegate variable
will be an instance of a class, and thus the reference can be treated as weak.

Exclusive Access to Value Types
Even value types can have memory management issues. In particular, a struct and its
members might be directly accessed simultaneously, which could lead to unpredicta‐
ble results. Fortunately, starting in Swift 4, the compiler will usually stop you before
such an issue can arise.

To illustrate, imagine that we have a Person struct with a firstName string property.
Now let’s write a function that takes both a Person and a string as inout parameters:

func change(_ p:inout Person, _ s:inout String) {}

So far so good; but now imagine calling that function with both a Person and that
same Person’s firstName as the parameters:

var p = Person(firstName: "Matt")
change(&p, &p.firstName) // compile error

The compiler will stop you from doing that, with the following message: “Overlap‐
ping accesses to p, but modification requires exclusive access.” The problem is that
the single function change is being given direct access to the memory of both the
struct and a member of that struct, simultaneously. The struct is thus capable of being
altered in some unpredictable way. This dangerous situation is forbidden; the com‐
piler enforces exclusive access when a struct is being modified.

You may encounter that error message from the compiler under surprising circum‐
stances. For example:

308 | Chapter 5: Flow Control and More

let c = UIColor.purple
var components = Array(repeating: CGFloat(0), count: 4)
c.getRed(&components[0], green: &components[1],
 blue: &components[2], alpha: &components[3]) // compile error

That code was legal in Swift 3 and before; in Swift 4 and later, it isn’t. It doesn’t look,
to the untrained eye, as if there should be an exclusive access problem; but you just
have to take the compiler’s word for it. One workaround is to take control of memory
access yourself, thus silencing the compiler:

components.withUnsafeMutableBufferPointer { ptr -> () in
 c.getRed(&ptr[0], green: &ptr[1], blue: &ptr[2], alpha: &ptr[3])
}

It would probably be better, however, to write a UIColor extension that assembles the
array without any simultaneous memory access to multiple elements of the array:

extension UIColor {
 func getRedGreenBlueAlpha() -> [CGFloat] {
 var (r,g,b,a) = (CGFloat(0),CGFloat(0),CGFloat(0),CGFloat(0))
 self.getRed(&r, green: &g, blue: &b, alpha: &a)
 return [r,g,b,a]
 }
}

Memory Management | 309

PART II

IDE

By now, you’re doubtless anxious to jump in and start writing an app. To do that, you
need a solid grounding in the tools you’ll be using. The heart and soul of those tools
can be summed up in one word: Xcode. In this part of the book we explore Xcode,
the IDE (integrated development environment) in which you’ll be programming iOS.
Xcode is a big program, and writing an app involves coordinating a lot of pieces; this
part of the book will help you become comfortable with Xcode. Along the way, we’ll
generate a simple working app through some hands-on tutorials.

• Chapter 6 tours Xcode and explains the architecture of the project, the collection
of files from which an app is generated.

• Chapter 7 is about nibs. A nib is a file containing a drawing of your interface.
Understanding nibs — knowing how they work and how they relate to your code
— is crucial to your use of Xcode and to proper development of just about any
app.

• Chapter 8 pauses to discuss the Xcode documentation and other sources of infor‐
mation on the API.

• Chapter 9 explains editing your code, testing and debugging your code, and the
various steps you’ll take on the way to submitting your app to the App Store.
You’ll probably want to skim this chapter quickly at first, returning to it as a
detailed reference later while developing and submitting an actual app.

CHAPTER 6

Anatomy of an Xcode Project

Xcode is the application used to develop an iOS app. An Xcode project is the source
for an app; it’s the entire collection of files and settings used to construct the app. To
create, develop, and maintain an app, it helps to know how to manipulate and navi‐
gate an Xcode project. You’ll want to know something about Xcode, and about the
nature and structure of Xcode projects and how Xcode shows them to you. That’s the
subject of this chapter.

The term “Xcode” is used in two ways. It’s the name of the application in which
you edit and build your app, and it’s the name of an entire suite of utilities that
accompanies it; in the latter sense, Instruments and the Simulator are part of
Xcode. This ambiguity should generally present little difficulty.

Xcode is a powerful, complex, and extremely large program. My approach in intro‐
ducing Xcode is to suggest that you adopt a kind of deliberate tunnel vision: if you
don’t understand something, don’t worry about it — don’t even look at it, and don’t
touch it, because you might change something important. Our survey of Xcode will
chart a safe, restricted, and essential path, focusing on aspects of Xcode that you most
need to understand immediately, and resolutely ignoring everything else.

For full information, study Apple’s own documentation (choose Help → Xcode Help);
it may seem overwhelming at first, but what you need to know is probably in there
somewhere. There are also entire books devoted to describing and explaining Xcode.

New Project
Even before you’ve written any code, an Xcode project is quite elaborate. To see this,
let’s make a new, essentially “empty” project; you’ll find that it isn’t empty at all.

1. Start up Xcode and choose File → New → Project.

313

2. The “Choose a template” dialog appears. The template is your project’s initial set
of files and settings. When you pick a template, you’re really picking an existing
folder full of files; this folder is hidden deep inside the Xcode bundle, and will
essentially be copied, with a few values filled in, in order to create your project.
So, in this case, select iOS; under Application, select the Single View App tem‐
plate. Click Next.

3. You are now asked to provide a name for your project (Product Name). Let’s call
our new project Empty Window.
In a real project, you should give some thought to the project’s name, as you’re
going to be living in close quarters with it. As Xcode copies the template folder,
it’s going to insert the project’s name in several places, including using it as the
name of the app. Thus, whatever you type at this moment is something you’ll be
seeing throughout your project. (You are not locked into the name of your
project forever, though, and there’s a separate setting allowing you to change at
any time the name of the app that it produces. I’ll talk later about name changes;
see “Renaming Parts of a Project” on page 349.)
Spaces are legal in the project name, the app name, and the various names of files
and folders that Xcode will generate automatically; and in the few places where
spaces are problematic (such as the bundle identifier, which I’ll discuss in a
moment), the name you type as the Product Name will have its spaces converted
to hyphens. But do not use any other punctuation in your project name! Such
punctuation can cause Xcode features to break in subtle ways.

4. Ignore the Team pop-up menu for now; I’ll discuss its significance in Chapter 9.
Ignore the Organization Name as well; it is used only in some automatically gen‐
erated code comments.

5. Note the Organization Identifier field. The first time you create a project, this
field will be blank, and you should fill it in. The goal here is to create a unique
string identifying you or your organization. The convention is to start the organi‐
zation identifier with com. and to follow it with a string (possibly with multiple
dot-components) that no one else is likely to use. For example, I use
com.neuburg.matt. Every app on a device or submitted to the App Store needs a
unique bundle identifier. Your app’s bundle identifier, which is shown in gray
below the organization identifier, will consist by default of the organization iden‐
tifier plus a version of the project’s name; if you give every project a unique name
within your personal world, the bundle identifier will uniquely identify this
project and the app that it produces. (You will be able to change the bundle iden‐
tifier manually later if necessary.)

6. The Language pop-up menu lets you choose between Swift and Objective-C. This
choice is not positively binding; it dictates the initial structure and code of the
project template, but you are free to add Swift files to an Objective-C project, or

314 | Chapter 6: Anatomy of an Xcode Project

Objective-C files to a Swift project. You can even start with an Objective-C
project and decide later to convert it completely to Swift. (See “Bilingual Targets”
on page 603.) For now, choose Swift.

7. For this example project, make sure Use Core Data, Include Unit Tests, and
Include UI Tests are not checked. Click Next.

8. You’ve now told Xcode how to construct your project. Basically, it’s going to copy
a template folder from somewhere deep within the Xcode application bundle. But
you need to tell it where to copy this template folder to. That’s why Xcode is now
presenting a Save dialog with a Create button. You are to specify the location of a
folder that is about to be created — the project folder for this project. The project
folder can go just about anywhere, and you can move it after creating it. I usually
create new projects on the Desktop.

9. Xcode also offers, through a checkbox, to create a git repository for your project.
(You might need to click Options to see the checkbox.) In real life, this can be a
great convenience (see Chapter 9), but for now, uncheck that checkbox. If you see
an Add To pop-up menu, leave it at the default, “Don’t add to any project or
workspace.” Click Create.

10. The Empty Window project folder is created on disk (on the Desktop, if that’s the
location you just specified), and the project window for the Empty Window
project opens in Xcode.

The project we’ve just created is a working project; it really does build an iOS app
called Empty Window. To see this, you can actually build the app — and run it! The
scheme and destination in the project window’s toolbar might be listed as Empty
Window → iPhone X or Empty Window → iPhone 8 Plus; that’s fine. (The scheme
and destination are actually pop-up menus, so you can click on them to change their
values if needed.) Choose Product → Run. After some delay, the Simulator applica‐
tion eventually opens and displays your app running — an empty white screen.

To build a project is to compile its code and assemble the compiled code,
together with various resources, into the actual app. Typically, if you want to
know whether your code compiles and your project is consistently and correctly
constructed, you’ll build the project (Product → Build). To run a project is to
launch the built app, in the Simulator or on a connected device; if you want to
know whether your code works as expected, you’ll run the project (Product →
Run), which automatically builds first if necessary.

The Project Window
An Xcode project embodies a lot of information about what files constitute the
project and how they are to be used when building the app, such as:

• The source files (your code) that are to be compiled

The Project Window | 315

Figure 6-1. The project window

• Any .storyboard or .xib files, graphically expressing interface objects to be instan‐
tiated as your app runs

• Any resources, such as icons, images, or sound files, that are to be part of the app
• All settings (instructions to the compiler, to the linker, and so on) that are to be

obeyed as the app is built
• Any frameworks that the code will need when it runs

A single Xcode project window presents all of this information, as well as letting you
access, edit, and navigate your code, plus reporting the progress and results of such
procedures as building or debugging an app and more. This window displays a lot of
information and embodies a lot of functionality! A project window is powerful and
elaborate; learning to navigate and understand it takes time. Let’s pause to explore
this window and see how it is constructed.

A project window has four main parts (Figure 6-1):

1. On the left is the Navigator pane. Show and hide it with View → Navigators →
Show/Hide Navigator (Command-0) or with the first View button at the right
end of the toolbar.

2. In the middle is the Editor pane (or simply “editor”). This is the main area of a
project window. A project window nearly always displays an Editor pane, and can
display multiple Editor panes simultaneously.

3. On the right is the Utilities pane. Show and hide it with View → Utilities →
Show/Hide Utilities (Command-Option-0) or with the third View button at the
right end of the toolbar.

316 | Chapter 6: Anatomy of an Xcode Project

4. At the bottom is the Debug pane. Show and hide it with View → Debug Area →
Show/Hide Debug Area (Command-Shift-Y) or with the second View button at
the right end of the toolbar.

All Xcode keyboard shortcuts can be customized; see the Key Bindings pane of
the Preferences window. Keyboard shortcuts that I cite are the defaults.

The Navigator Pane
The Navigator pane is the column of information at the left of the project window.
Among other things, it’s your primary mechanism for controlling what you see in the
main area of the project window (the editor). An important use pattern for Xcode is:
you select something in the Navigator pane, and that thing is displayed in the editor.

It is possible to toggle the visibility of the Navigator pane (View → Navigators →
Hide/Show Navigator, or Command-0); for example, once you’ve used the Navigator
pane to reach the item you want to see or work on in the editor, you might hide the
Navigator pane temporarily to maximize your screen real estate (especially on a
smaller monitor). You can change the Navigator pane’s width by dragging the vertical
line at its right edge.

The Navigator pane itself can display nine different sets of information; thus, there
are actually nine navigators. These are represented by the nine icons across its top; to
switch among them, use these icons or their keyboard shortcuts (Command-1,
Command-2, and so on). If the Navigator pane is hidden, pressing a navigator’s key‐
board shortcut both shows the Navigator pane and switches to that navigator.

Depending on your settings in the Behaviors pane of Xcode’s preferences, a navigator
might show itself automatically when you perform a certain action. For example, by
default, when you build your project, if warning messages or error messages are gen‐
erated, the Issue navigator may appear. This automatic behavior will not prove trou‐
blesome, because it is generally precisely the behavior you want, and if it isn’t, you can
change it; plus you can easily switch to a different navigator at any time.

Let’s begin experimenting immediately with the various navigators:

Project navigator (Command-1)
Click here for basic navigation through the files that constitute your project
(Figure 6-2). For example, in the Empty Window folder (the folder-like things in
the Project navigator are actually called groups), click AppDelegate.swift to view
its code in the editor.

At the top level of the Project navigator, with a blue Xcode icon, is the Empty
Window project itself; click it to view the settings associated with your project
and its targets. Don’t change anything here without knowing what you’re doing!
I’ll talk later in this chapter about what these settings are for.

The Project Window | 317

Figure 6-2. The Project navigator

The filter bar at the bottom of the Project navigator lets you limit what files are
shown; when there are many files, this is great for quickly reaching a file with a
known name. For example, try typing “delegate” in the filter bar search field.
Don’t forget to remove your filter when you’re done experimenting.

Once you’ve filtered a navigator, it stays filtered until you remove the filter —
even if you close the project! A common mistake is to filter a navigator, forget
that you’ve done so, fail to notice the filter (because you’re looking at the naviga‐
tor itself, not down at the bottom where the filter bar is), and wonder, “Hey,
where did all my files go?”

Source Control navigator (Command-2)
The Source Control navigator helps you manipulate how your project’s files are
handled through version control — especially git. I’ll discuss version control in
more detail in Chapter 9.

Symbol navigator (Command-3)
A symbol is a name, typically the name of a class or method. Among other things,
this can be useful for navigating your code. For example, highlight the first two
icons in the filter bar (the first two are blue, the third is dark), twist open the class
listings in the symbol navigator, and see how quickly you can reach your code’s
definition of AppDelegate’s applicationDidBecomeActive(_:) method.

Try highlighting the filter bar icons in various ways to see how the contents of the
Symbol navigator change. Type in the search field in the filter bar to limit what
appears in the Symbol navigator; for example, try typing “active” in the search
field, and see what happens.

Find navigator (Command-4)
This is a powerful search facility for finding text globally in your project. You can
also summon the Find navigator with Find → Find in Project (Command-Shift-
F). The words above the search field show what options are currently in force;

318 | Chapter 6: Anatomy of an Xcode Project

Figure 6-3. The Find navigator

they are pop-up menus, so click one to change the options. Try searching for
“delegate” (Figure 6-3). Click a search result to jump to it in your code.

Below the search field, at the left, is the current search scope. This limits what files
will be searched. Click it to see the Search Scopes panel. You can limit the search
to a group (folder) within your project. You can also define a new scope: click
New Scope to summon the scope configuration popover, where you can examine
your options. Scopes are defined per user, not per project; scopes that you create
here will appear in other projects.

You can type in the other search field, the one in the filter bar at the bottom, to
limit further which search results are displayed. (I’m going to stop calling your
attention to the filter bar now; every navigator has it in some form.)

Issue navigator (Command-5)
You’ll need this navigator primarily when your code has issues. This doesn’t refer
to emotional instability; it’s Xcode’s term for warning and error messages emitted
when you build your project. The Issue navigator can also display certain run‐
time issues (such as leaks, as I’ll explain in Chapter 9).

To see the Issue navigator in action, let’s give your code a buildtime issue. Navi‐
gate (as you already know how to do, in at least three different ways) to the file
AppDelegate.swift, and in the blank line after the last comment at the top of the
file’s contents, above the import line, type howdy. Build the project (Command-
B). Switch to the Issue navigator if it doesn’t appear automatically; in its Build‐
time pane, it displays some error messages, showing that the compiler is unable
to cope with this illegal word appearing in an illegal place. Click an issue to see it
within its file. In your code, issue “balloons” may appear to the right of lines con‐
taining issues.

Now that you’ve made Xcode miserable, select “howdy” and delete it; save and
build again, and your issues will be gone. If only real life were this easy!

(New in Swift 4.2, you can create a custom buildtime issue, either a compile error
or a warning, by starting a line with #error or #warning respectively followed by

The Project Window | 319

Figure 6-4. The Debug layout

a literal string in parentheses, like this: #warning("Fix this!"). This can be a
dramatic way to leave a note to whoever subsequently tries to compile this code
— possibly your future self.)

Test navigator (Command-6)
This navigator lists test files and individual test methods and permits you to run
your tests and see whether they succeeded. A test is code that isn’t part of your
app; rather, it calls a bit of your app’s code, or exercises your app’s interface, to see
whether things behave as expected. I’ll talk more about tests in Chapter 9.

Debug navigator (Command-7)
By default, this navigator will appear when your code is paused while you’re
debugging it. There is not a strong distinction in Xcode between running and
debugging; the milieu is the same. The difference is mostly a matter of whether
breakpoints are obeyed (more about that, and about debugging in general, in
Chapter 9).

To see the Debug navigator in action, you’ll need to give your code a breakpoint.
Navigate once more to the file AppDelegate.swift, select in the line that says
return true, and choose Debug → Breakpoints → Add Breakpoint at Current
Line to make a blue breakpoint arrow appear on that line. Run the project. By
default, as the breakpoint is encountered, the Navigator pane switches to the
Debug navigator, and the Debug pane appears at the bottom of the window. This
overall layout (Figure 6-4) will rapidly become familiar as you debug your
projects.

The Debug navigator starts with several numeric and graphical displays of profil‐
ing information (at a minimum, you’ll see CPU, Memory, Disk, and Network);

320 | Chapter 6: Anatomy of an Xcode Project

click one to see extensive graphical information in the editor. This information
allows you to track possible misbehavior of your app as you run it, without the
added complexity of running the Instruments utility (discussed in Chapter 9). To
toggle the visibility of the profiling information at the top of the Debug navigator,
click the “gauge” icon (to the right of the process’s name).

The Debug navigator also displays the call stack, with the names of the nested
methods in which a pause occurs; as you would expect, you can click on a
method name to navigate to it. You can shorten or lengthen the list with the first
button in the filter bar at the bottom of the navigator.

The Debug pane, which can be shown or hidden at will (View → Debug Area →
Hide/Show Debug Area, or Command-Shift-Y), consists of two subpanes:

The variables list (on the left)
The variables in scope for the selected method in the call stack at the point
where we are paused, along with their values.

The console (on the right)
Here the debugger displays text messages; that’s how you learn of exceptions
thrown by your running app, plus you can have your code deliberately send
you log messages describing your app’s progress and behavior. Such messages
are important, so keep an eye on the console as your app runs. You can also
use the console to enter commands to the debugger. This can often be a bet‐
ter way to explore values during a pause than the variables list.

Either the variables list or the console can be hidden using the two buttons at the
bottom right of the pane. The console can also be summoned by choosing View
→ Debug Area → Activate Console.

Breakpoint navigator (Command-8)
This navigator lists all your breakpoints. At the moment you have only one, but
when you’re actively debugging a large project with many breakpoints, you’ll be
glad of this navigator. Also, this is where you create special breakpoints (such as
symbolic breakpoints), and in general it’s your center for managing existing
breakpoints. We’ll return to this topic in Chapter 9.

Report navigator (Command-9)
This navigator lists your recent major actions, such as building or running
(debugging) your project. Click a listing to see (in the editor) the report gener‐
ated when you performed that action. The report might contain information that
isn’t displayed in any other way, and also it lets you dredge up console messages
from the recent past (“What was that exception I got while debugging a moment
ago?”).

The Project Window | 321

Figure 6-5. Viewing a report

For example, by clicking on the listing for a successful build, we can see the steps
by which a build takes place (Figure 6-5). To reveal the full text of a step, click on
that step and then click the Expand Transcript button that appears at the far right
(and see also the menu items in the Editor menu).

When navigating by clicking in the Navigator pane, modifications to your click can
determine where navigation takes place. By default, Option-click navigates in an
assistant pane (discussed later in this chapter), and Option-Shift-click summons a lit‐
tle heads-up pane where you can specify where to navigate (a new window, a new tab,
or a new assistant pane). For the settings that govern these click modifications, see the
Navigation pane of Xcode’s preferences.

The Utilities Pane
The Utilities pane is the column at the right of the project window. It contains inspec‐
tors that provide information about the current selection or its settings; if those set‐
tings can be changed, this is where you change them. The Utilities pane’s importance
emerges mostly when you’re editing a .storyboard or .xib file (Chapter 7). But it can be
useful also while editing code, because Quick Help, a form of documentation (Chap‐
ter 8), is displayed here as well. To toggle the visibility of the Utilities pane, choose
View → Utilities → Hide/Show Utilities (Command-Option-0). You can change the
Utilities pane’s width by dragging the vertical line at its left edge.

What appears in the Utilities pane depends on what’s selected in the current editor.
For example:

A code file is being edited
The Utilities pane shows either the File inspector or Quick Help. Toggle between
them with the icons at the top of the Utilities pane, or with their keyboard short‐

322 | Chapter 6: Anatomy of an Xcode Project

cuts (Command-Option-1, Command-Option-2). The File inspector consists of
multiple sections, each of which can be expanded or collapsed by clicking its
header; I’ll give an example of using it in Chapter 9 when I talk about localiza‐
tion. Quick Help can be useful because it displays documentation (Chapter 8).

A .storyboard or .xib file is being edited
The Utilities pane shows, in addition to the File inspector and Quick Help, the
Identity inspector (Command-Option-3), the Attributes inspector (Command-
Option-4), the Size inspector (Command-Option-5), and the Connections
inspector (Command-Option-6). These can consist of multiple sections, each of
which can be expanded or collapsed by clicking its header.

Other forms of editing may cause other inspector combinations to appear here.

In earlier versions of Xcode, the Utilities pane also contained the Library; new in
Xcode 10, this is a separate floating window, summoned temporarily by choosing
View → Libraries → Show Library.

The Editor
In the middle of the project window is the editor. This is where you get actual work
done, reading and writing your code (Chapter 9), or designing your interface in
a .storyboard or .xib file (Chapter 7). The editor is the core of the project window. You
can hide the Navigator pane, the Utilities pane, and the Debug pane, but there is no
such thing as a project window without an editor (though you can cover the editor
completely with the Debug pane).

The editor provides its own form of navigation, the jump bar across the top. Not only
does the jump bar show you hierarchically what file is currently being edited, but also
it allows you to switch to a different file. In particular, each path component in the
jump bar is also a pop-up menu. These pop-up menus can be summoned by clicking
on a path component, or by using keyboard shortcuts (shown in the second section of
the View → Standard Editor submenu). For example, Control-4 summons a hierarch‐
ical pop-up menu, which can be navigated entirely with the keyboard, allowing you to
choose a different file in your project to edit. Moreover, each pop-up menu in the
jump bar also has a filter field; to see it, summon a pop-up menu from the jump bar
and start typing. Thus you can navigate your project even if the Project navigator isn’t
showing.

You can Command-click on a jump bar component to summon a menu showing
the corresponding file in the Finder and its hierarchy of enclosing folders.

The symbol at the left end of the jump bar (Control-1) summons a hierarchical menu
(the Related Items menu) allowing navigation to files related to the current one. What

The Project Window | 323

appears here depends not only on what file is currently being edited but on the cur‐
rent selection within that file. This is an extremely powerful and convenient menu,
and you should take time to explore it. You can navigate to related class files (Super‐
classes, Subclasses, and Siblings; siblings are classes with the same superclass); you
can view methods that call the currently selected method, or methods that are called
by the currently selected method. Choose Generated Interface to view the public API
of a Swift file or Objective-C header file as seen by Swift, or Original Source to switch
from a Swift generated interface to the Objective-C original.

The editor remembers the history of things it has displayed, and you can return to
previously viewed content with the Back button in the jump bar, which is also a pop-
up menu from which you can choose. Alternatively, choose Navigate → Go Back
(Command-Control-Left).

It is likely, as you develop a project, that you’ll want to edit more than one file simul‐
taneously, or obtain multiple views of a single file so that you can edit two areas of it
simultaneously. This can be achieved in three ways: assistants, tabs, and secondary
windows.

Assistants
You can split the editor into multiple editors by summoning an assistant pane. To
do so, click the second Editor button in the toolbar (“Show the Assistant editor”),
or choose View → Assistant Editor → Show Assistant Editor (Command-
Option-Return). Also, by default, adding the Option key to navigation opens an
assistant pane; for example, Option-click in the Navigator pane, or Option-
choose in the jump bar, to navigate by opening an assistant pane (or to navigate
in an existing assistant pane if there is one). To remove the assistant pane, click
the first Editor button in the toolbar, or choose View → Standard Editor → Show
Standard Editor (Command-Return), or click the X button at the assistant pane’s
top right.

You can determine how assistant panes are to be arranged. To do so, choose from
the View → Assistant Editor submenu. I usually prefer All Editors Stacked Verti‐
cally, but it’s purely a matter of taste. Once you’ve summoned an assistant pane,
you can split it further into additional assistant panes. To do so, click the Plus
button at the top right of an assistant pane. To dismiss an assistant pane, click the
X button at its top right.

An assistant pane can change intelligently what file it is editing in response to a
change in what file is being edited in the primary editor pane. This is called track‐
ing, and is what makes an assistant pane an assistant. To configure the tracking
behavior of an assistant pane, use the first component in its jump bar
(Control-4). This is the Tracking menu; it’s like the Related Items menu that I dis‐
cussed a moment ago, but selecting a category determines automatic tracking
behavior. If a category has multiple files, a pair of arrow buttons appears at the

324 | Chapter 6: Anatomy of an Xcode Project

right end of the assistant’s jump bar, with which you can navigate between them
(or use the second jump bar component, Control-5). You can turn off tracking by
setting the assistant’s first jump bar component to Manual.

Tabs
You can embody the entire project window interface as a tab. To do so, choose
File → New → Tab (Command-T), revealing the tab bar (just below the toolbar)
if it wasn’t showing already. Use of a tabbed interface will likely be familiar from
applications such as Safari. You can switch between tabs by clicking on a tab, or
with Command-Shift-}. At first, your new tab will look largely identical to the
original window from which it was spawned. But then you can make changes in a
tab — change what panes are showing or what file is being edited, for example —
without affecting any other tabs. Thus you can get multiple views of your project.
You can assign a descriptive name to a tab: double-click on a tab name to make it
editable.

Secondary windows
A secondary project window is similar to a tab, but it appears as a separate win‐
dow instead of a tab in the same window. To create one, choose File → New →
Window (Command-Shift-T). Alternatively, you can promote a tab to be a win‐
dow by dragging it right out of its current window.

There isn’t a strong difference between a tab and a secondary window; which you
use, and for what, will be a matter of taste and convenience. I find that the advan‐
tage of a secondary window is that you can see it at the same time as the main
window, and that it can be small. Thus, when I have a file I frequently want to
refer to, I might spawn off a secondary window displaying that file, sized fairly
small and without any panes other than the editor.

The Project File and Its Dependents
The first item in the Project navigator (Command-1) represents the project itself. (In
the Empty Window project that we created earlier in this chapter, it is called Empty
Window.) Hierarchically dependent upon it are items that contribute to the building
of the project. Many of these items, as well as the project itself, correspond to items
on disk in the project folder.

To survey this correspondence, let’s view our Empty Window project in two ways
simultaneously — in the Project navigator in the Xcode project window, and in the
project folder in a Finder window. Select the project listing in the Project navigator
and choose File → Show in Finder. The Finder displays the contents of your project
folder (Figure 6-6).

In the Finder, the most important thing in the project folder is Empty Window.xcode‐
proj. This is the project file, corresponding to the project listed first in the Project nav‐

The Project File and Its Dependents | 325

Figure 6-6. The Project navigator (Xcode) and the project folder (Finder)

igator. All Xcode’s knowledge about your project — what files it consists of and how
to build the project — is stored in this file. To open a project from the Finder, double-
click the project file. Alternatively, you can drag the project folder onto Xcode’s icon
(in the Finder, in the Dock, or in the application switcher) and Xcode will locate the
project file and open it for you.

What’s In the Project Folder
Recall that group is the technical term for the folder-like objects shown in the Project
navigator. Let’s consider how the groups and files displayed hierarchically down from
the project in the Project navigator correspond to reality on disk as portrayed in the
Finder (Figure 6-6):

• The Empty Window group corresponds directly to the Empty Window folder on
disk. Groups in the Project navigator don’t necessarily correspond to folders on
disk in the Finder, and folders on disk in the Finder don’t necessarily correspond
to groups in the Project navigator. But in this case, there is such a correspond‐
ence!

• Files within the Empty Window group, such as AppDelegate.swift, correspond to
real files on disk that are inside the Empty Window folder. If you were to create
additional code files (which, in real life, you would almost certainly do in the
course of developing your project), you would likely put them in the Empty Win‐
dow group in the Project navigator, and they, too, would then be in the Empty
Window folder on disk. (That, however, is not a requirement; your files can live
anywhere and your project will still work fine.)

• Two files in the Empty Window group, Main.storyboard and LaunchScreen.story‐
board, appear in the Finder inside a folder that doesn’t visibly correspond to any‐
thing in the Project navigator, called Base.lproj. This arrangement has to do with
localization, which I’ll discuss in Chapter 9.

• The item Assets.xcassets in the Project navigator corresponds to a specially struc‐
tured folder Assets.xcassets on disk. This is an asset catalog; you add resources to

326 | Chapter 6: Anatomy of an Xcode Project

the asset catalog in Xcode, which maintains that folder on disk for you. I’ll talk
more about the asset catalog later in this chapter, and in Chapter 9.

• The Products group and its contents don’t correspond to anything in the project
folder. Xcode generates a reference to the executable bundle generated by build‐
ing each target in your project, and by convention these references appear in the
Products group.

Now that you have inspected the contents of a typical project folder, you should have
little need to open a project folder ever again, except in order to double-click the
project file to open the project. You should not manipulate the contents of a project
folder by way of the Finder in any manner whatsoever. Instead, manipulate the
project in the project window. The project expects things in the project folder to be a
certain way; if you make any alterations to the project folder directly in the Finder,
behind the project’s back, you can upset those expectations and break the project.
When you work in the project window, it is Xcode itself that makes any necessary
changes in the project folder, and all will be well.

Groups
Feel free, as you develop your project and add files to it, to add further groups to the
Project navigator. The purpose of groups is to make the Project navigator work con‐
veniently for you. For example, if some of your code files have to do with a login
screen that your app sometimes presents, you might clump them together in a Login
group. If your app is to contain some sound files, you might put them into a Sounds
group. And so on.

A group might or might not correspond to a folder on disk in the project folder.
There’s a visual distinction: a group that corresponds to a folder on disk is a folder-
linked group, and has a solid folder icon, like the Empty Window group in Figure 6-6;
a group plain and simple exists purely within the Project navigator, and has a marked
folder icon, like the Products group in Figure 6-6. You’ll encounter this distinction
when creating a group, when using a group, and when renaming a group:

Creating a group
When you make a new group, there’s a choice of menu items; for example, in the
contextual menu, you might see New Group and New Group With Folder. (Con‐
fusingly, the choice will sometimes be New Group and New Group Without
Folder.) One creates a group plain and simple; the other creates a folder-linked
group.

Using a group
When you place a file into a folder-linked group, it goes into the corresponding
folder on disk (like the contents of the Empty Window folder in Figure 6-6).

The Project File and Its Dependents | 327

When you place a file into a group plain and simple, it’s a little unclear where it
will go on disk, but generally it will be at the top level of the project folder.

Renaming a group
To rename a group, select it in the Project navigator and press Return to make
the name editable. When you rename a folder-linked group, the folder on disk is
renamed as well.

The Target
A target is a collection of parts along with rules and settings for how to build a prod‐
uct from them. Whenever you build, what you’re really building is a target (possibly
more than one target).

Select the Empty Window project at the top of the Project navigator, and you’ll see
two things on the left side of the editor (Figure 6-7): the project itself, and a list of
your targets. Our Empty Window project comes with one target — the app target,
called Empty Window (just like the project itself). The app target is the target that
you use to build and run your app. Its settings are the settings that tell Xcode how
your app is to be built; its product is the app itself.

Under certain circumstances, you might add further targets to a project:

• You might want to perform unit tests or interface tests; to do so, you’d add a tar‐
get. (I’ll talk more about testing in Chapter 9.)

• You might write a framework as part of your iOS app; with a custom framework,
you can factor common code into a single locus, and you can configure its pri‐
vacy details as a namespace. A custom framework needs to be built, so it, too, is a
target. (I’ll talk more about frameworks later in this chapter.)

• You might write an application extension, such as a today extension (content to
appear in the notification center) or a photo editing extension (custom photo
editing interface to appear in the Photos app). Those, too, are targets.

The project name and the list of targets can appear in two ways (Figure 6-7): either as
a column on the left side of the editor, or, if that column is collapsed to save space, as
a pop-up menu at the top left of the editor. If, in the column or pop-up menu, you
select the project, you edit the project; if you select a target, you edit the target. I’ll use
those expressions a lot in later instructions.

Build Phases
Edit the app target and click Build Phases at the top of the editor (Figure 6-8). These
are the stages by which your app is built. The build phases are both a report to you on
how the target will be built and a set of instructions to Xcode on how to build the

328 | Chapter 6: Anatomy of an Xcode Project

Figure 6-7. Two ways of showing the project and targets

Figure 6-8. The app target’s build phases

target; if you change the build phases, you change the build process. Click each build
phase to see a list of the files in your target to which that build phase will apply.

Two of the build phases have contents. The meanings of these build phases are pretty
straightforward:

Compile Sources
Certain files (your code) are compiled, and the resulting compiled code is copied
into the app.

This build phase typically applies to all of the target’s .swift files. Sure enough, it
currently contains ViewController.swift and AppDelegate.swift. If you add a new
Swift file to your project (typically in order to declare another class), you’ll spec‐
ify that it should be part of the app target, and it will automatically be added to
the Compile Sources build phase.

The Target | 329

Copy Bundle Resources
Certain files are copied into the app, so that your code or the system can find
them there when the app runs.

This build phase currently applies to the asset catalog; any resources you add to
the asset catalog will be copied into your app as part of the catalog. It also applies
to your launch storyboard file, LaunchScreen.storyboard, and your app’s interface
storyboard file, Main.storyboard.

Copying doesn’t necessarily mean making an identical copy. Certain types of file
are automatically treated in special ways as they are copied into the app bundle.
For example, copying the asset catalog means that icons in the catalog are written
out to the top level of the app bundle, and that the asset catalog itself is trans‐
formed into a .car file; copying a .storyboard file means that it is transformed into
a .storyboardc file, which is itself a bundle containing nib files.

You can alter these lists manually, and sometimes you may need to do so. For
instance, if something in your project, such as a sound file, is not in Copy Bundle
Resources and you want it copied into the app during the build process, drag it from
the Project navigator into the Copy Bundle Resources list, or (easier) click the Plus
button beneath the Copy Bundle Resources list to get a helpful dialog listing every‐
thing in your project. Conversely, if something in your project is in the Copy Bundle
Resources list and you don’t want it copied into the app, delete it from the list; this
will not delete it from your project, from the Project navigator, or from the Finder,
but only from the list of things to be copied into your app.

Build Settings
Build phases are only one aspect of how a target knows how to build the app. The
other aspect is build settings. To see them, edit the target and click Build Settings at
the top of the editor (Figure 6-9). Here you’ll find a long list of settings, most of
which you’ll never touch. Xcode examines this list in order to know what to do at var‐
ious stages of the build process. Build settings are the reason your project compiles
and builds the way it does.

You can determine what build settings are displayed by clicking Basic or All. The set‐
tings are combined into categories, and you can close or open each category heading
to save room. To locate a setting quickly based on something you already know about
it, such as its name, use the search field at the top right to filter what settings are
shown.

You can determine how build settings are displayed by clicking Combined or Levels;
in Figure 6-9, I’ve clicked Levels, in order to discuss what levels are. It turns out that
not only does a target contain values for the build settings, but the project also con‐
tains values for the same build settings; furthermore, Xcode has certain built-in

330 | Chapter 6: Anatomy of an Xcode Project

Figure 6-9. Target build settings

default build setting values. The Levels display shows all of these levels at once, so you
can understand the derivation of the actual values used for every build setting.

To understand the chart, read from right to left. For example, the iOS default for the
Build Active Architecture Only setting’s Debug configuration (far right) is No. But
then the project comes along (second column from the right) and sets it to Yes. The
target (third column from the right) doesn’t change that setting, so the result (fourth
column from the right) is that the setting resolves to Yes.

You will rarely have occasion to manipulate build settings directly, as the defaults are
usually acceptable. Nevertheless, you can change build setting values, and this is
where you would do so. You can change a value at the project level or at the target
level. You can select a build setting and show Quick Help in the Utilities pane to learn
more about it; for further details on what the various build settings are, choose Help
→ Xcode Help and consult the build settings reference (click Show Topics and look
under Appendixes at the left).

Configurations
There are actually multiple lists of build setting values — though only one such list
applies when a particular build is performed. Each such list is called a configuration.
Multiple configurations are needed because you build in different ways at different
times for different purposes, and thus you’ll want certain build settings to take on dif‐
ferent values under different circumstances.

By default, there are two configurations:

Debug
This configuration is used throughout the development process, as you write and
run your app.

The Target | 331

Figure 6-10. Configurations

Figure 6-11. How configurations affect build settings

Release
This configuration is used for late-stage testing, when you want to check perfor‐
mance on a device, and for archiving the app to be submitted to the App Store.

Configurations exist at all because the project says so. To see where the project says
so, edit the project and click Info at the top of the editor (Figure 6-10). Note that
these configurations are just names. You can make additional configurations, and
when you do, you’re just adding to the list of names. The importance of configura‐
tions emerges only when those names are coupled with build setting values. Configu‐
rations can affect build setting values both at the project level and at the target level.

For example, return to the target build settings (Figure 6-9) and type “optim” into the
search field. Now you can look at the Optimization Level build setting (Figure 6-11).
The Debug configuration value for Optimization Level is None: while you’re develop‐
ing your app, you build with the Debug configuration, so your code is just compiled
line by line in a straightforward way. The Release configuration value for Optimiza‐
tion Level is Optimize for Speed. When your app is ready to ship, you build it with
the Release configuration, so the resulting binary is optimized for speed, which is
great for your users running the app on a device, but would be no good while you’re
developing the app because breakpoints and stepping in the debugger wouldn’t work
properly. Compilation may take longer when the compiler must optimize for speed,
but you won’t mind the delay, because you won’t do a Release build very often.

332 | Chapter 6: Anatomy of an Xcode Project

Figure 6-12. The scheme editor

To see another build setting that differs between configurations, type “mode” into the
search field and look at the Swift Compilation Mode build setting. For a Debug build,
it’s Incremental; this setting means that compilation is needed only for the files that
have changed since the last build. For a Release build, it’s Whole Module; this allows
the Swift compiler to survey all your code files at once, with improvements to the
underlying optimization — for example, the compiler may be able to deduce that cer‐
tain class members don’t need dynamic dispatch, thus making your code faster — but
again, at the likely expense of increased build times.

Schemes and Destinations
So far, I have not said how Xcode knows which configuration to use during a particu‐
lar build. This is determined by a scheme.

A scheme unites a target (or multiple targets) with a build configuration, with respect
to the purpose for which you’re building. A new project comes by default with a sin‐
gle scheme, named after the project. Thus the Empty Window project’s single scheme
is currently called Empty Window. To see it, choose Product → Scheme → Edit
Scheme. The scheme editor dialog opens (Figure 6-12).

On the left side of the scheme editor are listed various actions you might perform
from the Product menu. Click an action to see its corresponding settings in this
scheme.

The first action, the Build action, is different from the other actions, because it is
common to all of them — the other actions all implicitly involve building. The Build
action merely determines what target(s) will be built when each of the other actions is
performed. For our project this means that the app target is always to be built, regard‐
less of the action you perform.

The Target | 333

Figure 6-13. The Scheme pop-up menu

The second action, the Run action, determines the settings that will be used when you
build and run. The Build Configuration pop-up menu (in the Info pane) is set to
Debug. That explains where the current build configuration comes from: whenever
you build and run (Product → Run, or click the Run button in the toolbar), you’re
using the Debug build configuration and the build setting values that correspond to
it, because you’re using this scheme, and that’s what this scheme says to do when you
build and run.

You can edit an existing scheme, and this can be useful especially as a temporary
measure for doing certain kinds of specialized debugging. For example, the Run
action’s Diagnostics tab contains checkboxes that let you turn on the Address Sani‐
tizer or the Thread Sanitizer, each of which can be useful for tracking down certain
types of obscure runtime error. You’d check the checkbox, build and run, work on the
error, and then uncheck the checkbox again.

Alternatively, you can add a scheme. A typical approach is to duplicate an existing
scheme and then modify the duplicate. For example, instead of changing your main
scheme to turn on the Address Sanitizer temporarily, you might have a second
scheme where the Address Sanitizer is always turned on. You would then use the
Address Sanitizer by switching schemes.

Handy access to schemes and their management is through the Scheme pop-up menu
in the project window toolbar (Figure 6-13).

The Scheme pop-up menu is something you’re going to be using a lot. Your schemes
are all listed here, and thus you can easily switch between them before you build and
run. Hierarchically appended to each scheme are the destinations. A destination is
effectively a machine that can run your app. On any given occasion, you might want
to run the app on a physical device or in the Simulator — and, if in the Simulator, you
might want to specify that a particular type of device should be simulated. To make
that choice, pick a destination in the Scheme pop-up menu.

334 | Chapter 6: Anatomy of an Xcode Project

Destinations and schemes have nothing to do with one another. The presence of des‐
tinations in the Scheme pop-up menu is intended as a convenience, allowing you to
use this one pop-up menu to choose either a scheme or a destination, or both, in a
single move. To switch easily among destinations without changing schemes, click the
destination name in the Scheme pop-up menu. To switch among schemes, possibly
also determining the destination (as shown in Figure 6-13), click the scheme name in
the Scheme pop-up menu.

New in Xcode 10, you can open the Scheme pop-up menu with Control-0 (zero),
and the Destination pop-up menu with Control-Shift-0; the menu can then be
navigated with the keyboard, and is also filterable in the same way as the jump
bar (discussed earlier in this chapter).

Each simulated device has a system version that is installed on that device. At the
moment, all our simulated devices are running iOS 12; thus, there is no distinction to
be drawn, and the system version is not shown. However, you can download addi‐
tional SDKs (systems) in Xcode’s Components preference pane. If you do, and if your
app can run under more than one system version, you might also see a system version
listed in the Scheme pop-up menu as part of a Simulator destination name. For exam‐
ple, if you’ve installed the iOS 11.4 SDK, and if your project’s deployment target (see
Chapter 9) is 11.0, the Scheme pop-up menu in the project window toolbar might say
“iOS 12.0” or “iOS 11.4” after the destination name.

To manage destinations, choose Window → Devices and Simulators. This window is
where you govern what simulated devices exist (switch to the Simulators pane if nec‐
essary). Here you can create, delete, and rename simulated devices, and specify
whether a simulated device actually appears as a destination in the Scheme pop-up
menu.

From Project to Built App
Now that you know what’s in a project, I’m going to summarize how Xcode builds
that project into an app. Let’s first jump ahead and examine the end product — the
app itself.

What is an app anyway? It’s actually a special kind of folder called a package (and a
special kind of package called a bundle). The Finder normally disguises a package as a
file and does not dive into it to reveal its contents to the user, but you can bypass this
protection and investigate an app bundle with the Show Package Contents command.
By doing so, you can study the internal structure of your built app bundle.

We’ll use the Empty Window app that we built earlier as a sample minimal app to
investigate. You’ll have to locate it in the Finder; by default, it should be somewhere in
your user ~/Library/Developer/Xcode/DerivedData folder, as shown in Figure 6-14.

From Project to Built App | 335

Figure 6-14. The built app, in the Finder

Figure 6-15. Contents of the app package

In the Finder, Control-click the Empty Window app, and choose Show Package Con‐
tents from the contextual menu. Here you can see the results of the build process
(Figure 6-15).

Think of the app bundle as a transformation of the project folder. Here are some of
the things it contains, and how they relate to what’s in the project folder:

336 | Chapter 6: Anatomy of an Xcode Project

Empty Window
Our app’s compiled code. The build process has compiled ViewController.swift
and AppDelegate.swift into this single file, our app’s binary. This is the heart of
the app, its actual executable material.

Main.storyboardc
Our app’s interface storyboard file. The project’s Main.storyboard is where our
app’s interface comes from — in this case, an empty white view occupying the
entire window. The build process has compiled Main.storyboard into a tighter
format, resulting in a .storyboardc file, which is actually a bundle of nib files to be
loaded as required while the app runs. One of these nib files, loaded as our app
launches, will be the source of the hitherto empty view displayed in the interface.
Main.storyboardc sits in the same Base.lproj subfolder as Main.storyboard does in
the project folder; as I said earlier, this folder structure has to do with localization
(to be discussed in Chapter 9).

LaunchScreen.storyboardc
Our app’s launch screen file. This file, which is the compiled version of
LaunchScreen.storyboard, contains the interface that will be displayed briefly dur‐
ing the time it takes for our app to launch.

Assets.car, AppIcon60x60@2x.png
An asset catalog and an icon file. In preparation for this build, I added an icon
image to the original asset catalog, Assets.xcassets. The build process has com‐
piled this file, resulting in a compiled asset catalog file (.car) containing any
resources that have been added to the catalog; at the same time, the icon file has
been written out to the top level of the app bundle.

Info.plist
A configuration file in a strict text format (a property list file). It is derived from,
but is not identical to, the project’s Info.plist. It contains instructions to the system
about how to treat and launch the app. For example, the project’s Info.plist has a
calculated bundle name derived from the product name, $(PRODUCT_NAME); in
the built app’s Info.plist, this calculation has been performed, and the value reads
Empty Window, which is why our app is labeled “Empty Window” on the device.
Also, in conjunction with the asset catalog writing out our icon file to the app
bundle’s top level, a setting has been added to the built app’s Info.plist telling the
system the name of that icon file, so that the system can find it and display it as
our app’s icon.

Frameworks
A number of frameworks have been added to the built app. Our app uses Swift;
these frameworks contain the entirety of the Swift language! Other frameworks
used by our app are built into the system, but not Swift. This packaging of the

From Project to Built App | 337

Swift frameworks into the app bundle permits Apple to evolve the Swift language
rapidly and independently of any system version, and allows Swift to be back‐
ward compatible to older systems. The downside is that these frameworks
increase the size of our app by several megabytes; starting in Swift 5, however, the
Swift language frameworks will become part of the system, and Swift apps will no
longer need to include them.

In real life, an app bundle may contain more files, but the difference will be mostly
one of degree, not kind. For example, our project might have additional .storyboard
or .xib files, additional frameworks, or additional resources such as sound files. All of
these would make their way into the app bundle. In addition, an app bundle built to
run on a device will contain some security-related files.

You are now in a position to appreciate, in a general sense, how the components of a
project are treated and assembled into an app, and what responsibilities accrue to
you, the programmer, in order to ensure that the app is built correctly. The rest of this
section outlines what goes into the building of an app from a project.

Build Settings
We have already talked about how build settings are determined. Xcode itself, the
project, and the target all contribute to the resolved build setting values, some of
which may differ depending on the build configuration. You, the programmer, will
have specified a scheme before building; the scheme determines the build configura‐
tion, meaning the specific set of build setting values that will apply as this build
proceeds.

Property List Settings
Your project contains a property list file that will be used to generate the built app’s
Info.plist file. The file in the project does not have to be named Info.plist! The app tar‐
get knows what file it is because it is specified in the Info.plist File build setting. For
example, in our project, the value of the app target’s Info.plist File build setting has
been set to Empty Window/Info.plist. (Take a look at the build settings and see!)

The property list file is a collection of key–value pairs. You can edit it, and you may
need to do so. There are three main ways to edit your project’s Info.plist:

• Select the Info.plist file in the Project navigator and edit in the editor. By default,
most of the key names (and some of the values) are displayed descriptively, in
terms of their functionality; for example, it says “Bundle name” instead of the
actual key, which is CFBundleName. To view the actual keys, click in the editor and
then choose Editor → Show Raw Keys & Values, or use the contextual menu.
In addition, you can see and edit the Info.plist file in its true XML form: Control-
click the Info.plist file in the Project navigator and choose Open As → Source

338 | Chapter 6: Anatomy of an Xcode Project

Code from the contextual menu. (But editing an Info.plist as raw XML is risky,
because if you make a mistake you can invalidate the XML, causing things to
break with no warning.)

• Edit the target, and switch to the Info pane. The Custom iOS Target Properties
section shows effectively the same information as editing the Info.plist in the
editor.

• Edit the target, and switch to the General pane. Some of the settings here are
effectively ways of editing the Info.plist. For example, when you click a Device
Orientation checkbox here, you are changing the value of the “Supported inter‐
face orientations” key in the Info.plist. (Other settings here are effectively ways of
editing build settings. For example, when you change the Deployment Target in
the Deployment Info section, you are changing the value of the iOS Deployment
Target build setting.)

Some values in the project’s Info.plist are processed at build time to transform them
into their final values in the built app’s Info.plist. For example, the “Executable file”
key’s value in the project’s Info.plist is $(EXECUTABLE_NAME); for this will be substitu‐
ted the value of the EXECUTABLE_NAME build environment variable, supplied by Xcode
at build time. Also, some additional key–value pairs are injected into the Info.plist
during processing.

For a complete list of the possible keys and their meanings, consult Apple’s Informa‐
tion Property List Key Reference in the documentation archive (see Chapter 8). I’ll talk
more in Chapter 9 about some Info.plist settings that you’re particularly likely to edit.

Nib Files
A nib file is a file with the extension .nib containing a description of a piece of user
interface in a compiled format. Every app that you write is likely to contain at least
one nib file. You prepare these nib files by editing a .storyboard or .xib file graphically
in Xcode; in effect, you are designing some objects that you want instantiated when
the app runs and the nib file loads.

A nib file is generated during the build process by compilation either from a .xib file,
which results in a single nib file, or from a .storyboard file, which results in a .story‐
boardc bundle containing multiple nib files. This compilation takes place by virtue of
the .storyboard or .xib file being listed in the app target’s Copy Bundle Resources build
phase.

Our Empty Window project generated from the Single View App template contains
an interface .storyboard file called Main.storyboard. This one file is subject to special
treatment as the app’s main storyboard, because it is pointed to in the Info.plist file by
the key “Main storyboard file base name” (UIMainStoryboardFile); examine the

From Project to Built App | 339

Figure 6-16. Options when adding a resource to a project

Info.plist file and see! The result is that as the app launches, nibs from this .storyboardc
bundle are loaded automatically to help create the initial interface.

I’ll talk more about the app launch process and the main storyboard later in this
chapter. See Chapter 7 for more about editing .storyboard and .xib files and how they
create instances when your code runs.

Additional Resources
Resources are ancillary files embedded in your app bundle, to be fetched as needed
when the app runs, such as images you want to display or sounds you want to play at
some point during your app’s lifetime. Retrieving such resources when your app runs
will usually be up to your code (or to the code implied by the loading of a nib file):
basically, the runtime simply reaches into your app bundle and pulls out the desired
resource. In effect, your app bundle is being treated as a folder full of extra stuff.

There are two ways to add resources to your project, corresponding to two different
places where they will end up in your app bundle:

The Project navigator
If you add a resource to the Project navigator, also ensuring that it appears in the
Copy Bundle Resources build phase, it is copied by the build process to the top
level of your app bundle.

An asset catalog
If you add a resource to an asset catalog, then when the asset catalog is copied
and compiled by the build process to the top level of your app bundle, the
resource will be inside it.

I’ll describe both ways of adding resources to your project.

Resources in the Project navigator
To add a resource to your project through the Project navigator, choose File → Add
Files to [Project], or drag the resource from the Finder into the Project navigator. A
dialog appears in which you make the following settings (Figure 6-16; you might have
to click Options to see them):

340 | Chapter 6: Anatomy of an Xcode Project

Destination
You should almost certainly check this checkbox (“Copy items if needed”). Doing
so causes the resource to be copied into the project folder. If you leave this check‐
box unchecked, your project will be relying on a file that’s outside the project
folder, where you might delete or change it unintentionally. Keeping everything
your project needs inside the project folder is far safer.

Added folders
This choice matters only if what you’re adding to the project is a folder; the dif‐
ference is in how the project references the folder contents:

Create groups
The folder name becomes the name of a folder-linked group within the
Project navigator. The folder contents appear in this group, but they are lis‐
ted individually in the Copy Bundle Resources build phase, so by default
they will all be copied individually to the top level of the app bundle.

Create folder references
The folder is shown in blue in the Project navigator (a folder reference);
moreover, it is listed as a folder in the Copy Bundle Resources build phase,
meaning that the build process will copy the entire folder and its contents into
the app bundle, so that the resources inside the folder won’t be at the top
level of the app bundle, but in a subfolder within it. Such an arrangement can
be valuable if you have many resources and you want to separate them into
categories (rather than clumping them all at the top level of the app bundle)
or if the folder hierarchy among resources is meaningful to your app. The
code you write for accessing a resource will then have to be specific about
what subfolder of the app bundle contains that resource.

Add to targets
Checking the checkbox for a target causes the resource to be added to that target’s
Copy Bundle Resources build phase. Thus you will almost certainly want to
check it for the app target; why else would you be adding this resource to the
project? If this checkbox accidentally goes unchecked and you realize later that a
resource listed in the Project navigator needs to be added to the Copy Bundle
Resources build phase for a particular target, you can add it manually, as I
described earlier.

Resources in an asset catalog
Asset catalogs were invented originally to accommodate image files; they can now
contain any kind of data file. Keeping your resources in an asset catalog provides
many advantages over keeping them at the top level of the app bundle.

From Project to Built App | 341

Figure 6-17. Slots for an image set in the asset catalog

Take, for example, the problem of maintaining multiple versions of a single image
file. Because iOS apps can run on single-resolution, double-resolution, and triple-
resolution devices, you need up to three sizes of every image. In order to work prop‐
erly with the framework’s image-loading methods, such related image files must obey
a special naming convention — for example, listen.png, listen@2x.png, and lis‐
ten@3x.png. If you keep individual image files at the top level of the app bundle, get‐
ting those names right is up to you, and the resulting proliferation of image files in
the Project navigator can be overwhelming.

Asset catalogs solve the problem by assigning those special names automatically
behind the scenes. I edit the asset catalog, click the Plus button at the bottom of the
first column, and choose New Image Set. The result is an image set called Image with
slots for three images at three different sizes (Figure 6-17). I drag the images from the
Finder into their respective slots. The names of the original image files don’t matter!
The images are automatically copied into the project folder (inside the asset catalog
folder), and there is no need for me to specify the target membership of these image
files, because they are part of an asset catalog which already has correct target mem‐
bership. I can rename the image set to something more descriptive than Image — let’s
call it listen. The result is that my code can now load the correct image for the current
screen resolution by referring to it as "listen", without regard to the original name
(or extension) of the images.

Asset catalogs can draw many other distinctions about the target device; for example,
you can specify different resources for iPad vs. iPhone, or for different amounts of
memory that the device must have. They can hold other kinds of data files, such as
sound files (to be retrieved by means of the NSDataAsset class). And they can be used
as organizational devices: a single asset catalog can contain “folders” that subdivide
the assets between namespaces, and multiple asset catalogs can be distinguished by
putting them in different bundles.

Code Files
The build process knows what code files to compile to form the app’s binary because
they are listed in the app target’s Compile Sources build phase. In the case of our

342 | Chapter 6: Anatomy of an Xcode Project

Empty Window project, these are ViewController.swift and AppDelegate.swift. As
development of your app proceeds, you will probably add further code files to the
project, typically in order to declare a new object type, and they, too, will be part of
the app target by default, and so will be listed in its Compile Sources build phase.

When you choose File → New → File to create a new file, you can specify either the
Cocoa Touch Class template or the Swift File template. The Swift File template is little
more than a blank file: it imports the Foundation framework and that’s all. If your
goal is to subclass a Cocoa class, the Cocoa Touch Class template will usually be more
suitable; it imports the UIKit framework, plus Xcode will write the initial class decla‐
ration for you, and in the case of some commonly subclassed superclasses, such as
UIViewController and UITableViewController, it even provides stub declarations of
some of that class’s methods.

When the app launches, the system knows where to find the binary inside the app’s
bundle because the app bundle’s Info.plist file has an “Executable file” key (CFBundle-
Executable) whose value is the name of the binary; by default, the binary’s name
comes from the EXECUTABLE_NAME environment variable (such as “Empty Window”).

Frameworks and SDKs
A framework is a library of compiled code used by your code. Most of the frameworks
you are likely to use when programming iOS will be Apple’s built-in frameworks.
These frameworks are already part of the system on the device where your app will
run; they live in /System/Library/Frameworks on the device, though you can’t tell that
because there’s no way (normally) to inspect a device’s file hierarchy directly.

Your compiled code also needs to be connected to those frameworks when the project
is being built and run on your computer. To make this possible, the iOS
device’s /System/Library/Frameworks is duplicated on your computer, inside Xcode
itself. This duplicated subset of the device’s system is called an SDK (for “software
development kit”). Which SDK is used depends upon what destination you’re build‐
ing for.

Linking is the process of hooking up your compiled code with the frameworks that it
needs. The frameworks are the locus of all the stuff that every app might need to do;
they are Cocoa. That’s a lot of stuff, and a lot of compiled code. Your app gets to share
in the goodness and power of the frameworks because it is linked to them. Your code
works as if the framework code were incorporated into it. Yet your app is relatively
tiny; it’s the frameworks that are huge.

Linking takes care of connecting your compiled code to any needed frameworks, but
your code also needs to be able to compile in the first place. The frameworks are full
of classes (such as NSString) and methods (such as range(of:)) that your code will
call. To satisfy the compiler, the frameworks publish their API in header files, which

From Project to Built App | 343

your code can import. Thus, for example, your code can speak of NSString and can
call range(of:) because it imports the NSString header. Actually, what your code
imports is the UIKit header, which in turn imports the Foundation header, which in
turn imports the NSString header, which declares the range(of:) method.

Thus, using a framework is really a two-step process:

Import the framework’s header
Your code needs this information in order to compile successfully. Your code
imports a framework’s header by using the import keyword, specifying either
that framework or a framework that itself imports the desired framework. In
Swift, you specify a framework by using its module name.

Link to the framework
The compiled binary needs to be connected to the frameworks it will use while
running. Linking takes care of this, allowing your compiled code, when it runs, to
jump into a framework’s compiled code and so, in effect, melding them. There are
two ways in which this can happen:

The target’s Link Binary With Libraries build phase
Frameworks explicitly listed in the target’s Link Binary With Libraries build
phase are linked from the binary at build time.

Module-based autolinking
Swift uses modules, and modules can perform autolinking. In Objective-C,
modules and autolinking are optional features, and are governed by build
settings. But in Swift, use of modules and autolinking is automatic.

Swift’s use of modules simplifies the importing and linking process (as well as
improving compilation times). Our Empty Window project uses modules and auto‐
linking exclusively. It does not do any explicit linking. If you look in the app target’s
Link Binary With Libraries build phase, it is empty. The import UIKit statement at
the top of our project’s code files is sufficient to cause autolinking of all the frame‐
works it needs. The import UIKit statement also imports the header files and allows
your code to compile in the first place! Thus, in general, for you as a Swift program‐
mer, using a framework appears as a one-step process: you just write an import state‐
ment, and during the build process your code both compiles and links to the
framework.

You can also create your own framework as part of your project. A framework is a
module, so this can be a useful way to structure your code, as I described in Chapter 5
when discussing Swift privacy. To make a new framework:

1. Edit the target and choose Editor → Add Target.
2. Select iOS. Under Framework & Library, select Cocoa Touch Framework. Click

Next.

344 | Chapter 6: Anatomy of an Xcode Project

3. Give your framework a name; let’s call it Coolness. You can pick a language, but
I’m not sure this makes any difference, as no code files will be created. The
Project and Embed in Application pop-up menus should be correctly set by
default. Click Finish.

A new Coolness framework target is created in your project. If you now add a .swift
file to the Coolness target, and inside it define an object type and declare it public,
then, back in one of your main app target’s files, such as AppDelegate.swift, your code
can import Coolness and will then be able to see that object type and its public
members.

The App Launch Process
We come now to the final stage in the transformation of an Xcode project into a run‐
ning app — namely, how your built app actually gets up and running when it is
launched. Launching a built app is no mean feat! There’s still quite a lot that needs to
happen before your app can come to life and keep living on its own.

When you understand the app launch process, some remaining questions about the
contents and significance of parts of your project will be answered. For example, the
template gives your project an app delegate class (whose default name is App‐
Delegate); but what is an app delegate class, and why is it marked with the term
@UIApplicationMain? How do we get from your code’s classes to having some actual
instances that can do something useful, and what part does the storyboard play in the
creation of those initial instances? That’s what this section is about.

The Entry Point
Having located and loaded the binary (which, as I’ve already explained, is possible
because the name of the binary is specified in the Info.plist file), and having linked to
any needed frameworks, the system must call into the binary’s code to start it run‐
ning. But where? If this app were an Objective-C program, the answer would be clear.
Objective-C is C, so the entry point is the main function. Our project would typically
have a main.m file containing the main function, like this:

int main(int argc, char *argv[]) {
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([AppDelegate class]));
 }
}

The main function does two things:

• It sets up a memory management environment — the @autoreleasepool and the
curly braces that follow it.

The App Launch Process | 345

• It calls the UIApplicationMain function, which does the heavy lifting of helping
your app pull itself up by its bootstraps and get running.

Our app, however, is a Swift program. It has no main function! Instead, Swift has a
special attribute: @UIApplicationMain. You can see it in the AppDelegate.swift file,
attached to the declaration of the AppDelegate class:

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

This attribute essentially does everything that the Objective-C main.m file was doing:
it creates an entry point that calls UIApplicationMain to get the app started.

Under certain circumstances, you might like to remove the @UIApplicationMain
attribute and substitute a main file. That would be an unusual thing to do, but you are
free to do it. Your file can be an Objective-C file or a Swift file. Let’s say it’s to be a
Swift file. You would create a main.swift file and make sure it is added to the app tar‐
get. The name is crucial, because a file called main.swift gets a special dispensation: it
is allowed to put executable code at the top level of the file (Chapter 1)! The file
should contain essentially the Swift equivalent of the Objective-C call to
UIApplicationMain, like this:

import UIKit
UIApplicationMain(
 CommandLine.argc, CommandLine.unsafeArgv, nil,
 NSStringFromClass(AppDelegate.self)
)

Why might you do that sort of thing? Presumably, it would be because you want to do
other things in the main.swift file, or because you want to customize the call to
UIApplicationMain.

UIApplicationMain
Regardless of whether you write your own main.swift file or you rely on the Swift
@UIApplicationMain attribute, you are calling UIApplicationMain. This one func‐
tion call is the primary thing your app does. Your entire app is really nothing but a
single gigantic call to UIApplicationMain! Moreover, UIApplicationMain is respon‐
sible for solving some tricky problems as your app gets going. Where will your app
get its initial instances? What instance methods will initially be called on those
instances? Where will your app’s initial interface come from? UIApplicationMain to
the rescue!

Here’s what happens when your app launches and UIApplicationMain is called:

1. UIApplicationMain creates your app’s first instance — the shared application
instance, which subsequently is going to be accessible in your code as
UIApplication.shared. The third argument in the call to UIApplicationMain

346 | Chapter 6: Anatomy of an Xcode Project

specifies, as a string, what class the shared application instance should be an
instance of. If this argument is nil, as will usually be the case, the default class is
UIApplication.

2. UIApplicationMain also creates your app’s second instance — the application
instance’s delegate. Delegation is an important and pervasive Cocoa pattern,
described in detail in Chapter 11. It is crucial that every app you write have an
app delegate instance. The fourth argument in the call to UIApplicationMain
specifies, as a string, what class the app delegate instance should be. In our man‐
ual version of main.swift, that specification is NSStringFromClass(App-

Delegate.self). If we use the @UIApplicationMain attribute, it is part of the app
delegate class declaration, and means: “This is the app delegate class!”

3. If there is a main storyboard (as specified by the Info.plist file), UIApplication-
Main loads it and looks inside it to find the view controller that is designated as
this storyboard’s initial view controller (or storyboard entry point); it instantiates
this view controller, thus creating your app’s third instance, a UIViewController
subclass. In the case of our Empty Window project, as constructed for us from
the Single View App template, that view controller will be an instance of the class
called ViewController; the code file defining this class, ViewController.swift, was
also provided by the template.

4. If there is a main storyboard, UIApplicationMain now creates your app’s window
— this is your app’s fourth instance, an instance of UIWindow (or your app dele‐
gate can substitute an instance of a UIWindow subclass). It assigns this window
instance as the app delegate’s window property; it also assigns the initial view con‐
troller instance as the window instance’s rootViewController property. This
view controller is now the app’s root view controller.

5. UIApplicationMain now turns to the app delegate instance and starts calling
some of its code, such as application(_:didFinishLaunchingWithOptions:).
This is an opportunity for your own code to run! application(_:didFinish-
LaunchingWithOptions:) is a good place to put your code that initializes values
and performs startup tasks; but you don’t want anything time-consuming to hap‐
pen here, because your app’s interface still hasn’t appeared.

6. If there is a main storyboard, UIApplicationMain now causes your app’s interface
to appear. It does this by calling the UIWindow instance method makeKeyAnd-
Visible.

7. The window is now about to appear. This, in turn, causes the window to turn to
the root view controller and tell it to obtain its main view, which will occupy and
appear in the window. If this view controller gets its view from a .storyboard
or .xib file, that view nib file is now loaded; its objects are instantiated and initial‐
ized, and they become the objects of the initial interface: the view is placed into
the window, where it and its subviews are visible to the user. The view controller’s

The App Launch Process | 347

viewDidLoad is also called at this time — another early opportunity for your code
to run.

The app is now launched and running! It has an initial set of instances — at a mini‐
mum, the shared application instance, the window, the initial view controller, and the
initial view controller’s view and whatever interface objects it contains. Some of your
code has run, and we are now off to the races: UIApplicationMain is still running
(like Charlie on the M.T.A., UIApplicationMain never returns), and is just sitting
there, watching for the user to do something, maintaining the event loop, which will
respond to user actions as they occur. Henceforth, your app’s code will be called only
in response to Cocoa events (as I’ll explain in Chapter 11).

If your only purpose in adding a main.swift file would be to substitute a UIAppli‐
cation subclass as the shared application instance, there’s an easier way: in the
Info.plist, add the “Principal class” key and set its value to the string name of your
UIApplication subclass, and mark your declaration of that subclass with an
@objc(...) attribute giving it the same Objective-C name.

App Without a Storyboard
In my description of the app launch process, I used several times the phrase “if there
is a main storyboard.” In the Xcode app templates, such as the Single View App tem‐
plate that we used to generate the Empty Window project, there is a main storyboard.
It is possible, however, not to have a main storyboard. This way of structuring an app
project is unusual nowadays, but it is quite viable; in fact, some of my own apps have
no main storyboard.

Without a storyboard, things like creating a window instance, giving it a root view
controller, assigning it to the app delegate’s window property, and calling makeKeyAnd-
Visible on the window to show the interface, must be done by your code. To see
what I mean, make a new project starting with the Single View App template; let’s call
it Truly Empty. Now follow these steps:

1. Edit the target. In the General pane, select “Main” in the Main Interface field and
delete it (and press Tab to set this change).

2. In the Project navigator, delete Main.storyboard from the project.
3. Edit AppDelegate.swift; select and delete its entire code content.
4. To make a minimal working app, edit AppDelegate.swift in such a way as to recre‐

ate the AppDelegate class with just enough code to create and show the window,
as shown in Example 6-1.

348 | Chapter 6: Anatomy of an Xcode Project

Example 6-1. An App Delegate class with no storyboard

import UIKit
@UIApplicationMain
class AppDelegate : UIResponder, UIApplicationDelegate {
 var window : UIWindow?
 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplication.LaunchOptionsKey : Any]?)
 -> Bool {
 self.window = self.window ?? UIWindow()
 self.window!.backgroundColor = .white
 self.window!.rootViewController = ViewController()
 self.window!.makeKeyAndVisible()
 return true
 }
}

The result is a minimal working app with an empty white window. You can prove to
yourself that the app is working normally by editing ViewController.swift so that its
viewDidLoad method changes the main view’s background color:

override func viewDidLoad() {
 super.viewDidLoad()
 self.view.backgroundColor = .red
}

Run the app again; sure enough, the background is now red.

In between those two architectures — an app with a main storyboard, and an app
without a main storyboard — there is also a hybrid architecture. Here, you would
omit steps 1 and 2, but you would implement steps 3 and 4. When you do that,
Example 6-1 will still work, and so you end up with an app that has a main story‐
board, but ignores it at launch time: it creates its root view controller in code, overrid‐
ing the automatic behavior of UIApplicationMain.

The hybrid architecture approach is handy when you want to design your app’s inter‐
face in the storyboard, but you want the choice of root view controller to depend on
the circumstances at launch time. A common use case would be an app with a sign-in
screen that should appear when the user first launches the app, but shouldn’t appear
on any future launch once the user has signed in.

Renaming Parts of a Project
The name assigned to your project at creation time is used in many places throughout
the project, leading beginners to worry that they can never rename a project without
breaking something. But fear not!

Renaming Parts of a Project | 349

First of all, you don’t usually need to rename the project. Typically, what you want to
change is the name of the app — the name that the user sees on the device, associated
with this app’s icon. The project name is not that name! Indeed, the project name is
not a name that users will ever see. If all you want to do is change the name that
appears visibly associated with the app on the device, change (or create) the “Bundle
Display Name” in the Info.plist; you can do this most easily by editing the Display
Name text field at the top of the General pane when you edit the target (see “Property
List Settings” on page 463).

Still, you can rename a project, and it’s easy to do: select the project listing at the top
of the Project navigator, press Return to make its name editable, type the new name,
and press Return again. Xcode presents a dialog proposing to change some other
names to match, including the app target and the built app — and, by implication,
various relevant build settings. You should feel free to accept.

Changing the project name (or target name) does not automatically change the
scheme name to match. There is no particular need to do so, but you can change a
scheme name freely; choose Product → Manage Schemes and click on the scheme
name to make it editable.

You can change the name of the project folder in the Finder at any time, and you can
move the project folder in the Finder at will, because all build setting references to file
and folder items in the project folder are relative.

Be careful about changing the name of a folder-linked group. When you do that,
Xcode automatically changes the name of the corresponding folder on disk, but
does not change build settings, such as the Info.plist File build setting, that
depend upon the name of that folder. I regard this as a bug, because it means that
changing the name of a group can prevent your project from building — though
it usually isn’t hard to fix that problem manually (by changing those build
settings).

350 | Chapter 6: Anatomy of an Xcode Project

CHAPTER 7

Nib Management

In Chapter 4, I talked about ways of obtaining an instance. You can directly instanti‐
ate an object type:

let v = UIView()

Or you can obtain a reference to an already existing instance:

let v = self.view.subviews[0]

But there is a third way: you can load a nib. A nib is a file, in a special format, consist‐
ing of instructions for creating and configuring instances. To load a nib means, in
effect, to tell that nib to follow those instructions: it does create and configure those
instances.

My example of a UIView instance is apt, because a UIView is just the kind of instance
a nib is likely to create. Nibs are edited in Xcode using a graphical interface, much
like a drawing program. The idea is that you design some interface objects — mostly
instances of UIView and UIView subclasses — that you want to use in your app when
it runs. When your app does run, and when the moment comes where you actually
need those interface objects — typically because you’re about to display them in your
visible interface — you load the nib, the nib-loading process creates and configures
the instances, and you receive the instances and insert them into your app’s interface;
storyboards and view controllers can help to automate that process, but you can also
do it manually, in code.

You do not have to use nibs to create your interface objects. The loading of a nib does
nothing that you could not have done directly, in code. You can instantiate a UIView
or UIView subclass, you can configure it, you can construct a hierarchy of views, you
can place that view hierarchy into your interface — manually, step by step, entirely in
code. A nib is just a device for making that process simpler and more convenient.

351

Are Nibs Necessary?
Since nibs are ultimately just sources of instances, you might wonder whether it is
possible to do without them. Those same instances could be generated in code, so
wouldn’t it be possible to dispense with nibs altogether? The simple answer is: Yes, it
would. It’s quite possible to write a complex app that lacks a single .storyboard or .xib
file (I’ve done it). The practical question is one of balance. Most apps use nib files as a
source of at least some interface objects; but there are some aspects of interface
objects that can be customized only in code, and sometimes it’s easier to generate
those interface objects entirely in code at the outset. In real life your projects will
probably involve some code-generated interface objects and some nib-generated
interface objects (which may themselves be further modified or configured in code).

