Cloud Data Design,
Orchestration, and
Management Using
Microsoft Azure

Master and Design a Solution
Leveraging the Azure Data Platform

Francesco Diaz
Roberto Freato

Apress’

http://www.allitebooks.org

Cloud Data Design,

Orchestration, and

Management Using
Microsoft Azure

Francesco Diaz
Roberto Freato

Apress’

vww allitebooks.conl

http://www.allitebooks.org

Cloud Data Design, Orchestration, and Management Using Microsoft Azure

Francesco Diaz Roberto Freato
Peschiera Borromeo, Milano, Italy Milano, Italy
ISBN-13 (pbk): 978-1-4842-3614-7 ISBN-13 (electronic): 978-1-4842-3615-4

https://doi.org/10.1007/978-1-4842-3615-4
Library of Congress Control Number: 2018948124

Copyright © 2018 by Francesco Diaz, Roberto Freato

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3614-7. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3615-4
http://www.allitebooks.org

To my daughter Valentina

—Francesco Diaz

To my amazing wife and loving son

—Roberto Freato

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUNOLS........cccssimmissmss s —— ix
About the Technical REVIEWEISciccssssssssssssnssssanssssanssssanssssansssssnsssssnsssssnnssssnnssssns xi
FOreWOrdccoussmmmsssnmmsssnsmsssnsssssnnssssnnssssnnssssnnnsssanssssansssssnsssssnnssssnnssssnnsnssnnsnssnnss xiii
INtroductioncooisesmsssmnmsssnsmsssnnmsssnnssssnnssssnnnsssnnnsssanssssanssssannsssannssssnnssssnnnnssnnsnssnnss Xvii
Chapter 1: Working with Azure Database Services Platformccscccmrnissnnnnnians 1
Understanding the SEIVICE. ... 1
000 L= (AT V0 10 3T 3

T 1o L= S 5
Designing SQL DAt@DaSse..........ccovrererrenernsesrsesesssesssssssssssse s sssse s ssssessssessssssssssssssssesssssnnes 8
LR LR (=] =T T 9
1110 L=y QDT [| S 13
Migrating an EXisting Databasecccevrerernnennenienenessersese s sesse e ssesessessessesssssssessessesessensesaes 20
Preparing the Database........c.ccoveernsenrnennnese s 20
Moving the DAatabase...........cccvcrirennsnn e s 22
USiNG SOL DAADASE.......ccovreririieriee st e e e 25
DL I (0Tl o= V1 1= OO 26

Split between Read/Write APPliICALIONSccoceverviririrn s 29

HOt FEATUIES ...t 34
Development ENVIFONMENTS........ccovviivierennsirsere e sessese s ssessesss s e ssesaessssessesaessssessesseses 37
WOISE PraCliCEScouevverreerrecrrncsese s sess s se s s ss s e e s ssssesssssensssnssnens 39
SCaling SAL DALADASE.......cceveereruerereerereeseresese e srs e ses e e s e e se e e s e e sse e e e seseensenens 48
Managing Elasticity at RUNTIME........cccvvinicrcr e s 51
Pooling Different DBs Under the Same Price Cap............ccuourernrenmrnsesnsesnsesessssesessessssesessnnes 53
STz] 1o o P 55
Governing SOL DAtahase..........ccccvereniinnner s e e e 56
Lo 1 0T 0] 00 O 56

v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

BaCKUP OPLIONS......ceiiiiece i s s s s n e s e e e e 63
MONItOrNG OPLIONS ...cveerrieircer e e nr s 65
MySQL and POSEGIrESALccuueerererrrrnsseseseresssssesesesessssssessaes 78
IMYSQL ...ovvrtrtersese e e e e e se e e e e bR R R R e e e 79
0T (0] 0 R 81
11104 RS 82
Chapter 2: Working with SQL Server on Hybrid Cloud and Azure laaS...........ccceeu. 83
Database Server Execution Options ON AZUTE ... s snes 84
A Quick Overview 0f SAL SErVEr 2017coueceeerererrnesesesesessssssesessssssssessssssssssssssssssssssssssssssens 85
Installation of SQL Server 2017 on Linux and DOCKETccccvererrninenenenenensssesesesesssseenes 87
SQL Server 0perations STUAI0ccvcererererierieriesir s sre e s s saes 91
Hybrid ClOUT FEALUIES.......cceeerreerreserincesese s 94
AZUIE STOFAQEceueiveeeir et e e e b e b e e b e e e e aenns 95
BacKUP 10 AZUIE STOTAQEvecvreruerrererierereresseressessssessessesaesessessessessssessesaesssssssessesasssssessesaes 104
SQL Server Stretched Databasesc.cuvererrrrrnnesesssnss s sesssseenes 126
Migrate databases 10 AZUre 1S ..o s 132
Migrate a Database Using the Data-Tier Application Framework..........c.ccccccovvnirivnncenene. 134
Run SQL Server on Microsoft Azure Virtual Machingscocouvvevnrnncnsscnnnnssesesesesseenes 137
Why Choose SQL Server on Azure Virtual Machings..........ccocuvevvinemnsmsnsessnssesssesessesssseens 137
Azure Virtual Machines Sizes and Preferred Choice for SAL Serverocvnrnisnisenens 139
Embedded Features Available and Useful for SAL Server ... 145
Design for Storage on SQL Server in Azure Virtual Machingscccvievvvnincennsensenennns 148
Considerations on High Availability and Disaster Recovery Options with
SQL Server on Hybrid Cloud and AzZUre 12@S...........cocevvvrverennnnsenesssessesese s sessessessssessessesss 152
Hybrid Cloud HA/DR OPHONS......cccoereeceresesesere e ssssenenns 153
Azure only HA/DR OPLIONScccourerercrirecrieserisesesse s sesesessesessssesss e sessesessssessssesesssssssenens 157
£ 1134 O 167
Chapter 3: Working with NoSQL Alternativesccuemmmnmsssnmmmmsssssnnsssssssnsssssssnnns 169
Understanding NOSQLcooueeeenmnnenesesrrssss s s sese s s s s s e sessssssssssssessssessaes 169
SIMPIETr OPLIONSciccee e r e nne 172
Document-oriented NOSQL.........cccorimmnnninsse s s 173
NoSQL alternatives in MiCroSOft AZUIEcccveeernsernnesesese s 175

TABLE OF CONTENTS

USing AZure StOrage BIODS........ccucvrererernerierensssersessesssssssessessessssessessesssssssessesssssssessessesssssssesaens 175
Understanding Containers and ACCESS LEVEIS.........cccuvvernreneninenssesnesssesesssesesesessesessnnes 176
Understanding Redundancy and Performance............ccocvveerrenerenesssesesssnsssssesessesesssnesennes 179
Understanding CONCUITEINCYcovvurrerreressrsersersessessssessessessssessessesssssssessessesssssssessesssnsssesseses 192
Understanding ACCESS and SECUNTYcccvvrernrerrneseresernsessse s s ssssessanes 196

Using Azure Storage TabIEs.........cocccvvcrnrenneseree e 201
Planning and Using Table STOragecccvimrnininnnnnie s s sssssssessesnes 202
Understanding MONITOIINGccocvveriririne s sn e s s n 208
USING AZUFE MONITONcoveeriecerreseriese s se s nns s 215

Using Azure RediS CACNEccovermrrerernesesesesese s sss e ss s s ssssssessssssessssenns 216
Justifying the Caching SCENATI0cccovverrerere s 216
Understanding FEATUIEScccveviierrrieresir s sae s saesn e se e sae e 223
Understanding Managementcccoveerenrnsnnnesssese s s s ssssssessanes 233

USING AZUIE SEAICH ... e e 240
Using SQL to Implement Sarch............covvcrninncnncsrn e 242
Understanding How to Start with Azure Searchc.ccocvrvrvnininnnsni e 245
Planning AZUre SEAICH...........ccovererenerere s 248
Implementing AZUre SEArCH ... ———————— 254

£ 11134 R 261

Chapter 4: Orchestrate Data with Azure Data Factory..........cccccuseemninsssnnnninsssnnnnns 263

Azure Data Factory INtroduCHioNcccceereeernsesrnese e 263
Main Advantages of using Azure Data Factorycccccrvnnnninnnnsnsnsse s 265
L0110 0o O 266
Azure Data Factory Administration..........cccccviveennennienennsesnsese s sessssessenens 272

Designing Azure Data Factory SOIULIONSccoverrernnererese e 272
Exploring Azure Data Factory Features using Copy Data.........cccceeeveererverierrnsenserserssessensenees 273
Anatomy of Azure Data Factory JSON SCHPIS.......cccrrervrrrnierinnr s ssesseeees 288
Azure Data Factory Tools for Visual StUAI0..........ccceeererernserennesereseresse s sessesesnenens 297
Working with Data Transformation ACtiVIties..........ccccvrvininnnininnn s 301
Microsoft Data Management GAtEWAYcccevevvrerreriernsensersese s sere e ses s ssesessessesnes 314

Considerations of Performance, Scalability and COoStS..........c.cucurrnrrnnennisnnsesssesesesesessesens 316
0] 0T 317
00T £ TP 321

TABLE OF CONTENTS

Azure Data Factory V2 (PrEVIEW).......cceververrenrerieries s ssessee e ssesss e s sse s s s snessessesssssassaesaesnes 322
Azure Data Factory v2 Key CONCEPIS......cuivvermerineseniserinsesssessss s sesseses e s sessessssenens 322
B30T 111 T o SO 325
Chapter 5: Azure Data Lake Store and Azure Data Lake Analytics........ccorusssnnnnns 327
How Azure Data Lake Store and Analytics were BOrn...........cccovecvrecnerenerescresscsesenes e 329
AZUre Data LaKE STOTE ... e e 330
G 0] 0 o) 330
Hadoop Distributed File SYSTem ... 332
Create an Azure Data Lake STOre...........ccoeeeerrrrerererese e 333
Common Operations on Files in Azure Data Lake Storec.ccocvvvrvrievenensensesesessessensenns 336
Copy Data to Azure Data Lake STOre.........cccvcrvverenennnesmsssessss s sesssssssssessnses 341
Considerations on Azure Data Lake Store Performance............cooeeereererenereescsensesesesenennes 361
Azure Data Lake AN@IYLICS.......ccccuiiriienese e s e nnens 363
G 0] 1 0 o) R 363

Built on APAChe YARN ..o sttt st 364
Tools for Managing ADLA and Authoring U-SQL SCFPtScccvrevninnnreninsnnsensesessssessessennns 366
U-SQL LANQUAGE ... eeereerrerrrerersersssessessessessssessessesssssssessessssssssssessesssssssesssssssssssssessesssnsssesseses 371
AZUIE HDINSIGAToeeece et s e et s b e s naenne s 391
BT 111 T o RSSO 392
Chapter 6: Working with In-Transit Data and Analyticsccccccmmrrrrnsssssssnnnnnnnnnas 393
Understanding the Need for MeSSaging.........cccucvvreriinsnnniess s ssssessessessessssessessens 394
Use Cases of Uni-Directional MeSSaging........ccvrerererrerserersrserseresssssssessessessssessessesssssssessees 396
USING SEIVICE BUS......ccervieriririrrenerissesese s e s ss s s sn s s snsns e nsanis 399
USING EVENE HUDS......cuo e e s 409
Understanding Real-Time ANAIYEICSccccvvrvirierirse s se e saeens 418
Understanding Stream ANAIVEICScccvevririnieneninnne s s sss e s sae s 419
Understanding AppPINSIGNES........coceeerrerereserrseserese e 422
SUMIMANY ..ttt e s R e e e R b e e e R e R e e e e e Re e Re R e e e e e Re b e e e e e Renrs 425
1T - 427

viil

About the Authors

Francesco Diaz joined Insight in 2015 and is responsible for
the cloud solutions & services area for a few countries in the
EMEA region. In his previous work experience, Francesco
worked at Microsoft for several years, in Services, Partner,
and Cloud & Enterprise divisions. He is passionate about
data and cloud, and he speaks about these topics at events
and conferences.

Roberto Freato works as a freelance consultant for

tech companies, helping to kick off IT projects, defining
architectures, and prototyping software artifacts. He has
been awarded the Microsoft MVP award for eight years in a
row and has written books about Microsoft Azure.

He loves to participate in local communities and speaks at
conferences during the year.

ix

About the Technical Reviewers

Andrea Uggetti works in Microsoft as Senior Partner
Consultant, and has a decade of experience in the databases
and business intelligences field. He specializes in the
Microsoft BI platform and especially Analysis Services
and Power BI and recently he is dedicated to the Azure
Data & Al services. He regularly collaborates with Partners
in proposing architectural or technical insight in Azure
Data & Al area. Throughout his career he has collaborated
with the Microsoft BI Product Group on several in-depth
guides, suggesting product's innovations and creating BI
troubleshooting tools.

After getting a Master’s in Computer Science at Pisa
University, Igor Pagliai joined Microsoft in 1998 as

Support Engineer working on SQL Server and Microsoft
server infrastructure. He covered several technical roles in
Microsoft Services organization, working with the largest
enterprises in Italy and Europe. In 2013, he moved in
Microsoft Corporate HQ as Principal Program Manager in
the DX Organization, working on Azure infrastructure and
data platform related projects with the largest Global ISVs.
He is now Principal Cloud Architect in Commercial Software
Engineering (CSE) division, driving Azure projects and cloud

adoption for top Microsoft partners around the globe. His
main focus and interests are around Azure infrastructure, Data, Big Data and Containers
world.

ABOUT THE TECHNICAL REVIEWERS

Gianluca Hotz is a consultant, trainer, and speaker and
specializes in architecture, database design, high availability,
capacity planning, performance tuning, system integration,
and migrations for Microsoft SQL Server. He has been
working as a consultant in the IT field since 1993 and

with SQL Server since 1996 starting with version 4.21 on
Windows NT. As a trainer, he was in charge of the SQL Server
courses line for one of the largest Italian Microsoft Learning
Partner (Mondadori Informatica Education) and still enjoys
teaching people through regular class training and on-the-
job training. He also supports Microsoft on the field as a

speaker and expert at local and international conferences,
workshops, and university seminars.

Gianluca joined SolidQ (previously known as Solid Quality Mentors and Solid
Quality Learning) as a mentor in 2003, was one of the acquisition editors for The SolidQ
Journal between 2010 and 2012, has served in the global board as a voting member
between 2012 and 2014 (representing minority shareholders), and as internal advisor
between 2014 and 2015.

He was one of the founders of the Italian SolidQ subsidiary where he held the
position of ad interim CEO between 2007 and 2014 and director of the Data Platform
division between 2015 and 2016.

Being among the original founders of ugiss.org (Italian User Group for SQL Server),
and ugidotnet.org (Italian dot NET User Group), he's also a community leader regularly
speaking at user group workshops, he served as vice-president for UGISS between
2001 and 2016 where he's currently serving as president. For his contribution to the
community, including newsgroup support in the past, he has been a SQL Server MVP
(Microsoft Most Valuable Professional) since 1998.

xii

Foreword

In my career I've been fortunate enough to have the chance of experiencing many
computing generations: from mini computers when I was still a student, through 8-bit
microcontrollers in industrial automation, client-server departmental solutions, the dot.
com era that transformed everything, service-oriented computing in the Enterprise and,
finally, the cloud revolution. Across the last 25 years and all these transformations, data
has always been a constant “center of gravity” in every solution, and moving to public
cloud platforms this effect is going to increase significantly due to a number of factors.

First, the economies of scale that large cloud providers can achieve in building huge
storage platforms that can store the largest datasets at a fraction of the cost required in
traditional infrastructures. Second, the comprehensive offering and flexibility of multiple
data storage and processing technologies that let architects and developers to pick up
the right tool for the job, without necessarily be constrained by large upfront investments
traditionally requires in the on-premises space when selecting a given data platform of
choice. Third, as we're entering into the second decade of existence for many of these
public cloud providers, the constantly increasing level of maturity that these platforms
are offering, closing most of the gaps in functional and non-functional that for some
customers were preventing a full migration to the cloud, like security, connectivity, and
performance.

In fact, it's becoming very frequent these days, to read on both technical and
economical sites and newspapers that the largest corporations on the planet announcing
their digital transformation strategies where cloud has a prominent position, from
financial services to retail and manufacturing businesses, and for workloads like core
trading systems, big data and analytical solutions or product lifecycle management.

By working with many of these customers moving their core solution to Microsoft
Azure, I had the chance to experience first-hand the dramatic impact that cloud is
providing to existing IT practices and methodologies, and the enormous opportunities
that these new capabilities can unleash in designing next-generation solutions and
platforms, and to collect a series of learnings that are consistent across multiple
scenarios and use cases.

xiii

FOREWORD

One of the most important, when designing brand new storage layers, is that we're
not anymore in a world where a single data technology was the cornerstone satisfying
all different requirements characterizing a given end to end solution. Today, from highly
transactional and low latency data sets to hugely vast amount of data exhausts produced
collecting human behaviors like click streams or systems and application logs, it’s critical
to pick up the right data technology for the job. Microsoft Azure provides full coverage
in this space, from relational database services like Azure SQL Database to multi-modal
document, key-value and graph solutions like CosmosDB. From the incredibly flexible
and inexpensive Azure Storage to the highest performance and scale characteristics of
Azure Data Lake. Not mentioning powerful distributed data processing services in Big
Data and Analytics like Azure HDInsight and the newest addition to Azure data platform
which is Azure Databricks, making Spark incredibly easy to deploy and use within our
solutions.

The consequence of the availability of such a rich data platform is that more and
more a single solution will use a combination of multiple stores, where usually you'll find
a common backbone or main storage technology surrounded by a number of specialized
data stores and data processing technologies to serve sophisticated consumer types
within a given organization, as one size rarely fits all requirements and use cases.

At the same time, it is very important to be intimately aware of the intrinsic
characteristics of these different data technologies to be able to evaluate which one fits
a given area in a complex solution. One of the common mistakes that I've seen is not
considering that for most of these technologies, while offering almost infinite capacity in
terms of performance and scale, this comes in very well-defined scale units, or building
blocks, that usually are assembled by scaling them out horizontally to reach the highest
goals.

Yes, data services are powered by an impressive amount of compute and storage
capacity, now in the order of millions of physical servers, but while these are becoming
more and more powerful generation after generation, they are usually not directly
comparable to the more sophisticated hardware configurations that can be assembled in
your own datacenter in a limited number of instances. That’s why most of these storage
engines are heavily relying on partitioning large data sets across a number of these scale
units that developers and architects can combine into the most demanding scenarios.

This book from Francesco and Roberto is covering a wide spectrum of data
technologies offered by the Microsoft Azure platform, providing many of those details
and characteristics that are crucial for you to get the most out of these data services.

Xiv

FOREWORD

It’s also offering solid guidance on how to migrate your existing data stores to the cloud
completely or maintaining a hybrid approach. With this book you have a great tool to just
learn and discover new possibilities offered by the platform, but also to start practicing
on what will become, I'm sure, your preferred playground of the future. Happy reading!

Silvano Coriani
Principal Software Engineer
Microsoft Corporation

Introduction

Today's mission in IT is reducing the overall time-to-market and, at the same time,
preserving project constraints like quality and control over costs. With the cloud
revolution of the last ten years, we started (finally) to understand the benefit of value-
added services implemented in most of the Paa$S (Platform-as-a-Service) of the cloud
ecosystem.

We got how a platform can give us much more control on the entire development
process, by freeing resources that now can be focused on the business and the design. In
many cases, choosing a PaaS solution is the best choice, especially for born-in-the-cloud
projects; in some other cases, using a IaaS approach can be beneficial, either because
you are migrating from an existing on-premises solution, or because you need a more
granular control on the service itself.

This book is around data, and gives you a wide range of possibilities to implement a
data solution on Azure, from hybrid cloud up to PaaS services, where we will focus much
more. Implementing a PaaS solution requires to cover in detail several aspects of the
implementation, including migrating from existing solutions. The next six chapters try to
tell the story of Data Services by presenting the alternatives and the actual scope of each
one; 5 out of 6 of the chapters are about PaaS, while one of them, mainly focused on SQL
Server features for cloud, is related to hybrid cloud and IaaS functionalities.

In Chapter 1 (Working with Azure Database Services Platform) we deeply analyze the
SQL Database services, trying to bring to the reader the authors' on-the-field experience
of designing and managing it for years. We discuss the various SQL Database most
important features, trying to propose approaches and solutions to real-world problems.

In Chapter 2 (Working with SQL Server on Hybrid Cloud and Azure laaS) we
"downscale" to IaaS. Except for this, we discuss the huge power of SQL Server on VMs
and the various scenarios we can address with it. We see how SQL Server can run in
VMs and containers, on Linux and how it can be managed with cross-platform tools. But
Chapter 2 is not only around SQL Server on VMs: it is around Hybrid Cloud also, mixed
environments and complex scenarios of backup/replication, disaster recovery and high-
availability.

xvii

INTRODUCTION

In Chapter 3 (Working with NoSQL alternatives) we want to turn tables on the typical
discussion around NoSQL. We choose to not include Cosmos DB in the chapter, either to
postpone the topic to a dedicated book, either to highlight how many NoSQL alternatives
we have in Azure outside the classics. We center the discussion around Blobs, that are
often under-evaluated, around Tables and Redis to finally approach on Azure Search,
one of the most promising managed search services in the cloud ecosystem.

In Chapter 4 (Orchestrate data with Azure Data Factory) we discover orchestration
of data. We want to emphasize the importance of data activities, in terms of movements,
transformation and the modern addressing to the concepts we known as ETL for many
years. With Data Factory, you will discover an emerging (and growing up) service to deal
with pipelines of data and even complex orchestration scenarios.

In Chapter 5 (Working with Azure Data Lake Store and Azure Data Lake Analytics)
we start to build foundations for the big data needs. We discover how Data Lake can help
with storing, managing and analyzing unstructured data, stored in their native format
while they are generated. We will learn this important lesson around big data: since we
are generating and storing today the data we are using and analyzing tomorrow, we need
a platform service to build intelligence on it with minimal effort.

