
M A N N I N G

Jeremy Wilken

www.allitebooks.com

http://www.allitebooks.org

Communicating between Angular components
Angular applications are based around components that communicate with one
another. You pass data into a child component using inputs and can emit events up
to a parent component that shares data. This is essentially the way that normal HTML
elements behave, which makes Angular easy to understand and learn.

The figure below shows the structure of an example application used in chapter 5: It’s
composed of a tree of components, much like what you see when creating HTML docu-
ments. The Dashboard component has four child components: two instances of the Metric
component and two of the Nodes component. The Dashboard component contains data,
which it passes to each of its children using an input binding, which is how Angular shares
data from a parent to a child component. In addition to sharing this data, Angular also
keeps track of data changes and understands when to redraw the screen.

App
component

#dashboard

[cpu]

(onRefresh)

Navbar
component

Dashboard
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

[mem] [cluster1] [cluster2]

Metric
component

Nodes
component

Nodes
component

Metric
component

Key:

[Input bindings]
(Emit output events)
#Local template variable

[node] [node] [node] [node] [node] [node]

Inputs let us send data from a parent to a child, but outputs allow data to flow in the
other direction. Similar to how events bubble up to their parent, outputs are Angular’s
syntax for allowing a child to pass data or events back to its parent. In the figure, the
Navbar component sends an output event to the App component. The App compo-
nent waits until an output event is fired and then reacts accordingly. In this example,
the App component refreshes the data on the page, but you can trigger any type of
logic to execute. Angular provides other ways to communicate, such as using services
or local template variables, which are covered in detail in this book.

 www.allitebooks.com

http://www.allitebooks.org

Angular in Action

JEREMY WILKEN

MANN I NG
Shelter Island

 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity. For more information, please
contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

	 Development editors: 	 Cynthia Kane, Helen Stergius
	 Review editor: 	 Ivan Martinović
	Technical development editor: 	 Alain Couniot
	 Project editor: 	 Kevin Sullivan
	 Copyeditor: 	 Corbin Collins
	 Proofreader: 	 Alyson Brener
	 Technical proofreader: 	 Tanya Wilke
	 Typesetter: 	 Happenstance Type-O-Rama
	 Cover designer: 	 Marija Tudor

ISBN 9781617293313
Printed in the United States
1  2  3  4  5  6  7  8  9  10 - EBM - 23  22  21  20  19  18

 www.allitebooks.com

http://www.allitebooks.org

To my parents, who gave me great encouragement, support, and latitude to become
what I am today.

 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

v

contents
preface  x
acknowledgments  xii
about this book  xiii
about the author  xvii
about the cover illustration  xviii

	 1	 Angular: a modern web platform  1
	1.1	 Why choose Angular?  2

	1.2	 What you’ll learn   3

	1.3	 The journey from AngularJS to Angular  4

	1.4	 Angular: a platform, not a framework  5
Angular CLI  6  ■  Server rendering and the compiler  7  ■  Mobile
and desktop capabilities  8  ■  UI libraries  9

	1.5	 Component architecture  11
Components’ key characteristics  13  ■  Shadow
DOM  15  ■  Templates  17  ■  JavaScript modules  17

	1.6	 Modern JavaScript and Angular  20
Observables  21

	1.7	 TypeScript and Angular  23

 www.allitebooks.com

http://www.allitebooks.org

vivi contents

	 2	 Building your first Angular app  25
	2.1	 Previewing the chapter project  26

	2.2	 Setting up the project  28

	2.3	 The basic app scaffolding  29

	2.4	 How Angular renders the base application  31
App component  31  ■  App module  32  ■  Bootstrapping the
app  33

	2.5	 Building services  36

	2.6	 Creating your first component  38

	2.7	 Components that use components and services  44

	2.8	 Components with forms and events  47

	2.9	 Application routing  50

	 3	 App essentials  54
	3.1	 Entities in Angular  55

Modules  57  ■  Components  58  ■  Directives  60  ■ 
Pipes  62  ■  Services   63

	3.2	 How Angular begins to render an app  64

	3.3	 Types of compilers  65

	3.4	 Dependency injection  66

	3.5	 Change detection  67

	3.6	 Template expressions and bindings  68
Interpolation  69  ■  Property bindings  70  ■  Special property
bindings  71  ■  Attribute bindings  72  ■  Event bindings  73

	 4	 Component basics  76
	4.1	 Setting up the chapter example  77

Getting the code  79

	4.2	 Composition and lifecycle of a component  79
Component lifecycle  81  ■  Lifecycle hooks  83  ■  Nesting
components  84

	4.3	 Types of components  85

	4.4	 Creating a Data component  89

 www.allitebooks.com

http://www.allitebooks.org

	 vii	 viicontents ﻿

	4.5	 Using inputs with components  91
Input basics  92  ■  Intercepting inputs  95

	4.6	 Content projection  97

	 5	 Advanced components  104
	5.1	 Change detection and optimizations  105

	5.2	 Communicating between components  108
Output events and template variables  110  ■  View Child to
reference components  112

	5.3	 Styling components and encapsulation modes  113
Adding styles to a component  114  ■  Encapsulation modes  116

	5.4	 Dynamically rendering components  119
Using the ng-bootstrap modal for dynamic
components  120  ■  Dynamically creating a component and
rendering it  123

	 6	 Services  128
	6.1	 Setting up the chapter example  129

Getting the chapter files  131  ■  Sample data  131

	6.2	 Creating Angular services  132

	6.3	 Dependency injection and injector trees   137

	6.4	 Services without dependency injection  141

	6.5	 Using the HttpClient service  142
HttpInterceptor  146

	6.6	 Helper services  149

	6.7	 Services for sharing  153

	6.8	 Additional services  157

	 7	 Routing  159
	7.1	 Setting up the chapter example  160

	7.2	 Route definitions and router setup  162

	7.3	 Feature modules and routing  165

	7.4	 Route parameters  167
Creating links in templates with routerLink  167  ■  Accessing the
route parameters in a component  168

 www.allitebooks.com

http://www.allitebooks.org

viiiviii contents

	7.5	 Child routes  170

	7.6	 Secondary routes  173
Defining a secondary route  174  ■  Navigating between secondary
routes  175  ■  Closing a secondary route and programmatic
routing  176

	7.7	 Route guards to limit access  177

	7.8	 Lazy loading  182

	7.9	 Routing best practices  185

	 8	 Building custom directives and pipes  188
	8.1	 Setting up the chapter example  189

	8.2	 Crafting custom directives  190
Creating an attribute directive  192  ■  Modifying a component with
a directive with events  194  ■  Creating a structural directive  197

	8.3	 Crafting custom pipes  199
Creating a pure pipe  201  ■  Creating an impure pipe  203

	 9	 Forms  208
	9.1	 Setting up the chapter example  209

Review the app before starting  211

	9.2	 Template-driven forms  212
Binding model data to inputs with NgModel  212  ■  Validating
form controls with NgModel  214  ■  Custom validation with
directives  217  ■  Handling submit or cancel events  219

	9.3	 Reactive forms  221
Defining your form  222  ■  Implementing the
template  224  ■  Watching changes  226  ■  Custom validators
with reactive forms  227  ■  Handling submit or cancel
events  230  ■  Which form approach is better?  234

	9.4	 Custom form controls  235

	 10	 Testing your application  242
	10.1	 Testing tools and setting up the chapter example  243

Testing tools  244

 www.allitebooks.com

http://www.allitebooks.org

	 ix	 ixcontents

	10.2	 Unit testing  244
Anatomy of unit tests  245  ■  Testing pipes  246  ■  Testing
services, stubs, and mocking HTTP requests  247  ■  Testing
components and using testing modules  253  ■  Testing
directives  261

	10.3	 e2e testing  265

	10.4	 Additional testing strategies  270
How much testing is enough?  271  ■  When do I write
tests?  271  ■  What do I write, e2e or unit tests?  272  ■  What if
I don’t have time to write tests?  272  ■  What about other types of
testing?  273

	 11	 Angular in production  275
	11.1	 Building Angular for production  276

Production build  276  ■  Optimizing for
target browsers  277  ■  Progressive Web
Apps   277  ■  Internationalization (i18n)  278  ■  Using
alternative build tooling  278  ■  Server-side rendering or pre-
rendering  279  ■  Build pipelines  280

	11.2	 Angular architecture choices  280
Lazy load routes  280  ■  Reduce external
dependencies  281  ■  Stay up-to-date  284

	11.3	 Deployment  284

	 appendix	 Upgrading from AngularJS to Angular  287

	 index  293

x

preface
A major framework for many years, Angular has influenced a generation of web tech-
nologies. Even developers who haven’t used it have benefitted from its existence, as it
helped popularize a number of important concepts and technologies.

Early in its AngularJS days (version 1.x is known as AngularJS), it became perhaps
the most popular web application framework of its time. But the 1.x version had lim-
itations, and a number of optimizations were built into the framework. The concept
of two-way databinding (being able to sync data between the controller and the view
automatically), which was touted early on as its best feature, became a performance
bottleneck in large applications that abused its utility. To help mitigate this problem,
one-way and one-time binding options were introduced to improve performance, but
they required developers to opt in. Also, components were introduced as a better way to
organize and structure applications, but taking advantage of them required refactoring
of existing applications.

You could build an amazing and performant application with AngularJS 1.x, but it
wasn’t always the default mode and required unlearning concepts that were believed
to be best practices from earlier releases. Simply put, writing well-designed applica-
tions was possible because of workarounds from the original concepts that AngularJS
embraced.

Instead of evolving the version 1.x codebase, the decision was made to rewrite it from
scratch to implement the lessons learned into the foundations of the next major ver-
sion. This was a multiyear endeavor that involved both the Angular team at Google and
the larger community of early adopters. It was a long journey, and I rode alongside and
built applications on top of it during early alpha and beta phases. The final result of that

	 xi﻿ 	 xipreface

journey was Angular 2.0 (version 2.0 and above is known as just Angular), and its com-
munity has grown rapidly since its release.

I started working on Angular in Action while Angular was still in early beta for ver-
sion 2.0. Angular then underwent regular and rapid iterations during the book’s writ-
ing and development. But today Angular is stable and evolves with a well-defined release
cycle for new features and deprecations. The book examples are written to work with
Angular 5 and above, and going forward, the GitHub projects will have notes about any
required changes to keep up with Angular’s evolution.

xii

acknowledgments
I’d like to thank first and foremost my wife, Linda, for her patience and understanding
as I wrote this book, largely during the evening and weekend hours. I appreciate your
support, and I pledge to make up some of the lost time.

Manning provided a team of professionals dedicated to making this book happen.
Dozens of individuals were involved, including my developmental editors Helen Ster-
gius and Cynthia Kane, technical developmental editor Alain Couniot, technical proof-
reader Tanya Wilke, and review editor Ivan Martinović. Several external reviewers also
provided helpful feedback on different stages of the manuscript: Harsh Raval, Kumar
Unnikrishnan, Michael A. Angelo, Phily Austria, Radoslaw Pilski, and Tony Brown.

Along with that team were others at Manning who helped manage the cycle of early
releases and the final production release, including project editor Kevin Sullivan, copy-
editor Corbin Collins, and proofreader Alyson Brener.

A big thank you goes to the Angular team for creating Angular and also for the oppor-
tunities they’ve given me to talk with team members individually. Google also sponsors
the Google Developer Experts program, which has a great list of Angular experts who
have been helpful and which I’m proud to belong to.

I also want to thank Jason and David Aden for their early contributions and time
working on the manuscript with me.

Finally, thank you, the reader, for picking up this book to spend your precious time
with me between these pages. If it weren’t for you, I wouldn’t have a reason to write. I
hope to hear from you and see what you build!

xiii

about this book
Angular in Action is designed to help you learn how to use Angular in building your
own web applications. I’ve brought the core lessons from my own experiences into
this book. I’ve built a number of large enterprise applications on Angular and many
smaller ones as well. I believe similar best practices go into most well-written applica-
tions no matter their size, so I share those as well.

My goal is to ensure you have a strong foundation in how Angular works, how it’s
used to build web applications, and how to then ship those into production. This foun-
dational knowledge will enable you to learn additional concepts more quickly and eas-
ily (often by reviewing the documentation or even blog posts).

There are certainly more Angular topics than could be covered in a single book, as
Angular is an ambitious and comprehensive set of tools and libraries. I took great care
to make this a book that works on multiple levels. You may find some topics to be more
advanced than you need right now, but you can always come back to them later. Or you
may find that the basics are familiar but the more advanced topics help fill in the gaps.

Who should read this book
Although I believe Angular is accessible for developers, this book is targeted at readers
who have the subject knowledge detailed in the following list. Other readers will certainly
find value in the content, but may have knowledge gaps that aren’t covered specifically:

¡	Web applications —You understand the role of web applications and have a little
bit of experience with building them.

¡	JavaScript —You have enough knowledge of JavaScript and its syntax to be able to
follow along with the examples.

¡	HTML/CSS —You understand the roles of HTML and CSS, as well as their syntax.

xivxiv about this book

I mention some topics in the book that are important but not part of Angular. You may
know nothing about some of these, but the book provides enough cursory knowledge
that you should be able to follow along:

¡	TypeScript —Angular is written with TypeScript, and so are all the examples in this
book. If you’re new to TypeScript, I provide many hints along the way, but I sug-
gest you review the official documentation at www.typescriptlang.org.

¡	Reactive programming —Angular’s design often allows and recommends using
reactive-style programming, which is usually used in conjunction with the popu-
lar RxJS library. There’s a lot of great material out there for learning reactive and
RxJS, and I share a few links to it in the book.

How this book is organized
This book is divided into themed chapters, beginning with the core details of Angu-
lar and expanding into more complex themes. Chapters 1–3 lay the groundwork for
understanding what Angular is (and isn’t) and discuss its role in building your appli-
cations. These chapters also provide a quick but fairly comprehensive tutorial of many
of Angular’s key features. If you’re already familiar with Angular, you may find these
sections easy to skim to find new insights.

Chapters 4–5 act like a single unit on the topic of components. Angular (like HTML)
is based on the idea of building individual components that can be composed together
for more complex interactions. You can’t have an Angular application without com-
ponents, and I cover them in great detail in these chapters so you can focus on other
aspects in the remainder of the book.

Chapters 6–9 focus on key topics in building applications. Chapter 6 is all about ser-
vices and, subsequently, dependency injection. Understanding how to manage your
services is key to building a larger Angular application, and often key to using other
capabilities as well. Chapter 7 looks closely at the router and how to use it to create
simple to complex navigation patterns that are used in many web applications. Chapter
8 shows you how to build your own custom directives and pipes, which become crucial
when you expand the size of your application and want to make it easier to maintain.
Finally, chapter 9 covers the two different approaches to building forms with Angular, as
well as how to create your own custom form controls.

The last two chapters round off your Angular training with a focus on testing in chap-
ter 10 and on building and deploying your application for production in chapter 11.
You might build some small hobby websites without testing or production tooling, but
Angular provides some great tools that make it easy even for large enterprise applica-
tions to use. I suggest you use them too! The brief appendix discusses the transition
from AngularJS to Angular (or version 1.x to 2+).

If you’re brand new to Angular and want a guided tour, I recommend reading the
chapters in order. This approach will give you incremental knowledge to build on as
you go, as often a chapter glosses over details that were covered in an earlier one.

	 xv	 xvabout this book

If you have some prior experience with Angular or are interested in particular topics,
feel free to head straight for those chapters. I believe you can skim early sections that
cover familiar material and then look more closely at later parts of a chapter to learn
more complex capabilities. As you skim, keep an eye out for diagrams that explain var-
ious concepts; they’re a great way to quickly validate whether you understand the topic
at hand. If there are unfamiliar concepts, you can always refer to other chapters.

Most chapters feature fairly extensive examples. In order to do them properly, you’ll
have to follow along through the whole chapter. The final versions of the code are pro-
vided if you don’t want to follow the examples and build the code yourself, but I strongly
encourage you to code along. You’ll understand the coding and retain the informa-
tion more effectively that way. If you run into any issues with a chapter example, you
can check the GitHub project for any potential code changes that were required after
the book’s publication (such as if a breaking change has been introduced in Angular).
Stack Overflow is also a great place to ask any questions that extend beyond the chapter
example code.

About the code
All the code in this book can be downloaded from GitHub at https://github.com/
angular-in-action. (A zip file containing the complete code at time of publication will
also be available from the publisher’s website at https://www.manning.com/books/
angular-in-action.) Each chapter also provides a link to the specific chapter content, so
you don’t need to download everything ahead of time.

You’ll need to have a recent version of NodeJS installed on your machine. Chap-
ter 1 covers more specific things to install for the Angular CLI. You also need a modern
browser—preferably one that has good debugging tools, like Chrome. If you’re run-
ning an outdated browser (like IE10), the code won’t run, so update your browser for
compatibility and security.

This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the original source code, has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the book.
In rare cases, even this was not enough, and listings include line-continuation markers
(➥). Additionally, comments in the source code have often been removed from the list-
ings when the code is described in the text. Code annotations accompany many of the
listings, highlighting important concepts.

Book forum
Purchase of Angular in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical

https://github.com/angular-in-action
https://github.com/angular-in-action
https://www.manning.com/books/angular-in-action
https://www.manning.com/books/angular-in-action

xvixvi about this book

questions, and receive help from the author and from other users. To access the forum,
go to https://forums.manning.com/forums/angular-in-action. You can also learn
more about Manning's forums and the rules of conduct at https://forums.manning.
com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long as
the book is in print.

https://forums.manning.com/forums/angular-in-action
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

xvii

about the author
Jeremy Wilken is a software engineer with a passion for designing applications and
technology solutions that focus on improving the lives of users. He is a Google Devel-
oper Expert for Web Technologies and Angular as well as the Google Assistant, which
is an endorsement from Google as a subject matter expert and community leader in
Angular and the web.

Most of his day-to-day work is in building Angular applications, but he also spends
a lot of time and energy speaking at events, running workshops and trainings, writ-
ing, and helping build community through meetups and conferences. He’s worked for
companies like eBay, Teradata, and VMware, and has been a consultant for many years.

He lives in Austin, Texas, with his wife and two daughters. Outside of the tech world,
he is a certified beer judge (it’s a real thing) and brews his own beer.

xviii

about the cover illustration
The figure on the cover of Angular in Action is captioned “A colonel of the Strelitzes, the
old Russian militia and body guard to the czars of Moscovy.” The illustration is taken
from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern
(four volumes), London, published between 1757 and 1772. The title page states that
these are hand-colored copperplate engravings, heightened with gum arabic.

Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was
an English cartographer who was the leading map supplier of his day. He engraved and
printed maps for government and other official bodies and produced a wide range of
commercial maps and atlases, especially of North America. His work as a map maker
sparked an interest in local dress customs of the lands he surveyed and mapped, which
are brilliantly displayed in this collection. Fascination with faraway lands and travel for
pleasure were relatively new phenomena in the late eighteenth century, and collections
such as this one were popular, introducing both the tourist as well as the armchair trav-
eler to the inhabitants of other countries.

The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It’s now often hard to tell the inhabitants of one continent from another. Perhaps, try-
ing to view it optimistically, we’ve traded a cultural and visual diversity for a more varied
personal life—or a more varied and interesting intellectual and technical life.

At a time when it’s difficult to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers based
on the rich diversity of regional life of two centuries ago, brought back to life by Jefferys’
pictures.

 www.allitebooks.com

http://www.allitebooks.org

1

1Angular: a modern
web platform

This chapter covers
¡	Angular as a platform for modern applications

¡	Key reasons for choosing Angular

¡	Angular’s architecture and how components
form the basis of it

¡	How AngularJS differs from Angular

¡	ES2015 and TypeScript and how Angular
uses them

Angular is a modern web application platform that promises to provide developers
with a comprehensive set of tools and capabilities to build large, robust applications.
The core value proposition of Angular is to make it possible to build applications
that work for nearly any platform—whether mobile, web, or desktop. The Angular
team has focused on building much more than a robust application framework;
they’ve also built an entire ecosystem.

All that’s a bit of a mouthful, which is partly what makes Angular such an exciting
technology to work with. Let’s start by taking a closer look at why you would choose
Angular for your next project.

2 Chapter 1  Angular: a modern web platform

1.1	 Why choose Angular?
Building web applications that can meet the needs of users is not a trivial task. The
quality and complexity of applications is ever increasing, and so are users’ expectations
for quality and capabilities. Angular exists to help developers deliver applications to
meet these demands.

If you haven’t settled on Angular as a tool of choice yet, let’s quickly cover some of
the top reasons that you should seriously consider Angular. Some items are covered
more in section 1.3, but here are the top highlights in my experience:

¡	Inspired by web standards, enhanced by modern capabilities —Anyone building web
applications today knows there are many different ways and ideas about how
to design applications. Angular tries to design its framework and the develop-
ment process around common standards (like leveraging the latest JavaScript
language features), using modern capabilities (such as embracing TypeScript for
type enforcement).

¡	Development tooling included, customizations available —Angular provides a common
developer experience through its CLI tooling (for generating, building, testing,
and deploying apps), while making those same tools available to be easily inte-
grated into custom solutions (such as a custom build toolchain) and third-party
tools (like different editors or IDEs).

¡	Powerful ecosystem with a large community —There is an ever-growing number of
third-party libraries, UI libraries, blog posts, and events. Angular’s large and
active community provides a great foundation on which to learn and should
instill confidence that it will remain a valuable technology.

¡	Sponsored by Google, open source community driven —Google has a team of engineers,
managers, and evangelists solely dedicated to bringing Angular to the rest of
Google and the entire web community. With thousands of “internal customers”
who rely on Angular inside Google, the Angular team uses those experiences to
inform future development and receives large volumes of external contributions
that together shape Angular’s future (you can join in too!).

Angular is much more than just a JavaScript library that powers some of the top web-
sites in the world. I’m passionate about open source communities, and I’m an advocate
for people to get engaged in a project as part of their regular routine. Projects in the
Angular community are where I put a lot of my energy and contributions, and I invite
you to join me. Although I do engage with the Angular project itself, I primarily con-
tribute to projects in the Angular ecosystem, such as Clarity, a UI component library
and design language.

You may be a developer trying to figure out whether Angular will meet your needs, or
you may be a manager trying to understand the role of the technology, or trying to fig-
ure out how to improve your current applications. Regardless of where you’re starting
from, the Angular ecosystem has a lot to offer.

	 3What you’ll learn

1.2	 What you’ll learn
This book is designed to be a comprehensive walk through Angular, but it’s also meant
to get you informed about various aspects of the ecosystem. The approach is always
experiential, where you’ll learn about a topic and build it yourself to see the concepts
come to life. At the end of this book you should be able to make high-quality Angular
applications and have the foundational knowledge and experience on which to build a
career and applications.

The key takeaways in this book include the following:

¡	How Angular works —We’ll look at some of the key internal concepts that make it
such a compelling platform for building your applications. You’ll learn the con-
cepts and build examples to illustrate them as part of a functional application.

¡	How to build applications —In most chapters, we’ll walk step-by-step through a
number of real-life examples. The code examples are comprehensive and focus
on a certain set of goals for each chapter.

¡	Learn about the ecosystem —Each example uses some third-party libraries and capa-
bilities. This helps you see more of a realistic development experience and gain a
foundation for building your own applications.

¡	Get practical insights from my experiences —In many of the examples and notes about
them, I share practical advice from my experience, including suggestions on
things to avoid (even if it's perfectly legitimate code) and how to choose between
different approaches when they’re provided.

You should be equipped to design and build web applications with Angular by the end
of the book. If you’re not as interested in the technical aspects (perhaps as a manager),
you’ll still glean a lot of the same lessons to get a solid frame of reference for how
Angular works and what it provides for your project.

There are a few things I won’t be able to cover in this book, but just because these
items aren’t specifically discussed, it doesn’t mean you can’t learn many things related
to them. The following are not core topics covered in this book:

¡	How to write libraries —This book focuses on how to build applications with Angu-
lar, and in many ways building a library has different guidelines and recommen-
dations. That would be another book. But building a library is also difficult if you
don’t know how to build an application first.

¡	Every available API and features —Many APIs and features aren’t covered in this
book, mostly because they’re rarely used. I believe this book will empower you to
build your skills to the level that you can quickly learn these additional features as
your project needs require.

¡	How to design your app and UX principles —This is such a large topic that I can’t
cover it fully. I’ve tried to show several different ideas and patterns in the chapter
examples to give you some ideas, but it’s often opinion-based. I hope you’ll take
time to compare the design of each and know that there can be limitations as well
due to these being examples and not actual projects.

4 Chapter 1  Angular: a modern web platform

Angular is an evolving project, with new features and sometimes deprecation of existing
ones. I’ve taken great care to ensure that the concepts taught are the core ideas that are
unlikely to change (though they may be enhanced). If there are any changes that break
some of the example code or concepts, please check the GitHub project for each chap-
ter or the book’s forums, which should have a list of known changes and errata.

To better understand the impact of Angular in today’s web, let’s go back a few years
to look at the history that brought us here.

1.3	 The journey from AngularJS to Angular
Web applications came of age around 2009–2010, when the Web 2.0 fad finally gave
way to better application approaches and frameworks. The term web application also
became refined, due perhaps in large part to the standardization of HTML5 and
EcmaScript 5 (the basis of JavaScript), and focused primarily on the ability to build
robust applications that run almost entirely in the browser.

In 2009, Miško Hevery announced AngularJS, which became one of the most pop-
ular frameworks (if not the most) for building web applications. The AngularJS proj-
ect was brought into Google, and version 1.0 was officially launched in October 2010.
There were many other viable frameworks, but AngularJS struck a chord with a wide
audience of developers.

Angular vs. AngularJS
There has been some confusion about Angular versions. The Angular team has decided
to provide guidance and call the first version AngularJS. That’s the name it was given ini-
tially, and it separates it architecturally from later versions. Any release from 1.0 through
2.0 is known as AngularJS.

For versions 2.0 and greater, it’s known as just Angular. Version 2.0 was a complete
rewrite, and all versions after it are planned as incremental changes upon it.

Angular version 2, officially announced in September 2014, was developed over the
course of two years (plus some time prior to its announcement). It was released as
Angular version 2 in September 2016, with Angular 4 being released in March 2017.
The Angular team will continue to provide major releases on a six-month schedule,
with a focus on easy upgrades. Depending on when you read this, Angular 6, or even
10, could be the most current release.

But you aren’t looking at this book to learn about the past—you’re interested in
building modern web applications. Perhaps you’ve built Angular 1 applications, or even
started with some of the Angular 2 guides. The focus of this book is on building modern
web applications, and Angular provides the platform to elegantly accomplish that.

Throughout the book, I’ll mention AngularJS occasionally to draw connections for
readers who have experience with it, but when I use Angular without a number, I’m always
referring to Angular version 2 or greater. Check out https://angular.io (figure 1.1) for
more info.

https://angular.io

	 5Angular: a platform, not a framework

Figure 1.1   The Angular website is a great resource for documentation, events, and everything
about Angular.

1.4	 Angular: a platform, not a framework
There are a few important distinctions between a framework and a platform. A frame-
work is usually just the code library used to build an application, whereas a platform is
more holistic and includes tooling and support beyond a framework. AngularJS was
focused solely on building web applications in the browser and was clearly a frame-
work. It had a large ecosystem of third-party modules that could be easily used to add
features to your application, but at the heart of it all, it simply built web applications in
the browser.

Angular comes with a leaner core library and makes additional features available as
separate packages that can be used as needed. It also has many tools that push it beyond
a simple framework, including the following:

¡	Dedicated CLI for application development, testing, and deployment
¡	Offline rendering capabilities on many back-end server platforms
¡	Desktop-, mobile-, and browser-based application execution environments

6 Chapter 1  Angular: a modern web platform

¡	Comprehensive UI component libraries, such as Material Design

Some of these things existed in some shape with AngularJS, but most were community
solutions and were bolted into AngularJS after the fact. In contrast, Angular was devel-
oped with these platform features in mind.

These parts are still in refinement and will continue to evolve into more robust
options.

1.4.1	 Angular CLI

Modern development typically requires setting up many tools in order to start a proj-
ect, which has given rise to more tools to help manage those tools. A typical project needs
to manage handling a build process (asset optimization), testing (unit and end-to-end
testing), and local development support (local server).

The CLI is always improving
The Angular CLI is a wonderful tool that has an ever-growing list of capabilities. Over time,
it will likely do many more things than I mention here, and perhaps the capabilities may
change as well.

The Angular CLI (often just referred to as the CLI) is the official toolchain for building
Angular applications that provide these features and more. This book uses the CLI for
all examples, and you’re encouraged to use it for your projects as well. You could roll
your own build tooling, but that’s suggested only if the CLI doesn’t meet your needs.

You can install the CLI using npm. It does require that you have a recent version of
NodeJS installed to run properly:

npm install -g @angular/cli

The CLI has a number of features that aid in the development of Angular apps. Here
are the primary features:

¡	Generates new project scaffolding —Instead of having to create a new project from an
existing project or creating all the files yourself, the CLI will generate a full proj-
ect with a basic app already started for you.

¡	Generates new application pieces —Need a new component? Easy; it can generate
the files for you. It can generate components, services, routes, and pipes, and it
also will automatically ensure they are fully wired up in the build process.

¡	Manages the entire build toolchain —Because files need to be processed before
being served to the client (such as TypeScript compilation), the CLI will process
your source files and build them into an optimized version for development or
production.

¡	Serves a localhost development server —The CLI handles the build flow and then starts
a server listening on localhost so you can see the results, with a live reload feature.

	 7Angular: a platform, not a framework

¡	Incorporates code linting and formatting code —Helps enforce quality code by using
the CLI to lint your code for style and semantic errors, and it can also help format
your code automatically to the style rules.

¡	Supports running unit and e2e tests —Tests are vital, so the CLI sets up Karma for
running your unit tests and works with Protractor to execute your e2e tests. It will
automatically pick up and execute new tests as they’re generated.

You can add other features and capabilities to the CLI. To see the full list of features, you
can run ng help to output the current help documentation. You can also read more
about the CLI at https://cli.angular.io.

1.4.2	 Server rendering and the compiler

Compiling output in Angular is decoupled from the browser in a way that allows Angu-
lar applications to be rendered in different environments, such as a server or desktop
app. There are many great side effects of this design pattern, because Angular is much
more versatile by being able to render on the client and server, and it opens many dif-
ferent opportunities.

There are two things in play here—first, the decoupled compiler of Angular, and
then optional support for universal rendering. It takes a decoupled compiler to enable
the universal rendering, because you can implement different rendering patterns
depending on the environment.

The compiler in Angular is a very important piece of the puzzle. It’s responsible for
resolving data bindings, registering event handlers, and rendering out the resulting
HTML for components.

The term server rendering is about the notion that it shouldn’t matter where you run
the JavaScript engine that executes Angular code. It should be possible to run Angu-
lar universally, such as with browser JavaScript engines, NodeJS, or even less common
engines like Java’s Nashorn engine. This greatly increases the ways in which Angular
can be used.

Why does this matter? Let’s explore a few primary use cases:

¡	Server rendering for faster loading —Mobile devices are the primary way to access the
internet these days, and mobile connections are frequently slow and unreliable.
A server-side rendering option allows you to resolve data bindings and render
components on the server so the initial payload sent to the user is pre-initialized.
It can also optimize and send the necessary bytes for a quick initial load time and
lazy load the other assets as needed.

¡	Performance in the browser —One of the major pain points of JavaScript is that it’s
single threaded, which means that JavaScript can only handle one instruction at
a time. In modern browsers, a newer technology known as web workers allows
Angular to push some of the execution of the compiler into another process.
This means that a lot more processing can occur, and it allows things like anima-
tions and user interactions to be smoother.

https://cli.angular.io

8 Chapter 1  Angular: a modern web platform

¡	SEO —There’s a major concern about how heavy JavaScript applications are
crawled by search engines. Universal rendering means we can detect crawlers
and render the site for them so that content is ready without having to worry
if the crawler executes JavaScript (some do, some don’t). This will certainly
enhance SEO efforts for Angular applications.

¡	Multiple platforms —Many developers want to use other platforms for their back
ends, such as .NET or PHP. Angular can be compiled in the platform of choice,
assuming there’s a supported renderer. Angular will provide support for NodeJS,
but the community is actively building and maintaining rendering support for
other platforms such as Java and Go.

All of these have been issues for years in building web applications, and Angular pro-
vides a comprehensive solution. The great thing is you don’t have to do a lot of work to
enable these features in your application.

This is an area of evolution at the time of writing, and setting it up correctly is an
advanced topic that I can’t cover in depth. But the Angular documentation and CLI are
being constantly improved to show you how to incorporate these types of benefits easily.

1.4.3	 Mobile and desktop capabilities

The rendering capabilities enable Angular to work with native mobile and desktop
applications. Tools like Cordova have been around for a while; they let you create
hybrid applications—web applications wrapped up inside some type of native shell. But
Angular’s rendering design makes it possible to support rendering out to different
native platforms entirely.

The major value is that you can share a lot of code between your Angular applica-
tions, even if some are designed to build mobile apps and others are web applications.
This is particularly valuable in large teams.

The mobile and desktop capabilities of Angular are extensions of the design of the
compiler. The following tools are all outside of Angular’s core but use the design of
Angular to power some powerful design patterns:

¡	Ionic (mobile) —This fantastic and popular hybrid app framework (figure 1.2) for
Angular JS has been updated to work with Angular. Millions of mobile apps have
been created with Ionic, and it’s primarily focused on building hybrid apps. The
UI components are all created to run in the browser, but look and feel like native
UI components.

¡	NativeScript (mobile) —This is another popular mobile framework that creates
native mobile apps. NativeScript implements the native UI components but
allows you to write Angular components to describe your application.

¡	React Native (mobile, desktop) —By the name, you’d be correct to assume that React
Native is really part of the React framework ecosystem. But with a custom render,
it’s possible to use the React Native tool to generate native mobile apps.

	 9Angular: a platform, not a framework

Figure 1.2   Ionic is a popular and powerful mobile framework for Angular.

¡	Windows Universal (desktop) —Windows has support for building native Windows
applications using JavaScript. It’s possible to use Angular as your application
layer but still have to build out a native Windows application.

¡	Electron (desktop) —Based on NodeJS, Electron is a very popular cross-platform
application framework. It implements a set of APIs to hook into the native OS,
and you can leverage Angular to power the internal logic of your app.

¡	Progressive Web Apps (mobile, desktop) —The capabilities of Progressive Web Apps
(PWAs) aren’t limited to Angular. They’re fundamentally about blurring the line
between the web and native. As of this writing, they’re in experimental support.
This is an exciting potential avenue for building applications of tomorrow.

These different options support the power of the decoupled compiler in Angular. It
also means that there will likely be many, many more examples and use cases that allow
you to build Angular applications that can run nearly anywhere.

1.4.4	 UI libraries

There’s an ever-growing catalog of UI libraries built for Angular. They bring different
sets of UI components to developers for easy consumption. Rather than having to build
your own charts or tabs components, you can use one of the many prebuilt options.

10 Chapter 1  Angular: a modern web platform

Depending on your team’s size and skill sets, implementing your own UI compo-
nents may be challenging. Making truly reusable and hardened UI components is dif-
ficult. These components are rarely what make your application really unique, so it’s
hard to spend the time (and money) to build them.

These libraries are plentiful. There are so many that I can’t cover all the options.
You’ll notice there’s a lot of overlap in the functionalities that each of them provides, so
comparing them can be difficult. We’ll take a look at some of the most popular options,
but I recommend doing additional research before selecting an option:

¡	Angular Material (https://github.com/angular/material2) —Material Design is the
official design specification created by Google. It has strong roots in concepts of
real-world objects, hence Material in the name. Angular Material is the official UI
component library provided by the Angular team and it implements a number
of UI components according to the design specification. It has an open source
license.

¡	Covalent (https://teradata.github.io/covalent) —This library extends the Angular
Material project with a number of additional components and capabilities, but
still retains the principles of Material Design. It’s a result of work done at Tera-
data. It has an open source license.

¡	Clarity (https://vmware.github.io/clarity) —This library, shown in figure 1.3, comes
from VMware. It’s designed as both a library and a design specification for web
applications. It contains many components that are specific to Angular but also
has some icons and a general CSS framework. It has an open source license.

¡	ng-bootstrap (https://ng-bootstrap.github.io) —Based on the very popular Bootstrap
CSS framework, ng-bootstrap implements the components based on the design
of Bootstrap. It’s built by the same team that created the very popular AngularJS
UI Bootstrap project. It has an open source license.

¡	Kendo UI (https://www.telerik.com/kendo-angular-ui/) —From the same company as
NativeScript, Kendo UI is a UI library that’s been integrated into many different
frameworks, but the company is building a set of native Angular UI components
that are custom for Angular. It has a commercial license.

¡	PrimeNG (www.primefaces.org/primeng/) —A rich collection of UI components,
PrimeNG is developed by PrimeTek and has more than 60 components. It comes
with many themes and is designed for mobile and desktops. It has an open source
license.

¡	Wijmo (http://wijmo.com/angular2/) —Containing some very complex data grid
components, Wijmo implements this set of Angular components without sup-
port from other libraries like jQuery. The UI library has a commercial license.

https://github.com/angular/material2
https://teradata.github.io/covalent
https://vmware.github.io/clarity
https://ng-bootstrap.github.io
https://www.telerik.com/kendo-angular-ui/
www.primefaces.org/primeng/
http://wijmo.com/angular2/

	 11Component architecture

Figure 1.3   Clarity Design System is one of the most popular Angular UI libraries.

¡	Ionic (http://ionic.io) —Primarily for mobile, Ionic is a comprehensive library of
components with easy theming, native device integrations, practical services, and
its own CLI for app development workflows. The company also provides commer-
cial services for mobile app development. It has an open source license.

¡	Fuel-UI (http://fuelinteractive.github.io/fuel-ui/) —Another Bootstrap CSS framework
based set of components, directives, and pipes by Fuel Travel. It has an open
source license.

You’re certainly not required to use a UI library, but most developers will find them to
be useful. Any reasonable UI library should be fairly well tested, allowing you to focus
more on what makes your application unique.

1.5	 Component architecture
Many modern applications have adopted a component-based approach to developing
applications. The intention is to design each piece of your application in a standalone
manner that limits the amount of coupling and duplication across various parts of the
program. In many ways, a component is a way to create custom HTML elements in your
application.

http://ionic.io
http://fuelinteractive.github.io/fuel-ui/

12 Chapter 1  Angular: a modern web platform

The easiest way to think about a component architecture is to look at an example of
a page with a large number of discrete parts and inspect how the various parts relate
to one another. Figure 1.4 shows an example from a future chapter and visually breaks
down the various component parts.

Button component: it’s nested deep
inside a component tree that includes
a Datagrid component, like HTML
elements are nested to create more
complex documents.

Stocks
component

Datagrid
component

Datagrid Row
component

Datagrid Cell
component

Figure 1.4   Component architecture illustrated by showing how components are nested and combined
to create more complex layouts

The figure shows an isolated section from one of the book chapter examples, illustrat-
ing that several components combine to create this display. You can see that various
parts are independent from the others, but they also work together to create the list of
items. There’s clearly a hierarchy between them. The list of components on the right
shows the parent-to-child relationship each of the components has with the others,
and this is essentially how HTML elements work together on the page.

HTML itself is a language of components. Each element has a certain role and func-
tionality, and they’re all easily nested to create more complex functionality. They’re
isolated but still easily manipulated to do whatever is needed at the moment. Some

	 13Component architecture

elements work in tandem. For example, INPUTs are used inside of a FORM to describe a
set of input controls. Many elements can also emit events when things happen; a FORM
can emit an event when the form is submitted, for example. This allows you to wire up
additional logic to manipulate HTML elements based on the events that fire—the fun-
damentals of front-end application development.

Hopefully a component architecture seems fairly approachable and consistent with
your current understanding of the web. The intention is to focus on breaking down
individual parts of the application (particularly the visual UI elements) into discrete,
modular components.

There are many ways to implement a component architecture, as evidenced by the
many web application libraries such as React and Ember. Angular has a very obvious
component-based architecture (all Angular applications are components). React and
Ember also have first-class support for components in their applications. Those with
jQuery experience can also imagine that jQuery plugins can be conceptually similar to
components, though they’re not as consistent or regulated. Even the basic concepts of
the Web 2.0 days (think widgets!) are based around building components.

1.5.1	 Components’ key characteristics

Components have some concepts that drive their design and architecture. This section
will explore these concepts in more detail, but also keep an eye open for how Angular
applies these concepts to practice throughout the book:

¡	Encapsulation —Keeping component logic in a single place
¡	Isolation —Keeping component internals hidden from external actors
¡	Reusability —Allowing component reuse with minimal effort
¡	Evented —Emitting events during the lifecycle of the component
¡	Customizable —Making it possible to style and extend the component
¡	Declarative —Using a component with simple declarative markup

When we build components, the preceding are the tenets we should consider when
designing the best components possible. These concepts have existed in various forms
before, but rarely have they all been clearly implemented and standardized into the
web platform.

The World Wide Web Consortium (W3C), the primary standards body for the web, is
developing an official Web Component specification. Several standards are required in
order to implement the full vision of web components:

¡	Custom elements (encapsulation, declarative, reusability, evented)
¡	Shadow DOM (isolation, encapsulation, customizable)
¡	Templates (encapsulation, isolation)
¡	JavaScript modules (encapsulation, isolation, reusability)

As of this writing, the specification isn’t fully adopted in all browsers and possibly never
will be. Standards are also subject to change, but it’s not crucial that we dive into the

14 Chapter 1  Angular: a modern web platform

specifics of the specification here. The important thing is that these four concepts are
central to the idea of components. Let’s explore them a little more in detail and see
how they enable a component architecture.

Custom Elements

HTML is the language of the web because it describes the content of a page in a fairly
concise set of elements. As a markup language, it’s a declarative way to describe your
content. Custom elements mean being able to extend HTML with our own additional
elements, adding to the vocabulary of what is possible. You can read about the official
specification at www.w3.org/TR/custom-elements/.

The official specification for custom elements is intended to allow developers to cre-
ate new HTML elements that essentially blend naturally and natively into the DOM.
In other words, using a custom element should be no different from using any other
HTML element. For example, imagine you want to create a custom element that imple-
ments a tabbing interface. You would likely want to create custom elements like the
following code and in figure 1.5:

<tabs>
 <tab title="About">
 <h1>This is the about tab</h1>
 </tab>
 <tab title="Profile">
 <h2>This is the profile tab</h2>
 </tab>
 <tab title="Contact Us">
 <form>
 <textarea name="message"></textarea>
 <input type="submit" value="Send">
 </tab>
</tabs>

This looks and feels like natural HTML because these would be two custom elements:
tabs and tab elements. The real value here is how easy it is to implement tabs. Using
jQuery, you would end up creating a lot of div elements, applying a number of custom
IDs or classes, and sprinkling some JavaScript on top.

These tabs could also emit events. For example, anytime the active tab changes
there could be a tabChange event. Anything in your application could then listen for
this event and act accordingly. Each custom element could implement any number of
events that seem practical to the lifecycle of the component.

A custom element can also implement its own styling, so the tabs can come by default
with a particular look and feel. Anyone using the tabs could write their own CSS to mod-
ify it to their particular use case, but custom elements can have a default appearance
much like many HTML elements.

Custom elements have a lot of the stuff necessary for building components. In fact, we
could stop with custom elements and be fairly happy. It gives us a declarative way to create
a reusable component, which encapsulates the internal mechanics of the component away
from the rest of the application, but can emit events to enable other components to hook
into the lifecycle. Angular uses these concepts in its implementation of components.

http://www.w3.org/TR/custom-elements/

	 15Component architecture

Tabs element

Tab element

H2 element

Tab element

Form element

Tab element

H1 element

Text area element Input button element

Key:

Custom elements
HTML elements

Figure 1.5   Custom elements fit into a normal HTML hierarchy but can
implement new behaviors.

Angular provides its own mechanics to create a custom element, which is just an Angu-
lar component. Every Angular component is a custom element and fulfills the four
tenets (and more) that we expect to get from a custom element.

1.5.2	 Shadow DOM

Despite the rather ominous-sounding name, the Shadow DOM is really your best friend
when it comes to trying to isolate styling behaviors inside of a component. The Shadow
DOM is an isolated Document Object Model (DOM) tree that’s detached from the typ-
ical CSS inheritance, allowing you to create a barrier between markup inside and out-
side of the Shadow DOM. For example, if you have a button inside of a Shadow DOM
and a button outside, any CSS for the button written outside the Shadow DOM won’t
affect the button inside it. This is important for Angular because it allows us to have
better control over how CSS affects the way the components display.

CSS is a powerful language, but most web developers have run into issues where CSS
styles have accidentally modified elements other than the intended ones, particularly
when adding CSS from external sources. Shadow DOM provides a way to truly encapsulate
your component HTML and CSS from other parts of the page, which is known as Light
DOM. You can read about the official specification at www.w3.org/TR/shadow-dom.

Developers should be familiar with the standard Light DOM, defining the standard
DOM behaviors with regard to element styling and visibility. When you write a CSS rule,
the CSS selector is the only way to limit which elements receive that particular styling.
Outside of some fairly small, hand-crafted web pages, most CSS is written with some
kind of systematic approach to set clear rules about how CSS styles get applied. This
gave rise to many of the great CSS grid and component frameworks, such as Bootstrap
and Foundation. It also gave us a selection of CSS selector nomenclatures, such as Scalable
Modular Architecture for CSS (SMACSS) and Block Element Modifier (BEM). Although
we’ve found ways to manage the Light DOM with these systems, it doesn’t change the

www.w3.org/TR/shadow-dom

16 Chapter 1  Angular: a modern web platform

underlying behavior that someone could still manage to break your whole application
by adding a single rule that doesn’t adhere to the guidelines.

There’s always been pain associated with scaling page styling with CSS due to the
greedy nature of CSS selectors always trying to match as many things as possible. In con-
trast with the Light DOM, the Shadow DOM gives us the ability to denote that a fragment
of the DOM be shifted into a new realm that doesn’t play with the Light DOM styles.

In many science fiction stories, characters may get caught somehow in a new dimen-
sion of reality that is separated from normal reality, and they’re usually unable to interact
between these realities except through some “bridge” between the realities. Similarly, I
like to think of using Shadow DOM as like shifting the current context to a new dimen-
sion that has very limited connection to the Light DOM and therefore allows us to write
CSS and HTML that gets rendered without having the ability to modify other styles.

Developers can create a new Shadow DOM (known as a shadow root) that will carve out
an isolated DOM tree that has limited interaction with the Light DOM. You still attach
this root inside the DOM tree as a node. The shadow boundary is the line between the
Light and Shadow DOMs. There are many nuances and features that enable certain
forms of styles to target inside or outside of the boundary, but I’ll leave those details for
you to dive into if they become needed.

In figure 1.6, you can see a simple example where the first line of text output in the
middle of the image has the black background and white text, whereas the second line
of text (which is inside the shadow root) doesn’t.

HTML markup for
the Light DOM

JavaScript to create a new element
that uses the Shadow DOM and has
the .lightdom class inside

CSS rules for the
.lightdom class

First line of text
adopts the CSS
rules for .lightdom

Second line of text
(in the Shadow
DOM) doesn’t

Console shows the HTML elements,
but wraps the HTML inside the
Shadow DOM with #shadow-root

Figure 1.6   Shadow DOM example where the styles from outside the shadow root don’t cross the
boundary and apply to inner elements

	 17Component architecture

Shadow DOM enables the best form of encapsulation available in the browser for styles
and templates. It’s able to isolate the internals of a component in such a way that out-
side styles and scripts won’t accidentally attach and modify it. It does provide some cus-
tomization features that allow you to communicate across the shadow boundary. These
are particularly important features when we want to build out complex and reusable
components that can be entirely self-contained with styling.

Unfortunately, Shadow DOM support may not be available in all browsers and may
require a polyfill. Chapter 4 explores this in more detail, but Angular lets us write com-
ponents that use either the Shadow DOM, an emulated version of the Shadow DOM, or
just the Light DOM.

1.5.3	 Templates

Templates are a powerful feature that allow us to create isolated fragments of the DOM
to use in our components. Our custom elements need to have some kind of internal
structure, and often we’ll need to be able to reuse this markup. Ideally this shouldn’t
clutter the main document, and HTML5 introduces a new template tag to help us out.
You can read the spec at https://www.w3.org/TR/html5/semantics-scripting.html#the-
template-element.

Any markup written inside a template is just a fragment that’s not part of the current
page unless it’s explicitly initialized. In other words, if you were to look at the DOM tree,
the content in templates doesn’t appear. If your markup has CSS, inline scripts, image
elements, or other elements that typically trigger a browser action, those actions won’t
run until the template is used.

Templates are often used with the Shadow DOM because it allows you to define the
template and then inject it into the shadow root. Without templates, the Shadow DOM
APIs would require us to inject content node by node. They’re also used by Angular as
part of the lifecycle of components and the compilation process, allowing Angular to
keep isolated, inert copies of the template as data changes and needs to be recompiled.

The role of templates folds in nicely with the overall component architecture and
works in tandem with the Shadow DOM and custom elements. They provide a layer of
encapsulation that lets you define a template that remains inactive until it’s needed and
therefore isolates the template from the rest of the application.

1.5.4	 JavaScript modules

Neither HTML nor JavaScript has traditionally had a native means to load additional
files or assets during the lifecycle of the application. You had to ensure that all the
needed files were loaded on page load, or use some workaround that usually relied
on making an XHR request or adding a new script tag to the page. Though these
approaches worked, they weren’t particularly elegant or always easy to use.

Today we have modules and module loaders in JavaScript, which give a native way to
load and execute code throughout the entire lifecycle of the app, not just on page load.
Previously, developers had to build a bundle of all the assets for the web application
ahead of time and deliver the whole package to the user. Modules (figure 1.7) give us a
lot of interesting capabilities, many of which are familiar to developers who have worked
with other languages with package or module capabilities, like Java, Python, or Go.

https://www.w3.org/TR/html5/semantics-scripting.html#the-template-element
https://www.w3.org/TR/html5/semantics-scripting.html#the-template-element

18 Chapter 1  Angular: a modern web platform

Angular API docs have a list of
modules and the various items
that each module includes.

Figure 1.7   Angular provides modules (like animation) that contain all the services and objects you’ll
need to build your applications, but first you’ll have to import them.

Inherently, modules aren’t strictly a component technology. Modules are an isolated
piece of JavaScript that can be used to generate a component, create a reusable service,
or do anything else JavaScript can do. They’re fundamentally a way to encapsulate appli-
cation code and choose what’s available for the other parts of the application to use.

	 19Component architecture

.../services/
account.service

AccountService

@angular/core

Component,
DoCheck

Module aliases
or paths

Imported
objects

This file imports the Component,
DoCheck, and AccountService
objects from external modules.

Figure 1.8   Loading objects into a file from different modules using imports

In JavaScript, a module is any file of JavaScript code that contains the export keyword.
Modules export values that they want to expose to the application and can keep other
parts of the internal logic private. Then, in order to use an exported value, you have to
first import it from another module (figure 1.8).

In figure 1.8 (a snippet from a later chapter), we're first importing some things from
external modules that the rest of the code in this file depends on. The Component and
DoCheck objects are being imported from the @angular/core package (which is part of
our node modules directory), and AccountService is being imported based on the file
path provided.

These modules are powerful because they encapsulate the contents of a single Java
Script file into a single coherent whole. They isolate the code and allow the developer to
conditionally export values to share. They also support reusability by defining common
mechanics for sharing values in a JavaScript application that previously could only be
done by putting values directly on the global scope or by crafting some non-standard
service to manage dependency injection, as Angular 1 did.

20 Chapter 1  Angular: a modern web platform

HTML imports are a similar concept that has been proposed as part of the HTML
spec, which would provide similar capabilities. But it’s likely that HTML imports won’t
be adopted, and instead JavaScript modules are used. There are libraries that use HTML
imports, such as Polymer, by using a polyfill library.

Angular itself is built entirely around the notion of modules. The source code uses
them extensively. When you write your own applications, it’s recommended that you
also use them. Executing an Angular application is fundamentally loading a module
that contains the application bootstrapping logic, which in turn starts to load and trig-
ger additional modules. It’s possible to write your Angular applications without mod-
ules using ES5 syntax, which is not recommended but discussed next.

1.6	 Modern JavaScript and Angular
Angular is designed to take advantage of many features that are fairly recent to the
web platform. Most of these became part of the JavaScript specification in 2015 with
the release of ES2015 (also known as ES6, but I’ll refer to its official name ES2015);
other features are still in development as of this writing but are likely to be adopted in
a future version.

These features are well covered in many places, so I won’t go into detail. Though
they could be used with AngularJS, Angular was designed to work using these capabili-
ties. I’ll cover some of the most important aspects quickly, namely the following:

¡	Classes
¡	Decorators
¡	Modules
¡	Template literals

Let’s look at an example with all these features working together and then review how
they’re put together. The following listing is a functional but simple Angular compo-
nent, and you’ll get to see many more examples that use the same concepts in more
complex ways in this book.

Listing 1.1   Modern JavaScript Syntax

import {Component} from '@angular/core';

@Component({
 selector: 'my-component',
 template: `
<div>
 <h4>{{title}}</h4>
</div>
`
})
export class MyComponent {
 constructor() {
 this.title = 'My Component';
 }
}

Imports the Component object
from another module

Uses a decorator to add metadata
to the MyComponent object

Uses a template literal string
to write inline HTML

Exports the MyComponent object, which
was defined as a class

	 21Modern JavaScript and Angular

Let’s start from the bottom and go from there. In ES2015, classes were introduced as a
new way to define an object, which is in fact a function. Classes are used to create com-
ponents, directives, pipes, and services, though they can be used in other ways as well.
Using the class keyword, the class MyComponent is created and is an object that has a
property called title.

Classes are syntactic sugar for creating objects in JavaScript. They don’t introduce
a new type of inheritance to JavaScript, which is important to remember. Developers
familiar with class objects in other languages may accidentally carry over concepts into
JavaScript, but in this case the concept of a class doesn’t change the way prototypical
inheritance works with JavaScript.

Inside of the class there’s a special method called constructor(). It’s executed
immediately when a new copy of the object is created. As long as you name a method
constructor(), it will be used during creation.

Classes are also useful because they help ensure that the keyword this references
the object itself. The keyword this is a common barrier in JavaScript, and classes help
ensure that it behaves more consistently.

The export keyword denotes the file as a module. Any module is isolated into a
private space, and unless a value is exported, it won’t be available for another file or
module to use. This breaks away from the global scope that JavaScript has for values
and provides a proper separation between modules. Because the MyComponent class is
exported, it can be imported into another module (not shown here).

At the top of the file, the import statement imports the Component value from the
angular/core module, which allows it to be used in this module.

Then in the middle we use the @Component decorator, which is a way to add metadata
to the class. Decorators always start with the @ symbol, and Angular uses these decora-
tors to understand what type of class has been declared. In this case, it’s a component,
and Angular will know how to render a component based on this decorator. There are
several other ones, such as Injectable and Pipe, and we’ll see those in action later.

Finally, the decorator accepts an object that contains the metadata associated with
the component itself. In this example, it has two properties for the selector and an
inline HTML template. The decorators define what properties can be passed here, but
they allow you to customize the way the class is handled by Angular.

1.6.1	 Observables

In addition to new syntax, observables are a newer pattern for JavaScript applications to
manage asynchronous activities. They’re also a draft for a feature to be natively imple-
mented in the JavaScript language so it has weight behind the pattern. RxJS is the
library we’ll use to help us implement observables in our applications.

Promises are another construct to help deal with asynchronous calls, which are useful
for making API requests, for example. Promises have a major limitation in that they’re
only useful for one call cycle. For example, if you wanted to have a promise return a
value on an event like a user click, that promise would resolve on the first click. But you

22 Chapter 1  Angular: a modern web platform

might be interested in handling every user click action. Normally, you’d use an event
listener for this, and that allows you to handle events over time. This is an important dis-
tinction: Observables are like event handlers in that they continue to process data over
time and allow you to continuously handle that stream of data.

Reactive programming is the higher-level name for what observables provide, which
is a pattern for dealing with asynchronous data streams. Many things in a web applica-
tion are asynchronous data streams, if you think about it. A user typing keystrokes into
a form input is really a stream of individual characters. Timers and intervals generate a
stream of activity over time. Websockets pass data as a stream over time. It’s that simple,
but the challenge can be wrapping your mind around it all.

Angular uses observable patterns often, and having a grasp of the fundamentals is
useful. During the course of this book, you’ll see observables in a number of places, and
they all work in the same basic way. We’re not going to worry about constructing observ-
ables here. Instead we’ll just focus on how to use them when they’re given to you.

To use observables, you subscribe to the stream of data and pass a function that will
run every time there’s a new piece of data. We’ll see this in action in chapter 2 when we
make an HTTP request, but let’s look at a quick sample just to see some syntax:

this.http.get('/api/user').subscribe(user => {
 // Do something with the user record
}, (error) => {
 // Handle the error
})

This snippet is using the HTTP library to make a get request, which returns an observ-
able. Then we subscribe to that observable, and our callback function fires when the
data is returned or the error is handled. It’s not very different from a promise, except
that an observable could continue to send data. Let’s take a different example:

this.keyboardService.keypress().subscribe(key => {
 // Do something with the key record
}, (error) => {
 // Handle the error
})

In this example, imagine keyboardService.keypress() returns an observable, and
it emits details about what key was pressed. This is like an event listener, except that it
comes in a stream.

Another interesting capability of observables is that they are composable into many
combinations. Observables can be combined, flattened into one, filtered, and more.
We’ll see one example in chapter 9, where we’ll combine two observable streams and
handle the data they emit in one place. We’ll not use many of the more complex fea-
tures in this book, but you’ll likely be interested in how they work, so I recommend the
book RxJS in Action (www.manning.com/books/rxjs-in-action).

	 23TypeScript and Angular

1.7	 TypeScript and Angular
Angular itself it written with TypeScript, which is a superset of JavaScript that intro-
duces the ability to enforce typing information. It can be used with any version of
JavaScript, so you can use it with anything ES3 (that’s not a typo) or newer.

The basic value proposition of TypeScript is it can force restrictions on what types of
values variables hold. For example, a variable may only hold a number or it may hold an
array of strings. JavaScript has types (don’t let anyone tell you otherwise!), but variables
aren’t typed, so you can store any type of value in any variable. This also gave birth to
the many types of comparison operators, such as == for loose equality or === for strict
equality.

TypeScript can help catch many simple syntax errors before they affect your applica-
tion. Sometimes you can write valid JavaScript, but the real world shows that valid syntax
doesn’t always mean valid behavior. Take this example:

var bill = 20;
var tip = document.getElementById('tip').value; // Contains '5'
console.log(bill + tip); // 205

This snippet shows a simple tip calculator example where you take the value from an
input element and add it to the bill to get the total payment amount. The problem
here is that the tip variable is actually a string (because it’s text input). Adding a num-
ber and a string together is perhaps one of the most common pitfalls for new JavaScript
developers, though it can happen to anyone. If you used TypeScript to enforce types,
this code could be written to alert about this common error:

var bill: number = 20;
var tip: number = document.getElementById('tip').value; // 5, error!
var total: number = bill + tip; // error!

Here we’re using TypeScript to declare that all these variables must each hold a num-
ber value by using :number. This is a simple syntax that sits inside of JavaScript to tell
TypeScript what type of value the variable should hold. The tip value will error because
it’s being assigned a string, and then the total value will error because it attempts to
add a number and a string type, which results in a string.

This may seem like an obvious error to a seasoned JavaScript developer, but how
often do you have new developers work on your code base? How often do you refactor
your code? Can you still ensure that your application is passing around the same value
types as you continue to maintain the application? Without TypeScript, you’re responsi-
ble for doing a strict comparator check of every value before it’s used.

Many developers wonder why they should bother learning and using TypeScript.
Here are the primary reasons to use TypeScript, in my humble opinion:

¡	Adds clarity to your code —Variables that have types are easier to understand,
because other developers (or yourself in six months) don’t have to think very
hard about what the variable should be.

24 Chapter 1  Angular: a modern web platform

¡	Enables a smarter editor —When you use TypeScript with a supported editor, you’ll
get automatic IntelliSense support for your code. As you write, the editor can
suggest known variables or functions and tell you what type of value it expects.

¡	Catches errors before you run code —TypeScript will catch syntax errors before you
run the code in the browser, helping to reduce the feedback loop when you write
invalid code.

¡	Entirely optional —You can use types when you want, and optionally leave them out
where it doesn’t matter.

I hope you’re sold on the value of TypeScript. If not, I hope you’ll give it a closer look
during the course of the book. This book uses it in examples to help provide more
clarity and to help further demonstrate the power of TypeScript. I’ll try to provide
additional insight into TypeScript features and functionality as we use features in the
examples, but you can always learn all there is to know at www.typescriptlang.org/
docs/tutorial.html.

Even if you choose not to use TypeScript for type enforcement in your application,
you can use TypeScript to compile your application. Because the Angular CLI already
uses TypeScript internally, you may be using it without even knowing. If you decide to
build your own build tooling, TypeScript is still a worthwhile compiler option.

If you’re wondering whether using TypeScript in your Angular application is
required, the answer is technically no. There are ways to write your application in vanilla
JavaScript and avoid TypeScript, to a certain degree. But it’s intentionally not docu-
mented because there are simply too many features of Angular that don’t work unless
you use TypeScript. If you’re afraid it will be hard to learn, don’t be. It’s straightforward,
and in several places throughout the book I’ll explain some nuances of TypeScript that
you may not have seen before.

Summary
This chapter introduced you to Angular as a development platform, not just an appli-
cation framework. There are so many features and capabilities with Angular. Here’s a
quick summary:

¡	Angular is a platform, with many key elements such as tooling, UI libraries, and
testing built in or easily incorporated into your application projects.

¡	Applications are essentially combinations of components. These components
build upon the core principles of encapsulation, isolation, and reusability, which
should have events, be customizable, and be declarative.

¡	ES6 and TypeScript provide a lot of the underpinnings for Angular’s architecture
and syntax, making it a powerful framework without having to build a lot of cus-
tom language capabilities.

www.typescriptlang.org/docs/tutorial.html
www.typescriptlang.org/docs/tutorial.html

25

2Building your
first Angular app

This chapter covers
¡	Angular components and how they form a basis

for your app

¡	Defining a number of types of components,
using decorators

¡	Learning how services can be used to share
data across your app

¡	Setting up routing to display different pages

You’re going to build an entire Angular app in this chapter, starting from scratch,
while learning about the primary concepts of Angular. You’ll see some TypeScript
features in action, as well as new and upcoming features of JavaScript.

This project will remain focused and simple, yet still be representative of many of
the features you’ll use in a typical app. The app you’ll create is a stock tracking app,
with data coming from Yahoo! Finance. It will be able to fetch current stock prices,
add or remove stocks from a list, and adapt a visual display based on the current day’s
gains or losses.

26 Chapter 2  Building your first Angular app

In this chapter, we’ll build this app piece by piece. We’ll focus on getting through the
example application with enough detail to understand the various pieces and complex-
ity in this chapter:

¡	Bootstrapping the app —To start the app, we’ll use the bootstrap feature to kick
things off once they’re loaded. This happens once during the app lifecycle, and
we’ll bootstrap the App component.

¡	Creating components —Angular is all about components, and we’ll create several
components for different purposes. We’ll learn about how they’re built and how
they nest to create complex applications.

¡	Creating services and using HttpClient —For code reuse, we’ll encapsulate some
logic that helps manage the list of stocks into a service and also uses the HttpClient
service from Angular to load stock quote data.

¡	Using pipes and directives in templates —Using pipes, we can transform data from one
format into another during display, such as formatting a timestamp into a local date
format. Directives are useful tools to modify the behavior of DOM elements inside
a template, such as the ability to repeat pieces or conditionally show elements.

¡	Setting up routing —Most applications need the ability to allow users to navigate
around the application, and by using the router we can see how to route between
different components.

Using a limited amount of code, you’ll be able to create a robust application that does
a number of complex tasks. Subsequent chapters focus on each of the individual fea-
tures in detail for a more complete picture of everything Angular has to offer.

You should be familiar with ES2015 and the newer capabilities of the JavaScript lan-
guage. I won’t be going into detail about the newer language constructs, such as imports
or classes. I recommend spending some time reading at the Mozilla Developer Network
(https://developer.mozilla.org/en-US/docs/Web/JavaScript) for more details, or pick
up a book.

2.1	 Previewing the chapter project
When we are done, the app should appear as you see in figures 2.1 and 2.2. We’ll walk
through the various pieces briefly before we build them so you’ll see how they all come
together.

First, there’s an API that loads current stock price data from Yahoo! Finance; it’s
deployed on Heroku and isn’t covered in this chapter, but you can view the code for the
API at https://github.com/angular-in-action/api. It’s a standard REST API and doesn’t
require authentication. We’ll create a service to help us access and load data from the API.

When the app loads, it shows the dashboard page (figure 2.1) with a list of cards. Each
card contains a single stock, the current price, and the day’s change in price (as a currency
value and as a percentage). The background of the cards will be red for negative change,
green for a positive change, or gray for no change. Each of these cards is an instance of a
component that takes the stock data and determines how to render the card.

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/angular-in-action/api

	 27Previewing the chapter project

Data loaded
from the API

Summary cards for each
stock (red or green based
on daily activity)

Links to
change views

Figure 2.1   The dashboard page for the stock tracking app with links and summary cards

Lastly, the top navbar has two links, to the dashboard and manage views, which allow
for general navigation between the views. We’ll use the Angular Router to set up these
routes and manage how the browser determines which to display.
When you click the Manage link in the navbar, you’ll see the manage page (figure 2.2)
with a list of the stocks. Here you can remove any of the stocks by clicking the Remove
button. You can also add new stocks by typing the stock symbol into the text area and
pressing the Enter key.

Add a stock
to the list

Delete stocks
from the list

Figure 2.2   The manage page for the stock tracking app with the form to change the list of
symbols to display

28 Chapter 2  Building your first Angular app

This page is a single component, but contains a form that’s updated immediately upon
changes input by the user. The list can be extended by putting a new stock symbol in
the input field and hitting Enter, or the list can be reduced by clicking the Remove but-
ton. In both cases, the list of symbols is immediately changed, and if you go back to the
dashboard you’ll see the updated list appear.

This project has a few limitations you should be aware of. To keep the example
focused and simple, there are a few details that aren’t included in the app:

¡	No persistence —Anytime you refresh the app in the browser, the list of stocks resets
to the default list.

¡	Lack of error checking —Some situations can throw an error or cause strange behav-
ior, such as trying to add a stock that doesn’t exist.

¡	No unit tests —For this example, I kept the focus on the code and intentionally left
out unit tests, which are covered later.

This example is intended to provide you with an overview of how Angular apps can be
built—not to provide a bulletproof app. I provide you a number of interesting chal-
lenges you can attempt near the end of the chapter, and there are many possible fea-
tures that can be imagined.

2.2	 Setting up the project
We’ll build this example from scratch using the Angular CLI. If you ever need to
look at the code for this project, it can be found on GitHub at https://github.com/
angular-in-action/stocks, and each step is tagged so you can follow along using Git, or
you can copy the contents from the chapter as it appears.

If you haven’t set up the Angular CLI, please go back to chapter 1 and set it up. We’re
using the CLI version 1.5 in this book, so if you’re using an older version you’ll want to
upgrade.

In the terminal, start from a directory that you want to generate a new project folder
inside. Then you can run the following command to generate a new project, and then
start the development server:

ng new stocks
cd stocks
ng serve

This will take a few moments as the CLI installs a number of packages from npm, and
this depends greatly on the speed of your network and how busy the registry is. Once it
has completed, you can use your browser to view the app at http://localhost:4200. You
should see a simple page that says something about being a new Angular app, as shown
in figure 2.3. The default content of a new project changes over time, so don’t worry if
it looks a little different.

https://github.com/angular-in-action/stocks
https://github.com/angular-in-action/stocks

	 29The basic app scaffolding

Figure 2.3   The CLI generates a blank app with some default content.

If you see a similar screen, then everything should be set up and ready to go. It’s not
the most exciting-looking example, but it sets up a few things for you automatically.
We’re now going to take a tour of what has been generated and how it works to display
this simple message.

Keeping examples up-to-date with Angular releases
Because the book was developed to run against Angular 5 versions of code, there may
be changes that happen in future versions that could cause an example in this book to
fail. Don’t worry—you can always visit the chapter project’s GitHub page to see any notes
that are added to discuss possible changes or errata, as well as view the book forum on
Manning’s website.

2.3	 The basic app scaffolding
The CLI generated a new project that contains a lot of files. We’ll look at the most
important ones for the moment and learn more about the rest over time. It’s import-
ant to note that the CLI generates files in a specific way, and making changes to file
locations or names may cause the CLI to fail. For now, I recommend leaving files where
they are until you’re more comfortable or unless you plan to build your own tooling later.
Over time, the exact files and filenames that are generated by the CLI may change, so if
you have any issues, look at the CLI changelog and documentation.

30 Chapter 2  Building your first Angular app

The project contains several directories and files. The primary files are listed in
table 2.1, along with their general roles in the application. Most of these are configu-
ration for various aspects of the development, such as linting rules, unit test configura-
tion, and CLI configuration.

Table 2.1   Top-level contents of the project generated by the CLI and their roles

Asset Role

e2e End-to-end testing folder, contains a basic stub test

node_modules Standard NPM modules directory, no code should be placed here

src Source directory for the application

.editorconfig Editor configuration defaults

.angular-cli.json Configuration file for the CLI about this project

karma.conf.js Karma configuration file for unit test runner

package.json Standard NPM package manifest file

protractor.conf.js Protractor configuration file for e2e test runner

README.md Standard readme file, contains starter information

tsconfig.json Default configuration file for TypeScript compiler

tslint.json TSLint configuration file for TypeScript linting rules

In this chapter, you’ll only modify files that exist inside the src directory, which con-
tains all the application code. Table 2.2 contains a listing of all the assets generated
inside src. This may seem like a lot of files, but they each play a role, and if you aren’t
sure what one does, leave it alone for now.

Table 2.2   Contents of the src directory and their roles

Asset Role

app Contains the primary App component and module

assets Empty directory to store static assets like images

environments Environment configurations to allow you to build for different targets, like dev
or production

favicon.ico Image displayed as browser favorite icon

index.html Root HTML file for the application

main.ts Entry point for the web application code

polyfills.ts Imports some common polyfills required to run Angular properly on some
browsers

styles.css Global stylesheet

test.ts Unit test entry point, not part of application

tsconfig.app.json TypeScript compiler configuration for apps

 www.allitebooks.com

http://www.allitebooks.org

	 31How Angular renders the base application

Asset Role

tsconfig.spec.json TypeScript compiler configuration for unit tests

typings.d.ts Typings configuration

Now that you have a general idea of what was generated, we’re going to inspect a few
of the key files that comprise the application logic. The next section takes a closer look
at how Angular renders the contents of the app directory into the output that you view
on the screen.

2.4	 How Angular renders the base application
Before we start to build our application, you need to understand how this base scaf-
folding works and what we’ll need to add. This is a whirlwind tour to get you up and
running as fast as possible, so expect more depth and nuance later in the book. In
chapter 3, we’ll spend more time on these topics to get a deeper understanding of how
everything is constructed.