Beginners are often tempted to use nibs without knowing what they really are, how
they really work, or how to manipulate them in code — as if nibs were some kind of
impenetrable magic. But nibs are not magic, and they are not hard to understand.
Failure to understand nibs opens you up to all kinds of elementary, confusing mis‐
takes that can be avoided or corrected merely by grasping the basic facts outlined in
this chapter.

The name nib, or nib file, has nothing to do with fountain pens or bits of choco‐
late. The graphical nib-design aspect of Xcode, which I call the nib editor, used to
be (up through Xcode 3.2.x) a separate application called Interface Builder. (The
nib editor environment within Xcode is still often referred to as Interface
Builder.) The files created by Interface Builder were given the .nib file extension
as an acronym for “NeXTStep Interface Builder.” Nowadays, the files you edit
directly in the nib editor will be either .storyboard files or .xib files; when the app
is built, they are compiled into nib files (see Chapter 6).

The Nib Editor Interface
Let’s explore Xcode’s nib editor interface. In Chapter 6, we created a simple project,
Empty Window, directly from the Single View App template; it contains a storyboard
file, so we’ll use that. In Xcode, open the Empty Window project, locate Main.story‐
board in the Project navigator, and click to edit it.

Figure 7-1 shows the project window after selecting Main.storyboard. (I’ve made
some additional adjustments to make the screenshot fit on the page.) The interface
may be considered in four pieces:

1. The bulk of the editor is devoted to the canvas, where you physically design your
app’s interface. The canvas portrays views in your app’s interface and things that
can contain views. A view is an interface object, which draws itself into a rectan‐

352 | Chapter 7: Nib Management

Figure 7-1. Editing a nib file

gular area. The phrase “things that can contain views” is my way of including
view controllers, which are represented in the canvas even though they are not
drawn in your app’s interface; a view controller isn’t a view, but it has a view.

2. At the left of the editor is the document outline, listing the storyboard’s contents
hierarchically by name. It can be hidden by dragging its right edge or by clicking
the button at the bottom left corner below the canvas.

3. The inspectors in the Utilities pane let you edit details of the currently selected
object.

4. The Objects Library, available as a floating window (View → Libraries → Show
Library, Command-Shift-L), is your source of interface objects to be added to the
nib.

The Library floating window is new in Xcode 10. Formerly it occupied the lower
half of the Utilities pane.

Document Outline
The document outline portrays hierarchically the relationships between the objects in
the nib. This structure differs slightly depending on whether you’re editing a .story‐
board file or a .xib file.

The Nib Editor Interface | 353

Figure 7-2. A view controller selected in a storyboard

In a storyboard file, the primary constituents are scenes. A scene is, roughly speaking,
a single view controller, along with some ancillary material; every scene has a single
view controller at its top level.

A view controller isn’t an interface object, but it manages an interface object, namely
its view (or main view). When a view controller is shown in the nib editor, its main
view usually appears inside the view controller in the canvas. Thus, in Figure 7-1, the
large rectangle in the canvas is a view controller’s main view, and is actually inside a
view controller.

The view controller itself can be seen and selected in the document outline. It is also
represented as an icon in the scene dock, which appears above the view controller in
the canvas when anything in this scene is selected (Figure 7-2). Each view controller
in a storyboard file constitutes one scene. In the document outline, this scene is por‐
trayed as a hierarchical collection of names. At the top level of the document outline
are the scenes themselves. At the top level of each scene are (more or less) the same
objects that appear in the view controller’s scene dock: the view controller itself, along
with two proxy objects, the First Responder token and the Exit token. They are the
scene’s top-level objects.

Objects listed in the document outline are of two kinds:

Nib objects
The view controller, along with its main view and any subviews that we care to
place in that view, are real objects — potential objects that will be turned into
actual instances when the nib is loaded by the running app. Such real objects to
be instantiated from the nib are also called nib objects.

Proxy objects
The proxy objects (here, the First Responder and Exit tokens) do not represent
instances that will come from the nib when it is loaded. Rather, they represent
other objects, and are present to facilitate communication between nib objects
and those objects (I’ll give examples later in this chapter). You can’t create or
delete a proxy object; the nib editor shows them automatically.

(Also present in the document outline in Figure 7-2 is the Storyboard Entry Point.
This isn’t an object of any kind; it’s just an indication that this view controller is the

354 | Chapter 7: Nib Management

Figure 7-3. A .xib file containing a view

storyboard’s initial view controller, because Is Initial View Controller is checked in
the view controller’s Attributes inspector. It corresponds to the right-pointing arrow
seen at the left of this view controller in the canvas in Figure 7-1.)

Most nib objects listed in a storyboard’s document outline will depend hierarchically
upon a scene’s view controller. For example, in Figure 7-2, the view controller has a
main view; that view is listed as hierarchically dependent on the view controller. That
makes sense, because this view belongs to this view controller. Moreover, any further
interface objects that we drag into the main view in the canvas will be listed in the
document outline as hierarchically dependent on the view. That makes sense, too. A
view can contain other views (its subviews) and can be contained by another view (its
superview). One view can contain many subviews, which might themselves contain
subviews. But each view can have only one immediate superview. Thus there is a hier‐
archical tree of subviews contained by their superviews with a single object at the top.
The document outline portrays that tree — as an outline.

In a .xib file, there are no scenes. What would be, in a .storyboard file, the top-level
objects of a scene become, in a .xib file, the top-level objects of the nib itself; and the
top-level interface object of a .xib file is usually a view. A .xib file can contain a view
controller, but it usually doesn’t. A .xib file’s top-level view might well be a view that is
to serve as a view controller’s main view, but that’s not a requirement. Figure 7-3
shows a .xib file with a structure parallel to the single scene of Figure 7-2.

The document outline in Figure 7-3 lists three top-level objects. Two of them are
proxy objects, termed Placeholders in the document outline: the File’s Owner, and the
First Responder. The third is a nib object, a view; it will be instantiated when the nib
is loaded as the app runs. The document outline in a .xib file can’t be completely hid‐
den; instead, it is collapsed into a set of icons representing the nib’s top-level objects,
similar to a scene dock in a storyboard file, and often referred to simply as the dock
(Figure 7-4).

At present, the document outline may seem unnecessary, because there is very little
hierarchy; all objects in Figures 7-2 and 7-3 are readily accessible in the canvas. But
when a storyboard contains many scenes, and when a view contains many levels of
hierarchically arranged objects, you’re going to be very glad of the document outline,
which lets you survey the contents of the nib in a nice hierarchical structure, and
where you can locate and select the object you’re after. You can also rearrange the

The Nib Editor Interface | 355

Figure 7-4. The dock in a .xib file

hierarchy here; for example, if you’ve made a view a subview of the wrong superview,
you can reposition it within this outline by dragging its name.

You can also select objects using the jump bar at the top of the editor: the last
jump bar path component is a hierarchical pop-up menu similar to the docu‐
ment outline.

If the names of nib objects in the document outline seem generic and uninformative,
you can change them. The name is technically a label, and has no special meaning, so
feel free to assign nib objects labels that are useful to you. Select a nib object’s label in
the document outline and press Return to make it editable, or select the object and
edit the Label field in the Document section of the Identity inspector.

Canvas
The canvas provides a graphical representation of a view and its subviews, similar to
what you’re probably accustomed to in any drawing program. The canvas is scrollable
and automatically accommodates however many graphical representations it con‐
tains, and can also be zoomed (choose Editor → Zoom, or use the contextual menu or
the zoom buttons at the bottom of the canvas).

Our simple Empty Window project’s Main.storyboard contains just one scene, so the
only thing it represents in the canvas is the scene’s view controller with its main view
inside it. When the app runs, this view controller will be the window’s rootView-
Controller; therefore its view will occupy the entire window, and will effectively be
our app’s initial interface (see Chapter 6). That gives us an excellent opportunity to
experiment: any visible changes we make within this view should be visible when we
subsequently build and run the app. To prove this, let’s add a subview:

1. Start with the nib editor looking more or less like Figure 7-1.
2. Summon the Objects Library (Command-Shift-L, or click the Library button in

the project window toolbar). If it’s in icon view (a grid of icons without text),
click the button at the upper right to put it into list view. Click in the search field
(or press Tab) if necessary, and type “button” so that only button objects are
shown in the list. The Button object is listed first.

356 | Chapter 7: Nib Management

Figure 7-5. Dragging a button into a view

3. Drag the Button object from the Library into the view controller’s main view in
the canvas (Figure 7-5), and let go of the mouse.

A button is now present in the view in the canvas. The move we’ve just performed —
dragging from the Library into the canvas — is extremely characteristic; you’ll do it
often as you design your interface.

By default, the Library floating window is temporary; it vanishes as soon as you
drag something out of it. To make it remain onscreen after the drag, hold Option
when summoning the Library; the Library window’s toolbar then contains a
close button, and the window will remain open until you click that button.

Much as in a drawing program, the nib editor provides features to aid you in design‐
ing your interface. Here are some things to try:

• Select the button: resizing handles appear. (If you accidentally select it twice and
the resizing handles disappear, select the view and then the button again.)

• Using the resizing handles, resize the button to make it wider: dimension infor‐
mation appears.

• Drag the button near an edge of the view: a guideline appears, showing standard
spacing. Similarly, drag the button near the center of the view: a guideline shows
you when the button is centered.

• With the button selected, hold down the Option key and hover the mouse out‐
side the button: arrows and numbers appear showing the distance between the
button and the edges of the view. (If you accidentally clicked and dragged while
you were holding Option, you’ll now have two buttons. That’s because Option-
dragging an object duplicates it. Select the unwanted button and press Delete to
remove it.)

• Control-Shift-click on the button: a menu appears, letting you select the button
or whatever’s behind it (in this case, the view, as well as the view controller
because the view controller acts as a sort of top-level background to everything
we’re doing here).

The Nib Editor Interface | 357

Figure 7-6. The Empty Window app’s window is empty no longer

• Double-click the button’s title. The title becomes editable. Give it a new title, such
as “Hello.” Press Return to set the new title.

To prove that we really are designing our app’s interface, we’ll run the app:

1. Drag the button to a position near the top left corner of the canvas. (If you don’t
do this, the button could be off the screen when the app runs.)

2. Examine the Debug → Activate / Deactivate Breakpoints menu item. If it says
Deactivate Breakpoints, choose it; we don’t want to pause at any breakpoints you
may have created while reading the previous chapter.

3. Make sure the destination in the Scheme pop-up menu is an iPhone simulator.
4. Choose Product → Run (or click the Run button in the toolbar).

After a heart-stopping pause, the Simulator opens, and presto, our empty window is
empty no longer (Figure 7-6); it contains a button! You can tap this button with the
mouse, emulating what the user would do with a finger; the button highlights as you
tap it.

Inspectors and Libraries
In addition to the File and Quick Help inspectors, four inspectors appear specifically
in conjunction with the nib editor, and apply to whatever object is selected in the
document outline, dock, or canvas:

Identity inspector (Command-Option-3)
The first section of this inspector, Custom Class, is the most important. Here you
learn, and can change, the selected object’s class. Some situations in which you’ll
need to change the class of an object in the nib appear later in this chapter.

Attributes inspector (Command-Option-4)
Settings here correspond to properties and methods that you might use to config‐
ure the object in code. For example, selecting our view and choosing from the
Background pop-up menu in the Attributes inspector corresponds to setting the
view’s backgroundColor property in code. Similarly, selecting our button and
typing in the Title field is like calling the button’s setTitle(_:for:) method.

358 | Chapter 7: Nib Management

The Attributes inspector has sections corresponding to the selected object’s class
inheritance. For example, the UIButton Attributes inspector has three sections: in
addition to a Button section, there’s a Control section (because a UIButton is also
a UIControl) and a View section (because a UIControl is also a UIView).

Size inspector (Command-Option-5)
The X, Y, Width, and Height fields determine the object’s position and size within
its superview, corresponding to its frame property in code; you can equally set
these values in the canvas by dragging and resizing, but numeric precision can be
desirable.

Connections inspector (Command-Option-6)
I’ll demonstrate use of the Connections inspector later in this chapter.

The Library floating window is of particular importance when you’re editing a nib. It
can display two different sorts of thing:

Objects library (View → Libraries → Show Library, Command-Shift-L)
In this view, the Library is your source for objects — mostly interface objects —
that you want to add to the nib.

Media library (View → Libraries → Show Media Library, Command-Shift-M)
In this view, the Library displays media in your project, such as images that you
might want to drag into a UIImageView — or directly into your interface, in
which case a UIImageView is created for you.

Nib Loading
A nib file is a collection of potential instances — its nib objects. They become actual
instances only if, while your app is running, the nib is loaded. At that moment, the
nib objects contained in the nib are transformed into instances that are available to
your app.

This architecture is a source of great efficiency. A nib usually contains interface; inter‐
face is relatively heavyweight stuff. A nib isn’t loaded until it is needed; indeed, it
might never be loaded. Thus this heavyweight stuff won’t come into existence until
and unless it is needed. In this way, memory usage is kept to a minimum, which is
important because memory is at a premium in a mobile device. Also, loading a nib
takes time, so loading at launch time only just the nibs needed to generate the app’s
initial interface, and no more, makes launching faster.

There’s no such thing as “unloading” a nib. The job of the nib-loading process is to
deliver some instances; when a nib is loaded, those instances are delivered, and the
nib’s work, for that moment, is done. Henceforward it’s up to the running app to
decide what to do with the instances that just sprang to life. It must hang on to them

Nib Loading | 359

for as long as it needs them, and will let them go out of existence when they are no
longer needed.

Think of the nib file as a set of instructions for generating instances; whenever the nib
is loaded, those instructions are followed. The same nib file can thus be loaded multi‐
ple times, generating a new set of instances each time. Thus, a nib file is also a way of
making copies of a view hierarchy. For example, a nib file might contain a piece of
interface that you intend to use in several different places in your app. A nib file rep‐
resenting a single row of a table view might be loaded a dozen times in order to gen‐
erate a dozen visible rows of that table view.

When Nibs Are Loaded
Here are some of the chief circumstances under which a nib file is commonly loaded
while an app is running:

A view controller is instantiated from a storyboard
A storyboard is a collection of scenes. Each scene starts with a view controller.
When that view controller is needed, it is instantiated from the storyboard. This
means that a nib containing the view controller is loaded.

A view controller may be instantiated from a storyboard automatically. For
example, as your app launches, if it has a main storyboard, the runtime looks for
that storyboard’s initial view controller (entry point) and instantiates it (see Chap‐
ter 6). Similarly, a storyboard typically contains several scenes connected by
segues; when a segue is performed, the destination scene’s view controller is
instantiated.

It is also possible for your code to instantiate a view controller from a storyboard
manually. To do so, you start with a UIStoryboard instance, and then:

• You can instantiate the storyboard’s initial view controller, by calling
instantiateInitialViewController.

• You can instantiate any view controller whose scene is named within the
storyboard by an identifier string, by calling instantiateView-

Controller(withIdentifier:).

A view controller loads its main view from a nib
A view controller has a main view. But a view controller is a lightweight object
(it’s just some code), whereas its main view is a relatively heavyweight object.
Therefore, a view controller, when it is instantiated, lacks its main view. It obtains
its main view later, when that view is needed because it is to be placed into the
interface. (We say that a view controller loads its view lazily.) A view controller
can obtain its main view in several ways; one way is to load it from a nib.

360 | Chapter 7: Nib Management

If a view controller belongs to a scene in a storyboard, and if, as will usually be
the case, it contains its view in that storyboard’s canvas (as in our Empty Window
example project), then there are two nibs involved: the nib containing the view
controller, and the nib containing its main view. The nib containing the view
controller was loaded in order to instantiate the view controller, as I just
described; later, when that view controller instance needs its main view, the main
view nib is loaded automatically, and the whole interface connected with that
view controller springs to life.

Another fairly common configuration is that the view controller is instantiated in
your code, not from a storyboard, but by calling the UIViewController designa‐
ted initializer init(nibName:bundle:). The nibName: parameter tells this view
controller instance the name of a nib — in this case, a nib generated from a .xib
file in your project. Later, when the view controller needs its main view, it auto‐
matically loads that nib and extracts its main view from it.

Your code explicitly loads a nib file
If a nib file comes from a .xib file, your code can load it manually, by calling one
of these methods:

loadNibNamed(_:owner:options:)

A Bundle instance method. Usually, you’ll direct it to Bundle.main.

instantiate(withOwner:options:)

A UINib instance method. The nib in question was specified when UINib
was instantiated and initialized with init(nibName:bundle:).

Manual Nib Loading
In real life, most loading of nibs in your app will probably take place in one of the
first two ways I just described — a view controller nib is loaded automatically, or a
view controller loads its main view nib automatically. But the third way, where you
load a nib manually in code, is perfectly viable, and you might use it sometimes. And
because you do it manually, it’s the most educational way to understand the nib-
loading process. So let’s practice loading a nib manually.

First we’ll create and configure a .xib file in our Empty Window project:

1. In the Empty Window project, choose File → New → File and specify iOS → User
Interface → View. This will be a .xib file containing a UIView instance. Click
Next.

2. In the Save dialog, accept the default name, View, for the new .xib file. Click
Create.

Nib Loading | 361

Figure 7-7. Designing a view in a .xib file

3. We are now back in the Project navigator; our View.xib file has been created and
selected, and we’re looking at its contents in the editor. Those contents consist of
a single UIView.

4. Our view is too large for purposes of this demonstration, so select it and, in the
Attributes inspector, change the Size pop-up menu, under Simulated Metrics, to
Freeform. Handles appear around the view in the canvas; drag them to make the
view smaller. About 240×200 would be a good size.

5. Populate the view with some arbitrary subviews, dragging them into it from the
Library. You can also configure the view itself; for example, in the Attributes
inspector, change its background color (Figure 7-7).

Our goal now is to load this nib file, manually, in code, when the app runs. Edit View‐
Controller.swift and, in the viewDidLoad method body, insert this line of code:

Bundle.main.loadNibNamed("View", owner: nil)

Build and run the app. Hey, what happened? Where’s the designed view from
View.xib? Did our nib fail to load?

No. Our nib did not fail to load. We loaded it! But we’ve neglected to do everything
we need to do. There are three tasks you have to perform when you load a nib:

1. Load the nib.
2. Obtain the instances that it creates as it loads.
3. Do something with those instances.

We performed the first task — we loaded the nib — but we didn’t obtain any instances
from it. Thus, those instances were created and then vanished in a puff of smoke! In
order to prevent that, we need to capture those instances somehow. The call to load-
NibNamed(_:owner:) returns an array of the top-level nib objects instantiated from
the loading of the nib. Those are the instances we need to capture! We have only one

362 | Chapter 7: Nib Management

Figure 7-8. A nib-loaded view appears in our interface

top-level nib object — the UIView — so it is sufficient to capture the first (and only)
element of this array. Rewrite our code to look like this:

let arr = Bundle.main.loadNibNamed("View", owner: nil)!
let v = arr[0] as! UIView

We have now performed the second task: we’ve captured the instances that we created
by loading the nib. The variable v now refers to a brand-new UIView instance,
instantiated from the nib by loading it.

But still nothing seems to happen when we build and run the app, because we aren’t
doing anything with that UIView. That’s the third task. Let’s fix that by doing some‐
thing clear and dramatic with the UIView: we’ll put it into our interface! Rewrite our
code once again:

let arr = Bundle.main.loadNibNamed("View", owner: nil)!
let v = arr[0] as! UIView
self.view.addSubview(v)

Build and run the app. There’s our view! This proves that our loading of the nib
worked: we can see, in our running app’s interface, the view that we designed in the
nib (Figure 7-8).

Connections
A connection is a directed linkage in the nib editor running from one object to
another. I’ll call the two objects the source and the destination of the connection.
There are two kinds of connection: outlet connections and action connections. The
rest of this section describes them, explains how to create and configure them, and
discusses the nature of the problems that they are intended to solve.

Outlets
When a nib loads and its instances come into existence, those instances are useless
unless you can get a reference to them. In the preceding section, we solved that prob‐

Connections | 363

lem by capturing the array of top-level objects instantiated by the loading of the nib.
But there’s another way: use an outlet. This approach is more complicated — it
requires some advance configuration, which can easily go wrong. But it is also more
common, especially when nibs are loaded automatically.

An outlet is a connection that has a name, which is effectively just a string. When the
nib loads, something unbelievably clever happens. The source object and the destina‐
tion object are no longer just potential objects in a nib; they are now real, full-fledged
instances. At that moment, the outlet’s name is used to locate an instance property
with that same name in the outlet’s source object, and the destination object is assigned
to that property. The source object now has a reference to the destination object!

For example, suppose that the following four things are true:

• As defined in code, a Dog has a master instance property which is typed as
Person.

1. There’s a Dog object and a Person object in a nib.
2. We make an outlet from the Dog object to the Person object in the nib.
3. That outlet is named "master".

In that case, when the nib loads and the Dog instance and the Person instance are
created, that Person instance will be assigned as the value of that Dog instance’s
master property (Figure 7-9), just as if we had said dog.master = person in code.

As you can see, for an outlet to work, preparation must be performed in two different
places: in the class of the source object, where the instance property is declared, and
in the nib, where the outlet is created and configured. This is a bit tricky; Xcode does
try to help you get it right, but it is still possible to mess it up. (I will discuss ways of
messing it up, in detail, later in this chapter.)

The Nib Owner
Consider once again the view-loading example illustrated in Figure 7-8. We would
now like to implement that example using an outlet connection, instead of assigning
the nib-loaded view to a variable in code. But there is an important difference
between the Dog-and-Person example I just outlined and the view-loading example.
For our view controller to use an outlet to capture a reference to a view instance cre‐
ated from a nib, we need an outlet that runs from an object outside the nib (the view
controller) to an object inside the nib (the view).

That seems metaphysically impossible — but it isn’t. The nib editor cleverly permits
such an outlet to be created, using the nib owner object. Before I explain what the nib
owner is, I’ll tell you where to find the nib owner object in the nib editor:

364 | Chapter 7: Nib Management

Figure 7-9. How an outlet provides a reference to a nib-instantiated object

In a storyboard scene
In a storyboard scene, the nib owner is the top-level view controller. It is the first
object listed for that scene in the document outline, and the first object shown in
the scene dock.

In a .xib file
In a .xib file, the nib owner is a proxy object. It is the first object shown in the
document outline or dock, and is listed under Placeholders as the File’s Owner.

So exactly what is the nib owner object in the nib editor? It represents an instance that
already exists outside the nib at the time that the nib is loaded. When the nib is
loaded, the nib-loading mechanism doesn’t instantiate this object; it is already an
instance. Instead, the nib-loading mechanism substitutes the real, already existing
instance for the nib owner object, using it to fulfill any connections that involve the
nib owner.

But wait! How does the nib-loading mechanism know which real, already existing
instance to substitute for the nib owner object in the nib? It knows because it is told,
in one of two ways, at nib-loading time:

Connections | 365

Your code loads the nib
If your code loads a nib manually, either by calling loadNib-

Named(_:owner:options:) or by calling instantiate(withOwner:options:),
you specify an owner object as the owner: argument.

A view controller loads the nib
If a view controller instance loads a nib automatically in order to obtain its main
view, the view controller instance specifies itself as the owner object.

For example, return to our Dog object and Person object. Suppose that this time, the
following five things are true:

1. As defined in code, a Dog has a master instance property which is typed as
Person.

2. There is a Person nib object in our nib, but no Dog nib object. Instead, the nib
owner object in the nib is typed as being a Dog.

3. We configure an outlet in the nib from the Dog nib owner object to the Person
object.

4. That outlet is named "master".
5. When we load the nib, we specify an existing Dog instance as owner.

In that case, the nib-loading mechanism will match the Dog nib owner object with
the already existing actual Dog instance that we specified as owner, and will assign
the newly instantiated Person instance as that Dog instance’s master (Figure 7-10).

Return now to Empty View, and let’s reconfigure things to demonstrate this mecha‐
nism. We’re already loading the View nib in code in ViewController.swift. This code is
running inside a ViewController instance. We want to use that instance as the nib
owner. This will be a little tedious to configure, but bear with me, because under‐
standing how to use this mechanism is crucial. Here we go:

1. First, we need an instance property in ViewController. At the start of the body of
the ViewController class declaration, insert the property declaration, like this:

class ViewController: UIViewController {
 @IBOutlet var coolview : UIView!

The var declaration you already understand; we’re making an instance property
called coolview. It is declared as an Optional because it won’t have a “real” value
when the ViewController instance is created; it’s going to get that value through
the loading of the nib, later. The @IBOutlet attribute is a hint to Xcode to allow
us to create the outlet in the nib editor.

2. Edit View.xib. Our first step must be to ensure that the nib owner object is desig‐
nated as a ViewController instance. Select the File’s Owner proxy object and

366 | Chapter 7: Nib Management

Figure 7-10. An outlet from the nib owner object

switch to the Identity inspector. In the first text field, under Custom Class, set the
Class value as ViewController. Tab out of the text field and save.

3. Now we’re ready to make the outlet! In the document outline, hold down the
Control key and drag from the File’s Owner object to the View; a little line fol‐
lows the mouse as you drag. Release the mouse. A little HUD (heads-up display)
appears, listing possible outlets we are allowed to create (Figure 7-11). There are
two of them: coolview and view. Click coolview (not view!).

4. Finally, we need to modify our nib-loading code. We no longer need to capture
the top-level array of instantiated objects. That’s the whole point of this exercise!
Instead, we’re going to load the nib with ourself as owner. This will cause our

Connections | 367

Figure 7-11. Creating an outlet

coolview instance property to be set automatically, so we can proceed to use it
immediately:

Bundle.main.loadNibNamed("View", owner: self)
self.view.addSubview(self.coolview)

Build and run. It works! The first line loaded the nib and set our coolview instance
property to the view instantiated from the nib. Thus, the second line can display
self.coolview in the interface, because self.coolview now is that view.

Let’s sum up what we just did. Our preparatory configuration was a little tricky,
because it was performed in two places — in code, and in the nib:

1. In code, there must be an instance property in the class whose instance will act as
owner when the nib loads.

2. That property must be marked as @IBOutlet; otherwise, Xcode won’t permit us
to create the outlet in the nib editor later.

3. In the nib editor, the class of the nib owner object must be set to the class whose
instance will act as owner when the nib loads.

4. In the nib editor, an outlet must be created, with the same name as the property,
from the nib owner to some nib object. (This will be possible only if the other
configurations were correctly performed.)

If all those things are true, then, when the nib loads, if it is loaded with an owner of
the correct class, that owner’s instance property will be set to the outlet destination.

When you configure an outlet to an object in the nib, that object’s name as listed
in the document outline ceases to be generic (e.g. “View”) and takes on the name
of the outlet (e.g. “coolview”). This name is still just a label — it has no effect on
the operation of the outlet — and you can change it in the Identity inspector.

Automatically Configured Nibs
Now that we’ve created a nib owner outlet manually and loaded a nib manually, we
can understand and appreciate what happens when a view controller gets its main
view from a nib automatically. It all works exactly like what we just did! You can see

368 | Chapter 7: Nib Management

Figure 7-12. A view controller’s view outlet connection

this, for example, in our Empty Window project’s Main.storyboard, in the case of our
single scene consisting of ViewController and its main view:

• In our manual example, we started with an instance property in our nib owner
class. Well, ViewController is a UIViewController, and UIViewController has a
property — its view property! This is the property that needs to be set in order
for the view controller to obtain its main view.

• In our manual example, in the nib editor, we made sure that the nib owner
object’s class would be the class of the owner when the nib loads. Well, in
Main.storyboard, in the single scene, the View Controller object is the nib owner,
and it is of the correct class, namely ViewController (the class declared in the
ViewController.swift file). Look and see! Select the ViewController object in the
storyboard and examine its class in the Identity inspector.

• In our manual example, in the nib editor, we created an outlet with the same
name as the owner instance property, leading from the owner to the nib object.
Well, in Main.storyboard, the ViewController object is the view nib owner, and it
has an outlet called view which is connected to the main view. Look and see!
Select the view controller and examine its Connections inspector (Figure 7-12).

Thus, the storyboard has already been configured in a manner exactly parallel to how
we configured View.xib in the preceding section. And the result is exactly the same!
When the view controller needs its view, it loads the view nib with itself as owner, the
nib-loading process sees the connected view outlet, the view at the end of that outlet
is assigned to the view controller’s view property, and voilà! The view controller has
its main view.

Moreover, the view controller’s main view is then placed into the interface. And that
is why whatever we design in this view in the storyboard, such as putting into it a
button whose title is “Hello,” actually appears in the interface when the app runs.

Misconfigured Outlets
Setting up an outlet to work correctly involves several things being true at the same
time. You should expect that at some point in the future you will fail to get this right,
and your outlet won’t work properly. So be prepared! And don’t worry; this happens

Connections | 369

to everyone. The important thing is to recognize the symptoms so that you know
what’s gone wrong. We’re deliberately going to make things go wrong, so that we can
explore the main ways for an outlet to be incorrectly configured:

Outlet name doesn’t match a property name in the source class
Start with our working Empty Window example. Run the project to prove that all
is well. Now, in ViewController.swift, change the property name to badview:

@IBOutlet var badview : UIView!

In order to get the code to compile, you’ll also have to change the reference to
this property in viewDidLoad:

self.view.addSubview(self.badview)

The code compiles just fine. But when you run it, the app crashes with this mes‐
sage in the console: “This class is not key value coding-compliant for the key
coolview.”

That message is just a technical way of saying that the name of the outlet in the
nib (which is still coolview) doesn’t match the name of any property of the nib’s
owner when the nib loads — because we changed the name of that property to
badview and thus wrecked the configuration. In effect, we had everything set up
correctly, but then we went behind the nib editor’s back and removed the corre‐
sponding instance property from the outlet source’s class. When the nib loads,
the runtime can’t match the outlet’s name with any property in the outlet’s source
— the ViewController instance — and we crash.

There are other ways to bring about this same misconfiguration. For example,
you could change things so that the nib owner is an instance of the wrong class.
You might do that in the nib editor, by selecting the nib owner and changing its
class in the Identity inspector. Alternatively, you might do it in code:

Bundle.main.loadNibNamed("View", owner: NSObject())

We made the owner a plain vanilla NSObject instance. The NSObject class has no
property with the same name as the outlet, so the app crashes when the nib loads,
complaining about the owner not being “key value coding-compliant.”

To change an outlet property’s name without breaking the connection from the
nib, select the property name in code and choose Editor → Refactor → Rename.

No outlet in the nib
Fix the problem from the previous example by changing both references to the
property name from badview back to coolview in ViewController.swift. Run the
project to prove that all is well. Now we’re going to mess things up at the other
end! Edit View.xib. Select the File’s Owner and switch to the Connections inspec‐

370 | Chapter 7: Nib Management

tor, and disconnect the coolview outlet by clicking the X at the left end of the
second cartouche. Run the project. We crash with this error message in the con‐
sole: “Fatal error: unexpectedly found nil while unwrapping an Optional value.”

We removed the outlet from the nib. So when the nib loaded, our ViewController
instance property coolview, which is typed as an implicitly unwrapped Optional
wrapping a UIView, was never set to anything. Thus, it kept its initial value, which
is nil. We then tried to use the implicitly unwrapped Optional by putting it into
the interface:

self.view.addSubview(self.coolview)

Swift tries to obey by unwrapping the Optional, but you can’t unwrap nil, so we
crash.

No view outlet
I can’t demonstrate this problem using a .storyboard file. What we’d like to do is
disconnect the view outlet in Main.storyboard, but the storyboard editor guards
against this. But if you could make this mistake, then trying to run the project
would result in a crash at launch time, with a console message complaining that
“the view outlet was not set.”

A nib that is to serve as the source of a view controller’s main view must have a
connected view outlet from the view controller (the nib owner object) to the
view. In a .xib file whose view is to function as a view controller’s main view, you
can make this mistake — usually by forgetting to connect the File’s Owner view
outlet to the view in the first place.

Deleting an Outlet
Deleting an outlet coherently — that is, without causing one of the problems
described in the previous section — involves working in several places at once, just as
creating an outlet does. I recommend proceeding in this order:

1. Disconnect the outlet in the nib.
2. Remove the outlet declaration from the code.
3. Attempt compilation and let the compiler catch any remaining issues for you.

Let’s suppose, for example, that you decide to delete the coolview outlet from the
Empty Window project. You would follow the same three-step procedure that I just
outlined:

1. Disconnect the outlet in the nib. To do so, edit View.xib, select the source object
(the File’s Owner proxy object), and disconnect the coolview outlet in the Con‐
nections inspector by clicking the X.

Connections | 371

2. Remove the outlet declaration from the code. To do so, edit ViewController.swift
and delete or comment out the @IBOutlet declaration line.

3. Now attempt to build the project; the compiler issues an error on the line refer‐
ring to self.coolview in ViewController.swift, because there is now no such
property. Delete or comment out that line, and build again to prove that all is
well.

More Ways to Create Outlets
Earlier, we created an outlet like this:

1. In a class file, we declared an @IBOutlet instance property in a class file.
2. In the nib editor, we control-dragged from the source to the destination in the

document outline and chose the desired outlet property from the HUD (heads-
up display).

Xcode provides many other ways to create outlets — too many to list here. I’ll survey
some of the most interesting. We’ll continue to use the Empty Window project and
the View.xib file. All of this works exactly the same way for a .storyboard file.

To prepare, delete the outlet in View.xib as I described in the previous section (if you
haven’t already done so). In ViewController.swift, create (or uncomment) the prop‐
erty declaration, and save:

@IBOutlet var coolview : UIView!

Now we’re ready to experiment:

Drag from source Connections inspector
You can drag from a circle in the Connections inspector in the nib editor to con‐
nect the outlet. In View.xib, select the File’s Owner and switch to the Connections
inspector. The coolview outlet is listed here, but it isn’t connected: the circle at its
right is open. Drag from the circle next to coolview to the UIView object in the
nib. You can drag to the view in the canvas or in the document outline. You don’t
need to hold the Control key as you drag from the circle, and there’s no HUD
because you’re dragging from a specific outlet, so Xcode knows which one you
mean.

Drag from destination Connections inspector
Now let’s make that same move the other way round. Delete the outlet in the nib.
Select the View and look at the Connections inspector. We want an outlet that has
this view as its destination: that’s a “referencing outlet.” Drag from the circle next
to New Referencing Outlet to the File’s Owner object. The HUD appears: click
coolview to make the outlet connection.

372 | Chapter 7: Nib Management

Drag from source HUD
You can summon a HUD that effectively is the same as the Connections inspec‐
tor. Let’s start with that HUD. Again delete the outlet in the Connections inspec‐
tor. Control-click the File’s Owner. A HUD appears, looking a lot like the
Connections inspector! Drag from the circle at the right of coolview to the
UIView.

Drag from destination HUD
Again, let’s make that same move the other way round. Delete the outlet in the
Connections inspector. Either in the canvas or in the document outline, Control-
click the view. There’s the HUD showing its Connections inspector. Drag from
the New Referencing Outlet circle to the File’s Owner. A second HUD appears,
listing possible outlets; click coolview.

Again, delete the outlet. Now we’re going to create the outlet by dragging between the
code and the nib editor. This will require that you work in two places at once: you’re
going to need an assistant pane (see Chapter 6). In the main editor pane, show View‐
Controller.swift. In the assistant pane, show View.xib, in such a way that the view is
visible.

Drag from property declaration to nib
Next to the property declaration in the code, in the gutter, is an empty circle.
Drag from that circle right across the barrier to the View in the nib editor
(Figure 7-13). You’ve done it! The outlet connection has been formed in the nib;
you can see this by looking at the Connections inspector, and also because, back
in the code, the circle in the gutter is now filled in.

You can hover over the filled circle, or click it, to learn what the outlet in the nib
is connected to. You can click the little menu that appears when you click in the
filled circle to navigate to the destination object.

Here’s one more way — the most amazing of all. Keep the two-pane arrangement
from the preceding example. Again, delete the outlet (you will probably need to use
the Connections inspector or HUD in the nib editor pane to do this). Also delete the
@IBOutlet line from the code! We’re going to create the property declaration and
connect the outlet, all in a single move!

Drag from nib to code
Control-drag from the view in the nib editor across the pane barrier to just inside
the body of the class ViewController declaration. A HUD offers to Insert Out‐
let or Outlet Collection (Figure 7-14). Release the mouse. A popover appears,
where you can configure the declaration to be inserted into your code. Configure
it as shown in Figure 7-15: you want an outlet, and this property should be
named coolview. Click Connect. The property declaration is inserted into your
code, and the outlet is connected in the nib, in a single move.

Connections | 373

Figure 7-13. Connecting an outlet by dragging from code to nib editor

Making an outlet by connecting directly between code and the nib editor is cool
and convenient, but don’t be fooled: there’s no such direct connection. There are
always, if an outlet is to work properly, two distinct and separate things — an
instance property in a class, and an outlet in the nib with the same name and
coming from an instance of that class. It is the identity of the names and classes
that allows the two to be matched at runtime when the nib loads. Xcode tries to
help you get everything set up correctly, but it is not in fact magically connecting
the code to the nib.

Outlet Collections
An outlet collection is an array instance property (in code) matched (in a nib) by mul‐
tiple connections to objects of the same type.

For example, suppose a class contains this property declaration:

@IBOutlet var coolviews: [UIView]!

The outcome is that, in the nib editor, with an instance of this class selected, the Con‐
nections inspector lists coolviews — not under Outlets, but under Outlet Collec‐
tions. This means that you can form multiple coolviews outlets, each one connected
to a different UIView object in the nib. When the nib loads, those UIView instances
become the elements of the array coolviews; the order of elements in the array is the
order in which the outlets were formed. The advantage of this arrangement is that
your code can refer to objects by number (the index into the array) instead of your
having to make a separate instance property for each one.

374 | Chapter 7: Nib Management

Figure 7-14. Creating an outlet by dragging from nib editor to code

Figure 7-15. Configuring a property declaration

Action Connections
An action connection, like an outlet connection, is a way of giving one object in a nib
a reference to another. But it’s not a property reference; it’s a message-sending
reference.

An action is a message emitted automatically by a Cocoa UIControl interface object
(a control), and sent to another object, when the user does something to it, such as
tapping the control. The various user behaviors that will cause a control to emit an
action message are called events. To see a list of possible events, look at the UICon‐
trol.Event documentation. For example, in the case of a UIButton, the user tapping
the button corresponds to the UIControl.Event.touchUpInside event.

For this architecture to work, the control object must know three things:

Control event
What control event to respond to.

Action
What message to send (i.e. what method to call) when that control event occurs.

Connections | 375

Target
What object to send that message to.

An action connection in a nib builds the knowledge of those three things into itself. It
has the control object as its source; its destination is the target; and you tell the action
connection, as you form it, what the control event and action message should be. To
form the action connection, you need first to configure the class of the destination
object so that it has a method suitable as an action message.

To experiment with action connections, we’ll need a UIControl object in a nib, such
as a button. You may already have such a button in the Empty Window project’s
Main.storyboard file. However, it’s probable that, when the app runs, we’ve been cov‐
ering the button with the view that we’re loading from View.xib. So first clear out the
ViewController class declaration body in ViewController.swift, so that there is no out‐
let property and no manual nib-loading code; this should be all that’s left:

class ViewController: UIViewController {
}

Now let’s arrange to use the view controller in our Empty Window project as a target
for an action message emitted by the button’s .touchUpInside event (meaning that
the button was tapped). We’ll need a method in the view controller that will be called
by the button when the button is tapped. To make this method dramatic and obvious,
we’ll have the view controller put up an alert window. Insert this method into the
ViewController.swift declaration body:

@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: "Howdy!", message: "You tapped me!", preferredStyle: .alert)
 alert.addAction(
 UIAlertAction(title: "OK", style: .cancel))
 self.present(alert, animated: true)
}

The @IBAction attribute is like @IBOutlet: it’s a hint to Xcode itself, asking Xcode to
make this method available in the nib editor. And indeed, if we look in the nib editor,
we find that it is now available: edit Main.storyboard, select the View Controller
object and switch to the Connections inspector, and you’ll find that buttonPressed:,
which is the Objective-C name of our action method, is now listed under Received
Actions.

In Main.storyboard, in the single scene that it contains, the top-level View Controller’s
View should contain a button. (We created it earlier in this chapter: see Figure 7-5.) If
it doesn’t, add one, and position it in the upper left corner of the view. Our goal now
is to connect that button’s Touch Up Inside event, as an action, to the button-
Pressed(_:) method in ViewController.

376 | Chapter 7: Nib Management

Figure 7-16. A HUD showing an action method

As with an outlet connection, there is a source and a destination. The source here is
the button; the destination is View Controller, the ViewController instance acting as
owner of the nib containing the button. There are many ways to form this action con‐
nection, all of them completely parallel to the formation of an outlet connection. The
difference is that we must configure both ends of the connection. At the button
(source) end, we must specify that the control event we want to use is Touch Up
Inside; fortunately, this is the default for a UIButton, so we might be able to skip this
step. At the view controller (destination) end, we must specify that the action method
to be called is our buttonPressed(_:) method.

Let’s form the action connection by Control-dragging from the button to the view
controller in the nib editor:

1. Control-drag from the button (in the canvas or in the document outline) to the
View Controller listing in the document outline (or to the view controller icon in
the scene dock above the view in the canvas).

2. A HUD listing possible connections appears (Figure 7-16); it lists mostly segues,
but it also lists Sent Events, and in particular it lists buttonPressed:.

3. Click the buttonPressed: listing in the HUD.
The action connection has now been formed. This means that when the app runs, any
time the button gets a Touch Up Inside event — meaning that it was tapped — it will
call the buttonPressed(_:) method in the target, which is the view controller
instance. We know what that method should do: it should put up an alert. Try it!
Build and run the app, and when the app appears in the Simulator, tap the button. It
works!

More Ways to Create Actions
Other ways in which you can form the action connection in the nib, having created
the action method in ViewController.swift, include the following:

Connections | 377

Drag from source Connections inspector
Select the button and use the Connections inspector. Drag from the Touch Up
Inside circle to the view controller. A HUD appears, listing the known action
methods in the view controller; click buttonPressed:.

Drag from source HUD
Control-click the button. A HUD appears, similar to the Connections inspector.
Proceed as in the previous case.

Drag from destination HUD
Control-click the view controller. A HUD appears, similar to the Connections
inspector. Drag from buttonPressed: (under Received Actions) to the button.
Another HUD appears, listing possible control events. Click Touch Up Inside.

Drag from action method to nib
Make an assistant pane. Arrange to see ViewController.swift in one pane and the
storyboard in the other. The buttonPressed(_:) declaration in View‐
Controller.swift has a circle to its left, in the gutter. Drag from that circle across
the pane barrier to the button in the nib.

As with an outlet connection, the most impressive way to make an action connection
is to drag from the nib editor to your code, inserting the action method and forming
the action connection in the nib in a single move. To try this, first delete the button-
Pressed(_:) method in your code and delete the action connection in the nib. Make
an assistant pane. Arrange to see ViewController.swift in one pane and the storyboard
in the other. Now:

1. Control-drag from the button in the nib editor to an empty area in the View‐
Controller class declaration’s body. A HUD offering to create an outlet or an
action appears in the code. Release the mouse.

2. The popover view appears:
a. Always look first at the Connection pop-up menu. It might be offering to

create an outlet connection. That isn’t what you want; you want an action
connection! If it says Outlet, change it to Action.

b. Enter the name of the action method (here, buttonPressed) and configure
the rest of the declaration. The defaults are probably good enough: see
Figure 7-17.

Xcode forms the action connection in the nib, and inserts a stub method into your
code:

@IBAction func buttonPressed(_ sender: Any) {
}

The method is just a stub (Xcode can’t read your mind and guess what you want the
method to do), so in real life, at this point, you’d insert some functionality between

378 | Chapter 7: Nib Management

Figure 7-17. Configuring an action method declaration

those curly braces. As with an outlet connection, the filled circle next to the code in
an action method tells you that Xcode believes that this connection is correctly con‐
figured, and you can click the filled circle to learn, and navigate to, the object at the
source of the connection.

Misconfigured Actions
As with an outlet connection, configuring an action connection involves setting
things up correctly at both ends (the nib and the code) so that they match. Thus, you
can wreck an action connection’s configuration and crash your app. The typical mis‐
configuration is that the name of the action method as embedded in the action con‐
nection in the nib no longer matches the name of the action method in the code.

To see this, change the name of the action method in the code from buttonPressed
to something else, like buttonPushed. Now run the app and tap the button. Your app
crashes, displaying in the console the dreaded error message, “Unrecognized selector
sent to instance.” A selector is a message — the name of a method (Chapter 2). The
runtime tried to send a message to an object, but that object turned out to have no
corresponding method (because we renamed it). If you look a little earlier in the error
message, it even tells you the name of this method:

-[Empty_Window.ViewController buttonPressed:]

The runtime is telling you (using Objective-C notation) that it tried to call the button-
Pressed(_:) method in your Empty Window module’s ViewController class, but the
ViewController class has no such method.

To change an action method’s name without breaking the connection from the
nib, select the method name in code and choose Editor → Refactor → Rename.

Connections Between Nibs — Not!
You cannot draw an outlet connection or an action connection between an object in a
nib and an object in a different nib. For example:

Connections | 379

• You can’t open nib editors on two different .xib files and Control-drag a connec‐
tion from one to the other.

• In a .storyboard file, you cannot Control-drag a connection between an object in
one scene and an object in another scene.

The reason is simple and obvious when you think about what a nib is. Objects in a
nib together will become instances together, at the moment when the nib loads, so it
makes sense to connect them in that nib, because we know what instances we’ll be
talking about when the nib loads. The two objects may both be instantiated from the
nib, or one of them may be a proxy object (the nib owner), but they must both be
represented in the same nib, so that the actual instances can be configured in relation
to one another on each particular occasion when this nib loads.

If an outlet connection or an action connection were drawn from an object in one nib
to an object in another nib, there would be no way to understand what actual future
instances the connection is supposed to connect, because they are different nibs and
will be loaded at different times (if ever). The problem of communicating between an
instance generated from one nib and an instance generated from another nib is a spe‐
cial case of the more general problem of how to communicate between instances in a
program, discussed in Chapter 13.

Additional Configuration of Nib-Based Instances
By the time a nib finishes loading, its instances are fully fledged; they have been ini‐
tialized and configured with all the attributes dictated through the Attributes and Size
inspectors, and their outlets have been used to set the values of the corresponding
instance properties. Nevertheless, you might want to append your own code to the
initialization process as an object is instantiated from a loading nib. This section
describes some ways you can do that.

A common situation is that a view controller, functioning as the owner when a nib
containing its main view loads (and therefore represented in the nib by the nib owner
object), has an outlet to an interface object instantiated from the nib. In this architec‐
ture, the view controller can perform further configuration on that interface object,
because it has a reference to it after the nib loads — the corresponding instance prop‐
erty. The earliest place where it can perform such configuration is its viewDidLoad
method. At the time viewDidLoad is called, the view controller’s view has loaded —
that is, the view controller’s view property has been set to its actual main view, instan‐
tiated from the nib — and all outlets have been connected; but the view is not yet in
the visible interface.

Another possibility is that you’d like the nib object to configure itself, over and above
whatever configuration has been performed in the nib. Often, this will be because
you’ve got a custom subclass of a built-in interface object class; in fact, you might

380 | Chapter 7: Nib Management

want to create a subclass precisely so as to have a place to put this self-configuring
code. The problem you’re trying to solve might be that the nib editor doesn’t let you
perform the configuration you’re after, or that you have many objects that need to be
configured similarly, so that it makes more sense for them to configure themselves by
virtue of sharing a common class than to configure each one individually.

One approach is to implement awakeFromNib in your custom class. The awakeFrom-
Nib message is sent to all nib-instantiated objects just after they are instantiated by
the loading of the nib: the object has been initialized and configured and its connec‐
tions are operational.

For example, let’s make a button whose background color is always red, regardless of
how it’s configured in the nib. (This is a nutty example, but it’s dramatically effective.)
In the Empty Window project, we’ll create a button subclass, RedButton:

1. In the Project navigator, choose File → New → File. Specify iOS → Source →
Cocoa Touch Class. Click Next.

2. Call the new class RedButton. Make it a subclass of UIButton. Click Next.
3. Make sure you’re saving into the project folder, in the Empty Window group, and

that the Empty Window app target is checked. Click Create. Xcode creates Red‐
Button.swift.

4. In RedButton.swift, inside the body of the RedButton class declaration, imple‐
ment awakeFromNib:

override func awakeFromNib() {
 super.awakeFromNib()
 self.backgroundColor = .red
}

We now have a UIButton subclass that turns itself red when it’s instantiated from a
nib. But we have no instance of this subclass in any nib. Let’s fix that. Edit the story‐
board, select the button that’s already in the main view, and use the Identity inspector
to change this button’s class to RedButton.

Now build and run the project. Sure enough, the button is red!

A further possibility is to take advantage of the User Defined Runtime Attributes in
the nib object’s Identity inspector. This can allow you to configure, in the nib editor,
aspects of a nib object for which the nib editor itself provides no built-in interface.
What you’re actually doing here is sending the nib object, at nib-loading time, a set-
Value(_:forKeyPath:) message; key paths are discussed in Chapter 10. Naturally,
the object needs to be prepared to respond to the given key path, or your app will
crash when the nib loads.

For example, one of the disadvantages of the nib editor is that it provides no way to
configure layer attributes. Let’s say we’d like to use the nib editor to round the corners

Additional Configuration of Nib-Based Instances | 381

Figure 7-18. Rounding a button’s corners with a runtime attribute

of our red button. In code, we would do that by setting the button’s layer.corner-
Radius property. The nib editor gives no access to this property. Instead, we can
select the button in the nib editor and use the User Defined Runtime Attributes in the
Identity inspector. We set the Key Path to layer.cornerRadius, the Type to Number,
and the Value to whatever value we want — let’s say 10 (Figure 7-18). Now build and
run; sure enough, the button’s corners are now rounded.

You can also configure a custom property of a nib object by making that property
inspectable. To do so, add the @IBInspectable attribute to the property’s declaration
in your code. This causes the property to be listed in the nib object’s Attributes
inspector.

For example, let’s make it possible to configure our button’s border in the nib editor.
At the start of the RedButton class declaration body, add this code:

@IBInspectable var borderWidth : CGFloat {
 get {
 return self.layer.borderWidth
 }
 set {
 self.layer.borderWidth = newValue
 }
}

That code declares a RedButton property, borderWidth, and makes it a façade in front
of the layer’s borderWidth property. It also causes the nib editor to display that prop‐
erty in the Attributes inspector for any button that is an instance of the RedButton
class (Figure 7-19). The result is that when we give this property a value in the nib
editor, that value is sent to the setter for this property at nib-loading time, and the
button border appears with that width.

382 | Chapter 7: Nib Management

Figure 7-19. An inspectable property in the nib editor

To intervene with a nib object’s initialization even earlier, if the object is a UIView (or
a UIView subclass), you can implement init(coder:). A minimal implementation
would look like this:

required init?(coder aDecoder: NSCoder) {
 super.init(coder:aDecoder)
 // your code here
}

Additional Configuration of Nib-Based Instances | 383

CHAPTER 8

Documentation

Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.

—Samuel Johnson,
Boswell’s Life of Johnson

No aspect of iOS programming is more important than a fluid and nimble relation‐
ship with the documentation. There is a huge number of built-in Cocoa classes, with
many methods and properties and other details. Apple’s documentation, whatever its
flaws, is the definitive official word on how you can expect Cocoa to behave, and on
the contractual rules incumbent upon you in working with this massive framework
whose inner workings you cannot see directly.

Your primary access to the documentation is in Xcode, through the documentation
window. But there are other forms of documentation and assistance. Quick Help pop‐
overs and the Quick Help inspector provide documentation without leaving the code
editor. You can examine the code headers, which provide a useful overview and often
contain valuable comments, and you can jump quickly to a symbol declaration. Apple
provides sample code, and there are lots of additional online resources.

The Documentation Window
There are two main categories of documentation provided by Apple:

Primary documentation
The primary documentation (reference documentation) for Cocoa classes and
other symbols is included entirely within Xcode, and is displayed in the docu‐
mentation window (Window → Developer Documentation or Help → Developer
Documentation, Command-Shift-0). You can also view the same documentation
online, at https://developer.apple.com/documentation.

385

https://developer.apple.com/documentation

Secondary documentation
Secondary documentation such as guides and sample code is available only
online, at https://developer.apple.com/library/archive/navigation/. Apple now
refers to this material as the documentation archive.

Within the documentation window, the primary way into the documentation is to do
a search; for example, press Command-Shift-0 (or Command-L or Command-Shift-F
if you’re already in the documentation window) and type NSString. As you type,
you’re shown the top search results pertinent to the language of your choice (such as
Swift or Objective-C). Besides choosing with the mouse, you can navigate these
results with arrow keys, and press Return to select the desired hit. In this case, you
probably want the top hit, which is the NSString class documentation page.

You can also perform a documentation window search starting from within your code.
You’ll very often want to do this: you’re looking directly at a symbol (a type name, a
function name, a property name, and so on) at its point of use in your code, and you
want to know more about it. Select text in your code (or anywhere else) and choose
Help → Search Documentation for Selected Text (Command-Option-Control-/). This
is like typing that text into the search field in the documentation window.

The documentation window behaves basically as a glorified web browser. Multiple
pages can appear simultaneously as tabs. To navigate to a new tab, hold Command as
you navigate — for example, Command-click a link — or choose Open Link in New
Tab from the contextual menu. You can navigate between tabs (Window → Show
Next Tab), and each tab remembers its navigation history (Navigate → Go Back, or
use the Back button in the window toolbar, which is also a pop-up menu).

A full hierarchical table of contents for the whole documentation appears in the navi‐
gator area at the far left of the documentation window; to see it if it isn’t showing,
choose Editor → Show Swift Reference Documentation, or click the Navigator button
in the window toolbar. The table of contents can display any of four panes: Swift,
Objective-C, REST, or JS. You can switch between them with buttons at the top of the
table of contents. To select in the table of contents the page you’re currently viewing,
choose Editor → Reveal in Navigator (or use the contextual menu).

To search for text within the current documentation page, use the Find menu com‐
mands. Find → Find (Command-F) summons a find bar, as in Safari.

Class Documentation Pages
In the vast majority of cases, your target documentation page will be the documenta‐
tion for a class, such as the one shown in Figure 8-1. It’s important to be comfortable
and conversant with the typical features and information provided by a class docu‐
mentation page:

386 | Chapter 8: Documentation

https://developer.apple.com/library/archive/navigation/

Figure 8-1. The start of the UIButton class documentation page

Jump bar
At the top of the page is the jump bar. This has two main purposes:

Breadcrumbs
The jump bar functions as a kind of “breadcrumbs” display of where you are.
The UIButton class documentation page is in the Views and Controls section
of the UIKit division of the documentation. This is the same hierarchy in
which the page is displayed in the navigator table of contents.

Navigation
Each item in the jump bar is a hierarchical menu, displaying the same hierar‐
chy as in the navigator table of contents. Choose a menu item to navigate
there. As with the Xcode project window editor’s jump bar, you can type to
filter the items of the currently selected menu.

Language
Links let you choose between Swift and Objective-C as the language for display of
symbol names.

SDKs
This list tells you two important things:

Class Documentation Pages | 387

• What sort of hardware you’re programming for when you use this class.
That’s important because searches are not filtered by SDK. If you were to
stumble accidentally into the NSViewController class documentation page,
you might be confused about how this class fits into the rest of iOS program‐
ming, unless you notice that iOS is not listed among this class’s SDKs.

• The lowest version number in which this class became available — also called
the class’s availability. The UIGraphicsImageRenderer page, for example,
tells you that this class is available in iOS 10.0 and later. So you won’t be able
to use it in code intended to run on iOS 9.

Framework
The framework that vends this class.

On This Page
The class reference page is divided into sections, and these are links to them, in
order:

Overview
If a page has an Overview section, read it! It explains what this class is for
and how to use it. It may also contain valuable links to guides that provide
related information.

Topics
These are primarily the class’s members — its properties and methods —
grouped by their purpose. Each member is accompanied by a short descrip‐
tion; click the member itself to see further details. (I’ll talk more about that in
a moment.) At the end of the Topics section, there may be further subsec‐
tions including Constants, such as enums used by this class’s properties and
methods, and Notifications if this class emits any; the UIApplication class
documentation page is a case in point.

Relationships
There are two chief kinds of relationship that a class can have, and you’ll
want to keep an eye on both of them; a common beginner mistake is failing
to follow the documentation links in this section:

Inherits from
This class’s superclass. A class inherits from its superclasses, so the func‐
tionality or information you’re looking for may be in a superclass. For
example, you won’t find addTarget(_:action:for:) listed in the
UIButton class page; it’s in the UIControl class page (UIButton’s super‐
class). You won’t find out that a UIButton has a frame property from the
UIButton class page; that information is in the UIView class page
(UIControl’s superclass).

388 | Chapter 8: Documentation

Conforms to
Protocols adopted by this class. Again, the functionality or information
you’re looking for might be documented for a protocol rather than in
this class’s own page. For example, you won’t find the viewWill-
Transition(to:with:) method on the UIViewController class page;
you have to look in the documentation for the UIContentContainer pro‐
tocol, which UIViewController adopts.

When you click the name of a property or method in a class documentation page,
you’re taken to a separate page that describes it in detail. This page is laid out simi‐
larly to a class documentation page:

Jump bar
The jump bar provides breadcrumb navigation leading back to the class docu‐
mentation page.

Language
The page gives you a choice of languages.

SDKs
The page lists the SDKs in which this property or method is found, including its
availability. Note that the availability for a property or method need not be the
same as its class’s availability, because a class can acquire (and lose) members
over time. For example, the UINavigationBar class is as old as iOS itself and is
available starting in iOS 2.0, but the prefersLargeTitles property didn’t appear
until iOS 11.0.

On This Page
There is no separate Overview section, but there is always an initial summary of
purpose (the same summary that appears on the class documentation page). The
other sections of a method’s page, in particular, are:

Declaration
The formal declaration for this method, showing its parameters and return
type.

Parameters
Separate explanations for each parameter.

Return Value
An explicit description of what this method returns.

Discussion
Often contains extremely important further details about how this method
behaves. Always pay attention to this section!

Class Documentation Pages | 389

Figure 8-2. Filtering the jump bar for the UIButton topics

See Also
Links to related methods and properties. Very helpful for giving you a larger
perspective on how this method fits into the overall behavior of this class.

The Topics section of a class documentation page may list many class members, and
these can rapidly threaten to become overwhelming. If you know the name of a class
member that you’re interested in, or you want to get to a particular topic quickly, how
are you going to reach it without the tedium of scrolling? Don’t forget the jump bar!
The jump bar lists all the class members listed on the page, grouped by topic. And
that list can be filtered by typing. For example, let’s say I know that the class member
I’m interested in contains the term “background.” I summon the rightmost level of
the jump bar, type “background,” and am shown a shortened list of just those terms
(Figure 8-2). Now it’s easy to navigate to the detail page for any of those items.

Quick Help
Quick Help is a condensed rendering of the documentation on some single symbol
(such as a type, function, or property name). It appears with regard to the current
selection or insertion point automatically in the Quick Help inspector (Command-
Option-2) if the inspector is showing. Thus, for example, if you’re editing code and
the insertion point or selection is within the term viewDidLoad, documentation for
the viewDidLoad method appears in the Quick Help inspector if it is visible. Quick
Help is also available in the Quick Help inspector for interface objects selected in the
nib editor.

Quick Help documentation can also be displayed as a popover window. Select a term
in the code editor and choose Help → Show Quick Help for Selected Item
(Command-Control-Shift-?). Alternatively, hold down Option and hover the mouse
over a term until the cursor becomes a question mark; then Option-click the term.

When you’re developing Swift code, Quick Help is of increased importance. If
you click in the name of a Swift variable whose type is inferred, Quick Help
shows the inferred type (see Figure 3-1). This can help you understand compile
errors and other surprises.

390 | Chapter 8: Documentation

The Quick Help documentation contains links. Click the Open in Developer Refer‐
ence link to see the full documentation in the documentation window.

You can inject documentation for your own code into Quick Help. To do so, precede
a declaration with a comment enclosed in /**...*/. Alternatively, use a sequence of
single-line comments starting with ///. Within the comment, Markdown formatting
can be used (see http://daringfireball.net/projects/markdown/syntax). The comment
becomes the Description field for Quick Help; certain list items (paragraphs begin‐
ning with * or - followed by space) are treated in a special way:

• Paragraphs beginning with Parameter paramname: are incorporated into the
Parameters field.

• A paragraph beginning with Throws: becomes the Throws field.
• A paragraph beginning with Returns: becomes the Returns field.

For example, here’s a function declaration with a preceding comment:

/**
Many people would like to dog their cats. So it is *perfectly*
reasonable to supply a convenience method to do so:

* Because it's cool.
* Because it's there.

* Parameter cats: A string containing cats

* Returns: A string containing dogs
*/

func dogMyCats(_ cats:String) -> String {
 return "Dogs"
}

The double asterisk in the opening comment delimiter denotes that this is documen‐
tation, and the comment’s location automatically associates it with the dogMyCats
method whose definition follows. The word surrounded by asterisks is formatted as
italics; the asterisked paragraphs become bulleted paragraphs; and the last two para‐
graphs become special fields. The outcome is that when dogMyCats is selected any‐
where in my code, its documentation is displayed in Quick Help (Figure 8-3). The
first paragraph of the description is also displayed as part of code completion (see
Chapter 9).

You can also generate a documentation comment automatically. Select within the dec‐
laration line and choose Editor → Structure → Add Documentation. The comment is
inserted before the declaration. The description, plus (if this is a function declaration)
the Parameters, Returns, and Throws fields, as applicable, are provided as
placeholders.

Quick Help | 391

http://daringfireball.net/projects/markdown/syntax

Figure 8-3. Custom documentation injected into Quick Help

There are additional special documentation fields. For more information about
these, see the “Markup Functionality” page of Apple’s Markup Formatting
Reference in the documentation archive.

Symbol Declarations
A symbol is a declared term, such as the name of a function, variable, or object type. If
you can see the name of a symbol in the code editor, you can jump quickly to the
declaration of that symbol. Select text and choose Navigate → Jump to Definition
(Command-Control-J). Alternatively, hold down Command-Control and hover the
mouse over a prospective term, until the cursor becomes a pointing finger; then
Command-Control-click the term to jump to the declaration for that symbol. When
you do:

• If the symbol is declared in your code, you jump to that declaration in your code;
this can be helpful not only for understanding your code but also for navigating
within it.

• If the symbol is declared in a Cocoa framework, you jump to the declaration in
the header file. (I’ll talk more about header files in the next section.)

To jump to the declaration of a symbol whose name you know, even if you don’t see
the name in the code before you, choose File → Open Quickly (Command-Shift-O).
A search field appears. In it, type key letters from the name, which will be interpreted
intelligently; for example, to search for application(_:didFinishLaunchingWith-
Options:), you might type appdidf. Possible matches are shown in a scrolling list
below the search field; you can navigate this list with the mouse or by keyboard alone.

392 | Chapter 8: Documentation

Besides declarations from the framework headers, declarations in your own code are
listed as well, so this, too, can be a rapid way of navigating your code.

Another way to see a list of your project’s symbols, and to navigate to a symbol decla‐
ration, is through the Symbol navigator (Chapter 6). If the second icon in the filter
bar is highlighted, these are symbols declared in your project; if not, symbols from
imported frameworks are listed as well.

Header Files
Often, a header file can be a useful form of documentation. The header is necessarily
accurate, up-to-date, and complete, and it may contain comments with helpful infor‐
mation that can tell you things that the class documentation might not. Also, a single
header file can contain declarations for multiple classes and protocols. So it can be an
excellent quick reference.

The simplest way to reach a header file is to jump to the declaration of a symbol
there. For example, to reach NSString.h — the Foundation.NSString header file —
Command-Control-click on the term NSString wherever it may appear in your code.
See the previous section for the various ways of jumping to a symbol declaration;
since most symbols are declared in header files, these are ways of reaching header
files. Once you’re in a header file, you can navigate it conveniently through the jump
bar at the top of the editor.

When you jump to a header file from your code, if the code that you started from was
a Swift file, the header file, if it is written in Objective-C, may be spontaneously trans‐
lated into Swift. That’s good because it tells you what you can say in Swift. But it’s bad
if you were hoping to get a look at the actual Objective-C header! You can switch
from a Swift translated (generated) header to the Objective-C original by choosing
Navigate → Jump to Original Source, or choose Original Source from the Related
Items menu at the left end of the jump bar. Conversely, to switch from an Objective-C
original to its Swift translation, choose Generated Interface from the Related Items
menu.

You can learn a lot about the Swift language and the built-in library functions by
examining the Swift header file. The special Swift header files for Core Graphics and
Foundation are also likely to prove useful.

A neat trick is to write an import statement just so that you can Command-
Control-click it to reach a header. For example, if you import Swift at the top of
a .swift file, the word Swift itself is a symbol that you can Command-Control-
click to jump to the Swift header.

Header Files | 393

Sample Code
The documentation archive includes plenty of sample code projects. You can view the
code in a browser, but you can see only one file at a time, so it’s difficult to get an
overview. You’ll want to click the Download Sample Code button and open the down‐
loaded project in Xcode. With the sample code project open as a project window, you
can read the code, navigate it, edit it, and of course run the project.

As a form of documentation, sample code is both good and bad. It can be a superb
source of working code that you can often copy and paste and use with very little
alteration in your own projects. It is usually heavily commented, because the Apple
folks are aware, as they write the code, that it is intended for instructional purposes.
Sample code also illustrates concepts that users have difficulty extracting from the
documentation. (Users who have not grasped UITouch handling, for instance, may
find that the lightbulb goes on when they discover the MoveMe example.) But the
logic of a project is often spread over multiple files, and nothing is more difficult to
understand than someone else’s code (except, perhaps, your own code). Moreover,
what learners most need is not the fait accompli of a fully written project but the rea‐
soning process that constructed the project, which no amount of commentary can
provide.

My own assessment is that Apple’s sample code is uneven. Some of it is a bit careless
or even faulty, while some of it is astoundingly well-written. It is generally thoughtful
and instructive, though, and is definitely a major component of the documentation; it
deserves more appreciation and usage than it seems to get. But it is most useful, I
think, after you’ve reached a certain level of competence and comfort.

Internet Resources
Programming has become a lot easier since the Internet came along and Google
started indexing it. It’s amazing what you can learn with a Google search. Your prob‐
lem is very likely one that someone else has faced, solved, and written about on the
Internet. Often you’ll find sample code that you can paste into your project and
adapt.

Apple’s own online resources go beyond the formal documentation. There are
WWDC videos (https://developer.apple.com/videos/) from the current and previous
years. Apple also hosts developer forums (https://forums.developer.apple.com); some
interesting discussions take place here, and they are patrolled by some very helpful
Apple employees, but the interface remains extraordinarily clunky.

Other online resources have sprung up spontaneously as iOS programming has
become more popular, and lots of iOS and Cocoa programmers blog about their
experiences. One site that I’m particularly fond of is Stack Overflow

394 | Chapter 8: Documentation

https://developer.apple.com/videos/
https://forums.developer.apple.com

(http://www.stackoverflow.com); it isn’t devoted exclusively to iOS programming, of
course, but lots of iOS programmers hang out there, questions are answered suc‐
cinctly and correctly, and the interface lets you focus on the right answer quickly and
easily.

Internet Resources | 395

http://www.stackoverflow.com

CHAPTER 9

Life Cycle of a Project

This chapter surveys some of the main stages in the life cycle of an Xcode project,
from inception to submission at the App Store. This survey will provide an opportu‐
nity to discuss some additional features of the Xcode development environment: con‐
figuring your build settings and your Info.plist; editing, debugging, and testing your
code; running your app on a device; profiling; localization; and final preparations for
the App Store.

Environmental Dependencies
Your app may need to make certain choices based on the environment in which it
finds itself. These may be broadly divided into runtime and compile-time dependen‐
cies. Here’s a list; I’ll give details in the rest of this section:

Runtime dependencies
These are choices made depending on what the app discovers its environment to
be when it runs. Typical dependencies are the type of device we turn out to be
running on (iPad vs. iPhone) and the system version installed on this device:

• Should the app be permitted to run under this environment?
• Should the app do different things, or load different resources, depending on

the environment?
• Should the app respond to the presence of an argument or environment vari‐

able injected by Xcode?

Compile-time dependencies
These are choices made at compilation time; the compiler can substitute different
code, depending on the target environment while building. Typical dependencies
are:

397

• The version of Swift under which we’re compiling.
• The type of destination for which we’re compiling, i.e. a simulator or a real

device.
• A custom compilation condition defined for the current build configuration

in the build settings.

Permissible Runtime Environment
The first choice your app probably needs to make with regard to its environment is:
under what environments should this app be permitted to run at all? Those choices
are all build settings, though they can be more conveniently configured elsewhere:

Device Type
The device type(s) on which your app will run natively. This is the project’s Tar‐
geted Device Family build setting; the easiest way to set it is to edit the app target,
switch to the General pane, and use the Devices pop-up menu (under Deploy‐
ment Info). The settings are:

iPhone (Targeted Device Family 1)
The app will run on an iPhone or iPod touch. It can also run on an iPad, but
not as a native iPad app; it runs in a reduced enlargeable window, which I
call the iPhone Emulator (Apple sometimes refers to this as “compatibility
mode”).

iPad (Targeted Device Family 2)
The app will run only on an iPad.

Universal (Targeted Device Family 1,2)
The app will run natively on both kinds of device.

iOS Deployment Target
The earliest system your app can run on: in Xcode 10, this can be any major iOS
system as far back as iOS 8.0. To change the project’s iOS Deployment Target set‐
ting easily, edit the project and switch to the Info tab, and choose from the iOS
Deployment Target pop-up menu. The app target usually changes its correspond‐
ing build setting to match; you might want to double-check by editing the app
target, switching to the General pane, and examining the Deployment Target
(under Deployment Info).

Backward Compatibility
Writing an app whose iOS Deployment Target version is lower than the current ver‐
sion — that is, an app that is backward compatible to an earlier system — is something
of a challenge. There are two chief problems:

398 | Chapter 9: Life Cycle of a Project

Changed behavior
With each new system, Apple might change the way some features work. The
result is that certain features that exist on different systems may work differently
depending on what system it is. An entire area of functionality may be handled
differently on different systems, requiring you to implement or call a different set
of methods or use a different set of classes. It is even possible that the very same
method may do two quite different things, depending on what system the app
runs on.

Unsupported features
With each new system, Apple adds new features. Your app will crash if execution
encounters features not supported by the system on which it is actually running.

Changed behavior is terribly troublesome, and I have little advice to give you. Often
the issue is one of sheer breakage, or breakage and repair. For example, setting
UIProgressView’s progressImage property worked in iOS 7.0, didn’t work at all from
iOS 7.1 through iOS 8.4, and then started working again in iOS 9 and later. You have
no way of knowing this aside from trial and error, and working your way around it
coherently is extremely tricky.

Unsupported features are a different story. If the compiler knows that a feature is
unsupported by an earlier system, it will help prevent you from accidentally using
that feature on that system. For example, here’s a line of code where we prepare to
draw a small image:

let r = UIGraphicsImageRenderer(size:CGSize(width:10,height:10))

The UIGraphicsImageRenderer class exists only in iOS 10.0 and later. If your deploy‐
ment target is earlier than iOS 10.0, the compiler will stop you with an error:
“UIGraphicsImageRenderer is only available on iOS 10.0 or newer.” You cannot pro‐
ceed until you guarantee to the compiler that this code will run only on iOS 10 or
later. And Xcode’s Fix-it feature (discussed later in this chapter) will show you how to
do that, by surrounding that line with an availability check:

if #available(iOS 10.0, *) {
 let r = UIGraphicsImageRenderer(size:CGSize(width:10,height:10))
} else {
 // Fallback on earlier versions
}

The if #available condition tests the current system at runtime against a set of
requirements matching the actual availability of a feature as specified in its declara‐
tion. The UIGraphicsImageRenderer class declaration is preceded (in Swift) with this
annotation:

@available(iOS 10.0, *)

Environmental Dependencies | 399

The detailed meaning of that annotation isn’t important (if you’re interested, consult
https://docs.swift.org/swift-book/ReferenceManual/Attributes.html). The important
thing is that your #available condition should match that annotation, and Xcode’s
Fix-it will make sure that it does. You can use #available in an if construct or a
guard construct.