Finally, Chapter 6 (Working with In-Transit Data and Analytics) closes the book
with a little introduction about messaging and, generally, the in-transit data, to learn
how we can take advantage of ingestion to build run-time logics in addition to the most
consolidated ones. Messaging is extremely important for several scenarios: almost every
distributed system may use messaging to decouple components and micro-services.
Once messaging is understood, we can apply the event-based reasoning to move some
parts of the business rules before the data is written to the final, persistent data store.
Eventually, we learn how to implement in-transit analytics.

We hope this can be a good cue to address how to approach data service in this
promising momentum of cloud and Platform-as-a-Service. We know this book cannot
be complete and exhaustive, but we tried to focus on some good points to discuss the
various areas of data management we can encounter on a daily basis.

xviii

CHAPTER 1

Working with Azure
Database Services
Platform

To get the most out of the power of cloud services we need to introduce how to deal with
relational data using a fully managed RDBMS service, which is, in Microsoft Azure, SQL
Database.

SQL Database is the managed representation of Microsoft SQL Server in the cloud.
Can be instantiated in seconds/minutes and it runs even large applications without
minimal administrative effort.

Understanding the Service

SQL Database can be viewed as a sort of Microsoft SQL Server as-a-Service, where those
frequently-addressed topics can be entirely skipped during the adoption phase:

o License management planning: SQL Database is a pay-per-use
service. There is no upfront fee and migrating between tiers of
different pricing is seamless

o Installation and management: SQL Database is ready-to-use. When
we create a DB, the hardware/software mix that runs it already exists
and we only get the portion of a shared infrastructure we need to
work. High-availability is guaranteed and managed by Microsoft and
geo-replication is at a couple of clicks away.

© Francesco Diaz, Roberto Freato 2018
E Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_1

CHAPTER 1

From the consumer perspective, SQL Database has a minimal feature misalignment
with the plain SQL Server and, like every Platform-as-a-Service, those touch points can

WORKING WITH AZURE DATABASE SERVICES PLATFORM

Maintenance: SQL Database is a PaaS, so everything is given to us
as-a-Service. Updates, patches, security and Disaster Recovery are
managed by the vendor. Also, databases are backup continuously to
provide end-users with point-in-time restore out-of-the-box.

be inferred by thinking about:

In addition to the perceptible restrictions, we have some more differences related
to which is the direction of the service and the roadmap of advanced features. Since we
cannot know why some of the features below are not supported, we can imagine they are
related to offer a high-level service cutting down the surface area of potential issues of

Filesystem dependencies: we cannot use features that correlates
with customization of the underlying operating system, like file
placement, sizes and database files which are managed by the
platform.

Domain dependencies: we cannot join a SQL Database “server”
to a domain, since there is no server from the user perspective. So,
we cannot authenticate with Windows authentication; instead, a
growing up support of Azure Active Directory is becoming a good
replacement of this missing feature.

Server-wide commands: we cannot (we would say “fortunately”)
use commands like SHUTDOWN, since everything we make is
made against the logical representation of the Database, not to its
underlying physical topology.

advanced commands/features of the plain SQL Server.

For a complete comparison of supported features between SQL Database and SQL
Server, refer to this page: https://docs.microsoft.com/en-us/azure/

sql-database/sql-database-features

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-features
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-features

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

At least, there are service constraints which add the last set of differences, for
example:

o Database sizes: at the time of writing, SQL Database supports DB up
to 1TB of size (the counterpart is 64TB)

o Performance: despite there are several performance tiers of SQL
Database, with the appropriate VM set, SQL in a VM can exceed
largely the highest tier of it.

For a good introduction of how to understand the differences between the features
supported in both products, refer to this page: https://docs.microsoft.com/
en-us/azure/sql-database/sql-database-paas-vs-sql-server-iaas.

Connectivity Options

We cannot know the exact SQL Database actual implementation, outside of what
Microsoft discloses in public materials. However, when we create an instance, it has the
following properties:

e Public URL: in the form [myServer]|.database.windows.net.
Public-faced on the Internet and accessible from everywhere.

Yes, there are some security issues to address with this topology, since there is no
way to deploy a SQL Database in a private VNet.

¢« Connection modes:

o from outside Azure, by default, each session between us and SQL
Database passes through a Proxy, which connects to the actual
ring/pool of the desired instance

o from inside Azure, by default, clients are redirect by the proxy to
the actual ring/pool after the handshake, so overhead is reduced.
If we are using VMs, we must be sure the outbound port range
11000-11999 is open.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-paas-vs-sql-server-iaas
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-paas-vs-sql-server-iaas

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

We can change the default behavior of the Proxy by changing this property:
https://msdn.microsoft.com/library/azure/mt604439.aspx. Note that,
while connecting from outside Azure, this means multiple IPs can be configured to
outbound firewall rules.

¢ Authentication:

o Server login: by default, when we create a Database, we must
create a server before it. A server is just a logical representation of
a container of database, no dedicated physical server is mapped
to it. This server has an administrator credential, which have full

permission on every DB created in it.

o Database login: we can create additional credentials tied to
specific databases

e Azure AD login: we can bind Azure AD users/groups to the server
instance to provide an integrated authentication experience

e Active Directory Universal Authentication: only through a proper
version of SSMS, clients can connect to SQL Database using a
MFA

o Security:

o Firewall rules: to allow just some IPs to connect to SQL Database,
we can specify firewall rules. They are represented by IP ranges.

o Certificates: by default, an encrypted connection is established.
A valid certificate is provided, so it is recommended (to
avoid MITM attacks) to set to “false” the option “Trust Server
Certificate” while connecting to it.

Given this information above as the minimum set of knowledge to connect to a
SQLDB instance, we can connect to it using the same tooling we use for SQL Server.
SSMS is supported (few features won’t be enabled however), client connectivity through
the SQL Client driver is seamless (as it would be a SQL Server instance) and the majority
of tools/applications will continue to work by only changing the connection string.

https://msdn.microsoft.com/library/azure/mt604439.aspx

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Libraries

In recent years Microsoft has been building an extensive support to non-Microsoft

technology. This means that now we have a wide set of options to build our applications,

using Azure services, even from outside the MS development stack. Regarding SQL

Database, we can now connect to it through official libraries, as follows:

C#: ADO.NET, Entity Framework (https://docs.microsoft.com/en-
us/sql/connect/ado-net/microsoft-ado-net-for-sql-server)

Java: Microsoft JDBC Driver (https://docs.microsoft.com/it-it/
sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server)

PHP: Microsoft PHP SQL Driver (https://docs.microsoft.com/it-
it/sql/connect/php/microsoft-php-driver-for-sql-server)

Node.js: Node.js Driver (https://docs.microsoft.com/en-us/sql/
connect/node-js/node-js-driver-for-sql-server)

Python: Python SQL Driver (https://docs.microsoft.com/en-us/
sql/connect/python/python-driver-for-sql-server)

Ruby: Rudy Driver (https://docs.microsoft.com/en-us/sql/
connect/ruby/ruby-driver-for-sql-server)

C++: Microsoft ODBC Driver (https://docs.microsoft.com/en-us/
sql/connect/odbc/microsoft-odbc-driver-for-sql-server)

This extended support makes SQL Database a great choice for who are adopting a

RDBMS, for both new and existing solutions.

Sizing & Tiers

The basic consumption unit of SQL Database is called DTU (Database Transaction Unit),

which is defined as a blended measure of CPU, memory and I/O. We cannot “reserve” to

our SQLDB instance a fixed size VM. Instead, we choose:

Service Tier: it defines which features the DB instance has and the
range of DTU between we can move it.

Performance Level: if defines the reserved DTU for the DB instance.

https://docs.microsoft.com/en-us/sql/connect/ado-net/microsoft-ado-net-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/ado-net/microsoft-ado-net-for-sql-server
https://docs.microsoft.com/it-it/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/it-it/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server
https://docs.microsoft.com/it-it/sql/connect/php/microsoft-php-driver-for-sql-server
https://docs.microsoft.com/it-it/sql/connect/php/microsoft-php-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/node-js/node-js-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/node-js/node-js-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/python/python-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/python/python-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/ruby/ruby-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/ruby/ruby-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/odbc/microsoft-odbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/odbc/microsoft-odbc-driver-for-sql-server

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Both for the official recommended approach as for the experience maturated in
the field, we strongly encourage to avoid too much complicated in-advance sizing
activities to know exactly which tier our application needs, before testing it. We
think that an order of magnitude can be of course inferred by in-advance sizing,
but a more precise estimation of consumption has to be made after a measured
pilot, where we can see how the new/existing application uses the database tier
and, consequently, how much the DB instance is stressed by that.

Like in any other service offered in a Paa$ fashion, we are subject to throttling, since
we reach the limits of the current performance level.

For years consultants tried to explain to clients there is no way to predict exactly
which is the actual performance level needed for an application since, by design, each
query is different and even the most trivial KPI (i.e., queries-per-second) is useless
without the proper benchmark information.

To understand how the benchmark behind the DTU blend is developed, see this
article: https://docs.microsoft.com/en-us/azure/sql-database/sql-
database-benchmark-overview

At the time of writing, SQLDB supports those Service Tiers and Performance Levels
(Figure 1-1):

e Basic: it supports only a 5DTU level, with 2GB of max DB size and few
simultaneous requests.

o Standard: it supports a range of 10-100DTU levels, with 250GB of max
DB size and moderate simultaneous requests.

e Premium: if supports the largest levels (125-4000DTU), with 4TB of
max DB size and the highest simultaneous requests.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-benchmark-overview
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-benchmark-overview

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Unfortunately, service tiers and resource limits are subject to continuous change
over time. We can fine updated information here:

https://docs.microsoft.com/en-us/azure/sql-database/
sql-database-service-tiers

https://docs.microsoft.com/en-us/azure/sql-database/
sql-database-resource-limits

In addition, Premium levels offer In-Memory features, which are not available in
other tiers.

e Premium RS: it supports the 125-1000DTU levels, with the same
constraints of the corresponding Premium level.

DTU
4500
4000
3500
3000
2500
2000
1500
1000
. _-.-I -l
Basic SO S1 S2 S3 Pi P4 P6 P11 P15 PRS1 PRS2 PRS4 PRS6

Figure 1-1. This chart shows clearly the DTU ratio between different Tiers/Levels
of SQL Database

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Premium RS is a recent Tier which offers the same features as the Premium
counterpart, while guaranteeing a reduced durability, which results in a sensible cost
saving and more performance for I/0 operations. Unfortunately, the service did not
pass the preview phase and it has been scheduled for dismission on January 31, 2019.

Designing SQL Database

SQL Database interface is almost fully compatible with tooling used for SQL Server, so in
most cases previous tooling should work with no specific issues. However, since Visual
Studio offers the capability to manage the development process of a DB from inside the
IDE, itis important to mention it.

Database Projects are Visual Studio artefacts which let DBA to develop every DB
object inside Visual Studio, with an interesting feature set to gain productivity:

o Compile-time checks: VS checks the syntax of the written SQL and
highlights errors during a pseudo-compilation phase. In addition, it
checks references between tables, foreign keys and, more generally,
gives consistence to the entire database before publishing it.

o Integrated publishing: VS generates the proper scripts to create (or
alter) the database, based on what it finds at the target destination.
It means that the target DB can even already exists and Visual Studio
will run the proper change script against it without compromise the
consistency.

o Data generation: to generate sample data in the database tables

o Pre/Post-deployment scripts: to execute custom logic before/after
the deployment

e Source control integration: by using Visual Studio, it is seamless to
integrate with Git or TFS to version our DB objects like code files.

Using Database Projects (or other similar tools) to create and manage the
development of the database is a recommended approach (Figure 1-2), since it gives a
central view of the Database Lifecycle Management. Finally, Visual Studio supports SQL
Database as a target Database, so it will highlight potential issues or missing features
during the Database development.

8

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

CACod OCDBooks\ Apressh ClowdD g CHOZ Ad: Morks\CHO2 Ad ark v|] | d database wind et
Type Source Mame Action Target Name
~ 8 Chenge
> ER Table SalestT Customer s SalestT Customer
~ BE Table SalesL T Product F# SaleslTProduct
~ @ Celurmns
> B Column SaleslT.Product Productumber & SaleslT Product.ProductNumber
* B Column SalesLT Product SellEndDate. r SalesLT Product SellEndDate

G Results “ H @ Object Definitions |

"7] ! CREATE TABLE [SalesLT].[Product] (- 1 CREATE TABLE [SalesLT].[Product] (
2 [ProductID] INT IDENTITY (1, 1) NOT RULL, 2 [ProductID] INT IDENTITY (1, 1) NOT MULL,
- il 3 [Mame] [dbo]. [Nome] HOT NULL, 3 [Hame] [dbo]. [Name] NOT MULL,
4 [Producthusber] NVARCHAR (38) MOT NULL, 4 [Productiusber] NVARCHAR (25) MOT WULL,
[[coler] NVARCHAR (15) WULL, s [€alor] MVARCMAR (18] MULL,
L [StandardCost] HOHEY NOT NULL, & [StandardCost] HONEY NOT MULL,
7 [ListPrice] HONEY NOT NULL, 7 [ListPrice] HONEY NOT MULL,
B [size] NVARCHAR (5) K 8 [5ize] NVARCHAR (5) NULL,
] [weight] DECIMAL (8, 2) & 9 [weight] DECIMAL (8, 2) MuLL,
oo [ProductCategorylD] INT » N 1w [ProductCategeryID] INT NULL,
H 1 [Productiede110] INT MiLL, 11 [ProductModel1n] wy NULL,
12 [SellStartDate] DATETIME NOT NULL, 12 [5ell5tartDate] DATETIME NOT MULL,
13 [SellEndDate] DATETIMEZ (7) NULL, 13 [SellEndDate] DATETIME NULL,
14 [odiscentinuedDate] DATETIME WULL, 14 [oiscontinuedbate] DATETIME NULL,
18 [ThusbiailPhoto] VARBIMARY (M3X) WULL, 15 [ThuntHailPhota] VARBIMARY (MaX) MULL,
16 [ThusbaailPhatoFileNsme] NVARCHAR (58) WULL, 16 [ThumbnailPhotofiletane] NVARCHAR (58) MULL,

Figure 1-2. This image show the Schema Compare features of Database Projects,
which also targets SQL Database in order to apply changes with a lot of features
(data loss prevention, single-change update, backups, etc).

We can use Database Projects even at a later stage of DB development, using

the wizard “Import Database” by right-clicking the project node in Visual Studio.
This wizard creates the VS objects by a reverse engineering process on the target
Database.

There are other options to design databases. Official documentation follows:

o SSMS design: https://docs.microsoft.com/en-us/azure/sql-
database/sql-database-design-first-database

e .NET design: https://docs.microsoft.com/en-us/azure/sql-
database/sql-database-design-first-database-csharp

o Code-first design: https://msdn.microsoft.com/en-us/library/
jj193542(v=vs.113).aspx

Multi-tenancy

Since many applications should be multi-tenant, where one deployment can address
many customers, even the Database tier should follow this approach. This is clearly
an architect choice but, since it can have consequences on performance/costs of the
SQLDB instance, we analyze the various options.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-first-database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-first-database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-first-database-csharp
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-design-first-database-csharp
https://msdn.microsoft.com/en-us/library/jj193542(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/jj193542(v=vs.113).aspx

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

One Database for Each Tenant

This is the simplest (in terms of design) scenario, where we can also have a single-tenant
architecture which we redeploy once for every client we acquire. It is pretty clear that,
in case of few clients, can be a solution, while it isn’t where clients are hundreds or
thousands.

This approach highlights those pros/cons:

e Advantages:

e We can retain existing database and applications and redeploy

them each time we need.

o Each customer may have a different service level and disaster
recovery options

e An update which is specific to a tenant (i.e., a customization) can
be applied to just the database instance affected, leaving others
untouched.

e An optimization, which involves the specific usage of a table,
can be applied to that DB only. Think about an INDEX which
improves TenantX queries but worsens other tenants.

o Disadvantages:

¢ We need to maintain several Databases which, in the best case
are just copies with the same schema and structure. In the worst
case they can be different, since they proceed in different project
forks: but this is another topic, related to business, out of the
scope of the chapter.

o Every DB will need a separate configuration of features on the
Azure side. Some of them can be configured at the server side
(the logical server) but others are specific.

o Every DB has a performance level and corresponding costs,

which in most cases is not efficient in terms of pooling.

o In case of Staging/Test/Other development environment, they
should be made specifically for each client.

10

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Those are just few of the pros/cons of this solution. To summarize this approach, we
would say it is better for legacy applications not designed to be multi-tenant and where
new implementations are very hard to achieve.

Single Database with a Single Schema

In this scenario, we are at the opposite side, where we use just ONE database for ALL
the clients now or in the future. We would probably create tables which contains a
discriminant column like “TenantID” to isolate tenants.

This approach highlights those pros/cons:
e Advantages:
o Asingle DB generates a far less effort to maintain and monitor it.

e A performance tuning which is good for every client, can be
applied once

o Asingle DB generates just one set of features to configure and a
single billing unit

o Disadvantages:

e Anupdate on the DB potentially affects every deployment and
every customer of the solution. This results in harder rolling
upgrade of the on top application.

o Ifa client consumes more than others, the minor clients can be
affected and the performance of each one can vary seriously. In
other words, we cannot isolate a single tenant if needed.

o This is the simplest scenario while dealing with a new solution.
During the development phase we have just one database to
deal with, one or more copies for other environments (Staging/
UAT/Test) and a single point of monitoring and control when
the solution is ready to market. However this can be just the
intermediate step between a clean-and-simple solution and an
elastic and tailor-made one.

11

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Single Database with Different Schemas

This solution is a mix between the first one and the second, since we have just one
database instance, while every table is replicated once for every schema in the database
itself, given that every Tenant should be mapped to a specific schema.

This approach has the union of pros/cons of the “One database for each tenant” and
“Single Database with single schema” approaches.

In addition, in case we want to isolate a tenant in its own dedicated DB, we can move
its schema and data without affecting others.

Multiple Logical Pools with a Single Schema Preference

The latest approach is the one that can achieve the best pros and the less cons,
compared to the previous alternatives. In this case, we think about Pools instead of
Database, where a Pool can be a DB following the “Single Database with a single schema
pattern” which groups a portion of the tenants.

Practically, we implement the DB as we are in the Single Database approach,
with a TenantID for every table which needs to be isolated. However, falling in some
circumstances, we “split” the DB into another one, keeping just a portion of tenant in the
new database. Think about those steps:

1. First the DB is developed once, deployed and in production

2. New clients arrive, new TenantIDs are burned and tables now
contains data of different clients (separated by a discriminant).

3. Client X needs a customization or a dedicated performance,
a copy of the actual DB is made and the traffic of client X are
directed to the appropriate DB instance.

4. Eventually the data of client X in the “old” DB can be cleaned up
Given the pros of that approach, we can mitigate the disadvantages as follows:

e Anupdate on the DB potentially affects every deployment and every
customer of the solution. This results in harder rolling upgrade of the
on top application.

e We can migrate one tenant, perform an upgrade on it and then
applying the update on every Logical Pool.

12

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

o Ifaclient consumes more than others, the minor clients can be
affected and the performance of each one can vary seriously. In other
words, we cannot isolate a single tenant if needed.

o We can migrate one or more tenant to a dedicated DB
(Logical Pool)

The remaining disadvantage is the effort needed to write the appropriate
procedures/tooling to migrate tenants between DBs and create/delete/update different
DBs with minimal manual intervention. This is a subset of the effort of the first approach
with maximum degree of elasticity.

Index Design

Indexes are standard SQL artefacts which helps to lookup data in a table. Practically
speaking, for a table with millions or rows, an index can help seeking to the right place
where the records are stored, instead of scanning the whole table looking for the results.
A theoretical approach to index design in out of the scope of the book, so we focus on:

¢ Index creation
¢ Index evaluation

e Index management

Index Creation

Let’s consider the following table (SalesLT.Customer of the AdventureWorksLT sample
Database):

CREATE TABLE [SalesLT].[Customer] (
[CustomerID] INT IDENTITY (1, 1) NOT NULL,
[NameStyle] [dbo].[NameStyle] CONSTRAINT [DF Customer NameStyle]
DEFAULT ((0)) NOT NULL,

[Title] NVARCHAR (8) NULL,
[FirstName] [dbo].[Name] NOT NULL,
[MiddleName] [dbo].[Name] NULL,
[LastName] [dbo].[Name] NOT NULL,
[Suffix] NVARCHAR (10) NULL,

[CompanyName] NVARCHAR (128) NULL,
13

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

[SalesPerson] NVARCHAR (256) NULL,
[EmailAddress] NVARCHAR (50) NULL,

[Phone] [dbo].[Phone] NULL,

[PasswordHash] VARCHAR (128) NOT NULL,

[PasswordSalt] VARCHAR (10) NOT NULL,

[rowguid] UNIQUEIDENTIFIER CONSTRAINT [DF Customer rowguid]
DEFAULT (newid()) NOT NULL,

[ModifiedDate] DATETIME CONSTRAINT [DF Customer ModifiedDate]

DEFAULT (getdate()) NOT NULL,

CONSTRAINT [PK Customer CustomerID] PRIMARY KEY CLUSTERED ([CustomerID]
ASC),

CONSTRAINT [AK Customer rowguid] UNIQUE NONCLUSTERED ([rowguid] ASC)

)5

While creating a SQL Database DB instance, we can even choose between a blank
one (the common option) or a preconfigured and populated AdventureWorksLT
Database

By default the following index is created:

CREATE NONCLUSTERED INDEX [IX Customer EmailAddress]
ON [SalesLT].[Customer]([EmailAddress] ASC);

However, despite a table definition is about requirements, an index definition is
about usage. The index above will produce better performance in queries filtering the
EmailAddress field. However, if the application generates the 99% of queries filtering
by the CompanyName field, this index is not quite useful and it only worse the write

performance (Figure 1-3).

