
M A N N I N G

Rene Rubalcava

www.allitebooks.com

http://www.allitebooks.org

ArcGIS Web Development
www.allitebooks.com

http://www.allitebooks.org

ii
www.allitebooks.com

http://www.allitebooks.org

ArcGIS
Web Development

RENE RUBALCAVA

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Susan Conant
20 Baldwin Road Technical development editor: Florian Lengyel
PO Box 261 Technical proofreader: Brian Arnold
Shelter Island, NY 11964 Copyeditors: Lianna Wlasiuk,

Katie Petito
Proofreader: Melody Dolab

Typesetter: Marija Tudor
Cover designer: Marija Tudor

ISBN: 9781617291616
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 ARCGIS JAVASCRIPT FOUNDATION 1

1 ■ GIS as a tool 3

2 ■ Introducing core API concepts 17

3 ■ Working with the REST API 45

PART 2 SAMPLE USE CASE ... 65

4 ■ Building an application 67

5 ■ Developing a custom data-collection application 101

6 ■ Building a desktop browser application 135

7 ■ Advanced techniques 175
v

www.allitebooks.com

http://www.allitebooks.org

vi
www.allitebooks.com

http://www.allitebooks.org

contents
preface xi
acknowledgments xiii
about this book xiv

PART 1 ARCGIS JAVASCRIPT FOUNDATION 1

1 GIS as a tool 3
1.1 GIS: here, there, everywhere 4

The GIS tools landscape 4 ■ Introducing the ArcGIS
platform 6 ■ Why care about spatial applications? 7
Trends in the GIS industry 8

1.2 Understanding the GIS bits 9
The what and the where of GIS data 10 ■ Serving GIS data:
ArcGIS Server and the REST API 11 ■ Choosing an ArcGIS
web API 12

1.3 Things to know 13
JavaScript, Dojo Toolkit, and Dijit 13 ■ Introducing a tad of
GIS 14 ■ Interacting with the ArcGIS REST API 15

1.4 Summary 15
vii

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
2 Introducing core API concepts 17
2.1 From data to map 18

Parts of a basic map 19 ■ Specifying common map options 22

2.2 Understanding layers and accessing data 24
Layer types for raster-based data 25 ■ Layer types for vector-
based data 27 ■ Getting to know the GraphicsLayer 28
Creating graphics with the QueryTask 30

2.3 Working with the FeatureLayer 35
Advantages of a FeatureLayer 36 ■ Creating a
FeatureLayer 38 ■ Optimizing application performance 39
Selecting items in the FeatureLayer 42

2.4 Summary 44

3 Working with the REST API 45
3.1 Introducing the ArcGIS Server REST API 47

Exploring how the API works 47 ■ Interacting with ArcGIS
Server pages 49

3.2 Building your own widget 52
Building the legend root menu 52 ■ Retrieving legend
details 53 ■ Displaying details in the custom legend
widget 54 ■ Working with multiple symbols in a feature 55

3.3 Working with the geometry service 56
Buffer your heart out 56 ■ Buffer and select 59
Buffer and intersect 61

3.4 Summary 64

PART 2 SAMPLE USE CASE .. 65

4 Building an application 67
4.1 What are you going to build? 68

Using a tablet or phone 69 ■ Collecting points 69
Performing disconnected editing 69

4.2 Working with ArcGIS Online 70
ArcGIS Online vs. ArcGIS Server 70 ■ Setting up an ArcGIS
Online account 71 ■ Defining a feature service 72
Accessing your ArcGIS Online feature service 77
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
4.3 Building a real-world application 77
Setting up Dojo and organizing modules 78 ■ Tying the
application together 83

4.4 Adding layers and using the renderer 87
Adding layers with a module 87 ■ Using the renderer 90
Applying the renderer 91 ■ Setting up the editing tools 92
Assigning an action to a button 95

4.5 Summary 99

5 Developing a custom data-collection application 101
5.1 Performing default web map editing 102

Finding feature service information 104 ■ Adding your feature
service to the map 105 ■ Adding the TemplatePicker and
default Editor widgets 109

5.2 Building a custom edit tool 113
Working with the custom edit functionality 114 ■ Refining the
custom edit tool 120

5.3 Enabling disconnected editing 125
Local storage 126 ■ Caveats 134 ■ Other storage
options 134

5.4 Summary 134

6 Building a desktop browser application 135
6.1 The project ahead 136

Goals of the RequestViewer 136 ■ Freedom of the desktop
browser 136

6.2 Setting up and configuring the RequestViewer 138
Creating index.html 138 ■ Configuring run.js 138
Starting the RequestViewer 139 ■ Defining map services 140
Setting up the application controller 140

6.3 Setting up authentication with OAuth 2.0 142
Using your developer account to create an application 142
Updating main.js 145 ■ Saving credentials 146

6.4 Building the user interface 152
Working with the Measurement widget 152 ■ Working with the
BasemapToggle widget 157
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
6.5 Editing requests 159
Editing a request’s location 159 ■ Editing a request’s
attributes 163 ■ Incorporating a nonspatial service 168

6.6 Summary 173

7 Advanced techniques 175
7.1 Using a single configuration file 176

Defining a map 176 ■ Loading the Geocoder widget 180
Looking for the patterns 182

7.2 Dynamic widget loading 182
Widget path and options 182 ■ Building a widget loader 183
Testing the widget loader 185 ■ Adding HTML elements 186

7.3 Adding a web map 189
Creating the web map 189 ■ Adding the web map to an
application 193 ■ Using the web map specification 197

7.4 Advanced techniques for offline mode 204
Creating an application cache 204 ■ Storing data locally with
the PouchDB library 208

7.5 Summary 214

appendix A: Setting up your environment 215
appendix B: Dojo basics 217
appendix C: Configuring a proxy 225

index 227

preface
The last decade has seen a boom in people becoming acclimated to location technol-
ogy. Most users may not fully realize that they’re using location technology when they
get an alert on their phone that there’s traffic on the way home, or when they get a
coupon from an app on their phone for a local restaurant. Smart phones are no lon-
ger simply devices for making phone calls, texting, and checking email. For many peo-
ple, they’ve not only replaced the heavy and clumsy map book that your passenger
used to help you navigate, but these “phones” have also replaced the expensive in-
dash GPS systems in our vehicles. It’s so easy today to say the name of a store or venue
into your phone, and in seconds receive turn-by-turn directions. That’s not to say that
these directions may not try to direct you into a lake, but there’s no denying that loca-
tion technology has become part of our daily lives. We gladly share our current loca-
tions with friends and family with as much fervor as when we shared a photo a few
years ago. Maps and the information they can convey are great tools that developers
should take time to learn to use.

 A few years ago, I was tasked with upgrading an enterprise GIS application and
bringing it into the modern non-mainframe era. Esri had just started releasing Web
APIs for use with their technology. At the time, I built my application with the Flex API,
and I delved deep into the world of ActionScript and Flex modular development, but
it always felt a bit heavy-handed.

 Over time, the Esri JavaScript API became more appealing. It performed better
with each release and offered new features that worked with the latest updates to
ArcGIS Server. At some point, my focus switched entirely from Flex development to
JavaScript, and I immersed myself in every nook and cranny of the API.
xi

PREFACExii
 I’ve had the pleasure over the years of building numerous applications with the
ArcGIS API for JavaScript, even building a business around creating web-mapping
applications. I’ve tried to follow each learning hump with a blog post or a presenta-
tion to share what I have learned. This is my way of paying it forward—paying it for-
ward for all those blog posts I spent late nights digging through, simply to fix some
odd bug or solve a problem I was ready to give up on, and for all the presentations I’ve
attended that inspired me to build and learn, to create useful tools and applications,
and to strive to learn what I didn’t even know I wanted or needed to learn. This book
brings together the knowledge I’ve gained and puts it all in one place. I hope you
enjoy reading this book as much as I did writing it.

 I also hope you take the foundations laid out here to explore what you can do with
web mapping with the ArcGIS API for JavaScript and build some really cool things.
Because as developers, isn’t that what we all want to do? Just build.

acknowledgments
There are numerous people to thank, without whose help and support this book
would not have been possible.

 I’d like to thank the people at Esri who provided me with great feedback on the
subject matter: Jim Barry, Derek Swingley, Andy Gup, Jeremy Bartley, and everyone on
the JavaScript API and Server team who answered one of my numerous questions.

 Thanks to the Manning Early Access Program (MEAP) readers who posted com-
ments and corrections in the Author Online forum. Thanks also to all the reviewers
who provided invaluable feedback: Adam Krein, Alexander Jones, Andrea Tarocchi,
Brandon Titus, Cliff Zhao, David Takahashi, Dennis Sellinger, Jaclynn Wilson, Shaun
Langley, Tim Djossou, and Vidyasagar Nallapati.

 I’d like to thank the entire Manning editorial staff for helping me every single step
of the way in writing this book. My development editor, Susan Conant, helped me
brainstorm ideas for this book and was quick to answer all my questions and show me
how to teach, not tell. Brian Arnold, technical proofreader, provided incredibly thor-
ough technical guidance in reviewing the code for this book.

 I’d also like to thank my parents for always believing in me and supporting me
when I needed it the most. A special thank you to my wife Zenayda, who has been my
rock since we met, and who pushes me to be better on a daily basis. Thank you to my
three daughters Andrea, Zoe, and Abbey Rose, who have taught me the patience that
only a father of daughters could understand.
xiii

about this book
The ArcGIS API for JavaScript is a library built to work hand in hand with ArcGIS
Server technologies. It’s designed to provide a wide range of tools that allow a devel-
oper to build everything from the simplest web-mapping application to a heavily used
and feature-rich tool. What you decide to build is up to you and the needs of your
users, but it’s been my experience that the ArcGIS API for JavaScript can meet most
expectations.

 This book, ArcGIS Web Development, is an introduction to the ArcGIS API for Java-
Script, with a little bit of extra information thrown in to get you up to speed with the
Dojo Toolkit that the API is built on.

 There are a variety of web-mapping libraries available, and the ArcGIS API for Java-
Script is designed to take advantage of the technology provided by ArcGIS Server and
ArcGIS Online, both of which will be discussed in this book.

Roadmap

ArcGIS Web Development is divided into two parts: “ArcGIS JavaScript Foundation” and
“A Sample Use Case.” If you’re already familiar with GIS and just want to learn how to
use the ArcGIS API for JavaScript, you may be tempted to skip Part 1 entirely. I strongly
recommend, though, that you at least familiarize yourself with chapter 3, which covers
the ArcGIS REST API.

 The first part of the book is an introduction to some core concepts of GIS and
terms used throughout the book. By the end of part 1, you’ll have a solid understand-
ing of the ArcGIS Server REST API, which is the driving force for ArcGIS web technolo-
gies and core concepts of the ArcGIS API for JavaScript.
xiv

ABOUT THIS BOOK xv
■ In chapter 1, you’ll learn how GIS can be used as a tool and the significance of
spatial applications.

■ In chapter 2, you’ll build your first map and learn the basics of spatial data and
how to query that data.

■ In chapter 3, you’ll learn the basics of the ArcGIS Server REST API and be given
a sample of how to use it to build a custom legend widget. This is also the first
dive into using the Dojo AMD loading system.

The second part of the book walks you through a sample field collection application,
which also provides some tips on disconnected editing for mobile applications. In
part 2 you’ll learn how to structure a scalable application, build a mobile-friendly data-
collection application, and even learn some advanced techniques for disconnected
editing:

■ In chapter 4, you’ll set up an ArcGIS Online account and learn how to use Dojo
to build your application.

■ In chapter 5, you’ll learn how to edit features on the map and use authentica-
tion to secure your application, as well as how you can use LocalStorage to
enable disconnected editing.

■ In chapter 6, you’ll focus on building an application for use on a desktop
browser, freeing you up from some limitations of a mobile environment. You’ll
also learn how to use OAuth 2.0 with ArcGIS Online and store your credentials
to allow users to log in and out. This chapter also covers how to integrate data
collected in the field with some non-spatial data.

■ In chapter 7, you’ll be introduced to more advanced subjects and techniques.
You’ll learn about the ArcGIS WebMap specification and how to use it to config-
ure your map. You’ll also learn how to build your entire application from a sin-
gle JSON file that will configure your widgets for you. This chapter will also
describe an alternative to disconnected editing using a library called PouchDB.

Finally, there are three appendixes that contain supporting information. Appendix A
provides some development environment options available for writing and running
the code in this book. Appendix B is probably the most valuable appendix in this
book, as it covers basics of the Dojo Toolkit that are indispensable for using the ArcGIS
API for JavaScript. Appendix C discusses how to use the proxy files provided by Esri in
your application and explains why you will probably need them.

Code conventions and downloads

All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

ABOUT THIS BOOKxvi
 Source code for the examples in the book can be downloaded from the publisher’s
website at www.manning.com/ArcGISWebDevelopment.

Author Online

Purchase of ArcGIS Web Development includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/ArcGISWeb
Development. This page provides information on how to get on the forum once you
are registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the book’s forum remains voluntary (and unpaid).
We suggest you try asking him some challenging questions, lest his interest strays!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration

The figure on the cover of ArcGIS Web Development is captioned “La Demoiselle de
Compagnie,” a young woman who serves as a companion to an older and more well-
to-do woman from the aristocracy or bourgeoisie; or as a chaperone for a young,
unmarried woman, who could not go out unaccompanied. The illustration is taken
from a nineteenth-century edition of Sylvain Maréchal’s four-volume compendium of
regional dress customs published in France. Each illustration is finely drawn and col-
ored by hand. The rich variety of Maréchal’s collection reminds us vividly of how cul-
turally distinct the world’s towns and regions were just 200 years ago. Isolated from
each other, people spoke different dialects and languages. In the streets or in the
countryside, it was easy to identify where they lived and what their trade or station in
life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

www.manning.com/ArcGISWebDevelopment
www.manning.com/ArcGISWebDevelopment
www.manning.com/ArcGISWebDevelopment

Part 1

ArcGIS JavaScript
Foundation

Part one of this book introduces some of the core concepts of GIS and terms
used throughout the book. By the end of this part, you’ll have a solid under-
standing of the ArcGIS Server REST API, which is the driving force for ArcGIS
web technologies and core concepts of the ArcGIS API for JavaScript, as well as
how spatial data is provided to web applications:

■ In chapter 1, you’ll learn how to use GIS as a tool and the significance of
spatial applications.

■ In chapter 2, you’ll build your first map and learn the basics of spatial data
and how to query that data. You’ll also learn the details of how a Feature-
Layer works and how it’s optimized for performance.

■ In chapter 3, you’ll learn the basics of the ArcGIS Server REST API and be
given a sample of how to use it to build a custom legend widget. This is
also the first dive into using the Dojo AMD loading system and modulariz-
ing your application.

2 CHAPTER

GIS as a tool
Where we are, and our understanding of location, has an impact on our daily lives.
Walk around almost any public space and you’ll see people staring at their smart-
phones, updating their statuses, or looking for the closest taco joint. You may have
shopped for a house online, and been able to view homes in your area and even see
nearby schools. When shopping for a car online, you can usually limit the search to
within so many miles of a zip code. Formerly, a paper map book was essential in
every vehicle, but today, drivers keep a GPS (Global Positioning System) on the
dashboard or have a system that speaks to them, directing them when to turn. If
you’re following directions on paper, chances are you printed them from an online
map. Location has become a key component of the way we get many tasks done. A
simple map can be a driving force in delivering information, sometimes in the most

This chapter covers
■ What a geographic information system (GIS) is

and how it’s used
■ The significance of spatial applications
■ Trends for pros and opportunities for beginners
■ Parts of a GIS web application
3

www.allitebooks.com

http://www.allitebooks.org

4 CHAPTER 1 GIS as a tool
subtle ways. ArcGIS, a key subject of this book, is a geographic information system
(GIS) platform that allows users to work with maps and geographic information. With
it, users can create and use maps, gather and analyze geographic data, and use that
data in a variety of applications.

 This chapter gives you a quick overview of the key pieces of information in this
book:

■ The ArcGIS platform
■ Why you should consider learning how to add spatial capabilities to your

applications
■ Benefits of the ArcGIS API for JavaScript
■ Dojo Toolkit and how it relates to the ArcGIS API for JavaScript
■ Useful GIS concepts

Volumes have been written on the subject of GIS alone, but for our purposes, I’ll dis-
cuss what GIS means and how location-aware applications impact our daily lives.

1.1 GIS: here, there, everywhere
For years, GIS was something used by academics and government agencies for studies
or infrastructure purposes. GIS is “a system designed to capture, store, manipulate,
analyze, manage, and present all types of geographical data.”1 GIS is the way we work
with spatial information. It’s also a technology that’s been used mainly in the realm of
desktop computers, with large enterprise applications that require extensive training.

 The World Wide Web has caused an explosion in most technologies today, includ-
ing the use of GIS tools. Since the mid-1990s, you’ve been able to find addresses and
get directions from websites like MapQuest. Projects like Google Maps and Open-
StreetMap emerged a few years later to bring GIS to the masses, introducing the power
of maps to everyday people. Esri, founded in 1969, has grown into a leading company
that provides GIS tools and services, including a suite of web mapping tools, which is
why you’re reading this book. Before we take a closer look at Esri’s GIS offerings, let’s
sample the other tools available.

1.1.1 The GIS tools landscape

You have a number of choices when it comes to developing web mapping applications
with JavaScript, including robust open-source options. Some options come in the
form of an API, which is an interface for an underlying web service, like maps and
directions.

1 “Geographic Information System,” Wikipedia, last modified May 24, 2014, http://en.wikipedia.org/wiki/
Geographic_information_system.

http://en.wikipedia.org/wiki/Geographic_information_system
http://en.wikipedia.org/wiki/Geographic_information_system

5GIS: here, there, everywhere
Google and MapQuest provide web mapping APIs that are popular for embedding
maps and directions into websites. Microsoft offers a Bing mapping API to showcase its
mapping data. Various open-source mapping libraries also have much to offer:

■ OpenLayers—A popular open-source mapping library with a large community of
users

■ Leaflet—A mapping library that has grown in popularity due to its ease of use
and focus on performance for mobile browsers

■ Modest Maps—A super-lightweight mapping library that does a good job of dis-
playing interactive maps

This list is a sampling of open-source options for building web mapping applications,
and I encourage you to try them out. The explosion of mapping in the browser has
only increased the importance of location for everyday users. Personally, when I’m out
running errands, my phone keeps me updated as to how long it’ll take me to get
home based on my current location and traffic conditions. That’s pure location-
awareness in action.

 GIS plays a large role in many areas of technology. Knowing the location of some-
thing can be critical in large asset-management systems that track construction and
maintenance information of certain infrastructures, such as water and power. GIS is
commonly used in crime analyses to help local law enforcement officials focus their
resources. GIS is also used to project population growth in urban areas to help deter-
mine future infrastructure needs. GIS is used to assist the public when a disaster
strikes—for example, mapping out damage after storms and floods.

 Considering the various web mapping APIs available to developers other than the
ArcGIS API for JavaScript, such as OpenLayers and Leaflet, you wonder which is the
better choice: proprietary or open source. This decision may depend on many factors
but usually boils down to preference. Are you working with data stored in an existing
ArcGIS database? Are you working with services in an existing ArcGIS Server? Is the
entire GIS ecosystem being built from scratch? What is the budget? Are there any reg-
ulatory guidelines on vendors? Do you require on-call customer support? There are
varying advantages and disadvantages to each choice. A few of these pros and cons are
listed in table 1.1.

What exactly is a web service?

The World Wide Web Consortium (W3C) defines a web service as “a standard means
of interoperating between different software applications, running on a variety of plat-
forms and/or frameworks.”a

a “Web services Architecture,” W3C Web Services Architecture Working Group, last modified Feb
2004, www.w3.org/TR/ws-arch/

www.w3.org/TR/ws-arch/

6 CHAPTER 1 GIS as a tool

Like most open-source debates, the question of whether to use a proprietary or open-
source web mapping API can get heated. In my experience, it usually boils down to
what’s currently in place and what you’re willing to spend to get something done
quickly. This book assumes that you, as a developer, are working with ArcGIS Server or
ArcGIS Online services, so it makes sense for you to work with the ArcGIS API for Java-
Script. This API isn’t an open-source toolkit, but rather was developed by Esri, a leader
in GIS technologies. It’s a powerful library built to interact with ArcGIS Server.

1.1.2 Introducing the ArcGIS platform

ArcGIS is a platform for providing location-based tools and functionality that range
from desktop to server and mobile. The ArcGIS API for JavaScript works with ArcGIS
Server, a gateway to GIS data that can be shared on the web to provide access to GIS
data via web services. I’ll discuss these services in more detail in chapter 2, but for now,
all you need to know is that the ArcGIS API for JavaScript is designed to interact with
those services so you can build powerful web mapping applications.

TIP Before I get into the details of the ArcGIS API for JavaScript, you may
want to visit http://esriurl.com/js for a quick overview of the code samples
and reference materials. This book doesn’t regurgitate the documentation,
but the documentation is the source material for the API and will be a key
source of information in your exploration of the ArcGIS API for JavaScript.

The ArcGIS API for JavaScript is a natural choice if you’re working with ArcGIS Server.
The JavaScript API seamlessly translates the information from ArcGIS Server to pro-
vide a rich web mapping experience. Figure 1.1 shows how GIS data that previously
was accessible only to a few users can now be shared using ArcGIS Server and the Arc-
GIS API for JavaScript.

 The purpose of this book is to introduce you to the basics of the ArcGIS API for
JavaScript and how use the API to interact with various ArcGIS services. You’ll also look
at how to interact directly with ArcGIS Server if you need information that you can’t
easily use the API for, and you’ll learn how to extend the API to build your own tools to
meet your needs.

 The second half of the book covers how to build a more involved web mapping
application that collects data in a field application. The term “field,” in this context,

Table 1.1 Pros and cons of proprietary and open-source web mapping

Proprietary Open-source

Cost Infrastructure can get expensive,
but API is cost-free

Infrastructure and API are cost-free

Community support Available in Esri forums Quite extensive

Professional support Available with ArcGIS licensing Can be purchased from various providers

http://esriurl.com/js

7GIS: here, there, everywhere
means “not behind a desk.” Field applications present their own unique challenges,
which I’ll cover in later chapters.

NOTE I’ll cover aspects of how to use ArcGIS Server services with the API, but
I won’t cover how to install ArcGIS Server (which isn’t required for this book),
publish services, or create services using ArcGIS for Desktop.

For now, let’s broaden the discussion to talk more about what spatial applications are
and how the internet has changed what you expect from these applications. As devel-
opers (beginner or advanced), what does GIS bring to the table and why should you
care?

1.1.3 Why care about spatial applications?

My first car was small, it was old, and it was rusty, but it was mine, and I was excited to
have my own ride to school, something that I think my parents were excited about as
well. The first thing my father gave me when I got my car, after a brief yet stern word
of caution about being a safe driver, was an awkward and heavy map book. As a kid, I

A look ahead

In chapter 4, you’ll set up a free ArcGIS developer account so you can create your
own services for use in your application. You’ll also use free services from ArcGIS
Online, a cloud-based version of ArcGIS Server.

ArcGIS Server

ArcGIS API
for JavaScript

The ArcGIS API for JavaScript
does the work of displaying map

services in the browser.

ArcGIS Server is a gateway for
viewing GIS data in external clients

such as a web browser.

GIS data usually resides on
a database and isn’t directly

accessible to the web.

GIS
data

Figure 1.1 Producing maps with ArcGIS API for JavaScript

8 CHAPTER 1 GIS as a tool
remember sitting in the backseat of the car on long road trips, and my duty was to
periodically flip the pages of an identical map book and point out what town was com-
ing up or how many streets we needed to pass before making a right turn. I used to
marvel at the detail each page provided, from the winding roads we’d already traveled
to the upcoming hills I could look forward to. The map book was a staple in my travels
as well as the travels of many others.

 These days you may not rely on spiral-bound bricks of paper to navigate the road,
but many people do rely on GPS, either on a smartphone or in the car. If you’re using
a paper map, you probably printed it from a website and folded it up in your pocket
for later use.

 Navigation isn’t the only way our information-consuming society uses spatial infor-
mation in our daily lives. For years, the retail industry has used your location for tar-
geted advertising. From something as simple as the paper advertisements that fill your
mailbox, to an application on your smartphone that can give you a coupon for a
nearby restaurant without your asking for it, location can be a key component to tar-
geting an audience in a meaningful way. We constantly share messages, photos, and
videos via mobile devices, and each of these bits of information we share carry with
them location information. You can even play games on your smartphone that inter-
act with your location, using real-world streets to direct you to victory. When a new
fast-food restaurant is built, time has been put into analyzing the benefits of placing
that restaurant at that location. A study was probably done to review the demograph-
ics of the area (for example, the average household income), proximity to freeways or
major highways, average drive-time from major business areas, and more. Similar anal-
yses are also done when new schools are built or new roads are paved. At the end of
the day, location matters.

1.1.4 Trends in the GIS industry

Previously, people who worked in the GIS industry needed the skills not only to ana-
lyze data but also to employ cartography to display that data. Today, GIS professionals
are typically required to have an expanded skillset that allows them to adapt to chal-
lenges they face, but they don’t need to be versed in all aspects of using GIS. Profes-
sionals who prefer to focus on one particular aspect of GIS may not have masterful
cartographic skills, rock-star spatial analysis skills, or ninja-level developer skills, but
familiarity with all these skillsets is helpful. You may already be working in the GIS field
or you may be a student looking forward to cutting your teeth in the job market. Or
you may already have experience working with web applications and JavaScript and
want to expand your skillset with a web mapping API. Whatever the case, anyone with
a skillset in building location-based web applications can find many opportunities.

 A cursory review of recent GIS-related job postings reveals that employers are look-
ing for employees who not only can analyze and work with data, but also have pro-
gramming knowledge. Programming skills could include a language like Python,
which has cemented itself in the GIS industry as a staple in automating GIS analysis,

9Understanding the GIS bits
thanks to some robust spatial libraries. Skills could also include languages like C# or
Java, which are typically used to extend desktop tools or build web services. Employers
also need current GIS professionals and developers who can use web technologies to
provide quick and efficient access to much of the GIS data that has traditionally been
inaccessible to the general public.

 The web development aspect of using GIS is an exciting area not only for GIS pro-
fessionals but also for anyone learning web development with maps. I started working
with GIS in early 2002 as a drafting technician recruited into doing GIS technician
work to help out with various projects. One of my tasks was manually adjusting hun-
dreds of small boundaries. It was tedious, and I was unfamiliar with the tools, which at
that time ranged from somewhat familiar drawing tools to some odd command-line
tasks. I was asked to edit script files that added new menus to the software I used,
which magically searched a database for related information. I was still green and
didn’t realize the power of the automation I was working with. Today, a majority of my
time is spent doing GIS web development. I attend regular GIS conferences and local
events, and over the years I’ve noticed the growing need for GIS professionals to have
a basic understanding of programming to get daily tasks done. I’ve seen presentations
that include not only the analytic details of the way a project was completed but also
the customizations that were done via programming tasks that were critical in com-
pleting the project. These customizations could be automating tasks or developing a
web application to allow stakeholders to collaborate during the project lifecycle.

 The goal of this book is to give you a solid working foundation in using the ArcGIS
API for JavaScript to build web applications that meet the needs of the task at hand.
This could be an application that’s used by first responders during a natural disaster
or a work-order application to keep track of work that’s being done. A web application
can be used in an office setting or on mobile devices, making it a flexible platform to
work on.

 Let’s shift our focus to the structure of a GIS web mapping application.

1.2 Understanding the GIS bits
Various components contribute to building a web mapping application. Each one is
critical to the process. As shown in figure 1.2, all these components ultimately lead to
one thing: a happy user, which means the data is communicated in a clear manner
and provides meaning to the user.

ArcGIS Server
and REST API

GIS
data

ArcGIS Flex API

ArcGIS JavaScript API

ArcGIS Silverlight API

Happy user

Figure 1.2 The pieces that make up a web mapping application

10 CHAPTER 1 GIS as a tool
The GIS data is behind the ArcGIS Server. To get to this data, you communicate with
the ArcGIS Server via a collection of URL endpoints. You can communicate with these
endpoints through a variety of methods, such as Silverlight and Flex, but this book’s
focus is on the ArcGIS API for JavaScript. This communication process, combined with
your impeccable skills, leads to happy users. This is method of communication is
called a REST API, which is discussed in more detail in section 1.2.2.

 In this section, I’ll introduce you to each of these components of building a web
mapping application, starting with the key component: the data.

1.2.1 The what and the where of GIS data

Data is the starting point to a successful application. Someone has to compile the
data, possibly analyzing and even digitizing (the process of using drawing tools) the

GIS
data

Tabular

Vectors

Streets

CommunitiesTraffic

Terrain

Figure 1.3 ArcGIS Server provides access to GIS data, which is composed of different types
of data, such as tabular, vector, terrain, streets, communities, and so on, via services.

11Understanding the GIS bits
data based on external sources. For example, a company or government agency will
need to translate old, hand-drawn maps into a digital format, usually parcel or park
boundaries. The data often is drawn based on aerial images, such as locations of trees
or possible routes to navigate to areas without road access. Infrared aerials frequently
are used to find vegetation, which appears in hues of red in an infrared image. This
method is used to look at the way areas of vegetation change over a certain period of
time. Without data, you’d have nothing to display in a web mapping application.

 This data can be stored in a few formats but usually resides in a database. Regard-
less of format, it’s still data, and it’s easier to manage a lot of data when it’s kept in a
database. This allows it to be searched quickly, backed up, and shared easily. To share
this data, you could print out paper maps or you could email it back and forth in a dig-
ital format. Although these are still valid methods of sharing digital GIS data, users
expect to have quicker and easier access to this type of information (see figure 1.3).
This is where the need to share this data to the web comes into play.

 With a wealth of valuable data to be shared, the next critical component of a web
mapping application is a web server.

1.2.2 Serving GIS data: ArcGIS Server and the REST API

A web server’s job, as you may already know, is to serve data from a physical computer
out to the World Wide Web so people can view it in their web browsers. An ArcGIS-
specific server performs specialized tasks, such as serving aerial imagery, which I’ll
cover briefly in chapter 2. Sharing data online is done through web services. A web
service is a URL (pronounced U-R-L) that returns a web page, an image, or another
form of data. This book focuses on data that’s accessed via ArcGIS Server services.

 ArcGIS Server is enterprise server software that provides a quick method to build
web services that serve GIS data. It has more functionality than merely serving data,
which I’ll cover in later chapters, but all interaction is done through the REST (repre-
sentational state transfer) API, which is an interface for interacting with the server
(see figure 1.4).

ArcGIS Server
and REST API

GIS
data

GIS data can contain
geometries, imagery, and

tabular information.

ArcGIS Server
provides access to
GIS data via the

REST API.

To access and process
data on ArcGIS Server, you use
the various services provided

by the REST API.

Map service
Feature service

Geoprocessing service
Image service

Geocode service

Figure 1.4 Data served via ArcGIS Server is made available as various services; each service
has a specific purpose.

12 CHAPTER 1 GIS as a tool
To properly communicate with the ArcGIS Server REST API, you use a specially
designed web API—the next component of a web mapping application.

1.2.3 Choosing an ArcGIS web API

The ArcGIS Server REST API is the foundation for all ArcGIS web APIs. A developer has
a few choices when deciding to build a web application based on ArcGIS technology:

■ ArcGIS API for Flex
■ ArcGIS API for Silverlight
■ ArcGIS API for JavaScript
■ and others

The ArcGIS API for Flex, based on the Flex software development kit (SDK), used to
be an Adobe product but has been open-sourced in recent years. It’s built on top of
Flash technology and can be used to build interactive applications. The ArcGIS API for
Silverlight uses Microsoft Silverlight to build applications that, similar to the Flex API,
can provide fluid and interactive applications.

 The drawbacks to both of these APIs are that they require users to have a browser
plug-in installed for each of them, and they don’t work on the web browsers in mobile
devices. This has led many developers to embrace the ArcGIS API for JavaScript. Java-
Script runs on all browsers, with minor differences in the way it runs on each browser,
and it also provides a fluid and interactive application.

 All these web APIs are translators for the ArcGIS REST API, and they make it easy
to interact with ArcGIS Server to provide data-rich web mapping applications (see
figure 1.5). The web APIs may be built on different technologies, but once you learn
one API, it’s easy to pick up another one without much trouble.

 The ultimate goal of these various components is to make the user of the applica-
tion happy. Providing an easy-to-use web mapping application that delivers the neces-
sary data for the user to accomplish a task or find the right information without
stumbling through the application is the key to a happy user.

ArcGIS Server
and REST API

No plugin
needed

Require
browser plugins

GIS
data

ArcGIS Flex API

ArcGIS JavaScript API

ArcGIS Silverlight API

Figure 1.5 The ArcGIS API for JavaScript is the only API that doesn’t require a browser plug-in.

13Things to know
 Whether you’re a seasoned GIS pro looking to enhance your skills with JavaScript
or a JavaScript ninja who wants to add GIS web mapping notches to your belt, you’ll
want to be familiar with a few items before working with the ArcGIS API for JavaScript.

1.3 Things to know
No matter your level of competence in either GIS or JavaScript, you should know a few
things before working with the ArcGIS API for JavaScript. I’ll cover the following topics
in detail in chapters 2 and 3, but I want to touch on them briefly in this section to give
you an overview of what you’ll need to know to work with the ArcGIS API:

■ JavaScript stylistics
■ GIS concepts

1.3.1 JavaScript, Dojo Toolkit, and Dijit

This book is about using JavaScript to build web mapping applications, but you don’t
need to be a JavaScript master to use this book. I don’t explicitly cover what I consider
JavaScript best practices when building your applications, but the code I provide is
written in a style I think is best suited for the task at hand. For example, sometimes
you use a single JavaScript file to build an application; other times, you load up to half
a dozen JavaScript files.

DOJO AND AMD LOADING

The Dojo Toolkit is a popular JavaScript library that offers many tools for writing JavaS-
cript, in particular for larger applications. The ArcGIS API for JavaScript is based on
Dojo, so it’s inevitable that you’ll also learn Dojo as you begin using the API. Dojo pro-
vides an extensive suite of tools that you can use in building your web mapping appli-
cations. I’ll dig deeper into Dojo tools in chapters 2 and 3, but Dojo’s use and how it
applies to the ArcGIS API for JavaScript is something you should be aware of.

 Another typical JavaScript stylistic choice is the way files are loaded. A common
and still acceptable way to load JavaScript files to your web page is to use a <script>
tag, as follows:

<script src=”file1.js”></script>
<script src=”file2.js”></script>
<script src=”file3.js”></script>

Loading JavaScript files in this manner isn’t wrong, and you need at least one script
tag to load a file. But, as you can imagine, as the application grows and the amount of
JavaScript files grow, this method gets unwieldy. Not to mention that there’s no guar-
antee that the JavaScript files will load in the order in which you place them on the
page.

 The ArcGIS API for JavaScript uses a method called asynchronous module definition
(AMD), which loads your JavaScript files on an as-needed basis. The reason for using it
boils down to the fact that the ArcGIS API for JavaScript is built with the Dojo Toolkit.

14 CHAPTER 1 GIS as a tool
Dojo uses AMD to build applications, so AMD loading is another method you’ll learn
to build your applications. A quick example of AMD loading is shown here:

define([‘dojo/_base/array’], function(arrayUtil) {
 var sqItems = function(items) {
 return arrayUtil.map(items, function(item) {
 return item * item;
 });
 };
 return sqItems;
});

I’ll cover more details of the AMD loader in chapter 3 when you build a custom widget.

USING DIJIT

Dojo has a library called Dijit, which is used to build the JavaScript components that
provide an interface in a web application. The interface could be a form to enter
information or it could be a calendar date-picker. A process is in place for building
these custom components, commonly referred to as widgets. Using Dojo, a developer
can create custom widgets using the Dijit library’s base set of tools, which simplifies
the process and makes writing reusable widgets much easier as an application grows.
I’ll cover custom widgets in chapters 3 and 4.

1.3.2 Introducing a tad of GIS

I’m focusing on building web mapping applications using the ArcGIS API for Java-
Script, and although knowledge of GIS isn’t a requirement to get into this subject, I
want to review a few GIS concepts:

■ Interactive maps—An interactive map serves a specific purpose: a map is there to
show you where. Show you where what? Maps communicate location informa-
tion: it could be streets, neighborhoods, homes for sale, or how much income
people make in certain cities, but the information revolves around where this
information is displayed. As shown in figure 1.6, when you’re looking for a par-
ticular answer, sometimes you need to ask, “Where are you?”

Defines custom module
and uses AMD to load other
JavaScript files

ArcGIS Server
and REST API

GIS
data

ArcGIS API for
JavaScript

Deaf person
communicating in

sign language

Professional
sign language

interpreter

REST endpoint URL
http://myservername/arcgis/rest/services/myservice?f=json

Information to
communicate

Figure 1.6 A map can communicate many things but often asks a simple question.

15Summary
■ Maps and layers—You’ll learn about the parts of a map and how to use layers in
chapter 2, but for now, all you need to know is that the map is the starting point
for relaying information. For example, a point on the map could represent the
location of a gas station, a series of lines on the map could show a city’s road
network, or polygons on the map could display voting areas.

■ GIS data analysis—GIS helps you answer questions about the information you’re
working with. How close am I to a certain location? How do I find a house that’s
closest to schools, shopping centers, and where I work? Using the ArcGIS API
for JavaScript, you can do interesting analyses. I won’t cover anything too exten-
sive, but the capability is there should you need it, and you’ll learn how to
access the tools to do so.

1.3.3 Interacting with the ArcGIS REST API

The engine that keeps the ArcGIS API for JavaScript running is the ArcGIS REST API,
which I discussed in section 1.2.2. I’ll cover how to access the ArcGIS REST API to meet
needs you might have that aren’t provided in the ArcGIS API for JavaScript in chapter
3. What it boils down to is being able to use the ArcGIS REST API to find out more
information about the data you’re working with. You can think of it as metadata about
your services. In this case, metadata includes information about a map service, such as
what data is in the service, and whether the data is made up of points, lines, or poly-
gons, or all of the above. Is the map service compatible with your other map services?
What is the default look of your map service?

 In terms of being able to fill possible gaps in functionality of the ArcGIS API for
JavaScript, in chapter 3 you’ll build an extension in JavaScript that will display a leg-
end that allows you turn individual layers on and off. This is a handy tool that isn’t
provided out of the box with the ArcGIS API for JavaScript. These types of custom tools
that require you to interact with the ArcGIS REST API aren’t always necessary, but when
they are, you’ll be grateful to have a basic understanding of working with the ArcGIS
REST API to cover your bases.

1.4 Summary
■ In this chapter, I discussed the prevalence of spatial applications in our every-

day lives. From how we shop to where we live, location plays a vital role in our
society.

■ I discussed various options available for building web mapping applications,
each with its own merits. In this book, the focus is on the ArcGIS API for Java-
Script, which is best suited for working with ArcGIS Server map services.

■ Trends in the GIS industry have shown a sharp increase for GIS professionals to
have familiarity with a programming language, even if it’s to supplement GIS
analyses and automate workflows. This opens up the opportunity for non-GIS
professionals to dive into building web mapping applications that use the power
of GIS data.

16 CHAPTER 1 GIS as a tool
■ I covered the basics of accessing GIS data through web services, which you can
use to build web mapping applications.

■ I provided a quick overview of concepts that you’ll know by the end of this
book, such as JavaScript, the relevant parts of the Dojo Toolkit, the bits of GIS in
your web maps, and what to look forward to when working with the ArcGIS
REST API.

In chapter 2 you’ll learn how to use the ArcGIS API for JavaScript to work with various
map services, query data from these services, and filter that data.

Introducing core
API concepts
The ArcGIS API for JavaScript is a well-stocked JavaScript library you can use to build
mapping applications. In later chapters you’ll use advanced features of the API, but
in this chapter I’ll discuss core features and their uses. We’ll begin our introduction
to the core functions of the API with a bit of explanation about how things work so
you can be better prepared when something doesn’t work as expected.

 A mapping application requires you to fit together many small pieces, but the
ArcGIS API for JavaScript brings all these pieces together for you, which simplifies
the process. The ArcGIS API for JavaScript uses a modular approach to building
web mapping applications; it loads only the necessary pieces (modules) to perform
various tasks. An application that features an onscreen interactive map that you can
zoom in on and pan around is remarkably simple to create. Additional functional-
ity, such as providing user feedback or building intelligence into the application,
takes more work.

This chapter covers
■ Basics of a map in a web application
■ Using different types of map data
■ Performing queries
■ Working with a FeatureLayer
17

18 CHAPTER 2 Introducing core API concepts
 To better prepare you for troubleshooting when something doesn’t work the way
you expect, my approach in this chapter is to provide more in-depth explanations
about how the core API functions work. I’ll cover the options that are available when
you make a map, as well as the kind of data you’ll typically work with. I’ll also show you
how to query your data to help you use the map to answer questions and display the
results on your map. Then I’ll finish by covering the advantages of a FeatureLayer
and how you can use it in your web mapping applications.

Now for the moment you’ve been waiting for: you’re going to dive right in and make a
bare-bones mapping application. Get ready for it!

2.1 From data to map
A map is a way to visualize data. It could be basic data, such as locations of streets, or more
detailed data, such as the location of census tracts. This section covers the following:

■ Creating a simple map with ArcGIS API for JavaScript
■ Understanding in detail the pieces that make up the map
■ Reviewing common map options

TIP Before jumping in, review appendix A to make sure you have the recom-
mended software installed to run the samples.

First, create an HTML file using your text editor of choice, name it ch2_1.html, and
enter the code shown in listing 2.1, saving it in a directory where you can view it from
a local web server. Remember that to view applications built with ArcGIS API for Java-
Script, the HTML files must use a local web server of your choice. Again, refer to
appendix A for more information.

<!doctype html>
<html>
 <head>
 <title>ArcGIS Web Development</title>

Docs are your friends

This isn’t a reference book, so I won’t cover every method and property in the ArcGIS
API for JavaScript. One resource you’ll become intimately familiar with while using the
API is the documentation, which you can find at https://developers.arcgis.com/en/
javascript/. The API reference pages can save you time when you’re stuck on how to
work with a certain module.

Esri, the company that supplies the ArcGIS API for JavaScript, also provides a collection
of samples on its website that do a good job of introducing users to the basics of the
API and some tools. I highly recommend these samples and reference pages, which
can be found at http://esriurl.com/js, as required reading along with this book.

Listing 2.1 A simple ArcGIS JavaScript mapping application

https://developers.arcgis.com/en/javascript/
https://developers.arcgis.com/en/javascript/
http://esriurl.com/js

19From data to map

G
t
m

 <link rel="stylesheet"
href="//js.arcgis.com/3.11/esri/css/esri.css">

 </head>
 <body>
 <div id="map"></div>
 </body>
 <script src="//js.arcgis.com/3.11/"></script>
 <script>
 require(['esri/map'], function(Map) {
 var map = new Map('map', {
 basemap: 'streets'
 });
 });
 </script>
</html>

This is the minimum code you need to build a map using the ArcGIS API for Java-
Script:

■ A reference to the current version of the ArcGIS API for JavaScript.
■ A container element, the most common of which is a div element in your

HTML.
A div is a block-level HTML element used for organizing your web page and can
be used only within the <body> element of the page.

The div element that contains the map must have a unique ID, which is associ-
ated with one element on your web page. In this case, the ID is map. You could
name it Bob as long as you reference the ID correctly, but map is a convenient
name for this example.

■ A reference to the Esri Cascading Style Sheets (CSS) file, which defines how ele-
ments look on the page; the CSS is provided with the API to make sure the map
displays correctly.

With these pieces in place, a few lines of JavaScript code are all you need to reference
the esri/map module and instantiate a new instance of a map.

DEFINITION I use the term module to refer to individual JavaScript compo-
nents that are defined in the ArcGIS API for JavaScript.

To create the map, you pass the id of the div element as the first argument to the Map
constructor. This element is used to draw the map on the screen. Let’s take a look at
this map in a browser.

2.1.1 Parts of a basic map

To view the results of the code in listing 2.1, run a local web server of your choice and
view the HTML file in a web browser using one of the server options provided in
appendix A—Visual Studio, XAMPP (Apache, MySQL, PHP), or Python:

TIP See appendix A for viable web server options.

Stylesheet is required for
map to display correctly

Displays the map

References current version
of ArcGIS API for JavaScript

ets reference
o esri/map
odule

Instantiates new map using
provided streets layer

20 CHAPTER 2 Introducing core API concepts
■ Visual Studio—Right-click the HTML file and select View in Browser.
■ XAMPP—Browse to http://localhost/agswebdev/ch2/ch2_1.html in your

browser of choice.
■ Python—From the command-line tool, navigate to the folder in which you’re

saving this sample, run the command python -m SimpleHTTPServer, and navi-
gate to http://localhost:8000/ch2_1.html in your browser.

No matter which tools you
choose, you should see some-
thing similar to figure 2.1.

 Now that’s amazing! A few
lines of code and some
HTML on your part, and you
have a map that you can pan
around and zoom in on.
That’s quite the time-saver
for you. Granted, this appli-
cation doesn’t do much, but
what do you expect from a
couple of lines of code? Let’s
review what you get with this
basic sample. As expected,
figure 2.1 is a map. Along
with the map, you’re pro-
vided, by default, the attribu-
tion information in the
lower-right corner. You’ll learn how to disable this attribution information at a later
time, but it’s a good idea to display it so others know the source of the map informa-
tion. You also have access to a navigation tool to zoom in and out of the map.

NAVIGATING THE MAP

I’ll talk about where this map data came from and how to change it in section 2.1.2,
but first I want to point out how to navigate the map. Table 2.1 summarizes the various
navigation techniques.

Table 2.1 Standard map navigation techniques

Technique Description

Left mouse-click and drag Allows you to pan around the map

Mouse wheel Zooms in and out of the map

Zoom navigation tool API-provided zoom tool

Shift-Left mouse click and drag Zoom shortcut

Zoom navigation tool Map

Attribution

Figure 2.1 Your first mapping application

http://localhost/agswebdev/ch2/ch2_1.html
http://localhost:8000/ch2_1.html

21From data to map
Intuitively, you can use your mouse to left-click inside the map and pan it around. You
may notice that when you pan left or right, the map keeps going. This is referred to as
wrap-around, and it allows you to pan the map with a globe-like effect. It’s a neat fea-
ture if you ever need to work with the map at or near global scale.

 To zoom in and out of the map, you can use the mouse wheel. The API also pro-
vides a built-in zoom navigation tool located, by default, in the upper-left area of the
map. As advertised, clicking the plus (+) button zooms in; clicking the minus (–) but-
ton zooms out. One of the quickest zoom shortcuts, though, is to press the Shift key
while clicking and holding the left mouse button as you move the mouse cursor over
the map. You’ll notice a rectangular gray box with a red outline that represents where
you’ll zoom to. You can see this preview box in figure 2.2.

 When using the Shift-Left mouse-click shortcut to zoom to a location on the map,
you’re defining an extent, which the map uses to zoom in on. An extent in a mapping
application is composed of a pair of x/y minimum coordinates and a pair of x/y max-
imum coordinates. An extent can also be referred to as a bounding box, because it’s a
box that defines boundaries on a map. The lower-left coordinates of the bounding
box define the minimum coordinates of an extent, and the upper-right coordinates
define its maximum coordinates, as shown in figure 2.2.

 When discussing map extents, it helps to cover coordinates as well.

UNDERSTANDING MAP COORDINATES

Coordinates vary based on the spatial reference of the map, which I’ll discuss when I
explain how to use map options, but they typically appear as shown in figure 2.2. The
x axis, referred to as the longitude, runs horizontally on the globe, west to east, while

x axis (Latitude)
–180 1800 90

90
80
70
60
50
40
30
20
10

0
–10
–20
–30
–40
–50
–60
–70
–80
–90

–90

Zoom extents*
(bounding box)

x = –25
y = 55

Maximum
coordinates

x = –145
y = –5

Minimum
coordinates

*Actual coordinates of the extent not shown.

y
ax

is
 (L

on
gi

tu
de

)

Figure 2.2 Zooming with
the Shift-Left mouse click
shortcut displays the extent
coordinates.