You can annotate your own type and member declarations with an @available
attribute, and your own code will then have to use an availability check. For example,
if your method is declared @available(iOS 12.0, *), then you can’t call that
method, when the deployment target is earlier than iOS 12, without an availability
check that matches it: if #available(iOS 12.0, *). Within such a method, you
don’t need that availability check, because you’ve already guaranteed that this method
won’t run on a system earlier than iOS 12.

To test your app on an earlier system, you’ll need a device, real or simulated, running
that earlier system. You can download an earlier Simulator SDK going back as far as
iOS 8.1 through Xcode’s Components preference pane (see Chapter 6). To test on an
earlier system than that, you’ll need an older version of Xcode, and probably an older
device. This can be difficult to configure, and may not be worth the trouble.

Device Type
It can be useful, in the case of a universal app, to respond at runtime to whether your
code is running on an iPad, on the one hand, or an iPhone (or iPod) on the other.
The current UIDevice (UIDevice.current), or the traitCollection of any UIView‐
Controller or UIView in the hierarchy, will tell you the current device’s type as its
userInterfaceIdiom, which will be a UIUserInterfaceIdiom, either .phone or .pad.

You can load resources conditionally depending on the device type or screen resolu‐
tion. In the case of images loaded from the top level of the app bundle, image files
with the same name but different name suffixes (such as @2x and @3x to indicate
screen resolution, or ~iphone and ~ipad to indicate device type) can be used so that
the runtime will choose automatically the appropriate image variant for the current
environment. However, it is simpler wherever possible to use an asset catalog (see
“Resources in an asset catalog” on page 341), which allows you to specify different
images for different runtime environments just by putting them in the correct slot,
without bothering with the naming conventions.

Similarly, certain Info.plist settings come with name suffixes, so you can adopt one
setting on one device type and another setting on another. It is quite common, for
example, for a universal app to adopt one set of possible orientations on iPhone and
another set on iPad: typically, the iPhone version permits a limited set of orientations
and the iPad version permits all orientations. You can configure this in the General
pane when you edit the target:

400 | Chapter 9: Life Cycle of a Project

https://docs.swift.org/swift-book/ReferenceManual/Attributes.html

1. Switch the Devices pop-up menu to iPhone and check the desired Device Orien‐
tation checkboxes for the iPhone.

2. Switch the Devices pop-up menu to iPad and check the desired Device Orienta‐
tion checkboxes for the iPad.

3. Switch the Devices pop-up menu to Universal.
Even though you’re now seeing just one set of orientations, both sets are remem‐
bered. What you’ve really done is to configure two groups of “Supported interface
orientations” settings in the Info.plist, a general set (UISupportedInterface-
Orientations) and an iPad-only set that overrides it when the app runs on an iPad
(UISupportedInterfaceOrientations~ipad). Examine the Info.plist file to see that
this is so.

In the same way, your app can load different nib files, and thus can display different
interfaces, depending on the device type. For example, you can have two main story‐
boards, loading one of them at launch if this is an iPhone and the other if this is an
iPad. Again, you can configure this in the General pane when you edit the target, and
again, what you’re really doing is causing the Info.plist setting “Main storyboard file
base name” to appear twice, once for the general case (UIMainStoryboardFile) and
once for iPad only (UIMainStoryboardFile~ipad). Similarly, if your app loads a nib,
the naming of the nib file works like that of an image file: if there is an alternative nib
file by the same name with ~ipad appended, it will load automatically if we are run‐
ning on an iPad. (My own Diabelli’s Theme app works in just that way.)

Arguments and Environment Variables
You can define environment variables in the scheme used for running the app from
Xcode, by editing the Arguments tab of the scheme’s Run action. Click the Plus but‐
ton under Arguments Passed On Launch or Environment Variables, and enter the
desired name and value. The format in which you do this depends on which category
you use (Figure 9-1):

• For Arguments Passed On Launch, you need to start the name of the argument
with a hyphen and follow it with a space and the value.

• For Environment Variables, there’s a Name column and a Value column.
A configured name–value pair can be toggled on or off for future builds by clicking
the checkbox to its left.

Arguments can be most easily retrieved in code through the UserDefaults class, which
has the advantage of converting numbers to numeric types. For example:

if UserDefaults.standard.integer(forKey: "TEST1") == 1 {

Environment variables are available in code through the ProcessInfo class; the value
is always a string. For example:

Environmental Dependencies | 401

Figure 9-1. The Arguments tab of the scheme’s Run action

if let t = ProcessInfo.processInfo.environment["TEST2"], t == "2" {

Arguments and environment variables defined in this way are present only when
Xcode launches your app. If a user launches the app on a device — for example, by
tapping its icon on the Springboard — Xcode is not involved and these names and
values are not present. That’s splendid, because it means you can take advantage of
this feature during development without worrying that it will leak out into the real
world. For example, I often use it to have my app load some test data from the app
bundle.

Conditional Compilation
Stretches of code that might or might not be compiled into your built app depending
on the compile-time environment are designated as shown in Example 9-1. (The
statements will not in fact be indented by the code editor as shown in the schema;
that’s something I did for clarity.)

Example 9-1. Swift conditional compilation

#if condition
 statements
#elseif condition
 statements
#else
 statements
#endif

As you might expect, the #elseif and #else sections can be omitted, and there can
be multiple #elseif sections. Observe the lack of curly braces!

402 | Chapter 9: Life Cycle of a Project

The conditions here are treated as Bools, in the sense that they can be combined with
the usual Boolean logic operators. However, they are not Swift code expressions!
They must come from a limited predefined set of reserved words. The ones you are
most likely to use are:

swift(>=4.2), compiler(>=4.2) (or some other version number)
The version of the Swift language (typically set using the Swift Language Version
build setting) or compiler under which we’re compiling. The compiler condition
is available only in Swift 4.2 and later.

targetEnvironment(simulator)

Whether we’re building for a simulator or device destination. You might use this
to allow an app to be tested on the simulator even though the simulator lacks cer‐
tain capabilities, such as the camera.

canImport(UIKit) (or some other module name)
Whether the module in question is available on the platform for which we’re
building. You might use this to share code between an iOS project and a macOS
project, where the modules UIKit and AppKit respectively are available.

A compilation condition that you define
Any name that you enter in the Active Compilation Conditions build setting will
yield true for purposes of conditional compilation.

The statements enclosed in each block will not be compiled at all unless the appropri‐
ate condition is met. For example, the expression #if swift(>=4.1) introduces a
block of code that won’t be compiled unless the version of Swift under which we are
compiling is at least Swift 4.1; thus, if we are compiling in Xcode 10 with the Swift
Language Version build setting at 4.2, a corresponding #else block won’t be com‐
piled at all, as this (very silly) example demonstrates:

#if swift(>=4.1)
print("howdy")
#else
Hey! Ba-Ba-Re-Bop
#endif

The statement Hey! Ba-Ba-Re-Bop is not a legal Swift expression, but the compiler
doesn’t care, because our Swift version is higher than Swift 4.1, and the compiler
never looks into the #else block.

Compilation conditions that you define in the build settings are useful for distin‐
guishing between configurations. As a matter of fact, your project comes with such a
condition: The DEBUG condition is defined for the Debug configuration but not for
the Release configuration (Figure 9-2). This means that for a Debug build, but not for
a Release build, the test #if DEBUG will succeed.

Environmental Dependencies | 403

Figure 9-2. Compilation conditions in the build settings

Version Control
Sooner rather than later in the life of any real app, you should consider putting your
project under version control. Version control is a way of taking periodic snapshots
(technically called commits) of your project. Its purpose might be:

Security
Version control can help you store your commits in a repository offsite, so that
your code isn’t lost in case of a local computer glitch or some equivalent “hit by a
bus” scenario.

Publication
You might want to make your project’s source publicly available through an
online site such as GitHub (more about that later).

Collaboration
Version control affords multiple developers ready, rational access to the same
code.

Confidence
Progress on your code may require changes in many files, possibly over many
days, before a new feature can be tested. Version control tracks and lists those
changes, and if things go badly, helps to pinpoint what’s gone wrong, and lets you
withdraw the changes altogether if necessary. Thus, version control provides con‐
fidence in starting down some tentative programmatic road whose outcome may
not be apparent until much later.

Xcode’s version control facilities are geared chiefly to git (http://git-scm.com). This
doesn’t mean you can’t use any other version control system with your projects; it
means only that you can’t use any other version control system in an integrated fash‐
ion from inside Xcode. That’s no disaster; there are many other ways to use version
control, and even with git, it is perfectly possible to ignore Xcode’s integrated version
control and rely on the Terminal command line, or use a specialized third-party GUI
front end such as Sourcetree (http://www.sourcetreeapp.com).

If you prefer to manage version control yourself, you can turn off Xcode’s version
control integration more or less completely by unchecking Enable Source Control in
the Source Control preference pane. If you check Enable Source Control, three addi‐

404 | Chapter 9: Life Cycle of a Project

http://git-scm.com
http://www.sourcetreeapp.com

tional checkboxes let you select which automatic behaviors you want; personally, I
like to leave “Add and remove files automatically” unchecked.

When you create a new project, the Save dialog includes a checkbox that offers to
place a git repository into your project folder from the outset. If you have no reason
to decide otherwise, I suggest that you check that checkbox! If you don’t, and if you
change your mind later and want to add a git repository to an existing project, open
the project and choose Source Control → Create Git Repositories.

When you open an existing project, if that project is already managed with git, Xcode
detects this and displays version control information in its interface. Files in the
Project navigator are marked with their status. For example, you can distinguish
modified files (M), new untracked files (?), and new files added to the index (A).

Version control management commands are available in these places:

• The Source Control menu
• The Source Control submenu of the contextual menu summoned on a file’s list‐

ing in the Project navigator
• The Source Control navigator (Command-2)
• The Source Control inspector (Command-Option-3)
• The Version editor (Command-Option-Shift-Return)

To commit changes for a single file, choose Source Control → Commit [Filename] in
the contextual menu for that file; to commit changes for all files, choose Source Con‐
trol → Commit from the menu bar. These commands summon a comparison view of
the changes; each change can be excluded from this commit (or reverted entirely), so
it’s possible to group related file hunks into meaningful commits.

You can also discard changes, push, and pull using the Source Control menu. To
download a working copy of an existing project from a remote server, choose Source
Control → Clone and enter the required information.

Branches, tags, and remotes are handled in the Source Control navigator. Selecting an
item here causes relevant information to be displayed in the Source Control inspec‐
tor; for example, selecting a branch displays its corresponding remote, and selecting a
remote displays its URL. Selecting a branch also shows the log of its commits in the
editor. The list of commits is filterable through a search field at the top of the editor;
for example, you can filter by a word that appears in the commit message. Selecting a
commit in this list displays its branches, its commit message, and its involved files, in
the inspector. Double-click a commit to see its involved files and their differences
from the previous commit in a comparison view.

Other relevant commands appear in the contextual menu for items in the Source
Control navigator. For example, to add a remote, summon the contextual menu for

Version Control | 405

Figure 9-3. Version comparison

Figure 9-4. An uncommitted change marked in the gutter

the Remotes listing. To make a new branch, check out a branch, tag a branch, delete a
branch, or merge a branch, summon the contextual menu for the branch listing.

The Version editor lets you see a comparison view for the file currently being edited;
choose View → Version Editor → Show Version Editor, or click the third Editor but‐
ton in the project window toolbar. The Version editor actually has three modes:
Comparison view, Authors view, and Log view (choose from View → Version Editor,
or use the pop-up menu from the third Editor button in the toolbar). In Figure 9-3,
I’m using Comparison view to see that in the more recent version of this file (on the
left) I’ve changed my titleTextAttributes dictionary (because the Swift language
changed). The jump bar at the bottom of the Version editor permits me to view any
commit’s version of the current file in the editor. If I choose Editor → Copy Source
Changes, the corresponding diff text (a patch file) is placed on the clipboard.

If you switch to Authors view, a column at the right displays the author of the commit
for each hunk of the file; click a listing on the right to see a hunk’s commit informa‐
tion in a popover. You can also get similar information in the normal editor: select
within a line and choose Editor → Show Last Change For Line (or use the contextual
menu). A popover appears, describing the commit where this line changed to its cur‐
rent form, and buttons in that popover switch to Authors view or Comparison view.

You’ll often want to know what changes you’ve made in your project’s code since the
last commit. New in Xcode 10, you can learn the answer without having to switch to
the Version editor. The Source Control preference pane lets you elect whether to
show source control changes. If you do, then a change bar (Figure 9-4) appears in the
gutter to mark any uncommitted changes (and you can even discard an individual
change by clicking on the change bar).

If you have an account with any of three popular online sites that allow ready man‐
agement of code submitted through version control — GitHub (https://github.com),

406 | Chapter 9: Life Cycle of a Project

https://github.com

Bitbucket (https://bitbucket.org), and GitLab (https://gitlab.com) — you should enter
your authentication information into Xcode’s Accounts preference pane. (Integration
with GitHub was introduced in Xcode 9; integration with Bitbucket and GitLab is
new in Xcode 10.) Once you’ve done that:

You can easily create a remote repository
If your project is already under git control locally, switch to the Source Control
navigator, Control-click on Remotes, and choose Create [Project Name] Remote.
A dialog lets you choose a remote site and upload to it.

You can easily clone existing remote repositories
When you choose Source Control → Clone, your repositories on those sites are
listed in the dialog and you can clone one of them directly. Also, when you’re in
the browser looking at a GitHub repository consisting of an Xcode project, if you
click the “Clone or download” button, there’s a button offering to let you Open in
Xcode.

Editing and Navigating Your Code
Many aspects of Xcode’s editing environment can be modified to suit your tastes.
Your first step should be to pick a Source Editor font face and size you like in Xcode’s
Fonts & Colors preference pane. Nothing is so important as being able to read and
write code comfortably! I like a pleasant monospaced font. SF Mono is included and
is the default; I think it’s very nice. Other possibilities might be Menlo or Consolas, or
the freeware Inconsolata (http://levien.com/type/myfonts/) or Source Code Pro
(https://github.com/adobe-fonts/source-code-pro). I also like a largish size (13, 14, or
even 16). The Fonts & Colors preference pane also gives you a choice of cursor and
line spacing (leading) settings.

You can change the source code font size on the fly, without returning to the
Fonts & Colors preference pane: choose Editor → Font Size → Increase or
Decrease. You can also switch between themes: choose from the Editor → Theme
hierarchical menu.

Xcode has some automatic formatting, autotyping, and text selection features. Their
exact behavior depends upon your settings in the Editing and Indentation tabs of
Xcode’s Text Editing preference pane. Under Editing, I like to check just about every‐
thing, including Line Numbers; visible line numbers are useful when debugging.
Under Indentation, I like to have just about everything checked too; I find the way
Xcode lays out code to be excellent with these settings.

If you like Xcode’s smart syntax-aware indenting, but you find that once in a
while a line of code isn’t indenting itself correctly, choose Editor → Structure →
Re-Indent (Control-I), which autoindents the current line or selection.

Editing and Navigating Your Code | 407

https://bitbucket.org
https://gitlab.com
http://levien.com/type/myfonts/
https://github.com/adobe-fonts/source-code-pro

With “Enable type-over completions” checked, Xcode helps balance delimiters. For
example, suppose I intend to make a UIView by calling its initializer init(frame:). I
type as far as this:

let v = UIView(fr

Xcode automatically appends the closing right parenthesis, with the insertion point
still positioned before it:

let v = UIView(fr)
// I have typed ^

If I finish typing the parameter and then type a right parenthesis, Xcode moves the
insertion point through the existing right parenthesis (so that I don’t end up with two
adjacent right parentheses):

let v = UIView(frame:r)
// I have typed ^

With the “Enclose selection in matching delimiters” checkbox checked, if you select
some text and type a left delimiter (such as a quotation mark or a left parenthesis), it
doesn’t replace the selection; rather, the selection is surrounded with left and right
delimiters. I find this feature natural and convenient.

Code folding lets you collapse the text between matching curly braces. It is always
available through the Editor → Code Folding hierarchical menu, but if you never
choose any of those menu items, and if the “Code folding ribbon” checkbox is
unchecked, you can work as if code folding didn’t exist. If you check that checkbox,
code folding bars appear to the left of your code (at the right of the gutter), displaying
your code’s hierarchical structure and allowing you to collapse and expand by clicking
them.

New in Xcode 10 are greatly expanded facilities for setting multiple selections in your
code. Once you have a multiple selection, any editing you do (including keyboard
navigation) is performed at each selection site simultaneously, which is useful when
you have many parallel changes to make. Some ways to get a multiple selection are:

• Option-click and drag to create a rectangular selection.
• Control-Shift-click to add a selection to the existing selection.
• Select a symbol and choose Editor → Structure → Select All Symbols; each occur‐

rence of that symbol is selected simultaneously.
• Select any text and choose Find → Select Next Occurrence.
• Press Command-F to bring up the search field at the top of the editor, enter a

search term, and choose Find → Find and Select Next, or Find → Find → Select
All Find Matches.

408 | Chapter 9: Life Cycle of a Project

Figure 9-5. The autocompletion menu

• Select a stretch of code consisting of multiple lines, and choose Editor → Struc‐
ture → Split Selection By Lines.

Also new in Xcode 10 is editor overscroll. When turned on from the pop-up menu in
the Text Editing preferences, Xcode pretends that your file ends with some extra
whitespace, so that when you scroll to the end, the last line appears in the middle of
the editor pane rather than at the bottom. Since the bottom of the editor pane is usu‐
ally the bottom of your screen, this allows you to keep your eyes focussed more or
less straight ahead as you work; also, you can append lines without the editor con‐
stantly scrolling to accommodate them.

Autocompletion
As you write code, you’ll take advantage of Xcode’s autocompletion feature. Cocoa
type names and method names are astonishingly verbose, and whatever reduces your
time and effort typing will be a relief. However, I personally do not check “Suggest
completions while typing” under Editing; instead, I check “Use Escape key to show
completion suggestions,” and when I want autocompletion to happen, I ask for it
manually, by pressing Esc.

For example, suppose I want my code to create an alert. I type as far as UIAlert-
Controller(and press Esc. A menu pops up, listing the initializers appropriate to a
UIAlertController (Figure 9-5). You can navigate this menu, dismiss it, or accept the
selection, using the mouse or the keyboard alone. I like to use the keyboard. So, if it
were not already selected by default, I would navigate to title:... with the Down
arrow key, and press Return to accept the selected choice.

When I choose from the autocompletion menu, the template for the method call is
entered in my code (I’ve broken it into multiple lines here):

let alert = UIAlertController(
 title: <#T##String?#>,
 message: <#T##String?#>,
 preferredStyle: <#T##UIAlertController.Style#>)

The expressions in <#...#> are placeholders, showing the type of each parameter.
They appear in Xcode as cartouche-like “text tokens” to prevent them from being edi‐
ted accidentally. To navigate between placeholders, press Tab or by choose Navigate

Editing and Navigating Your Code | 409

→ Jump to Next Placeholder (Control-/). Thus I can select a placeholder and type to
replace it with the actual argument I wish to pass, press Tab to select the next place‐
holder and type that argument, and so forth. To convert a placeholder to a normal
string without the delimiters, select it and press Return, or double-click it.

Autocompletion and its contextual intelligence works for object type names, method
calls, and property names. It also works when you’re entering a declaration for a func‐
tion that’s inherited from a superclass or defined in an adopted protocol. You don’t
need to type even the initial func; just type the first few letters of the method’s name.
For example, in my app delegate class I might type:

applic

If I then press Esc, I see a list of methods such as application(_:didFinish-
LaunchingWithOptions:); these are methods that might be sent to my app delegate
(by virtue of its being the app delegate, as discussed in Chapter 11). When I choose
one, the entire declaration is filled in for me, including the curly braces:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplication.LaunchOptionsKey : Any]?) -> Bool {
 <#code#>
}

A placeholder for the code appears between the curly braces, and it is selected, ready
for me to start entering the body of the function. If a function needs an override
designation, Xcode’s code completion provides it.

What you type in connection with autocompletion doesn’t have to be the literal start
of a symbol. As it does throughout the interface, Xcode will use intelligence in match‐
ing the components of the search term. If I know that the method I want to create is
application(_:didFinishLaunchingWithOptions:), I can get better search results
by typing this:

appdidf

When I press Esc, application(_:didFinishLaunchingWithOptions:) is then first
among the choices in the pop-up menu.

Snippets
Code autocompletion is supplemented by code snippets. A code snippet is a bit of
text with an abbreviation. Code snippets are kept in the Snippets library, which
appears when you summon the Library floating window (Command-Shift-L) while
editing code. However, a code snippet’s abbreviation is available to code completion,
so you can use a snippet without showing the library: you type the abbreviation and
the snippet’s name is included among the possible completions.

410 | Chapter 9: Life Cycle of a Project

For example, to enter a class declaration at the top level of a file, I would type class
and press Esc, to get autocompletion, and choose Swift Subclass. The template for a
class declaration appears in my code: the class name and superclass name are place‐
holders, the curly braces are provided, and the body of the declaration (between the
curly braces) is another placeholder.

There is no way to learn a built-in code snippet’s code completion prefix (the
abbreviation you would type before asking for code completion). I regard this as
a serious flaw in the code snippet interface. Fortunately, the prefixes are geared to
Swift keywords, so you’re likely to discover them accidentally; for example, if you
type var and ask for code completion, you’ll find out about the obscure varget.

User snippets
You can add your own snippets, which will be categorized as User snippets and will
appear first in the Snippets library. To do so, select some text and choose Editor →
Create Code Snippet. The Library floating window will appear, with the new snippet’s
popover opened for editing. Provide a name, a description, and an abbreviation; the
Completion Scopes pop-up menu lets you narrow the contexts in which the snippet
will be available through code completion. In the text of the snippet, use the <#...#>
construct to form any desired placeholders.

For example, I’ve created an outlet snippet (Chapter 7), with a completion scope of
Class Implementation, defined like this:

@IBOutlet var <#name#> : <#type#>!

And I’ve created an action snippet, also with a completion scope of Class Implemen‐
tation, defined like this:

@IBAction func <#name#> (_ sender: Any) {
 <#code#>
}

My other snippets constitute a personal library of utility functions that I’ve devel‐
oped. For example, my delay snippet inserts my DispatchQueue.main.asyncAfter
wrapper function (see Chapter 11), and has a Completion Scope of Top Level.

Structural snippets
Another sort of built-in snippet is accessed when you Command-click on a keyword
that introduces curly braces. A popover appears containing menu items that let you
insert templates, containing appropriate placeholders, for standard structural compo‐
nents associated with that keyword. For example:

• For a class or struct declaration (Command-click on class or struct), the pop‐
over includes Add Method and Add Property.

Editing and Navigating Your Code | 411

Figure 9-6. A compile error with a Fix-it suggestion

• For a method declaration (Command-click on func), it includes Add Parameter
and Add Return Type.

• For an if construct (Command-click on if), it includes Add “else” Statement and
Add “else if ” Statement.

• For a switch statement (Command-click on switch), it includes Add “case” State‐
ment and Add “default” Statement.

The same popover can be summoned by selecting the keyword and then choosing
Editor → Select Structure (Command-Shift-A).

Fix-it and Live Syntax Checking
Xcode’s Fix-it feature allows the compiler to make and implement positive suggestions
on how to avert a problem that has arisen as a compile warning or error. In effect,
you’re getting the compiler to edit your code for you.

For instance, Figure 9-6, at the top, shows that I’ve accidentally forgotten the paren‐
theses after a method call. This causes a compile error. But the stop-sign icon next to
the error tells me that Fix-it has a suggestion. I click the stop-sign icon, and
Figure 9-6, at the bottom, shows what happens: a dialog pops up, not only showing
the full error message but also telling me how Fix-It proposes to fix the problem — by
inserting the parentheses. If I click the Fix button in the dialog, Xcode does insert the
parentheses — and the error vanishes, because the problem is solved.

Thanks to the intelligence of Fix-it, you can be deliberately lazy and let the compiler
do the grunt work. For example, if a switch statement’s tag is an enum and you omit
cases, Fix-it will add them; if a type adopts a protocol and fails to implement required
members, Fix-it will insert stubs for those members.

If you’re confident that Fix-It will do the right thing, you can have it implement
all suggestions simultaneously: choose Editor → Fix All Issues.

Live syntax checking is like a form of continual compilation, detecting a potential
compile warning or error even if you don’t actually compile. This feature can be tog‐
gled on or off using the “Show live issues” checkbox in the General preference pane

412 | Chapter 9: Life Cycle of a Project

— and I keep it turned off, because I find it intrusive. My code is almost never valid
while I’m in the middle of typing, because things are always half-finished; that’s what
it means to be typing! For example, merely typing let and pausing will likely cause
the syntax checker to complain.

Navigation
Developing an Xcode project involves editing code in many files at once. Fortunately,
Xcode provides numerous ways to navigate your code, many of which have been
mentioned in previous chapters:

The Project navigator
If you know something about the name of a file, you can find it quickly in the
Project navigator by typing into the search field in the filter bar at the bottom of
the navigator (Edit → Filter → Filter in Navigator, Command-Option-J). For
example, type story to see just your .storyboard files.

The Symbol navigator
If you highlight the first two icons in the filter bar (the first two are blue, the
third is dark), the Symbol navigator lists your project’s object types and their
members. Click on a symbol to navigate to its declaration in the editor. As with
the Project navigator, the filter bar’s search field can help get you where you want
to go.

The jump bar
Every path component of the code editor’s jump bar is a menu:

The bottom level
At the bottom level (farthest right) in the jump bar is a list of your file’s object
and member declarations, in the order in which they appear (hold Com‐
mand while choosing the menu to see them in alphabetical order); choose
one to navigate to it. Start typing while the jump bar menu is open, to filter
what the menu displays.

Your code can inject bold section titles into the jump bar’s bottom-level
menu using a comment whose first word is MARK:. To make a divider line in
the menu, type a MARK: comment whose value is a hyphen. The two can be
combined. For example, try modifying ViewController.swift in our Empty
Window project like this, and then look in the bottom-level jump bar menu:

// MARK: - View lifecycle
override func viewDidLoad() {
 super.viewDidLoad()
}

Editing and Navigating Your Code | 413

Similarly, comments starting with TODO: and FIXME: will appear in the
bottom-level menu.

Higher levels
Higher-level path components are hierarchical menus; thus you can use any
of them to work your way down the file hierarchy. These menus can also be
filtered.

History
Each editor pane remembers the names of files you’ve edited in it. The Back
and Forward triangles are buttons as well as pop-up menus (or choose Navi‐
gate → Go Back and Navigate → Go Forward, Command-Control-Left and
Command-Control-Right).

Related items
The leftmost button in the jump bar summons the Related Items menu, a
hierarchical menu of files related to the current file, such as superclasses and
adopted protocols. This list even includes functions that call or are called by
the currently selected function.

The assistant pane
The assistant pane lets you be in two places at once (see Chapter 6). Hold Option
while navigating to open something in an assistant pane instead of the primary
editor pane. The Tracking menu in an assistant pane’s jump bar sets its automatic
relationship to the main pane.

Tabs and windows
You can also be in two places at once by opening a tab or a separate window
(again, see Chapter 6).

Jump to definition
Navigate → Jump to Definition (Command-Control-J, Command-Control-click)
lets you jump from a symbol in your code to its declaration.

Open quickly
File → Open Quickly (Command-Shift-O) opens a dialog where you can search
for a symbol in your code and in the framework headers.

Breakpoints
The Breakpoint navigator lists all breakpoints in your code. Xcode lacks code
bookmarks, but you can misuse a breakpoint as a bookmark. Breakpoints are dis‐
cussed later in this chapter.

414 | Chapter 9: Life Cycle of a Project

Figure 9-7. A call hierarchy in the Find navigator

Finding
Finding is a form of navigation. Xcode has both a global find (Find → Find in Project,
Command-Shift-F), using the Find navigator, and an editor-level find (Find → Find,
Command-F).

You’ll want to configure your search with find options:

Editor-level find options
A button at the right end of the search field toggles case sensitive search; a pop-
up menu lets you specify containment, word exact match, word start, word end,
or regular expression search.

Global find options
The options appear above and below the search field. Above the search field, you
can choose between Text, Regular Expression, Definitions (where a symbol is
defined), References (where a symbol is used), and Call Hierarchy (which allows
you to trace the nests of calls backward through your code, Figure 9-7); you can
search by word contents, word exact match, word start, or word end. Below the
search field, you can toggle case sensitivity, and you can specify a scope deter‐
mining which files will be searched: click the current scope to see the Search
Scopes panel, where you can select a different scope or create a custom scope.

To find and replace:

Editor level find and replace
Next to the magnifying glass icon, click Find and choose Replace to toggle the
visibility of the replace With field. You can perform a Find and then click Replace
to replace that instance, or click All to replace all occurrences (hold Option to
change it to All in Selection).

Editing and Navigating Your Code | 415

Global find and replace
Above the left end of the search bar, click Find and choose Replace. You can
replace all occurrences (Replace All), or select particular find results in the Find
navigator and replace only those (Replace); you can also delete find results from
the Find navigator, to protect them from being affected by Replace All.

Refactoring
Refactoring is an intelligent form of code reorganization. To use it, select within your
code and then choose from the Editor → Refactor hierarchical menu, or else Control-
click and choose from the Refactor hierarchical menu in the contextual menu. Here
are some of the refactoring commands you’re most likely to use:

Rename
The selected symbol’s declaration and all references to it are changed, throughout
your code. (This also allows you to change the name of an outlet property or
action method without breaking the connection from the nib.)

Extract Method
Creates a new method and moves the selected lines of code into the body of that
method, replacing the original lines with a call to that method. The method name
and the new call to it are then selected, ready for you to supply a meaningful
name.

Extract Variable
Creates a new variable and assigns the selected code expression to that variable,
replacing the original expression with a reference to the variable. If the same
expression appears multiple times and you choose Extract All Occurrences, they
are all replaced with a reference to the variable. The variable name and the new
reference(s) to it are then selected, ready for you to supply a meaningful name.

Running in the Simulator
When you build and run with the Simulator as the destination, you run in the Simu‐
lator application. A Simulator window represents a device. Depending on your app
target’s Deployment Target and Targeted Device Family build settings, and on what
SDKs you have installed, you may have choices about the device and system to be
represented by the Simulator as you choose your destination before running (see
Chapter 6).

The Simulator can display multiple windows, representing different devices. You can
run different projects in different devices simultaneously. You can also run different
projects in the same device simultaneously. When you choose from the Simulator’s
Hardware → Device hierarchical menu, you switch to the window representing the
chosen device, launching that device’s simulator if needed.

416 | Chapter 9: Life Cycle of a Project

A Simulator window can display the bezel surrounding the device’s screen. Choose
Window → Show Device Bezels to toggle this feature (for all windows). Displaying
the bezel allows you to press hardware buttons (Home button, volume buttons,
screen lock button) by clicking the mouse; also, certain gestures, such as swiping
from the screen edge, become easier to perform.

A Simulator window can be resized by dragging an edge or corner. Choose Window
→ Physical Size to return the simulator to its standard size (if your computer monitor
is big enough to accommodate it).

You can interact with the Simulator in some of the same basic ways as you would a
device. Using the mouse, you can tap on the device’s screen; hold Option to make the
mouse represent two fingers moving symmetrically around their common center, and
Option-Shift to represent two fingers moving in parallel. Items in the Hardware
menu also let you perform hardware gestures such as rotating the device, shaking it,
locking its screen, and clicking the Home button; you can also test your app by simu‐
lating certain rare events, such as a low-memory situation.

The Debug menu in the Simulator is useful for detecting problems with animations
and drawing. Slow Animations, if checked, makes animations unfold in slow motion
so that you can see in detail what’s happening. The four menu items whose names
begin with Color reveal possible sources of inefficiency in screen drawing.

The Simulator application supports “side-loading” of apps by way of a Share exten‐
sion. This means you can get an app onto a simulator without launching it from
Xcode. To do so, select a built app file in the Finder and choose Share → Simulator
from the contextual menu to copy the file into an open simulator.

Debugging
Debugging is the art of figuring out what’s wrong with the behavior of your app as it
runs. I divide this art into two main techniques: caveman debugging and pausing
your running app.

Caveman Debugging
Caveman debugging consists of altering your code, usually temporarily, typically by
adding code to dump informative messages into the console. The standard procedure
is to read those messages in the project window’s Debug pane as your app runs.

The Swift command for sending a message to the console is the print function.
Using Swift’s string interpolation and the CustomStringConvertible protocol (which
requires a description property; see Chapter 4), you can pack a lot of useful infor‐
mation into a print call. Cocoa objects generally have a built-in description prop‐
erty implementation. For example:

Debugging | 417

print(self.view)

The output in the console reads something like this (I’ve formatted it for clarity here):

<UIView: 0x79121d40;
 frame = (0 0; 320 480);
 autoresize = RM+BM;
 layer = <CALayer: 0x79121eb0>>

We learn the object’s class, its address in memory (useful for confirming whether two
instances are in fact the same instance), and the values of some additional properties.

Instead of print, you might like to use dump. Its console output describes an object
along with its class inheritance and its instance properties, by way of a Mirror object
(Chapter 5). For example:

dump(self)

If self is a view controller called ViewController with a didInitialSetup instance
property, the console output looks like this:

* ViewController
 - super: UIViewController
 - super: UIResponder
 - super: NSObject
 - didInitialSetup: true

If you’re importing Foundation — and in real-life iOS programming, you are — you
also have access to the NSLog C function. It takes an NSString which operates as a for‐
mat string, followed by the format arguments. A format string is a string containing
symbols called format specifiers, for which values (the format arguments) will be sub‐
stituted at runtime. All format specifiers begin with a percent sign (%), so the only way
to enter a literal percent sign in a format string is as a double percent sign (%%). The
character(s) following the percent sign specify the type of value that will be supplied
at runtime. The most common format specifiers are %@ (an object reference), %d (an
int), %ld (a long), and %f (a double). (See “String Format Specifiers” in Apple’s String
Programming Guide in the documentation archive.) For example:

NSLog("the view: %@", self.view)

In that example, self.view is the first (and only) format argument, so its value will
be substituted for the first (and only) format specifier, %@, when the format string is
printed in the console:

2015-01-26 10:43:35.314 Empty Window[23702:809945]
 the view: <UIView: 0x7c233b90;
 frame = (0 0; 320 480);
 autoresize = RM+BM;
 layer = <CALayer: 0x7c233d00>>

418 | Chapter 9: Life Cycle of a Project

NSLog is in the process of being superseded by a new unified logging system, OSLog.
To use it, first import os and create an OSLog object, typically as an instance prop‐
erty or global. For example:

import os
let mylog = OSLog(subsystem: "com.neuburg.matt", category: "testing")

The subsystem and category are arbitrary but useful, because you can specify them
to focus on the particular log messages that interest you. To send a log message, call
the os_log function; like NSLog, it uses a format string along with format arguments,
plus you have to specify an OSLog object. For example:

os_log("%{public}@", log: mylog, "this is a test of os_log")

For more about OSLog, see https://developer.apple.com/documentation/os/logging.
Unfortunately, the use of format specifiers in the os_log command remains largely
undocumented; the best sources of information seem to be WWDC videos such as
WWDC 2016 session 721.

An important feature of print is that it is effectively suppressed when the app is
launched independently of Xcode. That’s good, because it means you’re free to pepper
your code with print statements and they’ll have no effect on your app in the real
world. On the other hand, if you want to test your app independently of Xcode while
viewing log messages — especially when the app is launched directly from a device —
you’ll want to use NSLog or os_log.

To view such log messages, use the Console application. In the Sources pane at the
left, under Devices, it shows any running simulators and any devices currently paired
with the computer. Select the desired device and exercise the app, while watching the
Console output. To eliminate unwanted output, set up a filter in the toolbar search
field. You can filter by the name of the process (that is, the name of your app); even
better, if you’re using os_log, you can filter by the subsystem and category you con‐
figured when creating your OSLog object.

In the Xcode console, NSLog and os_log provide extra information along with each
log message: the current time and date, along with the process name, process ID, and
thread ID (useful for determining whether two logging statements are called on the
same thread). In the Console application, you can see that same information by dis‐
playing the Time, Process, and Thread ID columns, plus you can show Category, Sub‐
system, and Type columns.

In addition to the extra specifiers such as the subsystem and category, a major
advantage of os_log over NSLog is that messages from the latter, but not the for‐
mer, are truncated at 1024 characters.

Another useful form of caveman debugging is deliberately aborting your app because
something has gone seriously wrong. See the discussion of assert, precondition,

Debugging | 419

https://developer.apple.com/documentation/os/logging

and fatalError in Chapter 5. precondition and fatalError work even in a Release
build. By default, assert is inoperative in a Release build, so it is safe to leave it in
your code when your app is ready to ship; by that time, of course, you should be con‐
fident that the bad situation your assert was intended to detect has been debugged
and will never actually occur.

Purists may scoff at caveman debugging, but I use it heavily: it’s easy, informative, and
lightweight. And sometimes it’s the only way. Unlike the debugger, console logging
works with any build configuration (Debug or Release) and wherever your app runs
(in the Simulator or on a device). It works when pausing is impossible (because of
threading issues, for example). It even works on someone else’s device, such as a tester
to whom you’ve distributed your app.

Swift defines four special literals, particularly useful when logging because they
describe their own position in the surrounding file: #file, #line, #column, and
#function.

The Xcode Debugger
When Xcode is running your app, you can pause in the debugger and use Xcode’s
debugging facilities. The important thing, if you want to use the debugger, is that the
app should be built with the Debug build configuration (the default for a scheme’s
Run action). The debugger is not very helpful against an app built with the Release
build configuration, not least because compiler optimizations can destroy the corre‐
spondence between steps in the compiled code and lines in your code.

Breakpoints
There isn’t a strong difference between running and debugging in Xcode; the main
distinction is whether breakpoints are effective or ignored. The effectiveness of break‐
points can be toggled at two levels:

Globally (active vs. inactive)
Breakpoints as a whole are either active or inactive. If breakpoints are inactive, we
won’t pause at any breakpoints.

Individually (enabled vs. disabled)
A given breakpoint is either enabled or disabled. Even if breakpoints are active,
we won’t pause at this one if it is disabled. Disabling a breakpoint allows you to
leave in place a breakpoint that you might need later without pausing at it every
time it’s encountered.

To create a breakpoint (Figure 9-8), select in the editor the line where you want to
pause, and choose Debug → Breakpoints → Add/Remove Breakpoint at Current Line
(Command-\). This menu item toggles between adding and removing a breakpoint

420 | Chapter 9: Life Cycle of a Project

Figure 9-8. A breakpoint

Figure 9-9. A disabled breakpoint

Figure 9-10. A configured breakpoint

for the current line. The breakpoint is symbolized by an arrow in the gutter. Alterna‐
tively, a simple click in the gutter adds a breakpoint; to remove a breakpoint gestur‐
ally, drag it out of the gutter.

To disable a breakpoint at the current line, click on the breakpoint in the gutter to
toggle its enabled status. Alternatively, Control-click on the breakpoint and choose
Disable Breakpoint in the contextual menu. A dark breakpoint is enabled; a light
breakpoint is disabled (Figure 9-9).

To toggle the active status of breakpoints as a whole, click the Breakpoints button in
the debug bar (the bar at the top of the Debug pane), or choose Debug → Activate/
Deactivate Breakpoints (Command-Y). If breakpoints are inactive, they are simply
ignored en masse, and no pausing at breakpoints takes place. Breakpoint arrows are
blue if breakpoints are active, gray if they are inactive. The active status of break‐
points as a whole doesn’t affect the enabled or disabled status of any breakpoints.

Once you have some breakpoints in your code, you’ll want to survey and manage
them. That’s what the Breakpoint navigator is for. Here you can navigate to a break‐
point, enable or disable a breakpoint by clicking on its arrow in the navigator, and
delete a breakpoint.

You can also configure a breakpoint’s behavior. Control-click on the breakpoint, in
the gutter or in the Breakpoint navigator, and choose Edit Breakpoint; or double-click
the breakpoint. This is a very powerful facility: you can have a breakpoint pause only
under a certain condition or after it has been encountered a certain number of times,
and you can have a breakpoint perform one or more actions when it is encountered,
such as issuing a debugger command, logging, playing a sound, speaking text, or run‐
ning a script. A breakpoint whose behavior has been configured is badged
(Figure 9-10).

Debugging | 421

A breakpoint can be configured to continue automatically after performing its action
when it is encountered. A breakpoint that logs and continues can be an excellent
alternative to caveman debugging. By definition, such a breakpoint operates only
when you’re actively debugging the project; it won’t dump any messages into the con‐
sole when the app runs on a user’s device, because breakpoints exist in Xcode, not on
a user’s device.

Certain special kinds of breakpoint can be created in the Breakpoint navigator —
click the Plus button at the bottom of the navigator and choose from its pop-up menu
— or by choosing from the Debug → Breakpoints hierarchical menu:

Exception breakpoint
An exception breakpoint causes your app to pause at the time an exception is
thrown or caught, without regard to whether the exception would crash your app
later. An exception breakpoint that pauses on all exceptions when they are
thrown gives the best view of the call stack and variable values at the moment of
the exception; you can see where you are in your code, and you can examine
variable values, which may help you understand the cause of the problem. Hav‐
ing created such an exception breakpoint, you can use the contextual menu to say
Move Breakpoint To → User, making this breakpoint global to all your projects.

Sometimes Apple’s code will throw an exception and catch it, deliberately. This
isn’t a crash, and nothing has gone wrong; but if you’ve created an exception
breakpoint, your app will pause at it, which can be confusing. If this happens to
you, choose Debug → Continue to resume your app; if it keeps happening, you
might need to disable the exception breakpoint.

Swift error breakpoint
Similar to an exception breakpoint, but it pauses when your code says throw.

Symbolic breakpoint
A symbolic breakpoint causes your app to pause when a certain method or func‐
tion is called, regardless of what object called it. The method doesn’t have to be
your method! Thus, a symbolic breakpoint can help you probe Cocoa’s behavior.
A method may be specified in one of two ways:

Using Objective-C method notation
The instance method or class method symbol (- or +) followed by square
brackets containing the class name and the method name. For example:

-[UIApplication beginReceivingRemoteControlEvents]

By Objective-C method name
The Objective-C method name alone. The debugger will resolve this for you
into all possible class–method pairs, as if you had entered them using the
Objective-C notation that I just described. For example:

422 | Chapter 9: Life Cycle of a Project

Figure 9-11. Paused at a breakpoint

beginReceivingRemoteControlEvents

If you enter the method specification incorrectly, the symbolic breakpoint won’t
do anything; however, you might be assisted by code completion, and in general
you’ll know if you got things right, because you’ll see the resolved breakpoint(s)
listed hierarchically below yours (though resolution may not take place until you
actually run the project).

Paused at a breakpoint
When the app runs with breakpoints active and an enabled breakpoint is encountered
(and assuming its conditions are met, and so on), the app pauses. In the active project
window, the editor shows the file containing the point of execution, which will usu‐
ally be the file containing the breakpoint. We are paused at the line that is about to be
executed, which is shown by the instruction pointer (Figure 9-11). Depending on the
settings for Running → Pauses in the Behaviors preference pane, the Debug navigator
and the Debug pane may also appear.

Here are some things you might like to do while paused at a breakpoint:

See where you are
One common reason for setting a breakpoint is to make sure that the path of exe‐
cution is passing through a certain line. Functions listed in the call stack in the
Debug navigator with a User icon in a dark blue background are yours; click one
to see where you are paused in that function. (Other listings are functions and
methods for which you have no source code, so there would be little point click‐
ing one unless you know something about assembly language.) You can also view
and navigate the call stack using the jump bar in the debug bar.

Study variable values
In the Debug pane, variable values for the current scope (corresponding to what’s
selected in the call stack) are visible in the variables list. You can see additional
object features, such as collection elements, properties, and even some private
information, by opening triangles. (Local variable values are shown even if, at the
point where you are paused, those variables have not yet been initialized; such
values are meaningless, so ignore them.)

You can use the search field to filter variables by name or value. If a formatted
summary isn’t sufficiently helpful, you can send description (or, if this object
adopts CustomDebugStringConvertible, debugDescription) to an object vari‐
able and view the output in the console: choose Print Description of [Variable]

Debugging | 423

Figure 9-12. A data tip

from the contextual menu, or select the variable and click the Info button below
the variables list.

You can also view a variable’s value graphically: select the variable and click the
Quick Look button (an eye icon) below the variables list, or press Spacebar. For
example, in the case of a CGRect, the graphical representation is a correctly pro‐
portioned rectangle. You can make instances of your own custom class viewable
in the same way; declare the following method and return an instance of one of
the permitted types (see Apple’s Quick Look for Custom Types in the Xcode
Debugger in the documentation archive):

@objc func debugQuickLookObject() -> Any {
 // ... create and return your graphical object here ...
}

You can also inspect a variable’s value in place in your code, by examining its data
tip. To see a data tip, hover the mouse over the name of a variable in your code.
The data tip is much like the display of this value in the variables list: there’s a
flippy triangle that you can open to see more information, plus an Info button
that displays the value description here and in the console, and a Quick Look
button for showing a value graphically (Figure 9-12).

Set a watchpoint
A watchpoint is like a breakpoint, but instead of depending on a certain line of
code it depends on a variable’s value: the debugger pauses whenever the variable’s
value changes. You can set a watchpoint only while paused in the debugger.
Control-click on the variable in the variables list and choose Watch [Variable].
Watchpoints, once created, are listed and managed in the Breakpoint navigator.

Inspect your view hierarchy
You can study the view hierarchy while paused in the debugger. Click the Debug
View Hierarchy button in the debug bar, or choose Debug → View Debugging →
Capture View Hierarchy. Views are listed in an outline in the Debug navigator.
The editor displays your views; this is a three-dimensional projection that you

424 | Chapter 9: Life Cycle of a Project

can rotate. The Object inspector and the Size inspector display information about
the currently selected view.

Inspect your object graph
You can study the object graph (what objects you’ve created and how they are
referring to one another) while paused in the debugger. I’ll talk more about that
later in this chapter.

Manage expressions
An expression is code to be added to the variables list and evaluated every time
we pause. Choose Add Expression from the contextual menu in the variables list.
The expression is evaluated within the current context in your code, so be careful
of side effects.

Talk to the debugger
You can communicate directly with the debugger through the console. Xcode’s
debugger interface is a front end to the real debugger, LLDB (http://lldb.llvm.org);
by talking directly to LLDB, you can do everything that you can do through the
Xcode debugger interface, and more. Common commands are:

fr v (short for frame variable)
Alone, prints out all variables locally in scope, similar to the display in the
variables list. Alternatively, can be followed by the name of a variable you
want to examine.

ty loo (short for type lookup)
Followed by a type name, dumps a full declaration for the type, listing all its
members (properties and methods). For Cocoa classes, you might get better
information by performing the lookup in Objective-C (ty loo -l objc --
followed by the class name).

p (or expression, expr, or simply e)
Evaluates, in the current context, any expression in the current language. Be
careful of your expression’s side effects!

po (meaning “print object”)
Like p, but displays the value of the expression in accordance with its
description or debugDescription (similar to Print Description).

Fiddle with breakpoints
You are free to create, destroy, edit, enable and disable, and otherwise manage
breakpoints dynamically even while your app is running, which is useful because
where you’d like to pause next might depend on what you learn while you’re
paused here. Indeed, this is one of the main advantages of breakpoints over cave‐
man debugging. To change your caveman debugging, you have to stop the app,

Debugging | 425

http://lldb.llvm.org

edit it, rebuild it, and start running the app all over again. But to fiddle with
breakpoints, you don’t have to be stopped; you don’t even have to be paused! An
operation that went wrong, if it doesn’t crash your app, can probably be repeated
in real time; so you can just add a breakpoint and try again. For example, if tap‐
ping a button produces the wrong results, you can add a breakpoint to the action
method and tap the button again; you pass through the same code, and this time
you pause and can work out what the trouble is.

Step or continue
To proceed with your paused app, you can either resume running until the next
breakpoint is encountered (Debug → Continue) or take one step and pause again.
Also, you can select in a line and choose Debug → Continue to Current Line (or
Continue to Here from the contextual menu), which effectively sets a breakpoint
at the chosen line, continues, and removes the breakpoint. The step commands
(in the Debug menu) are:

Step Over
Pause at the next line.

Step Into
Pause in your function that the current line calls, if there is one; otherwise,
pause at the next line.

Step Out
Pause when we return from the current function.

You can access these commands through convenient buttons in the debug bar.

Start over, or abort
To kill the running app, click Stop in the toolbar (Product → Stop, Command-
Period). Clicking the Home button in the Simulator (Hardware → Home) or on
the device does not stop the running app in the multitasking world of iOS 4 and
later.

You can make changes to your code while the app is running or paused, but those
changes are not magically communicated to the running app; there are programming
milieus where that sort of thing is possible, but Xcode is not among them. You must
stop the app and run in the normal way (which includes building) to see your
changes in action.

However, you can inject changes into your code by means of an expr command,
given either at the LLDB console or through a custom-configured breakpoint. More‐
over, you can skip a line of code by dragging the instruction pointer down; if you
combine that with expr, you’ve effectively replaced one line of code with another.
Thus it may be possible to modify your app’s logic and test a proposed change to your
code without stopping, compiling, and running again.

426 | Chapter 9: Life Cycle of a Project

Testing
A test is code that isn’t part of your app target; its purpose is to exercise your app and
make sure that it works as expected. Tests can be of two kinds:

Unit tests
A unit test exercises your app target internally, from the point of view of its code.
For example, a unit test might call some method in your app target code, handing
it various parameters and looking to see if the expected result is returned each
time, not just under normal conditions but also when incorrect or extreme
inputs are supplied.

Interface (UI) tests
An interface test exercises your app externally, from the point of view of a user.
Such a test guides your app through use case scenarios by effectively tapping but‐
tons with a ghost finger, watching to make sure that the interface behaves as
expected.

Tests should ideally be written and run constantly as you develop your app. It can
even be useful to write unit tests before writing the real code, as a way of developing a
working algorithm. Having initially ascertained that your code passes your tests, you
continue to run those tests to detect whether a bug has been introduced during the
course of development.

Tests are bundled in a separate target of your project (see Chapter 6). The application
templates give you an opportunity to add a test target at the time you create your
project: in the second dialog (“Choose options for your new project”), you can check
Include Unit Tests or Include UI Tests, or both. Alternatively, you can easily create a
new test target at any time: make a new target and specify iOS → Test → iOS Unit
Testing Bundle or iOS UI Testing Bundle. Your tests do not run until you explicitly
run them. Tests can be managed and run easily from the Test navigator as well as
from within a test class file.

A test class is a subclass of XCTestCase (which is itself a subclass of XCTest). A test
method is an instance method of a test class, returning no value and taking no
parameters, whose name starts with test. The test target depends upon the app tar‐
get, meaning that before a test class can be compiled and built, the app target must be
compiled and built. To build your test target, so as to learn whether its code compiles
successfully, choose Product → Build For → Testing.

A test method may call one or more test asserts; in Swift, these are global functions
whose names begin with XCTAssert. For a list of these functions, see the XCTest class
documentation. Calling a test assert is typically the entire point of writing a unit test.

Testing | 427

A test class may contain utility methods that are called by the test methods; their
names do not begin with test. In addition, you can override any of four special
methods inherited from XCTestCase:

setUp class method
Called once before all test methods in the class.

setUp instance method
Called before each test method.

tearDown instance method
Called after each test method.

tearDown class method
Called once after all test methods in the class.

As an alternative to the tearDown instance method, you can use a teardown block. To
do so, call self.addTeardownBlock(_:) with a function (typically an anonymous
function) to be called at teardown time; self here is the XCTestCase instance. When
the teardown block is called depends on where it is added; if you call addTeardown-
Block within a test method, the block is called only on exit from that method, but if
you call it in the setUp instance method, the block is called after every test method,
because the block was added freshly before every test method.

Running a test also runs the app. The test target’s product is a bundle; a unit test bun‐
dle is loaded into the app as it launches, whereas an interface test bundle is loaded
into a special test runner app generated for you by Xcode. Resources, such as test
data, can be included in the bundle. You might use setUp to load such resources; you
can get a reference to the bundle by way of the test class, by saying
Bundle(for:type(of:self)).

Unit Tests
Unit tests can see into the app target, because they are part of the same app; but, being
a bundle, they also constitute a module. Therefore, the test target must import the
app target as a module. To overcome privacy restrictions, the import statement
should be preceded by the @testable attribute; this attribute temporarily changes
internal (explicit or implicit) to public throughout the app target.

As an example of writing and running a unit test method, we can use our Empty
Window project. Let’s give the ViewController class a (nonsensical) instance method
dogMyCats:

func dogMyCats(_ s:String) -> String {
 return ""
}

428 | Chapter 9: Life Cycle of a Project

The method dogMyCats is supposed to receive any string and return the string
"dogs". At the moment, though, it doesn’t; it returns an empty string instead. That’s a
bug. Now we’ll write a test method to ferret out this bug.

First, we’ll need a unit test target:

1. In the Empty Window project, choose File → New → Target and specify iOS →
Test → iOS Unit Testing Bundle.

2. Call the product EmptyWindowTests; observe that the target to be tested is the
app target.

3. Click Finish.
In the Project navigator, a new group has been created, EmptyWindowTests, contain‐
ing a single test file, EmptyWindowTests.swift. It contains a test class EmptyWin‐
dowTests, including stubs for two test methods, testExample and
testPerformanceExample; comment out those two methods. We’re going to replace
them with a test method that calls dogMyCats and makes an assertion about the result:

1. At the top of EmptyWindowTests.swift, where we are importing XCTest, we must
also import the app target:

@testable import Empty_Window

2. Prepare an instance property in the declaration of the EmptyWindowTests class
to store our ViewController instance:

var viewController = ViewController()

3. Write the test method. Its name must start with test! Let’s call it testDogMyCats.
It has access to the ViewController instance as self.viewController:

func testDogMyCats() {
 let input = "cats"
 let output = "dogs"
 XCTAssertEqual(output,
 self.viewController.dogMyCats(input),
 "Failed to produce \(output) from \(input)")
}

We are now ready to run our test! There are many ways to do this. Switch to the Test
navigator, and you’ll see that it lists our test target, our test class, and our test method.
You can run a test method, or the whole class suite, using the contextual menu or
with Run buttons that appear when you hover the mouse over a listing. Even better,
in EmptyWindowTests.swift itself, there’s a diamond-shaped indicator in the gutter to
the left of the class declaration and the test method name; when you hover the mouse
over it, it changes to a Run button. You can click that button to run, respectively, all
tests in this class or an individual test. Or, to run all tests, you can choose Product →

Testing | 429

Figure 9-13. The Report navigator describes a test failure

Test. (After running a test, to run just that test again, choose Product → Perform
Action → Test Again.)

So now let’s run testDogMyCats. The app target is compiled and built; the test target
is compiled and built. (If any of those steps fails, we can’t test, and we’ll be back on
familiar ground with a compile error or a build error.) The app launches in the Simu‐
lator, and the test runs.

The test fails! (Well, we knew that was going to happen, didn’t we?) The error is
described in a banner next to the assert that failed in our code; moreover, red X
marks appear everywhere — at the top of the project window, in the Test navigator
next to testDogMyCats, and in EmptyWindowTests.swift next to the first line of test-
DogMyCats.

The best place to survey what went wrong is the Report navigator. Initially, you’re
shown a summary view. For even more detail, choose Test → Log from the jump bar
at the top of the editor (Figure 9-13); by expanding transcripts, you can see the full
console output from the test run, including any caveman debugging messages that
you may have sent from your test code.

Now let’s fix our code. In ViewController.swift, modify dogMyCats to return "dogs"
instead of an empty string. Now run the test again. It passes!

When a test failure occurs, you might like to pause at the point where the assertion is
about to fail. To do so, in the Breakpoint navigator, click the Plus button at the bot‐
tom and choose Test Failure Breakpoint. This is like an Exception breakpoint, paus‐
ing on the assert line in your test method just before it reports failure. You could then
switch to the method being tested and debug it, examining its variables and so forth,
to work out the reason for the impending failure.

430 | Chapter 9: Life Cycle of a Project

Figure 9-14. The Report navigator displays code coverage statistics

There’s a helpful feature allowing you to navigate between a method and a test that
calls it: when the selection is within a method, the Related Items menu in the jump
bar includes Test Callers. The same is true of the Tracking menu in an assistant pane.

You can edit the scheme’s Test action to configure details about what happens when
you choose Product → Test. For example, you can dictate what tests will be run when
you choose Product → Test. New in Xcode 10, the Info pane has an Options button
for each test target; click it to see a popover with further configuration checkboxes.
For example, check “Randomize execution order” to make tests in a suite run in ran‐
dom order rather than alphabetical order; that’s a good way of unmasking hidden
dependencies between tests.

Xcode’s code coverage feature lets you assess how much of your app target’s code is
being exercised by your unit tests. To switch it on, edit the Test action in your scheme
and check “Gather coverage” in the Options pane. Run your tests. Afterward, the
Report navigator has a Coverage section displaying statistics (Figure 9-14); you can
also choose Editor → Show Code Coverage, if needed, to reveal a gutter at the right of
your code giving a count of how many times each stretch of code was called.

Interface Tests
Now let’s experiment with interface testing. I’m going to assume that you still have
(from Chapter 7) a button in the Empty Window interface with an action connection
to a ViewController method that summons an alert. We’ll write a test that taps that
button and makes sure that the alert is summoned. Add an iOS UI Testing Bundle to
the project; call it EmptyWindowUITests.

Interface test code is based on accessibility, a feature that allows the screen interface to
be described verbally and to be manipulated programmatically. It revolves around
three classes: XCUIElement, XCUIApplication (an XCUIElement subclass), and
XCUIElementQuery. In the long run, it’s best to learn about these classes and write
your own UI test code; but to help you get started, accessibility actions are recordable,

Testing | 431

meaning that you can generate your code automatically by performing the actual
actions that constitute the test. Let’s try it:

1. In the testExample stub method, create a new empty line and leave the insertion
point within it.

2. Choose Editor → Start Recording UI Test. (Alternatively, there’s a Record button
in the debug bar.) The app launches in the Simulator.

3. Tap the button in the interface. When the alert appears, tap OK to dismiss it.
4. Return to Xcode and choose Editor → Stop Recording UI Test. Also choose

Product → Stop to stop running in the Simulator.
The following code has been generated (assuming that your interface button’s title is
“Hello”):

let app = XCUIApplication()
app.buttons["Hello"].tap()
app.alerts["Howdy!"].buttons["OK"].tap()

The app object, obviously, is an XCUIApplication instance. Properties such as
buttons and alerts return XCUIElementQuery objects. Subscripting such an object
returns an XCUIElement, which can then be sent action methods such as tap.

Now run the test by clicking in the diamond in the gutter at the left of the test-
Example declaration. The app launches in the Simulator, and a ghost finger performs
the same actions we performed, tapping first the button in the interface and then,
when the alert appears, the OK button that dismisses it. The test ends and the app
stops running in the simulator. The test passes!

The important thing, however, is that if the interface stops looking and behaving as it
does now, the test will not pass. For example, in Main.storyboard, select the button
and, under Control in the Attributes inspector, uncheck Enabled. The button is still
there, but it can’t be tapped; we’ve broken the interface. Run the test. The test fails,
and the Report navigator explains why: when we came to the Tap the “OK” Button
step, we first had to perform Find the “OK” Button, and we failed because there was
no alert. Ingeniously, the report also incorporates screenshots so that we can inspect
the state of the interface during the test. Under Find the “OK” Button, double-click
Automatic Screenshot; you’re shown the screen at that moment, displaying clearly the
disabled interface button (and no alert).

During interface testing, your app is in effect being viewed from the outside, as a
human being would view it. As I’ve already said, that depends upon accessibility.
Standard interface objects are accessible, but other interface that you create might not
be. Select an interface element in the nib editor to view its accessibility characteristics
in the Identity inspector. Run the app in the Simulator and choose Xcode → Open
Developer Tool → Accessibility Inspector to explore in real time the accessibility

432 | Chapter 9: Life Cycle of a Project

characteristics of whatever is under the cursor. For more about adding useful accessi‐
bility to your interface objects, see Apple’s Accessibility Programming Guide for iOS in
the documentation archive.

Clean
From time to time, during repeated testing and debugging, and before making a dif‐
ferent sort of build (switching from Debug to Release, or running on a device instead
of the Simulator), it’s a good idea to clean your target. This means that existing builds
will be removed and caches will be cleared, so that all code will be considered to be in
need of compilation and you can build your app from scratch.

Cleaning removes the cruft, quite literally. For example, suppose you have been
including a certain resource in your app, and you decide it is no longer needed. You
can remove it from the Copy Bundle Resources build phase (or from your project as a
whole), but that doesn’t necessarily remove it from your built app. This sort of left‐
over resource can cause all kinds of mysterious trouble. The wrong version of a nib
may seem to appear in your interface; code that you’ve edited may seem to behave as
it did before the edit. Cleaning removes the built app, and very often solves the
problem.

You can choose Product → Clean Build Folder, which removes the entire build folder.
For an even more extensive cleaning, quit Xcode and then open your user ~/Library/
Developer/Xcode/DerivedData folder and move all its contents to the trash. This is a
complete clean for every project you’ve opened recently — plus the module cache.
Removing the module cache can reset Swift itself, thus causing occasional mysterious
compilation, code-completion, or syntax coloring issues to go away.

In addition to cleaning your project, you should also remove your app from the Sim‐
ulator. This is for the same reason as cleaning the project: when the app is built and
copied to the Simulator, existing resources inside the built app may not be removed
(in order to save time), and this may cause the app to behave oddly. To clean out the
current simulator while running the Simulator, choose Hardware → Erase All Con‐
tent and Settings. To clean out all simulators, quit the Simulator and then say, in the
Terminal:

$ xcrun simctl erase all

Running on a Device
Eventually, you’ll want to progress from running and testing and debugging in the
Simulator to running and testing and debugging on a real device. The Simulator is
nice, but it’s only a simulation; there are many differences between the Simulator and
a real device. The Simulator is really your computer, which is fast and has lots of
memory, so problems with memory management and speed won’t be exposed until

Clean | 433

you run on a device. User interaction with the Simulator is limited to what can be
done with a mouse: you can click, you can drag, you can hold Option to simulate use
of two fingers, but more elaborate gestures can be performed only on an actual
device. And many iOS facilities, such as the accelerometer and access to the music
library, are not present on the Simulator at all, so that testing an app that uses them is
possible only on a device.

Running your app on a device requires a Developer Program membership, which in
turn requires an annual fee. You may balk initially, but sooner or later you’re going to
get over it and accept that this fee is worth paying.

Since Xcode 7, Apple has provided the ability to configure your app to run on a
device, for testing purposes, without a paid Developer Program membership.
This ability, however, is limited, and I’m not going to document it here.

Obtaining a Developer Program Membership
To obtain a Developer Program membership, go to the Apple Developer Program
web page (https://developer.apple.com/programs/) and initiate the enrollment process.
When you’re starting out, the Individual program is sufficient. The Organization pro‐
gram costs no more, but adds the ability to privilege additional team members in var‐
ious roles. (You do not need the Organization program merely in order to distribute
your built app to other users for testing.)

Your Developer Program membership involves two things:

An Apple ID
The user ID that identifies you at Apple’s site (along with the corresponding pass‐
word). You’ll use your Developer Program Apple ID for all kinds of things. In
addition to letting you prepare an app to run on a device, this same Apple ID lets
you post on Apple’s development forums, download Xcode beta versions, and so
forth.

A team name
You, under the same Apple ID, can belong to more than one team. On each team,
you will have one or more roles dictating your privileges. If you are the head (or
sole member) of the team, you are the team agent, meaning that you can do
everything: you can develop apps, run them on your device, submit apps to the
App Store, and receive the money for any paid apps that sell copies there.

Having established your Developer Program Apple ID, you should enter it into the
Accounts preference pane in Xcode. Click the Plus button at the bottom left and
select Apple ID as the type of account to add. Provide the Apple ID and password.
From now on, Xcode will identify you through the team name(s) associated with this
Apple ID; you shouldn’t need to tell Xcode this password again.

434 | Chapter 9: Life Cycle of a Project

https://developer.apple.com/programs/

Signing an App
Running an app on a device is a remarkably complicated business. You will need to
sign the app as you build it. An app that is not properly signed for a device will not
run on that device (assuming you haven’t jailbroken the device). Signing an app
requires two things:

An identity
An identity represents Apple’s permission for a given team to develop, on this
computer, apps that can run on a device. It consists of two parts:

A private key
The private key is stored in the keychain on your computer. Thus, it identi‐
fies a computer where this team can potentially develop device-targeted apps.

A certificate
A certificate is a virtual permission slip from Apple. It contains the public
key matching the private key (because you told Apple the public key when
you asked for the certificate). With a copy of this certificate, any machine
holding the private key can actually be used to develop device-targeted apps
under the name of this team.

A provisioning profile
A provisioning profile is a virtual permission slip from Apple, uniting four
things:

• An identity.
• An app, identified by its bundle identifier.
• A list of eligible devices, identified by their unique device identifiers

(UDIDs).
• A list of entitlements. An entitlement is a special privilege that not every app

needs, such as the ability to talk to iCloud. You won’t concern yourself with
entitlements unless you write an app that needs one.

Thus, a provisioning profile is sufficient for signing an app as you build it. It says
that on this computer it is permitted to build this app such that it will run on
these devices.

There are two types of identity, and hence two types of certificate, and hence two
types of provisioning profile: development and distribution (a distribution certificate is
also called a production certificate). We are concerned here with the development
identity, certificate, and profile; I’ll talk about the distribution side later.

The only thing that belongs entirely to you is the private key in your computer’s key‐
chain. Apple is the ultimate keeper of all other information: your certificates, your

Running on a Device | 435

provisioning profiles, what apps and what devices you’ve registered. Your communi‐
cation with Apple, when you need to verify or obtain a copy of this information, will
take place through one of two means:

The developer member center
A set of web pages at https://developer.apple.com/account/. Having logged in with
your Apple ID, you can click Certificates, IDs & Profiles (or go directly to https://
developer.apple.com/account/ios/certificate/) to access all features and informa‐
tion to which you are entitled by your membership type and role. (This is the
area of Apple’s site formerly referred to as the Portal.)

Xcode
Just about everything you would need to do at the developer member center can
be done through Xcode instead. When all goes well, using Xcode is a lot simpler!
If there’s a problem, you can head for the developer member center to iron it out.

Automatic Signing
Apple provides two distinct ways of obtaining and managing certificates and profiles
in connection with a project — automatic signing, and manual signing. For new
projects, automatic signing is the default. This is indicated by the fact that the “Auto‐
matically manage signing” checkbox is checked in the Signing section of the General
pane when you edit your project’s app target (Figure 9-18).

To see just how automatic Xcode’s signing management can be, let’s start at a stage
where as yet you have neither a development certificate in your computer’s keychain
nor a development profile for any app. But you do have a Developer Program Apple
ID, and you’ve entered it into Xcode’s Accounts preference pane. Then, when you cre‐
ate a new project (File → New → Project), you’ll see on the second screen (“Choose
options for your new project”) a pop-up menu listing all the teams with which your
Apple ID is associated. Specify the desired team here.

When you then create the project on disk and the project window opens, everything
happens automatically. Your computer’s keychain creates a private key for a develop‐
ment certificate. The public key is sent to Apple. The actual development certificate is
created at the developer member center, and is downloaded and installed into your
computer’s keychain. With no conscious effort, you’ve obtained a development
identity!

If you’ve never run on any device before, and if you haven’t manually registered any
devices at the developer member center, that might be as far as Xcode can go for now.
If so, you’ll see some errors in the Signing section of the General pane when you edit
the app target, similar to Figure 9-15.

Now connect a device via USB to your computer and select it as the destination,
either under Product → Destination or in the Scheme pop-up menu in the project

436 | Chapter 9: Life Cycle of a Project

https://developer.apple.com/account/
https://developer.apple.com/account/ios/certificate/
https://developer.apple.com/account/ios/certificate/

Figure 9-15. Xcode knows of no devices

Figure 9-16. Xcode offers to register a device

Figure 9-17. Xcode has registered a device for us

window toolbar. This causes the error in Figure 9-15 to change: a Register Device
button now appears (Figure 9-16). Click it!

The problem is resolved; the error vanishes. You can switch to the Report navigator
to learn what just happened (Figure 9-17).

As the Report navigator tells us, the device has been registered — and a development
provisioning profile has been created and downloaded (and has been stored in your
~/Library/MobileDevice/Provisioning Profiles folder). This is a universal iOS Team
Provisioning Profile — and that is all you need in order to run any basic app on any
device! Figure 9-18 shows the resulting display in the Signing section of the General
pane when you edit the app target.

You are now almost ready to run this project on this device, as I’ll explain in a
moment. There may, however, be one further step: you might have to disconnect the
device from USB and connect it again. This is so that Xcode can recognize the device
afresh and prepare for debugging on it. This process is rather time-consuming; a pro‐
gress indication is shown at the top of the project window, and in the Devices and
Simulators window (Figure 9-19).

Running on a Device | 437

Figure 9-18. Xcode manages signing credentials automatically

Figure 9-19. Xcode prepares for debugging on a device

Figure 9-20. A universal development profile

The good news is that once you already have a development certificate, and once
Xcode has already generated and downloaded a universal iOS Team Provisioning
Profile, and once your device is already registered with Apple and prepared by Xcode
for debugging, none of that will be necessary ever again. When you create a new
project, you supply your team name. Xcode thus knows everything it needs to know!
The development certificate is valid for this computer, the universal iOS Team Provi‐
sioning Profile is universal, and the device is registered with Apple and prepared for
debugging. Therefore, you should from now on be able to create a project and run it
on this device immediately.

You can confirm your possession of a universal development provisioning profile by
clicking the “i” button next to the words Xcode Managed Profile (Figure 9-18): a pop‐
over displays information about the provisioning profile, as shown in Figure 9-20.
The “*” in that popover tells you that this is a universal profile.

The universal development profile allows you to run any app on the targeted device
for testing purposes, provided that the app doesn’t require special entitlements (such
as using iCloud). If you turn on any entitlements for an app target (which you would
do by making a change in the Capabilities pane when you edit the app target), and if
you’re using automatic signing, Xcode will communicate with the developer member

438 | Chapter 9: Life Cycle of a Project

center to attach those entitlements to your registered app; then it will create a new
provisioning profile that includes those entitlements, download it, and use it for this
project.

Manual Signing
If you decide for any reason that you don’t want a project’s signing to be managed
automatically by Xcode, simply uncheck the “Automatically manage signing” check‐
box. You might never need to do that, but I’ve found it necessary for some of my
older app projects. This causes Xcode to take its hands off completely. It won’t auto‐
matically generate a development certificate or a provisioning profile, and it won’t
automatically pick a provisioning profile; you will have to do everything manually and
deliberately.

After you’ve unchecked “Automatically manage signing,” the Provisioning Profile
item in the General pane when you edit the target becomes multiple items, one for
each configuration. Thus, by default, you’ll see a Signing (Debug) item and a Signing
(Release) item. But there is no functional distinction to be drawn: you will want to set
them up identically with a single valid development certificate and development pro‐
visioning profile.

If you need to obtain a development certificate manually, there are two possible
approaches:

The Accounts preference pane
In Xcode’s Accounts preference pane, select your team name and click Manage
Certificates to summon the “Signing certificates” dialog. Click the Plus button at
the lower left, and choose iOS Development. Xcode will communicate with the
developer member center and an iOS development certificate will be created and
installed on your computer.

Keychain Access and the developer member center
Go to Certificates → All at the developer member center, click the Plus button,
ask for an iOS App Development certificate, click Continue, and follow the
instructions that start on the next page:

1. You begin by generating the private key in your computer’s keychain: launch
the Keychain Access application and choose Keychain Access → Certificate
Assistant → Request a Certificate From a Certificate Authority to save a cer‐
tificate signing request file onto your computer.

2. You then upload that file to the developer member center and use it to gener‐
ate the actual certificate, which you download and double-click to install it
into the keychain. (You can then throw away both the certificate request file
and the downloaded certificate.)

Running on a Device | 439

Figure 9-21. A valid development certificate

Figure 9-21 shows what a valid development certificate looks like in Keychain Access.