14

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

J*****% Script for SelectTopNRows command from SSMS **x®xxy
SELECT *

FROM [SalesLT].[Customer]

WHERE EmailAddress='john22@adventure-works.com'

100% ~

oo

3 Messages & Execution plan
Query 1l: Query cost (relative to the batch): 100%
[H*xxxk Script for SelectTopNRows command from SSMS *wxkkx/

= fc] %

cerecT Nested Loops - Index Seek (NonClustered)
(Inner Join) [Customer] . [IX Customer EmaillAddres..
— Cost: 0 & Cost: 40 %

Key Lookup (Clustered)
[Customer] . [PK Customer CustomerID]
Cost: €0 %

Figure 1-3. This query uses the index, producing a query cost only on the seek
operation (good). In SSMS, to see the query plan, right click the query pane and
select “Display Estimated Execution Plan”

So, indexes are something related to time and usage: today we need an index and
tomorrow it can be different, so despite application requirements are the same, indexes
can (must) change over time.

Index Evaluation

Which index should we create? First, we can write a Database without any indexes (while
some are direct consequences of primary keys). Write performance will be the fastest
while some queries will be very slow. An option can be to record each query against the
database and analyze them later, by:

e Instrumenting on the application side: every application using the
DB should log the actual queries.

o Instrumenting on the SQL side: the application is unaware of tracing,
while SQL saves every query passing on the wire

15

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Using the idea above, let’s try to edit the query above filtering by CompanyName
(Figure 1-4):

J*¥****% Script for SelectTopNRows command from SSMS ***1
SELECT *

FROM [SalesLT].[Customer]

WHERE CompanyName='Rapid Bikes'

100% ~
o

_‘h Messages ﬁ‘ﬁ Execution plan

Query 1: Query cost (relative to the batch): 100%
J*¥x#xxk* Script for SelectTopNRows command f£rom SSMS
Missing Index (Impact 87.0301): CREATE NONCLUSTERED

= 5]

¢ Clustered Index Scan (Clustered)
% [Customer] . [PK _Customer CustomerID]
Cost: 100 &

Figure 1-4. In this case, no seeking is performed. Instead, SSMS suggest us to
create an Index, since the 100% of the query cost is on scanning

For completeness, SSMS suggest us this creation script:

/*

USE [AdventureWorksLT]

GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [SalesLT].[Customer] ([CompanyName])

GO
*/

But SSMS cannot tell us if the overall performance impact is positive, since write
queries (i.e., a high rate of updates on the CompanyName field) can be slower due to
index maintenance.

16

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Index Management

Once an index is created and it is working, it grows and it gets fragmented. Periodically,
or even manually but in a planned fashion, we need to maintain indexes by:

¢ Rebuilding: the index is, as the word suggests, rebuilt, so a fresh index
is created. Sometimes rebuilding needs to take a table offline, which
is to evaluate carefully in production scenarios.

e Re-organizing: the index is actually defragmented by moving physical
pages in order to gain performance. It is the lightest (but often

longest) version to maintain an index.

We can use this query to have a look to the current level of fragmentation:

SELECT

DB_NAME() AS DBName,

OBJECT NAME(pstats.object id) AS DBTableName,

idx.name AS DBIndexName,

ips.index_type desc as DBIndexType,

ips.avg fragmentation in percent as DBIndexFragmentation

FROM sys.dm db_partition_stats pstats

INNER JOIN sys.indexes idx

ON pstats.object id = idx.object id

AND pstats.index_id = idx.index_id

CROSS APPLY sys.dm db_index physical stats(DB ID(),
pstats.object id, pstats.index id, null, 'LIMITED') ips

ORDER BY pstats.object id, pstats.index_id

While with this statement we perform Index Rebuild:

ALTER INDEX ALL ON [table] REBUILD with (ONLINE=ON)

Note that “with (ONLINE=ON)” forces the runtime to keep table online. In case
this is not possible, SQL raises an error which can be caught to notify the hosting
process.

17

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Automatic Tuning

SQL Database integrates the Query Store, a feature that keeps tracks of every query
executed against the Database to provide useful information about performance and
usage patterns. We see Query Store and Query Performance Insight later in chapter but,
in the meantime, we talk about Index Tuning.

Since indexes can change over time, SQL Database can use the recent history of
database usage to give an advice (Figure 1-5) of which Indexes are needed to boost the
overall performance. We say “overall’, because the integrated intelligent engine reasons
as follows:

1. By analyzing recent activities, comes out that an Index can be
created on the table T to increase the performance

2. Using the history data collected up to now, the estimated
performance increment would be P% of DTU

3. Ifwe apply the Index proposal, the platform infrastructure takes
care of everything: it creates the index in the optimal moment, not
when DTU usage is too high or storage consumption is near to its
maximum.

4. Then, Azure monitors the index’s impacts on performance: not
only the positive (estimated) impact, but even the side effects on
queries that now can perform worse due to the new Index.

5. Ifthe overall balance is positive, the index is kept, otherwise, it will
be reverted.

As arule, if the index created is good to stay, we can include it in the Database
Project, so subsequent updates will not try to remove it as consequence of re-alignment
between source code and target database.

18

Tuning history

=

ACTION

CREATE INDEX
Initiated by: System

CREATE INDEX
Initiated by: System

CREATE INDEX
Initiated by: System

CREATE INDEX
Initiated by: System

CREATE INDEX
Initiated by: System

CREATE INDEX
Initiated by: System

~

CHAPTER 1

RECOMMENDATION DESCRIPTION L STATUS
Table: | o
. Success
Indexed columns: |
Table: | 1

Indexed columns:

Table:

Indexed columns:

Table:

Indexed columns:

Table:

Indexed columns:

Table:

Indexed columns: [0 000

Reverted

0 Success

Reverted

o Success

@ Success

WORKING WITH AZURE DATABASE SERVICES PLATFORM

TIME »

20/07/2017
18:10:02

04/07/2017
17:51:31

05/06/2017
22:46:21

30/05/2017
08:43:09

23/0472017
14:48:55

20/04/2017
12:28:24

Figure 1-5. Here we have a few recommendations, where someone has been
deployed successfully while others have been reverted.

Note we should keep Database Project and database aligned to avoid “drifts”,
which can introduces alterations in the lifecycle of the database. An example of
the “classic” drift is the quick-and-dirty update on the production Database, which
is lost if not promptly propagated in the Database Projects. Another option could

be to define a set of common standard indexes (“factory defaults”) and accept
that automatic tuning is going to probably be better at adapting to new workload
patterns (which doesn’t mean the initial effort to define “factory defaults” shouldn’t

be done at all or that regular review of new indexes shouldn’t be done at all).

19

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

o Recommendation has been successfully applied and validated,

RECOMMENDED ACTION STATUS LAST UPDATE INITIATED BY

Success © 21/06/2016 System
05:36:27

Estimated impact Validation report

¥ Validation progress @ Completed
DTU savings (overall) @ 6.08% DTU
DTU savings (affected queries) @ 32,57% DTU
Queries with improved performance @ 3
Queries with regressed performance @ 5
Index create time @ 20/06/2016 17:23:18
Disk space used @ 1046 MB

Figure 1-6. This is a detail of the impacts on the performance after an automatic
Index has been applied to the Database.

In the image above (Figure 1-6), we see how that Automated Tuning is successfully
for this Index. We see a global gain of 6% DTU (which is a huge saving) and, relatively to
impacted queries, a 32% DTU savings. Since we are talking about indexes, there’s also a
connected consumption of storage, which is explicited as about 10MB more.

Migrating an Existing Database

Not every situation permits to start from scratch when we are talking about

RDBMS. Actually, the majority of solutions we’ve seen in the last years moving to Azure,
made it by migrate existing solutions. In that scenario, Database migration is a key step
to the success of the entire migration.

Preparing the Database

To migrate an existing SQL Server database to Azure SQL Database we must check in
advance if there are well-known incompatibilities. For instance, if the on-premises DB
makes use of cross-database references, forbidden keywords and deprecated constructs,

20

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

the migration will probably fail. There is a list of unsupported features (discussed before)
which we can check one-by-one or we can rely on an official tool called Data Migration
Assistant (https://www.microsoft.com/en-us/download/details.aspx?id=53595).

e
ADW Connect to a server X
1 Options v 2 Select sources 3 Review results Connect to a server and select sources
E‘, Add sources | » Remove sources Server name
s | -}

Authentication type

| Windows Authentication w~
Connection properties

D Encrypt connection

|7| Trust server certificate

SQL Server permissions

To run the selected advisor(s), credentials used to
connect to a source SOL Server instance must be a
member of the sysadmin server role.

Connect

Figure 1-7. DMA helps to identify in the on-premises database which features are
used but not supported on the Azure side.

During the DMA assessment (Figure 1-7) we are shown with a list of potential
incompatibilities we must address in order to export the on-premises Database. Of
course, this process affects the existing database so, we suggest this approach:

o Identify all the critical incompatibilities

e For the ones which can be fixed transparently to the consuming
applications, fix them

o For the other ones, requiring a rework on the applications side,
create a new branch where is possible and migrate the existing
applications to use the new structures one-by-one

This can be a hard process itself, even before the cloud has been involved. However,
we must do this before setting up the migration process, since we must assume that

applications’ downtime must be minimal.

21

https://www.microsoft.com/en-us/download/details.aspx?id=53595

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

When the on-premises DB feature set is 100% compatible with Azure SQL Database
V12, we can plan the moving phase.

Often, in documentation as well as in the public portal, we see “V12” next to the
SQDB definition. V12 has been a way to differentiate two main database server
engine versions, supporting different feature sets, in the past but nowadays it’s
legacy.

Moving the Database

Achieving a Database migration without downtime is certainly one of the most
challenging activity among others. Since the Database is stateful by definition and it
often acts as a backend tier for various, eterogeneous systems, we cannot replace it
transparently with an in-cloud version/backup of it, as it continuously accumulates
updates and new data between the backup and the new switch-on. So, there are at least
two scenarios:

1. We prepare a checklist of the systems involved into the DB usage

and we plan a service interruption

2. We setup a kind of replica in the cloud, to switch transparently to
itin a second time

In the first case, the process can be as follows:
¢ We discard new connections from outside

o We letlast transactions closing gracefully. If some transactions are
hanging for too long, we should consider killing them

o We ensure no other clients can connect to it except maintenance
processes

o We create a copy of the original Database, sure no other clients are
changing its data

22

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

¢ We create schema and data in the Database in the cloud

e We change every applications’ configuration in order to point to the
new database

e We take online them one-by-one

This approach is the cleanest and simplest approach, even if facing with several
concurrent applications.

On the other side, if we have NOT direct control over the applications connecting
to the database, we must consider to introduce some ad-hoc infrastructure
components that denies/throttles the requests coming from sources.

In the second case, the process can be harder (and in some scenarios does not
guarantee full uptime):

e On the on-premises side, we setup a SQL Server Replication
o We setup a “New Publication” on the publisher side
e We setup the distributor (it can run on the same server)

e We create a Transactional publication and we select all the objects we
would like to replicate

e We add a Subscription publishing to the Azure SQL Database (we
need to create an empty one before)

e We run/monitor the Replication process under the SQL Service
Agent service account

This approach let us continue to operate during the creation and seeding of the
remote SQL Database. When the cloud DB is fully synchronized, we can plan the switch
phase.

23

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

The switch phase can itself introduce downtime since, in some situations, we
prefer to not span writes between the two DBs, since the replication is one way
and applications pointing to the old database in the switching window, may work
with stale data changed, in the meantime, on the SQL Database side.

Exporting the DB

In the previous Option 1, we generically said “copy the DB” but it can be unclear how to
do that. SQL Server standard backups (the ones in .BAK format) cannot be restored into
SQL Database on the cloud. So “backup” can be interpreted as follows:

e An option is to create a BACPAC on the on-premises side (Figure 1-8)
and restore it on the SQL Database side (with PowerShell, the Portal
or SQLPackage)

e Another option is to do it manually, by creating Scripts of the entire
DB, execute them on the remote DB and then use tools like BCP to
move data.

In both cases, we suggest to perform the migration phase using the most performant
tier of SQL Database, to reduce the overall time and, consequently, the downtime. You
can always downscale later when the migration is completed.

24

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

| 03 Export Data-tier Application "ApressADW O x|
Yy .

L I‘A Export Settings

Introduction @ Help
e

port Settings
Summary This operation will create a BACPAC file that contains the logical contents of your database. To continue,
specify the location where you want the BACPAC file to be created, and then click Next. To specify a subset
Results of tables to export, use the Advanced option.

Settings Advanced
® Saveto local disk

tC:\Users\m b\Documents\SQL Server Management Studio\DAC Packages\apress.ba Browse...

() Save to Microsoft Azure

C 'C onne
C ne
el ApressADW.bacpac
C:\Users\rob\AppData\Local\Temp\ApressADW-20170731190151.bacpac Browse... |
< Previous Next > Cancel

Figure 1-8. By right-clicking the database in SSMS, we can choose Tasks->Export
Data-tier Application, that starts this export wizard to create a self-contained
BACPAC file to use later on Azure or on-premises.

Using SQL Database

In almost every PaaS, performance and reactions are subject to how we use the service
itself. If we use it efficiently the same service can serve request better, at the opposite, if

we do not follow best practices, it can generate bottlenecks.

25

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

The waste of resources in Cloud Computing and, especially, in PaaS services, is
perceived of much more impact than in traditional, on-premises infrastructures. This is
due to the nature of the billing mechanism, which is often provided as per-consumption.
So, in the whole chapter and book, we keep in mind this sentence:

“performance and efficiency are features”

In the following sections we try to setup a set of topics to be addressed while we use
SQLDB, to improve efficiency and get the most from the underlying service.

Design for Failures

This is a valid concept for every single piece of code running in distributed system from
the beginning of IT. It does not only fit with SQL Database. When we deal with remote
dependencies, something can go wrong; in rare cases connectivity can lack for a second
or more, often instead the remote service simply cannot execute the request because it is
100% busy.

With cloud-to-cloud solutions, the first is hard to reproduce, except for specific
failures in the Azure region hosting our services. The second instead, it related to the
bigger topic called Throttling which, to summarize, is about cutting consumer where the
producer is too busy to serve the current incoming request.

Throttling is good. The alternative is a congested service which serves badly every
request: we prefer a fast service which declines new operations is too much busy.

In ideal world, when a remote dependency is not available anymore, the consumer
endpoint should gracefully continue to operate without it. An example can be an
autonomous system which tries to write on the SQL Database and, in case of failure, it
stores the record locally waiting the next availability window of the DB, to send the it
eventually. In real world, this can happen too but, at least, we should write code which
reacts to failing events of remote dependencies, even just retrying their operation until

success.

Buffering

If we split queries in Read queries and Write queries we easily understand that the first
can even fail with few side effects. At the opposite side, a missing write can represent a
damage for everyone and if the DB cannot persist the state of the application in a point of
time, the application itself have the same responsibility of a DB until service is recovered.

26

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Since this is very hard to achieve (applications which relies on a DB are often stateless
and it is desirable they should remain as is), a good approach can be to decouple critical
persistence operation between applications and databases, with queues.

Someone can say we are just moving away the problem, since the queue technology
must be reliable and available itself. This is why we can use it totally (every write goes to
the queue) or partially (only the failed writes go to the queue). In a queue-based solution,
the application is the producing actor while another, new component (which takes the
items from the queue and writes them in the DB) is the writing actor (Figure 1-9).

Web App Node 1

Web App Node 2 SQL Database

Buffer/Queue

Web App Node 3

Figure 1-9. In this scenario we decouple applications from Database access, using
a queue to perform operations. This pattern can introduce a new actor (not in the
image) which consumes the items from the queue and temporize the queries to the
DB to avoid bottlenecks and throttling.

If we mix this pattern with a robust and reliable distributed queue (as Azure Service
Bus Queues or Azure Storage Queues) we can write robust code that is resilient in case of
failures.

Retry Policies

The approach above catches all the possible causes of SQL unavailability: either it is
for a short timeframe (i.e., for throttling) either it is for a service outage. In the case we

cannot or do not want to introduce a new component by modifying the overall topology,
27

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

we should at least implement, at the client side, a mechanism to retry queries that fail,
to mitigate, at least, the short timeframes where the DB is not available or when it is too
busy to reply.

A retry policy can be explained with this pseudo-code:

using (SgqlConnection connection = new SqlConnection(connectionString))

{

try
{
connection.Open();
command. ExecuteNonQuery();
}
catch (TemporaryUnavailabilityException)
{
//Retry
}
catch (ThrottlingException)
{
//Retry
}
catch (Exception)
{
//Abort
}

We should retry the query where the fault can be assigned to transient faults, faults
which are by nature (temporary connectivity issues, huge load) transient and that can
be restored quickly. In other cases, like failing runtime logic or too many retry attempts
(indicating probably a downtime is occurring) should cause an abort of the operation.

Generally, almost each PaaS service in Microsoft Azure defines a specification where,
in case of transient faults, special error codes/messages are returned to the client. This,
in conjunction with code written to gracefully handle those faults, lets the applications
run seamlessly.

By now, many official Microsoft libraries have native support for transient faults:
for SQL Database, Entity Framework client has native support, as well as EF Core.

For whom using ADO.NET directly, we suggest to investigate the project Polly

28

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

(http://www.thepollyproject.org/) which is a library that adds some interesting
features related to retries, fallback and exception handling.

For a comprehensive list of transient error codes occurring in SQL Database, see
this link: https://docs.microsoft.com/en-us/azure/sql-database/
sql-database-develop-error-messages.

Split between Read/Write Applications

Catching the in-field experience of some companies we worked with, high-end users of
SQL Server are considering, before or later, to split application logic routing request to
different DB instances (even in different servers/regions), depending on the type of load
and/or operation requested.

@_

Web App Node 1

R~

Web App Node 2 SQL Database Reporting Web

@ (Primary) App

Web App Node 3

>

Figure 1-10. Multiple applications act against the primary DB. If the reporting
tool is making an intensive, long-runnig query, Web App nodes can see a
degradation of performance.

In the scenario above (Figure 1-10) out perception is that it is not a great idea to point
every process on the same DB instance, because few clients with few complex analytical
queries can consume the majority of the available resources, slowing down the entire

29

http://www.thepollyproject.org/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-develop-error-messages
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-develop-error-messages

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

business processes. Where a Data Warehouse is not an option, we can imagine to split
the scenario, at least, as follows:

SQL Database
Web App Node 1 (Secondary)
Web App Node 2 SQL Database
(Primary) @

&

Reporting Web
Web App Node 3 App

Figure 1-11. Since a replica relationship has been established between two SQL
Databases, making one the secondary read-only replica of the primary, read-only
applications (Reporting tools can fit this requirement) can point to the replica,
without affecting the performance of the primary node.

In this second scenario (Figure 1-11) it is clear that analytical processing can, at
maximum, consume all the resources of the secondary replica, keeping safe the critical
business activities.

This approach can be extended by design in almost every scenario, since the
majority of solutions (except ones based on intensive data ingestion) have a high read/
write ratio.

Using Geo-Replication

Geo-Replication (Figure 1-12) is a SQL Database feature which permits to setup, with
few clicks, a secondary server in the same or different geographical region, with a
synchronized (but read-only) copy of the primary DB. This is a killing feature since it
can be enabled on every SQL Database DB and with few configuration steps. The time
needed to perform the initial seeding (the process where data is completely aligned the
secondary) can vary depending on the service tier of both DBs and the quantity of data
involved.

30

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Figure 1-12. An overview of a Geo-Replication scenario in place. The blue icon is
the primary DB and the green ones are the secondary replicas.

As in the migration process, the suggestion is to upgrade the DB to a large tier
before setting up the Geo-Replication, in order to reduce the seeding time. Another
suggestion is to have the secondary replica at least at the same performance

level of the primary. In case it is weaker, primary can experience delays while
propagating updates and notifications.

Despite Geo-Replication is a topic often discussed as a way to improve business
continuity and uptime, we suggest to implement that (if budget permits) in almost every
scenario, to ensure we always have a copy to be used in several scenarios:

e Read-only APIs/Services
o Read-intensive Web Applications

e Reading production data with no much attention to the optimization
of the query (i.e., from SSMS)

o Testing in production (with the guarantee no write will be accepted)

31

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

In SQL Database we can have up to 4 secondary copies (read-only) of a primary
(read-write) DB (Figure 1-13). We can span the replication across different region or stay
in the base region: in this last scenario we achieve a simple replication instead a real
Geo-Replication. All of those combinations are valid:

e Primary DB in West Europe, Secondary 1 in North Europe, Secondary
2 in Japan West

e Primary DB in West Europe, Secondary 1 in West Europe

e Primary DB in North Europe, Secondary 1 in North Europe,
Secondary 2 in East Asia

e Primary DB in West Europe, Secondary 1 in East Asia, Secondary 2 in
UK West, Secondary 3 in Canada Central, Secondary 4 in West India

PRIMARY

o West Europe azure-demos/ApressADW None Online
SECOMDARIES

o East Asia apress-ea/ApressADW Readable ,,,

& JapanWest apress-jw/ApressADW Readable ,,,

Q North Europe apress-ne/ApressADW Readable ,,,

& Westus apress-wu/ApressADW Readable ,,

Figure 1-13. In this scenario we have the primary DB in West Europe and 4
additional Readable copies in different regions around the globe.

Geo-Replication is not only about splitting read/write queries but, mainly, is about
Availability. In fact, each secondary database can be promoted to primary by triggering
the manual Failover action, in the portal or through the APIs. To be complete, on a
secondary DB we can:

1. Stop replication: the secondary DB will stop the replica
relationship and becomes a valid read/write DB.

Please note that once the relationship is broken, it cannot be re-established
(except by recreating a new secondary DB from scratch).

32

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

2. Failover: with failover, Azure promotes the secondary to primary
and makes the “old-primary” as a read-only secondary replica. In
addition, it updates the remaining secondary to synchronize with

the new primary.

¥, Failover M Stop Replication

Failover

This will make apress-jw/ApressADW the
primary and azure-demos/ApressADW
the secondary. The old primary will
automatically become the new secondary
if it is online, Are you sure you want to
proceed?