22 CHAPTER 2 Introducing core API concepts
the y axis, referred to as the latitude, runs vertically along the globe, north to south.
Latitude at 0˚ and longitude at 0˚ is the intersection of the equator and the prime
meridian. Traversing upward along the latitude yields positive coordinates, but down-
ward yields negative coordinates. The same concept applies to the longitude: if you go
west along the longitude, you get negative coordinates, and east produces positive
coordinates.

Now let’s take another look at the JavaScript in listing 2.1 and review commonly used
options that you can pass in as parameters when instantiating a new instance of a map.

2.1.2 Specifying common map options

When you created an instance of your new map, you passed it a couple of arguments:

■ The id of the element on the page that contains the map
■ A JavaScript object with a single value of basemap: 'streets'

The JavaScript object in the second argument contains optional parameters for creat-
ing the map. These options control the way the map is displayed when it first starts up,
what type of map the user sees when it starts, where you want the map to start from,
and more. When it comes to the basemap, common options, in addition to streets,
include satellite, hybrid, and gray. As the parameter name suggests, this is a short-
cut method to add a basemap to your application. What basemap option you choose is
completely dependent on your intentions:

■ streets—Provides visible information at the street level; you can see street
names, and highways are easily identifiable.

■ satellite and hybrid—Provides aerial images; you can see cars on freeways,
the tops of buildings, and so on.

■ gray—Makes the focus of the map other data, which displays on top of the map.

You don’t need to define all the options available for the map, but you should be
aware of a handful of common options as you build your application. Table 2.2 lists
several of the options that you can use in the parameters to construct a new map in
the ArcGIS API for JavaScript. I won’t cover all the options available to pass to a map,
but I’ll discuss the few that are probably used most often, such as basemap, center,
and zoom.

Latitude and longitude terminology

Most people commonly say “x and y” to refer to latitude and longitude, but, as you
can see in figure 2.2, “x and y” refers to longitude and latitude.

Don’t fret if the terminology becomes confusing. Discerning x and y and latitude and
longitude can at times trip up seasoned professionals, even me.

23From data to map
TIP I encourage you to review the documentation at https://developers
.arcgis.com/javascript/jsapi/map.html#map1 for a full listing and explana-
tion of all the optional parameters.

The next commonly used option after basemap is the center option. This is a conve-
nient way to center your map on a specified location when the application first loads.
It’s typically used in conjunction with the zoom option to also set the default zoom
level of the map.

 When working with the center option, note that the center coordinates you pro-
vide are in longitude and latitude, respectively, even though that may not be the spa-
tial reference of your map. Spatial reference, in simplest terms, is the way a 3D globe of
the earth is represented on a 2D map. Latitude and longitude are the most common
representations of this transformation. The following code specifies the basemap,
center, and zoom options for the map:

require(['esri/map'], function(Map) {
 var map = new Map('map', {

Table 2.2 Common map options

Option Description

autoResize When set to false, the map doesn’t resize when you resize the browser. I’ve yet to
find a need to set this value to false, but you never know.

basemap Specifies the type of basemap the map uses by default. The options are hybrid,
satellite, topo, gray, oceans, and national-geographic.

center The longitude and latitude coordinates to center the map when it first starts.

LOD
(Levels of Detail)

You can specify custom LODs for your map. A level of detail is a combination of the
following:

■ Level—A numeric 2number that identifies the LOD
■ Scale—For example, 1 inch equals 1 meter
■ Resolution—The accuracy to which the map is displayed

For example, suppose a basemap service has 20 LODs, including the whole world.
You can define custom LODs using the scale and resolution of the map service to
whittle that down to 10 LODs.

logo When set to true, displays the Esri logo on your map.

nav When set to true, displays pan arrow buttons along the edges of the map to pan in
the direction of the arrow. The usefulness of this option depends on the application’s
design.

scale Sets the initial scale of the map when it first starts up. To focus on particular areas
of the map, combine with the center option.

slider When set to false, the map doesn’t display navigation tools. Other options are
available to define the orientation and position of the slider navigation tools.

zoom Sets the initial zoom level of the map when it first starts up. The zoom level is equal
to the level value specified in an LOD.

https://developers.arcgis.com/javascript/jsapi/map.html#map1
https://developers.arcgis.com/javascript/jsapi/map.html#map1

24 CHAPTER 2 Introducing core API concepts
 basemap: 'streets',
 center: [-118.2095, 34.0866],
 zoom: 10
 });
});

The map that results from these parame-
ters is shown in figure 2.3.

 In figure 2.3, the map centers itself at
the specified location and zooms in to
the tenth available zoom level. A zoom
level of 1 is the full global view of the
map in this case; the tenth level, in addi-
tion to the coordinates you provided,
zooms the map approximately to the Los
Angeles County area.

 So far, you’ve digested quite a bit of
information about what comprises a
map from the basic application you cre-
ated. Now let’s dig deeper into adding
layers and what layers to add.

2.2 Understanding layers and accessing data
Different types of data require different types of mapping layers to represent them.
This section covers the following:

■ Layer types and how they are used
■ Details on vector layers
■ How to use the QueryTask to display data

What you’ve seen so far by creating an instance of a map with the basemap option is an
example of using a tiled service. This web mapping service aligns smaller tiled images to
display a proper-looking map. This service is one type of layer you can use in your
applications. A layer is a representation of geographic data displayed in your map. A
simple depiction of the way layers are displayed in a map is shown in figure 2.4.

First value in array is longitude;
second is latitude

Figure 2.3 Result of providing additional
parameters for a new map

Different layers that
make up a map

Figure 2.4 Depiction of map layers

25Understanding layers and accessing data
 The ArcGIS API for JavaScript provides various layer modules, some designed for
specific purposes, such as KML (Keyhole Markup Language), XML-based markup
(popular with Google Maps), and WMS (Web Map Services), but at the end of the day,
the only difference among these services is whether the data they provide is raster- or
vector-based. Raster data can be in either PNG or JPG formats; vector uses SVG (Scal-
able Vector Graphics), VML (Vector Markup Language), or canvas.

NOTE Technically, canvas is raster-based, so it doesn’t draw vector graphics,
but instead draws bitmap data. When used to render map graphics in the
browser, it would be difficult to tell the difference.

2.2.1 Layer types for raster-based data

If the map you see in the web browser is a raster-based image file, it was either created
ahead of time on the server or generated on an as-needed basis.

 Raster data that was created ahead of time is referred to as cached data, because it’s
already prepared and delivered by the server in small chunks called tiles. Data that
doesn’t change often, such as streets, parcels, and aerial imagery, is cached ahead of
time on the server and updated only as needed.

 Raster data that’s generated on an as-needed basis is called dynamic, because the
image files are created on the fly. Data that does change often is provided as dynamic
data so that users always have the latest version of the data visible to them.

 When to use cached or dynamic data is a decision beyond the scope of this book,
but it’s still important to note what kind of map service you’re working with.

 Cached data is served as an instance of an ArcGISTiledMapServiceLayer inside
the ArcGIS API for JavaScript. That’s quite the mouthful, but at least it’s descriptive. To
see a sample of what these tiles look like, let’s return to your bare-bones application
and use the browser debugging tools in Google Chrome:

1 Press Ctrl-Shift-I (or CMD-Shift-I in Mac OS X) and then click the Network tab to
see a list of all network activity in the browser.

2 Scroll the results until you see a listing of files from services.arcgisonline.com.
3 Click the image icon. You can now see a preview of an image file that was down-

loaded from the server.

This is only one of a few image files that were downloaded, and when tiled together,
they display the base data in your map, as shown in figure 2.5.

NOTE You’ll become more familiar with the Chrome DevTools as you work
more with the ArcGIS API for JavaScript, especially in chapters 4 and 5. The
DevTools let you view the raw HTML of the page to inspect individual HTML
elements, monitor network traffic in the browser, and view what the Java-
Script code is doing in real time. To learn more about Chrome DevTools, visit
Code School at http://discover-devtools.codeschool.com.

http://discover-devtools.codeschool.com

26 CHAPTER 2 Introducing core API concepts
Map tiles are typically 256 x 256 pixel images and are organized on the server in a spe-
cific structure:

http://<service-url>/tile/<level>/<row>/<column>

This tiling scheme is determined by the resolution of the data and the number of rows
and columns that are zero-based. This means that the origin tile is located at row 0, col-
umn 0, and then you traverse right to get the next columns and down to the next rows.

NOTE You can get more details about the ArcGIS Server map cache tiling
scheme in the following blog posts from Esri: http://blogs.esri.com/esri/
arcgis/2007/11/07/deconstructing-the-map-cache-tiling-scheme-part-i/ and

Single
image tile

Path to
image tile

Figure 2.5 Network tools showing downloaded map images

http://blogs.esri.com/esri/arcgis/2007/11/07/deconstructing-the-map-cache-tiling-scheme-part-i/
http://blogs.esri.com/esri/arcgis/2007/11/07/deconstructing-the-map-cache-tiling-scheme-part-i/

27Understanding layers and accessing data
http://blogs.esri.com/esri/arcgis/2008/01/31/deconstructing-the-map-
cache-tiling-scheme-part-ii-working-with-map-caches-programmatically/.

The current extent of the map displayed in the browser determines which tiles are
downloaded. The ArcGIS API for JavaScript sends the map’s current extent to the
server, and the server determines which map tiles are needed to display the map cor-
rectly in the browser. Because individual map tiles are small, they’re cached by the
browser. If you pan the map to a new location and then pan back to the previous loca-
tion, these tiles don’t need to be downloaded from the server again, and because the
browser caches these tiles, they load quickly.

 The difference between tiled and dynamic raster data is that dynamic raster data
isn’t served in tiles. The ArcGIS API for JavaScript sends a request for the current
extent of the map displayed to ArcGIS Server, and ArcGIS Server returns a single
image of the map that matches that extent. These dynamic images are served as an
instance of the ArcGISDynamicMapServiceLayer in the API. This method isn’t as effi-
cient, but it still serves a purpose in developing mapping applications. One such pur-
pose is to easily display sets of data that change on a regular basis, so it wouldn’t be
efficient to cache all this data ahead of time. I won’t use this layer type in this book,
but it’s something you should be aware of.

2.2.2 Layer types for vector-based data

Vector data as it’s used in a web map is a graphical representation of geographic data
in the browser. Instead of displaying images of your mapping data, vector data is dis-
played as graphics using x and y coordinates. Most modern browsers can display vec-
tor data using SVG, which is a standard method of displaying scalable graphics on the
web. Older versions of Internet Explorer use VML, which is no longer supported in
Internet Explorer 10 and above. Graphics also can be drawn using the canvas ele-
ment in HTML5. VML is similar to SVG, but SVG is the current web standard for display-
ing vector graphics in the browser.

 Browser compatibility issues plague web map development as much as any other
form of web development. Luckily, the ArcGIS API for JavaScript is designed to handle
these types of browser compatibility problems and use the correct vector markup as
needed.

HTML5 graphics

HTML5 is the latest revision of the HTML standard. Most modern browsers support
it—or at least support most HTML5 features. I’ll cover some of the capabilities of
HTML5 in chapter 4, but when it comes to drawing graphics on a map in the ArcGIS
API for JavaScript, a couple of HTML5 features are important to note. The first is SVG
(Scalable Vector Graphics), which is part of HTML5 but is also a specification of its
own. The HTML5 canvas element is used to draw graphics, but it doesn’t draw vector
graphics. Instead, canvas draws in bitmap data, which is based on pixels.

http://blogs.esri.com/esri/arcgis/2008/01/31/deconstructing-the-map-cache-tiling-scheme-part-ii-working-with-map-caches-programmatically/
http://blogs.esri.com/esri/arcgis/2008/01/31/deconstructing-the-map-cache-tiling-scheme-part-ii-working-with-map-caches-programmatically/

28 CHAPTER 2 Introducing core API concepts

C
Si
to
on
The core layer that displays vector data in the ArcGIS JavaScript API is the Graphics-
Layer, which is a container for various locations on the map. Locations are repre-
sented by points, lines, or polygons. Let’s look at an example to see how this works.

2.2.3 Getting to know the GraphicsLayer

Suppose you want to display a Graphic on the map at the location where the mouse was
clicked. You first identify the location on the map where the mouse was clicked, and
then create a Graphic to display on the map. The Graphic is a single geographic item
that represents something on the map—in this case, a single coordinate on the map.

 Listing 2.2 shows how to use the map.on() method to add the Graphic to the map
at the location where the user clicked.

NOTE The code for this section is available in the chapter2 folder of the source
code included with the book. See chapter2/2.2.html and chapter2/2.2.js.

map.on('click', function(e) {
 var mapPoint = e.mapPoint,
 symbolSize = 24,
 lineColor = new Color([255, 0, 0]),
 fillColor = new Color([255, 255, 0, 0.75]),
 line = new SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID,
 lineColor, 3),
 sms = new SimpleMarkerSymbol(SimpleMarkerSymbol.STYLE_CIRCLE,
 symbolSize, line, fillColor),
 graphic = new Graphic(mapPoint, sms);
 map.graphics.add(graphic);
 });

Ignore that error

You may notice when running the code samples at home and viewing the console win-
dow in the debugging tools of your favorite browser that the following error pops up
in the console:

XMLHttpRequest cannot load
http://services.arcgisonline.com/ArcGIS/rest/info?f=json. Origin
http://localhost is not allowed by Access-Control-Allow-Origin.

This error can be safely ignored in your browser. This error means that the web services
are coming from a web server that isn’t CORS-enabled. CORS means cross-origin
resource sharing. I won’t cover CORS in detail, but in a nutshell, it’s a browser protocol
that allows servers to make requests to each other from different domains. It prevents
the browser from executing JavaScript on mydomain.com from yourdomain.com,
unless yourdomain.com allows it. Techniques are available to work around this
from the source server, but for now, if you see this error, remember that it can be
safely ignored.

Listing 2.2 Adding a Graphic to the map

Specifies size of Graphic
Specifies
outline color Specifies fill color

Creates outline

reates
mpleMarkerSymbol
 represent graphic
 map

 Creates new Graphic

Adds Graphic to
GraphicsLayer in map

http://services.arcgisonline.com/ArcGIS/rest/info?f=json
http://localhost

29Understanding layers and accessing data
Let’s take a closer look at the map.on() method.

IDENTIFYING MOUSE-CLICK LOCATION

You add map.on() after the code that defines the map variable and creates the map:

...
var map = new Map('map', {
 ...});
map.on('click', function(e) {
...

The map instance has the ability to listen for various events, such as when the mouse is
clicked on the map. The map.on() method executes a function when the designated
event happens. In this case, you’re waiting for a click event. As shown in listing 2.2,
when a mouse-click event occurs, the ArcGIS API for JavaScript attaches a mapPoint to
the event, and the mapPoint represents the location on the map that was clicked.

CREATING THE GRAPHIC

You designate a size in pixels for your Graphic, and specify what the Graphic looks
like using other modules from the ArcGIS API for JavaScript. For example, you use the
dojo/_base/Color module, which uses RGB (Red, Green, Blue) values in an array to
assign a color. The fourth value in the RGB array is the transparency level for the color.
You don’t want the outline to have any transparency, so omit it from the array. You
want the fill color to have a 75% transparency, so set that to a value of 0.75.

 When you have the outline ready using an instance of the SimpleLineSymbol, you
then create a SimpleMarkerSymbol using the SimpleLineSymbol and the Color
instance you created. Next, create a new Graphic using the MapPoint geometry and
the SimpleMarkerSymbol. Geometry can be a point, a line, or a polygon, which are
vector geometries, and in listing 2.2 you’re using a point.

 The fully functional Graphic doesn’t do much until you add it to the Graphics-
Layer. The map instance has a default GraphicsLayer in the map.graphics property.
This property is provided so developers can easily add graphics to the map without
concerning themselves with adding the GraphicsLayer manually. The resulting
Graphic is shown in figure 2.6.

 No matter what type of Graphic you plan on adding to a map, complete the follow-
ing steps:

1 Capture geometry (a point, a line, or a polygon).
2 Define symbology (the way it looks on the map).
3 Create a new Graphic.
4 Add the Graphic to the map.

These steps may seem involved at first, but, technically, what you’ve done in this exam-
ple is a prototype for a data-collection application, which is the type of application
you’ll create later in the book.

Creates instance of new map

Listens for click event
on map (see listing 2.2)

30 CHAPTER 2 Introducing core API concepts
In previous versions of the ArcGIS API for JavaScript, the GraphicsLayer was the only
way to add graphics to the map. Typical workflow involved running a query on a map
service (I’ll cover this section 2.2.4) and adding the results to a GraphicsLayer. You
can still follow this workflow to display a Graphic for the user’s current location or the
result of an address search, for example. Typically, you use a GraphicsLayer to display
dynamic or temporary data.

 At one point in the development of the ArcGIS JavaScript API, I was provided with
a more robust method of working with existing data using the FeatureLayer, which
I’ll cover in greater depth in section 2.3.

2.2.4 Creating graphics with the QueryTask

So far I’ve covered how to add graphics to the map by clicking locations on the map.
This approach is useful in many workflows, but how would you add graphics to a map
you’re not manually drawing? For example, an external map service may provide
maps of river networks, point sources of emissions, or areas in danger of seasonal fires.
In this scenario, you can add Graphic items to the map with the QueryTask module,
which queries data in a map service. This allows you to ask the map data questions,
and then you can do something with the results you’re given—for example, display
the answers on a map.

 QueryTask uses a Query object to define the criteria to perform this task. The
Query object can have a where statement, which describes criteria for the query, such
as NAME = Bob, or it can define a geometry to perform the query, as well as many other
options. A query is a way of extracting data from a map service based on a defined set
of criteria, such as these examples:

■ Find all states that begin with “New.”
■ Find all the major highways in a particular city.

To demonstrate using QueryTask, let’s embed several queries in a drop-down menu.

Map graphics

Figure 2.6 Adding Graphic
features to the map

31Understanding layers and accessing data
CREATING THE DROP-DOWN MENU

Let’s expand on what you’ve done so far and include a drop-down menu in the HTML
page (before the div element that contains the map). The following code uses a
select element with option elements inside it to provide the drop-down menu:

<body>
<select id="population" name="population">
 <option value="" selected="selected">Select Population</option>
 <option value="2500">2,500</option>
 <option value="5000">5,000</option>
 <option value="7500">7,500</option>
</select>
<div id="map"></div>
</body>

When a drop-down item is selected, you use the QueryTask to retrieve the locations of
census tracts that correspond to the selected population number (greater than 5,000
people, for example). So now you’re adding census tract data to the map.

DEFINITION According to the U.S. Census Bureau, census tracts are “small,
relatively permanent statistical subdivisions of a county.”1

To make the census data easier to work with on the map, you’ll work with a point layer
that represents the centers of each census tract in Los Angeles County. This particular
layer includes labor statistics that show the population and percentage of people
working in each census tract. You can see a sample of what this data looks like in fig-
ure 2.7. This is similar to what the data will look like in your application.

1 “American Community Survey,” U.S. Census Bureau, www.census.gov/acs/www/data_documentation/
custom_tabulation_request_form/geo_def.php.

Census tract points in
Los Angeles County

Figure 2.7 Census tracts in Los
Angeles County represented
as points

www.census.gov/acs/www/data_documentation/custom_tabulation_request_form/geo_def.php
www.census.gov/acs/www/data_documentation/custom_tabulation_request_form/geo_def.php

32 CHAPTER 2 Introducing core API concepts
DISPLAYING THE DROP-DOWN MENU RESULTS ON A MAP

You’ll need the following modules to use the drop-down menu to filter your data:

require([
 'dojo/dom',
 'dojo/_base/array',
 'dojo/_base/Color',
 'esri/map',
 'esri/tasks/query',
 'esri/tasks/QueryTask',
 'esri/symbols/SimpleMarkerSymbol'
], function(
 query, array, Color,
 Map, Query, QueryTask, SimpleMarkerSymbol
) {
...

I’ve already discussed the QueryTask and the Query modules. The SimpleMarker-
Symbol module defines the way the census tract points, commonly referred to as mark-
ers, appear on the map. The SimpleMarkerSymbol also needs the dojo/_base/Color
module to define the color of the census tract points. For simplicity, load a helper
module called dojo/_base/array, which has many utility functions for working with
arrays. Table 2.3 summarizes the modules.

With these modules loaded, you can add this functionality to your application as
shown in listing 2.3. You’ll complete the following steps:

■ Instantiate your map and create a SimpleMarkerSymbol to define the appear-
ance of the results of your QueryTask.

■ Create two functions. One is used for the successful completion of a query, and
the other is used, in the event of an error, to display the error message in the
debug console of the browser.

■ When a population number is selected from the drop-down menu, create a new
QueryTask pointing to the URL of a map service, which in this case is a service
that contains the census tracts as points.

Table 2.3 Dojo and Esri modules needed for the drop-down filter

Module name Description

dojo/_base/array Helper module to work with arrays

dojo/_base/Color Assigns colors to Graphic

dojo/dom Helper module to search elements in HTML

esri/map Creates an instance of a map

esri/tasks/query Defines parameters to perform searches

esri/symbols/SimpleMarkerSymbol Defines how a Graphic looks on the map

esri/tasks/QueryTask Queries a map service

33Understanding layers and accessing data
■ Create a new Query and define a where statement that searches for census tracts
with a population greater than the population currently selected.

■ Using the Query, set the returnGeometry option to true, which makes sure that
the x and y coordinates of the census tract are returned with the results.

■ Use the QueryTask to run an execute command (using the Query you defined)
and pass along your success and error-handling functions.

When the QueryTask completes, the result you get is referred to as a FeatureSet,
which is a collection of geographic data. It could contain a single point or 1,000
points; it’s only a container for this collection of data. A FeatureSet has a few proper-
ties, including the following:

■ geometryType—In this case, it’s a point, but it could be a polygon or line in
other situations.

■ features—Contains Graphic features that represent the results of your Query.

The graphics don’t have a symbology assigned to them when you first get them, so it’s
up to you to define it, which is why you made the SimpleMarkerSymbol previously in
the application. You can use the array module you loaded to loop over the features,
set the symbol of each Graphic to the defined symbology, and then add the Graphic
to the map’s default GraphicsLayer, as shown in the following listing.

NOTE The source code for this section is available in the chapter2 folder in
the files chapter2/2.3.html and chapter2/2.3.js.

require([
 'dojo/dom',
 'dojo/on',
 'dojo/_base/array',
 'dojo/_base/Color',
 'esri/map',
 'esri/tasks/query',
 'esri/tasks/QueryTask',
 'esri/symbols/SimpleMarkerSymbol'
], function(
 dom, on, array, Color,
 Map, Query, QueryTask, SimpleMarkerSymbol
) {
 var map = new Map('map', {
 basemap: 'streets',
 autoResize: true,
 center: [-118.2095, 34.0866],
 zoom: 10
 }),
 url = 'http://services.arcgis.com/V6ZHFr6zdgNZuVG0/arcgis/rest/services/'

+
'la_county_labor_centroid/FeatureServer/0',
 markerSymbol = new SimpleMarkerSymbol(

Listing 2.3 Add graphics with a QueryTask

Specifies service to use
www.allitebooks.com

http://www.allitebooks.org

34 CHAPTER 2 Introducing core API concepts
 SimpleMarkerSymbol.STYLE_SQUARE, 10,
 null, new Color([50,50,255])
);

 function onQuerySuccess(featureSet) {
 map.graphics.clear();
 array.forEach(featureSet.features, function(feature) {
 feature.setSymbol(markerSymbol);
 map.graphics.add(feature);
 });
 }
 function onError(error) {
 console.error('An error ocurred in the query: ', error);
 }

 on(dom.byId('population'), 'change', function(e) {
 var population = e.target.value;
 if (population.length > 0) {
 var queryTask = new QueryTask(url);
 var query = new Query();
 query.where = 'TOTAL_POP > ' + population;
 query.returnGeometry = true;
 queryTask.execute(query).then(onQuerySuccess, onError);
 }
 });
});

The result of this application can be seen in figure 2.8.
 This small sample covers quite a bit of ground. You’re building queries to retrieve

data from a map service, you’re defining the way those results are going to look, and

Manually defines symbology to
describe what results look like

Sets symbology of how
results are displayed

Defines where statement

Executes QueryTask using Query; passes
it to functions to handle results or error

Results of QueryTask displayed
as graphics on the map

Figure 2.8 Displaying results of a QueryTask as graphics on the map

35Working with the FeatureLayer
you’re using Dojo utility modules to accomplish it all. This represents a pattern you’ll
see often in developing your web mapping applications:

■ Perform a query
■ Handle query results
■ Display results on a map

The QueryTask is a commonly used tool in your ArcGIS API for JavaScript toolbox.
Before I cover the next powerful tool, the FeatureLayer, review table 2.4, which sum-
marizes the key terms I covered in this section.

The FeatureLayer in the ArcGIS API for JavaScript is a combination of a Graphics-
Layer and a QueryTask.

2.3 Working with the FeatureLayer
The FeatureLayer was added to the API to provide a more robust method of working
with vector data. It provides various methods to display vector data on the map in an
efficient manner. You’d use a GraphicsLayer to display fire hydrants on a street, but
you’d use a FeatureLayer to add new fire hydrants to the map.

 The FeatureLayer is a robust module in the API because it acts as a Graphics-
Layer for a layer in a map service and also provides editing capabilities, which I’ll
cover in chapters 4 and 5. Because it also includes a built-in QueryTask, it can be used
to select items from itself.

 For now, let’s discuss how the FeatureLayer can display data from a single layer in
a map service or a feature service. I’ll cover a feature service, which is a service that
allows you to edit data, more extensively in chapter 4. This section covers many things,
so here’s a brief overview:

■ I’ll cover some of the reasons you would use a FeatureLayer and what advan-
tages it provides to you as a developer.

Table 2.4 Key raster, vector, and GraphicsLayer terms

Term Description

FeatureSet A collection of features returned as a result from performing a query on a map
service

Graphic Used to represent vector geometries on the map

GraphicsLayer Layer in the map that contains various Graphic items to display data on the map

Map tiles 256 x 256 image tiles used to represent static map data

QueryTask Module provided in the JavaScript API to perform queries on map services

Raster data Nonvector data represented as an image in the browser

Symbology How a Graphic is displayed on the map, such as by color, size, and opacity

Vector data Geometries such as points, lines, or polygons displayed on the map

36 CHAPTER 2 Introducing core API concepts
■ Then I’ll discuss how to create a FeatureLayer and the various options that are
available to you.

■ I’ll also cover what modes are available for a FeatureLayer, as well as how to
create a DefinitionExpression.

■ I’ll wrap up the discussion of the FeatureLayer by looking at how to perform a
spatial query in which you select items in the FeatureLayer using a geometry
that you define.

2.3.1 Advantages of a FeatureLayer

When you first start working with a FeatureLayer, you may wonder why you shouldn’t
use the GraphicsLayer to display data on the map. A FeatureLayer is a combination
of a GraphicsLayer and a QueryTask, so what makes it so special? The FeatureLayer
has optimizations built into it that make displaying large datasets faster and more effi-
cient than trying to manage it on your own with a GraphicsLayer.

PERFORMING GENERALIZATIONS

A FeatureLayer is designed to request only the data that matters. Browser real estate
is measured in pixels. The resolution of a map can be measured by specifying that
“one pixel equals [a certain distance on the map].” Depending on the zoom level, this
distance could be 100 miles or 100 feet. The FeatureLayer sends this information to
the map server. The server then determines whether more than one vertex of a line or
polygon is displayed in a pixel. If so, it returns a single vertex instead of the dozen or
so vertices that might be there. This process is called generalization. The browser would
be unable to draw the Graphic features at any finer detail anyway, so for larger data-
sets, this makes quite a difference in the download size of the data returned from the
server. It can make the difference between returning a 2-megabyte file and a 200-
kilobyte file, which you’d definitely notice (see figure 2.9).

Single pixel

Original
vertex

FeatureLayer

Original
line

Discarded
vertex

Generalized
line

Figure 2.9 How a FeatureLayer might be generalized to optimize the data

37Working with the FeatureLayer
In figure 2.9 you can see that if a single pixel contains multiple vertices, the server
returns only one vertex per pixel.

USING VECTOR TILES

Another great feature you
get with FeatureLayers is
the use of vector tiling. I dis-
cussed image map tiles previ-
ously (see section 2.2), and
vector tiles work in a similar
manner. By default, when
data is requested to be used
in a FeatureLayer, it’s
requested in chunks. These
chunks are defined by a vir-
tual grid of the current map
extents. So instead of making
a single request for all the
data currently in the map
extents, it makes multiple requests for smaller sections of the map to display all the
features. You can see an example of how this might look in figure 2.10.

 Vector tiling is the default behavior of a FeatureLayer and is described as “on-
demand” mode. A few modes are available for a FeatureLayer, and I’ll discuss those
in section 2.3.3, but with the on-demand mode, the data is requested only as needed.

 Another benefit of vector tiling is that the data is cached in the browser, so when
panning the map around, if the web application requests a vector tile from the server
that was previously provided, the server tells the application to get the data from the
cache. This optimization allows the FeatureLayer to take advantage of the browser
cache to increase performance of the web application.

Changing the default generalization settings

The generalization setting in a FeatureLayer is automatic, but you can disable it or
set it manually:

To disable generalization—Set the autoGeneralization option to false in the con-
structor for a FeatureLayer.

To manually set generalization—Specify an offset using setMaxAllowableOffset with
the FeatureLayer.

I haven’t run across a case in which I’ve needed to do this; however, if you’re working
on a large dataset that still loads slowly with the default options, you can rest easy
knowing that these options can be changed.

Vector tile
(single request)

Figure 2.10 How vector tiles might be requested for a map

38 CHAPTER 2 Introducing core API concepts
 Now that I’ve talked about the advantages of a FeatureLayer, let’s move on to cre-
ating a map with it.

2.3.2 Creating a FeatureLayer

To add a FeatureLayer to the map, create a new instance of a FeatureLayer with a
source URL and add it to the map:

var featureLayer = new FeatureLayer(
 'http://services.arcgis.com/' +
 'V6ZHFr6zdgNZuVG0/arcgis/rest/services' +
 '/la_county_labor_centroid/FeatureServer/0'
);
map.addLayer(featureLayer);

With a couple of lines of code, you can load this entire layer of graphics into your
map, as shown in figure 2.11.

 What you see in figure 2.11 are numerous points displayed as Graphic features on
the map. By default, the FeatureLayer renders items on the map as they were
designed when the source data was defined; it uses the same symbols used in the desk-
top software that created the data. In this case, instead of being an SVG element on
the map, it’s displaying an image for each point on the map internally, using a
SimplePictureMarkerSymbol from the ArcGIS API for JavaScript. The Simple-
PictureMarkerSymbol allows you to use an image instead of an SVG graphic to repre-
sent a location on the map.

 If you use a debugging tool like the tools built into Google Chrome and inspect
the map element, you’ll see that the GraphicsLayer is composed of thousands of
images using Base64-encoded image data (see figure 2.12). I’ll cover Base64-encoded
image data in the next chapter.

FeatureLayer graphics

Figure 2.11 Graphics displayed in a map using a FeatureLayer

39Working with the FeatureLayer
As you can see from the number of features shown in figure 2.12, this is a large
amount of data for the map to display. Too much data can significantly impact the
performance of your application. In this case, even though this image is fairly small,
the browser still uses up memory to draw it on the screen.

2.3.3 Optimizing application performance

To manage your application’s performance, you can set different modes for the
FeatureLayer:

■ MODE_SNAPSHOT—Retrieves all data from the service and displays it on the
map. My suggestion is to use this one sparingly as it can heavily impact map per-
formance. This mode is best suited for a service that provides minimal data,
such as a jurisdictional boundary.

■ MODE_ONDEMAND—Retrieves only data from the service that’s in the current
extent of the map.

■ MODE_SELECTION—Retrieves only data from the service when the data is
selected using a query.

I won’t cover MODE_SNAPSHOT, as it downloads all the data, and you have quick access to
it. This could impact the performance of your application if it tries to download a
large amount of data. It’s best used for smaller bits of data and also prevents the appli-
cation from retrieving data from the server unnecessarily.

FeatureLayer
HTML element

Image data for
each point

Figure 2.12 Inspecting HTML to see how FeatureLayer provides data

40 CHAPTER 2 Introducing core API concepts
USING A DEFINITIONEXPRESSION

By default, the FeatureLayer uses MODE_ONDEMAND. In the case of this example, this
retrieves almost all the data in the feature service, which is why it may not perform
well. To make working with large amounts of data in the FeatureLayer more manage-
able, you’ll define a DefinitionExpression—a set of criteria you can define on the
FeatureLayer to limit the data that’s retrieved.

 This particular feature service includes population information for census tracts,
so you may want to display only locations with a population greater than 5,000 people.
You can do this by setting the DefinitionExpression on the FeatureLayer:

featureLayer.setDefinitionExpression('TOTAL_POP > 5000');

When you do this, you can see in figure 2.13 that the map displays markedly less data.
 The FeatureLayer is still in on-demand mode, but now it limits the amount of data

requested by the criteria you set in the DefinitionExpression. This combination can
greatly improve performance of your application.

 Now you’re starting to do something more interesting with your data. By providing
a DefinitionExpression, you’re asking the data questions and displaying the
response. Let’s make this application even more interactive.

USING A DYNAMIC DEFINITIONEXPRESSION

Let’s add a menu that allows users to filter the data by a specific population range. To
create the menu, add a select HTML element with options to your page (found in the
chapter 2 folder in the 2.4.html file) as you did with the GraphicsLayer previously:

<body>
 <select id="population" name="population">
 <option value="2500" selected="selected">2,500</option>
 <option value="5000">5,000</option>
 <option value="7500">7,500</option>
 </select>
 <div id="map"></div>
 </body>

FeatureLayer
graphics limited by

DefinitionExpression

Figure 2.13
FeatureLayer with
DefinitionExpression
of ‘TOTAL_POP > 5000’
applied

41Working with the FeatureLayer
Now that you’ve modified your HTML page, let’s look at the JavaScript (the 2.4.js file
of the source code) that makes everything work, as shown in the following listing.

require([
 'dojo/dom',
 'dojo/on',
 'esri/map',
 'esri/layers/FeatureLayer'
], function(dom, on, Map, FeatureLayer) {
 var map = new Map('map', {
 basemap: 'streets',
 autoResize: true,
 center: [-118.2095, 34.0866],
 zoom: 10
 });

 var featureLayer = new FeatureLayer(
 'http://services.arcgis.com/' +
 'V6ZHFr6zdgNZuVG0/arcgis/rest/services/' +
 'la_county_labor_centroid/FeatureServer/0'
);

 featureLayer.setDefinitionExpression('TOTAL_POP > 2500');

 map.addLayer(featureLayer);

 on(dom.byId('population'), 'change', function(e) {
 var population = e.target.value;
 var definitionExpression = 'TOTAL_POP > ' + population;
 featureLayer.setDefinitionExpression(definitionExpression);
 });
});

You’re now interacting with the map to update the data displayed on the map. This
example is starting to look more like a functioning application. The newly updated
application is shown in figure 2.14.

Listing 2.4 JavaScript for simple filter application

Uses dom module to select
HTML element by id

Listens for change
event on select menu

Builds new definition expression based
on newly selected value in drop-down

Dropdown to update
DefinitionExpression

Figure 2.14 Interactive
map application using a
DefinitionExpression

42 CHAPTER 2 Introducing core API concepts
Working with the DefinitionExpression in a FeatureLayer is an elegant yet power-
ful way to interact with your data. Previously I mentioned that a FeatureLayer is a
combination of a GraphicsLayer and query functionality. It’s that built-in query func-
tionality that allows you to interact with the FeatureLayer by selecting features, which
I’ll cover next.

2.3.4 Selecting items in the FeatureLayer

Another method of using the FeatureLayer is to use it in MODE_SELECTION. In
MODE_SELECTION, you don’t set a DefinitionExpression because the data that’s
retrieved from the server is retrieved using the FeatureLayer.selectFeatures()
method. This works similarly to the DefinitionExpression, in which you define a set
of criteria to filter your data, but you gain more flexibility. One of the main benefits of
using MODE_SELECTION is that you can filter the data by a spatial geometry, such as a
polygon.

 In MODE_SELECTION, the FeatureLayer doesn’t display any data when it first loads.
It’s up to you to define the criteria to do the selection. In this example we’ll draw a
polygon on the map and use that polygon to select items in the FeatureLayer. The
HTML page looks similar to the previous example except that you click a button on
the page to activate a drawing tool and begin drawing on the map:

...
<body>
 <input name="drawPolygon" type="button" id="drawPolygon" value="Draw"/>
 <div id="map"></div>
</body>
...

Your JavaScript (see listing 2.5) introduces a new module in the ArcGIS API for Java-
Script, the Draw toolbar, which allows you to draw graphics on your map. The result of
a completed drawing is an event that contains the geometry that was drawn on the
map. The geometry could be a point, line, or polygon, but the key is that you use this
geometry to perform a spatial query on your FeatureLayer. A spatial query is a way to
filter data by spatial means, such as a polygon.

require([
 'dojo/dom',
 'dojo/on',
 'esri/map',
 'esri/layers/FeatureLayer',
 'esri/toolbars/draw',
 'esri/tasks/query'
], function(dom, on, Map, FeatureLayer, Draw, Query) {
 var map = new Map('map', {
 basemap: 'streets',

Listing 2.5 JavaScript to perform a FeatureLayer selection

43Working with the FeatureLayer
 autoResize: true,
 center: [-118.2095, 34.0866],
 zoom: 10
 }),
 featureLayer = new FeatureLayer(
 'http://services.arcgis.com/' +
 'V6ZHFr6zdgNZuVG0/arcgis/rest/services/' +
 'la_county_labor_centroid/FeatureServer/0',{
 mode: FeatureLayer.MODE_SELECTION
 }
),
 drawToolbar = new Draw(map);

 drawToolbar.on('draw-end', function(e){
 drawToolbar.deactivate();
 var query = new Query();
 query.geometry = e.geometry;
 featureLayer.selectFeatures(query);
 });
 map.addLayer(featureLayer);

 on(dom.byId('drawPolygon'), 'click', function() {
 drawToolbar.activate(Draw.POLYGON);
 });

 });

The result of this code is shown in figure 2.15.
 As shown in figure 2.15, when you query a FeatureLayer using the geometry from

the DrawToolbar, it displays only the features that are inside that geometry, which
gives this example a lot of power.

Instantiates Draw toolbar by
providing instance of map

Listens for Draw toolbar to
finish drawing and returns
an event with geometrySelects features in

FeatureLayer using
drawn geometry

Figure 2.15 Drawing a polygon (at left) to select features in a FeatureLayer (at right)

44 CHAPTER 2 Introducing core API concepts
Table 2.5 summarizes the FeatureLayer-related terms that I covered in this section.

The ability to filter features in a map based on geometry is one of the most common
use cases in developing mapping applications. Imagine that a researcher wants to
restrict an analysis to a particular area or that an engineer wants to extract only man-
holes in a particular service area. Filtering spatial data is a cornerstone of GIS analysis
and a feature that proves useful in a web application.

2.4 Summary
■ The ArcGIS API for JavaScript is an extensive collection of modules that provide

a full suite of tools to build powerful mapping applications. It would be impossi-
ble to cover every module in depth without this book becoming a reference
manual, but the goal here is to provide information on how to get the pieces to
fit together. The topics covered in this chapter provide a solid foundation in
understanding how a map is displayed in the browser and the types of data that
can be used.

■ I covered tiled services and vector graphics in the map, but you could display
numerous other types of data, such as a WMSLayer (Web Map Services), a KML-
Layer (XML-based format popular with Google Maps), or a WebTiledLayer
(generic layer to load nonArcGIS Server tiles), which I didn’t cover.

■ You learned how to use a GraphicsLayer to display data on a map and how to
use a FeatureLayer to not only display your data but also perform queries on
that data.

In chapter 3 you’ll become more familiar with how to interact with the ArcGIS Server
through the ArcGIS Server REST API.

Table 2.5 Key FeatureLayer terms

Term Description

DefinitionExpression A set of criteria you can set on a layer to limit the data shown on the map

FeatureLayer Optimized layer that works with vector data on the map

Generalization A method of optimizing vector data to reduce the amount of data needed
to display on the map

Modes Various modes that you can set on a FeatureLayer to determine how it’s
used in the map

Vector tiles An optimized method of requesting vector data as a virtual grid and tak-
ing advantage of the browser cache

Working with the
REST API
Chapter 2 covered examples of building simple mapping applications by using the
ArcGIS API for JavaScript. These applications may not have been difficult, but they
introduced core functions of the JavaScript API. One of the cool things about the
API is that, like many other JavaScript libraries, it abstracts away some of the nitty-
gritty work being done behind the curtain. Where does all that fancy mapping data
come from? By looking at how the JavaScript API interacts with ArcGIS Server, you’ll
have a better grasp of what it might take to build your own custom components
that may not be provided in the ArcGIS API for JavaScript.

 Various components are at play when working with the ArcGIS API for Java-
Script, such as how you acquire the data that composes a map. The other key com-
ponent is the ArcGIS Server REST API. REST stands for Representational State Transfer,

This chapter covers
■ Understanding the basics of the ArcGIS Server

REST API
■ Building custom widgets by using the REST API
■ Using the Dojo loader
■ Performing analysis with the geometry service
45

46 CHAPTER 3 Working with the REST API
which is a method of communication over the web that uses what is typically called an
endpoint. An endpoint is a URL used as a reference to get data from ArcGIS Server. An
endpoint could look like http://myservername/arcgis/rest/services/myservice?f
=json. In this URL example, you’d be asking the REST API to provide information
about the map service in JavaScript Object Notation (JSON) format, which I discuss
later in this chapter.

 To get a better understanding of these components, consider an analogy of having
a conversation with a deaf person through an interpreter. My sister is deaf and uses a
service that enables her to make a video call to an interpreter through her television,
using a webcam that looks like a bright, red, all-seeing eye. The interpreter routes her
call to the intended recipient and relays the conversation by interpreting what my sis-
ter is saying in sign language to the person on the other end of the line. This method
of communication works pretty well for all parties involved. Now, maybe you have sign
language experience and could do much of the interpretation work yourself but
aren’t as efficient at sign language as the professional interpreter. You could get the
job done, but not as efficiently. You could think of the ArcGIS Server software as the
deaf person; in this case, the information being communicated is GIS data. The Arc-
GIS Server REST API is analogous to sign language, being a specific form of communi-
cation provided by a URL endpoint. The ArcGIS API for JavaScript would then be the
interpreter, relaying the information to us in a more efficient manner than if we tried
to do it ourselves. This relationship is shown in figure 3.1.

 Figure 3.1 shows the source for all the fancy mapping data that ends up in your
applications. To expose this data to a web browser, ArcGIS Server can view the details
of the data and relay this data via the REST API in a format that’s easily digestible to
the outside world. This data is communicated by a URL endpoint. The ArcGIS API for
JavaScript is designed to take this structured information and allow us to work with it
more easily than if we tried to do it on our own.

 Although the ArcGIS API for JavaScript simplifies the process of working with GIS
data, sometimes you’ll need to work directly with the ArcGIS Server REST API to per-
form a task that isn’t readily available in the API for JavaScript. In this chapter, you’re
going to use the ArcGIS REST API to build a custom widget, take a closer look at how

REST APIArcGIS ServerGIS
data

ArcGIS API for
JavaScript

Sign languageDeaf person

Professional
sign-language

interpreter

REST endpoint URL
http://myservername/arcgis/rest/services/myservice?f=json

Information to
communicate

Figure 3.1 Comparing ArcGIS components to sign-language interpretation

http://myservername/arcgis/rest/services/myservice?f=json
http://myservername/arcgis/rest/services/myservice?f=json

47Introducing the ArcGIS Server REST API
to use the Dojo loader, and use a neat utility of ArcGIS Server to perform geometric
analyses.

3.1 Introducing the ArcGIS Server REST API
So far you’ve built examples of mapping applications by using the ArcGIS API for
JavaScript. The purpose of these examples was to whet your appetite (or wet your feet)
with the capabilities of the API. The API is like a giant toolbox at your disposal. It not
only displays your geographic information on a map but also allows you to ask the
map questions about that information. But what questions do you ask? What’s the
population in this area? How large is the area? This information has to come from
somewhere, and until now, you haven’t explored this part of the process in developing
an application. The key is to become at least somewhat familiar with the ArcGIS Server
REST API so you understand how to use the data in the services you’ll work with. In
doing so, you’ll explore how features of the ArcGIS API for JavaScript work and how to
customize these capabilities.

 This section covers the following:
■ How the ArcGIS REST API relates to the ArcGIS API for JavaScript
■ Understanding how to read an ArcGIS Server page
■ ArcGIS REST API legend endpoint and retrieving data

3.1.1 Exploring how the API works

The ArcGIS Server REST API is the foundation for the ArcGIS API for JavaScript. The
technical details of how REST works aren’t important for this book, but you should
know that, as shown in our example, the REST API is similar to a deaf person commu-
nicating in sign language to people who want access to the information. This scenario
is how a web server communicates with a browser to deliver that information. In the
case of ArcGIS Server, it’s how you can access spatial and attribute information from
the server. Figure 3.2 illustrates a simplified model of the ArcGIS web stack and what

ArcGIS Server
and REST API

GIS
data

ArcGIS Flex API

ArcGIS JavaScript API

ArcGIS Silverlight API

Happy user

Deaf person
communicating in

sign language

Professional
sign-language

interpreter

Could attempt to do
interpreting yourself
(but let a pro handle

it when possible).

Information to
communicate

Figure 3.2 Relationship
of ArcGIS Server
components to the user

48 CHAPTER 3 Working with the REST API
functionality is available to you as a developer when communicating with ArcGIS
Server. You can be the happy user who is receiving nicely and professionally translated
data. Hopefully by now you realize that this book’s focus is the ArcGIS API for Java-
Script and not the other available APIs, such as Flex or Silverlight, but I’ll remind you
anyway to keep you on your toes.

 The takeaway from figure 3.2 is that these web APIs are speaking the same lan-
guage to ArcGIS Server via the REST API. So if you ever decide to undertake one of
these other APIs in a future project, the basics are the same; you’re just working in a
different programming language and development environment.

 Having a common base to work from with the REST API can be advantageous to
developers because you’ll know what to expect when working in any API. The work-
flow you choose depends on the tools you have available, whether the API is JavaScript
or Silverlight.

In theory, you could build your own JavaScript API to interact with the REST API and
you’d get the same information, but only after more work on your part. But that
doesn’t mean it isn’t useful to get a better understanding of how to work directly with
ArcGIS Server. When you’re building your application, you’ll need a basic understand-
ing of the data you’re working with. When working with ArcGIS Server, you can view
details about the data directly in nicely formatted HTML pages. This same data is avail-
able in JSON used by the JavaScript API. JSON is a way of transferring data in web appli-
cations. It boils down to a set of key/value pairs, as shown in the following example:

{
 "name":"Chuck Finley",
 "occupations":["Secret Agent","Entrepreneur","Super Hero"]
}

The HTML pages provided with ArcGIS Server services are useful when you want to
view details about the information being supplied by the ArcGIS Server REST API. You
can view the documentation for the ArcGIS Server REST API at http://resources.arcgis
.com/en/help/rest/apiref/index.html.

Quick REST rundown

REST uses four basic operations—create, read, update, and delete—referred to as
CRUD functions. These functions operate on a few Hypertext Transfer Protocol (HTTP)
methods; typically POST, GET, PUT, and DELETE. GET is what you could call a safe meth-
od, because it’s used only to retrieve information. The other methods potentially make
a change. POST usually inserts data via REST, PUT performs updates, and DELETE
removes information.