Angular requires at least one component and one module. A component is the basic
building block of Angular applications and acts much like any other HTML element. A
module is a way for Angular to organize different parts of the application into a single
unit that Angular can understand. You might think of components as LEGO® bricks,
which can be many different shapes, sizes, and colors, and modules would be the pack-
aging the LEGOs come in. Components are for functionality and structure, whereas
modules are for packaging and distribution.

2.4.1	 App component

We’re going to start by looking at the src/app/app.component.ts file. This contains
what’s called the App component, which is the root of the application. In LEGO® terms,
you could picture this component as the big green platform you use to start building
from. The following listing shows the code for the component. Again, the exact code
may change over time, so don’t worry if it’s slightly different—it will have the same
basic requirements.

Listing 2.1   Generated App component (src/app/app.component.ts)

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'app works!';
}

Import the component annotation

Define the component
and its properties

Create the component controller,
with a single property

Table 2.2   Contents of the src directory and their roles  (continued)

32 Chapter 2  Building your first Angular app

That listing might contain some unfamiliar syntax if you’re new to TypeScript, so let’s
take a closer look at each section of the code. First, you import the Component annotation.
It’s used to decorate the App component by adding details that are related to the compo-
nent but aren’t part of its controller logic, which is the AppComponent class. Angular
looks at these annotations and uses them with the AppComponent controller class to
create the component at runtime.

The @Component annotation declares that this class is a component by accepting an
object. It has a selector property that declares the HTML selector of the component.
That means the component is used in the template by adding an HTML tag <app-root>
</app-root>.

The templateUrl property declares a link to a template containing an HTML tem-
plate. Likewise, the styleUrls property contains an array of links to any CSS files that
should be loaded for this component. The @Component annotation can have more
properties, and you’ll see a few more in action in this chapter.

Finally, you see that the AppComponent class has a single property called title. The
value is what you should see rendered in the browser, so this is the source of the value
that ultimately appears. Angular relies greatly on ES2015 classes to create objects, and
almost all entities in Angular are created with classes and annotations.

Now let’s look at the markup associated with the App component by opening src/
app/app.component.html, shown here:

<h1>
 {{title}}
</h1>

As you can see, this is just a simple header tag, but there’s the title property defined
between double curly braces. This is a common convention for how to bind a value
into a template (perhaps you’re familiar with Mustache templates), and it means Angular
will replace {{title}} with the value of the title property from the component. This
is called interpolation and is frequently used to display data in a template.

We’ve looked at the App component, but now we need to look at the App module to
see how things get wired up and rendered with Angular.

2.4.2	 App module

The App module is the packaging that helps tell Angular what’s available to render.
Just as most food items have packaging that describes the various ingredients inside
and other important values, a module describes the various dependencies that are
needed to render the module.

There’s at least one module in an application, but it’s possible to create multiple
modules for different reasons (covered later). In this case, it’s the App component
from earlier plus additional capabilities that are needed in most applications (such as
routing, forms, and HttpClient).

The CLI generated the module for us, so we can look at it in src/app/app.module.ts,
as shown in the following listing. Once again, this may change over time, but the struc-
ture and purpose remain.

	 33How Angular renders the base application

Listing 2.2   App module (src/app/app.module.ts)

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule,
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Just like a component, a module is an object with an decorator. The object here is
called AppModule, and NgModule is the decorator. The first block is to import any Angu-
lar dependencies that are common to most apps and the App component.

The NgModule decorator takes an object with a few different properties. The decla-
rations property is to provide a list of any components and directives to make available
to the entire application.

The imports property is an array of other modules upon which this module
depends—in this case, the Browser module (a collection of required capabilities). If
you ever include other modules, such as third-party modules or ones you’ve created,
they also need to be listed here.

The next property is the providers property, which is empty by default. Any services
that are created are to be listed here, and we’ll see how to do this shortly.

Lastly, the bootstrap property defines which components to bootstrap at runtime.
Typically, this will be the same App component, and the CLI already set it up for us. The
bootstrap property should match the component that you bootstrap in the next section.

We’ve written code that creates a configuration for Angular to look at and under-
stand how to render. The last step to look at is the code that gets executed at launch,
which is called bootstrapping.

2.4.3	 Bootstrapping the app

The application must be bootstrapped at runtime to start the process of rendering.
So far, we’ve only declared code, but now we’ll see how it gets executed. The CLI takes
care of wiring up the build tooling, which is based on webpack.

Start by taking a look at the .angular-cli.json file. You’ll see an array of apps, and one
of the properties is the main property. By default, it points to the src/app/main.ts file.
This means that when the application gets built, it will automatically call the contents of
the main.ts file as the first set of instructions.

Imports Angular
dependencies needed

Imports the App component

Uses the NgModule annotation to define a module by passing an object

Declarations are to list any components
and directives used in the app.

Imports are other modules that
are used in the app.

Providers are any services used in the app.

Bootstrap declares which component to use
as the first to bootstrap the application.

Exports an empty class, which gets annotated
with configuration from NgModule

34 Chapter 2  Building your first Angular app

The role of main.ts is to bootstrap the Angular application. The contents of the main.ts
file are included in the following listing, and contain only a few basic instructions.

Listing 2.3   The main file that is called on launch (src/app/main.ts)

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { enableProdMode } from '@angular/core';
import { environment } from './environments/environment';
import { AppModule } from './app/';

if (environment.production) {
 enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule);

The first section imports some dependencies, particularly platformBrowserDynamic
and AppModule. The name is a bit long, but the platformBrowserDynamic object is used
to tell Angular which module is being loading, and in this case that’s the AppModule from
earlier. I cover the rendering of modules later in the book, but for now it’s important
to understand that this is the point where the code begins to execute.

There’s one last piece to review by looking at the index.html file. If you remember
from the App component code, there was a selector of app-root used to identify the
component in markup. You should see the following in the src/index.html file:

<body>
 <app-root></app-root>
</body>

Once the app is bootstrapped (by the code from listing 2.3), Angular will look for
the app-root element and replace it with the rendered component. That’s what you
end up seeing in the screen from figure 2.1, but while it’s loading everything, you’ll
see a “Loading ...” message. It can take a moment for all the assets to load and initial-
ize before the component renders. This is known as Just in Time compilation (JiT),
meaning that everything is loaded and rendered on demand in the browser. JiT is only
meant for development, and may be removed in future releases.

I’d like to add a couple of small touches that will help us style the rest of the appli-
cation, by adding some basic CSS and markup. First we need to add two link tags to our
src/index.html:

<link rel="stylesheet" href="//storage.googleapis.com/code.getmdl.io/1.0.1/
material.indigo-orange.min.css">

<link rel="stylesheet" href="//fonts.googleapis.com/
icon?family=Material+Icons">

This will load some font icons and the global styles for the application, which are based
on the Material Design Lite project. This is one way you can load external references to
style libraries or other assets.

Imports
dependencies

If production is enabled, turn
off Angular developer mode.

Bootstraps the
App module

	 35How Angular renders the base application

We’d like to give our application some global styles. Add the following to the src/
styles.css file—it will give the application a light gray background:

body {
 background: #f3f3f3;
}

Lastly we want to set up some base markup to structure our application. Let’s replace
the content of the src/app/app.component.html file with the markup in the following
listing.

Listing 2.4   Base markup scaffolding (src/app/app.component.html)

<div class="mdl-layout mdl-js-layout mdl-layout--fixed-header">
 <header class="mdl-layout__header">
 <div class="mdl-layout__header-row">
 Stock Tracker
 <div class="mdl-layout-spacer"></div>
 <nav class="mdl-navigation mdl-layout--large-screen-only">
 Dashboard
 Manage
 </nav>
 </div>
 </header>
 <main class="mdl-layout__content" style="padding: 20px;">

 </main>
</div>

This markup is based around the Material Design Lite design style for how to create
a basic toolbar and main body. The toolbar has the title and two links (which are cur-
rently inactive), and should appear like figure 2.4.

Figure 2.4   Modified base scaffolding to have Material Design Lite markup

All right, we’ve created the base app scaffolding using the CLI, seen the App compo-
nent, App module, and bootstrap logic, and found the markup that renders out the
component. Congratulations, you’ve made your first Angular app! Okay, I know it isn’t
that impressive—yet—but this is the fundamental part of every Angular app. For the
rest of the chapter, we’ll take this basic application and build it up to the full stock
tracking example. To get started, you’ll learn about creating an Angular service that
loads data from an API.

36 Chapter 2  Building your first Angular app

2.5	 Building services
Services are objects that abstract some common logic that you plan to reuse in multiple
places. They can do about anything you need them to do, because they’re objects.
Using ES2015 modules, these classes are exported, and so any component can import
them as necessary. They could also have functions or even static values, like a string or
number, as a way to share data between various parts of your application.

Another way to think of services is as sharable objects that any part of your app can
import as needed. They’re able to abstract some logic or data (such as the logic neces-
sary to load some data from a source), so it’s easy to use inside of any component.

Although services will often help manage data, they’re not restricted to any partic-
ular job. The intention of a service is to enable reuse of code. A service might be a set
of common methods that need to be shared. You could have various “helper methods”
that you don’t want to write over and over, such as utilities to parse data formats or
authentication logic that needs to be run in multiple places.

In the app, you’ll want to have a list of the stocks for both the dashboard and manage
pages to use. This is a perfect scenario of when to use a service to help manage the data
and share it across different components.

The CLI gives us a nice way to create a service that has the scaffolding we need to get
started. It will generate a simple service and a test stub for that service, as well. To gener-
ate a service, you run the following:

ng generate service services/stocks

The CLI will generate the files in the src/app/services directory. It contains the most
basic service, which does nothing. Let’s go ahead and fill in the code for the entire service
and go over how it works. You’ll end up supplementing what was generated with the
code from the following listing. The Stocks service will have an array that contains a list
of the stock symbols and expose a set of methods to retrieve or modify the list of stocks.

Listing 2.5   Stocks service (src/app/services/stocks.service.ts)

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';

let stocks: Array<string> = ['AAPL', 'GOOG', 'FB', 'AMZN', 'TWTR'];
let service: string = 'https://angular2-in-action-api.herokuapp.com';

export interface StockInterface {
 symbol: string;
 lastTradePriceOnly: number;
 change: number;
 changeInPercent: number;
}

@Injectable()
export class StocksService {

 constructor(private http: HttpClient) {}

Imports dependencies

Declares a stock
array and API

variables

Defines and exports the TypeScript
interface for a stock object

Annotates with Injectable to
wire up dependency injection

Defines class and exports it

Constructor method to inject
HttpClient service into class
http property

	 37Building services

 get() {
 return stocks.slice();
 }

 add(stock) {
 stocks.push(stock);
 return this.get();
 }

 remove(stock) {
 stocks.splice(stocks.indexOf(stock), 1);
 return this.get();
 }

 load(symbols) {
 if (symbols) {
 return this.http.get<Array<StockInterface>>(service + '/stocks/

snapshot?symbols=' + symbols.join());
 }
 }
}

The service first needs to import its dependencies; one is the decorator for a service,
and the other is the HttpClient service. Then it declares two variables; one is to track
the list of stock symbols, and the other is the API endpoint URL.

Then the StockInterface interface is defined and exported for other components
to use. This provides a TypeScript definition of what a stock object should contain,
which is used by TypeScript to ensure the use of the data remains consistent. We’ll use
this later to ensure that we’re typing our stock objects correctly when they’re used.

The StocksService class is exported and is decorated by the Injectable decorator.
The decorator is used to set up the proper wiring for Angular to know how to use it else-
where, so if you forget to include the decorator, the class might not be injectable into
your application.

In the constructor method, the HttpClient service is injected using the TypeScript
technique of declaring a private variable called http and then giving it a type of
HttpClient. Angular can inspect the type definition and determine how to inject the
requested object into the class. If you’re new to TypeScript, keep in mind that anytime
you see a colon after a variable declaration, you’re defining the object type that should
be assigned to that variable.

The service contains four methods. The get()method is a simple method that
returns the current value of the stocks array, but it always returns a copy instead of
the direct value. This is done to encapsulate the stock values and prevent them from
being directly modified. The add()method adds a new item to the stocks array and
returns the newly modified value. The remove() method will drop an item from the
stocks array.

Finally, the load() method makes a call to the HttpClient service to load the data for
current stock price values. The HttpClient service is called and returns an observable,

Method to get the stocks

Method to add a new stock to list

Method to remove a stock from list

Method to call
HttpClient service
to load stock
values from API

38 Chapter 2  Building your first Angular app

which is a construct for handling asynchronous events, such as data from an API
call. We’ve covered observables briefly in chapter 1 and will see them more in other
chapters, but this is your first glimpse of them in action.

There is a little feature of the HttpClient that appears as part of the get() method
and is put between two angle brackets:

this.http.get<Array<StockInterface>>(...

This is known as a type variable, which is a feature of TypeScript that allows you to tell the
http.get() method what type of object it should expect, and in this case it will expect
to get an array of objects that conform to the StockInterface (our stock objects). This
is optional, but it’s very helpful to alert the compiler if you try to access properties that
don’t exist.

There’s one more step we have to do, because the CLI doesn’t automatically register
the service with the App module, and we need to register HttpClient with the appli-
cation as well. Open the src/app/app.module.ts file and near the top add these two
imports:

import { HttpClientModule } from '@angular/common/http';
import { StocksService } from './services/stocks.service';

This will import the Stocks service and HttpClientModule into the file, but we need to
register the HttpClientModule with the application. Find the imports section as defined
in the NgModule, and update it like you see here to include the HttpClientModule:

 imports: [
 BrowserModule,
 HttpClientModule
],

Now we need to register the new StocksService with the providers property to
inform Angular that it should be made available for the module to use:

providers: [StocksService],

Your service is wired up and ready to consume, but we haven’t used it yet anywhere in
our application. The next section looks at how to consume it.

This service is not too complex. It’s mostly designed to abstract the modification of
the array so it’s not directly modified and load the data from the API. While the appli-
cation runs, the stocks array can be modified, and changes are reflected in both the
dashboard and manage components, as you’ll see shortly. Because it’s exported, it’s
easily imported when needed.

Now you’ll create a component that uses some default directives and allow configu-
rable properties to modify the component’s display.

2.6	 Creating your first component
You’ve already seen a basic component (the App component). Now you’ll build a more
complex component that uses some directives and pipes and has a property. We’re going
to create a component that displays a basic summary card of the stock price information.

	 39Creating your first component

This component will only receive data to display from its parent component and
modify its own display based on that input value. For example, a parent component will
pass along the current data for a particular stock, and the Summary component will use
the daily change to determine whether the background should be green or red based
on whether the stock went up or down.

The key goals of this component are to do the following:

¡	Accept stock data and display it
¡	Change background color depending on the day’s activity (green for increase,

red for decrease)
¡	Format values for proper display, such as currency or percentage values

Figure 2.5 shows the component in place, and we’ll even wire it up to load the data
from the API. Eventually, we’ll instantiate multiple copies of this component to display
a card for each of the stocks.

One Summary
Card component

Figure 2.5   Single Summary component displaying stock data

Obviously, when you run this the stock values will change based on the latest data, but
you can see the card displaying the current data. Let’s dig into building this card and
then we’ll walk through the individual parts of how it results in this output.

Go back to the terminal and run the following:

ng generate component components/summary

The CLI will generate a new component inside the src/app/components/summary
directory. We had to create the src/app/components directory first, because the CLI
doesn’t make new folders for you automatically if they’re missing. This helps organize
the components into a single directory, though you could choose to generate them
elsewhere.

Now the contents of the component are pretty similar to how the App component
appeared originally. It contains an empty CSS file, basic HTML template, test stub, and
empty class already initialized with the component annotation.

40 Chapter 2  Building your first Angular app

We’ll start by setting up the template for our component and then we’ll create the
controller to manage it. Open the src/app/components/summary/summary.compo-
nent.html file and replace the contents with what you see in the following listing.

Listing 2.6   Summary component template

<div class="mdl-card stock-card mdl-shadow--2dp" [ngClass]="{increase:
isPositive(), decrease: isNegative()}" style="width: 100%;">

 <div class="mdl-card__title">
 <h4 style="color: #fff; margin: 0">
 {{stock?.symbol?.toUpperCase()}}

 {{stock?.lastTradePriceOnly | currency:'USD':'symbol':'.2'}}

 {{stock?.change | currency:'USD':'symbol':'.2'}} ({{stock?.

changeInPercent | percent:'.2'}})
 </h4>
 </div>

</div>

The template contains some markup to structure the card like a material design card.
If we look at the first line, we see this snippet as an attribute on the div element:

[ngClass]="{increase: isPositive(), decrease: isNegative()}"

This is a special kind of attribute called a directive. Directives allow you to modify the
behavior and display of DOM elements in a template. Think of them as attributes on
HTML elements that cause the element to change its behavior, such as the disabled
attribute that disables an HTML input element. Directives make it possible to add some
conditional logic or otherwise modify the way the template behaves or is rendered.

The NgClass directive is able to add or remove CSS classes to and from the element.
It’s assigned a value, which is an object that contains properties that are the CSS class
names, and those properties map to a method on the controller (to be written). If the
method returns true, it will add the class; if false, it will be removed. In this snippet, the
card will get the increase CSS class when it’s positive, or the decrease CSS class when
it’s negative, for the day’s trading.

Angular has a few directives built in, and you’ll see a couple more in this chapter.
Directives usually take an expression (like our object in this example), which is evalu-
ated by Angular and passed to the directive. The expression might evaluate to a Bool-
ean or other primitive value or resolve to a function call that would be run to return
a value before the directive runs. Based on the value of the expression, the directive
might do different things, such as show or hide whether the expression is true or false.

 We saw an example of interpolation earlier, but we now have a more complex exam-
ple that displays the symbol of the stock. The controller is expected to have a property
called stock, which is an object with various values:

{{stock?.symbol?.toUpperCase()}}

Uses NgClass
directive to
help toggle

background
color

Displays the symbol value and
converts to uppercase

Displays last
price and

formats it as
currency Displays the day’s

change as currency
and as percent

	 41Creating your first component

The double curly braces syntax is the way to display some value in the page. This is
called interpolation, if you’ll recall from earlier, though this is a bit more complex. The
content between the braces is called an Angular expression and is evaluated against the
controller (like the directive), meaning that it will try to find a property on the control-
ler to display. If it fails, normally it will throw an error, but the safe navigation operator
?. will silently fail and not display anything if the property is missing.

This block will display the stock symbol, but as uppercase. Most JavaScript expres-
sions are valid Angular expressions, though some things are different, such as the safe
navigation operator. The ability to call prototype methods like toUpperCase() remains,
and that’s how it’s able to render the text as uppercase.

The next interpolation shows the last trade price and adds another feature called
pipes, which are added directly into the expression to format the output. The interpola-
tion expression is extended with a pipe symbol, |, and then a pipe is named and option-
ally configured with values separated with the colon : symbol. The price value comes
back as a normal float (like 111.8), which is not the same format as currency, which
should appear like $111.80:

{{stock?.lastTradePriceOnly | currency:'USD':'symbol':'.2'}}

Pipes only modify the data before it is displayed, and do not change the value in the
controller. In this code, the double curly braces indicate that you want to bind the
data stored in the stock.lastTradePriceOnly property to display it. The data is piped
through the Currency pipe, which converts the value into a financial figure based on a
USD figure, and rounds to two decimal points. Now let’s look at the next line:

{{stock?.change | currency:'USD':'symbol':'.2'}} ({{stock?.changeInPercent |
percent:'.2'}})

The next line also has two different interpolation bindings with a Currency or Percent-
age pipe. The first will convert to the same currency format, but the second will take
a percentage as a decimal, such as 0.06, and turn it into 6%. The Angular documenta-
tion can detail all the options available and how to use them for each pipe.

This template doesn’t work in isolation; it requires a controller to wire up the data
and the methods. Let’s open the src/app/components/summary/summary.compo-
nent.ts file and replace the code, as you see in the following listing.

Listing 2.7   Summary component controller

import { Component, Input } from '@angular/core';

@Component({
 selector: 'summary',
 styleUrls: ['./summary.component.css'],
 templateUrl: './summary.component.html'
})
export class SummaryComponent {

Imports the dependencies

Declares the component metadata

Exports the Summary component class

42 Chapter 2  Building your first Angular app

 @Input() stock: any;

 isNegative() {
 return (this.stock && this.stock.change < 0);
 }

 isPositive() {
 return (this.stock && this.stock.change > 0);
 }
}

This controller imports dependencies, which is almost always the first block of any file
written in TypeScript. The component metadata describes the selector, linked styles,
and linked template files that comprise the component. We’ll add some CSS to the
styles in a moment.

The summary controller class starts with a property called stock, which is preceded
with the Input annotation. This indicates that this property is to be provided to the
component by a parent component passing it to the summary. Properties are bound to
an element using an attribute, as you can see here—this example will set the value of
stockData of the parent component in the stock property of the Summary component:

<summary [stock]="stockData"></summary>

Because input is passed through a binding attribute, it will evaluate the expression and
pass it into that property for the Summary component to consume. Angular expres-
sions behave the same anytime there’s a binding. They try to find a corresponding
value in the controller to bind to the property.

Lastly, there are the two methods for checking whether the stock value is positive or
negative. The stock could also be neutral, so that’s the default state, and only if the stock
changes will one of the methods return true. These methods are used by the NgClass
directive to determine whether it should add a particular CSS class, as described earlier
in the template.

The final piece we want to add are the CSS classes themselves. Angular has some
interesting ways to encapsulate CSS styles so they only apply to a single component.
We’ll dig into the specifics later, but open the src/app/components/summary/sum-
mary.component.css file and add the styles, as shown in the following listing.

Listing 2.8   Summary component CSS styles

:host .stock-card {
 background: #333333;
}
:host .stock-card.increase {
 background: #558B2F;
 color: #fff;
}
:host .stock-card.decrease {
 background: #C62828;
 color: #fff;
}

Declares a property that is an input value

Method to check if stock is negative

Method to check if stock is positive

Uses the :host CSS selector to narrow the specificity
of the selector and set default background

increase class defines the
background as green

decrease class defines the
background as red

	 43Creating your first component

This is typical CSS, though you may not have seen or used the :host selector in the
past. Because components need to be as self-contained as possible, they rely on the
Shadow DOM concepts discussed in chapter 1. When Angular renders this component,
it will modify the output to ensure that the CSS selector is unique and doesn’t acciden-
tally interfere with other elements on the page. This behavior is configurable, but that
will be covered later.

The host selector is a way to specify that you want the styles to apply to the element
that hosts the element, so in this case it will look at the Summary component element
itself rather than the contents inside it. The primary purpose of the CSS here is to estab-
lish the Summary component background color.

We’ve walked through the Summary component generation and built out a func-
tional component. Let’s quickly use it to get a glimpse of how it behaves.

Look at the src/app/app.module.ts file and you’ll see that the CLI already modified
the module to include the Summary component in the App module. There’s nothing
to do here, but I wanted to point it out.

Now look at src/app/app.component.ts and update it to the contents of the follow-
ing listing. This will include the Stocks service and use it to store the stock data onto a
property. We’ll then use this to display the summary card.

Listing 2.9   App component controller

import { Component } from '@angular/core';
import { StocksService, StockInterface } from './services/stocks.service';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 stocks: Array<StockInterface>;

 constructor(service: StocksService) {
 service.load(['AAPL']).subscribe(stocks => {
 this.stocks = stocks;
 });
 }
}

Here we store the loaded stock data onto a property called stocks. We also provide some
typing information, which is imported from our Stocks service, so that TypeScript knows
what kind of value to expect. Finally, instead of logging the data to the console, we store
it on the stocks property.

Now we’ll need to update the src/app/app.component.html file to use the Sum-
mary component. Here is the snippet you need to update from the template:

<main class="mdl-layout__content" style="padding: 20px;" *ngIf="stocks">
 <summary [stock]="stocks[0]"></summary>
</main>

Imports the
StockInterface

Declares a property of an array of stocks

When the data loads,
it will store it on the
stocks property.

44 Chapter 2  Building your first Angular app

The first line added *ngIf="stocks", which is a directive that will only render the con-
tents inside the element when the expression is true. In this case, it won’t render the
Summary component until the stock data has been loaded.

The middle line shows the instantiation of a single Summary component, and the
first value of the stocks array is bound into the stock property. The data returns as an
array, so we’re directly accessing the first value. Recall the input value we declared in the
Summary component, which is also named stock.

Once you save this and run the app, it should finally display a single summary card
with the current stock data for Apple’s stock. We’ve made our first component and dis-
played it inside our application!

Next you’ll create another component and use it together with the Summary com-
ponent to create the dashboard that displays the list of stocks and their current statuses.

2.7	 Components that use components and services
We’re ready to combine the previously created Summary component and Stocks ser-
vice into a working Dashboard component. This component will comprise one entire
page of the application, as you see in figure 2.6. This component will manage the load-
ing of the data using the Stocks service and then display each stock using a copy of the
Summary component.

Figure 2.6   Dashboard component wired up with loading data and showing five Summary
component instances

We’ll see how to properly orchestrate a complete view, rather than our isolated exam-
ples so far. To get started, we can use the CLI again to generate another component:

ng generate component components/dashboard

This will output new files into the src/app/components/dashboard directory for the
HTML, CSS, controller, and unit test. It also adds the component to the App module to
be immediately consumable. Let’s reset our working project to display this new compo-
nent by modifying the src/app/app.component.html file with the content here:

 <main class="mdl-layout__content" style="padding: 20px;">
 <dashboard></dashboard>
 </main>

	 45Components that use components and services

This should display the default component message in the application, since that’s the
default code generated by the CLI. We also need to remove some logic from the App com-
ponent controller; it should now appear as you see here. This removes the imports and
loading of stock data in the App component itself, and we’ll put it instead into the dash-
board in a moment. Replace the contents of src/app/app.component.ts with the following:

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {}

Great! We’ve now cleaned up the App component and are ready to start building out the
dashboard. Our first order of business is to set up the dashboard controller. Its job is to
use the Stocks service to load data and make it available for the component to consume.

Open the controller at src/app/components/dashboard/dashboard.component.ts
and replace it with the code in the following listing.

Listing 2.10   Dashboard controller

import { Component, OnInit } from '@angular/core';
import { StocksService, StockInterface } from '../../services/stocks.

service';

@Component({
 selector: 'dashboard',
 templateUrl: './dashboard.component.html',
 styleUrls: ['./dashboard.component.css']
})
export class DashboardComponent implements OnInit {
 stocks: Array<StockInterface>;
 symbols: Array<string>;

 constructor(private service: StocksService) {
 this.symbols = service.get();
 }

 ngOnInit() {
 this.service.load(this.symbols)

.subscribe(stocks => this.stocks = stocks);
 }
}

The controller starts by importing the Component annotation and the OnInit interface.
If you haven’t implemented an interface before, an interface is a means to enforce
that a class contains a required method—in this case, the method named ngOnInit.

Imports
dependencies

Exports the component
class, but also
implements the OnInit
interface

Declares a property for holding an array of stocks

Declares a property for holding an array of stock symbols

Gets the stock symbols from the service
when the component is first constructed

Implements the ngOnInit
method and calls the service
to load stock data over Http

46 Chapter 2  Building your first Angular app

Leveraging TypeScript’s capabilities for enforcing code typings and interfaces is help-
ful as projects get larger.

The DashboardComponent class is the component controller, and it declares that it
must implement the requirements of OnInit. If it doesn’t, TypeScript will fail to com-
pile the code and throw an error. It then has two properties: an array of stocks and an
array of strings that represent the stock symbols to display. Initially they’re empty arrays,
so we’ll need to get them loaded for the component to render.

The constructor method runs as soon as the component is created. It will import
the Stocks service onto the service property and then request the current list of stock
symbols from it. This works because this is a synchronous action that loads a value
directly from memory.

But we don’t load data from the service in the constructor for a number of reasons.
We’ll dig into the complexities later in the book, but the primary reason is due to the
way that components are rendered. The constructor fires early in the rendering of a
component, which means that often, values are not yet ready to be consumed. Compo-
nents expose a number of lifecycle hooks that allow you to execute commands at vari-
ous stages of rendering, giving you greater control over when things occur.

In our code, we use the ngOnInit lifecycle hook to call the service to load the stock
data. It uses the list of stock symbols that was loaded in the constructor. We then sub-
scribe to wait for the results to return and store them in the stocks property. This uses
the observable approach to handling asynchronous requests. We’ll look at observables
in depth later as well. Here we are using them because the HttpClient returns an observ-
able for us to receive the response. This is exposed as a stream of data, even though it is
a single event.

Now we need to complete the component by adding the template. Open the src/
app/components/dashboard/dashboard.component.html file and replace it with the
contents of the following listing.

Listing 2.11   Dashboard component template

<div class="mdl-grid">
 <div class="mdl-cell mdl-cell--12-col" *ngIf="!stocks" style="text-align:

center;">
 Loading
 </div>
 <div class="mdl-cell mdl-cell--3-col" *ngFor="let stock of stocks">
 <summary [stock]="stock"></summary>
 </div>
</div>

The template has some classes to use the Material Design Lite UI framework for a grid
structure. The template contains another NgIf attribute to show a loading message
while the data is loaded, like we used earlier. Once the stock data has returned from
the API, the loading message will be hidden.

Use NgIf to show a loading
message until stocks have loaded.

Use NgFor to
loop over

each stock.
Instantiate a Summary component for
each stock and pass that stock data.

	 47Components with forms and events

Then we see another element that has a new directive, NgFor. Like NgIf, it starts with
an *, and the expression is similar to what you would use in a traditional JavaScript for
loop. The expression contains let stock of stocks, which means that it will loop over
each of the items in the stocks array and expose a local variable by the name of stock.
Again, this is the same kind of behavior that you would see in a JavaScript for loop, but
applied in the context of HTML elements.

NgFor will then create an instance of the Summary component for each of the stock
items. It binds the stock data into the component. Each copy of the Summary compo-
nent is distinct from the others, and they don’t directly share data.

You’ve now completed the dashboard view, which uses a service and another compo-
nent to render the experience. When you run the application now, you should see the
five default stocks appearing as separate cards in the page. The grid layout should lay
them out in four columns.

Next you’ll build a new component that has a form that manages the list of stock sym-
bols to use when displaying the stocks.

2.8	 Components with forms and events
We want to manage the stocks that are displayed, so we’ll need to add another compo-
nent that has a form to edit the list of stocks (figure 2.7). This form will allow users to
input new stock symbols to add to the list and will have a list of the current stocks with a
button that will remove a stock from the list. This list of stocks is shared throughout the
entire application, so any changes will replicate elsewhere.

Add a stock
using input

Delete stocks
using button

Figure 2.7   Manage component with a form to add an item and buttons to remove
existing stocks

Forms are essential in applications, and Angular comes with built-in support for build-
ing complex forms with many features. Forms in Angular are comprised of any number

48 Chapter 2  Building your first Angular app

of controls, which are the various types of inputs and fields the form may contain (such
as a text input, a checkbox, or some custom element).

Let’s start by generating a new component for the manage view. Using the CLI, run
the following command, and remember, this will also automatically register the compo-
nent with the App module so it’s ready to consume:

ng generate component components/manage

Now update the src/app/app.component.html file and change the content of the
main element, as you see in the following code, so the Manage component will display
in the application. Then when you run the application, it will display the default mes-
sage you see with any new component:

<main class="mdl-layout__content" style="padding: 20px;">
 <manage></manage>
</main>

We also need to add the FormsModule to our application, because we are going to use
the form features that aren’t automatically included by Angular. Open up the src/
app/app.module.ts file and add a new import:

import { FormsModule } from '@angular/forms';

Then update the imports definition of the module to declare the FormsModule like you
see here:

imports: [
 BrowserModule,
 HttpClientModule,
 FormsModule,
],

Let’s start making our Manage component by updating the controller with some logic.
In figure 2.7, you’ll see we need to load the list of symbols stored in memory. There will
also need to be two methods: one to handle the removal of a stock and another to add
a new stock symbol to the list.

Open src/app/components/manage/manage.component.ts and update it to match
the following listing. This will comprise the additional methods and setup required for
this view.

Listing 2.12   Manage component controller

import { Component } from '@angular/core';

import { StocksService } from '../../services/stocks.service';

@Component({
 selector: 'manage',
 templateUrl: './manage.component.html',
 styleUrls: ['./manage.component.css']
})
export class ManageComponent {
 symbols: Array<string>;

Imports
dependencies

Declares component metadata

Defines class and two properties
for storing the array of symbols
and a string for input

	 49Components with forms and events

 stock: string;

 constructor(private service: StocksService) {
 this.symbols = service.get();
 }

 add() {
 this.symbols = this.service.add(this.stock.toUpperCase());
 this.stock = '';
 }

 remove(symbol) {
 this.symbols = this.service.remove(symbol);
 }
}

As usual, we start by importing dependencies for the component. Then the compo-
nent metadata is declared using the @Component annotation. The class object is then
declared, which contains two properties: the first is the array of symbols that’s retrieved
from the Stocks service, and the second is a property to hold the value of the input.
We’ll see how the stock property is linked to the input field in the template, but this is
where it’s first defined.

The constructor uses the service to get the array of stock symbols and store it on the
symbols property. This doesn’t require the OnInit lifecycle hook, because it’s a syn-
chronous request to get data that exists in memory.

Then we have the two methods to add or remove the symbols from the list. The
service always returns a copy of the stocks symbol array, so we have to use the service
methods to manage the list (which is encapsulated inside the service and isn’t directly
modifiable). The add method will add a new item to the list of symbols, and then store
the modified list onto the symbols list. Conversely, the remove method will remove the
item from the array and refresh the symbols list in the controller.

This controller satisfies our needs for handling the actions of the form, but now we need
to create the template to display the form and its contents. Open src/app/components/
manage/manage.component.html and add the contents from the following listing.

Listing 2.13   Manage component template

<div class="mdl-grid">
 <div class="mdl-cell mdl-cell--4-col"></div>
 <div class="mdl-cell mdl-cell--4-col">
 <form style="margin-bottom: 5px;" (submit)="add()">
 <input name="stock" [(ngModel)]="stock" class="mdl-textfield__input"

type="text" placeholder="Add Stock" />
 </form>
 <table class="mdl-data-table mdl-data-table--selectable mdl-shadow--2dp"

style="width: 100%;">
 <tbody>
 <tr *ngFor="let symbol of symbols">

Gets the current list of symbols
during class instantiation

Method to add a new
stock to the list

Method to remove a stock
symbol from the list

Binds the submit
event to call the
add method

Two-way binding for the symbol input box

Loops over symbols
list with NgFor

50 Chapter 2  Building your first Angular app

 <td class="mdl-data-table__cell--non-numeric">{{symbol}}</td>
 <td style="padding-top: 6px;">
 <button class="mdl-button" (click)="remove(symbol)">

Remove</button>
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 <div class="mdl-cell mdl-cell--4-col"></div>
</div>

In this template there’s a decent amount of markup only for the grid layout. Any class that
starts with mdl- is part of the styles provided by Material Design Lite’s grid and UI library.

The first interesting section is the form, which has a new type of attribute we haven’t
seen before. The (submit)="add()" attribute is a way to add an event listener, known
as an event binding. When the form is submitted (which is done by pressing Enter), it
will call the add method. Any attribute that’s surrounded by parentheses is an event
binding, and the name of the event should match the event without the on (onsubmit
is submit).

The form contains a single input element, which has another new type of attribute.
The [(ngModel)]="stock" attribute is a two-way binding that will sync the value of the
input and the value of the property in the controller anytime it changes from either
location. This way, as the user types into the text field, the value will be immediately
available for the controller to consume. When the user hits Enter, the submit event
fires and will use the value of the stock property when adding the new symbol. I cover
form concepts in greater detail later, but this is your first preview of how a simple form
is constructed.

The next section loops over the list of symbols using NgFor. I covered how this
works earlier, so I won’t go into detail. For each symbol, it will create a local variable
called symbol, create a new table row that binds the value, and a button that’s for
removing the item.

The remove button contains another event binding, this one to handle the click
event. The (click)="remove(symbol)" attribute adds an event listener to the click
event and will call the remove method in the controller, passing along the symbol.
Because there are multiple instances of the button, each one passes along the local vari-
able to know which symbol to remove.

The last task is to add routing to the application to activate routes for the two views to
act like two different pages.

2.9	 Application routing
The final piece of the application is the routing, which configures the different pages
that the application can render. Most applications need some form of routing so it can
display the correct part of the application at the expected time. Angular has a router
that works well with the Angular architecture by mapping components to routes.

Displays the
symbol

Binds the click event on the button
to call the remove method

	 51Application routing

The router works by declaring an outlet in the template, which is the place in the
template that the final rendered component will be displayed. Think of the outlet as
the default placeholder for the content, and until the content is ready to be displayed,
it will be empty.

To set up our routes, we’ll link the Manage and Dashboard components to two
routes. We’ll handle the configuration ourselves, because the CLI doesn’t support set-
ting up routes in this particular release. To begin, create a new file at src/app/app.
routes.ts and fill it with the code from the following listing.

Listing 2.14   App routing configuration

import { Routes, RouterModule } from '@angular/router';

import { DashboardComponent } from './components/dashboard/dashboard.
component';

import { ManageComponent } from './components/manage/manage.component';

const routes: Routes = [
 {
 path: '',
 component: DashboardComponent
 },
 {
 path: 'manage',
 component: ManageComponent
 }
];

export const AppRoutes = RouterModule.forRoot(routes);

This file’s main purpose is to configure the routes for the application, and we start by
importing the RouterModule and the Route type definition. The RouterModule is used
to activate the router and accepts the routes configuration when it’s initialized. We also
import the two routable components, the Dashboard and Manage components, so we
can reference them properly in our routes configuration.

The routes are defined as an array of objects that have at least one property—in this
case two, for a URL path and a component. For the first route, there’s no path, so it acts
as the application index (which will be http://localhost:4200) and links to the Dash-
board component. The second route provides a URL path of manage (which will be
http://localhost:4200/manage) and links to the Manage component. This is the most
likely type of routing that you’ll do with Angular, though there are many ways to config-
ure and nest routes.

Finally, we create a new value AppRoutes, which is assigned to the result of RouterModule
.forRoot(routes). We’ll dig further into how the forRoot method behaves later, but
it’s a way to pass configuration to the module. In this case, we’re passing the array of
routes. We export this so we can import it into our App module and register it.

Open the src/app/app.module.ts file and add a new line at the end of the imports
that imports the AppRoutes object you created in the previous file:

Imports router
dependencies

Imports App components
that are linked to a route

Defines a route configuration array

Exports the
routes for use

52 Chapter 2  Building your first Angular app

import { AppRoutes } from './app.routes';

Now update the imports property of your module to include the AppRoutes object.
This will register the Router module and our configuration with our application:

 imports: [
 BrowserModule,
 HttpClientModule,
 FormsModule,
 AppRoutes
],

The final step is to declare a place for the router to render, and update the links to use
the router to navigate. Open the src/app/app.component.html file one last time and
make a few modifications. First you’ll change the contents of the main element to have
a different element, the router outlet:

<main class="mdl-layout__content" style="padding: 20px;">
 <router-outlet></router-outlet>
</main>

This declares the specific location in the application that the router should render the
component. It’s the same place that we’ve put our components while building them, so
it should make sense that this is the best place.

Then we need to update the links to use a new directive that will set up the navigation
between routes. The RouterLink directive binds to an array of paths that are used to
build a URL:

<nav class="mdl-navigation mdl-layout--large-screen-only">
 Dashboard
 Manage
</nav>

The directive parses the array and tries to match to a known route. Once it matches a
route, it will add an href to the anchor tag that correctly links to that route.

The router is capable of more advanced configuration, such as nested routes, accepting
parameters, and having multiple outlets. I cover the router in more detail in chapter 7.

Now your project is complete, and you can reload the application in the browser to
see it running, as previewed earlier. Congratulations! You’ve got a working Angular app
running, and now you can try to make it do some more things.

Summary
Congratulations on making it through a functional Angular app! We went through a
lot of Angular features quickly, but you should now have an understanding of how var-
ious parts are assembled into an app. Here is a quick recap of the primary takeaways:

¡	Angular apps are components that contain a tree of components. The root app is
bootstrapped on page load to initialize the application.

¡	A component is an ES6 class with an @Component annotation that adds metadata
to the class for Angular to properly render it.

	 53Summary

¡	Services are also ES6 modules and should be designed for portability. Any ES6
class could be used, even if it isn’t specifically meant for Angular.

¡	Directives are attributes that modify the template in some way, such as NgIf,
which conditionally shows or hides the DOM element based on the value of an
expression.

¡	Angular has built-in form support that includes the ability to automatically vali-
date, group, and bind data with any form control, as well as use events.

¡	Routing in Angular is based around paths mapping to a component. Routes will
render a single component, and that component will also be able to render any
additional components it needs.

54

3App essentials

This chapter covers
¡	How Angular organizes code into modules

¡	How apps are rendered

¡	Types of entities in Angular

¡	The template syntax and capabilities of Angular

¡	Change detection and dependency injection

This chapter covers the essentials of Angular applications so that you can under-
stand how everything fits together. It will be a good reference for the fundamentals.

It is focused on concepts, and there are no coding projects. You may be eager to
jump into coding, and I certainly understand that. I recommend you take the time
to read this chapter in its entirety, but you can also start by skimming the first couple
paragraphs of each section.

While in college, I studied abroad in Germany and was fortunate enough to do
some traveling. I took a number of tours, but two I remember well were a tour of
some salt mines in southern Germany and a tour of the Uffizi Museum in Florence,
Italy. I learned a lot of interesting facts about salt mines, but I had no real back-
ground in mining. On the other hand, I had been taking an art history class, which
made the experience of the Uffizi Museum far more satisfying.

	 55Entities in Angular

3
I hope you went through chapter 2, which provides a hands-on tour of Angular,

because I’ll use it as a reference as we talk about application essentials. It probably felt
a bit like the salt mine tour, where you ran through it quickly and saw some interesting
things. Now I’m going to fill in the backstory to give you a more complete picture of
Angular so you can have your own Uffizi experience.

Chapter 2 may have seemed fairly easy, or it might have been a challenge to keep
everything straight. As with most technologies, there are a lot of potential things to
learn, but most aren’t the things you’ll use on a regular basis. I’ve had my moments of
clarity and confusion with Angular, and most often the problem is that I was fixating on
too many things at once instead of focusing on the core problem and building up from
there.

Based on that experience, I’m going to walk you through key aspects of the chapter 2
app in greater detail and talk about the core concepts in play. I’ll layer on a few more
concepts that will ultimately give you a more holistic picture of your Angular applica-
tion and how it’s rendered to the screen.

Figure 3.1 shows the stock application from chapter 2. If you want to see the example
in action again, go to https://angular-in-action.github.io/stocks/. You probably recall
some of the things used to generate this application, which include several compo-
nents, a service, directives, and more. Let’s look at these entities in Angular and better
understand their roles.

Figure 3.1   Stock app from chapter 2, which we’ll use to describe Angular concepts in more detail

3.1	 Entities in Angular
Angular has several top-level types of entities, all of which you saw in chapter 2. But
we didn’t give them a lot of attention in the context of how they are bundled and ren-
dered into the application.

https://angular-in-action.github.io/stocks/

56 Chapter 3  App essentials

These different entities have specific roles and capabilities, and you’ll be using them
in various combinations to create your application. Here is a quick overview of the types:

¡	Modules —Objects that help you to organize dependencies into discrete units
¡	Components —New elements that will compose the majority of your application’s

structure and logic
¡	Directives —Objects that modify elements to give them new capabilities or change

behaviors
¡	Pipes —Functions that format data before it’s rendered
¡	Services —Reusable objects that fill niche roles such as data access or helper utilities

For the most part, everything you write in Angular will fall into one of these five types
(okay, I’m sure there are some exceptions). Looking at our stock application from
chapter 2, we can see how these different entities came into play. Figure 3.2 outlines
the basic relationship of the entities and how they ultimately fit together.

Summary
component

Summary
component

Summary
component

Dashboard
component

Summary
component

NgFor
directive

Manage
component

RouteRoute

Angular coreCore pipes

Currency pipe Percent pipe

Core directives

App module

Browser
Platform module

Forms module

Http module

App component

Angular core libraries and
runtime, including pipes
and directives, are loaded.

The App module is
bootstrapped and
includes dependency
modules.

The App component is
rendered, which then
triggers children to
be rendered.

Defined as routes, either
the Dashboard component
or the Manage component
is displayed.

The NgFor directive is used
by the Dashboard component
to iterate over the array
of stocks.

NgFor instructs Angular
to render a Summary
component for each of
the stocks.

The Summary
component uses
two pipes to format
data on display.

Figure 3.2   The entities and how they are leveraged during the application execution

	 57Entities in Angular

As you can see, all these entities are ultimately merged into one application and are
what generate the resulting user experience. I’ll refer to these types of entities often, so
let’s dive a little deeper into each one.

3.1.1	 Modules

Modules are buckets for storing related entities for easy reuse and distribution. Angular
itself is composed of several modules, and any external libraries that you consume will
also be packaged as modules.

There are two kinds of modules in Angular, and we need to clarify the difference.
There are JavaScript modules (specifically modules added to the language in ES2015,
and not other module systems like CommonJS and AMD), and then there are Angular
modules.

JavaScript modules are language constructs and are a way to separate code into dif-
ferent files that can be loaded as needed. We leverage JavaScript modules heavily in our
code, but they are not Angular modules. Every TypeScript file we wrote in chapter 2 was
a JavaScript module because it either imported or exported some values.

Whereas JavaScript modules are language constructs, Angular modules are logical
constructs used for organizing similar groups of entities (such as all things needed for
the router) and are used by Angular to understand what needs to be loaded as well as
what dependencies exist. Recall from chapter 2 that your application has an App mod-
ule that holds a reference to all the application logic for Angular to render. There must
always be an App module, but there will likely be additional modules in your applica-
tion—either official Angular modules, third-party ones, or other ones you may create.

A module is declared by creating a class and decorating it with the @NgModule decora-
tor. The following listing shows the module we created for the chapter 2 stocks example.

Listing 3.1   App module from chapter 2

@NgModule({
 declarations: [
 AppComponent,
 SummaryComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule
],
 providers: [StocksService],
 bootstrap: [AppComponent]
})
export class AppModule { }

This module declaration was generated by the CLI for us (though we could have
written it ourselves), and it provides key pieces of information to Angular so it
can understand how to render and load the application. The @NgModule decorator

Decorates using @NgModule

Defines array of components
and directives

Defines array of
modules to import

Defines array of
services to load

Defines array of components
to bootstrap on startup

App module class

58 Chapter 3  App essentials

contains the metadata for the App module, and the empty class acts as the vessel
for storing the data.

The declarations array contains a list of all components and directives that the
application’s main module wants to make available to the entire application. Likewise,
the providers array contains a list of all of the services that you want to make available
to the whole application.

The imports array contains a list of the other modules that this module depends
upon. If you’re having trouble with another module not loading, this is the first place to
check to see if it’s being registered with Angular.

To start rendering, Angular also needs to know what component(s) to render on
the screen, and it looks at the bootstrap array for this list. Almost always, this will only
contain one component, but in some rare cases you may need to render multiple com-
ponents on load.

There are a few additional properties you don’t see listed here, but they’re less com-
monly used. I’ll cover them as they become relevant for our use cases.

3.1.2	 Components

Understanding components is vital to understanding Angular, as understanding words
is vital to language. We’ll be focusing on the role and design of components in this sec-
tion before we dive into the technical implementation details.

A component is an encapsulated element that maintains its own internal logic for how
it desires to render some output, such as our Summary component from chapter 2. In
HTML, a select element can be considered a component. Using Angular, we create our
own HTML elements using components, though they are more than that. Components
can have any number of capabilities or properties that you define.

As a review, here are the key principles of a component discussed in chapter 1, where
we saw some of the web technologies that make it possible to build components. These
principles focus on the way that components are best designed and how they behave in
Angular:

¡	Encapsulation —Keep component logic isolated
¡	Isolation —Keep component internals hidden
¡	Reusability —Allow component reuse with minimal effort
¡	Event-based —Emit events during the lifecycle of the component
¡	Customizable —Possible to style and extend the component
¡	Declarative —Component used with simple declarative markup

Components may not implement all of these principles, but they should certainly be
a guidepost for your thinking. It also helps to keep track of how components relate to
one another—you can nest multiple components together to compose a more com-
plex interaction.

Let’s take an example of a login form using only HTML elements. You start any form
with the form element that wraps the entire form structure. This gives context to the

	 59Entities in Angular

rest of the elements inside the form, but it doesn’t provide any UI elements for the user
to interact with. For that, we’d need to use a text input for the username, a password
input for the password, and some kind of button to trigger the form action. In figure 3.3
we have a basic example of a form from Facebook™ that contains these elements.

Figure 3.3   Login form on Facebook that has several nested elements to produce a single form

Form events are provided access to the values of the inputs inside the form. This is like
the Angular notion of data binding, where values from one element are connected to
another. Then the form has a submit button, which when clicked triggers the submit
event for the form.

This should be pretty standard HTML, but now let’s look at a combination of Angular
components in a similar arrangement. In chapter 2, we had a Dashboard component
that contained multiple instances of the Summary component. In figure 3.4, I’ve out-
lined the two types of components.

Dashboard
component

Summary
components

Figure 3.4   Nested components from chapter 2 dashboard screen

The Dashboard component holds the data for all the stocks and binds that informa-
tion into the individual Summary components. Each Summary component uses the
provided stock data to display itself. Any changes in the dashboard data will cause the
child Summary components to be updated.

60 Chapter 3  App essentials

The basic interaction of components is to push data down from parent components,
usually through binding, and back up, usually through events. There are other ways for
components to communicate (something I cover in more detail later), but much of
your time working with Angular will be composing trees of components into a meaning-
ful interface.

3.1.3	 Directives

Angular favors putting logic and capabilities straight into the HTML markup of the
application, and directives are a powerful tool to teach HTML elements new skills.

You likely have used jQuery plugins in the past to enhance existing elements with
new behaviors. There are endless plugins to turn regular elements into slideshows, tabs,
and other things. The way these plugins work is that they take an existing element and
apply new capabilities, such as making an image open up in a modal window.

Similarly, directives can take a normal element and give it additional capabilities that
don’t exist naturally. Imagine you’re building a form in which it’s important that the
user doesn’t accidentally click any links to navigate away. You could create a directive
that can disable links depending on whether the user has started to use the form or if
they’ve completed it, and internally it would modify the anchor link to disable the href
and therefore the clickability of the link.

Let’s look back to chapter 2 again and see how we used different directives to give
regular elements new skills. Figure 3.5 shows the directives used on the dashboard view,
which has NgFor, NgClass, and NgIf. The figure is annotated with how these directives
changed the element behavior.

Here is one that adds a directive that will render or remove the element based on the
value inside the attribute value (known as an expression):

<div *ngIf="!stocks">

NgIf shows cards
only after the data
has loaded.

NgFor iterates over the list
of stocks; NgClass will change
the color of the cards based
on daily changes.

Figure 3.5   Directives used in chapter 2 stock application

 www.allitebooks.com

http://www.allitebooks.org

	 61Entities in Angular

The *ngIf is the directive, which is applied as an attribute to the element, and it will
evaluate the value it’s assigned to (more on this later in section 3.6). In this case, if the
expression is truthy, it will render the element—otherwise it will remove it from the
DOM. NgIf gives an element the ability to conditionally render or be removed, which is
possibly the most common use of JavaScript on the web.

There are three categories of directives: attribute directives, structural directives,
and components. We already talked about components, and it should make sense how a
component adds new capabilities to HTML, making it also a directive. But components
are special because they’re the only type of directive with a template, and therefore I
suggest thinking of them as their own type of entity.

Attribute directives are like our earlier example, where they modify the appearance
or behavior of an element. The NgClass directive is one such example provided by
Angular out of the box, which we saw in chapter 2. There are a number of built-in attri-
bute directives, so you won’t necessarily have to build many of your own. Typically, they
work by changing the various properties of the element they are associated with, such as
the NgClass directive changing the list of classes attached. Most directives are attribute
directives.

On the other hand, structural directives modify the DOM tree based on some condi-
tions. In chapter 2 we also saw NgIf as a way to conditionally display a DOM element, and
NgFor as a way to iterate over a list of items and display them. There are fewer of these
types of directives built into Angular because they’re versatile. They work by adding or
removing DOM elements to or from the page.

We used three directives in chapter 2, as outlined in figure 3.5. NgIf was used to hide
the cards list until the data had loaded. NgFor was used to loop over each stock and
create N number of copies. Then NgClass was used to change the card background,
depending on the positive or negative change for the stock price. But we didn’t go into
detail about some of the other directives.

The primary default directives provided by Angular consist of the following (there
are also some provided by the Forms and Router modules):

¡	NgClass —Conditionally apply a class to an element
¡	NgStyle —Conditionally apply a set of styles to an element
¡	NgIf —Conditionally insert or remove an element from the DOM

¡	NgFor —Iterate over a collection of items
¡	NgSwitch —Conditionally display an item from a set of options

Without directives in the stock application, we would have to write JavaScript that
would dynamically create multiple summary cards, and that gets harder to manage
over time. Directives make life much easier because they modify an element to give it a
new capability, without having to use JavaScript to reach into the template and modify
it on the fly. We don’t have to use something like jQuery to modify the DOM and put
our logic in an external, dissociated location.

62 Chapter 3  App essentials

3.1.4	 Pipes

Often you want to display data in a different format than the format it’s stored in.
Typically, you want to have a date stored as a timestamp value, but that’s not particu-
larly user-friendly. Using pipes, we can transform the data in the view during rendering
without changing the underlying data value.

Pipes are added into template expressions using the pipe character (|). For exam-
ple, you could have an expression that looks like this:

{{user.registered_date | date:'shortDate'}}

The expression on the left side remains the same as we’ve seen throughout the chap-
ter, but the addition of the pipe on the right side then applies a transformation to
the value of the expression. In this case, it will use the Date pipe to format the user’s
registration date. It also takes an option; a colon (:) denotes that the following value is
passed to the pipe as a configuration option. In this example, you’re passing a configu-
ration option that formats the date according to the format of 'shortDate', which I’ll
cover shortly.

In the stock app, we used the Currency and Percent pipes to display content. Fig-
ure 3.6 points out the pipes used.

Currency
pipe

Percent
pipe

Figure 3.6   Pipes used by the stock application

Angular comes with a set of default pipes that cover a number of common use cases.
The default pipes are always available and don’t need to be injected or imported, so
we can use them in our templates. Pipes are used by adding the pipe character and the
name of the pipe.

Using a pipe changes the way the data is rendered, but it doesn’t change the value
of the property. It creates a copy of the output, modifies it, and displays the resulting
value. For example, the price for the FB stock is stored as a number, but when rendered,
a copy of that value is converted to a string and formatted as a currency.

I like to create my own pipes to handle formatting whenever possible. This helps
because the logic is easy to reuse and keeps code out of the component controller.

	 63Entities in Angular

Anytime you’re doing any kind of formatting of data, you should consider whether it
can be a pipe. You’ll likely only create a handful of pipes, because they tend to be reus-
able and easily shared.

3.1.5	 Services

The last primary entity type is services, which are a way to reuse functional pieces of
JavaScript logic across your application. Developers often need to write some code
that does repetitive tasks, and we don’t want it to be duplicated all around. Sometimes
these services are a gateway to access data (such as we built in chapter 2), and other
times they’re more like helper functions, like custom sorting algorithms. I’ll talk more
in depth in section 3.4 about dependency injection to explain how these services are
made available and shared.

Angular provides a number of services out of the box, and many third-party modules
will also expose services. In chapter 2, we built a service that also used the Angular Http
service to request data—we created a wrapper around the Angular service to make it eas-
ier for us to use in our application. Let’s take another look at this code snippet in the fol-
lowing listing, though it has been simplified to highlight the use of the HttpClient service.

Listing 3.2   Stock service, simplified

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';

let service: string = 'https://angular2-in-action-api.herokuapp.com';

@Injectable()
export class StocksService {

 constructor(private http: HttpClient) {}

 load(symbols) {
 if (symbols) {
 return this.http.get(service + '/stocks/snapshot?symbols=' +

symbols.join());
 }
 }
}

In this example, I’ve removed some of the extra code that isn’t related to using the
HttpClient service. First HttpClient is imported to the file and then it’s injected into
the StocksService through the controller. These are the steps to make a service con-
sumable by your objects in Angular. For example, the same two steps would apply if this
were a component controller.

The load() method uses the HttpClient service to make a GET request, but it con-
structs the proper URL to call, making it easier to consume elsewhere in the applica-
tion. Services are ideal for placing this type of logic that simplifies the usage of code and
makes it possible to reuse.

Imports dependencies

Injects the HttpClient
service into the controller

The load() method returns an
Http service call to load data.

64 Chapter 3  App essentials

Services are also the ideal place for data access, and component controllers aren’t.
The principle of separation of concerns applies in Angular, and keeping individual
entities focused on a single set of tasks is important for maintainability and testability.
Make services that do one thing well.

I often write services for anything that isn’t inherently linked to the component con-
troller, or that can be easily abstracted externally to the component. Sometimes I may
only use a service in one place, but it helps better organize logic and intent for my code
as well as help focus the testing. If at any point in the future I need to reuse that service,
it’s ready to go. I find it’s easier to write another service than it is to over-engineer an
existing service.

Now that we have a grasp of the primary entities in Angular, we can talk about how
they all get combined during the rendering of the application.

3.2	 How Angular begins to render an app
The Angular CLI generates a fairly simple app that displays a single message on the
screen, as we saw in chapter 2. A number of things come together to make that simple
message appear, and though we quickly covered how the app runs, we need to spend
more time and dig into the details.

In Angular, the CLI generates a fairly lightweight app. It could be slightly smaller, but
it’s easiest to consider the generated app as the base for future development, and I’ll
often refer to it as the base app. We’ll focus on the app that’s generated when you run ng
new app-name.

Angular has an app bootstrapping mechanism that kicks off the rendering. Fig-
ure 3.7 shows the primary entities involved in the bootstrapping process and rendering
of the content that gets displayed based on the base app.

Bootstrapper

App module Browser module

App component

1. Bootstrapper begins
 App execution process

2. App imports
 other modules

3. App renders
 App component

4. Component binds
 property from controller
 to template

Controller

Bindings

Template

Figure 3.7   How Angular renders the base app into the browser

	 65Types of compilers

Immediately upon loading the page, the bootstrapper is called to begin Angular exe-
cution. You may be asking yourself, how does the bootstrap begin? The CLI uses web-
pack to build, and it compiles all the JavaScript and adds it as script tags to the bottom
of the index.html on build. (You can learn more about webpack at https://webpack
.github.io/ if you’re curious about the way it compiles.) This is when it will run the
code to begin your app.

Now that Angular has started, it loads your App module and reads through any addi-
tional dependencies that need to be loaded and bootstrapped. In the base app, the
Browser module is loaded into the application before further execution happens.

Then Angular renders the App component, which is the root element of your appli-
cation. As this App component renders, any child components are also rendered as part
of the component tree. This is like the DOM tree, except any special Angular template
syntax has to be rendered by Angular. As it renders, it will also resolve bindings and set
up event listeners for anything that declares it. Once this has been completed, the full
application should be rendered out and available for the user to begin interacting with.

The lifecycle of the application continues as the user begins to use the application,
and the application will begin to react. As a user navigates around, the components on
the screen will be removed, and new components will get loaded and rendered. The
cycle of reacting to the user and rendering the component tree continues until the
application is closed.

Figure 3.7 doesn’t look closely at how a tree of components becomes the application,
which we’ll see in more detail in chapter 4.

3.3	 Types of compilers
Angular provides two types of compilers, called the Just-in-Time (JiT) compiler and
the Ahead-of-Time (AoT) compiler. The primary difference is the tooling and timing
for the compiler, and that can change the way your application behaves and how it’s
served to the user.

With JiT compilation, it means that the compiling of the application happens in
the browser only after the assets have all been loaded. That means there will be a lag
between initially loading the page and being able to see the content. You saw that in
the chapter 2 example, because there is a fairly basic “loading” message displayed until
everything is ready and the compiler has run.

AoT, on the other hand, is a way to render the content before sending it to the
browser. This means the user will be sent exactly what’s needed to display the content
without any kind of loading message once the application assets have loaded.

The other big difference is that with JiT, the application must also load the compiler
library before the application can execute, whereas the AoT version is able to drop this
payload from being sent, causing a faster load experience.

With AoT, we have the ability to perform a number of interesting optimizations,
because the application is compiled before serving. The other possibility it provides is

https://webpack.github.io/
https://webpack.github.io/

66 Chapter 3  App essentials

server-side rendering for applications, which can be useful for pre-rendering applica-
tions with user-specific data.

You should work to ensure your applications compile with the AoT compiler, because
anytime you build your application for production it will use the AoT compiler. It is possible
that in future releases of Angular, the JiT compiler may be removed entirely once AoT
compilation is fast enough for development.

We’ll use JiT for all development in this book because it’s much faster to render and
preview the application. We’ll also cover how to set up AoT compilation and reap the
benefits when we build the application for production purposes.

3.4	 Dependency injection
All but the most basic code relies on using objects from other parts of the application.
The problem is that the larger your code base becomes, the harder it is to ensure that
individual parts are encapsulated while still being easy to access. Therefore, many pro-
gramming languages or frameworks have some mechanism to facilitate tracking and
sharing objects.

There are many approaches to structuring your code in a way that allows you to eas-
ily share objects. Dependency injection (DI) is a pattern for obtaining objects that uses a
registry to maintain a list of available objects and a service that allows you to request the
object you need. Rather than having to pass around objects, you can ask for what you
need when you need it.

You may be wondering how this is different from using JavaScript module imports
and exports. Why do we need another method to pass code around when JavaScript
now has modules? Dependency injection shouldn’t be confused with JavaScript module
imports. There is a need for Angular to be able to keep track of what parts of the appli-
cation need a particular service. JavaScript has no awareness of how dependencies are
linked together, which can be useful information in understanding how to best assem-
ble dependencies. Also, injecting a dependency with Angular will resolve any additional
dependencies.

There are a few key pieces to the DI system. The first is the injector. This is the ser-
vice that Angular provides for requesting and registering dependencies. The injector
is often at work behind the scenes, but occasionally is used directly. Most of the time,
you’ll invoke the injector by declaring a type annotation on the property. You may recall
from chapter 2 how we injected the HttpClient service like this:

constructor(private http: HttpClient) {}

Because we declare the type as HttpClient (which is a known service in Angular), the
application will use the injector to ensure that the http property contains an instance
of the HttpClient service. This seems like magic, but it’s merely a way to alias the depen-
dency you would like to request without directly calling the injector API.

The second part of DI is providers. Providers are responsible for creating the instance
of the object requested. The injector knows the list of available providers, and based on

	 67Change detection

the name (which above is HttpClient), it calls a factory function from the provider and
returns the requested object.

Anything that has been registered with an NgModule’s providers array is available
to be injected in your application code. You can inject anywhere, but I prefer to use the
TypeScript approach, as we saw earlier, where the constructor properties are annotated
with the specific type of service to inject. Alternatively, you could use the @Inject deco-
rator to inject the Http service, like this:

constructor(private @Inject(HttpClient) http) {}

This decorator wires up the dependency injection the same way as the TypeScript typ-
ing information. Either way you’ll get the same result.

Providers don’t have to be exposed to the root module and instead can be made
visible only to a particular component or component tree. We’ll look at how this works
in more detail in chapter 6, but for now know that there's a lot of power that can be
harnessed with DI.

Let’s now take a look at how Angular knows about changes in the application and
how that results in re-rendering the application.

3.5	 Change detection
Simply put, change detection is the mechanism for keeping data and the rendered views
in sync with one another. Changes always come down from the model into the view,
and Angular employs a unidirectional propagation of changes from parents down to
children. This helps ensure that if a parent changes, any children are also checked, due
to potential linked data.

Angular will run a change detection process to check whether values have changed
since the last time the process ran. JavaScript has no guaranteed way to notify about
any change to an object, so Angular runs this process instead. It may sound heavy to be
running these checks, but there are a number of optimizations that allow this to occur
in a few milliseconds.

To make this happen, Angular creates a special class, known as a change detector, when
it renders a component. This class is in charge of keeping track of the state of the com-
ponent data and detecting whether any values have changed between the times the
change detection ran.

When a value change is detected in a component, it will update the component and
potentially any child components as well. Also, because Angular applications are com-
ponent trees, Angular can determine which components might be impacted by the
change and limit the work involved.

Angular has two ways for changes to be triggered. The Default mode will traverse the
entire tree looking for changes with each change detection process. The OnPush mode
tells Angular that the component only cares about changes to any values that are input
into the component from its parent, and gives Angular the ability to skip checking the
component during change detection if it already knows the parent hasn’t changed.

68 Chapter 3  App essentials

Change detection is triggered by either events, receiving HTTP responses, or timers/
intervals. The best way to think of it is that anytime something asynchronous occurs,
the change detection process begins to determine what may have changed, because
synchronous calls are already handled during the normal rendering flow of Angular.
Think of it like this: You can turn on your car, but until you put it in gear, push the pedal,
or brake, the vehicle is in an idle state, waiting for the driver to give it something to do.

If we go back to how the component trees are designed, you'll remember how the
tree pushes data down to children and events bubble data up. Change detection is the
mechanism that allows components to be updated when data changes in a parent com-
ponent, and ensure views and data are in sync.

3.6	 Template expressions and bindings
A component always has a template, and therefore it’s a logical place to start our deep
dive into how templates shape the behavior of your application. Unlike many other
approaches to building web applications, Angular allows the placement of logic and
customization directly into the template, which allows for more declarative templates.
This may feel a bit strange to you at first, but I have found it to be an elegant way to
design applications. There are certainly some pitfalls that may arise, but keep an open
mind and see how it can be embraced with Angular. Sometimes people think this is
mixing presentation and business logic, which is true to some degree, but it allows us
to write much cleaner code.

A template by itself is regular HTML, but with a few Angular capabilities that HTML
markup takes on a whole new life. A template can leverage values stored in the con-
troller inside the template logic. We saw a few templates in chapter 2, and they demon-
strated several concepts:

¡	Interpolation —Displaying content in the page
¡	Attribute and property bindings —Linking data from the component controller into

attributes or properties of other elements
¡	Event bindings —Adding event listeners to elements
¡	Directives —Modifying the behavior or adding additional structure to elements
¡	Pipes —Formatting data before it’s displayed on the page

Throughout the template you’ll see template expressions. These are like normal Java
Script expressions (any statements you could conclude with a semicolon), and all values
resolve against the component controller. There are some additional features and lim-
itations that template expressions have when compared to expressions in JavaScript:

¡	They’re unable to reach globals, such as console or window.
¡	They can’t be used to assign values to variables (except in events).
¡	They can’t use the new, ++, --, |, and & operators.
¡	They provide new operators: | for pipes and the Elvis operator ?. for allowing

null properties.

	 69Template expressions and bindings

Template expressions are used in three places: for interpolation, property bindings,
and event bindings. Interpolation bindings, like the examples we’ve seen so far in this
section, are shorthand for property bindings.

Let’s imagine we have a controller, and it has a user property and a save method.
In the page, we’d want to display the user’s name and profile image and have a form so
they could update their details. The basics would look something like figure 3.8. We’ll
use this example to discover how data flows from the controller into a template, or how
events flow up from the template to the controller.

Controller

Property
binding

{
 user: {
 name: 'Jeremy',
 img: 'http://example....'
 },
 save: function() {…}
}

The controller has
properties, which
might be methods
or data.

Binding links the
result of a property
into a template.

Event
binding

Submit event
calls save().

<form (submit)="save()">

Interpolation
binding

<p>{{user.name}}</p>

Figure 3.8   How a controller binds data into a template for interpolation, property, and event bindings,
each using a different syntax

Bindings are the conduit for data or methods to be used from a controller in the tem-
plate; they allow data in the controller to flow into the template, or events to call from
the template back into the controller.

Let’s go through a bit more detail on bindings and template capabilities Angular
provides, and then we’ll see how they get applied to our chapter example.

3.6.1	 Interpolation

Interpolation is probably the most used type of template syntax in Angular. We used
it several times in chapter 2, but didn’t dig deeper into how it works. Interpolation
resolves a binding and displays the resulting value as a string in the page.

The binding works by taking an expression, evaluating it, and replacing the binding
with the result. This is similar to how a spreadsheet can take a formula (such as adding
the values of a column of cells), calculate the resulting value (by resolving the formula
against the data stored in the spreadsheet), and then display the value in that cell (in
place of the formula). Here is our interpolation example:

<p>{{user.name}}</p>

Interpolations always use the {{value}} syntax to bind data into the template. It’s a
familiar pattern for anyone who has used mustache templates, as anything between the

70 Chapter 3  App essentials

double curly braces is evaluated to render some text. Here are some additional valid
interpolation expressions that bind values into the view:

<!-- 1. Calculates the value of two numbers, adds to 30 -->
{{10 + 20}}
<!-- 2. Outputs a string "Just a simple string" -->
{{'Just a simple string'}}
<!-- 3. Binds into an attribute value, to link to profile -->
View Profile
<!-- 4. Outputs first and last name -->
{{user.first_name}} {{user.last_name}}
<!-- 5. Calls a method in the controller that should return a string -->
{{getName()}}

The first two expressions evaluate simple values. Most of the time, though, you’ll be
referencing a value from the component to display or evaluate, as you see in the five
examples in the preceding code. These expressions are evaluated within the context
of the component, meaning your component controller should have a property called
user and a getName() method. The expression context is how the view resolves what a
particular value refers to, so {{user.name}} is resolved based on the user.name prop-
erty from the controller, as demonstrated in figure 3.8.

Next we’ll take a look at property bindings and how they’re used to modify proper-
ties of elements that we want to make dynamic in some way.

3.6.2	 Property bindings

In addition to interpolation, another binding type is property bindings, which allow you
to bind values to properties of an element to modify their behavior or appearance.
This can include properties such as class, disabled, href, or textContent. Property
bindings also allow you to bind to custom component properties (called inputs—
covered in much greater detail in chapter 4). For example, if you load a record from
the database that contains a URL to an image, you can bind that URL into an img
element to display that image:

In fact, interpolation is shorthand for binding to the textContent property of an ele-
ment. They can both accomplish the same thing in many situations, so you can choose
to use whichever feels most natural.

The syntax for property bindings is to put the property onto the element wrapped
in brackets ([]). The name should match the property, usually in camel case, like
textContent. We can rewrite the interpolation template to use property bindings like this:

<p [textContent]="user.name"></p>

Interpolation is a shortcut for a property binding to the textContent property of an
element.

As with interpolation, the bindings are evaluated in the component context, so the
binding will reference properties of the controller. Here you have the [src]="user.img"
property binding, which does the same thing as src="{{user.img}}". Both will

	 71Template expressions and bindings

evaluate the expression to bind the value to the image src property, but the syntax is
different. Property bindings don’t use the curly braces and evaluate everything inside
the quotes as the expression. I almost always use property bindings over interpolation
when binding data into properties.