ECE

Figure 1-14. A Failover action on the Japan West replica. Azure will manage the
promotion and the demotion of the respective primary/secondary DBs.

A common pitfall around Geo-Replication is how to deal with Failover (Figure 1-14),
where applications that have connection strings pointing to a primary DB must be
updated in order to point to the new primary. If there are multiple applications involved,
this can be really hard to achieve (in a small timeframe and without downtime).

Using Failover Groups

By using for a while Geo-Replication comes out that a common pattern is to have just
one replica (to separate reads/writes or to increase availability) of a primary DB. Another
common requirement is to replicate all the DBs in a server to avoid doing it one-by-one,
especially where part of an elastic pool. Finally, companies really don’t want to manually
switch connection strings in every application during a failover action.

Failover Groups (Figure 1-15) address exactly those requirements. By using the same
underlying technology of Geo-Replication, they provide:

e away to replicate a group of DBs on a source server to a target server
(that must be in a different geographical region, however)

e away to use the same DNS name/endpoint for the primary/
secondary: this ensures that applications can be untouched in case
we trigger a failover action

33

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

SERVER ROLE READ/WRITE FAILOVER POLICY GRACE PERICD
o azure-demos (West Europe) Primary Manual
Q azure-demos-ne (Nerth Europe) Secondary
Readfwrite listener endpoint
apress.database.windows.net
Read-only listener endpoint

datab net

apress

Figure 1-15. In this failover relationship the azure-demos (West Europe) server is
Primary and replicates to the azure-demos-ne (North Europe) secondary DBs. To
have applications connecting transparently to the Primary/Secondary, we must
use the generated DNS names for listeners.

In both Geo-Replication and Failover Groups solutions, we recommend to use
Database-level Logins and Firewall Rules, to be sure they are propagated as
database object in the various replica, avoiding potential runtime issues.

Please consider that you can’t failover a single DB in the group. When the failover
action is triggered, all the DBs in the group will fail to the secondary replica. The only
way to failover a single DB is to remove it from the Failover Group. By removing it, it still
remains in the replication relationship and can failover individually.

Hot Features

We should avoid to talk directly of specific features of SQL Database, since they are pretty
aligned with the latest version of SQL Server (that is, at the time of writing, SQL Server
2016). In fact, almost every enhancement to SQL Server is released to SQL Database on
Azure before it is released in GA in the on-premises SQL Server product. This is a great
chance to be early adopter of a new technology, since when the features are ready are
automatically included in the PaaS with no effort or intervention by the users.

The listing of the hot features of SQL Server and SQL Database is out of the scope of
this book, but we mention just a few of them, sure they are relevant to applications and
useful to address performance targets.

34

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

In-memory

With the Premium Tier of SQL Database (DBs starting with “P’) like P1, P2, etc) we have a
dedicated storage for in-memory OLTP operations (in the 1GB-32GB range, depending
on the performance level).

In-memory technology applies to:

o Tables: with in-memory tables we can address those scenario with
avery fast data ingestion rate. Time for transactional processing is
reduced dramatically.

e Columnstore Indexes: with Clustered/Non-clustered columnstore
indexes we can reduce the index footprint (with great savings on the
storage side) and perform analytical queries faster.

Temporal Tables

While dealing with history data, we often see custom development pattern where,
before every write, a record is copied to make the history of changes of it. However, this
approach binds every touch point to be aware of this logic, where it should be better that
the client applications are unaware of this, with the only purpose to write updates to the
given table.

Another solution we have seen is the use of triggers. But, triggers are quite
cumbersome and they should be placed for every table we would like to historicise.

Temporal tables are tables defined to integrate an history mechanism, where is the SQL
Server engine which provides all the necessary stuff to save the old record values before
the update occurs. During the creation of the Temporal Tables (or during the migration
of an existing non-temporal one) we must specify the name of the underlying backing
table which receives every update, including the schema ones. This powerful mechanism
ensures that every operation made to the parent table is propagated to the history table.

In case we are altering an existing table, we should add two new fields, to keep track
of temporal information, as follows:

ALTER TABLE [SalesLT].[Address]
ADD
ValidFrom datetime2 (0) GENERATED ALWAYS AS ROW START HIDDEN
constraint MT ValidFrom DEFAULT DATEADD(SECOND, -1,
SYSUTCDATETIME())

35

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

, ValidTo datetime2 (0) GENERATED ALWAYS AS ROW END HIDDEN
constraint MT_ValidTo DEFAULT '9999.12.31 23:59:59.99'
, PERIOD FOR SYSTEM TIME (ValidFrom, ValidTo);

And next we define the history table:

ALTER TABLE [SalesLT].[Address]
SET (SYSTEM_VERSIONING = ON (HISTORY TABLE = [SalesLT].[Address History]));

If we setup temporal tables while creating them, it is easier:

CREATE TABLE MyTable
(
--... fields ...
, [ValidFrom] datetime2 (0) GENERATED ALWAYS AS ROW START
, [ValidTo] datetime2 (0) GENERATED ALWAYS AS ROW END
, PERIOD FOR SYSTEM TIME (ValidFrom, ValidTo)
)
WITH (SYSTEM VERSIONING = ON (HISTORY TABLE =
[SalesLT].[Address History]));

JSON Support

JSON support extends the language specification of T-SQL by introducing operators and
selectors useful to work with JSON data. We can:

Query a SQL table with a JSON field, applying filtering directly on the JSON nodes

Serialize a query result into JSON to let be consumed by others, or to be place into a
NoSQL storage

This is a sample query with JSON support:

SELECT TOP (2)
[ProductID] as [ID]
,[SalesLT].[Product].[Name]
,[Category].[ProductCategoryID] as [ID]
,[Category].[Name]
FROM [SalesLT].[Product] JOIN [SalesLT].[ProductCategory] AS [Category]
ON [SalesLT].[Product].[ProductCategoryID]= [Category].
[ProductCategoryID]
FOR JSON AUTO

36

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

The query above produced a well-formatted JSON document as follows:

[{
"ID": 680,
"Name": "HL Road Frame - Black, 58",
"Category": [{

"ID": 18,
"Name": "Road Frames"
}
]
b A
"ID": 706,
"Name": "HL Road Frame - Red, 58",
"Category": [{
"ID": 18,
"Name": "Road Frames"
}
]
}

We can toggle the JSON array definition with the WITHOUT_ARRAY_WRAPPER
option.

Development Environments

In almost every context there is a practice to replicate the production environment into
few isolated dev/test environments. A common topology can be the following:

¢ Production: the live environment with hot code and data. Since this
chapter is about SQL Database, we see the production environment
as the SQL DB instance of production.

e Pre-production: this is usually a pre-roll environment. While
the various frontend tiers can be separated from the production
environment, the Database can be either separated or the same as
production. Often, the preproduction phase is just a last-minute
validation of the updates related to the new deployment.

37

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

o UAT/Staging: this is usually a completely isolated end-to-end lane,
with each single block of the application (including database)
replicated.

e Dev/Test: those are usually one or more isolated environment where
developers can have their own projection of the entire application
stack, for development purposes.

With the cloud, especially with Azure, making and maintaining those environment
is very easy. There is no more need to even use local development environments, since
both the application and the development VM can be in the cloud.

We can also develop locally the code we need but pointing to the remote
dependencies (i.e., SQL Database, Storage, Search) if the local-to-cloud
connectivity is satisfactory.

Database Copies

In this scenario, we can take advantage of the SQL Database Copy feature, which creates
a copy of the source database instance into a fresh instance, on the same or different SQL
Server (logical) container.

The copy feature creates a transactionally consistent copy of the source database into
a new database and can be triggered, as well as through the Management API (Portal,
PowerShell, SDK) even from inside the SQL Server (logical) container, by launching this
query on the master database:

CREATE DATABASE AdventureWorksLT _staging AS COPY OF AdventureWorksLT;

The copy operation (Figure 1-16) will start and it will take some time (depending on
the DB size, the performance level and the actual load of the source DB). With a query
pane opened on the “master” database, we can query the status of the copy operation as
follows:

SELECT * FROM sys.dm database copies

38

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

* Databa
Sifiniitibbadbic Create a new server
ApressADW_Copy

apress-ci

* Target server .
Central India Demos

Configure required settings

pwl apress-ea
Elastic database pool a East Asia Demos

None
apress-failover
* Pricing tier a I3 UK West Demos
Configure required settings =)
@ apress-jw
Japan West Demos
@_‘ apress-ne
North Europe Demos
@3 apress-wu
West US Demos

Figure 1-16. Database can be copied also versus a target server in a different
datacenter. This feature is extremely useful in scenarios where regional migrations
are required.

Worst Practices

We can say SQL Database is the cloud version of SQL Server, so almost every attention
to be paid to the second, can be applied to the first in order to gain performance. Every
T-SQL optimization we have learned in the past, can be reused and this is definitely
great.

However, SQL quality is an aspect that can be disattended by several projects, for
many reasons:

o The attention paid to the software code is much more than the one
paid for the SQL tier

o The skills about SQL are less developed than the ones about software
development

e Nobody needs (until now) to invest so much on the DB maintenance/
optimization

39

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Let us show an example of what can happen while migrating an on-premises SQL
instance to the cloud. Let’s suppose we have a Windows Client intranet application
(Figure 1-17), which lets users perform business activities and which relies on SQL
Server hosted in a server room in the company’s facility. The software is mainly a data-
driven, grid-based application, where users consult data and produce reports.

The Database has only 40 tables, no fancy features involved (CLR, file-system
dependencies, etc) and, to over-simplify, no stored procedures, views and other
database objects than the tables mentioned. In short, let’s take as an example a DB 100%
compatible with the SQL Database feature surface area, which we migrate with a small
amount of IT effort.

Local Intranet

x

ADSL

| —

|
|
|
: D P
|
|
|

Figure 1-17. In this scenario we must consider the potential bottleneck of
Banduwidth between the company'’s facility and the cloud.

Unfortunately, once the connection string of the application has changed, users are
hanging on basic operations which before they made in seconds, and now take minutes
to run. So, where is the issue? Let’s make some hypotheses:

e SQL Database is “slower” than the on-premise version: this can
be possible, there are many tiers and performance level to test to
know if this is a performance issue. We can scale up and look for
improvements, and this can tell us which initial size we should use to
get acceptable performance.

¢ The bandwidth between “us” (the office) and the DB in the cloud is
insufficient while queries are executed normally

e The software has something to investigate, since the DB/Bandwidth
utilization is low

Some common pitfalls while using SQL in software development follow.

40

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Bad Connection Management

Some of the frameworks discussed below automatically manage all the stuff around
connections. it is very common the pattern which, in respond to an object Dispose(), the
corresponding underlying DB connection is closed. Anyway, we can fall in several cases
where a bad connection management keep resource usage very high and introduces a

waste of time and money:

The Driver/Provider to Connect to the DB does not Use Connection Pools

What is a connection pool? When we connect to a DB, basic TCP operations are involved
(handshake, authentication, encryption, etc). In case we are connecting from a Web App
and, specifically, we have a correlation between user requests/navigation and queries,

a high number of concurrent DB connections can be established and consequently, a
heavy overhead on both the client machine and the RDBMS server is generated. To avoid
this, many frameworks (including ADO.NET) uses Connection Pools. A connection

pool is a way to manage DB connections, reusing them between different contexts. The
advantage is to avoid to establish fresh connection for each command to execute against
the DB; instead, applications using connection pools reuse existing connections (in most
cases, transparently).

The Connection Pools are Fragmented

What is the fragmentation of Connection Pools? Looking inside on how ADO.NET, for
instance, manages the pools, we see different behaviours. Each connection pointing to
a specific database originates a new connection pool, which means that if the Web App
is now connecting to Database A and then to the Database B, two connection pools are
allocated. In case we were using on-premise SQL Server, with Windows Authentication
or Basic Authentication with Integrated Security login (fortunately not available on SQL
Database), a connection pool is generated per-user and per-database.

//Request coming from User A on DB A
using (var connection = new SqlConnection("Integrated Security=SSPI;Initial
Catalog=DB_A"))
{
connection.Open();
//Fixst connection pool for DB A is created

41

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

//Request coming from User B on DB A
using (var connection = new SqlConnection("Integrated Security=SSPI;Initial
Catalog=DB_A"))
{
connection.Open();
//Second connection pool for DB A is created

In case we are working on Sharding data, where a master connection can be
established to the Shard Map and specific queries are routed to shards, each single DB
is mapped to a single Connection pool. A common solution to this second scenario is to
use the same connection (for example to the master DB) and then use the USE keyword
to switch database inside the query. Unfortunately, even this scenario (the usage of USE
statement) is not supported on SQL Database. We will discuss sharding later but keep in
mind those limits and operate consequently.

//Usage of USE statement, NOT ALLOWED in SQL Database
var command = new SqlCommand();

command.CommandText = "USE MyShard";

using (SqlConnection connection = new SqlConnection(

connectionString))
{
connection.Open();
command. ExecuteNonQuery();
}

As many connections lead to more overhead and latency, it is recommended to
reduce fragmentation and achieve optimizations, where possible.

The Connections are not Disposed Properly

If we do not follow correctly the recommended actions on existing connections (in ADO.
NET this can be done by avoiding to call Dispose() on SqlConnection) the connection
cannot be released to the Connection Pool and cannot be reused later. Relying just on
garbage collector to dispose them indirectly is not a reliable and efficient solution to

the problem. Depending on the framework we are using (ADO.NET directly or Entity
Framework or others) we must instruct the framework to free to resources we are not
using anymore.

42

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Client-Side Querying

There are frameworks which hide the complexity behind a database request round-trip,
which let all the details (i.e., SQL Connection, Commands, Queries and Results) under
the hood. Those frameworks/libraries are very useful to speed up the development
process. However, if not used appropriately, they can lead to undesired behaviour.

In local-only environment, where the bandwidth is not an issue and, more generally,
itisn’t a strict constraint, we can fall in the wrong pattern by materializing all the data of
a specific dataset to perform the query on the client (and not on the RDBMS server). This
can occur with this C# snippet as follows:

var ta = new DataSetiTableAdapters.CustomerTableAdapter();
var customers = ta.GetData().Where(p => p.LastName.StartsWith("S"));

In the previous example we get ALL THE DATA of the Customer table and we
perform the query on the client side. Unfortunately, this worst practice cannot be easily
discovered in on-premises scenario, where a very high network bandwidth can give the
developers the wrong impression of good performance. In this second case, we make the
same mistake using Entity Framework:

using (var ctx=new ApressADWEntities())

{
var customers = ctx.Customer.ToArray().Where(p => p.LastName.
StartsWith("S"));

For skilled developers those misusages are clearly wrong, but it worth to remind
them in order to make every effort to avoid them in production.

Pay Attention to Entity Framework

We are estimators of Entity Framework for the great capability it had to reduce the gap
between developers and SQL specialists.

In ideal world, SQL-related tasks should fall on a specialized database developer and
the software part is up to the software developer. In real world, often developers are in
charge to write software AND write queries. In this common situation, it can be faster
(not better) to teach developers to use a middleware which translates code into the SQL
queries, than teach SQL itself.

43

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Let’s take the query above:

var customers = ctx.Customer.ToArray()

Entity Framework translates this expression into the following SQL query:

{SELECT

[Extent1].[
[Extent1].[
[Extent1].[
[Extent1].[
[Extent1].[
[Extent1].[
.[Suffix] AS [Suffix],
[
[
[
[
[
[
[

[Extent1]

[Extent1].
[Extent1].
[Extent1].
[Extent1].
[Extent1].
[Extent1].
[Extent1].
[Extent1].

CustomerID] AS [CustomerID],
NameStyle] AS [NameStyle],
Title] AS [Title],
FirstName] AS [FirstName],
MiddleName] AS [MiddleName],
LastName] AS [LastName],

CompanyName] AS [CompanyName],
SalesPerson] AS [SalesPerson],
Ema11Address] AS [EmailAddress],
Phone] AS [Phone],

PasswordHash] AS [PasswordHash],
PasswordSalt] AS [PasswordSalt],
rowguid] AS [rowguid],
[ModifiedDate] AS [ModifiedDate]

FROM [SalesLT].[Customer] AS [Extent1]}

Which is okay, and it has pros/cons to consider:

As a pro, it considers exactly every table member known at the time of creation of
the EF model. This means that if we add new fields without updating the EF mapping,
this query continues to work and it fetches only the data we need in the application. In
addition, like every query generated by EF, we do not need to use strings to pass queries
to the DB, which is definitely one of the best advantages we have by using EF.

As a con, we can obtain the same result by writing the following statement:

SELECT * FROM SalesLT.Customer

Which reduce the incoming bytes to the SQL instance. However, note that, in case
of fields added, they will be fetched also and maybe they are useless for the calling

application.

44

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Those examples are trivial, but think about querying complex tables with multiple
joins and complex filtering logic. Entity Framework can be the best of allies, but
sometimes can even generate a lot of query code which humans can definitely write
better (from a performance perspective).

var query = ctx.SalesOrderHeader
.Where(p => p.SalesOrderDetail.Any(q => q.Product.ProductCategory.Name.
StartsWith("A")))
.Where(p => p.SubTotal > 10 &3 p.Address.City == "Milan")
.Select(p => new

{
Order=p,
Customer=p.Customer,
Details=p.SalesOrderDetail.Select(g=>new
{
Item=q.Product.Name,
Quantity=q.0rderQty
1)
1);

This query hides the complexity of multiple joins, advanced filtering and multiple
projection from different tables. It is clear that it can save a lot of time for non-SQL
specialist, but keep in mind that the generated SQL query is something like that:

{SELECT
[Project2].[AddressID] AS [AddressID],
[Project2].[SalesOrderID] AS [SalesOrderID],
[Project2].[RevisionNumber] AS [RevisionNumber],
[Project2].[OrderDate] AS [OrderDate],

. 30 lines omitted ...
[Project2].[PasswordHash] AS [PasswordHash],
[Project2].[PasswordSalt] AS [PasswordSalt],
[Project2].[rowguidl] AS [rowgu1d1],
[Project2]. ModlfledDatel] S [ModifiedDate1],
[Project2].[C1] AS [C1],

[Project2]. ProductID] AS [ProductID],
[Project2].[Name] AS [Name],

[
[
[
[
[
[

45

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

[Project2].[OrderQty] AS [OrderQty]
FROM (SELECT
[Extent1].[SalesOrderID] AS [SalesOrderID],
[Extent1].[RevisionNumber] AS [RevisionNumber],
[Extent1].[OrderDate] AS [OrderDate],
... 30 lines omitted ...
[Extent3].[Phone] AS [Phone],
[Extent3].[PasswordHash] AS [PasswordHash],
[Extent3].[PasswordSalt] AS [PasswordSalt],
[Extent3].[rowguid] AS [rowguidi],
[Extent3].[ModifiedDate] AS [ModifiedDate1],
[Join3].[OrderQty] AS [OrderQty],
[Join3].[ProductID1] AS [ProductID],
[Join3].[Name] AS [Name],
CASE WHEN ([Join3].[OrderQty] IS NULL) THEN CAST(NULL AS int) ELSE
1 END AS [C1]
FROM [SalesLT].[SalesOrderHeader] AS [Extent1]
INNER JOIN [SalesLT].[Address] AS [Extent2] ON [Extent1].
[BillToAddressID] = [Extent2].[AddressID]
INNER JOIN [SalesLT].[Customer] AS [Extent3] ON [Extenti].
[CustomerID] = [Extent3].[CustomerID]
LEFT OUTER JOIN (SELECT [Extent4].[SalesOrderID] AS
[SalesOrderID], [Extent4].[OrderQty] AS [OrderQty], [Extent4].
[ProductID] AS [ProductID1], [Extent5].[Name] AS [Name]
FROM [SalesLT].[SalesOrderDetail] AS [Extent4]
INNER JOIN [SalesLT].[Product] AS [Extent5] ON [Extent4].
[ProductID] = [Extent5].[ProductID]) AS [Join3] ON [Extent1].
[SalesOrderID] = [Join3].[SalesOrderID]
WHERE (EXISTS (SELECT
1 AS [C1]
FROM [SalesLT].[SalesOrderDetail] AS [Extent6]
INNER JOIN [SalesLT].[Product] AS [Extent7] ON [Extent6].
[ProductID] = [Extent7].[ProductID]
INNER JOIN [SalesLT].[ProductCategory] AS [Extent8] ON
[Extent7].[ProductCategoryID] = [Extent8].[ProductCategoryID]

46

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

WHERE ([Extent1].[SalesOrderID] = [Extent6].[SalesOrderID]) AND
([Extent8].[Name] LIKE N'A%")
)) AND ([Extent1].[SubTotal] > cast(10 as decimal(18))) AND
(N'Milan' = [Extent2].[City])
) AS [Project2]
ORDER BY [Project2].[AddressID] ASC, [Project2].[SalesOrderID] ASC,
[Project2].[CustomerID1] ASC, [Project2].[C1] ASC}

We are not saying it is a wrong query nor a wrong approach; we just need to keep in
mind that is just ONE solution to the problem and it may not be the best one.

Batching Operations

An example of abusing Entity Framework can be its usage applied to bulk inserts. Think
about this code:

using (var ctx = new ApressADWEntities())

{
for (int i = 0; i < 10000; i++)
{
ctx.Customer.Add(new Customer()
{
CompanyName = $"Company {i}",
//Missing other properties assigment
1;
}
ctx.SaveChanges();
}

On SaveChanges, Entity Framework spans a new INSERT statement for each record
we created in the code. This is actually correct, from the EF side, but maybe it’s not what
we would like to have. Instead, we should focus on some sort of Bulk Insert, using the
low-level API of ADO.NET or other commercial frameworks which add performance-
related features on top of EE

47

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Some strategies to batch the operations against SQL Database con be:

o Buffering: when possible, decoupling the data producer from the data
writer with a buffer (even a remote Queue) can avoid bottlenecks on
the SQL side and it avoids the need of batching at all.

o Transactions: grouping several modify operations in a single
transaction, as opposed to executing those same operations as
distinct (implicit) transactions, results in optimized transaction-log
operations improving performance.

o Table-valued parameters: in case we are grouping a sequence
of INSERT operations, we can use user-defined table types as
parameters in T-SQL statements. We can send multiple rows as a
single table-valued parameter.