To learn more about these method definitions, refer to the W3C specification at
www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://resources.arcgis.com/en/help/rest/apiref/index.html
http://resources.arcgis.com/en/help/rest/apiref/index.html

49Introducing the ArcGIS Server REST API
3.1.2 Interacting with ArcGIS Server pages

At the time of this writing, the ArcGIS Server REST API is at version 10.11. Let’s take a
look at an ArcGIS Server service that provides census information. This is the type of
information you need to become familiar with in a web service so you can build an
application. The REST API provides HTML pages to give you easy access to web service
information, as shown in figure 3.3.

 Let’s focus on a few items of this web service page:

■ The list of Layers is vital because you’ll use these layer IDs when deciding which
features are visible on the map and which layers you’ll want to query or use with
the Identify tool covered in chapter 4.

■ The Spatial Reference is important because, ideally, you want all your data to be
in the same projection (showing how the earth is represented) for performance
reasons.

■ The REST API page lets you know whether the data in the service is Single Fused
Map Cache, meaning that tiles for the map have already been generated ahead

Response types
available for this

service

Links to a legend
for service, letting

you know what
symbols/colors

mean

List of layers
and their index

available in
this service

Spatial reference
of the service

Lets you know if
service is tiled or
can be dynamic

Figure 3.3 Sample ArcGIS Server page

50 CHAPTER 3 Working with the REST API
of time and can load quickly as a tiled service. Typically, this is done for aerial
imagery or large datasets that don’t change often.

■ The Legend link is something you’ll take a closer look at next to build a custom
widget.

LEGEND ENDPOINT

The legend widget provided in the ArcGIS API for JavaScript interacts with the legend
endpoint of the ArcGIS Server REST API. Remember, an endpoint is an exposed part

A note about legends in web mapping applications

Using a legend in modern web mapping applications can sometimes be considered
outdated. In a best-case scenario, your map data is cartographically designed so a
legend is unnecessary, and the needs of your users can be met without it. But that’s
a best-case scenario. At times, data requires a legend to better express the intent of
the map and your application.

Figure 3.4
JSON representation
of legend endpoint

51Introducing the ArcGIS Server REST API
of your interface in the REST API that’s used for communication. The legend end-
point contains information such as the names of items in the map service as well as
how those items should be drawn in the map. This data can be represented in HTML
format so that a user can easily review the data, or as a JSON representation that you
can use with the ArcGIS API for JavaScript to make a custom widget. You can see what
the JSON representation of the legend endpoint looks like in figure 3.4.

 This widget makes it easy to
display symbols and their mean-
ings. The census block points
shown in figure 3.5 display the
legend as shown in the ArcGIS
Server pages and the legend
displayed in an application
using the out-of-the-box legend
widget.

 The out-of-the-box legend
widget is a time-saver that
accomplishes its task nicely.
But suppose your application
requires you to allow users to
turn layer items on and off via a
check box next to each legend
item. This feature isn’t built
into the legend widget of the
ArcGIS API for JavaScript. You’ll
need to build a custom solution.
To do that, you’ll interact
directly with the legend end-
point of the ArcGIS Server REST
API and dig into the ArcGIS API for JavaScript to get the job done by using the built-in
Dojo tools introduced in chapter 2.

Widgets and more

The set of tools and widgets provided by the API are more than enough for a developer
to build a suitable application that could meet most needs and requirements. But for
those times when you’re challenged to meet a requirement that may have you digging
through API documentation, scouring obscure blog postings, or reading through an
abandoned mailing list for a solution, fret not; remember your tools and take a look
in your toolbox. A widget in its simplest form is a chunk of portable code that can be
used in any application. When working with the ArcGIS API for JavaScript, widgets usu-
ally involve a visual element of the page, such as the legend.

Legend in the
REST API

Out-of-the-box
legend widget

Figure 3.5 Legend graphics created by ArcGIS Server
REST API (at left) and by legend widget (at right)

52 CHAPTER 3 Working with the REST API
3.2 Building your own widget
To build your own legend widget with the added capability to turn layers on and off,
you’ll use the built-in Dijit framework that comes standard as a part of Dojo. A Dijit in
Dojo is a visual component, and in this case you’ll use the Dijit menu suite of compo-
nents to make a menu-based legend table of contents. This will enable you to build a
nice-looking legend widget, as shown in figure 3.6. The entire code base to build this
widget can be a bit involved, but you’ll learn the main steps needed to accomplish
your goals.

 This section covers the following:

■ Building the root menu of a legend widget
■ Retrieving and using legend details from ArcGIS REST API
■ Using methods to display legend items in a widget

NOTE The code for the custom widget is available in the chapter3/legendtoc
folder of the source code included with the book.

The purpose of this widget is to display legend information and allow users to turn
items on and off in one place. The key to building this custom widget is interacting
directly with the legend endpoint of the ArcGIS Server REST API. Accessing the legend
endpoint from your application is easy, but building this custom widget requires a few
steps.

3.2.1 Building the legend root menu

The first step is to build the root menu for a map service to add to the custom legend.
To build the root menu, initialize a custom module called CheckedPopupMenuItem
that displays the root element of a service:

startup: function (options) {
...
 serviceMenu = new CheckedPopupMenuItem({
 label: layer.title,
 layer: layer,
 checked: layer.visible,
 popup: layerMenu,
 onChange: onServiceChecked
 });
...

Figure 3.6 Custom legend widget built using Dojo Dijits

53Building your own widget
You initialize a custom CheckedPopupMenuItem widget that is composed of a Checked-
MenuItem and PopupMenuItem from the Dijit library. This widget contains a title and a
reference to the layer it represents. It will also contain a menu that displays each indi-
vidual item in the layer as well as the ability to toggle the visibility of the whole service.

3.2.2 Retrieving legend details

The next step is to retrieve the detailed legend information about your map service.
The key to building this custom widget is interacting directly with the legend end-
point of the ArcGIS Server REST API. Accessing the legend endpoint from your appli-
cation is easy. You can use the built-in esri/request module to call the endpoint and
return the results. This function returns a JavaScript promise. A promise returns the
result of a task, in this case the request sent to the legend endpoint. After you have
these results, the next couple of steps are where you need to apply a little bit of elbow
grease. You need to send a request to the legend endpoint of the map service and
then parse those results to make them useful for your widget:

esriRequest({
 url: layer.url + '/legend',
 content: {
 f: 'json'
 },
 callbackParamName: 'callback'
}).then(legendResponseHandler(layer, layerMenu));

You’ve created a request object by using the esriRequest() method. This request
object is referred to as a promise. The promise pattern is used for handling asynchro-
nous requests, such as needing to wait for a response from the server for the legend
information. You can handle the response of this request by passing a function to
esriRequest().then() and interacting with the legend results.

 The result you get back from the legend endpoint has various pieces of informa-
tion that will be useful in building your legend widget. I’ve omitted the url and
imageData results to conserve space and truncated portions of the results to empha-
size what a response from a legend endpoint looks like:

"legend": [
 {
 "label": "0 - 61",
 "url": "imageurl",
 "imageData": "imagedatastring",
 "contentType": "image/png",
 "height": 20,
 "width": 20,
 "values": [
 61
]
 } …

Obtains legend endpoint

Indicates you want result as JSON

Updates menu with
legend results

Array of items to be shown in legend

Name of image
for source
image URL

Base64-encoded
image data string

Array of values represented in legend

54 CHAPTER 3 Working with the REST API
3.2.3 Displaying details in the custom legend widget

Your goal at this point is to turn these results into list items in your widget. You have a
couple of options to display the symbols returned in the legend, mostly available to
handle cross-browser capabilities:

■ Image source URL—You can create a URL to the source image on the server,
which uses a standard format to access the source image: http://<hostname>/
arcgis/rest/services/<ServiceName>/MapServer/<layerid>/images/imageurl.

■ Image data—The other option is to use the provided imageData, which is
Base64-encoded image data that enables you to display the image without hav-
ing to make a round-trip call to the server. This adds a bit of a performance
increase. If you intend for your application to be used on a mobile device, the
fewer calls to the server, the better.

Figure 3.7 shows a Chrome debug console, comparing the image source URL method
and the imageData method.

 As shown in figure 3.7, using the image source URL method required sending a
single request that took 139 milliseconds to load the image. You may display it ten
times, but the browser is smart enough to know that it doesn’t need to make ten
requests. Compare that to using the imageData method, and you can see that no
requests were made to the server. Now, 139 milliseconds may not seem like much, but
if lots of images need to be loaded for a legend and a request takes longer than usual,

Took 139 ms to load a single image

Image source set by URL

Image source set by Base64-encoded image data

No data to download

Figure 3.7 Chrome debug console comparing the use of an image URL and Base64-encoded data

http://<hostname>/arcgis/rest/services/<ServiceName>/MapServer/<layerid>/images/imageurl
http://<hostname>/arcgis/rest/services/<ServiceName>/MapServer/<layerid>/images/imageurl

55Building your own widget
those small delays can add up and cause a noticeable difference to someone using the
application.

 This imageData technique isn’t supported in older desktop browsers, but to avoid
unnecessarily complicating the widget, you’ll use imageData to display legend sym-
bols. You can do so by adding data:image/png;base64 to the beginning of the src
attribute inside an image tag before you add the imageData string from the server:

<img src="data:image/png;base64,<imageData>" />

The next step is to build the subsequent item in your custom legend menu.

3.2.4 Working with multiple symbols in a feature

To find out whether any of your legend items have more than one set of symbols, such
as the census block points shown previously in figure 3.6, you need to do a little more
work. Part of the results you get back from a legend endpoint will include an array of
legend symbols for each layer in the map service. You need to loop over the results of
this array, which contain information such as the ID of the layer that you’ll use in the
custom widget:

arrayUtils.forEach(layer.layerInfos, function(info) {
...
 var legendMenu = buildLegendMenu(sub_info.legend);
 lyrMenu.addChild(new CheckedPopupMenuItem({
 label: sub_info.layerName,
 info: info,
 popup: legendMenu,
 checked: arrayUtils.indexOf(
 layer.visibleLayers, sub_info.layerId
) > -1,
 onChange: onChecked
}));
...

You use a helper function to build the legend menu items that don’t have check boxes
but are symbols, like the census block points in figure 3.6:

define([
...
 function buildLegendMenu(legend) {
 var legendMenu = new Menu({});
 arrayUtils.forEach(legend, function(item) {
 legendMenu.addChild(new LegendMenuItem({
 label: item.label.length > 0 ? item.label : '...',
 legendUrl: 'data:image/png;base64,' + item.imageData
 }));
 });
 return legendMenu;
 }
...

Builds legend

Adds new menu
item with check box

Indicates whether check
box should be selected

Creates new instance of
custom LegendMenuItem

Uses Base64-encoded
image data for images

56 CHAPTER 3 Working with the REST API
Another alternative is to simply use the image URL from the legend service and let the
browser cache the image to eliminate excessive requests to the server. That could be
done by making one small adjustment, as shown in the following snippet:

legendMenu.addChild(new LegendMenuItem({
 legendUrl: item.url
}));

Both options are viable, and using image data or an image URL is a choice of which
method will best suit your situation or need to optimize the number of requests sent
to the server.

 I hope you take away from this section that you can interact directly with the ArcGIS
Server REST API to acquire information that may not be readily available with the Arc-
GIS API for JavaScript. This opens a whole new world of possibilities for presenting your
data to the user, interacting with that data, and making a pleasant-looking application.

 Next you’ll learn about using a special service in ArcGIS Server called the geometry
service that can be used to perform spatial analyses in your application.

3.3 Working with the geometry service
Numerous types of services are available in ArcGIS Server, most of these representing
spatial data, such as aerial imagery, streets, or points of interest. One that is not special
data and may prove useful in everyday tasks is the geometry service. The geometry ser-
vice is a suite of utilities provided in ArcGIS Server to perform general types of geomet-
ric analysis, such as creating a new feature based on a distance from a given point, or
determining where two features intersect.

 This section covers the following:

■ Overview of the geometry service
■ Turning points into buffered areas
■ Using the buffer to make selections with the FeatureLayer
■ Incorporating use of a proxy to make large requests

The geometry service can be useful in developing your applications, and the ArcGIS
JavaScript API requires you to specify a geometry service to be used in some widgets
before they can be implemented. These include the measurement widget, used to do mea-
surements on the map, and the editor widget, which uses the geometry service for various
tasks while editing. Figure 3.8 provides a sample of what the geometry service can do.

3.3.1 Buffer your heart out

Figure 3.8 shows a small sample of what the geometry service can do, but these opera-
tions are a good place for us to start our little adventure. One of the most widely used
analyses when working with spatial data is the ever-popular buffer operation. You can
imagine a buffer working the same as a compass. No, not the kind that tells you what
direction you’re going in, but the kind that you probably used when you were in grade
school to draw awesomely perfect circles. That’s what the buffer operation of the
geometry service does: it draws circles around a particular point. As you can imagine,

57Working with the geometry service
this could prove to be useful. Have you used an application on your phone to find
nearby restaurants or movie theaters? Powering that search is a buffer operation to
provide an answer based on your current location. Let’s experiment with buffer oper-
ations to see how easy it is.

NOTE The source code for this section is available in the chapter3 folder of
the source code included with the book. See chapter3/3.2.html and
chapter3/3.2.js.

After loading your dependencies in your JavaScript, you create your map and geome-
try service task, as shown in the following listing. The application you build will create
a buffer geometry based on where you click on the map.

require([
 ...
], function (
 Map, Graphic, FeatureLayer,
 Draw, GeometryService,
 BufferParameters, Query,
 symbol, dom, on, Color, arrayUtils
) {
 var map = new Map('map', {
 basemap: 'gray',
 center: [-122.4348, 37.7582],
 zoom: 13
 }),
 geometryService = new GeometryService(
 'http://tasks.arcgisonline.com/ArcGIS/rest/services/' +
 'Geometry/GeometryServer'
),
 featureLayer = new FeatureLayer(
 'http://sampleserver1.arcgisonline.com/ArcGIS/rest/services/' +

Listing 3.1 Using GeometryService to buffer a location

IntersectionBuffer

1 KM distance

Figure 3.8 Types of tasks the geometry service can do

Indicates geometry
service task provided in
ArcGIS JavaScript API

58 CHAPTER 3 Working with the REST API
 'Demographics/ESRI_Census_USA/MapServer/1',
 {
 mode: FeatureLayer.MODE_SELECTION,
 outFields: ["*"]
 }),
 drawTool;
 map.addLayer(featureLayer);
 map.on('load', function() {
 drawTool = new Draw(map);
 on(drawTool, 'draw-end', function(e) {
 drawTool.deactivate();
 var ptSymbol = new symbol.SimpleMarkerSymbol(
 symbol.SimpleMarkerSymbol.STYLE_CIRCLE,
 10,
 null,
 new Color([255,0,0,1])
),
 params = new BufferParameters();
 map.graphics.add(new Graphic(e.geometry, ptSymbol));
 params.geometries = [e.geometry];
 params.distances = [1];
 params.unit = GeometryService.UNIT_KILOMETER;
 params.outSpatialReference = map.spatialReference;
 geometryService.buffer(params, function(geometries) {

 var fill = new symbol.SimpleFillSymbol(
 symbol.SimpleFillSymbol.STYLE_SOLID,
 new symbol.SimpleLineSymbol(
 symbol.SimpleLineSymbol.STYLE_SOLID,
 new Color([255,0,0,0.65]), 2
),
 new Color([255,0,0,0.35])
);
 arrayUtils.forEach(geometries, function(geom) {
 map.graphics.add(new Graphic(geom, fill));
 var query = new Query();
 query.geometry = geom;
 });
 });
 });
 });
 on(dom.byId('drawPoint'), 'click', function() {
 drawTool.activate(Draw.POINT);
 });
 });

What toolbar?

The Draw toolbar module provided in the ArcGIS JavaScript API isn’t a visual toolbar
per se, but it provides all the functionality you need to add points, lines, polygons,
and more to the map. You could create your own toolbar with this functionality. It is
a module designed to interact with the map.

Initializes Draw toolbar

Listens for when Draw
toolbar finishes drawing

Initializes BufferParameters
object for geometry service

Indicates buffer
of 1 kilometer

Uses Buffer method
provided in the
ArcGIS JavaScript API

Adds buffered
area to map

59Working with the geometry service
When a button on the page is clicked, you allow the user to draw a point on the map.
This can be done by listening for the drawPoint button to be clicked and activating
the drawTool to specifically draw a point:

on(dom.byId('drawPoint'), 'click', function() {
 drawTool.activate(Draw.POINT);
});

You can then wait for the drawTool to send a draw-end event that triggers a function
that will immediately deactivate the tool so the user can add only one point at a time:

drawTool.on('draw-end', function(e) {
 drawTool.deactivate();
...

When you click the Point button and then click the map, you see a result similar to fig-
ure 3.9.

 Look at that amazing buffered area. You’ve now mastered the ArcGIS JavaScript
API in all its glory! All kidding aside, these are the first steps to more-interesting analy-
ses you can do. Maybe you want information about what’s inside the buffered area you
created. Maybe you’re interested in which census blocks are centered inside your buff-
ered area. To do this, you could take advantage of our trusty old FeatureLayer.

3.3.2 Buffer and select

As you learned in chapter 2, a FeatureLayer enables you to add data to the map in
different modes. You can use it to add data as needed, so when you first see the map, it
downloads only the information in your current view. You can load the data all at
once, which helps prevent more HTTP requests to the server during use of your appli-
cation. This is best suited for small datasets, because anything more than a few hun-
dred features may slow the startup of your application. The mode we’re most

Figure 3.9 The geometry
service creates a buffer
equal to one kilometer.

60 CHAPTER 3 Working with the REST API
interested in at the moment is the ever-popular selection mode. When a FeatureLayer is
first loaded, no features are immediately downloaded from the server. But you can
perform queries directly against the FeatureLayer, and it’ll download and draw those
features in the service that match the query. You could use a standard query, where
you ask for ITEM = 'Yes', or you could pass in geometry, such as a line or polygon, to
perform the selection. Do you see where this is going? You can initialize a new
FeatureLayer right after you create the GeometryService:

featureLayer = new FeatureLayer(
 'http://sampleserver1.arcgisonline.com/ArcGIS/rest/services/' +
 'Demographics/ESRI_Census_USA/MapServer/1',
 {
 mode: FeatureLayer.MODE_SELECTION,
 outFields: ["*"]
}),
drawTool;
map.addLayer(featureLayer);

Then you add code during the iteration to add the buffered area that will set the
geometries of the buffer and make the selection of items in the FeatureLayer using
the buffers:

arrayUtils.forEach(geometries, function (geom) {
 map.graphics.add(new Graphic(geom, fill));
 var query = new Query();
 query.geometry = geom;
 featureLayer.selectFeatures(query, FeatureLayer.SELECTION_NEW);
});

If you run this code, something amazing happens! Actually, nothing happens at all. If
you check your debug console window in Chrome or Firefox, you’ll probably see an
error that looks like this:

esri.config.defaults.io.proxyUrl is not set

TOO MANY CHARACTERS IN URL REQUEST

Oh dear, we’ve run into the dreaded proxy issue. When you pass the geometry of the
buffered area to do a spatial query on the FeatureLayer, that chunk of information is
passed in the URL string, which has a limit of 2,048 characters. That buffered area
looks like a nice circle, but it’s composed of many smaller line segments. The coordi-
nates at the end and beginning of each line segment are being passed in the URL, and
that’s a lot of coordinates. You can’t pass any more characters than that in a URL; the
internet says you can’t.

INCORPORATE A PROXY PAGE

But the ArcGIS JavaScript API is smart enough to recognize this, and so it tries to use a
proxy page to pass this information as a POST request, which isn’t subject to the same
character limits. In the preceding message, the API is letting you know that you’re
trying to perform a task that requires a proxy page. Please see appendix C for more
details on setting up the proxy page.

61Working with the geometry service
So how do you use a proxy page inside the ArcGIS API for JavaScript? Once you set up
the proxy page per the instructions in appendix C (I’ll assume you have the proxy in
the root of your project), you can add this line of code just before you add the
FeatureLayer to the map using the esri/config module aliased as esriConfig:

esriConfig.defaults.io.proxyUrl = 'proxy.ashx';

NOTE For PHP or JSP, change the file extension as needed. Please review
appendix C and its references for more details.

To better see your results, change the color of the buffer area. Run the project again
and try adding a buffer; you should see something like figure 3.10.

 As you can see, you were able to select only the census block centroids that are
inside your buffered area. That’s a nifty analysis tool to have at your disposal. For fun,
let’s add one more small analysis into this workflow.

3.3.3 Buffer and intersect

One analysis that you may run into during your time as a GIS professional is finding
locations that are suitable for specific needs. Maybe you want to find a home that’s
within a certain distance from your workplace and your favorite gym. You decide you
don’t want to move any farther than a couple of kilometers between the two. Now, I
don’t have home sales data to share with you, so we’re going to pretend that the cen-
sus block centroids you’ve been working with are homes for sale. Bear with me; the
process is what matters, not the data at the moment.

MODIFYING THE EXAMPLE TO PREPARE FOR ADDING INTERSECTION CAPABILITIES

You can perform this analysis by adding a few lines of code to your application. First
you initialize an empty array (geometryArray = []) to hold your buffer geometries

Figure 3.10 FeatureLayer
features selected from a buffer

62 CHAPTER 3 Working with the REST API
near the top of your application. Then you slightly modify the portion where you loop
over the returned buffer geometries. Here’s the code:

arrayUtils.forEach(geometries, function (geom) {
 geometryArray.push(geom);
 map.graphics.add(new Graphic(geom, fill));
});
if (geometryArray.length > 1) {
 intersectGeometries();
}

This snippet adds the buffered geometries to an array. It then checks if the array is not
empty and calls another function that will intersect the geometries.

ADDING NEW INTERSECTION FUNCTIONALITY

Then you add a new function that will use the intersection method of your geometry
task, as shown in the following listing.

NOTE The code for this section is available in the chapter3 folder of the
source code included with the book. See chapter3/3.2.js.

map.on('load', function() {
...
}
function intersectGeometries() {
 var inputGeomertry = geometryArray[0],
 targetGeometry = geometryArray[1];
 geometryArray = [];
 geometryService.intersect(
 [inputGeometry], targetGeometry
).then(function (geometries) {
 map.graphics.clear();
 var fill = new symbol.SimpleFillSymbol(
 symbol.SimpleFillSymbol.STYLE_SOLID,
 new symbol.SimpleLineSymbol(
 symbol.SimpleLineSymbol.STYLE_SOLID,
 new Color([211, 211, 211, 0.65]), 2
),
 new Color([255, 0, 0, 0.15])
);
 arrayUtils.forEach(geometries, function (geom) {
 map.graphics.add(new Graphic(geom, fill));
 });
 });
}

At this point, you return only the intersection of these two areas. You should see some-
thing similar to figure 3.11.

Listing 3.2 Intersecting buffered geometries

Requires array of geometries
and target geometry

Performs intersection
and adds result

63Working with the geometry service
You can see that the intersect method of the geometry service returns a geometry
equal to the overlap of the two buffers you added to the map. Now you can use this
geometry to perform a selection on your FeatureLayer as you did previously and see
a result similar to figure 3.12.

 The FeatureLayer behaves precisely as expected and selects only homes within
the intersection of your buffered areas. As I mentioned before, this is the groundwork
for multiple types of analysis that you may want to perform in your application. The
geometry service is a fantastic tool that helps you perform these types of geometric
analyses.

Figure 3.11 The geometry
service displays an intersection
of two areas.

Figure 3.12 Homes for sale in
the intersected area
www.allitebooks.com

http://www.allitebooks.org

64 CHAPTER 3 Working with the REST API
3.4 Summary
■ This chapter covered how to use the ArcGIS Server REST API directly to build a

custom legend table-of-contents widget. In most cases, you won’t have to worry
about working directly against the ArcGIS Server REST API, as almost everything
you need can be accessed via the abstractions provided in the ArcGIS JavaScript
API. But it’s a good idea to be familiar with the concepts if you’re ever required
to try to work some magic using the ArcGIS REST API.

■ You became more familiar with the Dojo loader, which makes your life easier as
an ArcGIS JavaScript developer.

■ You dived into the geometry service provided by ArcGIS Server. This is a handy
suite of utility functions that offload geometric analyses to the server and can be
used in a variety of ways in your application development. We only scratched
the surface of the geometry service, and I encourage you to explore its other
functions, such as CUT, GENERALIZE, and PROJECT, when you need to work in dif-
ferent coordinate systems.

Congratulations—you’ve now laid the groundwork to begin working on a full-blown
application in chapter 4.

Part 2

Sample Use Case

In the second part of this book you’ll build a field collection application for
mobile devices. By the end of part 2 you’ll learn how to structure your applica-
tion so that it can grow as needed, build a mobile-friendly data-collection appli-
cation, and even learn advanced techniques for disconnected editing:

■ In chapter 4, you’ll set up an ArcGIS Developers account and learn how to
use Dojo to build your application.

■ In chapter 5, you’ll learn how to edit features on the map and use authen-
tication to secure your application, as well as how you can use Local-
Storage to enable disconnected editing.

■ In chapter 6, you’ll focus on building an application for use on a desktop
browser, freeing you from some limitations of a mobile environment.
You’ll also learn how to use OAuth 2.0 with ArcGIS Online and store your
credentials to allow users to log in and out. This chapter also covers how
you can integrate data collected in the field with some non-spatial data,
such as data from a separate web service.

■ In chapter 7, you’ll be introduced to more advanced subjects and tech-
niques. You’ll learn about the ArcGIS WebMap specification and how to
use it to configure your map. You’ll also learn how to build your entire
application from a single JSON file that will configure your widgets for
you. This chapter will also describe an alternative to disconnected editing
using a library called PouchDB.

66 CHAPTER

Building an application
At this point, you’ve seen a few examples that cover the basics of building a web
mapping application by using the ArcGIS API for JavaScript. Some of the samples,
like those in chapter 2, were intentionally introductory, to show you how simple it
can be to get a web mapping application up and running. In chapter 3, you got
more in depth, using parts of the ArcGIS API for JavaScript and Dojo to build a cus-
tom legend and table of contents widget, and you even took advantage of commu-
nicating directly with the ArcGIS Server REST API to do so. In this chapter, you’re
going to build what could be a real-world application to deploy to your users or cus-
tomers. This application will focus on the specific task of collecting data.

This chapter covers
■ Setting up an ArcGIS Online account
■ Configuring Dojo for the ArcGIS API for JavaScript
■ Styling your map to fit in the browser
■ Building a Dojo class
■ Using Bootstrap with the ArcGIS API for JavaScript
■ Building a Dojo widget
67

68 CHAPTER 4 Building an application
 A popular item these days is a web application capable of being used on mobile
devices. A browser-based web application is incredibly convenient for users and devel-
opers alike. Users don’t need to worry about having the right device, and developers
can focus on building a better application without the overhead of building platform-
specific versions or having to learn a new programming language. In this section,
you’ll focus on building a web application that works on most mobile devices. I say
most because, honestly, so many devices are available that I’m hesitant to say they all
work the same, even in a browser environment. Small variances might occur when you
tap your finger on an older Android device running the latest Android operating sys-
tem, versus when you tap your finger on a brand-new Microsoft tablet using Internet
Explorer. Nothing is perfect, but the tools in the ArcGIS API for JavaScript handle
most compatibility issues for you under the hood, so you won’t need to be too con-
cerned about them. We’ll discuss more about possible compatibility issues with
HTML5 functionality later in the chapter and also in chapter 5.

 This chapter covers the type of application you’re going to build and its goals.
You’ll also learn how to register a free ArcGIS developer account so you can publish
and edit data in ArcGIS Online. Then you’ll learn how to customize what that data
looks like in your application, and finally how to incorporate Bootstrap styling into
your application and start building what will eventually become a custom edit tool.

4.1 What are you going to build?
I’ve seen requests come across my
inbox and have worked on a hand-
ful of applications that all seem to
have one recurring theme: people
want to collect data. This basic task
is so popular that Esri even built a
collector application that can be
found at http://resources.arcgis
.com/en/collector/. You’ll build a
similar application to this one (see
figure 4.1). These types of mobile
web mapping applications can vary
in terms of bells and whistles, but
most are trying to collect informa-
tion. If they’re not collecting infor-
mation, they’re probably verifying
it. Because data collection is at the
heart of most GIS application build-
ing, learning how to build an appli-
cation that does this from the
ground up will teach you many of

Figure 4.1 The application you’ll build in this chapter
can work on a tablet and phone browsers.

http://resources.arcgis.com/en/collector/
http://resources.arcgis.com/en/collector/

69What are you going to build?
the important skills you’ll need for future application development. You’ll add func-
tionality to this application in chapter 5, such as the ability to add features to the map
and handle a loss of internet connection.

 The application in figure 4.1 may look simple at first glance, but it meets some spe-
cific requirements:

■ Built for use on a tablet, but usable on a phone
■ Can collect points at a user-specified location or by user’s current location
■ Can perform limited editing without an internet connection

Let’s cover each of these requirements briefly.

4.1.1 Using a tablet or phone

If you’re building an app for general public use, it makes sense to ensure that it’s
going to work on a phone. You don’t see many people walking around with tablets
open, working with them. Or maybe you do; I won’t judge. The application you’re
going to build will work on either phones or tablet devices, but let’s assume that your
prospective users are city employees who have been issued tablets to collect data.
That’s not to say you can’t take what you build and apply it to work on a phone as well,
and in many cases, that will require little extra configuration on your part.

4.1.2 Collecting points

You want to provide users with the freedom to add locations to the map along with
information. Say, for example, a user sees damage to a utility pole between some
homes. The user can’t walk directly to the location to collect the point, so you’ll pro-
vide the ability to navigate a map and add a point with notes on what needs to be
fixed. You’ll also provide the ability to add a location directly where the user is stand-
ing (say, on top of a damaged sidewalk). Chapter 5 covers this capability.

4.1.3 Performing disconnected editing

By far, the number one question anyone asks me when discussing a mobile mapping
application, be it a web application or a native mobile application that requires instal-
lation, is whether will it work if they lose their internet connection. That’s a tricky
question, so I mostly say that it depends. You can implement some functionality of
HTML5, the latest version of HTML, to minimize the inconvenience of working with-
out an internet connection. But the functionality will be limited, and I’d never fully
rely on it. In particular with a web mapping application, if you have no internet con-
nection, you can’t download new map tiles to show on the map, or make requests to
the server to perform queries on data. You can, however, continue to collect data and
save it locally until you have an internet connection, and then push your updates at
that time. Chapter 5 covers saving data locally as a solution for disconnected editing.

 These are all details covered as you build the application. Before you start writing
any code, though, you need to set up a way to store the data that you collect, which
you can do using ArcGIS Online.

70 CHAPTER 4 Building an application
4.2 Working with ArcGIS Online
Unless you work for a large organization or a company that provides GIS consulting
services, you probably don’t have access to a full ArcGIS Server installation. That’s why
I've tried to avoid details on the server side of ArcGIS development that aren’t neces-
sary to cover the ArcGIS API for JavaScript. Maybe you’re wondering how you’ll get GIS
data that you could edit for your application. That’s what’s discussed in this section.

 This section covers the following:

■ Understanding how ArcGIS Online differs from ArcGIS Server
■ Registering for a developer account
■ Creating a FeatureService

If you don’t have access to ArcGIS Server, no need to worry, because Esri provides a
cloud-based GIS solution you can use to create and consume your own data for a web
mapping application. Cloud-based indicates that the data resides on servers in a remote
location, usually distributed across multiple machines. Using the cloud is a cost-
effective way to host and share data and services. In this case, the platform is specifi-
cally designed to share GIS data and services. After the data is hosted, it works similarly
to the regular ArcGIS Server, as discussed in chapter 3, with a couple of differences
you’ll learn about shortly. In figure 4.2, you can see that ArcGIS Online can replace
ArcGIS Server in this scenario.

4.2.1 ArcGIS Online vs. ArcGIS Server

I mentioned that differences exist between ArcGIS Online and ArcGIS Server. In addi-
tion to being a cloud-based service, ArcGIS Online differs from ArcGIS Server in that it
can’t host dynamic map services. As discussed in chapter 2, ArcGIS Online can host
raster data, such as aerial imagery or other forms of data that don’t often change ,
such as parcels that can be served as tile services (since they are usually updated on an
annual or semiannual basis). It can also host feature services that serve vector data,
which are services with a single layer designed to work with a FeatureLayer. A
FeatureLayer is well-suited for editing data and sharing vector data in an efficient
manner. This is precisely the type of service you’ll create.

ArcGIS Online REST APIGIS
data

ArcGIS API for
JavaScript

REST endpoint URL
http://myservername/arcgis/rest/services/myservice?f=json

Figure 4.2 ArcGIS Online can be used as a drop-in replacement for ArcGIS Server in some cases.

71Working with ArcGIS Online
4.2.2 Setting up an ArcGIS Online account

To get your developer subscription up and running, go to the ArcGIS for Developers
site at https://developers.arcgis.com/en/. Click the Sign Up for Free link, shown in
figure 4.3.

 After you click the link, you’ll be asked for your name and email address. Fill out
this information, and you’ll be sent an email to finalize setting up your developer
account. You can then log in to the developer page via the link provided in the email.
When you first log in, you’ll see a page similar to figure 4.4.

ArcGIS Online costs

Esri provides developer subscriptions that allow you to use ArcGIS Online to test and
build prototype applications and services at no cost. These subscriptions provide a
limited number of credits that allow developers to do most of the work they need to
do to build test projects. You can upgrade the developer subscription to a paid account
at a later time. Full-featured, nondeveloper ArcGIS Online subscription costs can vary
based on need and usage. These are called ArcGIS for Organization accounts. You’ll
use the developer subscription for your sample application, which provides everything
you’ll need.

Figure 4.3 The main page for the ArcGIS for Developers site

https://developers.arcgis.com/en/

72 CHAPTER 4 Building an application
4.2.3 Defining a feature service

Your developer account page provides an option to create an application. You’ll
return to this page after you get your application started. You’ll also find links to docu-
mentation on the various web mapping APIs provided by Esri, including the ArcGIS
API for JavaScript. At the moment, you want to focus on the Hosted Data link at the
top of the page. Click this link to access the page shown in figure 4.5, to create a fea-
ture service for collecting data.

Part of security
features discussed in
upcoming chapters

Documentation
on popular ArcGIS

web APIs

Figure 4.4 The ArcGIS Online developer account page

Click this button
to create your own
editable service.

Figure 4.5 The page for creating a feature service from the ArcGIS for Developers site

73Working with ArcGIS Online
CHOOSING THE DATA YOU’RE COLLECTING

Before you dive in and start building a feature service, let’s think about the kind of
information you want to collect. For this application, you’re collecting data on various
problems that need the attention of your local city: for example, broken street lights
and damaged sidewalks. So in this case, you want a type field of some sort. You also
want to collect the date of the request you’re collecting, so you’ll have a date field.
That sounds like a good start.

 Click the Create a Feature Service button. You’re presented with the page shown
in figure 4.6.

 I’ve already completed the following information, working from the top down:

■ Title—Provides the title of your feature service.
■ Description—Provides a basic description of your service.
■ Geometry Type—Refers to whether the GIS data is a point, line, or polygon. You’ll

use points because you’re concerned with collecting the location of a request at
a single coordinate.

■ Tags—Allows others to search for services with certain tags on ArcGIS Online,
but only if the service is shared with everyone. Someone could search for data

Defines the default extent of the
feature service; can be left as default.

Figure 4.6 Creating a new feature service

74 CHAPTER 4 Building an application
that’s tagged as Environmental or Water, for example. You’ll tag your service as
request for testing purposes.

The next step is to add fields to your feature service.

ADDING FIELDS TO YOUR FEATURE SERVICE

Click the Continue button, and you’re presented with the screen shown in figure 4.7.
As before, I’ve already filled out the fields you’ll use. This page does a good job
describing the meaning of each input.

 Because ArcGIS Online still resides in a database, you need to abide by field-name
constraints. You can’t use special characters such as @ or #, and you can’t use spaces.
What you can do is add a field alias, which is a human-readable label for the data. In
this case, you’ll have a field name of IssueType, and a field alias of Issue Type. Because

Indicates a
human-readable

field name

Sets how the
field is referred to
in the database

Selects a data type
for the field, such as

string or integer

Removes or edits
fields after they’ve

been added

Figure 4.7 Defining fields to be used in your feature service

75Working with ArcGIS Online
the field name may be descriptive but not exactly user-friendly, you can use the screen-
friendly descriptive field alias when the name is displayed in your application. This
simplifies your work when you want to edit the data in your application.

 One thing we haven’t discussed is that you’ll identify the data collected by what
census tract it’s in. This probably isn’t something you’d typically collect in a real-world
scenario, but it demonstrates how you can assign data by location. Normally, instead of
a census tract, you might want to know, for example, what city a request is located in
so that workers can be properly assigned. At a larger scale, you might want a city name
when collecting data at a county level.

 Review table 4.1 for details on defining the fields in your feature service.

CHOOSING A RENDERER

After you click Continue on the Define Fields page, you’re presented with the option
to choose a renderer for your feature service. A renderer shows what the features will
look like in your application. Feel free to choose whatever you like; you can see what I
chose in figure 4.8.

Table 4.1 How to define fields in the feature service

Field alias Field name Data type Required

Issue Type IssueType String True

Request Date RequestDate Date True

Census Tract TractName String False

Description Description String False

Figure 4.8 Choosing a renderer for your feature service

76 CHAPTER 4 Building an application
Figure 4.9 Review the
settings of your feature service
before you publish it.

Click here.

Figure 4.10 ArcGIS Online page for your feature service

77Building a real-world application
You’re almost finished setting up your feature service to use in your application. The
last page shows an overview of the settings you chose, as shown in figure 4.9. A Ren-
dering Preview window even provides a preview of what you might expect the map to
look like. Click the Publish Service button to finish.

4.2.4 Accessing your ArcGIS Online feature service

After you publish the service, you’re pre-
sented with a page that allows you to edit
the service details. Click the View in Arc-
GIS Online button to access the ArcGIS
Online page for your feature service.
Under the Layers section, click the
Requests link, and you’ll see the menu
shown in figure 4.10. Choose the option
Service URL.

 Navigating to the service URL opens a
page similar to what you saw in chapter 3
when looking at the ArcGIS Server REST
API pages. This page, shown in figure
4.11, provides information on this partic-
ular service, such as the Geometry Type,
and what the default renderer looks like.

 At this point, you’ve defined your fea-
ture service on ArcGIS Online by using a
free ArcGIS for Developers account. The
process is straightforward, and the end
result looks similar to the services you
were introduced to in chapters 2 and 3.
The developer’s account is a big benefit
for those who may not have access to the
full ArcGIS Server and desktop installa-
tion required to build the database for
the source data of their service and then
publish it as a feature service. All of this can be an involved process, especially for
prototyping an application.

4.3 Building a real-world application
Now that you’ve set up an ArcGIS Online account and built a feature service that you can
use to collect data, let’s start the groundwork for building a mobile application. You’re
going to cover quite a bit of ground in these next couple of sections, as listed here:

■ Organizing your application folder structure
■ Building the files and configuring Dojo

Figure 4.11 ArcGIS REST page for your ArcGIS
Online hosted feature service

78 CHAPTER 4 Building an application
■ Defining required modules to be used in your application
■ Building JavaScript classes with Dojo

At the end of this chapter, you’ll have an application that looks similar to figure 4.12.

4.3.1 Setting up Dojo and organizing modules

When diving into building an application, the last thing you might think of doing is
laying out the folder structure of that application. Because the ArcGIS API for Java-
Script is built using the Dojo Toolkit with its library of JavaScript tools, you need to
take some considerations into account when starting to configure your application.

ORGANIZING YOUR APPLICATION FOLDER STRUCTURE

How developers organize their folder structure varies depending on personal prefer-
ences and standards used in development teams. It can be completely subjective from
one developer to the next, but I’m going to share with you some best practices to
build your applications. This will help keep your modules organized by purpose—
widgets separated from your services, and so on—making it much easier to locate the
pieces you need. Figure 4.13 shows my recommended folder structure.

 I’ve gone through variations of this folder structure over the years, and it may vary
slightly from application to application. When building web applications with the

Figure 4.12 Your application
will look like this at the end of
this chapter.

79Building a real-world application

R
A
s

ArcGIS API for JavaScript, I’ve found this works well, because I can keep my modules
cleanly organized by purpose. Common modules that interact with outside web ser-
vices can be kept in the services folder, and any custom widgets I build are kept in the
widgets folder. Helper modules that may do basic tasks such as extract data from vari-
ous GIS layers would be in a utils folder. After you’ve organized your file folders, you
can move on to writing some code.

BUILDING THE FILES AND CONFIGURING DOJO

The first file you’ll build is index.html, shown in listing 4.1. This file loads your style
sheets, the ArcGIS API for JavaScript, and your run.js file that will get the application
started. The index.html file also defines a couple of HTML elements you’ll reference
in your application.

NOTE The code for this chapter is available in the chapter4 folder of the
source code included with the book.

<!doctype html>
<html>
 <head>
 <title>ArcGIS Web Development</title>
 <link href='http//js.arcgis.com/3.11/js/esri/css/esri.css'

rel='stylesheet'/>
 <link href='css/main.css' rel='stylesheet'/>
 </head>
 <body>
 <div id="map-div"></div>
 <div id="map-tools"></div>
 </body>

Listing 4.1 Main index.html file

Application root Contains notes or other documents related to the application.

app/ Contains only files that will be used in the web application.

css/

js/

Holds all style sheets for the application.

Holds all the JavaScript files used in the application.

controllers/

services/

utils/

widgets/

main.js

run.js

index.html

Location where the web application is started.

Location where Dojo configuration takes place.

Main HTML web page of the application.

Figure 4.13 Recommended folder structure of an application

Declares use of HTML5
specification

eferences
rcGIS
tyle sheet

Adds reference to
custom style sheet

Indicates reference HTML
element for map

Indicates reference HTML
element for other tools

80 CHAPTER 4 Building an application

H
c
p

 <script type="text/javascript" src="http://js.arcgis.com/3.11compact"></
script>

 <script type="text/javascript" src="js/run.js"></script>
</html>

This index.html file is similar to what you’ve built in previous chapters for your sam-
ples. You’re specifying that you want to use the compact build of the ArcGIS API for
JavaScript, which is a smaller build of the API, with fewer modules preloaded in the
download. It includes most of the commonly used modules for building a web map-
ping application, and if you need more, it downloads the additional files as needed. I
usually start an application by using the compact build, and if the application grows
large enough that I’m downloading many additional files, I switch to using the regular
build to cut down on network traffic, as discussed in chapter 3.

 Before you dive into the JavaScript, I want to point out the main.css style sheet that
helps define what your application looks like:

#map-div {
 position: absolute;
 top: 0;
 right: 0;
 left: 0;
 bottom: 0;
}

If you’re unfamiliar with how style sheets work, to style the HTML element with id of
map-div, you can reference it as #map-div in your CSS file. To reference an element by
class name, reference it by .class-name. In this case, you’d like the map element to
take up the whole browser window, so you can provide it a position of absolute,
meaning you can now specify that you want it to have 0 space along the top, right,
left, and bottom of the browser.

 Now you can see how to configure Dojo to work in a modular fashion in your appli-
cation. The run.js file sets up a regular expression that ensures your modules are
loaded correctly. A regular expression is a common method in programming for match-
ing strings of text and finding patterns. You’ll use a regular expression to help you
define the locations of modules. The configuration is shown in the following listing.

/*global define, require, location*/
/*jshint laxcomma:true*/
(function () {
 'use strict';

 var pathRX = new RegExp(/\/[^\/]+$/)
 , locationPath = location.pathname.replace(pathRX, '');

Listing 4.2 run.js and configuring Dojo

Indicates compact build of latest
ArcGIS API for JavaScript

Indicates file for Dojo
configuration and app kickoff

Indicates global function
objects referenced

Sets local JSHint
configuration options

elps catch
oding
roblems

Creates regular expression

Changes where Dojo looks
for custom modules

81Building a real-world application
 require({
 async: true,
 aliases: [
 ['text', 'dojo/text']
],
 packages: [{
 name: 'controllers',
 location: locationPath + 'js/controllers'
 }, {
 name: 'services',
 location: locationPath + 'js/services'
 }, {
 name: 'utils',
 location: locationPath + 'js/utils'
 }, {
 name: 'widgets',
 location: locationPath + 'js/widgets'
 }, {
 name: 'app',
 location: locationPath + 'js',
 main: 'main'
 }]
 }, ['app']);

})();

Quite a bit is happening in the run.js file in listing 4.2, starting with items that I would
designate as good practice but that are entirely optional.

USING LINTING AND STRICT MODE

When writing JavaScript, it’s typically considered good practice to use some form of
linting on your code. Linting is a process that often uses a preprocessing code checker,
such as JSLint or JSHint, to check your code for anything suspicious (for example, acci-
dentally creating global variables mixing the use of single quotes with double quotes).
Linting can help filter out possible bugs in your code but mostly provides a nice, warm
feeling for writing good code. I use JSHint, but you can use JSLint just as easily, or use
nothing at all. You can find online linting tools at www.jshint.com. The following list
explains common linting options and strict mode:

■ The first line at the top of the file (/*global */) tells the lint tool that you’re
using specific global variables in this module.

■ The second line (/*jshint laxcomma:true*/) lets the linter know that you
may be separating your lines with commas at the front as opposed to the end of
a line. This is a completely subjective style, but it’s how I like to write JavaScript
code.

■ The next optional line is the 'use strict'; line. Similar to using a lint tool in
your code, the 'use strict'; line places the function in strict mode. The func-
tion can capture some common JavaScript taboos such as writing to the global
namespace (which isn’t that bad, but it’s good practice to avoid it), and can
throw more exceptions when something like that happens.

Passes configuration object
into first require statement

Loads
modules as
needed

Provides aliases for modules

Defines packages using
modified pathname

Loads app module
after configuration

www.jshint.com

82 CHAPTER 4 Building an application
Again, linting is purely subjective to individual developers. This is the last time I’ll
show the linting and use strict-mode functionality in the book, but I wanted to point it
out because it’s used in some of the source code provided with the book. You may
need to avoid using strict mode when building custom widgets using the Dijit library,
as it can cause issues with some of the core Dijit code. I use it mainly with nonwidget
modules.

USING DOJO FROM A NONLOCAL SOURCE

A lot of what’s happening inside run.js for the configuration of your application
occurs because you don’t have access to a local copy of Dojo or the ArcGIS API for
JavaScript. The API is provided by a content delivery network (CDN), which means the
JavaScript for the API is hosted on another server somewhere. One side effect is that
when you create a module by using the define method and provide it a path to a
module you want to use, by default the API is going to look on the server for that mod-
ule. This may seem confusing, but figure 4.14 shows how this might look.

 To get around this issue, you can create a regular expression to replace the default
hostname with your application’s hostname so the API can find the file correctly:

var pathRX = new RegExp(/\/[^\/]+$/)
 , locationPath = location.pathname.replace(pathRX, '');

You create a regular expression object called pathRX, which finds the application’s
current pathname in the browser. The pathRX object looks at the URL for the applica-
tion—for example, let’s say the URL is http://myserver/myapp, and the object
matches the last portion of that URL as /myapp. In a browser environment, location is
an object that can tell you information about the URL, and pathname will find the
information for the current URL after the last forward slash (/) in the URL address. In
this case, the result is /myapp. You can then use this little hack to define the location of
the modules in your configuration. You can do this by defining a package’s array in
the configuration:

{
 name: 'controllers',
 location: locationPath + 'js/controllers'
}

http://hostname/esri/dojo/mymodule/modulename.js

mymodule/modulename.js

define(['mymodule/modulename:'],function(){});

Where Dojo tries to find file:

Actual location of file:

X

Figure 4.14 Demonstrating how Dojo tries to load modules

http://myserver/myapp

83Building a real-world application
You can provide the package a name, such as controllers. You then let Dojo know
that every time you want to load a module using the path controllers/modulename,
Dojo should look in the location specified in the package. Because you’ve defined
that location as /myapp/js/controllers, Dojo will try to look on the server the appli-
cation is hosted on rather than the server that provides the ArcGIS API for JavaScript.
You can even specify a package with a default file:

{
 name: 'app',
 location: locationPath + 'js',
 main: 'main'
}

In this case, you create a package called app, provide its location, and specify that app
is a single file in a JavaScript file called main.js. You use this after you’ve specified the
packages by calling the app module inside an array: ['app']. This will load the local
js/main.js file after the configuration for Dojo has completed.