Assuming you have a development certificate, you can use the developer member
center to create a development profile manually, if necessary, as follows:

1. First, the device must be registered at the developer member center. Look under
Devices → All to see if it is. If it isn’t, click the Plus button and enter a name for
this device along with its UDID. You can copy the device’s UDID from its listing
in Xcode’s Devices and Simulators window. Alternatively, you can submit a tab-
delimited text file of UDIDs and names.

2. Next, the app must be registered at the developer member center. Look under
Identifiers → App IDs to see if it is. If it isn’t, add it, as follows: Click Plus. Enter a
name for this app. Enter the bundle identifier under Explicit App ID exactly as
shown in Xcode, in the Bundle Identifier field under General when you edit the
app target.
(If your app uses special entitlements, this step is also where you’d associate those
entitlements manually with the app.)

3. Under Provisioning Profiles → Development, click Plus. Ask for an iOS App
Development profile. On the next screen, choose the App ID. (You’ll see an
option to create a “wildcard” development profile; this is a universal development
profile, but it’s a manually generated universal development profile. Do not
choose that! Create a development profile specifically targeted at this app.)
On the next screen, check your development certificate. On the next screen,
select the device(s) you want to run on. On the next screen, give this profile a
name. On the next screen, click Done. The provisioning profile is now listed and
active.

4. In Xcode, in the Provisioning Profile pop-up menus under Signing (Debug) and
Signing (Release), choose Download Profile. The profile you created at the devel‐
oper member center is listed here! Select it. The profile is downloaded and devel‐
opment provisioning is enabled for this project (Figure 9-22).

440 | Chapter 9: Life Cycle of a Project

Figure 9-22. Manual code signing

If you subsequently enable some additional entitlements in the Capabilities pane,
you’ll need to return to the member center, confirm that those entitlements are
associated with your app, and create and download a new profile.

Running the App
Once you have a development profile applicable to an app and a device (or, in the
case of the universal team profile, all apps and all registered devices), you can connect
the device via USB, choose it as the destination in the Scheme pop-up menu, and
build and run the app. (If you’re asked for permission to access your keychain, grant
it.)

The app is built, loaded onto your device, and launched. As long as you launch the
app from Xcode, everything is just as when running in the Simulator. You can run
and you can debug. The running app is in communication with Xcode, so that you
can stop at breakpoints, read messages in the console, profile your app with Instru‐
ments, and so on. The outward difference is that to interact physically with the app,
you use the device, not the Simulator.

You can also configure your device to allow Xcode to build and run apps on it without
a USB connection. To do so, start with the device connected via USB; locate the
device in the Devices and Simulators window and check “Connect via network.” The
device can now be used as a build and run destination wirelessly, provided it is con‐
nected via Wi-Fi to the local network or to some other network that your computer
can access by its IP address. You can build and run from Xcode, pausing at break‐
points and receiving console messages, even though the device is not physically
attached to your computer. This would be useful, for example, if the app you’re test‐
ing requires the device to be manipulated in ways that are difficult when the device is
tethered by a USB cable.

Running on a Device | 441

Managing Development Certificates and Devices
You’re allowed to have more than one development certificate, so there should be no
problem running your project on a device from another computer. Just do what you
did on the first computer! If you’re using automatic signing, a new certificate will be
generated for you, and it won’t conflict with the existing certificate for the first
computer.

When a device is attached to the computer, it appears in Xcode’s Devices and Simula‐
tors window. If this device has never been prepared for development, you can ask
Xcode to prepare it for development. You can then build and run onto the device. If
the device isn’t registered at the member center, a dialog appears offering to let you
register it; click Register Device, and now the device is registered. Your automatically
generated provisioning profile is modified to include this device, and you are now
able to build and run on it.

The Devices and Simulators window can be used to communicate in other ways with
a connected device. Using the contextual menu, you can copy the device’s UDID, and
you can view and manage provisioning profiles on the device. In the main part of the
window, you can see (and delete) apps that have been installed for development using
Xcode, and you can view and download their sandboxes. You can take screenshots.
You can view the device’s stored logs. You can open the Console application to view
the device’s console output in real time.

Profiling
Xcode provides tools for probing the internal behavior of your app graphically and
numerically, and you should keep an eye on those tools. The gauges in the Debug
navigator allow you to monitor key indicators, such as CPU and memory usage, any
time you run your app. Memory debugging gives you a graphical view of your app’s
objects and their ownership chains, and can even reveal memory leaks. And Instru‐
ments, a sophisticated and powerful utility application, collects profiling data that can
help track down problems and provide the numeric information you need to improve
your app’s performance and responsiveness.

Gauges
The gauges in the Debug navigator are operating whenever you build and run your
app. Click on a gauge to see further detail displayed in the editor. The gauges do not
provide highly detailed information, but they are extremely lightweight and always
active, so they are an easy way to get a general sense of your running app’s behavior at
any time. If there’s a problem, such as a prolonged period of unexpectedly high CPU
usage or a relentless unchecked increase in memory usage, you can spot it in the
gauges and then use Instruments to help track it down.

442 | Chapter 9: Life Cycle of a Project

Figure 9-23. The Debug gauges

There are four basic gauges: CPU, Memory, Disk, and Network. Depending on the
circumstances, you may see additional gauges. For example, an Energy Impact gauge
appears when running on a device, and for certain devices, a GPU gauge may appear
as well.

In Figure 9-23, I’ve been heavily exercising my app for a few moments, repeatedly
performing the most memory-intensive actions I expect the user to perform. These
actions do cause some spikes in memory usage, but my app’s memory usage then
always settles back down and levels off, so I don’t suspect any memory issues.

Note that Figure 9-23 is the result of running on a device. Running in the Simula‐
tor might give completely different — and misleading — results.

Profiling | 443

Figure 9-24. A memory graph

Memory Debugging
Memory debugging lets you pause your app and view a graphical display of your
object hierarchy at that moment. This is valuable not only for detecting problems but
also for understanding your app’s object structure.

To use memory debugging, run the app and click the Debug Memory Graph button
in the debug bar (Figure 9-24). The app pauses, and you are shown a drawing of your
app’s objects, linked by their chains of ownership. The Debug navigator lists your
objects hierarchically; click an object to see a different part of the graph. Double-click
an object in the graph to refocus the graph on that object.

In my app, the UIWindow has as its root view controller a ViewController whose
view’s subviews include a MyBoard view whose tiles property is an array of Tile
views. Figure 9-24 displays that situation.

At the cost of some additional overhead, you can enable the malloc stack before run‐
ning your app: edit the scheme’s Run action and check Diagnostics → Logging →
Malloc Stack with the pop-up menu set to All Allocation and Free History. When you
run the app, selecting an object in the memory graph provides a backtrace in the
Memory inspector that tells you how each object came into being. Hover over a line
of the backtrace and click the right-arrow button to jump to that line of your code.

Memory debugging also detects memory leaks. Such leaks will cause an error icon to
appear, and are listed in the Runtime pane of the Issue navigator. For example, sup‐
pose we run the example from Chapter 5 where I have a Dog class instance and a Cat
class instance with persisting references to one another and no other references to
either instance, so they are both leaking. The leaking Cat and Dog are listed in the
Issue navigator, and clicking one them displays a graph of the problem: the Cat and
the Dog are retaining one another (Figure 9-25).

444 | Chapter 9: Life Cycle of a Project

Figure 9-25. The memory graph displays a leak

Instruments
You can use Instruments on the Simulator or the device. The device is where you’ll do
your ultimate testing, for maximum verisimilitude (though some instruments run
only in the Simulator).

To get started with Instruments, set the desired destination in the Scheme pop-up
menu in the project window toolbar, and choose Product → Profile. Your app builds
using the Profile action for your scheme; by default, this uses the Release build con‐
figuration, which is probably what you want. Instruments launches; if your scheme’s
Instrument pop-up menu for the Profile action is set to Ask on Launch (the default),
Instruments presents a dialog where you choose a template.

Alternatively, click Profile In Instruments in a Debug navigator gauge editor; this is
convenient when the gauges have suggested a possible problem, and you want to
reproduce that problem under the more detailed monitoring of Instruments. Instru‐
ments launches, selecting the appropriate template for you. A dialog offers two
options: Restart stops your app and relaunches it with Instruments, whereas Transfer
keeps your app running and hooks Instruments into it.

Once the Instruments main window appears, you’ll probably have to click the Record
button, or choose File → Record Trace, to get your app running. Now you should
interact with your app like a user; Instruments will record its statistics.

Use of Instruments is an advanced topic, which is largely beyond the scope of this
book. Indeed, an entire book could be written about Instruments alone. The Instru‐
ments application comes with online help that’s definitely worth studying. Also, many
WWDC videos from current and prior years are about Instruments; look particularly
for sessions with “Instruments” or “Performance” in their names. Here, I’ll just
demonstrate, without much explanation, a little of what Instruments can do.

Figure 9-26 shows me doing much the same thing in Instruments that I did with the
Debug navigator gauges in Figure 9-23. I’ve set the destination to my device. I choose

Profiling | 445

Figure 9-26. Instruments graphs memory usage over time

Figure 9-27. Instruments describes a retain cycle

Product → Profile; when Instruments launches, I choose the Allocations template.
With my app running under Instruments, I exercise it for a while and then pause
Instruments, which meanwhile has charted my memory usage. Examining the chart, I
find that there are spikes up to about 42MB, but the app in general settles down to a
much lower level (less than 15MB). Those are very gentle and steady memory usage
figures, so I’m happy.

Another field of Instruments expertise is the ability to detect memory leaks (similar
to the memory graph leak detection I discussed earlier). In Figure 9-27, I’ve again run
the retain cycle code from Chapter 5. I’ve profiled the app using the Leaks template.
Instruments has detected the leak, and has diagrammed the issue.

In this final example, I’m curious as to whether I can shorten the time it takes my
Diabelli’s Theme app to load a photo image. I’ve set the destination to a device,
because that’s where speed matters and needs to be measured. I choose Product →
Profile. Instruments launches, and I choose the Time Profiler template. When the app
launches under Instruments on the device, I load new images repeatedly to exercise
this part of my code.

446 | Chapter 9: Life Cycle of a Project

Figure 9-28. Drilling down into the time profile

Figure 9-29. My code, time-profiled

In Figure 9-28, I’ve paused Instruments, and am looking at what it’s telling me. Open‐
ing the triangles in the lower portion of the window, I can drill down to my own code,
indicated by the user icon.

By double-clicking the listing of that line, I can see my own code, time-profiled
(Figure 9-29). The profiler is drawing my attention to the call to CGImageSource-
CreateThumbnailAtIndex; this is where we’re spending most of our CPU time. That
call is in the ImageIO framework; it isn’t my code, so I can’t make it run any faster. It
may be, however, that I could load the image another way; for example, at the expense
of some temporary memory usage, perhaps I could load the image at full size and
scale it down by redrawing it myself. If I’m concerned about speed here, I could
spend a little time experimenting. The point is that now I know what the experiment
should be. This is just the sort of focused, fact-based numerical analysis at which
Instruments excels.

Profiling | 447

Figure 9-30. Signposts in Instruments

New in iOS 12 and Xcode 10, you can inject custom messages into your Instruments
graphs in the form of signposts. For instance, based on the first Instruments example,
I may suspect that my highest memory spikes are taking place within my newgame
method. To confirm this, I’ll add some signposts.

I import os and configure an OSLog object called mylog, as described earlier in this
chapter. Then I instrument the start and end of my newgame method with
os_signpost calls:

os_signpost(type: .start, log: mylog, name: "newgame", "start")
// ...
os_signpost(type: .end, log: mylog, name: "newgame", "end")

To prepare my Instruments template, I start with a Blank template, choose View →
Show Library to bring up the instrument chooser, and add both the Allocations
instrument and the os_signpost instrument to my template. When I run the app,
Instruments displays the "newgame" signposts — and sure enough, they exactly sur‐
round the high point of each spike (Figure 9-30).

Localization
A device can be set by the user to prefer a certain language as its primary language.
You might like your app’s interface to respond to this situation by appearing in that
language. This is achieved by localizing the app for that language. You will probably
want to implement localization relatively late in the lifetime of the app, after the app
has achieved its final form, in preparation for distribution.

Localization operates through localization folders (with an .lproj extension) in your
project folder and in the built app bundle. When your app runs on a system whose
language corresponds to a localization folder, if a needed resource is present in that
localization folder, that resource is loaded automatically.

Any type of resource can live in these localization folders; for example, you can have
one version of an image to be loaded for one language, and another version of that

448 | Chapter 9: Life Cycle of a Project

image for another language. You will be most concerned, however, with text that is to
appear in your interface. Such text must be maintained in specially formatted .strings
files, with special names. For example:

• To localize your Info.plist file, use InfoPlist.strings.
• To localize your Main.storyboard, use Main.strings.
• To localize your code strings, use Localizable.strings.

You don’t have to create or maintain these files manually. Instead, you can work with
exported XML files in the standard .xliff format. Xcode will generate .xliff files auto‐
matically, based on the structure and content of your project; it will also read them
and will turn them automatically into the various localized .strings files.

To experiment with localization, our app needs some localizable content:

1. Edit the target and enter a value in the Display Name text field in the General
pane. Our Empty Window app already says “Empty Window” here, but it’s in
gray, indicating that this is merely an automatic display name; enter “Empty Win‐
dow” explicitly (and press Tab), to make this an actual display name. You have
now created a “Bundle display name” key (CFBundleDisplayName) in the Info.plist
file. That key will be localized.

2. Edit Main.storyboard and confirm that it contains a button whose title is “Hello.”
That title will be localized. (It will help the example if you also widen the button
to about 100 points.)

3. Edit ViewController.swift. The code here contains some literal strings, such as
"Howdy!":

@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: "Howdy!", message: "You tapped me!",
 preferredStyle: .alert)
 alert.addAction(
 UIAlertAction(title: "OK", style: .cancel))
 self.present(alert, animated: true)
}

That code won’t be localized, unless we modify it. Your code needs to call the
global NSLocalizedString function; you’ll usually supply these parameters:

key

The first parameter is the key into a .strings file.

value:

The default string if there’s no .strings file for the current language.

comment:

An explanatory comment.

Localization | 449

Figure 9-31. An exported xcloc bundle

So modify our buttonPressed method to look like this:

@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: NSLocalizedString(
 "Greeting", value:"Howdy!", comment:"Say hello"),
 message: NSLocalizedString(
 "Tapped", value:"You tapped me!", comment:"User tapped button"),
 preferredStyle: .alert)
 alert.addAction(UIAlertAction(
 title: NSLocalizedString(
 "Accept", value:"OK", comment:"Dismiss"),
 style: .cancel))
 self.present(alert, animated: true)
}

Now we’re going to give our project an actual localization, and export an editable .xliff
file expressing the details of that localization:

1. Edit the project. Under Localizations, click the Plus button. In the pop-up menu
that appears, choose French. In the dialog, click Finish.

2. Still editing the project, choose Editor → Export For Localization. In the dialog
that appears, check French (the default). You’re about to create a folder, so call it
something like Empty Window Localization and save it to the desktop.

The result, new in Xcode 12, is an .xcloc bundle. It’s an ordinary folder containing
subfolders, along with a contents.json file describing the output (Figure 9-31).

The heart of this output is an XML file called fr.xliff (inside the Localized Contents
subfolder). Examining this file, you’ll observe that our app’s localizable strings have all
been discovered:

450 | Chapter 9: Life Cycle of a Project

• For our Info.plist file in the project, Xcode has created a corresponding <file>
element. When imported, this element will be turned into a localized Info‐
Plist.strings file.

• For every localized .storyboard and .xib file, Xcode has run ibtool to extract the
text, and has created a corresponding <file> element. When imported, these ele‐
ments will be turned into eponymous localized .strings files.

• For our code files containing a call to NSLocalizedString, Xcode has run
genstrings to parse the file, and has created a corresponding <file> element.
When imported, this element will be turned into a localized Localizable.strings
file.

Now let’s pretend that you are the French translator, tasked with creating the French
localization of this app. Your job is to modify the fr.xliff file by providing a <target>
tag for every <source> tag that is to be translated into French. Your edited file might
contain, at the appropriate places, translations like this (note that the id and Object-
ID attributes will be different in your actual fr.xliff file):

<trans-unit id="RoQ-mP-swT.normalTitle">
 <source>Hello</source>
 <target>Bonjour</target>
 <note>Class="UIButton"; normalTitle="Hello"; ObjectID="RoQ-mP-swT";</note>
</trans-unit>

<trans-unit id="CFBundleDisplayName">
 <source>Empty Window</source>
 <target>Fenêtre Vide</target>
</trans-unit>
<trans-unit id="CFBundleName">
 <source>$(PRODUCT_NAME)</source>
 <target>$(PRODUCT_NAME)</target>
</trans-unit>

<trans-unit id="Accept">
 <source>OK</source>
 <target>OK</target>
 <note>Dismiss</note>
</trans-unit>
<trans-unit id="Greeting">
 <source>Howdy!</source>
 <target>Bonjour!</target>
 <note>Say hello</note>
</trans-unit>
<trans-unit id="Tapped">
 <source>You tapped me!</source>
 <target>Vous m'avez tapé!</target>
 <note>User tapped button</note>
</trans-unit>

Localization | 451

So much for the .xliff file; but what’s the purpose of the rest of the contents of
the .xcloc bundle? For one thing, the original versions of our localizable material —
the storyboard, and the InfoPlist.strings and Localizable.strings files, in English —
were exported when the .xliff file was created. These can give the translator some val‐
uable context as to the usage of the terms to be translated. Also, other types of localiz‐
able resources will be exported automatically as well, such as image files in the app
bundle; thus the translator can see and make recommendations about them.

The French translator returns the fr.xcloc folder to us with the fr.xliff file edited. We
proceed to incorporate it back into our project:

1. Edit the project.
2. Choose Editor → Import Localizations; in the dialog, locate and open the fr.xcloc

folder.
Xcode parses the .xcloc folder, locates the fr.xliff file inside it, opens and reads it, and
creates the corresponding files in the project. In particular, there is now a fr.lproj
folder containing .strings files in the correct format, namely key–value pairs like this:

/* Optional comments are C-style comments */
"key" = "value";

The .strings files in our fr.lproj include the following:

• An InfoPlist.strings file, localized for French, corresponding to our Info.plist file. It
reads like this:

/* (No Comment) */
"CFBundleDisplayName" = "Fenêtre Vide";

/* (No Comment) */
"CFBundleName" = "$(PRODUCT_NAME)";

• A Main.strings file, localized for French, corresponding to Main.storyboard. It will
be similar to this:

/* Class="UIButton"; normalTitle="Hello"; ObjectID="RoQ-mP-swT"; */
"RoQ-mP-swT.normalTitle" = "Bonjour";

• A Localizable.strings file, localized for French, localizing the strings in our code. It
looks like this:

/* Dismiss */
"Accept" = "OK";

/* Say hello */
"Greeting" = "Bonjour!";

/* User tapped button */
"Tapped" = "Vous m'avez tapé!";

452 | Chapter 9: Life Cycle of a Project

Build and run the project in the Simulator. The project runs in English, so the button
title is still “Hello,” and the alert that it summons when you tap it still contains
“Howdy!”, “You tapped me!”, and “OK.” Stop the project in Xcode.

Now we’re going to transport ourselves magically to France! Edit the scheme; in the
Run action, switch to the Options pane, and change the Application Language pop-
up menu to French. Close the scheme editor and run the app again. The button in the
interface has the title Bonjour. When we tap it, the alert contains “Bonjour!”, “Vous
m’avez tapé!”, and “OK.” Our app is localized for French!

(To test that we’ve successfully localized the Springboard title of the app, we’d need to
use the Settings app on the simulator to change the actual system language to
French.)

In real life, preparing your nib files to deal with localization will take some additional
work. In particular, you’ll want to use autolayout, configuring your interface so that
interface objects containing text have room to grow and shrink to compensate for the
change in the length of their text in different languages. To test your interface under
different localizations, you can also preview your localized nib files within Xcode,
without running the app. Edit a .storyboard or .xib file and open an assistant pane,
and switch the Tracking menu to Preview. A menu at the lower right lists localiza‐
tions; choose from the menu to switch between them. A “double-length pseudolan‐
guage” stress-tests your interface with really long localized replacement text.

Distribution
Distribution means providing your built app to others (who are not developers on
your team) for running on their devices. There are two primary kinds of distribution:

Ad Hoc distribution
You are providing a copy of your app to a limited set of known users so that they
can try it on specific devices and report bugs, make suggestions, and so forth.

App Store distribution
You are providing the app to the App Store so that anyone can download it (pos‐
sibly for a fee) and run it. Distribution to the App Store is also the basis of
another way of having users test your app, namely through TestFlight.

Making an Archive
To create a copy of your app for distribution, you need first to build an archive of
your app. An archive is basically a preserved build. It has three main purposes:

Distribution
An archive will serve as the basis for subsequent distribution of the app; the dis‐
tributed app will be exported from the archive.

Distribution | 453

Reproduction
Every time you build, conditions can vary, so the resulting app might behave
slightly differently. But every distribution from a particular archive is guaranteed
to contain an identical binary, and thus will behave the same way. This fact is
important for testing: if a bug report comes in based on an app distributed from a
particular archive, you can distribute that archive to yourself and run it, knowing
that you are testing exactly the same app.

Symbolication
The archive includes a .dSYM file which allows Xcode to accept a crash log and
report the crash’s location in your code. This allows you to deal with crash
reports from users.

Here’s how to build an archive of your app:

1. Set the destination in the Scheme pop-up menu in the project window toolbar to
Generic iOS Device. Until you do this, the Product → Archive menu item will be
disabled. You do not have to have a device connected; you are not building to run
on a particular device, but saving an archive that will run on some device.

2. If you like, edit the scheme to confirm that the Release build configuration will be
used for the Archive action. This is the default, but it does no harm to double-
check.

3. Choose Product → Archive. The app is compiled and built. The archive itself is
stored in a date folder within your user ~/Library/Developer/Xcode/Archives
folder. Also, it is listed in Xcode’s Organizer window (Window → Organizer)
under Archives; this window may open spontaneously to show the archive you’ve
just created. You can add a comment here; you can also change the archive’s
name (this won’t affect the name of the app).

You’ve just signed your archive with a development profile; that’s good, because it
means you can run the archived build directly on your device. However, a develop‐
ment profile can’t be used to make an Ad Hoc or App Store build of your app; there‐
fore, when you export the archive to form an Ad Hoc or App Store build, Xcode will
substitute the appropriate distribution profile for the development profile that you
used for archiving. So now you need a distribution certificate and a distribution
profile.

The Distribution Certificate
There are three ways to obtain a distribution certificate, parallel to the three ways of
obtaining a development certificate described earlier in this chapter:

Automatic signing
If you’re using automatic signing, and if you have no distribution certificate, then
when you first export the archive to the App Store (as I’ll describe later in this

454 | Chapter 9: Life Cycle of a Project

Figure 9-32. Xcode reports a missing distribution certificate

chapter), Xcode will offer to obtain a distribution certificate for you automati‐
cally, along with a distribution profile.

The Accounts preference pane
You can request a distribution certificate through Xcode’s Accounts preference
pane: select your Apple ID, choose your team, click Manage Certificates to show
the “Signing certificates” dialog, click the Plus button at the bottom left, and ask
for an iOS Distribution certificate.

Keychain Access and the developer member center
You can obtain a distribution certificate manually using the developer member
center and the Keychain Access application, exactly as I described earlier for
obtaining a development certificate manually.

Once you’ve obtained a distribution certificate, you’ll see it in your keychain. It will
look just like Figure 9-21, except that it will say “iPhone Distribution” instead of
“iPhone Development.”

There is an important difference between distribution certificates and development
certificates: with distribution certificates, there can be only one. This means that your
team has only one distribution identity.

As a result, distribution from a computer that’s different from the one where you
originally obtained the distribution certificate can be tricky. Your distribution certifi‐
cate is back in the keychain of your old computer. On your new computer, Xcode
reports the existence of the distribution certificate (in the Accounts preference pane,
under Manage Certificates), but tells you that it isn’t in the keychain of this computer
(Figure 9-32).

What to do? One possibility is to click the Plus button at the bottom left and ask for a
new distribution certificate, just as I described a moment ago. However, that might
not be a very good idea, because this will not be the same distribution certificate as
the one on the old computer, and there can be only one. Therefore, creating a new dis‐
tribution certificate automatically invalidates the old distribution certificate sitting on
the old computer — and it therefore also invalidates any distribution profiles you
already have. But the new distribution certificate won’t work with your existing distri‐
bution profiles either, because they are tied to the old (invalid) distribution certificate.

Distribution | 455

A better alternative would be to install a copy of the existing distribution certificate;
but that’s not trivial either. You can’t simply go to the developer member center and
download a copy of the existing distribution certificate, because the existing distribu‐
tion certificate is matched to a private key sitting in the keychain of the old computer
— and won’t work without it.

The solution is to return to the old computer where the distribution certificate is in
the keychain, and, in the Accounts preference pane, under Manage Certificates,
Control-click on that certificate and choose Export Certificate from the contextual
menu. You’ll be asked to save the resulting file, securing it with a password. The pass‐
word is needed because this file, a .p12 file, contains the private key from your key‐
chain. Now copy the .p12 file to the new computer. (You could email it to yourself, for
example.) On that computer, open the exported file, using the same password. The
certificate is imported into your keychain. You can then throw the file away on both
computers; it has done its job.

The Distribution Profile
Obtaining a distribution profile is like obtaining a development profile. If you’re
using automatic signing for this project, Xcode will probably be able to create an
appropriate distribution profile for you automatically when you export your archive.
But if it fails to do that, or if you’re using manual signing, you’ll have to obtain the
distribution profile manually.

Obtaining a distribution profile manually is similar to obtaining a development pro‐
file manually, with a few slight differences:

1. If this is to be an Ad Hoc distribution profile, collect the UDIDs of all the devices
where this build is to run, and make sure you’ve added each of them at the devel‐
oper member center under Devices. (For an App Store distribution profile, omit
this step.)

2. Make sure that the app is registered at the developer member center under Iden‐
tifiers → App IDs, as I described earlier in this chapter.

3. At the developer member center, under Provisioning Profiles, click the Plus but‐
ton to ask for a new profile. In the Add iOS Provisioning Profile form, specify an
Ad Hoc profile or an App Store profile. On the next screen, choose your app
from the pop-up menu. On the next screen, choose your distribution certificate.
On the next screen, for an Ad Hoc profile only, specify the devices you want this
app to run on. On the next screen, give the profile a name.
Be careful about the profile’s name, as you might need to be able to recognize it
later from within Xcode! My own practice is to assign a name containing the
term “AdHoc” or “AppStore” and the name of the app.

456 | Chapter 9: Life Cycle of a Project

4. Click Done. You should subsequently be able to download the profile from
within Xcode (and if not, you can click Download at the developer member
center).

Distribution for Testing
There are two ways to distribute your app for testing: Ad Hoc distribution (the old
way) and TestFlight distribution (the new way). I’ll briefly describe each of them.

Here are the steps for creating an Ad Hoc distribution file from an archive:

1. In the Organizer window, under Archives, select the archive and click the Dis‐
tribute App button at the upper right of the window. A dialog appears. Here, you
are to specify a method; choose Ad Hoc. Click Next.

2. In the next screen, you may be offered various options. For example:

App Thinning
This means that multiple copies of the app can be created, each containing
resources appropriate only to one type of device, simulating what the App
Store will do when the user downloads the app to a device. There would nor‐
mally be no need for this, though it might be interesting to learn the size of
your thinned app.

Rebuild from Bitcode
Bitcode allows the App Store to regenerate your app to incorporate future
optimizations. If you’re going to be using bitcode when you upload to the
App Store, you might like to use it when you perform your Ad Hoc build.
Personally, I avoid bitcode, so I would uncheck this checkbox.

Strip Swift symbols
Check this box to reduce the build size somewhat.

3. In the next screen, you may be offered a choice between automatic and manual
signing. An automatically generated Ad Hoc distribution profile will be config‐
ured to run on all devices registered for your team at the developer member cen‐
ter. If you choose manual signing, you’ll see another screen where you can specify
the certificate and choose an Ad Hoc distribution profile, either from the mem‐
ber center or (if you’ve downloaded the distribution profile already) from your
computer.

4. The archive is prepared, and a summary window is displayed. The name of the
provisioning profile is shown, so you can tell that the right thing is happening.
Click Export.

5. You are shown a dialog for saving a folder. The file will be inside that folder, with
the suffix .ipa (“iPhone app”), accompanied by .plist and log files describing the
export process.

Distribution | 457

6. Locate in the Finder the .ipa file you just saved. Provide this file to your users
with instructions.

How should a user who has received the .ipa file copy it onto a registered device? The
old way was to use iTunes as an intermediary, and it may be that that will still work:
attach the device to the computer, locate its listing in iTunes, and drag the .ipa file
directly from the Finder onto the device’s name. However, I find that approach unreli‐
able. Here are two alternative suggestions:

Xcode
A user (such as yourself) who has Xcode can attach the device to the computer,
find the device in Xcode’s Devices window (Window → Devices and Simulators),
click the Plus button under Installed Apps, and choose the .ipa file on the com‐
puter. It will be copied onto the device.

Apple Configurator
For other users, the simplest approach is to download the Apple Configurator
application from the Mac App Store. Attach the device to the computer and
launch Apple Configurator. An image of the device’s screen appears in the Con‐
figurator window. Drag the .ipa file from the Finder onto that image, and it will
be copied onto the device.

There is a registration limit of 100 devices per year per developer (not per app),
which limits your number of Ad Hoc testers. Devices used for development are coun‐
ted against this limit. You can work around this limit, and provide your betas more
conveniently to testers, by using TestFlight beta testing instead.

TestFlight beta testing lifts the limit of 100 devices to a limit of 10000 testers, and is
more convenient than Ad Hoc distribution because your users download and install
prerelease versions of your app directly from the App Store onto their devices
through the TestFlight app. Configuration is performed at the App Store Connect site;
a prerelease version uploaded to App Store Connect must be archived as if for App
Store distribution (see the discussion of App Store submission later in this chapter).
See the “Test a Beta Version” chapter of Apple’s App Store Connect Help document.

Prerelease versions of your app intended for distribution to beta testers (as
opposed to internal testers who have direct access to your App Store Connect
account) require review by Apple.

Final App Preparations
As the big day approaches when you’re thinking of submitting your app to the App
Store, don’t let the prospect of huge fame and massive profits hasten you past the all-
important final stages of app preparation. Apple has a lot of requirements, and failure
to meet them can cause your app to be rejected. Take your time. Make a checklist and

458 | Chapter 9: Life Cycle of a Project

Figure 9-33. Icon slots in the asset catalog

go through it carefully. See Apple’s App Store Connect Help and the “Icons and
Images” chapter of the iOS Human Interface Guidelines.

Icons in the app
The simplest way to provide your app with icons is to use the asset catalog. If you’re
not using an asset catalog for icons and you’d like to switch to using one, edit the tar‐
get and, in the General pane, under App Icons and Launch Images, next to App Icons
Source, click the Use Asset Catalog button. The Use Asset Catalog button then
changes to a pop-up menu listing the asset catalog’s name and the name of the image
set within the catalog to be used for icons.

The image sizes needed are listed in the asset catalog itself. Select an image slot and
look in the Attributes inspector. Confusingly, “2x” or “3x” means that the image
should be double or triple the listed dimensions for an icon; thus, for example, an
iPhone app icon listed with a Size of “60” but a Scale of “3x” means that this slot
needs an image measuring 180×180. To determine which slots should be displayed,
use the checkboxes in the Attributes inspector when you select an icon set or launch
image set (Figure 9-33). To add an image, drag it from the Finder into the appropriate
slot.

An icon file must be a PNG file, without alpha transparency. It should be a full
square; the rounding of the corners will be added for you. Apple seems nowadays to
prefer simple, cartoony images with a few bright colors and possibly a gentle gradient
background.

When your app is built and the asset catalog is processed, the icons are written out to
the top level of the app bundle and are given appropriate names (Figure 6-15); at the

Distribution | 459

Figure 9-34. Marketing icon slot in the asset catalog

same time, an appropriate entry is written into the app’s Info.plist, enabling the system
to find and display the icon on a device. The details are complicated, but you won’t
have to worry about them — that is exactly why you’re using the asset catalog!

App icon sizes have changed over the years. If your app is to be backward-compatible
to earlier systems, you may need additional icons in additional sizes, corresponding
to the expectations of those earlier systems. Conversely, new devices can come along,
bringing with them new icon size requirements (this happened when the iPad Pro
appeared on the scene). Again, this is exactly the sort of thing the asset catalog will
help you with.

Optionally, you may elect to include smaller versions of your icon to appear when the
user does a search on the device, as well as in the Settings app if you include a settings
bundle. However, I never include those icons; the system’s scaled-down versions of
my app icons look fine to me.

Marketing icon
To submit an app to the App Store, you will need to supply a 1024×1024 PNG or
high-quality JPEG icon to be displayed at the App Store (the marketing icon). Apple’s
guidelines say that it should not merely be a scaled-up version of your app’s icon; but
it must not differ perceptibly from your app’s icon, either, or your app will be rejected
(I know this from bitter experience).

The marketing icon can and should be included in the asset catalog. There’s a slot for
it, along with the slots for the real app icons (Figure 9-34).

Launch images
There is a delay between the moment when the user taps your app’s icon to launch it
and the moment when your app is up and running and displaying its initial window.
To cover this delay and give the user a visible indication that something is happening,
a launch image needs to be displayed during that interval.

The launch image needn’t be detailed. It might be just a blank depiction of the main
elements or regions of the interface that will be present when the app has finished

460 | Chapter 9: Life Cycle of a Project

launching. In this way, when the app does finish launching, the transition from the
launch image to the real app will be a matter of those elements or regions being filled
in.

In iOS 7 and before, the launch image was literally an image (a PNG file). It had to be
included in your app bundle, and it had to obey certain naming conventions. As the
variety of screen sizes and resolutions of iOS devices proliferated, so did the number
of required launch images. The asset catalog, introduced in iOS 7, was helpful in this
regard. But with the introduction of the iPhone 6 and iPhone 6 Plus, the entire situa‐
tion threatened to become unmanageable.

For this reason, iOS 8 introduced a better solution. Instead of a set of launch images,
you now provide a launch nib file — a single .xib or .storyboard file containing a single
view to be displayed as a launch image. You construct this view using subviews and
autolayout. Thus, the view is automatically reconfigured to match the screen size and
orientation of the device on which the app is launching, and label and button text can
be localized.

By default, a new app project comes with a LaunchScreen.storyboard file. This is
where you design your launch image. The Info.plist points to this file as the value of
its “Launch screen interface file base name” key (UILaunchStoryboardName). You can
configure the Info.plist, if necessary, by editing the target and setting the Launch
Screen File field (under App Icons and Launch Images).

You should take advantage of this feature — and not merely because it is convenient.
The presence of a “Launch screen interface file base name” key in your Info.plist tells
the system that your app runs natively on newer device types. Without it, your app
will be displayed zoomed; for example, on an iPhone 6, it will be displayed as if this
were just a big iPhone 5. In effect, you won’t be getting all the pixels you’re entitled to
(and the display will be somewhat fuzzy).

Custom fonts included in your app bundle cannot be displayed in a launch nib file.
This is because they have not yet been loaded at the time the launch screen needs to
be displayed. Also, code cannot run in association with the display of the launch
screen; by definition, your app is launching and its code has not yet started to run.
Keep the launch screen simple and minimal! Don’t try to misuse it as some kind of
introductory splash screen. If you want a splash screen, configure a real view control‐
ler to display its view when the app has finished launching.

Screenshots and Video Previews
When you submit your app to the App Store, you will be asked for one or more
screenshots of your app in action to be displayed at the App Store. These screenshots
must demonstrate actual user experience of the app, or your app may be rejected by
Apple’s review team. You should take them beforehand and be prepared to provide

Distribution | 461

them during the app submission process. You can provide a screenshot correspond‐
ing to the screen size of every device on which your app can run, in the correspond‐
ing resolution, or you can reuse your largest-size screenshot for smaller sizes.

You can obtain screenshots either from the Simulator or from a device connected to
the computer:

Simulator
Run the app in the Simulator with the desired device type as your destination.
Choose File → New Screen Shot. Hold the Option key if you want to specify the
screenshot’s name and location.

Device
In Xcode, in the Devices and Simulators window, locate your connected device
under Devices and click Take Screenshot. Alternatively, choose Debug → View
Debugging → Take Screenshot of [Device].

You can also take a screenshot on a device by clicking the screen lock button and the
Home button simultaneously. Now the screenshot is in the Camera Roll in the Photos
app, and you can communicate it to your computer in any convenient way (such as
by emailing it to yourself).

You probably don’t have devices with every size you need in order to submit
screenshots to the App Store. The Simulator supplies every needed device size,
but it may be that your app doesn’t run properly there, because it uses features
that the simulator lacks. I frequently solve this problem by supplying artificial
data to my app, on the simulator only, so that its interface appears to work there
and I can capture screenshots.

You can also submit to the App Store a video preview showing your app in action; it
can be up to 30 seconds long, in H.264 or Apple ProRes format:

1. Connect the device to the computer and launch QuickTime Player. Choose File
→ New Movie Recording.

2. If necessary, set the Camera and Microphone to the device, using the pop-up
menu from the down-pointing chevron button next to the Record button that
appears when you hover the mouse over the QuickTime Player window.

3. Start recording, and exercise the app on the device. When you’re finished, stop
recording and save.

The resulting movie file can be edited in iMovie or Final Cut Pro to prepare it for
submission to the App Store. For example, in iMovie:

1. After importing the movie file, choose File → New App Preview.
2. Edit! When you’re done editing, choose File → Share → App Preview. This

ensures the correct resolution and format.

462 | Chapter 9: Life Cycle of a Project

For more details, see https://developer.apple.com/app-store/app-previews/.

Property List Settings
A number of settings in the Info.plist are crucial to the proper behavior of your app.
You should peruse Apple’s Information Property List Key Reference for full informa‐
tion. Most of the required keys are created as part of the template, and are given rea‐
sonable default values, but you should check them anyway. The following are
particularly worthy of attention:

Bundle display name (CFBundleDisplayName)
The name that appears under your app’s icon on the device screen; this name
needs to be short in order to avoid truncation. I talked earlier in this chapter
about how to localize the display name. You can enter this value directly in the
General pane when you edit your app target.

Supported interface orientations (UISupportedInterfaceOrientations)
This key designates the totality of orientations in which the app is ever permitted
to appear. You can perform this setting with checkboxes in the General pane of
the target editor. But you may also need to edit the Info.plist manually to
rearrange the order of possible orientations, because on an iPhone the first orien‐
tation listed may be the one into which the app will actually launch.

Required device capabilities (UIRequiredDeviceCapabilities)
You should set this key if the app requires capabilities that are not present on all
devices. But don’t use this key unless it makes no sense for your app to run at all
on a device lacking the specified capabilities.

Bundle version
Your app needs a version number. The best place to set it is the General pane of
the target editor. Things are a little confusing here because there are two fields:

Version
Corresponds in the Info.plist to “Bundle versions string, short” (CFBundle-
ShortVersionString).

Build
Corresponds in the Info.plist to “Bundle version” (CFBundleVersion).

As far as I can determine, Apple will pay attention to the former if it is set, and
otherwise will fall back on the latter. In general I play it safe and set both to the
same value when submitting to the App Store. The value needs to be a version
string, such as "1.0". The version string will be displayed at the App Store, dis‐
tinguishing one release from another. Failure to increment the version string
when submitting an update will cause the update to be rejected. It is legal, how‐

Distribution | 463

https://developer.apple.com/app-store/app-previews/

ever, to increment the Build number without incrementing the Version number,
and you will need to do so if you submit several successive builds of the same
prospective release (during the course of TestFlight testing, or because you found
a bug and had to withdraw a submitted binary before it appeared on the App
Store).

Version strings don’t work like decimal numbers! Each component of the string
is treated as an integer. For example, a short version string "1.4" is not “higher”
than a version string "1.32" — because 4 is smaller than 32. As usual, I learned
this lesson the hard way.

Submission to the App Store
When you’re satisfied that your app works well, and you’ve installed or collected all
the necessary resources, you’re ready to submit your app to the App Store for distri‐
bution. To do so, you’ll need to make preparations at the App Store Connect web site
(formerly called iTunes Connect). You can find a link to it on the iOS developer pages
when you’ve logged in at Apple’s site. Alternatively, you can go directly to https://
appstoreconnect.apple.com and log in with your developer Apple ID.

The first time you visit App Store Connect, you should go to the Contracts sec‐
tion and complete submission of your contract. You can’t offer any apps for sale
until you do, and even free apps require completion of a contractual form.

I’m not going to recite all the steps you have to go through to tell App Store Connect
about your app, as these are described thoroughly in Apple’s App Store Connect Help
document (https://help.apple.com/app-store-connect/), which is the final word on such
matters. But here are some of the main pieces of information you will sooner or later
have to supply (and see also https://developer.apple.com/app-store/product-page/):

Your app’s name
This is the name that will appear at the App Store; it need not be identical to the
short name that will appear under the app’s icon on the device, dictated by the
“Bundle display name” setting in your Info.plist file. Apple now requires that this
name be 30 characters or fewer. You can get a rude shock when you submit your
app’s information to App Store Connect and discover that the name you wanted
is already taken. There is no reliable way to learn this in advance, and such a dis‐
covery can necessitate a certain amount of last-minute scrambling on your part.
(Can you guess how I know that?)

Subtitle
A description of the app, 30 characters or fewer, that will appear below the name
at the App Store.

464 | Chapter 9: Life Cycle of a Project

https://appstoreconnect.apple.com
https://appstoreconnect.apple.com
https://help.apple.com/app-store-connect/
https://developer.apple.com/app-store/product-page/

Description
You must supply a description of fewer than 4,000 characters; Apple recom‐
mends fewer than 580 characters, and the first paragraph is the most important,
because this may be all that users see at first when they visit the App Store. It
must be pure text, without HTML and without character styling.

Promotional text
A short description, 170 characters or fewer, that will appear above the descrip‐
tion. The significance of the promotional text is that you can change it for an
existing app, without uploading a new build.

Keywords
This is a comma-separated list shorter than 100 characters. These keywords will
be used, in addition to your app’s name, to help users discover your app through
the Search feature of the App Store.

Support
The URL of a web site where users can find more information about your app; it’s
good to have the site ready in advance.

Copyright
Do not include a copyright symbol in this string; it will be added for you at the
App Store.

SKU number
This is arbitrary, so don’t get nervous about it. It’s just a unique identifier, unique
within the world of your own apps. It’s convenient if it has something to do with
your app’s name. It needn’t be a number; it can actually be any string.

Price
You don’t get to make up a price. You have to choose from a list of pricing “tiers.”

Availability Date
There’s an option to make the app available as soon as it is approved, and this will
typically be your choice.

As you submit information, click Save often! If the connection goes down and
you haven’t explicitly saved, all your work can be lost. (Can you guess how I
know that?)

When you’re ready to upload the app for which you’ve already submitted the infor‐
mation at App Store Connect, you can perform the upload using Xcode. I’m assum‐
ing that you’re able to archive and export your app, as I described already for Ad Hoc
distribution; this time, you’re going to export for App Store distribution. Select the
archived build in the Organizer and click Distribute App; on the next screen, select
iOS App Store. Subsequent options are slightly different from the options for an Ad

Distribution | 465

Hoc distribution: you won’t see anything about app thinning, because that depends
on how the user obtains the app; you’ll see the bitcode checkbox; and there’s a check‐
box for uploading symbols, which should make it easier to analyze crash reports.

After some time, a screen is displayed summarizing the .ipa content, and you can
now save to disk or upload to App Store Connect. In the latter case, the upload will be
performed, and the app will be validated at the far end. In the former case, you can
perform the upload later using Application Loader (Xcode → Open Developer Tool
→ Application Loader).

After uploading the archive, you have one final step to perform. Wait for the binary
to be processed at Apple’s end. (You should receive an email informing you of when
processing has completed.) Then return to App Store Connect, where you submitted
your app information. You will now be able to select the binary, save, and submit the
app for review.

You will subsequently receive notifications from Apple informing you of your app’s
status as it passes through various stages: “Waiting For Review,” “In Review,” and
finally, if all has gone well, “Ready For Sale” (even if it’s a free app). Your app will then
appear at the App Store.

466 | Chapter 9: Life Cycle of a Project

PART III

Cocoa

The Cocoa Touch frameworks provide the general capabilities needed by any iOS
application. Buttons can be tapped, text can be read, screens of interface can succeed
one another, because Cocoa makes it so. To use the framework, you must learn to let
the framework use you. You must put your code in the right place so that it will be
called at the right time. You must fulfill certain obligations that Cocoa expects of you.
You master Cocoa by being Cocoa’s obedient servant. In this part of the book, that’s
what you’ll learn to do.

• Chapter 10 describes how Cocoa is organized and structured through such
Objective-C language features as subclassing, categories, and protocols. Then
some important built-in Cocoa object types are introduced. The chapter con‐
cludes with a description of Cocoa key–value coding and a look at how the root
NSObject class is organized.

• Chapter 11 presents Cocoa’s event-driven model of activity, along with its major
design patterns and event-related features — notifications, delegation, data sour‐
ces, target–action, the responder chain, and key–value observing. The chapter
concludes with some words of wisdom about managing the barrage of events
Cocoa will be throwing at you, and how to escape that barrage momentarily with
delayed performance.

• Chapter 12 is about Cocoa memory management. I’ll explain how memory man‐
agement of reference types works. Then some special memory management sit‐
uations are described: autorelease pools, retain cycles, notifications and timers,
nib loading, and CFTypeRefs. The chapter concludes with a discussion of Cocoa

property memory management, and advice on how to debug memory manage‐
ment issues.

• Chapter 13 discusses the question of how your objects are going to see and com‐
municate with one another within the confines of the Cocoa-based world. It con‐
cludes with some advice about adhering to the model–view–controller
architecture.

Finally, don’t forget to read Appendix A for more detail about how Objective-C and
Swift interact and cooperate.

CHAPTER 10

Cocoa Classes

When you program iOS, you’re programming Cocoa. The Cocoa API is written
mostly in Objective-C, and Cocoa itself consists mostly of Objective-C classes,
derived from the root class, NSObject. When programming iOS, you’ll be making
heavy use of the built-in Cocoa classes.

This chapter introduces Cocoa’s class structure and explains how you’ll interact with
it as an iOS programmer. It discusses how Cocoa is conceptually organized, in terms
of its underlying Objective-C features, and then surveys some of the most commonly
encountered Cocoa utility classes, concluding with a discussion of the Cocoa root
class and its features, which are inherited by all Cocoa classes.

Subclassing
Cocoa effectively hands you a large repertory of objects that already know how to
behave in certain desirable ways. A UIButton, for example, knows how to draw itself
and how to respond when the user taps it; a UITextField knows how to display edita‐
ble text, how to summon the keyboard, and how to accept keyboard input.

Often, the default behavior or appearance of an object supplied by Cocoa won’t be
quite what you’re after, and you’ll want to customize it. This does not necessarily
mean that you need to subclass! Cocoa classes are heavily endowed with methods that
you can call, and properties that you can set, precisely in order to customize an
instance, and these will be your first resort. Always study the documentation for a
Cocoa class to see whether instances can already be made to do what you want. For
example, the class documentation for UIButton shows that you can set a button’s title,
title color, internal image, background image, and many other features and behaviors,
without subclassing.

469

In addition, many built-in classes use delegation (Chapter 11) as the preferred way of
letting you customize their behavior. For example, you wouldn’t subclass UIApplica‐
tion (the class of the singleton shared application instance) just in order to respond
when the application has finished launching, because the delegate mechanism
provides a way to do that — namely, the UIApplicationDelegate method
application(_:didFinishLaunchingWithOptions:). That’s why the templates give
us an AppDelegate class, which is not a UIApplication subclass, but which does adopt
the UIApplicationDelegate protocol.

In fact, subclassing is one of the rarer ways in which your code will relate to Cocoa.
Knowing when to subclass can be somewhat tricky, but the general rule is that you
probably shouldn’t subclass unless you’re explicitly invited to do so. Most built-in
Cocoa Touch classes will never need subclassing (and some, in their documentation,
downright forbid it).

Nevertheless, sometimes setting properties and calling methods and using delegation
won’t suffice to customize an instance the way you want to. In such cases, a Cocoa
class may provide methods that are called by the runtime at key moments in the life
of the instance, allowing you to customize that class’s behavior by subclassing and
overriding. You don’t have the source code for any of Cocoa’s built-in classes, but you
can still subclass them, creating a new class that acts just like a built-in class except
for the modifications you provide.

In fact, certain Cocoa Touch classes are subclassed routinely, constituting the excep‐
tion that proves the rule. For example, a plain vanilla UIViewController, not sub‐
classed, is very rare, and an iOS app without at least one UIViewController subclass
would be practically impossible.

Another case in point is UIView. Cocoa Touch is full of built-in UIView subclasses
that behave and draw themselves as needed (UIButton, UITextField, and so on), and
you will rarely need to subclass any of them. On the other hand, you might create
your own UIView subclass, whose job would be to draw itself in some completely new
way. You don’t actually draw a UIView; rather, when a UIView needs drawing, its
draw(_:) method is called so that the view can draw itself. So the way to draw a cus‐
tom UIView is to subclass UIView and implement draw(_:) in the subclass. As the
documentation says, “Subclasses that … draw their view’s content should override
this method and implement their drawing code there.” The documentation is saying
that you need to subclass UIView in order to draw custom content.

For example, suppose we want our window to contain a horizontal line. There is no
horizontal line interface widget built into Cocoa, so we’ll just have to roll our own —
a UIView that draws itself as a horizontal line. Let’s try it:

1. In our Empty Window example project, choose File → New → File and specify
iOS → Source → Cocoa Touch Class, and in particular a subclass of UIView. Call

470 | Chapter 10: Cocoa Classes

the class MyHorizLine. Xcode creates MyHorizLine.swift. Make sure it’s part of
the app target.

2. In MyHorizLine.swift, replace the contents of the class declaration with this
(without further explanation):

required init?(coder aDecoder: NSCoder) {
 super.init(coder:aDecoder)
 self.backgroundColor = .clear
}
override func draw(_ rect: CGRect) {
 let c = UIGraphicsGetCurrentContext()!
 c.move(to:CGPoint(x: 0, y: 0))
 c.addLine(to:CGPoint(x: self.bounds.size.width, y: 0))
 c.strokePath()
}

3. Edit the storyboard. Find UIView in the Library (it is called simply “View”), and
drag it into the View object in the canvas. You may resize it to be less tall.

4. With the UIView that you just dragged into the canvas still selected, use the Iden‐
tity inspector to change its class to MyHorizLine.

Build and run the app in the Simulator. You’ll see a horizontal line corresponding to
the location of the top of the MyHorizLine instance in the nib. Our view has drawn
itself as a horizontal line, because we subclassed it to do so.

In that example, we started with a bare UIView that had no drawing functionality of
its own. But you might also be able to subclass a built-in UIView subclass to modify
the way it already draws itself. For example, the UILabel documentation shows that
two methods are present for exactly this purpose. Both drawText(in:) and text-
Rect(forBounds:limitedToNumberOfLines:) explicitly tell us: “This method should
only be overridden by subclasses that want to [modify how the label is drawn].” The
implication is that these are methods that will be called for us, automatically, by
Cocoa, as a label draws itself; thus, we can subclass UILabel and implement these
methods in our subclass to modify how a particular label draws itself.

Here’s an example from one of my own apps, in which I subclass UILabel to make a
label that draws its own rectangular border and has its content inset somewhat from
that border, by overriding drawText(in:). As the documentation tells us: “In your
overridden method, you can configure the current context further and then invoke
super to do the actual drawing [of the text].” Let’s try it:

1. In the Empty Window project, make a new class file, a UILabel subclass; call the
class MyBoundedLabel.

2. In MyBoundedLabel.swift, insert this code into the body of the class declaration:

Subclassing | 471

override func drawText(in rect: CGRect) {
 let context = UIGraphicsGetCurrentContext()!
 context.stroke(self.bounds.insetBy(dx: 1.0, dy: 1.0))
 super.drawText(in: rect.insetBy(dx: 5.0, dy: 5.0))
}

3. Edit the storyboard, add a UILabel to the interface, and change its class in the
Identity inspector to MyBoundedLabel.

Build and run the app, and you’ll see how the rectangle is drawn and the label’s text is
inset within it.

Categories and Extensions
A category is an Objective-C language feature that allows code to reach right into an
existing class and inject additional methods. This is comparable to a Swift extension
(Chapter 4). Using a Swift extension, you can add class or instance methods to a
Cocoa class; the Swift headers make heavy use of extensions, both as a way of organ‐
izing Swift’s own object types and as a way of modifying Cocoa types. In the same
way, Cocoa uses categories to organize its own classes.

Objective-C categories have names, and you may see references to these names
in the headers, the documentation, and so forth. However, the names are effec‐
tively meaningless, so don’t worry about them.

How Swift Uses Extensions
If you look in the main Swift header, you’ll see that many native object type declara‐
tions consist of an initial declaration followed by a series of extensions. For example,
after declaring the generic struct Array<Element>, the header proceeds to declare
nearly a dozen extensions on the Array struct. Some of these add protocol adoptions;
most of them don’t. All of them add declarations of properties or methods to Array;
that’s what extensions are for.

These extensions are not, of themselves, functionally significant; the header could
have declared the Array struct with all of those properties and methods within the
body of a single declaration. Instead, it breaks things up into multiple extensions. The
extensions are simply a way of clumping related functionality together, organizing
this object type’s members so as to make them easier for human readers to under‐
stand.

In the Swift Core Graphics header, just about everything is an extension. Here Swift is
adapting types defined elsewhere — adapting Swift numeric types for use with Core
Graphics and the CGFloat numeric type, and adapting Cocoa structs such as CGPoint
and CGRect as Swift object types.

472 | Chapter 10: Cocoa Classes

How You Use Extensions
For the sake of object-oriented encapsulation, you will often want to write a function
that you inject, as a method, into an existing object type. To do so, you’ll write an
extension. Subclassing merely to add a method or two is heavy-handed — and
besides, it often wouldn’t help you do what you need to do. (Also, extensions work on
all three flavors of Swift object type, whereas you can’t subclass a Swift enum or
struct.)

For example, suppose you wanted to add a method to Cocoa’s UIView class. You
could subclass UIView and declare your method, but then it would be present only in
your UIView subclass and in subclasses of that subclass: it would not be present in
UIButton, UILabel, and all the other built-in UIView subclasses — because they are
subclasses of UIView, not of your subclass, and you can’t do anything to change that.
An extension, on the other hand, solves the problem beautifully: you inject your
method into UIView, and it is inherited by all built-in UIView subclasses as well.

You can use protocol extensions to inject functionality into classes in a selective but
unified manner. Suppose I want UIButton and UIBarButtonItem — which is not a
UIView, but does have button-like behavior — to share a certain method. I can
declare a protocol with a method, implement that method in a protocol extension,
and then use extensions to make UIButton and UIBarButtonItem adopt that protocol
and thus acquire that method:

protocol ButtonLike {
 func behaveInButtonLikeWay()
}
extension ButtonLike {
 func behaveInButtonLikeWay() {
 // ...
 }
}
extension UIButton : ButtonLike {}
extension UIBarButtonItem : ButtonLike {}

Chapter 4 provides some examples of extensions I’ve written in my real iOS program‐
ming life (see “Extensions” on page 213). Also, as I explain there, I often use exten‐
sions in the same way as the Swift headers do, organizing my code for a single object
type into multiple extensions simply for clarity.

How Cocoa Uses Categories
Cocoa uses categories as an organizational tool very much as Swift uses extensions.
The declaration of a class will often be divided by functionality into multiple cate‐
gories; these can even appear in separate header files.

A good example is NSString. NSString is defined as part of the Foundation frame‐
work, and its basic methods are declared in NSString.h. Here we find that NSString

Categories and Extensions | 473

itself, aside from its initializers, has just two members, length and character(at:),
because these are regarded as the minimum functionality that a string needs in order
to be a string.

Additional NSString methods — those that create a string, deal with a string’s encod‐
ing, split a string, search in a string, and so on — are clumped into categories. These
are shown in the Swift translation of the header as extensions. So, for example, after
the declaration for the NSString class itself, we find this in the Swift translation of the
header:

extension NSString {
 func substring(from: Int) -> String
 func substring(to: Int) -> String
 // ...
}

That, as it turns out, is actually Swift’s translation of this Objective-C code:

@interface NSString (NSStringExtensionMethods)
- (NSString *)substringFromIndex:(NSUInteger)from;
- (NSString *)substringToIndex:(NSUInteger)to;
// ...
@end

That notation — the keyword @interface, followed by a class name, followed by
another name in parentheses — is an Objective-C category.

Moreover, although the declarations for some of Cocoa’s NSString categories appear
in this same file, NSString.h, many of them appear elsewhere. For example:

• A string may serve as a file pathname, so we also find a category on NSString in
NSPathUtilities.h, where methods and properties such as pathComponents are
declared for splitting a pathname string into its constituents and the like.

• In NSURL.h, which is primarily devoted to declaring the NSURL class (and its
categories), there’s also another NSString category, declaring methods for dealing
with percent-escaping in a URL string, such as addingPercentEncoding(with-
AllowedCharacters:).

• Off in a completely different framework (UIKit), NSStringDrawing.h adds two
further NSString categories, with methods like draw(at:withAttributes:) hav‐
ing to do with drawing a string in a graphics context.

This organization means that the NSString methods are not gathered in a single
header file. In general, fortunately, this won’t matter to you as a programmer, because
an NSString is an NSString, no matter how it acquires its methods.

474 | Chapter 10: Cocoa Classes

Protocols
Objective-C has protocols, and these are generally comparable to and compatible
with Swift protocols (see Chapter 4). Since classes are the only Objective-C object
type, all Objective-C protocols are seen by Swift as class protocols. Conversely, Swift
protocols marked as @objc are implicitly class protocols and can be seen by
Objective-C. Cocoa makes extensive use of protocols.

For example, let’s talk about how Cocoa objects are copied. Some objects can be
copied; some can’t. This has nothing to do with an object’s class heritage. Yet we
would like a uniform method to which any object that can be copied will respond. So
Cocoa defines a protocol named NSCopying, which declares just one required
method, copyWithZone:. Here’s how the NSCopying protocol is declared in
Objective-C (in NSObject.h):

@protocol NSCopying
- (id)copyWithZone:(nullable NSZone *)zone;
@end

That’s translated into Swift as follows:

protocol NSCopying {
 func copy(with zone: NSZone? = nil) -> Any
}

The NSCopying protocol declaration in NSObject.h, however, is not a statement that
NSObject conforms to NSCopying. Indeed, NSObject does not conform to NSCopy‐
ing! This doesn’t compile:

let obj = NSObject().copy(with:nil) // compile error

But this does compile, because NSString does conform to NSCopying:

let s = ("hello" as NSString).copy(with: nil)

Here’s another example. A typical Cocoa pattern is that Cocoa wants to say: “An
instance of any class will do here, provided it implements the following methods.”
That, obviously, is a protocol. For example, a table view (UITableView) gets its data
from a data source. For this purpose, UITableView declares a dataSource property,
like this:

@property (nonatomic, weak, nullable) id <UITableViewDataSource> dataSource;

That’s translated into Swift as follows:

weak var dataSource: UITableViewDataSource?

UITableViewDataSource is a protocol. The table view is saying: “I don’t care what
class my data source belongs to, but whatever it is, it should conform to the UITable‐
ViewDataSource protocol.” Such conformance constitutes a promise that the data
source will implement at least the required instance methods tableView(_:numberOf-

Protocols | 475

RowsInSection:) and tableView(_:cellForRowAt:), which the table view will call
when it needs to know what data to display. When you use a UITableView, and you
want to provide it with a data source object, the class of that object will adopt
UITableViewDataSource and will implement its required methods. Here’s a typical
example from one of my real-life apps:

class NewGameController : UIViewController {
 @IBOutlet weak var tableView : UITableView?
 override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView?.dataSource = self // *
 }
}
extension NewGameController : UITableViewDataSource {
 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 3
 }
 func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 // ...
 return cell
 }
}

If the class of self, NewGameController, assigned in the starred line to the table
view’s dataSource property, did not declare adoption of the UITableViewDataSource
protocol, or if it didn’t implement the methods required for such adoption, that code
would not compile.

Far and away the most pervasive use of protocols in Cocoa is in connection with the
delegation pattern. I’ll discuss this pattern in detail in Chapter 11, but you can readily
see an example in our handy Empty Window project: the AppDelegate class provided
by the project template is declared like this:

class AppDelegate: UIResponder, UIApplicationDelegate { // ...

AppDelegate’s chief purpose on earth is to serve as the shared application’s delegate.
The shared application object is a UIApplication, and UIApplication’s delegate prop‐
erty is declared like this:

unowned(unsafe) var delegate: UIApplicationDelegate?

(I’ll explain the unsafe modifier in Chapter 12.) The UIApplicationDelegate type is
a protocol. This is how the shared UIApplication object knows that its delegate might
be capable of receiving messages such as application(_:didFinishLaunchingWith-
Options:). So the AppDelegate class officially announces its role by explicitly adopt‐
ing the UIApplicationDelegate protocol.

476 | Chapter 10: Cocoa Classes

You might be tempted to try to inject a method into a class that adopts a Cocoa
delegate protocol by extending the protocol and implementing the delegate
method in the protocol extension. That isn’t going to work, because Objective-C
can’t see Swift protocol extensions (see Appendix A). You can call such a method
from Swift, but Cocoa is never going to call it, because it doesn’t know that the
method implementation exists.

A Cocoa protocol has its own documentation page (see Chapter 8). When the UIAp‐
plication class documentation tells you that the delegate property is typed as a
UIApplicationDelegate, it’s implicitly telling you that if you want to know what mes‐
sages a UIApplication’s delegate might receive, you need to look in the UIApplication‐
Delegate protocol documentation.

Thus, for example, application(_:didFinishLaunchingWithOptions:) isn’t men‐
tioned anywhere in the UIApplication class documentation page; it’s in the
UIApplicationDelegate protocol documentation page.

Informal Protocols
You may occasionally see, online or in the Cocoa documentation, a reference to an
informal protocol. An informal protocol isn’t really a protocol at all; it’s just an
Objective-C trick for providing the compiler with a knowledge of a method name so
that it will allow a message to be sent without complaining.

There are two complementary ways to implement an informal protocol. One is to
define a category on NSObject; this makes any object eligible to receive the messages
listed in the category. The other is to define a protocol to which no class formally
conforms; instead, messages listed in the protocol are sent only to objects typed as id
(AnyObject), thus suppressing any objections from the compiler (see “Suppressing
type checking” on page 221).

These techniques were widespread in Cocoa before Objective-C protocols could
declare methods as optional; now they are largely unnecessary, and are also mildly
dangerous. Nowadays, very few informal protocols remain, but they do exist. For
example, NSKeyValueCoding (discussed later in this chapter) is an informal protocol;
you may see the term NSKeyValueCoding in the documentation and elsewhere, but
there isn’t actually any such type — it’s a category on NSObject.

Optional Methods
Objective-C protocols, and Swift protocols marked as @objc, can have optional mem‐
bers (see “Optional Protocol Members” on page 192). The question thus arises: How,
in practice, is an optional method feasible? We know that if a message is sent to an
object and the object can’t handle that message, an exception is raised and your app
will likely crash. But a method declaration is a contract suggesting that the object can

Protocols | 477

handle that message. If we subvert that contract by declaring a method that might or
might not be implemented, aren’t we inviting crashes?

The answer is that Objective-C is both dynamic and introspective. Objective-C can
ask an object whether it can deal with a message without actually sending it that mes‐
sage. The key method here is NSObject’s responds(to:) method (Objective-C
respondsToSelector:), which takes a selector parameter (see Chapter 2) and returns
a Bool. Thus it is possible to send a message to an object conditionally — that is, only
if it would be safe to do so.

Demonstrating responds(to:) in Swift is generally a little tricky, because Swift, with
its strict type checking, doesn’t want to let us send an object a message to which it
might not respond. In this artificial example, I start by defining, at top level, a class
that derives from NSObject, because otherwise we can’t send responds(to:) to it,
along with an @objc protocol to declare the message that I want to send conditionally
(an informal protocol!):

class MyClass : NSObject {
}
@objc protocol Dummy {
 func woohoo()
}

Now I can say this:

let mc = MyClass()
if mc.responds(to: #selector(Dummy.woohoo)) {
 (mc as AnyObject).woohoo()
}

Note the cast of mc to AnyObject. This causes Swift to abandon its strict type checking
(see “Suppressing type checking” on page 221); we can now send this object any mes‐
sage that Swift knows about, provided it is susceptible to Objective-C introspection
— that’s why I marked my protocol declaration as @objc to start with. As you know,
Swift provides a shorthand for sending a message conditionally — append a question
mark to the name of the message. I could have written this:

let mc = MyClass()
(mc as AnyObject).woohoo?()

Behind the scenes, those two approaches are exactly the same; the latter is syntactic
sugar for the former. In response to the question mark, Swift is calling
responds(to:) for us, and will refrain from sending woohoo to this object if it doesn’t
respond to this selector.

That explains also how optional protocol members work. It is no coincidence that
Swift treats optional protocol members like AnyObject members. Here’s the example
I gave in Chapter 4:

478 | Chapter 10: Cocoa Classes

@objc protocol Flier {
 @objc optional var song : String {get}
 @objc optional func sing()
}

When you call sing?() on an object typed as a Flier, responds(to:) is called behind
the scenes to determine whether this call is safe. That is also why optional protocol
members work only on @objc protocols and classes derived from NSObject: Swift is
relying here on a purely Objective-C feature.

You wouldn’t want to send a message optionally, or call responds(to:) explicitly,
before sending just any old message, because it isn’t generally necessary except with
optional methods, and it slows things down a little. But Cocoa does in fact call
responds(to:) on your objects as a matter of course. To see that this is true, imple‐
ment responds(to:) on the AppDelegate class in our Empty Window project and
instrument it with logging:

override func responds(to aSelector: Selector) -> Bool {
 print(aSelector)
 return super.responds(to:aSelector)
}

The output on my machine, as the Empty Window app launches, includes the
following:

application:handleOpenURL:
application:openURL:sourceApplication:annotation:
application:openURL:options:
applicationDidReceiveMemoryWarning:
applicationWillTerminate:
applicationSignificantTimeChange:
application:willChangeStatusBarOrientation:duration:
application:didChangeStatusBarOrientation:
application:willChangeStatusBarFrame:
application:didChangeStatusBarFrame:
application:deviceAccelerated:
application:deviceChangedOrientation:
applicationDidBecomeActive:
applicationWillResignActive:
applicationDidEnterBackground:
applicationWillEnterForeground:
applicationWillSuspend:
application:didResumeWithOptions:
application:shouldSaveApplicationState:
application:supportedInterfaceOrientationsForWindow:
application:performFetchWithCompletionHandler:
application:didReceiveRemoteNotification:fetchCompletionHandler:
application:willFinishLaunchingWithOptions:
application:didFinishLaunchingWithOptions:

Protocols | 479

That’s Cocoa, checking to see which of the optional UIApplicationDelegate protocol
methods are actually implemented by our AppDelegate instance — which, because it
is the UIApplication object’s delegate and formally conforms to the UIApplication‐
Delegate protocol, has explicitly agreed that it might be willing to respond to any of
those messages. The entire delegate pattern (Chapter 11) depends upon this techni‐
que. Observe the policy followed here by Cocoa: it checks all the optional protocol
methods once, when it first meets the object in question, and presumably stores the
results; thus, the app is slowed a tiny bit by this one-time initial bombardment of
responds(to:) calls, but now Cocoa knows all the answers and won’t have to per‐
form any of these same checks on the same object later.

Some Foundation Classes
The Foundation classes of Cocoa provide basic data types and utilities that will form
the basis of your communication with Cocoa. Obviously I can’t list all of them, let
alone describe them fully, but I can survey those that you’ll probably want to be aware
of before writing even the simplest iOS program. For more information, start with
Apple’s list of the Foundation classes in the Foundation framework documentation
page.

In many situations, you can use Foundation classes implicitly, while working with
Swift classes. That’s because of Swift’s ability to bridge between its own classes and
those of Foundation. For example, String is bridged to NSString (Chapter 3), and
Array is bridged to NSArray (Chapter 4). Thus, a String and an NSString can be cast
to one another, and an Array and an NSArray can be cast to one another. But you’ll
rarely need to cast, because in places where the Objective-C API expects you to pass
an NSString or an NSArray, these will be typed in the Swift translation of that API as
a String or an Array. Moreover, when you use String or Array in the presence of
Foundation, some NSString and NSArray properties and methods spring to life.

The Swift Foundation “overlay” puts a native Swift interface in front of many other
Foundation types. The Swift interface is distinguished by dropping the “NS” prefix
that marks Foundation class names; for example, Objective-C NSData is accessed
through Swift Data, and Objective-C NSDate is accessed through Swift Date —
though you can still use NSData and NSDate directly if you really want to. Again, the
Swift and Objective-C types are bridged to one another, and the API shows the Swift
type, so casting and passing works as you would expect. The Swift types provide
many conveniences that the Objective-C types do not; for example, they may declare
adoption of appropriate Swift protocols such as Equatable, Hashable, and Compara‐
ble, and, in some cases, they may be value types (structs) where the Objective-C types
are reference types (classes).

480 | Chapter 10: Cocoa Classes

There are two kinds of bridging to be distinguished here. String and Array are
native Swift types, with an independent existence. Date and Data, on the other
hand, aren’t native Swift types; they are façades for NSDate and NSData, meaning
that you cannot use them except in the presence of Cocoa’s Foundation frame‐
work.

NSRange and NSNotFound
NSRange is a C struct (see Appendix A) of importance in dealing with some of the
classes I’m about to discuss. Its components are integers, location and length. For
example, an NSRange whose location is 1 starts at the second element of something
(because element counting is always zero-based), and if its length is 2 it designates
this element and the next.

A Swift Range and a Cocoa NSRange are constructed very differently from one
another. A Swift Range is defined by two endpoints. A Cocoa NSRange is defined by
a starting point and a length. Nevertheless, Swift goes to some lengths to help you
work with an NSRange. The Foundation overlay defines an initializer
init(location:length:), and gives NSRange set-like methods such as
contains(_:) and union(_:). You can coerce a Swift Range whose endpoints are Ints
to an NSRange, and you can coerce from an NSRange to a Swift Range (resulting in
an Optional wrapping a Range, for reasons I’ll explain in a moment):

// Range to NSRange
let r = 2..<4
let nsr = NSRange(r) // (2,2), an NSRange
// NSRange to Range
let nsr2 = NSRange(location: 2, length: 2)
let r2 = Range(nsr2) // Optional wrapping Range 2..<4

Unfortunately, there’s a common situation where a Swift Range’s endpoints are not
Ints — namely, when you’re working with a Swift String, where range endpoints are
String.Index. Meanwhile, on the Cocoa side, an NSString still uses an NSRange whose
components are integers. Not only is there a type mismatch, there’s also a value mis‐
match, because (as I explained in Chapter 3) a String is indexed on its characters,
meaning its graphemes, but an NSString is indexed on its Unicode codepoints.

Sometimes, Swift will solve the problem by crossing the bridge for you in both direc‐
tions; here’s an example I’ve already used:

let s = "hello"
let range = s.range(of:"ell") // Optional wrapping Range 1..<4

The range(of:) method in that code is actually a Cocoa method. Swift has cast the
String s to an NSString for us, called a Foundation method that returns an NSRange,
and coerced the NSRange to a Swift Range (wrapped in an Optional), adjusting its
value as needed, entirely behind the scenes.

Some Foundation Classes | 481

On other occasions, you will want to perform that coercion explicitly. For this pur‐
pose, Range has an initializer init(_:in:), taking an NSRange and the String to
which the resulting range is to apply:

let range = NSRange(location: 1, length: 3)
let r = Range(range, in:"hello") // Optional wrapping 1..<4 of String.Index

And NSRange has the converse initializer init(_:in:), taking a Range of
String.Index and the String to which it applies:

let s = "hello"
let range = NSRange(s.range(of:"ell")!, in: s) // (1,3), an NSRange

Sometimes, however, you actively want to operate in the Cocoa Foundation world,
without bridging back to Swift. You can do that by casting. For example:

let s = "Hello"
let r = (s as NSString).range(of: "ell")
let mas = NSMutableAttributedString(string:s)
mas.addAttributes([.foregroundColor:UIColor.red], range: r)

In that code, we cast a String to an NSString so as to be able to call NSString’s
range(of:) and get an NSRange, because that is what NSMutableAttributedString’s
addAttributes(_:range:) wants as its second parameter. It would be wasteful to call
range(of:) on a Swift String, which crosses into the Foundation world, gets the
range, and brings it back to the Swift world, only to convert it back to an NSRange
again. (I’ll talk more about Foundation strings and attributed strings in the next
section.)