To restate: interpolation is a shortcut for a property binding to the textContent
property of an element. We could rewrite our interpolation example like this:

<p [textContent]="user.name"></p>

This results in the same output of rendering the user’s name in this case, but doing
it this way isn’t common because it makes it harder to create longer text strings. Also,
most developers will find the interpolation version to be more readable and concise.
This might give you a new appreciation for how interpolation works, because under
the hood, interpolation evaluates its own binding this way.

Using the [] syntax binds to an element’s property, not the attribute. This is an
important distinction, because properties are the DOM element’s property. That makes
it possible to use any valid HTML element property (such as the img src property).
Instead of binding the data to the attribute, you’re binding data directly to the element
property, which is quite efficient.

Note that sometimes properties are in camel case even if the HTML attribute isn't.
For example, the rowspan attribute for table cell elements is exposed as the rowSpan
property for the element. If you did interpolation, you could use rowspan="{{rows}}";
if you did property binding, you would have to use [rowSpan]="rows". I know it can be
a little confusing, so when you’re debugging bindings, be sure to check that the names
match.

3.6.3	 Special property bindings

There are a couple of special property bindings for setting a class and style property
for an element. They are both different from many properties that you typically bind
to, because these properties contain a list of classes or styles, instead of setting a single
property, and Angular has a special syntax for setting these properties.

The class property on an element is a DOMTokenList, which is a fancy array. You can
do [class]="getClass()" and it will set a string of class or classes, but this will mess
with any of the classes on the element if they’re already set. Often you’ll want to toggle
a single class, which you can do by using a [class.className] syntax in the property. It
will see the class. prefix for the property binding and know you are binding a particu-
lar class called className. Let’s see an example and how it is rendered:

<!-- isActive() returns true or false in order to set active class -->
<h1 class="leading" [class.active]="isActive()">Title</h1>
<!-- Renders to the following -->
<h1 class="leading accent">Title</h1>

The class binding syntax is useful for targeting specific classes to be added or removed
from an element. It also only adds to the existing classes instead of replacing them
entirely, like if you use [class]="getClass()".

72 Chapter 3  App essentials

Likewise, the style property is a CSSStyleDeclaration object, which is a special
object that holds all the CSS properties. Angular has the same type of syntax for style
binding to set individual style properties. Using [style.styleName] you can set the
value of any valid CSS style. For example

<!-- getColor() returns a valid color -->
<h1 [style.color]="getColor()">Title</h1>
<h1 [style.line-height.em]="'2'">Title</h1>
<!-- Renders to the following -->
<h1 style="color: blue;">Title</h1>
<h1 style="line-height: 2em;">Title</h1>

Any valid CSS property can be used here, and it will render the binding as a style value
directly on the element. Did you notice the second example has a third item, .em? For
properties that accept units, you can use this syntax to declare the unit for the value
that is returned by the expression. You can also leave it off and have the expression
return the unit.

I find these special bindings to be most useful in simple or edge cases where I need
to make a simple change. I usually use NgClass or NgStyle, because if you’re trying
to change multiple classes or style rules on the same element, this syntax becomes
cumbersome.

3.6.4	 Attribute bindings

Some element properties can’t be directly bound, because some HTML elements have
attributes that aren't also made available as properties of the element. The aria (acces-
sibility) attributes are one such example of an attribute that doesn’t get added as a
property to the element.

You can always inspect an element in the developer tools to see the available proper-
ties. That’s the fastest way to verify if you can bind to a particular attribute or not. Once
you’ve verified that the attribute isn’t exposed as a property, you have an alternative
syntax that Angular supports to bind to those attributes.

aria attributes are used to indicate information to assistive devices about elements,
such as aria-required, which marks an input as required for submission. Normally,
you’d use an attribute like this:

<input id="username" type="text" aria-required="true" />

Imagine that this field might not always be required, because your form may
require giving a username or an email, depending on the situation. If you try to do
aria-required="{{isRequired()}}" or [aria-required]="isRequired()", you’ll
get a template parsing error. Because this attribute isn’t a property, it can’t be directly
bound to.

The workaround is using the special attribute binding syntax, which looks like a
property binding, except you put the name of the attribute in the brackets with the
prefix attr., like this:

<input id="username" type="text" [attr.aria-required]="isRequired()" />

	 73Template expressions and bindings

Angular will now bind to the attribute and not the nonexistent property. There aren’t
many attributes that aren’t also properties, but if you come across a template parse
error that your binding isn’t a known native property, you’re probably binding to one
of these attributes.

There aren’t too many situations where you’ll need to use attribute bindings, but it’s
likely that you’ll need them occasionally.

3.6.5	 Event bindings

So far, all data has flowed from the component into the template elements. That’s
great for displaying data, but we need some way for the elements in our template to
bind back into the component. The good news is that JavaScript has a great mecha-
nism built in to pass data back up, by using events.

When people use applications, they generate all kinds of events as they interact with
them. Any time they move the mouse, click, type, or touch the screen, they generate
events in JavaScript. You’ve probably written event listeners before, and we’ll use Angu-
lar’s event bindings to do the same thing. You can also create your own events and fire
them as needed.

First let’s take some general use cases to understand the use cases for event bindings.
When a user is logging into your app, they fill in their login credentials and submit the
form (usually by hitting Enter or clicking a button). The event is the form submit, and
you then want that event to trigger some behavior in your component. Traditionally,
you would create an event listener that listens to the form submit event, but with Angu-
lar we can create a binding that will call a method on the component controller to han-
dle the event (figure 3.9).

Controller

Property
binding

{
 user: {
 name: 'Jeremy',
 img: 'http://example....'
 },
 save: (user) => {...}
}

The controller has
a save method to
handle the form
submit logic.

The event binding links the event with
the controller method, and calls when
the submit event fires.

Event
binding

Submit event
calls save().

<form (submit)="save()">

Interpolation
binding

<p>{{user.name}}</p>

Figure 3.9   Event bindings link an event from the template with a method from the controller.

74 Chapter 3  App essentials

The syntax for event bindings uses parentheses () to bind to a known event. You will
use the name of the event inside the parentheses, without the on part of the name. For
an example form submit event, you would write it like this:

<form (submit)="save()">...</form>

This will create an event listener on the form that will call the save() method in the
component controller when the form is submitted. The context is important because
the event binding only binds up to the current component, but you can trigger events
and those will bubble up to parent elements and components if they’re listening. If
you need a reference of available standard events in HTML, https://developer.mozilla
.org/en-US/docs/Web/Events is an excellent reference. Chapter 4 goes into more
depth about events.

Components and directives can emit their own events, and you can listen to those
events. Chapter 4 looks at how to do this in detail, but let’s also look at an example from
chapter 2. In the manage view, we had a form that let you add a new stock. Here’s the
form again:

<form style="margin-bottom: 5px;" (submit)="add()">
 <input name="stock" [(ngModel)]="stock" class="mdl-textfield__input"

type="text" placeholder="Add Stock" />
</form>

There are two parts: the form element that has the submit event binding and the input
that holds the data the user inputs via the keyboard. When the user hits the Enter key,
the form submit event fires, calling the add() method in the controller. The method
looks at the value from the input box and adds the stock to the list. This was all trig-
gered by the submit event.

We also see a special binding syntax here: the two-way binding approach. It uses both
the property and event binding syntax together, which Angular likes to call banana in
a box (it does kind of look like that if you type [()] and use your imagination). Those
familiar with AngularJS will be familiar with how it allows you to sync the value of a
binding as it changes in either the template or the controller. It does this by doing a
regular property binding and setting up an event binding for you behind the scenes.
You can only use NgModel with form elements, but you can use two-way binding syntax
on properties. Generally, you will want to limit the use of this two-way binding for when
it’s absolutely needed.

Event bindings are important to the way components and templates communicate,
as well as to how components can communicate with one another. The syntax and con-
cepts of event bindings are fairly simple, but can be used in more complex orchestra-
tions to enhance communication between components.

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events

	 75Summary

Summary
We’ve covered a lot of ground with Angular essentials in this chapter. This chapter
should act as a helpful reference for the remainder of the book. The primary take-
aways are as follows:

¡	An Angular application is a tree of components, and there is always a root appli-
cation component.

¡	The various entity types (modules, components, directives, pipes, services) each
have a specific role and purpose.

¡	Angular has two types of compilers, Ahead-of-Time (AoT) and Just-in-Time (JiT),
to give you different ways to render the application.

¡	Dependency injection is fundamental for Angular to track all the objects in the
application and make them available when they’re requested.

¡	Change detection keeps the components in sync with the model data as asyn-
chronous changes occur from user input or other events.

¡	Templates contain several types of bindings: interpolation for displaying data,
property bindings for modifying the element’s properties, attribute bindings for
modifying non-property values of an element, and event bindings for handling
events.

76

4Component basics

This chapter covers
¡	The basics of components and their role

¡	The @Component decorator and its most
important properties

¡	Rendering a component

¡	Passing data into and out of a component using
inputs and outputs

¡	Customizing components with templates and
styling

¡	Injecting content into a component using
projection

Components are so central to how Angular applications are structured that
almost every feature is somehow linked to them. It’s impossible to make an Angu-
lar application without a component, after all. This means being able to harness
the capabilities of components is vital to any developer. They are so important,
I’ve dedicated the next chapter to additional, more advanced topics involving
components.

	 77Setting up the chapter example

4
You saw a couple of components in action in the chapter 2 examples, but in this

chapter we’ll start with the basics of components to ensure that you have a clear over-
view of how they’re declared and designed. We’ll then look at some of the additional
capabilities of components that you’ll use most frequently.

A component includes a template, which is the HTML markup used to describe
its visual layout and behavior. We’ll look at how to make the most of these templates,
understand how they’re rendered, and give them individual stylings.

A component also creates a view, which is the rendered result of a component that
the user can interact with and is comprised of rendering the component template.
Templates may include references to other components, which will trigger them to also
be rendered as part of the rendering of the parent component. As discussed in chapter 3,
an Angular application is a tree of components that all start with the App component.

During this chapter, we’ll build a realistic-looking dashboard that contains several
components, and we’ll use mock data to simplify the implementation and focus purely
on the components themselves. Let’s set up the example.

4.1	 Setting up the chapter example
We’ll be making a tree of components in this chapter, and the components will have
various means by which they communicate and share information. In addition to the
App component, we’ll create seven (yes, seven) other components. You can see the visual
output of the application in figure 4.1, where each type of component is identified.

As you can see, this is a fictional dashboard for a data center, which shows two clusters
(with three nodes each) at the bottom and the combined metrics of CPU and memory
usage. All the data is generated randomly every 15 seconds, but it will also change color
from green to red as usage reaches higher than desired levels. There is also a Reload
button at the top right that will generate a new set of data so you can see the compo-
nents update their behaviors.

Because an Angular application is a tree of components, we can visualize the relation-
ships of the components, as you see in figure 4.2. This is important to consider because
although components are declared independently from one another, they build upon
one another to create the overall application and experience for users.

This tree shows the relationship between the components, where a line points to
a child component. Two components in this tree have dotted lines to them—they’re
dynamically created in the page on demand and aren’t always present. The Nodes
Detail component has six dotted lines, because any of the Nodes Row components can
trigger it to display.

We’ll look at parts of the component tree again later to see how the various compo-
nents communicate. The way the HTML elements are nested is directly related to the
way Angular will instantiate and render them, so it should be fairly natural for anyone
who writes HTML to understand how this tree is built.

78 Chapter 4  Component basics

Nodes Row
components

Nodes
components

Metric
components

Figure 4.1   The completed application with the three component types noted

App
component

Navbar
component

Alert
component

Dashboard
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

Metric
component

Nodes
component

Nodes Detail
component

Nodes
component

Metric
component

Figure 4.2   Component tree showing relationships between instances of each component

	 79Composition and lifecycle of a component

4.1.1	 Getting the code

To get started, we’re going to get the code from GitHub so we can get the correct setup
ready. You can clone the repo using git by running the following command:

git clone -b start https://github.com/angular-in-action/datacenter.git

Alternatively, you can download it from https://github.com/angular-in-action/data-
center/archive/start.zip.

Open the directory and make sure you run npm install to get all the dependencies.
This may take a moment, but then you should be able to view the app by running
ng serve.

This chapter will use the ng-bootstrap project, which can be found at https://
ng-bootstrap.github.io. This is an implementation of the popular Bootstrap CSS and
component framework with Angular. We’ll use only a small portion of the available UI
library, but it’s a popular option and will give you insight into how it could be used for
your own projects.

We already have a rudimentary Navbar component that displays the top menu. When
you view the app running, the result should be a gray navbar sticking to the top of the
page like you see in figure 4.3.

Figure 4.3   Navbar for the application with Reload button

That gets us to the point where we have a basic functioning app with one component
displaying. Let’s step back and talk a little bit about the lifecycle and role of compo-
nents in our application before we build our next step.

4.2	 Composition and lifecycle of a component
Components have a lifecycle that begins with their initial instantiation, and contin-
ues with their rendering until they’re destroyed and removed from the application.
Before we can understand the lifecycle, we should look more closely at what goes into
a component.

The composition of components is important to master over time to create more
complex and efficient Angular applications. I have seen large, real-world Angular appli-
cations with hundreds to thousands of components, and the quality of those applica-
tions is largely a byproduct of how well the components are designed.

Components have several distinct parts that are combined to create the resulting UI
that the user can interact with, displayed in figure 4.4.

https://github.com/angular-in-action/datacenter/archive/start.zip
https://github.com/angular-in-action/datacenter/archive/start.zip
https://ng-bootstrap.github.io
https://ng-bootstrap.github.io

80 Chapter 4  Component basics

Component

Template

Component requirements

Optional
injection
modifiers

Optional
output

modifiers

@Component() Controller

Animations

OutputsInputs

Styles and
encapsulation

Lifecycle
hooks

Providers
and hosts

Figure 4.4   Concepts that compose and influence a component’s behavior

When we generate a component with the CLI, it creates a set of files that contain assets
that are combined during rendering. Here’s a list of the primary things that compose
a component:

¡	Component Metadata Decorator —All components must be annotated with the
@Component() decorator to properly register the component with Angular. The
metadata contains numerous properties to help modify the way the component
behaves or is rendered.

¡	Controller —The controller is the class that is decorated with @Component(), and
it contains all the properties and methods for the component. Most of the logic
exists in the controller.

¡	Template —A component isn’t a component without a template. The markup for
a component defines the layout and content of the UI that a user can see, and the
rendered version of the template will look at the values from the controller to
bind any data.

These three pieces must exist for any component to be valid. Additionally, there are
some optional capabilities that can ride alongside components to enhance them in
certain situations. The first two are concepts that inject values into the component,
and the rest are concepts that modify the resulting component behavior, appearance,
or interaction with other components:

¡	Providers and hosts —Services can be injected directly into a component if they’re
not already provided at the root module level. You also have some control over
how these services are discovered and where they are made available.

	 81Composition and lifecycle of a component

¡	Inputs —Components can accept data being passed to them using the compo-
nent inputs, which make it possible for a parent component to bind data directly
into a child component, which is a way to pass data down the component tree.

¡	Styles and encapsulation —Optionally, components can include a set of CSS styles
that are meant to apply only to the component. This provides a layer of encapsu-
lation for the design of components, because component styles don’t have to be
injected globally. Components can configure the way that styles are injected and
encapsulated into the application.

¡	Animations —Angular provides an animation library that makes it easy to style
component transitions and animations that plug into the template, and can
define keyframes or animation states to toggle between.

¡	Outputs —Outputs are properties that are linked to events that can be used to
listen for data changes or other events that a parent component might be inter-
ested in, and can also be used to share data up the component tree.

¡	Lifecycle hooks —During the rendering and lifecycle of a component, you can
use various hooks to trigger application logic to execute. For example, you can
run initialization logic once during the instantiation of the component and tear
down logic during the destruction. You can also use these hooks to bring data
into the component, so lifecycle hooks work well with both inputs and outputs.

There are a few more capabilities that aren’t covered here, but you can always find
them in the documentation, and we will use them in situations that call for them. You
can find details by reviewing the additional @Component decorator properties in the
documentation at https://angular.io/api/core/Component.

Now that you know what comprises a component, we can more easily look at the life-
cycle of a component and see how they’re rendered on the screen.

4.2.1	 Component lifecycle

Components have a lifecycle from creation to removal, and understanding that flow
will help you design quality components. There can be slight variances in how a com-
ponent’s lifecycle behaves depending on the build tooling used, but in most cases that
tooling will be the Angular CLI.

A word about build tooling
The Angular CLI isn’t the only way to build your Angular applications—you could roll your
own build tooling. In addition, there’s more than one module loader that you could use
with Angular (such as webpack or SystemJS). This means not all applications are built
the same.

All the concepts in this book assume you’ll use the Angular CLI’s approach for building
the application. If you do your own tooling, you may change the way your application
works to some degree.

https://angular.io/api/core/Component

82 Chapter 4  Component basics

In figure 4.5, you see the primary phases that happen during a component’s lifecycle.
The first major action is that a component is registered with the App module. This usu-
ally happens because we declare a component as part of the NgModule metadata and
occurs during application bootstrap, but components could also be registered dynam-
ically on the fly later while the application is running. When the component is regis-
tered, it creates a component factory class and stores it for later use.

Then, during the application lifecycle, something will request the component. This
is typically because the component was found in a template and the compiler needs
the component, but sometimes components are also requested manually. At this point,
an instance of the component needs to be loaded. There is a registry of components
that belong to the module, and Angular will look up the component in question and
retrieve its component factory, which is generated during the compilation using the CLI
before the app is run. This special class knows how to instantiate a new instance of the
component.

As the component is instantiated, the metadata is read and the constructor method
is fired. Any construction logic will run early in the component’s life, and you should
be careful not to put anything that might depend on child components being available,
because the template won’t have been parsed yet.

Component registered with the module

Template includes a component

Component is instantiated

Controller constructor() called

Compiler renders any child components in template

When component
needs to be updated

When component is
no longer needed

Component lifecycle hooks begin

Application state changes

Component removed from view Figure 4.5   Component lifecycle
while the application is running

	 83Composition and lifecycle of a component

The component metadata will then be fully processed by Angular, including the pars-
ing of the component template, styles, and bindings. If the template contains any child
components, those will kick off the same lifecycle for those components as well, but
they won’t block this component from continuing to render.

At this point, we’ve initialized the component, and a cycle begins where the child com-
ponents become fully rendered, application state changes, and components are updated.
During this cycle, lifecycle hooks will fire to alert you to important times when you’ll know
it’s safe to do certain actions. For example, there’s a lifecycle hook that lets you know
when any of the inputs have changed; another lets you know when all the child compo-
nents have fully resolved (in case you have logic that depends on them to run).

At some point, the component may no longer be needed in the application. At that
point, Angular will destroy the component (and all of its children). Any new instances
will need to be recreated from the component factory class, as we saw earlier.

4.2.2	 Lifecycle hooks

During the application rendering process and reaction to user inputs, various hooks
can be used to run code at various checkpoints. These hooks are useful when you need
to know that certain conditions are true before executing the code, such as ensuring
that child components have been initialized, or when changes are detected.

In chapter 2, we saw the OnInit lifecycle hook in action. It runs early in the cycle but
after all bindings have been resolved, so it’s safer to know that all data is available for the
component.

Angular will only run a lifecycle hook if it’s defined in the component. Lifecycle
hooks aren’t like event listeners—they’re special methods with specific names that are
called during the component’s lifecycle if they’re defined.

The lifecycle hooks are all named as you see in table 4.1, but when you implement
the hook in your controllers, you prefix it with ng as well. OnInit needs to be imple-
mented as the ngOnInit() method.

Table 4.1   List of lifecycle hooks and their roles

Lifecycle hook Role

OnChanges Fires any time the input bindings have changed. It will give you an
object (SimpleChange) that includes the current and previous
values so you can inspect what’s changed. This is most useful to read
changes in binding values.

OnInit This runs once after the component has fully initialized (though not
necessarily when all child components are ready), which is after the
first OnChanges hook. This is the best place to do any initialization
code, such as loading data from APIs.

OnDestroy Before a component is completely removed, the OnDestroy hook
allows you to run some logic. This is most useful if you need to stop
listening for incoming data or clear a timer.

84 Chapter 4  Component basics

Lifecycle hook Role

DoCheck Any time that change detection runs to determine whether the applica-
tion needs to be updated, the DoCheck lifecycle hook lets you imple-
ment your own type of change detection.

AfterContentInit When any content children have been fully initialized, this hook will
allow you to do any initial work necessary to finish setting up the con-
tent children components, such as if you need to verify whether con-
tent passed in was valid or not.

AfterContentChecked Every time that Angular checks the content children, this can run so
you can implement additional change detection logic.

AfterViewInit This hook lets you run logic after all View Children have been initially
rendered. This lets you know when the whole component tree has fully
initialized and can be manipulated.

AfterViewChecked When Angular checks the component view and any View Children
have been checked, you can implement additional logic to determine
whether changes occurred.

The OnInit, OnChanges, and OnDestroy hooks are the most commonly used lifecycle
hooks. The DoCheck, AfterContentChecked, and AfterViewChecked hooks are most
useful to keep track of logic that needs to run during any change detection process, and
respond if necessary. The OnInit, AfterContentInit, and AfterViewInit hooks are
primarily useful to run logic during the component’s initial rendering to set it up, and
each one ensures a different level of component integrity (such as it’s ready or if the
child components are also ready).

You may be wondering about the differences between a Content Child and View
Child. Let’s briefly talk about how components are nested and how that impacts the
rendering of a component.

4.2.3	 Nesting components

Because Angular is a tree of components, you’ll be nesting components inside one
another. There are two ways to nest components and they’re named differently based
on how they’re rendered. Take a look again at the chapter example in figure 4.1, and
you’ll see how components are nested inside one another to create a more complex
interface.

Most often, components are nested by being declared in the template of another
component. Any component that’s nested inside another’s template is called a View
Child, so named because the template represents the view of the component and
therefore is a child inside that view. A View Child is declared inside the component
template.

Table 4.1   List of lifecycle hooks and their roles  (continued)

	 85Types of components

Occasionally a component accepts content to be inserted into its template, and this
is known as a Content Child, so named because these components are inserted as content
inside the component rather than being directly declared in the template. A Content
Child is declared between the opening and closing tags when a component is used.

Let’s take an example to be sure we can see the difference. Imagine we have a
UserProfile component with the following template:

<user-avatar [avatar]="avatar"></user-avatar>
<ng-content></ng-content>

The first line is using a component, UserAvatar, which is a View Child. Notice how it’s
declared in the template of the component. Then there’s this NgContent element—
which I cover in more detail later, but suffice it to say it’s a place to render additional
content. Any component passed in through NgContent would be considered a
Content Child. When we use the UserProfile component, its use would look some-
thing like this:

<user-profile [avatar]="user.avatar">
 <user-details [user]="user"></user-details>
</user-profile>

When we use the UserProfile component, we’re passing another component, User
Details, into the component by declaring it between the opening and closing tags. This
is how a Content Child is passed into a component and then is put where the NgCon-
tent element sits in the UserProfile component.

In our example here, we had two nested components, UserAvatar as a View Child
and UserDetails as a Content Child. The distinction is where they’re declared and has
nothing to do with the component design themselves.

Generally, the code of a single component should focus on its own business and not
have to worry a lot about child components (of either type). But there are some use
cases where you’ll build a component that needs to distinguish between these types of
components and its children. The concern is always making components too coupled,
but sometimes it’s unavoidable or even desirable (such as a Tabs and Tab component
working together to make a tabbed interface), so this distinction can be important.

Now that we’ve covered a lot of the high-level concepts behind components, we can
get back to our example. The next step is to create our second component and get
some data generated to display.

4.3	 Types of components
Fundamentally there’s only one type of component, but I like to think about compo-
nents as four categories, based on their roles. All components are declared and func-
tion in fundamentally the same way, but they can be instantiated differently, may or
may not contain state, or have coupling to other aspects of the application that make
them distinct from other components.

86 Chapter 4  Component basics

I think these classifications are useful to describe the roles of components and give
general guidance about how they should be designed. This shouldn’t be considered a
rigid set of rules to follow—you’ll certainly build components that don’t fit perfectly
into these guidelines, and that’s perfectly acceptable. Keep these ideas in the back of
your mind, and I believe they will be helpful. Here are the four roles of components,
and the names I’ve given them:

¡	App component —This is the root app component, and you only get one of these
per application.

¡	Display component —This is a stateless component that reflects the values passed
into it, making it highly reusable.

¡	Data component —This is a component that helps get data into the application by
loading it from external sources.

¡	Route component —When using the router, each route will render a component,
and this makes the component intrinsically linked to the route.

Angular doesn’t provide a standard nomenclature like this for various roles of compo-
nents, so you won’t be able to go searching for related content based on these names.
The real value is in understanding that it’s typically best to give your components spe-
cific roles instead of trying to make them do too many things. Let’s take a closer look at
these different roles and why they’re designated as separate groups.

App component

The App component is a special case component. As you know, every Angular applica-
tion starts by rendering a component, and if you used the CLI it will be the AppComponent
(but could be named anything if you changed it).

Here are the guidelines I recommend for your App component:

¡	Keep it simple —If possible, don’t put any logic into the component. Think
of it more like a container. It’s easier to reuse and optimize the rest of your
components if the App component doesn’t have complex behaviors they
depend upon.

¡	Use for application layout scaffolding —The template is the primary part of the com-
ponent, and you’ll see later in this chapter how we create the primary application
layout in this component.

¡	Avoid loading data —Usually you will avoid loading data in this component,
because I like to load data closer to the component that uses that data. You might
load some global data (perhaps something like a user session), though that
could also be done separately. On less complex applications, you might load data
because it’s more complicated to abstract it on smaller applications.

In my opinion, the best rule is to keep the App component as simple as possible. Typ-
ically, I have only a template and an empty controller. The intention is to avoid doing

	 87Types of components

too much “global”-type logic and configuration in the app controller to increase the
modularity of your other components and keep the logic inside components that
need it.

Display component

The Display component role is likely to be the most common one that you create or
consume as you build your Angular expertise. These are components that generally
are useful for rendering out content and are typically given the necessary data to dis-
play. Most third-party components will be in this role because it’s the most decoupled
type of component.

Here are the primary guidelines I suggest for a Display component:

¡	Decouple —Ensure that the component has no real coupling to other compo-
nents, except that data may be passed into it as an input when requested.

¡	Make it only as flexible as necessary —Avoid making these components overly com-
plex and adding a lot of configuration and options out of the box. Over time, you
might enhance them, but I find it’s best to start simple and add later.

¡	Don’t load data —Always accept data through an input binding instead of loading
data dynamically through HTTP or through a service.

¡	Have a clean API —Accept input bindings to obtain data into the component
and emit events for any actions that need to be pushed back up to other
components.

¡	Optionally use a service for configuration —Sometimes you may need to provide con-
figuration defaults, and instead of having to declare the preferences with every
use of the component, you can use a service that sets application defaults.

Sometimes it may feel like overkill to make your components more isolated and spe-
cific for displaying output. The more encapsulated and isolated the component is, the
easier it will be to reuse.

I often find that when I start to refactor some code, I begin by identifying individual
aspects of my code that could be standalone display components. I might notice a lot of
repeated snippets of code that mostly have the same capabilities and refactor them into
a single component.

It’s also common for these components to have a template and little to no logic in
the controller. That’s perfectly acceptable, because it allows you to easily reuse a tem-
plate snippet across your application.

Data component

The Data component oversees loading or managing data. Most applications need
data from some external source (HTTP or user input), and it’s best to contain that
inside a Data component versus a Display component. I find that most developers
build these first and eventually start to abstract out pieces into either route or display
component types.

88 Chapter 4  Component basics

Data components are primarily about handling, retrieving, or accepting data. Typi-
cally, they rely on a service to handle the loading of data, as we saw in chapter 2. Here
are some considerations for a Data component:

¡	Use appropriate lifecycle hooks —To do the initial data loading, always leverage the
best lifecycle hook for when to trigger the loading or persistence of data. We’ll
look at this more later in this chapter.

¡	Don’t worry about reusability —These components are not likely to be reused because
they have a special role to manage data, which is difficult to decouple.

¡	Set up display components —Think about how this component can load data needed
by other display components and handle any data from user interactions.

¡	Isolate business logic inside —This can be a great place to store your application
business logic, because anytime you manage data, you’re likely dealing with a
specialized implementation that works for a specific use case.

I try to limit the number of components that deal with data so I can avoid making
too many specialized components. Each application is different, and perhaps you
also leverage a nice UI library and don’t need to make many of your own display com-
ponents, so it’s possible that the code you write for an application may be weighted
toward data components (while the overall application will still have a lot of display
components provided by the third-party module).

Route component

The Route component is any component that’s linked directly to a route. These com-
ponents aren’t very reusable and are typically created specifically for a specific route in
an application.

These components also often follow the principles of a Data component because
routes often require loading more data for the new view. The reason I distinguish
between them is that a single route could render out multiple data components, such as
in a dashboard that has several components loading metric information.

A route component should primarily follow these guidelines:

¡	Template scaffolding for the route —The route will render this component, so this is
the most logical place to put the template that’s associated with the route.

¡	Load data or rely on data components —Depending on the complexity of your route,
the route component may load data for the route or rely on one or more data
components to do that for it. If you’re unsure, I’d suggest loading data initially in
the Route component and decoupling as your view gets more complex.

¡	Handles route parameters —As you navigate, there are likely to be router parameters
(such as the ID of the content item being viewed), and this is the best place to handle
those parameters, which often determine what content to load from the back end.

Every route that you can navigate to is linked to a component, so the number of route com-
ponents you create is directly linked to the number of routes you add into your application.
You could route to the same component for different routes, but that isn’t common.

	 89Creating a Data component

4.4	 Creating a Data component
We’re going to start by making a component that will help us manage data. This is a
dashboard for a data center, so the data it provides is largely numeric values of various
metrics that are important to determine the health of the data center. We’ll create a
component, aptly named the Dashboard component, which will host our data and dis-
play it in the app.

We’ll have the raw data print to the screen for the moment until we create other com-
ponents. At the end of this section your app should look like figure 4.6.

Figure 4.6   App with Dashboard component that generates a random data set and is displaying it raw

Start by generating a new component using the CLI. Then we’ll add the logic into the
controller and see a few lifecycle hooks in action. This will be a good example of a Data
component because it will handle the data for the entire application and not deal too
much with the display of content:

ng generate component dashboard

Now open the src/app/dashboard/dashboard.component.ts file and replace its con-
tents with what you see in the following listing.

Listing 4.1   Dashboard component controller

import { Component, OnInit, OnDestroy } from '@angular/core';

interface Metric {
 used: number,
 available: number
};
interface Node {
 name: string,
 cpu: Metric,
 mem: Metric
};

@Component({
 selector: 'app-dashboard',
 templateUrl: './dashboard.component.html',
 styleUrls: ['./dashboard.component.css']
})
export class DashboardComponent implements OnInit, OnDestroy {
 cpu: Metric;
 mem: Metric;
 cluster1: Node[];
 cluster2: Node[];
 interval: any;

Declares the interfaces for a
Metric and Node data type

Creates controller class; declare must
implement OnInit and OnDestroy

Defines properties and
grants them types

90 Chapter 4  Component basics

 ngOnInit(): void {
 this.generateData();

 this.interval = setInterval(() => {
 this.generateData();
 }, 15000);
 }

 ngOnDestroy(): void {
 clearInterval(this.interval);
 }

 generateData(): void {
 this.cluster1 = [];
 this.cluster2 = [];
 this.cpu = { used: 0, available: 0 };
 this.mem = { used: 0, available: 0 };
 for (let i = 1; i < 4; i++) this.cluster1.push(this.randomNode(i));
 for (let i = 4; i < 7; i++) this.cluster2.push(this.randomNode(i));
 }

 private randomNode(i): Node {
 let node = {
 name: 'node' + i,
 cpu: { available: 16, used: this.randomInteger(0, 16) },
 mem: { available: 48, used: this.randomInteger(0, 48) }
 };
 this.cpu.used += node.cpu.used;
 this.cpu.available += node.cpu.available;
 this.mem.used += node.mem.used;
 this.mem.available += node.mem.available;

 return node;
 }

 private randomInteger(min: number = 0, max: number = 100): number {
 return Math.floor(Math.random() * max) + 1;
 }
}

We start by importing the OnInit and OnDestroy interfaces, which we use when we
create our controller to add better intelligence to the TypeScript compiler about what
constitutes a valid controller implementation. In this case, OnInit and OnDestroy are
interfaces that tell TypeScript that it must implement the ngOnInit and ngOnDestroy
methods, respectively.

For additional clarity, the Metric and Node interfaces describe the structures we’re
using for our data. It’s optional, but I recommend leveraging interfaces for proper
enforcement of code and because interfaces help over time with maintaining code.
The component has five properties, four of which contain values for our dashboard
and the last of which is used to maintain a reference to the interval so it can be
cleared later.

Then we use the NgOnInit lifecycle hook to generate the data, and also set up the
interval that will generate a new data set every 15 seconds. The NgOnDestroy lifecycle

Implements the NgOnInit lifecycle hook
to initialize the data, and sets up interval

Clears the interval using NgOnDestroy to
free up memory

	 91Using inputs with components

hook is also used then to clear the interval when the Dashboard component is removed
from the application. Anytime you use an interval, you’ll want to be sure to clear the inter-
val if you no longer need it, or you’ll create a memory leak over time because the interval
would continue to exist even after navigating to another page.

The rest of the code is a set of methods used to generate the data, which I won’t go
over in detail. It will generate memory and CPU metrics for six nodes across two clusters
and aggregate the total utilization metrics as well. How this data is leveraged will be
more obvious as we build the next few components.

Now in the component template, which is found in the file src/app/dashboard/
dashboard.component.html, let’s bind the raw data to the screen so we can see it as it’s
generated. Replace the contents of that file with this single interpolation binding that
will bind the data for one of the clusters:

<p>{{cluster1 | json}}</p>

We haven’t added the dashboard to our application yet, so open up src/app/app.com-
ponent.html and add the dashboard to the bottom of the template like so. It should
look like what you saw in figure 4.3 earlier in this section:

<app-navbar></app-navbar>
<app-dashboard></app-dashboard>

That’s it for the Dashboard component—for the moment. We’ll add more to the Dash-
board later in this chapter as we build more components to handle the displaying of
the data, starting with the next component, which will display the CPU and memory
metrics and will accept data through an input.

4.5	 Using inputs with components
When you create your own components, you can define properties that can accept
input through property bindings. Any default HTML element properties can also be
bound to a component, but you can define additional properties that the component
can use to manage its lifecycle or display.

We saw this in chapter 2, and the following is a snippet we used to bind stock data
into the Summary component. You see the brackets around the stock attribute to indi-
cate that the value is binding to the data found in the stock property:

<summary [stock]="stock"></summary>

By default, all properties of a component aren’t immediately bind-able, as you saw ear-
lier. They must be declared as an input to allow the property to be bound. One reason
is that we want encapsulation of our components, and it’s best not to automatically
expose all properties. Another reason is that Angular needs to know which properties
exist so it can properly handle the wiring of values into a component.

In our application, we want to display some metric data of the entire data center.
This is shown in figure 4.7, which is the result of the work we’ll do in this section. The
role of these components is to display the CPU and Memory metric information of the
entire data center. Because the only difference between these components is the data,
we’ll make it reusable, using inputs to pass data into the component.

92 Chapter 4  Component basics

Metric
components

Figure 4.7   Adding the metric components to the app that share the same display with different data

4.5.1	 Input basics

Let’s build our component that has an input and see it in action before we dig into it
further. Use the CLI to generate a new component like you see here:

ng generate component metric

We’ll start by looking at the component controller, so open the src/app/metric/met-
ric.component.ts file and update it with what you see in the following listing.

Listing 4.2   Metric component controller

import { Component, Input } from '@angular/core';

@Component({
 selector: 'app-metric',
 templateUrl: './metric.component.html',
 styleUrls: ['./metric.component.css']
})
export class MetricComponent {
 @Input() title: string = '';
 @Input() description: string = '';
 @Input('used') value: number = 0;
 @Input('available') max: number = 100;

 isDanger() {
 return this.value / this.max > 0.7;
 }
}

The Metric component first imports the Input decorator, which is used to decorate any
property that you want to define as an input. In this case, we have four inputs declared,
which means that all the properties of this component are made available for binding.
Then we implement a simple method called isDanger() that will tell us whether the
utilization is above 70% or not, so we can display the metric in a different way.

The first two properties are the title and description. The Input decorator sits in
front and will make each of the properties available for binding based on the name of

Imports the Input
decorator

Declares properties with Input decorator
and default values

Method to check if utilization exceeds 70%

	 93Using inputs with components

the property. Though I’ve declared a typing for each of the properties, it’s important to
note that they don’t verify that the input matches that type at runtime. You’ll still need
to sanitize the inputs or handle invalid values.

The last two properties pass an optional value into the Input decorator, which is a
way to change the name of the property that’s used in the binding from the name used
internally for the component. That allows us to alias the used attribute to the value
property, and the available attribute to the max property. When you bind to the Metric
component, you’ll use the binding like [used]="node.used", but inside the compo-
nent it will use the property value.

You may hear some refer to the component API, and what they’re talking about is the
component inputs. Because this is the primary way for passing data into a component,
it’s much like a contract for how to consume the component in your application. Being
able to rename the input can be beneficial for code clarity because it allows you to
expose bindings differently from the internal implementation. But I recommend mak-
ing the names consistent for simplicity and debugging.

I also recommend that you ensure that your input bindings and property names are
as clear as possible. Making your property names short to save characters is rarely worth
it, because developers no longer know what that property is about without digging
deeper into the code.

As you build more components and work on larger projects, you’ll likely start to cre-
ate components that are reused across projects and applications. This is a core princi-
ple of Angular as well—to enable easy reuse of components.

Now let’s set up the Metric component template, and we’ll even use the ng-bootstrap
Progress Bar component as an example of how to consume another component that
has inputs. Open the src/app/metric/metric.component.html file and update it to the
contents of the following listing.

Listing 4.3   Metric component template

<div class="card card-block">
 <div class="card-body">
 <nav class="navbar navbar-dark bg-primary mb-1" [ngClass]="{'bg-danger':

isDanger(), 'bg-success': !isDanger()}">
 <h1 class="navbar-brand mb-0">{{title}}</h1>
 </nav>
 <h4 class="card-title">{{value}}/{{max}} ({{value / max |

percent:'1.0-2'}})</h4>
 <p class="card-text">
 {{description}}
 </p>
 <ngb-progressbar [value]="value" [max]="max" [type]="isDanger() ?

'danger' : 'success'"></ngb-progressbar>
 </div>
</div>

Uses NgClass to conditionally set
the navbar color

Binds the title to
the page

Displays the value and max properties
and calculates the percentage with pipe

Binds the description

Uses Ng-bootstrap Progress Bar and
binds values into the component

94 Chapter 4  Component basics

This template uses a lot of the template syntax capabilities of Angular in a short amount
of space. First, we’re using the bootstrap CSS styling to create a card layout for the Metric
component, so the card classes are from bootstrap.

All the bindings in this template will resolve to the four input properties that were
defined in the controller, but notice that we’re using the property names and not any
alias names passed to the Input.

The nav element is used to create the top header bar that contains the title. Using
NgClass, it will either apply the bg-danger or bg-success class based on how much of
the overall value has been utilized.

There are a few basic interpolation bindings, such as the title, value, max, and
description. We also have an example of a more complex interpolation expression
that divides the value by max and formats it as a percentage.

Finally, we have a sample of using the ng-bootstrap Progress Bar component. Based
on the documentation for the progress bar, it accepts the three bindings we declared to
give it the bindings for value, max, and type. value and max are numbers, and type is
the bootstrap class (such as danger or success) to use for coloring the bar.

The Progress Bar is a great example of a well-designed component. It has a clear set
of input properties. It doesn’t require a lot of effort to consume and internalizes much of
the logic.

Because we added the ng-bootstrap module to our App module earlier, all the com-
ponents provided by ng-bootstrap are available without having to make any special
requests for them. Most third-party library experiences will be similar, and once you’ve
added the third-party module to your app, your application can easily consume the val-
ues made available by the third party.

Let’s get this Metric component on the screen. Open up the src/app/dashboard/
dashboard.component.html file and replace its contents with the code in the following
listing. Remember, the Dashboard component contains the data that’s now able to be
bound into the component.

Listing 4.4   Using the metric components

<div class="container mt-2">
 <div class="card card-block">
 <nav class="navbar navbar-dark bg-inverse mb-1">
 <h1 class="navbar-brand mb-0">Overall Metrics</h1>
 </nav>
 <div class="row">
 <app-metric class="col-sm-6"
 [used]="cpu.used"
 [available]="cpu.available"
 [title]="'CPU'"
 [description]="'utilization of CPU cores'">
 </app-metric>

Metric component
for CPU

	 95Using inputs with components

 <app-metric class="col-sm-6"
 [used]="mem.used"
 [available]="mem.available"
 [title]="'Memory'"
 [description]="'utilization of memory in GB'">
 </app-metric>
 </div>
 </div>
</div>

Here we define a bit of markup for the bootstrap styling to create a new container and
card block for display purposes. The really meaningful part is the use of the Metric
component. Notice we’re still able to apply a class to the element because it’s treated
like a regular HTML element when rendered.

Each of the four properties we defined in our component is listed as an attribute
with the binding syntax of brackets around it. Remember, this is the syntax to tell Angu-
lar to evaluate the expression against the parent component (the Dashboard compo-
nent) and return its value to the child component (the Metric component). Because
they were marked as inputs, we can bind values to those properties that aren’t standard
HTML properties. For the used and available properties, we bind to the correspond-
ing properties on the cpu and mem controller values. Then for the title and descrip-
tion, we provide a string literal, because they’re evaluated as an expression.

Did you notice how this component is more generic? It accepts the four inputs that it
needs to display, which even includes some text. We can easily use the same component
more than once and have it display for each metric uniquely. This is usually preferred
over making a lot of components that do nearly the same task.

4.5.2	 Intercepting inputs

We’re currently blindly accepting whatever values are passed into the component and
using them without any kind of validation. It’s easy to forget to validate or sanitize data
inputs, especially when you’re building the component tree and are confident about
the types of data that are being passed along.

The problem is as applications grow or as components get reused in new ways, it
becomes harder to keep track of the inputs. It’s also good practice to try and validate
inputs when possible to harden your components.

For instance, if we changed the value of a binding to a Metric component to give
it the wrong type, the Metric component would have some issues. Try it out yourself.
Change [used]="cpu.used" to [used]="'fail'". This changes the binding to pass a
string instead of a number. The Metric component will throw an error because eventu-
ally it will try to divide the string and a number, which isn’t valid.

I like to use a method to intercept inputs that need validation by using getter and set-
ter methods. This is a feature that has been in JavaScript for a while, but I haven’t seen it
widely used until more recently.

Metric component
for Memory

96 Chapter 4  Component basics

The main idea here is that instead of having a property to bind to directly, you bind
the input to the setter method, which stores the real value on a private property so you
can protect it from direct access. The setter method is also where you can run any vali-
dation logic. Then you use the getter method to return the value of the private property
anytime it’s requested.

Let’s modify our Metric component to use this approach to validate input values and
protect our template from division errors with values that aren’t numbers. Open the
src/app/metric/metric.component.ts file and change the class to what you see in the
following listing.

Listing 4.5   Metric component intercepting inputs

export class MetricComponent {
 @Input() title: string;
 @Input() description: string;
 private _value: number = 0;
 private _max: number = 100;

 @Input('used')
 set value(value: number) {
 if (isNaN(value)) value = 0;
 this._value = value;
 }

 get value(): number { return this._value; }

 @Input('available')
 set max(max: number) {
 if (isNaN(max)) max = 100;
 this._max = max;
 }

 get max(): number { return this._max; }

 isDanger() {
 return this.value / this.max > 0.7;
 }
}

If you haven’t used a getter or setter method before, they’re functions that are pro-
ceeded by the get or set keyword. The name of the method has to match the name
of the property, so in this example get value(){} will be called anytime something
requests the this.value property. Likewise, anytime something stores a new value to
this.value, it will call the setvalue(value){} method and pass the value that was
stored.

We started by creating two new private properties, _value and _max. With the private
keyword, TypeScript will ensure they’re not directly exposed in the controller so they
can’t be mutated outside of this controller. The underscore before the name is a com-
mon convention to notify developers that a property is considered private.

Private properties for storing the
validated values

Setter method for value with Input
decorator

Getter method for value to
return private property

Setter method for max with Input
decorator

Getter method for max to
return private property

	 97Content projection

We implement the value setter method and also decorate it with the Input deco-
rator. This registers a normal input property, but, instead, when the binding into the
component happens, it will pass through this function. The function does a check to
ensure that the value is a number—if not, it sets it to 0 and stores that value on the
_value property. Then we implement the getter method to retrieve the _value prop-
erty. We do the same basic thing for the max property, but set the default to 100 if the
input is invalid.

We’ve now guarded our inputs against invalid values, but there are other scenarios
where you may want to intercept values. You may want to format some values before
they’re used, such as ensuring that words are capitalized.

The main problem with this approach is that every time you read the property using
a getter method, it will run the logic inside the getter method. This probably isn’t a big
deal in most cases, such as if you’re only returning a private property as we’re doing
here, but if you have more complex logic, the functions might take a toll on rendering
speed. Also, don’t do any mutation in the getter function! Doing so will cause unex-
pected behaviors because you can’t be sure how many times the getter function will be
called.

There’s one more way that we’ll intercept and modify inputs as they come into the
component, but we’ll first take a look at how to project content inside your components.

4.6	 Content projection
Imagine that you created a Card component and you wanted the card content area
to be flexible to accept any kind of markup that a developer needed to insert. We can
accomplish this using content projection, which allows us to declare the place to insert
external content into our component.

Content projection is a concept Angular implements that comes from web compo-
nents. If we think about the role of display components, the need to accept markup to
display inside the component is fairly common. Tabs, cards, navbars, modals, dialogs,
sidebars—the list goes on for types of UI elements that could accept a generic set of
markups to display within the component.

Because we want to create reusable display components, content projection is a key
capability that we’ll need to use. The good news is that it’s fairly simple to implement, so
let’s go ahead and see it in action.

We’re going to build two components that help us create a table to display each
of the nodes in a cluster of servers. If you think about it, a table already uses content
projection because you create a table and then nest rows inside the headers, and then
inside the rows you insert the cells. See figure 4.8.

Using the CLI, generate two new components, one for the Nodes component and
another for the Nodes Row component:

ng generate component nodes
ng generate component nodes-row

98 Chapter 4  Component basics

Nodes
component

Nodes Row component: Each row is
projected into the Nodes component

Figure 4.8   Nodes component uses content projection to display nodes row components

We’ll start by getting the Nodes component up and running, and we’re only going to
start with the template. The controller is empty, and for this use case we don’t need any
controller logic to use content projection. Open src/app/nodes/nodes.component.
html and replace its contents with the following listing.

Listing 4.6   Nodes component template

<thead>
 <tr>
 <th>Node</th>
 <th [colSpan]="2">CPU</th>
 <th [colSpan]="2">Memory</th>
 <th>Details</th>
 </tr>
</thead>
<ng-content></ng-content>

You can see this template has the markup for a table header. I want to point out the
use of property binding to a non-standard name; in this case the attribute is colspan,
but the property on the element is colSpan. The only benefit to using the binding

Use of binding to a non-standard
property name

Use of Ng-content element to mark
insertion point

	 99Content projection

here is that normally you need to bind to an expression instead of a static value, so you
wouldn’t do this.

The really interesting aspect is the NgContent element, which tells Angular that this
component has an insertion point for content. When someone uses this element and
they nest additional markup inside the element, it will be placed where the NgContent
element currently sits. That allows you to choose exactly where the content is inserted
(hence the name insertion point).

We’ll get to see how this works shortly, but we want to make one small change to the
component decorator. Open the src/app/nodes/nodes.component.ts file and change
the selector to the following:

selector: '[app-nodes]',

We’ve changed the selector here to say that it will look for the attribute app-nodes
instead of an element called app-nodes. The selector can take any valid CSS selector.
In this case, we use the attribute CSS selector to target an element with the app-nodes
attribute. We do this so we can apply this component onto another element.

The Nodes component creates our table header, and now we need to create a compo-
nent that handles displaying the individual rows of content. Open the src/app/nodes-
row/nodes-row.component.html file and replace its content with the code found in the
following listing.

Listing 4.7   Nodes Row component template

<th scope="row">{{node.name}}</th>
<td [class.table-danger]="isDanger('cpu')">
 {{node.cpu.used}}/{{node.cpu.available}}
</td>
<td [class.table-danger]="isDanger('cpu')">
 ({{node.cpu.used / node.cpu.available | percent}})
</td>
<td [class.table-danger]="isDanger('mem')">
 {{node.mem.used}}/{{node.mem.available}}
</td>
<td [class.table-danger]="isDanger('mem')">
 ({{node.mem.used / node.mem.available | percent}})
</td>
<td><button class="btn btn-secondary">View</button></td>

The template consists of a set of table cells that display various data. The data cells use
the special class binding to conditionally apply the table-danger CSS class to a cell
if the value is over the 70% threshold. It also contains a binding that divides the values
to produce a percentage of utilization, and uses the Percent pipe to format the value.

Now hopefully you’re thinking that the component must receive the node object via
an input because, as we already discussed, the Dashboard component holds all the data.
For that to work, we need to set up our component controller properly and also imple-
ment the isDanger() method that is called in this template. To do that, open the src/
app/nodes-row/nodes-row.component.ts file and replace its contents with what you
see in the following listing.

Use of special class binding

Binding that divides values
and formats as percent

100 Chapter 4  Component basics

Listing 4.8   Nodes Row component controller

import { Component, Input } from '@angular/core';

@Component({
 selector: '[app-nodes-row]',
 templateUrl: './nodes-row.component.html',
 styleUrls: ['./nodes-row.component.css']
})
export class NodesRowComponent {
 @Input() node: any;

 isDanger(prop) {
 return this.node[prop].used / this.node[prop].available > 0.7;
 }
}

We want to use the attribute selector for this component as well, so update the selector
accordingly. Then we set up the node property as an input so that we can bind values
into this component, and implement the isDanger() method to calculate whether the
usage exceeds the 70% threshold we’ve set.

This component doesn’t have any content insertion, because it only describes a table
row. But because we’ll use it more than once, it was prudent to abstract it into its own
component. This makes it a perfect example of a Display component that modifies its
own display based on the data that’s provided as an input.

Now we can see these two components in action. Open the src/app/dashboard/
dashboard.component.html file and add the code in the following listing to the bottom
of the template (don’t remove anything—add it).

Listing 4.9   Dashboard using the Nodes and Nodes Row components

<div class="container mt-2">
 <div class="card card-block">
 <div class="card-body">
 <nav class="navbar navbar-dark bg-inverse mb-1">
 <h1 class="navbar-brand mb-0">Cluster 1</h1>
 </nav>
 <table app-nodes class="table table-hover">
 <tr app-nodes-row *ngFor="let node of cluster1" [node]="node"></tr>
 </table>
 <nav class="navbar navbar-dark bg-inverse mb-1">
 <h1 class="navbar-brand mb-0">Cluster 2</h1>
 </nav>
 <table app-nodes class="table table-hover">
 <tr app-nodes-row *ngFor="let node of cluster2" [node]="node"></tr>
 </table>
 </div>
 </div>
</div>

Updates the selector to also use the
attribute app-nodes-row

Declares the node property as an input

Implements the method to check if the
value exceeds 70% utilization

Implements the Nodes
component using an

attribute on the table
element

Implements the Nodes Row component on the table row,
iterates over the nodes, and binds the node

	 101Content projection

The dashboard now implements another section that contains the two cluster tables.
Because we used the attribute selector for the Nodes component on the table element,
it will apply the component template inside the table. That will insert the table head
elements that are in the Nodes component template, but it also contains the NgContent
insertion point.

The table has a child element, the table row element, and the Nodes Row compo-
nent is applied to that row. It also has ngFor to loop over all the nodes in a given cluster,
so there will be three instances of it created per table. Finally, the table row also has a
binding to capture the specific node value. The table rows show several distinct Angular
capabilities working together to easily iterate over a list and display a table row that is
abstracted into a component.

We’ve injected content into one place, but what if we want to have multiple inser-
tion points? We can do that too by naming our insertion points. To demonstrate, let’s
replace the way we bind the title and description of the Metric component with child
elements.

Open src/app/metric/metric.component.html and update it to reflect the code in
the following listing. We can use multiple NgContent elements by adding an attribute
that has a CSS selector to use for targeting.

Listing 4.10   Metric component template with content projection

<div class="card card-block">
 <div class="card-body">
 <nav class="navbar navbar-dark bg-primary mb-1" [ngClass]="{'bg-danger':

isDanger(), 'bg-success': !isDanger()}">
 <h1 class="navbar-brand mb-0"><ng-content select="metric-title"></ng-

content></h1>
 </nav>
 <h4 class="card-title">{{value}}/{{max}} ({{value / max |

percent:'1.0-2'}})</h4>
 <p class="card-text">
 <ng-content select="metric-description"></ng-content>
 </p>
 <ngb-progressbar [value]="value" [max]="max" [type]="isDanger() ?

'danger' : 'success'"></ngb-progressbar>
 </div>
</div>

We’ve replaced the interpolation bindings with an NgContent element, and in both
cases it has a select attribute. This is a CSS selector that Angular will look for while
rendering to determine what content to insert where. In this case, we’re expecting to
have two elements, metric-title and metric-description.

That means the Metric component needs to have two child elements by those names
to properly display that content, but if it’s missing, it will be blank. You could use other
CSS selectors, and it would locate the elements based on those selectors, such as a class
name or attribute.

Replaces the
interpolation
with a named

NgContent
element

102 Chapter 4  Component basics

We should also remove the title and description inputs from the component, so open
src/app/metric/metric.component.ts and remove these two lines:

@Input() title: string;
@Input() description: string;

Now we need to update our Dashboard component to use these new elements instead
of binding directly to properties, because it will throw errors after removing them from
the Metric component. Open src/app/dashboard/dashboard.component.html and
modify the section, as you see in the following listing.

Listing 4.11   Projecting metric information into the component

<div class="container mt-2">
 <div class="row">
 <app-metric class="col-sm-6" [used]="cpu.used" [available]="cpu.

available">

 <metric-title>CPU</metric-title>
 <metric-description>utilization of CPU cores</metric-description>
 </app-metric>
 <app-metric class="col-sm-6" [used]="mem.used" [available]="mem.

available">
 <metric-title>Memory</metric-title>
 <metric-description>utilization of memory in GB</metric-description>
 </app-metric>
 </div>
</div>

As you can see here, we’ve replaced the title and description bindings with custom
elements by the names we declared in our NgContent select attribute. The resulting
UI appears the same, but it does put the elements in the insertion points as they are, so
you could have nested more markup inside of the elements.

Now if you run the code, you’ll get a compilation error from Angular. It will try to
parse these new elements, recognize that they’re not registered components, and
throw an error. We can fix that by setting some configuration in the App module that
tells Angular not to get upset about finding an element it doesn’t understand.

Open the src/app/app.module.ts file and make two small changes. The first is to
import the NO_ERRORS_SCHEMA object from @angular/core:

import { NgModule, NO_ERRORS_SCHEMA } from '@angular/core';

Then you’ll add a new property to the NgModule definition called schemas. Add it
after the bootstrap property, as you see here:

 bootstrap: [AppComponent],
 schemas: [NO_ERRORS_SCHEMA]
})

Provides the title as an
element instead of binding

Provides the description as an
element instead of binding

	 103Summary

Angular will now disable throwing errors on unknown elements and allow you to create
content insertion points based on element names. Alternatively, you could have used
other CSS selectors for a class or attribute and it wouldn’t have required this schema
fix. I find elements to be more accessible and clearer in many cases, so I still recom-
mend doing this. You only lose the error handling of unknown component names,
which usually helps to catch typos in your markup.

Content projection is powerful and quite useful for components that fit the role of
display components. As you saw, you can use named or unnamed content insertion
points to include markup provided into your component template, all by using the
NgContent element.

That wraps up the first chapter about components, and in the next chapter we’ll
dig into more advanced topics, like how to optimize change detection and watch for
changes in our inputs.

Summary
In this first chapter on components, you’ve learned a lot about the foundations of com-
ponents and many useful ways they can be constructed for different purposes. Com-
ponents are the building blocks of any Angular application, and every other feature of
Angular stems from them in some way. We’ve covered

¡	Components are self-contained elements that include a component class, a tem-
plate implemented in HTML, and associated CSS that styles the component.

¡	Components can play various roles inside an application. The roles are what I
call app, display, data, and routing components. Although they’re not hard-and-
fast rules, it’s best to design your components to tackle a single set of tasks to keep
them focused.

¡	The @Component decorator has a number of configuration capabilities, and
though you won’t likely use them all in the same component, you’ll certainly
need to harness most of them at some point.

¡	I talked about how to pass data into a component using input properties defined
using the Input decorator or the inputs property. You also saw that input prop-
erties aren’t available in the component class’s constructor method, but are avail-
able in the NgOnInit component lifecycle event handler.

¡	Components sometimes need to accept additional markup and display it inside
the component called content projection. You saw how to use NgContent to insert
external content into your component.

104

5Advanced components

This chapter covers
¡	How to handle and optimize change detection

¡	Communication between different components

¡	Ways to style and different ways styles are
encapsulated

¡	Rendering components dynamically on the fly

Chapter 4 covered many of the basics of components, but there is so much more!
Here we’ll dive into additional capabilities that will come in handy as you build
more interesting applications.

We’ll look at how change detection works in more detail, and look at how to use
the OnPush capability to reduce the amount of work Angular has to do to improve
rendering efficiency.

Although components can use inputs and outputs, there are additional ways to
have components talk to one another. We’ll look at why you might choose to use a
different approach and how to implement it.

There are three primary ways to render styles for a component, and choosing
different modes potentially has a significant impact on the way your components are

	 105Change detection and optimizations

5
displayed. You may want to internalize the CSS styling as much as possible, or you may
not want any styling to be internalized, but to use the global CSS styles instead.

Finally, we’ll look at how to render a component dynamically, and why you might
want to do that. It’s not very common, but there are moments where it’s useful.

As discussed in chapter 4, I highly recommend that you keep your components
focused. As we learn more about component capabilities, you’ll see that it’s important
to avoid overloading your components.

This chapter will continue with the example from chapter 4, so refer to it for how to
set up the example. Everything will build upon what you learned, so the examples will
be expanded to demonstrate more advanced capabilities of components.

I can say with almost 100% certainty that no component will use every single capabil-
ity, because it would most likely not function. However, mastery of these additional con-
cepts will help you write more complex and dynamic applications. Let’s start by taking a
look at change detection and how to optimize performance.

5.1	 Change detection and optimizations
Angular ships with a change detection framework that determines when components
need to be rendered if inputs have changed. Components need to react to changes
made somewhere in the component tree, and the way they change is through inputs.

Changes are always triggered by some asynchronous activity, such as when a user
interacts with the page. When these changes occur, there is a chance (though no guar-
antee) that the application state or data has changed. Here are some examples:

¡	A user clicks a button to trigger a form submission (user activity).
¡	An interval fires every x seconds to refresh data (intervals or timers).
¡	Callbacks, observables, or promises are resolved (XHR requests, event streams).

These are all events or asynchronous handlers, but they may come from different
sources. We’ll dig deeper into the way that observables and XHR requests behave in
other chapters, but here we’re curious about how user actions and an interval trigger
changes in Angular.

Angular has to know that an asynchronous activity occurred, but the setInterval and
setTimeout APIs in JavaScript occur outside Angular’s awareness. Angular has mon-
key-patched the default implementation of setInterval and setTimeout to have them
properly trigger Angular’s change detection when an interval or timeout is resolved.
Likewise, when an event binding is handled in Angular, it knows to trigger change
detection. There are some special things to do if you write code outside of Angular that
needs to trigger change detection, but I won’t cover that here.

One the change detection mechanism is triggered, it will start from the top of
the component tree and check each node to see whether the component model has
changed and requires rendering. That’s why input properties have to be made known
to Angular, or it would fail to know how to detect changes.

106 Chapter 5  Advanced components

Angular has two change detection modes: Default and OnPush. The Default mode
will always check the component for changes on each change detection cycle. Angular
has highly optimized this process so that it’s efficient to run these checks—within
a couple milliseconds for most cases. That’s important when data is easily mutated
between components, and it can be difficult to ensure that values haven’t changed
around the application.

You can also use the OnPush mode, which explicitly tells Angular that this compo-
nent only needs to check for changes if one of the component inputs has changed. That
means if a parent component hasn’t changed, it’s known that the child component’s
inputs won’t change, so it can skip change detection on that component (and any grand-
child components). Just because an input has changed doesn’t mean the component
itself has to change; perhaps the input is an object with a changed property that the
component doesn’t use. Keeping tracking of your data structures in your application can
help to optimize when values are passed around and how change detection fires.

Figure 5.1 illustrates the two types of change detection. Imagine there’s a compo-
nent tree with two properties, and the property 'b' is changed by some user input. The
default mode will update the value in the component and then check all components
underneath it for changes. The OnPush mode only checks child components that have
an input binding specifically for the changed property and skips checking the other
components.

Default change detection mode

1. Component property
 'b' changed to new
 value in a parent
 component

2. All components
 in the tree are
 checked for
 changes.

a: 1, b: 2

@Input('a') @Input('b')

@Input('d') @Input('b')@Input('a') @Input('c')

OnPush change detection mode

1. Component property
 'b' changed to new
 value in a parent
 component.

2. Only children of
 components with
 an input of property
 ‘b’ are checked.

a: 1, b: 2

@Input('a') @Input('b')

@Input('d') @Input('b')@Input('a') @Input('c')

Figure 5.1   Change detection starts at the top and goes down the tree by default, or with OnPush only
goes down the tree with changed inputs.

	 107Change detection and optimizations

I recommend spending time reading about change detection in more detail
from one of the people who helped create it, Victor Savkin: https://vsavkin.com/
change-detection-in-angular-2-4f216b855d4c.

Our Nodes Row component is a candidate for using OnPush because everything
comes into the component via an input and the component’s state is always linked to
the values passed in (such as if the utilization is above 70% and the danger classes need
to be applied). Open src/app/nodes-row/nodes-row.component.ts and we’ll make a
minor adjustment (see the following listing) to enable OnPush for it.

Listing 5.1   Nodes Row component using OnPush

import { Component, Input, ChangeDetectionStrategy } from '@angular/core';

@Component({
 selector: '[app-nodes-row]',
 templateUrl: './nodes-row.component.html',
 styleUrls: ['./nodes-row.component.css'],
 changeDetection: ChangeDetectionStrategy.OnPush
})

That’s it! Import and declare the component changeDetection property to OnPush,
and your component is now only going through change detection when the inputs
have changed. The strategy is a property of the component metadata, which is set to
the Default mode by default (believe it or not!).

Now we can apply the same changes to our Metric component because it also only
reflects the input values provided to it when rendered. Try to make the same change to
that file yourself.

There’s another way to intercept and detect changes using the OnChanges lifecycle
hook, and because we’re already intercepting the inputs with getter/setter methods in
the Metric component, let’s modify it again to use OnChanges and OnPush mode.

Open src/app/metric/metric.component.ts and update it to the code you see in
listing 5.2. It replaces the getter and setter methods with an OnChanges lifecycle hook
and also uses OnPush mode.

Listing 5.2   Metric component using OnPush mode and OnChanges lifecycle hook

import { Component, Input, ChangeDetectionStrategy, OnChanges } from
'@angular/core';

@Component({
 selector: 'app-metric',
 templateUrl: './metric.component.html',
 styleUrls: ['./metric.component.css'],
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class MetricComponent implements OnChanges {
 @Input('used') value: number = 0;
 @Input('available') max: number = 100;

Imports ChangeDetectionStrategy

Adds property to declare
it to use OnPush

Imports ChangeDetectionStrategy and OnChanges

Turns on OnPush mode

Declares the class should
implement OnChanges

Still declares
properties as inputs

https://vsavkin.com/change-detection-in-angular-2-4f216b855d4c
https://vsavkin.com/change-detection-in-angular-2-4f216b855d4c

108 Chapter 5  Advanced components

 ngOnChanges(changes) {
 if (changes.value && isNaN(changes.value.currentValue)) this.value = 0;
 if (changes.max && isNaN(changes.max.currentValue)) this.max = 0;
 }

 isDanger() {
 return this.value / this.max > 0.7;
 }
}

If you implemented the OnPush mode yourself, it should start by importing the strat-
egy helper and then adding the changeDetection property. Here you also import the
OnChanges interface and declare the class to implement it.

We still need to declare our input properties, so we go back to the previous way to
declare them without the getter and setter methods. The ngOnChanges method imple-
ments the lifecycle hook for OnChanges, and it provides a single parameter as an object
populated with any changed inputs, which then have their current and previous values
available. For example, if only the value input was changed in the parent, then only the
change.value property will be set on the lifecycle hook.

Inside the OnChange lifecycle hook, we run the same basic checks for whether the values
are numeric or not, and if validation fails we reset the value. It should be noted that any
changes to the inputs would propagate to any child components (should there be any).
The value of using this approach is that we aren’t creating private properties while still
intercepting and validating the inputs, and the logic doesn’t run when the component
requests a property. It will only run the lifecycle hook for a component when the inputs
have changed for that specific component.

If you ever need to run code every time that change detection is run on a compo-
nent (regardless of whether you use OnPush or not), you can use the DoCheck life-
cycle hook. This allows you to run some logic that can check for changes that exist in
your component that Angular can’t detect automatically. If you need to trigger your
own type of change detection, this is the lifecycle hook that will help you do that. It’s
less commonly used, but do be aware of its existence for situations where OnChanges
doesn’t get you what you need.

In this section we’ve optimized the Nodes Row and Metric components' change
detection by only checking them when an input has changed. The Metric component
also now uses the OnChanges lifecycle hook to validate inputs, which can be more effi-
cient and hooks into the change detection lifecycle.

5.2	 Communicating between components
There are a number of ways to communicate between components, and we’ve already
gone into depth about inputs as a way to communicate data from a parent component
to its child. That doesn’t give us a way to communicate back up to a parent, though, or to
another component in the tree that isn’t a direct descendent.

Uses OnChanges lifecycle
hook to detect invalid values

	 109Communicating between components

As you think about building your components, particularly ones that are highly mod-
ular, they will likely need to emit events when things happen so other components can
easily take advantage of knowing when things are happening elsewhere. For example,
you could create a tabs component and emit an event that describes what tab is cur-
rently visible. Another component might be interested in knowing when the tab selec-
tion changes so that you can update the state of that component, such as a nearby panel
that has contextual help information based on the current tab.

You’ve seen inputs are the way to push data down the component tree to children,
and events are the way to pass data and notifications up through the component tree
to parents. When used this way, Angular considers these events outputs. We’re going to
use outputs to inform parent components of when changes happen so we can react to
those events.

Additionally, we’ll look at a couple ways to use other components in this section:
using a View Child (which gives you access to a child component controller in a compo-
nent controller) and using a local variable (which gives you access to a child component
controller in a component’s template). Each has a different design and might work in
more than one use case, but we’ll see each of them in action with our app.

Let’s take a look at our application component tree again, but this time we’ll anno-
tate the inputs and communication flows (figure 5.2). We want to make it possible to
click a button in the Navbar component and have it generate the data in the dashboard
(like a refresh button). The Navbar component and the Dashboard component are
child components of the App component, so how can we get them to talk? It’s fairly
simple using events and local template variables.

App
component

#dashboard

[cpu]

(onRefresh)

Navbar
component

Dashboard
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

Nodes Row
component

[mem] [cluster1] [cluster2]

Metric
component

Nodes
component

Nodes
component

Metric
component

Key:

[Input bindings]
(Emit output events)
#Local template variable

[node] [node] [node] [node] [node] [node]

Figure 5.2   Components sharing data, emitting events, and accessing other components via local
variables

110 Chapter 5  Advanced components

In figure 5.2 you can see that the Dashboard component binds data into all child com-
ponents, whereas the Nodes component also binds some data into its children. But all
data flows from the Dashboard component down to children.

However, with the Navbar component we need a way to communicate with the
Dashboard component to tell it to generate data again. We’ll use an output event
(onRefresh), which will alert the App component when the user clicks the refresh but-
ton. Then once the App component detects that the button was clicked, it can handle
that event by telling the Dashboard to regenerate data, and it does that by referencing
the Dashboard controller in the template using a local variable.

5.2.1	 Output events and template variables

To illustrate how this works, we need to make a few changes to our Navbar and App
components. Let’s start by opening the src/app/navbar/navbar.component.ts file.
We’ll need to declare an output event, like we declare an input, so that Angular under-
stands how to register and handle that event, as shown in the following listing.

Listing 5.3   Navbar component using an output

import { Component, Output, EventEmitter } from '@angular/core';

@Component({
 selector: 'app-navbar',
 templateUrl: './navbar.component.html',
 styleUrls: ['./navbar.component.css']
})
export class NavbarComponent {
 @Output() onRefresh: EventEmitter<null> = new EventEmitter<null>();

 refresh() {
 this.onRefresh.emit();
 }
}

We begin by importing the Output decorator and EventEmitter factory object. We
need both of these to set up an output event. The EventEmitter is a special object that
helps us emit custom events that work with Angular’s change detection.

Next, we declare a new property called onRefresh and add the @Output() decorator
to it. This will alert Angular that there is now an event output based on the name of the
property, which will allow us to then use event binding to listen for this event in our tem-
plate, like (onRefresh)="..expression..". As with the @Input() decorator, you could
optionally pass an alias to change the event name that’s used for event binding.

The output is typed to an EventEmitter<null> type, which means this variable will
hold an EventEmitter that doesn’t emit any data. Optionally, it could declare to emit
data, such as a date object that contains the moment the event was fired.

At this point we’ve wired up the output properly, but we still need to devise a way to
emit refresh events. We’ve added the refresh() method to the Navbar component to

Imports the Output decorator
and EventEmitter factory

Creates a property with Output
of an EventEmitter type

Implements a method to call on click
that emits the event

	 111Communicating between components

call the onRefresh.emit() method that’s provided by the EventEmitter object. This is
the line that will fire the event and alert the parent component that is listening.

Now we need to add the click event binding to the Navbar button so it will trigger
the custom output event. Open the src/app/navbar/navbar.component.html file and
update the button line to have the click handler, as you see in the following code. It
should call the refresh() method:

<button class="btn btn-success" type="button" (click)="refresh()">Reload
</button>

Clicking the Reload button in the navbar will now trigger the refresh() method,
which will then emit the custom output event onRefresh. You can see what happens in
figure 5.3.

App
component

#dashboard
(onRefresh)

Navbar
component

Dashboard
component

<button (click)=“refresh()”></button>

Key:

(Emit output events)
#Local template variable

3. App template calls
 #dashboard.generateData()
 method

1. User clicks
 button

2. refresh() method
 emits event via
 onRefresh

Figure 5.3   Overview of component tree, how user clicks button and it triggers refresh of data via an
output event

Our App component (the parent of both Navbar and Dashboard) is now being alerted
when the user clicks the button, but we haven’t implemented an event binding to cap-
ture and respond to it. To do that, open the src/app/app.component.html file and
modify it to the following:

<app-navbar (onRefresh)="dashboard.generateData()"></app-navbar>
<app-dashboard #dashboard></app-dashboard>

On the first line, we’ve added the event binding to react to the onRefresh output event
when it fires, but it needs to call the method from the Dashboard component. Because
the Dashboard component has the method to generate data, we need a way to call
it from the App component. The second line adds #dashboard to the template on
the Dashboard component. This denotes a local template variable, accessible as the
variable dashboard, that references the Dashboard component controller so we can
call methods from the Dashboard component—it allows us to call a method from the

112 Chapter 5  Advanced components

Dashboard component anywhere in the App component template, even though we
aren’t inside the Dashboard component. But only public methods are available—pri-
vate methods like randomInteger(), for example, aren’t available.