 Setting up Dojo may seem like an involved process, but this same formula applies
in every application you build, so you’ll become accustomed to it after a couple of
times. It’s one of those activities that you perform once, and then you can reuse it with
every new application, including the folder structure you already laid out.

 Now that you’ve configured Dojo with the ArcGIS API for JavaScript to properly
find custom modules, let’s see what happens next inside the main.js file.

4.3.2 Tying the application together

Remember that in your Dojo configuration you defined that the module named app
would be mapped to the js/main.js file. In the configuration, you’re able to launch
the js/main.js file by placing app in an array as the last argument in the configuration.
It looks like this:

require({
 ...
 packages: [...]
}, ['app']);

The js/main.js file refers to a controllers/appcontroller module, which I’ll discuss
shortly, and to a module called dojo/domReady, which is a plug-in for Dojo that says
“Don’t run the code in this module until the browser has finished loading the page.”

 Dojo also allows you to provide alias names for a module. In your Dojo configura-
tion, you can alias the dojo/text plug-in as text. This plug-in loads HTML files as
strings. You can execute a plug-in by placing an exclamation mark (!) after it to save
you a few extra keystrokes. Inside the module, you refer to the instance of the
controllers/appcontroller as appCtrl and call the init() method. Pass the
method the string map-div, which represents the id of the HTML element you want
the map displayed in, and an object with map parameters. You can see what that looks
like in the following listing.

84 CHAPTER 4 Building an application

Tr
af
lo

Ini
Ma

require([
 'controllers/appcontroller',
 'dojo/domReady!'
], function (appCtrl) {
 appCtrl.init({
 elem: 'map-div',
 mapOptions: {
 basemap: 'gray',
 center: [-118.241,34.0542],
 zoom: 12
 }
 });
});

WORKING WITH THE APPLICATION CONTROLLER

So far, you’ve built your application so the run.js file sets up the Dojo configuration
for your application. The main.js file is used to set up any application-level configura-
tions you may want to define ahead of time. This makes it easier for you to change
these options in a single file. For example, in listing 4.3, you initialize the application
controller with an object that provides the element name to use for the map and some
default map options. This is the application configuration. You’ll add another item to
this configuration object later in the chapter to add more layers to the application. As
shown in listing 4.4, the purpose of the controllers/appcontroller.js file is to manage
tasks at an application level, meaning it talks to any widgets that get loaded and han-
dles some of the communication in the application (for example, what action the
map should take when a widget is closed).

 I prefer to handle map actions inside a custom map controller module, which is
defined in controllers/mapcontroller.js (see listing 4.5). I’ve found that keeping this
action separate makes maintenance easier. If I need to make changes, I can manage
how the map is built in a single module.

define([
 'controllers/mapcontroller',
], function (MapController) {
 function mapLoaded(map) {
 console.debug('map has been loaded', map);
 }
 function init(config) {
 var mapCtrl = new MapController(config);
 mapCtrl.load().then(mapLoaded);
 }
 return {
 init: init
 };
});

Listing 4.3 main.js–starting the application

Listing 4.4 controllers/appcontroller.js

Loads application controller

 Loads module when page is ready

Initializes application
controller with parameters

Indicates dependency on
controllers/mapcontroller

iggered
ter map
ads

Indicates initialize function

tializes new
pControlle

Loads MapController and
waits for load to finish

Exposes initialize function

85Building a real-world application
At this point, the only responsibility the application controller has is to initialize the
mapcontroller with the configuration file and load it. When it’s loaded, you’re
returned a JavaScript promise like the ones discussed in chapter 3 when building the
legend widget. When that load is complete, you send a message to the console to
notify you that an action happened.

LOADING THE MAP WITH OPTIONS

We need to cover one last module before you can see the fruits of your labor: the map
controller that was mentioned in the preceding section. The controllers/

mapcontroller loads the map with the specified options and uses a dojo/Deferred
object to let you know when it’s complete. The map controller code is shown in the
following listing.

define([
 'dojo/_base/declare',
 'dojo/_base/lang',
 'dojo/on',
 'dojo/Deferred',
 'esri/map'
], function (declare, lang, on, Deferred, Map) {
 return declare(null, {
 map: null,
 options: {},

 constructor: function(options) {
 this.options = lang.mixin(this.options, options);
 },

 load: function() {
 var deferred = new Deferred()
 , mapLoaded = lang.hitch(this, function() {
 deferred.resolve(this.map);
 });

 this.map = new Map(this.options.elem, this.options.mapOptions);
 on.once(this.map, 'load', mapLoaded);
 return deferred.promise;
 }
 });
});

USING THE DECLARE MODULE

The map controller may be only a few lines of code, but quite a bit is happening here,
including new modules for us to cover. The first is the dojo/_base/declare module.
The declare module is used in Dojo to generate JavaScript classes; you’ll become
more familiar with it in chapter 5 when you start to build a custom edit widget. You
use it to declare a new class that this module will provide. Technically, JavaScript
doesn’t have classes, but declare can be used to create class-like constructors. As you
can see, it’s aptly named. There’s no hard rule that states you must use the Dojo

Listing 4.5 controllers/mapcontroller.js

Builds classes in Dojo
Provides suite of utility functions

Listens to
events

Generates JavaScript promises

Specifies ArcGIS API for
JavaScript map module

Returns null as
first argument

Calls first function

Instantiates new map

Creates new
instance of map

Listens once for
load eventReturns

promise

86 CHAPTER 4 Building an application
modules to generate JavaScript classes; you could use the prototype method to add
methods to the class. The following snippet is roughly equivalent to what you do with
the declare module:

var MapController = function(options) {
 this.options = options;
};
MapController.prototype.load = function() {};

The way I see it, when in Rome, do as the Romans do. You have a multitude of tools
available in the Dojo Toolkit provided by the ArcGIS API for JavaScript; you may as well
take advantage of them. When using a module built with declare, you can instantiate
a new instance of that class by calling new MapController(options), and the first
method that gets called is the constructor method. You typically pass in objects that
will contain parameters for this module and then use

this.options = lang.mixin(this.options, options)

to copy the provided options to the options object. This saves the effort of writing the
code to loop over the options object and copying the properties yourself.

USING THE LANG MODULE

When you call the load method, a few things happen.
 First you create a new Deferred object so you can use the Promises API in this module.
 Next you create a new function, but you do so in an interesting way. You use the

dojo/_base/lang module with a method called hitch. The purpose of this method is
to resolve a deferred instance, meaning to return the result using map after it has been
loaded. But the map is bound to the instance of the controllers/mapcontroller
module, so the only way to access it is via this.map.

 Because the function is being used as a handler function to an event on the map,
that function doesn’t have access to this.map of the mapcontroller. Does that sound
a little confusing? It might, as all this has to do with how the this keyword is handled
in JavaScript, which is based on the context in which the function was called. In this
case, the mapcontroller didn’t call the mapLoaded function, but it was triggered by
the 'load' event of the map, so you need a way to get access to this.map inside map-
Loaded. This is where lang.hitch comes in. This utility method binds the this key-
word inside a function to any object passed as the first argument in lang.hitch:

mapLoaded = lang.hitch(this, function() {
 deferred.resolve(this.map);
 });

The utility method lang.hitch returns a function that binds the map controller
instance to the function passed to it. This allows it to access this.map in the handler.
You could also write this without lang.hitch:

var that = this;
mapLoaded = function() {
 deferred.resolve(that.map);
};

87Adding layers and using the renderer
Doing it this way, you can bind an instance of the map controller to a variable called
that and use that in the handler methods. But again, because you have all these tools
available, you should use them when you can. It may help you later solve some mind-
numbing problem you come across. If you were to launch your application now, you’d
see a map in your browser, similar to the one shown in figure 4.15.

 Hmm, if you’re thinking this looks an awful lot like the first samples you built in
chapter 2 that used only a few lines of code compared to the multifile setup you just
put together, you’re right. But the way you’ve structured the application now makes it
easier to scale as new features are added. You’ve also worked with more of the Dojo
modules. A few more steps are required to get the application looking like our goal
for this chapter. In the next section, you’ll focus on making the application look good.

4.4 Adding layers and using the renderer
Previously in the chapter, I discussed how you’d capture the census tract number in
which a request was placed, so you’re going to use a Census Tract map service and
modify its appearance to fit the needs of the application.

 This section covers the following:

■ Using a custom renderer to display data
■ Using Bootstrap with ArcGIS API for JavaScript
■ Creating a custom widget to help with editing

4.4.1 Adding layers with a module

To accomplish this task, you’re going to create another module that creates instances
of FeatureLayer to use in the map. The code for the services/mapservices module
is shown in the following listing.

Figure 4.15 Result of
the first draft of your web
application

88 CHAPTER 4 Building an application

define([
 'esri/layers/FeatureLayer'
], function(FeatureLayer) {

 function loadServices() {
 var layers = []
 , censusLayer;
 censusLayer = new FeatureLayer(
 'http://services.arcgis.com/V6ZHFr6zdgNZuVG0/' +
 'arcgis/rest/services/' +
 'CensusLaborDemo/FeatureServer/1'
);

 layers.push(censusLayer);

 return layers;
 }

 return {
 loadServices: loadServices
 };
});

This module is pretty straightforward. Its only responsibility is to generate instances of
new FeatureLayers and add them to an array that you can use to add them to the map.

 Let’s return to the main.js file, where you built the configuration for your applica-
tion, and modify it, as shown in the following listing.

require([
 'controllers/appcontroller',
 'services/mapservices',
 'dojo/domReady!'
], function (appCtrl, mapServices) {

 appCtrl.init({
 elem: 'map-div',
 mapOptions: {
 basemap: 'gray',
 center: [-118.241,34.0542],
 zoom: 12
 },
 layers: mapServices.loadServices()
 });

});

You were able to easily modify the main.js file to add an array of layers that are gener-
ated by the services/mapservices.js module.

 Now that you’ve modified the configuration, modify controllers/mapcontroller
.js to load the layers in the map, as shown in the next listing.

Listing 4.6 services/mapservices module

Listing 4.7 main.js–modified with services/mapservices

Creates new
FeatureLayer for map

Creates function to
return array of FeatureLayers

Adds dependency
to main.js

Adds layers property
to configuration file

89Adding layers and using the renderer

define([
 ...
], function (declare, lang, on, Deferred, Map) {
 return declare(null, {
 ...
 load: function() {
 var deferred = new Deferred()
 , layersAdded = lang.hitch(this, function() {
 deferred.resolve(this.map);
 });

 this.map = new Map(this.options.elem, this.options.mapOptions);

 on.once(this.map, 'layers-add-result', layersAdded);

 this.map.addLayers(this.options.layers);

 return deferred.promise;
 }
 });

});

All you need to do to the mapcontroller is modify it slightly so that instead of listen-
ing for the 'load' event to occur, you listen for the 'layers-add-result' event,
which fires when the layers you add by using map.addLayers() are loaded. This
method takes an array of layers, which coincidentally happens to be what you have in
the options of the mapcontroller. Remember, the mapcontroller is passed the
configuration object (defined in main.js) and binds those values to its own option

Listing 4.8 controllers/mapcontroller.js–modified to add layers

Changes name of
handler function

Listens for
layers-add-result
instead of load Adds layers to map

Figure 4.16 Adding the
Census Tract map service
to the application

90 CHAPTER 4 Building an application
property. Because you’re no longer listening for the map to load, but for when the
added layers are loaded, change the handler’s function name from mapLoaded to
layersAdded to better reflect what you’re doing.

 Refresh the application in the browser to see the Census Tract map service, as
shown in figure 4.16.

 That’s absolutely beautiful, a true measure of cartographic excellence. But now
you can’t see the streets or the city names on the map. Plus the color scheme of the
map is designed to reflect how much of the population is employed in each census
tract. That doesn’t fit into your plans for using the data, so let’s modify it.

4.4.2 Using the renderer

When working with map services in the ArcGIS API for JavaScript, you may want to
change what the map service looks like. If you’re lucky, you could make a phone call
to whomever made the service and request the change to be made. But maybe the
look of the service is locked in because it’s used across multiple applications. No need
to worry, as you have the ability to define how you want that service to look. You’re
going to build a utility module that you can use to define the look of the layer in the
map. The following listing shows what this module looks like.

define([
 'esri/Color',
 'esri/symbols/SimpleFillSymbol',
 'esri/symbols/SimpleLineSymbol'
], function(Color, SimpleFillSymbol, SimpleLineSymbol) {

 return {
 renderSymbol: function() {
 return new SimpleFillSymbol(
 SimpleFillSymbol.STYLE_SOLID,
 new SimpleLineSymbol(
 SimpleLineSymbol.STYLE_SOLID,
 new Color([255, 255, 255]), 1
),
 new Color([128,128,128, 0.5])
);
 }
 };
});

As discussed in chapters 2 and 3, the ArcGIS API for JavaScript provides a handful of
modules in the esri/symbols namespace to define how features are drawn in the
browser. The modules are dependent on the esri/Color module to define the colors
they use. The Color module uses RGB (red, green, blue) to define colors.

TIP To give you an idea of how RGB colors work, an RGB value of 0,0,0 is
black, a value of 255,255,255 is white, and a multitude of values and combi-
nations exist between them.

Listing 4.9 utils/symbolUtil.js module

Imports esri/Color to define colors Defines appearance
of polygons

Defines appearance
of lines

Returns simple object
with utility function

91Adding layers and using the renderer
The census tracts in our service are polygons, so you define a SimpleFillSymbol that’s
a solid color to fill them with. You could also make this a hatched symbol, meaning the
fill would be multiple lines instead of a solid color. The second argument indicates
what you want the outline of the polygon to look like. In this case, you make the out-
line white by setting the color to new Color([255,255,255]), and the third argument
defines the color you want the polygon fill to be. You make this a light gray color with
a transparency of 50%. Transparency of a color can be set by passing a fourth element
in the RGB array to represent the transparency, as shown in the code: new
Color([128,128,128, 0.5]).

4.4.3 Applying the renderer

After you instantiate the layer for the census tracts, you can use the utility module that
helps define what the census tracts in the application should look like. Applying the
utility module in the services/mapservices.js module makes sense because it’s
responsible for generating layers for the application. You can see what this modifica-
tion looks like in the next listing.

define([
 'esri/layers/FeatureLayer',
 'esri/renderers/SimpleRenderer',
 'utils/symbolUtil'
], function(FeatureLayer, SimpleRenderer, symbolUtil) {

 function loadServices(config) {
 var layers = []
 , censusLayer,
 , renderer;

 censusLayer = new FeatureLayer(
 'http://services.arcgis.com/V6ZHFr6zdgNZuVG0/' +
 'arcgis/rest/services/' +
 'CensusLaborDemo/FeatureServer/1'
);
 renderer = new SimpleRenderer(symbolUtil.renderSymbol());
 censusLayer.setRenderer(renderer);

 layers.push(censusLayer);

 return layers;
 }

 return {
 loadServices: loadServices
 };
});

You want to change the overall appearance of the Census Tract map service so it
doesn’t overpower the map in your application. You’ll use a SimpleRenderer, which

Listing 4.10 services/mapservices.js–modified to apply renderer

Adds reference to
SimpleRenderer
and utility module

Creates new
SimpleRenderer
using utility module

Applies
renderer
to feature
layer

92 CHAPTER 4 Building an application
will change the appearance of all items in the layer. If you wanted to change the
appearance in a more complicated manner (say, by grouping the appearance of cen-
sus tracts by a certain criteria), you could do that also, but that isn’t the purpose of the
application.

 That’s the only change you need to make to change the appearance of the census
tracts in the application. You can see what the application looks like now in figure 4.17.

 The census tracts no longer overpower the entire map in terms of the coloring
scheme, and you can still see city names and streets. As you can see, it’s not difficult to
alter the appearance of layers used in web mapping applications when the need arises.
Feel free to experiment with the color and adjust to your liking. The next step is to get
ready to start editing.

4.4.4 Setting up the editing tools

You need to build an interface that allows the user to add data to the map. Remember,
this is meant to be used on a mobile device, so it would be nice if this tool was as sim-
ple to use as possible. The ArcGIS API for JavaScript does come with a neat built-in
widget called the TemplatePicker, that, similar to the built-in legend Dijit discussed in
chapter 3, is provided as an out-of-the-box solution. Figure 4.18 shows what the
TemplatePicker might look like for your application.

Figure 4.17 The application
after altering the appearance of
the census tracts layer

Figure 4.18 Out-of-the-box ArcGIS TemplatePicker using your
Request feature service

93Adding layers and using the renderer
This is a great tool and something I recommend if you’re building a larger applica-
tion targeted more toward users working on desktop computers. You could probably
work with it, but remember, you want to focus on simple in terms of usability for the
user. So to do this, you’re going to flex some of the skills you learned in section 4.3.2
about building classes with dojo/_base/declare and the custom widget you built in
chapter 3 to build a simple customer editing tool.

BOOTSTRAP CSS: IT’S NOT CHEATING

I’ll be frank: I may be able to make a decent-looking map by using the cartographic
skills I’ve picked up over the years, but when it comes to designing a stylish website,
I’m not exactly an accomplished designer. To assist in making slick-looking tools,
you’re going to use a framework that many other web developers use: Bootstrap.

To reference the Bootstrap style sheet in your index.html file, enter the code as shown
in the following listing.

<!doctype html>
<html>
 <head>
 <title>ArcGIS Web Development</title>
 <link href="css/bootstrap.min.css" rel="stylesheet">
 <link
 href='http://js.arcgis.com/3.113.11/js/esri/css/esri.css'
 rel='stylesheet'
 />
 <link href='css/main.css' rel='stylesheet'/>
 </head>
 …
</html>

The Bootstrap style sheet comes in handy not only as you build this application but
also when you need to quickly get other applications up and running. I’ll give you
one tip about using Bootstrap with the ArcGIS API for JavaScriptafter you look at
figure 4.19.

 Notice anything odd here? After adding the Bootstrap style sheet, the map width is
limited to a certain size. If the browser width is larger than that size, you end up with
whitespace at the right side of the application. It took me a little debugging to see why

Installing Bootstrap

Go to http://getbootstrap.com/ and download the latest version.

Extract the zip file and find the dist folder in the download.

Copy the css and fonts folders into the root of your application so that the fonts folder
is at the same level as the js and css folders (app/css, app/js, app/fonts).

Listing 4.11 index.html–added Bootstrap style sheet

Adds reference to
Bootstrap style sheet

http://getbootstrap.com/

94 CHAPTER 4 Building an application
this was happening. Using the browser debug tools in Chrome, I figured out that the
HTML element that contains the map has a class called container, and Bootstrap has
a specific styling for elements with a class name of container. You can see this in fig-
ure 4.20.

 To correct this, you can modify your own style sheet to override the Bootstrap style
sheet. You can see how that’s done in the following snippet for css/main.css:

#map-div {
 position: absolute;
 top: 0;
 right: 0;
 left: 0;
 bottom: 0;
}

#map-div .container {
 max-width: 100%;
}

Figure 4.19
The application after
adding the Bootstrap
style sheet

The HTML element that contains the
map has a class name called “container”.

Bootstrap defines the class “container”
to have a certain width.

Figure 4.20 Chrome debug console to debug style sheet conflicts

Overrides Bootstrap style sheet
for map HTML element

95Adding layers and using the renderer

C
co
te
st
The preceding snippet says that for any HTML element that has a class container with
an id of map-div, make the max-width equal to 100%. This overrides the Bootstrap
style for container, but only in your map. This is a small price to pay to have access to
the nice styling you get with Bootstrap when building applications.

EVERYONE LIKES BUTTONS

When you think about the process of adding a request to the map, you need to think
about the workflow. How do you guide the user in adding a request to the map? Add a
request every time the user clicks or touches the map? Maybe, but that could get
tough to manage if the user touches it a bunch of times when trying to pan or when
cleaning a smudge off the screen. It’s tough to get much simpler than adding a button
users can push and enabling them to click on the map to add a point where they’d
like. So that’s what you’ll set up: adding a button. This isn’t just any button, though.
This button will handle the bulk of the editing workflow, so you’re going to build this
button as a custom widget. Start by creating a template HTML file that contains the
HTML for your button:

<button type="button" class="btn btn-primary">Add Request</button>

This button has class names related to bootstrap styling.

NOTE The code for this section is available in the chapter4 folder of the
source code included with the book. See app/js/widgets/edit/editTools
.tpl.html.

When working with template HTML files like this one, I prefer to add the tpl extension
before the html extension. This is a preference and not a requirement. It helps me
remember that I’m working with a template file.

4.4.5 Assigning an action to a button

A button that does nothing or provides no feedback is useless. You want to display
feedback to the user that an action is taking place after the button click—for example,
by changing the text or the color of the button. To see how this works, let’s do both.

 With the template file complete, let’s build a custom editing widget that tells users
to click to start editing and lets them know they’re currently editing. The following
listing provides the code for this custom widget.

define([
 'dojo/_base/declare',
 'dojo/_base/lang',
 'dojo/on',
 'dijit/_WidgetBase',
 'dijit/_TemplatedMixin',
 'dojo/dom-class',
 'text!widgets/edit/editTools.tpl.html',
], function(

Listing 4.12 widgets/edit/editTools.js

Base class for Dojo widgets
Module enabling widget’s
template file

Helper module for changing
CSS styles of HTML elements

ommand
nverting
mplate to
ring

96 CHAPTER 4 Building an application
 declare, lang,
 on,
 _WidgetBase, _TemplatedMixin,
 domClass, template
) {
 return declare([_WidgetBase, _TemplatedMixin], {

 templateString: template,
 options: {},
 editing: false,
 map: null,

 constructor: function(options) {
 this.options = options || {};
 this.map = this.options.map;
 },
 postCreate: function() {
 this.own(
 on(this.editNode, 'click', lang.hitch(this, '_addRequest'))
);
 },
 _addRequest: function() {
 this.editing = !this.editing;
 this._toggleEditButton();
 },
 _toggleEditButton: function() {
 if(this.editing) {
 this.editNode.innerHTML = 'Adding Request';
 } else {
 this.editNode.innerHTML = 'Add Request';
 }
 domClass.toggle(this.editNode, 'btn-primary btn-success');
 }
 });
});

A lot is happening in the custom widget. Much of this you saw in section 4.3.2, when
you used the dojo/_base/declare module to create custom classes for use in the
application. This time, you’re using the declare module to create a new widget that
will also extend a couple of other Dojo Dijits.

USING THE WIDGETBASE MODULE

I won’t get into too much detail, but the dijit/_WidgetBase module handles the life-
cycle of a widget. This module has all the functions built in that you can access when a
widget is created. The module indicates what happens before the HTML element is
created, what happens after it’s created, and what happens when it’s removed. Don’t
worry too much about this lifecycle process, but for more details, review appendix B.

USING THE TEMPLATEDMIXIN MODULE

The dijit/_TemplatedMixin module is handy when creating widgets that are based on
HTML elements, such as our button. This module allows you to define a template for
your widget and also allows you to add references in the HTML template to methods on

String of template
HTML file

Listener added for
button click

Method used to start editing

Method to control
button appearance

97Adding layers and using the renderer
the widget to handle what happens when a button is clicked, for example. You initialize
this widget with a set of options that include a reference to the map, but you also pass
it a reference to an HTML element where you want this widget to be placed on the page.
You start to do some interesting stuff in the two methods defined as _addRequest and
_toggleEditButton. The underscores at the beginning of method and property names
designate that those methods and properties are intended to be used internally by the
class only, so you wouldn’t call editTools._addRequest(). Again, this is another sub-
jective preference but is widely used when building Dojo applications.

DOJO DIJIT LIFECYCLE

A few of the methods you’re using in the custom widget have to do with the Dojo Dijit
lifecycle as defined by dijit/_WidgetBase. You can read more details about this life-
cycle in appendix B. The common methods are as follows:

■ Constructor—Initializes a widget.
■ postCreate—Runs when the HTML elements of the widget are built but may

not be on the page yet. By using this method, you can start attaching event
listeners.

■ startup—Runs after the HTML elements are built and inserted into the page.
If you have to do anything involving any style lookups, this is the place to do it.

■ destroy or destroyRecursive—The destroy method is part of the Dijit
lifecycle, but to destroy child widgets, use the destroyRecursive method. Call
this method on a widget when it’s done being used and is removed from the
page (for example, an order form). This cleans up the widget and removes it
from memory. You don’t typically need to override destroy, as the Dijit will nor-
mally clean things up, but if you create a widget inside this module that is not a
child widget, you might need to perform the cleanup manually.

WIDGET AND TEMPLATE COMMUNICATION

In the _addRequest method you toggle whether the tool is currently editing. This will
come in handy if you ever need to check whether an edit session is already occurring
(hint: we’ll do that right now). Then you call the _toggleEditButton method. This
method does exactly what it says it does. It checks whether the widget is currently edit-
ing and sets the text of the button to reflect what’s happening by using the
this.editNode.innerHTML property. The innerHTML property of HTML elements
allows you to change the values inside them, using plain text or more HTML elements.
Then you can use the domClass module provided with Dojo to toggle a couple of class
names on this.editNode. What domClass.toggle does is add the class name sup-
plied if the HTML element doesn’t already have it, but if it does have it, it will remove
it. In Bootstrap styling, btn-primary styles the button blue, and btn-success styles
the button green.

 But what is the this.editNode that we keep referring to? You can use some Dojo
magic with the assistance of the dijit/_TempaltedMixin by adding attributes to your
HTML template file that allow you to access HTML elements in the template from your

98 CHAPTER 4 Building an application
code. You can even tell the template to call methods in the widget directly. You can see
what this looks like by looking at your modified template:

<button type="button" class="btn btn-primary btn-edit"
 data-dojo-attach-point='editNode'Add Request</button>

In this template, you’ve provided an attribute called data-dojo-attach-point with a
name of editNode. This enables you to reference this node in your widget by using the
this.editNode property. That’s a nifty feature. You then use this.editNode to listen
for click events in widgets/edit/editTools.js and call the _addRequest method. All you
need to do is instantiate the module inside the application. You do that in the applica-
tion controller, as shown in the next listing.

define([
 'controllers/mapcontroller',
 'widgets/edit/editTools'
], function (MapController, EditTools) {

 function mapLoaded(map) {
 var editTools = new EditTools({
 map: map
 }, 'map-tools');
 }
 ...
});

When you instantiate a new EditTools, you’ll also provide it a reference to the map so
the EditTools can have access to the map when you start the edit functionality. You’ll
also provide EditTools a reference to the id of an HTML element you already have in
index.html called map-tools. You need to do one last thing for everything to come
together: edit the main.css style sheet, as shown in the following listing.

#map-div {
 position: absolute;
 top: 0;
 right: 0;
 left: 0;
 bottom: 0;
}

#map-div .container {
 max-width: 100%;
}

#map-tools {
 position: absolute;
 top: 1em;
 right: 1em;
}

Listing 4.13 controllers/appcontroller.js–added edit widget

Listing 4.14 css/main.css

Adds reference to
custom edit widget

Instantiates widget with
options and reference node

Adds style for map-tools
at upper right

99Summary
With all of this in place, if you launch the application, you should see a screen similar
to what was shown in figure 4.12. If you click the Add Request button a few times, the
text label and the color of the button toggle. Figure 4.21 illustrates.

 This is a simple but effective method of providing feedback to the user that some-
thing is happening in the application. Users like feedback from the applications and
web pages they use.

4.5 Summary
■ This chapter covered quite a bit of material, and you haven’t even started writ-

ing the code to do the edits using HTML5 features yet. You now know how to
acquire a free ArcGIS developer’s account and set up your own feature services.
This is a valuable resource for developers because you no longer need to have
access to a full ArcGIS Server installation to publish or even edit data. This will
prove invaluable in the next chapter. You also set up an ArcGIS Online account
and published a feature service in ArcGIS Online.

■ You should be huffing and puffing by now, as you just covered a slew of material
about not only ArcGIS API for JavaScript modules but also important Dojo mod-
ules used for creating classes and widgets. You used promises in your modules,
dojo/_base/declare to build your modules, and dojo/_base/lang to handle
JavaScript scope.

■ You customized a FeatureLayer with a custom renderer, styled your map with
CSS and Bootstrap, and enabled a widget and its template to communicate with
each other.

Figure 4.21 The Add Request toggle button changes based on user action

100 CHAPTER 4 Building an application
■ Previous chapters covered building basic samples and even building a custom
widget, but this chapter went into much more detail about how to configure
Dojo for your application and dived into the details of how Dojo classes and
widgets are built. You didn’t get to edit data yet, but you did lay some major
groundwork for yourself.

You now have a good base to finish building out the application with the required
editing functionality to collect new requests, as you'll do in chapter 5.

Developing a custom
data-collection application
By now you should have a fairly good grasp of how to write modular JavaScript by
using the ArcGIS API for JavaScript. In chapter 4, you used core Dojo modules to
build the base for what will become a custom edit widget in this chapter. Here,
you’ll learn how to use the default Editor widget provided with the ArcGIS API for
JavaScript, and how you can add, delete, and even update map locations. You’ll
look at basic authentication so only authorized users can apply edits to your data.
Because your goal is for this application to be used on mobile devices, you’ll learn
how to accomplish these edits when you lose an internet connection, which can
happen far too often on these devices.

 When ArcGIS web mapping was in its infancy, there weren’t any capabilities in
terms of editing your data online. Every now and then at a conference or a small
gathering of GIS professionals, you may have heard how they hacked together some

This chapter covers
■ Using out-of-the-box edit tools
■ Creating custom edit tools
■ Performing basic authentication for your application
■ Using HTML5 features
■ Enabling disconnected editing
101

102 CHAPTER 5 Developing a custom data-collection application
editing capabilities into their web mapping applications. Today, we have a rich suite of
tools in the ArcGIS web APIs to accomplish these tasks. The editing capabilities aren’t
anywhere near what can be found on desktop software, but for general use they’ve
become commonplace among many web mapping applications. Especially with the
penetration of mobile devices into everyday use, almost anyone can create data with a
web mapping application, such as submitting up-to-date traffic conditions, reporting
emergency repairs to a local municipality, or submitting requests for a new stop sign
in your neighborhood. The OpenStreetMap project is an entire dataset created by
contributions from everyday users. Anyone can contribute to the mapping project to
ensure that the street you live on is properly aligned on the map or that your local
library is shown. It’s a perfect example of how editing mapping data on the web can
lead to a quality set of data. For more information on the OpenStreetMap project,
visit www.openstreetmap.org.

 You’ll cover a lot of ground in this chapter, so let’s quickly look at what you’re
going to accomplish:

■ Use the free ArcGIS developer account feature service.
■ Modify what you built in chapter 4 to use the out-of-the-box editing tools.
■ Introduce the Identity Manager for secured map services.
■ Use the TemplatePicker and default Editor widgets.
■ Remove the default tools to build a custom edit tool.
■ Refine the custom edit tool to simplify the data collection process.
■ Figure out what to do when the application loses an internet connection.

In this chapter, you won’t get into the detail level of adding new streets to a base map
like the OpenStreetMap project, but you’ll add the capability for a user to submit a
new request via the mapping application. This request can be used to report a broken
street light, among other things. Let’s start with basic editing capabilities.

5.1 Performing default web map editing
The ability to edit or create data in a web mapping application has tremendous bene-
fits. The ability to use aerial imagery and GPS coordinates with a mobile device while
walking around outside and performing a task as simple as verifying the location of
fire hydrants or water meters is extremely powerful. There is no replacement for hav-
ing a surveyor verify locations from a known benchmark, but many times you only
need locations or coordinates that are good enough to get the job done. Esri, the
company providing the ArcGIS API for JavaScript, recognized this need some time ago
and began providing the tooling in ArcGIS Server and ArcGIS Online, along with their
suite of web APIs, to allow users to perform these editing tasks.

 To create and edit data with the ArcGIS API for JavaScript, you’ll use the feature ser-
vice you created with your ArcGIS for Developers account via ArcGIS Online. A feature
service is specifically designed to serve vector data and allows for the editing of that data.
Chapter 2 covered the types of data available for use in web mapping applications. In
chapter 4, you created a feature service; in this chapter, you’ll use a FeatureLayer to

103Performing default web map editing
access this feature service, as you did to access census data in chapter 4. This time, you’ll
use it to edit data. The workflow for this editing of data is shown in figure 5.1. The Arc-
GIS API for JavaScript requests data from ArcGIS Online, which sends an edit request to
the server, which in turn updates the source data and returns that newly edited data to
the browser.

 As you can see, this workflow is straightforward. The default editing widget pro-
vided by the ArcGIS API for JavaScript can make the implementation of this in your
application simple as well. In chapter 4, you built an application you’ll finish in this
chapter by using a custom editing tool. Before you do that, though, we’ll look at

Communicates with
REST API to edit

Server updates
source data

Sends edit request to
FeatureService

GIS
data

ArcGIS API for
JavaScript

REST endpoint URL
http://services.arcgis.com/randomid/arcgis/

rest/services/name/FeatureServer

REST APIArcGIS Server

Figure 5.1 Workflow of editing data with a feature service

Using custom edit tool

Using default edit tool

Figure 5.2
Side-by-side comparison
of the application using
custom (left) and
default (right) edit tools

104 CHAPTER 5 Developing a custom data-collection application
what’s available in the ArcGIS API for JavaScript so you’ll know what’s in your toolbox.
Figure 5.2, shown on the previous page, compares the out-of-the-box editing tools that
the ArcGIS JavaScript API offers and the custom tool you’ll build in this chapter.

 Before you can move on with editing your data or look at the default or custom
edit widgets, you need the URL to the feature service you created in chapter 4.

5.1.1 Finding feature service information

Log in to your account at https://developers.arcgis.com and click the Hosted Data
link at the top of the page. You’ll end up on the My Hosted Data page, shown in
figure 5.3, which lists all the services that you created using your developer account.

Next, click the Requests service that you created in chapter 4. This opens a page show-
ing Service Details, but for now, click the Layers menu option at the left, as shown in
figure 5.4.

Click here.

Figure 5.3 List of hosted data in ArcGIS developer account

Click here.

Copy this URL.

Figure 5.4 Where to find the URL for services in your ArcGIS developer account

https://developers.arcgis.com

105Performing default web map editing
Clicking the Layers menu opens a simple map that will eventually show the data you
collect. Under the map is a text box that contains the URL for your feature service
you’ll be editing. Copy this URL, and keep it somewhere you can find it, as you’ll use it
to get your editing application up and running.

5.1.2 Adding your feature service to the map

Two widgets in the ArcGIS API for JavaScript are designed to be used together to get a
simple editing application up and running quickly: the TemplatePicker and the
Editor. The TemplatePicker displays the names of editable features and their sym-
bols, similar to a legend. It does little except allow you to click and unclick the symbol
for a feature. Not too impressive. But when combined with the Editor widget, it can
be used to activate editing on a selected feature in the TemplatePicker and create
new features. All of a sudden, it’s been given a whole new purpose in life.

To use the TemplatePicker, modify the code you wrote in chapter 4 as follows:

■ Remove your custom module from controllers/appcontroller.js.
■ Add a reference to your editable feature service in services/mapservices.js.

In addition, I’ll introduce you to the IdentityManager to help you work with secured
map services, and I’ll cover the default edit widget modules provided by the ArcGIS
API for JavaScript.

NOTE The code for this section is available in the chapter5/part1 folder of
the source code included with the book.

ADD THE EDITABLE FEATURELAYER TO THE MAP

Let’s start by deleting the EditTools widget from the mapLoaded function in your con-
trollers/appcontroller.js file. Your mapLoaded function is now empty:

function mapLoaded(map) {
}

Next, modify your services/mapservices.js file to add your editable feature service and
make it available to add to your map. You’re going to use your editable service to

More tools available

The TemplatePicker and Editor widgets aren’t the only tools available for editing.
You can add edit tools to the TemplatePicker when used with the Editor widget to
provide more editing options, such as moving features, rotating them, or changing
their shape. This book doesn't cover this added functionality of the TemplatePicker.
But when you build your custom edit tool in this chapter and implement editing in the
desktop application built in the next chapter, you’ll have a better understanding of
how to accomplish these tasks.

106 CHAPTER 5 Developing a custom data-collection application
create a new FeatureLayer and add it to the array that your map can use to display it.
Let’s look at the following listing to see your new services/mapservices.js file.

define([
 ...
], function(FeatureLayer, SimpleRenderer, symbolUtil) {
 var CENSUS_URL =
 'http://services.arcgis.com/V6ZHFr6zdgNZuVG0/' +
 'arcgis/rest/services/CensusLaborDemo/FeatureServer/1'
 , REQUEST_URL =
 'http://services1.arcgis.com/QKasy5M2L9TAQ7gs/' +
 'arcgis/rest/services/Requests/FeatureServer/0';

 function _loadServices(config) {
 var layers = []
 , censusLayer = new FeatureLayer(CENSUS_URL, {
 id: 'Census'
 })
 , requestLayer = new FeatureLayer(REQUEST_URL, {
 id: 'Requests',
 mode: FeatureLayer.MODE_ONDEMAND,
 outFields: ['*']
 })
 , renderer = new SimpleRenderer(symbolUtil.renderSymbol());
 censusLayer.setRenderer(renderer);
 layers.push(censusLayer);
 layers.push(requestLayer);
 return layers;
 }
 return {
 loadServices: _loadServices
 };
});

You add the URL of your feature service as a variable called REQUEST_URL to your file.
The use of uppercase for the URL variables is a way to denote to us as developers that
these variables are constant and aren’t intended to be changed. Then you create a
new FeatureLayer by using this URL as well as some options.

 Chapter 2 covered the details of a FeatureLayer, but one new option introduced
here is outFields. By specifying outFields as ['*'], you’re asking the server to
return all the fields associated with your data. You could limit the fields returned by
specifying them here as ['IssueType', 'Description'], but in this case, you ask for
all of them. Also note that you’re now providing an id in your options, which makes it
much easier to find this layer later when you start using your edit tools. Because you
add requestLayer to the array of layers, you don’t have to do anything else to the new
layer to the map. If you now run your application, you won’t see your Add Request
button anymore because you removed it, and you won’t see any data from your fea-
ture service because it should be empty still—but trust me, it’s there. Or is it?

Listing 5.1 services/mapservices.js–modified to add your editable feature service

Adds URL of
feature service

Creates new
FeatureLayer
using URL

Adds FeatureLayer
to array

107Performing default web map editing
AUTHENTICATION WITH IDENTITY MANAGER

When you try to run the application at this point, you may not notice any errors in the
browser. But if you open the debugging tools for your browser, you’ll probably notice
a strange error. For example, in the Chrome debugging tools, you’ll see an error with
a message Token Required, as shown in figure 5.5.

 Well, that can’t be good! Because the services you create by using your free ArcGIS
developer account are secured, they require authentication before you can access
them. To implement a simple authentication implementation based on username and
password, you’ll use the Identity Manager module provided in the ArcGIS API for
JavaScript. The Identity Manager automatically looks for this error and pops up a dia-
log box prompting you to log in to your developer account to access and use the ser-
vice. Use the username and password you created for your ArcGIS developer account
for IdentityManager.

 Adding the Identity Manager to your application is a three-step process:

1 Modify the dependencies for your controllers/appcontroller.js file as follows to
add a reference to the IdentityManager:

define([
 'controllers/mapcontroller',
 'esri/IdentityManager'
], function (MapController) {
 ...

2 Add the appropriate style sheet reference and a class name to your application
HTML in the index.html file:

<html>
 ...
 <link
 rel="stylesheet"
href="http://js.arcgis.com/3.11/dijit/themes/nihilo/nihilo.css
 ">
 <link
 href='http://js.arcgis.com/3.11/esri/css/esri.css'
 rel='stylesheet'
 />
 <link href='css/main.css' rel='stylesheet'/>
 </head>
 <body class="nihilo">
 ...
 </body>
 ...
</html>

Figure 5.5 Error message after adding the feature service to the application

Adds reference to
nihilo stylesheet

 Adds nihilo class to page

108 CHAPTER 5 Developing a custom data-collection application
Adding this style sheet, and adding the class name to the body of the page applies the
Dijit Nihilo theme to the IdentityManager dialog box.

NOTE A handful of other themes are available, but I prefer to work with the
Nihilo style because it seems the least flashy. You can read more about the
Dojo themes available at http://dojotoolkit.org/reference-guide/1.9/dijit/
themes.html.

Voilà: you have an instant authentication tool for the application. When you refresh
the browser, you should be greeted with a prompt to sign in to your ArcGIS Online
account, as shown in figure 5.6.

 Notice that you didn’t have to initialize the Identity Manager in your code or inter-
act with it in any way. It’s specifically designed to recognize that you’re trying to access
a secured ArcGIS Online service and handles the authentication process for you.
Chapter 6 covers other options for authentication using the provided proxy page that
are quite interesting as well.

Are you using the compact build?

If you noticed that you were prompted with the Sign In dialog box without having to
manually add a reference to the Identity Manager, you’re probably accessing the full
ArcGIS API for JavaScript library through the URL http://js.arcgis.com/3.7. When using
that URL, the standard API is downloaded and ready for use, including many of the
Dijit modules available for the API.

Figure 5.6 Sign-in
prompt when using
Identity Manager

http://dojotoolkit.org/reference-guide/1.9/dijit/themes.html
http://dojotoolkit.org/reference-guide/1.9/dijit/themes.html
http://js.arcgis.com/3.7

109Performing default web map editing
5.1.3 Adding the TemplatePicker and default Editor widgets

Now that you have the Identity Manager in place and can access your feature service,
let’s begin adding the default editing widgets to your application. To ensure that the
TemplatePicker shows up on the page, add an HTML div element for the Template-
Picker to reference and display on the page. Modify the index.html file as shown here:

<html> ...
 <body class="nihilo">
 <div id="map-div"></div>
 <div id="template-div"></div
 </body>
 ...
</html>

You want to style this HTML element so it displays correctly in your application. To
position it at the top right of the browser, add a style reference for #template-div in
your css/main.css file:

#template-div {
 position: absolute;
 top: 50px;
 right: 5px;
}

That’s it for styling and positioning; you can now move on to writing code. You want to
initialize a new TemplatePicker with some options. A TemplatePicker needs to know
the following:

■ The featureLayers it’s supposed to display
■ The number of columns and rows it should have
■ The id of the HTML element that you want it to display in

Modify your controllers/appcontroller.js file to set the options for number of rows
and columns, as shown in the following listing.

 define([
 'dojo/_base/array',
 'controllers/mapcontroller',

Because you’re building an application intended for mobile devices, I usually recom-
mend using the compact build with the URL http://js.arcgis.com/3.7compact. The
compact build loads only the bare minimum of modules to get an application running.
It’s up to the developer to add modules as needed, which is why in the example you
had to add a reference to the Identity Manager. It’s standard practice that applications
targeted for mobile devices use the compact build, and applications targeted for desk-
top browsers use the standard build.

Listing 5.2 controllers/appcontroller.js–adding the TemplatePicker

http://js.arcgis.com/3.7compact

110 CHAPTER 5 Developing a custom data-collection application
 'esri/dijit/editing/TemplatePicker',
 'esri/IdentityManager'
], function (array, MapController, TemplatePicker {

 function mapLoaded(map) {
 var requestLayer
 , layers = []
 , templatePicker;
 requestLayer = map.getLayer('Requests');
 layers.push(requestLayer);
 templatePicker = new TemplatePicker({
 featureLayers: layers,
 rows: 'auto',
 columns: 1
 }, 'template-div');
 templatePicker.startup();
 }
 ...
 });

FIND A LAYER BY ITS ID

Recall that in listing 5.1, when you added your feature service as a FeatureLayer to
the application, you assigned it an ID. You did this so you could easily find this layer
for later use in your application, as in this instance. The method map.getLayer()
finds a layer in the map by its ID. If no ID is specified when the layer is created, it’s
assigned a generic ID that you won’t know. So because you gave your layer an ID of
'Requests,' it now lets you quickly find it in a single line.

You add your FeatureLayer to an array that’s then used as part of the options of the
TemplatePicker. Set the number of rows to 'auto', and the columns to 1. If you
added more layers, the TemplatePicker would still be one column, but the rows will
grow as needed. You also pass as the second argument the ID of the HTML element
that you added to the index.html file previously.

 Now that you have all the style sheets and code in place, if you refresh the applica-
tion, you should see the TemplatePicker shown in figure 5.7.

 Hey, that looks cool! The TemplatePicker displays the symbols for your feature
service defined in your ArcGIS developer account, as well as the ID of the layer. It even

Don’t know the ID? No problem

The map has an array property called layerIds that contains the IDs of the layers in
the map. The standard way of getting the layers from the map when you don’t know
the ID is as follows:

var layers = array.map(map.layerIds, function(layerId) {
 return map.getLayer(layerId);
});

You use the Dojo array utility to loop over each ID in the map’s layerIds property,
and then find the layers by using the ID and storing the layers in an array.

Adds dependency
for TemplatePicker

Finds Requests layer

Initializes and starts
TemplatePicker

111Performing default web map editing
reads New Feature, which indicates that clicking it will let you add new features to the
map. Right now, though, if you click that button, it only changes colors, indicating it’s
selected. Next, you’ll wire this up to the Editor widget to make it useful.

ADD THE EDITOR

The Editor is a useful built-in widget when paired with the TemplatePicker. It needs
only a few bits of information to get the ball rolling. You need to create an array
referred to as layerInfos, which will specify which layers are editable with the Editor
widget. Then you provide it the map that the layers are in and give it a reference to
the TemplatePicker and you’re good to go. The updated controllers/appcontroller.js
file is shown in the following listing.

define([
 ...
 'esri/dijit/editing/Editor',
 'esri/dijit/editing/TemplatePicker',
 ...
], function (
 array,
 MapController,
 EditTools, Edit, Editor, TemplatePicker
) {

 function mapLoaded(map) {
 ...
 templatePicker.startup();
 var layerInfos = array.map(layers, function(layer) {
 return {
 featureLayer: layer

Listing 5.3 controllers/appcontroller.js–added Editor widget

Figure 5.7
TemplatePicker displayed
in your application

Adds reference to
Editor widget

Specifies
featureLayers
to edit

112 CHAPTER 5 Developing a custom data-collection application
 };
 });
 var settings = {
 map: map,
 templatePicker: templatePicker,
 layerInfos: layerInfos
 };
 var params = { settings: settings };
 var editorWidget = new Editor(params);
 }
 ...
});

One thing you may notice when you initialize the Editor widget is that you don’t use
the typical startup() method of standard Dojo Dijits, as you do with the Template-
Picker. In most cases, you use the startup() method only if the widget needs to per-
form some tasks related to position or styling. In this case, you didn’t provide a
reference to an HTML element to the Editor, so there’s no need for it to perform
these tasks. If you wanted to use the default Editor toolbar, you could provide a refer-
ence to an HTML element, which is covered in the next chapter.

 Now if you run your application and click the New Feature button of the
TemplatePicker, you can click the map to add a new point and fill out attribute infor-
mation. You should see a point and editable attribute window, as shown in figure 5.8.

Creates settings object

Initializes Editor widget
with parameters

Figure 5.8 The Editor widget combined with TemplatePicker allows adding
new features to the map.

113Building a custom edit tool
 Now you can quickly and easily add new features to the map. The window that
pops up allows you to provide attribute information for each feature that you add and
even to delete the feature. You also have the capability to add attachments to your
request. For example, suppose you took a picture of a broken street light. You could
attach that picture to the request to provide additional details. Using the Editor wid-
get with the TemplatePicker is a powerful tool set in web map editing and may be
your default choice if you’re asked to put something together in a hurry.