NSNotFound is a constant integer indicating that some requested element was not
found. The true numeric value of NSNotFound is of no concern; you always compare
against NSNotFound itself, to learn whether a result is meaningful. For example, if you
ask for the index of a certain object in an NSArray and the object isn’t present, the
result is NSNotFound:

let arr = ["hey"] as NSArray
let ix = arr.index(of:"ho")
if ix == NSNotFound {
 print("it wasn't found")
}

Why does Cocoa resort to an integer value with a special meaning in this way?
Because it has to. The result could not be 0 to indicate the absence of the object,
because 0 would indicate the first element of the array. Nor could it be -1, because an
NSArray index value is always positive. Nor could it be nil, because Objective-C can’t
return nil when an integer is expected (and even if it could, it would be seen as
another way of saying 0). Contrast Swift, whose Array firstIndex(of:) method
returns an Int wrapped in an Optional, so that it can return nil to indicate that the
target object wasn’t found.

482 | Chapter 10: Cocoa Classes

If a search returns a range and the thing sought is not present, the location compo‐
nent of the resulting NSRange will be NSNotFound. This means that, when you turn
an NSRange into a Swift Range, the NSRange’s location might be NSNotFound, and
Swift needs to be able to express that as a nil Range. That’s why the initializers for
coercing an NSRange to a Range are failable. It is also why, when you call NSString’s
range(of:) method on a Swift String, the result is an Optional:

let s = "hello"
let r = s.range(of:"ha") // nil; an Optional wrapping a Swift Range

NSString and Friends
NSString is the Cocoa object version of a string. NSString and Swift String are
bridged to one another, and you will often move between them without thinking,
passing a Swift String to Cocoa, calling Cocoa NSString methods on a Swift String,
and so forth. For example:

let s = "hello"
let s2 = s.capitalized

In that code, s is a Swift String and s2 is a Swift String, but the capitalized property
actually belongs to Cocoa. In the course of that code, a Swift String has been bridged
to NSString and passed to Cocoa, which has processed it to get the capitalized string;
the capitalized string is an NSString, but it has been bridged back to a Swift String. In
all likelihood, you are not conscious of the bridging; capitalized feels like a native
String property, but it isn’t — as you can readily prove by trying to use it in an envi‐
ronment where Foundation is not imported.

In some cases, Swift may fail to cross the bridge implicitly for you, and you will need
to cast explicitly. For example, if s is a Swift string, you can’t call appendingPath-
Extension on it directly:

let s = "MyFile"
let s2 = s.appendingPathExtension("txt") // compile error

You have to cast explicitly to NSString:

let s2 = (s as NSString).appendingPathExtension("txt")

Similarly, to use NSString’s substring(to:), you must cast the String to an NSString
beforehand:

let s2 = (s as NSString).substring(to:4)

In this situation, however, we can stay entirely within the Swift world by calling
prefix, which is a native Swift method, not a Foundation method, even though it
takes an Int, not a String.Index:

let s2 = s.prefix(4)

Some Foundation Classes | 483

As I explained in Chapter 3, however, those two calls are not equivalent: they can give
different answers! The reason is that String and NSString have fundamentally differ‐
ent notions of what constitutes an element of a string (see “The String–NSString Ele‐
ment Mismatch” on page 96). A String must resolve its elements into characters,
which means that it must walk the string, coalescing any combining codepoints; an
NSString behaves as if it were an array of UTF-16 codepoints. On the Swift side, each
increment in a String.Index corresponds to a true character, but access by index or
range requires walking the string; on the Cocoa side, access by index or range is
extremely fast, but might not correspond to character boundaries. (See the “Charac‐
ters and Grapheme Clusters” chapter of Apple’s String Programming Guide in the doc‐
umentation archive.)

Another important difference between a Swift String and a Cocoa NSString is that an
NSString is immutable. This means that, with NSString, you can do things such as
obtain a new string based on the first — as capitalized and substring(to:) do —
but you can’t change the string in place. To do that, you need another class, a subclass
of NSString, NSMutableString. Swift String isn’t bridged to NSMutableString, so you
can’t get from String to NSMutableString merely by casting. To obtain an NSMutable‐
String, you’ll have to make one. The simplest way is with NSMutableString’s initial‐
izer init(string:), which expects an NSString — meaning that you can pass a Swift
String. Coming back the other way, you can cast all the way from NSMutableString to
a Swift String in one move, because an NSMutableString is an NSString:

let s = "hello"
let ms = NSMutableString(string:s)
ms.deleteCharacters(in:NSRange(location: ms.length-1, length:1))
let s2 = (ms as String) + "ion" // now s2 is a Swift String, "hellion"

As I said in Chapter 3, native Swift String methods are thin on the ground. All the
real string-processing power lives over on the Cocoa side of the bridge. So you’re
going to be crossing that bridge a lot! And this will not be only for the power of the
NSString and NSMutableString classes. Many other useful classes are associated with
them.

For example, suppose you want to search a string for some substring. All the best
ways come from Cocoa:

• An NSString can be searched using various range methods, with numerous
options such as ignoring diacriticals, ignoring case, starting at the end, and insist‐
ing that the substring occupy the start or end of the searched string.

• Perhaps you don’t know exactly what you’re looking for: you need to describe it
structurally. A Scanner (Objective-C NSScanner) lets you walk through a string
looking for pieces that fit certain criteria; for example, with Scanner (and Charac‐
terSet, Objective-C NSCharacterSet) you can skip past everything in a string that
precedes a number and then extract the number.

484 | Chapter 10: Cocoa Classes

• By specifying the .regularExpression search option, you can search using a
regular expression. Regular expressions are also supported as a separate class,
NSRegularExpression, which in turn uses NSTextCheckingResult to describe
match results.

• More sophisticated automated textual analysis is supported by some additional
classes, such as NSDataDetector, an NSRegularExpression subclass that effi‐
ciently finds certain types of string expression such as a URL or a phone number.

In this example, our goal is to replace all occurrences of the word “hell” with the word
“heaven.” We don’t want to replace mere occurrences of the substring “hell” — for
example, “hello” should be left intact. Thus our search needs some intelligence as to
what constitutes a word boundary. That sounds like a job for a regular expression.
Swift doesn’t have regular expressions, so the work has to be done by Cocoa:

var s = "hello world, go to hell"
let r = try! NSRegularExpression(
 pattern: "\\bhell\\b",
 options: .caseInsensitive)
s = r.stringByReplacingMatches(
 in: s,
 range: NSRange(s.startIndex..<s.endIndex, in:s),
 withTemplate: "heaven")
// s is "hello world, go to heaven"

NSString also has convenience utilities for working with a file path string, and is often
used in conjunction with URL (Objective-C NSURL), which is another Foundation
type worth looking into, along with its companion types, URLComponents
(Objective-C NSURLComponents) and URLQueryItem (Objective-C NSURLQuery‐
Item). In addition, NSString — like some other classes discussed in this section —
provides methods for writing out to a file’s contents or reading in a file’s contents; the
file can be specified either as a string file path or as a URL.

An NSString carries no font and size information. Interface objects that display
strings (such as UILabel) have a font property that is a UIFont; but this determines
the single font and size in which the string will display. If you want styled text —
where different runs of text have different style attributes (size, font, color, and so
forth) — you need to use NSAttributedString, along with its supporting classes
NSMutableAttributedString, NSParagraphStyle, and NSMutableParagraphStyle.
These allow you to style text and paragraphs easily in sophisticated ways. The built-in
interface objects that display text can display an attributed string.

String drawing in a graphics context can be performed with methods provided
through the NSStringDrawing category on NSString and on NSAttributedString.

Some Foundation Classes | 485

NSDate and Friends
A Date (Objective-C NSDate) is a date and time, represented internally as a number
of seconds since some reference date. Calling Date’s initializer init() — i.e., saying
Date() — gives you a Date object for the current date and time. Many date operations
will also involve the use of DateComponents (Objective-C NSDateComponents), and
conversions between Date and DateComponents require use of a Calendar
(Objective-C NSCalendar). Here’s an example of constructing a date based on its cal‐
endrical values:

let greg = Calendar(identifier:.gregorian)
let comp = DateComponents(calendar: greg,
 year: 2018, month: 8, day: 10, hour: 15)
let d = comp.date // Optional wrapping Date

Similarly, DateComponents provides the correct way to do date arithmetic. Here’s
how to add one month to a given date:

let d = Date() // or whatever
let comp = DateComponents(month:1)
let greg = Calendar(identifier:.gregorian)
let d2 = greg.date(byAdding: comp, to:d) // Optional wrapping Date

Because a Date is essentially a wrapper for a TimeInterval (a Double), Swift can over‐
load the arithmetic operators so that you can do arithmetic directly on a Date:

let d = Date()
let d2 = d + 4 // i.e. 4 seconds later

You can express the range between two dates as a DateInterval (Objective-C NSDate‐
Interval). DateIntervals can be compared, intersected, and checked for containment:

let greg = Calendar(identifier:.gregorian)
let d1 = DateComponents(calendar: greg,
 year: 2018, month: 1, day: 1, hour: 0).date!
let d2 = DateComponents(calendar: greg,
 year: 2018, month: 8, day: 10, hour: 15).date!
let di = DateInterval(start: d1, end: d2)
if di.contains(Date()) { // are we currently between those two dates?

You will also likely be concerned with dates represented as strings. If you don’t take
explicit charge of a date’s string representation, it is represented by a string whose for‐
mat may surprise you. For example, if you simply print a Date, you are shown the
date in the GMT timezone, which can be confusing if that isn’t where you live. A sim‐
ple solution when you’re just logging to the console is to call description(with:),
whose parameter is a Locale (Objective-C NSLocale) comprising the user’s current
time zone, language, region format, and calendar settings:

486 | Chapter 10: Cocoa Classes

print(d)
// 2018-08-10 22:00:00 +0000
print(d.description(with:Locale.current))
// Friday, August 10, 2018 at 3:00:00 PM Pacific Daylight Time

For full control over date strings, especially when presenting them to the user, use
DateFormatter (Objective-C NSDateFormatter), which takes a format string describ‐
ing how the date string is laid out:

let df = DateFormatter()
df.dateFormat = "M/d/y"
let s = df.string(from: Date())
// 7/31/2018

DateFormatter knows how to make a date string that conforms to the user’s local con‐
ventions. In this example, we call the class method dateFormat(from-

Template:options:locale:) with the current locale as configured on the user’s
device. The template: is a string listing the date components to be used, but their
order, punctuation, and language are left up to the locale:

let df = DateFormatter()
let format = DateFormatter.dateFormat(
 fromTemplate:"dMMMMyyyyhmmaz", options:0,
 locale:Locale.currentLocale())
df.dateFormat = format
let s = df.string(from:Date())

The result is the date shown in the user’s time zone and language, using the correct
linguistic conventions. It involves a combination of region format and language,
which are two separate settings. Thus:

• On my device, the result might be “July 31, 2018, 8:23 PM PDT.”
• If I change my device’s region to France, it might be “31 July 2018 8:23 PM

GMT-7.”
• If I also change my device’s language to French, it might be “31 juillet 2018 8:23

PM UTC−7.”
DateFormatter can also parse a date string into a Date — but be sure that the date
format is correct. This attempt to parse a string will fail, because the date format
doesn’t match the way the string is constructed:

let df = DateFormatter()
df.locale = Locale(identifier: "en_US_POSIX")
df.dateFormat = "M/d/y"
let d = df.date(from: "31/7/2018") // nil; should have been "d/M/y"

NSNumber
An NSNumber is an object that wraps a numeric value. The wrapped value can be any
standard Objective-C numeric type (including BOOL, the Objective-C equivalent of

Some Foundation Classes | 487

Swift Bool). In Swift, everything is an object — a number is a Struct instance — so it
comes as a surprise to Swift users that NSNumber is needed. But an ordinary number
in Objective-C is not an object (it is a scalar; see Chapter 1), so it cannot be used
where an object is expected. Thus, NSNumber solves an important problem for
Objective-C, converting a number into an object and back again.

Swift does its best to shield you from having to deal directly with NSNumber. It
bridges Swift numeric types to Objective-C in two different ways:

As a scalar
If Objective-C expects an ordinary number, a Swift number is bridged to an ordi‐
nary number (a scalar). For example:

UIView.animate(withDuration: 1,
 animations: whatToAnimate, completion: whatToDoLater)

Objective-C animateWithDuration:animations:completion: takes a C double
as its first parameter. The Swift numeric object that you supply as the first argu‐
ment to animate(withDuration:animations:completion:) becomes a C
double.

As an NSNumber
If Objective-C expects an object, a Swift numeric type is bridged to an NSNum‐
ber (including Bool, because NSNumber can wrap an Objective-C BOOL). For
example:

UserDefaults.standard.set(1, forKey:"Score")

Objective-C setObject:forKey: takes an Objective-C object as its first parame‐
ter. The Swift numeric object that you supply as the first argument to set(_:for-
Key:) becomes an NSNumber.

Naturally, if you need to cross the bridge explicitly, you can. You can cast a Swift
number to an NSNumber:

let n = 1 as NSNumber

Coming back from Objective-C to Swift, an NSNumber (or an Any that is actually an
NSNumber) can be unwrapped by casting it down to a numeric type — provided the
wrapped numeric value matches the type. To illustrate, I’ll fetch the NSNumber that I
created in UserDefaults by bridging a moment ago:

let n = UserDefaults.standard.value(forKey:"Score")
// n is an Optional<Any> containing an NSNumber
let i = n as! Int // legal
let d = n as! Double // legal

An NSNumber object is just a wrapper and no more. It can’t be used directly for
numeric calculations; it isn’t a number. It wraps a number. One way or another, if you
want a number, you have to extract it from the NSNumber.

488 | Chapter 10: Cocoa Classes

An NSNumber subclass, NSDecimalNumber, on the other hand, can be used in calcu‐
lations, thanks to a bunch of arithmetic methods:

let dec1 = 4.0 as NSDecimalNumber
let dec2 = 5.0 as NSDecimalNumber
let sum = dec1.adding(dec2) // 9.0

NSDecimalNumber is useful particularly for rounding, because there’s a handy way to
specify the desired rounding behavior.

Underlying NSDecimalNumber is the Decimal struct (Objective-C NSDecimal); it is
an NSDecimalNumber’s decimalValue. In Objective-C, NSDecimal comes with C
functions that are faster than NSDecimalNumber methods. In Swift, things are even
better, because the arithmetic operators are overloaded to allow you to do Decimal
arithmetic; thus, you are likely to prefer working with Decimal rather than
NSDecimalNumber:

let dec1 = Decimal(4.0)
let dec2 = Decimal(5.0)
let sum = dec1 + dec2

NSValue
NSValue is NSNumber’s superclass. It is used for wrapping nonnumeric C values,
such as C structs, where an object is expected. The problem being solved here is par‐
allel to the problem solved by NSNumber: a Swift struct is an object, but a C struct is
not, so a struct cannot be used in Objective-C where an object is expected.

Convenience methods provided through the NSValueUIGeometryExtensions cate‐
gory on NSValue allow easy wrapping and unwrapping of such common structs as
CGPoint, CGSize, CGRect, CGAffineTransform, UIEdgeInsets, and UIOffset; addi‐
tional categories allow easy wrapping and unwrapping of NSRange, CATransform3D,
CMTime, CMTimeMapping, CMTimeRange, MKCoordinate, and MKCoordinate‐
Span. (You are unlikely to need to store any other kind of C value in an NSValue, but
if you do need to, you can.) For example:

let pt = self.oldButtonCenter // a CGPoint
let val = NSValue(cgPoint:pt)

But you will rarely need to deal with NSValue explicitly, because Swift will wrap any
of those common structs in an NSValue for you as it crosses the bridge from Swift to
Objective-C. Here’s an example from my own real-life code:

let pt = CGPoint(
 x: screenbounds.midX + r * cos(rads),
 y: screenbounds.midY + r * sin(rads)
)

Some Foundation Classes | 489

// apply an animation of ourself to that point
let anim = CABasicAnimation(keyPath:"position")
anim.fromValue = self.position
anim.toValue = pt

In that code, self.position and pt are both CGPoints. The CABasicAnimation
properties fromValue and toValue need to be Objective-C objects (that is, class
instances) so that Cocoa can obey them to perform the animation. It is therefore nec‐
essary to wrap self.position and pt as NSValue objects. But you don’t have to do
that; Swift wraps those CGPoints as NSValue objects for you, Cocoa is able to inter‐
pret and obey them, and the animation works correctly.

The same thing is true of an array of common structs. Again, animation is a case in
point. If you assign an array of CGPoint to a CAKeyframeAnimation’s values prop‐
erty, the animation will work properly, without your having to map the CGPoints to
NSValues first. That’s because Swift maps them for you as the array crosses the bridge.

NSData
Data (Objective-C NSData) is a general sequence of bytes (UInt8); basically, it’s just a
buffer, a chunk of memory. In Objective-C, NSData is immutable; the mutable ver‐
sion is its subclass NSMutableData. In Swift, however, where Data is a bridged value
type imposed in front of NSData, a Data object is mutable if it was declared with var,
just like any other value type. Moreover, because a Data object represents a byte
sequence, Swift makes it a Collection (and therefore a Sequence), causing Swift fea‐
tures such as enumeration with for...in, subscripting, and append(_:) to spring to
life. Thus, although you can work with NSData and NSMutableData if you want to
(by casting to cross the bridge), you are much more likely to prefer Data.

In practice, Data tends to arise in two main ways:

When downloading from the Internet
For example, URLSession (Objective-C NSURLSession) supplies whatever it
retrieves from the Internet as Data. Transforming it from there into (let’s say) a
string, specifying the correct encoding, would then be up to you.

When serializing an object
A typical use case is that you’re storing an object as a file or in user preferences
(UserDefaults). For example, you can’t store a UIColor value directly into user
preferences. So if the user has made a color choice and you need to save it, you
transform the UIColor into a Data object (using NSKeyedArchiver) and save
that:

490 | Chapter 10: Cocoa Classes

let ud = UserDefaults.standard
let c = UIColor.blue
let cdata = try! NSKeyedArchiver.archivedData(
 withRootObject: c, requiringSecureCoding: true)
ud.set(cdata, forKey: "myColor")

NSMeasurement and Friends
The Measurement type (Objective-C NSMeasurement) embodies the notion of a
measurement by some unit (Unit, Objective-C NSUnit). A unit may be along some
dimension that can be expressed in different units convertible to one another; by
reducing values in different units of the same dimension to a base unit, a Measure‐
ment permits you to perform arithmetic operations and conversions.

The dimensions, which are all subclasses of the (abstract) Dimension class
(Objective-C NSDimension, an NSUnit subclass), have names like UnitAngle and
UnitLength (Objective-C NSUnitAngle, NSUnitLength), and have class properties
vending an instance corresponding to a particular unit type; for example, UnitAngle
has class properties degrees and radians and others, and UnitLength has class prop‐
erties miles and kilometers and others.

To illustrate, I’ll add 5 miles to 6 kilometers:

let m1 = Measurement(value:5, unit: UnitLength.miles)
let m2 = Measurement(value:6, unit: UnitLength.kilometers)
let total = m1 + m2

The answer, total, is 14046.7 meters under the hood, because meters are the base
unit of length. But it can be converted to any length unit:

let totalFeet = total.converted(to: .feet).value // 46084.9737532808

If your goal is to output a measurement as a user-facing string, use a Measurement‐
Formatter (Objective-C NSMeasurementFormatter). Its behavior is locale-dependent
by default, expressing the value and the units as the user would expect:

let mf = MeasurementFormatter()
let s = mf.string(from:total) // "8.728 mi"

My code says nothing about miles, but the MeasurementFormatter outputs "8.728
mi" because my device is set to United States (region) and English (language). If my
device is set to France (region) and French (language), the very same code outputs
"14,047 km" — using the French decimal point notation and the French preferred
unit of distance measurement.

Equality, Hashability, and Comparison
In Swift, the equality and comparison operators can be overridden for an object type
that adopts Equatable and Comparable (“Operators” on page 291). But Objective-C

Some Foundation Classes | 491

operators can’t do that; they are applicable only to scalars. Objective-C therefore per‐
forms comparison of object instances in a special way, and it can be useful to know
about this when working with Cocoa classes.

To permit determination of whether two objects are “equal” — whatever that may
mean for this object type — an Objective-C class must implement isEqual(_:),
which is inherited from NSObject. Swift will help out by treating NSObject as Equata‐
ble and by permitting the use of the == operator, implicitly converting it to an
isEqual(_:) call. Thus, if a class derived from NSObject implements isEqual(_:),
ordinary Swift comparison will work. If an NSObject subclass doesn’t implement
isEqual(_:), it inherits NSObject’s implementation, which compares the two objects
for identity (like Swift’s === operator).

For example, these two Dog objects can be compared with the == operator, even
though Dog does not adopt Equatable, because they derive from NSObject — but
Dog doesn’t implement isEqual(_:), so == defaults to using NSObject’s identity
comparison:

class Dog : NSObject {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}
let d1 = Dog(name:"Fido", license:1)
let d2 = Dog(name:"Fido", license:1)
let ok = d1 == d2 // false

If we wanted two Dogs with the same name and license to be considered equal, we’d
need to implement isEqual(_:), like this:

class Dog : NSObject {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 override func isEqual(_ object: Any?) -> Bool {
 if let otherdog = object as? Dog {
 return (otherdog.name == self.name &&
 otherdog.license == self.license)
 }
 return false
 }

492 | Chapter 10: Cocoa Classes

}
let d1 = Dog(name:"Fido", license:1)
let d2 = Dog(name:"Fido", license:1)
let ok = d1 == d2 // true

Many Foundation types implement isEqual(_:) in a sensible way, so Swift equatabil‐
ity automatically works as you would expect. For example, NSNumber implements
isEqual(_:) by comparing the underlying numbers; thus, you can use NSNumber
where a Swift Equatable is expected, and, because a Swift number will be cast auto‐
matically to an NSNumber if needed, you can even compare an NSNumber to a Swift
number:

let n1 = 1 as NSNumber
let n2 = 2 as NSNumber
let n3 = 3 as NSNumber
let ok = n2 == 2 // true
let ix = [n1,n2,n3].firstIndex(of:2) // Optional wrapping 1

By the same token, for an NSObject subclass to work properly where hashability is
required — as a dictionary key or a set member, even if this is a Swift Dictionary or
Set — it must conform to the NSObject notion of hashability, namely, an implemen‐
tation of isEqual(_:) plus an override of the NSObject hash property. For example,
if we wanted our Dog from the previous code to be usable in a Set, we’d need to over‐
ride hash; in the past, that was tricky to do correctly, but the Hasher struct (new in
Swift 4.2) makes it easy:

class Dog : NSObject {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 override func isEqual(_ object: Any?) -> Bool {
 if let otherdog = object as? Dog {
 return (otherdog.name == self.name &&
 otherdog.license == self.license)
 }
 return false
 }
 override var hash: Int {
 var h = Hasher()
 h.combine(self.name)
 h.combine(self.license)
 return h.finalize()
 }
}
var set = Set<Dog>()
set.insert(Dog(name:"Fido", license:1))
set.insert(Dog(name:"Fido", license:1))
print(set.count) // 1

Some Foundation Classes | 493

Foundation types come with a built-in hash implementation (and the Swift overlay
types are all both Equatable and Hashable as well).

Similarly, in Objective-C it is up to individual classes to supply ordered comparison
methods. The standard method is compare(_:), which returns one of three cases of
ComparisonResult (Objective-C NSComparisonResult):

.orderedAscending

The receiver is less than the argument.

.orderedSame

The receiver is equal to the argument.

.orderedDescending

The receiver is greater than the argument.

Swift comparison operators (< and so forth) do not magically call compare(_:) for
you. You can’t compare two NSNumber values directly:

let n1 = 1 as NSNumber
let n2 = 2 as NSNumber
let ok = n1 < n2 // compile error

You will typically fall back on calling compare(_:) yourself:

let n1 = 1 as NSNumber
let n2 = 2 as NSNumber
let ok = n1.compare(n2) == .orderedAscending // true

On the other hand, a Swift Foundation overlay type can adopt Comparable, and now
comparison operators do work. For example, you can’t compare two NSDate values
with <, but you can compare two Date values.

NSArray and NSMutableArray
NSArray is Objective-C’s array object type. It is fundamentally similar to Swift Array,
and they are bridged to one another; but NSArray elements must be objects (classes
and class instances), and they don’t have to be of a single type. For a full discussion of
how to bridge back and forth between Swift Array and Objective-C NSArray, implic‐
itly and by casting, see “Swift Array and Objective-C NSArray” on page 238.

An NSArray’s length is its count, and an element can be obtained by index number
using object(at:). The index of the first element, as with a Swift Array, is zero, so
the index of the last element is count minus one.

Instead of calling object(at:), you can use subscripting with an NSArray. This is not
because NSArray is bridged to Swift Array, but because NSArray implements an
Objective-C method, objectAtIndexedSubscript:, which is the Objective-C equiva‐

494 | Chapter 10: Cocoa Classes

lent of a Swift subscript getter. In fact, when you examine the NSArray header file
translated into Swift, this method is shown as a subscript declaration!

You can seek an object within an array with index(of:) or indexOfObject-
Identical(to:); the former’s idea of equality is to call isEqual(_:), whereas the lat‐
ter uses object identity (like Swift’s ===). As I mentioned earlier, if the object is not
found in the array, the result is NSNotFound.

Like an Objective-C NSString, an NSArray is immutable. This doesn’t mean you can’t
mutate any of the objects it contains; it means that once the NSArray is formed you
can’t remove an object from it, insert an object into it, or replace an object at a given
index. To do those things while staying in the Objective-C world, you can derive a
new array consisting of the original array plus or minus some objects, or use
NSArray’s subclass, NSMutableArray. Swift Array is not bridged to NSMutableArray;
if you want an NSMutableArray, you must create it. The simplest way is with the
NSMutableArray initializers, init() or init(array:).

Once you have an NSMutableArray, you can call methods such as NSMutableArray’s
add(_:) and replaceObject(at:with:). You can also assign into an NSMutable‐
Array using subscripting. Again, this is because NSMutableArray implements a spe‐
cial Objective-C method, setObject:atIndexedSubscript:; Swift recognizes this as
equivalent to a subscript setter.

Coming back the other way, you can cast an NSMutableArray down to a Swift array:

let marr = NSMutableArray()
marr.add(1) // an NSNumber
marr.add(2) // an NSNumber
let arr = marr as NSArray as! [Int]

Cocoa provides ways to search or filter an array by passing a function. You can also
derive a sorted version of an array, supplying the sorting rules in various ways, or if
it’s a mutable array, you can sort it directly. You might prefer to perform those kinds
of operation in the Swift Array world, but it can be useful to know how to do them
the Cocoa way. For example:

let pep = ["Manny", "Moe", "Jack"] as NSArray
let ems = pep.objects(
 at: pep.indexesOfObjects { (obj, idx, stop) -> Bool in
 return (obj as! NSString).range(
 of: "m", options:.caseInsensitive
).location == 0
 }
) // ["Manny", "Moe"]

Some Foundation Classes | 495

NSDictionary and NSMutableDictionary
NSDictionary is Objective-C’s dictionary object type. It is fundamentally similar to
Swift Dictionary, and they are bridged to one another. But NSDictionary keys and
values must be objects (classes and class instances), and they don’t have to be of a sin‐
gle type; the keys must conform to NSCopying and be hashable. See “Swift Dictionary
and Objective-C NSDictionary” on page 246 for a full discussion of how to bridge
back and forth between Swift Dictionary and Objective-C NSDictionary, including
casting.

An NSDictionary is immutable; its mutable subclass is NSMutableDictionary. Swift
Dictionary is not bridged to NSMutableDictionary; you can most easily make an
NSMutableDictionary with an initializer, init() or init(dictionary:), and you can
cast an NSMutableDictionary down to a Swift Dictionary type.

The keys of an NSDictionary are distinct (using isEqual(_:) for comparison). If you
add a key–value pair to an NSMutableDictionary, then if that key is not already
present, the pair is simply added, but if the key is already present, then the corre‐
sponding value is replaced. This is parallel to the behavior of Swift Dictionary.

The fundamental use of an NSDictionary is to request an entry’s value by key (using
object(forKey:)); if no such key exists, the result is nil. In Objective-C, nil is not
an object, and thus cannot be a value in an NSDictionary; the meaning of this
response is thus unambiguous. Swift handles this by treating the result of object(for-
Key:) as an Optional wrapping an Any.

Subscripting is possible on an NSDictionary or an NSMutableDictionary, for similar
reasons to an NSArray or an NSMutableArray. NSDictionary implements objectFor-
KeyedSubscript:, and Swift understands this as equivalent to a subscript getter. In
addition, NSMutableDictionary implements setObject:forKeyedSubscript:, and
Swift understands this as equivalent to a subscript setter.

You can get from an NSDictionary a list of keys (allKeys), a list of values (all-
Values), or a list of keys sorted by value. You can also walk through the key–value
pairs, and you can even filter an NSDictionary by a test against its values.

NSSet and Friends
An NSSet is an unordered collection of distinct objects. “Distinct” means that no two
objects in a set can return true when they are compared using isEqual(_:). Learn‐
ing whether an object is present in a set is much more efficient than seeking it in an
array (because a set’s elements are hashable, as I explained earlier in this chapter), and
you can ask whether one set is a subset of, or intersects, another set. You can walk
through (enumerate) a set with the for...in construct, though the order is of course
undefined. You can filter a set, as you can an NSArray. Indeed, much of what you can

496 | Chapter 10: Cocoa Classes

do with a set is parallel to what you can do with an array, except that of course you
can’t do anything with a set that involves the notion of ordering.

To escape even that restriction, you can use an ordered set. An ordered set
(NSOrderedSet) is very like an array, and the methods for working with it are similar
to the methods for working with an array — you can even fetch an element by sub‐
scripting (because it implements objectAtIndexedSubscript:). But an ordered set’s
elements must be distinct. An ordered set provides many of the advantages of sets: for
example, as with an NSSet, learning whether an object is present in an ordered set is
much more efficient than for an array, and you can readily take the union, intersec‐
tion, or difference with another set. Since the distinctness restriction will often prove
no restriction at all (because the elements were going to be distinct anyway), it can be
worthwhile to use NSOrderedSet instead of NSArray where possible.

An NSSet is immutable. You can derive one NSSet from another by adding or remov‐
ing elements, or you can use its subclass, NSMutableSet. Similarly, NSOrderedSet has
its mutable counterpart, NSMutableOrderedSet (which you can insert into by sub‐
scripting, because it implements setObject:atIndexedSubscript:). There is no pen‐
alty for adding to a set an object that the set already contains; nothing is added (and
so the distinctness rule is enforced), but there’s no error.

NSCountedSet, a subclass of NSMutableSet, is a mutable unordered collection of
objects that are not necessarily distinct (this concept is often referred to as a bag). It is
implemented as a set plus a count of how many times each element has been added.

Swift Set is bridged to NSSet, and the Swift Foundation overlay even allows you to
initialize an NSSet from a Swift array literal. But NSSet elements must be objects
(classes and class instances), and they don’t have to be of a single type. For details, see
“Swift Set and Objective-C NSSet” on page 252. NSMutableSet, NSCountedSet,
NSOrderedSet, and NSMutableOrderedSet are easily formed from a set or an array
using an initializer. Coming back the other way, you can cast an NSMutableSet or
NSCountedSet down to a Swift Set (similar to an NSMutableArray). Because of their
special behaviors, however, you are much more likely to leave an NSCountedSet or
NSOrderedSet in its Objective-C form for as long as you’re working with it.

NSIndexSet
IndexSet (Objective-C NSIndexSet) represents a collection of unique whole numbers;
its purpose is to express element numbers of an ordered collection, such as an array.
Thus, for instance, to retrieve multiple elements simultaneously from an NSArray,
you specify the desired indexes as an IndexSet. It is also used with other things that
are array-like; for example, you pass an IndexSet to a UITableView to indicate what
sections to insert or delete.

Some Foundation Classes | 497

NSIndexSet is immutable; it has a mutable subclass, NSMutableIndexSet. As with
other Swift types imposed in front of Foundation types, however, IndexSet gets to do
all sorts of convenient Swift magic. IndexSet is a value type, so it is mutable if the dec‐
laration uses var. Comparison and arithmetic operators work directly with IndexSet
values. Even more important, an IndexSet acts like a Set: it adopts the SetAlgebra pro‐
tocol, and methods like contains(_:) and intersection(_:) spring to life. Thus
you probably won’t need NSMutableIndexSet at all.

To take a specific example, let’s say you want to speak of the elements at indexes 1, 2,
3, 4, 8, 9, and 10 of an array. IndexSet expresses this notion in some compact imple‐
mentation that can be readily queried. The actual implementation is opaque, but you
can imagine that this IndexSet might consist of two Ranges, 1...4 and 8...10, and
IndexSet’s methods actually invite you to think of it as a Set of Ranges:

let arr = ["zero", "one", "two", "three", "four", "five",
 "six", "seven", "eight", "nine", "ten"]
var ixs = IndexSet()
ixs.insert(integersIn: Range(1...4))
ixs.insert(integersIn: Range(8...10))
let arr2 = (arr as NSArray).objects(at:ixs)
// ["one", "two", "three", "four", "eight", "nine", "ten"]

To walk through (enumerate) the index values specified by an IndexSet, you can use
for...in; alternatively, you can walk through an IndexSet’s indexes or ranges by call‐
ing various enumerate methods that let you pass a function returning a Bool.

NSNull
The NSNull class does nothing but supply a pointer to a singleton object, NSNull().
This singleton object is used to stand for nil in situations where an actual Objective-
C object is required and nil is not permitted. For example, you can’t use nil as the
value of an element of an Objective-C collection (such as NSArray, NSDictionary, or
NSSet), so you’d use NSNull() instead. Swift will bridge an Array of Optional for you,
as it crosses into Objective-C, by substituting NSNull() for any nil elements — and
will perform the inverse operation when you cast an NSArray down to an Array of
Optional, substituting nil for any NSNull() elements.

You can test an object for equality against NSNull() using the ordinary equality oper‐
ator (==), because it falls back on NSObject’s isEqual(_:), which is identity compari‐
son. This is a singleton instance, and therefore identity comparison works.

Immutable and Mutable
Cocoa Foundation has a notion of class pairs where the superclass is immutable and
the subclass is mutable; I’ve given many examples already, such as NSArray and
NSMutableArray. This is similar to the Swift distinction between a constant (let) and

498 | Chapter 10: Cocoa Classes

a true variable (var). For example, the fact that NSArray is “immutable” means much
the same thing as the fact that a Swift Array is referred to with let: you can’t append
or insert into this array, or replace or delete an element of this array; but if its ele‐
ments are reference types — and of course, for an NSArray, they are reference types
— you can mutate an element in place.

The reason why Cocoa needs these immutable/mutable pairs is to prevent unauthor‐
ized mutation. An NSArray object, say, is an ordinary class instance — a reference
type. Thus, if NSArray were mutable, an NSArray property of a class could be muta‐
ted by some other object, behind this class’s back. To prevent that from happening, a
class will work internally and temporarily with a mutable instance, but then store and
vend to other classes an immutable instance, thus protecting the value from being
changed by anyone else. (Swift doesn’t face the same issue, because its fundamental
built-in object types such as String, Array, and Dictionary are structs, and therefore
are value types, which cannot be mutated in place; they can be changed only by being
replaced, and that is something that can be guarded against, or detected through a
setter observer.)

The documentation may not make it completely obvious that the mutable classes
obey and, if appropriate, override the methods of their immutable superclasses. For
example, dozens of NSMutableArray methods are not listed on NSMutableArray’s
class documentation page, because they are inherited from NSArray. And when such
methods are inherited by the mutable subclass, they may be overridden to fit the
mutable subclass. For example, NSArray’s init(array:) generates an immutable
array, but NSMutableArray’s init(array:) — which isn’t even listed on the
NSMutableArray documentation page, because it is inherited from NSArray — gen‐
erates a mutable array.

That fact also answers the question of how to make an immutable array mutable, and
vice versa. This single method, init(array:), can transform an array between
immutable and mutable in either direction. You can also use copy (produces an
immutable copy) and mutableCopy (produces a mutable copy), both inherited from
NSObject; but these are not as convenient because they yield an Any which must then
be cast.

These immutable/mutable class pairs are all implemented as class clusters, which
means that Cocoa uses a secret class, different from the documented class you
work with. You may discover this by peeking under the hood; for example, an
NSString might be characterized as an NSTaggedPointerString or an
NSCFString. You should not spend any time wondering about this secret class. It
is subject to change without notice and is none of your business; you should
never have looked at it in the first place.

Some Foundation Classes | 499

Property Lists
A property list is a string (XML) representation of data. The Foundation classes
NSString, NSData, NSArray, and NSDictionary are the only Cocoa classes that can be
converted into a property list. Moreover, an NSArray or NSDictionary can be con‐
verted into a property list only if the only classes it collects are these classes, along
with NSDate and NSNumber. (That is why, as I mentioned earlier, you must convert a
UIColor into a Data object in order to store it in user defaults; the user defaults stor‐
age is a property list.)

The primary use of a property list is to store data as a file. It is a way of serializing a
value — saving it to disk in a form from which it can be reconstructed. NSArray and
NSDictionary provide write methods that generate property list files; conversely,
they also provide initializers that create an NSArray object or an NSDictionary object
based on the property list contents of a given file. For this very reason, you are likely
to start with one of these classes when you want to create a property list. (The
NSString and NSData write methods just write the data out as a file directly, not as a
property list.)

Here, for example, I’ll create an array of strings and write it out to disk as a property
list file:

let arr = ["Manny", "Moe", "Jack"]
let fm = FileManager.default
let temp = fm.temporaryDirectory
let f = temp.appendingPathComponent("pep.plist")
try! (arr as NSArray).write(to: f)

The result is a file that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>Manny</string>
 <string>Moe</string>
 <string>Jack</string>
</array>
</plist>

When you reconstruct an NSArray or NSDictionary object from a property list file in
this way, the collections, string objects, and data objects in the collection are all
immutable. If you want them to be mutable, or if you want to convert an instance of
one of the other property list classes to a property list, you’ll use the PropertyListSeri‐
alization class (Objective-C NSPropertyListSerialization; see the Property List Pro‐
gramming Guide in the documentation archive).

500 | Chapter 10: Cocoa Classes

Codable
You can serialize an object without crossing the bridge into the Objective-C world,
provided it adopts the Codable protocol. In effect, every native Swift type and every
Foundation overlay type does adopt the Codable protocol! This means, among other
things, that enums and structs can easily be serialized, something that was quite
tricky before Swift 4 introduced the Codable protocol.

There are three main use cases, involving three pairs of classes to serialize the object
and extract it again later; what you’re encoding to and decoding from is a Data object:

Property lists
Use PropertyListEncoder and PropertyListDecoder.

JSON
Use JSONEncoder and JSONDecoder.

NSCoder
Use NSKeyedArchiver and NSKeyedUnarchiver.

To illustrate, let’s rewrite the previous example, serializing an array of strings to a
property list, without casting it to an NSArray. This works because both Swift Array
and Swift String adopt Codable; indeed, thanks to conditional conformance (Chap‐
ter 4), an Array is Codable only just in case its element type is Codable:

let arr = ["Manny", "Moe", "Jack"]
let fm = FileManager.default
let temp = fm.temporaryDirectory
let f = temp.appendingPathComponent("pep.plist")
let penc = PropertyListEncoder()
penc.outputFormat = .xml
let d = try! penc.encode(arr)
try! d.write(to: f)

The resulting file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>Manny</string>
 <string>Moe</string>
 <string>Jack</string>
</array>
</plist>

That example doesn’t do anything that we couldn’t have done with NSArray. But now
consider, for instance, an index set. You can’t write an NSIndexSet directly into a
property list using Objective-C, because Objective-C has no notion of NSIndexSet as
a property list type. But the Swift Foundation overlay type, IndexSet, is Codable:

Some Foundation Classes | 501

let penc = PropertyListEncoder()
penc.outputFormat = .xml
let d = try! penc.encode(IndexSet([1,2,3]))

And here’s the result:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>indexes</key>
 <array>
 <dict>
 <key>length</key>
 <integer>3</integer>
 <key>location</key>
 <integer>1</integer>
 </dict>
 </array>
</dict>
</plist>

Notice how cleverly Swift has encoded this object. You can’t put an IndexSet into a
property list — but this property list doesn’t contain any IndexSet! It is composed
entirely of legal property list types — a dictionary containing an array of dictionaries
whose values are numbers. And Swift can extract the encoded object from the prop‐
erty list:

let ix = try! PropertyListDecoder().decode(IndexSet.self, from: d)
// [1,2,3]

Your own custom types can adopt Codable and thus make themselves encodable in
the same way. In fact, in the simplest case, adopting Codable is all you have to do! If
the type’s properties are themselves Codable, the right thing will happen automati‐
cally. The Codable protocol has two required methods, but we don’t have to imple‐
ment them because default implementations are synthesized (see “Synthesized
Protocol Implementations” on page 295) — though we could implement them if we
wanted to customize the details of encoding and decoding.

For example, here’s a simple Person struct:

struct Person : Codable {
 let firstName : String
 let lastName : String
}

Person adopts Codable, so with no further effort we can turn a Person into a property
list:

502 | Chapter 10: Cocoa Classes

let p = Person(firstName: "Matt", lastName: "Neuburg")
let penc = PropertyListEncoder()
penc.outputFormat = .xml
let d = try! penc.encode(p)

Here’s our encoded Person:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>firstName</key>
 <string>Matt</string>
 <key>lastName</key>
 <string>Neuburg</string>
</dict>
</plist>

Observe that this would work just as well for, say, an array of Person, or a dictionary
with Person values, or any Codable struct with a Person property.

Recall that, because UserDefaults is a property list, an object that isn’t a property list
type must be archived to a Data object in order to store it in UserDefaults. A Property‐
ListEncoder creates a Data object, so we can use it to store a Person object in User‐
Defaults:

let ud = UserDefaults.standard
let p = Person(firstName: "Matt", lastName: "Neuburg")
let pdata = try! PropertyListEncoder().encode(p)
ud.set(pdata, forKey: "person")

Encoding as JSON is similar to encoding as a property list:

let p = Person(firstName: "Matt", lastName: "Neuburg")
let jenc = JSONEncoder()
jenc.outputFormatting = .prettyPrinted
let d = try! jenc.encode(p)
print(String(data:d, encoding:.utf8)!)
/*
{
 "firstName" : "Matt",
 "lastName" : "Neuburg"
}
*/

The final use case is encoding or decoding through an NSCoder. There are various
situations where Cocoa lends you an NSCoder object and invites you to put some
data into it or pull some data out of it. The NSCoder in question will be either an
NSKeyedArchiver, when you’re encoding, or an NSKeyedUnarchiver, when you’re
decoding. These subclasses, respectively, provide methods encodeEncodable(_:for-
Key:), which takes a Codable object, and decodeDecodable(_:forKey:), which pro‐

Some Foundation Classes | 503

duces a Codable object. Thus, your Codable adopters can pass into and out of an
archive by way of NSCoder.

As I mentioned earlier, your Codable adopter can take more control of the encoding
and decoding process. You can map between your object’s property names and the
archive’s key names by adding a CodingKeys enum, and you can provide your own
implementation of the injected encode(to:) and decode(from:) methods. For more
information, consult the help document “Encoding and Decoding Custom Types.”

Accessors, Properties, and Key–Value Coding
An Objective-C instance variable is structurally similar to a Swift instance property:
it’s a variable that accompanies each instance of a class, with a lifetime and value asso‐
ciated with that particular instance. An Objective-C instance variable, however, is
usually private, in the sense that instances of other classes can’t see it (and Swift can’t
see it). If an instance variable is to be made public, an Objective-C class will typically
implement accessor methods: a getter method and (if this instance variable is to be
publicly writable) a setter method. This is such a common thing to do that there are
naming conventions:

The getter method
A getter should have the same name as the instance variable (without an initial
underscore if the instance variable has one). Thus, if the instance variable is
named myVar (or _myVar), the getter method should be named myVar.

The setter method
A setter method’s name should start with set, followed by a capitalized version of
the instance variable’s name (without an initial underscore if the instance variable
has one). The setter should take one parameter — the new value to be assigned to
the instance variable. Thus, if the instance variable is named myVar (or _myVar),
the setter should be named setMyVar:.

This pattern — a getter method, possibly accompanied by an appropriately named
setter method — is so common that there’s a shorthand: an Objective-C class can
declare a property, using the keyword @property and a name. Here, for example, is a
line from the UIView class declaration (ignore the material in the parentheses):

@property(nonatomic) CGRect frame;

Within Objective-C, this declaration constitutes a promise that there is a getter acces‐
sor method frame returning a CGRect, along with a setter accessor method set-
Frame: that takes a CGRect parameter.

504 | Chapter 10: Cocoa Classes

When Objective-C formally declares a @property in this way, Swift sees it as a Swift
property. Thus, UIView’s frame property declaration is translated directly into a Swift
declaration of an instance property frame of type CGRect:

var frame: CGRect

An Objective-C property name, however, is mere syntactic sugar; Objective-C objects
do not really “have” properties. When you apparently set a UIView’s frame property,
you are actually calling its setFrame: setter method, and when you apparently get a
UIView’s frame property, you are actually calling its frame getter method. In
Objective-C, use of the property is optional; Objective-C code can, and often does,
call the setFrame: and frame methods directly. But you can’t do that in Swift! If an
Objective-C class has a formal @property declaration, the accessor methods are hidden
from Swift.

An Objective-C property declaration can include the word readonly in the parenthe‐
ses. This indicates that there is a getter but no setter. So, for example (ignore the other
material in the parentheses):

@property(nonatomic,readonly,strong) CALayer *layer;

Swift will reflect this restriction with {get} after the declaration, as if this were a
computed read-only property; the compiler will not permit you to assign to such a
property:

var layer: CALayer { get }

An Objective-C property and its accompanying accessor methods have a life of their
own, independent of any underlying instance variable. Although accessor methods
may literally be ways of accessing an invisible instance variable, they don’t have to be.
When you set a UIView’s frame property and the setFrame: accessor method is
called, you have no way of knowing what that method is really doing: it might be set‐
ting an instance variable called frame or _frame, but who knows? In this sense, acces‐
sors and properties are a façade, hiding the underlying implementation. This is
similar to how, within Swift, you can set a variable without knowing or caring
whether it is a stored variable or a computed variable.

Swift Accessors
Just as Objective-C properties are actually a shorthand for accessor methods, so
Objective-C treats Swift properties as a shorthand for accessor methods — even
though no such methods are formally present. If you, in Swift, declare that a class has
a property prop, Objective-C can call a prop method to get its value or a setProp:
method to set its value, even though you have not implemented such methods. Those
calls are routed to your property through implicit accessor methods.

Accessors, Properties, and Key–Value Coding | 505

In Swift, you should not write explicit accessor methods for a property; the compiler
will stop you if you attempt to do so. If you need to implement an accessor method
explicitly and formally, use a computed property. Here, for example, I’ll add to my
UIViewController subclass a computed color property with a getter and a setter:

class ViewController: UIViewController {
 @objc var color : UIColor {
 get {
 print("someone called the getter")
 return .red
 }
 set {
 print("someone called the setter")
 }
 }
}

Objective-C code can now call explicitly the implicit setColor: and color accessor
methods — and when it does, the computed property’s setter and getter methods are
in fact called:

ViewController* vc = [ViewController new];
[vc setColor:[UIColor redColor]]; // "someone called the setter"
UIColor* c = [vc color]; // "someone called the getter"

This proves that, in Objective-C’s mind, you have provided setColor: and color
accessor methods.

You can even change the Objective-C names of accessor methods! To do so, follow the
@objc attribute with the Objective-C name in parentheses. You can add it to a com‐
puted property’s setter and getter methods, or you can add it to a property itself:

@objc(hue) var color : UIColor?

Objective-C code can now call hue and setHue: accessor methods directly.

If, in speaking to Objective-C, you need to pass a selector for an accessor method,
precede the contents of the #selector expression with getter: or setter:. For
example, #selector(setter:color) is "setHue:" if we have modified our color
property’s Objective-C name with @objc(hue) (or "setColor:" if we have not).

If all you want to do is add functionality to the setter, use a setter observer. For exam‐
ple, to add functionality to the Objective-C setFrame: method in your UIView sub‐
class, you can override the frame property and write a didSet observer:

506 | Chapter 10: Cocoa Classes

class MyView: UIView {
 override var frame : CGRect {
 didSet {
 print("the frame setter was called: \(super.frame)")
 }
 }
}

Key–Value Coding
Cocoa can dynamically call an accessor method (or access an Objective-C instance
variable) based on a string name specified at runtime, through a mechanism called
key–value coding (KVC). The string name is the key; what is passed or returned is the
value. The basis for key–value coding is the NSKeyValueCoding protocol, an informal
protocol; it is actually a category injected into NSObject. A Swift class, to be suscepti‐
ble to key–value coding, must therefore be derived from NSObject.

The fundamental Cocoa key–value coding methods are value(forKey:) and set-
Value(_:forKey:). When one of these methods is called on an object, the object is
introspected. In simplified terms, first the appropriate accessor method is sought; if it
doesn’t exist, the instance variable is accessed directly. Another useful pair of methods
is dictionaryWithValues(forKeys:) and setValuesForKeys(_:), which allow you
to get and set multiple key–value pairs by way of a dictionary with a single command.

The value in key–value coding must be an Objective-C object, and is typed in Swift as
Any. When calling value(forKey:), you’ll receive an Optional wrapping an Any;
you’ll want to cast this down safely to its expected type.

A class is key–value coding compliant (or KVC compliant) on a given key if it provides
the accessor methods, or possesses the instance variable, required for access through
that key. An attempt to access a key for which a class is not key–value coding compli‐
ant will likely cause a crash at runtime. It is useful to be familiar with the message
you’ll get when such a crash occurs, so let’s cause it deliberately:

let obj = NSObject()
obj.setValue("hello", forKey:"keyName") // crash

The console says: “This class is not key value coding-compliant for the key keyName.”
The last word in that error message is the key string that caused the trouble.

What would it take for that method call not to crash? The class of the object to which
it is sent would need to have a setKeyName: setter method (or a keyName or _keyName
instance variable). In Swift, as I demonstrated in the previous section, an instance
property implies the existence of accessor methods. Thus, we can use Cocoa key–
value coding on an instance of any NSObject subclass that has a declared property,
provided the key string is the string name of that property. Let’s try it! Here is such a
class:

Accessors, Properties, and Key–Value Coding | 507

class Dog : NSObject {
 @objc var name : String = ""
}

And here’s our test:

let d = Dog()
d.setValue("Fido", forKey:"name") // no crash!
print(d.name) // "Fido" - it worked!

Alternatively, it would be possible to use Swift’s key path mechanism (Chapter 5):

d[keyPath:\Dog.name] = "Rover"

That is a completely different mechanism! A Swift KeyPath object cannot be magi‐
cally transformed into an NSString, which is what Objective-C uses for its keys in
key–value coding. Nonetheless, you might prefer to use the Swift mechanism where
possible, because Objective-C’s value(forKey:) provides no type information, so
that the result must be cast down, whereas a Swift KeyPath object is strongly typed
(because it is a generic, parameterized on the type of the corresponding property).

If you do need to use Cocoa key–value coding, you can get Swift to provide some
measure of safety by using #keyPath notation. This is similar to #selector syntax
(Chapter 2): you’re asking Swift to form a string for you, and Swift will refuse to do so
if the compiler can’t confirm that the key in question is legal. For example, earlier we
crashed by saying this:

let obj = NSObject()
obj.setValue("hello", forKey:"keyName") // crash

But if we had used #keyPath notation, our code wouldn’t have crashed — because it
wouldn’t even have compiled:

let obj = NSObject()
obj.setValue("howdy", forKey: #keyPath(NSObject.keyName)) // compile error

But this compiles, because Swift knows that Dog has a name property:

let d = Dog()
d.setValue("Fido", forKey:#keyPath(Dog.name))

Uses of Key–Value Coding
Cocoa key–value coding allows you, in effect, to decide at runtime, based on a string,
what accessor to call. In the simplest case, you’re using a string to access a dynami‐
cally specified property. That’s useful in Objective-C code; but such unfettered intro‐
spective dynamism is contrary to the spirit of Swift, and in translating my own
Objective-C code into Swift I have generally found myself accomplishing the same
ends by other means.

508 | Chapter 10: Cocoa Classes

Here’s an example. In a flashcard app, I have a class Term, representing a Latin word.
It declares many properties. Each card displays one term, with its various properties
shown in different labels. If the user taps any of three labels, I want the interface to
change from the term that’s currently showing to the next term whose value is differ‐
ent for the particular property that this label represents. The code is therefore the
same for all three labels; the only difference is which property to consider as we hunt
for the next term to be displayed. In Objective-C, by far the simplest way to express
this parallelism is through key–value coding:

NSInteger tag = g.view.tag; // the tag tells us which label was tapped
NSString* key = nil;
switch (tag) {
 case 1: key = @"lesson"; break;
 case 2: key = @"lessonSection"; break;
 case 3: key = @"lessonSectionPartFirstWord"; break;
}
// get current value of corresponding instance variable
NSString* curValue = [[self currentCardController].term valueForKey: key];

In Swift, however, it’s easy to implement the same dynamism using an array of anony‐
mous functions:

let tag = g.view!.tag - 1
let arr : [(Term) -> String] = [
 {$0.lesson}, {$0.lessonSection}, {$0.lessonSectionPartFirstWord}
]
let f = arr[tag]
let curValue = f(self.currentCardController().term)

Nevertheless, key–value coding remains useful in programming iOS, especially
because a number of built-in Cocoa classes permit you to use it in special ways. For
example:

• If you send value(forKey:) to an NSArray, it sends value(forKey:) to each of
its elements and returns a new array consisting of the results, an elegant short‐
hand. NSSet behaves similarly.

• NSDictionary implements value(forKey:) as an alternative to object(forKey:)
(useful particularly if you have an NSArray of dictionaries). Similarly,
NSMutableDictionary treats setValue(_:forKey:) as a synonym for set(_:for-
Key:), except that the first parameter can be nil, in which case remove-
Object(forKey:) is called.

• NSSortDescriptor sorts an NSArray by sending value(forKey:) to each of its
elements. This makes it easy to sort an array of dictionaries on the value of a par‐
ticular dictionary key, or an array of objects on the value of a particular property.

• NSManagedObject, used in conjunction with Core Data, is guaranteed to be key–
value coding compliant for attributes you’ve configured in the entity model.

Accessors, Properties, and Key–Value Coding | 509

Thus, it’s common to access those attributes with value(forKey:) and set-
Value(_:forKey:).

• CALayer and CAAnimation permit you to use key–value coding to define and
retrieve the values for arbitrary keys, as if they were a kind of dictionary; they are,
in effect, key–value coding compliant for every key. This is extremely helpful for
attaching extra information to an instance of one of these classes. That, in fact, is
my own most common way of using Cocoa key–value coding in Swift.

KVC and Outlets
Key–value coding lies at the heart of how outlet connections work (Chapter 7). The
name of the outlet in the nib is a string. It is key–value coding that turns the string
into a hunt for a matching property at nib-loading time.

Suppose, for example, that you have a class Dog with an @IBOutlet property master
typed as a Person, and you’ve drawn a "master" outlet from a Dog object in the nib
to a Person object in the nib. When the nib loads, the outlet name "master" is trans‐
lated through key–value coding to the accessor method name setMaster:, and your
Dog instance’s setMaster: implicit accessor method is called with the Person
instance as its parameter — thus setting the value of your Dog instance’s master
property to the Person instance (Figure 7-9).

If something goes wrong with the match between the outlet name in the nib and the
name of the property in the class, then at runtime, when the nib loads, Cocoa’s
attempt to use key–value coding to set a value in your object based on the name of
the outlet will fail, and will crash, complaining that the class is not key–value coding
compliant for the key (the outlet name). A likely way for this to happen is that you
formed the outlet correctly but then later changed the name of (or deleted) the prop‐
erty in the class (see “Misconfigured Outlets” on page 369).

Cocoa Key Paths
A Cocoa key path allows you to chain keys in a single expression. If an object is key–
value coding compliant for a certain key, and if the value of that key is itself an object
that is key–value coding compliant for another key, you can chain those keys by call‐
ing value(forKeyPath:) and setValue(_:forKeyPath:). A key path string looks
like a succession of key names joined using dot-notation. For example, valueForKey-
Path("key1.key2") effectively calls value(forKey:) on the message receiver, with
"key1" as the key, and then takes the object returned from that call and calls
value(forKey:) on that object, with "key2" as the key.

To illustrate this shorthand, imagine that our object myObject, of class MyClass, has
an instance property theData which is an array of dictionaries such that each dictio‐
nary has a name key and a description key:

510 | Chapter 10: Cocoa Classes

@objc var theData = [
 [
 "description" : "The one with glasses.",
 "name" : "Manny"
],
 [
 "description" : "Looks a little like Governor Dewey.",
 "name" : "Moe"
],
 [
 "description" : "The one without a mustache.",
 "name" : "Jack"
]
]

We can use key–value coding with a key path to drill down into that array of diction‐
aries, like this:

let arr = myObject.value(forKeyPath:"theData.name") as! [String]

The result is an array consisting of the strings "Manny", "Moe", and "Jack". If you
don’t see why, review what I said earlier about how NSArray and NSDictionary
implement value(forKey:).

Cocoa key–value coding is a powerful technology with many further ramifications;
see Apple’s Key-Value Coding Programming Guide in the documentation archive for
full information.

The Secret Life of NSObject
Because every Objective-C class inherits from NSObject, it’s worth taking some time
to explore NSObject. NSObject is constructed in a rather elaborate way:

• It defines some native class methods and instance methods having mostly to do
with the basics of instantiation and of method sending and resolution.

• It adopts the NSObject protocol. This protocol declares instance methods having
mostly to do with memory management, the relationship between an instance
and its class, and introspection. Because all the NSObject protocol methods are
required, the NSObject class implements them all. In Swift, the NSObject proto‐
col is called NSObjectProtocol, to avoid name clash.

• It implements convenience methods related to the NSCopying, NSMutable‐
Copying, and NSCoding protocols, without formally adopting those protocols.
NSObject intentionally doesn’t adopt these protocols because this would cause all
other classes to adopt them, which would be wrong. But thanks to this architec‐
ture, if a class does adopt one of these protocols, you can call the corresponding
convenience method. For example, NSObject implements the copy instance
method, so you can call copy on any instance, but you’ll crash unless the

The Secret Life of NSObject | 511

instance’s class also adopts the NSCopying protocol and implements
copy(with:).

• A large number of methods are injected into NSObject by more than two dozen
categories on NSObject, scattered among various header files. For example,
awakeFromNib (see Chapter 7) comes from the UINibLoadingAdditions category
on NSObject, declared in UINibLoading.h.

• A class object is an object. Therefore all Objective-C classes, which are objects of
type Class, inherit from NSObject. Therefore, any instance method of NSObject
can be called on a class object as a class method! For example, responds(to:) is
defined as an instance method by the NSObject protocol, but it can (therefore) be
treated also as a class method and sent to a class object.

Taken as a whole, the NSObject methods may be considered under the following
rough classification:

Creation, destruction, and memory management
Methods for creating an instance, such as alloc and copy, along with methods
for learning when something is happening in the lifetime of an object, such as
initialize and dealloc, plus methods that manage memory.

Class relationships
Methods for learning an object’s class and inheritance, such as superclass,
isKind(of:), and isMember(of:).

Object introspection and comparison
Methods for asking what would happen if an object were sent a certain message,
such as responds(to:), for representing an object as a string (description), and
for comparing objects (isEqual(_:)).

Message response
Methods for meddling with what does happen when an object is sent a certain
message, such as doesNotRecognizeSelector(_:). If you’re curious, see the
Objective-C Runtime Programming Guide in the documentation archive.

Message sending
Methods for sending a message dynamically. For example, perform(_:) takes a
selector as parameter, and sending it to an object tells that object to perform that
selector. This might seem identical to just sending that message to that object, but
what if you don’t know what message to send until runtime? Moreover, variants
on perform allow you to send a message on a specified thread, or send a message
after a certain amount of time has passed (perform(_:with:afterDelay:) and
similar).

512 | Chapter 10: Cocoa Classes

CHAPTER 11

Cocoa Events

All of your app’s executable code lies in its functions. The impetus for a function
being called must come from somewhere. One of your functions may call another,
but who will call the first function in the first place? How, ultimately, will any of your
code ever run?

After your app has completely finished launching, none of your code runs.
UIApplicationMain (see “UIApplicationMain” on page 346) just sits and loops — the
event loop — waiting for something to happen. In general, the user needs to do some‐
thing, such as touching the screen, or switching away from your app. When some‐
thing does happen, the runtime detects it and informs your app, and Cocoa can call
your code.

But Cocoa can call your code only if your code is there to be called. Your code is like a
panel of buttons, ready for Cocoa to press one. If something happens that Cocoa feels
your code needs to know about and respond to, it presses the right button — if the
right button is there. Cocoa wants to send your code a message, but your code must
have ears to hear.

The art of Cocoa programming lies in knowing what messages Cocoa would like to
send your app. You organize your code, right from the start, with those messages in
mind. Cocoa makes certain promises about how and when it will dispatch messages
to your code. These are Cocoa’s events. Your job is to know what those events are and
how they will arrive; armed with that knowledge, you can arrange for your code to
respond to them.

Reasons for Events
Broadly speaking, the reasons you might receive an event may be divided informally
into four categories. These categories are not official; I made them up. Often it isn’t

513

completely clear which of these categories an event fits into. But they are still gener‐
ally useful for visualizing how and why Cocoa interacts with your code:

User events
The user does something interactive, and an event is triggered directly. Obvious
examples are events that you get when the user taps or swipes the screen, or types
a key on the keyboard.

Lifetime events
These are events notifying you of the arrival of a stage in the life of the app, such
as the fact that the app is starting up or is about to go into the background, or of a
component of the app, such as the fact that a UIViewController’s view has just
loaded or is about to be removed from the screen.

Functional events
Cocoa is about to do something by calling its own code, and is willing to let you
subclass and override that code so as to modify its behavior. I would put into this
category UIView’s draw(_:) (your chance to have a view draw itself) and UILa‐
bel’s drawText(in:) (your chance to modify the look of a label), with which we
experimented in Chapter 10.

Query events
Cocoa turns to you to ask a question; its behavior will depend upon your answer.
For example, the way data appears in a table (a UITableView) is that Cocoa asks
you how many rows the table should have, and then, for each row, asks you for
the corresponding cell.

Subclassing
A built-in Cocoa class may define methods that Cocoa itself will call if you override
them in a subclass, so that your custom behavior, and not (merely) the default behav‐
ior, will take place.

An example I gave in Chapter 10 was UIView’s draw(_:). This is what I call a func‐
tional event. UIView’s own draw(_:) method does nothing, but by overriding it in a
UIView subclass, you dictate how a view draws itself. You don’t know exactly when
this method will be called, and you don’t care; when it is, you draw, and this guaran‐
tees that the view will always appear the way you want it to.

Built-in UIView subclasses may have other functional event methods you’ll want to
customize through subclassing. Typically this will be in order to change the way the
view is drawn, without taking command of the entire drawing procedure yourself. In
Chapter 10 I gave an example involving UILabel and its drawText(in:). A similar
case is UISlider, which lets you customize the position and size of the slider’s “thumb”
by overriding thumbRect(forBounds:trackRect:value:).

514 | Chapter 11: Cocoa Events

UIViewController is a class meant for subclassing. Of the methods listed in the
UIViewController class documentation, just about all are methods you might have
reason to override. If you create a UIViewController subclass in Xcode, you’ll see that
the template already includes a couple of method overrides to get you started. For
example, viewDidLoad is called to let you know that your view controller has
obtained its main view (its view), so that you can perform initializations; it’s an obvi‐
ous example of a lifetime event. And UIViewController has many other lifetime
events that you can and will override in order to get fine control over what happens
when. For example, viewWillAppear means that your view controller’s view is about
to be placed into the interface; viewDidAppear means that your view controller’s view
has been placed into the interface; viewDidLayoutSubviews means that your view
controller’s view and its subviews have been sized and positioned; and so on.

What you override in order to receive an event may be the getter of a computed prop‐
erty, rather than a method. A case in point is UIViewController’s supported-
InterfaceOrientations. This is a property that you’ll override as a computed
variable, to receive what I call a query event. Your job is to return a bitmask (“Option
sets” on page 250) telling Cocoa what orientations your view can appear in at this
moment — whenever that may be. You trust Cocoa to call this method at the appro‐
priate moments, so that if the user rotates the device, your app’s interface will or won’t
be rotated to compensate, depending on what value you return.

When you’re looking for events that you can receive through subclassing, be sure to
look upward though the inheritance hierarchy. For example, if you’re wondering how
to be notified when your custom UILabel subclass is embedded into another view,
you won’t find the answer in the UILabel class documentation; a UILabel receives the
appropriate event by virtue of being a UIView. In the UIView class documentation,
you’ll learn that you can override didMoveToSuperview to be informed when this
happens. By the same token, look upward through adopted protocols as well. If you’re
wondering how to be notified when your view controller’s view is about to undergo
app rotation, you won’t find out by looking in the UIViewController class documen‐
tation; a UIViewController receives the appropriate event by virtue of adopting the
UIContentContainer protocol. In the UIContentContainer protocol documentation,
you’ll learn that you can override viewWillTransition(to:with:).

Nevertheless, as I said in Chapter 10, subclassing and overriding is far from being the
most important or common way of arranging to receive events. Aside from UIView‐
Controller, it is hard to think of any built-in Cocoa class that you will regularly sub‐
class for this purpose. The majority of your communication from Cocoa will be
through other means.

Subclassing | 515

Notifications
Cocoa provides your app with a single NotificationCenter instance (Objective-C
NSNotificationCenter), available as NotificationCenter.default. This instance, the
notification center, is the basis of a mechanism for sending messages called notifica‐
tions. A notification is a Notification instance (Objective-C NSNotification). The idea
is that any object can be registered with the notification center to receive certain noti‐
fications. Another object can hand the notification center a notification to send out;
this is called posting the notification. The notification center will then send that notifi‐
cation to all objects that are registered to receive it.

Cocoa itself posts notifications through the notification center, and your code can
register to receive them. Thus, notifications are a way of receiving events from Cocoa.
You’ll find a separate Notifications section in the documentation for a class that pro‐
vides them.

You may also want to post notifications yourself, as a way of communicating with
your own code. The notification mechanism is often described as a dispatching or
broadcasting mechanism, and with good reason. It lets an object send a message
without knowing or caring what object or how many objects receive it. This relieves
your app’s architecture from the formal responsibility of somehow hooking up
instances just so a message can pass from one to the other (which can sometimes be
quite tricky or onerous, as discussed in Chapter 13). When objects are conceptually
“distant” from one another, notifications can be a fairly lightweight way of permitting
one to message the other.

A Notification instance has three pieces of information associated with it, which can
be retrieved through properties:

name

A string which identifies the notification’s meaning. This string is typed as a Noti‐
fication.Name, a struct adopting RawRepresentable with a String rawValue.
Built-in Cocoa notification names are vended as static/class Notification.Name
properties, either of Notification.Name itself or (new in Swift 4.2) of the class that
sends them. In this way, notification name constants are namespaced.

object

An instance associated with the notification; typically, the instance that posted it.

userInfo

An Optional dictionary; if not nil, it contains additional information associated
with the notification. What information it will contain, and under what keys,
depends on the particular notification; you have to consult the documentation.
For example, the documentation tells us that UIApplication.didChangeStatus-
BarOrientationNotification includes a userInfo dictionary with a key

516 | Chapter 11: Cocoa Events

UIApplication.statusBarOrientationUserInfoKey whose value is the status
bar’s previous orientation. When you post a notification yourself, you can put
anything you like into the userInfo for the notification’s recipient(s) to retrieve.

Receiving a Notification
To register to receive a notification, you send one of two messages to the notification
center. One is addObserver(_:selector:name:object:). The parameters are as
follows:

observer:

The first parameter is the instance to which the notification is to be sent. This
will typically be self; it would be quite unusual for one instance to register a dif‐
ferent instance as the receiver of a notification.

selector:

The message to be sent to the observer instance when the notification occurs.
The designated method should take one parameter, which will be the Notification
instance. The selector must specify correctly a method that is exposed to
Objective-C; Swift’s #selector syntax will help you with that (see Chapter 2).

name:

The name of the notification you’d like to receive. If this is nil, you’re asking to
receive all notifications associated with the object designated in the object:
parameter.

object:

The object of the notification you’re interested in, which will usually be the
object that posted it. If this is nil, you’re asking to receive all notifications with
the name designated in the name: parameter. (If both the name: and object:
parameters are nil, you’re asking to receive all notifications!)

For example, in one of my apps I want to change the interface whenever the device’s
built-in music player starts playing a different song. The API for the music player
belongs to the MPMusicPlayerController class; this class provides a notification to tell
me when the music player changes what song is being played, listed under Notifica‐
tions in the MPMusicPlayerController class documentation as MPMusicPlayer-
ControllerNowPlayingItemDidChange.

It turns out, looking at the documentation, that this notification won’t be posted
at all unless I first call MPMusicPlayerController’s beginGeneratingPlayback-
Notifications instance method. This architecture is not uncommon; Cocoa saves
itself some time and effort by not sending out certain notifications unless they are
switched on, as it were. So my first job is to get an instance of MPMusicPlayer‐
Controller and call this method:

Notifications | 517

let mp = MPMusicPlayerController.systemMusicPlayer
mp.beginGeneratingPlaybackNotifications()

Now I register myself to receive the desired playback notification:

NotificationCenter.default.addObserver(self,
 selector: #selector(nowPlayingItemChanged),
 name: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil)

As a result, whenever an MPMusicPlayerControllerNowPlayingItemDidChange noti‐
fication is posted, my nowPlayingItemChanged method will be called. Note that this
method must be marked @objc so that Objective-C can see it (the Swift compiler will
help out by ensuring this when you use #selector syntax):

@objc func nowPlayingItemChanged (_ n:Notification) {
 self.updateNowPlayingItem()
 // ... and so on ...
}

Heavy use of addObserver(_:selector:name:object:) means that your code ends
up peppered with methods that exist solely in order to be called by the notification
center. There is nothing about these methods that tells you what they are for — you
may want to use explicit comments in order to remind yourself — and the methods
are separate from the registration call, which can make your code rather confusing.

This problem is solved by using the other way of registering to receive a notification
— by calling addObserver(forName:object:queue:using:). It returns a value,
whose purpose I’ll explain in a moment. The queue: will usually be nil; a non-nil
queue: is for background threading. The name: and object: parameters are just like
those of addObserver(_:selector:name:object:). Instead of an observer and a
selector, however, you provide a function consisting of the actual code to be executed
when the notification arrives. This function should take one parameter — the Notifi‐
cation itself. You can use an anonymous function so that your response to the notifi‐
cation becomes part of the registration:

let ob = NotificationCenter.default.addObserver(
 forName: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil, queue: nil) { _ in
 self.updateNowPlayingItem()
 // ... and so on ...
 }

But using addObserver(forName:...) correctly is a little more complicated than
that, because you still need to unregister the observer, as I’ll discuss in the next
section.

518 | Chapter 11: Cocoa Events

You can introspect the notification center while paused in the debugger; type po
NotificationCenter.default to see a list of registered notifications, with the
name, object, recipient, and options for each. The object and recipient are listed
as memory addresses, but you can learn more from such an address by typing
expr -l objc -O -- followed by the address.

Unregistering
An object that you register as a recipient of a notification needs eventually to be
unregistered so that the notification center will stop sending messages to it. This
might be merely because the registered object no longer needs to hear about this noti‐
fication. But there is also a more important reason: the registered object may eventu‐
ally go out of existence.