If no components are listening to the event, then it will not propagate up the compo-
nent tree. Output events only go to the parent component, unlike regular DOM events
(such as click or keypress) that do propagate up the DOM tree.

This event emitting trick lets us use one component in another part of the template,
and in this case we use it to handle the onRefresh event by calling the dashboard.gener-
ateData() method from the Dashboard component. This is handy for accessing compo-
nents that exist in the same template. The major negative is that it only allows you to access
the component controller from the template and not from the controller, meaning the
App component controller can’t call the Dashboard component methods directly. Luck-
ily, there’s another way to reference another component using a View Child.

5.2.2	 View Child to reference components

In order to access a child component’s controller inside a parent controller, we can
leverage ViewChild to inject that controller into our component. This gives us a direct
reference to the child controller so we can implement a call to the Dashboard compo-
nent from the App component controller.

ViewChild is a decorator for a controller property, like Inject or Output, which tells
Angular to fill in that property with a reference to a specific child component control-
ler. It’s limited to injecting only children, so if you try to inject a component that isn’t a
direct descendent, it will provide you with an undefined value.

Let’s see this in action by updating our App component to get a reference to the
Dashboard component and have it directly handle the onRefresh event from the
Navbar. Open the src/app/app.component.ts file and replace it with what you see in
listing 5.4.

Listing 5.4   App component controller

import { Component, ViewChild } from '@angular/core';
import { DashboardComponent } from './dashboard/dashboard.component';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 @ViewChild(DashboardComponent) dashboard: DashboardComponent;

 refresh() {
 this.dashboard.generateData();
 }
}

Imports
ViewChild

Imports the
Dashboard
component

Declares the dashboard property,
decorated with ViewChild

Implements refresh method that calls
Dashboard component method

	 113Styling components and encapsulation modes

After we import the ViewChild decorator, we also need to import the Dashboard
Component itself. We need to make sure it’s available during compiling and that we can
directly reference it.

The App component then gets a single property, dashboard. The @ViewChild() dec-
orator sits in front, and we pass a reference to the DashboardComponent so Angular
knows exactly what component to use. We also give the property a type of Dashboard-
Component because it’s an instance of that controller.

Finally, we add a refresh() method, which calls the Dashboard component control-
ler to generate the data. Compared to the template variable approach, this gives us an
opportunity for additional work that might be difficult or not possible in the template.

We need to update the App component template to call the new controller method
instead of using a template variable. Back in src/app/app.component.html, you should
change the contents to the following:

<app-navbar (onRefresh)="refresh()"></app-navbar>
<app-dashboard></app-dashboard>

Now the template doesn’t have a reference to the Dashboard component, but instead
calls the App component’s refresh method when the output event is fired. The result
is the same—the Dashboard will generate a new set of data—but the approach is
different.

You may be wondering which approach you should use, and it largely boils down
to where you want to store the logic. If you ever need to do anything more than access
properties or methods of a child controller, you probably need to use the ViewChild
approach. This does cause a coupling between the two components, which should be
avoided when possible. But if you can reference a child controller and call a method
directly in the template, it can save code and reduce coupling.

5.3	 Styling components and encapsulation modes
Angular can use different ways of rendering that change the way the component can be
styled. Components are usually designed to manage their own state, and that includes
the visual styling required for the component to display. There is almost always some
kind of global CSS styling that you will apply to provide a functional base for your appli-
cation default styling, but components can hold their own styles that are rendered in
isolation from the rest of the application.

If you add CSS styles for a component, those styles aren’t globally exposed, and you
will avoid having to deal with CSS rules from one component overriding another com-
ponent. There’s a way to render component styles to the global styling that’s only rec-
ommended in a few situations.

There are multiple ways to add styles to a component. It’s best to add your styles in
the same way across all of your components because mixing and matching can have
some interesting (and sometimes unexpected) side effects. It can also be potentially
challenging if you use an external library that does something differently, so keep an
eye on how your dependencies work to ensure they don’t conflict.

114 Chapter 5  Advanced components

5.3.1	 Adding styles to a component

Styles can be added several ways. You can always add CSS using a global approach,
where you include a linked CSS file into your application index.html file or reference
the file in the .angular-cli.json file styles property (which we already did for Ng-boot-
strap). These styles are generic and will be applied to any matching elements in the
page. That’s good for common and shared styling that needs to go everywhere, but not
good when you want to have isolated components that define their own styling.

To better isolate our styling, we can use one of the following approaches—these are
ways to add styles that are specific to a single component:

¡	Inline CSS —Component templates can have inline CSS or style attributes to set
the styles of the elements. These are the default ways to add style rules to HTML
elements regardless of whether you’re using Angular.

¡	Component-linked CSS —Using the component’s styleUrls property with links to
external CSS files. Angular will load the CSS file and inject the rules inside a style
element for your app.

¡	Component inline CSS —Using the component’s styles property with an array of
CSS rules, Angular will inject the rules inside a style element for your app.

Let’s take a look at how these different approaches can be used in an example. Here
we have a simple component that has styling applied from five different approaches:

¡	Global CSS rules
¡	Inline CSS style element
¡	Inline style declaration
¡	Component styles property
¡	Component styleUrls property linked to a CSS file

We’ll modify the Reload button in the navbar to have a different background color so
we can see how these different approaches get applied. We’ll start by adding some CSS
to our CSS file that the CLI generates with each component, which is linked using the
styleUrls property. Open the src/app/navbar/navbar.component.css file and add
the following CSS rule to it:

.btn { background-color: #e32738; }

That overrides the global color set by the bootstrap CSS library and gives our button
a red color (instead of the default green). Notice that the other buttons on the page
(in the Nodes Row components) aren’t changed, even though they also have the .btn
class applied. We’ll cover how that happens shortly, but that’s the visual result of Angu-
lar’s encapsulation features.

Next, we’ll add some styles by updating the component metadata in the src/app/
navbar/navbar.component.ts file with the following styles property:

@Component({
 selector: 'app-navbar',
 templateUrl: './navbar.component.html',

	 115Styling components and encapsulation modes

 styleUrls: ['./navbar.component.css'],
 styles: [`.btn { background-color: #999999; }`]
})

The styles property lets us provide an array of strings (here we’re using the backtick
character to make a string literal) that should contain valid CSS rules. Now when you look
at the application, it should appear to be a gray button. That means that styles inside the
styles property will override anything from the CSS files loaded through the styleUrls
property. The trick here is that whichever is declared last will win, so when you have both
styles and styleUrls, the one declared last will override the first regardless of which
one is used, due to the way the compiling works. (At time of writing, the CLI complains if
you declare both styles and styleUrls in the CLI, but it still seems to work.)

Now open up the navbar template at src/app/navbar/navbar.component.html and
add the following style element into the template:

<style>.btn { background-color: #3274b8; }</style>

Once you save this, the application will reload, and all of a sudden your button will now
be blue, which means that inline style declarations will override any values provide via
the styles or styleUrls properties.

The last way to add styles is directly on the element itself using the style attribute.
While still in the component template, modify the button to include this inline CSS dec-
laration to make the button purple:

<button class="btn btn-success" type="button" style="background-color:
#8616f6" (click)="refresh()">Reload</button>

This exercise showed us that if a CSS rule is set with a different value in all of these
places, you might be surprised which rule is applied. It should be noted that using
the !important value will raise that particular rule above any others, should you dare
to use it. Here’s the priority order in which the rules are applied if the same rule is
declared in multiple places, with each item overriding any rules below it:

1	 Inline style attribute rules

2	 Inline style block rules in the template

3	 Component styles rules or styleUrls rules (if both, then last declared has
priority)

4	 Global CSS rules

Declaring a rule using inline styles is always going to be the highest priority rule. This
is probably expected because, except for when the !important value is declared, inline
styles are given highest priority by the browser. The style block from the template is
the next highest priority. Then the next highest are rules declared in the component
styles array or styleUrls external files, and lastly any global styles.

All CSS rules are added to the end of the document head inside a new style ele-
ment. As the application is rendered, components will get loaded, and those styles will
get added to the document head. But depending on the encapsulation mode, the way
those styles are rendered can change the way those styles are processed.

116 Chapter 5  Advanced components

One important note: all these guidelines are based on using the CLI for building.
It’s possible to change the build process and obtain different priorities or results, just
so you’re aware. Now let’s look at how different encapsulation modes work and why we
might want to change the default settings.

5.3.2	 Encapsulation modes

Angular wants to ensure that you can build modular components that can be easily
shared. One key capability is the ability to ensure that CSS styling for a component
doesn’t bleed over into the rest of the app, which is called styling encapsulation. Have
you ever used a third-party library that included some CSS which conflicted with some-
thing else in your application and caused something to display improperly? Most likely
you’ve run into this situation, and Angular offers some options to avoid it.

Until recently, there was no certain way to encapsulate CSS styling or HTML elements
of a particular DOM element. The most common approach is to use specific class nam-
ing conventions, as are found in most popular CSS libraries. These conventions provide
a specific nomenclature for CSS classes that limits the chances of the same class being
used elsewhere. Although these might typically be effective, there’s no guarantee that
class names or styles won’t collide, and it provides no encapsulation for inner HTML
elements.

Enter the Shadow DOM, the official native browser standard for encapsulating styles.
Shadow DOM provides us with a good set of features to ensure that our styles don’t con-
flict and bleed in or out of a component, except that it might not be available on older
browsers. If you need to brush up on Shadow DOM, refer to chapter 1.

Angular comes with three encapsulation modes for a view. In the earlier styling
example, you were using the default Emulated mode.

¡	None —No encapsulation is used during rendering of the view, and the compo-
nent DOM is subject to the normal rules of CSS. Templates aren’t modified when
injected into the app except for the removal of any CSS style elements from the
template to the document head.

¡	Emulated —Emulated encapsulation is used to simulate styling encapsulation by
adding unique CSS selectors to your CSS rules at runtime. CSS can cascade into
the component easily from the global CSS rules.

¡	Native —Uses the native Shadow DOM for styling and markup encapsulation and
provides the best encapsulation. All styles are injected inside the shadow root
and are therefore localized to the component. None of the templates or styles
declared for the component are visible outside the component.

Each encapsulation mode applies styles in a different manner, so it’s important to
understand how encapsulation modes and styling render the view. The order in which
styles are applied remains constant regardless of which encapsulation mode is used, but
the way in which the underlying styles are injected and modify the app does change.

Now let’s take a closer look at the different modes, how they behave, and why you
might decide to select a different mode than the default mode. As we look at each

	 117Styling components and encapsulation modes

mode, try setting the mode in the Metric component and inspecting the output as it’s
rendered in the page to see how it adds styles into the document head.

No encapsulation mode

If you use no encapsulation by setting in the component, you’ll bypass any native or
emulated Shadow DOM features. It will render the component into the HTML docu-
ment as is, as if you had written the HTML markup directly into the body yourself. This
is the default mode for components without any styles.

To set this mode, you would use the encapsulation property of the component
metadata to set it like so—of course, you’ll need to import the ViewEncapsulation
enum from @angular/core:

encapsulation: ViewEncapsulation.None

Once the mode is set, any styles you declare for the component will be hoisted up from
the component template into the document head, and this is the only real modifica-
tion made to the markup. The style element is moved into the document head as is,
which is a way of injecting global CSS rules. It’s possible another component rendered
later would inject a competing CSS rule, so render order matters as well.

Here’s a summary of reasons why you might use, or avoid using, components with no
encapsulation mode:

¡	Styles bleed out —Sometimes applications are designed with CSS libraries where
encapsulating the internal styling of each component is unnecessary or unde-
sired. If you don’t put styles into your components, then encapsulation may not
be necessary.

¡	Global styles bleed in —The global background style for a header element is applied
because of the lack of encapsulation, which may or may not be desired behavior.

¡	Templates are unmodified —Because this mode injects the template as is (after relo-
cating the styles), your DOM elements won’t have any special transformations
applied.

When using no encapsulation mode, you can’t use any of the special Shadow DOM
selectors like :host or ::shadow. These have no context because no Shadow DOM (native
or emulated) features are enabled.

Now let’s look at the emulated mode and see how it behaves in comparison.

Emulated Shadow DOM encapsulation mode

Emulated mode applies some transformations to any styles by adding unique attributes
to HTML markup and CSS rules to increase the specificity of the CSS rules by making
them unique. Because this isn’t a true encapsulation, it’s referred to as emulated, but it
has many of the same benefits. This is the default mode for Angular components that
have any styles declared (regardless of how they’re declared in the component).

Emulated mode is primarily about preventing styles in the component from bleed-
ing out to the global rules (which happens when no encapsulation is used). In order to
accomplish this, the view will render the template and styles with unique attributes to

118 Chapter 5  Advanced components

increase the specificity of the CSS rules inside the component. Emulated mode is the
default mode, but if you want to explicitly declare it, you would set the property on the
component metadata:

encapsulation: ViewEncapsulation.Emulated.
During the render, the styles are first extracted from the component template or
component properties. Then a unique attribute is generated, something similar to
_ngcontent-ofq-3. It uses the _ngcontent prefix with a unique ending so each com-
ponent can have a unique CSS selector. Multiple instances of the same component
have the same unique attribute. Lastly, the view renders by adding the unique attribute
to the component DOM nodes and adding it into the CSS selector rules.

Here’s a quick overview of the behaviors of emulated encapsulation mode and why
you would (or wouldn’t) want to use it:

¡	Styles are isolated —The rendering of the styles and markup adds the unique attri-
butes to ensure that CSS rules don’t collide with global styles.

¡	Styles bleed in —The global styling can still bleed into the component, which can
be useful to allow a common styling to be shared. It also could conflict with the
component if a rule is added somewhere globally that you didn’t intend to bleed
into the component.

¡	Unique selectors —The rendered DOM gets a unique attribute, which means if you
have global styles that you want to apply into the component, you’ll need to write
CSS selectors accordingly.

Now let’s finish the encapsulation modes by looking at the native mode and how it uses
Shadow DOM.

Native Shadow DOM encapsulation mode

The Shadow DOM is a powerful tool for encapsulating markup and styles from the rest
of the application. Angular can use Shadow DOM to inject all the content instead of
putting it into the primary document. This means that the template and the styles are
truly isolated from the rest of the application.

Native browser support for Shadow DOM is limited and can be checked at http://
caniuse.com/#feat=shadowdom. The benefits of Shadow DOM may not extend to all
the browsers you need to support, but there is also a good polyfill to backfill the sup-
port at http://webcomponents.org/polyfills/shadow-dom/. Even with a polyfill, older
browsers may not be supported, so you should consider all of your needs.

While the component renders, it creates a shadow root in the component. The tem-
plate is injected into the shadow root, along with the styles from the sibling and any
parent component. As far as the rest of the document goes, this shadow root protects
the contents from being visible to anything outside of the component.

Angular intends that nested components should be able to share styling, but with the
shadow root, Angular makes those styles available to the component by injecting them
into the shadow root as well.

http://webcomponents.org/polyfills/shadow-dom/

	 119Dynamically rendering components

Here’s a summary of the way that the native mode works and why you might or might
not want to use it:

¡	Uses Shadow DOM —For true encapsulation, the native option is the best bet. It
will protect your components from the styles of the document and encapsulate
the markup as well.

¡	Parent and sibling styles bleed in —Due to the way Angular renders the component,
it also injects the parent and sibling components’ styles, which can cause issues
like styles bleeding in (which you might not want).

¡	Limited support —Browser support for Shadow DOM is limited and may require
the use of a polyfill to allow its use in applications.

So far, we’ve looked at how to bind data into the view from the component. This is
important to allow us to inject data and modify properties of the view dynamically. We
also looked at how to use event bindings to call from the view back to the component,
which can be used to update values or call methods. And we’ve looked at the various
ways to style a component and how to encapsulate styles.

We’ve covered a lot of ground, but now we’re going to look at Angular directives and
pipes. They provide additional options to modify the display of data or elements in our
view and add additional logic to templates.

5.4	 Dynamically rendering components
Applications sometimes need to dynamically render a component based on the
current application state. You may not always know what component needs to be on
the screen, or perhaps the user interactions call for a new component to display
in the page.

There are a few fairly common situations that you’ve seen where a dynamic compo-
nent is often a good solution. For example

¡	Modals that display over the page with dynamic content
¡	Alerts that conditionally display
¡	Carousel or tabs that might dynamically expand the amount of content
¡	Collapsible content that needs to be removed afterward

These situations all have something in common: They don’t always need to be on the
screen or are dependent on conditions outside of their own power. Angular gives us
the ability to use lower-level APIs to call, that let us render a component that doesn’t
already exist in a template, on demand.

I’ll show two examples of using ng-bootstrap to generate a modal and then talk
about how to do it all ourselves using Angular’s APIs to create an alert component. With
ng-bootstrap, most of the magic is hidden behind a helpful service, but it will give us the
ability to quickly get the capability working before we build it by hand.

120 Chapter 5  Advanced components

5.4.1	 Using the ng-bootstrap modal for dynamic components

Let’s start by generating a new component. This component is going to show details
about the node when you click the View button in the Nodes Row component. We’re
going to call this the Nodes Detail component:

ng generate component nodes-detail

Now replace the component’s controller, found in src/app/nodes-detail/nodes-detail.
component.ts, with the code in listing 5.5. This controller has similar logic to deter-
mine whether the node exceeds its utilization or not. This is the component that will
open inside the modal and won’t be loaded until called for.

Listing 5.5   Nodes Detail component controller

import {Component, Input} from '@angular/core';
import {NgbActiveModal} from '@ng-bootstrap/ng-bootstrap';

@Component({
 selector: 'app-nodes-detail',
 templateUrl: './nodes-detail.component.html',
 styleUrls: ['./nodes-detail.component.css']
})
export class NodesDetailComponent {
 @Input() node;

 constructor(public activeModal: NgbActiveModal) {}

 isDanger(prop) {
 return this.node[prop].used / this.node[prop].available > 0.7;
 }

 getType(prop) {
 return (this.isDanger(prop)) ? 'danger' : 'success';
 }
}

The Ng-bootstrap library provides a useful service called NgbActiveModal, which is an
instance of the modal controller that loads the Nodes Detail component. It will allow
us to dismiss the modal when we like, either on demand or based on user action. This
will be more apparent when we add the template for this component.

Unlike other components so far, this component won’t be called from a parent’s
template. But we will need to pass it an input for the data, so we still need to declare the
input property.

Now we need the template to make the component functional. Open src/app/
nodes-detail/nodes-detail.component.html and replace the existing code with the fol-
lowing listing.

Imports the
NgbActiveModal
service

Declares an
input for the
component

Adds the NgbActiveModal
service to the controller

	 121Dynamically rendering components

Listing 5.6   Nodes Detail component template

<div class="modal-header">
 <button type="button" class="close" aria-label="Close"

(click)="activeModal.dismiss()">
 ×
 </button>
 <h4 class="modal-title">{{node.name}}</h4>
</div>
<div class="modal-body container">
 <div class="col-xs-6">
 <app-metric [used]="node.cpu.used" [available]="node.cpu.available">
 <metric-title>CPU</metric-title>
 </app-metric>
 </div>
 <div class="col-xs-6">
 <app-metric [used]="node.mem.used" [available]="node.mem.available">
 <metric-title>Memory</metric-title>
 </app-metric>
 </div>
</div>

There’s a lot of markup here needed for the display of a modal with bootstrap’s CSS
styling, but it has a modal header with a title and close button and a body containing
two Metric components. Notice that we can use any components that have been reg-
istered with our Application module inside of a dynamic component, which is handy.

Remember in our controller we had a property named activeModal, and it was an
instance of the NgbActiveModal service. We use that in the template to call the dismiss
method, which will close the modal itself. This is why we included that property in our
controller. You can also see how the node property, which is our only input binding, is
used to display data or pass data into the other components.

The contents of this component are fairly similar to the rest of the application, so we
don’t need to spend time on it. What we’re now interested in is how to trigger the modal
to open from the Nodes Row component. Open the src/app/nodes-row/nodes-row.
component.html file and add the following event binding to the button:

<td><button class="btn btn-secondary" (click)="open(node)">View</button></td>

Now we need to open src/app/nodes-row/nodes-row.component.ts and implement
this new method. The code in the following listing contains the updated controller,
and changes are annotated for you.

Listing 5.7   Nodes Row component template additions for modal

import { Component, Input, ChangeDetectionStrategy } from '@angular/core';
import { NgbModal } from '@ng-bootstrap/ng-bootstrap';
import { NodesDetailComponent } from '../nodes-detail/nodes-detail.

component';

Use the NgbActiveModal service to
close the modal on click

Using the Metric
component for CPU

Using the Metric
component for Memory

Imports the NgbModal service

Imports the Nodes
Detail component

122 Chapter 5  Advanced components

@Component({
 selector: '[app-nodes-row]',
 templateUrl: './nodes-row.component.html',
 styleUrls: ['./nodes-row.component.css'],
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class NodesRowComponent {
 @Input() node: any;

 constructor(private modalService: NgbModal) {}

 isDanger(prop) {
 return this.node[prop].used / this.node[prop].available > 0.7;
 }

 open(node) {
 const modal = this.modalService.open(NodesDetailComponent);
 modal.componentInstance.node = node;
 }
}

Here we import the NgbModal service that will allow us to create a new modal. We saw
the NgbActiveModal service in the Nodes Detail component, which, once the modal and
its component has been created, will allow the Nodes Detail component to reference the
active modal instance. We need to import the Nodes Detail component as well. The con-
structor also sets the modalService property with an instance of the NgbModal service.

In the open() method, we pass in a reference to the node data to use. Then we create
a new modal instance using the modalService, which takes as a parameter the compo-
nent to be rendered in the modal. It stores a reference to this newly created component
in the componentInstance property, which allows us to set the node input binding that
was passed in during the click.

That wires up all we need to trigger the modal from the Nodes Row component. But
if you try it, the modal doesn’t work quite yet because there are a few minor details we
need to implement that will allow us to open this modal.

First, open the src/app/dashboard/dashboard.component.html file and add the
following code line to the bottom of the template—we need to give the Modal service a
place to render the component:

<template ngbModalContainer></template>

This is a placeholder template element that has the NgbModalContainer directive on
it, which tells Ng-bootstrap where in the template to render this component. Compo-
nents have to be rendered somewhere in the template, and this is Ng-bootstrap’s way of
defining the location to render.

Secondly, we need to add a new entry to our App module. When the CLI processes
Angular, it needs to know what components might be rendered dynamically because it
will process them differently. Open the src/app/app.module.ts file and add a new line
to the NgModule decorator:

entryComponents: [NodesDetailComponent],

Adds property to inject
NgbModal service

Implements method
to open modal

	 123Dynamically rendering components

Entry components are any components that need to be rendered dynamically in the
browser, which will also include components that are linked to routes (more on this in
chapter 7). The CLI will try to optimize components by default and not include the com-
ponent factory class. But to dynamically render, the component factory class is needed
to render, so this tells the CLI compiler how to properly process it during build time.

This example is a bit specific for Ng-bootstrap’s implementation of the modal, so it
will only get us so far in understanding how to build our own dynamic components.

5.4.2	 Dynamically creating a component and rendering it

The Ng-bootstrap modal example is a nice way to create a modal, but it abstracts some
of the capability away from us. We want to see how it works directly and will build upon
the knowledge of our components that we have so far to create our own dynamically
rendered component.

When we dynamically render a component, Angular needs a few things. It needs to
know what component to render, where to render it, and where it can get a copy of it.
This all happens during the compilation process for any template, but in this case we
have no template and have to invoke the APIs ourselves. These are the Angular capabil-
ities we’ll use to handle this process:

¡	ViewContainerRef—This is a reference to an element in the application that
Angular understands and that gives us a reference point to where we can render
our component.

¡	ViewChild—This will give us the ability to reference an element in our con-
troller as a ViewContainerRef type, giving us access to APIs needed to render
components.

¡	ComponentFactoryResolver—An Angular service that gets us the component
factory (which is needed to render) for any component that has been added to
the entry components list.

As we build our example, you’ll see these three capabilities working together. We’re
going to build an alert box that appears when the data is refreshed and then removes
itself after a certain amount of time. This will give us insight into how to dynamically
render a component and remove it from the page, which accomplishes much the same
thing as what you get from the Ng-bootstrap modal service.

Start by generating a new component. From the CLI, run the following command to
set up this new component:

ng generate component alert

The template for this component is going to be simple; it has some bootstrap-flavored
markup that makes an alert box and binds the date of the last refresh. Open src/app/
alert/alert.component.html and replace its contents with the following:

<div class="container mt-2">
 <div class="alert alert-warning" role="alert">
 The data was refreshed at {{date | date:'medium'}}
 </div>
</div>

124 Chapter 5  Advanced components

Likewise, the component controller is going to be empty except for a single input
property. Open src/app/alert/alert.component.ts and replace its contents with the
code from the following listing.

Listing 5.8   Alert component controller

import { Component, Input } from '@angular/core';

@Component({
 selector: 'app-alert',
 templateUrl: './alert.component.html',
 styleUrls: ['./alert.component.css']
})
export class AlertComponent {
 @Input() date: Date;
}

So far, so good. There’s nothing special about this component that we haven’t already
seen in this chapter, so I’m going to move to the next step. Because this component
will be dynamically rendered, we need to add it to the list of entryComponents, so open
up src/app/app.modules.ts again and add it to the list. At this point, our component
itself is ready to be dynamically rendered:

entryComponents: [
 NodesDetailComponent,
 AlertComponent
],

Now we can start to work on the mechanics that will trigger the rendering of the compo-
nent out to the screen. As with the modal example, we’ll need to create a template ele-
ment in our application that can be used to render out, so open the src/app/dashboard/
dashboard.component.html file and update it to have the following template:

<app-navbar (onRefresh)="refresh()"></app-navbar>
<ng-template #alertBox></ng-template>
<app-dashboard></app-dashboard>

The #alertBox attribute is another template local variable that we can use to identify
this element later on. This will be the element that we render the component along-
side. Open up the src/app/app.component.ts file and replace it with the code from
the following listing.

Listing 5.9   App component controller

import { Component, ViewChild, ComponentFactoryResolver, ComponentRef,
ViewContainerRef } from '@angular/core';

import { DashboardComponent } from './dashboard/dashboard.component';
import { AlertComponent } from './alert/alert.component';

@Component({
 selector: 'app-root',

Imports a number of new entities

Imports the Alert
component

	 125Dynamically rendering components

 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 alertRef: ComponentRef<AlertComponent>;
 @ViewChild(DashboardComponent) dashboard: DashboardComponent;
 @ViewChild('alertBox', {read: ViewContainerRef}) alertBox:

ViewContainerRef;

 constructor(private ComponentFactoryResolver: ComponentFactoryResolver) {}

 alert(date) {
 if (!this.alertRef) {
 const alertComponent = this.ComponentFactoryResolver.

resolveComponentFactory(AlertComponent);
 this.alertRef = this.alertBox.createComponent(alertComponent);
 }

 this.alertRef.instance.date = date;
 this.alertRef.changeDetectorRef.detectChanges();

 setTimeout(() => this.destroyAlert(), 5000);
 }

 destroyAlert() {
 if (this.alertRef) {
 this.alertRef.destroy();
 delete this.alertRef;
 }
 }

 refresh() {
 this.dashboard.generateData();
 }
}

This might look complicated at first, so let’s break it down. It’s fairly plain how it’s
working and constructed.

First we must import a few additional objects, and we’ll look at their roles as we go
along. We also import the Alert component itself so we can properly reference it during
rendering.

We then add two properties, with alertRef being a component reference to the
Alert component (which is the declared typing). We will want to have this reference
so we can keep track of the alert and later remove it if we want. The second property
is another View Child, called alertBox. The ViewChild syntax is different because it
allows us to pass in a string to reference a local template variable by that name and then
“read” it as a particular type of entity—in this case, a ViewContainerRef. It will get the
element based on the template variable and then parse it as a ViewContainerRef type.
This will give us access to a critical API shortly. These are only properties, though. So far,
nothing has been instantiated.

Creates two new properties for
a reference to the component
and a ViewChild

Injects the component
resolver into the controller

Implements the
alert method
to create the
component

Implements the destroyAlert method to
remove the component

126 Chapter 5  Advanced components

The constructor sets the ComponentFactoryResolver property to the Factory
Resolver service, which is what we’ll need in order to look up a copy of the component
factory class before rendering it.

The primary magic of this occurs inside the alert() method. We’ll walk through this
line by line. First, it looks to see if there is already something stored on the alertRef
(meaning the Alert component has already been created), and if so it skips past the
creation of another alert and moves on to update the binding. But if no Alert compo-
nent exists yet, it uses the ComponentFactoryResolver.resolveComponentFactory()
method to get an instance of the component factory (it seems a bit redundant, but it’s
the API name). At this point, the component will be available in its raw form (not yet
rendered).

The next line uses the alertBox to create the component from the factory instance
we received previously. Remember, alertBox is the instance of the element where we
will inject the component, wrapped in a ViewContainerRef instance. At this point,
the component will be rendered into the template where the template element was
declared.

The next two lines (outside of the conditional) set the binding data for the com-
ponent and then trigger change detection to run. Because we changed binding data
manually, we need to alert Angular to check something (this was asynchronous from
Angular’s typical rendering process!).

Lastly, a timeout is set to call the deleteAlert method after five seconds so the alert
doesn’t remain on the screen forever. If we look at this method more closely, you can
see it will check if there is an existing instance of an Alert component. If so, it will use
the destroy() method that all components have to remove it from the page.

If you’re trying to run this example, you’ll find it doesn’t work yet. We’ve missed an
important step! Nowhere do we call the App component’s alert() method, so it won’t
appear. To do that, we’ll emit an event from the Dashboard component that will fire
when data is generated, along with the timestamp when it was updated.

Open up src/app/dashboard/dashboard.component.ts. We’re going to add a new
output event. Be sure to import the Output and EventEmitter objects at the top of the
file. Then add a new property like you see here:

@Output() onRefresh: EventEmitter<Date> = new EventEmitter<Date>();

Now inside the generateData() method add this line to the end of the method:

this.onRefresh.emit(new Date());

This sets up a new output event from the Dashboard component, and this time we’re
passing some data during the emit phase. We can capture this information in the App
component and use it to pass into our Alert component. This is simple now—all we
have to do is update the src/app/app.component.html file one more time by adding
an event binding to the Dashboard component:

<app-dashboard (onRefresh)="alert($event)"></app-dashboard>

	 127Summary

Voila! Our Alert component should now appear after every data generation event,
regardless of whether you click the button in the top right or wait 15 seconds for it to
automatically regenerate. It will also automatically close the alert after five seconds.

That was a whirlwind tour of dynamic components. There are several different ways
to generate a component besides this one, but this is a solid approach that you can use
in your own applications.

Summary
We’ve been busy in this chapter. We covered a lot of content about components, how
they work, their various capabilities, and much more. Here’s what we talked about in
this chapter:

¡	We looked at change detection in more detail, along with how to leverage the
OnPush mode to better optimize when a component is rendered.

¡	We looked at several lifecycle event handlers. There are a number of other ones
that have their own use cases as well:

¡	The OnInit lifecycle hook fires only once after the constructor and when the
input properties are available.

¡	The OnChanges lifecycle hook fires whenever an input property changes.
¡	The OnDestroy lifecycle hook fires whenever a component is about to be removed

from the page.
¡	We talked about how to communicate between components using output prop-

erties and the built-in EventEmitter, and how to reference child components as
a View Child.

¡	We talked about the styling of components using CSS in various ways and how
different encapsulation modes can affect the way that content is rendered on
the page.

¡	We finished by looking at how to render out components dynamically, with two
examples. The first was a prebuilt service using the Ng-bootstrap modal service
to render our component on demand, whereas the second was managed entirely
by us.

128

6 Services

This chapter covers
¡	Services and their role

¡	Creating many different types of services

¡	Using services to help retrieve and manage data

¡	Replacing logic from controllers with services

¡	Understanding how dependency injection
works with services

In chapters 4-5, we had the Dashboard component, which generated some data for
the rest of the application to consume. But that was only because we didn’t want
to introduce more complexity into the example. This isn’t ideal in most scenar-
ios, because that logic is hard to reuse and makes the component unnecessarily
complex.

Your application will need to manage many tasks, and many of them will fall out-
side of the responsibility of components, such as managing data access, managing
configuration across the app, and utility functions. The Angular HttpService is a
great example of a service that makes it easy to reuse logic for making HTTP requests
without having to implement it repeatedly. Although Angular and many libraries
provide services for you to consume, you can and should make your own too.

	 129Setting up the chapter example

6
Services are fundamentally JavaScript objects that provide commonly used logic in a

way that other parts of the application can easily consume. For example, applications
that require a user to log in will need to have a service to help manage the user’s state.
Or you might have a service that helps manage how you make requests to your API and
encapsulates the logic necessary away from the components using it.

Shared code across your application is almost always best placed inside of a service.
In Angular, most of the time a service also is something that you can inject into your
controllers using dependency injection, though there is no exact definition of what
makes an object a service.

To help you out, I’ve come up with several loose classifications that are useful in
providing insight into the various ways a service can be created. A service could fit into
more than one of these categories, but I usually try to keep my services focused on one
of these roles:

¡	Injectable services are the typical Angular services that provide a feature for the
application and work with Angular’s DI system to be injected into components.
An example would be a service that handles how to load data from an API.

¡	Non-injectable services are JavaScript objects that aren’t tied into Angular’s DI sys-
tem and are just imported into the file. This can be useful to make a service avail-
able outside of Angular’s DI, such as in the application’s main file.

¡	Helper services are services that make it easier to use a component or feature. An
example would be a service to help manage the currently active alert on the page.

¡	Data services are for sharing data across the application. An example is an object
holding data for the logged-in user.

In chapter 4, it would have been more appropriate to extract data logic into a service to
separate it from the component. In chapter 5, we talked about designing components
to focus on a particular role, and that should include keeping the controller focused
on the minimal tasks needed to manage data by delegating those responsibilities to
services. Components are for displaying the UI, and services are meant to help manage
data or other reusable snippets of logic.

The goal of a service is to be responsible for a specific set of tasks, which in turn helps
keep other aspects of your application focused. The size of a service isn’t as important
as keeping it on task.

We’re going to look at different ways to use services, and I’ve even named a few ser-
vice patterns that I find to be most common.

6.1	 Setting up the chapter example
We’re going to build a fantasy stock-trading application that uses generated data which
changes several times a minute to simulate real market changes (see figure 6.1). You’ll
be able to buy and sell stock, but unlike the real stock market, you can always reset your
account if you lose it all.

130 Chapter 6  Services

Figure 6.1   Fantasy Portfolio stock trading application, powered by services

The stock prices change steadily over time (for better or worse), just like a real
stock market. The stock API automatically handles the changes, so every time data is
requested it will be refreshed with new values. If you hold onto a stock for a few min-
utes, you can easily gain or lose money. If you want to see how your portfolio holds,
check it the next day and see whether you made good or bad investments, because the
value might have drifted up or down by 25%. Your portfolio is also stored, so if you
return later it will remember your status, but you’ll also be able to start over if you lose
too much money.

We’ll use several services to help us manage this application. First we’ll create a ser-
vice to help manage the user’s account data, such as what stocks they’ve purchased and
how much money they have left in their account. Another service will help us provide
configuration data to the application to tell us where the API service is located. We’ll
use the Http library from Angular inside of a service to help us load data from the API.
Finally we’ll create a service that helps us manage the storing of data in local storage,
so the experience persists between reloads. Each of these fits into one of the categories
discussed in the chapter introduction.

Unlike previous chapters, this time we’ll start with an application that already has
some components set up, which will let us focus on building services and not worry
about implementing other aspects already covered in previous chapters. Some code
snippets are commented out because they’ll throw errors if enabled, and we’ll uncom-
ment them as we build the services that will support them properly.

In this chapter, we’ll use the Clarity UI library from a team at VMware. It builds on
top of Bootstrap 4 for the CSS grid and layout, but provides a design specification that

	 131Setting up the chapter example

fits their company guidelines. We’ll use a few of the components, and you can quickly
get a feel for how this particular UI library behaves in comparison to ones we’ve used in
other chapters.

6.1.1	 Getting the chapter files

You have two choices for setting up this chapter project. You can download the project
as a zip file from GitHub or clone the repository using Git. If you’re using Git, run the
following command:

git clone -b start https://github.com/angular-in-action/portfolio.git

Alternatively, you can download and unzip the project files from https://github.com/
angular-in-action/portfolio/archive/start.zip. Either way, you should now have a copy
of the code on your computer, and you’ll need to also install the node modules for the
project. Navigate to the directory and run the following to install the modules, and
then preview the project:

npm install
ng serve

Initially, the application looks a little empty, because it can’t properly render until we
set up the services to help manage data. As you see in figure 6.2, the application has a
basic layout, with a header and two cards.

Figure 6.2   Starting point of chapter example; basic header and cards as placeholders

Most of the display is currently commented out (because it would throw many errors
at this point), so we just see the scaffolding. As we generate services, data will start to
appear, as you saw in figure 6.1. However, the layout and structure are fairly straightfor-
ward, and you can review it if you’re interested in using the Clarity UI library.

6.1.2	 Sample data

This application requires stock data, and I’ll quickly cover how it’s being generated and
provided to the application. The list of stocks that are loaded by the application are a
subset of the technology stocks from the New York Stock Exchange, which is about 160
stocks. You’ll likely recognize some of the stocks but not others; they’re real companies
and symbols. But the prices associated with each one are randomly assigned. There is
a back-end process running that changes the price values every 5 seconds. The calcula-
tions are weighted so that most of the changes are 1–2 cent changes, but stocks can also
quickly swing up to 40 cents every 5 seconds, though that’s far less likely.

https://github.com/angular-in-action/portfolio/archive/start.zip
https://github.com/angular-in-action/portfolio/archive/start.zip

132 Chapter 6  Services

We’ll create a service that will help us load this data into our application from the
remote service. Using it, we’ll refresh the data in our application regularly to show the
latest stock data to the user.

You can also see the code powering the API changes by looking at the API project at
https://github.com/angular-in-action/api. You could also run the services locally your-
self, but that’s not covered here. If you need help, it would be best to post an issue on
the API repository. It’s unlikely that you’ll need to run it yourself, but you might in case
you want to tweak its behavior or the service is down.

All right, let’s get to building some services. We’re going to start with a service that
will help us load those stock prices so we can start to see data in our application.

6.2	 Creating Angular services
We’ll build our first service, which will help us maintain account information for our
fantasy portfolio. It will help provide data to the rest of the application about how
much money is available in the account, how much has been invested, the current list
of stocks owned, and so on. The focus of this service is to manage the account, just as
you would manage a bank or investing account.

The application already has a file generated for you, but if you were to create a new
service yourself, you can use the CLI like you see here. The last parameter is the name of
the service, which is used in the filename as well as the class name, so this would gener-
ate a service named AccountService:

ng generate service account

In figure 6.3 you can see the result we’re working toward. The header will soon display
some basic account information for the user.

Values managed by
the Account service

Figure 6.3   The result of creating the Account service is a display of account information in the top bar.

Open up src/app/services/account.service.ts. We’re going to add some of the basic
properties that are needed by replacing its contents with what you see in the following
listing. We’ll expand this service several times throughout the application, but this will
get us started with showing some of the basic data.

	 133Creating Angular services

Listing 6.1   Account Service Basics

import { Injectable } from '@angular/core';
import { Stock } from './stocks.model';

const defaultBalance: number = 10000;

@Injectable()
export class AccountService {
 private _balance: number = defaultBalance;
 private _cost: number = 0;
 private _value: number = 0;
 private _stocks: Stock[] = [];

 get balance(): number { return this._balance; }
 get cost(): number { return this._cost; }
 get value(): number { return this._value; }
 get stocks(): Stock[] { return this._stocks; }

 purchase(stock: Stock): void {
 stock = Object.assign({}, stock);
 if (stock.price < this.balance) {
 this._balance = this.debit(stock.price, this.balance);
 stock.cost = stock.price;
 this._cost = this.credit(stock.price, this.cost);
 stock.change = 0;
 this._stocks.push(stock);
 this.calculateValue();
 }
 }

 sell(index: number): void {
 let stock = this.stocks[index];
 if (stock) {
 this._balance = this.credit(stock.price, this.balance);
 this._stocks.splice(index, 1);
 this._cost = this.debit(stock.cost, this.cost);
 this.calculateValue();
 }
 }

 init() {

 }

 reset() {
 this._stocks = [];
 this._balance = defaultBalance;
 this._value = this._cost = 0;
 }

 calculateValue() {
 this._value = this._stocks
 .map(stock => stock.price)
 .reduce((a, b) => {return a + b}, 0);
 }

Imports dependencies
Defines a variable
outside of the class

Annotates class with
@Injectable()

Declares private
properties

Defines getter
methods for
properties

Methods to handle
purchasing and
selling a stock

Methods to handle
various calculations

134 Chapter 6  Services

 private debit(amount: number, balance: number): number {
 return (balance * 100 - amount * 100) / 100;
 }

 private credit(amount: number, balance: number): number {
 return (balance * 100 + amount * 100) / 100;
 }
}

This service contains several properties and methods to manage an account. At the top
we import our dependencies, which include the Injectable decorator and the Stock
interface (which describes the typing information for a stock). The defaultBalance
constant is declared, because eventually we’ll use it in several places and want to have
one place to reference it.

The Injectable decorator is used to wire the class to work with the Angular depen-
dency injection system. It doesn’t take any parameters, like the Component decorator
does. Any class that you want to register with DI, you’ll need to decorate with Injectable.
This doesn’t immediately make the service available to use elsewhere in the applica-
tion—we’ll get to that shortly.

The rest of the class implements logic of the Account service, which includes having
a number of private properties that can’t be manipulated directly and getter methods
for those properties to read the values.

The service exposes two methods: one to purchase and one to sell a stock. An import-
ant aspect of this application is that you can only buy a single instance of a stock, which
simplifies a few other aspects of our application. The Account service will retain a list of
the stocks that have been purchased at what price, and when they’re sold it can calcu-
late the return on that investment.

The last few methods are for calculating various values, such as the current
value of all the stocks or debits and credits, and resetting the values. In JavaScript,
adding or subtracting float numbers can sometimes cause odd results, such as
0.1+0.2=0.30000000000000004—many pixels have been spent on the topic if you search
for it. To avoid such behaviors, currency values are first converted to cents, then the
math is done, and then they’re converted back to currency.

We wanted to use this service to show data in the header, which is defined in the App
component. We need to make it available so that the App component template can read
the property values from the Account service. Open up the src/app/app.component.ts
file and modify the top part of it to match what you see in the following listing. The rest
of the file will remain the same for now.

Listing 6.2   App Component Consuming the Account Service

import { Component, OnInit, OnDestroy } from '@angular/core';
import { AccountService } from './services/account.service';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',

Methods to
handle various
calculations

	 135Creating Angular services

 styleUrls: ['./app.component.css']
})
export class AppComponent implements OnInit, OnDestroy {

 constructor(private accountService: AccountService) {}

// skipping some content

 reset(): void {
 this.accountService.reset();
 }

// file continues

In the constructor method, Angular can use the type annotation of a property to deter-
mine what should be assigned to that property. In this example, that means the DI
system will provide a copy of AccountService and store it on the accountService
property. We’ll dig a bit further into how this works shortly, but first let’s finish up our
first service.

We use the Account service inside of the reset method, which will allow the user to
click a button to start the simulation over again. In this listing, I’ve also skipped over a
lot of code to focus on the changes.

For the Account service to be injectable, we need to make sure it’s registered in the
providers array. Open up src/app/app.module.ts and import the Account service:

import { AccountService } from './services/account.service';

Then in the NgModule, add the AccountService to the providers array:

providers: [
 LocalStorageService,
 CurrencyPipe,
 AccountService,
]

This is the second part of wiring up a service to be consumed, as it makes the compo-
nent (or more specifically, the injector) aware of how to inject the service. If you don’t
add a service to the providers array, the DI system will never be aware of it and will fail
to compile the service.

We need to take a quick look at our Investments and Stocks components, so we can
implement the purchase and sale of a stock. These both need to use the Account service
in nearly the same way.

The Stocks component gets the list of all stocks through an input binding (passed
from the App component), and has a button to buy a stock. It uses a paginated data grid
to allow the user to look at the whole list of stocks without having to display them all at
once. We’ll need to call the Account service’s purchase method when the Buy button
is clicked. To do this, we need to open up the src/app/stocks/stocks.component.ts file
and implement the buy method:

buy(stock): void {
 this.accountService.purchase(stock);
}

Injects service
as a private
property

Enables resetting
the application state

136 Chapter 6  Services

The Investments component displays a list of the stocks the user currently owns, and it
looks at the Account service for this information. Instead of using a binding, it looks at
the service to determine whether the list of stocks owned has changed, and also calls the
Account service’s sell method when the Sell button is clicked. We need to make the
changes to the Investments component to support these two scenarios.

Open up src/app/investments/investments.component.ts and replace its contents
with the code you see in the following listing.

Listing 6.3   Investments Component Controller

import { Component, DoCheck } from '@angular/core';
import { AccountService } from '../services/account.service';

@Component({
 selector: 'app-investments',
 templateUrl: './investments.component.html',
 styleUrls: ['./investments.component.css']
})
export class InvestmentsComponent implements DoCheck {
 cost: number = 0;
 value: number = 0;
 change: number = 0;
 stocks: any = [];

 constructor(private accountService: AccountService) {}

 ngDoCheck() {
 if (this.accountService.stocks.length !== this.stocks.length) {
 this.stocks = this.accountService.stocks;
 }
 if (this.cost !== this.accountService.cost || this.value !== this.

accountService.value) {
 this.cost = this.accountService.cost;
 this.value = this.accountService.value;
 this.change = this.accountService.value - this.accountService.cost;
 }
 }

 sell(index): void {
 this.accountService.sell(index);
 }
}

The Investments controller doesn’t accept an input binding for the list of stocks the
user has bought, so instead it implements the DoCheck lifecycle hook. If you recall from
chapter 4, this hook runs anytime the change detection runs.

In the ngDoCheck method, we first check whether the list of owned stocks has
changed, and if so we update the internal stocks value. Then we check whether the
local cost or value properties have changed on the service, and if so we update our
internal properties. It’s a way to grab the values from the service and store them in the

Declare we’ll
implement
the DoCheck
lifecycle hook.

Injects the
Account service

Implements the DoCheck lifecycle hook to update
the state when a stock is bought or sold

Provides a
method that
sells a stock

	 137Dependency injection and injector trees

component. This allows us to maintain an internal state that only changes when the val-
ues change in the service, much like an input binding.

We also implement the sell method so the button to sell a stock calls the Account
service to sell the item. Once the item is sold, the Account service will update its own val-
ues, and then change detection will trigger the ngDoCheck method to run and update
with the current values.

Look at the templates for these components and see how the templates directly bind
to values stored on the service. This is entirely valid, and change detection will still fire
when those values change.

Finally, update the src/app/app.component.html file by uncommenting the div
with the class header-nav. This will show the top bar, which will now be populated with
the values from the Account service.

Now that we’ve seen a service in action, we can spend a little more time looking at
how the services are injected.

6.3	 Dependency injection and injector trees
Services usually rely on Angular’s dependency injection system, which is how we’re
able to include dependencies in our components. To get a sense of how services are
injected into your application, we should dig a little further into how DI works. The
basic rules aren’t complex, but they do allow you to create some interesting and poten-
tially complex scenarios (on purpose or by accident).

You’ve seen it working in all the chapters with examples, and in the last section we
injected the Account service into the Investments component, like you see here:

constructor(private accountService: AccountService) {}

Chapter 3 discussed the basics of dependency injection. Dependency injection works by
having an injector (the entity that can inject a dependency when requested) and a pro-
vider (an entity that knows how to construct and instantiate objects). A module has the
top-level injector for all the entities inside that module.

In chapter 4, we saw how components are constructed into a component tree, with
the App component being the root that the rest of the components stem from. What we
haven’t discussed yet is the fact that every component has an injector.

Anytime you declare a providers array in the component metadata, that component
will get its own injector. For a component that doesn’t have any providers declared,
it will share the injector of its parent (or its parent’s parent if it doesn’t have one, or par-
ent’s parent’s parent, and so on). This is similar to how events bubble up—the injector
will look up the injector tree until it finds what was requested (or throws an error when
it cannot find it).

This is the foundation of the hierarchical injection system, which is a fancy name for
what the previous paragraph described. Injectors are created in a hierarchy (the injec-
tor tree that mirrors the component tree), but they also allow us to isolate what parts
of the application can inject a particular object or even override how a higher-order
injector works.

138 Chapter 6  Services

In larger applications, isolation becomes more important for managing complexity
and preventing conflicts. Imagine a large application, like an accounting program or
an e-commerce platform. In that situation, it’s realistic for multiple teams to work on
the same application, and it’s likely that some services will be named the exact same
thing. If these services were all registered at the topmost level, they would conflict. But
if they’re properly managed and registered at a lower level, closer to where they’re used,
then conflicts could be avoided. This is the principle of isolation at work.

App module:
provides Posts service

Forums:
injects Posts service

Blogs:
injects Posts service

Module-level provider

Instance provided
by App module

Instance provided
by App module App component

App module:
provides Posts service

Forums:
provides and injects

Posts service

Blogs:
provides and injects

Posts service

Component-level provider

App component

Figure 6.4   Module level providers are injected from the module, and
component level providers create individual instances at their level in
the component tree. Highlighted blocks are where services are provided.

In figure 6.4, the left side shows that if you declare the provider for the Posts service
at the module level, it’s available to anything inside of that module. When the Blogs
or Forum components request the service to be injected, it goes up through the com-
ponent injector hierarchy to the App component and then App module to find the
provider. Both components get a reference to the same instance of the service, because
the service was provided by the same provider.

On the right side, the Forums and Blogs components both provide and inject the
Posts service themselves, so they don’t have to go up the hierarchy to find the service,

	 139Dependency injection and injector trees

which means they’re getting separate instances created. Even though the App module
has the provider, it’s never reached, because the components both provided a service by
the same name.

This means there’s not a single global registry of all of the dependencies to inject
(unlike how NodeJS modules are a flat list of packages), but (potentially) numerous
injectors that each maintain their own list. This grants us a level of flexibility not found
in flat dependency lists.

We’re also able to remap a provider at one node in the tree. Like our Posts service
example earlier, imagine that the Forums component wanted to inject a different ver-
sion of the service (perhaps due to refactoring or needing to pass in a value that isn’t a
service). Using this syntax, we can provide a different class that will be injected as the
same name:

providers: [
 { provide: PostsService, useClass: PostsServiceV2 }
],

There are several different ways to override a provider, depending on exactly how you
need to modify the provider. Table 6.1 has a list of the providers and basic examples
with the different capabilities they enable.

Table 6.1   Ways to override a provider with a secondary value or implementation

Provider type Purpose

Alias You can have the injector remap one service to another. This might be useful if you
can’t modify a component directly but need to change the service. It doesn’t create a
new instance of the service.

providers: [{provide: PostsService, useExisting:
PostsServiceV2}]

Class The injector can inject a new instance of a different service in place of an existing ser-
vice. This is useful if you want to replace an existing service with a new instance.

providers: [{provide: PostsService, useClass:
PostsServiceV2}]

Factory In some cases, you’ll need to use a Factory pattern to construct the instance of a
service yourself, typically because a configuration type value is needed during con-
struction that isn’t known ahead of time. You would need to create a factory function
that returns a new instance of the service and that’s used by the injector. You’ll have to
declare any dependencies of that service that need to be injected.

providers: [{provide: PostsService, useFactory: PostsSer-
viceFactory, deps: [HttpClient]}]

Value A value can be injected in place of a service, meaning you don’t need to create a full
class. For example, a static value is already injected, such as a configuration object,
and you want to override it at runtime. You can also replace a service with a simple
object definition, which is particularly useful for mocking during testing.

providers: [{provide: PostsService, useValue:
PostsServiceV2}]

140 Chapter 6  Services

There’s one more nuance to be aware of: When you register a provider, the name of
the object is captured as a token and used to look up the value later. While you’re pass-
ing a reference to the service itself in the providers array, internally DI takes the name
of the service as the token to look up that service.

When we inject a service and give it a type value, internally DI looks for a service
based on the name of that type and returns the corresponding value. In cases where we
override the default provider value, DI understands to return the overridden value.

Why do we want to use DI instead of regular module loading in JavaScript? There are
a few key reasons you’ll usually want to make your services injectable:

¡	It allows you to focus on consuming services and not worry about how to cre-
ate them.

¡	It resolves external dependencies for you, simplifying consumption.
¡	It’s easier to test your Angular entities because you can always inject a mock ser-

vice instead of the real thing.
¡	It can allow you to control the injection of a service without having to worry about

where another piece of the application might also inject the service.
¡	It gives you a clean instance of the service for each injector tree.

DI is powerful and is vital for our applications to be easy to manage, but keeping up
with the nuances can be a little challenging if you try to combine these capabilities all
of the time. Here are a few tips to keep in mind when it comes to DI and services:

¡	Inject at the lowest level —Instead of adding everything to the App module provid-
ers array, try to add it to the lowest component providers array. This will min-
imize the “surface area” of your service to only be available to the components
that might use it.

¡	Name your services wisely —Give your services semantic and meaningful names.
PostsService might be clear enough, or perhaps BlogPostsService, depending on
the context. I find it’s easier to type a few more characters than it is to guess what
a service named BPService might be, especially when multiple people are work-
ing on your application.

¡	Keep services focused —Rather than creating one mega service that you inject every-
where with lots of abilities, make a sensible number of services that do specific
tasks. The longer your service is, the harder it is to maintain and test, and it will
likely become tangled in your application.

¡	Keep services meaningful —On the flip side of keeping services focused, you’ll need
to balance the utility of adding another service. Do you need a service for some-
thing that’s used only once? It may add more complexity for little benefit, so
strike the right balance between number of services and their roles.

¡	Use consistent patterns —Follow the same design for your services for consistency.
For example, if you have several services that handle making REST API calls, you’d
likely want to give them the same kinds of methods, like get to load an object, or
save to store a record.

	 141Services without dependency injection

That wraps up most of what you’ll want to know about DI in Angular. The many ways it
can be used make it flexible and powerful. But you can also bypass DI for some scenar-
ios where it’s not required or available, as we’ll discover next.

6.4	 Services without dependency injection
Now that you’ve seen how to use services and dependency injection together, let’s look
at services that bypass DI. There are some situations where you may not need to use
dependency injection, or you may need to have a service that can be used before Angular
is fully ready. For example, you may want to create a service that can be used to set con-
figuration before Angular starts or you may want to create a helper service for generic
actions.

This approach is using JavaScript modules for exporting and importing values across
files. This is no different than how you’d use JavaScript modules in any project. In short,
most of the time you’ll make your services injectable. There is very little reason not to,
except when your service is used outside of Angular’s application lifecycle. Think of it
like this: If Angular hasn’t started to render the application yet, there’s no way for Angu-
lar to inject a service for you to consume.

We’re going to build a class with static methods for getting and setting configuration
values to be used throughout the application. We won’t make this an injectable service,
because we want to use it before the application is bootstrapped—we want to set the
configuration values before Angular starts rendering, so there’s no chance of a configu-
ration value not being set when Angular needs it.

Start by opening up the src/app/services/config.service.ts file and use the code
from the following listing to replace its contents. This is a basic static class to maintain
configuration, though we only have one property in this example.

Listing 6.4   Config service without using DI

export class ConfigService {
 private _api: string;

 static set(property, value) {
 this['_' + property] = value;
 }

 static get(property) {
 return this['_' + property];
 }
}

In this service, there’s a single property for storing the URL to the API and two static
methods for getting and setting that property. We could add more properties as
needed, but for this application it’s the only configuration we’ll use. There are many
ways you could have written this service, but the key here is that it’s a plain JavaScript
class and doesn’t use DI.

142 Chapter 6  Services

Now let’s use this to set the value in the src/main.ts file before the application is
bootstrapped. Open up the file and add the two lines in bold in the following listing
after the current imports.

Listing 6.5   Main file

import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';
import { environment } from './environments/environment';
import { ConfigService } from './app/services/config.service';

ConfigService.set('api', 'https://angular-in-action-portfolio.firebaseio.com/
stocks.json');

if (environment.production) {
 enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule);

If you recall, the main.ts file is our entry point for the application. This is the first code
to be executed when the application starts, so this will set the API URL immediately.
That allows us to use the Config service anytime in the application to get this value.

You could certainly use DI and make a service that handles configuration that way, but
this is an alternative you may consider if you need configuration set as early as possible.

Now we’ll use this Config service in another service that will manage loading the
stock data, and we’ll dig into the HttpClient service that Angular provides.

6.5	 Using the HttpClient service
Angular comes with its own HttpClient service that helps with requesting data from
an API. We saw the Http service in action in the chapter 2 example application, but we
need to give it a little more attention. In addition, we’ll use the Config and Account
services we created to enable most of the rest of the application to start working.

HttpClient is part of its own module, so you have to make sure it’s included in your
project. It’s part of the @angular/common package, which you’ve probably installed,
but if not, use npm to install it. If you’re using your own tooling and module loader, like
SystemJS, you’ll have to ensure it’s aware of this module.

It’s considered best practice to never use HttpClient in the component controller
directly (yet many articles and even the documentation may demonstrate this case),
because this helps create a separation of concerns. That’s why we’ll create a new service
that will use the HttpClient service and abstract some of the logic from the controller.

The HttpClient service uses observables for handling aspects of the response.
Because it returns an observable, you could also use RxJS to convert it to a promise (not
covered here, but found in RxJS documentation), though I generally discourage that
unless there’s a strong reason.

	 143Using the HttpClient service

By the end of this section, the application will look like figure 6.5, where data gets
loaded, and the data will finally fill in the cards. It will display the list of stocks in the data
grid and in the price ticker.

Data loaded from API
using Http service

Figure 6.5   Data loaded into the application using the Stocks service with the HttpClient

To get started, open up src/app/services/stocks.service.ts and replace the contents
with what you see in the following listing.

Listing 6.6   Stocks service wrapping the use of the HttpClient service

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { ConfigService } from './config.service';
import { Stock } from './stocks.model';

@Injectable()
export class StocksService {

 constructor(private http: HttpClient) { }

 getStocks() {
 return this.http.get<Array<Stock>>(ConfigService.get('api'));
 }
}

The Stocks service serves one primary function: to facilitate the loading of data. We
keep the focus on this by having one method that uses the HttpClient service to
request data and return a subscription for the result. It starts by importing depen-
dencies, as you should expect by now, and that includes the Config service we created

Imports
dependencies

Creates injectable
class

Constructor is used to inject
services into the class

Method that uses the HttpClient
to request data

144 Chapter 6  Services

earlier and the HttpClient service from the @angular/common/http package. Then
the StockService class is decorated with Injectable.

The constructor injects the HttpClient service into the class, but notice we don’t do
the same for Config because it isn’t an injectable service, remember—it’s only an object
with static methods, so we can call it directly.

Now the important part of the service is the getStocks method. When it’s called, it
will return an observable for the response that the HttpClient will create so we can else-
where use subscribe to get the response data. The HttpClient has methods for other
HTTP verbs, like post, put, and delete. You can read more about these in the docu-
mentation at https://angular.io/guide/http. There’s no error handling here because
that will need to be handled at the call site of this method.

In some ways, this simple service abstracts away the use of HttpClient from our com-
ponents, because we shouldn’t have to care where the data is coming from. Controllers
should ask for data and receive it from a service instead of having to construct the URL
and make HTTP requests directly. This is considered a best practice in most program-
ming paradigms.

When put all together, we’ll use the getStocks method to set up our HTTP request and
then subscribe to it to trigger the request and handle the response. Note that calling get-
Stocks won’t fire the HTTP request—only when we subscribe to it will it fire. Open up the
src/app/app.component.ts file and replace it with the code from the following listing.

Listing 6.7   App component controller to use Stocks service

import { Component, OnInit, OnDestroy } from '@angular/core';
import { AccountService } from './services/account.service';
import { Stock } from './services/stocks.model';
import { StocksService } from './services/stocks.service';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css'],
 providers: [
 StocksService
]
})
export class AppComponent implements OnInit, OnDestroy {
 refresh: boolean = true;
 stocks: Stock[] = [];
 interval: any;

 constructor(
 private accountService: AccountService,
 private stocksService: StocksService) {}

 ngOnInit() {
 this.load();

 this.interval = setInterval(() => {
 if (this.refresh) {

Imports
and

marks
Stocks

service as
provider

Injects Stocks
service

Calls the load method on an interval to
automatically refresh data if enabled

https://angular.io/guide/http

	 145Using the HttpClient service

 this.load();
 }
 }, 15000);
 }

 toggleRefresh(): void {
 this.refresh = !this.refresh;
 }

 ngOnDestroy() {
 clearInterval(this.interval);
 }

 reset(): void {
 this.accountService.reset();
 }

 private load() {
 this.stocksService.getStocks().subscribe(stocks => {
 this.stocks = stocks;
 }, error => {
 console.error(`There was an error loading stocks: ${error}`);
 });
 }
}

Before we can use the service, it has to be imported and added to the providers array.
Then it gets injected into the component as an argument for the constructor. This is
the same thing we did for the Account service, except here we’re doing it in the com-
ponent itself. This means only the App component and any child components will
have access to this service, instead of the entire module.

When the App component initializes, it will call the ngOnInit method to load the
data once and then set an interval to reload every 15 seconds. Note that it will also
check whether the refresh property is true before reloading, because we’ll have a
toggle to optionally disable refreshing data. When the component is destroyed, we use
ngOnDestroy to clear the interval to prevent memory leaks.

The load method is a private method that uses the Stocks service in order to load
the data. We call getStocks().subscribe() to construct the HTTP request and fire it.
When the response is received, we store the result on the stocks property. We also have
an error handler to log in to the console if there was an error.

The last step we’ll take is to uncomment everything else inside of the src/app/app.
component.html file, except for the first line that has the alert component. Doing this
will make all the components now appear in our application, filled in with data! You’ll
notice that the App component binds the data into the different components, as in the
following sample code. Anytime the data is reloaded, the binding will update, and the
components will refresh their copy of data and display:

<app-ticker [stocks]="stocks"></app-ticker>

Calls the load method on an interval to
automatically refresh data if enabled

Method to toggle the
automatic refresh

Lifecycle hook to
clear the interval

Method to call Stocks
service to request data and

store data on property

146 Chapter 6  Services

Because we created a service to handle the complexities of building the HTTP request
to load data, we kept our controller much more focused. The component doesn’t have
to know how data was returned—it could be hard coded or loaded dynamically—it
only knows how to ask the service for data. You’ll want to follow this pattern anytime
you have data access. The component does need to understand how to handle the
response from the service, and in this case the component only needs to understand
that it’s given back an observable.

You’ll likely create several services like this in your applications, and over time you’ll
probably come up with specific patterns that you prefer to reuse. I’ve found it useful to
create a base HttpClient service and extend that to create specific services for various
API endpoints. The design you choose for your services can depend greatly on the API
design.

Although HttpClient is the most common service to use to load data, your applica-
tion can still use other protocols like Websockets, push notifications, or other APIs such
as audio recording. Services can be designed to abstract the complexities of each data
source and allow your components to remain focused.

Now let’s look at how we can intercept requests and responses to handle scenarios
where we want to do additional work, such as adding common headers or even target-
ing a specific type of response. We can easily transform both requests and responses
from a common point, and that’s powerful.

6.5.1	 HttpInterceptor

Often you’ll want to intercept HTTP requests or responses before they’re handled else-
where in the application. For example, you may want to add an authorization header
to all outgoing requests to a particular domain or you may want to capture any error
responses and log them. The HttpClient provides a nice way to intercept requests
and responses for these types of purposes by making a service that implements the
HttpInterceptor interface.

In our case, we’d like to add a bit of logic when the Stocks API data is returned so that
we can update our account balance. When we buy some stocks, the current value of the
stocks and our portfolio are tracked in the Account service. When we get the latest data
from the API, we want to also update the Account service state to reflect the most recent
pricing (and hopefully we’ve made money and not lost it).

An HttpInterceptor is crafted like most Angular services, but it must have a method
by the name of intercept. You’ll always intercept the request and then optionally fol-
low it through to also intercept the response. To see this in action, let’s make an inter-
ceptor that will intercept any requests for the stock data and update the Account service
with the latest prices. Generate a new service using the following:

ng generate service services/interceptor

Open up the new file at src/services/interceptor.service.ts and replace its contents
with the values from the following listing.

	 147Using the HttpClient service

Listing 6.8   HTTPInterceptor

import { Injectable } from '@angular/core';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/operator/do';
import { HttpEvent, HttpInterceptor, HttpResponse, HttpHandler, HttpRequest }

from '@angular/common/http';
import { AccountService } from './account.service';
import { Stock } from './stocks.model';
import { ConfigService } from './config.service';

@Injectable()
export class StocksInterceptor implements HttpInterceptor {
 constructor(private accountService: AccountService) {}

 intercept(req: HttpRequest<any>, next: HttpHandler):
Observable<HttpEvent<any>>

 const request = req.clone();
 request.headers.append('Accept', 'application/json');
 return next.handle(request).do(event => {

 if (event instanceof HttpResponse && event.url === ConfigService.
get('api')) {

 const stocks = event.body as Array<Stock>;
 let symbols = this.accountService.stocks.map(stock => stock.symbol);
 stocks.forEach(stock => {
 this.accountService.stocks.map(item => {
 if (stock.symbol === item.symbol) {
 item.price = stock.price;
 item.change = ((stock.price * 100) - (item.cost * 100)) / 100;
 }
 });
 });
 this.accountService.calculateValue();

 return stocks;
 }
 });
 }
}

There’s a bit of setup required, and we can take this slowly. After we import dependen-
cies, we declare a service with Injectable and have it implement the HttpInterceptor
interface. This interface checks whether we have the intercept method on our class
and throws a compile error if not. We also need access to the Account service, so we
inject it in the constructor.

The intercept method is what will be called for any HTTP request, and you’re given
two parameters. The first is the HttpRequest object, which has data about what URL
is being called, the payload, any headers, and so forth. The second parameter is the

Creates service class, implements
HttpInterceptor, and injects Account service

Defines the
intercept
method Gets clone of

request object

Modifies our new
request object

Returns the
handler, passing
our version of the
request and
chaining an
event handler

Checks the event type and URL
Accesses the
response body

Logic to update Account
service values

148 Chapter 6  Services

HttpHandler object, which is how we’ll tell Angular that we’re done modifying the
request. If we don’t, the request will fail.

If we want to make changes to the request before it’s fired, we would modify those val-
ues at the top of the intercept method. The HttpRequest object is immutable, so if you
want to modify a request you have to first clone the object, as we do here. Then we add a
new header to the request to say we want to accept JSON data. You can review all the prop-
erties for the request at https://angular.io/api/common/http/HttpRequest.

Once we’ve made our changes to the request, we then need to tell Angular to handle
them. The HttpHandler object has a method called handle (aptly named) that will take our
modified request and pass it along to the HttpClient to use for making the HTTP request.

We could end it here if we only wanted to modify the request, but because we also
want to use the response, we’re using the RxJS operator do to run our custom logic on
the response after it arrives. The do operator allows us to do actions that receive the
data on the stream, but don’t modify the response itself. This is appropriate in this case
because we only want to use the response to modify the Account service, and it would
also make sense in a case where you’d do something like logging or caching of the
response. If you wanted to modify the response object directly, you’d most likely use the
RxJS map operator to modify the stream.

Once we’re inside of our do method, we grab a copy of the data and then imple-
ment some logic to look through the stocks we’ve purchased in the Account service
and update their current price and value based on the latest prices. When the Account
service gets the updated values, the portfolio values will update.

Now that we have our interceptor, we need to correctly set it up so the application is
aware of it. Because there may be multiple interceptors, we have to declare our service
provider in a different manner. It will be declared in the App module providers array,
but in this case we’re going to use a multiprovider. That means you can provide a new
service that gets bundled into a list of other providers. This makes sense if you want to
have more than one interceptor (which is possible), but want to be able to refer to all
interceptors as a single entity.

Open up src/app/app.module.ts and import the HTTP_INTERCEPTORS token:

import { HttpClientModule, HTTP_INTERCEPTORS } from '@angular/common/http';

Modify the providers array like this:

providers: [
 LocalStorageService,
 CurrencyPipe,
 AccountService,
 {
 provide: HTTP_INTERCEPTORS,
 useClass: StocksInterceptor,
 multi: true
 }
],

Here we use an object that will attach our StocksInterceptor to the list of
HTTP_INTERCEPTORS. This allows us to define multiple interceptors, all to be added to
the same list, which is a realistic scenario.

https://angular.io/api/common/http/HttpRequest

	 149Helper services

There are so many potential uses for HttpInterceptors, and in my experience
they’re often the best solution. Although this example is useful, the best uses are when
you want to apply changes to all HTTP requests or responses. In this case, we’re only
applying the response logic if the URL matches our stock endpoint, so it could be better
to handle this logic elsewhere. But I like this interceptor because the logic it powers is
about the Account service and not directly about the Stocks service, so it makes sense to
separate it like this. That said, I’d recommend that you use interceptors when you need
to apply logic to more than one type of request or response, or when the additional
action is beyond the scope of the normal service.

Next we’ll take a look at helper services that have a more limited role in the applica-
tion and are primarily there to keep complexity down or reduce code duplication.

6.6	 Helper services
As you build your application, you may see some code start to reappear in various
places. That’s what all services help to reduce, but sometimes you’ll find that some
code feels out of place and needs to be extracted into a service. When you do that,
you’re creating a service that exposes helper functions to simplify your components.
We haven’t seen much of this in our examples yet because our applications have been
fairly compact.

Imagine you have some custom sorting logic that you want to use when the user
selects various filters for a list of items, but that the logic might be used in multiple
components. That would be an example of reusing the same logic in multiple places,
but also extracting the complexities from the component level to a service to keep your
components focused.

I have a few ways to identify code that would be good to be extracted into a helper ser-
vice. First, if I have to unit test similar logic in multiple places, I know there’s a chance
to simplify my application and my tests. I also look for code that’s particularly difficult
to read, often because it’s nested several blocks deep. That kind of code becomes chal-
lenging to unit test (though you might also want to think about how to reduce the
depth as well). Finally, I try to keep track of code that does tasks that are secondary to
the primary goal of a function, such as a block that has to do some JSON parsing and
validation before being stored on the model.

In our application we’d like to make it easy to access local storage so we can cache the
current application state. I think of it as a data access helper service. Getting and storing
data in local storage isn’t terribly difficult, except we’re putting in JSON data that has to
be parsed or stringified before local storage can handle it.