 I’ve found that the process of creating a request can be simplified even further for
the end user. It requires more work on the developer’s side, but the end result works
well on mobile devices. Plus it’s always more fun when you get to build a custom tool
as you’ll do next.

5.2 Building a custom edit tool
You’ve seen how the default edit tools in the ArcGIS API for JavaScript work and can
be used quickly in your custom application. There’s nothing inherently wrong with
the default tools, and if I were in a crunch to get something working quickly, they’d be
my first choice. But they do have limitations. Let’s say, for example, that you want to
autopopulate the Census Tract field based on the location of the request. Or what if
you lose your internet connection while adding a request to the map? To deal with
these kinds of scenarios, you need to build a custom edit tool.

 In chapter 4, you built the base for an application that lets you add a request with a
single click of a button. Previously in this chapter, you put that aside to use the default
edit tools. But now you’re going to remove the default edit tools and bring back your
custom edit tool, so you can build an application that looks like figure 5.9.

Figure 5.9 This custom edit
tool looks incredibly simple.

114 CHAPTER 5 Developing a custom data-collection application
NOTE The code for this section is available in the chapter5/part2 folder of
the source code included with the book. Unless otherwise stated, code listings
are located in the chapter5/part2/app/js folder.

To get started, remove the references to the TemplatePicker and Editor widgets in
your controllers/appcontroller.js file and put back the reference to your custom
widgets/edit/editTools.js file. Leave the reference to the Identity Manager in place
because you’re still loading your secured feature service. You should have a file that
looks like the following listing.

define([
 'controllers/mapcontroller',
 'widgets/edit/editTools',
 'esri/IdentityManager'
], function (MapController, EditTools) {
 function mapLoaded(map) {
 var editTools = new EditTools({
 map: map
 }, 'map-tools');
 }
 function _init(config) {
 var mapCtrl = new MapController(config);
 mapCtrl.load().then(mapLoaded);
 }
 return {
 init: _init
 };
});

This should look familiar, as it’s where you left off in chapter 4. Now you’re going to
focus on the edit tool.

5.2.1 Working with the custom edit functionality

Let’s step back for a second and think about the workflow for adding a request to the
map:

1 Initiating a request—Click the Add Request button. This action triggers a func-
tion so that when the map is clicked, you create a point at that location and it
displays.

2 Generating the request—Apply edits to FeatureLayer referenced in the map.
3 Adding the request—Display the new feature on the map.

Let’s start with the button-click step.

LISTEN FOR THE MAP CLICK EVENT

You already have a function set up in the custom edit tool to change the text and color
of the Add Request button when it’s clicked, so you can trigger a function to listen for
a map click in that function by using the dojo/on module introduced in chapter 4,
specifically in listing 4.12. This module is designed not only to work with application

Listing 5.4 controllers/appcontroller.js–adding your custom edit tool

Adds reference to
custom edit too

Initializes custom
edit too

115Building a custom edit tool
events, such as mouse clicks, but also to pause and resume listening for these events,
which comes in handy if users change their minds and decide not to add a request.
The following listing shows how this is done.

 define([
 ...
], function(
 declare, lang, on,
 _WidgetBase, _TemplatedMixin,
 domClass, template
) {
 return declare([_WidgetBase, _TemplatedMixin], {
 templateString: template,
 options: {},
 editing: false,
 map: null,
 handler: null,
 constructor: function(options) {
 this.options = options || {};
 this.map = this.options.map;
 },
 postCreate: function() {
 this.handler = on.pausable(
 this.map, 'click', lang.hitch(this, '_addPoint')
);
 this.handler.pause();
 this.own(
 this.handler,
 on(this.editNode, 'click', lang.hitch(this, '_addRequest'))
);
 }, ...
 _addRequest: function() {
 this._toggleEditButton();
 },
 ...
 _addPoint: function(e) {
 console.log(e);
 this._toggleEditButton();
 },
 _toggleEditButton: function() {
 this.editing = !this.editing;
 if(this.editing) {
 this.editNode.innerHTML = 'Adding Request';
 this.handler.resume();
 } else {
 this.editNode.innerHTML = 'Add Request';
 this.handler.pause();
 }
 domClass.toggle(this.editNode, 'btn-primary btn-success');
 }
 });
 });

Listing 5.5 widgets/edit/editTools.js–using dojo/on to listen for map clicks

Adds pausable
handler for
click event

Immediately pauses handler

Adds point to map

Resumes handler when
adding request

Pauses handler
when not adding
request

116 CHAPTER 5 Developing a custom data-collection application
As shown at the end of the code listing, I prefer to create pausable handlers inside the
widget’s postCreate function because this is where most other event handlers will be
added since the DOM elements will be available. Remember from chapter 4 that post-
Create is part of the Dojo Dijit lifecycle, and is triggered after the widget’s HTML tem-
plate is rendered as a DOM node, but before it inserted to the page. You then
immediately pause the handler because you don’t want to start listening for map click
events until the user has clicked the Edit button. You’ll use the _toggleEditButton
method that toggles the current state of the Edit button to also toggle the handler for
the map clicks.

 Then in the _addPoint method, when the map has been clicked, you call the
_toggleEditButton method to pause the map click handler again. For now, you’ve
added console.log() to the _addPoint method, so you can analyze what the map
click event looks like.

TIP You can also get more details about the map click event at the following
link to the documentation: https://developers.arcgis.com/en/javascript/
jsapi/map-amd.html#click.

Although the documentation provides information about the event, when developing
an application, I prefer to look at the actual returned event. You never know what
kind of useful information you might find. (Hint: You’ll get extra information from
this event later in the chapter!)

 Run the application, click Add Request, and then
click anywhere on the map. You should see a debug
message in your browser’s debug window. Expand the
message and scroll down until you see mapPoint, as
shown in figure 5.10.

 This is perfect! The mapPoint in the returned map
click event gives you the location you clicked on the
map. This is exactly what you can use to create a new
request. Now you can move on to the next step, which
is generating a new request using your feature service.

GETTING A LAYER REFERENCE

You still need to complete a couple of steps before diving in to adding a request with
your custom edit tool. To apply the update, you first need to get a reference to the
Requests layer. In section 5.1, you learned that by giving the FeatureLayer for the
requests an ID, you could easily find the layer when needed at a later time. You can do
the same thing in your custom edit tool by assigning the layer to a property on your
tool. Add one line of code in the constructor:

constructor: function(options) {
 this.options = options || {};
 this.map = this.options.map;
 this.requestLayer = this.map.getLayer('Requests');
},

Figure 5.10 Browser debug
window showing a mapPoint
in the map click event

https://developers.arcgis.com/en/javascript/jsapi/map-amd.html#click
https://developers.arcgis.com/en/javascript/jsapi/map-amd.html#click

117Building a custom edit tool
This snippet adds the Requests layer to the widget. You’ll also update the services/
mapservices.js file so your census FeatureLayer returns all its attribute fields:

censusLayer = new FeatureLayer(
 'http://services.arcgis.com/V6ZHFr6zdgNZuVG0/' +
 'arcgis/rest/services/CensusLaborDemo/FeatureServer/1', {
 id: 'Census',
 outFields: ['*']
})

This snippet designates that the FeatureLayer should return all the available fields
with its results.

 Now that you have the FeatureLayer for the Requests feature service as a property
on your widget, you can access it when you need it.

AUTOPOPULATE THE FIELDS

You want to autopopulate two fields for a request: the RequestDate field and the
CensusTract field. The RequestDate is easy because you’ll apply the current date, but
how exactly do you find the census tract for the location of your request? You could
perform a query on the Census Tract service using the current location. You per-
formed a similar analysis in chapter 2 when you were first introduced to the Query-
Task module.

 Fortunately, you already added the Census Tract service to your application in
chapter 4, so you can access that information directly. Not only that, but recall that I
suggested looking at the map’s click event that gets returned to see whether it pro-
vides anything useful you could use at some point. Well, you happen to be in luck. If
you look at the event in more detail, you’ll find it has a Graphic object attached to it,
and if you expand that object, you’ll find that it has the census tract information
you’re looking for, as shown in figure 5.11.

Figure 5.11 Graphic object
returned with a map click event

118 CHAPTER 5 Developing a custom data-collection application
You can capture the Graphic object from the map’s click event. By doing so, you don’t
have to do any special queries to a map service to find the census tract number; you
need only add the new request.

USE THE FEATURELAYER APPLYEDITS METHOD

To add a request, use the FeatureLayer’s applyEdits method. The documentation
for this method can be found at https://developers.arcgis.com/en/javascript/jsapi/
featurelayer-amd.html#applyedits. The method takes three arguments that you’re cur-
rently concerned with—three arrays: one for adding new features, one for updating
existing features, and one for deleting features. For the time being, you’re concerned
only with adding new features, which involves the following steps:

1 Set up attributes.
2 Create a Graphic.
3 Add the Graphic to an array and pass the array to the applyEdits method of

your request’s FeatureLayer.

You have the geometry and the information to create the attributes needed to gener-
ate a new request, so you’re ready to use the applyEdits method of your Feature-
Layer. Modify the _addPoint method in the widgets/edit/editTools.js file so it creates
a Graphic, and then create the attributes for the Graphic and add that Graphic to
your request FeatureLayer. You can see what this looks like in the following listing.

_addPoint: function(e) {
 var mapPt = e.mapPoint
 , census = e.graphic
 , attributes = {}
 , graphic;
 attributes.IssueType = 'New Request';
 attributes.RequestDate = new Date().getTime();
 attributes.CensusTract = census.attributes.NAME;
 graphic = new Graphic(mapPt, null, attributes);
 this.requestLayer.applyEdits([graphic]).then(lang.hitch(this,

function() {
 this._toggleEditButton();
 alert('Request submitted');
 }));
}

A nice surprise with a click of the map

The FeatureLayer is composed of multiple graphics; the Graphic at the location you
clicked on the map is attached to the map’s click event. If you had another Feature-
Layer in the map, such as city boundaries, and those city boundaries overlaid the
census tracts, you would get the city boundary Graphic. It all depends on what Graph-
ic is on top. This is an undocumented feature of the map click event, so it may change
in future releases. But when I find little features like this, I like to milk them when I can.

Listing 5.6 widgets/edit/editTools.js–modified _addPoint method

Gets mapPoint
from click event

Gets census
Graphic from
click event

Assigns issue type

Sets request date

Uses name from
census Graphic

Creates new Graphic

Adds new Graphic

https://developers.arcgis.com/en/javascript/jsapi/featurelayer-amd.html#applyedits
https://developers.arcgis.com/en/javascript/jsapi/featurelayer-amd.html#applyedits

119Building a custom edit tool
You added only a few lines of code to the _addPoint method, but a lot is happening
here, so let’s look at each step in detail:

1 Set up attributes.
The first thing you do is get the mapPoint and the Graphic for the census tract,
which was returned with the map’s click event.

You then create an empty attributes object to attach these properties to. For
now, you set IssueType to 'New Request' (you’ll return to it later) so you can
focus on adding the point.

Next, you assign a date to the RequestDate property. You set this as a Date field
in your feature service when you created it in chapter 4. This date must be pro-
vided in milliseconds (for more details on why, see the “JavaScript date” sidebar).

As I mentioned previously, you can use the Graphic of the census tract attached
to the map’s click event to get the census NAME field and assign that to your
attributes.

2 Create a Graphic.
After you have the attributes and the mapPoint geometry, you have enough
information to create a Graphic. A Graphic has three parameters in its con-
structor that you’re concerned with: the geometry, the symbols, and the attri-
butes. You can replace the symbols with a null value and then supply the other
values you created in step 1.

3 Apply the edits.
Next you send the Graphic object inside an array using the request layer’s
applyEdits method. This method returns a deferred object that you worked
with in chapter 4, which means you can place a function in the then() method
to do something when the edit is done. In this case, you toggle the Edit button
to its normal state and show an alert that the request was submitted.

JavaScript date

One thing that usually trips people up when editing dates with the ArcGIS API for Java-
Script is how to properly set a date field. You can’t just send new Date().The ArcGIS
Server and ArcGIS Online REST API expect the time in milliseconds, specifically in
coordinated universal time (UTC). You do this with new Date().getTime() for older
browsers or Date.now() in modern browsers. More information about these methods
can be found at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Date/getTime and https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_Objects/Date/now.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTime
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTime
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now

120 CHAPTER 5 Developing a custom data-collection application
Run the application and add a new request to the map. You should see the request
added to the map and the prompt that lets you know the submission was successful, as
shown in figure 5.12.

 Congratulations! You just submitted your first request with your custom edit tool. If
you refresh the map, you should see the request shown where you added it. You need
to handle a couple of details before you can say this is complete, including how to pro-
vide a description of the request, and one possible way to designate the issue type of
the request you’re submitting.

5.2.2 Refining the custom edit tool

One thing that’s missing from your custom edit tool is the ability to add a description
in your Description field. You could accomplish this in various ways. One of the sim-
plest ways to populate this data is with a prompt.

USE THE NATIVE JAVASCRIPT PROMPT

You can use a built-in JavaScript function called prompt, which asks the user to enter
information and returns whatever is entered. You can accomplish this by adding a
couple of lines of code to the _addPoint method in the widgets/edit/editTools.js file
to display a prompt asking for the description of the request. The following listing
shows the modified code.

_addPoint: function(e) {
 var mapPt = e.mapPoint
 , census = e.graphic
 , attributes = {}
 , graphic

Listing 5.7 widgets/edit/editTools.js–added prompt to get description

Figure 5.12 This alert lets you
know the request was added
successfully.

121Building a custom edit tool
 , description;
 description = prompt('Description of request');
 attributes.IssueType = 'New Request';
 attributes.RequestDate = new Date().getTime();
 attributes.CensusTract = census.attributes.NAME;
 attributes.Description = description;
 graphic = new Graphic(mapPt, null, attributes);
 this.requestLayer.applyEdits([graphic])
 .then(lang.hitch(this, function() {
 this._toggleEditButton();
 alert('Request submitted');
 }));
}

That was easy to do. Now, when you run the application and try adding a new request,
you’ll see the prompt asking for the description, as shown in figure 5.13.

 The best part about using the native JavaScript prompt is that it looks good on any
device it’s used on, including iOS and Android devices. The next step is to figure out
how to best populate the Issue Type field of your data.

DEFINE AN ISSUE TYPE

To populate the Issue Type field in your data, you could use another prompt, but the
goal of this application is simplicity. You want the user to have to type as little as possi-
ble. In most scenarios, only a few types of issues would be submitted. For this applica-
tion, let’s limit it to four types:

■ Street light
■ Graffiti
■ Pothole
■ Other

Uses native JavaScript
 prompt to get description

Assigns description to
request for submitting
new request

Figure 5.13 This native
JavaScript prompt asks for a
description of the request.

122 CHAPTER 5 Developing a custom data-collection application
Now that you have a defined set of issue types, you can adjust how you’re adding the
request to the map.

UPDATING THE UI

You’re going to make changes to your template HTML file for the widgets/edit/edit-
Tools.js file. Instead of showing just a single Add Request button, you’ll show a button
for each type of request. When a user clicks a button for one Issue Type, the others
should be disabled so they can no longer be clicked until the current request is done.
You can do this by changing the class names of each button as needed. The class name
defines which button is active and which buttons are disabled.

 First, let’s update the widgets/edit/editTools.tpl.html template file to include a
button for each issue type:

<div>
 <button type="button"
 class="btn btn-primary btn-edit"
 data-type="streetlight">Street Light</button>
 <button type="button"
 class="btn btn-primary btn-edit"
 data-type="graffiti">Graffiti</button>
 <button type="button"
 class="btn btn-primary btn-edit"
 data-type="pothole">Pothole</button>
 <button type="button"
 class="btn btn-primary btn-edit"
 data-type="other">Other</button>
</div>

You now have four buttons to add requests in your application. One new thing you’ve
done is add a data-type attribute to each button that matches the Issue Type you’ll
save with your request. Data attributes are part of the HTML5 specification and allow
you to add arbitrary pieces of information to HTML elements.

 You also added a btn-edit class to each button, which helps manage adding and
removing classes to the element as well as disabling buttons when adding a new
request. You can then use this template in the widgets/edit/editTools.js file to assign
the Issue Type to a request. You can see the updated widgets/edit/editTools.js in the
next listing.

define([
...
'dojo/dom-attr',
...
], function(
 declare, lang, on, domAttr,
 _WidgetBase, _TemplatedMixin,
 domAttr, Graphic, template
) {
 return declare([_WidgetBase, _TemplatedMixin], {

Listing 5.8 widgets/edit/editTools.js–modified to handle issue type

Adds data-type attribute,
btn-edit class

Adds dojo/dom-attr
to module

123Building a custom edit tool
 ...
 postCreate: function() {
 this.handler = on.pausable(
 this.map, 'click', lang.hitch(this, '_addPoint')
);
 this.handler.pause();
 this.own(
 on(
 this.domNode,
 '.btn-edit:click',
 lang.hitch(this, '_toggleEditButton'))
);
 },
 ...
 _addPoint: function(e) {
 var mapPt = e.mapPoint
 , census = e.graphic
 , attributes = {}
 , graphic
 , description;
 description = prompt('Description of request');
 attributes.IssueType = this.requesttype;
 attributes.RequestDate = new Date().getTime();
 attributes.CensusTract = census.attributes.NAME;
 attributes.Description = description;
 graphic = new Graphic(mapPt, null, attributes);
 this.requestLayer.applyEdits([graphic])
 .then(lang.hitch(this, function() {
 this._toggleEditButton();
 alert('Request submitted');
 }));
 },
 _toggleEditButton: function(e) {
 this.editing = !this.editing;
 this.requesttype = '';
 if (e) {
 this.requesttype = domAttr.get(e.target, 'data-type');
 domClass.toggle(e.target, 'btn-primary btn-success');
 }
 if(this.editing) {
 query('.btn-primary', this.domNode)
 .removeClass('btn-primary')
 .attr('disabled', 'disabled');
 this.handler.resume();
 } else {
 query('.btn-edit', this.domNode)
 .removeClass('btn-success')
 .addClass('btn-primary')
 .removeAttr('disabled');
 this.handler.pause();
 }
 }
 });
});

Listens for
click events

Sets request type
to empty string

 Assigns type

Handles
enabling/disabling
buttons

124 CHAPTER 5 Developing a custom data-collection application

Adds
btn-p
This may look like a big change, but the core of what’s happening is still the same. You
added a couple of Dojo modules to simplify the process. The dojo/query module is
used to select elements on the page based on ID or class name. It’s an incredibly
handy tool.

LISTEN FOR BUTTON EVENTS

Instead of listening for click events on a single button, you can listen for click events
for all buttons in a particular node with a btn-edit class:

on(this.domNode, '.btn-edit:click', lang.hitch(this, this._toggleEditButton))

When a button is clicked, it calls this._toggleEditButton. By doing so, it passes a click
event to that function, similar to how you processed the map’s click event previously.
You can check whether an event was passed into this function, and if so, you know it was
from a button click, so you want to make the current button active and disable the oth-
ers. To do this, toggle the class names as you did before on the target event:

if (e) {
this.requesttype = domAttr.get(e.target, 'data-type');
 domClass.toggle(e.target, 'btn-primary btn-success')
}

This removes the btn-primary class from the button that was clicked and adds the
btn-success class to it, thus changing the button’s color from blue to green. But now
you can take advantage of toggling the look of the button to disable the other buttons
so they can’t be clicked while adding a request.

 The dojo/dom-attr module that you aliased as domAttr in your module is a
helper module that lets you pull the value of any attribute on an HTML element. In
this case, you want to get the data-type attribute from the button that you’re using to
initiate a request. Passing bits of data from an HTML element to your JavaScript is a
neat trick. Because you removed the btn-primary class from the button used to start
the request, you can disable the other buttons, which still have the btn-primary class
attached to them. If the user is currently editing, you disable these other buttons:

query('.btn-primary', this.domNode)
.removeClass('btn-primary')
.attr('disabled', 'disabled');

This is a neat piece of code, because you can use the dojo/query module to chain all
these commands together to accomplish what you need to do, which is disable these
buttons. When the user is finished editing, the next few lines of code put everything
back to normal:

query('.btn-edit', this.domNode)
 .removeClass('btn-success')
 .addClass('btn-primary')
 .removeAttr('disabled');

Finds elements with
btn-primary class

Removes btn-primary class

Adds disabled attribute

Finds elements
with btn-edit class

Removes btn-success class

 normal
rimary class

Removes disabled attribute
to enable buttons

125Enabling disconnected editing
Again, you can use the dojo/query module to accomplish updating the styles of the but-
ton by chaining methods together. You remove the btn-success class from any button
and add the btn-primary class back. Don’t worry about adding extra class names; Dojo
is smart enough to know whether an HTML element already has a class name and won’t
add extras to it. You then remove the disabled attribute from everything to return all
elements back to normal. You can see what this looks like in figure 5.14.

 Now when you click any of these buttons, the appropriate Issue Type is saved with
your feature, and the only thing the user has to fill out is the Description. That’s mini-
mal typing for the user, and makes it much more likely to be used. You’re almost fin-
ished with your mobile-focused application. The only thing you have to worry about is
what happens if the user loses an internet connection.

5.3 Enabling disconnected editing
When working with mobile devices, it’s a fact of life that you can’t always rely on hav-
ing an internet connection. Various things could interfere, such as tall highway barri-
ers, buildings, or a lack of cell phone towers. Normally, this would be a minimal
concern; after all, you’re building web apps, and so when no internet connection is
available, the application won’t work. But when you’re working with editing data and
someone expects something to just work, you need to take this loss of internet connec-
tion into consideration. I’ll also let you in on a dirty secret about disconnected edit-
ing: there’s no perfect solution.

Figure 5.14 The application
when adding a request

126 CHAPTER 5 Developing a custom data-collection application
5.3.1 Local storage

Just because no perfect solution exists doesn’t mean there isn’t a doable solution.
Local storage is part of the HTML5 specification and is a way to store data locally in key/
value pairs. You can take advantage of this to store requests locally as needed and
implement a way to push those updates when an internet connection is available. It
can also be used when you have no internet connection; you can store an item with a
value of "hello" and a key of 99. You retrieve the data by using the key. The following
is an example:

localStorage.setItem("99", "hello");
localStorage.getItem("99");

It’s a simple API to get used to. One thing to remember is that local storage can reli-
ably store only string values. So you can’t just save a JavaScript object; you’ll need to
store a string version of the object, using a module like dojo/json to serialize it to a
string.

 You can store your data in a couple of ways. The ArcGIS for Developers site sug-
gests storing all the data to local storage (https://developers.arcgis.com/en/
javascript/jssamples/exp_localstorage.html). This may be useful in some situations,
such as storing census data locally for use anytime. But again, you need to be careful
about your storage limits with local storage.

What you’re going to do is save data locally only when an edit fails. This lets you save
all your edits and sync them at once when ready. You’ll handle this by wrapping the
method that applies the edits in another module; that handles storing the data locally
when an edit fails, thus making an assumption that you have no internet connection.

WHEN ARE WE DISCONNECTED?

For some time now, browsers have had a simple way to tell whether they’re online or
offline. The property window.navigator.onLine returns true when online, and false
when offline. But it’s probably not what you think it is. This value doesn’t check whether
you have an internet connection; it checks only whether the browser is working in

Limitations

Local storage can reliably hold only about 5 MB of data. Esri has an example worth
looking at in the ArcGIS JavaScript samples that uses local storage to save tiled data
locally to the browser (https://developers.arcgis.com/en/javascript/jssamples/
exp_webstorage.html). This is a great intro to see how local storage can be used in
web applications. Because this module is storing image data locally, local storage
can fill up quickly, so it’s up to the developer to come up with a scheme to clear local
storage as needed. In this case, you’re using local storage to store new requests
locally as needed and to implement a way to push those updates when an internet
connection is established.

Stores hello with key of 99

Uses key to retrieves hello

https://developers.arcgis.com/en/javascript/jssamples/exp_localstorage.html
https://developers.arcgis.com/en/javascript/jssamples/exp_localstorage.html
https://developers.arcgis.com/en/javascript/jssamples/exp_webstorage.html
https://developers.arcgis.com/en/javascript/jssamples/exp_webstorage.html

127Enabling disconnected editing
offline mode. Internet Explorer and Firefox have an offline mode, but not Chrome. So
how can you check for a working internet connection? You’d have to make a request
that looks something like this by using Dojo:

var req = request('//' +
 location.pathname, {
 preventCache: true
}
req.then(
 function() {
 },
 function() {
 }
);

So you can make a request to the current host with a timestamp parameter. This pre-
vents calling a cached URL. Using the deferred results, the first function handles the
success of the call, and the second handles the error of the call. You could check for
this every time you want to save a request, but it gets tricky to test using localhost,
and won’t always throw an error when you expect. So, keep it as simple as you can, and
save the data to local storage when an error occurs trying to save a request.

SAVE DATA TO LOCAL STORAGE

You’ll create a new module called widgets/edit/editService.js to handle all this
for you.

NOTE The code for this section is available in the chapter5/part3 folder of
the source code included with the book. All JavaScript files are located in the
chapter5/part3/app/js folder.

Let’s look at all the code for the wrapper and step through it for clarity. The widgets/
edit/editService.js file calls the applyEdits method on our FeatureLayer, and if it
fails, saves the data locally. It also has a method to send all the data when you have an
internet connection available. This is shown in the following listing.

define([
 'dojo/_base/declare',
 'dojo/_base/lang',
 'dojo/Deferred',
 'dojo/json',
 'esri/graphic'
], function(declare, lang, Deferred, dojoJson, Graphic) {
 return declare(null, {
 layer: null,
 hasLocal: false,
 constructor: function(options) {
 this.options = options || {};
 this.layer = options.layer;
 this._sync = [];

Listing 5.9 widgets/edit/editService.js–saves to local storage

The preventCache option
appends a timestamp to the URL

Function called
when successful

Function called
when it fails

Checks local storage

128 CHAPTER 5 Developing a custom data-collection application
 this.check();
 },
 check: function() {
 for (var name in localStorage) {
 if (name.indexOf('request') > -1) {
 this.hasLocal = true;
 }
 }
 },
 sync: function() {
 var keys = [];
 for (var key in localStorage) {
 if (key.indexOf('request') > -1) {
 keys.push(key);
 var item = localStorage.getItem(key);
 var graphic = new Graphic(dojoJson.parse(item));
 this._sync.push(graphic);
 }
 }
 if (this._sync.length > 0) {
 this.layer.applyEdits(this._sync)
 .then(
 lang.hitch(this, function() {
 this._sync.length = 0;
 this.hasLocal = false;
 for (var i = 0, key; (key = keys[i]); i++) {
 localStorage.removeItem(key);
 }
 }),
 lang.hitch(this, function() {
 this._sync.length = 0;
 })
);
 }
 },
 add: function(adds) {
 var deferred = new Deferred()
 , req;
 req = this.layer.applyEdits(adds);
 req.then(
 function() {
 deferred.resolve();
 },
 lang.hitch(this,
 function() {
 for (var i = 0, item; (item = adds[i]); i++) {
 try {
 var id = Math.floor(1 + Math.random() * 1000);
 var requestItem =
 localStorage.getItem('request-' + id);
 if (!requestItem) {
 localStorage.setItem('request-' +
 id,
 dojoJson.stringify(item.toJson()));
 }

Checks for features
in local storage

Pushes features in
local storage as big edit

If data in local
storage, saves
to server

Adds data to feature layer

If edit successful, resolves
deferred object

Stores edits locally

129Enabling disconnected editing
 this.check();
 } catch (error) {
 alert('Problem adding request to local storage. Storage

might be full');
 }
 }
 deferred.reject(adds);
 }));
 return deferred.promise;
 }
 });
});

This module is handling quite a bit for you:

1 Check whether data is available to save.
When the module first loads, it checks local storage and sets a variable called
hasLocal to true or false if there is data to be saved. This value can then be
checked to see whether you have values to save.

2 Save data locally when an edit fails.
When you add data to your FeatureLayer and it fails, you save those edits to
local storage with a random key, but prefix the key with request-; in case you
decide to save other types of data locally. This will help you tell the data apart.
This is more of a precautionary measure than anything else. A Graphic object
has the ability to convert to a plain object that can be serialized to JSON for stor-
age using the dojo/json module. Check to make sure that the key doesn’t
already exist.

3 Provide a way to sync local data.
You also provide a sync method that iterates over local storage, finds locally
saved requests, parses them as JSON, and creates new graphics to send to the
server. If successful, it then removes the items from local storage to make room
for more. To get this to work, you need to modify a couple of other files.

MODIFY EDIT TOOLS

You want a way to run the sync method in your wrapper module when needed. Add a
new button to your template of edit tool buttons in widgets/edit/editTools.tpl.html:

<button type="button"
 class="btn btn-warning btn-sync"
 data-type="sync">Sync</button>

You give this button a class name of btn-sync so you can listen for click events on it. In
the constructor for widgets/edit/editTools.js, you initialize the edit service and pass it
the request FeatureLayer in the parameters:

 this.editService = new EditService({
 layer: this.requestLayer
 });

Returns deferred promise

130 CHAPTER 5 Developing a custom data-collection application
Then in the postCreate method, you add a handler for click events on your Sync
button:

 this.own(
 on(
 this.domNode,
 '.btn-edit:click',
 lang.hitch(this, '_toggleEditButton')
),
 on(
 this.domNode,
 '.btn-sync:click',
 lang.hitch(this, '_syncLocal')
)
);

That _syncLocal method checks whether data is saved locally and then calls the sync
method of your wrapper module:

_syncLocal: function() {
 if (this.editService.hasLocal) {
 this.editService.sync();
 }
}

That all seems easy enough. If you run the application now, you should see your Sync
button added to the page, as shown in figure 5.15, and you can start testing.

 This doesn’t look that different from what you had earlier, and that’s sort of the
point. Ideally, the user doesn’t need to be concerned about how the tool is working, so
aside from the extra Sync button, nothing is new.

Binds click of Sync button
to local method

Figure 5.15 Add the Sync
button to sync local storage
data with the server.

131Enabling disconnected editing
TEST SAVING TO LOCAL STORAGE

Determining whether widgets/edit/editService.js is saving data locally can be tricky.
As of right now, you can use your application as before, and it behaves the same. To
test disconnected editing, you need to, well, disconnect.

 Before you attempt to disable your Wi-Fi or unplug your Ethernet cable, both of
which are viable options, let’s try a different approach that involves using a fake proxy.
I recommend using Google Chrome for the bulk of debugging web applications, and
Chrome uses Internet Explorer connection settings. This will only work in a Windows
environment.

 Open the Chrome Settings page and click the Show Advanced Settings link. To
open the Connections tab of your Internet Properties, click the Change Proxy Set-
tings button, as shown in figure 5.16.

Click the LAN Settings button. Under the Proxy Server settings, enter the local
address with a fake port, as shown in figure 5.17.

Figure 5.16 Proxy settings in Google Chrome

Select box to use
proxy server.

Enter localhost
as address and
9999 as port.

Figure 5.17 Setting up a fake proxy to test disconnected use

132 CHAPTER 5 Developing a custom data-collection application
This isn’t a pretty way to test for disconnected editing, but it works and keeps you from
having to unplug/disable the Wi-Fi each time you want to test it. But before doing this
on your application, let’s zoom to a location on the map and set up a fake proxy. Add
a new request to the map, and you should be alerted that a request has been saved
locally. Awesome! You can check this in the Google Chrome debug tools under the
Resources tab, as shown in figure 5.18.

 If you remove the fake proxy at this point and click the Sync button, your feature
will display on the map. If you check local storage now, it should be empty. Now you
need to display the data that’s being saved.

DISPLAY LOCALLY SAVED DATA

Currently, the application doesn’t indicate visually on the map that you added the
point when it’s saved locally. Let’s add a function to utils/symbolUtil.js that adds a
marker on the map.

 Add the following code after the renderSymbol function:

simpleMarker: function() {
 return new SimpleMarkerSymbol(
 SimpleMarkerSymbol.STYLE_SQUARE, 12, new SimpleLineSymbol(
 SimpleLineSymbol.STYLE_SOLID, new Color([255, 0, 0]), 1),
 new Color([0, 255, 0, 1])
);
 }

This creates a square marker that displays on the map when a feature is saved locally.
This lets users know they’re still adding data to the map, even if it isn’t instantly saved
to the server. Create a reference to this module in your widgets/edit/editTools.js file,
and use it when you first create the Graphic for your edit. Previously, you left the
symbology argument as null, but now you’ll pass the simpleMarker() method:

graphic = new Graphic(mapPt, symbolUtil.simpleMarker(), attributes);

Now when you add the Graphic, if you have to save it locally, you’ll add the feature to
the map’s default graphics layer. The code that handles adding requests to widgets/
edit/editTools.js is shown in the following listing.

Figure 5.18 The feature is saved to local storage.

133Enabling disconnected editing

...
this.editService.add([graphic]).then(
 lang.hitch(this, function() {
 this._toggleEditButton();
 alert('Request submitted');
 }),
 lang.hitch(this, function() {

this._toggleEditButton();
 this.map.graphics.add(graphic);
 alert('Request saved locally');
 })
);
...

Now when you add a feature to local storage, you see it on the map, as shown in
figure 5.19.

 You’ve implemented a mechanism to assist users when no internet connection is
available for the application. You may be asking “Why not store the features in memory
and not worry about local storage?” That could be an option, but ideally you want a solu-
tion that persists if the user closes the browser, which an in-memory solution can’t do.

REVIEW STEPS TO SAVING DATA LOCALLY

Taking a step back, setting all this up is a matter of a few steps:

1 Check whether you can save features to the feature service as normal; if not,
save data locally.

2 Display locally saved data on the map.

Listing 5.10 widgets/edit/editTools.js–adding requests

If connected,
proceed as normal

Function to call if adding
features to server fails

Add Graphic to map

Figure 5.19 The features are
added as graphics when added
to local storage.

134 CHAPTER 5 Developing a custom data-collection application
3 Provide a way for the user to send that locally saved data when an internet con-
nection is available.

5.3.2 Caveats

You may have realized that this mechanism isn’t true disconnected editing, as you
need an internet connection to even start the application. It’s the nature of writing a
web application; it has to have an internet connection when it starts to download
required files and data as needed. What you’ve implemented is more of a fallback sys-
tem that assists users when they lose an internet connection on their mobile devices.
For example, without an internet connection, the user can’t see the underlying image
tiles of the street data. The necessary census data features may not have been down-
loaded. You can’t provide a perfect solution, but what you can do is provide a stopgap
until the connection is restored.

 That isn’t to say you can’t inch closer to providing a more advanced solution to dis-
connected editing. In chapter 7, you’ll use the application cache, a way to tell the
browser to cache all the files needed to run the application and keep them stored in
the browser, and you’ll implement other methods of storing data locally by using
third-party tools.

5.3.3 Other storage options

Local storage is probably the simplest way to store data locally in the browser, but it’s
not the only way. IndexedDB is the preferred HTML5 storage API for more-complex
data. It’s SQL-like (Structured Query Language) for the browser. Previously, Web SQL
was the preferred way of storing complex data structures, but it was deprecated in
2010. The problem is that mobile browsers still use it and don’t currently support
IndexedDB, aside from Internet Explorer 11. This is a problem for us, as mobile
browsers are our target. You’ll learn how to work with this situation in chapter 7.

5.4 Summary
■ You covered quite a bit about editing in this chapter. You first learned how to

use the default widgets provided with the ArcGIS API for JavaScript to perform
edits. Then you learned how to build your own custom edit tools that make it
even easier for end users to submit new requests with minimal typing on their
part. This is incredibly beneficial, and now you have a better idea of how the
edit functionalities of the API work.

■ You also learned a method to handle disconnected editing when the applica-
tion loses an internet connection. You learned how to store the data locally
when no connection is available and to push the data out to the feature service
when the internet connection is restored. This valuable methodology lays the
groundwork for even more-advanced usages of local data storage.

In chapter 6, you’ll build a desktop browser-based application that uses the data sub-
mitted with the mobile application.

Building a desktop
browser application
Chapter 5 covered the details of custom editing and using the built-in capabilities
of the ArcGIS JavaScript API to build an easy-to-use mobile editing application. The
focus was on designing the application to run on mobile devices efficiently. Yet
there is still a need for browser-based web applications for use in a desktop environ-
ment. Rather than investing in a desktop GIS application, such as ArcMap, which
requires additional licenses for each user and comes with features that many users
don't need, you can create a focused web application that meets the specific needs
of users. Implementing a web application designed for the desktop also saves time
and money otherwise spent training people to use a new GIS application.

This chapter covers
■ Building a browser-based web application for

the desktop
■ Implementing security, tokens, and OAuth 2.0
■ Saving security credentials
■ Working with more out-of-the-box widgets
■ Editing collected data
■ Linking collected data with other data
135

136 CHAPTER 6 Building a desktop browser application
 In this chapter, we consider the needs and goals of a desktop browser application
built with the ArcGIS API for JavaScript. You’ll use some new Dijits that we haven’t yet
discussed, and we’ll cover how to make updates or corrections to the data that was col-
lected in the field.

 Let’s start with the goals of the application, which we’ll name the RequestViewer.

6.1 The project ahead
Mobile data-collecting applications are fun to build. They present interesting chal-
lenges, as you saw in chapter 5 when dealing with disconnected editing, and encour-
age you to think in simple terms about design, such as implementing a single button-
click to collect data. They also provide a practical exercise because data collection is a
common use of mobile web-mapping applications. This chapter takes you a step fur-
ther to look at what happens to the data after it’s been collected in a field application
and analyzed in a desktop environment. After all, you should assume that users are
collecting data for a reason.

6.1.1 Goals of the RequestViewer

Continuing the municipal services scenario, suppose that the data collected in the
field is assigned to specific employees for further investigation, such as determining
what work needs to be done to repair a pothole, or verifying the location of a request.
Given these requirements, the RequestViewer application must provide users with the
following capabilities:

■ To choose a location collected in the field
■ To assign a location to an employee from a list of employees
■ To edit the data that was collected

For example, the user may want to change the location or type of request to
more closely match the description of the request. Maybe the user wants to clar-
ify the description or update the location of a report for a pothole.

6.1.2 Freedom of the desktop browser

You took care when building the application in chapter 5 to make sure it worked as
efficiently as possible because it’s intended to run in a mobile browser. Care had to go
into making sure data could be stored locally in case of a lost internet connection. You
had to design a simpler user interface that wouldn’t clutter a small display. All in all,
working on a mobile-based application required extra care.

 Although you don’t necessarily have the same restrictions when working on a
browser-based web application for the desktop, neither do you have carte blanche to
throw every widget in the ArcGIS JavaScript API into the RequestViewer. For example,
don’t put ArcMap in the browser, which is mocked up in figure 6.1. This is an example
of something you should not do! This wall of buttons and menus can be overwhelm-
ing for your average user. If users need all this functionality, they may need to use a
bona fide installation of ArcMap to do their work.

137The project ahead
You should still take care to make sure the RequestViewer runs well, but you don’t
need to work under the threat of losing an internet connection or let tiny, pocket-
sized displays constrain your application. You can take advantage of Dijits from the
ArcGIS JavaScript API, which don’t lend themselves to a mobile application but work
fine in a desktop browser.

 In chapter 5, you spent time building a custom Editor widget to better meet the
needs of a mobile data-collecting web application. Similarly, when building the
RequestViewer, it’s important to assess the users’ needs. For example, suppose you
determine that users need to be able to search for data and add new features. You can
tailor the application to make these tasks easy to complete, and if you can implement
these tasks with out-of-the-box tools, you can also save yourself development time.

NOTE The code for this application is available in the chapter6/part1 folder
of the source code included with the book.

Now that we’ve defined our goals and requirements for the RequestViewer, let’s start
writing code.

Figure 6.1 Providing desktop GIS software (literally) in the browser overwhelms users and
should be avoided.

138 CHAPTER 6 Building a desktop browser application
6.2 Setting up and configuring the RequestViewer
As in previous chapters, to get the application off the ground, you first define the
HTML structure and the basic JavaScript files. Let’s start with index.html.

6.2.1 Creating index.html

The HTML for the RequestViewer application is similar to what you used in chapter 5.
As shown in the following listing, it contains the structure for the application and ref-
erences for the required style sheets and JavaScript files. This standard HTML struc-
ture can be used to get most projects started.

<!doctype html>
<html>
 <head>
 <title>RequestViewer</title>
 <link href="css/bootstrap.min.css" rel="stylesheet">
 <link
 rel="stylesheet"
 href="http://js.arcgis.com/3.11/
 dojo/dijit/themes/nihilo/nihilo.css">
 <link
 rel='stylesheet'
 href='http://js.arcgis.com/3.11/esri/css/esri.css'/>
 <link href='css/main.css' rel='stylesheet'/>
 </head>
 <body class="nihilo">
 <div id="map-div"></div>
 </body>
 <script src="http://js.arcgis.com/3.11"></script>
 <script src="js/run.js"></script>
</html>

You’ve seen the content of this HTML file in previous chapters. One difference in this
case is that you use the full version of the ArcGIS API for JavaScript rather than the
compact version. As a result, you have access to many of the widgets in the API without
having to manually load them in your modules. You saw how this works in chapter 5
(see section 5.1.2); when using the compact build of the API, you had to load the Iden-
tity Manager manually.

 Next, let’s take a look at the run.js file.

6.2.2 Configuring run.js

This file sets up your application. As shown in the following listing, its configuration
lets Dojo know where the files to build the application are located.

(function () {
 var pathRX = new RegExp(/\/[^\/]+$/)
 , locationPath = location.pathname.replace(pathRX, '');

Listing 6.1 index.html—main HTML for your application

Listing 6.2 js/run.js—set up DojoConfig

Main div element for map

Full version of the ArcGIS
API for JavaScript

Uses regular
expression to
help load files

139Setting up and configuring the RequestViewer
 require({
 async: true,
 packages: [{
 name: 'controllers',
 location: locationPath + '/js/controllers'
 }, {
 name: 'services',
 location: locationPath + '/js/services'
 }, {
 name: 'utils',
 location: locationPath + '/js/utils'
 }, {
 name: 'app',
 location: locationPath + '/js',
 main: 'main'
 }]
 }, ['app']);

})();

Again, this is what you used in chapter 5, aside from omitting the folders you aren’t
using. This is a standard way of setting up the Dojo part of the ArcGIS API for Java-
Script to use your own custom-built modules.

 Let’s take a quick look at the base main.js file of the application.

6.2.3 Starting the RequestViewer

This file defines the options for the map, loads the layers to be used, and starts up the
application. This is the same file you used in chapter 5 and is shown in the following
listing.

require([
 'controllers/appcontroller',
 'services/mapservices',
 'dojo/domReady!'
], function (AppCtrl, mapServices) {
 'use strict';
 var appCtrl = new AppCtrl({
 elem: 'map-div',
 mapOptions: {
 basemap: 'streets',
 center: [-118.241, 34.0542],
 zoom: 12
 },
 layers: mapServices.loadServices()
 });
 appCtrl.load();
});

In this application, you use the streets basemap to provide more detail on your map.
The next piece we’ll look at is mapServices.js, again the same file you used in chapter 5.

Listing 6.3 js/main.js—entry point to application

Sets up Dojo configuration

Loads map services
for application

Initializes application contro

140 CHAPTER 6 Building a desktop browser application
6.2.4 Defining map services

This file, shown in the following listing, defines the various map services to be loaded
into the application. This module loads a census layer, which acts as a service request
area, and also loads the requests that were created in the application you built in
chapter 5.

define([
 'esri/layers/FeatureLayer',
 'esri/renderers/SimpleRenderer',
 'utils/symbolUtil'
], function(FeatureLayer, SimpleRenderer, symbolUtil) {

 function _loadServices(config) {
 var layers = []
 , censusLayer = new FeatureLayer(
 'http://services.arcgis.com/'+
 'V6ZHFr6zdgNZuVG0/arcgis/rest/services/'+
 'CensusLaborDemo/FeatureServer/1', {
 id: 'Census'
 })
 , requestLayer = new FeatureLayer(
 'http://services1.arcgis.com/'+
 'QKasy5M2L9TAQ7gs/arcgis/rest/services/'+
 'Requests/FeatureServer/0', {
 id: 'Requests',
 mode: FeatureLayer.MODE_ONDEMAND,
 outFields: ['*']
 })
 , renderer = new SimpleRenderer(symbolUtil.renderSymbol());
 censusLayer.setRenderer(renderer);
 layers.push(censusLayer);
 layers.push(requestLayer);

 return layers;
 }

 return {
 loadServices: _loadServices
 };
});

You can use the same mapservices.js file you used in chapter 5. You will want to
replace the URLs for the map services in this example to use your own map services
from your free ArcGIS Developer account.

 Let’s look at the appcontroller.js file.

6.2.5 Setting up the application controller

You’re going to start with a simplified appcontroller.js, shown in the following listing,
to handle creating the map. Later in this chapter, you’ll use this file to handle loading
other modules for the application.

Listing 6.4 js/services/mapservices.js—helper to load services

Returns an array of map services
to be used in application

141Setting up and configuring the RequestViewer

define([
 'dojo/_base/declare',
 'esri/map'
], function (
 declare,
 Map
) {

 return declare(null, {
 map: null,
 options: {},

 constructor: function (options) {
 this.options = options;
 },

 load: function () {
 this.map = new Map(this.options.elem, this.options.mapOptions);
 this.map.addLayers(this.options.layers);
 }
 });
});

If you run the application, you should see a map that looks similar to figure 6.2.

Listing 6.5 js/controllers/appcontroller.js—application controller for application

Creates
new map Adds layers to application

Figure 6.2 No-frills base application

142 CHAPTER 6 Building a desktop browser application
You’ll be prompted for your username and password to access your ArcGIS Online ser-
vice, so have that information ready. Having to enter this information in your applica-
tion repeatedly gets tedious, so refer to appendix C for information on setting up a
proxy page.

 After you set up the proxy page, refresh the browser for your application. You
should no longer be prompted by the Identity Manager to log in, and your services
should work as expected. The proxy page is a handy tool to use in a variety of scenar-
ios. It’s also a great way to work when developing with secured services so you don’t
have to log in each time.

 Suppose you have a requirement to provide a level of security in your application,
but you want something more robust than the Identity Manager to do it. Let’s see how
OAuth 2.0 can help.

6.3 Setting up authentication with OAuth 2.0
A recent addition to ArcGIS Online is the use of OAuth 2.0 to allow access to your
applications and services. An open standard for authorization, OAuth allows you to
use third parties to access secured resources without having to share credentials. The
advantage here is that users can log in using their ArcGIS Online accounts and be
redirected back to your application. Your secured services use a token generated by
ArcGIS Online, so you don’t have to set up individual users to allow access. This allows
you to have application-level logins versus individual user-level logins.

 The Esri documentation provides a couple of good OAuth samples (https://
developers.arcgis.com/en/javascript/jssamples/portal_oauth_inline.html).

6.3.1 Using your developer account to create an application

In chapter 4 you set up your ArcGIS developer account, and you created the Requests
feature service for use in your application; but you didn’t explore the features avail-
able from the My Applications page, specifically the security features.

 Log in to your ArcGIS developer account and click the Applications link. You’ll see
a screen similar to figure 6.3 that shows the steps to create an application.

Choose your security option

The ArcGIS API for JavaScript provides a couple of ways to handle working with secured
services:

■ The Identity Manager and the OAuth 2.0 protocol require users to log in to use
and view the application.

■ The proxy page method allows users to access the application and services
directly without the need to log in repeatedly.

It boils down to a matter of preference in the route you decide to use. Personally, I
like to use the proxy method during development and either the Identity Manager or
OAuth 2.0 once deployed to production. All options are viable.

https://developers.arcgis.com/en/javascript/jssamples/portal_oauth_inline.html
https://developers.arcgis.com/en/javascript/jssamples/portal_oauth_inline.html

143Setting up authentication with OAuth 2.0
Click the Create an Application button to register an application, as shown in figure 6.4.
 Working your way through the text boxes on the Register New Application page is

straightforward:

■ Name—You can give your application any name you’d like; I named mine
RequestViewer.