To unregister an object as a recipient of notifications, call the notification center’s
removeObserver(_:) method. Alternatively, you can unregister an object for just a
specific set of notifications with removeObserver(_:name:object:). The object
passed as the first argument is the object that is no longer to receive notifications.
What object that is depends on how you registered it in the first place:

You called addObserver(_:selector:name:object:)
You supplied an observer originally, as the first argument; that is the observer you
will now unregister. This will typically be self.

You called addObserver(forName:object:queue:using:)
The call returned an observer token object typed as an NSObjectProtocol (its real
class and nature are undocumented); that is the observer you will now unregister.

In the old days, if you failed to unregister an object as a notification recipient and that
object went out of existence, your app would crash the next time the notification was
sent — because the runtime was trying to send a message to an object that was now
missing in action. But in iOS 9, Apple introduced a safety check, so that if the notifi‐
cation center tries to send a message to a nonexistent object, there is no crash, and the
notification center unregisters the object for you.

Thus, if you called addObserver(_:selector:name:object:), there may be no need
to unregister the object passed as the first argument. If that object goes out of exis‐
tence, and if the notification is posted subsequently, there won’t be any crash.

On the other hand, if you called addObserver(forName:object:queue:using:), it
remains important to unregister the observer when you no longer need it, because
otherwise the notification center keeps it alive and can continue to send notifications
to it, so that the attached function can still be called. The observer is the object
returned from the call to addObserver(forName:object:queue:using:); so in order
to unregister, you need to have kept a reference to that object.

Notifications | 519

If you’re calling addObserver(forName:object:queue:using:) multiple times from
the same class, you’re going to end up receiving from the notification center multiple
observer tokens, which you need to preserve so that you can unregister all of them
later. If your plan is to unregister everything at once, one way to handle this situation
is through an instance property that is a mutable collection. My favored approach is a
Set property:

var observers = Set<NSObject>()

Each time I register for a notification by calling addObserver(for-

Name:object:queue:using:), I capture the result and add it to the set:

let ob = NotificationCenter.default.addObserver(
 forName: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil, queue: nil) { _ in
 self.updateNowPlayingItem()
 // ... and so on ...
 }
self.observers.insert(ob as! NSObject)

When it’s time to unregister, I enumerate the set to unregister its observers, and
empty it:

for ob in self.observers {
 NotificationCenter.default.removeObserver(ob)
}
self.observers.removeAll()

Use of addObserver(forName:...) can also involve you in some memory man‐
agement complications that I’ll talk about in Chapter 12.

Posting a Notification
Although you’ll be interested mostly in receiving notifications from Cocoa, you can,
as I mentioned earlier, take advantage of the notification mechanism as a way of com‐
municating between your own objects. One reason for doing this might be that two
objects are conceptually distant or independent from one another. You should proba‐
bly avoid using notifications merely to compensate for a failure to devise proper lines
of communication between objects, but they are certainly appropriate in some cir‐
cumstances. (I’ll raise this point again in Chapter 13.)

To use notifications in this way, your objects must play both roles in the communica‐
tion chain. One of your objects (or more than one) will register to receive a notifica‐
tion, identified by name or object or both, as I’ve already described. Another of your
objects will post a notification, identified in the same way. The notification center will
then pass the message along from the poster to the registered recipient(s).

520 | Chapter 11: Cocoa Events

To post a notification, send to the notification center the message
post(name:object:userInfo:). You are defining the name: yourself, so you’ll have
to coerce a string into a Notification.Name. There are two main places to do this:

In the name: argument
You perform the coercion directly in the method call. This is an easy approach,
but it’s error-prone: you’ll need to perform the same coercion twice, both to post
the notification and to register to receive it, and the repeated string literal is an
invitation to make a typing mistake and have things mysteriously go wrong.

As a globally available constant
You define a namespaced constant, and you use that constant both when posting
the notification and when registering for it. This approach localizes the coercion
in a single place; it’s a little more work than the first approach, but it’s the correct
approach, and you should use it.

For example, one of my apps is a simple card game. The game needs to know when a
card is tapped. But a card knows nothing about the game; when it is tapped, it simply
emits a virtual shriek by posting a notification. I’ve defined my notification name by
extending my Card class:

extension Card {
 static let tappedNotification = Notification.Name("cardTapped")
}

When a card is tapped, it responds like this:

NotificationCenter.default.post(name: Card.tappedNotification, object: self)

The game object has registered for Card.tappedNotification, so it hears about this
and retrieves the notification’s object; now it knows what card was tapped and can
proceed appropriately.

Timer
A Timer (Objective-C NSTimer) is not, strictly speaking, a notification; but it behaves
very similarly. It is an object that gives off a signal (fires) after the lapse of a certain
time interval. The signal is a message to one of your instances. Thus you can arrange
to be notified when a certain time has elapsed. The timing is not perfectly accurate,
but it’s pretty good.

Timer management is not exactly tricky, but it is a little unusual. A timer that is
actively watching the clock is said to be scheduled. A timer may fire once, or it may be
a repeating timer. To make a timer go out of existence, it must be invalidated. A timer
that is set to fire once is invalidated automatically after it fires; a repeating timer
repeats until you invalidate it by sending it the invalidate message. An invalidated

Notifications | 521

timer should be regarded as off-limits: you cannot revive it or use it for anything fur‐
ther, and you should probably not send any messages to it.

For example, one of my apps is a game with a score; I want to penalize the user, by
diminishing the score, for every ten seconds that elapses after each move without the
user making a further move. So each time the user makes a move, I create and sched‐
ule a repeating timer whose time interval is ten seconds (after invalidating any exist‐
ing timer); in the method that the timer calls, I diminish the score.

The straightforward way to create a timer is with one of two scheduledTimer class
methods. These methods both create the timer and schedule it, so that the timer
begins watching the clock immediately:

scheduledTimer(timeInterval:target:selector:userInfo:repeats:)

The target: and selector: determine what message will be sent to what object
when the timer fires; the method in question should take one parameter, which
will be a reference to the timer. The userInfo: is just like the userInfo: of a
notification.

scheduledTimer(withTimeInterval:repeats:block:)

You provide a function to be called when the timer fires; the function should take
one parameter, which will be a reference to the timer.

A repeating Timer is often maintained as an instance property, so that you can inva‐
lidate it later on. But be careful! There is a temptation to call scheduledTimer(time-
Interval:target:selector:userInfo:repeats:) directly as the initializer in your
declaration of a Timer instance property. If the target is self, that won’t work,
because self doesn’t exist yet at the time you’re initializing the instance property (in
fact, self in this context means the class). Instead, declare the property as an
Optional wrapping a Timer, and create and schedule the Timer in an instance method
such as viewDidLoad.

A Timer has a tolerance property, which is a time interval signifying how much
extra time you’re willing to grant between when the timer is scheduled to fire and
when it really does fire. The documentation suggests that you can improve device bat‐
tery life and app responsiveness by supplying a value of at least 10 percent of the time-
Interval.

Timers have some memory management implications that I’ll be discussing in
Chapter 12.

522 | Chapter 11: Cocoa Events

Delegation
Delegation is an object-oriented design pattern, a relationship between two objects, in
which a primary object’s behavior is customized or assisted by a secondary object.
The secondary object is the primary object’s delegate. No subclassing is involved, and
indeed the primary object is agnostic about the delegate’s class.

As implemented by Cocoa, here’s how delegation works. A built-in Cocoa class has an
instance property, usually called delegate (it will certainly have delegate in its
name). For some instance of that Cocoa class, you set the value of this property to an
instance of one of your classes. At certain moments in its activity, the Cocoa class
promises to turn to its delegate for instructions by sending it a certain message: if the
Cocoa instance finds that its delegate is not nil, and that its delegate is prepared to
receive that message, the Cocoa instance sends the message to the delegate, thus giv‐
ing your class, functioning as the delegate, a chance to determine the Cocoa instance’s
behavior.

Delegation is one of Cocoa’s main uses of protocols (Chapter 10). In the old days, del‐
egate methods were listed in the Cocoa class’s documentation, and their names were
made known to the compiler through an informal protocol (a category on NSObject).
Nowadays, a class’s delegate methods are usually listed in a genuine protocol with its
own documentation. There are over 70 Cocoa delegate protocols, showing how heav‐
ily Cocoa relies on delegation. Most delegate methods are optional, but in a few cases
you’ll discover some that are required.

Cocoa Delegation
To customize a Cocoa instance’s behavior through delegation, you start with one of
your classes, which adopts the relevant delegate protocol. When the app runs, you set
the Cocoa instance’s delegate property (or whatever its name is) to an instance of
your class. You might do this in code; alternatively, you might do it in a nib, by con‐
necting an object’s delegate outlet (or whatever it’s called) to an appropriate object
that is to serve as delegate. Your delegate class will probably do other things besides
serving as this instance’s delegate. Indeed, one of the nice things about delegation is
that it leaves you free to slot delegate code into your class architecture however you
like; the delegate type is a protocol, so the actual delegate can be an instance of any
class.

In this simple example, I want to ensure that my app’s root view controller, a
UINavigationController, doesn’t permit the app to rotate — the app should appear
only in portrait orientation when this view controller is in charge. But UINavigation‐
Controller isn’t my class; it belongs to Cocoa. My own class is a different view control‐
ler, a UIViewController subclass, which acts as the UINavigationController’s child.
How can the child tell the parent how to rotate? Well, UINavigationController has a

Delegation | 523

delegate property, typed as UINavigationControllerDelegate (a protocol). It prom‐
ises to send this delegate the navigationControllerSupportedInterface-

Orientations(_:) message when it needs to know how to rotate. So my view
controller, in response to a very early lifetime event, sets itself as the UINavigation‐
Controller’s delegate. It also implements the navigationControllerSupported-
InterfaceOrientations(_:) method. Presto, the problem is solved:

class ViewController : UIViewController, UINavigationControllerDelegate {
 override func viewDidLoad() {
 super.viewDidLoad()
 self.navigationController?.delegate = self
 }
 func navigationControllerSupportedInterfaceOrientations(
 _ nav: UINavigationController) -> UIInterfaceOrientationMask {
 return .portrait
 }
}

An app’s shared application instance, UIApplication.shared, has a delegate that
serves such an important role in the life of the app that the Xcode app templates auto‐
matically supply one — a class called AppDelegate. I described in Chapter 6 how an
app gets started by calling UIApplicationMain, which instantiates the AppDelegate
class and makes that instance the delegate of the shared application instance (which it
has also created). As I pointed out in Chapter 10, AppDelegate formally adopts the
UIApplicationDelegate protocol, signifying that it is ready to serve in this role;
responds(to:) is then sent to the app delegate to see what UIApplicationDelegate
protocol methods it implements. Thereafter, the application delegate instance is sent
messages letting it know of major events in the lifetime of the app. That is why the
UIApplicationDelegate protocol method application(_:didFinishLaunchingWith-
Options:) is so important; it is one of the earliest opportunities for your code to run.

The UIApplication delegate methods are also provided as notifications. This lets
an instance other than the app delegate hear conveniently about application life‐
time events, by registering for them. A few other classes provide duplicate events
similarly; for example, UITableView’s tableView(_:didSelectRowAt:) delegate
method is matched by UITableView.selectionDidChangeNotification.

By convention, many Cocoa delegate method names contain the modal verbs should,
will, or did. A will message is sent to the delegate just before something happens; a
did message is sent to the delegate just after something happens. A should method is
special: it returns a Bool, and you are expected to respond with true to permit some‐
thing or false to prevent it. The documentation tells you what the default response
is; you don’t have to implement a should method if the default response is always
acceptable.

524 | Chapter 11: Cocoa Events

In many cases, a property will control some overall behavior, while a delegate method
lets you modify that behavior based on circumstances at runtime. For example,
whether the user can tap the status bar to make a scroll view scroll quickly to the top
is governed by the scroll view’s scrollsToTop property; but even if this property’s
value is true, you can prevent this behavior for a particular tap by returning false
from the scroll view delegate’s scrollViewShouldScrollToTop(_:).

When you’re searching the documentation for how you can be notified of a certain
event, be sure to consult the corresponding delegate protocol, if there is one. For
example, you’d like to know when the user taps in a UITextField to start editing it.
You won’t find anything relevant in the UITextField class documentation; what you’re
after is textFieldDidBeginEditing(_:) in the UITextFieldDelegate protocol.

Implementing Delegation
The Cocoa pattern of a delegate whose responsibilities are described by a protocol is
one that you will want to imitate in your own code. Setting up this pattern takes some
practice, and can be a little time-consuming, but it is often the correct approach,
because it appropriately assigns knowledge and responsibility to the various objects
involved.

Consider an actual case. In one of my apps I present a view controller, a UIView‐
Controller subclass called ColorPickerController, whose view contains three sliders
that the user can move to choose a color. When the user taps Done or Cancel, the
view should be dismissed; but first, the code that presented this view needs to hear
about what color the user chose. So I need to send a message from the ColorPicker‐
Controller instance back to the instance that presented it.

Here is the declaration for the message that I want the ColorPickerController to send
before it goes out of existence:

func colorPicker(_ picker:ColorPickerController,
 didSetColorNamed theName:String?,
 to theColor:UIColor?)

The question is: where and how should this method be declared?

Now, it happens that in my app I know the class of the instance that will in fact
present the ColorPickerController: it is a SettingsController. So I could simply declare
this method in SettingsController and stop. But that would mean that the Color‐
PickerController, in order to send this message to the SettingsController, must know
that the instance that presented it is a SettingsController. Surely it is a mere contingent
fact that the instance being sent this message is a SettingsController; it should be
open to any class to present and dismiss a ColorPickerController, and thus to be eligi‐
ble to receive this message.

Delegation | 525

Therefore we want ColorPickerController itself to declare the method that it itself is
going to call; and we want it to send the message blindly to some receiver, without
regard to the class of that receiver. That’s what a protocol is for! The solution, then, is
for ColorPickerController to define a protocol, with this method as part of that pro‐
tocol, and for the class that presents a ColorPickerController to conform to that pro‐
tocol. ColorPickerController also has an appropriately typed delegate property; this
provides the channel of communication, and tells the compiler that sending this mes‐
sage is legal:

protocol ColorPickerDelegate : class {
 // color == nil on cancel
 func colorPicker(_ picker:ColorPickerController,
 didSetColorNamed theName:String?,
 to theColor:UIColor?)
}
class ColorPickerController : UIViewController {
 weak var delegate: ColorPickerDelegate?
 // ...
}

(For the weak attribute and the class designation, see Chapter 5.) When my Settings‐
Controller instance creates and configures a ColorPickerController instance, it also
sets itself as that ColorPickerController’s delegate — which it can do, because it
adopts the protocol:

extension SettingsController : ColorPickerDelegate {
 func showColorPicker() {
 let colorName = // ...
 let c = // ...
 let cpc = ColorPickerController(colorName:colorName, color:c)
 cpc.delegate = self
 self.present(cpc, animated: true)
 }
 func colorPicker(_ picker:ColorPickerController,
 didSetColorNamed theName:String?,
 to theColor:UIColor?) {
 // ...
 }
}

Now, when the user picks a color, the ColorPickerController knows to whom it
should send colorPicker(_:didSetColorNamed:to:) — namely, its delegate! And
the compiler allows this, because the delegate has adopted the ColorPickerDelegate
protocol:

@IBAction func dismissColorPicker(_ sender : Any?) { // user tapped Done
 let c : UIColor? = self.color
 self.delegate?.colorPicker(self, didSetColorNamed: self.colorName, to: c)
}

526 | Chapter 11: Cocoa Events

Data Sources
A data source is like a delegate, except that its methods supply the data for another
object to display. The chief Cocoa classes with data sources are UITableView, UICol‐
lectionView, UIPickerView, and UIPageViewController. In each case, the data source
must formally adopt a data source protocol with required methods.

It comes as a surprise to some beginners that a data source is necessary at all. Why
isn’t a table’s data just a property of the table? The reason is that such an architecture
would violate generality. Use of a data source separates the object that displays the
data from the object that manages the data, and leaves the latter free to store and
obtain that data however it likes (see on model–view–controller in Chapter 13). The
only requirement is that the data source must be able to supply information quickly,
because it will be asked for it in real time when the data needs displaying.

Another surprise is that the data source is different from the delegate. But this again
is only for generality; it’s an option, not a requirement. There is no reason why the
data source and the delegate should not be the same object, and most of the time they
probably will be. Indeed, in most cases, data source methods and delegate methods
will work closely together; you won’t even be conscious of the distinction.

In this example from one of my apps, I implement a UIPickerView that allows the
user to configure a game by saying how many stages it should consist of (“1 Stage,” “2
Stages,” and so on). The first two methods are UIPickerView data source methods;
the third method is a UIPickerView delegate method. It takes all three methods to
supply the picker view’s content:

extension NewGameController: UIPickerViewDataSource, UIPickerViewDelegate {
 func numberOfComponents(in pickerView: UIPickerView) -> Int {
 return 1
 }
 func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {
 return 9
 }
 func pickerView(_ pickerView: UIPickerView,
 titleForRow row: Int, forComponent component: Int) -> String? {
 return "\(row+1) Stage" + (row > 0 ? "s" : "")
 }
}

Actions
An action is a message emitted by an instance of a UIControl subclass (a control)
reporting a significant user event taking place in that control. The UIControl sub‐
classes are all simple interface objects that the user can interact with directly, such as a
button (UIButton) or a segmented control (UISegmentedControl).

Data Sources | 527

The significant user events (control events) are listed under UIControl.Event in the
Constants section of the UIControl class documentation. Different controls imple‐
ment different control events: for example, a segmented control’s Value Changed
event signifies that the user has tapped to select a different segment, but a button’s
Touch Up Inside event signifies that the user has tapped the button. Of itself, a con‐
trol event has no external effect; the control responds visually (for example, a tapped
button looks tapped), but it doesn’t automatically share the information that the event
has taken place. If you want to know when a control event takes place, so that you can
respond to it in your code, you must arrange for that control event to trigger an action
message.

Here’s how it works. A control maintains an internal dispatch table: for each control
event, there can be any number of target–action pairs, in each of which the action is a
message selector (the name of a method) and the target is the object to which that
message is to be sent. When a control event occurs, the control consults its dispatch
table, finds all the target–action pairs associated with that control event, and sends
each action message to the corresponding target (Figure 11-1).

There are two ways to manipulate a control’s action dispatch table:

Action connection
You can configure an action connection in a nib. I described in Chapter 7 how to
do this, but I didn’t completely explain the underlying mechanism. Now all is
revealed: an action connection formed in the nib editor is a visual way of config‐
uring a control’s action dispatch table.

Code
You can use code to operate directly on the control’s action dispatch table. The
key method here is the UIControl instance method addTarget(_:action:for:),
where the target: is an object, the action: is a selector, and the for: parameter
is a UIControl.Event bitmask (“Option sets” on page 250). Unlike a notification
center, a control also has methods for introspecting the dispatch table.

Recall the example of a control and its action from Chapter 7. We have a button-
Pressed(_:) method:

@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: "Howdy!", message: "You tapped me!", preferredStyle: .alert)
 alert.addAction(
 UIAlertAction(title: "OK", style: .cancel))
 self.present(alert, animated: true)
}

This sort of method is an action handler. Its purpose is to be called when the user taps
a certain button in the interface. In Chapter 7, we arranged for that to happen by set‐
ting up an action connection in the nib: we connected the button’s Touch Up Inside

528 | Chapter 11: Cocoa Events

Figure 11-1. The target–action architecture

event to the ViewController buttonPressed(_:) method. In reality, we were forming
a target–action pair and adding that target–action pair to the button’s dispatch table
for the Touch Up Inside control event.

Instead of making that arrangement in the nib, we could have done the same thing in
code. Suppose we had never drawn that action connection. And suppose that, instead,
we have an outlet connection from the view controller to the button, called
self.button. Then the view controller, after the nib loads, can configure the button’s
dispatch table like this:

self.button.addTarget(self,
 action: #selector(buttonPressed),
 for: .touchUpInside)

Actions | 529

A control event can have multiple target–action pairs. You might configure it this
way intentionally, but it is also possible to do so accidentally. Unintentionally giv‐
ing a control event a target–action pair without removing its existing target-
action pair is an easy mistake to make, and can cause some very mysterious
behavior. For example, if we had formed an action connection in the nib and
configured the dispatch table in code, a tap on the button would cause button-
Pressed(_:) to be called twice.

The signature for the action selector can be in any of three forms:

• The fullest form takes two parameters:
▪ The control.
▪ The UIEvent that generated the control event.

• A shorter form, the one most commonly used, omits the second parameter.
buttonPressed(_:) is an example; it takes one parameter. When button-
Pressed(_:) is called through an action message emanating from the button, its
parameter will be a reference to the button.

• There is a still shorter form that omits both parameters.
What is the UIEvent, and what is it for? Well, a touch event is generated whenever the
user does something with a finger (sets it down on the screen, moves it, raises it from
the screen). UIEvents are the lowest-level objects charged with communication of
touch events to your app. A UIEvent is basically a timestamp (a Double) along with a
collection (Set) of touch events (UITouch). The action mechanism deliberately
shields you from the complexities of touch events, but by electing to receive the
UIEvent, you can still deal with those complexities if you want to.

Curiously, none of the action selector parameters provide any way to learn which
control event triggered the current action selector call! Thus, for example, to distin‐
guish a Touch Up Inside control event from a Touch Up Outside control event, their
corresponding target–action pairs must specify two different action handlers; if you
dispatch them to the same action handler, that handler cannot discover which control
event occurred.

The Responder Chain
A responder is an object that knows how to receive UIEvents directly (see the previous
section). It knows this because it is an instance of UIResponder or a UIResponder
subclass. If you examine the Cocoa class hierarchy, you’ll find that just about any class
that has anything to do with display on the screen is a responder. A UIView is a res‐
ponder. A UIWindow is a responder. A UIViewController is a responder. Even a
UIApplication is a responder. Even the app delegate is a responder!

A UIResponder has four low-level methods for receiving touch-related UIEvents:

530 | Chapter 11: Cocoa Events

• touchesBegan(_:with:)

• touchesMoved(_:with:)

• touchesEnded(_:with:)

• touchesCancelled(_:with:)

These methods — the touch methods — are called to notify a responder that a touch
event has occurred: the user has placed, moved, or lifted a finger from the screen. No
matter how your code ultimately hears about a user-related touch event — indeed,
even if your code never hears about a touch event (because Cocoa reacted in some
automatic way to the touch, without your code’s intervention) — the touch was ini‐
tially communicated to a responder through one of the touch methods.

The mechanism for this communication starts by deciding which responder the user
touched. The UIView methods hitTest(_:with:) and point(inside:with:) are
called until the correct view (the hit-test view) is located. Then UIApplication’s send-
Event(_:) method is called, which calls UIWindow’s sendEvent(_:), which calls the
correct touch method of the hit-test view (a responder).

The responders in your app participate in a responder chain, which essentially links
them up through the view hierarchy. A UIView can sit inside another UIView, its
superview, and so on until we reach the app’s UIWindow (a UIView that has no
superview). The responder chain, from bottom to top, looks roughly like this:

1. The UIView that we start with (here, the hit-test view).
2. If this UIView is a UIViewController’s view, that UIViewController.
3. The UIView’s superview.
4. Go back to step 2 and repeat! Keep repeating until we reach…
5. The UIWindow.
6. The UIApplication.
7. The UIApplication’s delegate.

The next responder up the responder chain is a responder’s next responder, which is
obtained from a responder through its next property (which returns an Optional
wrapping a UIResponder). Thus the responder chain can be walked upward from any
responder to the top of the chain.

Deferring Responsibility
The responder chain can be used to let a responder defer responsibility for handling a
touch event. If a responder receives a touch event and can’t handle it, the event can be
passed up the responder chain to look for a responder that can handle it. This can
happen in two main ways:

The Responder Chain | 531

• The responder doesn’t implement the relevant touch method.
• The responder implements the relevant touch method to call super.

For example, a plain vanilla UIView has no native implementation of the touch meth‐
ods. Thus, by default, even if a UIView is the hit-test view, the touch event effectively
falls through the UIView and travels up the responder chain, looking for someone to
respond to it. In certain situations, it might make sense for you to defer responsibility
for this touch to the main background view, or even to the UIViewController that
controls it.

Nil-Targeted Actions
A nil-targeted action is a UIControl target–action pair in which the target is nil.
There is no designated target object, so the following rule is used: starting with the
hit-test view (the view with which the user is interacting), Cocoa walks up the res‐
ponder chain, one responder at a time, looking for an object that can respond to the
action message:

• If a responder is found that handles this message, that method is called on that
responder, and that’s the end.

• If we get all the way to the top of the responder chain without finding a res‐
ponder to handle this message, the message goes unhandled (with no penalty) —
in other words, nothing happens.

Here, for example, is a UIButton subclass that configures itself to call a nil-targeted
action when tapped:

override func awakeFromNib() {
 super.awakeFromNib()
 class Dummy {
 @objc func buttonPressed(_:Any) {}
 }
 self.addTarget(nil, // nil-targeted
 action: #selector(Dummy.buttonPressed),
 for: .touchUpInside)
}

That’s a nil-targeted action. So what happens when the user taps the button? First,
Cocoa looks in the UIButton itself to see whether it responds to buttonPressed. If
not, it looks in the UIView that is its superview. And so on, up the responder chain.
For example, there is surely a view controller that owns the view that contains the
button. If the class of this view controller is the only class that does in fact implement
buttonPressed, tapping the button will cause the view controller’s buttonPressed to
be called — even though the view controller is not the target!

It’s obvious how to construct a nil-targeted action in code: you set up a target–action
pair where the target is nil, as in the preceding example. But how do you construct a

532 | Chapter 11: Cocoa Events

nil-targeted action in a nib? The answer is: you form a connection to the First Res‐
ponder proxy object (in the dock). That’s what the First Responder proxy object is
for! The First Responder isn’t a real object with a known class, so before you can con‐
nect an action to it, you have to define the action message within the First Responder
proxy object, like this:

1. Select the First Responder proxy in the nib, and switch to the Attributes
inspector.

2. You’ll see a table (probably empty) of user-defined nil-targeted First Responder
actions. Click the Plus button and give the new action a name; it must take a sin‐
gle parameter (so that its name will end with a colon).

3. Now you can Control-drag from a control, such as a UIButton, to the First Res‐
ponder proxy to specify a nil-targeted action with the name you specified.

Your buttonPressed declaration must be marked @objc (or @IBAction). Other‐
wise, Cocoa won’t be able to find it as it walks up the responder chain.

Key–Value Observing
Key–value observing, or KVO, is a notification mechanism that doesn’t use the notifi‐
cation center. Perhaps a better architectural analogy would be with the target–action
mechanism; KVO is a target–action mechanism that works between any two objects.
KVO allows one object to be registered directly with another object so as to be notified
when a value in that other object changes. Moreover, the observed object doesn’t
actually have to do anything. When the value in the observed object changes, the reg‐
istered object — the observer — is automatically notified.

When you use KVO with Cocoa, the observer will be your object; you will write the
code that will respond when the observer is notified of the change for which it has
registered. But the observed object, the one with which you register to hear about
changes, needn’t be your object at all; in fact, it often will not be. Many Cocoa objects
promise to behave in a KVO compliant way. Certain frameworks, such as the
AVFoundation framework, don’t implement delegation or notifications very much;
instead, they expect you to use KVO to hear about what they are doing. Thus, KVO
notifications can be an important form of Cocoa event.

The process of using KVO may be broken down into stages:

Registration
The object that desires to hear about future changes in a value belonging to the
observed object must register with that observed object.

Key–Value Observing | 533

Change
A change takes place in the value belonging to the observed object, and it must
take place in a special way — a KVO compliant way. Typically, this means using a
key–value coding compliant accessor to make the change. Setting a property
passes through a key–value coding compliant accessor.

Notification
The observer is automatically notified that the value in the observed object has
changed.

Unregistration
The observer eventually unregisters to prevent the arrival of further notifications
about the observed value of the observed object.

Registration and Notification
The Cocoa API for registration and notification works like this: you call add-
Observer(_:forKeyPath:options:context:) on the object whose property you
want to observe; the observer’s observeValue(forKeyPath:of:change:context:) is
then called for every change for which this observer was registered, constituting a
nasty bottleneck, especially if an object performs multiple registrations. To avoid this
bottleneck, Swift provides an alternative API for key–value observing, and I’m going
to assume that you’ll want to use this rather than the Cocoa API.

Here’s how the Swift key–value observing API works. You register by calling
observe(_:options:changeHandler:) on the object whose property you want to
observe, with these parameters:

keyPath:

The first parameter is a Swift key path (Chapter 5). If this is a literal, the class can
be omitted, because it can be inferred as the type of the object to which we’re
sending this message.

options:

An NSKeyValueObservingOptions bitmask (an option set). This lets you specify
such things as when you want to be notified (only when the observed value
changes, or now as well) and what information you want included in the notifica‐
tion (the old value, the new value, or both).

changeHandler:

A function to be called as a way of sending the notification. It should take two
parameters; these will be the object with which we are registered and an NSKey‐
ValueObservedChange object whose properties give you information such as the
old value and the new value if you requested them in the options: argument. It
will typically be an anonymous function, thus making it part of the registration.

534 | Chapter 11: Cocoa Events

Keep in mind that the Swift key–value observing API is a language feature, not an
SDK feature. It puts a convenient mechanism in front of the Cocoa API, but it still
uses the Cocoa API. When you call observe(_:options:changeHandler:), Swift
calls addObserver(_:forKeyPath:options:context:) to register the observer with
the observed object. And the NSKeyValueObservation object implements observe-
Value(forKeyPath:of:change:context:) to receive notification messages, which it
passes on to you.

Unregistering
If you fail to unregister the observer with the observed object before the observer
goes out of existence, the observed object might later try to send a message to a non‐
existent observer, resulting in a crash. Unregistration is performed through a message
to the observed object, namely removeObserver(_:forKeyPath:context:). So the
observer needs to maintain a reference to the observed object and unregister itself as
it itself goes out of existence, which can be a daunting responsibility.

Fortunately, with the Swift API, that’s unnecessary — because unregistering the
observer is taken care of for you. The original call to observe(_:options:change-
Handler:), with which we registered in the first place, returns an object of class
NSKeyValueObservation. This, and not the caller of observe(_:options:change-
Handler:), is the actual registered observer! It maintains a reference to the observed
object, so you don’t have to. Moreover, this object, either when it itself is about to go
out of existence or when you send it the invalidate message, will unregister itself by
calling removeObserver(_:forKeyPath:context:) on the observed object.

Thus, if you maintain the NSKeyValueObservation object in an instance property, it
will go out of existence, at the latest, when you do — and at that moment will unregi‐
ster itself in good order.

If you don’t maintain the NSKeyValueObservation object in an instance property,
or in some other way, you’ll never get any notifications, because the NSKeyValue‐
Observation object will go out of existence and unregister itself before a notifica‐
tion has a chance to be sent!

Moreover, in iOS 10 and before, it is also necessary to unregister before the observed
object goes out of existence. That’s because an object that goes out of existence when
observers are still registered with it will cause your app to crash immediately. Thus,
you must take care to unregister the NSKeyValueObservation object explicitly (by
sending it invalidate) if the observed object is about to go out of existence. How‐
ever, when your code runs on iOS 11 or later, that’s not necessary; the underlying
architecture is changed, such that the observed object can go out of existence in good
order even if observers are still registered with it.

Key–Value Observing | 535

Key–Value Observing Example
To demonstrate KVO, let’s posit two classes. MyClass1 has a value property that we
want another object to be able to observe:

class MyClass1 : NSObject {
 @objc dynamic var value : Bool = false
}

The object to be observed must be an instance of a class derived from NSObject;
otherwise, you won’t be able to call observe(_:options:changeHandler:) on it.
That’s because the mechanism for being observed is a feature of NSObject.

The property to be observed must be declared @objc in order to expose it to
Objective-C. It must also be declared dynamic. That’s because KVO works by
swizzling the accessor methods; Cocoa needs to be able to reach right in and
change this object’s code, and it can’t do that unless the property is dynamic.

MyClass2 contains code that registers with a MyClass1 to hear about changes in its
value property:

class MyClass2 {
 var obs = Set<NSKeyValueObservation>()
 func registerWith(_ mc:MyClass1) {
 let opts : NSKeyValueObservingOptions = [.old, .new]
 let ob = mc.observe(\.value, options: opts) { obj, change in
 // obj is the observed object
 // change is an NSKeyValueObservedChange
 if let oldValue = change.oldValue {
 print("old value was \(oldValue)")
 }
 if let newValue = change.newValue {
 print("new value is \(newValue)")
 }
 }
 obs.insert(ob)
 }
}

MyClass2 has an instance property for maintaining NSKeyValueObservation
objects. As with Notification observer tokens (discussed earlier in this chapter), I
like to use a Set for this purpose.

MyClass2 (in its registerWith(_:) method) will register with a MyClass1
instance by calling observe(_:options:changeHandler:). Note the use of the
Swift key path to specify the value property. I’ve illustrated the use of NSKey‐
ValueObservingOptions by asking for both the old and new values of the

536 | Chapter 11: Cocoa Events

observed property when a notification arrives. That information arrives into the
notification function inside an NSKeyValueObservedChange object.

The call to observe(_:options:changeHandler:) returns an NSKeyValueObser‐
vation object. It is crucial to ensure the continued existence of this object; other‐
wise, it will go out of existence and unregister itself before the notification can
ever arrive. Therefore, I immediately store it in the Set instance property that was
declared for this purpose.

Presume now that we have a persistent MyClass2 instance, objectB, and that its
registerWith(_:) has been called with argument objectA, a MyClass1 instance that
is also persistent. So much for registration!

Now let’s talk about change and notification. Somehow, someone sets objectA’s value
to true, thus changing it in a KVO compliant way. At that moment, the notification is
sent and the anonymous function is called! The following appears in the console:

old value was false
new value is true

Finally, let’s talk about unregistering. Delightfully, there is nothing to talk about!
Starting in iOS 11, it doesn’t matter whether objectA goes out of existence before
objectB or the other way around. Everything happens automatically and in good
order. If objectA goes out of existence first, there is no crash and there will be no
further notifications. If objectB goes out of existence, the obs property is destroyed,
and so the NSKeyValueObservation object is destroyed — and at that moment, if
objectA still exists, the NSKeyValueObservation object unregisters itself (and if
objectA no longer exists, nothing bad happens).

In general your real-life use of KVO in programming iOS will likely be no more com‐
plex than that. Cocoa key–value observing, however, is a deep and complex mecha‐
nism; consult Apple’s Key-Value Observing Programming Guide in the documentation
archive for full information.

Swamped by Events
Cocoa has the potential to send lots of events, telling you what the user has done,
informing you of each stage in the lifetime of your app and its objects, asking for your
input on how to proceed. To receive the events that you need to hear about, your code
is peppered with entry points — methods that you have written with just the right
name and in just the right class so that they can be called as Cocoa events. In fact, it is
easy to imagine that in many cases your code for a class will consist almost entirely of
entry points.

Arranging all those entry points is one of your primary challenges as an iOS pro‐
grammer. You know what you want to do, but you don’t get to “just do it.” You have to

Swamped by Events | 537

divide up your app’s functionality and allocate it in accordance with when and how
Cocoa is going to call into your code. You know the events that Cocoa is going to
want to send you, and you need to be prepared to receive them. Thus, before you’ve
written a single line of your own code, the skeleton structure of a class is likely to
have been largely mapped out for you.

Suppose, for example, that your iPhone app presents an interface consisting of a table
view. You’ll probably subclass UITableViewController (a built-in UIViewController
subclass); an instance of your subclass will own and control the table view, and you’ll
probably use it as the table view’s data source and delegate as well. In this single class,
then, you’re likely to want to implement at a minimum the following methods:

init(coder:) or init(nibName:bundle:)
UIViewController lifetime method, where you perform instance initializations.

viewDidLoad

UIViewController lifetime method, where you perform view-related initializa‐
tions.

viewDidAppear

UIViewController lifetime method, where you set up states that need to apply
only while your view is onscreen. For example, if you’re going to register for a
notification or set up a timer, this is a likely place to do it.

viewDidDisappear

UIViewController lifetime method, where you reverse what you did in viewDid-
Appear. For example, this would be a likely place to unregister for a notification
or invalidate a repeating timer that you set up in viewDidAppear.

supportedInterfaceOrientations

UIViewController query method, where you specify what device orientations are
allowed for this view controller’s main view.

numberOfSections(in:)

tableView(_:numberOfRowsInSection:)

tableView(_:cellForRowAt:)

UITableView data source query methods, where you specify the contents of the
table.

tableView(_:didSelectRowAt:)

UITableView delegate user action method, where you respond when the user taps
a row of the table.

deinit

Swift class instance lifetime method, where you perform end-of-life cleanup.

538 | Chapter 11: Cocoa Events

Suppose, further, that you do in fact use viewDidAppear to register for a notification
and to set up a timer, using the target–selector architecture; then you must also
implement the methods specified by those selectors.

We already have, then, about a dozen methods whose presence is effectively boiler‐
plate. These are not your methods; you are never going to call them. They are Cocoa’s
methods, which you have placed here so that each can be called at the appropriate
moment in the life story of your app.

A Cocoa program thus consists of numerous disconnected entry points, each with its
own meaning, each called at its own set moment. The logic of such a program is far
from obvious; a Cocoa program, even your program, even while you’re writing it, is
hard to read and hard to understand. To figure out what our hypothetical class does,
you have to know already such things as when viewDidAppear is called and how it is
typically used; otherwise, you don’t know what this method is for. Moreover, because
of your code’s object-oriented structure, multiple methods in this class (and perhaps
others) will be managing the same instance properties; your program’s logic is divided
among methods and even among classes.

Your challenges are compounded by surprises involving the order of events. Begin‐
ners (and even experienced programmers) are often mystified when their iOS pro‐
gram doesn’t work as expected, because they have wrong expectations about when an
entry point will be called, or what the state of an instance will be when it is called. To
make matters worse, the order of events isn’t even reliable; my apps often break when
I upgrade them from one iOS version to the next, because the new version of iOS is
sending certain events in a different order from the old version.

How will you find your way through the swamp of events that a Cocoa program con‐
sists of? There’s no easy solution, but here’s some simple advice:

Write comments
Comment every method, quite heavily if need be, saying what that method does
and under what circumstances you expect it to be called — especially if it is an
entry point, where it is Cocoa itself that will do the calling.

Debug
Instrument your code heavily during development with caveman debugging (see
Chapter 9). As you test your code, keep an eye on the console output and check
whether the messages make sense. You may be surprised at what you discover. If
things don’t work as expected, add breakpoints and run the app again so you can
see the order of execution and watch the variables and properties as they change.

Perhaps the most common kind of mistake in writing a Cocoa app is not that there’s a
bug in your code itself, but that you’ve put the code in the wrong place. Your code isn’t
running, or it’s running at the wrong time, or the pieces are running in the wrong

Swamped by Events | 539

order. I see questions about this sort of thing all the time on the various online user
forums (these are all actual examples that appeared over the course of just two days):

• There’s a delay between the time when my view appears and when my button takes
on its correct title.
That’s because you put the code that sets the button’s title in viewDidAppear.
That’s too late; your code needs to run earlier, perhaps in viewWillAppear.

• My subviews are positioned in code and they’re turning out all wrong.
That’s because you put the code that positions your subviews in viewDidLoad.
That’s too early; your code needs to run later, when your view’s dimensions have
been determined.

• My view is rotating even though my view controller’s supportedInterface-
Orientations says not to.
That’s because you implemented supportedInterfaceOrientations in the
wrong class. Only the topmost view controller in the view controller hierarchy is
consulted through this property.

• I set up an action connection for Value Changed on a text field, but my code isn’t
being called when the user edits.
That’s because you connected the wrong control event; a text field emits Editing
Changed, not Value Changed.

Delayed Performance
Your code is executed in response to some event; but your code in turn may trigger a
new event or chain of events. Sometimes this causes bad things to happen: there
might be a crash, or Cocoa might appear not to have done what you said to do. To
solve this problem, sometimes you just need to step outside Cocoa’s own chain of
events for a moment and wait for everything to settle down before proceeding.

The technique for doing this is called delayed performance. You tell Cocoa to do
something, not right this moment, but in a little while, when things have settled
down. Perhaps you need only a very short delay, possibly even as short as zero sec‐
onds, just to let Cocoa finish doing something, such as laying out the interface. Tech‐
nically, you’re allowing the current run loop to finish, completing and unwinding the
entire current call stack, before proceeding further with your own code.

When you program iOS, you’re likely to be using delayed performance a lot more
than you might expect. With experience, you’ll develop a kind of sixth sense for when
delayed performance might be the solution to your difficulties.

The main way to get delayed performance in iOS programming is by calling Dis‐
patchQueue’s after(when:execute:) method. It takes a function stating what should

540 | Chapter 11: Cocoa Events

happen after the specified time has passed. Here’s a utility function that encapsulates
the call:

func delay(_ delay:Double, closure:@escaping () -> ()) {
 let when = DispatchTime.now() + delay
 DispatchQueue.main.asyncAfter(deadline: when, execute: closure)
}

That utility function is so important that I routinely paste it at the top level of the
AppDelegate class file in every app I write. It’s going to come in handy, I know! To use
it, I call delay with a delay time (usually a very small number of seconds such as 0.1)
and an anonymous function saying what to do after the delay. Note that what you
propose to do in this anonymous function will be done later on; you’re deliberately
breaking out of your own code’s line-by-line sequence of execution. So a delayed per‐
formance call will typically be the last call in its own surrounding function, and can‐
not return any value.

In this actual example from one of my own apps, the user has tapped a row of a table,
and my code responds by creating and showing a new view controller:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController?.pushViewController(t, animated: true)
}

Unfortunately, the innocent-looking call to my TracksViewController initializer
init(mediaItemCollection:) can take a moment to complete, so the app comes to a
stop with the table row highlighted — very briefly, but just long enough to startle the
user. To cover this delay with a sense of activity, I’ve rigged my UITableViewCell sub‐
class to show a spinning activity indicator when it’s selected:

override func setSelected(_ selected: Bool, animated: Bool) {
 if selected {
 self.activityIndicator.startAnimating()
 } else {
 self.activityIndicator.stopAnimating()
 }
 super.setSelected(selected, animated: animated)
}

But there’s a problem: the spinning activity indicator never appears and never spins.
The reason is that the events are stumbling over one another here. UITableViewCell’s
setSelected(_:animated:) isn’t called until the UITableView delegate method
tableView(_:didSelectRowAt:) has finished. But the delay we’re trying to paper
over is during tableView(_:didSelectRowAt:); the whole problem is that it doesn’t
finish fast enough.

Delayed Performance | 541

Delayed performance to the rescue! I’ll rewrite tableView(_:didSelectRowAt:) so
that it finishes immediately — thus triggering setSelected(_:animated:) immedi‐
ately and causing the activity indicator to appear and spin — and I’ll use delayed per‐
formance to call init(mediaItemCollection:) later on, when the interface has
ironed itself out:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 delay(0.1) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController?.pushViewController(t, animated: true)
 }
}

542 | Chapter 11: Cocoa Events

CHAPTER 12

Memory Management

Class instances, both in Swift and in Objective-C, are reference types (see “Value Types
and Reference Types” on page 150). Behind the scenes, Swift and Objective-C mem‐
ory management for reference types works essentially the same way. Such memory
management, as I pointed out in Chapter 5, can be a tricky business.

Fortunately, Swift uses ARC (automatic reference counting), so you don’t have to
manage the memory for every reference type object explicitly and individually, as was
once necessary in Objective-C. Thanks to ARC, you are far less likely to make a
memory management mistake, and more of your time is liberated to concentrate on
what your app actually does instead of dealing with memory management concerns.

Still, even in Swift, even with ARC, it is possible to make a memory management
mistake, or to be caught unawares by Cocoa’s memory management behavior. A
memory management mistake can lead to runaway excessive memory usage, crashes,
or mysterious misbehavior of your app. Cocoa memory management can be surpris‐
ing in individual cases, and you need to understand, and prepare for, what Cocoa is
going to do.

Principles of Cocoa Memory Management
The reason why reference type memory must be managed at all is that references to
reference type objects are merely pointers. The real object pointed to occupies a hunk
of memory that must be explicitly set aside when the object is brought into existence
and that must be explicitly freed up when the object goes out of existence. The mem‐
ory is set aside when the object is instantiated, but how is this memory to be freed up,
and when should that happen?

An object must go out of existence neither too late nor too soon. Matters are made
more complicated by the fact that multiple objects can have a pointer (a reference) to

543

the very same object. To illustrate, imagine three objects, Manny, Moe, and Jack,
where both Manny and Moe have references to Jack:

Too late
At the very latest, an object should go out of existence when no other objects
have a pointer to it. If both Manny and Moe go out of existence, and if no other
object has a reference to Jack, Jack should go out of existence too. An object
without a pointer to it is useless; it is occupying memory, but no other object has,
or can ever get, a reference to it. This is a memory leak.

Too soon
If any object has a pointer to another, that other object must not go out of exis‐
tence. If both Manny and Moe have a pointer to Jack, and if Manny somehow
causes Jack to go out of existence now, poor old Moe is left with a pointer to
nothing (or worse, to garbage). A pointer whose object has been destroyed
behind the pointer’s back is a dangling pointer. If Moe subsequently uses that dan‐
gling pointer to send a message to the object that he thinks is there, the app will
crash.

To prevent both memory leakage and dangling pointers, there is a policy of manual
memory management based on a number, maintained by every reference type object,
called its retain count. The rule is that other objects can increment or decrement an
object’s retain count — and that’s all they are allowed to do. As long as an object’s
retain count is positive, the object will persist. No object has the direct power to tell
another object to be destroyed; rather, as soon as an object’s retain count is decremen‐
ted to zero, it is destroyed automatically.

By this policy, every object that needs Jack to persist should increment Jack’s retain
count, and should decrement it once again when it no longer needs Jack to persist. As
long as all objects are well-behaved in accordance with this policy, the problem of
manual memory management is effectively solved:

• There cannot be any dangling pointers, because any object that has a pointer to
Jack has incremented Jack’s retain count, thus ensuring that Jack persists.

• There cannot be any memory leaks, because any object that no longer needs Jack
decrements Jack’s retain count, thus ensuring that eventually Jack will go out of
existence — namely, when the retain count reaches zero, indicating that no object
needs Jack any longer.

Rules of Cocoa Memory Management
An object is well-behaved with respect to memory management as long as it adheres
to certain very simple, well-defined rules in conformity with the basic concepts of
memory management. The underlying ethic is that each object that has a reference to

544 | Chapter 12: Memory Management

a reference type object is responsible solely for its own memory management of that
object, in accordance with these rules. If all objects that ever get a reference to this
reference type object behave correctly with respect to these rules, the object’s memory
will be managed correctly and it will go out of existence exactly when it is no longer
needed:

• If Manny or Moe explicitly instantiates Jack — by directly calling an initializer —
then the initializer increments Jack’s retain count.

• If Manny or Moe makes a copy of Jack — by calling copy or mutableCopy or any
other method with copy in its name — then the copy method increments the
retain count of this new, duplicate Jack.

• If Manny or Moe acquires a reference to Jack (not through explicit instantiation
or copying), and needs Jack to persist — long enough to work with Jack in code,
or long enough to be the value of an instance property — then he himself incre‐
ments Jack’s retain count. (This is called retaining Jack.)

• If and only if Manny or Moe has done any of those things — that is, if Manny or
Moe has ever directly or indirectly caused Jack’s retain count to be incremented
— then when he himself no longer needs his reference to Jack, before letting go
of that reference, he decrements Jack’s retain count to balance exactly all previous
increments that he himself has performed. (This is called releasing Jack.) Having
released Jack, Manny or Moe should then assume that Jack no longer exists,
because if this causes Jack’s retain count to drop to zero, Jack will no longer exist.
This is the golden rule of memory management — the rule that makes memory
management work coherently and correctly.

A general way of understanding the golden rule of memory management is to think
in terms of ownership. If Manny has created, copied, or retained Jack — that is, if
Manny has ever incremented Jack’s retain count — Manny has asserted ownership of
Jack. Both Manny and Moe can own Jack at the same time, but each is responsible
only for managing his own ownership of Jack correctly. It is the responsibility of an
owner of Jack eventually to decrement Jack’s retain count — to release Jack, thus
resigning ownership of Jack. The owner thus says: “Jack may or may not persist after
this, but as for me, I’m done with Jack, and Jack can go out of existence as far as I’m
concerned.” At the same time, a nonowner of Jack must never release Jack. As long as
all objects behave this way with respect to Jack, Jack will not leak nor will any pointer
to Jack be left dangling.

What ARC Is and What It Does
Once upon a time, retaining and releasing an object was a matter of you, the pro‐
grammer, literally sending retain and release messages to it. NSObject still imple‐
ments retain and release, but under ARC (and in Swift) you can’t call them. That’s

What ARC Is and What It Does | 545

because ARC is calling them for you! That’s ARC’s job — to do for you what you
would have had to do if memory management were still up to the programmer.

ARC is implemented as part of the compiler. The compiler is literally modifying your
code by inserting retain and release calls behind the scenes. Thus, for example,
when you receive a reference type object by calling some method, ARC immediately
retains it so that it will persist for as long as this same code continues to run; then
ARC releases it when the code comes to an end. Similarly, when you create or copy a
reference type object, ARC knows that its retain count has been incremented, and
releases it when the code comes to an end.

ARC is very conservative, but also very accurate. In effect, ARC retains at every junc‐
ture that might have the slightest implications for memory management: it retains
when an object is received as an argument, it retains when an object is assigned to a
variable, and so forth. It may even insert temporary variables, behind the scenes, to
enable it to refer sufficiently early to an object so that it can retain it. But of course it
eventually also releases to match.

How Cocoa Objects Manage Memory
Built-in Cocoa objects will take ownership of objects that you hand to them, by
retaining them, if it makes sense for them to do so, and will of course then balance
that retain with a release later. Indeed, this is so generally true that if a Cocoa object is
not going to retain an object you hand it, there will be a note to that effect in the
documentation.

A collection, such as an NSArray or an NSDictionary, is a particularly obvious case in
point (see Chapter 10 for a discussion of the common collection classes). An object
can hardly be an element of a collection if that object can go out of existence at any
time; so when you add an element to a collection, the collection asserts ownership of
the object by retaining it. Thereafter, the collection acts as a well-behaved owner. If
this is a mutable collection, then if an element is removed from it, the collection
releases that element. If the collection object goes out of existence, it releases all its
elements.

Prior to ARC, removing an object from a mutable collection constituted a potential
trap. Consider the following Objective-C code:

id obj = myMutableArray[0]; // an NSMutableArray
[myMutableArray removeObjectAtIndex: 0]; // bad idea in non-ARC code!
// ... could crash here by referring to obj ...

As I just said, when you remove an object from a mutable collection, the collection
releases it. So, without ARC, the second line of that code involves an implicit release
of the object that used to be the first element of myMutableArray. If this reduces the
object’s retain count to zero, it will be destroyed. The pointer obj will then be a dan‐

546 | Chapter 12: Memory Management

gling pointer, and a crash may be in our future when we try to use it as if it were a real
object.

With ARC, however, that sort of danger doesn’t exist. Assigning a reference type
object to a variable retains it! But we did assign this object to a variable, obj, before we
removed it from the collection. Thus that code is perfectly safe, and so is its Swift
equivalent:

let obj = myMutableArray[0] // retain
myMutableArray.removeObject(at:0) // release
// ... safe to refer to obj ...

The first line retains the object. The second line releases the object, but that release
balances the retain that was placed on the object when the object was placed in the
collection originally. Thus the object’s retain count is still more than zero, and it con‐
tinues to exist for the duration of this code.

Autorelease Pool
When a method creates an instance and returns that instance, some memory man‐
agement hanky-panky has to take place. For example, consider this simple code:

func makeImage() -> UIImage? {
 if let im = UIImage(named:"myImage") {
 return im
 }
 return nil
}

Think about the retain count of im, the UIImage we are returning. This retain count
has been incremented by our call to the UIImage initializer UIImage(named:).
According to the golden rule of memory management, as we pass im out of our own
control by returning it, we should decrement the retain count of im, thus balancing
the increment and surrendering ownership. But when can we possibly do that? If we
do it before the line return im, the retain count of im will be zero and it will vanish in
a puff of smoke; we will be returning a dangling pointer. But we can’t do it after the
line return im, because when that line is executed, our code comes to an end.

Clearly, we need a way to vend this object without decrementing its retain count now
— so that it stays in existence long enough for the caller to receive and work with it
— while ensuring that at some future time we will decrement its retain count, so as to
balance our init(named:) call and fulfill our own management of this object’s mem‐
ory. The solution is something midway between releasing the object and not releasing
it — ARC autoreleases it.

Here’s how autoreleasing works. Your code runs in the presence of something called
an autorelease pool. When ARC autoreleases an object, that object is placed in the

Autorelease Pool | 547

Figure 12-1. Memory usage grows during a loop

autorelease pool, and a number is incremented saying how many times this object has
been placed in this autorelease pool. From time to time, when nothing else is going
on, the autorelease pool is automatically drained. This means that the autorelease
pool releases each of its objects, the same number of times as that object was placed in
this autorelease pool, and empties itself of all objects. If that causes an object’s retain
count to be zero, so be it; the object is destroyed in the usual way. So autoreleasing an
object is just like releasing it, but with a proviso, “later, not right this second.”

In general, autoreleasing and the autorelease pool are merely an implementation
detail. You can’t see them; they are just part of how ARC works. But sometimes, on
very rare occasions, you might want to drain the autorelease pool yourself. Consider
the following code (it’s slightly artificial, but that’s because demonstrating the need to
drain the autorelease pool isn’t easy):

func test() {
 let path = Bundle.main.path(forResource:"001", ofType: "png")!
 for j in 0 ..< 50 {
 for i in 0 ..< 100 {
 let im = UIImage(contentsOfFile: path)
 }
 }
}

That method does something that looks utterly innocuous; it loads an image. But it
loads it repeatedly in a loop. As the loop runs, memory climbs constantly
(Figure 12-1); by the time our method comes to an end, our app’s memory usage has
reached almost 34MB. This is not because the images aren’t being released each time
through the loop; it’s because a lot of intermediate objects — things you’ve never even
heard of, such as NSPathStore2 objects — are secondarily generated by our call to
init(contentsOfFile:) and are autoreleased. As we keep looping, those objects are
all sitting there, piling up in the autorelease pool by the tens of thousands, waiting for
the pool to be drained. When our code finally comes to an end, the autorelease pool is
drained, and our memory usage drops precipitately back down to almost nothing.

Granted, 34MB isn’t exactly a massive amount of memory. But you may imagine that
a more elaborate inner loop might generate more and larger autoreleased objects, and
that our memory usage could potentially rise quite significantly. Thus, it would be
nice to have a way to drain the autorelease pool manually now and then during the
course of a loop with many iterations. Swift provides such a way — the global
autoreleasepool function, which takes a single argument that you’ll supply as a

548 | Chapter 12: Memory Management

Figure 12-2. Memory usage holds steady with an autorelease pool

trailing anonymous function. Before the anonymous function is called, a special tem‐
porary autorelease pool is created, and is used for all autoreleased objects thereafter.
After the anonymous function exits, the temporary autorelease pool is drained and
goes out of existence. Here’s the same method with an autoreleasepool call wrap‐
ping the inner loop:

func test() {
 let path = Bundle.main.path(forResource:"001", ofType: "png")!
 for j in 0 ..< 50 {
 autoreleasepool {
 for i in 0 ..< 100 {
 let im = UIImage(contentsOfFile: path)
 }
 }
 }
}

The difference in memory usage is dramatic: memory holds roughly steady at less
than 2MB (Figure 12-2). Setting up and draining the temporary autorelease pool
probably involves some overhead, so if possible you may want to divide your loop
into an outer and an inner loop, as shown in the example, so that the autorelease pool
is not set up and torn down on every iteration.

Memory Management of Instance Properties
Before ARC, managing memory for instance properties (Objective-C instance vari‐
ables, Chapter 10) was one of the trickiest parts of Cocoa programming. The correct
behavior is to retain a reference type object when you assign it to a property, and then
release it when either of these things happens:

• You assign a different value to the same property.
• The instance whose instance property this is goes out of existence.

In order to obey the golden rule of memory management, the object taking charge of
this memory management — the owner — clearly needs to be the object whose
instance property this is. The only way to ensure that memory management of a
property is handled correctly, therefore, is to implement it in the setter method for
that property. The setter must release whatever object is currently the value of the
property, and must retain whatever object is being assigned to that property. The
exact details can be quite tricky (what if they are the same object?), and before ARC it

Memory Management of Instance Properties | 549

was easy for programmers to get them wrong. And that, of course, is not the only
memory management needed; to prevent a leak when the owner goes out of exis‐
tence, the owner’s dealloc method (the Objective-C equivalent of deinit) had to be
implemented to release every object being retained as the value of a property.

Fortunately, ARC understands all that, and the memory of instance properties, like
the memory of all variables, is managed correctly for you.

That fact also gives us a clue as to how to release an object on demand. This is a val‐
uable thing to be able to do, because an object may be using a lot of memory. You
don’t want to put too great a strain on the device’s memory, so you want to release the
object as soon as you’re done with it. Also, when your app goes into the background
and is suspended, the Watchdog process will terminate it in the background if it is
found to be using too much memory; so you might want to release this object when
you are notified that the app is about to be backgrounded. (I talked about that prob‐
lem in Chapter 3.)

You can’t call release explicitly, so you need another way to do it, some way that is
consonant with the design and behavior of ARC. The solution is to assign something
else — something small — to this property. That causes the object that was previously
the value of this property to be released. A commonly used approach is to type this
property as an Optional — possibly, to simplify matters, an implicitly unwrapped
Optional. This means that nil can be assigned to it, purely as a way of replacing the
object that is the instance property’s current value and releasing it.

Retain Cycles and Weak References
As I explained in Chapter 5, you can get yourself into a retain cycle where two objects
have references to one another: for example, each is the value of the other’s instance
property. If such a situation is allowed to persist until no other objects have a refer‐
ence to either of these objects, then neither can go out of existence, because each has
a retain count greater than zero and neither will “go first” and release the other. Since
these two objects, ex hypothesi, can no longer be referred to by any object except one
another, this situation can now never be remedied — these objects are leaking.

The solution is to step in and modify how the memory is managed for one of these
references. By default, a reference is a persisting reference (what ARC calls a strong or
retain reference): assigning to it retains the assigned value. In Swift, you can declare a
reference type variable as weak or as unowned to change the way its memory is
managed:

weak

A weak reference takes advantage of a powerful ARC feature. When a reference is
weak, ARC does not retain the object assigned to it. This seems dangerous,
because it means that the object might go out of existence behind our backs, leav‐

550 | Chapter 12: Memory Management

ing us with a dangling pointer and leading to a potential crash later on. But ARC
is very clever about this. A weak reference must be a var reference to an Optional.
ARC keeps track of all weak references and all objects assigned to them. When
such an object’s retain count drops to zero and the object is about to be
destroyed, just before the object’s deinit is called, ARC sneaks in and assigns nil
to the reference. Thus, provided you handle the Optional coherently (by coping
with the fact that it might suddenly be nil), nothing bad can happen.

unowned

An unowned reference is a different kettle of fish. When you mark a reference as
unowned, you’re telling ARC to take its hands off completely: it does no memory
management at all when something is assigned to this reference. This really is
dangerous — if the object referred to goes out of existence, you really can be left
with a dangling pointer and you really can crash. That is why you must never use
unowned unless you know that the object referred to will not go out of existence:
unowned is safe, provided the object referred to will outlive the object that refers
to it. That is why an unowned object should be some single object, assigned only
once, without which the referrer cannot exist at all.

In real life, a weak reference is commonly used to connect an object to its delegate
(Chapter 11). A delegate is an independent entity; there is usually no reason why an
object needs to claim ownership of its delegate, and indeed an object is usually its del‐
egate’s servant, not its owner. Ownership, if there is any, often runs the other way;
Object A might create and retain Object B, and make itself Object B’s delegate. That’s
potentially a retain cycle. Therefore, most delegates should be declared as weak
references:

class ColorPickerController : UIViewController {
 weak var delegate: ColorPickerDelegate?
 // ...
}

Unfortunately, properties of built-in Cocoa classes that keep weak references are
sometimes non-ARC weak references (because they are old and backward-
compatible, whereas ARC is new). Such properties are declared using the keyword
assign. For example, CLLocationManager’s delegate property is declared like this:

@property(assign, nonatomic, nullable)
 id<CLLocationManagerDelegate> delegate;

In Swift, that declaration is translated like this:

unowned(unsafe) var delegate: CLLocationManagerDelegate?

The Swift term unowned and the Objective-C term assign are synonyms; they tell you
that there’s no ARC memory management here. The unsafe designation is a further

Retain Cycles and Weak References | 551

Figure 12-3. A crash from messaging a dangling pointer

warning inserted by Swift; unlike your own code, where you won’t use unowned unless
it is safe, Cocoa’s unowned is potentially dangerous and you need to exercise caution.

Even though your code is using ARC, the fact that Cocoa’s code is not using ARC
means that memory management mistakes can still occur. A reference such as a
CLLocationManager’s delegate can end up as a dangling pointer, pointing at
garbage, if the object to which that reference was pointing has gone out of existence.
If anyone (you or Cocoa) tries to send a message by way of such a reference, the app
will then crash — and, since this typically happens long after the point where the real
mistake occurred, figuring out the cause of the crash can be quite difficult. The typi‐
cal sign of such a crash is that EXC_BAD_ACCESS is reported in connection with mem‐
ory management activity (Figure 12-3). (This is the sort of situation in which you
might need to turn on zombies in order to debug, as I’ll describe later in this chapter.)

Defending against this kind of situation is up to you. If you assign some object to a
non-ARC unsafe reference, such as a CLLocationManager’s delegate, and if that
object is about to go out of existence at a time when this reference still exists, you
have a duty to assign nil (or some other object) to that reference, thus rendering it
harmless.

Unusual Memory Management Situations
This section discusses some situations that call for some special memory manage‐
ment handling on your part.

Notification Observers
When you register with the notification center by calling addObserver(for-

Name:object:queue:using:), as I described in Chapter 11, there’s a trap: you can end
up with a leak, which can potentially be extremely serious, because what leaks is usu‐
ally your entire view controller and its properties:

• The observer token object returned from the call to addObserver(for-

Name:object:queue:using:) is retained by the notification center until you
unregister it.

552 | Chapter 12: Memory Management

• The observer token may also be retaining you (self) through the function that
you provided as the last parameter. The reason is that functions are closures, and
this function is very likely to refer to self.

Thus, the observer token object will leak until you unregister, and if the function
retains you, you will leak until you unregister. Moreover, you cannot solve this prob‐
lem by unregistering from the notification center in deinit, because deinit isn’t
going to be called so long as you are registered.

It is evident that, in order to solve this problem, we must maintain a reference to the
observer. An instance property of self is the obvious place. As I suggested in Chap‐
ter 11, a Set is a good solution, as we may have multiple observers to maintain:

var observers = Set<NSObject>()
override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 let ob = NotificationCenter.default.addObserver(
 forName: .woohoo, object:nil, queue:nil) { _ in
 print(self.description) // trouble ahead...
 }
 self.observers.insert(ob as! NSObject)
}

We now have references to any observers, so we can proceed to unregister them. But
we cannot do this in deinit, so we’ll have to do it at some other time. viewDid-
Disappear(_:) is a natural alternative:

override func viewDidDisappear(_ animated: Bool) {
 super.viewDidDisappear(animated)
 for ob in self.observers {
 NotificationCenter.default.removeObserver(ob)
 }
}

But we now get a shock when we run our code and discover that self is still leaking!
The reason is that self is still maintaining a reference to the observer, and the
observer is still maintaining a reference to self — we’ve got a retain cycle!

There are two ways to solve this:

Break the retain cycle
Proceed as I suggested in “Stored anonymous functions” on page 305: mark self
as weak or (preferably) unowned in the anonymous function:

let ob = NotificationCenter.default.addObserver(
 forName: .woohoo, object:nil, queue:nil) { [unowned self] _ in
 print(self.description)
 }

Unusual Memory Management Situations | 553

Perform manual memory management
In viewDidDisappear, when unregistering the observers, also release them by
emptying the set:

for ob in self.observers {
 NotificationCenter.default.removeObserver(ob)
}
self.observers.removeAll()

KVO Observers
The NSKeyValueObservation object that you get when you call
observe(_:options:changeHandler:) (Chapter 11) is quite similar to the observer
token object you get from the notification center. You maintain a reference to the
NSKeyValueObservation object, because otherwise the notification message won’t
arrive. However, you’re probably not going to tell the NSKeyValueObservation object
to unregister itself (by calling invalidate); rather, you’ll just let it go out of existence
naturally when you yourself go out of existence.

The problem is that if your notification function refers to self, you won’t go out of
existence; you and the NSKeyValueObservation object will both leak, the NSKeyValue‐
Observation object won’t unregister itself, and your deinit will never be called:

var obs = Set<NSKeyValueObservation>()
func registerWith(_ mc:MyClass1) {
 let opts : NSKeyValueObservingOptions = [.old, .new]
 let ob = mc.observe(\.value, options: opts) { obj, change in
 print(self) // leak!
 }
 obs.insert(ob)
}

Once again, the reason is that you’ve got a retain cycle, just as in “Stored anonymous
functions” on page 305. You are retaining the observer object, but the observer object,
through the notification function, is also retaining you. And once again, the solution
is the same; mark self as unowned in the notification function:

let ob = mc.observe(\.value, options:opts) {[unowned self] obj, change in

Timers
The class documentation for Timer (Chapter 10) says that “run loops maintain strong
references to their timers”; it then says of scheduledTimer(time-

Interval:target:selector:userInfo:repeats:) that “The timer maintains a
strong reference to target until it (the timer) is invalidated.” This should set off
alarm bells in your head: “Danger, Will Robinson, danger!” The documentation is
warning you that as long as a repeating timer has not been invalidated, the target is
being retained by the run loop; the only way to stop this is to send the invalidate

554 | Chapter 12: Memory Management

message to the timer. (With a non-repeating timer, the problem arises less starkly,
because the timer invalidates itself immediately after firing.)

Moreover, the target: argument is probably self. This means that you (self) are
being retained, and cannot go out of existence until you invalidate the timer. So when
will you that? This is the same quandary we faced with notifications. You can’t do it in
your deinit implementation, because as long as the timer is repeating and has not
been sent the invalidate message, deinit won’t be called. You therefore need to find
another appropriate moment for sending invalidate to the timer, such as viewDid-
Disappear:

var timer : Timer!
override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 self.timer = Timer.scheduledTimer(timeInterval: 1, target: self,
 selector: #selector(fired), userInfo: nil, repeats: true)
 self.timer.tolerance = 0.1
}
@objc func fired(_ t:Timer) {
 print("timer fired")
}
override func viewDidDisappear(_ animated: Bool) {
 super.viewDidDisappear(animated)
 self.timer.invalidate()
}

Alternatively, you can call scheduledTimer(withTimeInterval:repeats:block:)
instead. Now there is no retained target:, but there is a retained function, and you
must take the same precautions as in “Stored anonymous functions” on page 305. If
the timer is a repeating timer, you are retaining it so that you can invalidate it later;
but the timer is retaining the function you hand to it as the block: argument. If that
involves a reference to self, it will retain self, causing a retain cycle. The good news
is that if you mark self as weak or unowned in the function, you can invalidate the
timer in deinit. Thus, the following does not leak; deinit is called, the timer is inva‐
lidated, and everything goes out of existence in good order:

var timer : Timer!
override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 self.timer = Timer.scheduledTimer(withTimeInterval: 1, repeats: true) {
 [unowned self] t in // *
 self.fired(t)
 }
 self.timer.tolerance = 0.1
}
func fired(_ t:Timer) {
 print("timer fired")

Unusual Memory Management Situations | 555

}
deinit {
 self.timer.invalidate()
}

Other Unusual Situations
Other Cocoa objects with unusual memory management behavior will usually be
called out clearly in the documentation. For example, the UIWebView documentation
warns: “Before releasing an instance of UIWebView for which you have set a delegate,
you must first set its delegate property to nil.” And a CAAnimation object retains its
delegate; this is exceptional and can cause serious trouble if you’re not conscious of it
(as usual, I speak from bitter experience).

There are also situations where the documentation fails to warn of any special mem‐
ory management considerations, but you can wind up with a retain cycle anyway.
Discovering the problem can be tricky. Areas of Cocoa that have given me trouble
include UIKit Dynamics (a UIDynamicBehavior’s action handler) and WebKit (a
WKWebKit’s WKScriptMessageHandler).

Three Foundation collection classes — NSPointerArray, NSHashTable, and NSMap‐
Table — are similar respectively to NSMutableArray, NSMutableSet, and NSMutable‐
Dictionary, except that (among other things) their memory management policy is up
to you. An NSHashTable created with the weakObjects class method, for example,
maintains ARC-weak references to its elements, meaning that they are replaced by
nil if the retain count of the object to which they were pointing has dropped to zero.
You may find uses for these classes as a way of avoiding retain cycles.

Nib Loading and Memory Management
When a nib loads, it instantiates its nib objects (Chapter 7). What happens to these
instantiated objects? A view retains its subviews, but what about the top-level objects,
which are not subviews of any view? The answer is, in effect, that they do not have
elevated retain counts; if someone doesn’t immediately retain them, they’ll simply
vanish in a puff of smoke.

If you don’t want that to happen — and if you did, why would you be loading this nib
in the first place? — you need to capture a reference to the top-level objects instanti‐
ated from the nib. There are two mechanisms for doing this.

The first approach is to capture the result of the nib-loading code. When a nib is
loaded by calling Bundle’s loadNibNamed(_:owner:options:) or UINib’s
instantiate(withOwner:options:), an array is returned consisting of the top-level
objects instantiated by the nib-loading mechanism. So it’s sufficient to retain this

556 | Chapter 12: Memory Management

array, or the objects in it. We did that in Chapter 7 when we loaded a nib and assigned
the result to a variable, like this:

let arr = Bundle.main.loadNibNamed("View", owner: nil)!
let v = arr[0] as! UIView
self.view.addSubview(v)

The other possibility is to configure the nib owner with outlets that will retain the
nib’s top-level objects when they are instantiated. We did that in Chapter 7 when we
set up an outlet like this:

class ViewController: UIViewController {
 @IBOutlet var coolview : UIView!

We then loaded the nib with this view controller as owner:

Bundle.main.loadNibNamed("View", owner: self)
self.view.addSubview(self.coolview)

The first line instantiates the top-level view from the nib, and the nib-loading mecha‐
nism assigns it to self.coolview. Since self.coolview is a strong reference, it
retains the view. Thus, the view is still there when we insert it into the interface in the
second line.

It is common, however, for @IBOutlet properties that you declare to be marked weak.
This is not obligatory, and it probably does no harm to omit the weak designation.
The reason such outlets work properly even when they are designated weak is that
you use this designation only when this is an outlet to an object that you know will be
retained by someone else — for example, it’s already a subview of your view control‐
ler’s main view. A view controller retains its main view, and a view is retained by its
superview, so the nib-loading process will cause this view to be retained, and there is
no need for your @IBOutlet property to retain it as well.

Memory Management of CFTypeRefs
A CFTypeRef is a pure C analog to an Objective-C object. In Objective-C, CFTypeRef
types are distinguished by the suffix Ref at the end of their name. In Swift, however,
this Ref suffix is dropped. For example, a CGContextRef is a CFTypeRef, and is
known in Swift as a CGContext.

A CFTypeRef is a pointer to an opaque C struct (see Appendix A), where “opaque”
means that the struct has no directly accessible components. This struct acts as a
pseudo-object; a CFTypeRef is analogous to an object type. In Objective-C, the fact
that this thing is not an object is particularly obvious, because the code that operates
upon a CFTypeRef is not object-oriented. A CFTypeRef has no properties or meth‐
ods, and you do not send any messages to it; you work with CFTypeRefs entirely
through global C functions. In Swift’s Core Graphics overlay, however, those global C

Memory Management of CFTypeRefs | 557

functions are hand-tweaked to look like methods; for example, the CGContextDraw-
LinearGradient C function is called, in Swift, by sending drawLinear-

Gradient(_:start:end:options:) to a CGContext pseudo-object, just as if a
CGContext were an object and drawLinearGradient were an instance method.