For further information about table-valued parameters follow this link: https://
docs.microsoft.com/en-us/sql/relational-databases/tables/use-
table-valued-parameters-database-engine

e SQL Bulk Copy / BCP / Bulk Insert: it is probably the best option for
bulk INSERT operations.

Do not think that parallelize operations can always be faster while performing
operations against the DB. If we are splitting 1000 operation of a single batch in
4 threads of 250 operations each, it is not guaranteed we notice a save. Indeed,
we often observe a degradation of the overall performance, since there are many
factors which influences the scenario.

Scaling SQL Database

Scaling a RDBMS is a well-known challenging topic, since few RDBMS can scale
horizontally while keeping various limits. Replicas are usually read-only and designed
for high-availability and often, the only way to increase the performance of a DB, is to
scale up the underlying instance.

48

https://docs.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Increasing the hardware on the underlying infrastructure is similar to increase the
DTU level of the SQLDB: both approaches give to the DB engine more resources to
perform queries. In this scenario, options are not on the DB side.

We encourage users to not rely only on changing the Performance Level, since
they are fixed in numbers and limited in power (at the time of writing, 4000DTU is
the maximum supported). What we should think about is, again, the application
architecture.

Let’s assuming the following as the evolving path of the DB of a SaaS solution:

1. We develop a single, multi-tenant DB

2. We keep it at Standard S0 (10 DTU) level during the development
phase

3. After an hour in production with a single client, we see the DTU is
always at 100%, so we increase first at S1 (20 DTU) level.

4. By monitoring the performance, we now see that the DTU is still at
100% but with few moments at 60-70%. We increase the level at S2
(50 DTU).

5. Now the DB is at 60% on average, which can be okay

Now we can realize that DTU consumed are too much for the budget. In that case we
can optimize the existing application:

o By using more efficiently the DB resources

e By offload some of the SQL load to other storage types (Polyglot
Persistence)

e Byintroduce layers of caching for frequently accessed data
o Bysharding data

If the DTU consumed is aligned with the expectations (or, if not aligned, at least in
budget) we can proceed with the evolution:

1. 10 new clients arrive. Since the overload of the DB is a 10% more for
each new client, we double the DTU scaling to a S3 (100 DTU) level.

2. Now the DB has reached the maximum level of the Standard Tier,
so we need to pay attention to the consequences of a further level
increase.

49

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

3. Anew client, which predicted consumption is of about 45 DTU by
itself, subscribed for the service, we have two options:

4. Increase the Standard Tier to Premium. DTU would pass from 100
to 125 (in the Premium P1 plan) but price increases about 3 times.

5. Use the last multi-tenancy technique and create a new S2 (50
DTU) database instance, pointing the new client’s application to
this DB.

Table 1-1. We have two database, designed to be multi-tenant individually, with
a groups of tenants each

Database Name # of clients Tier Level Avg. Consumption
POOL001 11 Standard S3 60% (60/100 DTU)
POOL002 1 Standard S2 90% (45/50 DTU)

Now we have implemented the “Multiple Logical Pools with a single schema
preference” which results in the best tradeoff between elasticity and governance (just
one schema is applied to both DBs) but some drawbacks:

e More management effort:
o while applying changes to the DBs
e during backup/restore operations
o on the entire monitoring process
o Different costs per-client to control and summarize

Please note that some of the drawbacks are have also positive impact to other aspect
of the Service Management. Let’s suppose you have a client who unintentionally deletes
its data from the database. If that client is in a dedicated DB, a simple backup restore can
help to get the whole DB at the previous state.

Now think about the same situation in a shared DB: how can we get just the data
of the given client without restoring the whole DB? In fact, the restore operation would
affect even other tenants, so manual work (or scripted procedures) are needed to
perform it at best.

50

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Many SaaS providers offer different price tags for services. Can happen that
the underlying infrastructure affects the price and “premium” services are often
used to provide clients with dedicated resources and value-added services. One
example can be the capability to restore the whole database at any given time.

Managing Elasticity at Runtime

In the ideal scenario, an application would span a query between several DBs to boost
performance and distribute the load. However, doing this in real world is quite hard and
involves a series of hot topics, related to sharding data.

Let’s assume we are working on a multi-tenant solution where each tenant has, in
each table, its own unique identifier (i.e., TenantID field). We would need, at least:

e A shard map: a dictionary where, given the key of the query (i.e.,
TenantID) we know which actual database to point to

e A movement tool: a middleware to organize and move (split and
merge) data between sharded databases

e A query tool/library: an artifact which hides the complexity of the
shards to the applications, performing the routing of the queries
and, in case of queries against multiple DBs, which performs the
individual queries and merge results. In this category falls optionally
a transaction manager which runs the transactions to multiple DBs

As we can imagine, this can be made 99% by custom software and custom tooling,
while Microsoft provides its own support with the Elastic Database Tools.

Elastic Database Tools

Microsoft realized that it is not easy for every developer/ISV to implement by their own
a fully-featured set of tools/libraries to deal with sharding. At the same time, it has been
proven that sharding is the most efficient way to implement scale out on relational DBs.
This spun out a set of technologies which help us to manage even complex sharding
scenarios with hundreds of database involved.

51

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

The Elastic Database Tools are composed of the following:

o FElastic Database Client Library: a library which helps creating the
shard map manager (a dedicated DB as the index of our shards) and
the various individual shards databases.

An example of how to use this library is available here: https://code.msdn.
microsoft.com/windowsapps/Elastic-Scale-with-Azure-a80d8dc6

While an overview of the library is here: https://docs.microsoft.com/en-
us/azure/sql-database/sql-database-elastic-scale-introduction

» Elastic Database split/merge tool: a pre-configured Cloud Service
with a Web Role and a Worker Role which presents a GUI and the
routines to perform split/merge activities on the shards. We must
notice that Cloud Services are actually not implemented in ARM
(Azure Resource Manager) and we do not cover them in this book.

o Elastic Database Jobs: a pre-configured set of services (Cloud Service,
SQL Database, Service Bus and Storage) with the necessary running
software needed to run jobs against multiple databases.

o Elastic Database Query: a specific feature (in preview) of SQL
Database which permits to connect/query to make cross-database
queries.

o Elastic Transactions: a library which helps creating a client-
coordinated transaction between different SQL Databases. At the
time being, there is no server-side transaction support.

Keep in mind that tools above are just provided as individual tools and they are
not full PaaS as SQLDB itself. Except the Elastic Database Query, which is a feature of
SQLDB, implement the Split/Merge tool, for instance, means to take the ownership of
new cloud resources, to provision, monitor and manage.

52

https://code.msdn.microsoft.com/windowsapps/Elastic-Scale-with-Azure-a80d8dc6
https://code.msdn.microsoft.com/windowsapps/Elastic-Scale-with-Azure-a80d8dc6
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Pooling Different DBs Under the Same Price Cap

I would suggest to design applications like mentioned in the previous section, to be
elastic and resilient by design. However, let’s suppose that moving tenants is too hard
or too expensive and the best solution is to have “One Database for each tenant”. In that
case, we can easily grow up to hundreds of DBs as far as clients arrive.

Think about the situation in the table below:

Database Name # of clients Tier Level Cost DTU Peak DTU Avg. Usage
DB001 1 Standard SO ~15%/m 10 8 40%
DB002 1 Standard S1 ~30$/m 20 11 25%
DB003 1 Standard S1 ~30$m 20 13 40%
DB004 1 Standard S2 ~75%/m 50 30 20%
DB005 1 Standard S3 ~150$/m 100 65 10%
DB006 1 Standard S3 ~150$/m 100 70 10%
DB007 1 Standard SO ~15%/m 10 5 20%
DB008 1 Standard S1 ~30$/m 20 13 40%

We see that, with 8 clients, we have 8 DBs each one with its own Performance Level,
calibrated on the peak DTU usage we need. The monthly cost will be around 495%/
month.

Unfortunately, it is a waste of resources: at one side, we need to size the DB based on
the Peak we expect. At the other side, we see that average usage (especially for the most
expensive DBs) is very low.

From the numbers above we can infer an average global DTU usage of about
57 DTU. In the optimal (and unrealistic) case tenants have peaks during different
timeframes, we can even use a single DB of 100 DTU (Standard S3) containing every
tenant (but this is against the requirements pointed at the beginning of the “Scaling SQL
Database” section).

53

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

SQL Database Elastic Pools

For the emerging requirement shown above, Azure has SQLDB Elastic Pools
(Figure 1-18). An Elastic Pool is a logical container of a subset of the DBs of a server
(which is the logical container of our DBs). We can create a Pool by specifying:

e Server: DB pools only apply to a subset of DBs of the same logical
server. We cannot span between different servers.

o Pricing Tier: each DB pool has its own price, as for the standalone
DBs

o Configuration: we can set how many DTU has the pool, how much
capacity (in terms of GBs) and min/max DTU for each database
contained

Elastic database pool settings @

Pool eDTU @
ﬁj 1 T 1 T ; T 1 1 100

Pool GB @

U 1| 100
EDTU COST EUR 189.53
STORAGE COST EUR 0.00
TOTAL MONTHLY COST EUR 189.53
MAX NUMBER OF DATABASES ALLOWED © 200

Figure 1-18. In this configuration we have a pool with a total of 100 DTU and
100GB for the whole set of contained DBs. The cost is approximately ~224$/month,
which is far less compared to the previous option.

We can notice, however that only 100 DTU for DBs having peaks of 65-70 DTU can be
too small. At any given time, we can increase the cap of the entire pool without touching
the individual DBs.

54

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Scaling Up

We left intentionally this option as the last of the entire section because we think it is the
last resort. Don’t misunderstand, scale up is good and it is part of the process, but since we
cannot scale up indefinitely, we should start thinking about performance issues in time.

At the same time, we don’t recommend to over-engineer a simple solution by adding
shards, pools, caching layers, etc. We must know them in advance and, possibly, develop
our code accordingly. Crafting the software with those ideas will reduce consumption
of the resources from the beginning and solutions consuming 1000 DTU can easily be
reduced to a 100 DTU impact.

Anyway, scaling up is the shortest path to gain power immediately, for example if we
want to manage an unpredictable peak, or in case of planned increase of load. This is the
table of most of the current levels of Tiers/DTU, they can change in time, but we strongly
recommend to not design a solution which relies on the top tier, since there is no way to

scale more!
Tier Level DTUs Tier Level DTUs
Basic B 5 Premium P1 125
Standard SO 10 P2 250
S1 20 P4 200
S2 50 P6 1000
S3 100 P11 1750
Premium RS PRS1 125 P15 4000
PRS2 250
PRS4 500
PRS6 1000

55

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Offloading the reading operations there is a good alternative to scale up where

the scenario permits it. By using the Geo-Replication feature, which creates a
read-only copy (always synchronized) of the primary database in an alternative
location. Applications can discriminate between reading operations and “everything
else”, routing the reading operations to the secondary read-only node, keeping the
primary just for the core updates. Considered that, at the time of writing, we can
have up to 4 copies of a primary database, this can be very useful to distribute the
read traffic between replicas, keeping the primary free from the majority (where
applicable) of load.

Governing SQL Database

Before letting it run in production, there are few basic actions to be performed onto

a SQL Database instance. First, we should define the security boundaries and, more
important, we should identify security hot spots. Second, we need to prepare the
monitoring activity before the service goes live, otherwise there is a serious risk of loss of
control. Third, we should plan every action related to disaster recovery and backup.

Security Options

When a SQL Database has been created, it resides inside the logical and security
boundary of the SQL Server (logical) container. Every SQLDB runs inside that container
and a single container can contain several DBs.

There is a maximum number of DBs we can put inside a SQL Server (logical)
container but, since this number can change over time, think differently. A SQL
Server (logical) container, when created, shows a maximum number of DTUS
which can be placed inside this. This should be a better indicator of how many DBs
(depending on their size) can be placed.

Apart the security features which SQL Database inherits from T-SQL and SQL Server,
there are some specific, value-added services of SQL Database itself.

56

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Authentication

When we create a new SQL Database, we must place it into a new or existing SQL
Server (logical) container. If a new container is created, we must set the administrative
credentials of the entire container. Username and Password specified here will grant a
full-control permission set to the entire server and the database contained in it.

So, itis not recommended to use those credentials while connecting to individual
DBs. Instead, the best practice is to create specifics users at the database-level (they are
called “Contained Users”). This approach makes the database even more portable, since
in case of a copy, the copy operation keeps all the database objects (including logins)
that otherwise will be lost if defined at the server-level.

CREATE USER containedUser WITH PASSWORD = 'myPassword';

This method is known as SQL Authentication, which is very similar to the SQL Server
counterpart.

However, SQL Database supports also the Azure AD Authentication (Figure 1-19),
which binds Azure Active Directory to the SQL Server (logical) instance. To enable this
method, we should set first the Active Directory admin on the server blade:

|°q. Set admin :;; Remove admin I_:] Save
Azure Active Directory authentication allows you to centrally manage identity and access to your
Azure SQL Database V12.
:r:’ Learn more
. B
'l
Active Directory admin @

@ No Active Directory admin

Figure 1-19. The page where we can setup the Azure Active Directory admin for a
given SQL Server (logical) instance.

This will create a USER in the master DB with “FROM EXTERNAL PROVIDER”
option. In fact, we can create additional contained users as follows:

CREATE USER <myUser@domain> FROM EXTERNAL PROVIDER;

57

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

From the client perspective, when we connect to the SQL Database using Azure AD
Password authentication, the connection string should be similar as this one below:

Data Source; Authentication=Active Directory Password; Initial
Catalog=apress; UID=user@[domain].onmicrosoft.com; PWD=[password]";

85_3 Connect to Server
SQL Server

Server type: Database Engine v
Server name: | [myServer] database windows net ~ |
Authentication: | Active Directory Password Authertication v

User name: ’user@k!on‘rai‘n].omiu‘osoﬂmm v |

E‘ j: I........ |

[J] Remember password
=" = e f

Figure 1-20. This is how we connect to SQLDB using SSMS and Azure AD
Password Authentication

If we scroll down the Authentication dropdown in the window above (Figure 1-20),
we can notice other two options:

o Active Directory Integrated Authentication: another non-interactive
authentication method to be used where the client PC is joined to a
domain federated with the Azure AD tenant.

e Active Directory Universal Authentication: an interactive, token-
based authentication where even complex MFA (Multi-Factor
Authentication) workflows are available.

Firewall

SQL Database, through the SQL Server (logical) container is exposed on the public internet
with a public DNS name like [myServer|.database.windows.net. This means everyone can
potentially access the instance to (try to) login into the DB and operate remotely. Thus, it

is very important to take a look as soon as possible to the firewall rules (Figure 1-21). By
default, no one can access to it, but we should ensure to enable only the required IPs.

58

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM
Firewall rules and in the IP Range form. This means a rule can be as follows:

RULE NAME START IP END IP

All 0.00.0 255.255.255.255

Figure 1-21. The list of server-level firewall rules. The rule above, for example,
opens the firewall for every public IP.

Firewall rules can be set at server-level or at database-level. The order of evaluation
of those rules are:

1. First the Database-level rules
2. Then the Server-level rules

Since the rules are only in the form allow (everything is not explicitly allowed is
denied by default), this guarantees the server-level rules are broader and win against the
database-level ones. This should suggest us to make use of database-level rules first to
setup a fine-grained set of access rules.

Database-level firewall rules can be configured only using T-SQL as follows:

EXECUTE sp_set database firewall rule N'NWRule','0.0.0.0','1.0.0.0';
A summary (Figure 1-22) of the firewall rules can be queried as follows:
o SELECT * FROM sys. firewall_rules - at server-level

e SELECT * FROM sys.database_firewall_rules - at database-level

name start_ip_address end_ip_address
1 2 A 0.0.00 255.255.255.255
2 1 | AlowAlWindowsAzurelps | 0.0.0.0 0.0.0.0

Figure 1-22. This is the result of the sys.firewall_rules query, where the
AllowAllWindowsAzurelps rule is a special rule allowing every Microsoft Azure IP
range to enabled inter-service communication.

59

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Encryption

There are two ways (not mutually exclusive) to approach database encryption:
o Encryption at rest: the underlying storage is encrypted.
e Encryption in transit: data from/to the DB travels already encrypted.
Those two methods address the following scenarios:

e Someone has physical access to the storage media where the DB are
stored: mitigated with Encryption at rest, the person can obtain the
physical media but he/she cannot read it.

» Someone is intercepting the traffic between the client application
and the DB: mitigated with Encryption in transit, the person can sniff
the traffic but he/she sees only encrypted data.

Transparent Data Encryption

SQL Database offers the TDE (Transparent Data Encryption) to address the first case. A
server-generated certificate (rotated automatically and without administrative hassle at
least each 90 days) is used to encrypt/decrypt the data.

To enable it on a specific DB, use this query:

ALTER DATABASE [myDB] SET ENCRYPTION ON;

Every new SQL Database has this option enabled by default. Since we have evidences
that the overhead introduced by TDE is minimal, it is recommended to enable it (or
leave it enabled) a fortiori if we are subjected to compliance requirement.

Always Encrypted

Always Encrypted is a way to encrypt SQL Database content without ever disclosing
the key to SQL Database itself. This approach is the best we can achieve in terms of
segregation, since the manager (Azure) cannot read the owner’s data.

This approach is more complicated, since SQL Database will deal with encrypted
data to be stored, indexed and queried.

60

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Encryption is at column-level, so we can encrypt just a few columns with sensitive
data, leaving untouched the rest of the DB. In the screenshot below (Figure 1-23), we
are encrypting the CategoryName of the Customer table, specifying Deterministic as the
encryption method.

[A ays Encrypted
E Column Selection

Intreduction @ Help

Column Selection

Master Key Configuration

|Search column name... |

Run Settings Apply one key to all checked columns CEK_Autol (New)
Summary Encryption Type U Encryption Key U
Results MName State Encryption Type Encryption Key
=] dbo.Categories
() CategorylD
= CategoryName 1 Deterministic L CEK_Autol (New)
Description ®
Picture (]

Figure 1-23. In SSMS, we can right-click the table or the column and select
Encrypt Column(s) to start the Wizard process

Note Deterministic encryption means that the same source value will generate
the same encrypted value. Randomized, instead, will produce different outputs.
The first is simpler, but someone can analyze patterns and discover information
where data assume a small set of distinct values. The second is less predictable,
but prevents SQL Database from performing searching, grouping, indexing and
joining. Even with Deterministic encryption there are some missing capabilities, for
example the usage of LIKE operator, CASE construct and string concatenation.

In the next step we provide the Encryption Key, which can reside in the Windows
Certificate Store of the client computer (during the wizard will be auto-generated) or
into Azure Key Vault. In both cases, SQL Database won’t know the key content, since it is
managed securely. Also, remember that the encryption process is performed of course
by the client machine.

61

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM
After the column has been encrypted, it has been modified as follows:

[CategoryName] [nvarchar](15) COLLATE Latinl General BIN2 ENCRYPTED WITH
(COLUMN_ENCRYPTION KEY = [CEK Autol], ENCRYPTION TYPE = Deterministic,
ALGORITHM = 'AEAD AES 256 CBC_HMAC_SHA 256') NOT NULL

From this moment, every client connecting to the Database will see encrypted
data (Figure 1-24), except the ones using the special parameter “column encryption
setting=enabled” in the connection string (and, obviously, having the valid key to decrypt
data). Since data types change, application would probably fail if not designed to
accommodate those changes gracefully.

CategorylD CategoryMName Description

‘ 0x0190032E542220E4C220131E3B0D8FD2159092DBY7B671F6... Soft drinks, coffees, teas, beers, and ales
(x01FE377E4400B422AD75421FCO8AT12F8503E2FC1B081D5B... Sweet and savory sauces, relishes, spreads, and ...
(x0101EF806BE4B158529ADF14BEF181F8C3479778DBCAADS7... Desserts, candies, and sweet breads
0x015AB3407CCAC265AB4DBEAIBCTASSCBCESADIES181D6S... Cheeses
0x017244C0D091AFCS042B1F1E180588E5275164332FD10B611... Breads, crackers, pasta, and cereal
0x01CDBBC7ECS530EFAGS1EE361C052A11C63FA201DFCF752... Prepared meats
0x0102372A930BD225CADDC4163ECABBEBEE71646BC6470D7... Dried frut and bean curd
0x01443F71F000SE7BCDOSCOECFEBDE4AASCEFOI4ABAACES2... Seaweed and fish

0O =] @ U b W R -

Figure 1-24. We see the encrypted data into the CategoryName column

Dynamic Data Masking

If we ever think about the possibility to give access to production database to a developer
to investigate a really hard issue in the application/data, we probably run into the even
bigger issue of security. Can we grant a (even temporary) access to a specific user,
without exposing sensitive data? And, more generally, can we setup users who can fetch
the whole data and others who can fetch masked data?

Dynamic Data Masking works by setting up one or more masking rule for each
column we would like to mask (Figure 1-25). The rules are simple:

o Administrators and specific users (specified in configuration) will
always see unmasked data

o All the other users will see masked data

62

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM
e For each column we would like to mask, we add a masking rule,
specifying:
e The table and the column
e The masking format

E. Add M Discard i Delete

Mask name

[ébo_Customers_ContactName

Select what to mask

Schema

dbo v
Table
I Customers v |
Column
| ContactMame (nvarchar) w |

Select how to mask

Masking field format
Default value (0, o00¢, 01-01-1900) v
Default value (0, xxoce, 01-01-1900)

Credit card value (ooo-x000c-000-1234)

Email [2X0XX@XX00K.com)

Custom string (prefix [padding] suffix)

Figure 1-25. in this example, we apply a Default value (for strings is a sequence of “x”)
to the ContactName of the Customers table

Backup options

Every SQL Database have built-in mechanism which backups the database continuously,
in order to provide the Point-in-time-Restore feature. Depending on the Tier we choose
we can go in the past up to 35 days to restore a copy of the DB in a specific point of time.