■ Tags—These are optional but work much the same way as you saw in chapter 4;
they help users find your application in search results.

■ Redirect URI—This information is important. Remember, with OAuth 2.0, users
can log in using their ArcGIS Online accounts. Once they log in, this Redirect

Figure 6.3 My Applications page of ArcGIS developer account

Figure 6.4 Page to create a
new application

144 CHAPTER 6 Building a desktop browser application
URI redirects the user back to your application with the proper credentials to
access the secured services. For development, this is probably localhost, but
you can update it at a later time for deployment, so don’t be afraid to use what-
ever URL you need at the moment.

■ Description—You can provide a description for your application so if you share
your application via ArcGIS Online, others can understand the purpose of your
application.

Once you click Create Application, navigate to the Application Details page. To view
the Client ID and Client Secret, click the API Access link at the left. You should see the
OAuth Credentials page as shown in figure 6.5 (my details are hidden). The Client
Secret is used for server-based applications, but because this is a browser-based web
application for the desktop, you need only the Client ID.

 Be sure to keep the Client ID and the Client Secret used for authentication pur-
poses hidden in your application. If a malicious user gains access to these, they can
access billable services on your ArcGIS Online account, which could result in
unwanted charges on the account. This caveat implies that you should store these cre-
dentials in a server environment that accesses the credentials for the application and
provides them back to the client.

TIP Implementing the server-side component is beyond the scope of this
book, but it’s something you should be aware of when working with authenti-
cation. See the Esri resource-proxy project for a solution (https://
github.com/Esri/resource-proxy/) and appendix C for more details.

You now have the credentials you need to use OAuth 2.0 in your application, so let’s
modify the code to incorporate OAuth 2.0 in the sign-in process for the application.

Figure 6.5 OAuth credentials of the RequestViewer application

https://github.com/Esri/resource-proxy/
https://github.com/Esri/resource-proxy/

145Setting up authentication with OAuth 2.0
6.3.2 Updating main.js

As I mentioned, to set up the credentials and make requests, you’ll use the esri/
arcgis/OAuthInfo module in combination with the esri/IdentityManager module
that Esri provides. This Identity Manager makes a request to use OAuth 2.0 to get the
credentials for the application using the credentials provided in the OAuthInfo mod-
ule, and then assigns those credentials to the Identity Manager so the application can
access secured services. The updated js/main.js file, shown in listing 6.6, now uses the
following workflow:

■ Check whether user is signed in.
■ If signed in, begin application as normal.
■ If not signed in, begin the sign-in process.
■ Once signed in, begin application as normal.

NOTE The code for this section is available in the chapter6/part2 folder of
the source code included with the book.

require([
 'esri/arcgis/OAuthInfo',
 'esri/IdentityManager',
 'controllers/appcontroller',
 'services/mapservices',
 'dojo/domReady!'
], function (
 OAuthInfo, esriId,
 AppCtrl,
 mapServices
) {
 'use strict';

 function startApplication() {
 var appCtrl = new AppCtrl({
 elem: 'map-div',
 mapOptions: {
 basemap: 'streets',
 center: [-118.241, 34.0542],
 zoom: 12
 },
 layers: mapServices.loadServices()
 });
 appCtrl.load();
 }

 var info = new OAuthInfo({
 appId: 'zppZ53G093yZV7tG',
 portal: 'http://www.arcgis.com',
 expiration: (14 * 24 * 60),
 popup: false
 });

Listing 6.6 js/main.js—use OAuth 2.0

Starts application
as normal

Initializes
ArcGISOAuthInfo

146 CHAPTER 6 Building a desktop browser application

Ch
in
ap
 esriId.registerOAuthInfos([info]);

 esriId.checkSignInStatus(info.portalUrl)
 .then(startApplication)
 .otherwise(
 function() {
 esriId.getCredential(info.portalUrl)
 .then(startApplication);
 }
);
});

When you run the application, you should now be redirected to an arcgis.com page
and asked to sign in with your ArcGIS Online credentials; in this case, enter your Arc-
GIS developer account information (see figure 6.6).

 Once signed in, you’re redirected back to the application running on your local
machine, and the secured services should work as normal. This is similar to using the
Identity Manager, as in chapter 5, but you’ve offloaded the sign-in process to ArcGIS
Online.

 When using OAuth 2.0, you may have noticed that users must log in on each page
refresh. It would be a neat feature to allow users to stay logged in until they sign out.
Let’s implement this functionality next.

6.3.3 Saving credentials

If I were a user of an application that required me to log in every time I reloaded the
page, I would get annoyed after a while. There could be security reasons for keeping
this behavior, but let’s look at how to persist a user login on page reloads.

Register OAuthInfos with
the Identity Manager

ecks if signed
; if so, starts
plication

If not signed in, gets the credentials
to sign in, then starts application

Figure 6.6 ArcGIS sign-in
page for RequestViewer
application

147Setting up authentication with OAuth 2.0
NOTE The code for this section is available in the chapter6/part3 folder of
the source code included with the book.

ADDING A NAVIGATION BAR

To allow users to log in and also log out, let’s update the index.html file to add a navi-
gation bar with a Sign In link. Take a look at the following listing to see the updated
file.

...
<body class="nihilo">
 <div class="navbar navbar-default">
 <ul class="nav navbar-nav">

 Sign In

 </div>
 <div id="map-div"></div>
</body>
...

Note that you’re taking advantage of Bootstrap styling because the style sheet is
already referenced in your index.html file (see chapter 4). This makes the Sign In link
easy to create. So that the navigation bar doesn’t interfere with the map, adjust the
CSS to reposition the map 50 pixels from the top of the page in the css/main.css file:

#map-div {
 position: absolute;
 top: 50px;
 right: 0;
 left: 0;
 bottom: 0;
}

If you refresh the browser and log
in, a navigation bar now appears at
the top of the page with a Sign In
link, as shown in figure 6.7. You’ll
add the Sign Out link later in the
chapter.

 You’re using the Identity-

Manager and OAuthInfo modules
to log in to your application using
OAuth 2.0. This utility does a good
job of helping users to sign in, but
once signed in, you need another
utility module to save users’
credentials.

Listing 6.7 index.html—add Sign In link

Adds Bootstrap-style
navigation bar

Adds Sign In link
to navigation bar

Figure 6.7 The application now displays a navigation
bar with one link.

148 CHAPTER 6 Building a desktop browser application
CREATING THE CREDENTIALS UTILITY MODULE

This utility module is inspired by a sample from the documentation for the ArcGIS API
for JavaScript. It performs the same function as the original sample but uses the Iden-
tity Manager directly.

NOTE To review the documentation sample, see https://developers.arcgis
.com/javascript/jssamples/widget_identitymanager_client_side.html.

The code for the module is shown in the following listing. Key steps are labeled in the
code and explained in detail after the listing.

define([
 'dojo/Deferred',
 'dojo/json',
 'esri/kernel',
 'dojo/cookie'
], function(
 Deferred, dojoJSON,
 kernel, cookie
) {

 var key = 'esri_js_creds'

 , hasLocal = window.localStorage !== null
 || typeof(window.localStorage) !== 'undefined';

 function loadCredentials() {
 var credJson
 , deferred;

 deferred = new Deferred();

 if (hasLocal) {
 credJson = window.localStorage.getItem(key);
 } else {
 credJson = cookie(key);
 }

 if (credJson) {
 kernel.id.initialize(dojoJSON.parse(credJson));
 deferred.resolve(true);
 } else {
 deferred.resolve(false);
 }

 return deferred.promise;
 }

Listing 6.8 js/utils/securityUtil.js—module to handle credentials

Defines key to
store credentials

Checks if localStorage
available

Loads credentials

https://developers.arcgis.com/javascript/jssamples/widget_identitymanager_client_side.html
https://developers.arcgis.com/javascript/jssamples/widget_identitymanager_client_side.html

149Setting up authentication with OAuth 2.0
 function saveCredentials() {
 var deferred = new Deferred();

 if (kernel.id.credentials.length === 0) {
 deferred.resolve(false);
 }

 var credId = dojoJSON.stringify(kernel.id.toJson());

 if (hasLocal) {
 window.localStorage.setItem(key, credId);
 deferred.resolve(true);
 } else {
 cookie(key, credId, { expires: 1 });
 deferred.resolve(true);
 }

 return deferred.promise;
 }

 function removeCredentials() {
 var deferred = new Deferred();
 if (hasLocal) {
 window.localStorage.removeItem(key);
 deferred.resolve(true);
 } else {
 cookie(key, null, { expires: -1 });
 deferred.resolve(true);
 }
 return deferred.promise;
 }

 return {
 loadCredentials: loadCredentials,
 saveCredentials: saveCredentials,
 removeCredentials: removeCredentials
 };

});

The module accomplishes quite a bit, so let’s step through it for clarity:

1 Define a key to store the credentials for your application.
2 Check if localStorage is available.

The module attempts to use localStorage if available as a default storage
mechanism, but if localStorage isn’t available, it uses a browser cookie to store
the credentials. A cookie can hold tiny pieces of information related to your
browsing history, including any credentials to secure websites. I’m showing this
method of using a cookie to store credentials because ArcGIS Online tokens are
only valid for about two weeks, but cookie storage is not the most secure
method of storing such credentials. Use this method with caution.

Saves credentials

Removes credentials

Returns object to reveal
available methods

150 CHAPTER 6 Building a desktop browser application
3 Load credentials.
The loadCredentials function attempts to load any credentials from
localStorage or a cookie. If no credentials are available, it returns a Dojo
promise and resolves that promise with a value of false. It does this by check-
ing the esri/kernel module for credentials information.

4 Save current credentials.
The saveCredentials function saves the current credentials for one day by
converting the credentials to JSON and storing them appropriately.

5 Delete credentials, if needed.
Because you can save the credentials, the module also allows you to remove
them. Using the dojo/cookie module, you can remove a cookie by passing an
object with an expires value of -1.

6 Expose functions outside the module.
Finally, the module returns a plain JavaScript object that exposes these func-
tions to the outside world.

As you can see, this module makes extensive use of the dojo/Deferred module to
return promises for each function. You’ll see how that works next when you update
the js/main.js file.

COMBINING THE CREDENTIALS UTILITY WITH OAUTH 2.0

You’re still using Oauth 2.0 to sign in to the application, but you’re also now saving
the associated credentials when the browser reloads. You can see what the updated
js/main.js file looks like, with key steps labeled, in the following listing.

require([
 'esri/config',
 'dojo/dom',
 'dojo/on',
 'esri/arcgis/OAuthInfo',
 'esri/IdentityManager',

 'utils/securityUtil',
 'controllers/appcontroller',
 'services/mapservices',
 'dojo/domReady!'
], function (
 esriConfig,
 dom, on,
 OAuthInfo, esriId, securityUtil,
 AppCtrl,
 mapServices
) {

 esriConfig.defaults.io.proxyUrl = '/app/proxy.ashx';

Listing 6.9 js/main.js—save credentials locally

Loads credentials
utility module

151Setting up authentication with OAuth 2.0

 var info = new OAuthInfo({
 appId: 'zppZ53G093yZV7tG',
 portal: 'http://www.arcgis.com',
 expiration: (14 * 24 * 60),
 popup: false
 });

 esriId.registerOAuthInfos([info]);

 function startApplication() {

 dom.byId('signin-elem').innerHTML = 'Sign Out';

 var appCtrl = new AppCtrl({
 elem: 'map-div',
 mapOptions: {
 basemap: 'streets',
 center: [-118.241, 34.0542],
 zoom: 12
 },
 layers: mapServices.loadServices()
 });
 appCtrl.load();
 }

 function clearApplication() {
 securityUtil.removeCredentials();
 esriId.destroyCredentials();
 location.reload();
 }

 esriId.checkSignInStatus(info.portalUrl)
 .then(function() {
 securityUtil.saveCredentials().then(startApplication);
 })
 .otherwise(
 function() {
 securityUtil.loadCredentials().then(function(success) {
 if (success) {
 startApplication();
 }
 });
 }
);

 on(dom.byId('signin-elem'), 'click', function(e) {
 e.preventDefault();
 if (e.target.innerHTML === 'Sign In') {
 esriId.getCredential(info.portalUrl)
 .then(startApplication);
 } else {
 clearApplication();
 }
 });
});

Loads credentials
utility module

Changes Sign In link
when user signs in

Removes credentials, signs user
out, and reloads the page

Saves credentials
and starts
application

Loads credentials
and starts
application

Listens for click
event when user
signs in or out

152 CHAPTER 6 Building a desktop browser application
A few new security-related features are implemented in this file. The steps are detailed
here:

1 Load the securityUtil module that will save OAuth 2.0 credentials.
2 To allow the user to also sign out, change the text of the link from Sign In to

Sign Out when the user signs in and the application starts.
3 The clearApplication() function removes the credentials from the browser

and signs the user out, which reloads the page.
4 IdentityManager checks whether the user has returned from the ArcGIS Online

sign-in page. If so, it saves the credentials locally and starts the application.
5 If the browser isn’t redirecting from the ArcGIS Online sign-in page, it checks

the local credentials and loads them. If loading the credentials is successful, it
then starts the application.

6 Use dojo/on to listen for when the Sign In link is clicked and check whether the
value of the link is Sign In.
If so, when clicked, the application uses IdentityManager to sign in the user
and start the application. If the user is already logged in, you assume that the
user wants to log out, so you remove the local credentials and reload the page
using the clearApplication() function.

Now when you refresh the page, you’re presented with the navigation bar and the
Sign In link with no map. When you click Sign In, you’re directed to the ArcGIS
Online page, as before, where you sign in and then get redirected back to the applica-
tion. The application should behave as before, but when you refresh the page, you’re
no longer prompted to sign in; the application, along with the secured services, loads
as expected. When you’re done, click the Sign Out link, and the page returns to its
original state with the Sign In link and no map.

 This handy module you built now manages user credentials for your application,
which should make the user happier. With the base of your application built and a way
to access secured services in place, let’s move on and add more functionality.

6.4 Building the user interface
With authentication complete, you can begin to add capabilities to your application.
To show the power you get out of the box from the API, let’s add two standard ArcGIS
API for JavaScript widgets:

■ Measurement widget
■ BasemapToggle widget

6.4.1 Working with the Measurement widget

One of the widgets that I use on a regular basis is the Measurement widget. It does
exactly what you think it does: it measures length and area and can even be used to
determine a coordinate on the screen. I wouldn’t necessarily use this widget in a
mobile-focused web application because I don’t think it’s the best fit for the screen

153Building the user interface
real-estate it uses up, but for a desktop browser application, it works great. When
added to your application, the Measurement widget looks similar to figure 6.8.

 To get the Measurement widget into your application, modify the following files:

■ index.html
■ main.css
■ appcontroller.js

ADDING AND DISPLAYING THE MEASUREMENT WIDGET

First, add a div element to the index.html file to hold the widget. You can add this ele-
ment after the element for the map:

<div id="map-div"></div>
<div id="measurement-div"></div>

Next, add the following CSS to the style sheet (css/main.css):

#measurement-div {
 position: absolute;
 background-color: #fff;
 z-index: 1;
 left: 65px;
 top: 55px;
 width: 300px;
 height: 200px;
 padding: 10px 80px 10px 10px;
}

This CSS makes the background color for the element white and positions the ele-
ment on the page in a convenient location.

NOTE The code for this application is available in the chapter6/part4 folder
of the source code included with the book.

With the visual elements in place to hold the Measurement widget and display it, you
only need to modify the js/controllers/appcontroller module to add the widget
to the application, as shown in the following listing.

define([
 'dojo/_base/declare',
 'dojo/_base/lang',
 'dojo/on',

Listing 6.10 js/controllers/appcontroller.js—add Measurement widget

Figure 6.8 Adding the Measurement
widget to the application provides tools
to measure area, length, and
coordinates of a location.

Adds references to
required modules

154 CHAPTER 6 Building a desktop browser application
 'esri/map',
 'esri/tasks/GeometryService',
 'esri/config',
 'esri/dijit/Measurement'
], function (
 declare, lang, on,
 Map,
 GeometryService,
 esriConfig,
 Measurement
) {

 var url = 'http://tasks.arcgisonline.com' +
 '/ArcGIS/rest/services/Geometry/GeometryServer';

 return declare(null, {
 map: null,
 options: {},

 constructor: function (options) {
 this.options = options;
 esriConfig.defaults.geometryService =
 new GeometryService(url);
 },

 load: function () {
 this.map = new Map(
 this.options.elem,
 this.options.mapOptions
);
 on(this.map, 'load', lang.hitch(this, 'onMapLoad'));
 this.map.addLayers(this.options.layers);
 },

 onMapLoad: function() {
 this.measurement = new Measurement({
 map: this.map
 }, 'measurement-div');
 this.measurement.startup();
 }
 });
});

The key steps are detailed here:

1 Add references to newly required modules for the Measurement widget.
Add the dojo/on module to listen for the map to finish loading. The esri/
tasks/GeometryService module is required by the Measurement widget so it
can perform the calculations needed to display results on the map. To set the
URL for the new GeometryService, use the esri/config module.

2 When the application starts, add a listener using the dojo/on module, which lis-
tens for the map to load.

Waits for the
map to load

When the map loads, builds
the Measurement widget

155Building the user interface
3 When the map loads, create the Measurement widget by giving the widget a ref-
erence to the loaded map and the ID of the div element to use for the widget
container.
Because the widget references an HTML element, use the startup() method of
the widget so the widget can render in the browser.

Refresh the page to see what was shown previously in figure 6.8.

USING THE MEASUREMENT WIDGET

If you begin clicking the icons of the Measurement widget, you’ll see that you can mea-
sure areas on the page and measure distances. When checking for coordinates, the
widget even displays the latitude and longitude of the mouse cursor. Examples of what
the Measurement widget can do are shown in figure 6.9.

 As you can see, the Measurement widget is a useful tool. Users tell me that one of
their most common tasks for this widget is getting the coordinate of a location such as
a street intersection. In the case of this application, a user may want to determine
roughly how far away a request is from the street. It has numerous possible use cases.

 You positioned the Measurement widget in a location on the page that’s convenient
with respect to other elements such as the map and header. During use, the widget
grows in width to accommodate the drop-down menu of measurement units, and it
also grows in height, downward, to accommodate displaying the results. Realistically,
the upper-left corner of the page is the only area that provides the widget with the
room it needs during use. But you may not want the widget to be visible at all times.
Wouldn’t it be neat if you could hide or show the widget with a button click? That’s
exactly what you’ll do next.

Figure 6.9 Example usage of the Measurement widget

156 CHAPTER 6 Building a desktop browser application

Bin
but
to
TOGGLING VISIBILITY OF THE MEASUREMENT WIDGET

First, update the index.html file with a new anchor tag in a list item in the navigation
bar HTML element (see listing 6.7). Add the link below the Sign In link:

 Sign In

 Measure

Next, add code to the controllers/appcontroller module to handle what happens
when the Measure link is clicked. The updated module is shown in the following listing.

define([
 ...
 'dojo/dom',
 ...
 'esri/domUtils',
 'esri/dijit/Measurement'
], function (
 declare, lang,
 dom, on,
 Map,
 GeometryService,
 esriConfig,
 domUtils,
 Measurement
) {
 ...
 return declare(null, {
 ...
 load: function () {
 this.map = new Map(
 this.options.elem,
 this.options.mapOptions
);

 on(this.map, 'load', lang.hitch(this, 'onMapLoad'));
 on(
 dom.byId('measurement-toggle'),
 'click',
 lang.hitch(this, 'toggleMeasurement')
);
 this.map.addLayers(this.options.layers);
 },
 ...
 toggleMeasurement: function(e) {
 e.preventDefault();
 domUtils.toggle(this.measurement.domNode);
 }
 });
});

Listing 6.11 js/controllers/appcontroller.js—toggle Measurement widget

Adds new modules to file

ds the toggle
ton’s click event

a method

Toggles the visibility
of the widget

157Building the user interface
The key steps are detailed here:

1 Add new modules to the controller:
The first is the dojo/dom module, which enables HTML document object model
(DOM) functionality, such as finding an element by the element ID.

The second is the esri/domUtils module. You typically don’t see this module
in many samples, as this module is largely used internally in the ArcGIS API for
JavaScript, but it comes in handy when toggling the visibility of HTML elements.

2 Use the dojo/dom module to find the measurement-toggle anchor element
and bind the click event to the toggleMeasurement method on the controller.

3 When the anchor is clicked, use the esri/domUtils module to easily toggle the
visibility of the Measurement widget by referencing the domNode of the widget.
The domNode is a reference to the HTML element that contains the widget.

When you click the Measure link, it now toggles the visibility of the Measurement wid-
get as shown in figure 6.10.

 If required, you could hide the Measurement widget when the application starts up
as well. Add one line of code to the end of the onMapLoad() method of the
controllers/appcontroller module:

domUtils.hide(dom.byId('measurement-div'));

With that single line of code, the Measurement widget is now hidden when the applica-
tion starts.

 Adding out-of-the-box widgets of the ArcGIS JavaScript API is straightforward. Next,
you’ll add a widget that allows you to toggle between two basemaps of the application.

6.4.2 Working with the BasemapToggle widget

Sometimes users want the application to display a different basemap—maybe a street
view to get a general idea of an area, and then an aerial imagery view to see more
detail, such as how many buildings are in a location, or how much open space there is.
That’s where a tool like the BasemapToggle widget comes in handy.

 The steps to add the BasemapToggle widget to the application are similar to add-
ing the Measurement widget. Note that because you’ve already added a widget, the
base is already there, so for this widget, you only need to add the reference, pass it
options, and add a DOM element to bind it to.

Measurement widget show Measurement widget hidden

Figure 6.10 Clicking Measure in the navigation bar toggles visibility of the Measurement widget.

158 CHAPTER 6 Building a desktop browser application
NOTE The code for this application is available in the chapter6/part5 folder
of the source code included with the book.

DEFINING THE WIDGET

Modify the controllers/appcontroller module to add the widget as shown in the
next listing.

define([
 ...
 'esri/dijit/Measurement',
 'esri/dijit/BasemapToggle'
], function (
 ...
 Measurement, BasemapToggle
) {
 ...
 return declare(null, {
 ...
 onMapLoad: function() {
 ...
 this.basemaps = new BasemapToggle({
 map: this.map,
 basemap: 'hybrid'
 }, 'basemap-div');
 this.basemaps.startup();
 },
 ...
 });
});

Add a reference to the BasemapToggle module in the controllers/appcontroller
module, and then, almost identically to how you initialized the Measurement widget,
pass it a reference to the map, and this time provide it a basemap type you want to tog-
gle. As before, call the startup method to render it on the page.

ADDING THE HTML

You also need to add an HTML element to index.html to display the BasemapToggle
widget:

 <div id="map-div"></div>
 <div id="measurement-div"></div>
 <div id="basemap-div"></div>

STYLING AND POSITIONING THE WIDGET

Then add some CSS to css/main.css to position the widget correctly on the page:

#basemap-div {
 position: absolute;
 top: 55px;
 right: 5px;
 z-index: 1;
}

Listing 6.12 js/controllers/appcontroller.js—add BasemapToggle widget

Adds widget to module

Initializes and starts
up widget

159Editing requests
With everything in place, if you
refresh the browser, you should see
the BasemapToggle widget. To
change the basemap of the map on
the application, click the widget
(see figure 6.11).

 That was simple to accomplish.
In fact, adding out-of-the box wid-
gets to an application follows the
same standard steps:

1 Add an HTML element to hold the widget.
2 Style and position the widget.
3 Pass one or more options.
4 Run the startup method to render the widget on the page.

NOTE You’ll explore a possible way to take advantage of this pattern in chap-
ter 7 when you work with dynamically loading widgets.

Next, let’s enhance the application with an editing feature that allows users to move
the location of a request. You’ll also learn how to use a nonspatial web service to
update the GIS data.

6.5 Editing requests
Imagine a user is looking at the application and finds that the location of a request
needs to be changed. Maybe the user meant to add the request at a different cross
street or the description specifically states a location other than the location where the
request was added. This is a common scenario, and the ArcGIS API for JavaScript
makes this task painless. This section covers the following:

■ Setting up and configuring the Edit toolbar
■ Setting up the AttributeInspector widget
■ Linking GIS data to nonspatial services

6.5.1 Editing a request’s location

You previously worked with the Edit toolbar in chapter 5 to add features to the map
(and you used a series of buttons rather than a visual toolbar). This time, you’ll use it
to edit the location of a request.

 Generally, to implement edit functionality, you add the Edit toolbar, listen for
when the layer is double-clicked, and activate/deactivate the Edit toolbar. This func-
tionality lets users double-click the layer to activate the Edit toolbar, right-click the
selected request to drag and drop it to a different location, and double-click the layer
a second time to save the edits and deactivate the Edit toolbar.

Figure 6.11 To toggle between the Hybrid and Streets
basemaps, click the BasemapToggle widget.

160 CHAPTER 6 Building a desktop browser application
 Before we add the Edit toolbar, let’s set up the application to handle the edit func-
tionality.

NOTE The code for this application is available in the chapter6/part6 folder
of the source code included with the book.

CREATING AN EDIT-MODE REQUEST SYMBOL

When users edit a feature on a map, you want to provide an indication that an action
is taking place. A good solution is to change a request’s symbol while it’s being edited.
To do that, let’s add a new method to the utils/symbolutil module you created in
chapter 3. The updated module is shown in the following listing.

define([
 'esri/Color',
 'esri/symbols/SimpleLineSymbol',
 'esri/symbols/SimpleMarkerSymbol'
], function(
 Color,
 SimpleLineSymbol,
 SimpleMarkerSymbol
) {

 return {
 selectedSymbol: function() {
 return new SimpleMarkerSymbol(
 SimpleMarkerSymbol.STYLE_CIRCLE, 24,
 new SimpleLineSymbol(SimpleLineSymbol.STYLE_DASH,
 new Color([0,0,255]), 2),
 new Color([0,255,255,0.5])
);
 }
 };
});

This module is similar to what you wrote in chapter 3, but this time, it returns a point
symbol that looks like a circle with a dashed outline.

 Next, let’s create a new Editor widget to perform the edit operations.

CREATING A CUSTOM EDITOR WIDGET

The code for the Editor widget is shown in the next listing. Key steps are labeled in
the code and explained in detail after the listing.

define([
 'dojo/_base/declare',
 'dojo/_base/lang',
 'dojo/_base/array',
 'dojo/on',
 'esri/toolbars/edit'

Listing 6.13 js/utils/symbolutil.js—add method to supply new symbol

Listing 6.14 js/widgets/editwidget.js—custom Editor widget

Provides a method to return
a new marker symbol

Loads required
modules

161Editing requests
 'utils/symbolutil',
], function(
 declare, lang, arrayUtil,
 on,
 Edit,
 symbolUtil
) {

 return declare(null, {
 constructor: function(options) {
 this.map = options.map;

 this.editLayer = options.editLayer;
 },
 init: function() {

 this.editToolbar = new Edit(this.map);

 this.isEditing = false;
 on(this.editToolbar,
 'deactivate', lang.hitch(this,'onEditDeactivate')
);

 on(this.editLayer,
 'dbl-click',
 lang.hitch(this, 'onMoveFeature')
);
 },
 onEditDeactivate: function(e) {
 if (e.info.isModified) {

 e.graphic.setSymbol(this.defaultSymbol);
 this.editLayer.applyEdits(null, [e.graphic], null);
 }
 },
 onMoveFeature: function(e) {

 e.preventDefault();
 if (!this.isEditing) {
 this.isEditing = true;
 this.defaultSymbol = e.graphic.symbol;

 e.graphic.setSymbol(symbolUtil.selectedSymbol());
 this.editToolbar.activate(Edit.MOVE, e.graphic);
 } else {
 this.isEditing = false;

 this.editToolbar.deactivate();
 }
 }
 });
});

Loads required
modules

Gets layer from
map to edit

Initializes
Edit toolbar
with map

Keeps track if in
an edit session

When layer is double-clicked,
moves the clicked feature

When edit is
done, resets to
default symbol

Stops the native event

Changes symbol
to indicate it’s
being edited

Deactivates the Edit toolbar

162 CHAPTER 6 Building a desktop browser application
In this code you load a couple of modules. Here are the steps:

1 Load the esri/toolbars/edit and utils/symbolutil modules.
2 Retrieve the layer from the map that you want to edit. This is simple since the

layer was passed in as part of the options.
3 Initialize the Edit toolbar by passing it the map. This will bind some internal

functions to the map.
4 Use a variable to keep track of whether or not you’re editing. This will make

tracking what’s happening in your application much easier.
5 Listen for the layer to be double-clicked to start editing.
6 When the Edit toolbar is deactivated, apply the updates to the service if the fea-

ture has been modified and set the symbol back to the default symbol.
7 Stop the default event behavior of zooming in the map.
8 If user is not already editing, turn on editing for the Graphic that was clicked,

save the default symbol, and change the symbol to indicate that an action is tak-
ing place.

9 If user is already editing, turn off the Edit toolbar.

ADDING THE WIDGET TO THE APPLICATION

To use this Editor widget in the application, add it to the controllers/

appcontroller module as shown in the following snippet from the js/controllers/
appcontroller.js file:

define([
 ...
 'widgets/editwidget'
], function (
 ...
 EditWidget
) {
 ...
 return declare(null, {
 ...
 onMapLoad: function() {
 ...
 this.editWidget = new EditWidget({
 map: this.map,
 editLayer: this.map.getLayer('Requests')
 });

 this.editWidget.init();
 },
 ...
 });
});

You pass the custom Editor widget a reference to the map and the correct layer to be
edited.

163Editing requests
If you run the application, it doesn’t look any different than before. But if you double-
click a request on the map, the symbol changes to a blue dot with a dashed outline
(see figure 6.12). You can then right-click the request, hold down the right-click
mouse button, and drag the request to a new location. Double-click the request again;
the symbol returns to normal and the changes are saved to the service. Refresh the
map to verify that the new location was saved.

 Editing the location of a request is only half of the editing process. The other half
is editing the data itself, which we’ll look at next.

6.5.2 Editing a request’s attributes

Like the requirement to a move a request when needed, there may also be situations
where the user wants to edit the data associated with that request. In chapter 5, you
built custom edit tools to collect the data. To edit the data in this application, you’ll
use another out-of-the-box widget provided by the ArcGIS API for JavaScript: the
AttributeInspector. The AttributeInspector allows a user to click a feature and
then edit the data accordingly, but this widget does require a bit of setup.

NOTE The code for this application is available in the chapter6/part7 folder
of the source code included with the book.

CREATING AN ATTRIBUTEINSPECTOR HELPER

You need to let the AttributeInspector know which fields to display and of those,
which ones can be edited. To make the application more maintainable, let’s create a
new file in the utils folder called editconfig.js. The purpose of this module is to pro-
vide the configurations to the AttributeInspector. The code is shown in the follow-
ing listing.

define([
], function() {
 return {
 fieldInfos: [{
 fieldName:'IssueType',
 isEditable: true,

Listing 6.15 js/utils/editconfig.js—configuration for AttributeInspector widget

Figure 6.12 The request’s
symbol changes to indicate that
its location is being edited.

Defines fields to display
in AttributeInspector

164 CHAPTER 6 Building a desktop browser application
 label: 'Issue Type',
 domain: {
 type: 'codedValue',
 name: 'issueTypeDomain',
 codedValues: [{
 name: 'Graffiti',
 code: 'graffiti'
 }, {
 name: 'Street Light',
 code: 'streetlight'
 }, {
 name: 'Pothole',
 code: 'pothole'
 }, {
 name: 'Other',
 code: 'other'
 }]
 }
 }, {
 fieldName: 'Description',
 isEditable: true,
 label: 'Description'
 }]
 };
});

This utility returns an object that contains the fieldInfos that define what fields to
display in the AttributeInspector as well as which ones are editable. The new
domain property of the IssueType field helps populate a drop-down list in the
AttributeInspector from which users can choose a value. Don’t get too excited
about this feature yet, as it requires more sweat to get it working correctly.

ADDING THE ATTRIBUTEINSPECTOR WIDGET

Adding this widget requires updating the widgets/editwidget module (see listing
6.14). Like the custom Editor widget, this is an in-depth example, so first look at the
updated module code in the following listing, and then we’ll discuss the details of
what’s happening in the code.

define([

 ...
 'dojo/dom-construct',
 'dojo/on',
 'esri/layers/FeatureLayer',
 'esri/tasks/query',
 'esri/toolbars/edit',
 'esri/dijit/AttributeInspector',
 'utils/editconfig',
 'utils/symbolutil'
], function(
 declare, lang, arrayUti,

Listing 6.16 js/widgets/editwidget.js—add AttributeInspector

Defines domains to be used
in drop-down menus

Defines required
modules

165Editing requests
 domConstruct, on,
 FeatureLayer, Query,
 Edit,
 AttributeInspector, editConfig,
 symbolUtil
) {
 'use strict';

 return declare(null, {

 map: null,
 editLayer: null,
 attrLayer: null,
 editToolbar: null,
 isEditing: false,
 attrInspector: null,
 editFeature: null,

 constructor: function(options) {
 this.map = options.map;
 this.editLayer = options.editLayer;
 },

 init: function() {

 this.attrLayer = new FeatureLayer(editLayer.url, {
 id: 'RequestsEdit',
 mode: FeatureLayer.MODE_SELECTION,
 outFields: ['*']
 });

 this.editToolbar = new Edit(this.map);
 on(this.editToolbar, 'deactivate',
 lang.hitch(this,'onEditDeactivate'));
 on(this.map, 'click', lang.hitch(this, 'onMapClick'));
 on(this.editLayer, 'dbl-click', lang.hitch(this, 'onMoveFeature'));
 on(this.map.infoWindow, 'hide', lang.hitch(this, 'clear'));

 if (!this.attrLayer.loaded) {
 on(this.attrLayer, 'load', lang.hitch(
 this,
 'onLayerLoaded'
));
 }
 },

 onLayerLoaded: function() {
 this.updateFields(this.attrLayer);

 var layerInfos = [{
 featureLayer: this.attrLayer,
 isEditable: true,
 showDeleteButton: false,
 fieldInfos: editConfig.fieldInfos
 }];

Defines required
modules

Creates layer
to edit

Waits for layer’s load
event if not loaded

When layer loads, finds
fields for use in edit tool

Defines the layerInfos
for edit tool

166 CHAPTER 6 Building a desktop browser application

I

r

r

 this.attrInspector = new AttributeInspector({
 layerInfos: layerInfos
 }, domConstruct.create('div'));

 on(this.attrInspector,
 'attribute-change',
 lang.hitch(this, 'onAttributesChange')
);

 this.map.infoWindow.setContent(this.attrInspector.domNode);
 this.map.infoWindow.resize(400, 350);
 },
 ...
 onEditDeactivate: function(e) {
 if (e.info.isModified) {
 e.graphic.setSymbol(this.defaultSymbol);
 this.editLayer.applyEdits(null, [e.graphic], null);
 }
 },

 onMapClick: function(e) {
 if (!this.isEditing && e.graphic) {
 var query = new Query();
 query.objectIds = [e.graphic.attributes.OBJECTID];

 this.attrLayer.selectFeatures(query)
 .then(lang.hitch(this, function(features) {
 if (features.length) {
 this.editFeature = features[0];
 this.map.infoWindow.setTitle(this.attrLayer.name);
 this.map.infoWindow.show(
 e.screenPoint,
 this.map.getInfoWindowAnchor(e.screenPoint)
);
 } else {
 this.map.infoWindow.hide();
 }
 }));
 }
 },

 onAttributesChange: function(e) {
 this.editFeature.attributes[e.fieldName] = e.fieldValue;
 this.attrLayer.applyEdits(null, [this.editFeature], null);
 },

 clear: function() {
 this.attrLayer.clearSelection();
 },

 updateFields: function(layer) {
 var domains = {};
 arrayUtil.forEach(editConfig.fieldInfos, function(info) {
 domains[info.fieldName] = info.domain;
 });

nitializes the
 Attribute-
Inspector

When map is
clicked, checks if
currently editing

Selects
the feature

to edit

Updates the laye
with changes in
AttributeInspecto

Clears selection of features

Iterates over
configuration to
find edit fields

167Editing requests
 arrayUtil.forEach(layer.fields, function(field) {
 if (domains[field.name]) {
 field.domain = domains[field.name];
 }
 });
 }
 });
});

The steps are detailed here:

1 To use the AttributeInspector, add a few more modules, including the
FeatureLayer and editConfig.

2 Create a new FeatureLayer for use with the AttributeInspector. This layer
isn’t displayed in the map; it’s strictly for editing the attributes. Make sure you
specify FeatureLayer.MODE_SELECTION as the mode for the FeatureLayer, as
that’s how you determine what features to edit.

3 The layer isn’t immediately loaded, so wait for its load event.
4 When the layer loads, use arrayUtil to iterate over the fields property of the

layer and find which fields are defined in the editConfig module as having
domains; then you can assign those domains to the source layer.

5 Create what’s called a layerInfos array, which tells the AttributeInspector
which FeatureLayer to edit, if it’s editable, and provides the fieldInfos
defined in the editConfig module.
You could also set it so the Delete button is shown, which isn’t used in this appli-
cation, but would make a good exercise.

6 Initialize the AttributeInspector and create a new div element to contain it.
Set this div element as the source for the map’s InfoWindow, which is a pop-up
window provided with the map that you can use for the AttributeInspector.

7 When the map is clicked, check to make sure the user isn’t already trying to
move a feature and that the user indeed clicked a Graphic. Then grab the
OBJECTID of the Graphic.

8 Select features from the source layer, and once the results are returned, display
the InfoWindow that allows the user to edit the data. If no features are returned,
make sure the InfoWindow stays hidden.

9 Listen for when the data in the AttributeInspector changes and automatically
send the updates to the server so the user doesn’t have to click a button to save
the data. Because this is a browser-based application for the desktop, this
shouldn’t strain browser resources.

10 When the InfoWindow is closed, be sure to clear the selections made on the
map.

11 Finally, you have a method that iterates over the fields in the layer and the fields
from the editConfig module to populate the domains.

Iterates over
configuration to
find edit fields

168 CHAPTER 6 Building a desktop browser application
That’s the basic process of using the AttributeInspector to edit the layer’s current
data. Figure 6.13 shows the AttibuteInspector after you click a request on the map.

 You may notice the Choose File button at the bottom of the AttributeInspector.
Go ahead and click it. This button allows you to add attachments to your data, such as
images or documents, or anything that you want to associate with this request. That
comes for free with the AttributeInspector. You don’t have to write any extra code
for that functionality, which I always thought was neat.

 Next, you’ll learn how to populate a drop-down list in the AttributeInspector
with data from a nonspatial web service. This can come in handy when various systems
need to be linked together.

6.5.3 Incorporating a nonspatial service

You may want to incorporate existing data that has no spatial component with your
spatial data—for example, displaying a list of assets, financial information, or employ-
ees. The last of those tasks, supplying a list of employees, is what you’ll implement to
allow users to assign a specific employee to a service request.

CREATING MOCK DATA

You may not have anything to do with the back-end web services that help power your
web mapping application. A web service could be written in any number of program-
ming languages, ranging from Java and C# to PHP and JavaScript (using Node), so to
save you the time and brainpower of trying to piece together a web service, let’s create
a mock web service for use in the RequestViewer app.

NOTE The code for this application is available in the chapter6/part8 folder
of the source code included with the book.

Dropdown of domains
manually populated

Figure 6.13 AttributeInspector allows users to edit the data.

169Editing requests
Create a new file called data/data.json in your project. Notice the .json file extension;
this is a JSON file, not a JavaScript file. This file is also available with the source code
for the book. The following listing shows the mock JSON data.

{
 "employees": [{
 "name": "Simon Williams",
 "id": 101
 }, {
 "name": "Sam Axe",
 "id": 102
 }, {
 "name": "Clint Barton",
 "idt": 103
 }, {
 "name": "Kevin Key",
 "id": 104
 }, {
 "name": "Mitchell Hundred",
 "id": 105
 }, {
 "name": "Matt Murdock",
 "id": 106
 }, {
 "name": "Jack Knight",
 "id": 107
 }, {
 "name": "Selina Kyle",
 "id": 108
 }]
}

With the data in place, you can move on to the mock web service.

CREATING A MOCK WEB SERVICE

This mock web service is simple. If you’re lucky, the various web services you work with
return data in an easy-to-use format, and you don’t have to spend too much time
transforming the data to meet your needs. Because your mock data represents a clean
result, the mock web service, shown in the following listing, is clean as well.

define([
 'esri/request'
], function(
 esriRequest
) {
 return {
 getEmployees: function() {
 return esriRequest({
 url: 'data/data.json',

Listing 6.17 data/data.json—mock data for application

Listing 6.18 js/services/employeeservice.js—mock web service

Uses esriRequest
to load mock data

Provides URL to mock data file

170 CHAPTER 6 Building a desktop browser application
 handleAs: 'json',
 callbackParamName: 'callback'
 });
 }
 };
});

When working with web services using the ArcGIS API for JavaScript, you should stick
with using the esri/request module provided by the API. This module handles errors
cleanly and also takes advantage of the proxy when needed. As shown in the code, you
send a request with the following parameters:

■ The URL of the web service; in this case, the JSON file you mocked up
(data.json).

■ How you want to handle the data; in this case, as JSON.
■ A name for the odd property called callbackParamName; in this case, it’s

callback.

UPDATING THE EDITOR WIDGET

The final step is to update the Editor widget to use your web service and provide the
employee information to the layer and the AttributeInspector. This last step can get
tricky because you have to map the list of employees to a field in the FeatureLayer.
Look at the updated code in the following listing, and then we’ll discuss the details of
what’s happening.

define([

 ...
 'dojo/Deferred',
 ...
 'services/employeeservice'
], function(
 ...
 Deferred,
 ...
 employeeService
) {

JSON with Padding

When trying to retrieve data from a server other than the one your application is hosted
on, you may need to use the option callbackParamName. The value for this option
is always callback. The purpose of the callback is to take advantage of JSONP, which
is JSON with Padding, when needed to make cross-origin requests from the browser.
JSONP works by placing a script tag in the browser with a URL as the source. The
method given to that URL is the callback name.

Listing 6.19 js/widgets/editwidget.js—add web service data

Handles file
as JSON

Provides a callback
parameter name

Defines modules
for use in file

171Editing requests
 return declare(null, {
 ...
 init: function() {
 ...
 if (!this.attrLayer.loaded) {
 on(this.attrLayer, 'load', lang.hitch(
 this,
 function() {

 this.updateFields(this.attrLayer).then(
 lang.hitch(this, 'onFieldsReady')
);
 }
));
 }

 },

 onFieldsReady: function(fieldInfos) {
 var layerInfos = [{
 featureLayer: this.attrLayer,
 isEditable: true,
 fieldInfos: fieldInfos
 }];

 this.attrInspector = new AttributeInspector({
 layerInfos: layerInfos
 }, domConstruct.create('div'));

 on(this.attrInspector,
 'attribute-change',
 lang.hitch(this, 'onAttributesChange')
);

 this.map.infoWindow.setContent(this.attrInspector.domNode);
 this.map.infoWindow.resize(400, 350);
 },
 ...
 updateFields: function(layer) {
 var deferred = new Deferred();

 employeeService.getEmployees().then(function(data) {
 var fieldInfo
 , codedValues;

 codedValues = arrayUtil.map(
 data.employees,
 function(employee) {
 return {
 name: employee.name,
 code: employee.id
 };
 }
);

Defines modules
for use in file

Uses fields from
configuration, then
continues setup

Sets up
layerInfos
when ready

Uses employee service
to load employee data

Maps employee data
to values for editor

172 CHAPTER 6 Building a desktop browser application
 fieldInfo = {
 fieldName: 'Assignee',
 isEditable: true,
 label: 'Assigned To',
 domain: {
 type: 'codedValue',
 name: 'employeeDomain',
 codedValues: codedValues
 }
 };

 editConfig.fieldInfos.push(fieldInfo);
 var domains = {};
 arrayUtil.forEach(editConfig.fieldInfos, function(info) {
 domains[info.fieldName] = info.domain;
 });

 arrayUtil.forEach(layer.fields, function(field) {
 if (domains[field.name]) {
 field.domain = domains[field.name];
 }
 });

 deferred.resolve(editConfig.fieldInfos);
 });
 return deferred.promise;
 }
 });
});

The steps are detailed here:

1 Load the Deferred module, which you used extensively in chapters 4 and 5, as
well as in the empoyeeservice module.

2 Update the updateFields method to return a promise, and, when that promise
is complete, launch a new method called onFieldsReady to replace the method
onLayerLoaded from listing 6.17.

3 The onFieldsReady method behaves identically to the previous onLayerLoaded
method, except the fieldInfos for the AttributeInspector are provided by
the fieldInfos returned by the updateFields method.

4 The updateFields method is where most of the code changes have taken place.
Call the employeeService.getEmployees method to return the mock JSON
data.

5 The arrayUtil.map method creates a new array of coded values to be used in
the application from the JSON results.

6 Create a new fieldInfo object that matches the Assignee field of the layer you
want to associate with the JSON results.

7 Add this new fieldInfo object to the array of fieldInfos in the editConfig.
8 Once the layer has been supplied with all the appropriate domains, resolve

deferred with the fieldInfos, and the application functions as normal.

Sets up employee values
to Assignee field

Adds fieldInfo
 to edit

configuration

When employee data is ready,
continues with application

173Summary
If you refresh the application and click a request to edit it, a new drop-down list of
employees appears that can be assigned to the Assignee field of the request (see fig-
ure 6.14).

 This is a useful method of linking nonspatial data from a web service with your web
mapping application. It’s seamless to the user; the employee information isn’t part of
your spatial data. This is by no means the only way to enhance your application with
other web services; sometimes this process can be as simple as opening another web
application via a hyperlink and using the id of a spatial feature as part of the URL, or
as complicated as syncing large amounts of purchasing data with spatial features on
the map. Integration needs vary widely, but this exercise should give you a good idea
of what’s possible.

 The edit tools covered in this chapter and the AttributeInspector are key to per-
forming edit functions with the ArcGIS API for JavaScript. Once you understand the
concepts and uses of these widgets, you can use them in most configurations or cus-
tomize them to meet your needs. This is a valuable skill set to have when working with
the ArcGIS API for JavaScript. In the next chapter, you’ll advance the offline editing
capabilities of the edit tools for use in your application.

6.6 Summary
■ This chapter covered a boatload of material. You now have a good idea of how

to generate tokens for your secured application, whether you’re using ArcGIS
Server or ArcGIS Online.

■ You saw how to use OAuth 2.0 to handle authentication for your application and
even learned a couple of neat methods to save those credentials in the browser.

Dropdown of domains
manually by web service

Figure 6.14 AttributeInspector enhanced with web service data

174 CHAPTER 6 Building a desktop browser application
■ You looked at standard widgets, the Measurement and BasemapToggle, with the
ArcGIS API for JavaScript that simplify many tasks.

■ You should have a strong grasp of how to use the Edit module and Attribute-
Inspector to edit data in an application, and you even took things a step fur-
ther by adding custom domain values to the AttributeInspector to use a
nonspatial web service.

This chapter marks the end of the training-wheels chapters designed to familiarize
you with various aspects of the ArcGIS API for JavaScript. I may have let go of the bike
on occasion, but I didn’t push you down any hills. In the next and final chapter, I’ll
push you down a hill. Chapter 7 covers advanced methods for loading widgets and
map services, all from a single configuration file. Once you write the base project, you
can reuse it over and over again. Brace yourself; it’s going to get bumpy.

Advanced techniques
By now you have a fairly good grasp of the basics of the ArcGIS API for JavaScript.
You’ve seen how custom widgets are built, and you’ve loaded default widgets and
used them in your applications. You should also have a well-rounded idea of how the
Dojo Toolkit is used to build applications using the ArcGIS API for JavaScript. Believe
it or not, I’ve intentionally kept things straightforward and tried to prevent showing
overly complicated examples that detract from the core of the tasks at hand.