We’ll create a local storage service to help us manage accessing and storing JSON data
and then update our application to check for any cached data on initialization. This will
allow us to remember the purchase history for the user (in the current browser only).

Open up app/src/services/local-storage.service.ts and add the code from the fol-
lowing listing. This is a fairly simple service, but it helps us abstract these steps from the
controllers.

150 Chapter 6  Services

Listing 6.9   Local storage service

import { Injectable } from '@angular/core';

@Injectable()
export class LocalStorageService {
 get(key: string, fallback: any) {
 let value = localStorage.getItem(key);
 return (value) ? JSON.parse(value) : fallback;
 }

 set(key: string, value: any) {
 localStorage.setItem(key, JSON.stringify(value));
 }
}

This class is much more basic than the Stocks service, but it still performs an important
function. The get method lets us request an entry from local storage based on a key
and parse it into an object for us. It also accepts a fallback value, which is returned if
there is no cached data. The set method stores some data into local storage but will
stringify the data before it’s stored, because local storage only stores strings.

This service is built assuming that you want to store objects or arrays into storage, but
you can also store some primitive values like numbers or strings. If you wanted to better
handle some of those data formats, it would require more complexity, and later on you
could easily expand the service to handle those situations without having to change any
of your current uses. That’s another great benefit to abstracting this type of logic: You
can improve upon it and give it more capabilities as long as you support the current
functionality.

In order to use this service, we’ll want to cache the application state anytime users
buy or sell stocks. That’s handled by our Account service, so we’ll want to open up src/
app/services/account.service.ts and add the bold sections in the following listing. The
entire file is included for your convenience.

Listing 6.10   Account service using Local storage service

import { Injectable } from '@angular/core';
import { Stock } from './stocks.model';
import { LocalStorageService } from './local-storage.service';

const defaultBalance: number = 10000;

@Injectable()
export class AccountService {
 private _balance: number = defaultBalance;
 private _cost: number = 0;
 private _value: number = 0;
 private _stocks: Stock[] = [];

 constructor(private localStorageService: LocalStorageService) {}

 get balance(): number { return this._balance; }

Method to get a value
from local storage

Method to store a
value into local storage

Imports the Local
storage service

Injects Local storage
service into class

	 151Helper services

 get cost(): number { return this._cost; }
 get value(): number { return this._value; }
 get stocks(): Stock[] { return this._stocks; }

 purchase(stock: Stock): void {
 stock = Object.assign({}, stock);
 if (stock.price < this.balance) {
 this._balance = this.debit(stock.price, this.balance);
 stock.cost = stock.price;
 this._cost = this.credit(stock.price, this.cost);
 stock.change = 0;
 this._stocks.push(stock);
 this.calculateValue();
 this.cacheValues();
 }
 }

 sell(index: number): void {
 let stock = this.stocks[index];
 if (stock) {
 this._balance = this.credit(stock.price, this.balance);
 this._stocks.splice(index, 1);
 this._cost = this.debit(stock.cost, this.cost);
 this.calculateValue();
 this.cacheValues();
 }
 }

 calculateValue() {
 this._value = this._stocks
 .map(stock => stock.price)
 .reduce((a, b) => {return a + b}, 0);
 }

 init() {
 this._stocks = this.localStorageService.get('stocks', []);
 this._balance = this.localStorageService.get('balance', defaultBalance);
 this._cost = this.localStorageService.get('cost', 0);
 }

reset() {
 this._stocks = [];
 this._balance = defaultBalance;
 this._value = this._cost = 0;
 this.cacheValues();
 }

 private cacheValues() {
 this.localStorageService.set('stocks', this.stocks);
 this.localStorageService.set('balance', this.balance);
 this.localStorageService.set('cost', this.cost);
 }

On purchase or sell, calls
cacheValues to store state

Method to initialize the
application state on startup

Method to
store data
into local

storage

152 Chapter 6  Services

 private debit(amount: number, balance: number): number {
 return (balance * 100 - amount * 100) / 100;
 }

 private credit(amount: number, balance: number): number {
 return (balance * 100 + amount * 100) / 100;
 }
}

As you should expect by now, we start by importing the service into our file and then
inject it into the class. I hope you’re wondering how this works, since there is no
providers array like in the components. Services must be injected somewhere into
a provider, and before you started, the Local storage service was already added to the
app module’s providers array. See src/app/app.module.ts to confirm that the Local
storage service is imported and added into the providers array. That means this pro-
vider is available anywhere in this module, so the Account service can inject it.

We added the new method cacheValues to our list of private methods, which will call
the Local storage service to save the requested properties. Then both the purchase and
sell methods call cacheValues to save the application state.

The last method is an init method, and this is used to initialize the data from local
storage if it was stored previously. Otherwise, it uses the default values and starts the
application with a fresh session. This doesn’t get called automatically, because this isn’t
a lifecycle hook like NgOnInit. I’ll address this in a moment.

Since we moved the local storage work into a helper service, it’s much easier to use
and allows us to keep the Account service more focused as well. You could imagine
extracting the Account service’s debit and credit methods into a helper service if you
needed to do a lot of financial calculations. I find opportunities for helper services
easy to spot after I’ve written some code, though not always obvious when I first write
the code.

The last little change we’ll make is to call the init method, which we’ll do from the
App component. Open up the src/app/app.component.ts file and add a call to the
init method as the first line of ngOnInit, like this:

ngOnInit() {
 this.accountService.init();
 this.load();

 this.interval = setInterval(() => {
 if (this.refresh) {
 this.load();
 }
 }, 15000);
 }

This will initialize the data from local storage when you start up the application, allow-
ing you to continue an existing session. The Account service is already injected, so we
need to use it.

	 153Services for sharing

These kinds of helper services can take many different forms, so don’t worry too
much about making them until you see similar or repeated logic in multiple places or a
code snippet is clearly best separated. As you create more Angular applications, you’ll
get better at creating services earlier on, but I suggest focusing on components first and
refactoring to services after you get more familiar.

6.7	 Services for sharing
There are many ways to deal with application data and sharing state, as we’ve already
seen in our components in previous chapters’ examples. Remember, the primary
way to pass data between components is through using input or event bindings, but
another option is to store data in a service and use dependency injection to make it
available anywhere it’s needed.

What you do is externalize some data into a service, and anywhere you need to use it,
you inject that service. If you use it in a component’s template with data bindings, then
change detection will automatically catch any changes on the service and render. Alter-
natively, you can implement your own change detection in cases where that might be
needed using the DoCheck lifecycle hook (similar to what we did earlier).

The service can share data and also methods. You may want to protect access to data,
similar to the Config service, or you may make it more public. Over time, as you build
larger and more complex applications, you’ll likely want to ensure that you lock down
the way your services expose data so it doesn’t get messed up.

We’re going to create a small service to help us display alerts when certain events
occur, as you see in figure 6.6.

Alert component

Figure 6.6   Alert component and service appears on purchase

For example, when the user purchases or sells a stock, we can show an alert with the
details of the exchange. Open up the src/app/services/alert.service.ts file and update
it to match the code in the following listing.

154 Chapter 6  Services

Listing 6.11   Alert service

import { Injectable } from '@angular/core';

@Injectable()
export class AlertService {
 show: boolean = false;
 type: string = 'info';
 message: string;
 timer: any;

 alert(message: string, type: string = 'info', autohide: number = 5000) {

 alert(message: string, type: string = 'info',
autohide: number = 5000) {
 this.show = true;
 this.type = type;
 this.message = message;
 if (this.timer) {
 clearTimeout(this.timer);
 }
 if (autohide) {
 this.timer = setTimeout(() => {
 this.close();
 }, autohide);
 }
 }

 close() {
 this.show = false;
 }
}

The Alert service contains three properties that describe whether the alert is visible,
what type it is, and the message to display. These values are initialized with default
values, and the alert method accepts arguments that will change the state. The close
method changes the state to disable the alert. This service exposes three properties
and two methods that mutate those properties.

This service doesn’t do anything on its own—it has to be linked to the Alert com-
ponent to bind these properties into the component’s behaviors. I’ve already set up
the component template to correctly bind these values where needed if the service is
injected into the component, which is what we need to do next. Open up src/app/
alert/alert.component.ts—we need to import and inject the service. At the top of the
file, make sure to import like you see here:

import { AlertService } from '../services/alert.service';

Then the class needs to inject the service in the constructor method, like this:

export class AlertComponent {
 constructor(private service: AlertService) { }
}

Sets properties to describe the alert state

Method to display an alert
based on configuration

Method to close the alert

	 155Services for sharing

While we’re looking at the Alert component, note that the template found in src/app/
alert/alert.component.html is already trying to reference the service to bind to these
properties, such as *ngIf="service.show". The template directly references the val-
ues in the service, so if the service property changes, so will the binding.

Now that the Alert component and service are wired up, we can start to use the alerts,
right? Not quite. We haven’t yet registered the provider, so we need to add it to the App
module. Open up src/app/app.module.ts and import the Alert service:

import { AlertService } from './services/alert.service';

Then add it to the providers array to make it available to the application for injection:

providers: [
 AlertService,
 LocalStorageService,
 CurrencyPipe,
// ... rest of the providers

The App component template should still have the Alert component commented out,
so we need to fix that. Open up src/app/app.component.html and uncomment the
top line so it will render:

<app-alert></app-alert>

Now we need to call the Alert service and have it trigger an alert! We’ll do this in two
different places. In the Account service, we’ll show an alert when you buy or sell a
stock, and in the App component, we’ll show an alert when you toggle the refresh or
reset the app state.

While we’re still in the App component, let’s add the first set of alerts. Update the
toggleRefresh method to call the service, like you see here:

 toggleRefresh(): void {
 this.refresh = !this.refresh;
 let onOff = (this.refresh) ? 'on' : 'off';
 this.alertService.alert(`You have turned automatic refresh ${onOff}`,

'info', 0);
 }

This calls the Alert service, passing in a message and type and disabling the auto close
feature. Likewise, modify the reset method like this:

 reset(): void {
 this.accountService.reset();
 this.alertService.alert(`You have reset your portfolio!`);
 }

This calls the service but only sets a message and leaves the other defaults in place.
Now we can implement the alerts in the Account service. Open up src/app/services/
account.service.ts and import the Alert service:

import { AlertService } from './alert.service';

Then make sure to inject the service onto the controller constructor:

 constructor(private localStorageService: LocalStorageService,
 private alertService: AlertService) {}

156 Chapter 6  Services

Now update the purchase and sell methods, as you see in the following listing.

Listing 6.12   Account service with alerts

 purchase(stock: Stock): void {
 // ... The rest of the method should remain
 this.cacheValues();
 this.alertService.alert(`You bought ${stock.symbol} for $${stock.

price}`, 'success');
 } else {
 this.alertService.alert(`You have insufficient funds to buy ${stock.

symbol}`, 'danger');
 }
 }

 sell(index: number): void {
 // ... The rest of the method should remain
 this.cacheValues();
 this.alertService.alert(`You sold ${stock.symbol} for $${stock.price}`,

'success');
 } else {
 this.alertService.alert(`You do not own

the ${stock.symbol} stock.`, 'danger');
#B

 }
 }

Now when the user purchases or sells a stock, the Alert service will get called and trig-
ger the alert to display. In each use, it passes a different message and type based on the
circumstances. If you run the application at this point, you’ll now see the alert slide in
when you buy and sell.

That completes the Alert component and service, and it allows us to easily display an
alert from anywhere in the application. We already have a service that shares data, the
Account service, but I want to cover one more service and look at it from this perspec-
tive. I suggest that you go back and look at the Account service more closely, see how
it shares data and makes it available, and consider the pros and cons that it may bring.

Using a service like you see here couples the service and component and means that
you can only have one instance of the Alert component. If you had more than one,
they’d share the same state, and you’d get multiple copies of the same alert. You could
design the service to manage multiple components with some logic if you wanted to,
but I suggest thinking about other options.

Although I demonstrate services for sharing data and state here and in chapter 2, I
want to emphasize that this can be a tricky approach to scale as you build your applica-
tion. It can also be problematic if you don’t provide the service at the module level, or if
you provide it again (by accident of course) elsewhere and get a different copy.

Let’s wrap up services by looking at a few less-common services provided by Angular
and how you can learn to use them.

Displays an alert on success or failure of purchase

Displays an alert on
success or failure of sale

	 157Additional services

6.8	 Additional services
Angular has a few other services you can use, like the Http service. To find all the ser-
vices Angular has to offer, the API documentation lists hundreds of objects that Angular
exposes. Sadly, none of them is listed as a service. But here’s a little secret: Some of
those objects can be used like services!

When you view the API documentation (https://angular.io/api), you’ll notice the
API is coded with different categories, including Pipe, Class, Function, and Decorator.
What this list includes is everything that Angular itself exports, which means you can
import any of these items and use them, and some of them can even be injected.

One example is the Location service, which is a class by definition, but acts as a ser-
vice by providing functionality to read and write values to the browser’s URL. Another
example is the Date pipe, which can be used to format dates outside of a template. As
you explore the API, you’ll find other entities that can be used as a service. Although
you could import and use any of the API entities, many are only useful in specific situa-
tions or for Angular’s implementation details.

I’ll use the Currency pipe in our example. You’ll recall that we show an alert when
you buy or sell a stock that shows the sales price. We want to format that number, as we
do when we use the Currency pipe in a template. But that isn’t possible because the
message is set inside a service.

If you remember from our previous chapter examples, the Currency pipe is used like
in the following code snippet. It has a binding value and then the pipe symbol with vari-
ous arguments to configure how it will process the values. In this case, the configuration
formats the value in USD, with a dollar symbol, and formats the value to two decimal
points:

{{stock.price | currency:'USD':true:'.2'}}

I want to point out that the Currency pipe is already added as a provider in the App
module, which means we can use it with dependency injection in our services. Open
up src/app/services/account.service.ts. We’re going to start by importing the Currency
pipe. Add the following to the imports at the top of the file:

import { CurrencyPipe } from '@angular/common';

We need to inject the Currency pipe directly into the service through the constructor:

 constructor(private localStorageService: LocalStorageService,
 private alertService: AlertService,
 private currencyPipe: CurrencyPipe) {}

Now we can use this pipe in our service when a stock is bought or sold. Look for the
line in the purchase method that calls the Alert service and modify it to the following:

this.alertService.alert(`You bought ${stock.symbol} for ` + this.
currencyPipe.transform(stock.price, 'USD', true, '.2'), 'success');

https://angular.io/api

158 Chapter 6  Services

Likewise, find the corresponding line in the sell method and modify it like this:

this.alertService.alert(`You sold ${stock.symbol} for ` + this.currencyPipe.
transform(stock.price, 'USD', true, '.2'), 'success');

That’s all we need to do to use the Currency pipe. Pipes always have a transform method,
which is how the pipe is internally processed when the template encounters a pipe, and
because we’re calling the pipe directly, we follow the same process. It takes the input
value (which in the template would be the binding value) as the first argument, and
then additional arguments are passed in the same as if it were used in the template.

There are many more services and capabilities in the API that you’ll find uses for
over time that I don’t have room to cover. But before you build a service, you can look
through the API to see if Angular exposes something that handles it already.

Summary
We’ve gone through a lot of capabilities for services and how they work. Services are
fundamental for Angular applications, and you’ll be building or using many of them.
Here is a quick recap of what you’ve learned in this chapter:

¡	Services are best for taking on specific tasks, such as data access and managing
configuration.

¡	Services can be injected anywhere in the application as long as they’ve been reg-
istered with a provider.

¡	Angular provides an HttpClient service that helps manage making XHR requests,
and you can wrap your own services around it to simplify data access.

¡	Services can hold values that get propagated, but you need to be aware of the
injection tree to avoid getting different copies of the service.

¡	A class could be used like a service, without having to use dependency injection,
but it should be limited to only situations that make sense.

¡	Angular exposes many entities in the API that you can use in your application,
such as a Location service for managing URLs.

Next up, we’ll talk about routing and how to create different types of navigation for
your Angular application.

159

7Routing

This chapter covers
¡	What routes are and demonstrates how to

create them

¡	Different patterns for navigation and their
merits

¡	How to protect pages from access without
authorization

¡	Organizing code into modules

¡	Using secondary routes for multiple routes

Most applications require the ability to navigate between different pages during the
lifecycle of the application. Typically, an application has at least a few basic pages,
such as a login page, home page, user’s account page, and so forth. Routing is the
term used to describe the capability for the application to change the content on
the page as the user navigates around. Our previous chapter examples haven’t used
routing; they’ve been limited to displaying all the content at once.

The web has a well-established pattern of using URLs to maintain the current loca-
tion of a user. This has traditionally happened (and often still does today) by the
browser requesting a page from a server and the server responding with the necessary

160 Chapter 7  Routing

HTML, CSS, and JavaScript assets. When single page applications (SPAs) became viable,
the role of routing had to move fully into the browser, by allowing JavaScript to manipu-
late the current URL in the browser to maintain the current location within the applica-
tion, even if the application runs entirely in the browser.

Angular provides a comprehensive routing library that makes it straightforward to
create simple and complex navigation patterns. Angular’s router library gives us the
ability to easily define routes and replaces the need for the server to handle resolving
what to display based on the current URL. Instead of using the term page to describe
different places the user can access, I’ll use the term view to describe these different
contexts, such as login view or dashboard view.

You’ll see an example of how to structure your application into different feature
modules. Thus far, we’ve only created one module for our application. When we intro-
duce routing into our application, the complexity and size of our applications are likely
to increase. We’ll see how to create different modules to keep parts of the application
separate from one another. Although we could have done this in other chapters, this
chapter example has the most distinct separation between different capabilities.

The first thing we’ll do is get the chapter example set up.

7.1	 Setting up the chapter example
In this chapter, we’re going to set up a basic community website where the user can browse
forums, blogs, and chat with other users (figure 7.1). I’ve already created the components
and services you’ll need for displaying these features, but I’ve left out the capabilities that
will make it functional with routes.

In the example, there’s a Forums section where you can view all topics in a forum
and then view all of the posts of a particular topic. There’s also a Blogs section, where
you can see a list of blog posts you can view individually. Lastly, there’s a chat feature
that pops up over the rest of the content so you can chat with an automated robot while
browsing the rest of the site. The application also has login ability and an error page if
you navigate to an unknown URL.

Each of these features has at least one route, often more. Let’s look at a short list of
routes that we’ll build in this chapter. These routes represent an important place inside
of the application that a user can land in:

¡	List of forums, which also acts as the default view
¡	Individual forum, which shows a list of topics
¡	Individual topic, which shows the posts in the topic
¡	List of blog posts
¡	Individual blog post
¡	Chat box for selecting another user to chat with
¡	Chat box for talking with another user
¡	Login view
¡	Not found error view

	 161Setting up the chapter example

Each row links
to forum list

Main navigation links
Opens up
chat route

Figure 7.1   Community application with forums, blogs, and chat chapter example

Because I’ve already created much of the application, we’ll start by downloading the
existing code either with Git or by downloading the archive from GitHub. This helps
us focus on adding only the necessary pieces for routing. If you’re using Git, then you
can run the following command:

git clone -b start https://github.com/angular-in-action/community.git

Otherwise, you should download and unzip the project from GitHub: https://github.
com/angular-in-action/community/archive/start.zip. You should now have a copy of
the code on your computer. You’ll need to also install the node modules for the proj-
ect. Navigate to the directory and run the following to install the modules and then
preview the project:

npm install
ng serve

Initially, the application looks empty, but when we start to set up routes, pages will
begin to function. It should appear as you see in figure 7.2. The data for this applica-
tion is stored in a couple of static TypeScript files (named data.ts), just to avoid having
to build an API for this demo and keep it fast. I’ve also kept the application simpler by
avoiding the complexities of allowing users to create new forum posts or blog posts.
The routing knowledge you gain from this chapter will help you to easily add those
abilities after we cover the forms in the next chapter.

https://github.com/angular-in-action/community/archive/start.zip
https://github.com/angular-in-action/community/archive/start.zip

162 Chapter 7  Routing

Figure 7.2   What the application should look like based on the starting point

Now that you’ve got the files and everything set up, let’s get to creating our first set of
routes!

7.2	 Route definitions and router setup
There are a few basic concepts that the Angular router leans on, but it’s very flexible,
and you can create many combinations of various types of navigation experiences. A
router is responsible for coordinating the navigation options for a user as they click
and interact with your application.

At its most basic, the router handles rendering a component based on the current
URL, such as having a Home component render on the main view. It also allows you to
create child routes, where only inside portions of a component change based on the
route, such as when you have commonly shared portions of the page that always exist,
but the inner content swaps based on the URL. It also can support auxiliary routes that
sit “above” the current route and have a separate routing history entirely, like live sup-
port chat boxes.

Our first step is to get the router included in the project, and then we’ll get to create
our first couple of routes, as follows:

¡	/login —Displays the login page
¡	/ —Redirects to the default /forums page in case they load the root page
¡	** —Fallback for matching any route that isn’t defined, like a 404 page

Our goal in this section is to get the router set up, to set up a default route, and to
define a fallback route. You’ll likely follow these steps for each of your projects in which
you use a router.

The Angular router is included as a separate package (@angular/router), which the
CLI includes as part of the npm packages, but doesn’t actually load into the Application
module. If you have a project that doesn’t have the module package, you can install it
via npm like so:

npm install --save @angular/router

When we include the router, we’ll also need to define a set of routes that are valid for
our application. To start off, we’ll have two routes. The first is a login screen, and you
should notice the corresponding Login component in the app. The second is a 404
not found page, which also has a corresponding NotFound component in the app.

	 163Route definitions and router setup

All routes have to be defined, and a definition is only a basic object with at least one
property. There are more than a dozen properties you can use to define a route, but a
typical route contains a path (or the URL) and a component (the component to display
based on the path). We’ll see some other properties in action in this chapter as well, but
we’ll focus first on these two.

Let’s define the login route first as we set up the router in the app. Open the src/
app/app.module.ts file and add the following imports to the file—this includes the
Router module and an interface that describes how routes should be defined:

import { RouterModule, Routes } from '@angular/router';

We can now define our first routes. Create a new variable with the following values, and
then we’ll look at both to understand the type of route they define. You can place this
right after the last import statement:

const appRoutes: Routes = [
 { path: 'login', component: LoginComponent },
 { path: '', redirectTo: '/forums', pathMatch: 'full' },
 { path: '**', component: NotFoundComponent },
];

The appRoutes variable, which is typed to Routes, is an array of simple objects. These
objects can have different properties, and we’ll use many of them in this chapter. You
can see all the properties here: https://angular.io/api/router/Routes. Table 7.1 lists
the properties we’ll use in this chapter, which is most of them.

Table 7.1   Route properties used in this chapter and their purposes

Property Accepted values Purpose

path A string, or wildcard matcher ** Defines the URL path to use for a route; it’s
appended to any parent paths if routes are
nested

component Reference to a component Identifies which component is tied to a partic-
ular route

redirectTo A string of another valid route Redirects a user from one route (the path) to
the route defined in redirectTo

pathMatch ‘full’, ‘prefix’ Determines the matching strategy, whether to
match a partial or full URL for a route

children An array of routes List of routes that are loaded as children of
this route

outlet String of a named outlet Tells the route to load in a specific router
outlet

loadChildren A string with a path to a module Allows you to lazy load a new module when a
particular route is requested

canActivate Array of references to guards Allows you to prevent a route from being used
under certain conditions, such as not being
logged in

https://angular.io/api/router/Routes

164 Chapter 7  Routing

The first route is the most basic and probably most common type of route. It defines
that when a certain path is found in the URL, Angular should render the specified com-
ponent. The path can’t start with the backslash. This route means that if the browser is
at the URL http://localhost:4200/login, it will render the Login component.

The second route is a redirect route. Angular allows you to redirect paths to other
URLs, just as you might with your back end server. The redirectTo property defines
the new URL to navigate to, and the pathMatch property declares that the path must
match exactly before the redirect will trigger. If you want to redirect a path and all
its children, you could set the pathMatch to the value 'prefix'. In this case, the root
path http://localhost:4200/ will redirect to http://localhost:4200/forums. We haven’t
implemented the forums link yet, so it will render the third route.

The third route is similar to the first in that it defines a path and a component, but
the path with two asterisks makes this a wildcard, catch-all type route. If you go to any
route that isn’t known by Angular, such as http://localhost:4200/not-a-route, it will
render the NotFound component.

You’ll want to have a wildcard route in your application to prevent navigational
errors. I recommend setting up a component like the NotFound component in all your
applications from the start.

We’ve defined our routes. Now we need to set up the router to use them. Inside of
the imports section of the module, you need to add the Router module, as you see
here. I’ve bolded the new line to add:

 imports: [
 BrowserModule,
 FormsModule,
 ClarityModule.forRoot(),
 ForumsModule,
 RouterModule.forRoot(appRoutes)
],

What we’ve done is include the router in our application, and we’ve used the for-
Root() method to declare that we’re using the router in the main App module. It also
takes a parameter, which should be an array of routes declared by this module. If you
don’t pass anything here, the router won’t know about any of your routes, so it’s the
way to pass configuration into the router.

The last step is to make sure there’s a Router Outlet component somewhere in your
application. You may have been wondering where exactly it will render these compo-
nents. If you recall from chapter 2, the router needs to know where to render the con-
tent for a given route, and the router outlet is the location marker. You’ll need at least
one router outlet in your application.

Open the src/app/app.component.html file and note that it contains markup for
a header and navigation, as well as a content area, which right now contains a single
header element. Because the navigation will remain consistent between all routes, it
exists outside of the router outlet. This means we don’t have to redefine the navigation

	 165Feature modules and routing

in every route, and I like to think of this as a “global template” that’s always active. Often
global navigation or footers are good candidates, but anything that you would have to
copy and paste into every component is likely best in the global template.

Replace the header element with the following element to define the router outlet.
I’ve bolded the change for you:

<div class="content-container">
 <div class="content-area">
 <router-outlet></router-outlet>
 </div>
</div>

When you run the application, go to http://localhost:4200 and you should see the Not-
Found component rendered in the screen. Type into the address bar http://localhost:4200/
login and navigate to the page, and you should see the Login component render.

So far, we’ve seen a basic route definition, the wildcard matcher, and how to set up
the router library with an outlet. You’ll go through these basic steps anytime you use the
router. In some applications, you might not even need it to get more complex than this!

But most of the time you’ll need to navigate to different URLs and pass in informa-
tion such as IDs for navigating to specific items. Let’s look at this now and see how we
can build routes that have parameters as we look at how to use a feature module with
our application.

7.3	 Feature modules and routing
The intention of Angular feature modules is to create isolated code that’s easier to
maintain and that keeps things together that are logically connected. This is consid-
ered a best practice to implement when you have distinct parts of your application that
can be split. I think the most important benefit is the isolation of code, but it also can
help with creating tests, optimizing the build process, and implementing lazy loading
of routes (which we’re more interested in right now).

A feature module can include the route definitions for the feature set (see fig-
ure 7.3). For example, our Forums section of the application should be its own feature
module, and all routes that are related to the forum can be defined inside of it. This is
best for decoupling, so we don’t have to define routes for a feature module outside of
the feature module.

Chat LoginPost
detail

Posts
list

Not
found

Forum
detail

Forums
list

Post
detail

Forums
module

App
module

Blogs
module

Routes

Figure 7.3   Routes are defined by different modules.

166 Chapter 7  Routing

This chapter example has two additional modules: the Forums module and the Blogs
module. The Forums module has components and services for the Forums section
of the site, and the Blogs Module has its own components and services to render the
Blogs section. They’re already created in the repo, and if you’ve not spent time with
feature modules before, you can take a look at them in the src/app/forums and src/
app/blogs directories.

We can declare some routes in our feature modules, but we’ll have to include the
router and define routes similarly to the previous step. There’s one key difference we’ll
cover, but to get started, open the src/app/forums/forums.module.ts file and import
the Router module:

import { RouterModule, Routes } from '@angular/router';

Now we’ll create another array with route definitions. After the last import statement,
create the following route definition variable:

const forumsRoutes: Routes = [
 { path: 'forums', component: ForumsComponent }
];

This will define a route to display a list of the available forums on the site by rendering
out the Forums component. Now we need to register this list of routes with the router,
but we need to use a slightly different syntax to make it work for feature modules. In
the imports section of the Forums module, add the Router module like you see in
bold here:

imports: [
 BrowserModule,
 FormsModule,
 ClarityModule.forChild(),
 RouterModule.forChild(forumsRoutes),
],

Here we use forChild() instead of forRoot(), because we’re declaring routes that
belong to an imported module instead of the main App module. Otherwise, the pro-
cess is the same, and the route definitions follow the same rules.

The feature module is already included in the App module as one of the imports.
You must import a feature module into the main App module for it to be activated.
Once you save these changes, you can view the forums page by going to http://
localhost:4200/forums.

When you’re planning your application, I’ve found it best to look for opportuni-
ties to organize features into separate modules. It’s always possible to move things into
feature modules later, but if you know that you’ll have several key features that can be
organized, you can set up modules early in development.

When trying to determine what kinds of things belong together, I often look at the
URL structures I expect my application to have. In this chapter example, I expect to put
functionality under /forums and /blogs as two separate root paths, so these are good
candidates for their own modules.

	 167Route parameters

7.4	 Route parameters
URLs are designed to hold information, and sometimes that information tells you
important details such as the ID of a resource to load or other stateful data. Depending
on how you want to structure your URLs, values might be part of the path or the query.

We’ll look at how to use query variables later; right now let’s focus on how to use a
URL parameter to indicate a record ID. In our example, we have a list of forums dis-
played and we will want to click on a forum to see the threads inside it. The URL for
these routes will be something like this:

/forums/1-announcement

The difference here is that the second part of this URL will change depending on the
forum we want to view, because it contains the alias (which is the ID and title together).
Angular supports this with route parameters, which are straightforward to implement.
First let’s add a new route to our Forums module that will denote the path with a
parameter. Open the src/app/forums/forums.module.ts file and add a new route to
the forumsRoutes array, as you see here in bold:

const forumsRoutes: Routes = [
 { path: 'forums', component: ForumsComponent },
 { path: 'forums/:forum_alias', component: ForumComponent }
];

Here we’ve defined a path with a parameter, which is any name we want to declare pre-
ceded by the colon (:) symbol. This will try to match any route that starts with forums
and has a second part of the path, which could be any value, but if there’s a third seg-
ment to the path, the router wouldn’t match to this route.

7.4.1	 Creating links in templates with routerLink

In order to allow users to navigate in the application, we need to create links that work
with the Angular router. The way to do that is by using the special routerLink directive
from Angular on an element that you want to be a clickable link.

Let’s add one routerLink to the top header bar to link to the forums page and see
how to create a link using the basic implementation. Open src/app/app.component.
html and update the line that contains the currently dead link to the forums with a
routerLink, as you see in bold here:

Forums</
span>

In this use of routerLink, it accepts the string with the appropriate path to use. If
the path starts with a forward slash, it will treat the URL as an absolute path from the
domain. It could also be a relative path without the slash. This is probably the most
common way to use routerLink.

We saw routerLink in chapter 2, but let’s take a moment and talk about why it exists
and what it does. In order to facilitate navigating around, links must know which URL
to go to, and typically href is the attribute for an anchor tag that gives the browser that

168 Chapter 7  Routing

information. When you use href with links, the browser will request a new URL from
the server, which isn’t what we want. With Angular, routerLink is the attribute directive
that denotes the expected route to navigate to and allows the Angular router to handle
the actual navigation. In short, if you use href to link to a page, it will trigger a page load
from the server, even if it’s a valid Angular route, and that’s much slower than using the
router. This is a primary tenet of client-side routing.

That’s all it takes to create a link, but you can also bind an expression with router-
Link for more dynamic links. To demonstrate this, we’ll add a link from the forums
list to load the individual forum page. Open src/forums/forums/forums.component.
html (yes, I know the file path is a bit redundant) and update the table row with the
NgFor to include a routerLink to link to the forum:

<tr *ngFor="let forum of forums" [routerLink]="[forum.alias]">

You’ll notice in this case we’re binding a value to it (by wrapping it with the [] nota-
tion). When you bind a value, it expects an array of path segments that it will use to
construct the complete URL. In this case, we’re setting the forum alias value in this
array. By default, it will treat routes as relative to the current URL, which means it will
append to the current route. On this page, the URL is /forums, and each link will be
routed to the forum by alias, like /forums/1-announcements.

I like to use routerLink in this manner for any paths that don’t have any parameters,
and I like to bind an array of values to routerLink when there are params. I find it eas-
ier to read this way, but you can settle on your own approach.

Notice that we also put a routerLink on a table row element, which is traditionally
not a link. Angular is smart enough to add the correct click event listeners on any ele-
ment with a routerLink to handle navigation, so you’re free to use it anywhere. Just be
aware that it won’t add an href attribute to any element that isn’t an anchor tag.

7.4.2	 Accessing the route parameters in a component

Now we need to get the route parameter information into our Forum component so
it knows which forum to display. Often, you’ll use this route parameter information to
call one of your services to load data, and we’ll do that here.

Angular provides a service that contains the currently active route metadata. It gives
you access to a wealth of information, described at https://angular.io/api/router/
ActivatedRoute. It contains details such as the current URL, query or router parameters
(and their current values), information about any children or parent routes, and more.

Using this service, we’ll access the current parameter information. Open src/app/
forums/forum/forum.component.ts and update the class as you see in the following
listing. It will inject new services and handle getting access to the route parameters.

Listing 7.1   Forum component getting access to route parameters

export class ForumComponent implements OnInit {
 forum: Forum;

https://angular.io/api/router/ActivatedRoute
https://angular.io/api/router/ActivatedRoute

	 169Route parameters

 constructor(
 private route: ActivatedRoute,
 private router: Router,
 private forumsService: ForumsService) { }

 ngOnInit() {
 this.route.params.subscribe((params: Params) => {
 this.forum = this.forumsService.forum(params['forum_alias']);
 if (!this.forum) this.router.navigate(['/not-found']);
 });
 }
}

This component is activated when the user navigates to a page like /forums/
1-announcements. We start off by injecting the active route into the route property,
and the router service into the router property. You’d normally need to import them
into the file at the top, but that should already be done for you.

Inside of OnInit, we then create a subscription to listen for when the parameters
change. Many of the values returned by ActivatedRoute are exposed as observables,
so you’ll have to subscribe to get the values. The primary reason why is that when you
have nested routes where a parent and child route are active at the same time, a parent
component can subscribe to get updates as any child routes are loaded.

The params observable you subscribe to will return a Params object type, which allows
you to access the properties like params['forum_alias']. We then use our service to
get the requested forum by passing in the forum alias from the params, and set that to
the forum property.

Just because a parameter is provided to a component doesn’t guarantee that the
alias provided is a valid one, which is a case we should handle. Therefore, if the forum
doesn’t exist, we’ll redirect the user to a not found page.

Throughout the rest of the chapter we’ll write this same basic active route observable
anytime we need access to the parameters. There are other ways to access the current
parameters on the page, but they have some weaknesses and aren’t typically used or
recommended. One example is being able to get the values one time using a promise
instead of an observable, but the drawback there is that you’d only get the parame-
ters one time, and the component wouldn’t know about new parameters if the route
changed without the component being recreated.

If you’re familiar with observables, you may have noticed we didn’t unsubscribe
from the params observable, because an observable typically persists after a component
is destroyed, as an event listener can do. Typically, you should manually unsubscribe
or you’ll end up with memory leaks, but in this case it’s allowed because Angular will
destroy this observable as soon as the active route is no longer active. You could unsub-
scribe in the component’s OnDestroy hook if you prefer.

At this point, if you go to http://localhost:4200/forums, you should be able to click a
forum and see the title of that forum appear in a new page with the URL changing. Try a
few forums to make sure the values change depending on the forum you view.

Injects the router and current active route

Subscribes to the
parameters observable

Calls service
to get

requested
forum by alias

specified by
the route

parameter

If forum wasn’t found,
navigate to error page

170 Chapter 7  Routing

Now we need to see the threads in a single forum, and we’ll use child routes to help
us define these routes that are organizationally linked to the specific forum.

7.5	 Child routes
Having just one component per route can be somewhat limiting and could cause
additional complexity in having to re-declare commonly used pieces across multiple
components. We talked about how the top navbar remains active and visible across all
routes, because it exists outside of the router outlet. We can apply this same principle
to our routes so a portion of the route remains active even while you navigate between
child routes.

For example, in our application there is a Forum component that contains a header
with the forum title (figure 7.4). This will remain active regardless of whether you’re
looking at the list of threads or at a specific thread. You could imagine that this header
bar could also contain common features, such as buttons for creating a new thread in
this forum or a button to report spam.

Forums component inside
App component’s router outlet

Forum component inside
Forums component’s router outlet

Figure 7.4   A child route renders inside of the parent component, as you see here with the Forums
component hosting the Forum component.

We just defined a route with the path /forums/:forum_alias. We will continue to use
this path base when we start to view a specific thread inside of our forum, and we want
it to be like this: /forums/:forum_alias/:thread_alias. When you look at the URL

	 171Child routes

structure here, it shows that you expect both a forum and thread alias to correctly navi-
gate, and that’s an indication of a good place to use child routes.

Based on this, you can see that child routes always share their parent route’s path
and extend it for a new child route. Here is a basic list showing the relationship of these
various routes:

¡	/forums — Forums component, top-level route
¡	/forums/:forum_alias — Child route to show a specific forum
¡	/forums/:forum_alias/:thread_alias — Also a child route of a specific forum, show-

ing a particular thread

Child routes work by creating another router outlet that’s localized to the parent com-
ponent, and then all child routes will render inside of this new router outlet. Figure 7.4
shows how nested router outlets will work in our example, by having two routes and
components active. There’s no limit to how many nested router outlets you could have,
though in my experience I recommend no more than three, because it gets more chal-
lenging to define the correct routes with more children.

Let’s start by adding this new router outlet, which should help you see where the
child routes will go, and then we’ll define these routes. Open src/app/forums/forum/
forum.component.html, and add a new router outlet to the bottom of the file:

<header class="header">
 <div class="branding">
 {{forum?.title}}
 </div>
</header>
<router-outlet></router-outlet>

This defines where any children will be rendered, so the header will always remain
rendered even when the child component routes are active. Now you can think of our
routing as two levels: the router outlet in the App component and this localized router
outlet.

Next we’ll define our routes, and then we can step back and see how it all comes
together. Open src/app/forums/forums.module.ts and update the forumsRoutes to
match the following listing.

Listing 7.2   Forums module routes with children

const forumsRoutes: Routes = [
 { path: 'forums', component: ForumsComponent },
 {
 path: 'forums/:forum_alias',
 component: ForumComponent,
 children: [
 { path: '', component: ThreadsComponent },
 { path: ':thread_alias', component: ThreadComponent }
]
 }
];

Adds new children
property to forum route

Defines default path to render
Threads component

Defines path with thread alias to
render Thread component

172 Chapter 7  Routing

Here we’ve added a new children property to the forums/:forum_alias route. This is
how we denote which routes we want to load into the new router outlet of the Forum
component.

We’ve added two routes. The first has an empty path, and will render when we are on
the parent route. That will display the list of threads that belong to the forum. The sec-
ond is to display a single thread by accepting a thread alias parameter. These two routes
are now child routes for the forum route.

Child routes also help demonstrate how important it is to use observables when
getting route parameters. Parent components remain active and onscreen even as the
child components may be destroyed.

Now we can round off the Thread and Threads component capabilities to load the
correct data and link to threads. We’ll start by helping the Threads component load the
correct list of threads to display. Open src/app/forums/threads/threads.component.
ts and update it as you see in the following listing.

Listing 7.3   Threads component getting list of threads

export class ThreadsComponent implements OnInit {
 threads: Thread[];

 constructor(private route: ActivatedRoute, private forumsService:
ForumsService) { }

 ngOnInit() {
 this.route.params.subscribe((params: Params) => {
 this.threads = this.forumsService.forum(params['forum_alias']).threads;
 });
 }
}

This is nearly identical to the way we got parameters and loaded the forum data from
the Forum component. The only real difference is that we’re grabbing the threads
instead of the forum data from the service. This pattern will repeat, and I won’t bela-
bor the details.

Next open the src/app/forums/threads/threads.component.html file and we’ll
add a routerLink to individual thread routes. Replace the existing table row with this:

<tr *ngFor="let thread of threads" [routerLink]="[thread.alias]">

Notice again this is a relative link, so it will append the thread alias to the current URL,
which would be like /forums/:forum_alias/:thread_alias. That will activate the correct
route.

Now that we can navigate to a specific thread, we just need to update the Thread com-
ponent to grab the active route to have access to the parameters. This will be slightly dif-
ferent due to the way routes are activated, so let’s take a look. Open src/app/forums/
thread/thread.component.ts and update as you see in the following listing.

Gets list
of threads

from
service

	 173Secondary routes

Listing 7.4   Thread component loading a thread and accessing parent route

export class ThreadComponent implements OnInit {
 forum: Forum;
 thread: Thread;

 constructor(private route: ActivatedRoute, private forumsService:
ForumsService) { }

 ngOnInit() {
 this.route.params.subscribe((params: Params) => {
 let forum = this.route.snapshot.parent.params['forum_alias'];
 this.thread = this.forumsService.thread(forum, params['thread_alias']);
 });
 }
}

As usual, we inject the active route and subscribe to params. But in this route we have
access to the parent route information, because the currently active route information
doesn’t contain all the parameters we need. The active route information contains that
information, so we look at the snapshot property to dig into the parent route. Once we
get it, we then use the service to load data for the thread.

You may wonder why we didn’t have to do this with the other child route. Since this
child route has no path (remember we defined the path as ''), it will share the params and
the path with the parent route. You will need to keep that in mind as you design URLs.

Make sure you’ve saved the changes and preview the application again. At this point,
you should be able to click the Forum link in the top navbar to see forums, select a
forum to view, and then select a specific thread. We’ve created two child routes by add-
ing a new router outlet and defining them as children of that same route.

Sometimes you need something that’s like a child route but that’s disconnected from
a specific parent route. Let’s dive into secondary routes, talk about what they are, and
see how you can use them.

7.6	 Secondary routes
In desktop applications, email applications (such as Outlook or Apple Mail) often will
open a new window for composing a new email, and the user can flip between the
windows to continue their work. Gmail has a feature that allows you to create a new
email in a little window inside the application while you continue to navigate around
the rest of the application—which is the same concept as a secondary route. Secondary
routes are designed to allow the user to draft an email while continuing to use the email
application.

These are examples of secondary routes, sometimes also called auxiliary routes,
where some part of the application appears but maintains a different state from the
main application. Chat, help, or documentation windows are also examples of second-
ary routes.

Angular supports these types of routes, and they behave like having a new root-
level router outlet for a set of routes. You can create multiple secondary router outlets,

Subscribes to the params observable

Uses the
snapshot to

access the
parent

parameters

Loads the specific thread from the service

174 Chapter 7  Routing

though typically one is enough to satisfy most use cases. The rules for secondary routes
are mostly the same as other routes, except sometimes we’ll have to specify additional
details to ensure the correct router outlet is used, as shown in figure 7.5.

Main router outlet

Secondary router
outlet named “chat”

Figure 7.5   The main outlet and the secondary router outlet can be active at the same, and can change
their routing states independently of each other.

In this example, we want to have a chat feature that would allow any user to open a chat
box with another user, as you see in figure 7.5. This will sit atop the current page so the
user can continue to browse the site and read forum or blog posts.

7.6.1	 Defining a secondary route

Open src/app/app.component.html and at the bottom of the file add a new line with
another router outlet. This outlet has a name attribute to allow us to target loading
routes into this outlet instead of the primary outlet:

<router-outlet name="chat"></router-outlet>

	 175Secondary routes

Next we need to define some routes that will be attached to this route. They are as
follows:

¡	/users —This will show a list of the users you can chat with.
¡	/users/:username —This will be the chat experience with another user.

Open src/app/app.module.ts and update the appRoutes to contain these two new
routes, as you see here in bold:

const appRoutes: Routes = [
 { path: 'login', component: LoginComponent },
 { path: 'users', component: ChatListComponent, outlet: 'chat', },
 { path: 'users/:username', component: ChatComponent, outlet: 'chat', },
 { path: '', redirectTo: '/forums', pathMatch: 'full' },
 { path: '**', component: NotFoundComponent },
];

Notice they have a path and component like other routes, but we also declare the outlet
property. This is how we’ll tell the router to render this component inside of the new
router outlet with the name chat. Notice we can use route params in secondary routes
as well, so we’ll be able to access those params in the same way we have elsewhere. I also
placed these routes before the redirect and wildcard routes, because those are meant to
act like fallback routes.

The top right of the application has two buttons: a speech bubble button for the chat
and a logout button (which we’ll implement soon). We want to add a routerLink to the
speech bubble button to open this chat box. Go back to the app.component.html file
and update the link surrounding the icon like you see here in bold:

 <clr-icon shape="talk-bubbles"></clr-icon>

Here we use the binding version of the attribute on the routerLink and we pass in
an array with an object. The syntax here is more verbose, because we have to pass in
additional data for the router to understand that this is meant to be a secondary route.
The object contains the outlets property, which then has an object that maps the
name of the outlet to the specific route requested. In this case, we’re passing {chat:
['users']}, which tells it to use the chat outlet, and then go to the path users. This
pattern will repeat for using the secondary routes, so you’ll get to see a couple more
examples of the structure.

At this point, we’ve got a secondary route and a way to trigger it. View the application
and click the speech bubble icon in the top right to open a new window with a list of
users. It allows you to select a user to talk to but doesn’t navigate to the chat window with
that user. Let’s add the ability to navigate within a secondary route now.

7.6.2	 Navigating between secondary routes

Once you’re rendering a component inside of a secondary route, you still link differ-
ent routes together using the same rules. You don’t have to specify the outlet as long as
you use relative links. The context of the route will be understood by the router, so this
will help simplify your links.

176 Chapter 7  Routing

You can change the primary route from a secondary route as long as you provide an
absolute path (such as /forums). Using an absolute path from a secondary route will
change the primary outlet, but the secondary route will remain at the same route.

To get this working, let’s open src/app/chat-list/chat-list.component.html and
update the link to start a chat. When you click a username, it sets a property called
talkTo with the username. We then want to navigate to a relative path with this user-
name, because we defined the secondary route to be /users/:username. Add the
bolded routerLink to the link:

<a class="btn btn-sm btn-link btn-primary" *ngIf="talkTo"
[routerLink]="[talkTo]">Start Chat with {{talkTo}}

The binding will now navigate the user to the Chat component to engage in a fun
discussion with that user. But the Chat component doesn’t yet get access to the route
params to know which user to talk to, so we need to add that to our Chat component.

Open src/app/chat/chat.component.ts and update the constructor and ngOnInit,
as you see in the following listing. The rest of the controller is focused on handling the
chat experience.

Listing 7.5   Chat component accessing route params

 constructor(
 private route: ActivatedRoute,
 private router: Router,
 private chatBotService: ChatBotService,
 private userService: UserService) { }

 ngOnInit() {
 this.route.params.subscribe((params: Params) => {
 this.messages = [];
 this.user = this.userService.getUser();
 this.guest = params['username'];
 });
 }

There is nothing new about this, except it sets up the component model to have a new
chat experience. You can review the remainder of the component controller to see
how it behaves, but at this point the chat box will start to work correctly. You can type
a message and hit Enter, and after three seconds the other “user” will reply with some
anecdote. This is obviously not a real chat experience, but I wanted to make it realistic.

7.6.3	 Closing a secondary route and programmatic routing

All good things come to an end, and at some point you’ll need to exit this secondary
route. For example, you’ll likely want to end the chat session at some point. We can
close a secondary route, and if we ever need it back we just open it up again. To close a
secondary route, you set the current route to null and that will remove it.

I’d also like to show you how to use programmatic (or imperative) routing. Some-
times you’ll need to have your controller or services change the route for you instead of
always waiting for a user to click an element with a routerLink.

Injects the active route and router

Subscribes to the
params and sets
up chat experience

	 177Route guards to limit access

If you look at the Chat and ChatList component templates, you’ll notice there is a
close button near the top of the file. Right now it has a click handler to call the close()
method, which is currently empty. Although you could use a routerLink, I wanted to
demonstrate programmatic navigation here.

Open the src/app/chat/chat.component.ts and src/app/chat-list/chat-list.compo-
nent.ts files and update the close method to be the following. You will need to ensure
that the router is properly injected in the constructor as well (hint: the Chat compo-
nent already has it, but ChatList does not):

close() {
 this.router.navigate([{outlets: {chat: null}}]);
}

The router service provides a navigate method that takes the exact same syntax as
routerLink. In this case, we’re declaring that the chat outlet should navigate to null,
which tells Angular to remove the secondary route. We’ll see another use case for pro-
grammatic routing next, but I usually find it best to use routerLink whenever possible
over programmatic routing.

Now that the secondary route is cleared, there’s no other cleanup. It will be removed
from the application, and to open it again you just have to reactivate it with a new valid
route.

I suggest that you limit using secondary routes to when they provide the most value.
They’re very useful in the right situations, but it’s best to keep it simple. Similar to avoid-
ing too many nested child routes, adding a lot of secondary routes will add complexity
that can probably be avoided.

We have a bit of a problem now. We’re allowing any user to open a chat window with
other users regardless of whether they’re logged in. Using routes, we can guard our
routes from being activated unless certain conditions are met, to secure them from
unauthorized access.

7.7	 Route guards to limit access
Angular allows you to control the conditions that allow a route to render, which
usually is done to prevent the application from going into a bad state. For example,
you shouldn’t allow an unauthenticated user to view portions of the application that
require them to be logged in or they will likely get a lot of errors.

A guard is like a lifecycle hook for route changes that allows an application to verify
certain conditions or load data before a change occurs, as you see in figure 7.6. When
a route change is triggered (either by the user clicking a link or the app programmat-
ically changing routes), Angular will check to see whether any guards are registered.
For example, if an unauthenticated user tries to load the page that displays a logged in
user’s account details, the application should implement a guard that checks the user’s
logged in state before activating the route. The term activate is used to describe if a
route is allowed to be loaded.

178 Chapter 7  Routing

CanActivate
guard

NoYes

Route change
triggered

Route change
canceled

New route
activated

There are several types of guards that give you different options when managing how
routes are activated. They’re defined as a service and then linked to a particular route
to take effect. This allows you to use the same guard multiple times. Here are the five
types of guards and their basic roles:

¡	CanActivate —Used to determine whether the route can be activated (such as
user validation)

¡	CanActivateChild —Same as CanActivate, but specifically for child routes
¡	CanDeactivate —Used to determine whether the current route can be deactivated

(such as preventing leaving an unsaved form without confirmation)
¡	CanLoad —Used to determine whether the user can navigate to a lazy loaded

module prior to loading it
¡	Resolve —Used to access route data and pass data to the component’s list of

providers

We’re going to implement a guard for the chat routes so that the user is forced to log in
first. From that list, the CanActivate guard is the best option for us to accomplish this.

We’ll generate a new service to solve this problem, so run the following command to
set up the AuthGuard service:

ng generate service services/auth-guard

Now open the src/app/services/auth-guard.service.ts file and replace its contents with
the code from the following listing.

Listing 7.6   AuthGuard service for limiting access to routes

import { Injectable } from '@angular/core';
import { CanActivate, Router, ActivatedRouteSnapshot, RouterStateSnapshot }

from '@angular/router';
import { UserService } from './user.service';

@Injectable()
export class AuthGuardService implements CanActivate {

 constructor(
 private userService: UserService,
 private router: Router) {}

Figure 7.6   Guards run before a route is
activated and can prevent access.

Imports
dependencies

Implements the
CanActivate interface

Injects services into class

	 179Route guards to limit access

 canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot) {

 if (!this.userService.isGuest()) {
 return true;
 } else {
 this.router.navigate(['/login'], {
 queryParams: {
 return: state.url
 }
 });
 return false;
 }
 }
}

It starts like a normal service by importing dependencies, and we want to implement
the CanActivate interface to make sure we correctly set up our service. The construc-
tor injects the UserService and Router into the object, which allows us access to the
router inside of the service.

The canActivate method must be implemented with this name, because Angular is
expecting it that way. That’s why the interface is useful to implement; it will warn you if
you didn’t set it up correctly. It receives two parameters: first the snapshot of the current
route activated, and second the new route the application is trying to activate. I only use
the new route metadata in this example, but they allow you to inspect the current route
and requested route details.

Once inside the method, we check our UserService to see if the user is logged in or
not. If they are, we return true to tell the guard that it’s acceptable to allow the route
to be activated. Otherwise, we tell the route to navigate to the login route, and we also
pass an object that contains some metadata. We’ll look at this more closely in a moment.

At this point, we’ve implemented the guard to return true or false, depending on
whether the user is valid. If they’re not, it redirects to the login screen. After the login
process, we want to redirect them back to the page they attempted to view, which is
where the metadata object comes into play. Let’s look at it again:

this.router.navigate(['/login'], {
 queryParams: {
 return: state.url
 }
});

The router takes an optional object as a second parameter, and here we’re using it to
set a query parameter. These are variables that are found in the URL after a question
mark, like you see here in bold:

/login?return=/forums(chat:user).

We’re using this to remember the URL that the user attempted to navigate to by look-
ing at the state.url property (which is the route that the router attempted to activate
but couldn’t). This is a common pattern in login flows, and you can certainly use query
parameters for many other reasons as well in the same way.

Implements
CanActivate method,

which gets two params

Checks if user is
logged in

If user isn’t, redirect
to login page

180 Chapter 7  Routing

That’s our guard; now we need to apply it to some routes. To do this, we’ll update our
appRoutes from the src/app/app.module.ts file; add the following in bold. We need to
first import the new AuthGuardService and then add a new canActivate property to
the routes to secure:

import { AuthGuardService } from './services/auth-guard.service';

const appRoutes: Routes = [
 { path: 'login', component: LoginComponent },
 { path: 'users', component: ChatListComponent, outlet: 'chat', canActivate:

[AuthGuardService] },
 { path: 'users/:username', component: ChatComponent, outlet: 'chat',

canActivate: [AuthGuardService] },
 { path: '', redirectTo: '/forums', pathMatch: 'full' },
 { path: '**', component: NotFoundComponent },
];

We also need to add the AuthGuardService to our list of providers for the application
to know it exists. Add it in the module providers array like this:

 providers: [
 AuthGuardService,
 UserService
],

We’ve now attached the service as a guard to our chat routes. If you preview the appli-
cation and attempt to open the chat, it will redirect you to the login screen. The guard
fires prior to the chat route being completely activated, and therefore the component
will never render, so you don’t have to worry about that component having an unau-
thenticated user.

We want to update the Login component to help with the redirect back to the
requested URL once the user logs in. For this login form you can use any values. It’s
happy as long as you input any random username and password. It also persists the
login into localStorage, so it will remember you. Update the src/app/login/login.com-
ponent.ts file with the contents from the following listing.

Listing 7.7   Login component with redirect after login

import { Component } from '@angular/core';
import { UserService } from '../services/user.service';
import { Router, ActivatedRoute } from '@angular/router';

@Component({
 selector: 'app-login',
 templateUrl: './login.component.html',
 styleUrls: ['./login.component.css']
})
export class LoginComponent {
 username: string = '';
 password: string = '';
 return: string = '';

Imports dependencies

	 181Route guards to limit access

 constructor(
 private userService: UserService,
 private router: Router,
 private route: ActivatedRoute) {}

 ngOnInit() {
 this.route.queryParams
 .subscribe(params: Query => {
 this.return = params['return'] || '/forums';
 if (!this.userService.isGuest()) {
 this.go();
 }
 });
 }

 login() {
 if (this.username && this.password) {
 this.userService.login(this.username);
 this.go();
 }
 }

 private go() {
 this.router.navigateByUrl(this.return);
 }
}

After you import the dependencies and inject the services into the component, you
will implement another observable to get the queryParams just like you would for get-
ting the route params. Because this is a different type of value, you have to subscribe on
a different property of the activated route.

Inside of the callback, the return URL is grabbed from the URL (or if it doesn’t exist,
it sets it to /forums). Then it checks whether the user is already logged in and redirects
immediately to the page. This is to help the situation where someone is already logged
in but somehow lands on the login page erroneously.

The login() method is called by the component when the user clicks the Login but-
ton, and handles logging in the user by calling the user service and redirecting. Then
the go() method calls the router.navigateByUrl() method, which is different from
the typical router.navigate() method in that it takes a string. Because we’re getting a
return path from the URL, it will rely on the route to parse the URL and determine the
correct URL.

We now need to update the logout feature, which will remove the current user state
from the UserService. The service is already there to handle this, but we need to enable
the button to call the service.

First open src/app/app.component.ts and update the link to the Logout button like
you see bolded here:

<a class="nav-link nav-icon" (click)="logout()" *ngIf="!userService.
isGuest()">

 <clr-icon shape="logout"></clr-icon>

Injects services into controller

Subscribes to queryParams
observable to get redirect URL

Method to validate login

Method to call router to navigate
back to return URL

182 Chapter 7  Routing

This will disable the Logout button if the user is a guest, and also call the logout
method to handle the logout. The issue that we might run into is that if you have the
chat outlet activated and then you click Logout, it doesn’t close the secondary chat out-
let. That’s because it’s only checked on route activation, so we need to manually check
whether it’s open and close it.

In order to solve this, we need to make a few small changes to the UserService. Open
src/app/services/user.service.ts. First make sure to import the Router and Activated
Route services:

import { Router } from '@angular/router';

Then we want to inject those dependencies into the constructor like you see here:

constructor(private router: Router) {}

Finally we need to update the logout method with the bold parts, which will always
ensure the router outlet is closed on logout:

logout() {
 username = '';
 guest = true;
 localStorage.setItem('username', '');
 this.router.navigate([{outlets: {chat: null}}]);
}

This is the same code we used earlier to close the chat outlet, and here we run it to
ensure that the outlet is closed. If it’s not currently active, nothing will happen.

You’ll likely need guards anytime you have to deal with application state, such as
logged in users or forms. They’re very helpful, but like most things they’re best used
sparingly. You can have multiple guards on the same route, but the more you have, the
more difficult it is to keep track of application logic.

On the other hand, you should be sure to use guards instead of relying on adding
logic into a component controller directly to check whether the user can activate a
route. Components shouldn’t be concerned about router configurations as much as
possible (with the obvious exception of getting parameter information from URLs).

Our last major feature is to lazy load Angular modules into the application only when
they’re needed, which can be a boost to initial load time for large applications.

7.8	 Lazy loading
If you’re building your application and using feature modules to organize code, then
you can use lazy loading (or asynchronous loading) with the router (figure 7.7). Doing
so will allow an entire module to load only when required, which can save on file size
of the core bundles, perhaps even limiting access to bundles for only those who are
authorized to use it (like administrative modules).

If you haven’t organized your application into different modules, then lazy loading
them into the application isn’t possible, because there’s no logical isolation. The basic
idea is that the Angular build process can analyze the code paths and optimize the code
based on how it’s used to generate different files, but it depends on Angular modules as
the primary way to determine how code is related.

	 183Lazy loading

Is route
loaded?

NoYes

Route change
triggered

Lazy load
module

Route change
triggered

In our chapter example, we have three modules (excluding Angular or third-party
modules):

¡	AppModule
¡	ForumsModule
¡	BlogsModule

The AppModule is our primary application, and the ForumsModule is directly
imported into the AppModule. But we haven’t imported the BlogsModule yet, and
when we want to lazy load, we don’t want to import the module into our application
directly.

Let’s see this in action by setting it up ourselves with the BlogsModule. Open src/
app/app.module.ts and update the routes as you see here in bold:

const appRoutes: Routes = [
 { path: 'login', component: LoginComponent },
 { path: 'users', component: ChatListComponent, outlet: 'chat', canActivate:

[AuthGuardService] },
 { path: 'users/:username', component: ChatComponent, outlet: 'chat',

canActivate: [AuthGuardService] },
 { path: 'blogs', loadChildren: 'app/blogs/blogs.module#BlogsModule' },
 { path: '', redirectTo: '/forums', pathMatch: 'full' },
 { path: '**', component: NotFoundComponent },
];

The new route contains a path and blogs, and the loadChildren property is used to
define a path to the module that should be lazy loaded when the browser tries to access
any URLs starting with /blogs. The loadChildren property takes a file path pointing to
the actual module file, starting from the src directory and excluding the .ts extension. It
then has a hash (#) symbol, followed by the module name. This special syntax lets Angu-
lar know both the location of this module and the name so it can properly create it.

This is all the configuration you need to do to enable lazy loading of a module, but
we still have a little bit of work to do to the BlogsModule for it to function as expected.
So far, it doesn’t have any routes declared, which means this won’t work just yet.

In the AppModule and ForumsModule, we created a variable in the file and stored
the routes in the same file. But you can also create what’s called a router module to store
this configuration. This may be favorable if your configuration is complex and you want
to keep your module files cleaner.

Figure 7.7   Lazy loading a module happens
only when the route is requested and must
be loaded before the route can activate.

184 Chapter 7  Routing

I personally have found that routing modules are just extra files if my application
is small, but they’re more meaningful as my application gets larger. I think it’s more
important to be consistent in how you declare your routes rather than which you
choose. But if you need a generic guideline, then I suggest that if you have more than
three modules, you use a routing module. The choice is yours.

When you create modules with the Angular CLI, you can have it generate a routing
module for you by adding the --routing flag:

ng generate module mymodule --routing

Because the BlogsModule already exists, we’ll need to manually create the routing mod-
ule for the Blogs module. Create a new file at src/app/blogs/blogs-routing.module.ts
and add the contents from the following listing.

Listing 7.8   Routing module for blogs

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { BlogsComponent } from './blogs/blogs.component';
import { BlogComponent } from './blog/blog.component';

const routes: Routes = [
 { path: '', component: BlogsComponent },
 { path: ':post_id', component: BlogComponent }
];

@NgModule({
 imports: [RouterModule.forChild(routes)],
 exports: [RouterModule],
 providers: []
})
export class BlogsRoutingModule { }

This module is a bit different from normal modules, as it’s focused only on setting up
the necessary pieces for routing. After you import all the dependencies, you still declare
a variable with the routes as we have in the other examples. Notice that these paths don’t
contain a prefix of blogs, because we already defined that prefix in our lazy load route
definition. These routes are simple in that they map to a component to render.

Finally we declare the RouterModule.forChild() method in the module imports,
just as we did with the ForumsModule. Then we also add the RouterModule in the
exports, which makes the router directives available to this module’s templates.

We didn’t declare any redirect or fallback routes here. That’s because the one we
defined in the AppModule will still catch any unknown URLs. Routes can be declared
anywhere in the application, and Angular will try to match to the best URL, which
demonstrates the importance of good URL planning.

To consume the router module, we need to import it into our BlogsModule. Open
src/app/blogs/blogs.module.ts and add the new import line here:

import { BlogsRoutingModule } from './blogs-routing.module';

Imports dependencies

Defines routes for this module

Uses the RouterModule.forChild() method to
register routes, and exports RouterModule

	 185Routing best practices

Then we need to add it to the imports for the module like this:

 imports: [
 CommonModule,
 BlogsRoutingModule,
],

That completes the routing module setup, and if you had generated it with the CLI, the
files would already exist for you to add your routes. Now we want to make use of the
BlogsModule by adding a link to the Blogs section in the navbar. There’s already a link
for it, so we’ll just need to add routerLink. Open src/app/app.component.html and
update the link to the blogs:

Blogs

Now when you run the application and click Blogs in the navbar, it will take you to the
Blogs section. If you open the developer tools, you can also watch the HTTP requests
to see that the Blogs module is loaded asynchronously on demand. It happens so fast
when you work locally that there shouldn’t be any lag, but there would be a slight lag
for that file to download from a remote server.

The rest of the blog components already have routerLinks set up for you, but you
can stop and review them if you like. There’s nothing new in there that we haven’t
already done a few times already.

That wraps up the primary Angular routing capabilities you’ll likely need to use in
most of your applications. Although there are some features that I wasn’t able to cover, I
haven’t had many occasions to use capabilities that aren’t outlined in this chapter.

Before closing out this chapter, I’d like to review a few best practices from my experi-
ence for crafting good routes and using the Angular router.

7.9	 Routing best practices
There have been a lot of debates around how to design your application URL struc-
tures, and I have some particularly strong opinions about what constitutes good design.
There are also debates about whether URL design is really all that important, because
most of the time users don’t type URLs into the address bar, anyway.

I can’t force you to follow any specific rules, but I do want to share my beliefs and
experiences with you. I believe that URL design is essential to quality applications. Good
URL structure makes applications easier to maintain, can help users navigate your web-
site, and should help maintain navigational state. Just as you might spend time plan-
ning a page’s layout, you should take time to plan your application’s URL structure.

I would like to suggest the following as best practices, which I put into practice with
my applications and believe are the most likely to provide you with a solid foundation:

¡	Keep URLs short —When possible, URLs should be only as long as they need to be.
This can be tricky as your application grows, so being vigilant from the start is the
best way to keep on track. There may be some SEO considerations for your URLs,
for which I suggest you just keep it simple.

186 Chapter 7  Routing

¡	Favor path parameters over query variables —The use of query variables should be
limited to transient stateful data, such as search filter variables. When you use
IDs or resource aliases in the URL, they should almost always be path parameters.

¡	Prefer to spell out words —I have a strong preference for not abbreviating variables
or paths, because it’s harder to read and some abbreviations are not always clear.
Although you should keep URLs short, you shouldn’t shortcut the words you use.

¡	Use hyphens when using multiple words —The readability of a URL is important, and
if you have multiple words together (like /forums/2-introductions/89-cloned-
didactic-knowledge-user), using hyphens between words is the easiest way to read.
It’s also easy to parse.

¡	Limit the use of secondary routes —As fun as secondary routes can be, they add com-
plexity. If a secondary route is contextual to only some of the application routes,
then you’d have to keep track of when to enable or disable that secondary route.
For example, if you have an application for a bank and there is a secondary route
for opening a new account, you would need to pay attention to what the user
does and determine when it might be appropriate to close it.

¡	Carefully consider the correct guard to use for your use case —There are five types of
guards, and sometimes they can be bent to do different tasks. Be aware of the
purpose of your guard and use the correct one.

¡	Use feature modules so you can use lazy loading —Feature modules are helpful for
code isolation, but being able to lazy load modules is extremely useful. It’s much
easier to start with feature modules and not use lazy loading than it is to later have
to refactor to feature modules to use lazy loading.

¡	Keep it simple —This is true of all things, but I think it’s the most important under-
lying principle in routing. Things can quickly get out of hand if you have 100
routes when you only needed 10 that had better parameters. Look for ways to
simplify all the time!

The rules for the Angular router are fairly straightforward, and most of the complex-
ity comes from combining these features. That’s the inherent power of the Angular
router and its design. It’s simultaneously simple and capable of complex scenarios. I
caution against making a simple scenario into a complex one unnecessarily, but given
some mastery of the router you’ll be able to craft routes to handle any use case.

Summary
The Angular router is quite powerful, and yet the basic principles are easy enough to
pick up quickly and put into practice. We’ve gone through a lot of capabilities for ser-
vices and how they work. Services are fundamental for Angular applications, and you’ll
be building or using many of them. Here’s a quick recap of what you learned:

¡	The RouterModule needs to be included in any module that uses routing. When
you set it up in the AppModule, you call the forRoot() method to set it up for the
application.

	 187Summary

¡	Routes are defined as arrays of objects that contain properties applicable for
those routes, such as a path, a component to render, and/or child routes.

¡	Routes can accept parameters, both in the path or as query variables, to allow you
to reuse a route with different parameters. These parameters are made available
to the component controller through the activate route details.

¡	Using routerLink you can link any element to a particular route. It can be given
a basic string with a valid path, or you could also use the binding syntax to pass in
additional data as an array.

¡	Child routes render inside of a parent component and allow you to reuse code,
such as sharing common navigation or resolving data.

¡	Secondary routes are useful to create routes that are standalone and detached
from the primary routes. This can be useful for experiences that are active
regardless of which page you are on, such as documentation windows.

¡	Use guards to limit access to routes, resolve data prior to activating a route, or
prevent a route from being deactivated. You’ll have to create a service to include
in the route definition to enable the guard.

¡	Feature modules can be lazy loaded into the application, giving you the ability to
reduce the file size of the code that’s initially downloaded to users. It only loads
the module when the user navigates to a route that’s part of the feature module.

In the next chapter, we’re going to look at forms in depth and make it easy to capture
user input.

188

8Building custom
directives and pipes

This chapter covers
¡	How to create your own directives

¡	The difference between structural and attribute
directives

¡	How to use a directive to modify another
component

¡	How to craft custom pipes

¡	What pipe purity is and how to design stateful
or stateless pipes

Angular ships with a number of directives and pipes for the broadest use cases.
Chapter 3 covered the defaults, so you can review what they are and how they’re
used. This includes directives such as NgFor and NgIf for iterating over a list or con-
ditionally displaying items, and pipes such as Currency and Number for formatting
values for currency or number display.

This chapter focuses on creating custom directives and pipes and talks about
why you might create them. The built-in pipes and directives may fill many of the
use cases, but sometimes your application requirements will benefit from a custom
implementation to make things easier to use.

	 189Setting up the chapter example

There are two types of custom directives, which have their own use cases and capa-
bilities. We’ll create one that modifies some attributes of an element, one that modifies
the default behaviors of a component, and one that changes the way the elements are
added to the page.

Likewise, we’ll also be building some custom pipes to demonstrate what value they
can provide you. Just like directives, there are two types of pipes that you can build
depending on your needs. We’ll create three different pipes to demonstrate the scenar-
ios in which they’re useful and discuss best practices and design for performance.

The bundled directives and pipes cover a lot of the primary use cases, but often
developers will need to craft their own. I find the early stages of building an application
can often be accomplished without any, but once I start to notice places of duplication
or unnecessary complexity, I start to create my own. Sometimes I don’t always see the
best way to design a custom pipe or directive until I’ve already built something else that
needs to be improved.

That’s why in this chapter I’m tackling the perspective of adding custom pipes and
directives to the chapter 2 example application that you should already be familiar with.
I believe it’s easier to see the role and value of them in the context of an existing applica-
tion rather than just building isolated examples.

To be completely honest, it’s entirely possible to never create your own directives or
pipes by just adding more logic into components—so why even bother? The main rea-
sons apply to both directives and pipes:

¡	Reuse and reduce —Instead of each component having to implement similar logic,
it can be abstracted out and easily reused. This also reduces code footprint and
helps standardize logic.

¡	Maintainability and focused components —Components sometimes become a dump-
ing ground for code and logic that are tangential to the component itself. Remov-
ing that from the component makes it easier to maintain your components.

¡	Testability —Moving everything into smaller blocks means you can create smaller
test cases and limit permutations.

There are certainly a few scenarios where custom directives or pipes are required or
the best solution. For example, custom directives are useful when we want to create
some custom form validation, as we’ll investigate in the next chapter.

The number of situations in which you’ll need to create your own will vary from proj-
ect to project, and I’ve found that the ones I’ve created once are often useful for other
projects.

8.1	 Setting up the chapter example
In this chapter, we’ll take the stock application example from chapter 2 and add some
custom pipes and directives to it. Doing it that way will help us minimize the number of
new things to review during this chapter while giving us some useful examples.