The restore process will restore a fully functional online database that can be used
after the restore process is finished. This feature provides us application-level recovery,
letting us recover a DB to copy lost data or to investigate a previous version. In the rare
case we want to switch the recovered DB onto the production DB, we can rename them
through SSMS:

e Rename the production DB “myDB” into something like “myDB_
old”: after that, all connection are lost and your connected systems
will be down.

63

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

e Rename the recovered DB from “myDB_[date]” to “myDB”: after that
(it takes just few seconds in most cases) existing applications will find
again the DB and continue to work.

For whom need to have older backups (after 35 days in the past) Azure provides
some other options (Figure 1-26). We can manually export a DB into a BACPAC (by
choosing “Export” in the figure below) or we can setup a Long-term backup retention
policy.

K Tools [JP Copy 'O Restore 4 Export @ Setserverfirewall [Delete

Figure 1-26. By clicking Export we setup an Export job, creating a BACPAC of he
database at current state

Note In the rare case e accidentally delete a DB we want to keep, we can restore
it immediately through the Deleted databases blade of the SQL Server (logical)
container.

Finally, the Export feature is the common way too to restore locally a database, as
the last resort to DR mitigation.

Long-term Retention

Long-term backup retention allows to save backups to a Recovery Services vault to
extend the 35 days window of integrated point-in-time backup/restore policy.

We should use long-term as a secondary strategy to backup SQL Database where
compliance requirements must be addresses. From the costs perspective, while the
integrated backup/restore mechanism is included in the cost of SQL Database, long-
term retention is billed through the Recovery Service vault (Figure 1-28), which billing
strategy is (at the time of writing) based on storage consumption (Figure 1-27), except
some free quota:

64

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Backup Usage

Cloud-LRS OB

Cloud - GRS 36.77 GB

Figure 1-27. This is the tile of the Azure Recovery Services vault blade where we
see the GBs consumed by the long-term backup service

Restore O X Azure vault backups

myDE iy D

* Database name CREATION TIME

| myDB_2017-08-03T07-46Z v

31/07/2017 17:19:22
Point-in-time Long-term

28/07/2017 23:18:31

* Azure vault backups
Select a backup

* Target server
myServer West Europe

Elastic database pool
None

* Pricing tier

PremiumRS PRS1: 125 DTU, 500...

Subscription

Enterprise Subscription - Prod

Figure 1-28. In this image we are restoring the myDB from a Recovery Service
vault using one of the recovery points on the right

Monitoring Options

It's proven that Platform-as-a-Service (managed) services need a fraction of the
administrative effort compared to unmanaged services, where everything from the
operating system upward needs to be constantly monitored, updated and fixed.
However, the residual effort we need to invest on the monitoring area is crucial to have

65

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

real-time insights on the components we use, especially since managed services are
presented as black boxes.

To summarize which the areas we must pay attention to with SQL Database, think
about the following:

e Resources monitoring, usage and limits
e Troubleshooting features
e Anomalies/security detection

SQL Database provides most of those value-added features, but it is up to us to
enable them and implement proper processes to get the most out of them.

Resources Monitoring, Usage and Limits

One of the most important KPI of consumption is the DTU percentage (Figure 1-29).
First, because if 100% is reached, new connections will be probably throttled due

to service saturation. Second, because it tells us the usage pattern of our database
and it can provide great value to understand the impact from the applications and,
consequently, the monitoring/optimization activities to perform.

DTU percentage

100

80

20

1PM 1:15PM 1:30 PM 1:45 PM
Il DTU CONSUMPTION ...

Figure 1-29. In this figure we can infer there is a recurrent peak in the DB DTU
usage, about every 15 minutes. During this short timeframe we notice how the
consumed DTU touch the 100% of usage

66

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM
The image above tells us the consumption pattern of the last hour for a given
Database. In this precise case, we can make some hypothesis:

e During the most of the time, DTUs are about at the 5% of

consumption

o Ifthe graph is linear and 5% is without peaks, we could even lower
the Performance Level of the DB to a 1/15 tier (if it is a S3-100 DTU,
we could even set it to a SO-10DTU.

o However, there are recurrent peaks about every 15 minutes, due
to some scheduled/recurrent activities against it from outside
(applications, scheduled queries, etc.). Since the usage in those
timeframes is very high and completes relatively quickly, it risky to
lower the Performance Level because the DB could take more to
perform those actions.

e A good option is to investigate which is the application generating
those traffic and try to optimize it in order to avoid those burst, to
consequently lower the Performance Level with more confidence.

This is just an example, since every DB could have a very different usage pattern.

Successful connections and Failed connections today

Edit
250

200
150
100

50

6 PM 10 PM 65 AM 12 PM
FAILED CONNECTIONS SUCCESSFUL CONNECTL...

0 3.91.

Figure 1-30. In this other image, we see connections against the DB of the last 24 hours

67

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

In the image above (Figure 1-30), instead, we can have a quick look at the actual
state of connections made to the Database. This number is not particular useful itself,
since SQL Database has limits on “concurrent” connections. However, we can infer from
the line graph there is an average of connections for any given time of about 150-200
connections, that is enough to estimate the Performance Level we should set to avoid
throttling.

At the opposite, we see there are no Failed Connections in the last 24 hours, that is
good to understand how many times applications were refused to connect.

Database Size
MYDB

82.57 s
16.51%

‘ THRESHOLD

500 ¢e
Figure 1-31. An indicator of the actual storage used and the threshold set for the
current DB

In the image above (Figure 1-31), there is the last of the most important indicators
we should monitor. We should expect storage is managed by the platform, preventing
us to put effort on administrative task to extend and maintain storage, and that’s true.
However, there are some hard-limits in SQL Database around storage and, in case those
limits are exceeded, DB become unstable and no more writes are allowed.

Of course, in some cases we can Scale Up and provide a greater Performance Level
which takes more storage with it. But there are limits too, and it must be constantly
monitored.

SQL Database Elastic Pools

An additional layer of attention must be paid with Elastic Pools, since the service type
has a cap on maximum DTUs and Storage shared by all the databases inside the pool.
Thus, if we place databases inside a pool, we must ensure there enough space and
computation power.

68

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Elastic pool eDTU and storage usage for last 14 days @

250

o [—

150

50

Jul 19 Jul 21 Jul 23 Jul 25 Jul 27 Jul 29 Jul 31
POCLEDTU

125 250

Figure 1-32. In this image we see a combined view of DTU and Storage
consumption for an Elastic Pool

:

LR

In the image above (Figure 1-32), we can notice a potential issue. We see, despite
DTU consumption is always stable, there is a peak in Storage consumed in the middle of
the timeframe. Under those scenario, every DB inside the Pool had certainly stopped to
accept writes, with serious consequences on applications and availability.

Even in big applications, the growth rate of standalone DBs is quite predictable.
What we need to pay attention to in Elastic Pools, instead, is the fact we can add/remove
at runtime a 300GB database in few seconds, filling all the available space of the pool
and, consequently, generating serious issues.

Troubleshooting Features

Too many automated alerts can create false alarms but it is important to setup proper
automated alerts on every critical resource. An example can be exactly the situation
above, where the Storage used of an Elastic Pool reaches the maximum level: we
definitely don’t want to be notified by the users, instead we would like to proactively take
the actions to avoid failures and availability gaps.

69

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Add an alert rule F X

* Resource @ ~

my-server/myPocl (servers/elasticpools) v

* Name @

Production Pool Storage v

Description

Descrption

* Metric ©@

Storage percentage v

90.3%

90.25% o B e

90.2%

90.15%

1PM 6PM Jul 31 6AM 12PM
* Condition

greater than v

* Threshold @
| %0

v
%

* Period @

| Over the last 5 minutes v

Email owners, contributors, and readers

Figure 1-33. In this image we setup an Alert rule for the Elastic Pool. In case the
pool Storage used percentage goes over 90%, an alert is activated and an email is
sent to specified emails

The general rule of thumb is that almost every metric collected by Azure can be used
to setup an Alert on it (Figure 1-33). Each service comes with its own metrics (in case
of SQL Database we have DTUs, Storage, Connections, etc) and those metrics can be
attached to alerts. Therefore, we should setup proper alerts for every critical building
block of our infrastructure.

70

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Dynamic Management Views

The metrics exposed in the portal are available directly on the SQL Database instance,
through plain T-SQL queries. This approach is recommended when we need to build
custom tools and/or catch KPIs without passing from the Azure Portal. An example is the
“sys.dm_db_resource_stats” view, as follows:

SELECT TOP (10) [end time]
,[avg _cpu_percent]
,[avg data io percent]
,[avg_log write percent]
,[avg_memory usage percent]
,[xtp_storage percent]
, [max_worker percent]
,[max_session percent]
,[dtu_limit]
,[avg login rate percent]

FROM [sys].[dm db resource stats]

Which produces the last 10 statistics aggregates (they are ordered using the sampling
date, descending) below:

71

WORKING WITH AZURE DATABASE SERVICES PLATFORM

CHAPTER 1

L6L°61:9%:C1

TINN Gl 600 0s°L 000 90°/S GLO 200 va'. 1€-20-210¢
018¥E:9v-¢L

TINN Gcl 600 00°tL 000 YAWA®, 900 12’0 9I'e 1€-20-210¢
098°61:9-¢1

TINN Gl 0Lo0 oS’ 000 €6°/9 ¢c0 Geo €¢/ 1€-20-210¢
088°70:Lv-¢L

TINN Gcl 0Lo 00°L 000 €9°/9 ¢lo 710 91'g 1€-20-210¢
L06°61:L¥-CL

TINN Gcl 0Lo0 oS’ 000 €8°/9 4AN0) Y0 289 1€-20-210¢
R AZAL

TINN Gl L0 oS’ 000 G289 ¢lo 190 989 1€-20-210¢
186°6-Ly-CL

TINN Gcl ¢Lo 00t 000 GE'89 91’0 010 89V 1€-20-210¢
€00°50:8¥-¢1

TINN Gcl L0 0S|I 000 L7'89 L0 800 0Ly 1€-20-210¢
€€0°0¢:8v-¢l

TINN Gcl L0 0S| 000 168G 600 €e0 68°¢ 1€-20-210¢
190°GE:8¥-¢l

TINN Gcl L0 00t 000 7985 700 710 €9°¢ 1€-20-210¢

uassad juaosad quaasad juaasad
1uaaad ajel Hwi Tuoisses T Jayiom ~abeloys juddsad abesn Tayum Judosad ol juaaiad

“uibo| BHae mp “Xew “Xew “dix “Mowaw bBae “Hoj Bae “ejep Bae " ndo bBae awiy pua

N
o~

Database is a valuable information to troubleshoot problematic queries:

Another useful DMV is about sessions, where knowing WHO is connecting to the

CHAPTER 1

SELECT TOP 10 * FROM [sys].[dm_exec_sessions]

This view produces the following output (just some columns):

WORKING WITH AZURE DATABASE SERVICES PLATFORM

session_id host_name

program_name login_name cpu_time memory_usage

58 RD000D3A12C460 Applicationt appiUser 0 6

104 RD0O00D3A12C460 Applicationi appiUser 0 6

105 RDO0OD3A12C460 Application2 ~ app2User 0 6

107 RDO003FF71C768 Application2 app2User 0 6

113 RDO00D3A12C460 Application2 app2User 0 6

114 RDO0OOD3A12B52E ExternalApp extUser 3 7
115 DESKTOP-LOCAL ~ SSMS - Query adminUser 0 3

117 DESKTOP-LOCAL ~ SSMS - Query adminUser 0 3

119 RDO00OD3A12C460 ExternalApp extUser 0 6
124 RD0O00D3A12C460 ExternalApp extUser 0 6

This view is incredibly interesting from the troubleshooting perspective. We see at

least:

e The Remote Machine name: 3 unique Azure-hosted machines plus

the local DESKTOP machine

o The Application Name: it is strongly recommended to pass the
application name in the connection string while connecting to SQL

Database, in order to propagate the info here

o The Login Name: useful to know which identities are connecting to

the DB

There are a lot of DMVs in SQL Database and they enable advanced monitoring

scenarios. SQL Server experts can already be familiar with some of those views and it is

an excessive advanced topic to be covered in this book.

73

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Query Performance Insight

Recently in SQL Server was added the Query Store features, that is a sort of flight data
recorder of every query passing through the Database. This feature is now enabled
by default as mentioned here (https://docs.microsoft.com/en-us/azure/sql-
database/sql-database-operate-query-store) and can be enabled on existing
databases through the following query:

ALTER DATABASE [myDB] SET QUERY STORE = ON;

For whom already has query store enabled by default and they want to know the
actual parameters of it, we can right-click the database in SSMS and select Properties:

| l_j Database Properties -
———— .
5"0"-1& page ;w = m Help
14 Options [
A Tracki ®Ee| A -
G, Charg Trackig Tl
-] Query Store v General
=0 Operation Mode (Actual) Read Write
Operation Mode (Requested) Read Write
~ Monitoring
Data Fush Interval (Minutes) 15
Statistics Collection Interval 1 Hour
v Query Store Retention
Max Size (MB) 100
Guery Store Capture Mode Auto
Size Based Cleanup Mode Auto
Stale Query Threshold (Days) 30
| Data FAush Interval (Minutes)
The frequency at which query store data is flushed and persisted to disk.
Connection Curment Disk Usage
'-.ZI'.:
_!_il View connection properties . .
Progress 2499GB B Guery Store Available 26.0MB
Ready .QueryﬁtomUsed 740 MB B Query Store Used 74,0 MB
Purge Guery Data
| Concel

Figure 1-34. This options window let us configure Query Store parameters

74

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-operate-query-store
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-operate-query-store

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

In the figure above (Figure 1-34) we can fine tune the Query Store service,
specifying retention and collection options. This can focus the big picture of Query
Store (Figure 1-35) before using it through SSMS or Query Performance Insight.

Note under certain circumstances, Query Store stops to collect data if the space
is full. We can notice this state from the portal. By using the Query Store options
we can either change limits or, through T-SQL, clearing the current data.

= [Query Store (READ_ONLY)
@ Regressed Queries
&, Overall Resource Consumption
&, Top Resource Consuming Queries
@, Tracked Queries

Figure 1-35. The Query Store node in SQL Server Management Studio

Query Performance Insight is an online tool to catch the most out of Query Store.
It highlights the most consuming queries and provides relevant information to identify
them to proceed with optimization:

TOP 5 queries by:
CPU
Cata 10

Leg 10
Aggregation type:
SUM

Time period:
LAST 24 HRS

|
g
’i.

“esyssisasiifhiaysaninsd

Click on a row below to get the details for the selected query. @

QUERY 1D cPUs] # DATAIO[%) A LOGI0[%) “ DURATIOM{HHMM:SS] . EXECUTMONS COUNT ~

nar 497 o 071430510 LT v
= n e o 07:08:50.210 3053 v
708 001 0 02:04:47.340 66851 '

5 3 027 o o 00:04:58.070 29 4
026 007 0 00:06:53.500 286 v

Figure 1-36. Query Performance Insight showing top 5 consuming queries

75

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

In the figure above (Figure 1-36), we can drill-down in the first row to see which is
the query that consumes more. Once identified the query text, we can go upward to the
applications and perform further optimization.

Anomalies/Security Detection

As part of every monitoring/management tasks, we should put in place some
techniques to prevent security issues or, in case they verify, some logging to inspect
and troubleshoot. SQL Database integrates an Auditing feature that collect every event
coming into the SQLDB instance and ships it to a remote Storage Account for further
analysis.

This feature is useful to the users to investigate problems, to re-build a complex
workflow and to have a complete and detailed log of all the operations passing through
the database. However, it is useful for Azure too, since Azure itself uses Auditing (if
the Threat Detection feature is enabled) to perform real-time proactive detection of
potential threats occurring on the DB instance (for example a brute force attack).

Database Auditing

Database Auditing, as mentioned above, is a feature that collects Extended Events
occurring on SQL Database for further analysis.

For a reference of what an extended event is and how they are implemented in
SQL Database, compared to SQL Server, follow these links:

https://docs.microsoft.com/en-us/sql/relational-databases/
extended-events/extended-events

https://docs.microsoft.com/en-us/azure/sql-database/sql-
database-xevent-db-diff-from-svr

After enabling the feature, SQL Database begins to collect .XEL files into the blob
storage account specified using this pattern:

https://[account].blob.core.windows.net/sqldbauditlogs/[server]/[db]/
SqlDbAuditing_ServerAudit/YYYY-MM-DD/hh_mm_ss XXX_YYYY.xel

76

https://docs.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events
https://docs.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-xevent-db-diff-from-svr
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-xevent-db-diff-from-svr

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

XEL files archived with Auditing can be downloaded from the Blob Storage and then
parsed with SSMS, with the following experience:

10,03 22_175 16711+ < |
Displaying 16425 Events
timestamp affected_rows apphcation_name chent_ip database_name server_inslance... server_prncipal...
.201 7-08-03 12:04:41.8421774 . 1 i . s .
2017-08-03 12:04:41.4486935 1
2017-08-03 12:04:41 4530544 5
| 1 1.
1
1

exec sp_execute... |

2017-08-03 12:04:41 4556342
2017-08-03 12:04:41 4624636

[2017.0803 12.04:41 2685020 |
Event: audt_event (2017-08-03 12:04:41.4486535)

Field Value -

sequence_group_id 961330CD-1EE3-407F-ASTB-6AIC20CCBEFE
sequence_number 1

server_prncipal id 0

server_principal_sid (x010600000000016480000000001E573A06AASCF1B4438E4...

session_id 133

session_server_prin...

statement exec sp_executesgl N'SELECT [Extent1]fi . 2] AS ..

succeeded True

target_database_pr

target_database pr... o

Figure 1-37. This is how we can read auditing data form inside SSMS

In the figure above (Figure 1-37) we can have a look of the experience of reading
auditing data from within SSMS.

Please note we also have the complete statement executed against SQL Database,
comprehensive of sensitive data. Thus, with auditing, keep in mind to protect
adequately the Storage Account where the auditing is shipped, since it will contain
a huge, despite it is unaggregated, of sensitive data.

Auditing can occur at server-level or at database-level. In the first case, every DB in
the SQL Server (logical) instance will inherit the setting and will audit to storage. In the
latter, we can fine tune this setting for a single DB.

77

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Threat Detection

With a simple ON/OFF toggle, we can tell Azure to use our auditing data to perform
intelligent analysis and detection of issues (Figure 1-38), like:

e SQL Injections
e Brute force attacks

e Unusual outbound data flow

Azure SQL database

Someone has logged on to your SQL server
'myServer' from an unusual location.

Lock Down Firewall

AN Activity details

Subscription 20000000 XX =X =X = XOO00COO000K
Server myServer
Database myDB

Figure 1-38. This is a sample email that has been sent from the Threat Detection
service

MySQL and PostgreSQL

The concept behind SQL Database is powerful: use a SQL Server-like Database without
any effort to administer its underlying infrastructure and with a lot of value-added

services to increase productivity and competition.

78

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

In the last years, if someone needed another RDBMS, like MySQL, the only choices

were:

Taa$S: building your own Virtual Machine and install/configure/
manage MySQL for its entire lifecycle

Marketplace: buying an existing third-party service offering MySQL
as managed service, regardless its underlying infrastructure.

To be clear, those choices are still valid and good, but Microsoft released (now in

preview) an Azure Database Service for MySQL and for PostgreSQL, offering a valid

alternative to the previous options.

MySQL

Since the vision around Database Services is to provide, regardless the underlying

provider, a foundation or services and features in similar, we can expect from MySQL

the same high-level features we have with SQL Database. In theory, this is true, but the

service is still in preview and (at the time of writing) has limited features.