 In this chapter we cover a few advanced techniques that I’ve found useful over the
years. They help focus development on the purpose of the application so you don’t
have to worry about too much boilerplate code. Many of these techniques involve
using basic patterns of the ArcGIS JavaScript API that you may find while building

This chapter covers
■ Building an application from a JSON

configuration
■ Writing a loader class to handle widget loading
■ Treating new functionality as a new widget
■ Taking advantage of the web map specification
■ Implementing advanced offline functionality
175

176 CHAPTER 7 Advanced techniques
applications. A couple of these techniques take advantage of lesser-discussed tools built
into the ArcGIS API for JavaScript, such as how it can build a map from a simple Web-
Map ID from ArcGIS Online. This allows you to use specifications of the ArcGIS REST
API to your advantage. I also cover more advanced techniques for working with the
application when an internet connection is lost.

 I’ll cover more powerful options available when building a map and adding layers.
By the end of this chapter, you’ll know how to set up your application so you can add
new widgets without writing a single line of additional code. You’ll also return to the
disconnected editing covered in chapter 5 and look at advanced techniques that can
ease the pain of disconnected editing.

 These techniques aren’t required to be a successful ArcGIS API JavaScript devel-
oper, but I believe having them at your disposal will help make you an efficient one.

7.1 Using a single configuration file
One thing I’ve always found awkward when developing ArcGIS API for JavaScript
applications is embedding all my configurations right into my code base. It’s not an
issue with small apps and a handful of modules, but as an application begins to grow, I
have to remember where I defined certain URL paths or widget configurations. I’m
not so sloppy that they’re hidden away, but when returning to an application a few
months after it’s completed, there’s a cognitive bump I need to get past before I can
get back into the groove and update the application. One of the things I think Esri did
really well with their FlexViewer application for ArcGIS API for Flex developers is this
concept of building functionality in the form of new widgets. Each widget has its own
configuration files where you can define parameters, such as Map service URLs and
new layers. Maintenance is easy because changes and updates are applied using a con-
figuration file.

 This section covers the following:

■ Loading a configuration file
■ Defining map options in a configuration file
■ Defining widgets in the configuration file

NOTE The code for this section is available in the chapter7/part1 folder of
the source code included with the book.

7.1.1 Defining a map

You’ll build a small application to load a configuration file that defines many of the
settings for the application, including the map and what layers are in the map.

SETTING UP THE APPLICATION

To get started, build the simple index.html file as shown in the following listing. This
file references the ArcGIS API for JavaScript, a custom stylesheet you can use with this
application, and the JavaScript file that starts the application.

177Using a single configuration file

<!doctype html>
<html>
 <head>
 <meta charset="utf-8" />
 <meta name="viewport"
 content="initial-scale=1,
 maximum-scale=1,user-scalable=no"/>
 <link type='text/css'
 href='//js.arcgis.com/3.11/esri/css/esri.css'
 rel='stylesheet' />
 <link type='text/css'
 href='css/main.css'
 rel='stylesheet'>
 <title></title>
 </head>
 <body class="nihilo">
 <div id="map-div"></div>
 <script type="text/javascript"
 src="//js.arcgis.com/3.11compact"></script>
 <script src="js/run.js"></script>
 </body>
</html>

This HTML file has only the bare essentials of what’s needed to start an ArcGIS API for
JavaScript application. The main.css file referenced here is also basic, covering only a
few elements, as shown in the following listing.

html,body{
 overflow-x:hidden;
 height:100%;
 width:100%;
 margin:0;
 padding:0;
 }

 #map-div{
 position:absolute;
 padding:0;
 top:0;
 left:0;
 right:0;
 bottom:0;
 }

You’ve seen this CSS throughout the book. The run.js file, shown in the following list-
ing, should also look familiar.

(function() {
 var pathRX = new RegExp(/\/[^\/]+$/)

Listing 7.1 index.html—simple HTML file for application

Listing 7.2 css/main.css—simple style sheet to get started

Listing 7.3 js/run.js—sets up the Dojo path configuration

Bare-bones HTML file to
start the application

Sets HTML and body to
use entire browser page

Sizes map to use
entire browser page

178 CHAPTER 7 Advanced techniques

e

Pr
fo
Do

Use
mo
con
 , locationPath = location.pathname.replace(pathRX, '');
 require({
 async: true,
 parseOnLoad: true,
 aliases: [['text', 'dojo/text'], ['domReady', 'dojo/domReady']],
 packages: [{
 name: 'controllers',
 location: locationPath + 'js/controllers'
 }, {
 name: 'widgets',
 location: locationPath + 'js/widgets'
 }, {
 name: 'app',
 location: locationPath + 'js',
 main: 'main'
 }]
 }, ['app']);
})();

Run.js is a basic module that sets up the Dojo configuration for the application.
You’ve seen this in previous chapters in each new application you’ve built. This pro-
cess doesn’t change much. It’s in the main.js file where you’ll see that things are differ-
ent from the way you’ve built applications in previous chapters.

LOADING MAP OPTIONS FROM A CONFIGURATION FILE

Instead of defining layers and creating the map in the main.js file, let’s create a map
based on an external JSON file, as shown in the following listing.

require([
 'esri/request',
 'esri/map',
 'domReady!'
], function (
 esriRequest,
 Map
) {
 function onConfigSuccess(response) {
 var map = new Map('map-div', response.options);
 }
 function onConfigError(error) {
 console.log('ERROR - Loading config file:', error);
 }
 function requestParams() {
 return {
 url: 'config.json',
 handleAs: 'json'
 };
 }
 esriRequest(requestParams()).then(onConfigSuccess, onConfigError);
});

Listing 7.4 js/main.js—loads the config.json file

Sets up regular expression to overrid
where Dojo looks for modules

ovides aliases
r certain
jo tools

Defines custom packages
for the application

Adds esri/request module to
load resources from URL

When a response is returned, creates
map from options provided

If error occurs, prints
it to debug console

Defines parameters
to make the request

s esri/request
dule to load
fig.json file

179Using a single configuration file
The main.js module now loads a JSON file. Remember, JSON is a subset of JavaScript
that defines easy-to-read bits of information. When the JSON file loads, you can create
a new map using the options described in the JSON file.

DEFINING MAP OPTIONS IN A CONFIGURATION FILE

Basic map options defined in the config.json file look like this:

{
 "options": {
 "basemap": "topo",
 "center": [-118.210,34.285],
 "zoom": 10
 }
}

This config.json provides only basic map options, but it’s enough to get the party
started. If you run the application at this point, you’ll see a map similar to what’s
shown in figure 7.1.

 It’s fairly straightforward to load config.json and apply the options it defines for
the map. This isn’t the finished product, but it’s a start.

 Now suppose you also want to load another widget from the ArcGIS API for Java-
Script, such as the Geocoder widget, which allows you to search for addresses. That
widget has options you can also define in config.json.

Figure 7.1 Map created from JSON configuration

180 CHAPTER 7 Advanced techniques
7.1.2 Loading the Geocoder widget

The Geocoder widget has a couple of required options, such as the URL for the Geo-
coder service and a placeholder value to put in the input box. Let’s update config.json
with the following options for use in the application:

{
 "options": {
 ...
 },
 "geocoderOptions" : {
 "arcgisGeocoder": {
 "url": "http://geocode.arcgis.com/arcgis/rest"+
 "/services/World/GeocodeServer",
 "placeholder": "Enter address"
 }
 }
}

You can give the Geocoder options a unique name to avoid confusing them with the
map options. The URL shown is the default used in the widget; this URL is used even if
you omit it. I’ve included it here to clarify that you can change it to a different URL if
you choose.

 Before you load the Geocoder widget, let’s add a div element to the index.html file
that will contain the search box for the widget. You can add it after the map-div:

 <body class="nihilo">
 <div id="map-div"></div>
 <div id="search"></div>
 ...
 </body>

Next, add styling in main.css to position the Geocoder widget:

#map-div{
 ...
 }

 #search {
 position: absolute;
 z-index: 2;
 top: 5px;
 right: 5px;
 }

This code positions the Geocoder widget in the upper-right corner of the browser.
 The last thing to do before you load the Geocoder widget is to update the main.js

file, as shown in the following listing. This file waits for the map to finish loading, and
then passes the map and the options from the config.json file to the Geocoder.

require([
 'dojo/_base/lang',
 ...

Listing 7.5 js/main.js—loading the Geocoder widget

Loads the lang module
and Geocoder widget

181Using a single configuration file
 'esri/dijit/Geocoder',
 'domReady!'
], function (
 lang,
 ...
 Geocoder
) {
 function onConfigSuccess(response) {
 var map = new Map('map-div', response.options);
 map.on('load', function() {
 var geocoderOptions = lang.mixin(
 {
 map: map
 },
 response.geocoderOptions
);
 var geocoder = new Geocoder(geocoderOptions, 'search');
 geocoder.startup();
 });
 }
 ...
});

Now the main.js file loads the Geocoder widget along with another utility module: the
dojo/_base/lang module. When the map finishes loading, pass the map as part of the
parameters for the Geocoder widget. The lang.mixin method mixes in the fields of

Waits for map to
finish loading

Uses lang.mixin method to create required
parameters for the Geocoder widget

Initializes the
Geocoder widget
and starts it

Figure 7.2 Geocoder widget added to the application

182 CHAPTER 7 Advanced techniques
one object with another. You can then pass the completed options to the Geocoder
and run the startup method to display it on the page. If you run the application now,
you’ll see a page similar to figure 7.2, as shown on the previous page.

 You can search for an address in the Geocoder widget as you would with almost any
search engine, and it attempts to zoom the map to the correct location.

 I used the Geocoder widget to not only show you an example of how widgets are
typically loaded with the ArcGIS API for JavaScript, but also to see whether you noticed
a pattern with other widgets you’ve seen throughout the book. If not, don’t worry; I’ll
cover that next.

7.1.3 Looking for the patterns

In chapter 6, (see section 6.4), you used the Measurement and BasemapToggle widget
in the browser-based application. You may have noticed that those widgets all followed
a pattern similar to the Geocoder widget. A widget represents a tool that will be visually
accessible in the browser. It’s typically designed to interact with the map in a particular
manner, such as by changing the map extents, performing measurements, or adding
and removing layers or features on the map. Looking at the widgets you’ve used so far,
you can see a pattern begin to emerge:

1 Wait for the map to load.
2 Initialize the widget with options.
3 Pass the widget a reference node.
4 Run the startup method.

Given that most widgets in the ArcGIS API for JavaScript follow this basic pattern, it fol-
lows that there should be a way to exploit this pattern so you can load nearly any wid-
get with minimal effort. Ideally, you could specify the widget to load and its options,
and provide all the information in config.json—without manually loading modules
for each new project. This is what you’ll set up in the next section.

7.2 Dynamic widget loading
Let’s think about which critical pieces of information are required to load widgets into
an application:

1 Providing a path to the widget with options
2 Loading the widget with the given path and options
3 Designating an HTML element to display the widget

You could also consider the map a fourth component, but let’s focus on these three
items.

7.2.1 Widget path and options

Let’s continue using the Geocoder widget you defined. To start off small, update
config.json to move the options for the Geocoder into a widgets array. This update
allows you to add more widgets as needed.

183Dynamic widget loading
 This time, though, you can provide the path to the widget the same way you would
provide it in a Dojo module, as well as what HTML element to bind it to. You can see
what this update looks like in the following listing.

{
 ...
 "widgets": [{
 "path": "esri/dijit/Geocoder",
 "node": "search",
 "options": {
 "arcgisGeocoder": {
 "url": "http://geocode.arcgis.com/arcgis/rest"+
 "/services/World/GeocodeServer",
 "placeholder": "Enter address"
 }
 }
 }]
}

You now have all the items required to build a widget defined in config.json: the path
to the widget, the HTML element that displays the widget, and the widget configura-
tion. That was the easy part. Now you need to write code that knows how to handle
this configuration.

7.2.2 Building a widget loader

With a pattern defined for building a widget, you need to build a loader module that
knows how to parse what’s defined in config.json. Remember, you define modules
using the define method. You need at least one require method to start any ArcGIS
API for JavaScript application. The key words in that sentence are at least. There’s no
rule that says you can’t use a require method inside a module.

NOTE The code for this section is available in the chapter7/part2 folder of
the source code included with the book.

Let’s write a simple widget loader module called widgetloader.js inside the js/control-
lers folder of the application. As shown in the following listing, this module iterates
over the widgets array and creates new widgets based on the configuration informa-
tion provided in config.json.

define([
 'require',
 'dojo/_base/declare',
 'dojo/_base/lang',
 'dojo/_base/array'
], function(
 require,

Listing 7.6 config.json—updated options for widget

Listing 7.7 js/controllers/widgetloader.js—loader module for widgets

Widgets array holds
configurations for widgets

Path to widget

ID of the HTML element
to use for the widget

Widget
options

Loads the require module
for use in this module

184 CHAPTER 7 Advanced techniques
 declare, lang, arrayUtil
) {
 return declare(null, {
 constructor: function(options) {
 this.options = options;
 },
 startup: function() {
 arrayUtil.forEach(
 this.options.widgets,
 this._widgetLoader,
 this
);
 },
 _widgetLoader: function(widget) {
 lang.mixin(widget.options, this.options);
 this._requireWidget(widget);
 },
 _requireWidget: function(widget) {
 require([widget.path], function(Widget) {
 var w = new Widget(widget.options, widget.node);
 w.startup();
 });
 }
 });
});

This little module is working hard:

■ It loads the require method so modules can be dynamically loaded.
■ It iterates over the array of widgets in the config.json file and loads the widgets

using the path provided as well as the node.
■ When a new widget is created, the startup method is initialized (as you’ve seen

before).
■ The options passed to this module also contain a reference to the map that has

already been loaded.

The following listing shows how to use this module in the updated main.js file.

require([
 ...
 'controllers/widgetloader',
 'domReady!'
], function (
 ...
 WidgetLoader
) {
 function onConfigSuccess(response) {
 var map = new Map('map-div', response.options);
 map.on('load', function() {
 var options = lang.mixin(
 {

Listing 7.8 js/main.js—updated to use the widget loader

Copies options to
widget loader

On startup, iterates
over the widgets array

Mixes in loaders options with widget
options to copy the map reference

Uses require module to load
widgets using path in the config

When map loads, pass it to
the options for widget loader

185Dynamic widget loading
 map: map
 },
 response
);
 var loader = new WidgetLoader(options);
 loader.startup();
 });
 }
 ...
});

This doesn’t look that different from running any other widget. The key here is to
pass the loaded map to the widget loader options so it can be used with other widgets.

7.2.3 Testing the widget loader

If you run the application now, it should look no different than figure 7.2, which is the
goal. But to show the power of this widget loader module, let’s add another widget to
the config.json file, as shown in the following code.

 "widgets": [{
 ...
 }, {
 "path": "esri/dijit/LocateButton",
 "node": "locate",
 "options": {
 "highlightLocation": true
 }
 }]

You also need to add an HTML div to the index.html file:

 <body class="nihilo">
 ...
 <div id="locate"></div>
 ...
 </body>

Finally, you need to update the main.css file to position the locate button appropri-
ately:

#locate {
 position:absolute;
 top:95px;
 left:22px;
 z-index:50;
 }

With all this in place, if you run the application, you’ll see both the Geocoder widget
and the button for the LocateButton widget under the zoom controls. The Locate-
Button widget pans the map to your location using the browser’s HTML5 geolocation
capabilities. You didn’t have to write additional code to load this widget. The only
update was in the configuration file, and widgetloader handled the rest. That’s a neat
feature. The application will look similar to figure 7.3.

Initializes widget loader and
runs the startup method

186 CHAPTER 7 Advanced techniques
At this point, you could continue this exercise with multiple widgets by adding widget
entries to the config.json file until you’re blue in the face. You can add new function-
ality to your application with a simple addition to the configuration file and let
widgetloader handle everything for you.

 Now you can focus on building widgets that provide specific functions to your
application without worrying about the boilerplate code to load them. You can see
how powerful this method is, but you can take it even further. I find it annoying that I
have to add a new HTML div to the index.html page every time I add a new widget.
That doesn’t seem to fit into the grand scheme of dynamically generated applications.
Let’s build a solution for that.

7.2.4 Adding HTML elements

The third requirement for loading widgets is designating how they’re added to the
page. Automating this process and eliminating having to update the index.html file
every time is achievable in the widgetloader module.

NOTE The code for this section is available in the chapter7/part3 folder of
the source code included with the book.

Figure 7.3 Two widgets loaded dynamically

187Dynamic widget loading
Use the node option in the config.json file to create a new div element and add it to
the page. Rather than pass that node reference into each widget constructor, you’ll
create a new element and pass that instead. You can even specify whether the element
should be added to another element already on the page; that can be defined by add-
ing a target property in config.json with the ID of an element in the index.html file
that it’ll use as a container. Take a look at the config.json where a target is specified:

{
 ...
 "widgets": [{
 ...
 }, {
 "path": "esri/dijit/LocateButton",
 "node": "locate",
 "target": "tool-container",
 "options": {
 "highlightLocation": true
 }
 }]
}

The purpose is to specify that the LocateButton widget should be placed inside an
HTML element with an id of tool-container. Now you can add this element to the
index.html page:

<html>
 ...
 <body class="nihilo">
 <div id="map-div"></div>
 <div id="tool-container"></div>
 ...
 </body>
</html>

With this in place, you can now modify the widgetloader to handle this situation. You
need to use Dojo utilities that can handle creating the div element when it’s needed
and append it to the body of the page or another element specified by the target
property in the configuration for the widget, as shown in the following listing.

define([
 ...

 'dojo/dom',
 'dojo/dom-construct'
], function(
 ...
 dom, domConstruct
) {
 function target(opt) {
 return opt.target || document.body;
 }

Listing 7.9 js/controllers/widgetloader.js—modified to add HTML elements to page

Loads Dojo dom utility modules
to help manipulate DOM

Helper method to return default
target or document body

188 CHAPTER 7 Advanced techniques
 function domNode(opt) {
 return domConstruct.create('div', {
 id: opt.node
 });
 }
 function targetElem(domTarget) {
 if (domTarget === document.body) {
 return domTarget;
 } else {
 return dom.byId(domTarget);
 }
 }

 return declare(null, {
 ...
 _requireWidget: function(widget) {
 require([widget.path], function(Widget) {
 var node, w;
 if (widget.node) {
 node = domNode(widget);
 domConstruct.place(node, targetElem(target(widget)));
 }
 w = new Widget(widget.options, widget.node);
 w.startup();
 });
 }
 });
});

The code in listing 7.8 looks at whether a target property was provided for the wid-
get. If not, it defaults to use the document.body of the browser page. If it was provided,
try to find that element on the page. If a new div element was created, add that ele-
ment to the browser page using the target as the container. If you rerun the applica-
tion at this point, it should look identical to figure 7.3.

 Because you specified a target for the LocateButton in the configuration of that
widget, it was added inside that element on the page. You didn’t specify a target for
the Geocoder widget, so it was added to the body of the page. If you inspect the HTML
page elements using a browser debugger, you should see the LocateButton inside the
tool-container div, as shown in figure 7.4.

Helper method to create DOM element
sing configuration node as ID

Helper method that returns default target
element or searches for it by ID

If widget node was specified,
uses helper methods to find or
create it, then appends to page

Figure 7.4 LocateButton added to tool-container div as specified
in the configuration for the widget

189Adding a web map
You now have a fully functional dynamic widget loader. I recommend either append-
ing all widgets to the body of the page or appending all widgets to the tool-
container div purely for organizational purposes. You no longer need to update the
index.html file when you want to add a widget.

 Now that widget creation is in place, it would also be convenient to define all map
options in config.json, including map services to display and the details for each ser-
vice. That’s what you’ll work on in the next section.

7.3 Adding a web map
ArcGIS Online has one simple way to build a map. In chapter 4 you created a free Arc-
GIS developer account that allowed you to create data you could use in your applica-
tion or share with others. In chapter 6, you used this account with OAuth 2.0 to
provide a layer of security for your application. You can use that same account to log
in to the ArcGIS Online website, create a map, and share that map with others.

 This section covers the following:

■ Defining a web map in ArcGIS Online
■ Sharing the web map
■ Using the web map in your application

7.3.1 Creating the web map

You can get to the ArcGIS Online sign-in page at www.arcgis.com/home/signin.html.
You’ll see a page similar to figure 7.5.

Login using free ArcGIS Developer
account credentials.

Figure 7.5 ArcGIS Online sign-in page

www.arcgis.com/home/signin.html

190 CHAPTER 7 Advanced techniques
Click the Map link to
create a new map.

Figure 7.6 ArcGIS Online account page

Click Add to add new
data to the map.

Figure 7.7 Page to make a custom map on ArcGIS Online

191Adding a web map
Once you log in, you’re greeted by the account page, which provides details about
how many credits you have remaining, as well as links for managing an ArcGIS Online
organization, which is beyond the scope of this book. From this page, click the Map
link at the top of the page, as shown in figure 7.6.

 When you click the Map link, you’re directed to a robust mapping application (see
figure 7.7) where you can change the basemap and add new data from your developer
account or other services available on ArcGIS Online. Take time to explore this online
application. It’s meant to provide users a quick and easy way to look at data you want
to share.

 When you’re done reviewing this
page and its many options, click Add
from the toolbar at the top of the page,
and then choose Search for Layers from
the menu options. A sidebar window
opens from which you can search for
layers in different areas. Select ArcGIS
Online from the In drop-down menu to
see the services available to you, as
shown in figure 7.8.

 Add the Weather Stations (NOAA)
service, and then click the Save icon.
Choose Save As to display the Save Map
window. Provide a title for your map, a
couple of tags, and a summary, as shown
in figure 7.9.

 Once you save a map, complete the following steps to share your map:

1 Click the Home button and then click My Content from the menu options.
2 On the My Content page, find the map you saved in the list and click it.
3 On the details page, click the Share button.
4 When the Share window appears, click the Everyone (public) check box to

share this publicly, and then click OK.

Adds files
from the

ArcGIS Online
option

Figure 7.8 Menu to search for layers in the
ArcGIS Online map editor

Figure 7.9 Saving a map in
ArcGIS Online

192 CHAPTER 7 Advanced techniques
This process is shown in figure 7.10.
 You’ve created a web map you can share. But you can also use this web map in your

web applications. While you’re on the same page as the map details, copy the web map
ID from the URL in the browser, as shown in figure 7.11.

 Save this ID for future reference; you’ll use it to create the web map when configur-
ing your application. Feel free to use my map ID if you prefer.

1 Go to My Content to see
all listed content available.

2 Click the map
you saved.

3 Click the
Share button.

4 Select the Everyone (public) check
box to share the map publicly.

Figure 7.10 Steps to share a web map

Web map ID in
the browser URL

Figure 7.11 Finding the web map ID in the URL of the map details page

193Adding a web map
7.3.2 Adding the web map to an application

The ArcGIS API for JavaScript can add web maps created in ArcGIS Online to your cus-
tom application. To clarify, think of map creation as another widget.

NOTE The code for this section is available in the chapter7/part4 folder of
the source code included with the book.

CREATING THE MAP WIDGET

You can create a new widget called map.js in a folder called map in the widgets direc-
tory of your application. This widget’s purpose is to create the HTML element that will
contain the map, as well as to create the map using the web map ID of the ArcGIS
Online map. When the map is ready, it dispatches an event called map-ready so the
widgetloader module knows to continue loading widgets, as most of them have a
dependency on the map, such as the LocateButton. The map widget is shown in the
following listing.

define([
 'dojo/_base/declare',
 'dojo/_base/lang',
 'dojo/Evented',
 'dojo/dom',
 'dojo/dom-construct',
 'dijit/_WidgetBase',
 'dijit/_TemplatedMixin',
 'esri/arcgis/utils',
], function(
 declare, lang,
 Evented,
 dom, domConstruct,
 _WidgetBase, _TemplatedMixin,
 arcgisUtils
) {
 return declare([_WidgetBase, _TemplatedMixin, Evented], {
 id: ‘map-div’,
 templateString: '<div></div>',
 constructor: function(options) {
 this.options = options;
 },
 postCreate: function() {
 var elem;
 if (this.options.target) {
 elem = dom.byId(this.options.target);
 } else {
 elem = document.body;
 }
 domConstruct.place(this.domNode, elem);
 },
 startup: function() {

Listing 7.10 js/widgets/map/map.js handles creating map and DOM node

Loads required modules,
including ArcGIS utilities

Template for DOM element
that contains the map

If target DOM element is provided, attach
node to that element, or else attach to body

194 CHAPTER 7 Advanced techniques
 if (this.options.webmapid) {
 arcgisUtils.createMap(
 this.options.webmapid, this.id
).then(lang.hitch(this, '_mapCreated'));
 }
 },
 _mapCreated: function(response) {
 this.map = response.map;
 var params = { map: this.map };
 this.emit('map-ready', params);
 }
 });
});

The ArcGIS API for JavaScript comes with a useful module called esri/arcgis/utils.
This module takes a web map ID, goes out to ArcGIS Online, and pulls in the defined
map, including all layers and extents. This is an incredibly useful way to manage maps
and data in the ArcGIS API for JavaScript. If you need to add a new layer to the map in
the future, you can update the map in ArcGIS Online, which propagates to all applica-
tions that use it.

TIP When a widget extends _TemplatedMixin, the ID you provide for the wid-
get will be the ID given to the DOM element that’s added to the page. If none
is provided, the Dijit library assigns a generic ID.

UPDATING THE WIDGETLOADER

The next step is to update the widgetloader module to make sure it creates the map
widget before the other widgets, because most of the other widgets are dependent on
the map to work properly. This requires more work, because now you have to separate
the map widget from the other widgets, load the map widget first, wait for it to load,
and then continue loading the other widgets. Because you know that the application
has to wait for an action to occur before continuing another action, that’s a dead give-
away that this is a good place to use a promise, as was discussed in section 3.2.2. A
promise allows you to perform an asynchronous action and wait for it to complete.
Now you’ll incorporate a promise into the widget creation process. You can see what
the updated widgetloader looks like in the following listing.

define([
 ...
 'dojo/Deferred',
 'dojo/on',
 ...
], function(
 ...
 Deferred,
 on, dom, domConstruct
) {

Listing 7.11 js/controllers/widgetloader.js—updated to wait for map to be created

Uses ArcGIS utilities to create
map from web map ID

When map is created, dispatches
an event with map attached

Loads dojo/Deferred and dojo/on modules
to wait and listen for events to happen

195Adding a web map

Wh
wid
liste
map
 function arrange(arr) {
 var mapwidget
 , widgets = [];
 arrayUtil.forEach(arr, function(item) {
 if (item.type === 'map') {
 mapwidget = item;
 } else {
 widgets.push(item);
 }
 });
 return {
 mapwidget: mapwidget,
 widgets: widgets
 };
 }
 ...
 return declare(null, {
 ...
 startup: function() {
 var filtered = arrange(this.options.widgets);
 this.widgets = filtered.widgets;
 this._requireWidget(filtered.mapwidget)
 .then(lang.hitch(this, '_mapWidgetLoaded'));
 },
 _mapWidgetLoaded: function(mapWidget) {
 this.own(
 on.once(mapWidget, 'map-ready', lang.hitch(this, '_mapReady'))
);
 },
 _mapReady: function(params) {
 if (this.widgets.length > 0) {
 arrayUtil.forEach(this.widgets, function(widget) {
 lang.mixin(widget.options, params);
 this._requireWidget(widget);
 }, this);
 }
 },
 _requireWidget: function(widget) {
 var deferred = new Deferred();
 require([widget.path], function(Widget) {
 var node, w;
 if (widget.node) {
 node = domNode(widget);
 domConstruct.place(node, targetElem(target(widget)));
 }
 w = new Widget(widget.options, node);
 deferred.resolve(w);
 w.startup();
 });
 return deferred.promise;
 }
 });
});

Function returns the map widget
separate from other widgets

On startup, filters the map
widget from other widgets

Loads the map widget
on startup

en map
get is loaded,
ns for
-ready event

When map is ready,
loads other widgets
normally, passing
the map with options

Updates the _requireWidget
method dojo/Deferred

196 CHAPTER 7 Advanced techniques
New functionality is happening in this widgetloader. The main change is that the
map widget loads first, waiting for the map to be created, and then loads other widgets
as needed. This simplifies the widget creation process and avoids any possibility that
the map won’t be ready for use in other widgets that depend on it.

UPDATING THE CONFIGURATION

The last step is to update the configuration file to add the map widget and provide the
web map ID it will use. The config.json file will now contain only an array of widgets.
You can add the map widget parameters as you would for any other widget and provide
the web map ID in the options. The configuration looks like this:

 "widgets": [{
 "type": "map",
 "path": "widgets/map/map",
 "options" : {
 "webmapid": "68d81103c4014bafa886226f15acf6ae"
 }
 },
...
]

This is bare bones, but it’s all that’s needed to create the map.

PREVIEWING THE RESULTS

You can now remove the map-div element from the index.html file because the
widgetloader adds the element automatically. If you run the application, you’ll see a
map similar to figure 7.12.

Figure 7.12 ArcGIS Online web map displayed in ArcGIS API for JavaScript application

197Adding a web map
This is the same map that was created in the ArcGIS Online environment and made
available for use in all your ArcGIS Online applications. The arrows in this map repre-
sent wind speed and direction. Any updates made to this map will now be propagated
to your application.

 That automation simplifies the development process, but what if you come across a
situation where you can’t use a map from ArcGIS Online and have to build the map
manually? You can use the same specifications that a web map uses.

7.3.3 Using the web map specification

For the ArcGIS API for JavaScript to load a map from ArcGIS Online, it must follow a
standard format so the API can re-create the map as needed. That standard is called
the web map specification.

TIP The details of this specification are available at http://resources.arc-
gis.com/en/help/arcgis-web-map-json/#/Web_map_format_overview/
02qt00000007000000/.

The web map specification describes what the JSON format for an ArcGIS Online map
should look like, which makes it easy for the ArcGIS API for JavaScript to create a map
from this format. The utilities provided with the API provide a JSON object that meets
this specification instead of a web map ID. That’s something you can use to your
advantage to define an entire map in your configuration file without having to write
much extra code.

NOTE The code for this section is available in the chapter7/part5 folder of
the source code included with the book.

BUILDING A SIMPLE WEB MAP OBJECT

We won’t cover the entirety of the web map specification, but we’ll stick to the parts that
get you the most bang for your buck. Start by adding a basemap and mapOptions to the
configuration and removing the webmapid option, as shown in the following listing.

{
 "type": "map",
 "path": "widgets/map/map",
 "options" : {
 "id": "map-div",
 "mapOptions": {
 "center": [-118.209,34.285],
 "zoom": 10,
 },
 "webmap": {
 "itemData": {
 "baseMap": {
 "baseMapLayers": [{
 "url": "http://services.arcgisonline.com/arcgis/rest"+
 ➥ "/services/World_Topo_Map/MapServer",

Listing 7.12 basemap and mapOptions—web map specification

http://resources.arcgis.com/en/help/arcgis-web-map-json/#/Web_map_format_overview/02qt00000007000000/
http://resources.arcgis.com/en/help/arcgis-web-map-json/#/Web_map_format_overview/02qt00000007000000/
http://resources.arcgis.com/en/help/arcgis-web-map-json/#/Web_map_format_overview/02qt00000007000000/

198 CHAPTER 7 Advanced techniques
 "opacity" : 1,
 "visibility": true
 }]
 }
 }
 }
 }
 }

You now have a mapOptions object as well as a webmap object in the configuration. Use
the mapOptions object the same way you’d use a regular map object; in this case, you
can define the center and zoom of the map when it loads. The webmap object is where
you can define the specification for the web map in the application. The baseMap
object contains an array of baseMapLayers. Add a single layer as shown. This is a per-
fectly suitable JSON object that meets the web map specification.

UPDATING THE MAP WIDGET

Now modify the map widget to use this webmap object when no webmapid is specified,
as shown in the following listing.

define([
...
], function(
 ...
) {
 return declare([_WidgetBase, _TemplatedMixin, Evented], {
 id: 'map-div',
 templateString: '<div></div>',
 constructor: function(options) {
 this.options = options;
 if (this.options.id) {
 this.id = this.options.id;
 }
 },
 ...
 startup: function() {
 if (this.options.webmapid) {
 arcgisUtils.createMap(
 this.options.webmapid, this.id
).then(lang.hitch(this, '_mapCreated'));
 } else if (this.options.webmap) {
 arcgisUtils.createMap(
 this.options.webmap,
 this.id,
 {
 mapOptions: this.options.mapOptions
 }
).then(lang.hitch(this, '_mapCreated'));
 }
 },
 ...
});

Listing 7.13 js/widgets/map/map.js—updated to use web map JSON

Allows map ID to be
set by configuration

If no webmapid provided,
checks for a webmap object

Passes mapOptions
as another parameter

199Adding a web map
The main change is checking for the webmap object if no webmapid was provided. The
ArcGIS utilities module also accepts a third parameter that allows you to add the
mapOptions object to center and zoom the map. Because nearly everything can be set
by the configuration, you can also set the map’s ID from the configuration file.

 This is only a start, but if you run the application now, you’ll see a map similar to
figure 7.13.

 Admittedly, the map isn’t exciting, but the prospect of using a specification from
which you can build your entire mapping application in a simple configuration file is
exciting. You can now add more layers to the map.

WORKING WITH OPERATIONAL LAYERS

Any map service or layer in the map that isn’t a basemap is referred to as an operational
layer. This layer is composed of unique data, such as census tracts, historical fire data,
shipping routes, or locations of your favorite breweries. Operational layers are also
defined in the web map specification, which allows you to easily add them to the map.

 Adding an operational layer is easy. You can add an operationalLayers array to
the itemData object of the webmap in the configuration. You can then define the layer
as shown in the following code:

"operationalLayers": [{
 "url": "http://services.arcgis.com/V6ZHFr6zdgNZuVG0/"+
 "arcgis/rest/services/CensusLaborDemo/FeatureServer/1",
 "id": "Census_Labor",
 "visibility": true,
 "opacity": 0.8,
 "title": "Census Labor"
}, {

Figure 7.13 Map created
from web map JSON

200 CHAPTER 7 Advanced techniques
 "url": "http://services.arcgis.com/V6ZHFr6zdgNZuVG0/"+
 "arcgis/rest/services/la_county_labor_centroid/FeatureServer/0",
 "id": "Labor_Centroids",
 "opacity": 1,
 "title": "Labor Centroids"
}]

You could omit everything except the URL, which is the only required property in the
configuration. Once the config.json file is updated, you don’t need to update the
map widget, so when you run the application, you should see something similar to
figure 7.14.

 As long as you adhere to the web map specification, you can build a highly custom-
izable basic map with only simple additions to the configuration.

DEFINING POP-UPS

A convenient feature of the web map specification is the ability to define what a pop-
up looks like. You can define the fields, the labels, and even the format of numeric
fields to display when a map feature is clicked. For any particular layer, you can add a
popupInfo object that has various options, such as what fields are visible and the title
of the pop-up.

 You can add this to the layer of centroids for the labor population defined in the
configuration, which you can see in the following code:

"popupInfo": {
 "title": "{NAMELSAD}",
 "fieldInfos": [{
 "fieldName": "NAME",
 "label": "Tract Number",

Figure 7.14 Map with
operational layers added
via configuration

201Adding a web map
 "visible": true
 }, {
 "fieldName": "TOTAL_POP",
 "label": "Total Population",
 "visible": true
 }, {
 "fieldName": "POP_LABOR",
 "label": "Labor Population",
 "visible": true
 }, {
 "fieldName": "LABOR_PCT",
 "label": "Labor Pct",
 "visible": true,
 "format": {
 "places": 2
 }
 }]
}

This addition to the configuration file uses the attributes from the layer to define what
fields and labels are visible in the pop-up, because a few of the field names are
obscure. Once that’s done, you can launch the application and click on any census
centroid to see the pop-up, as shown in figure 7.15.

 I think that’s an awesome and easy way to display pop-ups in your map. Because
you set up the map widget to use the web map specification as JSON, you haven’t added
a single line of code to handle these additions to the configuration file. That’s slick.
The renderer is another great feature you can add to the configuration file.

Figure 7.15 Pop-up on
map defined in
configuration for layer

202 CHAPTER 7 Advanced techniques
DEFINING A RENDERER

You learned how to apply a renderer to a layer in section 4.4, so the concept shouldn’t
be foreign. But the web map specification also allows you to define the renderer in the
configuration file. Do this by adding a layerDefinition property to the layer, in this
case the labor centroids, and in that layerDefinition, define a drawingInfo prop-
erty with a renderer that will define how the features in the layer look. This can be as
simple or as complicated as you want.

 For the labor centroids, define a classBreakRenderer that will display larger cir-
cles with a higher percentage of the labor population. This may look complicated, but
you define a symbol once and change the size for each new category of percentages,
as shown in the following listing.

"layerDefinition": {
 "drawingInfo":{
 "renderer":{
 "type":"classBreaks",
 "field":"LABOR_PCT",
 "defaultSymbol":null,
 "defaultLabel":"",
 "minValue":0,
 "classBreakInfos":[{
 "classMaxValue":0.25,
 "label":"0 - 25%",
 "description":"",
 "symbol":{
 "type":"esriSMS",
 "style":"esriSMSCircle",
 "color":[115,223,255,255],
 "size":4,
 "angle":0,
 "xoffset":0,
 "yoffset":0,
 "outline":{
 "color":[255,255,255,255],
 "width":1
 }
 }
 }, {
 "classMaxValue":0.5,
 "label":"25% - 50%",
 "description":"",
 "symbol":{
 "type":"esriSMS",
 "style":"esriSMSCircle",
 "color":[115,223,255,255],

Listing 7.14 classBreakRenderer—displaying larger circles

203Adding a web map
 "size":7.5,
 "angle":0,
 "xoffset":0,
 "yoffset":0,
 "outline":{
 "color":[255,255,255,255
],
 "width":1
 }
 }
 }, {
 "classMaxValue":0.75,
 "label":"50% - 75%",
 "description":"",
 "symbol":{
 "type":"esriSMS",
 "style":"esriSMSCircle",
 "color":[115,223,255,255],
 "size":11,
 "angle":0,
 "xoffset":0,
 "yoffset":0,
 "outline":{
 "color":[255,255,255,255],
 "width":1
 }
 }
 }, {
 "classMaxValue":1.00,
 "label":"75% - 100%",
 "description":"",
 "symbol":{
 "type":"esriSMS",
 "style":"esriSMSCircle",
 "color":[115,223,255,255],
 "size":20,
 "angle":0,
 "xoffset":0,
 "yoffset":0,
 "outline":{
 "color":[255,255,255,255],
 "width":1
 }
 }
 }]
 },
 "transparency":0,
 }
}

204 CHAPTER 7 Advanced techniques
This configuration looks scarier than it is. You’ve defined the same symbol for each
category, but you change the size accordingly. If you run the application again, you
should see something similar to figure 7.16.

 This capability is why the ArcGIS API for JavaScript is so versatile. If you’re unhappy
with the default look of a map service, no problem; you can change it. Once again, no
extra code is needed because the entire map is defined using the web map specification.

 The web map specification has additional options that I’ll leave for you to experi-
ment with. The options covered in this section are what I consider the most powerful
when building applications: how to better handle working with a web mapping appli-
cation when an internet connection isn’t available.

7.4 Advanced techniques for offline mode
In chapter 5, you learned how to build an application that could still function, at least
partially, when the user loses an internet connection. This is always a popular feature
of working with web mapping applications. Remember, I also said there’s no perfect
solution, which is true, but that doesn’t mean you can’t provide more features. In this
section you’ll learn how to create an application cache and use a third-party library to
build your mobile-friendly web mapping application.

7.4.1 Creating an application cache

An application cache is an HTML5 feature that caches files so users can browse a web-
site offline.1 In addition to the benefit of accessing a website offline, an application

1 https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache

Figure 7.16 Renderer of a
layer defined in the
configuration file

https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache

205Advanced techniques for offline mode
cache offers a speed boost because files are stored locally without sending requests to
a server. This approach works well with most websites, but a web mapping application
isn’t most websites. Still, you can use it in your applications as needed.

WHAT CAN GO IN THE CACHE

Static files should go in your application cache, so style sheets and JavaScript files are
always good candidates. You can also add images that you may use for icons. The idea
is that once someone has used the application, they won’t need to download these
items again.

 Using the sample you worked on in section 7.3, you can build an application cache
that lists not only the files you created but also the files that get downloaded from the
ArcGIS servers to load the API for JavaScript. In the root directory of the project, cre-
ate a file called manifest.appcache. You don’t have to use that name, but the appcache
file extension is standard.

 To find out what files to include in the cache, you can run the application in
Chrome, and then complete the following steps:

1 Open the Chrome Developer tools.
2 Click the Sources tab.

Locate the small arrow button at the
left and click it. A folder structure
displays the files in use, organized by
the domain they come from (see fig-
ure 7.17).

3 Right-click any file, and then choose
Copy Link Address to copy and
paste that location to the mani-
fest.appcache file.

Although this process of copying and past-
ing URLs to the appcache file can be
tedious the first time you do it, you’ll only
need to do minor updates in the future.

Caveat

If your application cache doesn’t refresh in your browser, you may have to manually
remove it. Technically, updating the application cache file updates the cache in the
browser, but in my experience it can sometimes get stuck.

In Chrome you can manually remove the application cache from the URL chrome://
appcache-internals/. This method works well only if you lose an internet connection;
if you refresh the browser without an internet connection, the application won’t work.

Right-click
any resource,
and then click
the Copy Link

Address.

Figure 7.17 List of files used in the web
application

206 CHAPTER 7 Advanced techniques
NOTE The code for this section is available in the chapter7/part6 folder of
the source code included with the book.

WRITING THE APPLICATION CACHE

When you’re done copying the URLs to the appcache file, it should look similar to the
following listing.

CACHE MANIFEST
v1
CACHE:
index.html
config.json

css ##
css/main.css
http://js.arcgis.com/3.11/esri/css/esri.css

javascript files
esri
http://js.arcgis.com/3.11compact/init.js
http://js.arcgis.com/3.11compact/js/esri/arcgis/utils.js
http://js.arcgis.com/3.11compact/js/esri/nls/jsapi_en-us.js
http://js.arcgis.com/3.11compact/js/esri/tasks/RelationshipQuery.js
http://js.arcgis.com/3.11compact/js/esri/tasks/StatisticDefinition.js
http://js.arcgis.com/3.11compact/js/esri/dijit/Geocoder.js
http://js.arcgis.com/3.11compact/js/esri/dijit/LocateButton.js
http://js.arcgis.com/3.11compact/js/esri/tasks/AddressCandidate.js
http://js.arcgis.com/3.11compact/js/esri/tasks/locator.js

dijit
http://js.arcgis.com/3.11compact/js/dojo/dijit/_base/focus.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_base/place.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_base/popup.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_base/scroll.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_base/sniff.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_base/typematic.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_base/wai.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_base/window.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/BackgroundIframe.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/Destroyable.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/Viewport.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/WidgetSet.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_AttachMixin.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_TemplatedMixin.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_WidgetBase.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/_base.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/place.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/popup.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/selection.js
http://js.arcgis.com/3.11compact/js/dojo/dijit/typematic.js

Listing 7.15 manifest.appcache—URLs added

Must have this header
so it works correctly.

Everything under the CACHE:
heading will be cached.

The # in the file is a
way to add comments.

207Advanced techniques for offline mode
dojo
http://js.arcgis.com/3.11compact/js/dojo/dojo/cache.js

dojox
http://js.arcgis.com/3.11compact/js/dojo/dojox/gfx/svg.js

custom
js/run.js
js/main.js

js/controllers/widgetloader.js

js/widgets/map/map.js

NETWORK:
*

When writing the application cache file, you can use # to write comments. It’s good
practice to give your appcache file a version number that you can update when you
change the code in your application. The only way the browser will reload the files in
the cache is if there’s an update in the appcache file. If you don’t do this, you’ll never
see your changes.

USING APPLICATION CACHE

With the manifest.appcache file completed, tell the browser to use it. Do this by add-
ing a new attribute to the HTML node in the index.html file:

<html manifest="manifest.appcache">

Now when you run your application, prepare to be amazed!
 Okay, not that amazing; it probably looks exactly like it did before. But that’s okay

because you need to load the application at least once with an internet connection for
the files to cache themselves. The application cache is a powerful feature, but it’s not
magic, so reload the page one more time and admire the splendor of fast page load!
Sorry if you don’t notice incredibly faster page loads in your desktop browser, but on a
mobile device, this cache can help speed up the page loads.

 If you poke around in Chrome, you can see that the files were loaded from the
cache and not from the server. Click the Network tab in Developer tools and look at
the Size column (see figure 7.18).

 The only items not cached are actual requests that the code makes to the server.
You may not see a noticeable difference in your application at the moment, but when
you’re using a mobile device with sketchy internet, every enhancement is a plus.

 If you have an application that loads custom fonts or a set of images that you use to
make your application look nice, setting up the application cache can provide a
decent performance increase and save on load times. Next, we’ll revisit saving data
locally.

The asterisk under NETWORK: allows
all other traffic to go through.

208 CHAPTER 7 Advanced techniques
7.4.2 Storing data locally with the PouchDB library

In chapter 5, you learned how to use HTML5 storage capabilities to store data locally
using IndexedDB. This is a database in the browser for storing complex data struc-
tures. Chapter 5 mentioned that IndexedDB isn’t supported in all mobile browser
environments, even if the desktop browser counterpart supports it. A few mobile
browsers support only Web SQL, which is a deprecated HTML5 storage solution. Once
something is deprecated, people don’t stop using it overnight, so if you want to work
with a storage solution on mobile browsers other than Local Storage, you need Web
SQL. Using Web SQL in place of Local Storage doesn’t have to be difficult. A fantastic
JavaScript library called PouchDB can save you hours of hair-pulling.

WHAT IS POUCHDB?

PouchDB is a library that works with data locally and provides the capabilities to syn-
chronize with CouchDB, a document-based database. It’s the offline data capabilities
that make PouchDB a useful tool for web mapping capabilities. PouchDB provides an
interface to work with browser-based data storage solutions.

 PouchDB determines whether the browser supports IndexedDB or Web SQL and
handles the local database creation, updates, and data retrieval with simple functions.
Combine PouchDB with Dojo Store capabilities, and you have a powerful tool. A Dojo

Size column indicates
which files are cached

Figure 7.18 Chrome Network tab showing files that are cached

209Advanced techniques for offline mode
Store is an interface for accessing and manipulating data and is used as a data source
for Dijit components.

USING POUCHDB

To get started, PouchDB needs only the name of the database to use. You could use
the following code:

var myDb = new PouchDB('mydb');

That seems simple enough. To add to the database, pass an object to the put method:

myDb.put({ _id: new Date().toISOString(), title: 'Hi mom' });

PouchDB requires that each entry have a unique _id. Using an ISO standard time-
stamp will suffice to generate unique _id values. If you don’t want to specify one, you
can use the post method, and PouchDB will generate a random _id for you:

myDb.post({ title: 'Hi mom' });

I prefer to use the put method because if you use the put method with an _id already
in the database, it updates the data; if the _id isn’t in the current database, it adds it.

 To retrieve a document, pass the _id to the get method:

myDb.get('unique_id', function(error, doc) {});

To retrieve all the documents, use the allDocs method:

myDb.allDocs({ include_docs: true }, function(error, results) {});

When set to true, the include_docs option returns all the documents in the data-
base; when set to false, it returns only the _id field.

 PouchDB has other features, but you know enough to start using it in your applica-
tion.

TIP For more details and documentation about PouchDB, visit http://
pouchdb.com/.