Here’s some actual Swift code for drawing a gradient; con is a CGContext, sp is a
CGColorSpace, and grad is a CGGradient (all of them being CFTypeRefs):

let con = UIGraphicsGetCurrentContext()!
let locs : [CGFloat] = [0.0, 0.5, 1.0]
let colors : [CGFloat] = [
 0.8, 0.4, // starting color, transparent light gray
 0.1, 0.5, // intermediate color, darker less transparent gray
 0.8, 0.4, // ending color, transparent light gray
]
let sp = CGColorSpaceCreateDeviceGray()
let grad = CGGradient(colorSpace: sp,
 colorComponents: colors, locations: locs, count: 3)!
con.drawLinearGradient(grad,
 start: CGPoint(x:89,y:0), end: CGPoint(x:111,y:0), options:[])

Despite being only a pseudo-object, a CFTypeRef is a reference type, and its memory
must be managed in just the same way as that of a real object. Therefore, a CFTypeRef
pseudo-object has a retain count! And this retain count works exactly as for a true
object, in accordance with the golden rule of memory management. A CFTypeRef
must be retained when it comes within the sphere of influence of an owner who
wants it to persist, and it must be released when that owner no longer needs it.

In Objective-C, the golden rule, as applied to CFTypeRefs, is that if you obtained a
CFTypeRef object through a function whose name contains the word Create or Copy,
its retain count has been incremented. In addition, if you are worried about the object
persisting, you’ll retain it explicitly by calling the CFRetain function to increment its
retain count. To balance your Create, Copy, or CFRetain call, you must eventually
release the object. By default, you’ll do that by calling the CFRelease function; some
CFTypeRefs, however, have their own dedicated object release functions — for exam‐
ple, for CGPath, there’s a dedicated CGPathRelease function. There’s no ARC man‐
agement of CFTypeRefs in Objective-C, so you have to do all of this yourself,
explicitly.

In Swift, however, you will never need to call CFRetain, or any form of CFRelease;
indeed, you cannot. Swift will do it for you, behind the scenes, automatically.

Think of CFTypeRefs as living in two worlds: the CFTypeRef world of pure C, and the
memory-managed object-oriented world of Swift. When you obtain a CFTypeRef
pseudo-object, it crosses the bridge from the CFTypeRef world into the Swift world.
From that moment on, until you are done with it, it needs memory management.
Swift is aware of this, and for the most part, Swift itself will use the golden rule and

558 | Chapter 12: Memory Management

will apply correct memory management. Thus, for example, the code I showed earlier
for drawing a gradient is in fact memory-management complete. In Objective-C, we
would have to release sp and grad, because they arrived into our world through
Create calls; if we failed to do this, they would leak. In Swift, however, there is no
need, because Swift will do it for us. (See Appendix A for more about how objects
move between the CFTypeRef world and the memory-managed object world.)

Working with CFTypeRefs in Swift is thus much easier than in Objective-C. In Swift,
you can treat CFTypeRef pseudo-objects as actual objects! For example, you can
assign a CFTypeRef to a property in Swift, or pass it as an argument to a Swift func‐
tion, and its memory will be managed correctly; in Objective-C, those are tricky
things to do.

It is possible that you may receive a CFTypeRef through some API that lacks memory
management information. Such a value will come forcibly to your attention, because
it will arrive into Swift, not as a CFTypeRef, but as an Unmanaged generic wrapping
the actual CFTypeRef. This is a form of warning that Swift does not know how to
proceed with the memory management of this pseudo-object. You will in fact be
unable to proceed until you unwrap the CFTypeRef by calling the Unmanaged object’s
takeRetainedValue or takeUnretainedValue method. You will call whichever
method tells Swift how to manage the memory for this object correctly. For a
CFTypeRef with an incremented retain count (usually acquired through a function
with Create or Copy in its name), call takeRetainedValue; otherwise, call take-
UnretainedValue.

Property Memory Management Policies
In Objective-C, a @property declaration (see Chapter 10) includes a statement of the
memory management policy implemented by the corresponding setter accessor
method. It is useful to be aware of this and to know how such policy statements are
translated into Swift.

For example, earlier I said that a UIViewController retains its view (its main view).
How do I know this? Because the @property declaration tells me so:

@property(null_resettable, nonatomic, strong) UIView *view;

The term strong means that the setter retains the incoming UIView object. The Swift
translation of this declaration doesn’t add any attribute to the variable:

var view: UIView!

The default in Swift is that a variable referring to a reference object type is a strong
reference — a persisting reference. This means that it retains the object. Thus, you
can safely conclude from this declaration that a UIViewController retains its view.

Property Memory Management Policies | 559

The possible memory management policies for a Cocoa property are:

strong, retain (no Swift equivalent term)
The default. The two terms are pure synonyms of one another; retain is the
term inherited from pre-ARC days. Assignment to this property releases the
existing value (if any) and retains the incoming value.

copy (no Swift equivalent term, or @NSCopying)
The same as strong or retain, except that the setter copies the incoming value
by sending copy to it; the incoming value must be an object of a type that adopts
NSCopying, to ensure that this is possible. The copy, which has an increased
retain count already, becomes the new value.

weak (Swift weak)
An ARC-weak reference. The incoming object value is not retained, but if it goes
out of existence behind our back, ARC will magically substitute nil as the value
of this property, which must be typed as an Optional declared with var.

assign (Swift unowned(unsafe))
No memory management. This policy is inherited from pre-ARC days, and is
inherently unsafe (hence the additional unsafe warning in the Swift translation
of the name): if the object referred to goes out of existence, this reference will
become a dangling pointer and can cause a crash if you subsequently try to use it.

The copy policy is used by Cocoa particularly when an immutable class has a mutable
subclass (such as NSString and NSMutableString, or NSArray and NSMutableArray;
see Chapter 10). The idea is to deal with the danger of the setter’s caller passing an
object of the mutable subclass. This is possible, because, in accordance with the sub‐
stitution principle of polymorphism (Chapter 4), wherever an instance of a class is
expected, an instance of its subclass can be passed. But it would be bad if this were to
happen, because now the caller might keep a reference to the incoming value and,
since it is in fact mutable, could later mutate it behind our back. To prevent this, the
setter calls copy on the incoming object; this creates a new instance, separate from the
object provided — and belonging to the immutable class.

In Swift, this problem is unlikely to arise with strings and arrays, because on the Swift
side these are value types (structs) and are effectively copied when assigned, passed as
an argument, or received as a return value. Thus, Cocoa’s NSString and NSArray
property declarations, when translated into Swift as String and Array property decla‐
rations, don’t show any special marking corresponding to Objective-C copy. But
Cocoa types that are not bridged to Swift value types do show a marking: @NSCopying.
For example, the declaration of the attributedText property of a UILabel appears
like this in Swift:

@NSCopying var attributedText: NSAttributedString?

560 | Chapter 12: Memory Management

NSAttributedString has a mutable subclass, NSMutableAttributedString. You’ve prob‐
ably configured this attributed string as an NSMutableAttributedString, and now
you’re assigning it as the UILabel’s attributedText. UILabel doesn’t want you keep‐
ing a reference to this mutable string and mutating it in place, since that would
change the value of the property without passing through the setter. Thus, it copies
the incoming value to ensure that what it has is a separate immutable NSAttributed‐
String.

You can do exactly the same thing in your own code, and you will want to do so.
Merely providing the @NSCopying designation on a property is sufficient; Swift will
enforce the copy policy and will take care of the actual copying for you when code
assigns to this property:

class StringDrawer {
 @NSCopying var attributedString : NSAttributedString!
 // ...
}

If, as is sometimes the case, your own class wants the internal ability to mutate the
value of this property while preventing a mutable value from arriving from outside,
put a private computed property façade in front of it that transforms it to the corre‐
sponding mutable type:

class StringDrawer {
 @NSCopying var attributedString : NSAttributedString!
 private var mutableAttributedString : NSMutableAttributedString! {
 get {
 if self.attributedString == nil {return nil}
 return NSMutableAttributedString(
 attributedString:self.attributedString)
 }
 set {
 self.attributedString = newValue
 }
 }
 // ...
}

@NSCopying can be used only for instance properties of classes, not of structs or
enums — and only in the presence of Foundation, because that is where the NSCopy‐
ing protocol is defined, which the type of a variable marked as @NSCopying must
adopt.

Debugging Memory Management Mistakes
Though far less likely to occur under ARC (and Swift), memory management mis‐
takes still can occur, especially because a programmer is prone to suppose (wrongly)

Debugging Memory Management Mistakes | 561

that they can’t. Experience suggests that you should use every tool at your disposal to
ferret out possible mistakes. Here are some of those tools (and see Chapter 9):

• The memory gauge in the Debug navigator charts memory usage whenever your
app runs, allowing you to observe possible memory leakage or other unwarran‐
ted heavy memory use. Note that memory management in the Simulator is not
necessarily indicative of reality! Always observe the memory gauge with the app
running on a device before making a judgment.

• Instruments (Product → Profile) has excellent tools for noticing leaks and track‐
ing memory management of individual objects.

• Good old caveman debugging can help confirm that your objects are behaving as
you want them to. Implement deinit with a print call. If it isn’t called, your
object is not going out of existence. This technique can reveal problems that even
Instruments will not directly expose.

• Memory graphing (“Memory Debugging” on page 444) will draw you a picture of
the ownership relations between your objects; in conjunction with Malloc Stack,
it will trace that ownership through the actual retain calls.

• Dangling pointers are particularly difficult to track down, but they can often be
located by “turning on zombies.” This is easy in Instruments with the Zombies
template. Alternatively, edit the Run action in your scheme, switch to the Diag‐
nostics tab, and check Enable Zombie Objects. The result is that an object that
goes out of existence is replaced by a “zombie” that will report to the console if a
message is sent to it (“message sent to deallocated instance”). Be sure to turn
zombies back off when you’ve finished tracking down your dangling pointers.
Don’t use zombies with the Leaks instrument: zombies are leaks.

• The Address Sanitizer (also in the scheme’s Run action’s Diagnostics tab) lets you
debug even more subtle forms of memory misuse. Here, for example, we’re doing
a Very Bad Thing, writing directly into memory that doesn’t belong to us:

let b = UnsafeMutablePointer<CGFloat>.allocate(capacity:3)
b.initializeFrom([0.1, 0.2, 0.3])
b[4] = 0.4

That code probably won’t crash; it corrupts memory silently. But if we run our
app under Address Sanitizer, it detects the problem and reports a heap buffer
overflow.

562 | Chapter 12: Memory Management

CHAPTER 13

Communication Between Objects

As soon as an app grows to more than a few objects, puzzling questions can arise
about how to send a message or communicate data between one object and another.
The problem is essentially one of architecture. It may require some planning to con‐
struct your code so that all the pieces fit together and information can be shared as
needed at the right moment. This chapter presents some organizational considera‐
tions that will help you arrange for one object to be able to communicate with
another.

The problem of communication often comes down to one object being able to see
another: the object Manny needs to be able to find the object Jack repeatedly and reli‐
ably over the long term so as to be able to send Jack messages.

One obvious solution is an instance property of Manny whose value is Jack. This is
appropriate particularly when Manny and Jack share certain responsibilities or sup‐
plement one another’s functionality. The application object and its delegate, a table
view and its data source, a view controller and the view that it controls — these are
cases where the former must have an instance property pointing at the latter.

This does not necessarily imply that Manny needs to assert ownership of Jack as a
matter of memory management policy (see Chapter 12) — but it might. An object
does not typically retain its delegate or its data source; similarly, an object that imple‐
ments the target–action pattern, such as a UIControl, does not retain its target. By
using a weak reference and typing the property as an Optional, and then treating the
Optional coherently and safely, Manny can avoid owning Jack while coping with the
possibility that his supposed reference to Jack will turn out to be nil. On the other
hand, a view controller is useless without a view to control; once it has a view, it will
retain it, releasing it only when it itself goes out of existence.

563

Objects can perform two-way communication without both of them holding refer‐
ences to one another. It may be sufficient for one of them to have a reference to the
other — because the former, as part of a message to the latter, can include a reference
to himself. For example, Manny might send a message to Jack where one of the
parameters is a reference to Manny; this might merely constitute a form of identifica‐
tion, or an invitation to Jack to send a message back to Manny if Jack needs further
information while doing whatever this method does. Manny thus makes himself, as it
were, momentarily visible to Jack; Jack should not wantonly retain Manny (especially
since there’s an obvious risk of a retain cycle). Again, this is a common pattern. The
parameter of the delegate message textFieldShouldBeginEditing(_:) is a reference
to the UITextField that sent the message. The first parameter of a target–action mes‐
sage is a reference to the control that sent the message.

But how is Manny to obtain a reference to Jack in the first place? That’s a very big
question. Much of the art of iOS programming, and of object-oriented programming
generally, lies in one object getting a reference to some other object (see “Instance Ref‐
erences” on page 135). Every case is different and must be solved separately, but cer‐
tain general patterns emerge, and this chapter will outline some of them.

There are also ways for Manny to send a message that Jack receives without having to
send it directly to Jack — possibly without even knowing or caring who Jack is. Noti‐
fications and key–value observing are examples, and I’ll mention them in this chapter
as well.

Finally, the chapter ends with a section on the larger question of what kinds of objects
need to see one another, within the general scope of a typical iOS program.

Visibility by Instantiation
Every instance comes from somewhere and at someone’s behest: some object sent a
message commanding this instance to come into existence in the first place. The
commanding object therefore has a reference to the instance at that moment. When
Manny creates Jack, Manny has a reference to Jack.

That simple fact can serve as the starting point for establishing future communica‐
tion. If Manny creates Jack and knows that he (Manny) will need a reference to Jack
in the future, Manny can keep the reference that he obtained by creating Jack in the
first place. Or, it may be that what Manny knows is that Jack will need a reference to
Manny in the future; Manny can supply that reference immediately after creating
Jack, and Jack will then keep it.

Delegation is a case in point. Manny may create Jack and immediately make himself
Jack’s delegate, as in my example code in Chapter 11:

let cpc = ColorPickerController(colorName:colorName, color:c)
cpc.delegate = self

564 | Chapter 13: Communication Between Objects

Indeed, if this is crucial, you might endow Jack with an initializer so that Manny can
create Jack and hand Jack a reference to himself at the same time, to help prevent any
slip-ups. Compare the approach taken by UIBarButtonItem, where three different
initializers, such as init(title:style:target:action:), require as a parameter the
target to which future messages will be sent by the UIBarButtonItem.

When Manny creates Jack, it might not be a reference to Manny himself that Jack
needs, but to something that Manny knows or has. You will presumably endow Jack
with a method so that Manny can hand that information across; again, it might be
reasonable to make that method Jack’s initializer, if Jack simply cannot live without
the information.

Recall this example from Chapter 11. It comes from a table view controller. The user
has tapped a row of the table. We create a secondary table view controller, a Tracks‐
ViewController instance, handing it the data it will need, and display the secondary
table view. I have deliberately devised TracksViewController to have a designated ini‐
tializer init(mediaItemCollection:), making it virtually obligatory for a Tracks‐
ViewController to have access, from the moment it comes into existence, to the data
it needs:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 delay(0.1) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController?.pushViewController(t, animated: true)
 }
}

In that example, self does not keep a reference to the new TracksViewController
instance, nor does the TracksViewController acquire a reference to self. But self
does create the TracksViewController instance, and so, for one brief shining moment,
it has a reference to it. Therefore self takes advantage of that moment to hand the
TracksViewController instance the information it needs. There will be no better
moment to do this. Knowing the moment, and taking care not to miss it, is part of the
art of data communication.

Nib-loading is also a case in point. The loading of a nib is a way of instantiating
objects from the nib. Proper preparation is essential in order to ensure that there’s a
reference for those objects, so that they don’t simply vanish in a puff of smoke (“Nib
Loading and Memory Management” on page 556). The moment when the nib loads
is the moment when the nib’s owner or the code that loads the nib is in contact with
those objects; it takes advantage of that moment to secure those references.

Beginners are often puzzled by how two objects are to get a reference to one another
if they will be instantiated from different nibs — either different .xib files or different
scenes in a storyboard. It is frustrating that you can’t draw a connection between an

Visibility by Instantiation | 565

object in nib A and an object in nib B; it’s particularly frustrating when you can see
both objects sitting right there in the same storyboard. But, as I explained earlier
(“Connections Between Nibs — Not!” on page 379), such a connection would be
meaningless, which is why it’s impossible. These are different nibs, and they will load
at different times. However, some object (Manny) is going to be the owner when nib
A loads, and some object (Jack) is going to be the owner when nib B loads. Perhaps
they (Manny and Jack) can then see each other, in which case, given all the necessary
outlets, the problem is solved. Or perhaps some third object (Moe) can see both of
them and will introduce them to one another, providing a communication path for
them.

For example, when a segue in a storyboard is triggered, the segue’s destination view
controller is instantiated, and the segue has a reference to it. At the same time, the
segue’s source view controller already exists, and the segue has a reference to it as
well. So the segue sends the source view controller the prepare(for:sender:) mes‐
sage, containing a reference to itself (the segue) as the first parameter. Think of the
segue as Moe; it is bringing Manny (the source view controller) and Jack (the destina‐
tion view controller) together. This is the source view controller’s chance (Manny’s
moment) to obtain a reference to the newly instantiated destination view controller (a
reference to Jack), by asking the segue for it — and now the source view controller
can make itself the destination view controller’s delegate, hand it any needed informa‐
tion, and so forth.

Visibility by Relationship
Objects may acquire the ability to see one another automatically by virtue of their
position in a containing structure. Before worrying about how to supply one object
with a reference to another, consider whether there may already be a chain of refer‐
ences leading from one to the other.

For example, a subview can see its superview, through its superview property. A
superview can see all its subviews, through its subviews property, and can pick out a
specific subview through that subview’s tag property, by calling the viewWithTag(_:)
method. A subview in a window can see its window, through its window property.
Thus, by working your way up or down the view hierarchy by means of these proper‐
ties, it may be possible to obtain the desired reference.

Similarly, a responder (Chapter 11) can see the next object up the responder chain,
through the next property — which also means, because of the structure of the res‐
ponder chain, that a view controller’s main view can see the view controller. In this
code from one of my apps, I work my way up from a view some way down the view
hierarchy to obtain a reference to the view controller that’s in charge of this whole
scene (and there are similar examples in Chapter 5):

566 | Chapter 13: Communication Between Objects

var r : UIResponder! = sender
repeat { r = r.next } while !(r is UIViewController)

Similarly, view controllers are themselves part of a hierarchy and therefore can see
one another. If a view controller is currently presenting a view through a second view
controller, the latter is the former’s presentedViewController, and the former is the
latter’s presentingViewController. If a view controller is the child of a
UINavigationController, the latter is its navigationController. A UINavigation‐
Controller’s visible view is controlled by its visibleViewController. And from any
of these, you can reach the view controller’s view through its view property, and so
forth.

All of these relationships are public. So if you can get a reference to just one object
within any of these structures or a similar structure, you can effectively navigate the
whole structure through a chain of references and lay your hands on any other object
within the structure.

Global Visibility
Some objects are globally visible — that is, they are visible to all other objects. Object
types themselves are an important example. As I pointed out in Chapter 4, it is per‐
fectly reasonable to use a Swift struct with static members as a way of providing glob‐
ally available namespaced constants (“Struct As Namespace” on page 149).

Classes sometimes have class methods or properties that vend singleton instances.
Some of these singletons, in turn, have properties pointing to other objects, making
those other objects likewise globally visible. For example, any object can see the sin‐
gleton UIApplication instance as UIApplication.shared. So any object can also see
the app’s primary window, because that is the singleton UIApplication instance’s key-
Window property, and any object can see the app delegate, because that is its delegate
property. And the chain continues: any object can see the app’s root view controller,
because that is the primary window’s rootViewController — and from there, as I
said in the previous section, we can navigate the view controller hierarchy and the
view hierarchy.

You, too, can make your own objects globally visible by attaching them to a globally
visible object. For example, a public property of the app delegate, which you are free
to create, is globally visible by virtue of the app delegate being globally visible (by vir‐
tue of the shared application being globally visible).

Another globally visible object is the shared defaults object obtained as User-
Defaults.standard. This object is the gateway to storage and retrieval of user
defaults, which is similar to a dictionary (a collection of values named by keys). The
user defaults are automatically saved when your application quits and are automati‐
cally available when your application is launched again later, so they are one of the

Global Visibility | 567

ways in which your app maintains information between launches. But, being globally
visible, they are also a conduit for communicating values within your app.

For example, in one of my apps there’s a preference setting I call Default.hazy-
Stripy. This determines whether a certain visible interface object (a card in a game)
is drawn with a hazy fill or a stripy fill. This is a setting that the user can change, so
there is a preferences interface allowing the user to make this change. When the user
displays this preferences interface, I examine the Default.hazyStripy setting in the
user defaults to configure the preferences interface to reflect it in a segmented control
(called self.hazyStripy):

func setHazyStripy () {
 let hs = UserDefaults.standard
 .object(forKey:Default.hazyStripy) as! Int
 self.hazyStripy.selectedSegmentIndex = hs
}

Conversely, if the user interacts with the preferences interface, tapping the hazy-
Stripy segmented control to change its setting, I respond by changing the actual
Default.hazyStripy setting in the user defaults:

@IBAction func hazyStripyChange(_ sender: Any) {
 let hs = self.hazyStripy.selectedSegmentIndex
 UserDefaults.standard.set(hs, forKey: Default.hazyStripy)
}

But here’s the really interesting part. The preferences interface is not the only object
that uses the Default.hazyStripy setting in the user defaults; the drawing code that
actually draws the hazy-or-stripy-filled card also uses it, so as to know how the card
should draw itself! When the user leaves the preferences interface and the card game
reappears, the cards are redrawn — consulting the Default.hazyStripy setting in
UserDefaults in order to do so:

override func draw(_ rect: CGRect) {
 let hazy : Bool = UserDefaults.standard
 .integer(forKey:Default.hazyStripy) == HazyStripy.hazy.rawValue
 CardPainter.shared.drawCard(self.card, hazy:hazy)
}

Thus there is no need for the card object and the view controller object that manages
the preferences interface to be able to see one another, because they can both see this
common object, the Default.hazyStripy user default. UserDefaults becomes, in
itself, a global conduit for communicating information from one part of my app to
another.

568 | Chapter 13: Communication Between Objects

Notifications and Key–Value Observing
Notifications (Chapter 11) can be a way to communicate between objects that are
conceptually distant from one another without bothering to provide any way for one
to see the other. All they really need to have in common is a knowledge of the name
of the notification. Every object can see the notification center — it is a globally visi‐
ble object — so every object can arrange to post or receive a notification.

Using a notification in this way may seem lazy, an evasion of your responsibility to
architect your objects sensibly. But sometimes one object doesn’t need to know, and
indeed shouldn’t know, what object (or objects) it is sending a message to.

Recall the example I gave in Chapter 11. In a simple card game app, the game needs
to know when a card is tapped. A card, when it is tapped, knowing nothing about the
game, simply emits a virtual shriek by posting a notification; the game object has reg‐
istered for this notification and takes over from there:

NotificationCenter.default.post(name: Card.tappedNotification, object: self)

Here’s another example, taking advantage of the fact that notifications are a broadcast
mechanism. In one of my apps, the app delegate may detect a need to tear down the
interface and build it back up again from scratch. If this is to happen without causing
memory leaks (and all sorts of other havoc), every view controller that is currently
running a repeating Timer needs to invalidate that timer (Chapter 12). Rather than
my having to work out what view controllers those might be, and endowing every
view controller with a method that can be called, I simply have the app delegate shout
“Everybody stop timers!” by posting a notification. All my view controllers that run
timers have registered for this notification, and they know what to do when they
receive it.

By the same token, Cocoa itself provides notification versions of many delegate and
action messages. For example, the app delegate has a method for being told when the
app goes into the background, but other objects might need to know this too; those
objects can register for the corresponding notification.

Similarly, key–value observing can be used to keep two conceptually distant objects
synchronized with one another: a property of one object changes, and the other
object hears about the change. As I said in (Chapter 11), entire parts of Cocoa rou‐
tinely expect you to use this when you want to be notified of a change in an object
property. You can configure the same sort of thing with your own objects.

Model–View–Controller
In Apple’s documentation and elsewhere, you’ll find references to the term model–
view–controller, or MVC. This refers to an architectural goal of maintaining a distinc‐
tion between three functional aspects of a program where the user can view and edit

Notifications and Key–Value Observing | 569

information — meaning, in effect, a program with a graphical user interface. The
notion goes back to the days of Smalltalk, and much has been written about it since
then, but informally, here’s what the terms mean:

Model
The data and its management, often referred to as the program’s “business logic”
— the hard-core stuff that the program is really all about.

View
What the user sees and interacts with.

Controller
The mediation between the model and the view.

Consider, for example, a game where the current score is displayed to the user:

A label displays the score (view)
A UILabel that shows the user the current score for the game in progress is view;
it is effectively nothing but a pixel-maker, and its business is to know how to
draw itself. The knowledge of what it should draw — the score, and the fact that
this is a score — lies elsewhere.

A rookie programmer might try to use the score displayed by the UILabel as the
actual score: to increment the score, read the UILabel’s string, turn that string
into a number, increment the number, turn the number back into a string, and
present that string in place of the previous string. That is a gross violation of the
MVC philosophy! The view presented to the user should reflect the score; it
should not store the score.

The score is maintained (model)
The score is data being maintained internally; it is model. It could be as simple as
an instance property along with a public increment method or as complicated as
a Score object with a raft of methods.

The score is numeric, whereas a UILabel displays a string; this alone is enough to
show that the view and the model are naturally different.

The score is updated (controller)
Telling the score when to change, and causing the updated score to be reflected in
the user interface, is controller work. This will be particularly clear if we imagine
that the model’s numeric score needs to be transformed in some way for presen‐
tation to the user.

For example, suppose the UILabel that presents the score reads: “The score is 20.”
The model is presumably storing and providing the number 20, so what’s the
source of the phrase “The score is…”? Whoever is causing this phrase to precede
the score in the presentation of the score to the user is a controller.

570 | Chapter 13: Communication Between Objects

Figure 13-1. Model–view–controller

Even this simplistic example (Figure 13-1) illustrates very well the advantages of
MVC. By separating powers in this way, we allow the aspects of the program to evolve
with a great degree of independence. Do you want a different font and size in the pre‐
sentation of the score? Change the view; the model and controller need know nothing
about it, but will just go on working exactly as they did before. Do you want to
change the phrase that precedes the score? Change the controller; the model and view
are unchanged.

Adherence to MVC is particularly appropriate in a Cocoa app, because Cocoa itself
adheres to it. The very names of Cocoa classes reveal the MVC philosophy that
underlies them. A UIView is a view. A UIViewController is a controller; its purpose is
to embody the logic that tells the view what to display. In Chapter 11 we saw that a
UIPickerView does not hold the data it displays; it gets that data from a data source.
So the UIPickerView is a view; the data maintained by the data source is model (and
the data source itself is probably a controller).

A further distinction, found in Apple’s documentation, is this: true model material
and true view material should be quite reusable, in the sense that they can be transfer‐
red wholesale into some other app; controller material is generally not reusable,
because it is concerned with how this app mediates between the model and the view.

MVC helps to provide answers about what objects need to be able to see what other
objects in your app. A controller object will usually need to see a model object and a
view object. A model object, or a group of model objects, usually won’t need to see
outside itself. A view object typically doesn’t need to see outside itself specifically, but
structural devices such as delegation, data source, and target–action allow a view
object to communicate agnostically with a controller.

Model–View–Controller | 571

APPENDIX A

C, Objective-C, and Swift

Programming iOS involves communicating with Cocoa and its supplementary frame‐
works. The APIs for those frameworks are written in Objective-C — or in its underly‐
ing base language, C. Messages that you send to Cocoa using Swift are being
translated for you into Objective-C. Objects that you send and receive back and forth
across the Swift/Objective-C bridge are Objective-C objects. Some objects that you
send from Swift to Objective-C are even being translated for you into other object
types, or into nonobject types.

You need to understand what Objective-C expects from you when you are sending
messages across the language bridge. You need to know what Objective-C is going to
do with those messages. You need to know what is coming from Objective-C, and
how it will be represented in Swift. Your app may even include some Objective-C
code as well as Swift code, so you need to know how the parts of your own app will
communicate with each other.

This appendix summarizes certain linguistic features of C and Objective-C, and
describes how Swift interfaces with those features. I do not explain here how to write
Objective-C! For example, I’ll talk about Objective-C methods and method declara‐
tions, because you need to know how to call an Objective-C method from Swift; but
I’m not going to explain how to call an Objective-C method in Objective-C.

The C Language
Objective-C is a superset of C; to put it another way, C provides the linguistic under‐
pinnings of Objective-C. Everything that is true of C is true also of Objective-C. It is
possible, and often necessary, to write long stretches of Objective-C code that are, in
effect, pure C. Some of the Cocoa APIs are written in C. Therefore, in order to know
about Objective-C, it is necessary to know about C.

573

C statements, including declarations, must end in a semicolon. Variables must be
declared before use. A variable declaration consists of a data type name followed by
the variable name, optionally followed by assignment of an initial value:

int i;
double d = 3.14159;

The C typedef statement starts with an existing type name and defines a new syno‐
nym for it:

typedef double NSTimeInterval;

C Data Types
C is not an object-oriented language; its data types are not objects (they are scalars).
The basic built-in C data types are all numeric: char (one byte), int (four bytes), float
and double (floating-point numbers), and varieties such as short (short integer), long
(long integer), unsigned short, and so on. Objective-C adds NSInteger, NSUInteger
(unsigned), and CGFloat. The C bool type is actually a numeric, with zero represent‐
ing false; Objective-C adds BOOL, which is also a numeric. The C native text type
(string) is actually a null-terminated array of char.

Swift explicitly supplies numeric types that interface directly with C numeric types,
even though Swift’s types are objects and C’s types are not. Swift type aliases provide
names that correspond to the C type names: a Swift CBool is a C bool, a Swift CChar
is a C char (a Swift Int8), a Swift CInt is a C int (a Swift Int32), a Swift CFloat is a C
float (a Swift Float), and so on. Swift Int interchanges with NSInteger; Swift UInt
interchanges with NSUInteger. Swift ObjCBool represents Objective-C BOOL.
CGFloat is adopted as a Swift type name.

A major difference between C and Swift is that C (and therefore Objective-C) implic‐
itly coerces when values of different numeric types are assigned, passed, compared to,
or combined with one another; Swift doesn’t, so you must coerce explicitly to make
types match exactly, as I described in Chapter 3.

The native C string type, a null-terminated array of char, may be typed in Swift as
[Int8] or [CChar] (recall that CChar is Int8) or, for reasons that will be clear later, as
UnsafePointer<Int8> or UnsafePointer<CChar>. A C string can’t be formed as a lit‐
eral in Swift, but you can pass a Swift String where a C string is expected. If you need
to create a C string variable, the NSString utf8String property or the Swift Founda‐
tion overlay’s cString(using:) method can be used to form a C string. Alternatively,
you can use the String utf8CString property (a ContiguousArray<CChar>) or the
withCString method; in this example, I cycle through the “characters” of the C string
until I reach the null terminator (I’ll explain the pointee property a bit later):

574 | Appendix A: C, Objective-C, and Swift

"hello".withCString {
 var cs = $0 // UnsafePointer<Int8>
 while cs.pointee != 0 {
 print(cs.pointee)
 cs += 1 // or: cs = cs.successor()
 }
}

In the other direction, a UTF-8 C string (including ASCII) can be rendered into a
Swift String by way of a Swift String initializer such as init(cString:) or init?
(validatingUTF8:). To specify some other encoding, call the static method decode-
CString(_:as:).

C Enums
A C enum is numeric; values are some form of integer, and can be implicit (starting
from 0) or explicit. Enums arrive in various forms into Swift, depending on exactly
how they are declared. Let’s start with the simplest (and oldest) form:

enum State {
 kDead,
 kAlive
};
typedef enum State State;

(The typedef in the last line merely allows C programs to use the term State as the
name of this type instead of the more verbose enum State.) In C, enumerand names
kDead and kAlive are not “cases” of anything; they are not namespaced. They are
constants, and as they are not explicitly initialized, they represent 0 and 1 respectively.
An enum declaration can specify the integer type further; this one doesn’t, so the val‐
ues are typed in Swift as UInt32.

This old-fashioned sort of C enum arrives as a Swift struct adopting the RawRepre‐
sentable protocol, and its enumerands (here, kDead and kAlive) arrive into Swift as
synonyms for instances of the State struct with an appropriate rawValue (here, 0 and
1 respectively). Notice that I didn’t say anything about namespacing! The enumerands
are bare names, not members of the State struct; you say kDead, not State.kDead.

The idea is that you can use the State struct, and in particular the enumerand names,
as a medium of interchange wherever a State enum arrives from or is expected by C.
Thus, if a C function setState takes a State enum parameter, you can call it with one
of the State enumerand names:

setState(kDead)

If you are curious about what integer is represented by the name kDead, you have to
take its rawValue. You can also create an arbitrary State value by calling its init(raw-

C, Objective-C, and Swift | 575

Value:) initializer — there is no compiler or runtime check to see whether this value
is one of the defined constants. But you aren’t expected to do either of those things.

NS_ENUM

Starting back in Xcode 4.4, a C enum notation was introduced that uses the NS_ENUM
macro:

typedef NS_ENUM(NSInteger, UIStatusBarAnimation) {
 UIStatusBarAnimationNone,
 UIStatusBarAnimationFade,
 UIStatusBarAnimationSlide,
};

That notation explicitly specifies the integer type and associates a type name with this
enum as a whole. Swift imports an enum declared this way as a Swift enum with the
name and raw value type intact. This is a true Swift enum, so the enumerand names
become namespaced case names. Moreover, Swift automatically subtracts the com‐
mon prefix from the case names:

enum UIStatusBarAnimation : Int {
 case none
 case fade
 case slide
}

Going the other way, a Swift enum with an Int raw value type can be exposed to
Objective-C using the @objc attribute. Thus, for example, Objective-C sees this Swift
enum as an enum with type NSInteger and enumerand names StarBlue, StarWhite,
and so on:

@objc enum Star : Int {
 case blue
 case white
 case yellow
 case red
}

NS_OPTIONS

Another variant of C enum notation, using the NS_OPTIONS macro, is suitable for
bitmasks:

typedef NS_OPTIONS(NSUInteger, UIViewAutoresizing) {
 UIViewAutoresizingNone = 0,
 UIViewAutoresizingFlexibleLeftMargin = 1 << 0,
 UIViewAutoresizingFlexibleWidth = 1 << 1,
 UIViewAutoresizingFlexibleRightMargin = 1 << 2,

576 | Appendix A: C, Objective-C, and Swift

 UIViewAutoresizingFlexibleTopMargin = 1 << 3,
 UIViewAutoresizingFlexibleHeight = 1 << 4,
 UIViewAutoresizingFlexibleBottomMargin = 1 << 5
};

An enum declared this way arrives into Swift as a struct adopting the OptionSet pro‐
tocol. The OptionSet protocol adopts the RawRepresentable protocol, so this is a
struct with a rawValue instance property holding the underlying integer. The C enum
case names are represented by static properties, each of whose values is an instance of
this struct; the names of these static properties are imported with the common prefix
subtracted. Moreover, new in Swift 4.2, this particular struct is namespaced by nest‐
ing it into the UIView class, as UIView.AutoresizingMask:

struct AutoresizingMask : OptionSet {
 init(rawValue: UInt)
 static var flexibleLeftMargin: UIView.AutoresizingMask { get }
 static var flexibleWidth: UIView.AutoresizingMask { get }
 static var flexibleRightMargin: UIView.AutoresizingMask { get }
 static var flexibleTopMargin: UIView.AutoresizingMask { get }
 static var flexibleHeight: UIView.AutoresizingMask { get }
 static var flexibleBottomMargin: UIView.AutoresizingMask { get }
}

Thus, for example, when you say UIView.AutoresizingMask.flexibleLeftMargin, it
looks as if you are initializing a case of a Swift enum, but in fact this is an instance of
the UIView.AutoresizingMask struct, whose rawValue property has been set to the
value declared by the original C enum — which, for .flexibleLeftMargin, is 1<<0.
Because a static property of this struct is an instance of the same struct, you can, as I
explained in “Inference of Type Name with Static/Class Members” on page 140, omit
the struct name when supplying a static property name where the struct is expected:

self.view.autoresizingMask = .flexibleWidth

Moreover, because this is an OptionSet struct, set-like operations can be applied —
thus permitting you to manipulate the bitmask by working with instances as if this
were a Set:

self.view.autoresizingMask = [.flexibleWidth, .flexibleHeight]

In Objective-C, where an NS_OPTIONS enum is expected, you pass 0 to indicate
that no options are provided. In Swift, where a corresponding struct is expected,
you pass [] (an empty set) or omit the options: parameter entirely. Some
NS_OPTIONS enums have an explicit option that means 0; Swift sometimes won’t
bother to import its name, because passing [] means the same thing. For exam‐
ple, to set a UIView.AutoresizingMask value to UIViewAutoresizingNone in
Swift, set it to [] (not .none).

C, Objective-C, and Swift | 577

Global string constants
The names of many Objective-C global string constants (referred to jokingly by
Apple as “stringly typed”) are namespaced by importing them into Swift as static
struct properties. This is accomplished by means of the NS_STRING_ENUM and
NS_EXTENSIBLE_STRING_ENUM Objective-C macros. For example, the names of the
NSAttributedString attribute keys used to be simple global string constants (type
NSString*):

NSString* const NSFontAttributeName;
NSString* const NSParagraphStyleAttributeName;
NSString* const NSForegroundColorAttributeName;
// ... and so on ...

This meant that they were global string constants in Swift as well. Now, however, they
are typed as NSAttributedStringKey values:

NSAttributedStringKey const NSFontAttributeName;
NSAttributedStringKey const NSParagraphStyleAttributeName;
NSAttributedStringKey const NSForegroundColorAttributeName;
// ... and so on ...

NSAttributedStringKey, in Objective-C, is just a synonym for NSString, but it is
marked with the NS_EXTENSIBLE_STRING_ENUM macro:

typedef NSString * NSAttributedStringKey NS_EXTENSIBLE_STRING_ENUM;

The result is that these names are imported into Swift as namespaced static properties
of an NSAttributedString.Key struct with names like .name, .paragraphStyle, and so
on. Moreover, a dictionary that expects these keys has a key type of NSAttributed‐
String.Key, so you can write compact code like this:

UINavigationBar.appearance().titleTextAttributes = [
 .font: UIFont(name: "ChalkboardSE-Bold", size: 20)!,
 .foregroundColor: UIColor.darkText
]

C Structs
A C struct is a compound type whose elements can be accessed by name using dot-
notation after a reference to the struct. For example:

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

After that declaration, it becomes possible to talk like this in C:

578 | Appendix A: C, Objective-C, and Swift

CGPoint p;
p.x = 100;
p.y = 200;

A C struct arrives wholesale into Swift as a Swift struct, which is thereupon endowed
with Swift struct features. Thus, for example, CGPoint in Swift has x and y CGFloat
instance properties, as you would expect; but it also magically acquires the implicit
memberwise initializer! In addition, a zeroing initializer with no parameters is injec‐
ted; thus, saying CGPoint() makes a CGPoint whose x and y are both 0. Extensions
can supply additional features, and the Swift CoreGraphics header adds a few to
CGPoint:

extension CGPoint {
 static var zero: CGPoint { get }
 init(x: Int, y: Int)
 init(x: Double, y: Double)
}

As you can see, a Swift CGPoint has additional initializers accepting Int or Double
arguments, along with another way of making a zero CGPoint, CGPoint.zero.
CGSize is treated similarly. CGRect is particularly well endowed with added methods
and properties in Swift, allowing you to do things in a Swiftier way. (I’ll talk more
about that in a bit.)

The fact that a Swift struct is an object, while a C struct is not, does not pose any
problems of communication. You can assign or pass a Swift CGPoint, for example,
where a C CGPoint is expected, because CGPoint came from C in the first place. The
fact that Swift has endowed CGPoint with object methods and properties doesn’t
matter; C doesn’t see them. All that C cares about are the x and y elements of this
CGPoint, which are communicated from Swift to C without difficulty.

C Pointers
A C pointer is an integer designating the location in memory (the address) where the
real data resides. Allocating and disposing of that memory is a separate matter. The
declaration for a pointer to a data type is written with an asterisk after the data type
name; a space can appear on either or both sides of the asterisk. These are equivalent
declarations of a pointer-to-int:

int *intPtr1;
int* intPtr2;
int * intPtr3;

The type name itself is int* (or, with a space, int *). Objective-C, for reasons that I’ll
explain later, uses C pointers heavily, so you’re going to be seeing that asterisk a lot if
you look at any Objective-C.

C, Objective-C, and Swift | 579

A C pointer arrives into Swift as an UnsafePointer or, if writable, an UnsafeMutable‐
Pointer; this is a generic, and is specified to the actual type of data pointed to. (A
pointer is “unsafe” because Swift isn’t managing the memory for, and can’t even guar‐
antee the integrity of, what is pointed to.)

For example, here’s an Objective-C UIColor method declaration; I haven’t discussed
this syntax yet, but just concentrate on the types in parentheses:

- (BOOL) getRed: (CGFloat *) red
 green: (CGFloat *) green
 blue: (CGFloat *) blue
 alpha: (CGFloat *) alpha;

CGFloat is a basic numeric type. The type CGFloat *, despite the space, states that
these parameters are all CGFloat* — that is, pointer-to-CGFloat.

The Swift translation of that declaration looks, in effect, like this:

func getRed(_ red: UnsafeMutablePointer<CGFloat>,
 green: UnsafeMutablePointer<CGFloat>,
 blue: UnsafeMutablePointer<CGFloat>,
 alpha: UnsafeMutablePointer<CGFloat>) -> Bool

UnsafeMutablePointer in this context is used like a Swift inout parameter: you
declare and initialize a var of the appropriate type beforehand, and then pass its
address as argument by way of the & prefix operator. When you pass the address of a
reference in this way, you are in fact creating and passing a pointer:

var r : CGFloat = 0
var g : CGFloat = 0
var b : CGFloat = 0
var a : CGFloat = 0
c.getRed(&r, green: &g, blue: &b, alpha: &a)

In C, to access the memory pointed to by a pointer, you use an asterisk before the
pointer’s name: *intPtr is “the thing pointed to by the pointer intPtr.” In Swift, you
use the pointer’s pointee property.

In this example, we receive a stop parameter typed originally as a BOOL*, a pointer-to-
BOOL; in Swift, it’s an UnsafeMutablePointer<ObjCBool>. To set the BOOL at the
far end of this pointer, we set the pointer’s pointee:

// mas is an NSMutableAttributedString, r is an NSRange, f is a UIFont
mas.enumerateAttribute(.font, in: r) { value, r, stop in
 if let value = value as? UIFont, value == f {
 // ...
 stop.pointee = true
 }
}

580 | Appendix A: C, Objective-C, and Swift

The most general type of C pointer is pointer-to-void (void*), also known as the
generic pointer. The term void here means that no type is specified; it is legal in C to
use a generic pointer wherever a specific type of pointer is expected, and vice versa. In
effect, pointer-to-void casts away type checking as to what’s at the far end of the
pointer. This will appear in Swift as a “raw” pointer, either UnsafeRawPointer or
UnsafeMutableRawPointer. In general, when you encounter pointers of this type, if
you need to access the underlying data, you’ll start by rebinding its memory to an
unsafe pointer generic specified to the underlying type:

// buff is a CVImageBuffer
if let baseAddress = CVPixelBufferGetBaseAddress(buff) {
 // baseAddress is an UnsafeMutableRawPointer
 let addrptr = baseAddress.assumingMemoryBound(to: UInt8.self)
 // addrptr is an UnsafeMutablePointer<UInt8>
 // ...
}

C Arrays
A C array contains a fixed number of elements of a certain data type. Under the hood,
it is a contiguous block of memory sized to accommodate this number of elements of
this data type. For this reason, the name of an array in C is the name of a pointer — to
the first element of the array. For example, if arr has been declared as an array of int,
the term arr can be used wherever a value of type int* (a pointer-to-int) is expected.
The C language will indicate an array type either by appending square brackets to a
reference or as a pointer.

(That explains why C strings may be typed in Swift as an unsafe pointer to Int8 or
CChar: a C string is an array of char, so it’s a pointer to char.)

For example, the C function CGContextStrokeLineSegments is declared like this:

void CGContextStrokeLineSegments(CGContextRef c,
 const CGPoint points[],
 size_t count
);

The second parameter is a C array of CGPoints; that’s what the square brackets tell
you. A C array carries no information about how many elements it contains, so to
pass this C array to this function, you must also tell the function how many elements
the array contains; that’s what the third parameter is for. A C array of CGPoint is a
pointer to a CGPoint, so this function’s declaration is translated into Swift like this:

func __strokeLineSegments(
 between points: UnsafePointer<CGPoint>?,
 count: Int)

Now, you’re not really expected to call this function; the CGContext Swift overlay
provides a pure Swift version, strokeLineSegments, which takes a Swift array of

C, Objective-C, and Swift | 581

CGPoint (with no need to provide a count). But let’s say you wanted to call __stroke-
LineSegments instead. How would you do it?

To call __strokeLineSegments and pass it a C array of CGPoints, it would appear
that you need to make a C array of CGPoints. A C array is not, by any stretch of the
imagination, a Swift array; so how on earth will you do this? Surprise! You don’t have
to. Even though a Swift array is not a C array, you can pass a pointer to a Swift array
here. Here, you don’t even need to pass a pointer; you can pass a reference to a Swift
array itself. And since this is not a mutable pointer, you can declare the array with
let; indeed, you can even pass a Swift array literal! No matter which approach you
choose, Swift will convert to a C array for you as the argument crosses the bridge
from Swift to C:

let c = UIGraphicsGetCurrentContext()!
let arr = [CGPoint(x:0,y:0),
 CGPoint(x:50,y:50),
 CGPoint(x:50,y:50),
 CGPoint(x:0,y:100),
]
c.__strokeLineSegments(between: arr, count: arr.count)

However, you can form a C array if you really want to. To do so, you must first set
aside the block of memory yourself: declare an UnsafeMutablePointer of the desired
type, calling the class method allocate(capacity:) with the desired number of ele‐
ments. You can then write the element values directly into memory. You could do this
by manipulating the pointee, but you can also use subscripting, which might be a lot
more convenient. Finally, since the UnsafeMutablePointer is a pointer, you pass it, not
a pointer to it, as argument:

let c = UIGraphicsGetCurrentContext()!
let arr = UnsafeMutablePointer<CGPoint>.allocate(capacity:4)
arr[0] = CGPoint(x:0,y:0)
arr[1] = CGPoint(x:50,y:50)
arr[2] = CGPoint(x:50,y:50)
arr[3] = CGPoint(x:0,y:100)
c.__strokeLineSegments(between: arr, count: 4)

If you’re going to do that, however, you really need to take upon yourself the full
details of memory management. Having allocated this pointer’s memory and assigned
values into it, you should eventually remove the values and deallocate the memory:

let arr = UnsafeMutablePointer<CGPoint>.allocate(capacity:4)
defer {
 arr.deinitialize(count:4)
 arr.deallocate()
}

582 | Appendix A: C, Objective-C, and Swift

The same convenient subscripting is available when you receive a C array. In this
example, col is a UIColor; comp is typed as an UnsafePointer to CGFloat. That is
really a C array of CGFloat — and so you can access its elements by subscripting:

if let comp = col.cgColor.__unsafeComponents,
 let sp = col.cgColor.colorSpace,
 sp.model == .rgb {
 let red = comp[0]
 let green = comp[1]
 let blue = comp[2]
 let alpha = comp[3]
 // ...
}

C Functions
A C function declaration starts with the return type (which might be void, meaning
no returned value), followed by the function name, followed by a parameter list, in
parentheses, of comma-separated pairs consisting of the type followed by the param‐
eter name. The parameter names are purely internal. C functions are global, and Swift
can call them directly.

For example, here’s the C declaration for an Audio Services function:

OSStatus AudioServicesCreateSystemSoundID(
 CFURLRef inFileURL,
 SystemSoundID* outSystemSoundID)

An OSStatus is basically an Int32. A CFURLRef is a CFTypeRef (“Memory Manage‐
ment of CFTypeRefs” on page 557), called CFURL in Swift. A SystemSoundID is a
UInt32, and the * makes this a C pointer, as we already know. The whole thing thus
translates directly into Swift:

func AudioServicesCreateSystemSoundID(
 _ inFileURL: CFURL,
 _ outSystemSoundID: UnsafeMutablePointer<SystemSoundID>) -> OSStatus

CFURL is (for reasons that I’ll explain later) interchangeable with NSURL and Swift
URL; so here we are, calling this C function in Swift:

let sndurl = Bundle.main.url(forResource: "test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)

Struct functions
In iOS programming, the vast majority of commonly used C global functions operate
on a struct; they have the name of that struct as the first element of their name, and
have that struct itself as their first parameter. In Swift, such functions are often over‐
shadowed by instance method representations: the struct name is stripped from the

C, Objective-C, and Swift | 583

name of the function, and the function is applied as a method to an instance of that
struct.

For example, in Objective-C, the way to construct a CGRect from scratch is with the
CGRectMake function, and the way to divide a CGRect is with the CGRectDivide
function:

CGRect rect = CGRectMake(10,10,100,100);
CGRect arrow;
CGRect body;
CGRectDivide(rect, &arrow, &body, arrowHeight, CGRectMinYEdge);

In Swift, CGRectMake is overshadowed by the CGRect struct initializer
init(x:y:width:height:), and CGRectDivide is overshadowed by the CGRect
divided method:

let rect = CGRect(x: 10, y: 10, width: 100, height: 100)
let (arrow, body) = rect.divided(atDistance: arrowHeight, from: .minYEdge)

Pointer-to-function
In C, a function has a type based on its signature, and the name of a function is a
reference to the function, and so it is possible to pass a function — sometimes
referred to as a pointer-to-function — by using the function’s name where a function
of that type is expected. In a declaration, a pointer-to-function may be symbolized by
an asterisk in parentheses.

For example, here’s the declaration for a C function from the Audio Toolbox frame‐
work:

OSStatus AudioServicesAddSystemSoundCompletion(SystemSoundID inSystemSoundID,
 CFRunLoopRef __nullable inRunLoop,
 CFStringRef __nullable inRunLoopMode,
 AudioServicesSystemSoundCompletionProc inCompletionRoutine,
 void * __nullable inClientData)

(I’ll explain the term __nullable later.) What’s an AudioServicesSystemSoundCom‐
pletionProc? It’s this:

typedef void (*AudioServicesSystemSoundCompletionProc)(
 SystemSoundID ssID,
 void* __nullable clientData);

A SystemSoundID is a UInt32, so that tells you, in the rather tortured syntax that C
uses for these things, that an AudioServicesSystemSoundCompletionProc is a pointer
to a function taking two parameters (typed UInt32 and pointer-to-void) and return‐
ing no result.

Amazingly, you can pass a Swift function where a C pointer-to-function is expected!
As always when passing a function, you can define the function separately and pass
its name, or you can form the function inline as an anonymous function. If you’re

584 | Appendix A: C, Objective-C, and Swift

going to define the function separately, it must be a function — meaning that it can‐
not be a method. A function defined at the top level of a file is fine; so is a function
defined locally within a function.

So here’s my AudioServicesSystemSoundCompletionProc, declared at the top level of
a file:

func soundFinished(_ snd:UInt32, _ c:UnsafeMutableRawPointer?) {
 AudioServicesRemoveSystemSoundCompletion(snd)
 AudioServicesDisposeSystemSoundID(snd)
}

And here’s my code for playing a sound file as a system sound, including a call to
AudioServicesAddSystemSoundCompletion:

let sndurl = Bundle.main.url(forResource: "test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)
AudioServicesAddSystemSoundCompletion(snd, nil, nil, soundFinished, nil)
AudioServicesPlaySystemSound(snd)

Objective-C
Objective-C is built on the back of C. It adds some syntax and features, but it contin‐
ues to use C syntax and data types, and remains C under the hood.

Unlike Swift, Objective-C has no namespaces. For this reason, different frameworks
distinguish their contents by starting their names with different prefixes. The “CG” in
“CGFloat” stands for Core Graphics, because it is declared in the Core Graphics
framework. The “NS” in “NSString” stands for NeXTStep, a historical name for the
framework that later became Cocoa. And so on.

Objective-C Objects and C Pointers
All the data types and syntax of C are part of Objective-C. But Objective-C is also
object-oriented, so it needs a way of adding objects to C. It does this by taking advan‐
tage of C pointers. C pointers accommodate having anything at all at the far end of
the pointer; management of whatever is pointed to is a separate matter, and that’s just
what Objective-C takes care of. Thus, Objective-C object types are expressed using C
pointer syntax.

For example, here’s the Objective-C declaration for the addSubview: method:

- (void)addSubview:(UIView *)view;

I haven’t discussed Objective-C method declaration syntax yet, but focus on the type
declaration for the view parameter, in parentheses: it is UIView*. This appears to
mean “a pointer to a UIView.” It does mean that — and it doesn’t. What’s at the far
end of the pointer is certainly a UIView instance. But all Objective-C object refer‐

C, Objective-C, and Swift | 585

ences are pointers. Thus, the fact that this is a pointer is merely a consequence of the
fact that it’s an object.

The Swift translation of this method declaration doesn’t appear to involve any
pointers:

func addSubview(_ view: UIView)

In general, in Swift, you will simply pass a reference to a class instance where
Objective-C expects a class instance; the fact that an asterisk is used in the Objective-
C declaration to express the fact that this is an object won’t matter. What you pass as
argument when calling addSubview(_:) from Swift is a UIView instance — which is
exactly what Objective-C expects. There is, of course, a sense in which you are pass‐
ing a pointer when you pass a class instance — because classes are reference types!
Thus, a class instance is actually seen the same way by both Swift and Objective-C;
the difference is that Swift doesn’t use pointer notation.

Objective-C’s id type is a general pointer to an object — the object equivalent of C
pointer-to-void. Any object type can be assigned or cast to or from an id. Because id
is itself a pointer, a reference declared as id doesn’t use an asterisk; it is rare (though
not impossible) to encounter an id*.

Objective-C Objects and Swift Objects
Objective-C objects are classes and instances of classes. They arrive into Swift more
or less intact. You won’t have any trouble subclassing Objective-C classes or working
with instances of Objective-C classes.

The same is true in reverse. If Objective-C expects an object, it expects a class, and
Swift can provide it. In the most general case, where Objective-C expects an id, you
can pass a class instance, and Objective-C will be able to deal with it. But the only
kind of object that Objective-C can fully deal with is an instance of an NSObject sub‐
class. Instances of other classes can’t be introspected by Objective-C, and everything
else has to be bridged or boxed in order to survive the journey into Objective-C’s
world, as I’ll explain later.

Swift can see just about all aspects of an Objective-C class type (for how Swift sees
Objective-C properties and accessors, see Chapter 10). The reverse, however, is not
true. Many features of Swift are completely meaningless to Objective-C — and there‐
fore those features are simply invisible to Objective-C. Objective-C can’t see any of
the following:

• Swift enums, except for an @objc enum with an Int raw value
• Swift structs, except for structs that come ultimately from C (or that are bridged)
• Swift classes not derived from NSObject

586 | Appendix A: C, Objective-C, and Swift

• Swift protocols not marked @objc
• Protocol extensions
• Generics
• Tuples
• Nested types

Nothing in that list can be directly exposed to Objective-C — and, by implication,
nothing that involves anything in that list can be exposed to Objective-C. For exam‐
ple, suppose we have a class MyClass not derived from NSObject. Then if your
UIViewController subclass has a property typed as a MyClass, that property cannot
be exposed to Objective-C. If your UIViewController subclass has a method that
receives or returns a value typed as a MyClass, that method cannot be exposed to
Objective-C.

Nevertheless, you are perfectly free to use such properties and methods, even in a
class (such as a UIViewController subclass) that is exposed to Objective-C. Objective-
C simply won’t be able to see those aspects of the class that would be meaningless to
it.

Exposure of Swift to Objective-C
Starting in Swift 4, invisibility of Swift code to Objective-C is the norm. With a few
exceptions, even if Objective-C can theoretically see a thing, it won’t see it unless you
explicitly expose it to Objective-C. You do that with the @objc attribute.

Let’s talk first about the exceptions. These are things in your Swift code that
Objective-C will be able to see automatically, without an explicit @objc attribute:

• Classes that derive from NSObject. Such a class will be declared in Swift either as
subclassing NSObject itself or as subclassing some NSObject subclass, typically a
class defined by Cocoa (such as UIViewController).

• Within such a class, overrides of methods that are defined in Objective-C (such
as UIViewController’s viewDidLoad) or are defined in Swift but marked @objc.

• Within such a class, implementations of members of protocols that are defined in
Objective-C (such as NSCoding’s init(coder:)) or are defined in Swift but
marked @objc.

• Within such a class, instance properties marked @IBOutlet or @IBInspectable
and methods marked @IBAction (see Chapter 7), and instance properties marked
@NSManaged.

Otherwise, to expose to Objective-C a property, method, or protocol, mark it with
@objc. The compiler will stop you if you try to expose to Objective-C something that

C, Objective-C, and Swift | 587

it is unable to see (such as a property whose type Objective-C cannot see or cannot
understand). A protocol marked as @objc automatically becomes a class protocol.

A useful trick, if you have several methods that you need to expose explicitly to
Objective-C, is to clump them into an extension which is itself marked @objc; there is
then no need to mark those methods with @objc individually. If most or all of a class’s
members are to be exposed to Objective-C, you can mark the class @objcMembers;
again, there is then no need to mark those members with @objc individually. Con‐
versely, if a class member would be exposed to Objective-C and you want to prevent
this, you can mark it @nonobjc.

There are two additional uses of @objc:

Expose a member of a nonObjective-C class
Even if a class is not exposed to Objective-C, it can be useful to mark a member
of that class with @objc so that your Swift code can take advantage of an
Objective-C language feature with regard to that member. For example, a Timer
using the target–action pattern (Chapter 11) can have a method of a
nonObjective-C class as its action, but only if that method is marked @objc,
because the method is specified with a selector (Chapter 2) — and selectors are
an Objective-C feature (as I’ll explain later in this appendix).

Change the Objective-C name of something
When you mark something with @objc, you can add parentheses containing the
name by which you want Objective-C to see this thing. You are free to do this
even for a class or a class member that Objective-C can see already. An example
appeared in Chapter 10 when I changed the name by which Objective-C sees a
property accessor. When using this feature, though, you bypass Swift’s behind-
the-scenes name mangling feature, designed to prevent clashes with any existing
Objective-C names; so you must take responsibility for avoiding such a clash
yourself.

Class members that would normally be visible to Objective-C, even those explic‐
itly marked @objc or @IBAction or @IBOutlet, can be marked fileprivate or
private. You can reduce compilation times by doing that, because the compiler
doesn’t need to consider private class members when it works out what to expose
to Objective-C in the generated interface header (discussed at the end of this
chapter).

Bridged Types and Boxed Types
Swift will convert certain native nonclass types to their Objective-C class equivalents
for you. The following native Swift structs are bridged to Objective-C class types:

• String to NSString

588 | Appendix A: C, Objective-C, and Swift

• Numbers (and Bool) to NSNumber
• Array to NSArray
• Dictionary to NSDictionary
• Set to NSSet

Bridging has two immediate practical consequences for your code:

Parameter passing
You can pass an instance of the Swift struct where the Objective-C class is
expected. In fact, in general you’ll rarely even encounter the Objective-C class,
because the Swift rendering of the API will display it as the Swift struct; for
example, if an Objective-C method takes an NSString, you’ll see it in Swift as tak‐
ing a String, and so on.

Casting
You can cast between the Swift struct and the Objective-C class. When casting
from Swift to Objective-C, this is not a downcast, so the bare as operator is all
you need. But casting from Objective-C to Swift, except for NSString to String,
involves adding type information — NSNumber wraps some specific numeric
type, and the collection types contain elements of some specific type — so you
might need to cast down with as! (or as?) in order to specify that type.

Also, certain common Objective-C structs that can easily be wrapped by NSValue in
Objective-C are bridged to NSValue in Swift. The common structs are CGPoint,
CGSize, CGRect, CGAffineTransform, UIEdgeInsets, UIOffset, NSRange, CATrans‐
form3D, CMTime, CMTimeMapping, CMTimeRange, MKCoordinate, and
MKCoordinateSpan.

In addition, Cocoa Foundation classes are overlaid by Swift types, whose names are
the same but without the “NS” prefix. Often, extra functionality is injected to make
the type behave in a more Swift-like way; and, where appropriate, the Swift type may
be a struct, thus allowing you to take advantage of Swift value type semantics. For
example, NSMutableData becomes largely otiose, because Data, the overlay for
Objective-C NSData, is a struct with mutating methods and can thus be declared
with let or var. And Date, the overlay for Objective-C NSDate, adopts Equatable and
Comparable, so that (for example) an NSDate method like earlierDate: can be
replaced by the > operator.

The Swift overlay types are all bridged to their Foundation counterparts. The Swift
rendering of an Objective-C API will show you the Swift overlay type rather than the
Objective-C type; for example, a Cocoa method that takes or returns an NSDate in
Objective-C will take or return a Date in Swift, and so on. If necessary, you can cast
between bridged types; for example, you can turn a Date into an NSDate with as.

C, Objective-C, and Swift | 589

The Swift Any type can accept any type of instance, directly. Objective-C id is ren‐
dered as Any in Swift. This means that wherever an Objective-C API accepts an id
parameter, that parameter is typed in Swift as Any and can be passed any Swift value
whatever. If that value is of a bridged type, the bridge is crossed automatically, just as if
you had cast explicitly with as. A String becomes an NSString, an Array becomes an
NSArray, a number is wrapped in an NSNumber, a CGPoint or other common struct
is wrapped in an NSValue, a Data becomes an NSData, and so forth.

The same rule applies when you pass a Swift collection to Objective-C, with regard to
the collection’s elements. If an element is of a bridged type, the bridge is crossed auto‐
matically. The typical case in point is an array. The elements of an array of Int become
NSNumbers. The elements of an array of CGPoint become NSValues. In the case of
an array with an Optional element type, any nil elements become NSNull instances
(Chapter 10).

What happens when an object tries to cross the bridge from Swift to Objective-C, but
that instance is not of a bridged type? (Such an object might be an enum, a struct of a
nonbridged type, or a class that doesn’t derive from NSObject.) On the one hand,
Objective-C can’t do anything with this object: it can’t introspect or even understand
it. On the other hand, the object needs to be allowed to cross the bridge somehow,
especially because you, on the Swift side, might ask for the object back again later, and
it needs to be returned to you intact.

For example, suppose Person is a struct with a firstName and a lastName property.
Then you might need to be able to do something like this:

// lay is a CALayer
let p = Person(firstName: "Matt", lastName: "Neuburg")
lay.setValue(p, forKey: "person")
// ... time passes ...
if let p2 = lay.value(forKey: "person") as? Person {
 print(p2.firstName, p2.lastName) // Matt Neuburg
}

Amazingly, this works. How? The answer, in a nutshell, is that Swift boxes this object
into something that Objective-C can see as an object, even though Objective-C can’t
do anything with that object other than store and retrieve it. How Swift does this is
irrelevant; it’s an implementation detail, and none of your business. It happens that in
this case the Person object is wrapped up in a _SwiftValue, but that name is unim‐
portant. What’s important is that it is an Objective-C object, wrapping the value we
provided. In this way, Objective-C is able to store the object for us, in its box, and
hand it back to us intact upon request. Like Pandora, Objective-C will cope perfectly
well as long as it doesn’t look in the box!

590 | Appendix A: C, Objective-C, and Swift

Objective-C Methods
In Objective-C, method parameters can (and nearly always do) have external names,
and the name of a method as a whole is not distinct from the external names of the
parameters. The parameter names are part of the method name, with a colon appear‐
ing where each parameter would need to go. For example, here’s a typical Objective-C
method declaration from Cocoa’s NSString class:

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target
 withString:(NSString *)replacement

The Objective-C name of that method is stringByReplacingOccurrencesOf-

String:withString:. The name contains two colons, so the method takes two
parameters, which the declaration tells us are NSString parameters.

A declaration for an Objective-C method, such as the one in that example, has three
parts:

• Either + or -, meaning that the method is a class method or an instance method,
respectively.

• The data type of the return value, in parentheses. It might be void, meaning no
returned value.

• The name of the method, split after each colon so as to make room for the
parameters. Following each colon is the data type of the parameter, in parenthe‐
ses, followed by a placeholder (internal) name for the parameter.

Renamification
When Swift calls an Objective-C method, there’s an obvious mismatch between the
rules and conventions of the two languages. A Swift method is a function; it has
parentheses, and if its parameters have external names (labels), they appear inside the
parentheses. The function name that precedes the parentheses is clearly distinct from
the contents of the parentheses. But an Objective-C method name involves no paren‐
theses; if it takes parameters, the stuff before the first colon is effectively the external
name of the first parameter.

To cope with this mismatch, the Objective-C method’s Swift name is rendered more
Swift-like, by a rather involved process called renamification, which is performed by a
component called the Clang importer, mediating between the two languages. The
renamification rules are rather elaborate, but you don’t need to know the details; you
can get a general sense of how they behave from the way they transform the stringBy-
ReplacingOccurrencesOfString:withString: method into a Swift function:

• Swift prunes redundant initial type names. We’re starting with a string, and it’s
obvious from the return type that a string is returned, so there’s no point saying

C, Objective-C, and Swift | 591

string at the start. We are thus left with byReplacingOccurrencesOf-

String:withString:.
• Swift prunes initial by. That’s a common Cocoa locution, but Swift finds it merely

verbose. Now we’re down to replacingOccurrencesOfString:withString:.
• Swift prunes redundant final type names. It’s obvious that the parameters are

strings, so there’s no point saying string at the end of the parameter names. That
leaves replacingOccurrencesOf:with:.

• Finally, Swift decides where to split the first parameter name into the Swift
method name (before the parentheses) and the external first parameter name
(inside the parentheses). Here, Swift sees that what’s left of the first parameter
name ends with a known preposition, of, so it splits before that preposition.

Here’s the resulting renamification of this method:

func replacingOccurrences(
 of target:String, with replacement:String)

And here’s an actual example of calling it:

let s = "hello"
let s2 = s.replacingOccurrences(of: "ell", with:"ipp")
// s2 is now "hippo"

If the Objective-C method being renamified belongs to you, you can intervene man‐
ually and simply tell Swift how to renamify this method, by appending
NS_SWIFT_NAME(...) to the declaration (before the semicolon), where what’s inside
the parentheses is a Swift function reference. For example:

- (void) triumphOverThing: (Thing*) otherThing NS_SWIFT_NAME(triumph(over:));

The Clang importer would normally renamify that in Swift as:

func triumphOverThing(_ otherThing: Thing)

Presumably that’s because the importer doesn’t understand over as a preposition. But
by intervening manually, we’ve told it to use this instead:

func triumph(over otherThing: Thing)

Internal parameter names
When you call an Objective-C method from Swift, Objective-C’s internal names for
the parameters don’t matter; you don’t use them, and you don’t need to know or care
what they are. When you override an Objective-C method in Swift, on the other hand,
code completion will suggest internal names corresponding to the Objective-C inter‐
nal names — but you are free to change them. For example, here’s the Objective-C
declaration of the UIViewController prepareForSegue:sender: instance method:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(nullable id)sender;

592 | Appendix A: C, Objective-C, and Swift

When you override that method in your UIViewController subclass, the suggested
template, in accordance with the renamification rules, looks like this:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 // ...
}

But, as I just said, you are free to change the internal names; they are local variable
names for your use inside the function body, and Objective-C doesn’t care about
them. This is a valid (but weird) override of prepareForSegue:sender: in Swift:

override func prepare(for war: UIStoryboardSegue, sender bow: Any?) {
 // ...
}

Reverse renamification
Now let’s talk about what happens going the other way: How does Objective-C see
methods declared in Swift? The simplest case is that the first parameter should have
no externalized name. For example, here’s a Swift method intended as the action
method of a button in the interface:

@IBAction func doButton(_ sender: Any?) {
 // ...
}

That method is seen by Objective-C as doButton:. That is the canonical form for an
action method with one parameter, and for that reason I like to declare my action
methods along those lines.

If a Swift method’s first parameter does have an externalized name, then, as seen by
Objective-C, that externalized name is appended to what precedes the parentheses —
in general, by inserting a preposition with. For example, here’s a Swift method:

func makeHash(ingredients stuff:[String]) {
 // ...
}

That method is seen by Objective-C as makeHashWithIngredients:. But if the exter‐
nalized name of the first parameter is a preposition, then it is appended directly to
what precedes the parentheses. For example:

func makeHash(of stuff:[String]) {
 // ...
}

That method is seen by Objective-C as makeHashOf:.

C, Objective-C, and Swift | 593

Overloading
Unlike Swift, Objective-C does not permit overloading of methods. Two View‐
Controller instance methods called myMethod: returning no result, one taking a
CGFloat parameter and one taking an NSString parameter, would be illegal in
Objective-C. Therefore, two such Swift methods, though legal as far as Swift is con‐
cerned, would be illegal if they were both visible to Objective-C. It’s fine for methods
to be overloads of one another in Swift, as long as you don’t expose more than one of
those methods to Objective-C.

Variadics
Objective-C has its own version of a variadic parameter. For example, the NSArray
instance method arrayWithObjects: is declared like this:

+ (id)arrayWithObjects:(id)firstObj, ... ;

Unlike Swift, such methods in Objective-C must somehow be told explicitly how
many arguments are being supplied. Many such methods, including arrayWith-
Objects:, use a nil terminator; that is, the caller supplies nil after the last argument,
and the callee knows when it has reached the last argument because it encounters
nil. A call to arrayWithObjects: in Objective-C would look something like this:

NSArray* pep = [NSArray arrayWithObjects: manny, moe, jack, nil];

Objective-C cannot call (or see) a Swift method that takes a variadic parameter. Swift,
however, can call an Objective-C method that takes a variadic parameter, provided
that it is marked NS_REQUIRES_NIL_TERMINATION. arrayWithObjects: is marked in
this way, so you can say NSArray(objects:1, 2, 3) and Swift will supply the miss‐
ing nil terminator.

Objective-C Initializers and Factories
Objective-C initializer methods are instance methods; actual instantiation is per‐
formed using the NSObject class method alloc, for which Swift has no equivalent
(and doesn’t need one), and the initializer message is sent to the instance that results.
For example, this is how you create a UIColor instance by supplying red, green, blue,
and alpha values in Objective-C:

UIColor* col = [[UIColor alloc] initWithRed:0.5 green:0.6 blue:0.7 alpha:1];

The name of that initializer, in Objective-C, is initWithRed:green:blue:alpha:. It’s
declared like this:

- (UIColor *)initWithRed:(CGFloat)red green:(CGFloat)green
 blue:(CGFloat)blue alpha:(CGFloat)alpha;

In short, an initializer method, to all outward appearances, is just an instance method
like any other in Objective-C.

594 | Appendix A: C, Objective-C, and Swift

Swift, nevertheless, is able to detect that an Objective-C initializer is an initializer,
because the name is special — it starts with init! Therefore, Swift is able to translate
an Objective-C initializer into a Swift initializer. The word init is stripped from the
start of the method name, and the preposition with, if it appears, is stripped as well.
What’s left is the external name of the first parameter. Thus, Swift translates the
Objective-C initializer initWithRed:green:blue:alpha: into the Swift initializer
init(red:green:blue:alpha:), which is declared like this:

init(red: CGFloat, green: CGFloat, blue: CGFloat, alpha: CGFloat)

And you’d call it like this:

let col = UIColor(red: 0.5, green: 0.6, blue: 0.7, alpha: 1.0)

The same principle operates in reverse: for example, a Swift initializer init(value:)
is visible to and callable by Objective-C under the name initWithValue:.

There is a second way to create an instance in Objective-C. Very commonly, a class
will supply a class method that is a factory for instances. For example, the UIColor
class has a class factory method colorWithRed:green:blue:alpha:, declared as
follows:

+ (UIColor*) colorWithRed: (CGFloat) red green: (CGFloat) green
 blue: (CGFloat) blue alpha: (CGFloat) alpha;

Swift detects a factory method of this kind by some pattern-matching rules — a class
method that returns an instance of the class, and whose name begins with the name
of the class, stripped of its prefix — and translates it as an initializer, stripping the
class name (and the with) from the start of the first parameter name. If the resulting
initializer exists already, as it does in this example, then Swift treats the factory
method as superfluous and suppresses it completely! Thus, the Objective-C class
method colorWithRed:green:blue:alpha: isn’t callable from Swift, because it would
be identical to the init(red:green:blue:alpha:) that already exists.