If you skipped chapter 2 or don’t recall the specifics of that example, the application
is a basic stock tracking application. It displays a list of stocks and their current statuses

190 Chapter 8  Building custom directives and pipes

and allows you to add or remove items from that list. It loads real data from a service as
well. We won’t make any drastic changes to the way the application behaves, but we will
simplify a few things with the use of custom pipes and directives. You can see what it will
look like in figure 8.1.

Figure 8.1   What we’ll build in this chapter extends the example from chapter 2.

Regardless of whether you have the chapter 2 sample already or not, we’ll be starting
from a new repository. To download with Git, clone the repo and check out the starting
point using the following:

git clone https://github.com/angular-in-action/stocks-enhanced
cd stocks-enhanced
git checkout start

Otherwise, you can download the archived files from https://github.com/angu-
lar-in-action/stocks-enhanced/archive/start.zip and unzip the files.

As usual, you’ll need to run npm install to download all the dependencies. Then
run ng serve to start the local development server.

8.2	 Crafting custom directives
There are two types of directives: structural and attribute. The way they’re declared and
used is essentially identical, but they have one key difference that you’ve seen in use
in previous chapters. When we want to change a property of an element (such as the
background color or height), we’ll need to use an attribute directive. But if we want
to have control over how the element itself is rendered into the page, we’ll rely on the
structural directive.

We’ve had use cases where we wanted an element to appear on the page only when
certain conditions were true, specifically a loading indicator. This is a great example of
how we use a directive to change how the element is rendered. Likewise, we’ve needed
to dynamically change the background color of an element, and we did that by modify-
ing the classes on the element with a directive.

More specifically, recall that you must prefix ngIf with *—for example, *ngIf="-
loaded = true". This means that NgIf is a structural directive and is able to control

https://github.com/angular-in-action/stocks-enhanced/archive/start.zip
https://github.com/angular-in-action/stocks-enhanced/archive/start.zip

	 191Crafting custom directives

whether the DOM element is rendered or not. On the other hand, the ngClass
directive is an attribute directive and doesn’t have the * when it’s used, such as
[ngClass]="{active: true}". NgClass simply modifies the properties of the element—
in this case, the CSS class is applied—but doesn’t render DOM.

The difference is in the structural directive’s ability to add or remove DOM elements
from the page. It’s similar to the idea of construction: You can remodel an existing
building (attribute directive) or handle the creation of the building itself (structural
directive). A structural directive can render DOM, but an attribute directive can only
modify properties. The structural NgIf directive can determine if the DOM element
is rendered based on the conditional value provided. The NgClass attribute directive
doesn’t create elements, but rather changes the element’s class list.

In figure 8.2, you can see how attribute directives modify a component and how a
structural directive creates (or destroys) components. In this chapter’s example, the
NgFor structural directive creates multiple instances of the Summary component,
whereas the NgClass attribute modifies the background color of those same instances.

App
component

Manage
component

Dashboard
component

Summary
component

Summary
component

Summary
component

Summary
component

Summary
component

NgFor directive:
creates Summary components

NgClass directive:
sets Summary components’ background property

Structural
directive

Attribute
directive

Figure 8.2   How a structural or attribute directive modifies the DOM

Therefore, the primary difference between structural and attribute directives is that a
structural directive is designed to modify the DOM tree of an element, whereas an attri-
bute directive is designed to only modify the properties or DOM of a single element.
We’ll build an example of both types in this chapter.

Remember, neither structural nor attribute directives have a template. Technically,
components are a third type of directive, and the only type that has a template. If you ever
need a template for your implementation, you should use a component.

Directives can inject services just like a component, which gives you access to some
interesting capabilities. If you have custom services, your directives could leverage them

192 Chapter 8  Building custom directives and pipes

for use cases such as knowing whether the user is logged in and conditionally showing
or hiding content.

We’ll start by building an attribute directive, a second attribute directive to modify a
component, and then a structural directive. Let’s get to it!

8.2.1	 Creating an attribute directive

Our first directive is going to help us manage the color of the Summary component,
which is the card that displays the current stock information. The result won’t change
the visual experience for the user but will abstract the capability so it can be reused.
Right now, the Summary controller contains logic that’s used by the NgClass directive
to change the background color to green or red based on the day’s change in value.

Although this isn’t necessarily a problem, we can abstract this into its own attribute
directive in case we ever want to use it again. That’s a great use for attribute directives,
because it’s simply managing the list of classes applied to an element, as shown in
figure 8.3.

The component no longer controls
the background color—the attribute
directive does.

Figure 8.3   A directive can modify the background property of an element, so the component doesn’t
have to manage the logic.

The Angular CLI allows us to generate the directive scaffolding quickly, so we’ll use the
following command to generate the files we need—the files will be placed inside of the
src/app/directives directory:

ng generate directive directives/card-type

As with a component, it will also add the directive to the App module for you, saving a
little bit of effort. We’ll implement this directive to also take an input that contains the
stock data used by the component so we can detect the correct class to attach.

	 193Crafting custom directives

Let’s go ahead and create our directive. Open src/app/directives/card-type.directive.ts
and replace its contents with what’s shown in the following listing.

Listing 8.1   Card type directive

import { Directive, ElementRef, Input, OnInit } from '@angular/core';

@Directive({
 selector: '[cardType]'
})
export class CardTypeDirective implements OnInit {
 @Input() cardType: number = 0;
 @Input() increaseClass = 'increase';
 @Input() decreaseClass = 'decrease';

 constructor(private el: ElementRef) {}

 ngOnInit() {
 if (this.cardType) {
 if (this.cardType >= 0) {
 this.el.nativeElement.classList.add(this.increaseClass);
 this.el.nativeElement.classList.remove(this.decreaseClass);
 } else if (this.cardType <= 0) {
 this.el.nativeElement.classList.add(this.decreaseClass);
 this.el.nativeElement.classList.remove(this.increaseClass);
 } else {
 this.el.nativeElement.classList.remove(this.increaseClass);
 this.el.nativeElement.classList.remove(this.decreaseClass);
 }
 }
 }
}

The first thing you should notice is how similar this looks to a component, because a
component is really a special type of directive that has a template. Directives use the
template of the element they are applied to instead of having their own template.

The directive starts by importing a few things that we’ll need, and then we have
the Directive decorator. Here we only define the selector, [cardType], which is the
CSS form of making it work as an element attribute. This decorator is applied to the
exported class CardTypeDirective.

Directives can take inputs, and we define some properties to accept input bindings.
By defining one by the same name as the directive selector, we can then bind to the
directive, like <div [cardType]="stock"></div>. The cardType property will accept a
number, and, depending on whether the number is positive or negative, will apply the
appropriate class. The other two inputs are to allow someone to change the class names
applied, and they have defaults set in case we choose not to define them. This enables
this directive to be flexible and more reusable than having everything hard-coded.

The constructor is used to inject a property that contains a reference to the element
that the directive is applied to. We then use that in the lifecycle hook to change the
classes based on the cardType number being positive or negative. If the card is neither
positive nor negative, it won’t apply any class.

Imports dependencies

Declares directive using decorator,
and defines the selector

Creates an input by the same name as
the selector, and two more with defaults

Injects a reference to the element
the directive is applied onto

Implements a
lifecycle hook to
change the classes
based on daily
change

194 Chapter 8  Building custom directives and pipes

Now let’s put this directive to use and see how it works out. Open src/app/components/
summary/summary.component.html and update the first line of the template to the fol-
lowing, which will remove the NgClass and add the fade-in animation that’s on the card:

<div class="mdl-card stock-card mdl-shadow--2dp" [cardType]="stock.change" [@
fadeIn]="'in'" style="width: 100%;">

You can also open the src/app/components/summary/summary.component.ts file
and remove the isNegative and isPositive methods from the controller, as they’re
no longer used. We didn’t end up using the increaseClass or decreaseClass input
bindings, but you can try them out.

When you run the code at this point, you should in fact see no change, except the
animation of the cards while they fade in on load. We were able to refactor the logic into
a separate directive and make it more flexible for reuse without breaking the current
implementation.

A primary role of directives is to facilitate reuse. The cardType attribute directive
allows this by decoupling the specific implementation of using NgClass into a more
abstract directive that accepts a number to add the same classes. You might not initially
build your application with these types of smaller directives, but keep an eye out for
opportunities for reuse like this.

Another key aspect of this example is how it simplified the Summary component by
removing logic that wasn’t essential to the component itself. Though there was nothing
inherently bad about how it was before, it did require the Summary component to con-
tain methods to manage how it adds classes. Again, look for opportunities to keep your
components focused and simplify their roles by moving unnecessary capabilities outside.

8.2.2	 Modifying a component with a directive with events

The cardType directive was used to modify a div element, but we can also apply custom
directives to components to modify them. Many times you’ll use an external library of
components and wish it did something slightly differently. To some extent, you can
modify those components without having to reimplement them yourself. This doesn’t
require a different type of directive—it’s still an attribute directive—but it does show
how you can modify components that you didn’t write yourself.

Let’s imagine that the Summary Card itself is a third-party component that we didn’t
write ourselves. We don’t like the way it behaves out of the box, and we can craft a
directive to let us change its default behavior or add new abilities. Fundamentally, this
is no different from putting a directive on a normal HTML element, but people don’t
often consider this approach instead of hacking the third-party library. In our particu-
lar example, we want to add a hover effect and shadow to the cards on hover to give it a
unique feel.

The examples in figure 8.4 are useful for showing how to modify a component with-
out changing it directly. We’ll add event listeners to handle mouse events and override
the background color.

	 195Crafting custom directives

You can apply a directive
to modify the Summary
component’s behavior:
When the cursor hovers
over a card, the card now
moves up a couple pixels
and its shadow increases.

Figure 8.4   Directive that handles hover events and modifies a component indirectly

To get started we need to generate another directive. Run the following in the terminal
to create the CardHover directive:

ng generate directive directives/card-hover

Now open the src/app/directives/card-hover.directive.ts file and replace its contents
with the code from the following listing.

Listing 8.2   CardHover directive

import { Directive, ElementRef, OnInit, HostListener } from '@angular/core';

@Directive({
 selector: '[cardHover]'
})
export class CardHoverDirective implements OnInit {
 card: any;

 constructor(private el: ElementRef) {}

 ngOnInit() {
 this.card = this.el.nativeElement.querySelector('.mdl-card');

 if (this.card.classList.contains('increase')) {
 this.card.style.backgroundColor = 'rgb(63,81,181)';
 } else if (this.card.classList.contains('decrease')) {
 this.card.style.backgroundColor = 'rgb(255,171,64)';
 } else {
 this.card.style.backgroundColor = '';
 }
 }

Imports dependencies

Notes the selector is the cardHover attribute

OnInit method
to override the
background
colors of the
cards

196 Chapter 8  Building custom directives and pipes

 @HostListener('mouseover') onMouseOver() {
 this.card.style.boxShadow = '2px 2px 1px #999';
 this.card.style.top = '-2px';
 }

 @HostListener('mouseout') onMouseOut() {
 this.card.style.boxShadow = '';
 this.card.style.top = '';
 }
}

This directive is structured similarly to the previous one, with importing dependencies
and defining a selector attribute. The focus for this directive is the three methods for
ngOnInit, onMouseOver, and onMouseOut.

In the ngOnInit method, we start by getting a reference to the card by querying the
element. Then we inspect the classes to determine whether the stock price is positive
or negative, and change the background color property of the element to override the
default provided by the component.

Then inside of the onMouseOver and onMouseOut methods, we change styles to
give the cards a box shadow and move them slightly up to make them appear to hover
slightly above the page. The event listener is triggered by using the @HostListener dec-
orator, which takes a single argument for the event to listen to. This is an event binding,
but done through the context of a directive. There are many cases where you will need
a directive to listen for events to handle your logic.

To use this, we just need to update the use of the Summary component in the src/
app/components/dashboard/dashboard.component.html file, like this:

<summary [stock]="stock" cardHover></summary>

Just by adding the attribute, the new behaviors will attach to the Summary component,
and the new background colors should appear along with the hover affects. This direc-
tive is designed specifically to modify an existing element, which I find to be a good
solution to the problem of components not doing everything exactly as we need.

This example shows one way to modify a component, but you could also implement
an Input that would capture data to help you do additional processing if you need more
data than just the element itself.

These two attribute directive examples describe a number of concepts that interplay
as you think about how to craft your own directives for maximum impact. Sometimes
they will need to be generic for maximum reuse, but it’s often useful to create them for
specific use cases as we’ve done here.

You may be wondering why we used JavaScript to change element styles. We certainly
could have written some CSS to handle some of this logic, since appropriate class names
were applied to use in selectors. But I wanted to demonstrate the use of element manip-
ulation using JavaScript because you can do so much more with it than CSS. Keep your
use cases and needs in mind, and if you can use CSS only, then that’s perfectly fine, but
directives give you access to the entire element and DOM APIs.

Let’s shift gears and talk about the other type of directives that allow us to manipu-
late the existence of the element itself.

HostListener events to
handle mouse events
for hover states

	 197Crafting custom directives

8.2.3	 Creating a structural directive

Structural directives allow you to modify the DOM tree of the element, not just the ele-
ment itself. This includes being able to remove the element and replace it with some-
thing else, creating additional elements, and so forth.

As discussed earlier in the chapter, the use cases for structural directives are more
limited, and the built-in examples of NgIf, NgFor, and NgSwitch are likely to provide
you with everything you need.

But you still want to learn about it, right? Let’s create a directive that will delay the
rendering of the element for a certain number of milliseconds. You can use this to fade
elements into the page—in our case, we want each card to have a different delay so they
appear to fade in sequentially, as shown in figure 8.5.

The directive changes how
each card is rendered by adding
a timeout of increasing length.

This card is currently not
rendered in the DOM; after
the delay it will be rendered
and then animate in.

Figure 8.5   Adding the Delay directive to have the cards fade in sequentially, one after another

We’ll build one and then come back to a key point about why they’re always preceded
with a * symbol when they’re used. It’ll be easier to see why after we walk through the
example.

Start by generating a new directive by running the following command in the
terminal:

ng generate directive directives/delay

Open src/app/directives/delay.directive.ts and replace its contents with the code you
see in the following listing.

Listing 8.3   Delay directive

import { Directive, Input, TemplateRef, ViewContainerRef } from
'@angular/core';

@Directive({
 selector: '[delay]'
})

Imports the necessary
dependencies

198 Chapter 8  Building custom directives and pipes

export class DelayDirective {
 @Input() set delay(ms: number) {
 setTimeout(() => {
 this.viewContainer.createEmbeddedView(this.templateRef);
 }, ms);
 }

 constructor(
 private templateRef: TemplateRef<any>,
 private viewContainer: ViewContainerRef
) { }
}

In this directive, we’re importing dependencies, of which Input, TemplateRef, and
ViewContainerRef are required. TemplateRef and ViewContainerRef are references
to the template of the element our directive is attached to and a reference to the view
that contains it, respectively.

When the structural directive is rendered by Angular, it creates a placeholder space,
called an embedded view, where the directive can decide what to insert inside of this new
view container. Using the ViewContainerRef, we can access this view and create any
number of views. The documentation for ViewContainerRef can be found at https://
angular.io/api/core/ViewContainerRef and is a good place to go to learn more
in-depth about how views work in Angular. But the primary point is that we end up with
an empty container that we can add one or more views into.

After it renders the view container, it takes the template and extracts it into a tem-
plate so that it’s removed from the page but still accessible and available via the
TemplateRef. That means Angular won’t render out the template unless our directive
explicitly calls the necessary methods to render it out. This is how you can handle the
lower-level rendering of an element.

Now our constructor injects both of these references into our directive so we can use
them in the setter method. The Input is defined as a setter (which is a feature of Java
Script) and uses the same name as the selector, so we can bind data into the directive
easily. The delay property accepts a number, which is the number of milliseconds to
delay the rendering of the element. This is immediately passed into a setTimeout func-
tion that calls the following line after the specified delay:

this.viewContainer.createEmbeddedView(this.templateRef);

This line is where we create a new view inside of the view container and then pass it the
template reference to render. This is how NgIf works under the hood by checking the
truthiness of the value passed into the NgIf and creating or clearing the view.

Now back to the business of the * in structural directives. We didn’t have a TemplateRef
or ViewContainerRef in our attribute directives, and the * is the syntactic way to describe

Defines an input as
a setter method,
which delays the
rendering of the
template

Injects the necessary
dependencies

https://angular.io/api/core/ViewContainerRef
https://angular.io/api/core/ViewContainerRef

	 199Crafting custom pipes

to Angular that this directive needs to capture the template and create a view container
before the element is rendered. This directive is used like *delay="1000", to denote a
delay of 1 second before it’s displayed.

Let’s put this into use on the Summary components, so open src/app/components/
dashboard/dashboard.component.html and update the template where it iterates over
the cards:

<div class="mdl-cell mdl-cell--3-col" *ngFor="let stock of stocks; index as
i">

 <summary [stock]="stock" *delay="i * 100" cardTone></summary>
</div>

We’ve extended the NgFor to also create a variable i that holds the current index in
the loop, and then we multiply the index by 100 and pass it to the Delay directive. This
will stagger the display of each card by 100 milliseconds sequentially, and, coupled with
the animations on the Summary component, it will also animate in gracefully.

Structural directives are a little trickier than attribute directives because you’re work-
ing with the Angular views instead of an already rendered element. Thankfully, the use
cases for when a structural directive is appropriate are less common.

Most of the directives you’ll create are likely to be of the attribute type. I find this to
be true in my work, but also generally because NgFor, NgIf, and NgSwitch provide func-
tionality that covers most use cases for structural directives. Most examples of structural
directives that I’ve seen accomplish the same basic tasks as these three built-in directives
with some customized abilities. For example, many data table components have their
own implementation of NgFor that’s better integrated with the data table and can help
provide capabilities like pagination.

As you work more with directives, you’ll likely need to also spend more time with
the Angular APIs related to views and rendering elements. You’ll be able to implement
more complex scenarios should your needs require them.

We’ve finished our custom directives, so let’s take a look at pipes and how we can
craft custom ways to format our data before display.

8.3	 Crafting custom pipes
Pipes are essentially a way to format data, and depending on the data you have you may
find it useful to create your own set of pipes to simplify your templates. Pipes are gener-
ally simple and easy to implement, and if they can save you repeated formatting logic,
then you should make your own.

Pipes are functions that data is passed through prior to being rendered into the
page. Somewhat similar to how components have the OnInit lifecycle hook to handle
logic before the component renders, pipes do the same thing for bindings. You can see
how Angular processes bindings when pipes are present or not in figure 8.6.

200 Chapter 8  Building custom directives and pipes

Component
gets data

Result is rendered
in view

Template finds
bindings without pipe

Data is transformed
by pipe

Template finds
bindings with pipe

In the chapter example, there are several uses of the Currency and Percent pipes
to format data. These are simple but great examples of how pipes can be invaluable.
Imagine your application has to support different currencies—the Currency pipe can
figure out how each currency is typically formatted.

There are fundamentally two types of pipes: pure and impure. Pure pipes maintain
no state information, and impure pipes maintain state.

Pure and impure pipes are also rendered differently, as you can see in figure 8.7.
A pure pipe is only run if the input value passed into the pipe has changed, making it
more efficient because it won’t run very often. On the other hand, an impure pipe will
execute on every change detection run, because an impure pipe has state that might
have changed, and that would render a different output regardless of whether the
input has changed.

Change
detection runs

Run transform
method

Encounters
pure pipe

Encounters
impure pipe

Has Input
changed?

YesNo

Run transform
method

Update view Update view

Do nothing

This is very important to understand if you start to build pipes. Choosing to make a
pipe pure or impure can have significant consequences in the way that pipe is exe-
cuted and potentially on the performance of your application.

Figure 8.6   Data is passed through a pipe before
being rendered in a template binding.

Figure 8.7   How pure and impure
pipes are handled by Angular

	 201Crafting custom pipes

We’ll build examples of both pure and impure pipes, but you should always try to
build a pure pipe. I’d bet that 98% of all custom pipes created are pure—or should be
pure. We’ll look a little more closely at why this is when we build an impure pipe, but
storing state in a pipe is tricky and makes its implementation more complex.

Let’s build a pipe that helps us display the change information for a stock, and we’ll
be making it a pure pipe as well.

8.3.1	 Creating a pure pipe

Because almost every pipe you create will be a pure pipe, let’s start by looking at how
to create one for our application. Pipes don’t have the same complexities as directives,
because they’re a way to modify a value prior to it being rendered into the template.
Pure pipes are so named because they implement a pure function —a function that
doesn’t maintain any internal state and returns the same output given the same input.

Pure functions are important for performance, because Angular doesn’t need to run
them with each change detection lifecycle unless the input value has changed. This can
save a reasonable amount of overhead for performance reasons.

A pure pipe is implemented as a single function that accepts the value from the bind-
ing and any additional arguments that might be passed. This method is called trans-
form because it takes the input value, does some type of transformation, and returns a
result.

We’re going to create a custom pipe that takes care of displaying the stock change
price and percentage data. Right now, we have this inside of our Summary component
template, and we’d like to replace the long line:

{{stock?.change | currency:'USD':true:'.2'}} ({{stock?.changeInPercent |
percent}})

with this:

{{stock | change}}

The original is quite long—imagine writing it in multiple places. We’d easily have
issues where the output could be inconsistent, so we want to create a pipe that can
make it reusable and cleaner.

Let’s make a new pipe called the Change pipe to simplify this snippet. As you’d
expect, there’s a way to generate a new pipe with the CLI. Using the terminal, run the
following command:

ng generate pipe pipes/change

The new files are generated inside of src/app/pipes. Let’s open src/app/pipes/
change.pipe.ts and replace it with the code in the following listing.

Listing 8.4   Change pipe

import { Pipe, PipeTransform } from '@angular/core';
import { CurrencyPipe, PercentPipe } from '@angular/common';
import { StockInterface } from '../services/stocks.service';

Imports dependencies

202 Chapter 8  Building custom directives and pipes

@Pipe({
 name: 'change'
})
export class ChangePipe implements PipeTransform {

 constructor(private currencyPipe: CurrencyPipe, private percentPipe:
PercentPipe) {}

 transform(stock: StockInterface, showPercent: boolean = true): any {
 let value = `${this.currencyPipe.transform(stock.change, 'USD', 'symbol',

'.2')}`;
 if (showPercent) {
 value += ` (${this.percentPipe.transform(stock.changeInPercent,

'.2')})`;
 }
 return value;
 }
}

This pipe uses the Currency and Percent pipes, and it begins by importing all the depen-
dencies. The @Pipe decorator denotes that we’re creating a pipe, and we give it a name
property to define the name of the pipe—this needs to be unique, so consider it carefully.

When the class is defined, it also implements the PipeTransform interface to help
ensure that we construct the pipe properly. The constructor then injects the Currency
and Percent pipes into the class so we can use them.

Finally, the real work happens in the transform method, where it accepts one or more
arguments. The first is the value that’s passed into the pipe and that’s always provided
by the binding, and it’s expected to be a stock object. The remaining arguments are
optional parameters that might be passed as needed, and they’re optional because the
interface doesn’t require them. In this case, we declare one parameter, showPercent, as a
Boolean that declares whether we want to add the percentage value or not. The method
then constructs a string using the desired formatting and returns it to be displayed.

We’ve implemented the transform method as a pure function. Every time you pass
the same arguments to it, you’ll get the same output. If there’s a chance the value can
change, it isn’t a pure function or a pure pipe.

Now we can put it to use in our Summary component. Open src/app/components/
summary/summary.component.html and change the last line with stock.change to
the following:

{{stock | change}}

We were able to simplify the long line with two interpolation bindings into a single
one. Notice that we aren’t passing an argument into it, because by default it will show
the change in percentage. You could disable this by changing the pipe call to pass the
Boolean value like this:

{{stock | change:false}}

Creating any pure pipe will follow this basic outline, and the significant changes will
be in how you transform the value. Be sure to return a value that’s either a string or

Declares pipe and provides it a name
Exports class and implements
the PipeTransform

Injects Currency and Percent pipes

Implements the
transform

method, which
accepts the stock

property and
returns a

formatted string

	 203Crafting custom pipes

that can be transformed into a string. You shouldn’t return an array or object, for
example.

The value of pipe purity becomes more obvious when we create an impure pipe and
see how it’s called by the application lifecycle. Let’s take a look at that now and create
two examples to see in what situations they’re useful.

8.3.2	 Creating an impure pipe

Sometimes the way you want to format a piece of data relies on the state of the pipe
or the value itself—it implements the transform method in such a way that it doesn’t
always provide the same result given the same inputs.

Due to this design, an impure pipe is executed with every change detection lifecycle
regardless of whether the input itself has changed. This is the only way to know if the
final binding result has changed (remember, it might be dependent on some additional
state that changes the result) and whether Angular needs to update the rendered view.

The Async pipe is provided by Angular as an impure pipe and has a good use case. It
allows you to pass in an observable or promise to the pipe, and when a value is returned
asynchronously, the result will be evaluated. It essentially listens for the async event to
fire (depending on the type) and then displays that value directly. You can use that
to call an API that returns a promise, pass the promise into the binding with the Async
pipe, and the value will appear after the API returns the value.

To get a better sense of just how an Async pipe behaves, I find it helpful to implement
one that logs how many times it’s been called to the console, and the resulting output
is what you’ll see in figure 8.8. This tells you the number of times that change detection
has run for the component that contains this pipe.

Figure 8.8   Change Detector pipe that alerts to every time a component is checked for changes

204 Chapter 8  Building custom directives and pipes

Start by generating a new pipe using the terminal. We’ll create a new pipe called
ChangeDetector:

ng generate pipe pipes/change-detector

Open the newly generated pipe at src/app/pipes/change-detector.pipe.ts. Replace it
with the content found in the following listing.

Listing 8.5   ChangeDetector pipe

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({
 name: 'changeDetector',
 pure: false
})
export class ChangeDetectorPipe implements PipeTransform {
 count: number = 0;

 transform(value: any, args?: any): any {
 this.count++;
 console.log(`Component change detection executed ${this.count} times`);

 return value;
 }
}

This pipe doesn’t transform any values by default. We first set the pure property to
false in the decorator to tell Angular that this pipe is impure and must be always
reevaluated. Then we store a property that contains a numeric value to hold the num-
ber of times it’s been called. Lastly, the transform method increments the count, logs
out a message, and returns the value unchanged.

If this were a pure pipe, it would only increment the count when the value of the
binding changed, but this will run many more times. To see exactly how many, let’s put
it on the App component.

Open src/app/app.component.html and update the line that contains the title
to this:

{{'Stock Tracker' | changeDetector}}

This binds the string 'Stock Tracker' into the ChangeDetector pipe, and if you open
the console it should log out a lot of messages like "Component change detection
executed 32 times". The actual number might vary slightly if you’ve made customiza-
tions to your application.

Now imagine that this transform method did some more difficult work. Perhaps you
have a large array of items to scan to find how to map a key to a value, and that per-
formance might be suboptimal. You might even have an asynchronous call to handle.
These are examples of potential pitfalls when creating impure pipes, as you see in fig-
ure 8.9.

Decorates the pipe and sets pure to false

Holds a stateful value

Implements
transform

method that
simply

increments and
logs each call

	 205Crafting custom pipes

The news item in this pipe is loaded asynchronously
from an API, making it an impure pipe waiting for
data unrelated to the input to resolve.

Figure 8.9   Example of an impure pipe that loads news at the top of the page by maintaining state in the
pipe itself

I find this example provides a nice illustration of what happens, but what about an
example of something that accomplishes a task? We can build another impure pipe that
takes a value and then makes an HTTP request to load news, as you see in figure 8.9.

Generate a new pipe with the following command and then replace the contents of
src/app/pipes/news.pipe.ts with the code from the following listing:

ng generate pipe pipes/news

Listing 8.6   Impure News pipe

import { Pipe, PipeTransform } from '@angular/core';
import { StocksService } from '../services/stocks.service';

@Pipe({
 name: 'news',
 pure: false
})
export class NewsPipe implements PipeTransform {
 cachedSource: string = '';
 news: string = 'loading...';

 constructor(private service: StocksService) {}

 transform(source: string, args?: any): any {
 if (source !== this.cachedSource) {
 this.cachedSource = source;
 this.service.getNewsSnapshot(source).subscribe(news => {

Marks pipe as impure

Sets properties with stateful values

transform method
makes API request to
load latest news item

206 Chapter 8  Building custom directives and pipes

 this.news = `${news.title}</
a>`;

 });
 }

 return this.news;
 }
}

This pipe is declared again as an impure pipe, and it has two stateful properties to hold
the source and the resulting news title.

The transform method is more complex. It’s run with every change detection run,
so we create a barrier by first checking if the input source has changed or not, since we
cache the last provided source. If the value changed (or is provided for the first time),
we make an HTTP request to load the news data. As soon as that data has returned, we
update the value of the news property with the title and it will get rendered out.

You may wonder how Angular knows when the API request has completed. Well,
because we’re using the Angular HttpClient service under the hood, Angular is aware
of when that response has finished, and that triggers another round of change detec-
tion. Because this is an impure pipe, it’s run again, and the news value will be rendered.

We need to put this into our template to have it run, so open src/app/app.component.
html and add some extra lines to the header, as you see bolded in the following listing.

Listing 8.7   App header with News pipe

<header class="mdl-layout__header">
 <div class="mdl-layout__header-row">
 {{'Stock Tracker' | changeDetector}}</

span>
 <div class="mdl-layout-spacer"></div>
 Top News Headline:
 <div class="mdl-layout-spacer"></div>
 <nav class="mdl-navigation mdl-layout--large-screen-only">
 Dashboard
 Manage
 </nav>
 </div>
</header>

Here we just add a place to render out the top news headline. There are several values
you can pass if you’d rather get a different news source:

¡	the-wall-street-journal

¡	bloomberg

¡	cnbc

¡	financial-times

¡	the-new-york-times

Now when you preview the application you should see the news headline appear at the
top of the page with a link to the article. Every time the App component is rendered

transform method
makes API request to
load latest news item

	 207Summary

(which is once per load), it will request the news from the API. This could be danger-
ous to put onto another type of component that’s rendered more often or repeatedly
in the same page.

What’s important about this example is that it would have been much better to
implement this as a component than inside of a pipe. There’s not a lot of reason to
make it a pipe, in fact.

Although impure pipes are interesting, I’m certainly of the mindset that you should
avoid them if you can. Even the Async pipe is problematic to use in production because
it makes error handling difficult. They were made to help in a small set of use cases and
are perhaps mostly useful for development, but they make application logic more chal-
lenging and difficult to predict.

Summary
You’ve successfully created several directives and pipes! These are useful skills to help
with your code reuse and to keep your code focused on specific tasks. Here are the key
takeaways from this chapter:

¡	Directives come in three flavors: attribute, structural, and components.
¡	Attribute directives are the most common to create and are great for modifying

an existing element.
¡	Structural directives are less common and are meant to be used to modify the

existence or structure of DOM elements.
¡	Pure pipes are the most useful and allow you to transform a value before output

using a pure function.
¡	Impure pipes allow you to maintain state inside of a pipe, but they’re run with

every change detection check and are to be avoided if possible.

208

9Forms

This chapter covers
¡	Creating forms using Angular’s forms libraries

¡	Deciding between using Reactive or
Template forms

¡	Validating forms with custom logic

¡	Accessing data and watching input changes

¡	Submitting form data and handling errors
gracefully

¡	Creating custom form controls

Just about every application uses forms in some way, if only to do something simple
like log in or manage settings. HTML comes with a number of form elements by
default, such as inputs, selects, and buttons, and Angular provides a way to use these
native elements and add some power to them. We’ve used forms in several previous
examples, but in this chapter we’ll dig into them much more completely.

Angular provides two approaches to building forms: reactive forms and template
forms. I’ll discuss the differences at length shortly, though they’re largely in whether

	 209Setting up the chapter example

you define the form in your controller or in the template. You’re not limited to choos-
ing only one or the other form, but typically applications will try to remain consistent
with one of them.

With template forms, we’ll see how to describe your forms primarily using the
NgModel directive, which is used to define the form structure. With reactive forms, you
declare the form structure yourself in the controller, and the template renders it out.

As complex as forms can become, the basics are fairly standard in all areas. There are
form controls (fields that hold values like inputs, selects, and so on), and there are form
buttons (like Save, Cancel, or Reset). The same holds true when working with forms in
Angular—the basics remain consistent regardless of how complex the form becomes.

There are often situations where a form requires the use of additional third-party
components to help, such as a date picker or range slider. Browsers may implement some
newer form controls, but they’re rarely standard, and other browsers might not support
them at all. Although we’re not going to focus on creating custom components that act
like form controls, there are many great libraries that provide you additional features, or
you can certainly build your own custom form controls by reviewing the documentation.
I personally avoid creating these unless absolutely necessary, which it rarely is.

9.1	 Setting up the chapter example
We’re going to build a new application that helps us manage invoices and customers.
Imagine you’re a freelancer or small business owner and you have customers to man-
age. This application would be a good tool for keeping track of sending invoices and
making sure you get paid (which is pretty important, right?).

The forms themselves are intentionally not complex, but they do demonstrate most
of the needs for forms succinctly. You can take the examples you see in this chapter and
translate them into larger, more complex forms without having to learn additional con-
cepts. The only difference tends to be the scale.

The application is also designed for the mobile form factor, which is a nice little
twist from our previous examples. It uses the Covalent UI library, from Teradata, which
extends the concepts and Angular Material Design library. If you weren’t aware, mobile
browsers tend to have the best support for the latest HTML5 input types, such as search
or number fields, which we will use for our example. I recommend using Chrome for
this chapter.

Chrome has a useful device emulator in the developer tools, as shown in figure 9.1,
and I suggest that you use it while you’re building and using this application. It allows
you to emulate the dimensions of various mobile devices and get a sense of how your
application would look on those sizes. It doesn’t really emulate the device in a true way,
but it does provide an easy way to preview.

210 Chapter 9  Forms

Click this icon to
enable device tools

Set device sizes
and orientation

Figure 9.1   Use device tools in Chrome developer tools to simulate mobile devices.

Like other examples, this one is available on GitHub, and you can get the source code
by cloning the repo. Make sure to check out the right tag when we start so you can code
along, or look at the latest master for the final version:

git clone https://github.com/angular-in-action/invoice
cd invoice
git checkout start

Otherwise, you can download the archived files from https://github.com/angular-in-action/
invoice/archive/start.zip and unzip the files.

When you start the application, you’ll notice a number of services and components
are there already. I’ve provided the majority of the code ahead of time so we can focus
on the key features for forms. Even the form components are there, with standard
HTML forms in place. They don’t currently do anything when you try to save them,
which is what we’ll be updating and implementing in this chapter.

https://github.com/angular-in-action/invoice/archive/start.zip
https://github.com/angular-in-action/invoice/archive/start.zip

	 211Setting up the chapter example

You’ll need npm install for all the dependencies, and then you run ng serve to start
the local development server. That isn’t all, though. This app has a local API server that
we need to run also. You’ll need to open another terminal session and run the following:

npm run api

This will start up a local server that provides our app data. As you save and edit records,
the data will persist into a local file called db.json, which is important for our app.

There may be a few warnings in the browser console when you run the example—
you can safely ignore those. They refer to features that aren’t necessary for the chapter
example.

Now, before we get into the forms, let’s review the rest of the app.

9.1.1	 Review the app before starting

There are six routable views in this application. Let’s talk briefly about some of the
ones that don’t contain forms. We’ll focus only on two of the routes in the chapter;
we’ll build one of the forms with template-driven forms and the other with a reactive
form. Let’s take a look at several of the screens of the application.

Figure 9.2 shows some of the screens for the application, such as the list, detail, and
form views. There are two list views, one for customers and one for invoices. These are
both fairly simple in that they load a list from the API and render it. They also include a
button that will take you to a form to create a new record. You can see these two in the
Invoices and Customers components.

Figure 9.2   Invoicing application screens, emulated in a mobile device size. From left to right: list of
invoices, list of customers, invoice detail view, and customer form.

The two detail views for a customer and invoice are also quite similar in that they sim-
ply show the relevant data for a given record. There is a button that allows you to edit
that record as well. You can preview these in the Invoice and Customer components.

Finally, the two views we’ll work on are the form views. The customer or invoice form
will let you create or edit an existing record, and the form fields needed are already

212 Chapter 9  Forms

provided with standard HTML. We’ll be updating these forms and the controllers to
handle the save, delete, and cancel events. These can be found in the InvoiceForm and
CustomerForm components.

Inside of the components you’ll see a few new things. The TdLoading directive is
a feature from the Covalent library to display a loading indicator while data is being
loaded. The MdInput directive will make an input Material Design–compliant. There
are several other elements that start with Md-, which are all from the Material Design
library and are UI components for structure or controls. It’s best to review the Covalent
and Material Design documentation for additional questions you may have about the
use of these tools. Please note the specific version being used in the package.json file
and make sure you’re looking it up correctly.

There are also services for the customers and invoices APIs. You may want to review
them as a way to extend one service to create another. Both the Invoices and Customers
services extend the Rest service, which implements the basic API calls needed. The spe-
cialized instances (Invoices and Customers) provide a single property that’s used by the
Rest service to construct URLs.

All right, let’s create the customer form using the template-driven approach.

9.2	 Template-driven forms
We’ve already used template-driven forms in several of our examples, and the key
marker is when you see the NgModel directive on a form control. AngularJS developers
will be familiar with the patterns described in this section.

Template forms are named primarily because the form controls are defined in the
template of the component. In this case, you can think of the template as having the
final say about what is part of the form or not. For example, if you have an input ele-
ment in the page that is part of the form that is wired up into the form controls, then it
will also be defined in the controller.

The primary goal of a form is to be able to synchronize the data in the view with data
in the controller so it can be submitted to be handled. Secondary goals are to perform
tasks like validation, notify about errors, and handle other events like cancel.

Because the form is primarily defined in the template layer, it also means that vali-
dation errors are managed primarily through the template. We’ll look at how to add
validation and alert the user about invalid fields.

In figure 9.3 you can see the customer form that we’ll be building in this section.
The three fields will be part of the form data and will allow us to capture the input for
processing.

To get started, we need to start working with our form controls and wire them up so
that they bind the model between both the controller and the template using NgModel.

9.2.1	 Binding model data to inputs with NgModel

Let’s take a single form control to begin with and see what it takes to turn it into some-
thing Angular can use. In the CustomerForm component, you should see this input:

<input mdInput placeholder="Customer Name" value="">

	 213Template-driven forms

Right now it’s just a normal form element (with the MdInput to make it Material
Design), but by adding the NgModel directive we can turn it into an Angular form con-
trol. In the process, we can also remove the value attribute, as it’s no longer needed:

<input name="customer" mdInput placeholder="Customer Name"
[(ngModel)]="customer.name">

The NgModel directive is part of the Forms module and will ensure that the value of
the form control is set based on the customer property value from the controller. But
it also sets the value into the controller when it’s changed in the view. If you look at the
controller, there is no such property, and NgModel will create it for you.

You should recall the [()] syntax from earlier chapters, but to refresh your memory,
it’s a way of doing two-way data binding in Angular. That means the controller will now
have a property called customer, and if the view or controller changes that value, the
other will instantly be updated as well. AngularJS developers will know this concept
well, and it exists in Angular as well.

Let’s go ahead and wire up all of the form controls with NgModel. In the Customer-
Form template, we’ll need to modify the existing form controls, as you see bolded in the
following listing. Open src/app/customer-form/customer-form.component.html and
update it.

Listing 9.1   CustomerForm using NgModel

<md-card-content>
 <md-input-container>
 <input name="customer" mdInput placeholder="Customer Name"

[(ngModel)]="customer.name">
 </md-input-container>
 <md-input-container>

Figure 9.3   Customer form with three
fields to bind data to

Form control using NgModel

214 Chapter 9  Forms

 <input name="email" mdInput type="email" placeholder="Email"
[(ngModel)]="customer.email">

 </md-input-container>
 <md-input-container>
 <input name="phone" mdInput type="tel" placeholder="Phone"

[(ngModel)]="customer.phone">
 </md-input-container>
{{customer | json}}
</md-card-content>

In these form controls, we now have them wired up to do two-way binding using
NgModel. Notice that we’re also setting the model values as part of the customer prop-
erty, so the data is stored in one object. Except for a form that has only one control,
it’s highly recommended to always use models like this. It will help us later to have all
the customer data stored on the same object instead of on different properties of the
controller.

So far, this won’t change anything significant about our form that you can see, but
it will be adding new properties to the customer model as you change the input values
behind the scenes. If you watch the customer interpolation binding, you will see that as
values are changed in the form inputs, the model is updated.

There are a couple of notes to make about using NgModel. First, you always use it with
the two-way binding syntax—it doesn’t work otherwise. Second, inputs should always
have a name when using NgModel, because it requires that information internally. Last,
you notice the value attribute was omitted because NgModel will overwrite it and it’s
best to just leave it off.

Save these changes and then go to the customer’s list, select one, and click the edit
icon in the bottom right to view the form. You should ensure there are no errors by
looking at the browser console as well, in case you typed something incorrectly.

This is great, because our primary object is largely complete. We simply add NgModel,
and our form elements are now being tracked in both the template and controller as
changes are made. The next step is to start validating these form fields. Using the power of
NgModel, we can track the validity of a form field and report meaningful errors to the user.

9.2.2	 Validating form controls with NgModel

HTML already provides some built-in form validations that can be put onto form ele-
ments, such as required or minlength. Angular works with these attributes and auto-
matically will validate inputs based on them.

Let’s take the example of our customer name input field. All we need to do is add
the additional required attribute to validate the input to force validation for this field:

<input name="customer" mdInput placeholder="Customer Name"
[(ngModel)]="customer.name" required>

When the form control has an invalid value, we can also inspect the state of a field and
render out messages about what is incorrect, as shown in figure 9.4.

Form control using NgModel

Form control using NgModel

Displays the customer content in template temporarily

	 215Template-driven forms

It’s time to set up the validation for all the fields and also to look at how to access the
state of those fields. Update the CustomerForm template snippet as you see bolded in
the following listing.

Listing 9.2   CustomerForm validating fields with NgModel

<md-input-container>
 <input name="customer" mdInput placeholder="Customer Name"

[(ngModel)]="customer.name" required #name="ngModel">
 <md-error *ngIf="name.touched && name.invalid">
 Name is required
 </md-error>
</md-input-container>
<md-input-container>
 <input name="email" mdInput type="email" placeholder="Email"

[(ngModel)]="customer.email" required #email="ngModel">
 <md-error *ngIf="email.touched && email.invalid">
 A valid email is required
 </md-error>
</md-input-container>
<md-input-container>
 <input name="phone" mdInput type="tel" placeholder="Phone"

[(ngModel)]="customer.phone" required #phone="ngModel" minlength="7">
 <md-error *ngIf="phone.touched && phone.errors?.required">
 Phone number is required
 </md-error>
 <md-error *ngIf="phone.touched && phone.errors?.minlength">
 Not a valid phone number
 </md-error>
</md-input-container>

The form controls now each have a required attribute and a local template variable. The
phone number also has a minlength attribute, because we expect a phone number to
be at least seven digits. We’ve used local template variables in the component chapter to
access values from other controllers inside of the template, and that’s precisely the same

Figure 9.4   Customer form with
validation errors

Adds validation
attributes and
template variable
to form control

Uses form control
validation to conditionally
show error message

Form control
exposes what
specific error
is found.

216 Chapter 9  Forms

thing here. For example, #name="ngModel" is a way to define the template variable name
to be a reference to the NgModel result, which is the form control data. Remember, tem-
plate variables are only valid within the template they’re defined in, so you can’t reach
them from your controller.

This form control data is a FormControl type from Angular, which you can view in
the API docs to see more about what it can do for you. It has a number of properties,
such as valid, invalid, pristine, and dirty. These are Boolean values that you can
easily use to determine whether something is true or false. See table 9.1 for the most
useful form control properties.

Table 9.1   Form control validation properties

Property Meaning

valid The form control is valid for all validations.

invalid The form control has at least one invalid validation.

disabled The form control is disabled and can’t be interacted with.

enabled The form control is enabled and can be clicked or edited.

errors An object that either contains keys with validations that are invalid, or null when
all are valid.

pristine The form control has not yet been changed by the user.

dirty The form control has been changed by the user.

touched The form control has been in focus, and then focus has left the field.

untouched The form control has not been in focus.

The MdError element is from the Material Design library and shows a little validation
error when the NgIf is true. For example, *ngIf="email.touched && email.invalid"
will show the error when the form control is invalid, and the user has left focus on
that field. (As a side note, if the value was loaded from a database but was invalid, the
preceding validation would fail, so you should consider the needs of your application.)
This is nice because the error doesn’t appear immediately, but only when the user tries
to leave the field with an invalid value. You can use different combinations of the prop-
erties in table 9.1 to determine when to show a validation error. When you’re creating
a new item, all the required fields will be invalid, but it won’t show validation errors
until the user has tried to edit them.

Notice how the validation message for the phone number has two different valida-
tions: required and minlength. We’re then able to look at the control’s error object to
determine whether a specific validation failed and show the appropriate message. In
this case, if the user leaves it blank, it will prompt it to say the field is required, but if the
user only inputs four characters, it will show that it expects at least seven digits.

It’s also useful to note that Angular will apply various CSS classes to a form control
based on its validation state. They mirror the properties in table 9.1, but have the

	 217Template-driven forms

ng- prefix. For example, an invalid form control will have the ng-invalid class applied.
This is useful if you want to craft your own styling for valid or invalid controls without
any special work. We’re not doing that here, but you could certainly take advantage of
them. Some Angular UI libraries may come with support for them out of the box.

Though this validation is helpful, it’s still possible to submit the form with invalid
values. We’ll prevent this from happening in a moment, but first I want to wrap up vali-
dation by creating our own validation directive.

9.2.3	 Custom validation with directives

The validation for our phone number is somewhat lacking. We really would want it to
enforce not just the length but also that the content matches a known phone format.
Unfortunately, even the tel input type doesn’t do that for us, so we’ll have to imple-
ment our own custom validation using a directive. Our best effort so far has been to
enforce a minlength validation, but that only cares about the number of characters,
not the actual value.

Although there is the pattern validation attribute in HTML, which allows you to
declare a regular expression to validate the input, it’s not very usable and doesn’t work
in all browsers.

We’ll need to create two things to make this happen: a customer validator function
and a directive that uses the validator function. Start by creating a new directory at src/
app/validators; then create a file inside it named phone.validator.ts, and add the code
from the following listing.

Listing 9.3   Phone validator

import { AbstractControl, ValidatorFn } from '@angular/forms';

const expression = /((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}/;

export function PhoneValidator(): ValidatorFn {
 return (control: AbstractControl): { [key: string]: any } => {
 const valid = expression.test(control.value) && control.value.length <

14;
 return valid ? null : { phone: true };
 };
}

This is a bit terse, so let’s look at it step by step. First, we’re defining a regular expres-
sion that should validate the primary phone number formats. You could select a differ-
ent expression if your needs require. Then we’re exporting a function that will return
a function. The ValidatorFn interface expects that this returned function will accept a
control as a parameter and return either null or an object with validation errors.

Our PhoneValidator function will return the real validation function to use during
the validation. It accepts a single argument, which is the form control. For the most
part, you only care about the control.value property, which holds the current value
of the form control. Then inside of the validation function, it tests the current value

Regular expression to validate typical phone number

Defines a function that
returns a ValidatorFn type

Returns a
function to

handle
validation

Validates the control value
against expression

218 Chapter 9  Forms

against the expression and returns either null, to mean it’s valid, or an object if it’s
invalid, with a property explaining what is invalid.

If it returns an object, it expects you to give it a property with a value. Here it’s a Bool-
ean, but it could be any value you want to expose. Normally, I find Boolean is suitable
unless you want to also provide the error message as a string. You can access the value in
the local template control.errors property.

To use this validator we need to create a directive. Using the Angular CLI, generate a
new directive like so:

ng generate directive validators/phone

Now open src/app/validators/phone.directive.ts and add the code found in the fol-
lowing listing to it. This will take the validator function we created a moment ago and
make it possible to apply it to an element as an attribute.

Listing 9.4   Phone validator directive

import { Directive } from '@angular/core';
import { Validator, AbstractControl, NG_VALIDATORS } from '@angular/forms';
import { PhoneValidator } from './phone.validator';

@Directive({
 selector: '[phone][ngModel]',
 providers: [{ provide: NG_VALIDATORS, useExisting: PhoneDirective, multi:

true }]
})
export class PhoneDirective implements Validator {
 private validator = PhoneValidator();

 validate(control: AbstractControl): { [key: string]: any } {
 return this.validator(control);
 }
}

This is also a bit terse, but what we’re doing is implementing the necessary pieces to
wire up the directive to Angular’s list of validators and implement the same interface.
We start by defining the selector to expect to have both phone and NgModel attributes
on the form control. This means if you just put phone as an attribute, it won’t use this
directive for validation, because NgModel is required.

The directive also has a providers array and uses a multiprovider, which allows a
single token (like NG_VALIDATORS) to have multiple dependencies. NG_VALIDATORS con-
tains a list of default validation dependencies, and this extends that list by adding one
more of our own. This isn’t very common, but it’s required in this situation.

Our directive then exports a class, which implements the Validator interface.
This expects that there will be a validate method defined in the class, which we have
done. We also have a property that holds an instance of our validator function that we
imported, and then inside of the validate method we call our custom validator and
pass in the control.

Selector designed to apply to elements
with phone and NgModel attributes

Way to define this directive as part of Angular’s list of validators

Implements the Validator interfaceCreates instance of validation function

Method that form
controls will call to
validate value

	 219Template-driven forms

There’s a bit of juggling of the form control in this custom validation process, but
when you look at these two files together, it should be clearer how they relate to one
another. To implement this new validator directive, we need to update our phone
form control, as you see in the following listing.

Listing 9.5   Updated phone form control

<md-input-container>
 <input name="phone" mdInput type="tel" placeholder="Phone"

[(ngModel)]="customer.phone" required phone #phone="ngModel">
 <md-error *ngIf="phone.touched && phone.errors?.phone">
 Not a valid phone number
 </md-error>
</md-input-container>

The form control removes the minlength attribute and replaces it with the phone
attribute. This makes the form control now aware of the phone validation, and when
the number isn’t a correct phone number we can tell by looking at the errors.phone
property. Recall our validator function returns an object with {phone: true}, so this
is where we see it returned to us. We also removed the additional error message for it
being required, as our new validation covers that scenario as well.

To review, when we add the phone attribute, the NgModel will validate using the
Phone validator directive. Internally, the Phone validator directive registers itself with
the default list of validators that NgModel knows about by declaring the multiprovider (a
special kind of provider that can be registered more than once) for NG_VALIDATORS. It
then implements a validate method, which calls the validator function we created at
the beginning. There are a few steps here, but that’s the price we pay for the flexibility
provided by Angular’s platform.

Congrats! You’ve now got a custom validation directive that you can reuse on any
form control, or you can create additional ones for different scenarios. Now we need to
wrap up this form by handling events to either submit, cancel, or delete.

9.2.4	 Handling submit or cancel events

We’ve got all the data and validation we would like on this form, so now it’s time to
handle the various events that might happen with it. The most important is to handle
the submit event, but also we want to allow the user to cancel from saving the edits or
delete the record if it exists.

The controller already implements all the methods we need to handle these scenar-
ios, so we just need to write up our form to call them properly. You can review the meth-
ods in there and see how they work.

The first thing we should do is update our form element. Angular does another thing
to forms that isn’t visible by default. It automatically implements an NgForm on a form
even if you don’t declare a directive (unlike how you have to declare NgModel). When
it does this, it essentially attaches an NgForm controller that then maintains the form
controls in the form.

Adds the phone directive

Looks for
validation errors
of phone type

220 Chapter 9  Forms

NgForm provides a couple of features we’ll need; the first is that it can tell us if the
entire form is valid (not just an individual field) and help us implement an event bind-
ing for submitting the form. Find the form element at the top of the CustomerForm
template and update it to have these additional values shown in bold:

<form *ngIf="customer" #form="ngForm" (ngSubmit)="save()">

First we create another template variable and reference the NgForm controller. This is
the same idea we used for our form controls with NgModel, except this local template
variable will reference the entire form. Then we have an (ngSubmit) event handler to
call the save method.

Now we just need to update our buttons at the bottom to call the correct meth-
ods. The following code in bold contains the pieces to add to the buttons in the card
actions element near the bottom:

<md-card-actions>
 <button type="button" md-button (click)="delete()" *ngIf="customer.

id">Delete</button>
 <button type="button" md-button (click)="cancel()">Cancel</button>
 <button type="submit" md-raised-button color="primary" [disabled]="form.

invalid">Save</button>
</md-card-actions>

The first two buttons are standard buttons, so we just use the click event binding to
call the appropriate method. The delete button is hidden if we’re creating the record
by checking whether there is an ID, which is only set after creation. The submit button
doesn’t have an event binding, because that’s already being handled by ngSubmit. But
we do bind to the disabled property and look at the form.invalid property to deter-
mine if the entire form is invalid.

That about wraps up template-driven forms. Everything about our form was
described in the template, primarily by adding NgModel directives to our form con-
trols. Using local template variables that referenced the NgModel of a control, we could
inspect the validation errors for a field and show appropriate error messages. We also
were able to build a custom validator for phone numbers that works like any default vali-
dation attribute. Finally, we handled the submit event and checked the validation of the
overall form before enabling the submit button. Not too bad for a modest amount of
code! The final version of the customer form can be seen here in the following listing.

Listing 9.6   Final customer form template

<div *tdLoading="'customer'">
 <form *ngIf="customer" #form="ngForm" (ngSubmit)="save()">
 <md-card>
 <md-card-header>Edit Customer</md-card-header>
 <md-card-content>
 <md-input-container>
 <input name="customer" mdInput placeholder="Customer Name"

[(ngModel)]="customer.name" required #name="ngModel">
 <md-error *ngIf="name.touched && name.invalid">
 Name is required

	 221Reactive forms

 </md-error>
 </md-input-container>
 <md-input-container>
 <input name="email" mdInput type="email" placeholder="Email"

[(ngModel)]="customer.email" required #email="ngModel">
 <md-error *ngIf="email.touched && email.invalid">
 A valid email is required
 </md-error>
 </md-input-container>
 <md-input-container>
 <input name="phone" mdInput type="tel" placeholder="Phone"

[(ngModel)]="customer.phone" required phone #phone="ngModel">
 <md-error *ngIf="phone.touched && phone.errors?.required">
 Phone number is required
 </md-error>
 <md-error *ngIf="phone.touched && phone.errors?.phone">
 Not a valid phone number
 </md-error>
 </md-input-container>
 </md-card-content>
 <md-card-actions>
 <button type="button" md-button (click)="delete()" *ngIf="customer.

id">Delete</button>
 <button type="button" md-button (click)="cancel()">Cancel</button>
 <button type="submit" md-raised-button color="primary"

[disabled]="form.invalid">Save</button>
 </md-card-actions>
 </md-card>
 </form>
</div>

Now it’s time to implement the other form for creating or editing an invoice in the
reactive form style. It will approach the form from the controller first and have less
logic in the template to manage.

9.3	 Reactive forms
The alternative to template-driven forms, reactive forms, is the other way to design your
forms in Angular. The name reactive comes from the style of programming known as
reactive, where you have immutable data structures and your views never mutate them
directly. That means no two-way binding is allowed.

The basic idea is that your form has a copy of the original model that it uses while
the user is editing the form, and upon saving, you trigger an action like saving it to the
database and update the original model. Template-driven forms only have one shared
model, and because values are being constantly synced between the two, there may be
timing issues of values changing in multiple places.

One of my favorite aspects of reactive forms is that you can use an observable to watch
a particular form control for changes. I might do this to handle a task like autocom-
plete, for example. It’s been useful for me on several occasions, and template-driven
forms don’t have a good way to do this.

222 Chapter 9  Forms

Reactive forms still have a template, because you need to define the markup asso-
ciated with the form. The main difference in the template is you won’t use NgForm or
NgModel on any of the form controls; instead we’ll use a different directive to link a
particular form control in the template to the corresponding form control declared in
the controller.

There are a few other differences in the way that reactive forms behave. Because
template-driven forms employ two-way binding concepts, they’re inherently asynchro-
nous in their handling. During the rendering of a template-driven form, the NgModel
directive is building the form up for you behind the scenes. This takes more than one
change detection cycle, though, causing potential race conditions where you expect a
form element to be registered but it hasn’t yet. This doesn’t happen with reactive forms,
because you define the form in your controller, so it’s not dependent on change detec-
tion cycles.

The challenges with timing of template-driven forms tend to only appear when you
try to access form controls or the form itself too early, and require you to wait until the
AfterViewInit lifecycle hook to ensure the view has fully rendered. The Angular doc-
umentation covers some details about the differences and virtues of each approach as
well and is worth reviewing: https://angular.io/guide/forms.

Setting aside some of the internal mechanical differences, let’s focus on what reac-
tive forms look like. In a template-driven form the NgModel builds the form controls,
but with reactive we need to define our form programmatically in the controller. When
you settle on using one form approach, it’s not easy or advisable to mix them in the
same form, though you could in different forms.

In this section, we’ll build the InvoiceForm component form, and you can see the
result in figure 9.5. It has more fields, but visually isn’t all that different from the last form.
Let’s start by building the entire form for our InvoiceForm component. We already
have the markup ready to go, so we need to define it for Angular.

9.3.1	 Defining your form

The first step is to define the form for our invoice, and this is done to ensure that the
controller is aware of all of the aspects of the form. This will define a separate model
that exists just for the form. When we load the invoice data from the API, we’ll load it
into the form, rather than directly bind the form to it like we saw with NgModel.

Angular provides a service called FormBuilder, which is a helpful tool to build a reac-
tive form. We’ll use this to build the description of our form. It lets us define each of the
form controls and any validations we want to apply to them.

We’ll be editing the InvoiceForm component in this section, so start by opening src/
app/invoice-form/invoice-form.component.ts and update the constructor like you see
in listing 9.7. This only includes the top portion of the file—to focus on the changing
pieces, which are in bold.

https://angular.io/guide/forms

	 223Reactive forms

Listing 9.7   Using FormBuilder to define the form

export class InvoiceFormComponent implements OnInit {
 invoiceForm: FormGroup;
 invoice: Invoice;
 customer: Customer;
 customers: Customer[];
 total = 0;

 constructor(
 private loadingService: TdLoadingService,
 private invoicesService: InvoicesService,
 private router: Router,
 private dialogService: TdDialogService,
 private customersService: CustomersService,
 private formBuilder: FormBuilder,
 private route: ActivatedRoute) {

 this.invoiceForm = this.formBuilder.group({
 id: [''],
 service: ['', Validators.required],
 customerId: ['', Validators.required],
 rate: ['', Validators.required],
 hours: ['', Validators.required],
 date: ['', Validators.required],
 paid: ['']
 });

 }

Figure 9.5   Invoice form with more controls,
built in reactive style

Creates a property to hold the resulting form

Defines the form
by creating a group

Defines a property
that has a validation

Defines a property
without validation

224 Chapter 9  Forms

To begin, we set a property on the controller to hold our form. It’s of the FormGroup
type, which is an object designed to hold various form controls together. Then inside
of the constructor, we’ll use the FormBuilder service to build a group of controls.

It accepts an object that contains properties with the name of the control set to an
array that holds at least one value. The first value is the value it should hold, which we’re
defaulting to empty for all of them. For some properties, we only define the default
value. For other properties, we can add additional items to the array that must be vali-
dator functions. We’ll create a custom one in a little bit, but for now we’re assigning the
required validation to each.

That’s all we need to do to define our form. But it will always be a blank form, so when
we’re editing a record we need to load the data into the form. We do this in the OnInit
lifecycle hook where we load the data. In the following listing, you can see the snippet
for the data loading and add the bolded line that sets the form state based on the data.

Listing 9.8   Setting the form state

this.route.params.map((params: Params) => params.invoiceId).
subscribe(invoiceId => {

 if (invoiceId) {
 this.invoicesService.get<Invoice>(invoiceId).subscribe(invoice => {
 this.invoiceForm.setValue(invoice);
 this.invoice = invoice;
 this.loadingService.resolve('invoice');
 });
 } else {
 this.invoice = new Invoice();
 this.loadingService.resolve('invoice');
 }
});

The invoiceForm has a setValue method, which takes a data model and sets prop-
erties based on that. Otherwise, it’s a new form, and the default values were already
declared earlier in the controller when we defined the form. In the case where we’re
editing and have an existing invoice, it gets set into the form after it’s been loaded
from the API.

Now we need to update our template so the form controls are aware of this form and
its data.

9.3.2	 Implementing the template

The form controls in our template are currently unaware of our reactive form, and this
step is about linking the form controls in the template and form controls defined in
the controller. Form controls in a template exist like a normal HTML form by default.
But for this all to work right, they need to know about the form and its current state so
they can display properly.

The InvoiceForm template has a couple of UI components from Material Design: a
date picker and a slide toggle. These act like normal form elements, and you can learn
more about them in the documentation.

Use setValue to update
the form state.

	 225Reactive forms

Much as we used NgModel to link a form control to the form, we’ll use a different
directive called FormControlName. This will indicate which form control should be
bound into that element, based on the name provided when we built the form.

Open src/app/invoice-form/invoice-form.component.html and make the additions
to the form controls, as you see in bold in the following listing, to wire up the controls.

Listing 9.9   InvoiceForm template with form controls

<div *tdLoading="'invoice'">
 <form *ngIf="invoice" [formGroup]="invoiceForm">
 <md-card>
 <md-card-header>Edit Invoice</md-card-header>
 <md-card-content>
 <md-input-container>
 <input name="service" mdInput type="text" placeholder="Service"

formControlName="service">
 </md-input-container>
 <md-input-container>
 <input mdInput [mdDatepicker]="picker" placeholder="Choose a date"

formControlName="date">
 <button type="button" mdSuffix [mdDatepickerToggle]="picker"></

button>
 </md-input-container>
 <md-datepicker #picker></md-datepicker>
 <md-input-container>
 <input name="hours" mdInput type="number" placeholder="Hours"

formControlName="hours">
 </md-input-container>
 <md-input-container>
 <input name="rate" mdInput type="number" placeholder="Rate"

formControlName="rate">
 </md-input-container>
 <div>
 <md-select name="customerId" placeholder="Customer"

formControlName="customerId">
 <md-option [value]="customer.id" *ngFor="let customer of

customers">{{customer?.name}}</md-option>
 </md-select>
 </div>
 <div class="toggler">
 <md-slide-toggle formControlName="paid">Paid</md-slide-toggle>
 </div>
 <div class="total">
 Total: {{total | currency:'USD':true:'.2'}}
 </div>
 </md-card-content>
 <md-card-actions>
 <button type="button" md-button>Delete</button>
 <button type="button" md-button>Cancel</button>
 <button type="submit" md-raised-button color="primary">Save</button>
 </md-card-actions>
 </md-card>
 </form>
</div>

Defines the form group on
the form element

Adds a formControlName that
maps to the control name

Material Design date picker
works with a normal input field.

Slide toggle has a Boolean state.

226 Chapter 9  Forms

The first step is to use the FormGroup directive to bind the form we declared to the
form element. If you miss this step, the form won’t know about the model you defined.
Then we just linked the form controls with the name used when we built the form, and
at this point the form will now render properly. We’ll have to work out the details of
saving in a little bit, but otherwise it’s a fully functional form.

Now I think it would be nice for us to display the invoice total in the page so users
know the invoice total based on the rate and hours input. We can do this by observing
form controls, so let’s see how we can use that.

9.3.3	 Watching changes

Unlike in template-driven forms, our reactive form controller has the source of truth
for the form state, and it gives us the ability to observe a form or a single control
for changes. This lets us run logic that might be useful, such as validation or saving
progress.

In our case, we want to display the total invoice amount at the bottom, and that
requires multiplying the hours and rate. Each form control exposes an observable that
we can use to subscribe to changes, and we’ll use it to get both hours and rate values.

The template already has a place for the total at the bottom, but it shows 0 all the
time. Although we could try to do math directly in the interpolation binding, it gets a
little bit messy and harder to test. We’d rather handle this in the controller.

Using the form, we can get a specific control using invoiceForm.get('hours'). You
pass a string that’s the name of the form control, and you get the instance of that con-
trol. This instance provides a number of properties and capabilities, one of which is the
valueChanges observable.

Let’s make this work by adding a little bit to the end of the OnInit method. You can
see the snippet to add here in the following listing.

Listing 9.10   Observing state changes in the form

Observable.combineLatest(
 this.invoiceForm.get('rate').valueChanges,
 this.invoiceForm.get('hours').valueChanges
).subscribe(([rate = 0, hours = 0]) => {
 this.total = rate * hours;
});

This snippet might be new to you, but we’re using the combineLatest operator from
RxJS. This operator takes two observables, which are references to the stream of value
changes of the rate and hours controls, and merges them into one. We can then get
the latest values from the stream and multiply them to get the current total.

Imagine you had more complex math here, such as adding in taxes, or perhaps there
was another value to plug in. Doing math in the interpolation binding directly would
quickly get out of hand, and this provides you direct access to run calculations when
values change. This is also a pattern of reactive, because in this case you’re reacting to
changes in the form state and updating the total.

	 227Reactive forms

When you use invoiceForm.get('rate'), you’re also able to access the same prop-
erties from table 9.1 (form control status properties). You can check whether the con-
trol is valid, pristine, touched, or what errors exist. This might be helpful for you to
do additional validation or checks.

We can also implement our own validator functions as we did before and see how to
plug them into the form.

9.3.4	 Custom validators with reactive forms

Previously, when we implemented custom validation, we created both a validation func-
tion and a directive. With reactive forms, we only need to create the validation function
and then add it into the form when we create it with FormBuilder.

We’ll update our validation messages as well to use the validation rules we defined, as
you see in figure 9.6.

Imagine our invoicing application had the restriction that hours had to be always
rounded to the quarter hour—like 1 hour, 1.25, 1.5, 1.75, or 2. It should not allow
values like 1.1 or 1.7. This is fairly common when invoicing by time, and the way we
enforce this is to validate the hours input and see if it’s valid by quarter hour.

We’ll build a validator function like we did previously, but we won’t have to wrap it up
in a directive. Start by making a new file at src/app/validators/hours.validator.ts, and
add the code from the following listing to it.

Figure 9.6   Validation rules in the invoice form

228 Chapter 9  Forms

Listing 9.11   Hour validator

import { AbstractControl, ValidatorFn } from '@angular/forms';

export function HoursValidator(control: AbstractControl) : { [key: string]:
any } {

 return (Number.isInteger(control.value * 4)) ? null : { hours: true };
}

This is very succinct, but in contrast to the previous validator, we’re directly exporting
the validation function. When we created a custom validator earlier for a directive,
we needed a function to return a validator function, whereas here we export the vali-
dator function directly. When the validator function runs, it multiplies the value by 4
and checks if it is an integer. That means any valid hourly increment will multiply an
integer by 4 and return null for valid. Otherwise, it returns the object with the key and
Boolean.

Now we need to make our form aware of this validation function, and that’s done
when we construct the form using FormBuilder. In the component controller, update
the form definition like you see in the following listing. You’ll need to import the
HoursValidator function into the file.

Listing 9.12   Using HoursValidator

this.invoiceForm = this.formBuilder.group({
 id: [''],
 service: ['', Validators.required],
 customerId: ['', Validators.required],
 rate: ['', Validators.required],
 hours: ['', [Validators.required, HoursValidator]],
 date: ['', Validators.required],
 paid: ['']
});

Because we’re directly constructing the form, we just need to pass the custom valida-
tion function into the control. Notice how the hours control also now has an array for
the second item in the array. That’s because if you have multiple validators, they need
to be grouped here. The form control takes the default value, synchronous validators,
and asynchronous validators as a third array item.

We haven’t looked at async validators, but the only difference is that they might take
a moment to run. Imagine you needed a validator that checked whether a username
was already taken; that probably requires making an API call. The only difference when
you implement an async validator is that you need to return a promise or observable,
and Angular handles it.

We’d also like to show validation errors in the template, so we’ll need to add the same
type of error messages we saw earlier. But the way we access the form elements to check
their validity is slightly different.

Open the template again and update the fields with error messages, as you see in the
following listing.

Directly
exports the

validator
function

Determines if
the number

is a valid
figure and

returns
validation

Adds custom validator
to the control

	 229Reactive forms

Listing 9.13   Validation messages

<md-card-content>
 <md-input-container>
 <input name="service" mdInput type="text" placeholder="Service"

formControlName="service">
 <md-error *ngIf="invoiceForm.get('service').touched && invoiceForm.

get('service').invalid">
 Service is required
 </md-error>
 </md-input-container>
 <md-input-container>
 <input mdInput [mdDatepicker]="picker" placeholder="Choose a date"

formControlName="date">
 <button type="button" mdSuffix [mdDatepickerToggle]="picker"></button>
 <md-error *ngIf="invoiceForm.get('date').touched && invoiceForm.

get('date').invalid">
 Date is required
 </md-error>
 </md-input-container>
 <md-datepicker #picker></md-datepicker>
 <md-input-container>
 <input name="hours" mdInput type="number" placeholder="Hours"

formControlName="hours">
 <md-error *ngIf="invoiceForm.get('hours').touched && invoiceForm.

get('hours').invalid">
 Hours must be in quarter hour increments
 </md-error>
 </md-input-container>
 <md-input-container>
 <input name="rate" mdInput type="number" placeholder="Rate"

formControlName="rate">
 <md-error *ngIf="invoiceForm.get('rate').touched && invoiceForm.

get('rate').invalid">
 Hourly rate is required
 </md-error>
 </md-input-container>
 <div>
 <md-select name="customerId" placeholder="Customer"

formControlName="customerId">
 <md-option [value]="customer.id" *ngFor="let customer of

customers">{{customer?.name}}</md-option>
 </md-select>
 </div>
 <div class="toggler">
 <md-slide-toggle formControlName="paid">Paid</md-slide-toggle>
 </div>
 <div class="total">
 Total: {{total | currency:'USD':true:'.2'}}
 </div>
</md-card-content>

Here we’ve added the same MdError to display errors, except we use invoiceForm.
get('rate') to access the form control. The same properties from the earlier table
are still available to you, but instead of having a local template variable to get a refer-
ence to it, we reference it from the form itself.

Use invoiceForm to get the
form control reference.

At time of writing,
select did not
support validation.

230 Chapter 9  Forms

Now that we have the form validated as we would like, we need to be able to submit it.
Let’s see how that’s done with reactive forms now.

9.3.5	 Handling submit or cancel events

The final step is to submit the form when it’s ready. The steps are almost identical,
except we manage the data in a different way before we submit it to the service. The
NgSubmit event binding is still available for us to capture submit events to handle, so
we’ll use that again.

Open the InvoiceForm component template again and update the form element
like you see here in bold:

<form *ngIf="invoice" [formGroup]="invoiceForm" (ngSubmit)="save()">

While you have the template open, let’s also wire up the buttons at the bottom. Add
the bolded parts to your buttons:

<md-card-actions>
 <button type="button" md-button (click)="delete()" *ngIf="invoice.

id">Delete</button>
 <button type="button" md-button (click)="cancel()">Cancel</button>
 <button type="submit" md-raised-button color="primary"

[disabled]="invoiceForm.invalid">Save</button>
</md-card-actions>

Here we’re implementing the click handlers on the delete and cancel buttons, and
also disabling the save button unless the form is valid. Notice how we’re using the
InvoiceForm properties to determine the form state, similar to how we used NgForm
with template-driven forms.