By the way, a good approach can be to highlight some similarities:

We create a server to contain one or more database
Server has firewall rules and encrypted security

Only a portion or the entire MySQL engine is available, like in SQL
Database there are some limitations too. In MySQL, only the InnoDB
engine is supported on two versions (5.6.35 and 5.7.17, Community
Edition)

Upgrades (minor patching) is managed by the platform

There are pricing tiers based on the performance delivered and the
storage allocated

There is the point-in-time restore feature

79

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

0 Search (Ctriv/) Hsave X Discard "D Resetall to default
B Overview |
PARAMETER NAME A~ VALUE
B Activity leg
‘ Tags binlog_group_commit_sync_delay 1000 L]
binlog_group_commit_sync_nc_delay_count 0 °
SETTINGS
character_set_server LATIN1 w
[Connection security
div_precision_increment 4 L]
W+ Connection strings
event_scheduler OFF b
13 Server parameters
group_concat_max_len 1024 o
¥ Pricing tier
innodb_adaptive_hash_index ON N,
Y Properties
innodb_lock_wait_timeout 50 o
ﬂ Lacks
interactive_timeout 1800 L
MONITORING
: log_bin_trust_function_creators OFF w
ilil Metrics
i log_queries_not_using_indexes OFF 3
Alert rules .
log_slow_admin_statements COFF v
B serverlogs
g log_throttle_gueries_not_using_indexes 0 o

Figure 1-39. This blade provides the configuration or server-level parameters on
the Azure Database Service for MySQL

And some differences:

o The server is not logical but it hides a real underlying dedicated
resource, making it a billable resource itself. In case of MySQL, in
fact, pricing tiers are per server and not per database.

e We can explicitly exclude SSL endpoint running on a dedicated port
o The concept of DTU here is called CU (Compute Units)
o The backup/restore operates at server-level

e We can set the MySQL server parameters through the Portal
(Figure 1-39)

80

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

B 1500 Workbench - 0

| & mmysal database . x
| File Edit View COuery Dotabase Server Tools Scriping Help

| 2 O mEE D e
S&le SFAFEE T & @ D=2
Navigator tos SOL Fille T SOLAdditions e
| managensent * WHIFFACIHIOOR wmeitwm -|%|¥ Q 0E < > |[@ % | o .
© server status 33405 ® ALTER TASLE “wp_postmeta’ &
_;- Client Connections 33406 HODIFY “meta_id™ bigint(22) UNSIGNED MOT NULL AUTO_IMCREMENT, AUTO_IMCREMENTs Autom X
33407 Use
L users and Prvieges 33408 -~ AUTO_INCREMENT for table "wp_posts’ help for t
| D status and System Vanables 33400 or to toggle :
| & DataBxpont 33410 # ALTER TASLE “wp_posts”
&, Data importRestore :‘:;; HODIFY "ID" bigint(20) UNSIGNED NOT MULL AUTO_INCREMENT, AUTO_INCREMENT=:
| INSTANCE ;:3
B statup / shutdewn 33415 ® ALTER TASLE wp_termmeta’
A 33416 HODIFY “meta_id" bigint(20) UNSIGMED MOT NULL AUTO_IMCREMENT;
* 33417 -
33418 3 _
PERFORMANCE -;':;: | TR
LTER TASLE “wp_terss
@ oashizoard 33421 HODIFY “term_id" bigint(2¢) UNSIGNED MOT NULL AUTO_INCREMENT, AUTO_INCREMENT=
&7 Pertormance Reports 33422 -
&N Pertormance Schema Setup 33423
33424 -
SCHEMAS “ 33425 ® ALTER TABLE “wp_ters_taxonomy”
jom 33426 HODIFY *term_taxonomy_id" bigint(20) UNSIGHED NOT NULL AUTO_INCREMENT, AUTO_IN
9, |Filter objects | 21497 ~
< > Context Help Saippets
Information
Output
No abject selected & =
Ll Tene Acton Mesage Dunticn / Fesch
Object Info Session
SO Editer Opened. B

Figure 1-40. This is MySQL Workbench, one of the most relevant administration
tool for MySQL in the market

In the figure above (Figure 1-40), we see MySQL Workbench connecting to the
service. MySQL Workbench is a powerful tool, useful to administer the MySQL instance

and to perform various tasks as the Import/Export feature.

PostgreSQL

Azure Database for PostgreSQL service has been built in the same way as MySQL one.
Compared to it, we can experiment the same features, the support of two versions on
PostgreSQL engine, firewall and SSL support and the same pricing structure.

81

CHAPTER 1 WORKING WITH AZURE DATABASE SERVICES PLATFORM

Summary

In this chapter we learned how to approach SQL Database, the most advanced Database-
as-a-Service of the Azure offering and one of the most advanced in the entire Cloud
Ecosystem. We learned how to setup a good design process, an evolving maintenance
plan and a strategy to monitor it continuously and efficiently. We also learned how to use
SQL Database efficiently and how to get the most out of it with its valuable features. We
focused on those features useful for a decision maker, as well as for an architect, to plan a
project and know in advance the possible approaches to the service.

In the next chapter, we see how to deal with unmanaged RDBMS, with specific
support to SQL Server in VMs (IaaS) and how to extend the on-premise topology with
the appropriate building block offered by Azure.

82

CHAPTER 2

Working with SQL
Server on Hybrid Cloud
and Azure laaS

Hybrid Cloud workloads are, without a doubt, among the priorities of many CIOs and
CTOs these days. as they can be used in addressing business needs and modernizing IT
infrastructures which are key in bringing valuable solutions, often with moderate effort.
Data workloads are not exempt from this and SQL Server, the flagship database server of
Microsoft, is one the best expressions of the evolution of a server platform from an on-
premise only suite to a full-featured and cloud enabled one. SQL Server 2017, recently
released in the market, will be used in this chapter to describe both hybrid cloud features
and the possibilities to run it in a pure IaaS scenario with Azure. The main topics covered
here are the following:

e Anintroduction to SQL Server 2017, and in particular its ability to run

on Linux.

o The features available for hybrid cloud, including backups and high
availability options.

o How to migrate a database to Azure IaaS.

e How torun a SQL Server instance on Azure IaaS.

83

© Francesco Diaz, Roberto Freato 2018
E Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_2

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Database Server Execution Options On Azure

There are different possibilities to install a relational database server on Azure Virtual
Machines. You could:

1. Use the Azure Marketplace to deploy an Azure Virtual Machine
image that already contains the database server or deploy a
solution template from the Azure Marketplace.

2. Deploy an Azure Virtual Machine with the operating system only,
Windows or Linux, and setup the database server yourself, after
the deployment.

3. Upload your own database server image to Azure, reusing an on-
premises installation.

When you decide to use option 1, you can either select a standalone virtual machine,
or use a solution template to deploy a complete configuration of SQL Server. There
are many solutions templates already available in the marketplace, and they might
be related to a high availability configuration of SQL Server, a setup that includes
a Sharepoint farm, etc. Both Microsoft and partners provide several options that
implement the Azure Resource Manager (ARM) model for the deployment.

Choosing a database server from the marketplace also has licensing implications.
You could use the pay-per-use model and pay SQL Server per-minute, or you could
leverage license mobility advantages and bring your own license (BYOL) to the cloud.

If you choose BYOL, you are requested to provide to Microsoft the License Mobility
Verification form with information of your licenses. In the pay-per-use model, you could
also receive a separate bill if the database server you are using is not included. This could
happen for example if you deploy a virtual machine with an Oracle database already
installed. +

84

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Note To get additional information on licensing models, we recommend the following
links: Bring your own license - http://d36cz9buwruitt.cloudfront.net/
License Mobility Customer Verification Guide.pdf; SQL Server
licensing on Azure VMs FAQ - https://azure.microsoft.com/en-us/
pricing/licensing-faq/; License Mobility Verification Form -
http://www.microsoftvolumelicensing.com/DocumentSearch.aspx?
Mode=28&Keyword=License%20verification; SQL Server 2017 Licensing
Guide - https://download.microsoft.com/download/7/8/C/78CDF005-
97C1-4129-926B-CE4A6FE92CF5/SQL_Server 2017 Licensing guide.pdf

As you probably noticed, choosing the right option to install a database server on
Azure is an important aspect to consider, not only for the technical part, but also for
cost estimations. If you are architecting a solution for a customer that includes database
workloads, preparing a proper business case for the costs is a very important aspect
to consider. Business case preparation of costs on Azure are not the focus of this book,
but we recommend that you explore this part in detail in order to better support your
customers and partners.

Note To get more information on Microsoft Azure licensing model, visit: Azure
Pricing - https://azure.microsoft.com/en-us/pricing/; Azure Pricing
FAQ - https://azure.microsoft.com/en-us/pricing/faq/

A Quick Overview of SQL Server 2017

As SQL Server 2017 was released while we were writing this book and we utilized it in
some of the examples, we thought it was useful to add a very small section to mention
some of the most relevant features available.

SQL Server 2017 was released in October 2017, and it arrived not more than one year
after the release of SQL Server 2016; this means that you will find many of the features
of SQL 2016 in SQL 2017 too, with minor enhancements. This does not mean that SQL
2017 is a minor release. On the contrary there, are some huge additions that represent a
substantial change for Microsoft on the direction it is taking with its top product in the

85

http://d36cz9buwru1tt.cloudfront.net/License_Mobility_Customer_Verification_Guide.pdf
http://d36cz9buwru1tt.cloudfront.net/License_Mobility_Customer_Verification_Guide.pdf
https://azure.microsoft.com/en-us/pricing/licensing-faq/
https://azure.microsoft.com/en-us/pricing/licensing-faq/
http://www.microsoftvolumelicensing.com/DocumentSearch.aspx?Mode=2&Keyword=License verification
http://www.microsoftvolumelicensing.com/DocumentSearch.aspx?Mode=2&Keyword=License verification
https://download.microsoft.com/download/7/8/C/78CDF005-97C1-4129-926B-CE4A6FE92CF5/SQL_Server_2017_Licensing_guide.pdf
https://download.microsoft.com/download/7/8/C/78CDF005-97C1-4129-926B-CE4A6FE92CF5/SQL_Server_2017_Licensing_guide.pdf
https://azure.microsoft.com/en-us/pricing/
https://azure.microsoft.com/en-us/pricing/faq/

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

database market. The most relevant one is the possibility to run SQL 2017 on a Linux
server or a Docker container. Many companies that use Linux as their main server
platform can now benefit from this additional option when they need to add a database
server platform to a project.

Note 1 Supported versions of Linux are RedHat Enterprise Linux 7.3 or 7.4, SuSE
Enterprise Linux v12 SP2 and Ubuntu 16.04LTS. Supported versions of Docker are
1.8+ on Windows, Linux or Mac

Note 2 Not all features and services of SQL Server are available on Linux. Visit
this page to see the full list: https://docs.microsoft.com/en-us/sql/
linux/sql-server-linux-release-notes

SQL Server comes in five different editions:

o Express. Available for free, good for entry level workloads that don’t
require advanced features or more than 10 GB database space.

* Web. A basic version, specifically designed for the Service Providers
market and to support web applications workloads.

e Standard. Fully featured in terms of developer features as, starting
from SQL Server 2016 SP1, almost all the advanced features for
developers have been included in SQL Server Standard Edition. It
misses the advanced features for mission critical scenarios, but it is

easy to upgrade to Enterprise version without reinstalling it.

o Enterprise. All the features available in Standard Edition, plus enhanced
scalability, security, high availability, and advanced analytics capabilities.

o Developer. A free edition of SQL Server, for dev/test scenarios, that
contains the same features available in the Enterprise Edition.

Note The following link has the detailed matrix of features available in each
edition of SQL Server: https://docs.microsoft.com/en-us/sql/sql-
server/editions-and-components-of-sql-server-2017

86

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes
https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2017
https://docs.microsoft.com/en-us/sql/sql-server/editions-and-components-of-sql-server-2017

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Installation of SQL Server 2017 on Linux and Docker

To run SQL Server on Linux, Microsoft implemented what is called the SQL Server Platform
Abstraction Layer (SQLPAL). Having been on the market for decades, SQL Server is strongly
integrated with Windows so porting all the codebase to another platform would have

been many years of work and at the same time, Microsoft wanted to guarantee excellent
performances across all the OS platforms. Thus, Microsoft decided to work on an existing
project of Microsoft Research called Drawbridge, to leverage its features focused on providing
an abstraction layer between the operating system and the applications, and merge them with
the existing SQL Server Operating System (SQLOS). That’s how SQLPAL has born and that is
what it does: provides an abstraction layer to execute SQL Server with the same functionalities
and performances across different operating systems, such as Windows and Linux. At the
time of writing, SQL Server database engine, SQL Server Integration Services, and SQL Server
Agent are able to run on Linux, but we expect to see more to come in the future.

Hosted Windows APIls
NT User Mode

SOS Direct APlIs

Storage Network Resource Process Security Availability Config
Manager Manager Manager Manager Manager Manager Manager

505v2 (Memory, Scheduling, Synchronization

Host Extension and Integration

Figure 2-1. The SQLPAL high level architecture. When SQL Server runs on Linux,
a small part of Windows libraries run on Linux. https://blogs . technet.microsoft.
com/dataplatforminsider/2016/12/16/sql-server-on-1linux-how-introduction/

Note To get some additional details on SQLPAL read this article on Microsoft
Technet: https://blogs.technet.microsoft.com/dataplatform
insider/2016/12/16/sql-server-on-linux-how-introduction/

87

https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/
https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/
https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/
https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

SQL Server on Linux

Installing SQL Server on Linux is different than on Windows, and is actually easier as
itis based on a command-line utility that requires very few user inputs for the first
configuration. Just to give you an idea, below you will find the commands you need to
download the 173MB package and to run the setup of SQL Server and the sqlcmd tool on
an Ubuntu Server.

wget -q0- https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key
add -

sudo add-apt-repository "$(wget -q0- https://packages.microsoft.com/config/
ubuntu/16.04/mssql-server-2017.1ist)"

sudo apt-get update

sudo apt-get install -y mssql-server

sudo /opt/mssql/bin/mssql-conf setup

sudo apt-get update

sudo apt-get install -y mssql-tools unixodbc-dev

francescodiaz@sqlonlinux:~$ systemctl status mssql-server
® mssgl-server.service - Microsoft SQL Server Database Engine
Loaded: loaded (/lib/systemd/system/mssgl-server.service; enabled; wvendor pre
Active: active (running) since Thu 2018-01-25 23:07:07 UTC; 12s ago
Docs: https://docs.microsoft.com/en-us/sgl/linux
Main PID: 9066 (sglservr)
Tasks: 117
Memory: 479.3M
CPU: 5.895s
CGroup: /system.slice/mssql-server.service
9066 /opt/mssql/bin/sqlservr
9098 /opt/mssql/bin/sqlservr

Jan 25 23:07:13 sqlonlinux sqglservr[9066]: [78B blob data]
Jan 25 23:07:13 sqlonlinux sqlservr[9066]: [84B blob data]
Jan 25 23:07:13 sqlonlinux sglservr[9066]: [122B blob data]
Jan 25 23:07:13 sqlonlinux sqglservr[9066]: [145B blob data]
Jan 25 23:07:14 sqglonlinux sqlservr[9066]: [66B blob data]
Jan 25 23:07:14 sqlonlinux sqlservr[9066]: [7S5B blob data]
Jan 25 23:07:14 sqlonlinux sqglservr[9066]: [96B blob data]
Jan 25 23:07:14 sqlonlinux sqlservr[9066]: [100B blob data]
Jan 25 23:07:14 sglonlinux sglservr[9066]: [124B blob data]
Jan 25 23:07:14 sqglonlinux sgqlsexrvr[9066]: [71B blob data]

Figure 2-2. SQL Server running on an Ubuntu Server

88

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

SQL Server on a Docker container

Containers use a virtualization concept like virtual machines. The difference is that,

with containers, you virtualize the operating system while with Virtual Machines you
virtualize the hardware. Microsoft certifies SQL Server 2017 for Docker, the company that
leads the market in the containerization platforms. To learn more about Docker, visit:
https://www.docker.com/get-docker#/overview

CONTAINER CONTAINER CONTAINER

Tomcat PHP

Java MySQL Static Binary

Debian Ubuntu Alpine

Kernel

Figure 2-3. Containers running on Docker, where the OS kernel is virtualized

Docker provides a repository of SQL Server 2017 ready-to-use container images,
both for Windows and Linux, in the Docker Hub, at the following links: Windows
(https://hub.docker.com/r/microsoft/mssql-server-windows-express/) and
Linux (https://hub.docker.com/r/microsoft/mssql-server-linux/)

PUBLIC REPOSITORY

microsoft/mssql-server-linux v

Tag Name Compressed Size Last Updated
latest 451 ME & monkh ago
201T-1atest 451 MB a month ago
2017-Ccuz 451 ME a manth ago
2017.CLH 438 ME 2 months ago

PONTGA 479 ME 3 months ago

Figure 2-4. The Docker Hub repository of Linux container images

89

https://www.docker.com/get-docker#/overview
https://hub.docker.com/r/microsoft/mssql-server-windows-express/
https://hub.docker.com/r/microsoft/mssql-server-linux/

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Getting the SQL 2017 container image up and running is a very simple activity:

1. Download and install Docker on your machine, if you don’t
have it already, from here: https://www.docker.com/get-docker

2. Pull the container image: docker pull microsoft/
mssql-server-linux:2017-CU2 downloads SQL 2017 cumulative
update 2 from the Docker Hub. If you want to download the latest

version, use the -latest tag

E¥ Amministratore: Windows PowerShell

PS C:\WINDOWS\system32> docker pull microsoft/mssql-server-linux:2017-CuU2
2017-cu2: Pulling from microsoft/mssql-server-1inux
f6fa%9a861b90: Downloading 4.748MB/46.41MB
da7318603015: Download complete

6a8bd10c9278: Download complete

d5a40291440f: Download complete

bbdd8a83c0fl: Download complete

3a52205d40a6: Downloading 6.779MB/28.98MB
6192691706e8: Downloading 3.545MB/38.7MB
1a658a9035fb: waiting

97fa7291bdal: waiting

b27ed30cd4cfb: waiting

3. Run the container image docker run -e "ACCEPT_EULA=Y" -e
"MSSOL_SA_PASSWORD=P4sswoxd!" -p 1401:1433 --name
sql1 -d microsoft/mssql-sexrver-linux:2017-CU2

4. View your container using command docker ps -a

¥ Amministratore: Window verShell

PS C:\WINDOWS\system3’?> docker ps --format
9720236a3c9e|sqlllup 15 minutes
PS C:\WINDOWS\system32>

5. Connect to SQL Server instance using sqlemd tool, which is also
available on Linux. To connect to sqlcmd, you need to first enter
bash inside the container using the command docker exec -it
sql1 "bash" . Once inside the container, you can connect using
sqlcmd and interact with the SQL instance using T-SQL:

a. /opt/mssql-tools/bin/sqlcmd -S localhost -U SA -P ‘P4ssw0rd!

b. SELECT @@version
90

https://www.docker.com/get-docker

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

PS C:\WINDOWS\SgstemBZ) docker exec -1t sqgll
root@9720236a3cY%e: /# /opt/mssql-tools/bin/sqlemd -S localhost -U sa -P ‘PdsswOrd!’
1> select @@version;

2> go

Microsoft SOL Server 2017 (RTM CU2) (KB4052574) - 14.0.3008.27 (X6€4)
Nov 16 2017 10:00
Copyright (C) 2017 M1crasoft Corporation
Developer Edition (64-bit) on Linux (Ubuntu 16.04.3 LTS)

(1 rows affected)
1=

Note In our example we are using Powershell in the client to execute commands.
Commands on bash are more or less the same. To get additional information read
this Microsoft document online: https://docs.microsoft.com/en-gb/sql/
linux/quickstart-install-connect-docker - it contains also useful
information on how to configure Docker minimum requirements in terms of CPU
and RAM to execute SQL Server on Docker

SQL Server Operations Studio

For those that are used to working with SQL Server, SQL Server Management Studio
(SSMS) is the tool that every DBA knows and loves very much. SSMS is only available on
Windows today, therefore if you need to work with an installation on Linux you could use
either the command-line tools or use SSMS installed on a Windows machine connected
to the Linux server. Microsoft started the development of SQL Server Operation Studio
(SSOS), a cross-platform tool based on the code of Visual Studio Code that allows you to
work with SQL Server using a Mac or a Linux machine. SSOS is in preview at the time of
writing and it contains basic but useful features. It allows you to connect to the database,
use the query editor, and perform some administration tasks like backups. One of the
features that we find useful is the T-SQL intellisense, which helps a lot of database
developers and administrators.

Note You could download SQL Operations Studio here: https://docs.
microsoft.com/en-us/sql/sql-operations-studio/download

91

https://docs.microsoft.com/en-gb/sql/linux/quickstart-install-connect-docker
https://docs.microsoft.com/en-gb/sql/linux/quickstart-install-connect-docker
https://docs.microsoft.com/en-us/sql/sql-operations-studio/download
https://docs.microsoft.com/en-us/sql/sql-operations-studio/download

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

You can also use it to connect to the docker container that we have just created. You
just need to check the IP address (ipconfig or ifconfig, depending on the platform)
assigned to the docker container and use port 1401 in the Advanced of the connect
mask, that we mapped with the SQL port 1433 when we started the image.

i SOL Cperations Studic = o X | & 50U Operstions Studie o o »

File Modifica Vicualiza Esequi Guida File Modfica Visualiza Ecequi Guida
Connection € Advanced properties

. Coumn ercryption setng
Recent history

Mo Recent Cannections | ot
Parsint g0ty info ¥

Trust server certficate

Comnestan tyoe Microsoft 01, Server + SOURCE
Server name 100781 astacres D8 fre rame
suthentastien tpe 56 Login Cortnt connection .
Userrame n
4 GENERAL
L p—
£ | 1201

) e tuer pasgword
Aftach DS figrame

Datatase name I

Server graup <Defauit> Port

Figure 2-5. Connect to the docker container using SQL Operations Studio

Interesting features to highlight are:

o T-SQL intellisense capabilities and code snippets

i * SQLQuery - SOL Operations Studic
File Modifica Visualizza Esegui Guida

SERVERS BE BB 10.0.75.1,1401 = saLQueryl
Search server names - B Run [£ Disconnect & Change Conne
+ B 10.0.75.1,1401, <default> (sa) 1 CREATE DAT
22 DATABASE
4 W Databases

b B system Databases
b B Secunty

» B Server Objects

92

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Backup options that can recognize if the server is installed on Linux,
and use file system folders accordingly

5 10.0.75.1,1401:Ad WorksLT - SQL Oy ions Studic == a X
File Modifica Visualizza Esegui Guida
ERVERS
e Backup database - 10.0.75.1,140T:AdventureWorksLT
Search serwt
J g 1007 Backup name
AdvertureWorksLT-Full-2017.12-31T08:25:5¢]
- Dat \
b 5} Recovery mode
4 ii Ay Fuil
1 3
Backup type
»
Ful v
1 3
¥ (0] Copy-only backup
L2 Backup files
¥ | Avar/opt/mssql/data/AdventureWorksLT-20171231-10-25-56.bak
| 3
»
v owsec HE
b Sen
' ADVANCED CONFIGURATION
S0A0

Enable database dashboard views using the user settings section,
editable using JSON. A few widgets are available out of the box, e.g.
the table space widget shown in the image below, plus you could
add custom widgets for custom insights also. More information is
available here: https://docs.microsoft.com/en-us/sql/sql-
operations-studio/tutorial-build-custom-insight-sql-server

“dashboard.database.widgets™: [
{
“name”: “Table Space”,
"gridItemConfig": {
“sizex™: 2,
“sizey": 2
I8
"widget": {
1': null
} J all-database-size-server-insight
b M backup-history-server-insight
{ # explorer-widget
“grid & insights-widget
“ M query-data-store-db-insight
~ M table-space-db-insight
¥, K tasks-widget
“widget": {
“explorer-widget™: {}
H
}
1

93

https://docs.microsoft.com/en-us/sql/sql-operations-studio/tutorial-build-custom-insight-sql-server
https://docs.microsoft.com/en-us/sql/sql-operations-studio/tutorial-build-custom-insight-sql-server

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Simple 02/01/2018 17:03:41 Mever 130 o

Table Space
I rows_count [total_pages used_pages data_pages Search by name of type (a. t. vi, £, 0..
[total_space_ME [0 | used_space_MB data_space_MB B Application.Cities
BB Application.Cities_Archive
iidicss ER Application.Countries

BB Application.Countries_Archive
B application.CeliveryMethods

B8 Application.DeliveryMethods_Archive
ColdRoomTemperatures_Archive B Application.PaymentMethods

B Application PaymentMethods_Archiv
BB Application.Peaple

B Application.People_Archive

InveiceLines B Application.StateProvinces

B Application.StateProvinces_Archive
FF

BB Application SystemParameters
OrderLines B application. TransactionTypes

BB Application TransactionTypes_Archive
B purchasing.PurchaseOrderLines

BB Purchasing.PurchaseOrders
CustomerTransactions BB Purchasing. SupplierCategories

BB Purchasing SupplierCategones_Archi
BA Purchasing. Suppliers

-

0 1000000 2000000 3000000 4000000

Figure 2-6. Adding the table space widget to SQL Operations Studio

Note We recommend exploring two additional features available in SQL Server
2017. First one is Graph Database, perfect to model hierarchical data or many-
to-many relationship. It is available on both SQL Server and Azure SQL Database,
and you can get started here: https://docs.microsoft.com/en-us/sql/
relational-databases/graphs/sql-graph-overview; Second one is SQL
Server Machine Learning Services, that allows use of R and Python to develop
machine learning scripts, integrated with SQL Server database engine. They are an
evolution of SQL Server R Services introduced in SQL Server 2016 and based on R
language only on the first release.