CREATING THE POUCHSTORE MODULE

Although PouchDB isn’t overly complicated, it would be convenient to wrap its func-
tionality in an easy-to-use module that handles database creation. This neat little mod-
ule (shown in listing 7.15) exposes a couple of simple methods: add and getAll. It
also uses a module for Dojo Store called QueryResults. This module wraps the results
of the getAll method with the same functionality of Dojo array utilities, so you have
access to methods such as forEach and filter.

define([
 'dojo/_base/declare',
 'dojo/Deferred',
 'dojo/store/util/QueryResults'
], function (
 declare,

Listing 7.16 js/stores/PouchStore—saves data locally

Loads QueryResults to use
in this module.

http://pouchdb.com/
http://pouchdb.com/

210 CHAPTER 7 Advanced techniques

Fu
al
fr
 Deferred,
 QueryResults
) {

 return declare(null, {

 database: null,
 _db: null,

 constructor: function (database) {
 this.database = database;
 this._init();
 },

 add: function (object) {
 var deferred = new Deferred();
 this._db.put({
 _id: new Date().toISOString(),
 item: object
 }, function (err, result) {
 if (!err) {
 alert('Item saved locally');
 deferred.resolve(result);
 } else {
 alert('Error saving item locally: ' + err.message);
 deferred.reject(err);
 }
 });
 return deferred.promise;
 },

 getAll: function () {
 var deferred = new Deferred();
 this._db.allDocs({ include_docs: true }, function (err, response) {
 if (!err) {
 alert('local data retrieved', response);
 deferred.resolve(response.rows);
 } else {
 alert('Error retrieving local data: ' + err.message);
 deferred.reject(err);
 }
 });
 return QueryResults(deferred.promise);
 },
 removeAll: function() {
 this.getAll().then(lang.hitch(this, function(response) {
 response.forEach(lang.hitch(this, function(data) {
 this._db.remove(data.doc);
 }));
 }));
 },
 _init: function () {
 this._db = new window.PouchDB(this.database);
 }
 });
});

 Provides database name for the constructor
and initializes the module.

Add method takes an object and adds it to
database. Returns results as a promise.

getAll returns all documents
in database.

Results of getAll are
returned as QueryResults.

nction removes
l documents
om database.

PouchDB is initialized with
database name provided.

211Advanced techniques for offline mode
This module uses the put and getAll methods of PouchDB but uses promises to return
the results to the outside world of the application. Remember, promises work great
when you’re working asynchronously and you’re waiting for something to happen—in
this case, read and write from the storage. The PouchDB API isn’t particularly compli-
cated, but wrapping this functionality in one place makes it much more reusable.

 Okay, great, you have an awesome PouchStore module. How do you use it?

USING THE POUCHSTORE

For this example, you can modify the project you completed in chapter 5 to do discon-
nected editing. The code for this section is available in the chapter7/part7 folder of
the source code included with the book.

 In this project, the editorService module is responsible for adding the points to
the FeatureLayer. If an error occurs, it stores the features in localStorage and allows
the user to sync the data at a later time. You can continue to use this method, but in
this case, replace all the code that deals with localStorage with the PouchStore mod-
ule. The updated editorService module is shown the following listing.

define([
 'dojo/_base/declare',
 'dojo/_base/lang',
 'dojo/_base/array',
 'dojo/Deferred',
 'esri/graphic',
 'stores/pouchstore'
], function(
 declare, lang, arrayUtils,
 Deferred,
 Graphic,
 PouchStore
) {

 return declare(null, {
 layer: null,
 hasLocal: false,

 constructor: function(options) {
 declare.safeMixin(this, options);
 this.map = options.map;
 this._sync = [];
 this.store = new PouchStore('request');
 this.check();
 },

 check: function() {
 this.store.getAll().then(lang.hitch(this, '_onStoreChecked'));
 },

 _onStoreChecked: function(response) {
 if (response.length) {

Listing 7.17 js/widgets/edit/editorService.js—using PouchStore to save data

Loads the PouchStore
for use in this module

Passes the map and
initializes new PouchStore

Method checks if features
are stored locally

If graphics are stored locally,
displays them on the map

212 CHAPTER 7 Advanced techniques
 this.hasLocal = true;
 response.forEach(lang.hitch(this, function(data) {
 var graphic = new Graphic(data.doc.item);
 this.map.graphics.add(graphic);
 }));

 }
 },

 sync: function() {
 this.store.getAll().then(lang.hitch(this, '_onGetAll'));
 },
 add: function(adds) {
 var deferred = new Deferred()
 , req;
 req = this.layer.applyEdits(adds);
 req.then(
 function() {
 deferred.resolve();
 },
 lang.hitch(
 this,
 function() {
 arrayUtils.forEach(adds, function(graphic) {
 this.store.add(graphic.toJson());
 this.hasLocal = true;
 }, this);
 deferred.reject(adds);
 }
)
);

 return deferred.promise;
 },
 _onGetAll: function(response) {
 if (response.length) {
 this._sync = response.map(function(data) {
 return new Graphic(data.doc.item);
 });

 if (this._sync.length) {
 this.layer.applyEdits(this._sync).then(
 lang.hitch(this, '_dataSynced'),
 lang.hitch(this, '_syncError')
);
 }
 }
 },
 _dataSynced: function() {
 this._sync.length = 0;
 this.hasLocal = false;
 this.store.removeAll();
 this.map.graphics.clear();
 this.layer.refresh();

Sync function gets all features a
nd syncs them with FeatureLayer

Add function stores data locally
when fails to save to FeatureLayer

Function handles when data
is synced to FeatureLayer

Data is synced to do cleanup, including
removing data from local database

213Advanced techniques for offline mode
 },
 _syncError: function() {
 this._sync.length = 0;
 }
 });
});

The rest of the application can stay the same; you’re only changing the editor-
Service module. You’ve left most of the core method names the same, only adding
helper methods; this way, other modules that reference editorService won’t need to
be updated.

 The process is the same as before: if features fail to add to the FeatureLayer,
they’re stored locally, and you display these features on the map in different symbol-
ogy than other features. When an internet connection becomes available, you can run
the sync function to get all the documents from the local database, convert them back
to graphics, and add them to the FeatureLayer. When that’s complete, remove all the
data from the local database and do cleanup, such as refreshing the layer. You can see
what this process may look like when adding and syncing data in figure 7.19.

 As you can see, you didn’t need to tell PouchDB to use IndexedDB or Web SQL
because PouchDB determines which is available to use. This application now works on
a variety of mobile browsers, and PouchDB handles the heavy lifting behind the scenes
for you.

If sync error exists, remove
graphics from _sync array

Data stored locally

Data synced to server

Local to server

Figure 7.19 Syncing locally stored data to the server

214 CHAPTER 7 Advanced techniques
 Of course, my caveats from chapter 5 still stand. When it comes to offline web map-
ping, especially disconnected editing, no perfect solution exists. But this method of
using a third-party library to use the available storage is a better solution than doing
nothing.

7.5 Summary
■ This chapter covered a large quantity of material, particularly related to

advanced techniques for loading Dojo widgets.
■ The goal of this chapter was to introduce you to advanced topics in developing

applications with the ArcGIS API for JavaScript and to reinforce the power of
reusable code. This isn’t to say that my way is the definitive way, as I’ve seen oth-
ers create template applications and JavaScript viewers that work differently.
But the methods I described here have helped me, through trial and error (lots
and lots of error), to go from prototype to production on many occasions.

■ The techniques you learned might inch you closer to that coveted perfect dis-
connected editing web mapping application...almost. The application cache is a
good start, and if you’re careful to include the files as they’re needed, you can
save on requests when the application loads.

■ Using a library such as PouchDB to handle the heavy lifting of saving data
locally ensures that your application will work across multiple platforms. You
can even store actual map tiles using PouchDB. The goal here was to provide
you with additional advanced methods.

appendix A
Setting up your

environment

You have a few software options when developing web applications. Whether you
prefer a visual environment or the command line, the ArcGIS API for JavaScript
requires a local server. My three recommendations are outlined in this appendix.

A.1 Visual Studio Express for Web
Web development is easiest with Microsoft Visual Studio Express for Web
(www.microsoft.com/visualstudio/eng/downloads#d-express-web). This software
comes with a local web server to build your applications. Visual Studio Express is
probably the easiest way to get started, as it is both an editing environment and
local server in one.

A.2 XAMPP
If you prefer to work in a text editor, one of my favorite lightweight local servers is
Apache, which can be installed with XAMPP, which stands for Cross-platform
Apache, MySQL, PHP, and Perl (www.apachefriends.org/en/xampp.html). It runs a
local instance of Apache HTTP web server on your machine and is easy to
work with.

TIP Copy your files to the xampp\htdocs folder to view them in the
browser. XAMPP will serve all files from this folder.

A.3 Python
Another option for running a local web server is to use Python (www.python.org). I
recommend downloading Python v2.7.
215

www.microsoft.com/visualstudio/eng/downloads#d-express-web
www.apachefriends.org/en/xampp.html
www.python.org

216 APPENDIX A Setting up your environment
 In your favorite command-line tool, navigate to the folder containing your web
files and run this command:

python –m SimpleHTTPServer

This option doesn’t provide the fastest server, but it’s suitable for running most exam-
ples in the book, except when a proxy is required. In that case, I recommend using
one of the other two options.

appendix B
Dojo basics

Because the ArcGIS API for JavaScript is built with the Dojo Toolkit, you should be
aware of a few details about Dojo. When Esri initially released the ArcGIS API for
JavaScript, the company came under scrutiny for using Dojo as the core to the API
as opposed to a more popular library such as jQuery. The developers at Esri stated
that their reasons for choosing Dojo were that at the time the API was developed,
Dojo had better tools for working with web services, and, more important, had bet-
ter support for working with graphics across a variety of browsers. You can still use
jQuery or any other third-party library in your applications, but one way or another,
you’ll also use Dojo.

 As the Dojo Toolkit has been upgraded over the years, so has the ArcGIS API for
JavaScript. When the API moved to v3.0, it began using Dojo v1.7 for its core func-
tions, and it continues to keep up with current Dojo updates.

 The Dojo Toolkit is a vast resource of modules and utilities for developing
robust and scalable applications, which requires an entire book of its own to cover
in detail, but you can use this appendix as a starting point for the more detailed
coverage in this book. This appendix covers the Dojo loader, the Dijit lifecycle, and
common Dojo modules you’ll use when building applications with the ArcGIS API
for JavaScript.

 For more details about Dojo and the Dijit library, visit http://dojotoolkit.org/
documentation/.

B.1 AMD loader
The introduction of Dojo v1.7 was a big shift for many developers using the ArcGIS
API for JavaScript, in part because they were introduced to the asynchronous mod-
ule definition (AMD) loading system, which is how your individual JavaScript files
are loaded into your application. As of this writing, the ArcGIS JavaScript API is at
v3.11 and based on v1.9 of the Dojo Toolkit. This isn’t an exhaustive appendix on
217

http://dojotoolkit.org/documentation/
http://dojotoolkit.org/documentation/

218 APPENDIX B Dojo basics

Be
som
the
the Dojo Toolkit, but it’s important to be aware of how to use the AMD loading system
when developing your applications.

 Prior to v3.0 of the API, you used dojo.require('my.classname') to import a
module into your application. The API still supports this, but this method is outdated
and will eventually go away, so it’s good practice for developers to take advantage of
the newer AMD loading system. Let’s take a quick crash course on AMD.

AMD’s define and require methods

Two main components to the Dojo AMD loading system are important to understand:
the use of define and require. Use the define method to define a module you want
to use in your application. Similarly, use the require method to use the modules cre-
ated with define. The following listing declares a new class that has a startup
method.

define([
'dojo/_base/declare'
], function(declare) {
 return declare(null, {
 startup: function() {
 console.log('I am a defined module');
 }
 });
 });

require(['app/sample'], function(Sample) {
 var s = new Sample();
 s.startup();
});

If you’re creating a smaller application that doesn’t require you to break your mod-
ules into multiple JavaScript files, you could do everything inside a single require
statement. In applications that may require a couple of widgets and helper modules,
you’ll most likely end up having to break up your modules into multiple JavaScript
files, so when you do so, you can require them by path name, as shown in the follow-
ing listing.

NOTE The following module is defined in the chapter3/app/sample.js file,
and the HTML file is in 3.1.html.

define([
 'dojo/_base/declare'
], function(declare) {
 return declare('Sample', null, {
 startup: function() {

Listing B.1 Declaring a new class

Listing B.2 AMD define and require

Defines module and
provides name Provides any dependencies

for module

Provides name for returned
dependencyi n the callback function

sure to return
ething from

 module

Requires the defined modules and
gives the returned value a name

Uses the returned
module as needed

Defines a module without
providing a name

219AMD loader
 alert('I am a defined module');
 }
 });
});

<script type="text/javascript">
...
 require(['app/sample'], function(Sample) {
 var s = new Sample();
 s.startup();
 });
<script type="text/javascript">

You can get a better under-
standing of how the files are
related by reviewing figure B.1,
which shows how the app/sam-
ple.js file is related to the
main.js file.

 Here you can clearly see that
sample.js resides in the app
folder, and that main.js requires
the module defined in sam-
ple.js. This is how dependencies
are managed with AMD loading.
It allows you, as a developer, to
modularize your application
into smaller pieces.

The more you use the AMD pattern, the more familiar it will feel. When it becomes
second nature, you won’t even think about it anymore.

 Another important aspect of working with Dojo is using Dojo Dijits, so it’s benefi-
cial to get an overview of the Dijit lifecycle.

AMD drawbacks with multiple HTTP requests

One drawback to the AMD pattern, and one that’s gotten criticism, is the number of
HTTP requests that may need to be made to load many different modules. Although
it’s true that multiple HTTP requests should typically be avoided in web development,
particularly when concerned with mobile devices, the truth is that when dealing with
developing mapping applications, this is probably not as big of a concern. Every pan
of the map sends a new HTTP request to the server to request new map data to be
loaded for areas that haven’t been viewed. When all is said and done, mapping
applications, by design, send multiple HTTP requests at various stages of use, so load-
ing a few modules separately in your development doesn’t typically have much of an
impact on performance.

Requires the module sample.js
from the app folder

main.js

require(['app/sample'], function(Sample) {
 var mySample = new Sample('Module');
]);

sample.js

 define([], function() {
 return function(name) {
 this.name = name;
 };
]);

app/

Figure B.1 How files that define modules are related to
other files that require them

220 APPENDIX B Dojo basics
B.2 Dijit lifecycle
A widget is typically a module that represents an interface for the user to interact with.
If you want to create a widget module for your application, you’re likely going to delve
into the Dijit library. It could be used to work with HTML forms or a newsfeed widget
that could be displayed on the page. The core of the Dijit library is the WidgetBase
module. When a new class based on_WidgetBase is instantiated, it goes through the
following lifecycle process:

■ Constructor—This phase occurs when a class is instantiated with new. You usu-
ally assign any default properties of the widget in this function.

■ postMixinProperties—This phase occurs before a widget is rendered on the
screen. Variables from inherited classes are mixed in at this point. Properties
can be changed here before any DOM (Document Object Model1) elements for
the widget are created, if needed. Personally, I’ve never had to do any work in
here, but it may be useful to you.

■ buildRendering—This phase is typically handled by the Templated module, but
it’s when the HTML elements for the widget are created. You could assign prop-
erties here that may be bound to something in the DOM element.

■ postCreate—This is when the DOM elements for the widget are already created,
but may not have been added to the page yet, so you could bind up events here
or manipulate any DOM elements. I often work in this method related to sub-
scribing to events.

■ Startup—Runs once the HTML elements are built. If you have to do anything
involving style lookups, this is the phase to do it.

■ Destroy—This method does what it advertises. It destroys your widget and
removes it from the Dijit widget registry to free up memory. To remove child
widgets, use the destroyRecursive method. You don’t typically need to over-
ride destroy yourself, as the Dijit normally cleans things up, but if you instanti-
ate a widget in the module that’s not a child widget, it may be necessary to
perform the cleanup manually.

You can see what this process looks like in the following listing.

define([
 'dojo/_base/declare',
 'dojo/_base/lang',
 'dojo/dom',
 'dojo/on',
 'dojo/Evented',
 'dojo/dom-construct',
 'dojo/dom-class',

1 For more information about DOM elements, see www.w3.org/DOM/.

Listing B.3 Sample widget with all lifecycles defined

www.w3.org/DOM/

221Dijit lifecycle
 'dijit/_WidgetBase',
 'dijit/_TemplatedMixin',

 'text!widgets/header/header.tpl.html'
], function(
 declare, lang,
 dom, on, Evented,
 domConstruct, domClass,
 _WidgetBase, _TemplatedMixin, template
) {
 return declare([_WidgetBase, _TemplatedMixin, Evented], {
 templateString: template,
 loaded: false,

 constructor: function(options, srcRefNode) {
 this.set('map', options.map);
 },
 postMixinProperties: function() {
 this.inherited(arguments);
 },
 buildRendering: function() {
 this.inherited(arguments);
 if (!this.domNode) {
 this.domNode = domConstruct.create('div');
 }
 },
 postCreate: function() {
 this.inherited(arguments);
 var nodeCollapse;
 nodeCollapse = dom.byId('nav-collapse-container');
 this.own(
 on(dom.byId('nav-toggle'), 'click', function() {
 domClass.toggle(nodeCollapse, 'nav-open');
 })
);
 },
 startup: function() {
 var map = this.get('map');
 if (!map) {
 this.destroy();
 throw new Error('A map is required');
 }
 if (!map.loaded) {
 on.once(map, 'load', lang.hitch(this, function() {
 this.set('loaded', true);
 this.emit('loaded', this);
 }));
 } else {
 this.set('loaded', true);
 this.emit('loaded', this);
 }
 this.set('loaded', true);
 },
 destroy: function() {
 this.inherited(arguments);

Declares new widget
that inherits at least
_WidgetBase.

Sets up options

You could change properties
of an inherited class here.

You could define the domNode
here if it doesn’t exist.

You could add any additional
event listeners here.

You could check if another
widget is loaded here.

You could make sure all child
widgets are destroyed here.

222 APPENDIX B Dojo basics
 this.get('map').destroy();
 }
 });
});

This listing isn’t a functional example, but it shows you how you might approach work-
ing with the Dijit lifecycle.

 Throughout the book you’ve seen various examples of using Dojo widgets, and
chapter 7 covers how to use the Dojo lifecycle described here to build applications
from a single configuration file. In addition to the Dojo lifecycle, you should also be
aware of common Dojo modules.

B.3 Common Dojo modules
When working with Dojo and the ArcGIS API for JavaScript, you’ll find yourself using a
few modules over and over again. This section covers the basics of these common
modules.

dojo/_base/lang

The lang module is a common module to use in building applications with Dojo. I use
the following methods on a regular basis.

MIXIN

The lang.mixin method does what it sounds like it does: it mixes in properties from
one object to another. For example:

var options = { name: 'container', width: 25, height: 50 };
lang.mixin(options, { color: 'blue' });

The options object now has the property color with a value of blue that was mixed in
using the lang.mixin method. This comes in handy when you need to merge datasets
from different sources.

HITCH

I use the lang.hitch method in almost all my widgets. It allows you to execute a func-
tion in a given context. I often use this in widgets to listen for events to happen in the
application and to execute a function on the widget in response to that event. In the
following example, when the element with an ID of something is clicked, the handler
method is executed, which writes out to the console the event that occurred:

require(['dojo/on', 'dojo/_base/lang'], function(on, lang) {
 return function() {
 this.handler = function(e) {
 console.debug('This just happened: ' + e);
 };
 on(document.getElementById('something'),
 'click',
 lang.hitch(this, 'handler')
);
 };
});

223Common Dojo modules
You’ll probably find that you use this method frequently when working with events in
your application.

 The lang module has a few more methods you may find useful. You can read more
about them at http://dojotoolkit.org/reference-guide/1.9/dojo/_base/lang.html.

dojo/_base/array

The module that I probably use the most is the array module, which provides support
for working with arrays and works well with older browsers. The array module makes
working with listed data easy and provides a couple of great ways to work with data.

FOREACH

The array.forEach method provides a way to iterate over the items in an array:

var helper = function() {
 this.doSomething = function(n) {
 console.debug('I am number ' + n);
 };
 array.forEach([1,2,3,4], function(num) {
 this.doSomething(num);
 }, this);
};

This method provides a clean interface for iterating over the items in an array. All the
array methods, including the forEach method, even take an optional third argument
for the context of how the functions can be called in the method. In this example, you
call this.doSomething, where this was passed as a third argument to the forEach
method.

MAP

The array.map method returns an array that’s equal to the results of the callback
function:

var squared = array.map([2,4,6,8], function(num) {
 return num * num;
});

The value of squared is [4,16,36,64]. This method comes in handy when you need
to process all the data in an array.

FILTER

The array.filter method is used to filter values from an array that don’t meet the
criteria as defined in the callback function:

var even = array.filter([2,3,4,5,6,7], function(num) {
 return (num % 2) === 0;
});

The callback function checks if the modulus (%), which is the remainder of the given
number divided by 2, is equal to 0. If the remainder is 0, it’s an even number. The
value of the even array is [2,4,6].

http://dojotoolkit.org/reference-guide/1.9/dojo/_base/lang.html

224 APPENDIX B Dojo basics
 There are more methods in the array module you may find useful. Details can be
found at http://dojotoolkit.org/reference-guide/1.9/dojo/_base/array.html.

dojo/on

The Dojo on module is used to listen for and to emit events in your application. When
on is used as a function, you can listen for events to happen:

require(['dojo/on'], function(on) {
 return function() {
 on(document.getElementById('something'),
 'click',
 function() {
 console.debug('Something happened');
 }
);
 };
});

The on module listens for an element with an ID of something to be clicked, and when
it’s clicked, it writes out to the console that something has happened. This is a clean
interface for listening to events in an application.

EMIT

The on module could even be used to emit events in an application:

require(['dojo/on', 'dojo/_base/lang'], function(on, lang) {
 return function() {
 on(document.getElementById('something'),
 'click',
 lang.hitch(this, function() {
 on.emit(this, 'custom-event');
 })
);
 };
});

The on module is used to emit an event from the context of this. This is a popular
pattern in widgets that you’ll become familiar with.

 You can find more details about the on module at http://dojotoolkit.org/
reference-guide/1.9/dojo/on.html.

http://dojotoolkit.org/reference-guide/1.9/dojo/_base/array.html
http://dojotoolkit.org/reference-guide/1.9/dojo/on.html
http://dojotoolkit.org/reference-guide/1.9/dojo/on.html

appendix C
Configuring a proxy

Using a proxy configuration to access secured services in a browser-based applica-
tion is optional. You could continue developing the application by requiring a user
to log in each time, and the application would still work as expected.

 Sometimes you might want to be more lax about security requirements. For
example, suppose a handful of users have access to the application—only from
within an internal network. You might consider using a proxy page so users don’t
have to enter their usernames and passwords in the Identity Manager each time the
application loads.

 Although I encourage you to set up users with their own passwords on your
internal ArcGIS Server or via your organization’s ArcGIS Online account, this
appendix covers the details of using the ASP.NET proxy page provided by Esri
(https://developers.arcgis.com/javascript/jshelp/ags_proxy.html). You complete
similar steps to set up the application for other proxy pages provided by Esri.

C.1 Setting up the proxy page
Regardless of the proxy page you use (ASP.NET, PHP, or JSP), setting it up involves
the same easy process. If using a secured ArcGIS Server service, you can place your
username and password in the configuration file for the proxy. In the case of the
ASP.NET page, it may look like this:

<serverUrl url="http://services1.arcgis.com/"
 matchAll="true"
 username="<USERNAME>"
 password=”<PASSWORD>”>
</serverUrl>

This generates a new token for your application using the provided username and
password when you need access to the secure services. Another method if using
ArcGIS Online services is to provide the clientId and clientSecret you would be
225

https://developers.arcgis.com/javascript/jshelp/ags_proxy.html

226 APPENDIX C Configuring a proxy
provided by your application in your ArcGIS Online account. You can configure them
like this:

<serverUrl url="http://services1.arcgis.com/"
 matchAll="true"
 clientId="<CLIENTID>"
 clientSecret=”<CLIENTSECRET>”>
</serverUrl>

For more details on setting up the proxy configuration, please refer to the documen-
tation at https://developers.arcgis.com/javascript/jshelp/ags_proxy.html.

 After you set up the configuration, you can add the proxy page URL to the
application.

TIP Add the URL for static.arcgis.com as allowed by the proxy as well.
This is used to display attribution information on the map; without the URL,
you’ll see an error in your application.

C.2 Using the proxy in your application
To tell your application to use the proxy page for all its requests, add the code as
shown in the following listing to js/main.js where the application starts to load.

require([
 'esri/config',
 ...
 'dojo/domReady!'
], function (
 esriConfig,
 AppCtrl,
 mapServices
) {
 esriConfig.defaults.io.proxyUrl = '/proxy.ashx';
 esriConfig.defaults.io.alwaysUseProxy = true;
 ...
});

This code adds a reference to the esri/config module, which allows you to assign the
proxy details. Next, assign the URL. When you’re working with secured services and
tokens, the most critical step is to set the value of alwaysUseProxy to true. Otherwise,
the proxy is used only if your application makes an HTTP request that exceeds 2,048
characters in length. This is a browser limit, and it’s a good idea to use a proxy if you
think you may run into this issue. In this case, you want to use it for secured services,
so you need to tell the ArcGIS API for JavaScript to always use the proxy.

 The proxy page is a great tool to use in a variety of scenarios. As I mentioned, it
may even be a requirement if your application makes large requests that could exceed
the browser limit. It’s also a great option when developing with secured services so you
don’t have to log in each time. The drawback to this technique is that tokens don’t last
forever, so you need to set up a schedule to replace the tokens as needed. When using
tokens from ArcGIS Online, the maximum duration is 15 days.

Listing C.1 Using the proxy page

Loads the esri/config
module to set the proxy

Sets the proxy URL

Always use proxy
for requests

https://developers.arcgis.com/javascript/jshelp/ags_proxy.html

index
A

add method 209
alwaysUseProxy option 226
AMD (asynchronous module

definition) 13
define method 218–219
overview 217–218
require method 218–219

Android 68
application cache

defined 204–205
removing manually 205
using 207
what can be stored in 205
writing 206–207

applications
adding layers with

module 87–90
adding web maps to

configuration file
options 196

creating widget 193–194
testing 196–197
using widgetloader 194–196

ArcGIS Online
ArcGIS Server vs. 70
setting up account 71

BasemapToggle widget
157–159

Bootstrap 93–95
browser

application controller
140–142

considerations for 136–137

defining map services 140
index.html 138
run.js 138–139
starting application 139

buttons 95–96
configuration file for

defining options 179
loading options 178–179
setting up application

for 176–178
widget loading pattern

and 182
controller 84–85
custom edit tool

applyEdits method 118–120
autopopulating fields

117–118
getting layer

reference 116–117
listening for button

events 124–125
listening for map click

event 114–116
prompt function 120–121
UI updates 122–124

custom edit widget
adding to application

162–163
AttributeInspector

widget 163–168
creating 160–162
using nonspatial

service 168–174
declare module 85–86
default web map editing

102–104

disconnected editing
caveats 134
checking for

connection 126–127
displaying saved data

132–133
local storage 126
modifying custom edit

tool 129–130
options for 134
saving data 127–129
testing 131–132

Dojo configuration 79–81
Dojo Dijit lifecycle 97
Dojo, using with hosted

code 82–83
Editor widget 111–113
example application

overview 136
feature service

accessing 77
adding fields 74–75
adding to map 105
authentication with

IdentityManager
107–109

choosing renderer 75–76
deciding on data

collection 73–74
editable FeatureLayer

105–106
service information

page 104–105
lack of internet

connection 69
227

INDEX228
applications (continued)
lang module 86–87
layers

finding by ID 110–111
getting reference for

116–117
linting code 81–82
loading map with options 85
Measurement widget

adding 153–155
overview 152–153
toggling visibility of 156–157
using 155

OAuth 2.0 authentication
creating application in

developer account
142–144

credentials utility
module 148–150

overview 142
saving credentials

locally 150–152
sign in link 147
using OAuthHelper.js

145–146
organizing folder

structure 78–79
renderer

applying 91–92
utility module for 90–91

TemplatedMixin module
96–97

TemplatePicker widget 92–93,
109–110

using proxy in 226
using tablets or phones 69
widget and template

communication 99–100
WidgetBase module 96

ArcGIS for Organization
accounts 71

ArcGIS Online
ArcGIS Server vs. 70
costs 71
feature service

accessing 77
adding fields 74–75
choosing renderer 75–76
deciding on data

collection 73–74
overview 70
setting up account 71

ArcGIS platform 6–7
See also REST API

ArcGIS Server 70
ArcGISTiledMapServiceLayer 25

array module 223–224
ASP.NET proxy page 225
asynchronous module defini-

tion. See AMD
AttributeInspector widget

163–168
authentication

with IdentityManager
107–109

OAuth 2.0
creating application in

developer account
142–144

credentials utility
module 148–150

overview 142
saving credentials

locally 150–152
sign in link 147
using OAuthHelper.js

145–146
autoGeneralization option 37
autoResize option 23

B

Base64-encoded images 54
basemap option 23
BasemapToggle widget 157–159
Bootstrap 93–95
bounding box 21
buffer

buffer and intersect 61–64
buffer and select 59–60
defined 56–59

buildRendering phase 220
buttons 95–96

C

C# 9
cached data 25
callbackParamName option 170
canvas element 25, 27
Cascading Style Sheets. See CSS
CDN (content delivery

network) 82
census tract example 31–35
center option 23
CheckedMenuItem 53
CheckedPopupMenuItem 52
Chrome

application cache in 205
developer tools 25
proxy settings for 131

clearApplication function 152
clientId 225
clientSecret 225
cloud computing 70
collector application 68
compact build 109
config module 226
configuration, single file for

defining options 179
Geocoder widget

options 180–182
loading options 178–179
setting up application

for 176–178
widget loading pattern

and 182
console.log method 116
Constructor phase 220
container class 94
content delivery network. See

CDN
controller, application 84–85
cookie module 150
coordinated universal time. See

UTC
coordinates, map 21–22
CORS (cross-origin resource

sharing) 28
credentials

saving locally 150–152
utility module for 148–150

Cross-platform Apache, MySQL,
PHP, and Perl. See XAMPP

CRUD (create, read, update,
and delete) 48

CSS (Cascading Style Sheets)
provided by Esri 19
referencing elements 80

D

data attributes 122
data-collection applications

custom edit tool
applyEdits method

118–120
autopopulating fields

117–118
getting layer

reference 116–117
listening for button

events 124–125
listening for map click

event 114–116
prompt function 120–121
UI updates 122–124

INDEX 229
default web map editing
102–104

disconnected editing
caveats 134
checking for

connection 126–127
displaying saved data

132–133
local storage 126
modifying custom edit

tool 129–130
options for 134
saving data 127–129
testing 131–132

Editor widget 111–113
feature service

adding to map 105
authentication with

IdentityManager
107–109

editable FeatureLayer
105–106

service information
page 104–105

layers
finding by ID 110–111
getting reference for

116–117
TemplatePicker widget

109–110
Date object 119
declare module 85–86
Deferred module 150
define method 218–219
DefinitionExpression 40–42, 44
DELETE method 48
desktop browser applications

application controller
140–142

BasemapToggle widget
157–159

considerations for 136–137
custom edit widget

adding to application
162–163

AttributeInspector
widget 163–168

creating 160–162
using nonspatial

service 168–174
defining map services 140
example application

overview 136
index.html 138

Measurement widget
adding 153–155
overview 152–153
toggling visibility of 156–157
using 155

OAuth 2.0 authentication
creating application in

developer account
142–144

credentials utility
module 148–150

overview 142
saving credentials

locally 150–152
sign in link 147
using OAuthHelper.js

145–146
run.js 138–139
starting application 139

destroy method 97
Destroy phase 220
destroyRecursive method 97,

220
developer tools 25
Dijit

defined 14, 52
lifecycle of 97

disconnected editing
caveats 134
checking for connection

126–127
displaying saved data 132–133
local storage 126
modifying custom edit

tool 129–130
options for 134
saving data 127–129
testing 131–132
See also offline mode

div elements 19
document object model. See

DOM
documentation 18
Dojo

configuring 79–81
Dijit lifecycle 97
themes 108
using with hosted code 82–83

Dojo Toolkit
AMD loader

define method 218–219
overview 217–218
require method 218–219

array module 223–224
JavaScript API and 217

lang module 222–223
on module 224
required knowledge 13–14
widget lifecycle 220–222

DOM (document object
model) 157

dom-attr module 124
domUtils module 157
Draw toolbar module 58
draw-end event 59
drawTool 59
dynamic widget loading

HTML elements for 186–189
widget loader

creating 183–185
testing 185–186

widget path and options
182–183

E

editor widget 56
emit method 224
endpoints 46
environment 215
Esri 4
esriRequest method 53
events

button 124–125
listening for map click

114–116
Extensible Markup Language.

See XML

F

feature service
accessing 77
adding fields 74–75
adding to map 105
authentication with

IdentityManager 107–109
choosing renderer 75–76
deciding on data

collection 73–74
editable FeatureLayer

105–106
service information

page 104–105
vector-based data and 102

FeatureLayer
creating object 38–39
DefinitionExpression 40–42
editable 105–106

INDEX230
FeatureLayer (continued)
generalizations 36–37
modes for 39–40
overview 35–36
selecting items in 42–44
vector tiles 37–38

FeatureSet 33, 35
filter method 209, 223–224
Flex API 12
FlexViewer application 176
forEach method 209, 223

G

generalizations
defined 44
FeatureLayer 36–37
settings for 37

Geocoder widget 180–182
geographic information system.

See GIS
geometry service

buffer and intersect 61–64
buffer and select 59–60
buffer, defined 56–59
overview 56

GET method 48
getAll method 209
getLayer method 110
getTime method 119
GIS (geographic information

system)
ArcGIS platform and 6–7
components of

data 10–11
overview 9–10
server and REST API 11–12
web APIs 12–13

concepts in 14–15
overview 3–4
spatial applications usage 7–8
tools for 4–6
trends 8–9

Google Maps 4
GPS (Global Positioning

System) 3
graphics property 29
GraphicsLayer 35

identifying mouse-click
location 29

overview 28–29
using 29–30

gray option 22

H

hitch method 222–223
Hosted Data link 104
HTML5 (Hypertext Markup

Language 5) 27
application cache

defined 204–205
using 207
what can be stored in 205
writing 206–207

data attributes 122
disconnected editing 69
IndexedDB 134
See also local storage

HTTP (Hypertext Transfer Pro-
tocol)

methods 48
multiple requests 219

hybrid option 22

I

id argument 22
id attribute 19, 110–111
IdentityManager

authentication with 107–109
security options 142

IndexedDB 134, 208
init method 83
innerHTML property 97
Internet, lack of connection

to 69
See also disconnected editing;

offline mode
intersect using buffers 61–64

J

Java 9
JavaScript API

advantages of 6, 12
dates in 119
documentation 18
Dojo Toolkit and 217
required knowledge 13–14
simple map 18–19

JavaScript Object Notation. See
JSON

jQuery 217
JSHint 81
JSLint 81
JSON (JavaScript Object

Notation) 46

JSONP (JSON with
Padding) 170

K

KML (Keyhole Markup
Language) 25

L

lang module 86–87, 222–223
latitude and longitude 22
layerIds property 110
layers

adding graphics with Query-
Task
census tract example 31–35
overview 30–31

adding in applications 87–90
FeatureLayer

creating object 38–39
DefinitionExpression 40–42
generalizations 36–37
modes for 39–40
overview 35–36
selecting items in 42–44
vector tiles 37–38

finding by ID 110–111
getting reference for 116–117
GraphicsLayer

identifying mouse-click
location 29

overview 28–29
using 29–30

overview 24–25
service information pages 49
types of

for raster-based data 25–27
for vector-based data 27–28

Leaflet 5
legends 50–51
Levels of Detail. See LOD
lifecycle of widgets 220–222
linting code 81–82
loadCredentials function 150
local storage

caveats 134
checking for connection

126–127
checking if available 149
displaying saved data 132–133
limitations of 126
modifying custom edit

tool 129–130

INDEX 231
overview 126
saving data 127–129
testing 131–132
See also offline mode

LOD (Levels of Detail) 23
log method 116
logo option 23

M

map method 223
map-ready event 193
MapQuest 4
maps

coordinates in 21–22
navigating 20–21
options for 22–24
simple example 18–19

max-width attribute 95
Measurement widget 56

adding 153–155
overview 152–153
toggling visibility of 156–157
using 155

Microsoft tablet 68
mixin method 222
mobile devices 109
MODE_ONDEMAND 39–40
MODE_SELECTION 39, 42, 167
MODE_SNAPSHOT 39
Modest Maps 5
modules 19

N

nav option 23
navigating maps 20–21
Nihilo style 108
NOAA (National Oceanic and

Atmospheric
Administration) 191

nonspatial service
creating mock data 168
creating mock web

service 169–170
using in application 170

now method 119

O

OAuth 2.0 authentication
creating application in devel-

oper account 142–144
credentials utility

module 148–150

OAuthHelper.js 145–146
overview 142
samples using 142
saving credentials locally

150–152
security options 142
sign in link 147

OBJECTID property 167
offline mode

application cache
defined 204–205
using 207
what can be stored in 205
writing 206–207

PouchDB library
creating module for

209–211
overview 208–209
using 209
using module 211

on method 28–29
on module 114, 224
onLine property 126
onMapLoad method 157
OpenLayers 5
OpenStreetMap project 4, 102
operational layers 199–200

P

pop-ups 200–201
PopupMenuItem 53
POST method 48
postCreate phase 97, 220
postMixinProperties phase 220
PouchDB library

creating module for 209–211
overview 208–209
using 209
using module 211

promises 53
prompt function 120–121
proxy 60–61

creating proxy page 225–226
as security method 142
using in application 226

PUT method 48, 209
Python 20, 215

Q

query module 124
QueryTask

census tract example 31–35
overview 30–31

R

raster-based data 25–27
reference, getting for

layers 116–117
regular expressions 80
renderers

applying 91–92
for feature service 75–76
utility module for 90–91
web map specification

202–204
request object 53
require method 183, 218–219
REST (Representational State

Transfer) 48
REST API

communicating with 47–48
custom widgets

displaying details in
widget 54–55

legend root menu 52–53
overview 52
retrieving legend details 53
working with multiple

symbols 55–56
geometry service

buffer and intersect 61–64
buffer and select 59–60
buffer, defined 56–59
overview 56

GIS and 11–12
legend endpoint 50–51
overview 45–47
service information pages

49–51
returnGeometry option 33

S

satellite option 22
saveCredentials function 150
Scalable Vector Graphics. See

SVG
scale option 23
SDK (software development

kit) 12
selection mode 60
service information pages 49–51
setMaxAllowableOffset

option 37
Silverlight API 12
SimpleFillSymbol 91
SimpleLineSymbol 29
SimpleMarkerSymbol 29

INDEX232
SimplePictureMarkerSymbol 38
SimpleRenderer 91
Single Fused Map Cache 49
slider option 23
smartphones 69
software development kit. See

SDK
spatial applications 7–8
spatial reference 23, 49
SQL (Structured Query

Language) 134
startup method 97, 112, 182
Startup phase 220
static.arcgis.com 226
streets option 22
Structured Query Language. See

SQL
SVG (Scalable Vector

Graphics) 25, 27

T

tablets 69
target property 187
Templated module 220
TemplatedMixin module 96–97
TemplatePicker widget 92–93,

109–110
themes 108
then method 53, 119
tiles 25
Token Required message 107

U

URLs (uniform resource loca-
tors)

for feature service 77
over maximum length 60–61

use strict notation 81

UTC (coordinated universal
time) 119

utils module 194

V

vector tiles 37–38
vector-based data 27–28
Visual Studio 20, 215
VML (Vector Markup

Language) 25, 27

W

W3C (World Wide Web
Consortium) 5

web APIs 12–13
Web Map Services. See WMS
web maps

adding to application
configuration file

options 196
creating widget 193–194
testing 196–197
using widgetloader

194–196
creating 189–192
specification

defined 197
defining pop-ups 200–201
defining renderer 202–204
map widget 198–199
operational layers 199–200
web map object 197–198

web services 5, 11
Web SQL 208
WidgetBase module 96
widgets

communication with

template 99–100
creating custom

displaying details in
widget 54–55

legend root menu 52–53
overview 52
retrieving legend details 53
working with multiple

symbols 55–56
creating for web maps

193–194
defined 14
dynamic loading of

HTML elements for
186–189

widget loader 183–186
widget path and

options 182–183
lifecycle of 220–222
loading pattern for 182
using configuration file

with 180–182
window.navigator.onLine

property 126
WMS (Web Map Services) 25
World Wide Web Consortium.

See W3C
wrap-around 21

X

XAMPP (Cross-platform
Apache, MySQL, PHP, and
Perl) 20, 215

XML (Extensible Markup
Language) 25

Z

zoom option 23

Rene Rubalcava

N
ow you can unshackle your GIS application from a
workstation! Using the ArcGIS JavaScript API, develop-
ers can build mobile and web-based maps and applica-

tions driven by ArcGIS data and functionality. Experienced
ArcGIS developers will fi nd that the familiar development
environment provides a smooth transition to the web. Web
developers new to GIS will be pleased by how easily they can
apply their existing skills to GIS applications.

ArcGIS Web Development is an example-rich guide that teaches
you to use the ArcGIS JavaScript API to build custom GIS
web applications. The book begins with easy-to-follow
examples that introduce readers to the ArcGIS JavaScript
API and show how you can apply simple customizations. As
the book progresses, you’ll explore a full-scale, web-mapping
application. By the end you will be able to build web apps
that have features you’d ordinarily expect to fi nd only in
dedicated GIS applications.

What’s Inside
● Build web-based GIS applications
● Customize the ArcGIS Javascript API tools
● Bring ArcGIS data to the web
● Create secure logins for mobile app users

Written for web developers familiar with JavaScript and basic
GIS concepts. Experience with ArcGIS is helpful, but not
necessary.

Rene Rubalcava is the cofounder of SmartGeoTech, Inc., a GIS
development company specializing in Esri technologies.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/ArcGISWebDevelopment

$39.99 / Can $41.99 [INCLUDING eBOOK]

ArcGIS Web Development

GIS/ARCGIS

M A N N I N G

“The most succinct tutorial
 for using the ArcGIS

 JavaScript API.”
—Shaun Langley, Urban GIS

“Everything you need
to build location and

mapping web applications
 with ArcGIS.”—Dennis Sellinger

 Géotech, France

“Anyone getting started with
the ArcGIS API for JavaScript
should pick up this book.”
—Brian Arnold, Bazaarvoice, Inc.

“The author is thorough,
 and the pace is just right.”—Jacqueline Wilson

Avon Grove Charter School

SEE INSERT

	ArcGIS Web Development
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the cover illustration

	Part 1 ArcGIS JavaScript Foundation
	1 GIS as a tool
	1.1 GIS: here, there, everywhere
	1.1.1 The GIS tools landscape
	1.1.2 Introducing the ArcGIS platform
	1.1.3 Why care about spatial applications?
	1.1.4 Trends in the GIS industry

	1.2 Understanding the GIS bits
	1.2.1 The what and the where of GIS data
	1.2.2 Serving GIS data: ArcGIS Server and the REST API
	1.2.3 Choosing an ArcGIS web API

	1.3 Things to know
	1.3.1 JavaScript, Dojo Toolkit, and Dijit
	1.3.2 Introducing a tad of GIS
	1.3.3 Interacting with the ArcGIS REST API

	1.4 Summary

	2 Introducing core API concepts
	2.1 From data to map
	2.1.1 Parts of a basic map
	2.1.2 Specifying common map options

	2.2 Understanding layers and accessing data
	2.2.1 Layer types for raster-based data
	2.2.2 Layer types for vector-based data
	2.2.3 Getting to know the GraphicsLayer
	2.2.4 Creating graphics with the QueryTask

	2.3 Working with the FeatureLayer
	2.3.1 Advantages of a FeatureLayer
	2.3.2 Creating a FeatureLayer
	2.3.3 Optimizing application performance
	2.3.4 Selecting items in the FeatureLayer

	2.4 Summary

	3 Working with the REST API
	3.1 Introducing the ArcGIS Server REST API
	3.1.1 Exploring how the API works
	3.1.2 Interacting with ArcGIS Server pages

	3.2 Building your own widget
	3.2.1 Building the legend root menu
	3.2.2 Retrieving legend details
	3.2.3 Displaying details in the custom legend widget
	3.2.4 Working with multiple symbols in a feature

	3.3 Working with the geometry service
	3.3.1 Buffer your heart out
	3.3.2 Buffer and select
	3.3.3 Buffer and intersect

	3.4 Summary

	Part 2 Sample Use Case
	4 Building an application
	4.1 What are you going to build?
	4.1.1 Using a tablet or phone
	4.1.2 Collecting points
	4.1.3 Performing disconnected editing

	4.2 Working with ArcGIS Online
	4.2.1 ArcGIS Online vs. ArcGIS Server
	4.2.2 Setting up an ArcGIS Online account
	4.2.3 Defining a feature service
	4.2.4 Accessing your ArcGIS Online feature service

	4.3 Building a real-world application
	4.3.1 Setting up Dojo and organizing modules
	4.3.2 Tying the application together

	4.4 Adding layers and using the renderer
	4.4.1 Adding layers with a module
	4.4.2 Using the renderer
	4.4.3 Applying the renderer
	4.4.4 Setting up the editing tools
	4.4.5 Assigning an action to a button

	4.5 Summary

	5 Developing a custom data-collection application
	5.1 Performing default web map editing
	5.1.1 Finding feature service information
	5.1.2 Adding your feature service to the map
	5.1.3 Adding the TemplatePicker and default Editor widgets

	5.2 Building a custom edit tool
	5.2.1 Working with the custom edit functionality
	5.2.2 Refining the custom edit tool

	5.3 Enabling disconnected editing
	5.3.1 Local storage
	5.3.2 Caveats
	5.3.3 Other storage options

	5.4 Summary

	6 Building a desktop browser application
	6.1 The project ahead
	6.1.1 Goals of the RequestViewer
	6.1.2 Freedom of the desktop browser

	6.2 Setting up and configuring the RequestViewer
	6.2.1 Creating index.html
	6.2.2 Configuring run.js
	6.2.3 Starting the RequestViewer
	6.2.4 Defining map services
	6.2.5 Setting up the application controller

	6.3 Setting up authentication with OAuth 2.0
	6.3.1 Using your developer account to create an application
	6.3.2 Updating main.js
	6.3.3 Saving credentials

	6.4 Building the user interface
	6.4.1 Working with the Measurement widget
	6.4.2 Working with the BasemapToggle widget

	6.5 Editing requests
	6.5.1 Editing a request’s location
	6.5.2 Editing a request’s attributes
	6.5.3 Incorporating a nonspatial service

	6.6 Summary

	7 Advanced techniques
	7.1 Using a single configuration file
	7.1.1 Defining a map
	7.1.2 Loading the Geocoder widget
	7.1.3 Looking for the patterns

	7.2 Dynamic widget loading
	7.2.1 Widget path and options
	7.2.2 Building a widget loader
	7.2.3 Testing the widget loader
	7.2.4 Adding HTML elements

	7.3 Adding a web map
	7.3.1 Creating the web map
	7.3.2 Adding the web map to an application
	7.3.3 Using the web map specification

	7.4 Advanced techniques for offline mode
	7.4.1 Creating an application cache
	7.4.2 Storing data locally with the PouchDB library

	7.5 Summary

	Appendix A Setting up your environment
	A.1 Visual Studio Express for Web
	A.2 XAMPP
	A.3 Python

	Appendix B Dojo basics
	B.1 AMD loader
	AMD’s define and require methods

	B.2 Dijit lifecycle
	B.3 Common Dojo modules
	dojo/_base/lang
	dojo/_base/array
	dojo/on

	Appendix C Configuring a proxy
	C.1 Setting up the proxy page
	C.2 Using the proxy in your application

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	ArcGIS Web Development-back