The last step is to update the save method in the controller so it gets its data from
the form. Because the data was bound into the form when we loaded the component,
we need to extract it back out before we save. Update the save method as you see here
in bold:

save() {
 if (this.invoice.id) {
 this.invoicesService.update<Invoice>(this.invoice.id, this.invoiceForm.

value).subscribe(response => {
 this.viewInvoice(response.id);
 });
 } else {
 this.invoicesService.create<Invoice>(this.invoiceForm.value).

subscribe(response => {
 this.viewInvoice(response.id);
 });
 }
}

You can see that when we need to get the data back out of the form, we can look at
the invoiceForm.value property. This gives us an object representing the same form
model with the values for each field. We pass this into the service to either create or
update a record and see our values being saved correctly.

	 231Reactive forms

We’re now finished with our invoice form, and you can see both the controller and
template in listings 9.14 and 9.15 to ensure you have everything correct.

Listing 9.14   InvoiceForm component controller

import { Component, OnInit } from '@angular/core';
import { ActivatedRoute, Params, Router } from '@angular/router';
import { TdLoadingService, TdDialogService } from '@covalent/core';
import { FormBuilder, FormGroup, Validators } from '@angular/forms';
import { InvoicesService, Invoice, CustomersService, Customer } from '@aia/

services';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/combineLatest';
import { HoursValidator } from '../validators/hours.validator';

@Component({
 selector: 'app-invoice-form',
 templateUrl: './invoice-form.component.html',
 styleUrls: ['./invoice-form.component.css']
})
export class InvoiceFormComponent implements OnInit {
 invoiceForm: FormGroup;
 invoice: Invoice;
 customer: Customer;
 customers: Customer[];
 total = 0;

 constructor(
 private loadingService: TdLoadingService,
 private invoicesService: InvoicesService,
 private router: Router,
 private dialogService: TdDialogService,
 private customersService: CustomersService,
 private formBuilder: FormBuilder,
 private route: ActivatedRoute) {

 this.invoiceForm = this.formBuilder.group({
 id: [''],
 service: ['', Validators.required],
 customerId: ['', Validators.required],
 rate: ['', Validators.required],
 hours: ['', [Validators.required, HoursValidator]],
 date: ['', Validators.required],
 paid: ['']
 });

 }

 ngOnInit() {
 this.loadingService.register('invoice');
 this.loadingService.register('customers');

 this.customersService.query().subscribe(customers => {
 this.customers = customers;

232 Chapter 9  Forms

 this.loadingService.resolve('customers');
 });

 this.route.params.map((params: Params) => params.invoiceId).
subscribe(invoiceId => {

 if (invoiceId) {
 this.invoicesService.get<Invoice>(invoiceId).subscribe(invoice => {
 this.invoiceForm.setValue(invoice);
 this.invoice = invoice;
 this.loadingService.resolve('invoice');
 });
 } else {
 this.invoice = new Invoice();
 this.loadingService.resolve('invoice');
 }
 });

 Observable.combineLatest(
 this.invoiceForm.get('rate').valueChanges,
 this.invoiceForm.get('hours').valueChanges
).subscribe(([rate = 0, hours = 0]) => {
 this.total = rate * hours;
 });
 }

 save() {
 if (this.invoice.id) {
 this.invoicesService.update<Invoice>(this.invoice.id, this.invoiceForm.

value).subscribe(response => {
 this.viewInvoice(response.id);
 });
 } else {
 this.invoicesService.create<Invoice>(this.invoiceForm.value).

subscribe(response => {
 this.viewInvoice(response.id);
 });
 }
 }

 delete() {
 this.dialogService.openConfirm({
 message: 'Are you sure you want to delete this invoice?',
 title: 'Confirm',
 acceptButton: 'Delete'
 }).afterClosed().subscribe((accept: boolean) => {
 if (accept) {
 this.loadingService.register('invoice');
 this.invoicesService.delete(this.invoice.id).subscribe(response => {
 this.loadingService.resolve('invoice');
 this.invoice.id = null;
 this.cancel();
 });
 }

	 233Reactive forms

 });
 }

 cancel() {
 if (this.invoice.id) {
 this.router.navigate(['/invoices', this.invoice.id]);
 } else {
 this.router.navigateByUrl('/invoices');
 }
 }

 private viewInvoice(id: number) {
 this.router.navigate(['/invoices', id]);
 }

}

Listing 9.15   InvoiceForm component template

<div *tdLoading="'invoice'">
 <form *ngIf="invoice" [formGroup]="invoiceForm" (ngSubmit)="save()">
 <md-card>
 <md-card-header>Edit Invoice</md-card-header>
 <md-card-content>
 <md-input-container>
 <input name="service" mdInput type="text" placeholder="Service"

formControlName="service">
 <md-error *ngIf="invoiceForm.get('service').touched && invoiceForm.

get('service').invalid">
 Service is required
 </md-error>
 </md-input-container>
 <md-input-container>
 <input mdInput [mdDatepicker]="picker" placeholder="Choose a date"

formControlName="date">
 <button type="button" mdSuffix [mdDatepickerToggle]="picker"></

button>
 <md-error *ngIf="invoiceForm.get('date').touched && invoiceForm.

get('date').invalid">
 Date is required
 </md-error>
 </md-input-container>
 <md-datepicker #picker></md-datepicker>
 <md-input-container>
 <input name="hours" mdInput type="number" placeholder="Hours"

formControlName="hours">
 <md-error *ngIf="invoiceForm.get('hours').touched && invoiceForm.

get('hours').invalid">
 Hours must be in quarter hour increments
 </md-error>
 </md-input-container>
 <md-input-container>

234 Chapter 9  Forms

 <input name="rate" mdInput type="number" placeholder="Rate"
formControlName="rate">

 <md-error *ngIf="invoiceForm.get('rate').touched && invoiceForm.
get('rate').invalid">

 Hourly rate is required
 </md-error>
 </md-input-container>
 <div>
 <md-select name="customerId" placeholder="Customer"

formControlName="customerId">
 <md-option [value]="customer.id" *ngFor="let customer of

customers">{{customer?.name}}</md-option>
 </md-select>
 </div>
 <div class="toggler">
 <md-slide-toggle formControlName="paid">Paid</md-slide-toggle>
 </div>
 <div class="total">
 Total: {{total | currency:'USD':true:'.2'}}
 </div>
 </md-card-content>
 <md-card-actions>
 <button type="button" md-button (click)="delete()" *ngIf="invoice.

id">Delete</button>
 <button type="button" md-button (click)="cancel()">Cancel</button>
 <button type="submit" md-raised-button color="primary"

[disabled]="invoiceForm.invalid">Save</button>
 </md-card-actions>
 </md-card>
 </form>
</div>

That covers the majority of what you need to know about both reactive and template-driven
forms. There are certainly more minor features that exist for additional cases, but this
foundation should get you building forms, and you can learn about other features as
you go.

9.3.6	 Which form approach is better?

That is a trick question, to my mind, though you probably want a bit more of an expla-
nation. Rather than tell you to use one and never the other, I’ll share from my experi-
ence why I use both.

Excluding the mechanical differences of the two form libraries, I find the most
important aspect is how they approach defining the form. The patterns they employ
can work in most situations.

Most of the time I suggest reactive forms. I like the guarantees reactive provides and
the way you define the model and let the template react. I prefer my templates to reflect
state, not create state. By that I mean how NgModel creates the controls for you behind

	 235Custom form controls

the scenes and binds data up to the controller. If you need an answer, I would recom-
mend reactive forms, if you really pinned me down.

But you may have noticed this is the first time we’ve seen reactive forms in the book.
Sometimes it’s simpler to use NgModel, especially when it’s a single form field. In simple
scenarios, I find template-driven forms to be more approachable with low overhead,
but when a form becomes more complex, then I recommend reactive forms.

I think the most important thing is to be consistent in your applications. Although
you can mix and match as much as you like, there’s a mental drawback to that when you
write and test them.

Before I close out the chapter, let’s see how to implement your own form controls
in cases where your application needs controls that don’t exist out of the box or in
libraries.

9.4	 Custom form controls
There are scenarios where your application requires a different form control that
isn’t defined in HTML or in a third-party library. All form controls have a few basic
requirements, and Angular already implements them for the built-in HTML form
elements.

Regardless of whether you use reactive or template-driven forms, there has to be
some logic to write up the native HTML element (or custom component) with the
forms library. There are essentially two places to track the current value of a form
control: in the form and the control. Angular provides the ControlValueAccessor
interface as a way to implement a custom control that works with forms, which we’ll
use in conjunction with the Angular Material library components to create our own
custom control.

In our application, there are several candidates for creating custom form controls,
but we’ll be transforming the current hours input field from the invoice form into a cus-
tom form control. We’ll implement some basic features that make it easier to use, but
also encapsulate the internal logic of the control.

As you see in figure 9.7, the hours form field now has several buttons underneath
that help you dial in the value by smaller increments. As you change the values, the
form element will continue to validate and update the total invoice value at the bottom,
as you would expect.

Our first step is to create a new component to house our custom control. To do this,
use the CLI as you see here:

ng generate component hours-control

Once the component is created, open the src/app/hours-control/hours-control.
component.ts file and replace the contents with what you see in listing 9.16. There’s a
lot happening in this file, so we’ll look at the various pieces closely.

236 Chapter 9  Forms

Listing 9.16   HoursControl controller

import { Component, forwardRef } from '@angular/core';
import { ControlValueAccessor, NG_VALIDATORS, NG_VALUE_ACCESSOR, FormControl

} from '@angular/forms';
import { HoursValidator } from '../validators/hours.validator';

@Component({
 selector: 'app-hours-control',
 templateUrl: './hours-control.component.html',
 styleUrls: ['./hours-control.component.css'],
 providers: [{
 provide: NG_VALUE_ACCESSOR,
 useExisting: forwardRef(() => HoursControlComponent),
 multi: true
 }, {
 provide: NG_VALIDATORS,
 useExisting: forwardRef(() => HoursControlComponent),
 multi: true
 }]
})
export class HoursControlComponent implements ControlValueAccessor {

 hours = 0;
 validateFn = HoursValidator;
 onChange = (v: any) => {};

Figure 9.7   New hours custom control that connects
with Angular forms

Declares
providers

ControlValueAccessor
interface is used by all

form controls

Properties to house the value, validation
function, and change event

	 237Custom form controls

 update() {
 this.onChange(this.hours);
 }

 keypress($event) {
 if ($event.key === 'ArrowUp') {
 this.setValue(.25);
 } else if ($event.key === 'ArrowDown') {
 this.setValue(-.25);
 }
 }

 setValue(change: number) {
 this.hours += change;
 this.update();
 }

 validate(control: FormControl) {
 return this.validateFn(control);
 }

 writeValue(value: any) {
 if (value !== undefined) {
 this.hours = value;
 }
 }

 registerOnChange(fn) {
 this.onChange = fn;
 }

 registerOnTouched() {}
}

There’s a lot happening here in a short amount of space, so let’s break things down.
The HoursControl component implements the ControlValueAccessor interface, which
ensures that your form control is designed to work correctly with Angular forms. It
requires that a control implements the three methods found at the end of the con-
troller: writeValue, registerOnChange, and registerOnTouched.

The writeValue method is used by Angular to pass a value into the form control
from the form itself. This is similar to binding a value into the component, though it
works with the form controls like NgModel, and it passes the value from the form into
the control.

The registerOnChange method accepts a function that the form library will pass in
that your control needs to call whenever the value changes. It stores this function on
the onChange property of the controller, and the default noop function is defined so the
component compiles correctly. In other words, it gives you a method to call that passes
the current form value up to the form.

The registerOnTouch method isn’t implemented here, but it allows you to accept a
method to handle touch events. This might be useful on controls that have some kind

Changes binding to
update the form control

Event handler for
key press

Method to set value
from button clicks

Validation handler

Handles writing a value
into the control

Wires up change handler

Empty method to satisfy interface

238 Chapter 9  Forms

of touch impact, such as a toggle switch. But there isn’t much for us to implement for a
form control that takes a number input.

In the component metadata, we see some providers are declared. Recall that we did
something similar when we created our directive for validation. Here we have to declare
two providers—the first is to register this component with NG_VALUE_ACCESSOR. This
marks this component as a form control and registers it with dependency injection so
Angular can access it later. The second is to register the component with NG_VALIDATORS.
This control has validation internally, so we need to register the control on the valida-
tors provider for Angular to access later.

Because the control has a validate method, Angular can call this method to determine
whether the control is valid or not. This is the same as with creating a Validator directive as
we did earlier in listing 9.4. In this case, though, we import the HoursValidator func-
tion and reuse it inside the component.

The rest of the methods are there to handle the internal actions of the control. The
update method is responsible for calling the change event handler, which will alert the
form that the control’s internal state value has changed. The keypress method is just a
nice feature that allows us to bind to the keyup event, and if the user pressed up or down
arrows, it will increment or decrement the current value by 0.25. Finally, the setValue
method is called by the row of buttons to add or subtract from the current value.

In summary, this component really has three roles. First, it implements an internal
model to track the current value of the control (the number of hours) and allows that
value to be manipulated by buttons or keypresses. Second, it provides validation and
ensures the number provided is to a quarter of an hour. Third, it wires up the necessary
methods for Angular forms to be made aware of the current state of the control.

Next we need to look at the template, so let’s go ahead and implement it so we can
see everything together. Open src/app/hours-control/hours-control.component.html
and replace its contents with the code from the following listing.

Listing 9.17   HoursControl template

<md-input-container>
 <input name="hours" mdInput type="number" placeholder="Hours"
 [(ngModel)]="hours" hours (keyup)="keypress($event)"
 #control="ngModel" (change)="update()">
 <md-error *ngIf="control.touched && control.invalid">
 Hours must be a number in increments of .25
 </md-error>
</md-input-container>
<div layout="row">
 <button type="button" md-button flex (click)="setValue(1)">+ 1</button>
 <button type="button" md-button flex (click)="setValue(.25)">+ .25</button>
 <button type="button" md-button flex (click)="setValue(-.25)">- .25</

button>
 <button type="button" md-button flex (click)="setValue(-1)">- 1</button>

</div>

Binds hours using
NgModel, adds

directive to validate,
and event bindings

Shows or hides
error messages

Buttons in a
row to add or

subtract hours

	 239Custom form controls

In our template, we encapsulate the entire form control that we want to provide, which
includes the buttons and the original input box. Because we’re still accepting text
input, we use a standard input element. But we’re also setting up the NgModel, a valida-
tion directive (which we’ll create next), and two event bindings for keyup and change.

This control has built-in error validation and uses the same Angular Material pat-
terns we saw earlier in the chapter. It shows a message if the control is invalid, and if the
control has been focused on. It’s nice that the validation messaging is built in, because it
doesn’t need to be implemented later. If you have the same controls in many places with
the same validation, this might be useful. If you want to ensure that this control is more
reusable, with different validation types, this might not be ideal.

The last set of elements is the buttons that add or subtract from the current state.
When they’re clicked, the internal hours model is updated, and the form is alerted to
the change as well.

There’s a bit of CSS that we need to add for the control to look correct, so open src/
app/hours-control/hours-control.css and add the code from the following listing.

Listing 9.18   HoursControl stylings

:host {
 width: 100%;
 display: block;
}
md-input-container {
 width: 100%;
}
button {
 padding: 0;
 min-width: 25%;
}

This makes sure that a few pieces of the control play nicely with the UI library, since
we’ve changed the way it usually expects elements to be laid out.

You probably noticed that we have a validation directive for hours on the input, but
we haven’t created a directive version of this validator yet. That’s simple to do, and we
need to do so before we use this control. Create a new directive by running the follow-
ing command:

ng generate directive validators/hours

Then open the directive file at src/app/validators/hours.directive.ts and replace its
contents with the code in the following listing.

Listing 9.19   Hours validation directive

import { Directive } from '@angular/core';
import { Validator, AbstractControl, NG_VALIDATORS } from '@angular/forms';
import { HoursValidator } from './hours.validator';

@Directive({

240 Chapter 9  Forms

 selector: '[hours][ngModel]',
 providers: [{ provide: NG_VALIDATORS, useExisting: HoursDirective, multi:

true }]
})
export class HoursDirective implements Validator {
 private validator = HoursValidator;

 validate(control: AbstractControl): { [key: string]: any } {
 return this.validator(control);
 }
}

This directive looks almost identical to the one we created earlier, except it references
the HoursValidator function. I recommend reviewing the details from listing 9.3 for
specifics if you have any questions.

Now we have everything we need to use our new control. This control is meant to be used
in the InvoiceForm component, so open the template found at src/app/invoice-form/
invoice-form.component.html and replace the existing hours input element with our
newly created form control, as you see here in bold in the snippet of the whole template:

<md-datepicker #picker></md-datepicker>
<app-hours-control formControlName="hours"></app-hours-control>
<md-input-container>
 <input name="rate" mdInput type="number" placeholder="Rate"

formControlName="rate">
</md-input-container>

Because this is a custom form control, we can use it with reactive forms or
template-driven forms without issue. Congratulations! You’ve created your own con-
trol and can now make as many as you want.

But wait—there are a couple of caveats to building your own controls, and to this
particular example. Custom controls seem like a great idea, but they can also be a lot
of work to build properly. For example, does your custom control work well on mobile
or touch devices? Does it have proper support for screen readers and other accessibility
requirements? Does it work in multiple applications or is it too custom for your appli-
cation? These are important questions to ask, and also to verify whether your controls
work for the largest set of users. One of the major reasons I advocate using an existing
UI library is that the good libraries will have solved these issues ahead of time for you.

Before going off to build a custom control, see if you can think clearly about the user
experience and determine whether an existing control could be used instead of a new
one. Users tend to struggle more with custom form elements that they haven’t seen
before, so it can be very practical to adjust the application slightly so it can use already
existing controls before you make a new one.

Because this chapter is using a specific UI library, I’ve implemented the form con-
trols in a way that fits with that library. Therefore, it’s limited to being used only with
Angular Material, which may limit the use of your control. On the other hand, if you
can expect to always use Angular Material (or the UI library of choice), then the custom
control may be saving you a lot of repetition.

Ensures selector applies to elements
with the hour and NgModel attributes

	 241Summary

At the time of writing, the Angular Material library doesn’t support creating your
own form controls that work nicely with the input container. (See https://github.com/
angular/material2/issues/4672.) This is why I ultimately encapsulated the entire form
control and surrounding markup. It makes the example more verbose than you might
need, so you should consider how to simplify your form controls if possible.

This example uses a standard input element inside, which is why NgModel was used,
but in many custom form controls you may not have an input, so you wouldn’t use
NgModel. In those cases, you simply make sure that as the control state changes (such as
a toggler that goes from true to false), you call the change handler so the form knows
the state changes.

That wraps up forms, both reactive and template-driven, as well as creating your own
controls. Forms are very important to most applications, and you should now have the
tools to craft feature-rich and usable forms.

Summary
We’ve built two forms, in both the reactive and template-driven styles in this chapter.
Along the way we also managed to learn about most of what forms have to offer. Here’s
a brief summary of the key takeaways:

¡	Template-driven forms define the form using NgModel on form controls.
¡	You can apply normal HTML validation attributes, and NgModel will automatically

try to validate based on those rules.
¡	Custom validation is possible through a custom validator function and directive,

which gets registered with the built-in list of validators.
¡	The NgForm directive, though it can be transparent, exposes features to help

manage submit events and overall form validation inspection.
¡	Reactive forms are different in that you define the form model in the controller

and link form controls using FormControlName.
¡	You can observe the changes of a form control with reactive forms and run logic

every time a new value is emitted.
¡	Reactive forms declare validation in the controller form definition, and creating

custom validations is easier because they don’t require a directive.
¡	Ultimately, both form patterns are available to you. I tend to use reactive forms,

especially as the form gets more complex.
¡	Creating a new form control requires implementing the ControlValueAccessor

methods and registering it with the controls provider.

https://github.com/angular/material2/issues/4672
https://github.com/angular/material2/issues/4672

242

10Testing your application

This chapter covers
¡	The value of testing your Angular applications

¡	How to set up and create unit tests to test
individual pieces

¡	Unit test strategies for directives, services,
components, and pipes

¡	How to implement e2e tests to test the
application as a whole

¡	Additional testing strategies

All the applications we’ve built could benefit from testing. Some developers dread
writing tests, whereas others are probably wondering why I didn’t cover testing from
the start. I consider testing essential, though it requires a set of new concepts and
tools, which is why I waited till now.

Angular was designed to be highly testable, and projects created using the Angu-
lar CLI automatically set up basic testing scaffolding and tools for us to use. We’ll use
the CLI provided tools and configuration in this chapter. Developers with experience
using other tools can choose to set up something else on their own and use the ideas
and concepts from this chapter with those tools.

	 243Testing tools and setting up the chapter example

When developers talk about testing, they often mean unit tests. If you aren’t familiar
with unit tests, these are ways of testing individual pieces (units) of your application in
isolation. For example, we’ll test a single component without being rendered in the
entire app and a pipe without being used in a template. If we compare unit tests to
making a car, it would be analogous to testing each part, such as the wheel, electronics,
engine, and so on, on its own, before it’s assembled as a whole car. This is the first type
of testing we’ll look at in detail.

End-to-end (e2e) testing, also called integration testing, is a way of testing the appli-
cation as a whole. In contrast to isolating each unit individually, these tests are used to
ensure that everything works together in concert. In our car analogy, it would be like
running a test drive and asserting that all the parts were indeed working well together.

If you’ve never tested your code in the past, writing good tests will decrease the level
of effort required to maintain an application and give you more confidence that it’s
behaving as expected. Different projects have different requirements, but perform-
ing no tests generally means that you’re either manually testing everything with every
change or that people can’t depend on your application. Depending on who deter-
mines the testing strategy for your application, you should be sure to argue for taking
the time and effort to write quality tests to ensure that everything is working.

Testing is such a big topic in Angular that there’s an entire book devoted to it, called
Testing Angular Applications (Manning, 2018). I cover a lot of the basics here very quickly,
but there’s more to dive into, and I suggest you take a look at it. You can find it at
https://www.manning.com/books/testing-angular-applications.

In this chapter, we’ll focus on how to write unit tests for components, services, pipes,
and directives. We’ll also create a few e2e tests that navigate and check elements on
pages. It will be very hands on, so to get us going, let’s set up the example.

10.1	 Testing tools and setting up the chapter example
The stock tracker application makes an appearance once again, because it has the best
mix of things to test. We’re going to use the version from chapter 8 where we created
custom pipes and directives, so we can test them too.

We won’t modify the behavior of the application (except for a couple of examples
where the tests show us ways to improve our code)—we’ll only be adding code into the
various test files. The Angular CLI already generated the test files for us when we gener-
ated a new component, pipe, directive, or whatever, so we’ll just need to implement the
tests.

This code lives in a different repo, and you can get it using Git like this:

git clone https://github.com/angular-in-action/testing
cd testing
git checkout start

Otherwise, you can download the archived files from https://github.com/
angular-in-action/testing/archive/start.zip and unzip the files.

https://www.manning.com/books/testing-angular-applications
https://github.com/angular-in-action/testing/archive/start.zip
https://github.com/angular-in-action/testing/archive/start.zip

244 Chapter 10  Testing your application

As usual, you’ll need to run npm install to download all the dependencies, and then
you can run ng serve to start the local development server. I’ve cleared out all the tests
so they’ll run, just so you can run the commands easily. It will mention an error like “Exe-
cuted 0 of 0,” but once we create a test, that will go away—so you can ignore it for now.

Let’s take a look at the various testing tools that are used by Angular out of the box.

10.1.1	 Testing tools

Angular provides an opinionated set of tooling choices for creating and running tests.
Some tools apply to only unit or e2e tests, whereas some apply to both. Tests have to
run in a real browser, because that’s the environment where web applications execute,
so there are a few pieces of technology that enable tests to execute JavaScript code.

Jasmine is the first tool. It’s a framework for writing tests. Jasmine is JavaScript (or Type-
Script in our case), but it’s capable of connecting with a browser to execute tests using the
browser’s JavaScript engine. When we write our tests in this chapter, you’ll always be using
the Jasmine framework. A test ultimately consists of any code required to set up and tear
down the specific test case, and then a set of expectations that verify that your code behaves
as expected. For example, you’ll transform some text with a pipe to see if it returns the
expected result. You can learn more about Jasmine at https://jasmine.github.io/.

Next we have Karma, a tool originally created by the Angular team to help execute unit
tests. Karma can control any type of framework, but it’s already configured to control Jas-
mine out of the box with the Angular CLI. It can do some interesting things, like run your
tests on multiple browsers at once and provide features for continuous integration tools.
You can learn more about Karma at https://karma-runner.github.io/1.0/index.html.

Protractor is the next tool. It’s geared at helping run e2e-type tests by helping man-
age the way that tests run (like Karma), but also by providing an additional testing
framework that you use with Jasmine to test and control the browser like a real user
might. It’s built on WebDriver, a specification for how to control a browser through
automation. Learn more at www.protractortest.org.

You may have noticed that all these tools require a browser, and you have some options
on which browsers to use. I generally recommend using Chrome for local development,
because it’s set up out of the box, but you should also read about how to use each of these
tools to test on different browsers to be more certain things work. Not all browsers sup-
port the same features or behave in exactly the same ways, so keep that in mind.

There are a few other minor tools used behind the scenes; they’re plugins for these
primary tools. This chapter doesn’t intend to cover all the potential ways these tools can
be configured. We’re going to focus on what works out of the box, and you can expand
to more complex scenarios as your needs change.

10.2	 Unit testing
I’ll begin with unit testing, because it’s likely that you’ll write more unit tests than other
types of tests. They’re the lowest-level test you can write for your application—they
verify that the smallest pieces work as expected. Remember from earlier the analogy of
testing each component of the car before it’s assembled to ensure that quality parts are
being used in the vehicle.

https://jasmine.github.io/
https://karma-runner.github.io/1.0/index.html
www.protractortest.org

	 245Unit testing

You can write unit tests in a wide variety of ways, but Angular has some general guide-
lines that work in most scenarios. Fundamentally, there are two ways to write unit tests:

¡	Creating truly isolated unit tests in which you construct the entities yourself
¡	Rendering a test bed module to render the entity with Angular and verify

behavior

Truly isolated unit tests are best for pipes and, often, services, where you create a new
instance of the class outside of Angular. That means you wouldn’t have access to using
dependency injection, and you’ll see how you can either mock or manually inject
dependencies. These tests are extremely fast and reduce the surface area of your tests
to the lowest level. If you can write a test using this approach, it’s recommended that
you do so.

Test bed module testing is more involved, but it’s more appropriate for components
and sometimes directives when you need to verify how things are rendered in the con-
text of an Angular application. In this case, you’re essentially creating a temporary
Angular application that has the minimal amount of stuff needed to run. As you can
imagine, these are a little bit slower to run but provide more capabilities for building
tests.

10.2.1	 Anatomy of unit tests

All unit tests share a few basic concepts, so let’s start by taking a closer look at the basic
anatomy of a unit test. Each test has a few pieces, some of which are optional. This all
comes from the Jasmine testing framework as well, so if you need any more context
about a certain part, you can always review the Jasmine documentation.

The parts are as follows:

¡	describe—A container for a set of tests that cover the same overall entity, such as
describing the test suite for a pipe.

¡	it—A container for a single test that is used to describe a single feature, such as
testing a specific component method that handles saving.

¡	expect—A way to assert that a value meets expected requirements, such as the
response from a method must equal true.

¡	beforeEach/beforeAll—These are a way to execute code before each individual
test, or before all tests, such as setup logic to construct a new instance of the entity
for each test. They only apply within the Describe block in which they’re defined.

¡	afterEach/afterAll—These allow you to execute after each test or all tests,
such as cleaning up anything between tests or resetting any shared state. They
also apply only within the Describe block in which they are defined.

In most tests you’ll use all of these, with the exception of the afterEach/afterAll
blocks. You’ll want to ensure that each test is set up with a clean instance of the object
you want to test, and the beforeEach tends to be the most practical way to do that.

Let’s start writing some tests to see everything in action. We’ll focus first on a pure
pipe so we can see the most basic type of test and how these pieces work together.

246 Chapter 10  Testing your application

10.2.2	 Testing pipes

Pipes are often the easiest thing to test, especially pure pipes. Because they’re simple
classes that implement a single function, we can easily run them without creating a full
Angular application.

I think it’s best to jump right into a test and walk through the basic steps. We’ll start
by writing a test for our Change pipe, which can be found at src/app/pipes/change.
pipe.ts. The pipe is pure, and the only difficult aspect is that it injects two other pipes as
services. Open up the test spec file at src/app/pipes/change.pipe.spec.ts and replace
its contents with what’s shown in the following listing.

Listing 10.1   Change pipe test

import { ChangePipe } from './change.pipe';
import { CurrencyPipe, PercentPipe } from '@angular/common';

describe('ChangePipe', () => {
 const currencyPipe = new CurrencyPipe('en-us');
 const percentPipe = new PercentPipe('en-us');
 const pipe = new ChangePipe(currencyPipe, percentPipe);
 const stock = {
 symbol: 'abc',
 lastTradePriceOnly: 10,
 change: 1,
 changeInPercent: 0.05
 };

 it('create an instance', () => {
 expect(pipe).toBeTruthy();
 });

 it('should transform a stock value', () => {
 expect(pipe.transform(stock)).toEqual(`$1.00 (5.00%)`);
 stock.change = -3.45;
 stock.changeInPercent = -0.0345;
 expect(pipe.transform(stock)).toEqual(`-$3.45 (-3.45%)`);
 });
});

This test begins by importing the required pieces to construct the Change pipe, and
because it depends on the Currency and Percent pipes, those are imported as well.
Then you create the describe block to wrap the rest of the file, because all the rest
will be inside of the context of the Change pipe. Notice the describe block takes two
parameters: a string and a function. The string is used in the test suite logging to help
pinpoint how tests ran, and the function is executed when the test is slated to run.

Inside of the describe block, you set up a number of variables that are used to man-
ually create an instance of the Change pipe. When constructing these entities individu-
ally, you have to create them using the new operator to instantiate the instance, and pass
any configuration into the object constructor. There’s also a variable to hold a sample
stock object that you’ll use later to verify behavior.

Imports dependencies
from our application

Creates a describe block for the pipe tests

Defines variables
and constructs an
instance of the pipe

Pair of it blocks to describe a single test

Expect
statements to

validate a
particular

value meets
expectations

	 247Unit testing

The first it block describes a simple test to ensure that the pipe was created suc-
cessfully. It’s often useful to have a simple test that verifies that nothing threw an error
during creation. Notice that the it statement takes two parameters, a string and a func-
tion, just like the describe block. In this case, when the test runs, the string is added to
the describe block in the console output so you can track the describe block and the
specific test that passes or fails.

Inside of the it block, there’s a single expect statement. This is the test statement
that will trigger a success or failure. If the pipe was incorrectly constructed, it will mark
this test as failed and provide the relevant error message.

The next it block tests the transform method by passing the sample stock object
and expecting it to equal a particular string. I also changed the values of the stock
object and tested it with a negative value to verify that case as well. You could write a
large series of assertions to test various scenarios, which is useful when there’s more
complexity in the transform method.

Now you need to run the test, which you do from the command line by running the
ng test command. This will open up a new browser window that will show the results
of the tests (similar to what you see in figure 10.1), as well as the results in the command
line. Congratulations, you’ve written your first test!

This test tests every line of the Change pipe, which we can view by generating a test
coverage report. You can generate a coverage report by running the test command with
the –cc flag, like this:

ng test –cc

It will generate a new directory called coverage, and you can view the report in the
browser. That allows you to see what lines of code were executed or not in a visual
format and can help identify areas that you’ve missed. But it doesn’t necessarily mean
your tests are comprehensive. You might test the code in such a way that it only exe-
cutes with a passing condition, but it might fail if you provide different parameters.
Keep an eye out for this as you write tests.

There isn’t anything particularly special about testing an impure pipe, except that
you have to keep track of some state. You can look at the final version of the chapter
example to view the other pipe tests and see a few more examples in action.

10.2.3	 Testing services, stubs, and mocking HTTP requests

Services are the other type of entity that can sometimes be tested by creating an iso-
lated entity yourself. We’ll do that for our service, though you’ll start to see why this can
be a tricky thing to do for many of your tests.

Some services have few, if any, dependencies. In this case, our Stocks service has just
one: the HttpClient service from Angular. The trick is that I have to manually construct
the HttpClient service as well, which is possible, but is the kind of thing that can get
out of hand if you have a lot of dependencies. We’ll look at how to use testing modules
in the next section, and you can also see the final version of this project, which has the
testing module version of this test in the comments.

248 Chapter 10  Testing your application

Because this service uses the HttpClient service, we also have to provide a solution
to mocking HTTP requests. We don’t want to make real HTTP calls during our unit
tests, because they’re slow, unpredictable, and require a real API to be available. Luck-
ily, Angular provides a way to intercept HTTP requests and lets us send back a mock
response body that we can test. Because Angular tests the HttpClient service exten-
sively, we want to trust that Angular’s tests are more than sufficient to ensure the Http-
Client service is working, but this lets us test to ensure that the way we’re using the
HttpClient service is correctly implemented.

Before we create this test, let’s take a look at the mock objects I’ve included ahead of
time. The file src/app/services/stocks.mock.ts contains several variables that have val-
ues we can reuse throughout the application. A snippet of the file appears in the follow-
ing listing. You’ll need to have actual objects that match the expected responses from
the API, so I’ve stored them in this file. You’ll import the various mocks many times over
the remaining tests.

Figure 10.1   The complete
test spec report from the
chapter example

	 249Unit testing

Listing 10.2   Stocks mock data sample

export const MockSymbolsList: string[] = ['AAPL', 'GOOG', 'FB', 'AMZN',
'TWTR'];

export const MockNewsResponse: any = {
 "author": "Kelli B. Grant",
 "title": "Happy about hitting that $435M Powerball jackpot?

Congratulations — now here's your tax bill",
 ... more data
};
export const MockStocksResponse: any[] = [
 {
 "symbol": "AAPL",
 ... more data
 },
 {
 "symbol": "GOOG",
 ... more
 }

We’ll use these objects in various tests, depending on the things we’re testing. They’re
real objects that I’ve included in the project so that there are known pieces of data we
can use to test against. They’re JSON objects, so they’re the same as the raw data used,
and not a mock of anything more.

Now let’s get to the test. Open up src/app/services/stocks.service.spec.ts and replace
its contents with the code from the following listing. This test will create an instance of
the service, intercept HTTP requests, and provide mock responses.

Listing 10.3   Stocks service test

import { TestBed, inject } from '@angular/core/testing';
import { HttpClientTestingModule, HttpTestingController } from '@angular/

common/http/testing';
import { StocksService } from './stocks.service';
import { MockStocksResponse, MockSymbolsList, MockNewsResponse } from './

stocks.mock';

describe('Service: Stocks', () => {
 const baseUrl = 'https://angular2-in-action-api.herokuapp.com';
 let service, http;

 beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [HttpClientTestingModule],
 providers: [StocksService]
 });

 service = TestBed.get(StocksService);
 http = TestBed.get(HttpTestingController);
 });

Mock object holding a list of symbols

Mock object for a news item

Mock object for the full stocks data

Describes block
and shared
variables for test

Creates test module and get

250 Chapter 10  Testing your application

 afterEach(() => {
 http.verify();
 });

 it('should instantiate', () => {
 expect(service).toBeTruthy();
 });

 it('should manage a list of stocks', () => {
 expect(service.get()).toEqual(MockSymbolsList);
 service.add('TEST');
 expect(service.get()).toEqual([...MockSymbolsList, 'TEST']);
 service.remove('TEST');
 expect(service.get()).toEqual(MockSymbolsList);
 });

 it('should load the stock data from API', (done) => {
 service.load(MockSymbolsList).subscribe(result => {
 expect(result).toEqual(MockStocksResponse);
 done();
 });

 const request = http.expectOne(baseUrl + '/stocks/snapshot?symbols=' +
MockSymbolsList.join(','));

 request.flush(MockStocksResponse);
 });

 it('should load the news data from API', (done) => {
 service.getNewsSnapshot('abc').subscribe(result => {
 expect(result).toEqual(MockNewsResponse);
 done();
 });

 const request = http.expectOne(baseUrl + '/stocks/news/
snapshot?source=abc');

 request.flush(MockNewsResponse);
 });
});

There’s a lot more going on in this test, but most of it has to do with the setup required
for mocking Http. The describe block starts by declaring some variables that are con-
tained in these tests only. Then the beforeEach block constructs a testing module, so
that we can properly instantiate the services using dependency injection (it’s usually
difficult to try to manually set up a test for things that inject dependencies). We’ll talk
more about this testing module in the next section, but for now consider it a helpful
way to create a temporary Angular module and then get a reference to the services for
the test to consume.

The afterEach block is used to run a test to verify that there are no extra HTTP
requests that haven’t been properly resolved. This is helpful to avoid a test making an
HTTP request that wasn’t expected, because that could indicate an issue with a test or
that the methods called weren’t fully tested.

Checks no Http requests
are pending after test

Simple test to verify creation

Tests the symbol
manipulation
methods

Tests the load
of data for
stocks by

mocking Http
request/

response

Tests the load of news
data the same way

	 251Unit testing

Then we have a simple test that checks that the service was instantiated, and another
one to test the manipulation of the symbols. If the service failed to load, that’s prob-
ably because of a change in the dependencies or a coding error that will get caught
here. The symbol manipulation methods are easy to test because they mutate the list
of symbols. The test starts by testing that the service gets the expected default list of
stocks, adds a new item and validates that it was retained, and finally removes it with
verification.

Mocking HTTP requests

The last two tests are very similar because they both deal with making HTTP requests.
Let’s walk through the first one closely, and the second one will also become clear as
we go.

When we declare the it block, we start by also passing the done parameter into the
test function. We’ll use this to tell the test when it has finished—otherwise it would be
out of sync. What we’ll be doing is triggering an HTTP request using our service, and
then later calling a service that will fire the response, allowing us to handle some setup
before the HTTP request is made.

The first step is to make an HTTP request using the service, as you see here:

service.load(MockSymbolsList).subscribe(result => {
 expect(result).toEqual(MockStocksResponse);
 done();
});

This is saying that we want to call the load method, subscribe to the response, and
when it returns, verify that it matches our expectations. Finally it calls the done func-
tion to tell the test it has finished. This will make the observable subscribe immediately,
but since we imported the HttpClientTestingModule, it won’t fire a request yet allow-
ing the code after this block to execute.

Then we use the HttpTestingController (part of the HttpClientTestingModule,
which we injected in the beforeEach earlier), and we declare that we expect one URL to
be called. We build the expected URL, pass it to http.expectOne, and then the test will
know to look out for this URL. If it fails to be requested for some reason, the afterEach
would verify that it wasn’t called and throw an error. That’s the first line of the following
code, and the second line tells the test to finally flush, or resolve, any pending requests
for this URL, and takes an argument with the payload to send:

const request = http.expectOne(baseUrl + '/stocks/snapshot?symbols=' +
MockSymbolsList.join(','));

request.flush(MockStocksResponse);

Because our service should have made this request, at this point the result should be
returned like a real response. The subscribe method would emit the MocksStockResponse
object (because that’s what the flush method sends), and then the test would verify
the match to complete the test. The news test follows the same pattern.

That completes our test for the service. You could extend this suite to test different
edge cases, such as the server sending back a 500 status error, or the server sending back

252 Chapter 10  Testing your application

an invalid body. Those additional tests would help you identify weaknesses in the ser-
vice. As it stands, this service mostly assumes that everything works correctly and could
be made more resilient.

Stubbing a service

Before we write tests for components, we will want to stub the Stocks service. This will
help simplify our other tests because our stub won’t call HTTP, and that allows us to avoid
having to do the HTTP mocking in every component that calls the service for data.

Stubs can be created and used in a variety of ways. Angular allows us to substitute a
mock in place of the real thing using dependency injection, making mocks very easy to
use. It’s even possible to stub entities other than just services, though they’re less com-
mon and not covered in this chapter.

There are many perspectives on how and what to stub, and I don’t want to get into
that debate here. I typically suggest keeping it simple and only building what’s neces-
sary at first. Stubs are additional code to maintain, because they need to stay in sync
with your service, so keep them simple and light. Some argue that you should stub any
dependency for a particular test, but you should realize that comes with a cost to build
and maintain.

Let’s create our stub by adding a new file to src/app/services/stocks.service.stub.ts
and including the content from the following listing. It will craft a new class that uses
the mock data and expose the same methods as the real service.

Listing 10.4   Stub Stocks service

import { Observable } from 'rxjs/Rx';
import { HttpClient } from '@angular/common/http';
import { MockNewsResponse, MockStocksResponse, MockSymbolsList } from './

stocks.mock';
import { StocksService } from './stocks.service';

export class StubStocksService extends StocksService {

 constructor() {
 super({} as HttpClient);
 }

 load(symbols: string[]) {
 return Observable.of(MockStocksResponse);
 }

 getNewsSnapshot(source: string) {
 return Observable.of(MockNewsResponse);
 }
}

This stub is crafted by extending the Stocks service, so that we don’t have to implement
all the methods. This allows us to focus on writing code only for the methods that we
need to change. Because we’re extending the method, we also need to call the super
method in the constructor to pass in the dependencies. What’s of interest here is that

Extends the
real service

Calls parent constructor, passing in a
stub for the HttpClient dependency

Mocks the load and getNewsSnapshot
methods by returning an observable
like HttpClient

	 253Unit testing

we’re passing a blank object but casting it as the HttpClient service, so the compiler is
happy, but it doesn’t need to use the real thing. We create the same behavior as well for
getNewsSnapshot.

The Stocks service defines the add, remove, and get methods, which don’t need to be
stubbed because they work just fine as they are without side effects. Often you can get
away with using the real service or its methods in your tests. Here’s a list of some com-
mon side effects of a service and why you would stub them:

¡	Asynchronous —If there are async events, tests have to be written in a way that han-
dles that behavior. This can make them harder to test, but writing a stub for these
can eliminate that.

¡	External dependencies —When an entity requires an external dependency (such as
the Http service), it may require jumping through additional hoops to set up,
and that can be avoided by stubbing it.

¡	Internal state —Sometimes services or entities have internal state that you need to
manipulate in your tests, but the service doesn’t expose. A stub can expose addi-
tional logic to allow you to mutate that state.

¡	Redirects —Anytime an entity tries to redirect the user away from the current con-
text, this usually breaks the test. Stubbing can prevent the location changes. This
is usually a challenge for tests that deal with user authentication, for example.

Carefully consider whether you need a stub before creating one. Most applications will
benefit from having stubs for at least some of the services, but not everything makes
sense as a stub. Imagine, for example, that you have a service that reads and sets from
localStorage; the scope of this service is very focused and doesn’t have any of the side
effects given in the preceding list, so it’s a good candidate for something that might
not need to be stubbed.

If you prefer to always use strict typing with TypeScript, you may run into issues if the
stub doesn’t implement the exact same interface as the real service. You can rectify this
by writing the stub to return values with the same types, or you can loosen the type safety
of your code in the tests.

10.2.4	 Testing components and using testing modules

Components are the building blocks of your application, and they have two key parts
that we’re interested in testing: the controller and the view. We can test individual
methods in the controller (such as methods that load data from a service), but we
also want to validate behaviors on the template (such as whether the correct data was
displayed). Because our tests are comprised of testing both things, setting up a compo-
nent test requires an additional step.

When we want to test a component, we need to start by creating a test module that’s a
miniature Angular application with the bare minimum required to set up and run. The
more you import and include in the test module, the slower it will be to run the test, and
the less isolated the test becomes. Technically, you could bootstrap the normal Angular

254 Chapter 10  Testing your application

application before each test, but that’s in opposition to the concepts of unit testing and
will make your tests significantly slower.

Setting up the test module happens in a beforeEach statement of your test and is
quite similar to defining a regular Angular module. You’re able to declare a list of pro-
viders, imports, declarations, and so forth, and then can get some references to the
target component for easy testing.

To see this in action, let’s write our first test for a component. The Manage compo-
nent is a good one to start with, so open the src/app/components/manage/manage.
component.spec.ts file and include the code from the following listing.

Listing 10.5   Manage component test

import { ComponentFixture, TestBed } from '@angular/core/testing';
import { FormsModule } from '@angular/forms';

import { ManageComponent } from './manage.component';
import { StocksService } from '../../services/stocks.service';
import { StubStocksService } from '../../services/stocks.service.stub';
import { MockSymbolsList } from '../../services/stocks.mock';

describe('ManageComponent', () => {
 let component: ManageComponent;
 let fixture: ComponentFixture<ManageComponent>;
 let el: HTMLElement;

 beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [
 FormsModule,
],
 declarations: [
 ManageComponent
],
 providers: [
 { provide: StocksService, useClass: StubStocksService }
]
 });
 }))

 beforeEach(() => {
 fixture = TestBed.createComponent(ManageComponent);
 component = fixture.componentInstance;
 el = fixture.debugElement.nativeElement;
 fixture.detectChanges();
 });

 it('should create the component', () => {
 expect(component).toBeTruthy();
 });

Sets some variables for
the set of tests to use

Creates a testing
module with
minimal
dependencies

Gets access to the
values needed for
testing the component

	 255Unit testing

 it('should add or remove symbols from the list', () => {
 expect(component.symbols).toEqual(MockSymbolsList);
 component.stock = 'ABC';
 component.add();
 expect(component.symbols).toEqual([...MockSymbolsList, 'ABC']);
 component.remove('ABC');
 expect(component.symbols).toEqual(MockSymbolsList);
 });

 it('should render the template with a list of stocks', () => {
 const items = el.querySelectorAll('td.mdl-data-table__cell--non-

numeric');

 for (let i = 0; i < items.length; ++i) {
 expect(items[i].innerHTML).toContain(MockSymbolsList[i]);
 }
 });
});

This test contains the usual import block, which contains the ComponentFixture and
TestBed objects from Angular. These are what we’ll use to create the test module and
bootstrap the component. When the Angular CLI generates component tests, it will
create the test with a test module for you, similar to what you see here. The describe
block contains a few variable references, which we’ll assign values to later. Then you’ll
need to add any additional pieces into the test module that your component requires.
In this example, we require the Forms module, because we use NgModel, and the
Stocks service, and the stub service is injected as the Stocks service.

The TestBed.configureTestingModule method will set up a module with the base
Angular services (like default pipes and directives), and returns a TestBed object.
If you’re not using the Angular CLI, you might need to call the compileComponents
method (see the Angular documentation for details).

The next beforeEach block uses the TestBed to create an instance of the component
to test and assigns the instance of the component and the native DOM element to vari-
ables. The fixture.detectChanges method is used to manually trigger change detec-
tion and make sure that the components reflect their current state—otherwise the state
might not be accurate. The first test is another simple check to see if the component was
created correctly.

The second test exercises the component methods that are used to manipulate the
list of symbols. The Manage component implementation is calling the mock service
instead of the real one in this case, because we declared that in the testing module pro-
viders. The test is simple: It checks the default array of symbols against the mock values,
adding and then removing an item, and checks whether the list of symbols is built as
expected. I like to call this kind of test a controller unit test, because it directly uses the
controller methods.

The final test looks at the rendered view to see if the component has displayed data
as expected. It uses the DOM element to query for all the rows and verify that each of the
symbols is being displayed in the DOM. I like to refer to this kind of test as a view unit test,

Tests for
controller
behavior

Tests for
view
behavior

256 Chapter 10  Testing your application

because it observes the rendered output of the view. Sometimes a test does both things,
but I attempt to keep them focused.

That summarizes the primary tenets of a component test, the creation of a testing
module, including or stubbing dependencies, rendering the component, and testing
either the controller or view.

Stubbing directives or components and using DebugElement

There are times where you don’t want a directive or child component to render in the
test. In this example, our Delay directive gives us a little bit of trouble because it delays
the rendering of items, and our tests either have to wait for it to complete or work
around it some other way. But we can stub the Delay directive and have it display imme-
diately. We’ll get the test coverage that the Delay directive works when we test it directly.

We want to test the Dashboard component, which loads a few things. In order to
focus on just the Dashboard component, we’ll also stub the Summary component,
because it has animations that can get in the way.

There’s also another way to look at the rendered view, by using the Angular
DebugElement. Instead of using the native DOM element directly, the DebugElement
gives us a few additional options, the most powerful of which allows us to query the ele-
ment based on a directive instead of only CSS selectors. We’ll see how to use that in this
example.

Let’s create our test for the Dashboard component. Open up the src/app/
components/dashboard/dashboard.component.spec.ts file and replace it with
what’s shown in the following listing. We’ll stub the Summary component and the
Delay directive, and query using the DebugElement and a directive.

Listing 10.6   Dashboard component test

/* tslint:disable:no-unused-variable */
import { ComponentFixture, TestBed } from '@angular/core/testing';
import { By } from '@angular/platform-browser';
import { DebugElement, Directive, Input, TemplateRef, ViewContainerRef,

Component } from '@angular/core';

import { DashboardComponent } from './dashboard.component';
import { CardTypeDirective } from '../../directives/card-type.directive';
import { CardHoverDirective } from '../../directives/card-hover.directive';
import { StocksService } from '../../services/stocks.service';
import { StubStocksService } from '../../services/stocks.service.stub';
import { MockSymbolsList } from '../../services/stocks.mock';

@Directive({
 selector: '[delay]'
})
class StubDelayDirective {
 @Input() set delay(ms: number) { this.viewContainer.

createEmbeddedView(this.templateRef); }
 constructor(private templateRef: TemplateRef<any>, private viewContainer:

ViewContainerRef) { }
}

Creates a
stub Delay

directive

	 257Unit testing

@Component({
 selector: 'summary',
 template: '<div class="mdl-card">{{stock}}</div>'
})
class StubSummaryComponent {
 @Input() stock;
}

describe('DashboardComponent', () => {
 let component: DashboardComponent;
 let fixture: ComponentFixture<DashboardComponent>;
 let de: DebugElement;

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [
 DashboardComponent,
 StubSummaryComponent,
 StubDelayDirective,
 CardTypeDirective,
 CardHoverDirective,
],
 providers: [
 { provide: StocksService, useClass: StubStocksService }
]
 });
 });

 beforeEach(() => {
 fixture = TestBed.createComponent(DashboardComponent);
 component = fixture.componentInstance;
 de = fixture.debugElement;
 expect(component.stocks).toBeFalsy();
 fixture.detectChanges();
 expect(component.stocks).toBeTruthy();
 });

 it('should create the component', () => {
 expect(component).toBeTruthy();
 });

 it('should render the template', () => {
 expect(de.query(By.css('.mdl-cell')).properties.innerHTML).not.

toContain('Loading');
 expect(de.queryAll(By.directive(StubSummaryComponent)).length).

toEqual(MockSymbolsList.length);
 });
});

I’ve put the Delay directive stub inline for this test, because I won’t use it anywhere
else. I find it useful to keep it localized unless you’re reusing the stub in multiple
places, like the Stocks service. All this stub does is implement a directive that immediately
renders the view without the delay, but it does have the same selector to ensure that it’s
used in the component. The real Delay component causes a problem with tests because

Creates a stub
Summary component

Declares the stubs and some directives

Gets an instance of the
DebugElement and test
component initialization

Queries the
view by CSS or
directive

258 Chapter 10  Testing your application

it doesn’t render immediately, and if we waited for it to finish it could take a while,
depending on the number of items.

Likewise, we declare the Summary component stub inline because it isn’t used any-
where else, and it’s a simple component that implements the smallest interface for the
component. The component accepts a single input (it would not compile if we didn’t
add the input), and there’s an expectation that there’s an element with the mdl-card
class on it.

Because this is an isolated test, we declare the stubs as part of the test module and
also include the real version of other directives that don’t have an asynchronous nature
to them. If we didn’t include them, the test would complain about not being able to ren-
der those directives. In the beforeEach, we also put a couple of expect statements that
check that the stocks are loaded after the component has rendered.

The primary test here runs two expect assertions against the view. The Dashboard
component doesn’t have a lot of methods to test the controller with, except the OnInit,
which loads data. Because that’s checked in a beforeEach block, we can focus on the
view. The test uses DebugElement from the TestBed instance, and uses the query capa-
bility to inspect the element based on a CSS selector. The first query checks that the
Loading text doesn’t display any more. The second query looks for all elements that are
of the stub Summary component type (remember, components are directives). These
queries use the By object to construct the selector for you based on directive or CSS
selector. DebugElement also gives you access to element properties like the innerHTML
property.

I recommend choosing to use either the native DOM element or DebugElement
approach to inspect the component views. Mixing them works all right, but consistency
is a good goal.

Testing components with inputs and animations

Sometimes our components have inputs, and we need to handle those in our tests. For
example, the Summary component accepts an input of the stock value, and we want to
ensure that it renders as expected, even if the stock price has gone up or down.

The Summary component also has an animation to allow it to fade in, and our test-
ing module needs to be able to handle that scenario. Angular allows us to bypass the
animations so they don’t interfere with fast-running tests.

Most of the Summary component test is familiar by now, so we’ll focus only on the
new pieces. Open src/app/components/summary/summary.component.spec.ts and
use the code from the following listing.

Listing 10.7   Summary component test

import { ComponentFixture, TestBed } from '@angular/core/testing';
import { NoopAnimationsModule } from '@angular/platform-browser/animations';

import { CurrencyPipe, PercentPipe } from '@angular/common';
import { SummaryComponent } from './summary.component';
import { CardTypeDirective } from '../../directives/card-type.directive';
import { ChangePipe } from '../../pipes/change.pipe';

Imports the
NoopAnimationsModule

	 259Unit testing

describe('SummaryComponent', () => {
 let component: SummaryComponent;
 let fixture: ComponentFixture<SummaryComponent>;
 let el: HTMLElement;

 beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [
 NoopAnimationsModule
],
 declarations: [
 SummaryComponent,
 ChangePipe,
 CardTypeDirective,
],
 providers: [
 CurrencyPipe,
 PercentPipe
]
 });
 });

 beforeEach(() => {
 fixture = TestBed.createComponent(SummaryComponent);
 component = fixture.componentInstance;
 el = fixture.debugElement.nativeElement;
 });

 it('should create the component', () => {
 expect(component).toBeTruthy();
 });

 it('should render for a positive change', () => {
 component.stock = { symbol: 'abc', lastTradePriceOnly: 10, change: .25,

changeInPercent: 0.025 };
 fixture.detectChanges();

 const content = el.querySelector('.mdl-card h4').innerHTML;
 expect(content).toContain('ABC');
 expect(content).toContain('$10.00');
 expect(content).toContain('$0.25 (2.50%)');
 });

 it('should render for a negative change', () => {
 component.stock = { symbol: 'abc', lastTradePriceOnly: 8.34, change:

-1.43, changeInPercent: -0.0243 };
 fixture.detectChanges();

 const content = el.querySelector('.mdl-card h4').innerHTML;
 expect(content).toContain('ABC');
 expect(content).toContain('$8.34');
 expect(content).toContain('-$1.43 (-2.43%)');
 });
});

Imports the NoopAnimationsModule

Sets the input and runs
change detection

Tests the
rendered view

260 Chapter 10  Testing your application

The NoopAnimationsModule is used to support the animations dependencies that are
required by the component, but when it runs, the animations don’t animate. This is
good for test cases, because animations take time and slow down the test. If you want to
test animations, you’ll probably want to do that using e2e style testing.

In order to handle testing the input, we treat it just like a normal property. In fact, it
is a normal property, except it has the ability to receive data from a binding when used.
During our test we’re focused primarily on how it works, and not on whether the bind-
ing works. We tested the binding in our Dashboard component, so we can trust that it
will have a binding. In the test, we set the stock property to a known value and then run
change detection to update the view.

Then we check the view by inspecting the content of the view and checking whether
the values rendered as expected based on the stock data. We have another test to verify
that different stock data still renders the result as expected.

Testing components with the router

There’s one last component to test, the App component, and it contains a router out-
let that we need to handle in our tests. The App component also has the navbar, which
renders out the latest news item that we’d like to test. It’s not much different from any
other component in how we need to test it. Anything that this component directly
uses will need to be imported or stubbed in some way, and that includes setting up the
router and using the stub service.

Let’s take a look at the App component test and see what’s different for a component
containing a router outlet. Open src/app/app.component.spec.ts and replace its con-
tents with those in the following listing.

Listing 10.8   App component test

import { TestBed, ComponentFixture } from '@angular/core/testing';
import { RouterModule } from '@angular/router';
import { APP_BASE_HREF } from '@angular/common';

import { AppComponent } from './app.component';
import { ChangeDetectorPipe } from './pipes/change-detector.pipe';
import { NewsPipe } from './pipes/news.pipe';
import { StocksService } from './services/stocks.service';
import { StubStocksService } from './services/stocks.service.stub';
import { MockNewsResponse } from './services/stocks.mock';

describe('AppComponent', () => {
 let component: AppComponent;
 let fixture: ComponentFixture<AppComponent>;
 let el: HTMLElement;
 beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [
 RouterModule.forRoot([]),
],
 declarations: [
 AppComponent,
 ChangeDetectorPipe,
 NewsPipe,

Sets up the Router module, provides an
empty list of routes, and sets base href

	 261Unit testing

],
 providers: [
 { provide: StocksService, useClass: StubStocksService },
 { provide: APP_BASE_HREF, useValue: '/' }
]
 });
 });

 beforeEach(() => {
 fixture = TestBed.createComponent(AppComponent);
 component = fixture.debugElement.componentInstance;
 el = fixture.debugElement.nativeElement;
 expect(component).toBeTruthy();
 fixture.detectChanges();
 });

 it('should load the news', () => {
 expect(el.innerHTML).toContain(MockNewsResponse.title);
 });
});

This test is set up just like the rest, with the exception that it has the Router module
set up. The Router module makes the router outlet and router link directives available
for the test module to render. It also requires us to provide the APP_BASE_HREF, but
override it with a value. It can be any valid path, but almost always you’ll want to use /.

Then, inside of the test, we check that the component has the mock news title ren-
dered somewhere in the view. This is quick way to verify that the News pipe has run and
used the stub Stocks service to return the mock news data.

That wraps up the tests for our components in this example. As you build more com-
plex components, the tests will also become more complex. This is a good reason to cre-
ate many smaller components instead of a few large ones, so keep that in mind. Also, if
you have good separation of concerns (such as data access is in services, and rendering
views is in components), you can more easily stub those different aspects and write tests
to focus on a smaller surface area.

10.2.5	 Testing directives

Directives can be the trickiest thing to test because they’re modifiers of elements.
Directives are tested by attaching them to an element or component and verifying that
the view has changed accordingly. They can be attached to a real component from
your application, but I prefer to make a stub component for the test to simplify the
testing scenarios.

We’ll test with two different approaches. The first is to create the directive ourselves
by passing in a constructed component. The second is to allow the testing module to
construct it for us.

The reason you might opt to construct it yourself is that you can call elements on the
directive directly that way. Otherwise, the directive isn’t easily accessible to you in the
testing module.

We’re going to look at two of the three directives to test in this section. The third
doesn’t provide anything new, but you can review the test in the GitHub repository. The

Sets up the Router
module, provides an
empty list of routes,
and sets base href

Tests whether the
view rendered the
News pipe correctly

262 Chapter 10  Testing your application

first test will be for the CardHover attribute directive, and the second will be for the
Delay structural directive.

Let’s start with the CardHover directive. In this test, we’ll create the directive our-
selves, but we’ll still need a testing module to set up the stub component. Recall that this
is to help us encapsulate the logic needed to determine if a card is being hovered, and
also to modify the default colors of the Summary component. Open src/app/directives/
card-hover.directive.spec.ts and use the code from the following listing to complete the test.

Listing 10.9   CardHover directive test

import { Component, ElementRef } from '@angular/core';
import { By } from '@angular/platform-browser';
import { TestBed, ComponentFixture } from '@angular/core/testing';
import { CardHoverDirective } from './card-hover.directive';

@Component({
 template: `<div cardHover class="mdl-card decrease">Content</div>`
})
class MockComponent {}

describe('CardHoverDirective', () => {
 let directive: CardHoverDirective;
 let card: HTMLElement;

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [
 MockComponent,
]
 });
 });

 beforeEach(() => {
 const fixture = TestBed.createComponent(MockComponent);
 card = fixture.debugElement.query(By.css('[cardHover]')).nativeElement;

 directive = new CardHoverDirective(new ElementRef(fixture.debugElement.

nativeElement));
 directive.ngOnInit();
 });

 it('should apply the correct background colors', () => {
 expect(card.style.backgroundColor.replace(/ /g, '')).

toContain('rgb(255,171,64)');
 card.classList.remove('decrease');
 card.classList.add('increase');
 directive.ngOnInit();
 expect(card.style.backgroundColor.replace(/ /g, '')).

toContain('rgb(63,81,181)');
 card.classList.remove('increase');
 directive.ngOnInit();
 expect(card.style.backgroundColor).toEqual('');
 });

Creates stub
component

with CardHover
directive

Creates the testing
module for the mock
component

Gets references
to the fixture

and card

Creates the directive instance and
runs OnInit lifecycle method

Tests for checking the
background color based
on classes

	 263Unit testing

 it('should apply hover styling', () => {
 directive.onMouseOver();
 expect(card.style.top).toEqual('-2px');
 directive.onMouseOut();
 expect(card.style.top).toEqual('');
 });
});

There are a lot of familiar aspects to this test when you compare it with a component,
but the differences are important. First, we create a stub component that has the
expected classes and structure, as well as the directive applied. The testing module is
created and set up so that the stub component can be properly instantiated.

In the next beforeEach block, we do two important tasks. First we get the compiled
component from the testing module, and then we create a new instance of the Card-
Hover directive. Notice that the directive expects a parameter that contains an ElementRef,
which is a wrapper around the component native DOM element. The directive exists
outside of the testing module, so we have to call the lifecycle methods directly ourselves,
like directive.ngOnInit.

Now that we have the directive ready, we can test it by looking at the rendered card
and seeing if the background color matches the expected values based on the current
classes applied to the card. We’re directly manipulating the element and then running
the ngOnInit lifecycle hook again in order to simulate the change. Notice that we don’t
use the fixture to run change detection, because we’ve bypassed the testing module by
creating the directive ourselves.

The last test calls the two mouse event methods directly and verifies that when they
fire, the card styling is as expected. Any methods that you need to test can be called
directly like this, but only if you can get the reference of the directive when you create
it manually.

Although we’ve tested this directive by creating it ourselves, using a testing module
to set things up is usually preferred. That ensures things are plumbed and can make
life a little easier, but at the cost of calling directive methods directly. You may want to
create a set of tests that call the directive directly if you want to validate the internals of a
method, and then use a testing module for the rest.

Handling asynchronous tasks in tests

The last test we’ll write also shows us two ways we can handle asynchronous tasks in our
tests. We’ll be testing the Delay directive, which waits to render the component for a
certain number of milliseconds. Unlike the way the Http service allows us to mock the
response and handle it in the test, we need to use one of two options from Angular that
help ensure that tests have executed everything properly even when things happen async.

Angular provides a way to fake async events, specifically intervals and timeouts,
and provides a way to wait for async events to finalize before continuing execution.
We’ll write the same test twice using both approaches so you can see them side by side.
By default, Jasmine assumes that tests are synchronous but does provide an optional
done callback object that you can use to handle async tasks, but with Angular’s testing

Tests for checking
mouse events

264 Chapter 10  Testing your application

utilities, that shouldn’t be necessary, and using the two options demonstrated here is
recommended.

The Delay directive test is located at src/app/directives/delay.directive.spec.ts.
Open it and replace its contents with the code from the following listing.

Listing 10.10   Delay directive test

import { Component } from '@angular/core';
import { TestBed, ComponentFixture, fakeAsync, async, tick } from '@angular/

core/testing';
import { DelayDirective } from './delay.directive';

@Component({
 template: `<div *delay="delay"><h1>DELAYED</h1></div>`
})
class MockComponent {
 delay = 10;
}

describe('DelayDirective', () => {
 let fixture: ComponentFixture<MockComponent>;
 let el: HTMLElement;

 beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [
 MockComponent,
 DelayDirective
]
 });
 });

 beforeEach(() => {
 fixture = TestBed.createComponent(MockComponent);
 el = fixture.debugElement.nativeElement;
 });

 it('should show after the specified delay using fakeAsync', fakeAsync(() =>
{

 expect(el.innerHTML).not.toContain('DELAYED');
 fixture.detectChanges();
 tick(10);
 expect(el.innerHTML).toContain('DELAYED');
 }));

 it('should show after the specified delay using async', async(() => {
 expect(el.innerHTML).not.toContain('DELAYED');
 fixture.detectChanges();
 fixture.whenStable().then(() => {
 fixture.detectChanges();
 expect(el.innerHTML).toContain('DELAYED');
 });
 }));
});

Creates a stub
component with the
delay directive

Creates testing module
with stub and directive

Uses the
fakeAsync
handler to
make test

synchronous

Uses the async
handler to

handle waiting
for async calls

to return

	 265e2e testing

In this example, we’re creating a stub component and ensuring that it implements the
Delay directive. We’re setting the delay to 10 milliseconds, so it doesn’t make for a long
delay when running the test. If we made this 1 second, it would halt test execution for
1 second—not desirable. The testing module is then configured by declaring both the
mock component and Delay directive.

The first test uses the fakeAsync handler to wrap the execution of the test. It works
by returning a synchronous function for the test to run and also exposes the additional
tick object. Inside of the fakeAsync handler, you can run expectations to validate that
on initialization, the directive doesn’t display the content of the component, and then
call tick to trigger any timer events. We pass tick(10) to trigger the timer events at 10
milliseconds, which is the value configured in our mock component. If you have multi-
ple timer events, you can use tick to step through the different timer events and verify
behavior between each step. The tick function is only available inside of the fakeAsync
handler.

The second test uses the async handler, which handles telling the test to wait until
some async activity has resolved. Here we use fixture.whenStable().then() to handle
waiting the 10 milliseconds for the component to fully render, since the directive delays
the rendering. Inside of the then promise handler, we run our expectation to see
that the component has rendered. The drawback to this approach is that the timeout
waits for however long the delay is set, and if you had a lot of tests doing similar things,
this would slow your tests down considerably.

I recommend using fakeAsync when you can, but note that it doesn’t help you deal
with HTTP calls. When you use asynchronous calls in your code, be sure to consider how
to best test that and avoid making lots of nested or simultaneous asynchronous calls, if
possible. These increase test complexity and probably also make your component more
difficult to implement.

That wraps up the unit tests for this application. It now has 25 tests, and if you run the
code coverage analysis, it claims to have tested 100% of the code. An experienced devel-
oper knows that this doesn’t mean the tests cover every scenario or edge case, because
many of these tests could be expanded to validate more error conditions, for example.

Now we’ll step out of unit testing and focus on how to test the whole application at
once using e2e to mimic a real user launching the application.

10.3	 e2e testing
Just because all the units of your application are working smoothly in isolation doesn’t
necessarily guarantee they’ll work together as a whole or with real-world data sources.
e2e testing is the way you can test your application as a whole by controlling it like a
real user would.

e2e is meant to emulate the same experiences from the user perspective, where they
click links, type in input fields, and otherwise engage with the application. It’s import-
ant to keep your mind focused on this as you write e2e tests, because this means you
should only write tests in a way that are realistic options for users. For example, when

266 Chapter 10  Testing your application

you navigate between pages, you should have the test click the link in the navbar instead
of changing the URL in the browser.

I find the best way to think about e2e testing is to consider several of the paths
through the applications that are important for a user to be successful with your appli-
cation. For example, if your application is based around creating invoices, consider
testing the primary paths for users to create, edit, manage, or delete their invoices. You
may also want to focus on key paths such as signing up for the service, login flows, and
other similar critical tasks.

It may not be obvious at first, but there’s a larger cost to creating and maintaining
e2e tests. These tests may sound like the most comprehensive type of tests to write, but
the reality is they’re much more difficult to write and maintain than unit tests. They also
don’t provide clear guarantees like unit tests—a failure in an e2e test might or might
not mean there’s an issue. They can be hard to repeat consistently because they have
more variables, such as a real back end and state changes that are controlled in unit
testing. e2e tests are also much slower to execute than unit tests, because they require
loading the entire application, so expect them to require more time.

I like to caution that e2e tests are difficult because you have to control so many
variables, not because they’re inherently difficult to write. Imagine you’re testing an
application for a forum. You’ll need a test user you can rely on who can log in and
post messages. But what happens when this test user posts? Does it appear on the site?
Perhaps you can run the tests on a test or staging environment instead of the real pro-
duction site, but that requires having a test or staging site available. Considerations
like these make it challenging to orchestrate the tests. The larger the system, the more
important it is to consult with all parties involved in the application about how this test-
ing can be set up and managed.

Given these potential challenges, you may be less interested in testing flows that
aren’t vital or are rarely used. The cost might be simply too much for you to worry about
testing parts of the site that are used 1% of the time.

Let’s forge ahead anyway and write a few e2e tests for our stock application. We’re
lucky that our application is simple and stateless. Every time we reload, the application
is reset, but that’s not typical for most applications, so keep that in mind as well.

Angular CLI provides built-in scaffolding for running e2e tests using Protractor, a
tool that uses the WebDriver API to remotely control a browser. Protractor was written
for AngularJS and has a few features that aren’t supported for Angular 2+ applications
(consult the Protractor documentation to see more details, at http://protractortest.
org). Remember that if you try to use something from Protractor that doesn’t work, it
might be a feature that only works for AngularJS.

When the Angular CLI generates a project, it creates a directory called e2e that con-
tains a basic set of tests that work for the default app. We’ll update it in a moment with
four tests that will verify that both the Dashboard and Manage pages load correctly, and
then test adding and deleting a stock.

Before we write the tests, we’re going to create something called a page object, which
is a way to define aspects of the pages you want to test in a way that allows you to write

http://protractortest.org
http://protractortest.org

	 267e2e testing

cleaner-looking tests. We’ll have to write things that are similar to CSS selectors, called
page locators, which are responsible for finding elements on the page to interact with.

Protractor provides two important objects to use for finding elements: element and
by. Using them in various combinations, you can find a single element on the page, find
multiple ones, find a list and then select a specific item from it, and more. The element
object returns an element inside a wrapper (similar to what jQuery does to an element)
and exposes helpful methods to do things like click the element. element also accepts
an argument that should use the by object, which helps you construct something
like an element query. You can use by.css('.someClass') to locate an element by a
CSS selector. This is called a page locator.

Let’s see this in action by writing some code. Create a new file at e2e/dashboard.po.ts
and use the code from the following listing. This is the DashboardPage object, and it’s
simple. The larger the page, the more things it might contain.

Listing 10.11   DashboardPage object

import { element, by } from 'protractor';

export class DashboardPage {
 navigateTo() {
 return element(by.linkText('Dashboard')).click();
 }

 getCards() {
 return element.all(by.css('.mdl-cell'));
 }
}v

As a standalone piece of code, this might seem a little strange at first, but it’s pretty
straightforward. Protractor gives us the element and by objects, which are used to find
elements on the page. element is like an element wrapper object, and the by object
exposes several methods to find elements based on criteria like a CSS selector, link
text, button name, or input name. These are the fundamental calls you’ll be making to
interact like a real user.