Selectors
An Objective-C method will sometimes expect as parameter the name of a method to
be called later. Such a name is called a selector. For example, the Objective-C
UIControl addTarget:action:forControlEvents: method can be called as a way of
telling a button in the interface, “From now on, whenever you are tapped, send this
message to this object.” The message, the action: parameter, is a selector.

You may imagine that, if this were a Swift method, you’d be passing a function here. A
selector, however, is not the same as a function. It’s just a name. Objective-C, unlike
Swift, is so dynamic that it is able, at runtime, to construct and send an arbitrary mes‐
sage to an arbitrary object based on the name alone. But even though it is just a

C, Objective-C, and Swift | 595

name, a selector is not exactly a string, either. It is, in fact, a separate object type, des‐
ignated in Objective-C declarations as SEL and in Swift declarations as Selector.

You can create a Selector by calling the Selector initializer, which takes a string (b is a
UIButton):

b.addTarget(self, action: Selector("doNewGame:"), for: .touchUpInside)

In fact, as a shorthand, you can even pass a literal string where a Selector is expected:

b.addTarget(self, action: "doNewGame:", for: .touchUpInside)

But don’t do either of those things! Forming a literal selector string by hand is an
invitation to form the string incorrectly, resulting in a selector that at best will fail to
work, and at worst will cause your app to crash. Swift solves this problem by provid‐
ing #selector syntax (described in Chapter 2):

b.addTarget(self, action: #selector(doNewGame), for: .touchUpInside)

The use of #selector syntax has numerous advantages. In addition to translating the
method name to a selector for you, the compiler can check for the existence of the
method in question, and can stop you from telling Objective-C to use a selector to
call a method that isn’t exposed to Objective-C (which would cause a crash at run‐
time).

Indeed, #selector syntax means that you will probably never need to form a selector
from a literal string! Nevertheless, you can do so if you really want to. The rules for
forming the string from the method name are completely mechanical:

1. The string starts with everything that precedes the left parenthesis in the method
name.

2. If the method takes no parameters, stop. That’s the end of the string.
3. If the method’s first parameter has an external parameter name, append With and

a capitalized version of that name, unless it is a preposition, in which case append
a capitalized version of it directly.

4. Add a colon.
5. If the method takes exactly one parameter, stop. That’s the end of the string.
6. If the method takes more than one parameter, add the external names of all

remaining parameters, with a colon after each external parameter name.
Observe that this means that if the method takes any parameters, its Objective-C
name string will end with a colon. Capitalization counts, and the name should contain
no spaces or other punctuation except for the colons.

To illustrate, here are some Swift method declarations, with their Objective-C name
strings given in a comment:

596 | Appendix A: C, Objective-C, and Swift

func sayHello() -> String // "sayHello"
func say(_ s:String) // "say:"
func say(string s:String) // "sayWithString:"
func say(of s:String) // "sayOf:"
func say(_ s:String, times n:Int) // "say:times:"

CFTypeRefs
A CFTypeRef is a pointer to an opaque struct that acts as a pseudo-object. (I talked
about CFTypeRef pseudo-objects and their memory management in Chapter 12.)
CFTypeRef functions are global C functions. Swift can call C functions, as I’ve already
said; and before Swift 3 introduced renamification, CFTypeRef code looked almost as
if Swift were C. For example:

// before Swift 3:
let con = UIGraphicsGetCurrentContext()!
let sp = CGColorSpaceCreateDeviceGray()
// ... colors and locs are arrays of CGFloat ...
let grad = CGGradientCreateWithColorComponents (sp, colors, locs, 3)
CGContextDrawLinearGradient (
 con, grad, CGPointMake(89,0), CGPointMake(111,0), [])

Nowadays, as part of renamification, many commonly used CFTypeRef functions
(such as those in the Core Graphics framework) are recast as if the CFTypeRef objects
were genuine class instances, with the functions themselves as instance methods. The
last two lines of the preceding code are a case in point:

In Objective-C, a CFTypeRef is created with some sort of Create function. In
Swift, the CFTypeRef is treated as an object type name, and the syntax looks
more like an initializer, complete with external parameter names.

In Objective-C, a CFTypeRef function operating on a CFTypeRef pseudo-object
takes that object as its first parameter (con in this example). In Swift, the pseudo-
object is treated as a real object, and the function becomes a method call sent to
it, again with external parameter names.

Thus, those lines are recast in Swift like this:

let con = UIGraphicsGetCurrentContext()!
let sp = CGColorSpaceCreateDeviceGray()
// ... colors and locs are arrays of CGFloat ...
let grad = CGGradient(colorSpace: sp,
 colorComponents: colors, locations: locs, count: 3)
con.drawLinearGradient(grad,
 start: CGPoint(x:89,y:0), end: CGPoint(x:111,y:0), options:[])

Many CFTypeRefs are toll-free bridged to corresponding Objective-C object types. For
example, CFString and NSString, CFNumber and NSNumber, CFArray and NSArray,
CFDictionary and NSDictionary are all toll-free bridged (and there are many others).

C, Objective-C, and Swift | 597

Such pairs are interchangeable by casting. This is much easier in Swift than in
Objective-C. In Objective-C, ARC memory management doesn’t apply to CFType‐
Refs; therefore you must perform a bridging cast, to tell Objective-C how to manage
this object’s memory as it crosses between the memory-managed world of Objective-
C objects and the unmanaged world of C and CFTypeRefs. But in Swift, CFTypeRefs
are memory-managed, and so there is no need for a bridging cast; you can just cast,
plain and simple.

For example, in this code from one of my apps, I’m using the ImageIO framework.
This framework has a C API (which has not been renamified) and uses CFTypeRefs.
CGImageSourceCopyPropertiesAtIndex returns a CFDictionary whose keys are
CFStrings. The easiest way to obtain a value from a dictionary is by subscripting, but
you can’t do that with a CFDictionary, because it isn’t an object — so I cast it to a
Swift dictionary. The key kCGImagePropertyPixelWidth is a CFString, but when I try
to use it directly in a subscript, Swift allows me to do so:

let d = CGImageSourceCopyPropertiesAtIndex(src, 0, nil) as! [AnyHashable:Any]
let width = d[kCGImagePropertyPixelWidth] as! CGFloat

Similarly, in this code, I form a dictionary d using CFString keys — and then I pass it
to the CGImageSourceCreateThumbnailAtIndex function where a CFDictionary is
expected:

let d : [AnyHashable:Any] = [
 kCGImageSourceShouldAllowFloat : true,
 kCGImageSourceCreateThumbnailWithTransform : true,
 kCGImageSourceCreateThumbnailFromImageAlways : true,
 kCGImageSourceThumbnailMaxPixelSize : w
]
let imref = CGImageSourceCreateThumbnailAtIndex(src, 0, d as CFDictionary)!

A CFTypeRef is a pointer (to a pseudo-object), so it is interchangeable with C
pointer-to-void. This can result in a perplexing situation in Swift. If a C API casts a
CFTypeRef as a pointer-to-void, Swift will see it as an UnsafeRawPointer. How can
you cast between this and the actual CFTypeRef? You cannot use the memory bind‐
ing technique that I used earlier to turn an UnsafeRawPointer into an UnsafePointer
generic, because the CFTypeRef does not lie at the far end of the pointer; it is the
pointer.

We might simply call the global unsafeBitCast function, but that’s dangerous (as the
name suggests), because it gives the resulting CFTypeRef no memory management.
The correct approach is to pass through an Unmanaged generic to apply memory
management; its fromOpaque static method takes an UnsafeRawPointer, and its
toOpaque instance method yields an UnsafeMutableRawPointer. (I owe this technique
to Martin R.; see http://stackoverflow.com/a/33310021/1187415.)

598 | Appendix A: C, Objective-C, and Swift

http://stackoverflow.com/a/33310021/1187415.

To illustrate, I’ll repeat the preceding example where I called CGImageSourceCopy-
PropertiesAtIndex, but this time I won’t cast to a Swift dictionary; I’ll work with the
result as a CFDictionary to extract the value of its kCGImagePropertyPixelWidth key.
To do so, I’ll call CFDictionaryGetValue, which takes an UnsafeRawPointer parame‐
ter and returns an UnsafeRawPointer result. To form the parameter, I’ll cast a
CFString to an UnsafeMutableRawPointer; to work with the result, I’ll cast an Unsafe‐
RawPointer to a CFNumber. No one in his right mind would ever write this code, but
it does work:

let result = CGImageSourceCopyPropertiesAtIndex(src, 0, nil)!
let key = kCGImagePropertyPixelWidth // CFString
let p1 = Unmanaged.passUnretained(key).toOpaque() // UnsafeMutableRawPointer
let p2 = CFDictionaryGetValue(result, p1) // UnsafeRawPointer
let n = Unmanaged<CFNumber>.fromOpaque(p2!).takeUnretainedValue() // CFNumber
var width : CGFloat = 0
CFNumberGetValue(n, .cgFloatType, &width) // width is now 640.0

Blocks
A block is a C language feature introduced by Apple starting in iOS 4. It is very like a
C function, but it is not a C function; it behaves as a closure and can be passed
around as a reference type. A block, in fact, is parallel to and compatible with a Swift
function, and indeed the two are interchangeable: you can pass a Swift function
where a block is expected, and when a block is handed to you by Cocoa it appears as a
function.

In C and Objective-C, a block declaration is signified by the caret character (^), which
appears where a function name (or an asterisk in parentheses) would appear in a C
function declaration. For example, the NSArray instance method sortedArrayUsing-
Comparator: takes an NSComparator parameter, which is defined through a typedef
like this:

typedef NSComparisonResult (^NSComparator)(id obj1, id obj2);

To read that declaration, it helps to start in the middle and work your way outward; it
says: “NSComparator is the type of a block taking two id parameters and returning
an NSComparisonResult.” In Swift, therefore, that typedef is translated as
(Any, Any) -> ComparisonResult. It is then trivial to supply a function of the
required type as argument when you call sortedArray(comparator:) in Swift. For
example:

let arr = ["Mannyz", "Moey", "Jackx"]
let arr2 = (arr as NSArray).sortedArray { s1, s2 in
 let c1 = String((s1 as! String).last!)
 let c2 = String((s2 as! String).last!)
 return c1.compare(c2)
} // [Jackx, Moey, Mannyz]

C, Objective-C, and Swift | 599

In many cases, there won’t be a typedef, and the type of the block will appear directly
in a method declaration. Here’s the Objective-C declaration for a UIView class
method that takes two block parameters:

+ (void)animateWithDuration:(NSTimeInterval)duration
 animations:(void (^)(void))animations
 completion:(void (^ __nullable)(BOOL finished))completion;

In that declaration, animations: is a block taking no parameters (void) and return‐
ing no value, and completion: is a block taking one BOOL parameter and returning
no value. Here’s the Swift translation:

class func animate(withDuration duration: TimeInterval,
 animations: @escaping () -> Void,
 completion: ((Bool) -> Void)? = nil)

That’s a method that you would call, passing a function as argument where a block
parameter is expected (and see Chapter 2 for an example of actually doing so). Here’s
a method that you would implement, where a function is passed to you. This is the
Objective-C declaration:

- (void)webView:(WKWebView *)webView
 decidePolicyForNavigationAction:(WKNavigationAction *)navigationAction
 decisionHandler:(void (^)(WKNavigationActionPolicy))decisionHandler;

You implement this method, and it is called when the user taps a link in a web view,
so that you can decide how to respond. The third parameter is a block that takes one
parameter — a WKNavigationActionPolicy, which is an enum — and returns no
value. The block is passed to you as a Swift function, and you respond by calling the
function to report your decision:

func webView(_ webView: WKWebView,
 decidePolicyFor navigationAction: WKNavigationAction,
 decisionHandler: @escaping (WKNavigationActionPolicy) -> Void) {
 // ...
 decisionHandler(.allow)
}

A C function is not a block, but you can also use a Swift function where a C function
is expected, as I demonstrated earlier in this appendix. Going in the other direction,
to declare a type as a C pointer-to-function, mark the type as @convention(c). For
example, here are two Swift method declarations:

func blockTaker(_ f:() -> ()) {}
func functionTaker(_ f:@convention(c)() -> ()) {}

Objective-C sees the first as taking an Objective-C block, and the second as taking a
C pointer-to-function.

600 | Appendix A: C, Objective-C, and Swift

API Markup
When Swift was initially unveiled in June of 2014, it was immediately evident that its
strict, specific typing was a poor match for Objective-C’s dynamic, loose typing. The
chief problems were:

Too many Optionals
In Objective-C, any object instance reference can be nil. But in Swift, only an
Optional can be nil.

The default solution was to use implicitly unwrapped Optionals as the medium of
object interchange between Objective-C and Swift. But this was a blunt instru‐
ment, especially because most objects arriving from Objective-C were never in
fact going to be nil.

Too many umbrella collections
In Objective-C, a collection type such as NSArray can contain elements of multi‐
ple object types, and the collection itself is agnostic as to what types of elements it
contains. But a Swift collection type can contain elements of just one type, and is
itself typed according to that element type.

The default solution was for every collection to arrive from Objective-C typed as
having AnyObject elements; it then had to be cast down explicitly on the Swift
side. It was particularly galling to ask for a view’s subviews, for example, and get
back an [AnyObject] which had to be cast down to a [UIView] — when nothing
could be more obvious than that a view’s subviews would in fact all be UIView
objects.

These problems have subsequently been solved by modifying the Objective-C lan‐
guage to permit markup of declarations in such a way as to communicate to Swift a
more specific knowledge of what to expect.

An Objective-C object type can be marked as nullable or nonnull, to specify, respec‐
tively, that it might or will never be nil. In the same way, C pointer types can be
marked __nullable or __nonnull. Using these markers generally obviates the need
for implicitly unwrapped Optionals as a medium of interchange; every type can be
either a normal type or a simple Optional, and if it’s an Optional, there’s a good rea‐
son for it. Thus, implicitly unwrapped Optionals are a rare sight in the Cocoa APIs
nowadays.

If you’re writing an Objective-C header file and you don’t mark up any of it as to null‐
ability, you’ll return to the bad old days: Swift will see your types as implicitly
unwrapped Optionals. For example, here’s an Objective-C method declaration:

- (NSString*) badMethod: (NSString*) s;

In the absence of markup, Swift sees that as follows:

C, Objective-C, and Swift | 601

func badMethod(_ s: String!) -> String!

As soon as your header file contains any markup, the Objective-C compiler will com‐
plain until it is completely marked up. To help you with this, you can mark an entire
stretch of your header file with a default nonnull setting; you will then need to mark
up only the exceptional nullable types:

NS_ASSUME_NONNULL_BEGIN
- (NSString*) badMethod: (NSString*) s;
- (nullable NSString*) goodMethod: (NSString*) s;
NS_ASSUME_NONNULL_END

Swift sees that with no implicitly unwrapped Optionals:

func badMethod(_ s: String) -> String
func goodMethod(_ s: String) -> String?

To mark an Objective-C collection type as containing a certain type of element, the
element type can appear in angle brackets (<>) after the name of the collection type
but before the asterisk. This is an Objective-C method that returns an array of strings:

- (NSArray<NSString*>*) pepBoys;

Swift sees the return type of that method as [String], and there will be no need to
cast it down.

In the declaration of an actual Objective-C collection type, a placeholder name stands
for the type in angle brackets. For example, the declaration for NSArray starts like
this:

@interface NSArray<ObjectType>
- (NSArray<ObjectType> *)arrayByAddingObject:(ObjectType)anObject;
// ...

The first line says that we’re going to use ObjectType as the placeholder name for the
element type. The second line says that the arrayByAddingObject: method takes an
object of the element type and returns an array of the element type. If a particular
array is declared as NSArray<NSString*>*, the ObjectType placeholder would be
resolved to NSString*. Apple refers to this sort of markup as a “lightweight generic,”
and you can readily see why.

In Swift, classes marked up as lightweight generics are imported into Swift as actual
generics even if they are not bridged collection types. For example, suppose I declare
my own Objective-C class, parallel to NSArray:

@interface Thing<ObjectType> : NSObject
- (void) giveMeAThing:(nonnull ObjectType)anObject;
@end

The Thing class arrives into Swift declared as a generic:

class Thing<ObjectType> : NSObject where ObjectType : AnyObject {

602 | Appendix A: C, Objective-C, and Swift

Thing thus has to be instantiated by resolving the generic somehow. Often, it will be
resolved explicitly:

let t = Thing<NSString>()
t.giveMeAThing("howdy") // an Int would be illegal here

The details are quite involved; for full information, see proposal SE-0057 at https://
github.com/apple/swift-evolution.

Bilingual Targets
It is legal for a target to be a bilingual target — one that contains both Swift files and
Objective-C files. A bilingual target can be useful for various reasons. You might want
to take advantage of Objective-C language features. You might want to incorporate
third-party code written in Objective-C. You might want to incorporate your own
existing code written in Objective-C. Your app itself may have been written in
Objective-C originally, and now you want to migrate part of it (or all of it, in stages)
into Swift.

The key question is how, within a single target, Swift and Objective-C hear about one
another’s code in the first place. Recall that Objective-C, unlike Swift, has a visibility
problem already: Objective-C files cannot automatically see one another. Instead,
each Objective-C file that needs to see another Objective-C file must be instructed
explicitly to see that file, usually with an #import directive at the top of the first file.
In order to prevent unwanted exposure of private information, an Objective-C class
declaration is conventionally spread over two files: a header file (.h) containing the
@interface section, and a code file (.m) containing the @implementation section.
Also conventionally, only .h files are ever imported. Thus, if declarations of class
members, constants, and so forth are to be public, they are placed in a .h file.

Visibility of Swift and Objective-C to one another depends upon this convention: it
works through .h files. There are two directions of visibility, and they operate sepa‐
rately through two special Objective-C header files:

How Swift sees Objective-C
When you add a Swift file to an Objective-C target, or an Objective-C file to a
Swift target, Xcode offers to create a bridging header. This is a .h file in the project.
Its default name is derived from the target name — for example, MyCoolApp-
Bridging-Header.h — but the name is arbitrary and can be changed, provided you
change the target’s Objective-C Bridging Header build setting to match. (Simi‐
larly, if you decline the bridging header and you decide later that you want one,
create a .h file manually and point to it in the target’s Objective-C Bridging
Header build setting.)

An Objective-C .h file will then be visible to Swift, provided you #import it in
this bridging header.

C, Objective-C, and Swift | 603

https://github.com/apple/swift-evolution
https://github.com/apple/swift-evolution

How Objective-C sees Swift
When you build your target, the appropriate top-level declarations of all your
Swift files are automatically translated into Objective-C and are used to construct
a generated interface header within the Intermediates build folder for this target,
deep inside your DerivedData folder. The easiest way to see this is with the fol‐
lowing Terminal command:

$ find ~/Library/Developer/Xcode/DerivedData -name "*Swift.h"

This will reveal the names of any generated interface headers. For example, for a
target called MyCoolApp, the generated interface header is called MyCoolApp-
Swift.h. The name may involve some transformation; for example, a space in the
target name is translated into an underscore. Alternatively, examine (or change)
the target’s Objective-C Generated Interface Header Name build setting.

The generated interface header is how your Swift code is exposed to Objective-C
in general (even in a single-language Swift project). Your Objective-C files will be
able to see your Swift declarations, provided you #import the generated interface
header into each Objective-C file that needs to see them.

To sum up:

• The bridging header is visible in your project navigator; you write an #import
statement here to make your Objective-C declarations visible to Swift.

• The generated interface header is squirreled away in the DerivedData folder; you
#import it to make your Swift declarations visible to your Objective-C code.

For example, let’s say that I’ve added to my Swift target, called MyCoolApp, a Thing
class written in Objective-C. It is distributed over two files, Thing.h and Thing.m.
Then:

• For Swift code to see the Thing class, I need to #import "Thing.h" in the bridg‐
ing header (MyCoolApp-Bridging-Header.h).

• For Thing class code to see my Swift declarations, I need to import the generated
interface header (#import "MyCoolApp-Swift.h") at the top of Thing.m.

Once you’ve imported the generated interface header into an Objective-C file,
you can Control-Command-click its name to open it. This shows you your app’s
entire Swift API as seen as by Objective-C!

On that basis, here’s the procedure I use for turning my own Objective-C apps into
Swift apps:

1. Pick a .m file to be translated into Swift. Objective-C cannot subclass a Swift
class, so if you have defined both a class and its subclass in Objective-C, start
with the subclass. (Leave the app delegate class for last.)

604 | Appendix A: C, Objective-C, and Swift

2. Remove that .m file from the target. To do so, select the .m file and use the File
inspector.

3. In every Objective-C file that #imports the corresponding .h file, remove that
#import statement and import in its place the generated interface header (if you
aren’t importing it in this file already).

4. If you were importing the corresponding .h file in the bridging header, remove
the #import statement.

5. Create the .swift file for this class. Make sure it is added to the target.
6. In the .swift file, declare the class and provide stub declarations for all members

that were being made public in the .h file. If this class needs to adopt Cocoa pro‐
tocols, adopt them; you may have to provide stub declarations of required proto‐
col methods as well. If this file needs to refer to any other classes that your target
still declares in Objective-C, import their .h files in the bridging header.

7. The project should now compile! It doesn’t work, of course, because you have not
written any real code in the .swift file. But who cares about that? Time for a beer!

8. Now fill out the code in the .swift file. My technique is to translate more or less
line-by-line from the original Objective-C code at first, even though the outcome
is not particularly idiomatic or Swifty.

9. When the code for this .m file is completely translated into Swift, build and run
and test. If the runtime complains (probably accompanied by crashing) that it
can’t find this class, find all references to it in the nib editor and reenter the class’s
name in the Identity inspector (and press Tab to set the change). Save and try
again.

10. On to the next .m file! Repeat all of the above steps.
11. When all of the other files have been translated, translate the app delegate class.

At this point, if there are no Objective-C files left in the target, you can delete the
main.m file (replacing it with a @UIApplicationMain attribute in the app delegate
class declaration) and the .pch (precompiled header) file.

Your app should now run, and is now written in pure Swift (or is, at least, as pure as
you intend to make it). Now go back and think about the code, making it more Swifty
and idiomatic. You may well find that things that were clumsy or tricky in Objective-
C can be made much neater and clearer in Swift.

You can do a partial conversion of an Objective-C class by extending it in Swift. This
can be useful as a stage along the path to total conversion, or you might quite reason‐
ably write only one or two methods of an Objective-C class in Swift, just because
Swift makes it so much easier to say or understand certain kinds of thing. However,
Swift cannot see the Objective-C class’s members unless they are made public, so

C, Objective-C, and Swift | 605

methods and properties that you were previously keeping private in the Objective-C
class’s .m file may have to be declared in its .h file.

606 | Appendix A: C, Objective-C, and Swift

Index

A
aborting, 283
access control, 286
access, exclusive, 308
accessibility, 432
accessors, 504
Accounts preferences, 407, 434, 455
actions, 375, 527

connections, 375
creating, 377

handler, 529
misconfiguring, 379
nil-targeted, 532
selector signatures, 530
target, 528

Ad Hoc distribution, 453, 457
address operator, 38, 580
Address Sanitizer, 562
adopt a protocol, 186
allCases, 142
Allocations instrument, 446
allSatisfy, 234
ampersand (see address operator)
anonymous functions, 45

abbreviated syntax, 47
capture list, 306
define-and-call, 51
parameter list and return type, 46
retain cycles, 305
throws, 276
trailing, 49

Any, 219
AnyClass, 223
AnyHashable, 246

AnyObject, 221-223
object identity, 223
suppressing type checking, 221

API, xiv
tweaking, 116, 127, 601

app
bundle, 335
delegate, 347, 524
launch process, 345
name, 350, 463, 464

localizing, 449
registering, 440
target, 328
version number, 463
without main storyboard, 348
without nibs, 352

App Store, 464
distribution, 453

App Store Connect, 464
append, 94, 231
Apple ID, 434
ARC, 543

(see also memory management)
architecture, 26
archive

app, 453
documentation, 386
object, 490, 503

arguments, 29
arguments passed on launch, 401
arithmetic operators, 89
Array, 224
arrays, 224-240

bridging, 238, 490, 494, 590

607

C arrays, 581
casting, 226
concatenating, 231
declaration, 225
enumerating, 234
equality, 227
flattening, 233, 236
indexing, 227
initializers, 225
literal, 225
mutating, 228
nested, 229
Optional, 226, 236
properties and methods, 229
randomizing, 233
searching, 231
sorting, 233
subscripting, 227
testing all elements, 234
testing element type, 226
transforming, 234
uniquing, 248

ArraySlice, 228
arrow operator, 28
as, 176, 189, 260
assert, 284
asset catalog, 342, 459

compiled, 337
nonimage resources, 342

assignment, 7
compound, 90
conditional, 265
multiple, 103

assistant pane, 324, 414
associated type, 200
associated type chains, 208
associated value, 140, 261, 267, 269
Attributes inspector, 323, 358
autoclosure, 284
autocompletion, 409
autolinking, 344
automatic signing, 436
automatic variables, 71
autorelease, 547
availability, 388
available, 399
awakeFromNib, 381

B
backslash, 92, 299
backward compatibility, 398
bag, 497
balancing delimiters, 408
base class, 156
Behaviors preferences, 317
beta testing, 458
bilingual target, 603
binary numbers, 85
binding, conditional, 255, 267, 285
Bitbucket, 407
bitmasks, 250, 576
bitwise operators, 89, 250

(see also option sets)
blocks

C, 45, 599
flow control, 254

body of a function, 28
bookmarking a line of code, 414
Bool, 82
BOOL, 488
Boolean operators, 84
boxing, 590
branching, 253-266

shortcircuiting, 271
break, 271
Breakpoint navigator, 321
breakpoints, 420
bridged types, 480, 588, 590

(see also boxing)
Any and id, 220, 590
AnyObject and id, 221
Array and NSArray, 238, 494, 590
array elements, 239, 490, 590
casting, 179
CFTypeRefs, 598
Dictionary and NSDictionary, 246
Error and NSError, 279
Foundation, 480, 589
number and NSNumber, 488
Set and NSSet, 497
String and NSString, 96, 483
struct and NSValue, 489, 589

bridging header, 603
build, 315

configurations, 331
phases, 328
settings, 330

608 | Index

bundle
app, 335
display name, 350, 449
identifier, 314
test, 428

C
C, 573-585

(see also Objective-C)
arrays, 581
blocks, 599
data types, 574
enums, 575
functions, 583
global functions, 584
numeric types, 87
pointer-to-function, 584, 600
pointer-to-void, 581
pointers, 579
strings, 574
structs, 489, 578

Calendar, 486
call stack, 271, 321, 423
calling a function, 8, 29
canvas, 353, 356
Capabilities pane, 439
capitalization, 8
capture list, 306
captured variable references, 52

preserving, 59
setting, 58

case
enum, 137
switch statement, 257

CaseIterable, 142
casting, 175-180

safely, 177, 260
categories, 472
caveman debugging, 417
certificate, 435

exporting, 456
CFTypeRefs, 597

memory management, 558
chains

associated type, 208
Optional, 111

Character, 97
character sequence, 97
characters vs. codepoints, 97

characters, escaped, 92
class

clusters, 499
documentation page, 386
members, 16
methods, 131

of NSObject, 512
vs. static methods, 170

of object in nib, changing, 358
properties, 70, 128

vs. static properties, 171
protocols, 194

classes, 149-172
(see also object types)
class methods, 170
class properties, 171
deinitializers, 169
documentation, 386
generic, subclassing, 206
hierarchy, 156
inheritance, 157
initializers, 161

inheritance, 164
instances

multiple references, 152
mutating, 39, 151

methods, overriding, 159
preventing, 160, 290

omitting type name, 140
polymorphism, 172
properties, overriding, 170
reference types, 150
static methods, 170
static properties, 171
subclass and superclass, 156
subclassing, preventing, 156, 290
subscripts, overriding, 161
umbrella type, 219, 223
vs. structs, 149

cleaning, 433
closures, 52-60

(see also anonymous functions)
captured variable references, 52

preserving, 59
setting, 58

escaping, 60, 153
returned from function, 55

Cocoa, 469-571
actions, 527

Index | 609

categories, 472
data sources, 527
delegation, 523
events, 513
Foundation classes, 480
key–value coding, 507
key–value observing, 533
memory management, 543
notifications, 516
protocols, 475
responder chain, 530
subclassing, 469, 514

Codable, 501
code

bookmarking, 414
completion, 409
editing, 407
folding, 408
font, 407
location, 8, 513, 540
navigating, 413
refactoring, 416
searching, 415
selecting, 408
snippets, 410
strings, localizing, 449

code signing (see signing an app)
codepoints, Unicode, 95

vs. characters, 97
coercion, 86

numeric, 86, 574
Range and NSRange, 481
String and Int, 94

collections
Foundation, 497-499
memory management, 546, 556
Swift, 224-252

colon
adopting protocol, 187
argument label, 33
enum raw value type, 138
generic type constraint, 203
key–value, 241
label, 272
parameter name, 28
superclass, 157
ternary operator, 265
variable type, 72

comma

arguments, 29
array literal, 225
condition list, 256
dictionary literal, 241
generic constraints, 210
generic placeholders, 201
parameters, 28
protocol, 187, 189
switch case, 262
tuples, 103
variadics, 35

comments, 4
self-documenting, 391

communication between objects, 563
compactMap, 236
Comparable, 205
compare, 494
comparison operators, 91
ComparisonResult, 494
compatibility, backward, 398
Compilation Mode build setting, 333
compilation, conditional, 402
compile error, 4
Compile Sources build phase, 329
compiler, 4
completion

code, 409
type-over, 408

compliant, key–value coding, 507
Components preferences, 335
composition of protocols, 191
compound assignment operators, 90
computed initializer, 75
computed variables, 76
concatenating arrays, 231
concatenating strings, 94
condition list, 256
conditional assignment, 265
conditional binding, 255, 267, 285
conditional compilation, 402
conditional conformance, 218
conditional evaluation, 264
conditional initialization, 73
conditions, 83, 253
configurations, 331
conform to a protocol, 186
conformance, conditional, 218
connections, 363

action, 375

610 | Index

between nibs, 379, 566
creating, 366, 372, 377
deleting, 371
outlet, 364, 510

Connections inspector, 323, 369, 371
console, 321, 417
constants, 7, 71, 149

global string, 578
constraints, type, 203

extensions, 217
multiple, 210

contains, 98, 102, 231
continue, 271
control events, 375, 528
control flow (see flow control)
convenience initializers, 162
convention(c), 600
Copy Bundle Resources build phase, 330
copying instances, 154
count, 95, 229, 247
covariant, 174, 207
crash

class not key–value coding compliant, 370,
507, 510

could not cast value, 176
deallocated object, 552
loaded nib but view outlet was not set, 371
not enough bits, 88
unexpectedly found nil, 111, 371
unrecognized selector, 65, 379

creating an action connection, 377
creating an enum, 137
creating an instance, 15, 121
creating an outlet, 372
curly braces, 4, 28, 46, 76, 79, 92, 119, 121, 134,

169, 190, 213, 254
currying, 61
CustomNSError, 280
CustomReflectable, 291
CustomStringConvertible, 188

D
dance, weak–strong, 306
dangling pointers, 544
Data, 490
data sources, 527
data tips, 424
Date, 486
DateComponents, 486

DateFormatter, 487
DateInterval, 486
dates, 486
debug bar, 421
Debug menu (Simulator), 417
Debug navigator, 320, 423, 442
Debug pane, 321, 423
debugger, Xcode, 420
debugging, 417-426

memory management, 444, 562
Decimal, 489
decimal point, 85
declaration

jumping to, 392
of arrays, 225
of dictionaries, 241
of enums, 137
of extensions, 213
of functions, 27
of generics, 200
of object types, 119
of operators, 292
of protocols, 190
of sets, 248
of variables, 71

decoding and encoding, 501
defer statement, 281
deferred initialization, 117
define-and-call, 51
deinit, 169

not called, 301, 553
delayed performance, 540
delegate, 523

memory management, 551
delegating initializers, 126
delegation (see delegate)
deleting an outlet, 371
delimiters, balancing, 408
dependencies, 397

compile-time, 402
runtime, 398

Deployment Target build setting, 398
description, 188
Design Patterns (book), 26
designated initializers, 162, 164
destinations, 334
developer member center, 436
development provisioning profile, 438
device

Index | 611

registering, 436, 440
running on, 433
type, 400

Devices and Simulators window, 442
dictionaries, 240-247

casting, 244
creating, 241
declaration, 241
enumerating, 244
equality, 244
hashable keys, 240
keys, 244
literals, 241
merging, 245
mutating, 243
properties, 244
subscripting, 242
testing type, 244
transformations, 245
values, 244

Dictionary, 240
didSet, 79
dispatch table, 528
dispatch, dynamic, 175
display name, 350, 449
distributing your app, 453
distribution provisioning profile, 456
do, 280
do...catch, 274
dock, 354
document outline, 354
documentation, 385-395

archive, 386
class, 386
comments, 391
delegate, 525
immutable vs. mutable classes, 499
protocols, 477
searching, 386
window, 385

doom, pyramid of, 256
dot-notation, 5, 14

function references, 64
key paths, 510
Optionals, 111
tuples, 104

Double, 85
downcasting (see casting)
drawing a view, 470

drawing text, 485
drop, 235
dropFirst, 99, 232
dropLast, 99, 232
dump, 291, 418
dynamic, 536
dynamic dispatch, 175
dynamic member lookup, 300

E
early exit, 271
editing

a storyboard, 352
a xib file, 355
the project, 328
the target, 328
your code, 407

editor, 323
Empty Window example project, 313, 356, 470
encapsulation, 23
encoding and decoding, 501
endIndex, 100, 230
ensure code is executed, 281
entitlements, 435, 439
entry point

code, 345, 537
storyboard, 355

enumerated, 104, 234, 269
enums, 137-147

(see also object types)
associated value, 140, 261, 267, 269, 296
C enums, 575
cases, 137

enumerating, 142
declaration, 137
equality, 138, 141, 296
indirect, 155
initializers, 143
initializing, 137
methods, 145
omitting type name, 137
properties, 144
raw value, 138
subscripts, 146

environment variables, 401
equal sign, 7
equality

of Objective-C objects, 492
of Swift objects, 295

612 | Index

operators, 91
Equatable, 141, 218, 230, 240

synthesizing implemention, 295
Error, 273
ErrorPointer, 279
errors, 273-280

catching, 274
Objective-C, 279
throwing, 274

errors, compiler, 4
ambiguous, 34
cannot convert value to specified type, 202
cannot invoke index, 230
cannot use instance member, 129
closure cannot implicitly capture, 153
expected declaration, 8
expressions are not allowed, 8
heterogeneous collection, 225
initializer requirement, 195
overlapping accesses, 308
protocol can only be used, 205
required initializer must be provided, 196
return from initializer, 123
self used, 125
use of unresolved identifier self, 129
value of Optional type must be unwrapped,

107
escaped characters, 92
escaping, 60, 153
evaluation, conditional, 264
event-based programming, 537
events, 375, 513
exception breakpoint, 422
exclamation mark, 107, 109, 114, 176, 193
exclusive access, 308
exit, early, 271
explicit specialization, 205
explicit variable type, 72
exporting certificates, 456
exporting from an archive, 453
extensions, 213, 472

(see also categories)
declaring, 213
generics, 217

type constraints, 217
object types, 213, 215
protocols, 215, 473
restrictions on, 213
structs, 215

external parameter names, 32
initializers, 121
methods, 591
subscripts, 134

F
factory

for functions, 57
for instances, 182
methods, Objective-C, 595

failable initializers, 127, 165
fallthrough, 263, 271
false, 82
fatal error (see crash)
fatalError, 283
File inspector, 323
file templates, 343
file, Swift, structure, 9
fileprivate, 287
File’s Owner, 365
filter, 234, 245
final, 156, 160
Find navigator, 319, 415
finding, 415

(see also searching)
first, 98, 230
First Responder proxy object, 533
firstIndex, 98, 230
Fix-it, 412
flag, 83
flatMap, 114, 236
flavors (of object type), 6
Float, 87
flow control, 253-286
folder-linked group, 327

renaming, 350
folders in an Xcode project, 326, 341
folding, code, 408
font, 485
for, 267
for case, 269
for...in, 268
forced unwrap operator, 107
forEach, 234
format string, 418
Foundation framework, 14, 480
frameworks, 14, 343

creating, 344
embedded, 345

Index | 613

linking, 343
Swift, 338

function in function, 40
functional events, 514
functions, 8, 27-67

anonymous, 45
retain cycles, 305
throws, 276

body, 28
C blocks, 599
C functions, 583
calling, 8, 29
closures, 52
curried, 61
declaration, 8, 27
default parameter values, 35
define-and-call, 51
external parameter names, 32
generic, 201
global, 9, 15

C, overshadowed, 584
class method instead, 214
instance method instead, 217

ignored parameters, 36
internal parameter names, 29
local, 40
mathematical, 90
modifiable parameters, 37
overloading, 34
recursion, 42
reference, 62
reference types, 155
result, 27

ignoring, 30
rethrows, 278
return value, 28
returned from function, 55
signature, 32
throws, 276

calling, 277
trailing, 49
type, 42
values, 42
variadic parameters, 35

G
garbage collection, 301
gauges, 321, 442
generate, 268

generated interface, 324
generated interface header, 604
generic pointer, 581
generics, 197-213

adopting protocol conditionally, 218
associated type chains, 208
classes, subclassing, 206
declaration, 200
explicit specialization, 205
extensions, 217
functions, 201
object types, 201
polymorphism, 207
protocols, 200

constraining associated type, 211
resolution, 198

contradictory, 202
specialization, 198

(see also generics, resolution)
type constraints, 203

extensions, 217
multiple, 210

type, telling compiler, 204
where clauses, 210

extensions, 217
getter, 76, 504
git, 404
GitHub, 407
GitLab, 407
global constants, 149
global functions, 9, 15

C, overshadowed by instance methods, 584
class method instead, 214
instance method instead, 217

global variables, 9, 69
initialization, 81

globally visible instances, 567
golden rule of memory management, 545
groups, 317, 327

renaming, 350
guard, 284
guard case, 286
guard let, 285

H
hand-tweaking the APIs, 116, 127, 601
handlers, 45

(see also functions)
hash, 493

614 | Index

hashability of Objective-C objects, 493
Hashable, 240, 247

synthesizing implementation, 297
Hasher, 297, 493
hashValue, 297
hasPrefix, 94
hasSuffix, 94
header files, 393

bridging, 603
Core Graphics, 472
generated interface, 604
jumping to, 393
Objective-C, 603
Swift, 15, 393

heads-up display, 367
hexadecimal number, 85
hierarchy of classes, 156
hierarchy of views, 355
HUD, 367

I
IBAction, 376
IBInspectable, 382
IBOutlet, 366

weak, 557
icons, 337, 459

marketing, 460
id, 219, 586
identifiers and reserved words, 22
Identity inspector, 323, 358
identity operator, 223
identity, developer, 435
if, 254
if case, 264
if let, 255
image files, 342
immutable Objective-C classes, 499
iMovie, 462
implicit initializer, 121, 147, 162
implicitly unwrapped Optional, 109
import statement, 9, 344
in, 46
index, enumerate with, 104, 234, 269
indexing a string, 100, 102
indexing an array, 227
IndexSet, 497
indices, 230
indirect, 155
inferred variable type, 72

learning, 88
Info.plist, 337, 338, 463

(see also property list settings)
informal protocols, 477
inheritance, 157
init, 121

with self, 126
with super, 164
with type reference, 182

init(coder:), 196
initialization, 6, 71

conditional, 73
deferred, 117
lazy, 80
of enums, 137
of nib-based instances, 381
of Optionals, 110
of properties, 123, 129

initializers, 121
class, 161
convenience, 162
delegating, 126
designated, 162
enum, 143
failable, 127, 165
implicit, 121

class, 162
enum, 137
struct, 147

inheritance, 164
Objective-C, 594
overriding, 165
recursive, 126
required, 168, 182, 195
struct, 147

inout, 38
insert, 100, 232
instance

methods, 16, 130
properties, 16, 70, 128
variables, Objective-C, 504

instances, 15-20, 135
copying, 154
creation, 15, 121, 135
getting a reference, 136, 563
globally visible, 567
initial, 346
lifetime, 135
literals instead, 196

Index | 615

multiple references, 152
mutating, 39, 151
nib-based, 359

memory management, 556
relationships between, 566
state, 19
type, 172

learning, 180
telling compiler, 175
testing, 177

instantiation, 15, 121, 135
nib-based, 351

Instruments, 442, 562
Int, 85
Interface Builder, 352
interface tests, 427
internal, 287
internal identity principle, 172
internal parameter names, 29
internationalization (see localization)
Internet as documentation, 394
interpolation, string, 93, 188
interval operators, 101
introspection, 290, 478, 507
iOS Deployment Target build setting, 398
is, 177, 189
isEmpty, 94, 229, 247
isEqual, 492
Issue navigator, 319
issues, live, 413
iteration, 253
iTunes Connect (see App Store Connect)

J
joined, 94, 232
JSON, 503
jump bar, 323, 413

Debug pane, 423
documentation, 387
injecting comments, 413
nib editor, 356
Related Items menu, 323
Tracking menu, 324

jumping, 271-286
jumping (navigating)

to declaration, 392
to header files, 393

K
Key Bindings preferences, 317
key paths

Cocoa, 510
Swift, 298

keyboard shortcuts in Xcode, 317
keys (dictionary), 240
key–value coding, 507
key–value observing, 533

retain cycles, 554
key–value pairs, 240
KVC, 507
KVO, 533

L
labels (flow control), 272
labels (nib editor), 356

changed by outlet, 368
labels (tuples), 104
labels in function calls, 32

(see also external parameter names)
last, 98, 230
lastIndex, 98, 230
launch images, 460
launch nib, 461
launch process of an app, 345
layer, configuring in the nib, 382
lazy initialization, 80

instance properties, 129
lazy loading of views, 360
lazy sequence, 271
Leaks instrument, 446
leaks, memory, 301, 442, 444, 544, 550
let, 7, 71, 150
Library, 356
lifetime, 7, 12, 136

(see also scope)
lifetime events, 514
LIFO, 23
lightweight generics, 239, 602
line, 3
linking, 343
literals

array, 225
dictionary, 241
logging, 420
numeric, 85
string, 92
where instance expected, 196

616 | Index

live issues, 413
LLDB, 425
loading a nib, 351, 359
local variables, 71
Locale, 486
localization, 448-453
LocalizedError, 280
logging, 418
logical operators, 84
looping, 253, 266

shortcircuiting, 271
lowercased, 94

M
main function, 345
main storyboard, 340, 347, 401

app without, 348
main view of view controller, 354

loaded from nib, 360
main.swift file, 9, 346
maintenance of state, 23
mangling, name, 588
map, 114, 235
mapValues, 245
Markdown, 391
marketing icon, 460
math functions, 90
max, 231
Measurement, 491
MeasurementFormatter, 491
Media library, 359
member center, 436
members, 13
memberwise initializer, 148
memory graph, 444
memory leaks, 301, 442, 444, 544, 550
memory management, 301-309, 543-562

anonymous functions, 305
ARC, 546
autorelease pool, 547
CFTypeRefs, 558
collections, 546, 556
dangling pointers, 544
debugging, 562
delegates, 551
golden rule, 545
graph, 444
key–value observing, 554
leaks, 301, 444, 544

mutable Objective-C classes, 560
nib-loaded objects, 556
nilifying unsafe references, 552
notifications, 552
ownership, 545
properties, 549

Objective-C, 559
protocol references, 307
retain cycles, 301, 550
retains, unusual, 556
timers, 555
Unmanaged, 559
unowned references, 304, 551
unsafe references, 552
UnsafePointer, 582
weak references, 303, 551

merging dictionaries, 245
messages, 5

sending optionally, 193, 478
to Optionals, 111
to self, 19

metatype, 182, 182
methods, 13, 130

(see also functions)
class, 131
enums, 145
external parameter names, 591
inheritance, 157
instance, 16, 130

secret life, 133
mutating, 145, 149, 151
Objective-C, 591
omitting type name, 140
optional, 192, 477
overriding, 159

polymorphism and, 172
preventing, 160, 290

selectors, 65
static, 131

vs. class, 170
structs, 149

min, 231
Mirror, 290
model–view–controller, 569
modules, 9, 14, 344

privacy, 289
multiline string literals, 92
multiple selection, 408
mutable Objective-C classes, 499

Index | 617

NSCopying, 560
mutating an instance, 39, 151
mutating methods, 145, 149, 151
MVC, 569

N
name mangling, 588
name of app, 463, 464

localizing, 449
names of accessors, 504

changing, 506
namespaces, 13, 135, 149, 214

Objective-C, 585
naming image files, 342
navigating your code, 413
Navigation preferences, 322
Navigator pane, 317
nested arrays, 229
nested scopes, 280
nested types, 13, 119, 135
Never, 284
NeXTStep, 352
nib editor, 352
nib files, 339, 351-383

dependent on device type, 401
launch, 461
loading, 359
localizing, 449

nib objects, 354
nib owner, 365
nib-based instantiation, 351, 556
nibs

apps without, 352
connections between, 379, 566

nil, 109
in Objective-C collections, 498
signaling failure, 118
signaling no data, 117
unwrapping, 111

nil-coalescing operator, 265
nil-targeted actions, 532
nilifying unsafe references, 552
nonnull, 601
nonobjc, 588
Notification, 516
Notification.Name, 516

forming from string, 521
NotificationCenter, 516
notifications, 516

matching delegate methods, 524
posting, 520
registering, 517
retain cycles, 553
unregistering, 519, 552
when appropriate, 520, 569

NSArray, 238, 494
NSAttributedString, 485
NSCoder, 503
NSCoding, 196
NSCopying, 475, 560
NSCountedSet, 497
NSDataAsset, 342
NSDecimalNumber, 489
NSDictionary, 246, 496
NSError, 273
NSErrorPointer, 279
NSFastEnumeration, 268
NSHashTable, 556
NSKeyedArchiver, 490, 503
NSLog, 418
NSMapTable, 556
NSMutableArray, 239, 495
NSMutableDictionary, 247, 496
NSMutableOrderedSet, 497
NSMutableSet, 497
NSMutableString, 484
NSNotFound, 482
NSNull, 498
NSNumber, 487
NSObject, 156, 511-512

comparison, 494
equality, 492
hashability, 493

NSObjectProtocol, 511
NSOrderedSet, 497
NSPointerArray, 556
NSRange, 481
NSRegularExpression, 485
NSSet, 496
NSString, 96, 483
NSValue, 489
NS_ENUM, 576
NS_OPTIONS, 576
nullable, 601
numeric literals, 85
numeric types, C, 87
numeric types, Swift, 84

618 | Index

O
objc, 66, 192, 221, 307, 506, 576, 587
objcMembers, 588
object types, 119-172

comparison, 184
declaration, 119
definition over multiple files, 215, 473
extensions, 213
flavors, 6
generic, 201

extensions, 217
initializers, 121
methods, 130
nested, 135
Objective-C, 586
passing or assigning, 181
polymorphism, 180
properties, 127
reference vs. value, 150
references to, 180

Objective-C, 585
scope, 119
subscripts, 132
umbrella types, 219

Objective-C, 573-603
(see also bridged types)
accessors, 78, 504
categories, 472
collections, 497-499, 602
comparison, 494
equality, 492
factory methods, 595
hashability, 493
header files, 603
id, 219, 586
immutable vs. mutable classes, 499
initializers, 594
instance variables, 504
lightweight generics, 239, 602
methods, 591

internal parameter names, 592
overloading, 594
renamification, 591
variadic parameters, 594

namespaces, 585
object references, 585
object types, 586
Optionals and, 116
properties, 504

protocols, 475
selectors, 596
setter, 80
subscripts, 495-497
Swift class member exposure to, 587
Swift features invisible to, 586
Swift, in one target with, 603
Swift, translating app into, 604

objects, 5
(see also object types)
communication between, 563
graphing, 444
identity of two, 223

Objects library, 356, 359
octal numbers, 85
open, 288
operator syntax, 5, 292
operators, 292-294

arithmetic, 89
custom, 293

bitwise, 89, 250
(see also option sets)

Boolean, 84
comparison, 91
compound assignment, 90
creating, 294
declaration, 292
equality, 91

custom, 295
identity, 223
interval, 101
nil-coalescing, 265
overriding, 293
ternary, 265
unwrap, 107, 112

Optimization Level build setting, 332
optimizing, 442
option sets, 250, 577

empty, 252
Optional chains, 111
optional message sending, 193, 478
optional methods, 192, 477
optional properties, 192
optional unwrap operator, 112
Optionals, 106-118

array of, 226, 236
casting, 178
chain, 111
comparison, 115

Index | 619

creating, 106
declaration, 106
deferred initialization, 117
double-wrapped, 193, 230
empty, 109
enum, 141, 198
equality, 115
flatMap, 114
implicitly unwrapped, 109, 601
initialization, 110
map, 114
messages to, 111

without unwrapping, 114
nil, 109
Objective-C and, 116
properties, 125
type, 106

testing, 178
unwrapping, 107, 111, 255, 259, 265, 267,

285
wrapping, 106

OptionSet, 250, 577
organization identifier, 314
Organizer window, 454
orientation of interface, 463
OSLog, 419
outlet collections, 374
outlet connections, 364, 510
outlets, 364

creating, 372
deleting, 371
misconfiguring, 370

overflow, 90
overlay, Swift, 480, 589
overloading, 34

Objective-C, 594
overriding, 159

initializers, 165
polymorphism and, 172
preventing, 160, 290

overscroll, 409
owner

memory management, 545
nib, 365

P
parameter list, 28

in anonymous function, 46
omitting, 50

parameters, 27
default values, 35
external names, 32

initializers, 121
methods, 591
subscripts, 134

functions as, 42
ignoring, 36
internal names, 29
modifiable, 37
variadic, 35

parentheses
calling a function, 29
coercion, 86
declaring a function, 28
instantiating an object type, 15, 121
order of operations, 84, 90
signifying Void, 31, 105
tuples, 103

partial range, 101
patterns, switch statement, 258
persistence (see lifetime)
persisting references, 302
placeholders

code, 409
generic, 197

(see also generics)
nib editor (see proxy objects)

playgrounds, xvi
pointee, 39, 580
pointer-to-void, 581
pointers, 38, 152, 586, 598

C, 579
dangling, 544
generic, 581

polymorphism, 172
pool, autorelease, 547
popFirst, 232
popLast, 232
Portal, 436
posting a notification, 516
precondition, 284
prefix, 99, 230, 235
previews, video, 462
print, 3, 36, 188, 417

(see also logging)
privacy, 20, 286
private, 287
product name, 314

620 | Index

profile (see provisioning profile)
profiling, 442
project, 313

file, 326
folder, 325, 350
renaming, 350
templates, 314
window, 316

Project navigator, 317, 413
properties, 13, 69, 127

(see also variables)
accessors, 505
class, 70, 128
computed initialization, 75
deferred initialization, 117
dynamic, 536
enums, 144
initialization, 123, 129

classes, 161
lazy, 82

inspectable, 382
instance, 16, 70, 128
memory management, 549
Objective-C, 504

memory management, 559
omitting type name, 140
Optional, 125
optional, 192
overriding, 170
private, 22
releasing, 550
static, 70, 128

initialization, 81
struct, 149
vs. class, 171

structs, 148
property list settings, 338, 463

dependent on device type, 400
property lists, 500
protocols, 186-197, 475

adopter, 200
adopting, 186

conditionally, 218
associated type, 200

chaining, 208
constraining, 211

casting, 189
class, 194
composition, 191

conforming to, 186
declaration, 190
delegate, 525
documentation, 477
extensions, 215, 473

constraining associated type, 218
invisible to Objective-C, 477

generic, 200
constraining associated type, 211

implicitly required initializers, 195
informal, 477
literal convertible, 196
memory management, 307
Objective-C, 475
optional members, 192, 478
synthesizing, 295
testing type, 189

provisioning profile, 435
development, 438
distribution, 456
universal, 438

proxy objects, 354, 365
public, 287
pyramid of doom, 256

Q
query events, 514
question mark, 106, 114, 177, 193, 259, 265
Quick Help, 323, 390
Quick Look a variable, 424
quotes, 92

R
random, 91
randomElement, 233
Range, 101
ranges, 101

coercion to NSRange, 481
indexing with, 102, 228
iterating in reverse, 294
partial, 101
string, 96, 214, 481

raw value, 138
RawRepresentable, 139
read-only variables, 77
recursion, 42
recursive initializers, 126
recursive references, 155
reduce, 236

Index | 621

refactoring, 416
Refactoring (book), 26
reference, 6, 69
reference types, 150

memory management, 301
references

getting, 136, 563
persisting, 302
recursive, 155
strong, 302
to functions, 62
to object types, 180

Objective-C, 585
to same object, 152, 223
unowned, 304, 551
unsafe, 552
weak, 303, 551

registering a device, 436, 440
registering an app, 440
registering for a notification, 517
registering for key–value observing, 534
regular expressions, 485
Related Items menu, 323
release, 545
releasing a property, 550
remove, 101, 232
removeFirst, 232
removeLast, 232
removeSubrange, 103
removeValue, 244
renamification, 591
renaming a project, 349
REPL, xvi
replaceSubrange, 103
replacing, 415
Report navigator, 321, 430
required initializers, 168, 182, 195
reserved words, 22
resolution, screen, 342, 400
resolving a generic, 198, 205
resources, 340

app bundle, 340
asset catalog, 341
dependent on device type, 400

responder, 530
responder chain, 531
responds, 478
result of a function, 27

ignoring, 30

retain, 545
retain count, 544
retain cycles, 301, 550

anonymous functions, 305
key–value observing, 554
notifications, 553
timers, 555

retains, unusual, 556
rethrows, 278
return, 28

function from function, 55
omitting, 50
value of anonymous function, 46
value of function, 28

reversed, 102, 233
root class, 156
root view controller, 347
run, 315
running on a device, 433

S
sample code, Apple’s, 394
scalars, 6, 488, 574
Scanner, 484
scene, 354
scene dock, 354
Scheme pop-up menu, 334
schemes, 333

renaming, 350
scientific notation, 85
scope, 11

exiting early, 271
nested, 280
object types, 119
variable, 69

screen resolution, 342, 400
screencasts, 462
screenshots, 461
SDKs, 335, 343

older, 400
searching arrays, 230
searching for symbols, 392
searching the documentation, 386
searching your code, 415
selection, multiple, 408
Selector, 596
selectors, 65, 595
self, 19

in escaping functions, 60, 153

622 | Index

in initializers, 125, 164
in instance methods, 20, 120
in property initialization, 129
in static/class methods, 120
polymorphism, 173

in class methods, 183
with type name, 181

Self, 183, 200, 209
semicolon, 3
sequence, 270

array initializer, 225
character, 97
enumerating with index, 104, 269
generating, 268
lazy, 271
range indexing, 102
transforming, 269

Sequence, 268
serialization, 500
Set, 247
sets, 247-252, 497

declaration, 248
equality, 249
hashable elements, 247

NSObject, 493
initializers, 248
literals, 248
mutating, 249
operations, 249
option sets, 250, 577
sampling, 248
transformations, 248

setter, 76, 504
private, 289

setter observers, 79
shared application instance, 346
shortcircuiting, 271
should, delegate method names with, 524
shuffle, 233
side effects, 30
signature of a function, 32
signing an app, 435

automatic, 436
manual, 441

signposts, 448
Simulator, 416
Single View App template, 314
singleton, 81
Size inspector, 323, 359

slice, 228
snippets

creating, 411
Snippets library, 410
structural, 411

sort, 233
sorted, 233
sorting arrays, 233
Source Control navigator, 318
Source Control preferences and menu, 404
specializing a generic, 198, 205
splatting, 36
split, 99, 233
square brackets, 132, 225, 241
stack, 23
stack, call, 271, 321, 423
startIndex, 100, 230
starts, 231
state

instance, 19
maintenance, 23

statement, 3
static members, 16
static methods, 131

vs. class methods, 170
static properties, 70, 128

initialization, 81
struct, 149
vs. class properties, 171

stepping, 426
stored variables, 76
storyboard files, 339

(see also main storyboard)
compiled, 337
dependent on device type, 401
editing, 352
entry point, 355
launch, 461

stride, 269
String, 92
String.Index, 100
stringly typed, 578
strings, 92-103

C strings, 574
characters, 97
coercion, 94
comparison, 94
concatenating, 94
constants, global, 578

Index | 623

equality, 94
format, 418
indexing, 100, 102
initializers, 94
interpolation, 93, 188
length, 95, 97
literals, 92
modifying, 103
notification names, 521
range, 96, 481
searching, 96
substrings, 96-103, 484
Unicode, 95

strong references, 302
structs, 147-149

(see also object types)
bridged to Objective-C classes, 489, 588
C structs, 489, 578
initializers, 147

extensions, 215
methods, 149
omitting type name, 140
properties, 148
static properties, 149
subscripts, 149
vs. classes, 149

styled text, 485
subclass, 156
subclassing

in Cocoa, 469, 514
preventing, 156, 290
UIApplication, 470
UILabel, 471
UIView, 470, 514
UIViewController, 470, 515

subscripting, 100, 102, 227, 242
Objective-C, 495-497

subscripts, 132
classes, 161
enums, 146
overriding, 161
structs, 149

substitution principle, 172
Substring, 99
subview, 355
suffix, 99, 230
super, 161

in initializers, 164
superclass, 156

superview, 355
supported interface orientations, 463
swapAt, 233
swapping variables, 104
Swift, xiii, 3-309
Swift and Objective-C in one target, 603
Swift header, 15
Swift overlay (Foundation), 480, 589
switch, 257
swizzling, 536
Symbol navigator, 318, 413
symbolic breakpoint, 422
symbols, searching for, 392
syntax checking, 412
synthesizing protocols, 295

T
tabs in Xcode, 325
target, 328

bilingual, 603
framework, 344
test, 427

Targeted Device Family build setting, 398
target–action, 528
team, 434
templates

file, 343
project, 314

ternary operator, 265
test bundle, 428
Test Failure breakpoint, 430
Test navigator, 320
test target, 427
testable, 428
TestFlight, 458
tests, 427
text, drawing, 485
text, styled, 485
thinning an app, 457
throw, 274
throws, 276
Time Profiler instrument, 446
timers, 521

retain cycles, 555
times, 486
top level, 9, 15

(see also global)
top-level objects (nib), 354
tracking, 324

624 | Index

trailing function, 49
true, 82
try, 277
tuples, 103
tweaking the APIs, 116, 127
type

checking, suppressing, 221
constraints, 203

multiple, 210
eraser, 246
name, omitting, 137
of function, 42
of instance vs. type of variable, 172
of instance, testing, 177
of Optional, 106
of variable, 7, 72
placeholders, 197

(see also generics)
references, 180

Type, 181
type alias, 46, 105
type(of:), 180
type-over completions, 408
typecasting (see casting)
types, 119

(see also object types)

U
UDID, 435
UI tests, 427
UIApplication, 346, 470
UIApplicationMain, 346
UIBackgroundTaskIdentifier, 74
UIControl, 375, 527
UILabel, 471
UIPickerView, 527
UIResponder, 530
UIView, 470, 514

(see also views)
UIViewController, 470, 515

(see also view controller)
umbrella types, 219
underflow, 90
underscore

argument label, 33
assignment to, 30, 104
mop-up switch case, 258
parameter name, 36, 63

anonymous function, 49

Unicode, 92
UnicodeScalar, 96
unique an array, 248
Unit, 491
unit tests, 427
universal app, 398
universal provisioning profile, 438
Unmanaged, 559
unowned references, 304, 551
unregistering for a notification, 519, 552
unregistering for key–value observing, 535, 554
unsafe references, 552
UnsafeMutablePointer, 38, 580
UnsafeMutableRawPointer, 581
UnsafePointer, 580

memory management, 582
UnsafeRawPointer, 581

casting to CFTypeRef, 598
until, 267
unwrapping an Optional, 107
updateValue, 244
uppercased, 94
URL, 485
User Defined Runtime Attributes, 381
user events, 514
UserDefaults, 149, 567

storing nonproperty list types, 503
UTF-8, UTF-16, UTF-32, 95
Utilities pane, 322

V
value types, 150

memory management, 308
values (dictionary), 240
var, 7, 71, 150
variables, 6, 69-82

coercion, 86
computed, 76
declaration, 6, 71
façade, 78
functions as value of, 42
global, 9, 69

initialization, 81
initialization, 6

of Optional, 110
lazy, 80
lifetime, 7, 69
local, 71
read-only, 77

Index | 625

scope, 69
setter observers, 79
stored, 76
swapping, 104
type, 7, 72

vs. instance type, 172
variables list, 321, 423
variadic parameters, 35

Objective-C, 594
version control, 404
version string, 463
video previews, 462
view controller, 354, 360

initial, 347, 355, 360
view debugging, 424
views, 353

drawing, 470
visibility (see scope)
visibility, instance, 563
Void, 31, 105
void, 581

W
warnings, compiler, 4

weak references, 303, 551
weak–strong dance, 306
where, 210, 217, 259, 269
while, 266
while case, 267
while let, 267
willSet, 79
windows, secondary, in Xcode, 325

X
xcloc bundle, 450
Xcode, 313-466

(see also nib editor)
xib files, 339

editing, 355
xliff files, 449

Z
zip, 241
zombies, 562

626 | Index

About the Author
Matt Neuburg started programming computers in 1968, when he was 14 years old, as
a member of a literally underground high school club, which met once a week to do
timesharing on a bank of PDP-10s by way of primitive teletype machines. He also
occasionally used Princeton University’s IBM-360/67, but gave it up in frustration
when one day he dropped his punch cards. He majored in Greek at Swarthmore Col‐
lege, and received his PhD from Cornell University in 1981, writing his doctoral dis‐
sertation (about Aeschylus) on a mainframe. He proceeded to teach Classical
languages, literature, and culture at many well-known institutions of higher learning,
most of which now disavow knowledge of his existence, and to publish numerous
scholarly articles unlikely to interest anyone. Meanwhile he obtained an Apple IIc and
became hopelessly hooked on computers again, migrating to a Macintosh in 1990. He
wrote some educational and utility freeware, became an early regular contributor to
the online journal TidBITS, and in 1995 left academe to edit MacTech magazine. In
August 1996 he became a freelancer, which means he has been looking for work ever
since. He is the author of Frontier: The Definitive Guide, REALbasic: The Definitive
Guide, and AppleScript: The Definitive Guide, as well as Programming iOS 12 (all for
O’Reilly Media).

Colophon
The animal on the cover of iOS 12 Programming Fundamentals with Swift is a harp
seal (Pagophilus groenlandicus), a Latin name that translates to “ice-lover from Green‐
land.” These animals are native to the northern Atlantic and Arctic Oceans, and
spend most of their time in the water, only going onto ice packs to give birth and
molt. As earless (“true”) seals, their streamlined bodies and energy-efficient swim‐
ming style make them well-equipped for aquatic life. While eared seal species like sea
lions are powerful swimmers, they are considered semiaquatic because they mate and
rest on land.

The harp seal has silvery-gray fur, with a large black marking on its back that resem‐
bles a harp or wishbone. They grow to be 5–6 feet long, and weigh 300–400 pounds
as adults. Due to their cold habitat, they have a thick coat of blubber for insulation. A
harp seal’s diet is very varied, including several species of fish and crustaceans. They
can remain underwater for an average of 16 minutes to hunt for food and are able to
dive several hundred feet.

Harp seal pups are born without any protective fat, but are kept warm by their white
coat, which absorbs heat from the sun. After nursing for 12 days, the seal pups are
abandoned, having tripled their weight due to their mother’s high-fat milk. In the
subsequent weeks until they are able to swim off the ice, the pups are very vulnerable

to predators and will lose nearly half of their weight. Those that survive reach matur‐
ity after 4–8 years (depending on their sex) and have an average lifespan of 35 years.

Harp seals are hunted commercially off the coasts of Canada, Norway, Russia, and
Greenland for their meat, oil, and fur. Though some of these governments have regu‐
lations and enforce hunting quotas, it is believed that the number of animals killed
every year is underreported. Public outcry and efforts by conservationists have resul‐
ted in a decline in market demand for seal pelts and other products, however.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	The Scope of This Book
	Versions
	Acknowledgments
	From the Programming iOS 4 Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Part I. Language
	Chapter 1. The Architecture of Swift
	Ground of Being
	Everything Is an Object?
	Three Flavors of Object Type
	Variables
	Functions
	The Structure of a Swift File
	Scope and Lifetime
	Object Members
	Namespaces
	Modules
	Instances
	Why Instances?
	The Keyword self
	Privacy
	Design
	Object Types and APIs
	Instance Creation, Scope, and Lifetime
	Summary and Conclusion

	Chapter 2. Functions
	Function Parameters and Return Value
	Void Return Type and Parameters
	Function Signature

	External Parameter Names
	Overloading
	Default Parameter Values
	Variadic Parameters
	Ignored Parameters
	Modifiable Parameters
	Function in Function
	Recursion
	Function As Value
	Anonymous Functions
	Define-and-Call
	Closures
	How Closures Improve Code
	Function Returning Function
	Closure Setting a Captured Variable
	Closure Preserving Its Captured Environment
	Escaping Closures

	Curried Functions
	Function References and Selectors
	Function Reference Scope
	Selectors

	Chapter 3. Variables and Simple Types
	Variable Scope and Lifetime
	Variable Declaration
	Computed Initializer
	Computed Variables
	Setter Observers
	Lazy Initialization
	Built-In Simple Types
	Bool
	Numbers
	String
	Character and String Index
	Range
	Tuple
	Optional

	Chapter 4. Object Types
	Object Type Declarations and Features
	Initializers
	Properties
	Methods
	Subscripts
	Nested Object Types
	Instance References

	Enums
	Raw Values
	Associated Values
	Enum Case Iteration
	Enum Initializers
	Enum Properties
	Enum Methods
	Why Enums?

	Structs
	Struct Initializers, Properties, and Methods
	Struct As Namespace

	Classes
	Value Types and Reference Types
	Subclass and Superclass
	Class Initializers
	Class Deinitializer
	Class Properties and Methods

	Polymorphism
	Casting
	Casting Down
	Type Testing and Casting Down Safely
	Type Testing and Casting Optionals
	Bridging to Objective-C

	Type References
	From Instance to Type
	Type as Value
	The Keyword Self
	Comparing Types
	Summary of Type Terminology

	Protocols
	Why Protocols?
	Protocol Type Testing and Casting
	Declaring a Protocol
	Protocol Composition
	Optional Protocol Members
	Class Protocol
	Implicitly Required Initializers
	Literal Convertibles

	Generics
	Generic Declarations
	Contradictory Resolution
	Type Constraints
	Explicit Specialization
	Generic Invariance
	Associated Type Chains
	Where Clauses

	Extensions
	Extending Object Types
	Extending Protocols
	Extending Generics

	Umbrella Types
	Any
	AnyObject
	AnyClass

	Collection Types
	Array
	Dictionary
	Set

	Chapter 5. Flow Control and More
	Flow Control
	Branching
	Loops
	Jumping

	Privacy
	Private and Fileprivate
	Public and Open
	Privacy Rules

	Introspection
	Operators
	Synthesized Protocol Implementations
	Key Paths
	Dynamic Member Lookup
	Memory Management
	Memory Management of Reference Types
	Exclusive Access to Value Types

	Part II. IDE
	Chapter 6. Anatomy of an Xcode Project
	New Project
	The Project Window
	The Navigator Pane
	The Utilities Pane
	The Editor

	The Project File and Its Dependents
	What’s In the Project Folder
	Groups

	The Target
	Build Phases
	Build Settings
	Configurations
	Schemes and Destinations

	From Project to Built App
	Build Settings
	Property List Settings
	Nib Files
	Additional Resources
	Code Files
	Frameworks and SDKs

	The App Launch Process
	The Entry Point
	UIApplicationMain
	App Without a Storyboard

	Renaming Parts of a Project

	Chapter 7. Nib Management
	The Nib Editor Interface
	Document Outline
	Canvas
	Inspectors and Libraries

	Nib Loading
	When Nibs Are Loaded
	Manual Nib Loading

	Connections
	Outlets
	The Nib Owner
	Automatically Configured Nibs
	Misconfigured Outlets
	Deleting an Outlet
	More Ways to Create Outlets
	Outlet Collections
	Action Connections
	More Ways to Create Actions
	Misconfigured Actions
	Connections Between Nibs — Not!

	Additional Configuration of Nib-Based Instances

	Chapter 8. Documentation
	The Documentation Window
	Class Documentation Pages
	Quick Help
	Symbol Declarations
	Header Files
	Sample Code
	Internet Resources

	Chapter 9. Life Cycle of a Project
	Environmental Dependencies
	Permissible Runtime Environment
	Backward Compatibility
	Device Type
	Arguments and Environment Variables
	Conditional Compilation

	Version Control
	Editing and Navigating Your Code
	Autocompletion
	Snippets
	Fix-it and Live Syntax Checking
	Navigation
	Finding
	Refactoring

	Running in the Simulator
	Debugging
	Caveman Debugging
	The Xcode Debugger

	Testing
	Unit Tests
	Interface Tests

	Clean
	Running on a Device
	Obtaining a Developer Program Membership
	Signing an App
	Automatic Signing
	Manual Signing
	Running the App
	Managing Development Certificates and Devices

	Profiling
	Gauges
	Memory Debugging
	Instruments

	Localization
	Distribution
	Making an Archive
	The Distribution Certificate
	The Distribution Profile
	Distribution for Testing
	Final App Preparations
	Screenshots and Video Previews
	Property List Settings
	Submission to the App Store

	Part III. Cocoa
	Chapter 10. Cocoa Classes
	Subclassing
	Categories and Extensions
	How Swift Uses Extensions
	How You Use Extensions
	How Cocoa Uses Categories

	Protocols
	Informal Protocols
	Optional Methods

	Some Foundation Classes
	NSRange and NSNotFound
	NSString and Friends
	NSDate and Friends
	NSNumber
	NSValue
	NSData
	NSMeasurement and Friends
	Equality, Hashability, and Comparison
	NSArray and NSMutableArray
	NSDictionary and NSMutableDictionary
	NSSet and Friends
	NSIndexSet
	NSNull
	Immutable and Mutable
	Property Lists
	Codable

	Accessors, Properties, and Key–Value Coding
	Swift Accessors
	Key–Value Coding
	Uses of Key–Value Coding
	KVC and Outlets
	Cocoa Key Paths

	The Secret Life of NSObject

	Chapter 11. Cocoa Events
	Reasons for Events
	Subclassing
	Notifications
	Receiving a Notification
	Unregistering
	Posting a Notification
	Timer

	Delegation
	Cocoa Delegation
	Implementing Delegation

	Data Sources
	Actions
	The Responder Chain
	Deferring Responsibility
	Nil-Targeted Actions

	Key–Value Observing
	Registration and Notification
	Unregistering
	Key–Value Observing Example

	Swamped by Events
	Delayed Performance

	Chapter 12. Memory Management
	Principles of Cocoa Memory Management
	Rules of Cocoa Memory Management
	What ARC Is and What It Does
	How Cocoa Objects Manage Memory
	Autorelease Pool
	Memory Management of Instance Properties
	Retain Cycles and Weak References
	Unusual Memory Management Situations
	Notification Observers
	KVO Observers
	Timers
	Other Unusual Situations

	Nib Loading and Memory Management
	Memory Management of CFTypeRefs
	Property Memory Management Policies
	Debugging Memory Management Mistakes

	Chapter 13. Communication Between Objects
	Visibility by Instantiation
	Visibility by Relationship
	Global Visibility
	Notifications and Key–Value Observing
	Model–View–Controller

	Appendix A. C, Objective-C, and Swift
	The C Language
	C Data Types
	C Enums
	C Structs
	C Pointers
	C Arrays
	C Functions

	Objective-C
	Objective-C Objects and C Pointers
	Objective-C Objects and Swift Objects
	Exposure of Swift to Objective-C
	Bridged Types and Boxed Types
	Objective-C Methods
	Objective-C Initializers and Factories
	Selectors
	CFTypeRefs
	Blocks
	API Markup

	Bilingual Targets

	Index
	About the Author