We’re defining a class that gives us a few methods that help us navigate or select ele-
ments. First, the navigateTo method looks for the Dashboard link in the navbar and
triggers a click event on it, which triggers the navigation to the page. The getCards
method looks for all elements on the page that have the mdl-cell class, which happens
to be all the cards that contain stock items.

Let’s go ahead and create another one of these for ManagePage. Create another file
at e2e/manage.po.ts and include the code from the following listing.

Listing 10.12   ManagePage object

import { element, by } from 'protractor';

export class ManagePage {

Imports the element and
by objects from Protractor

Method to click
Dashboard link

Method to find all
summary cards

268 Chapter 10  Testing your application

 navigateTo() {
 return element(by.linkText('Manage')).click();
 }

 getSymbols() {
 return element.all(by.css('.mdl-data-table__cell--non-numeric'));
 }

 getRemoveButton(index) {
 return element.all(by.buttonText('Remove')).get(index);
 }

 getAddInput() {
 return element(by.name('stock'));
 }
}

There are a couple more things in this page object, because we have the ability to add
and remove stocks on this page. The class starts with a navigate method that clicks the
Manage link in the navbar. The next method, getSymbols, finds all the table cells that
contain a stock symbol. Then the getRemoveButton method accepts an index value
and will click the Remove button of the symbol based on that row. Finally, getAddInput
finds the stock name input field.

There are more options for what Protractor provides in its API, so I suggest you con-
sult the documentation for full details. Harnessing the page locators can give you many
options on how to find elements on the page to engage with.

All right—now we can write the test. The idea is that our tests are easy to read and the
code reads very similar to the user’s actions; they should cover user expectations as they
use the application. Open up the e2e/app.e2e-spec.ts file and replace its contents with
the code from the following listing.

Listing 10.13   App e2e tests

import { DashboardPage } from './dashboard.po';
import { ManagePage } from './manage.po';
import { protractor, browser, by, element } from 'protractor';

describe('Stock App', () => {
 let dashboard: DashboardPage;
 let manage: ManagePage;

 beforeEach(() => {
 dashboard = new DashboardPage();
 manage = new ManagePage();
 browser.get('/');
 });

 it('should load the dashboard default list', () => {
 dashboard.navigateTo();
 dashboard.getCards().then(stocks => {
 expect(stocks.length).toEqual(5);
 });
 });

Navigates to
ManagePage

Gets list of cells
with symbols

Finds the remove
button by an
index value

Finds the add
stock input

Creates new instances
of page objects and
starts on home page

Checks default
behavior for
dashboard

	 269e2e testing

 it('should load the manage stocks view', () => {
 manage.navigateTo();
 manage.getSymbols().then(symbols => {
 expect(symbols.length).toEqual(5);
 });
 });

 it('should add a new stock and be updated in dashboard', () => {
 dashboard.navigateTo();
 dashboard.getCards().then(stocks => {
 expect(stocks.length).toEqual(5);
 });

 manage.navigateTo();
 manage.getAddInput().sendKeys('MSFT', protractor.Key.RETURN);
 expect(manage.getSymbols().last().getText()).toEqual('MSFT');

 dashboard.navigateTo();
 dashboard.getCards().then(stocks => {
 expect(stocks.length).toEqual(6);
 });
 });

 it('should remove a stock and be updated in dashboard', () => {
 dashboard.navigateTo();
 dashboard.getCards().then(stocks => {
 expect(stocks.length).toEqual(5);
 });

 manage.navigateTo();
 manage.getRemoveButton(0).click();
 expect(manage.getSymbols().first().getText()).not.toEqual('AAPL');

 dashboard.navigateTo();
 dashboard.getCards().then(stocks => {
 expect(stocks.length).toEqual(4);
 });
 });
});

Notice how the test is written using the same describe, beforeEach, and it blocks
we used in unit tests. That’s because we’re using Jasmine as the testing framework for
describing tests, which helps keep things familiar. During the beforeEach phase, we
construct a new page object for the manage and dashboard pages, and then tell the
browser to load the main page.

The first test checks that the dashboard itself loads with the expected number of
cards. It does this by navigating to the page and querying for the list of cards. Notice
how it’s a promise, because there may be some time waiting for tasks to trigger. Protrac-
tor is usually smart enough to wait for the page to settle down before executing code,
and then we run our expectation in the callback. The second test is similar, except it
goes to the manage page and checks the list of symbols.

Checks default
behavior for manage

Tests whether
adding a new
item persists
and renders
in dashboard

Tests whether
removing an
item persists
and renders
in dashboard

270 Chapter 10  Testing your application

The third and fourth tests manipulate state and verify that it renders properly after
adding or removing a symbol. They both start by verifying that the dashboard has the
expected number of cards and then navigate to the manage page. The tests either
add or remove a symbol and then navigate back to the dashboard to verify whether it’s
reflected the change.

Often you’ll break apart your tests based upon features. In this application, there’s
one primary feature: to view and manage a list of stocks. If you had additional features,
like creating an account, a login process, or perhaps a news page, each of those would
probably be best organized into its own file.

This gets us through the basics of writing e2e tests and demonstrates their primary
role and value. Though they have some drawbacks and can be challenging to maintain,
they test the system as a real user would and allow you to codify the primary user flows
and objectives into a suite of tests.

Before closing the chapter, I want to cover a few common questions that people ask
about testing in real-world scenarios. All too often developers don’t invest in tests or get
hung up on the proper approach to testing. Although the answers are my opinions, I
think they’re useful to consider.

10.4	 Additional testing strategies
When I teach about testing, sometimes the response by students is that testing is a lot
of work. Many questions boil down to asking whether testing is worth the effort. Assum-
ing you believe that testing is important as I do, how do you decide which strategy and
tests to implement and which can you safely ignore?

Depending on your experience and project requirements, you likely have a number
of questions, such as these:

¡	How much testing is enough?
¡	When do I write the tests?
¡	What do I write, e2e or unit tests?
¡	What if I don’t have time to write tests?
¡	What about other types of testing?

I can’t give you definitive answers that will apply to all projects, but I’d like to offer you
some of my strategies for testing. There are many strategies and perspectives on test-
ing. The two extremes are as follows:

¡	People who argue for writing tests for every line of code before you even create
the actual code

¡	People who argue that tests are a waste of time and slow down development

On this spectrum, I fall closer to the former, but I also recognize that some tests have
little value and that there are alternative ways to ensure code behavior. You’ll find most
of my perspectives to be pragmatic and between the extremes.

	 271Additional testing strategies

10.4.1	 How much testing is enough?

This is the kind of question that’s asked a lot, but few know how to answer it. Some-
times people want specific code coverage metrics and consider that enough, whereas
others want tests to cover the important aspects of the application. I don’t believe in a
magic formula, but I think there’s a simple way to determine whether you have enough
testing.

Imagine your application is currently being used by 100 people on average per day.
The application is relatively simple, has been in use for at least a few months, and has
only had a couple of bug reports. You may feel confident in the application and its
behavior—but that’s your gut, which shouldn’t be how you decide whether you have
enough testing.

What you should do instead is employ usage metrics and error-logging tools to
analyze the data to see whether users are successful using your application or receive
errors. Use data to inform you about the quality of your application and to get insights
into how people use it. You can use something like Google Analytics to track users and
report metrics to you; it requires some setup and paying attention to the reports. There
are many great tools out there—look for web analytics and error-tracking tools that fit
your needs best.

Developers are notorious for IWFM syndrome (it works for me). I imagine you’ve been
guilty of this syndrome, as have I. This is why your gut feeling about quality is really an
excuse to ignore testing instead of measuring quality. You have to remember that your
users are using different computers, browsers, and network connection speeds than you.

When you use data to measure, you can better understand your users and capture
errors as they happen. Also, users are more likely to leave your application than to
report a bug, so just because nobody complains doesn’t mean it’s working right.

10.4.2	 When do I write tests?

Which came first, the chicken or the egg? The test or the implementation? Strategies
like TDD (test-driven development) propose that you should write your tests before
you implement any actual code. Other approaches advocate writing the implementa-
tion first and then figuring out how to write tests to support the implementation.

Writing tests before implementation aims to ensure that you think through the
implementation clearly before you write it. The assumption is that you’ll imagine the
implementation correctly in your mind, write the test first, and then write the imple-
mentation. To me, the biggest drawback here is that it assumes that you can clearly
imagine the implementation—and if you’re wrong, you have to rework your tests.

Writing the implementation and then writing the tests aims to save you time because
you focused on the implementation first, and then the tests. You may not have to plan as
carefully before you start coding, and therefore it’s often faster. The biggest drawback
there is that you can miss nuances and write tests that confirm flawed behavior. For
example, if your code doesn’t handle an edge case and you don’t write a test to check it,
the tests will still pass.

272 Chapter 10  Testing your application

My take on it is somewhere in the middle. I tend to write a test as I build a specific
piece of functionality, but I don’t worry about always writing it ahead of time. That’s
often because I’m also working with APIs that have complex responses, and they’re
being developed simultaneously with my work. I suggest you don’t wait until the end
and then go back and write a bunch of tests. When you do that, you tend to write tests
that verify your implementation, and that could mean you write tests that verify buggy
behavior if you don’t think about the potential cases properly.

10.4.3	 What do I write, e2e or unit tests?

I’ve heard the argument that an application doesn’t need different types of tests if you
write one type really well. This perspective typically means that the developer is confi-
dent in creating a particular type of test and doesn’t feel like other types are going to
be as valuable.

I believe you should write at least some e2e tests, but focus mostly on unit tests. Keep
in mind the role of each type of test and write the type that best verifies that behavior.
For example, if you want to verify that the API is returning the data as expected, you
need to write e2e tests. Likewise, if you want to be sure that a pipe works given a wide
range of input values, a unit test is most sensible.

e2e tests can be challenging because they’re run against a real data source, and if
you’re creating or deleting objects from the database, you have to handle that properly
without messing up the system. If an e2e test fails, it can leave test data in the system and
not properly clean up.

In short, favor unit tests unless it becomes too complex—then create e2e tests. e2e
tests should focus on user flows, and unit tests should focus on the specific entity’s
behavior.

10.4.4	 What if I don’t have time to write tests?

Usually this argument only comes if you’re writing a fairly small application by yourself
and you know the code very well. The reality is that your memory is limited, and it’s
hard to be confident in making changes that won’t break anything else without doing
extensive manual testing.

If you think about this a little differently, you probably don’t have time to waste not
having tests, if you think about the potential loss of time spent testing the application
manually, or the cost of support for dealing with customer-reported bugs.

Perhaps you finish a project and have to come back to it after a few months, or even
years. Your memory about that project will have faded considerably, and your coding
style will likely have changed. Without tests, you’re changing the code blindly and hop-
ing for the best. I think of it as cowboy coding.

I don’t like dealing with support issues or manually testing my application. When
I fix a bug, I try to write a test to verify that the bug won’t happen again. I suggest you
make it a habit, too, and you can slowly add tests where you don’t have them.

	 273Additional testing strategies

I know that sometimes projects are just proof-of-concepts and that sometimes clients
don’t have enough budget to cover the time to properly test the app. But proof-of-
concepts tend to turn into production applications, and customers keep coming back for
changes, and soon the app grows out of control. I encourage you to fight for the time
or budget to make testing a priority. Your future self (and boss or client) will thank you.

10.4.5	 What about other types of testing?

There are other testing types, not covered here, that could be useful for you. These
include things like usability testing (observing your users accomplishing a set of tasks to
see if they can do so easily), cross-browser compatibility testing (analyzing how the appli-
cation renders in various browsers and noting any differences), and performance testing
(analyzing the efficiency of the application, how long it takes to load, and other factors
that influence actual and perceived performance).

There are so many things you can test that you could easily spend all your time writ-
ing tests and not improving the application. Instead of telling you which types of testing
you need to adopt, I offer the following thoughts for your consideration:

¡	Automate slow or manual processes —This is usually related to testing, but it can
also apply to other aspects, like building the application. For example, if you’re
spending significant energy trying to validate that code runs properly in different
browsers, you’d likely be better off in the long term building a testing infrastruc-
ture that can automatically run your tests in more than one browser (such as
using a selenium grid service).

¡	Test areas that cannot fail —Think about the process of login or sign up. If those
fail, you lose users very fast, and that can be a major issue. You might consider
how to constantly test for failure, such as doing automated tests that attempt to
log in a user every five minutes and report on failure.

¡	Track errors and activity —Very few users will bother to report bugs or contact sup-
port, even on a paid product. You can’t assume that users will let you know about
errors, so you should consider tracking errors in your application (front end and
back end) so you can see what issues users are facing and figure out how to fix
them.

¡	Add other types of testing as necessary —There’s no need to start a new project and
build every type of testing possible. Instead, apply new types of testing when pain
points are found. For example, if you get reports that some pages look differ-
ent in different browsers, you might employ visual diff testing that helps auto-
mate what the pages look like so you can identify when things are inconsistent or
change.

¡	Test based on users and outcomes —Understand your users and what outcomes you
expect them to have, and figure out what tests help increase your confidence that
users’ needs are being met. If you expect the outcome for users is that they’ll sign
up for your service, then test the marketing and signup pages extensively.

274 Chapter 10  Testing your application

Testing is a big subject that extends far beyond Angular. Web applications have many
potential areas to test and validate. Good applications will find the right mix of testing
across the spectrum to test the most critical and weakest areas first and then extend that
test coverage over time.

Summary
We’ve taken a whirlwind tour of testing in this chapter, and gotten a realistic amount of
testing done to our stock tracking application:

¡	Unit tests and e2e tests are the two primary types of tests you can write for Angu-
lar. Unit tests are written to verify that the individual parts of the application work
in isolation, and e2e tests verify that the application works together as a whole.

¡	Pipes are usually the easiest to unit test because they’re usually pure functions
that are easy to pass arguments to.

¡	Services can be easy to test, especially if they have minimal dependencies. Manu-
ally constructing a service for testing is preferred if possible, and it’s best to also
write stub services for other tests to use.

¡	Components are the major building blocks that you’ll be testing—by either test-
ing the controller methods directly or testing how the view is rendered—and
they depend on using testing modules to instantiate a lightweight Angular
application.

¡	Testing directives is very similar to components except that you’re testing how
they modify a component by observing changes to the rendered component.

¡	e2e tests can be written to interact with the application as a typical user would, by
clicking or typing into fields. e2e tests are challenging to maintain, so they should
be designed to test the most critical features first.

¡	There are many other types of testing and considerations, but most general
web-development practices can be applied easily to an Angular application and
are recommended to be added when necessary.

275

11Angular in production

This chapter covers
¡	How to properly build Angular for production

environments

¡	Ways to architect your application for best
practices

¡	Inspecting your final bundle to determine how
dependencies impact your app

¡	Deployment options and a sample Dockerfile

So, you’ve built your application—now what? That’s a loaded question, but we’ll try
to unpack it in this chapter. You could do or focus on a lot of things, but not every-
thing is necessary in all projects. There are many general web development things
you can do, such as enabling gzip on your server, and there are things specific to
Angular, such as ensuring you run the build using Ahead-of-Time compilation.

The way we’ve been developing our application by running ng serve is perfectly
acceptable for development but unacceptable for production. The dev server isn’t
designed to handle real web traffic, can expose vulnerabilities, and can easily crash
without warning. You’ll want to use a hardened web server for hosting your application.

276 Chapter 11  Angular in production

You may be writing applications for customers, or for the enterprise. I have experi-
ence in both spaces to share. In an enterprise environment, for example, often there
are different constraints or greater separation of responsibilities across different teams.

I’ll cover many important production topics, but remember, there’s always room
to improve and there are nearly infinite ways to orchestrate tooling for building your
application. This chapter focuses on the primary things that most applications should
do and gives you a good foundation of knowledge to apply to any unique or customized
environments you might be working in.

11.1	 Building Angular for production
Throughout this book we’ve been doing only development builds of our applica-
tion. That won’t serve us well when we want to deploy our application in a real envi-
ronment—it has a lot of extra code, isn’t optimized, and needs cleanup. Our goal is
to optimize the final built assets for our application so that it’s as small and efficient as
possible. We want to also ensure that the files can be downloaded as quickly as possible.

Keep in mind that Angular is constantly evolving, and new releases will add additional
capabilities and changes to the platform and tooling. I expect everything in this chapter
to remain accurate in principle over time, but a number of specifics will in fact change,
so keep an eye on the releases and take advantage of improvements as they arrive.

11.1.1	 Production build

The CLI provides for a production build option, which adds a number of steps to opti-
mize the final code generated by the build. During development, we do everything
as quickly as possible, but at the cost of larger file sizes. This works just fine because
you’re working on a local server, where sending 5 MB isn’t too slow—but that would be
unbearably slow for anyone using a 3G mobile connection.

You can run a production build by running the following CLI command:

ng build --prod

The CLI will build the assets and put them into a directory called dist. These files are
now ready to be deployed as a set of static assets to your target server. I’ll cover some
details about that later, but the CLI makes it surprisingly simple to generate these assets.

When it does a production build, a few important things happen (note that this list
may change over time as the CLI tool evolves):

¡	Uses production environment —If you’ve used the environment configuration tar-
gets, it will automatically use the production version during build.

¡	Uses minification —Files are minimized by running them through a tool to reduce
the number of bytes required to perform tasks.

¡	Bundles assets —Instead of having every file loaded individually, it splits them into
smaller bundles. These bundles are grouped by purpose, such as vendor files
placed in one, polyfills in another, the application in another, and so on.

¡	Sets the base href—If you plan to deploy the application outside of the root direc-
tory for a domain, you’ll have to set the base href to match the file path. You can
configure that by passing the --base-href flag.

	 277Building Angular for production

¡	Filename hashing —To prevent issues with caching, files are named with a unique
hash, so that when you deploy a new version, the browser doesn’t ignore the
update and use its internal cache.

¡	File copying —Any static assets like CSS, images, or fonts are copied over into the
dist directory.

¡	Tree shaking —The bundles themselves are optimized by tree shaking, a process in
which unreachable or uncalled code is removed from the bundle. Due to ES2015
modules, the tooling can determine exactly which lines of code are executed or
not, and “shake out” the unused bits. This is a tricky feature, and as of this writing
there are some known issues to be fixed.

¡	AoT —Ahead-of-Time compilation is enabled to pre-compile the component
templates, helping to speed up initial render time and allowing Angular to not
ship a lot of additional code required to compile.

You can disable some of these by using flags, such as aot=false, and you can review
the CLI documentation for other flags to enable other things, such as translations or
alternative output directories.

11.1.2	 Optimizing for target browsers

Have you put together a plan for which browsers you want to target? If not, you should
figure out what versions of which browsers you plan to support. In the age of evergreen
browsers, it becomes important to continuously evaluate which browsers you support
and figure out what deficiencies they may have.

Polyfills are included by default in projects to bridge the gap in missing features, and
you can customize what’s used. If you have a good grasp on the browsers you support
and on what features your application uses, you can customize the polyfills.

The file src/polyfills.ts contains a list of polyfills that get imported into the project.
Some might be needed, but others might not be. You’ll have to evaluate your codebase
to see for sure, but check to see if you can remove any of them to optimize the bundle size.

11.1.3	 Progressive Web Apps

Progressive Web Apps (PWAs) are a specific category of apps that have a few features.
They’re designed to help provide fast-loading web apps for mobile experience that can
also work offline. You can read more about them at https://developers.google.com/
web/progressive-web-apps.

At the time of writing, Angular is still working on the tooling for making a PWA using
Angular. Angular’s site dedicated to this work (http://mobile.angular.io) is worth fol-
lowing. As this goes from an alpha state to a stable feature, you can expect the tooling
to be available through the CLI (as it already is, somewhat). The site should provide you
with the instructions on how to try it out yourself.

The goal is to make it simple for Angular applications to be deployed as PWAs, and
the Angular documentation is already a working example of this idea. Supporting PWA
in Angular is a major boost for applications that need to work in mobile environments.

https://developers.google.com/web/progressive-web-apps
https://developers.google.com/web/progressive-web-apps
http://mobile.angular.io

278 Chapter 11  Angular in production

11.1.4	 Internationalization (i18n)

Angular has built-in support for providing local translations of your application, but
it’s quite lengthy to go through, and not every application may need it. The Angular
documentation on internationalization (https://angular.io/guide/i18n) is quite thor-
ough, and this is an area that the Angular community expects to invest in and improve
upon in the coming years. Because it’s covered so well in that guide, I’ll talk more
about the concepts and less about the implementation.

Translations are difficult and time consuming, but unavoidable for many. Angular
can’t provide you support to actually do the translation work—as in the work required
to convert one language to another—but it is designed to fit into a typical translation
workflow. The basic idea is that all your text messages—anything inside the template
that is written language—can be extracted out of the application, translated, and then
recompiled for different languages.

Here are the typical steps to implement i18n in an application. Typically, the sooner
you set up your i18n process, the easier it will be to implement and maintain:

1	 Identify and format any static messages in your application. There are several
ways to do this depending on your preference and how your translation should
be managed.

2	 Extract the messages from the application using the CLI (ng xi18n), which will
generate a file in the Xliff 1.2 (default), Xliff 2, or XMB format.

3	 A translator does the manual work of taking the list of original language mes-
sages and translating them into the other language. Expect this step to take time,
and you’ll have to identify the person for this work (it might be you, someone on
your team, or someone external to your team).

4	 Using the CLI, build a new version of the application and define the translation
file to use during compilation (ng build --i18n-file). This will output a full
build with the translation messages replaced inside the templates.

As of this writing, one major limitation is that translations can’t be dynamically loaded
into a running application. These messages are hard-coded during the build into the
resulting output. If you have multiple languages, you’ll have to build it once for each
language, passing the appropriate i18n file. This is certainly a potential area for improve-
ment, so I refer you again to the documentation to see if it has become more flexible.

11.1.5	 Using alternative build tooling

Although space prohibits my covering all scenarios here, many people are producing
various alternative build tools for Angular, ranging from using different module load-
ers (such as SystemJS) to different tree-shaking optimizers (such as Rollup).

These all attempt to optimize various aspects of the build process while rolling their
own solutions. Some are quite good for specific use cases. The larger your project, or
the more important it is that a certain aspect is optimized, the more you may want to
consider additional tooling.

https://angular.io/guide/i18n

	 279Building Angular for production

Although choosing to go your own route with build tooling is certainly a viable
option, for most scenarios I highly suggest you use the CLI. This is a time-saving tool
that’s growing with the Angular platform.

I originally set up my own tooling before the CLI was available, and it was a lot of
work to maintain. I might have had full control over certain things, but at the cost of
much more time and effort. I’ve also worked with projects that have maintained their
own tooling using Grunt or Gulp, and I found that they add a lot of code to a project to
manage the same tasks that the CLI provides. Invariably, there tends to be only one per-
son who understands the build tooling, making it hard for others to understand what is
happening.

If you have custom needs, consider using the Angular CLI as part of the process
instead of duplicating its behaviors, especially those related to how it builds the applica-
tion. If you want to do additional processing after the build, better to do it after the CLI
has run.

At the time of writing, the CLI is being reworked into more of a software develop-
ment kit (SDK) so that it can be better integrated into custom solutions and tooling. I
expect that this will evolve into an even more powerful set of tools that provides greater
flexibility and opens many more options.

11.1.6	 Server-side rendering or pre-rendering

Some applications have important needs such as search engine optimization (SEO),
meaning they need to be easily crawled by search engines. Or perhaps being able to
quickly see the content of the page is important (as is the case with our forum and chat
application example from chapter 7).

Angular has a package called platform-server that provides a way to render Angular
on the server. Like the PWA support, at the time of writing it’s still in active develop-
ment. You can find out more about it at https://github.com/angular/universal. The
goal of such an approach is to render pages of your application on the server, which
would be best for crawlers and for users. Users would see the page content sooner than
they do today, because the rendered version would still bootstrap Angular after the ini-
tial content has displayed.

Think of how a blog post might appear where you could begin to read, but until
Angular finished loading the rest of the assets in the background, the ability to click links
would be delayed. Angular is smart enough to capture those events and replay them
after the background loading has finished, so it doesn’t prevent users from interacting—
it’s largely about getting content displayed before the bootstrapping of Angular.

This could be tremendously beneficial for many applications, and of not much value
to others. Your use case will determine its usefulness for you, but expect server-side
rendering to be an important feature of the Angular platform in coming releases. As of
Angular 4, the rendering is all part of the official build process, but still has a number of
roadmap tasks to tackle.

https://github.com/angular/universal

280 Chapter 11  Angular in production

11.1.7	 Build pipelines

Gone are the days when you simply upload a file to a remote server and let it run. Most
applications, including those built with Angular, require build tooling and orchestra-
tion for how to build a production version. Today, we have extensive tooling to help
with processes, known as continuous integration and delivery (CI/CD). There are many
ways to approach the build orchestration problem, but the basics usually include a
chain of tools that automatically run to validate a particular build of your application,
run tests, build it for production, and push it into production.

Angular itself uses a number of tools to aid in the automated testing of the frame-
work, and because it’s an open source project, it can do so freely. Many tools provide
free accounts for open source projects or trial accounts if you’d like to try them. I’m not
going to focus on any specific tool here, but instead on the kinds of things you should
consider putting into your own pipelines.

There isn’t much special about Angular related to build pipelines, except that Angu-
lar has plans to surface a set of tools from the Google ecosystem that would be a great
option for applications to leverage when the tools are stable. Pay attention to release
notes and project announcements, because the addition of more CI/CD tools is sure to
be a major capability.

11.2	 Angular architecture choices
If you didn’t start out planning your application’s architecture before you wrote code,
you missed an opportunity to think about design choices that will help you later on. It’s
better late than never to review your architecture and consider what potential choices
you can make to either simplify or optimize.

This section covers what could be considered a list of best practices for writing your
application, and you should follow these approaches in most scenarios. They all have an
impact on the quality, performance, or stability of your application.

Most of these are also choices you have to make continuously as you build the appli-
cation. They’re not steps you take once but principles that you should apply as you
build and maintain the application.

11.2.1	 Lazy load routes

When it comes to making your application quick to load and run, lazy loading your routes
is likely to be the most important step you can take. One of the biggest measures of perfor-
mance is time for the application to load and become ready for the user to interact with.

There are a number of milestones along that path, but the faster your users can start
to use your application, the more likely they are to stay around. This is especially true on
mobile devices where slow loading and rendering causes user retention to drop quickly
after a few seconds.

When you look at your application, think about how every route is structured. You
likely want to bundle your default route without lazy loading it, but most every other
route is probably a good candidate to separate out into its own module and lazy load.

	 281Angular architecture choices

Chapter 7, section 7.8 covered lazy loading, so refer back to that for a refresher on
the specifics of how it works and how to employ it in your application. My suggestion
is to make every route its own feature module (except the default route, like the home
page and perhaps the login). When you do that, the build files will be split into many
different files for each route, and only the core bundles will be loaded on app load. The
rest will be loaded as the user navigates around the application.

Imagine your application has 10 routes and a few shared services and components.
The 10 routes could represent something like 60–70% of the code weight for your
application (excluding libraries), so you could achieve significant savings by extracting
them. Every application will be different, but the more routes you have, the greater the
potential savings.

You could also consider preloading the lazy loaded modules, which is a way to down-
load the modules in the background after the initial route has loaded. This means sub-
sequent routes will be faster to render, but it does load the application files. If you’re on
mobile, that might not be great if you have a very large application or routes that are
rarely loaded.

There are also strategies for preloading only specific modules unless they’re explic-
itly used, but that takes a little more custom wiring. Both of these strategies are nicely
laid out by Victor Savkin, a former Angular core member, at https://vsavkin.com/
angular-router-preloading-modules-ba3c75e424cb.

11.2.2	 Reduce external dependencies

There are a lot of useful external libraries out there, but everything comes at a cost.
There’s always a tradeoff, but it’s something you should consider carefully. If you include
a dependency, be prepared to keep track of how it’s used in your application.

In all the earlier chapter examples, I’ve included some external dependencies, like
UI libraries. These libraries provide immense value because we don’t have to build and
implement those features ourselves. That’s the whole reason for including external
dependencies.

On the flip side, the more dependencies you include, the larger your application will
become. You have little control over these dependencies, and many of us don’t spend
much time inspecting them carefully, if at all.

There are some tools and techniques that can help you inspect the impact of these
dependencies in your application. Most of the time, though, you need to practice com-
mon sense and restrict yourself to the most important dependencies. My primary con-
cerns about dependencies follow.

Security concerns

Libraries are often treated as black boxes, and it’s always possible that they contain
security issues. Keep a close eye on them and review them. Dependencies may also
import additional sub-dependencies, and that can make security issues hard to keep
track of.

https://vsavkin.com/angular-router-preloading-modules-ba3c75e424cb
https://vsavkin.com/angular-router-preloading-modules-ba3c75e424cb

282 Chapter 11  Angular in production

You can look at the Node Security project for help tracking known vulnerabilities in
Node modules, at https://nodesecurity.io/opensource. This is a free tool, though it has
some paid solutions as well. It looks at your project’s package.json file and compares it
against its database of vulnerabilities.

Quality and size

Not every dependency is written with production use cases in mind. Many are written
because they solved a problem and were published for others to consume. Always mea-
sure the impact they have on your application and make sure to evaluate more than
one option if it exists—or see if it’s better to do yourself.

I often review a dependency by looking at the type and quality of testing it has in
place. Unfortunately, many dependencies don’t have any testing, or the testing is inade-
quate. That’s because so often things are published quickly as a hobby.

As far as the size impact, you can use a tool called source-map-explorer, shown in fig-
ure 11.1, to see the impact of each directory and file on your overall bundle size.

Figure 11.1   source-map-explorer lets you view the size of each part of your bundle to identify potential
optimizations.

To use source-map-explorer, you’ll need to install it on your system using the following
command:

npm install -g source-map-explorer

https://nodesecurity.io/opensource

	 283Angular architecture choices

Then you’ll need to build the application, but make sure you build it with sourcemaps.
You can do a production build, but toggle sourcemaps on (which are defaulted to off
in production build):

ng build --prod --sourcemap=true

That will output your files into the dist directory, and then you can inspect the various
bundle files by running the following, where the second parameter is the filename you
want to analyze:

source-map-explorer dist/vendor.4e84f21c95c687f96a48.bundle.js

A browser window will open, looking like figure 10.1. The text is quite small in the
image, but you can click various files and zoom into the internals of that package.
For example, figure 10.1 shows that the Angular Material package from the chapter 8
example is ~35% of the vendors bundle, whereas Covalent is ~18% and RxJS is ~6%.
This is helpful to know—you want to see the impact of a module on the size of your
bundles. Run this tool against all your bundle output files and see which components
are the largest, or how much a polyfill weighs.

Compatibility and supportability

External dependencies aren’t necessarily maintained. When there are issues, can you
trust they will be fixed? One example is TypeScript, which has added features Angular
depends on.

There are a couple of ways to determine supportability, and doing so is largely sub-
jective. I personally like to spend time on the project’s site, often GitHub, to see how
active it is. Are there many bug reports with no responses? What about commit activity?
Just because there hasn’t been any activity in the past few months doesn’t mean it’s been
abandoned. Some projects show helpful badges to declare if a dependency is actively
maintained or not.

Rather than opening an issue and asking if the project is active, I find it’s much bet-
ter to find a small improvement to make. You can do that by adding a few lines to the
documentation or README file, but the goal is to provide some value to the project and
make it an easy contribution to merge. There are always documentation improvements
to make, so use that as a way to gain a little favor with the maintainer and also figure out
how responsive they are.

When it comes to compatibility, you’ll need to make sure you have good testing in
place. The only way to verify whether things are working is to test, and you want to auto-
mate that as much as possible.

Another useful project is Green Keeper, which helps you keep your projects automat-
ically updated with latest versions. It also tries to run your tests with the newer version to
help determine if there are any breaking changes—good testing has to be in place for
that to be useful. You can find the project at https://greenkeeper.io.

Import minimal items

When you decide you need an external dependency, often there are ways to optimize
how it’s used in your application. Well-designed libraries allow you to import only the

https://greenkeeper.io

284 Chapter 11  Angular in production

specific pieces you need instead of the entire library. Any extra imported items may
make it into your final build as dead code. It varies by library, but one example is RxJS,
which allows you to import the specific items you need instead of the whole library.
Likewise, the Covalent UI and Angular Material libraries both allow you to import spe-
cific portions of the library as needed instead of the entire bundle. This saves overall
code weight, and I like it because you can be specific about what to import.

Long term, this may not be an issue if you’re able to optimize your bundle files to
drop out any unused code. But it’s still a good idea to practice importing the fewest
items possible in the meantime and focus on only what you need.

11.2.3	 Stay up-to-date

When Angular 4 came out, it was possible for almost every application to upgrade with-
out causing any breaking changes to deal with. That’s pretty impressive considering
the number of changes and improvements made between the Angular 2 and 4 releases.

One of the key improvements was related to the Angular compiler, and due to the
way it was optimized under the hood, the size of application bundles decreased signifi-
cantly. The savings varied by application, but it was estimated that the compiler would
reduce the size of components by around 60%. The only thing applications had to do to
achieve these savings was update!

As Angular evolves, this type of scenario will continue. The Angular library will evolve
and optimize itself, the build tooling will keep getting smarter, and those who use the
latest and greater versions will be able to take advantage of those benefits.

As I’ve stressed, Angular is more of a platform than just a framework. The combi-
nation of the tooling, various libraries, and other ecosystem components is being con-
stantly improved. I’ve sat down with the Angular team to talk about priorities and goals,
and optimization is one that comes up consistently.

The takeaway here is to not lock yourself into a version of Angular and forget about
upgrading. Keep track of the development notes and enjoy the regular, incremental
releases. There is a six-month cycle for major releases that may contain some break-
ing changes. Angular hopes to minimize the number of breaking changes and provide
clear upgrade paths for keeping on the latest versions. This does mean making changes
to your applications over time, but if you aren’t doing that, you’re losing out on all
the potential benefits. Plus you might be open to any security issues that have been
reported and resolved.

11.3	 Deployment
There are a lot of potential ways of deploying your application and a lot of opinions
about which is best. You may have to work with a specific option because that’s what
your company or team always uses, or you may be able to choose your own. Either way,
a few basics remain consistent. This section looks at a few of these considerations and
at a couple deployment approaches. I hope it serves as a helpful guide for you to base
your own deployment strategy on.

	 285Deployment

No matter which server you plan to use, you should make sure a few things are set up
to work properly:

¡	gzip compression —Configure your server to send files with gzip compression
enabled. gzip is a simple configuration value supported by most browsers that
significantly reduces the sizes of files sent over the network. Savings vary, but 30%
or more isn’t uncommon.

¡	Fall back to index.html by rewriting URLs —Any single page application (Angular
or otherwise) needs the server to handle rewriting URLs to serve up the index
file even if another file is requested. Imagine you land on example.com/blog/
my-post-123. The server will first look for an asset at the /blog/my-post-123 loca-
tion, but that file doesn’t exist because it’s just an Angular route. Instead, the
server needs to fall back to sending the index.html file so Angular can execute.

¡	CORS or reverse proxy —Many APIs run from a different domain (or even sub-
domain), and it’s easy to enable CORS headers in the API server. Alternatively,
you can use a reverse proxy to map URLs so they proxy through your domain to
another.

Depending on your server, other optimizations or configurations may be available to
you. My suggestions here aren’t exhaustive, so it’s best to research a bit more about
what your server has available.

Once you’ve run the CLI build command, you can take the dist directory and drop it
on a server that handles service static files. You should automate the process, but there
are a few ways you could deploy it for free on a service like GitHub pages, Heroku, or
Firebase.

That’s the most common and easiest approach, but sometimes you’ll want to wrap it
up in a container and deploy it that way. The following example uses the nginx server
and builds a container that has your application files. You can create a file called Docker-
file in your project directory and use code from listing 11.1. You also need to have an
nginx.conf file in your directory, as you see in listing 11.2.

Listing 11.1   Sample Dockerfile for nginx

FROM nginx

COPY ./nginx.conf /etc/nginx/nginx.conf
COPY ./dist /usr/share/nginx/html

Listing 11.2   Sample nginx config

events {}
http {
 server {
 listen 80;
 server_name myapp;

 # Redirect to index if file not found

286 Chapter 11  Angular in production

 location / {
 root /usr/share/nginx/html;
 index index.html index.htm;
 try_files uriargs uriargs/ /index.html;
 }
 # Additional configurations go here
 }
}

The preceding two listings will allow you to build a container that has nginx to serve
your application. Assuming you have Docker installed on your machine, you can run
the following commands to build and run the container:

ng build --prod
docker build . -t myapp
docker run -p 80:8080 myapp

There are many ways to configure this Dockerfile, and this is just meant as a basic starter.
You can fine-tune the nginx config as well, including handling error pages and adjust-
ing gzip settings.

Because Angular provides you with the built static assets, injecting them into many
different server environments is easy.

Congrats! You’ve designed, built, and now deployed your Angular application! At
this point, you can either lie back and enjoy your success or start on your next project!

Summary
This chapter covered a lot of details around building and deploying Angular for pro-
duction. There’s a lot of detail work you can do, and many opportunities for optimiz-
ing. Over time, new abilities will be added to the Angular platform that you’ll want to
take advantage of. Here are the key highlights covered in this chapter:

¡	Angular CLI provides a production build option that does a number of tasks as it
builds your application’s final bundle assets. It can optimize and shake out dead
code, implement cache-busting names, and provide you a directory with every-
thing your app needs.

¡	Some best practices to follow include lazy loading your routes and importing
only the necessary pieces of libraries. As you add more dependencies to your
application, more things can potentially bloat your bundle size or have an impact
on your ability to maintain the application.

¡	Deploying to servers is easy because you get the final rendered assets. You can
bundle these static files into a container or include them in other server envi-
ronments. Be sure you’ve handled falling back to the index.html file and other
server considerations.

287

Appendix:
Upgrading from

AngularJS to Angular

AngularJS (version 1.x) is one of the most popular and most-used frameworks of
all time, and many applications built with it are still running today. It continues to
be supported as long as there is a critical mass of developers submitting issues and
patches, but the future is certainly to be found in upgrading to Angular (2.x or
newer). This appendix talks about the strategies for moving forward with an existing
AngularJS application and aims to help clarify the options you have when deciding
your next move.

Upgrading to Angular requires an investment and a plan. There are many con-
ceptual similarities between the two, but Angular was a total rewrite from AngularJS
and changes some important design patterns. The ability to simply “upgrade” is
unfortunately not that simple in most cases and requires some careful consideration.

You have three basic choices: Don’t upgrade, rewrite from scratch, or do incre-
mental upgrades. Each option has positives and negatives, so you’ll have to weigh out
your own needs against them. I’ve ordered them from the least likely to most likely
choice you’ll want to make.

I’ve also diagrammed your options on the spectrum of the application’s business
value against its complexity. Figure 1 is only an illustration and not necessarily the
reality for your application, but it’s meant to give you some perspective on how to
think about the choices.

288 Appendix  Upgrading from AngularJS to Angular

B
us

in
es

s
va

lu
e

Upgrade

Rewrite

Application size and complexity

Don’t upgrade

As much as I think everyone should upgrade or rewrite, it’s important that you weigh
the technical challenges against your business needs. There’s always a cost to making
a change, and you want to ensure that you accurately estimate and minimize that cost.

Let’s start with the first option: Don’t upgrade and continue with AngularJS.

A.1	 Option 1: Don’t upgrade
I feel this is an option that’s not often considered, but you can decide not to upgrade
your app to Angular. This might sound contrary to everything this book is about, and
to some degree it is, but existing applications have a host of considerations that might
make this the most viable option.

Here’s a sampling of the various reasons you might consider just maintaining your
existing application instead of upgrading:

¡	Very large applications might be so complex that the thought of making major
changes is very hard to entertain. Be careful not to make an excuse of your appli-
cation being too large to upgrade, because it’s certainly possible to upgrade, but
perhaps the application has invested so heavily into the existing design that the
cost to change could be difficult to pay.

¡	Some applications are very stable and don’t require a lot of work. There may not
even be anyone actively working on it anymore. This is especially true for appli-
cations that aren’t in the critical path for your business, such as internal tools.
Perhaps your efforts are better spent on building or improving more important
applications.

¡	Some applications have to support older browsers, and upgrading to Angular
might break support. This has become less of an argument as most old browsers
are deprecated, retired by the vendors, or have become evergreen with self-
upgrading mechanisms. For example, supporting IE8 today is possible for some
applications, depending on what kind of customers you have, but it’s also frus-
trating because that browser is vulnerable and outdated.

Figure 1   Options for upgrading diagrammed as
a function of business value against application
complexity

	 289Option 2: Rewrite from scratch

I think it boils down to asking one question: Does your application have any strong
business or technical reasons not to upgrade? If so, weigh them against the reality of
your customers and what’s best for them. Customers using outdated or insecure brows-
ers is bad for them, and perhaps the right decision is to not support such scenarios.
This might take a change in perspective, however.

If the ultimate decision here is to leave the application and not upgrade, you have
to be very aware of the consequences. But you can also expect that AngularJS will be
supported as long as there is a critical amount of users working with it. Review the Angu-
larJS site to see if there are any specific timelines or guarantees, but at the time of writ-
ing there is no schedule set for stopping AngularJS maintenance.

If you’re in an enterprise environment, this can be the easiest choice. It saves you
from engaging with the business development cycle, resource planning, and other pro-
cesses that your company might have in place. But regardless of what role you play or
how big your company is, the key is to focus on making a case for why not to upgrade,
rather than a case for why to upgrade. Legacy applications are a fact of life, but from
experience, I know that the sooner an application is upgraded, the more likely it is to
be maintained—otherwise, it tends to drift slowly into oblivion. But perhaps that is the
best path.

No matter what, just promise me you won’t start new projects in AngularJS! Put your
knowledge from this book to use and create new applications with Angular.

A.2	 Option 2: Rewrite from scratch
Your next option is to start over and throw your existing application away. Some develop-
ers will love this idea, whereas others will balk at the notion of just tossing all that work.

Rewriting your application has a number of advantages if you decide you’re ready to
take the leap and upgrade to Angular. Most of these hold true for deciding to upgrade
any application over time, but there are a couple of Angular-specific notes here to
mention:

¡	You don’t have to deal with any legacy code. AngularJS does a few things that ulti-
mately have been known to cause issues, such as an over-reliance upon two-way
data binding. If your application is running older versions of AngularJS, upgrad-
ing is likely a bigger task than if you’re running the latest and greatest.

¡	The new application can be rebuilt using best practices that you might have to
fight against if you work on upgrading an existing application. You can start fresh
with TypeScript even if you didn’t have it before.

¡	It’s easier to implement new features or drop old features because you can think
of rewriting as an opportunity to reimagine your application’s purpose and goals.

Of course, there are also disadvantages to this approach, and they’re often overlooked:

¡	Rewriting means you have to start everything from scratch, including rethinking
your build pipeline, redesigning your tests, and so forth.

290 Appendix  Upgrading from AngularJS to Angular

¡	If you depended on any libraries for AngularJS, they might not exist for Angular,
or they might be different. This increases your level of effort if you have to find an
alternative, write your own, or redesign your application.

¡	It’s hard to recreate the exact same application, with the exact same features,
by rewriting. Almost certainly some feature will change its behavior, even if very
slightly, and this could cause issues for your users.

I prefer this option when the application is small enough to do a rewrite in a reason-
able amount of time (what is reasonable varies, but a good rule of thumb is weeks, not
months). Incrementally upgrading a small application might cost you more time and
effort in the end, but do make sure you can account for the stability of your application
and not sacrifice the experience for your users.

The main goal of rewriting should be to build the best Angular application that
solves your business needs. If you’re focused primarily on the technical aspects, there’s
a chance your efforts will have a negative impact on the business. This is particularly
true for enterprise environments, where expectations are typically set and managed by
product managers and customers.

This tends to be a problematic choice in the enterprise, at least initially. The prevail-
ing thought is often, “If it’s not broken, don’t fix it.” But you can make a case for the
rewrite based on future objectives and outcomes. I’ve made the argument that if we
don’t adopt newer technologies today, we’ll pay the price later by having to spend more
on migrating applications. Again, business objectives should drive decisions, but usually
business objectives include being successful long term, so technical choices should sup-
port that as well.

A.3	 Option 3: Incrementally upgrade
The final option is to begin an incremental upgrade process, which means running
part of your application using AngularJS and another part using Angular. This is the
strategy that allows you to maintain the current application while incrementally chang-
ing pieces of the application to Angular.

I believe this is the most common scenario, as any application with business value
and some complexity will fit this category. Here are some of the advantages of incre-
mental upgrades:

¡	You can slowly migrate the application piece by piece, so the existing application
remains functional.

¡	The tooling exists for running the two side by side, and it’s flexible enough to
allow you several different approaches for how to tackle refactoring.

¡	It allows developers to focus on building new features with Angular without
rewriting older functionality.

Of course, there are a few negatives you should also be aware of:

¡	You’ll end up loading both Angular and AngularJS in your application, which
increases the size of your application.

	 291Summary

¡	Poorly written AngularJS applications are harder to migrate and may need some
work to make the process easier.

¡	It’s possible to get stuck in the upgrade process and never fully finish if you
don’t plan and execute correctly. You need to be able to fully commit to seeing it
through so you don’t give your users a poor experience in the long term.

I believe most applications fall into this bucket, and you’ll want to know a bit more
about the best ways to approach the upgrade. The Angular documentation covers
the upgrade tool quite well, and I don’t intend to duplicate that coverage here, but it
doesn’t discuss some of the approaches that you could use.

I fully recommend that you make sure your AngularJS application is, first, up to date
with the latest AngularJS release, and that you follow the style guidelines. If you have
some work to do in this area, you should invest in that first.

Once you have a well-designed AngularJS application, there are two great approaches
outlined by Victor Savkin, which he calls horizontal and vertical slicing. He has a series
online about upgrading AngularJS applications, starting here: https://blog.nrwl.io/
ngupgrade-in-depth-436a52298a00. It outlines additional steps for upgrading, and I
recommend it highly. There’s also a book listed there, which you may find useful.

Horizontal slicing is the idea that you’ll try to upgrade the lowest, most reusable com-
ponents in your AngularJS application. This includes things like UI components and
components that aren’t routing components. The idea is that these lower level com-
ponents are already pretty decoupled, and you can just replace them for a new version
written in Angular. It’s nice because you can change one component at a time.

Vertical slicing is the approach that changes every component of a given route at the
same time. That means the routing component and anything it depends upon will need
to be changed at the same time. This is beneficial because you’re never mixing Angular
and AngularJS in the same route, but it means upgrading each route may require a
larger investment in time.

I would suggest vertical slicing in most cases, because mixing Angular and AngularJS
in the same route is harder to reason through and debug. Vertical slicing also means
you’ve got an entire page upgraded and working at once, which might take longer for
each incremental step but be faster overall by requiring fewer steps.

Summary
Upgrading an AngularJS application to Angular is not a decision to be made lightly.
You should carefully consider the options and understand your business and technical
requirements:

¡	You can choose to not upgrade at all, and trust in the support provided for
AngularJS. Stable applications that aren’t in the critical business path are likely
candidates.

https://blog.nrwl.io/ngupgrade-in-depth-436a52298a00
https://blog.nrwl.io/ngupgrade-in-depth-436a52298a00

292 Appendix  Upgrading from AngularJS to Angular

¡	Alternatively, you can rewrite the entire application to Angular in one large step.
This may work well for smaller applications or ones that can endure a full refac-
toring without interruption to the current application development.

¡	Incremental upgrading is the primary choice for the majority of applications, as
it allows you to change components piecemeal from AngularJS to Angular. The
strategies of horizontal (working from the lowest components up the tree) and
vertical (working on entire routes for each upgrade step) slicing are the best ways
to think about how to approach the upgrade.

293

Symbols
.angular-cli.json file   30
: character   62, 167
@Input() decorator   42
@NgModule decorator   33
? operator   41
& operator   68
++ operator   68
| (pipe character)   62
@ symbol   21
symbol   183

A
access, limiting with route guards  177–182
afterAll block  245
AfterContentChecked lifecycle hook  84
AfterContentInit lifecycle hook  84
afterEach block  245, 250
AfterViewChecked lifecycle hook  84
AfterViewInit lifecycle hook  84, 222
Angular CLI (command-line interface)  6–7
Angular expression  41
AngularJS platform

Angular vs.  4
upgrading to Angular  287–292

disadvantages of  288–289
rewriting from scratch  289–290
upgrading incrementally  290–292

Angular Material library  10
Angular platform  1–24

AngularJS vs.  4
benefits of using  2
component architecture of  11–20

JavaScript modules  17–20
key characteristics of components  13–15
Shadow DOM  15–17

templates  17
desktop capabilities  8–9
JavaScript and

observables  21–22
overview  20–21

mobile capabilities  8–9
TypeScript and  23–24
UI libraries  9–11

animations
overview  81
testing components with  258–260

AoT (Ahead-of-Time) compiler  65, 277
APP_BASE_HREF  261
App component  86–87
AppComponent class  32
applications

basic scaffolding of  29–31
bootstrapping  33–35
building  25–53

components  38–50
services  36–38

components of  31–32
modules of  32–33
rendering  31–35, 64–65
routing  50–53
testing  242–274

e2e testing  265–270
strategies for  270–274
tools for  244
unit testing  244–265

AppModule  183
aria attributes  72
asynchronous tasks, handling in tests  263–265
Async pipe  203
async validators  228
attribute bindings  72–73
attribute directives, creating  192
auxiliary routes  173

index

294 index

B
base app  64
beforeAll block  245
beforeEach block  245, 250
binding model data, to inputs with

NgModel  212–214
bindings  68–75

attribute bindings  72–73
event bindings  73–75
interpolation  69–70
property bindings  70–72

bootstrapping  26, 33–35
bootstrap property  33, 58
brackets  70
browsers, optimizing for  277
build command  285
build pipelines  280
build tooling  81

C
CanActivateChild guard  178
CanActivate guard  178
canActivate method  179
CanDeactivate guard  178
CanLoad guard  178
change detection  67–68, 105–108
changes, watching  226–227
child routes  170–173
CI/CD (continuous integration and delivery)  280
Clarity library  10, 130
class keyword  21
closing secondary routes  176–177
colon (:) character  62, 167
combineLatest operator  226
communicating between components  108–113

output events  110–112
template variables  110–112

comparison operators  23
compileComponents() method  255
compilers

overview  7–8
types of  65–66

Component annotation  21, 32
component API  93
ComponentFactoryResolver property  123, 126
ComponentFixture object  255
component inline CSS  114
componentInstance property  122
component-linked CSS  114
Component object  19
components  58–60, 76–103, 104–127

accessing route parameters in  168–170
architecture of  11–20

JavaScript modules  17–20
Shadow DOM  15–17

templates  17
change detection  105–108
communicating between  108–113

output events  110–112
template variables  110–112

composition of  79–85
content projection  97–103
creating

dynamically  123–127
overview  38–44

dynamically rendering  119–123, 127
dynamic, using Ng-bootstrap modal

for  120–123
encapsulation modes  113–116, 119

emulated Shadow DOM  117–118
native Shadow DOM  118–119
no encapsulation mode  117

key characteristics of
custom elements  14–15
overview  13–14

lifecycle of  79–81, 83–85
modifying with directives with events  194
nesting  84–85
of apps  31–32
optimizers  105–108
stubbing  256–258
styling  113–119
testing  253–261

with inputs and animations  258–260
with routers  260–261

types of  85–88
App component  86–87
Data component  87–88
Display component  87
Route component  88

using components  44–47
using inputs with  91–97

intercepting inputs  95–97
overview  92–95

using services  44–47
View Child to reference  112–113
with events  47–50
with forms  47–50

constructor() method  21, 46
Content Child template  85
content projection  97–103
control.errors property  218
controller unit test  255
ControlValueAccessor interface  235
control.value property  217
Cordova  8
CORS headers  285
Covalent library  10
cross-browser compatibility testing  273
CSSStyleDeclaration object  72
custom elements  14–15

	 295index

D
Data component

creating  89–91
overview  87–88

data services  129
DebugElement class, using  256–258
declarations property  33, 58
Default mode  67
defining secondary routes  174–175
dependencies, external  281–284
deployment  284–286
describe block  246
desktop applications, capabilities  8–9
DI (dependency injection)

overview  66–67, 137–141
services without  141–142

directive attribute  40
directive.ngOnInit() method  263
directives  60–61

building custom  188–207
attribute directives  192–194
modifying components with directives with

events  194–196
structural directives  197–199

custom validation with  217–219
stubbing  256–258
testing

handling asynchronous tasks in  263–265
overview  261–263

DoCheck lifecycle hook  19, 84, 108, 136, 153
DOMTokenList  71
done() function  251
do() operator  148
double curly braces  32

E
e2e (end-to-end) testing  7, 30, 243, 265–270
Electron framework  9
element object  267
ElementRef  263
embedded view  198
emulated encapsulation  116
encapsulation modes

emulated Shadow DOM  117–118
native Shadow DOM  118–119
no encapsulation mode  117
overview  113–119, 116–119

entities  55–64
components  58–60
directives  60–61
modules  57–58
pipes  62–63
services  63–64

entryComponents  124
error checking  28

event bindings  50, 73–75
EventEmitter  110
events

components with  47–50
directives with, modifying components

with  194–196
submit or cancel  219–234

export keyword  19, 21
external dependencies, reducing  281–284

compatibility and supportability  283
importing minimal items  283–284
quality and size  282–283
security concerns  281–282

F
fakeAsync handler  265
feature modules, routing and  165–166
filename hashing  277
fixture.detectChanges() method  255
fixture.whenStable() method  265
flush method  251
forChild() method  166
FormControlName directive  225
FormControl type  216
form element  58, 73
forms  208–241

choosing approach  234–235
components with  47–50
custom form controls  235–241
defining  222–224
reactive forms  221–235

custom validators with  227–230
handling submit or cancel events  230–234
implementing templates  224–226
watching changes  226–227

template-driven  212–221
binding model data to inputs with

NgModel  212–214
custom validation with directives  217–219
handling submit or cancel events  219–221
validating form controls with

NgModel  214–217
FormsModule  48
forRoot() method  51, 164
frameworks, platforms vs.  5–11
Fuel-UI libary  11

G
generics  38
Green Keeper project  283
gzip compression  285

H
hash (#) symbol  183
helper services  129–149, 153

296 index

horizontal slicing  291
HostListener() decorator  196
HoursValidator function  228, 238, 240
href attribute  167
HttpClientTestingModule  251
HttpClient, using services

HttpInterceptor  146–149
overview  142–146

HttpInterceptor  146–149
HTTP_INTERCEPTORS  148
HTTP requests, mocking  251–252
HttpTestingController  251
hybrid applications  8

I
i18n (internationalization)  278
img src property  71
implementing templates  224–226
imports property  33, 58
import statement  21
impure pipes

creating  203–207
overview  200

Injectable decorator  134
Injectable() method  129, 144
Inject decorator  67
injector, DI system  66
injector trees  137–141
inline CSS  114
innerHTML property  258
Input() decorator  110
inputs

binding model data to, with NgModel  212–214
intercepting  95–97
overview  70, 92–95
testing components with  258–260
using with components  91–97

insertion point  99
integration testing  243
intercepting inputs  95–97
intercept method  146
interpolation  32, 41, 69–70
Ionic framework  8

J
JavaScript language

Angular and  20–22
modules  17–20
observables  21–22

JiT (Just in Time) compiler  34, 65

K
karma.conf.js file  30
Kendo UI library  10

keyboardService.keypress() method  22
keypress() method  238

L
lazy loading

overview  182–185
routes  280–281

lifecycle hooks  81, 83–84
lifecycle of components  81–83
links, creating in templates with

routerLink  167–168
loadChildren property  183

M
map operator  148
Material Design library  34, 216
MdInput directive  212
minification  276
minlength attribute  215, 219
mobile applications, capabilities  8–9
mocking HTTP requests  251–252
model data, binding to inputs with

NgModel  212–214
modifying components, with directives with

events  194–196
modules

of apps  32–33
overview  57–58

Mozilla Developer Network  26
multiprovider  148
Mustache templates  32

N
native encapsulation  116
NativeScript framework  8
nav element  94
navigateTo() method  267
navigating between secondary routes  175–176
nesting components  84–85
ng-bootstrap library  10
Ng-bootstrap modal, using for dynamic

components  120–123
ngClass directive  40, 61, 191
ngcontent prefix  118
ngDoCheck() method  136
NgFor directive  61
NgIf attribute  46, 61
ng-invalid class  217
NgModel directive

binding model data to inputs with  212–214
validating form controls with  214–217

NgModule decorator  57
ngOnChanges method  108
ngOnDestroy() method  90, 145

	 297index

ngOnInit() method  46, 83, 90, 145, 196
ng serve command  211, 244
NgStyle directive  61
NgSwitch directive  61
NG_VALIDATORS  218
NG_VALUE_ACCESSOR  238
node_modules  30
no encapsulation modes  117
non-injectable services  129
NoopAnimationsModule  260

O
observables, in JavaScript  21–22
OnChanges lifecycle hook  83
OnDestroy lifecycle hook  83, 169
OnInit lifecycle hook  45, 83, 199, 224
OnPush mode  67
optimizers  105–108
Output() decorator  110
output events  110–112
outputs  81

P
package.json file  30, 212
page locators  266
params observable  169
pathMatch property  164
path parameters  186
performance testing  273
pipe character  62
Pipe() decorator  113, 202
pipes

building  188–207
impure pipes  203–207
pure pipes  201–203

overview  26, 41, 62–63
testing  246–247

PipeTransform interface  202
platformBrowserDynamic object  34
platforms, frameworks vs.  5–11
pre-rendering  279
PrimeNG libary  10
production  275–286

Angular architecture choices  280–284
lazy load routes  280–281
reducing external dependencies  281–284
staying current  284

building for  276–280
build pipelines  280
i18n  278
optimizing for target browsers  277
pre-rendering  279
production builds  276–277
PWAs  277

server-side rendering  279
using alternative build tooling  278–279

deployment  284–286
programmatic routing  176–177
promises  21
property bindings  70–72
protractor.conf.js file  30
providers array  58, 137, 145
providers, DI system  66
providers property  33, 38
pure function  201
pure pipes

creating  201–203
overview  200

PWAs (Progressive Web Apps)  9, 277

Q
queryParams  181
query variables  186

R
reactive forms

custom validators with  227–230
defining forms  222–224
handling submit or cancel events  230–234
implementing templates  224–226
overview  208, 221–222
watching changes  226–227

React Native framework  8
redirectTo property  164
referencing components, with View

Child  112–113
registerOnChange() method  237
registerOnTouch() method  237
rendering

apps  31–35, 64–65
components dynamically  119–123, 127
pre-rendering  279
servers  7–8
server-side rendering  279

reset() method  135
Resolve guard  178
Route component  88
routerLink attribute

creating links in templates with  167–168
overview  52, 175

router module  183
RouterModule class  51
RouterModule.forChild() method  184
router.navigateByUrl() method  181
router.navigate() method  181
routing  159–187

apps  50–53
best practices  185–187

298 index

child routes  170–173
feature modules and  165–166
lazy loading  182–185, 280–281
programmatic  176–177
route definitions  162–165
route guards to limit access  177–182
route parameters  167–170

accessing in components  168–170
creating links in templates with

routerLink  167–168
router setup  162–165
secondary routes  173–177

closing  176–177
defining  174–175
navigating between  175–176

setting up  26
testing components with routers  260–261

rowspan attribute  71
RxJS operators  148

S
save() method  74, 140
secondary routes  173–177

closing  176–177
defining  174–175
navigating between  175–176

security, concerns when reducing external
dependencies  281–282

SEO (search engine optimization)  279
server-side rendering  279
servers, rendering  7–8
services  63–64, 128–158

building  36–38
components using  44–47
creating  132–137
dependency injection

overview  137–141
without  141–142

for sharing  153–156
helper services  149–153
injector trees  137–141
stubbing  252–253
testing

mocking HTTP requests  251–252
overview  247–251

using HttpClient services
HttpInterceptor  146–149
overview  142–146

setInterval  105
set() method  150
setValue() method  224, 238

shadow boundary  16
Shadow DOM (document object management)

encapsulation modes
emulated  117–118
native  118–119

overview  15–17
shadow root  16
sharing, services for  153–156
sourcemaps  283
SPAs (single page applications)  160
special attribute binding syntax  72
Src (source) directory  30
state.url property  179
structural directives, creating  197–199
stubbing

components  256–258
directives  256–258
services  252–253

styles property  115
styleUrls property  32, 115
styling components  113–119
styling encapsulation  116
submit event  50
submit or cancel events, handling  219–221,

230–234
super() method  252
SystemJS  278

T
TDD (test-driven development)  271
TdLoading directive  212
template-driven forms  212–221

binding model data to inputs with
NgModel  212–214

custom validation with directives  217–219
handling submit or cancel events  219–221
validating form controls with

NgModel  214–217
template expressions  68–75

attribute bindings  72–73
event bindings  73–75
interpolation  69–70
property bindings  70–72

template forms  208
TemplateRef  198
templates

creating links in with routerLink  167–168
implementing  224–226
overview  17

template tag  17
templateUrl property  32
template variables  110–112
TestBed class  255

routing (continued)

	 299index

testing
applications  242–274

e2e testing  265–270
testing strategies  270–274
tools for  244

choosing tests  272
components  253–261

stubbing  256–258
stubbing directives  256–258
using DebugElement  256–258
with inputs and animations  258–260
with routers  260–261

directives
handling asynchronous tasks in tests  263–265
overview  261–263

importance of  272–273
modules  253–261

stubbing components  256–258
stubbing directives  256–258
using DebugElement  256–258

pipes  246–247
services  247–253

mocking HTTP requests  251–252
stubbing  252–253

sufficient amount of  271
types of testing  273–274

textContent property  70
this keyword  21
tick() function  265
transform() method  158, 202, 247
tree shaking  277
tsconfig.json file  30
tslint.json file  30
TypeScript superset, Angular and  23–24
typings.d.ts file  31

U
UI (user interface), libraries  9–11
unit testing  244–265

anatomy of  245
testing components  253–261

stubbing components  256–258
stubbing directives  256–258

using DebugElement  256–258
with inputs and animations  258–260
with routers  260–261

testing directives
handling asynchronous tasks in tests  263–265
overview  261–263

testing pipes  246–247
testing services  247–253

mocking HTTP requests  251–252
stubbing services  252–253

using testing modules  253–261
stubbing components  256–258
stubbing directives  256–258
using DebugElement  256–258

upgrading AngularJS to Angular  287–292
disadvantages of  288–289
rewriting from scratch  289–290
upgrading incrementally  290–292

usability testing  273
UX principles  3

V
validate() method  238
validating

custom validation with directives  217–219
form controls with NgModel  214–217

ValidatorFn interface  217
validator function  218
validators, custom  227–230
value property  93
vertical slicing  291
View Child, to reference components  112–113
ViewContainerRef  123, 125, 198
ViewEncapsulation enum  117
view unit test  255
visual diff testing  273

W
web applications  4
webpack  65
Wijmo libary  10
Windows Universal framework  9
writeValue() method  237

For ordering information go to www.manning.com

Angular Development with Typescript,
Second Edition
by Yakov Fain and Anton Moiseev

ISBN: 9781617295348
475 pages, $49.99
June 2018

Testing Angular Applications
by Jesse Palmer, Corinna Cohn, Michael

Giambalvo, Craig Nishina

ISBN: 9781617293641
235 pages, $44.99
April 2018

React Quickly
Painless web apps with React, JSX, Redux,
and GraphQL
by Azat Mardan

ISBN: 9781617293344
528 pages, $49.99
August 2017

React in Action
by Mark Tielens Thomas

ISBN: 9781617293856
300 pages, $44.99
March 2018

RELATED MANNING TITLES

https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/testing-angular-applications
https://www.manning.com/books/react-quickly
https://www.manning.com/books/react-in-action
https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/testing-angular-applications
https://www.manning.com/books/react-quickly
https://www.manning.com/books/react-in-action

Jeremy Wilken

A
ngular makes it easy to deliver amazing web apps. This
powerful JavaScript platform provides the tooling to man-
age your project, libraries to help handle most common

tasks, and a rich ecosystem full of third-party capabilities to
add as needed. Built with developer productivity in mind,
Angular boosts your effi ciency with a modern component
architecture, well-constructed APIs, and a rich community.

Angular in Action teaches you everything you need to build
production-ready Angular applications. You’ll start coding im-
mediately, as you move from the basics to advanced techniques
like testing, dependency injection, and performance tuning.
Along the way, you’ll take advantage of TypeScript and ES2015
features to write clear, well-architected code. Thoroughly prac-
tical and packed with tricks and tips, this hands-on tutorial is
perfect for web devs ready to build web applications that can
handle whatever you throw at them.

What’s Inside
● Spinning up your fi rst Angular application
● A complete tour of Angular’s features
● Comprehensive example projects
● Testing and debugging
● Managing large applications

Written for web developers comfortable with JavaScript,
HTML, and CSS.

Jeremy Wilken is a Google Developer Expert in Angular,
Web Technologies, and Google Assistant. He has many years
of experience building web applications and libraries for eBay,
Teradata, and VMware.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/angular-in-action

$44.99 / Can $59.99 [INCLUDING eBOOK]

Angular IN ACTION

JAVASCRIPT

M A N N I N G

“A comprehensive
introduction to the world

 of Angular with great
code samples to help
readers get started.”
—Tanya Wilke, Sanlam

“Detailed and clear
explanations; lots of useful

 real-world examples.”
—Harsh Raval, Zymr Systems

“You can never have enough
Angular references ... this one

will fl oat to the top.”—Michael A. Angelo
US Department of Agriculture

Forestry Services

“The bible for Angular!”
—Phily Austria
Faraday Future

See first page

	Angular in Action
	contents
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	1 Angular: a modern web platform
	1.1	Why choose Angular?
	1.2	What you’ll learn
	1.3	The journey from AngularJS to Angular
	1.4	Angular: a platform, not a framework
	1.4.1	Angular CLI
	1.4.2	Server rendering and the compiler
	1.4.3	Mobile and desktop capabilities
	1.4.4	UI libraries

	1.5	Component architecture
	1.5.1	Components’ key characteristics
	1.5.2	Shadow DOM
	1.5.3	Templates
	1.5.4	JavaScript modules

	1.6	Modern JavaScript and Angular
	1.6.1	Observables

	1.7	TypeScript and Angular

	2 Building your first Angular app
	2.1	Preview the chapter project
	2.2	Setting up the project
	2.3	The basic app scaffolding
	2.4	How Angular renders the base application
	2.4.1	App component
	2.4.2	App module
	2.4.3	Bootstrapping the app

	2.5	Building services
	2.6	Creating your first component
	2.7	Components that use components and services
	2.8	Components with forms and events
	2.9	Application routing

	3 App essentials
	3.1	Entities in Angular
	3.1.1	Modules
	3.1.2	Components
	3.1.3	Directives
	3.1.4	Pipes
	3.1.5	Services

	3.2	How Angular begins to render an app
	3.3	Types of compilers
	3.4	Dependency injection
	3.5	Change detection
	3.6	Template expressions and bindings
	3.6.1	Interpolation
	3.6.2	Property bindings
	3.6.3	Special property bindings
	3.6.4	Attribute bindings
	3.6.5	Event bindings

	4 Component basics
	4.1	Setting up the chapter example
	4.1.1	Getting the code

	4.2	Composition and lifecycle of a component
	4.2.1	Component lifecycle
	4.2.2	Lifecycle hooks
	4.2.3	Nesting components

	4.3	Types of components
	4.4	Creating a Data component
	4.5	Using inputs with components
	4.5.1	Input basics
	4.5.2	Intercepting inputs

	4.6	Content projection

	5 Advanced components
	5.1	Change detection and optimizations
	5.2	Communicating between components
	5.2.1	Output events and template variables
	5.2.2	View Child to reference components

	5.3	Styling components and encapsulation modes
	5.3.1	Adding styles to a component
	5.3.2	Encapsulation modes

	5.4	Dynamically rendering components
	5.4.1	Using the Ng-bootstrap modal for dynamic components
	5.4.2	Dynamically creating a component and rendering it

	6 Services
	6.1	Setting up the chapter example
	6.1.1	Getting the chapter files
	6.1.2	Sample data

	6.2	Creating Angular services
	6.3	Dependency injection and injector trees
	6.4	Services without dependency injection
	6.5	Using the HttpClient service
	6.5.1	HttpInterceptor

	6.6	Helper services
	6.7	Services for sharing
	6.8	Additional services

	7 Routing
	7.1	Setting up the chapter example
	7.2	Route definitions and router setup
	7.3	Feature modules and routing
	7.4	Route parameters
	7.4.1	Creating links in templates with routerLink
	7.4.2	Access the route parameters in a component

	7.5	Child routes
	7.6	Secondary routes
	7.6.1	Defining a secondary route
	7.6.2	Navigating between secondary routes
	7.6.3	Closing a secondary route and programmatic routing

	7.7	Route guards to limit access
	7.8	Lazy loading
	7.9	Routing best practices

	8 Building custom directives and pipes
	8.1	Setting up the chapter example
	8.2	Crafting custom directives
	8.2.1	Creating an attribute directive
	8.2.2	Modifying a component with a directive with events
	8.2.3	Creating a structural directive

	8.3	Crafting custom pipes
	8.3.1	Creating a pure pipe
	8.3.2	Creating an impure pipe

	9 Forms
	9.1	Setting up the chapter example
	9.1.1	Review the app before starting

	9.2	Template-driven forms
	9.2.1	Binding model data to inputs with NgModel
	9.2.2	Validating form controls with NgModel
	9.2.3	Custom validation with directives
	9.2.4	Handling submit or cancel events

	9.3	Reactive forms
	9.3.1	Defining your form
	9.3.2	Implementing the template
	9.3.3	Watching changes
	9.3.4	Custom validators with reactive forms
	9.3.5	Handling submit or cancel events
	9.3.6	Which form approach is better?

	9.4	Custom form controls

	10 Testing your application
	10.1	Testing tools and setting up the chapter example
	10.1.1	Testing tools

	10.2	Unit testing
	10.2.1	Anatomy of unit tests
	10.2.2	Testing pipes
	10.2.3	Testing services, stubs, and mocking HTTP requests
	10.2.4	Testing components and using testing modules
	10.2.5	Testing directives

	10.3	e2e testing
	10.4	Additional testing strategies
	10.4.1	How much testing is enough?
	10.4.2	When do I write tests?
	10.4.3	What do I write, e2e or unit tests?
	10.4.4	What if I don’t have time to write tests?
	10.4.5	What about other types of testing?

	11 Angular in production
	11.1	Building Angular for production
	11.1.1	Production build
	11.1.2	Optimizing for target browsers
	11.1.3	Progressive Web Apps
	11.1.4	Internationalization (i18n)
	11.1.5	Using alternative build tooling
	11.1.6	Server-side rendering or pre-rendering
	11.1.7	Build pipelines

	11.2	Angular architecture choices
	11.2.1	Lazy load routes
	11.2.2	Reduce external dependencies
	11.2.3	Stay up to date

	11.3	Deployment

	Appendix:
Upgrading from AngularJS€to€Angular
	Index