Hybrid Cloud Features

In this section of the chapter we will describe some of the features available in SQL
Server that allow you to leverage hybrid cloud functionalities with Microsoft Azure. In
particular, we will focus on backup scenarios that you will very likely find during your

94

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

architectural design activities. We will also cover the stretched database feature, which
is very interesting to consider as it adds remote positioning of data, managed from

a database server on-premises. Later in the chapter, in another section, we will also
describe high availability options available in SQL Server that can leverage Microsoft
Azure.

Azure Storage

To understand how SQL Server backup to Azure works, we need to dedicate some time
to become familiar with Azure Storage and how it works, as it is the layer available on
Azure to store data and SQL Server backup features uses it extensively, both from on-
premises virtual machines and Azure Virtual Machines.

First thing you need to create is an Azure Storage account that is the endpoint used
from the applications to store data and from virtual machines to store operating system
and data disks. The connection to Azure storage is done by creating an endpoint; the
endpoint name must be unique across all storage accounts on Azure, as it is represented
by an FQDN. You can also decide if the Azure storage needs to be exposed on the web,
allowing all IPs or the IPs that you prefer, or connected to one or more Azure Virtual
Networks of your choice, to remain private. Both options can work together at the same

time.

Storage Account Types

In Azure, you could have two types of storage accounts:

1. General-purpose Storage Accounts. Creating a general-purpose
storage account gives you the ability to use different storage

services, such as:

a. Tables. A NoSQL key-value store. In chapter 4 we will go into
detail on this service.

b. Queues. A service dedicated to store a large amount of
messages, accessible from applications, using a decoupled
approach.

95

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

c. Files. A service that allows you to create file shares in the
cloud, as a service, without the need to manage it using a file
server service installed on a Virtual Machine or a cluster.

d. Blobs. A service to store unstructured object data. In this
chapter we will focus on Blobs only as they are required by
SQL Server in Azure Virtual Machines and SQL Server backup
features for cloud. Blob object types can be block blobs,
append blobs, and page blobs. We will describe them in a
minute.

2. A general-purpose storage account can have two different levels of
performance:

a. Standard. The standard storage can be used by all storage
services, based on magnetic disks.

b. Premium. Designed for high performance and low latency
workloads. Premium storage is currently available only for
storing operating system disks and data disks of Azure Virtual
Machines. They are based on solid state disks.

3. Blob Storage Accounts. Blob storage accounts are a specialized
version of storage accounts optimized to store block blobs and
append blobs. If you don’t need to use page blobs, you should
evaluate Blob Storage Accounts as an option for your solution.

In this section, when we talk about General-purpose Storage Accounts, we refer
to General-purpose Storage Accounts v2 that include storage tiering possibilities,
previously not available in General-purpose Storage Accounts v1, and only available on
Blob Storage Accounts. If you have a v1 version of your storage account, you can easily
migrate it to v2 using the option available in the Azure Portal.

96

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Account kind
Storage (general purpose v1)

Upgrade

oL Changing account kind is permanent and will result in billing changes. Learn more

Performance @
* Secure transfer required @

Disabled | Enabled

Replication @

Locally-redundant storage (LRS)

Figure 2-7. Upgrade option from vl general-purpose storage accounts to v2

Storage Access Tiers

Storage tiering helps describe how frequently you will access data in the storage account,

with an access tier attribute that sets the performances and the accessibility of the
storage:

o Hot access option indicates that data are frequently accessed.

o Cool access option is for data that are less frequently accessed, and
stored for at least 30 days.

e Archive access option is for rarely accessed data, stored for at least
180 days. This access option is only available at blob access level and
not at storage access level. Blob files set to archive are offline, and
to read data you need to change the tier to cool or hot again. This
process, called rehydration, may take up to 15 hours to complete.
Archive tier is very useful for long-term backup and archive

scenarios.

97

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Storage Replication

Replication of data is one of the most important aspects to consider when designing a
solution. Azure offers out of the box several replication possibilities for data redundancy:

1. Locally redundant storage (LRS): This is the basic option
available. It provides replicas of data across the sub region of your
choice, during storage account creation. If you create the account
in the West Europe region, as an example, the replicas of your data
will stay there. It is a very good redundancy option, although your
data are exposed to sub region failures of Azure. To overcome this
limitation, you could either choose another replication option, or,
in case this is not applicable, you could add your own replication
methodology to the solution. For example, Azure Premium Storage
only allows LRS replication, therefore if you want to protect your
Azure Virtual Machines disks from sub region failures, you should
implement additional services, such as Azure Backup, to have a
backup of your data replicated to another region.

2. Zone-redundant storage (ZRS): in preview at the time of writing
for General-purpose storage account v2; designed to replicate
synchronously across multiple availability zones, supporting durability
of >= 12 9’s. Azure availability zones, in preview too, protect from
failures at datacenter level inside an Azure region. Each region that
supports this feature has at least three availability zones, with dedicated
physical resources such as power source, cooling systems, etc.

3. Geo-redundant storage (GRS): this option is very useful to replicate
data to a paired Azure region, hundreds of kilometers away from the
primary location, asynchronously. The paired region will also have
its own local replicas of data, making GRS the right choice to have
the highest level of durability of geo-replicated data. Azure regions
are geographical areas where one or more datacenters are present.
Each region is paired with another region within a same geography,
and this is a by-design behavior. For example, Europe geography has
North Europe region and West Europe region, and they are paired
together. To get additional information on paired region, read this
Microsoft document: https://docs.microsoft.com/en-us/azure/
best-practices-availability-paired-regions

98

https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/en-us/azure/best-practices-availability-paired-regions

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Read-access geo-redundant storage (RA-GRS): same as GRS,
with the addition of read-only capabilities at destination for your
applications, adding the -secondary suffix to the storage account
name. Storage account [accountname] .blob.core.windows.net at
source has a secondary endpoint [accountname] -secondary.blob.
core.windows .net at destination, therefore your application could
read data from this endpoint also. Being an asynchronous copy, not
all data may be 100% aligned between source and destination.

Storage Account Creation

Most of the options described above to configure Azure Storage accounts are available in

the Azure Portal directly.

* Name @

[dataplat v

.corewindows.net
Deployment model @

| Resource manager | Classic

Account kind @

[StorageV2 (general purpose v2) ~v 5

Performance @
| standard | Premium 3

Replication @

Locally-redundant storage (LRS) v 4

Access tier (default) @

Cool Hot 5

Figure 2-8. The storage account creation option available in the Azure Portal

The picture 3-x above contains most of the options that we have discussed, and in

particular:

1.

Name of the storage account. As you can see from the green tick
in the image, the portal performs a check to see if the name you
have chosen is unique across all the Azure accounts that Microsoft
Azure manages. The .core.windows.net suffix will be added
automatically to the FQDN, after creation.
99

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

2. Account kind. General-purpose, v1 or v2, or Blob

3. Performance. Standard or Premium. Premium storage is only
available with General-purpose v1 or v2 storage.

4. Replication. Redundancy options. Premium storage only allows
Locally-redundant storage (LRS).

5. Access tier. Cool and Hot options are available at storage account
level, while Archive options are at blob object level.

Blob Objects

In this chapter, we will focus on Blob storage only, both with General-purpose storage
and Blob storage accounts. Blob storage, at high level, is organized with the following
components:

e Storage Account. It is the endpoint to access data, with HTTP or
HTTPS, in public or private mode. Public mode means that your
endpoint will be exposed on the internet, therefore each application
with need the required access keys or shared access signatures to
access it. Private mode means that your applications must reside
within an Azure Virtual Network that has been authorized to
access the storage account. The application will still need to have
the required access keys or shared access signature to access data.
Default is set to Public mode.

Default keys

NAME KEY CONNECTION STRING
—— [[R] 0ts. 1t dpontsProtoco s hetps AccountName = datapiat Acc ountiey 0

ey D ————————————eaa D I e e R R (8]

o Container. A way to group blobs together, like an operating system
using folders to group files. A blob needs to reside inside a container,
which can have different level of access. By default, a container is
created as Private, which means that a 512-bit storage access key is
required to access blobs inside the container. You could also set the
access level to Blob, and in that case an anonymous read access is
allowed to blob files only. Setting the access level to Container, the
read-only anonymous access is set at container level.

100

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

e Blob. Any type of file. You can have block blobs, append blobs, and
page blobs.

Account Containers Blobs

filel.docx

file2.txt

documents

archive
calc.xlsx

year2017

pres.pptx

Figure 2-9. Azure blob account logical structure. In this case, endpoints could
be http://documents.blob.core.windows.net/data/file2. txt, https://
documents.blob.core.windows.net/archive/year2017/calc.x1sx

In Azure, you can have Block blobs, Append blobs, and Page blobs:

o Block blobs. Ideal to store binary files and text files. You can have up to
50,000 blocks of 100MB each, a total size of 4.75TB per block blob file.

o Append blobs. Similar to block blobs, but for append only
operations. You can have up to 50,000 blocks of 4MB each, a total size
of 195GB per append blob file.

o Page blobs. For read/write operations, such as disks of Azure Virtual
Machines. Each page blob can have a maximum size of 8TB.

101

http://documents.blob.core.windows.net/data/file2.txt
https://documents.blob.core.windows.net/archive/year2017/calc.xlsx
https://documents.blob.core.windows.net/archive/year2017/calc.xlsx

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Disks and Managed Disks

So far we have learned that, for our blob files, we can use Standard storage based on
HDD disks, and Premium storage based on SSD disks. We also learned that, for operating
system disks and data disks, we need to use Page blobs. Let’s now focus a bit more on
unmanaged disks and managed disks.

e Unmanaged disks. Choosing this option, you manage the storage
account. You create it, you add disks to storage accounts, and attach
them to virtual machines. You can have unmanaged disks both in
the Standard and Premium storage. You can create a disk of the size
of your choice, up to 4TB per disk. Depending on the performance
of the storage, you could have 500 IOPS in the case of HDD, per disk,
and up to 7500 IOPS in the case of SSD, per disk.

e Managed disks. If you choose this option, you let Azure decide how to
manage your storage accounts, Premium or Standard. You specify the
size of the disk that you need, and Azure will manage the disk for you.
When you create a disk of a specific size, Azure will map the size of the
disk you created with the closest size available in Azure managed disks.
Below you will find the sizes available at the time of writing this book.

Table 2-1. Sizes available in Premium Managed Disks. If you create a premium
managed disk of 100GB, disk is mapped to a P10 managed disk.

Premium Managed P4 P6 P10 P20 P30 P40 P50
Disk Category
Size 32GB 64GB 128GB 512GB 1TB 2TB 4TB

Table 2-2. Sizes available in Standard Managed Disks. If you create a standard
managed disk of 700GB, disk is mapped to an S30 disk, as Azure maps the size
with the most close category available.

Standard Managed S4 S6 $10 $20 S30 S40 S50
Disk Category
Size 32GB 64GB 128GB 512GB 1TB 2TB 4TB

102

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Managed disks creation is a very simple process and it can be done with Azure
Portal also. As you can see from the images below, you don’t need to specify the storage
account to attach an additional data disk to the SQL Server virtual machine. Azure will

manage it automatically.

Create managed disk b4

* Name

[caadiscr |

* Rescurce group
Create new (@) Use existing

rg_dataplatform_book w

* Account type @

Bramium (550) v

* Source type @

Mone (empty disk) o
* Size (Gig) O
32 o
05 disk
NAME SIZE STORAGE ACCOUNT TYRE ENCRYPTION HOST CACHING
5q1201Tubunty_OsDisk_1_887M{2d400b4252296b18809c5c1124 30 GiE Premium_LAS Mot enabled Read/write w
Data disks
LUN MAME SIZE STORAGE ACCOUNT TYPE ENCRYPTION HOST CACHING

Figure 2-10. Adding a managed data disk to a SQL Server virtual machine

Benefits of using Managed Disks become interesting when you need to manage a
lot of Virtual Machines and a lot of Storage Accounts. If this is the case you need to deal
with when you need to architect a solution for your customer, then we recommend that
you explore Managed Disks in detail, as they could give you a lot of benefits in terms of
manageability and performance. To read more about managed disks, visit: https://
docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage

Note Storage performance and scalability numbers are very important when you
need to design a proper infrastructure. We leave here a document that can help
you to understand scalability limits and performance targets associated with each
storage account choice you will make during the design of solutions: https://
docs.microsoft.com/en-us/azure/storage/common/storage-
scalability-targets

103

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Backup to Azure Storage

Now that we have done a quick introduction to Azure Storage, we are ready to
understand how SQL Server is able to leverage it to manage backups and restores of data
using Azure.

Backing up data to cloud is a very common practice these days, as cloud solves many
of the typical backup problems that companies face, and the implementation is usually
not difficult to do and to maintain.

Using tapes to move data to a remote location sometimes is not possible for
companies that don’t have a remote datacenter or a safe location to use. The addition
of cloud options is of support in this case. Retention of data is another advantage; space
in the cloud is virtually unlimited, and generally cheaper, therefore you will probably be
less constrained when designing the retention policies.” Basic disaster recovery scenarios
in the cloud are also interesting to consider for some customers, as you could backup up
data from on-premises and, in case of issues in the main datacenter, use the cloud as a
restore option, reducing RTO. Last but not least, storage in the cloud is usually cheaper
that on-premises storage, and you can also choose storage tiers optimized to store data
with very low frequency access, like backups.

SQL Server, of all the server products that Microsoft makes, is the one with the
most advanced features to leverage hybrid cloud possibilities offered by Azure. In this
paragraph we will give examples of SQL Server running on-premises and saving data to
the cloud. The same examples will work with SQL Server running in an Azure Virtual
Machine, with no difference and, due to the positioning of the VM, with even better
performances.

SQL Server offers several ways to create backups on Azure:

e SQL Server Backup to URL. The ability to backup data to cloud using
an additional option to the Tape and Disk options already available.

e SQL Server Managed Backup to Microsoft Azure. The possibility to
backup data to cloud using an automated mechanism provided by
SQL Server.

o File-Snapshots Backups. The possibility to take snapshots of data and
log files that are placed into Azure Storage.

104

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

SQL Server Backup to URL

Using the SQL Server Backup to URL feature in SQL Server is very similar to traditional

backup possibilities offered by SQL Server. The TO URL option is an addition to existing
TO DISK and TO TAPE options already available in SQL Server, starting from SQL Server
2012 SP1. Functionalities are very similar, and below you will find some additional

considerations:

It uses Azure Storage as a destination. You need to create a container
to host backups. Recommendation is to set the container as Private,
to avoid public access to files, and use HTTPS for the storage
endpoint.

You can use both page and block blobs. Using block blobs gives you
the ability to stripe for very large database backups. At the time of
writing, Premium Storage is not supported as a destination.

All the tools and languages commonly used to work with SQL Server
are supported, including SQL Server Management Studio, TSQL,
PowerShell, and SMO.

Note Backup To URL requires being part of db_backupoperator database role
with Alter any credential permission.

Backing up data to Azure Storage is a process that requires the following macro steps

to be accomplished:

1.

Create an Azure Storage Account and a Container, to host
backups.

Create a SQL Server credential object, to store the authentication
information necessary to access the storage account. You can
connect to the container URL using a Shared Access Signature
token.

Execute the backup against the Azure Storage account, using
SSMS or code.

105

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

In the code snippets and steps below we perform the backup of AdventureWorks to

Microsoft Azure.

CODE SNIPPET 1 - Configure the Storage Account to host backups,
including security configuration. We will do that using the storage
client library for .NET.

CODE SNIPPET 2 - Backup AdventureWorks to Azure Storage using
TSQL.

Restore database using SSMS to another virtual machine.

We will change the storage tier of a backup blob file in order to
archive it, using storage tiering possibilities offered by Azure Storage.

CODE SNIPPET 1
We have added the appSettings section to the App.config file in the console

application solution. The StorageCnn connection string contains the protocol, https in

this case, the account name, and the account key.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>
<startup>

<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6.1" />

</startup>

<appSettings>
<add key="StorageCnn" value="DefaultEndpointsProtocol=https;
AccountName=dataplat;AccountKey=HvZOm211rFZ6kRxDUJKMdidBOwWNIHUPiX
Ddrou5UUt1oKpPRybSNpcROxcvN3 ffDBKOwjhVkLsRg4855PfVeQ0==;Endpoint
Suffix=core.windows.net"/>

</appSettings>

</configuration>

The Program.cs file contains:

106

References to Microsoft Azure Storage Client Library for NET
(nuget package "Windows .Azure.Storage"), and to Microsoft

Azure Configuration Manager library for .NET (nuget package
"WindowsAzure.ConfigurationManager")

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

« Instances of classes that refer to Storage Account (sa), Blob Storage
(cbc), and Container (cbco). The container backuptourl is created, if
it does not exist already.

o Instances of classes that refer to Shared Access Policy (sap). A
policy that provides access for one month is created, and then a
Shared Access Signature token that inherits the policy is added to
the container. The token, sastoken string, can now be used from
an application, SQL Server in our case, to have access (we gave full
access to the container) to the container directly and save backups
there. Using Shared Access Signature tokens is a security best practice
that is better than giving full access to the entire storage account,
using the storage account name and access key, as in this second
case you could compromise the security of all the storage account,
as security owner. The Console.lriteline(sastoken); output
should be similar to this one: 2sv=2017-04-17&sr=c&sig=8Y1%2FMF
bo%2BWjEYysLJQsXLXK%2BiGzV5XUpSlruSsP1qzE%3D&st=2018-01-
04T18%3A29%3A44Z&se=2018-02-04T18%3A29%3A44Z&sp=racwdl

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

//namespaces for WindowsAzure.Storage and WindowsAzure.ConfigurationManager
nuget packages

using Microsoft.Azure;

using Microsoft.WindowsAzure.Storage;

using Microsoft.WindowsAzure.Storage.Blob;

namespace BackupToURL

{

class Program

{

static void Main(string[] args)

{

107

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

108

//reference to storage account using the connection string from
app.config;

string storageCnn = CloudConfigurationManager.GetSetting
("StorageCnn");

CloudStorageAccount sa = CloudStorageAccount.Parse(storageCnn);

//create the container, private by default;
CloudBlobClient cbc = sa.CreateCloudBlobClient();
CloudBlobContainer cbco = cbc.GetContainerReference
("backuptourl");

cbco.CreateIfNotExists();

//create a shared access policy that expires in 1 month; create
a shared access signature on the container;
SharedAccessBlobPolicy sap = new SharedAccessBlobPolicy()
{
SharedAccessStartTime = DateTime.UtcNow,
SharedAccessExpiryTime = DateTime.UtcNow.AddMonths(1),
Permissions = SharedAccessBlobPermissions.
Add | SharedAccessBlobPermissions.Create |
SharedAccessBlobPermissions.Delete
| SharedAccessBlobPermissions.List | SharedAccessBlob
Permissions.Read | SharedAccessBlobPermissions.Write
};

string saspolicy = "containerpolicy";

BlobContainerPermissions perm = cbco.GetPermissions();
perm.SharedAccessPolicies.Add(saspolicy, sap);
cbco.SetPermissions(perm);

string sastoken = cbco.GetSharedAccessSignature(perm.SharedAcce
ssPolicies[saspolicy]);

Console.WritelLine(sastoken);
Console.ReadlLine();

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

73 Microsoft Azure Storage Explorer - Manage Access Policies I
Access Policies

Container:

backuptourl

Access policies:

Id Start time Expiry time Read Write Delete List
containerpolicy 01/04/2018 0€:29 PM 02/04/2018 06:29 PM < 4) ol Remaove
Add
Time zone:
0 Local
®] urc

Figure 2-11. You can use Azure Storage Explorer, a free cross-platform tool, to
check if the container, backuptourl, and the shared access policy, containerpolicy,
have been created successfully. You can also use the tool to create policies and SAS
tokens. You can download Azure Storage Explorer from here: https://azure.
microsoft.com/en-us/features/storage-explorer/

23 Microsoft Azure Sterage Explorer - Generate Shared Access Signature x|

Shared Access Signature

Access policy: | containerpalicy v

Start time: 01/04/2018 06:29 PM

Expiry time:

Time zone:
® Local
! UTC

Permissions:
+| Read

+| Write

+ Delete
| List

Create Cancel

Figure 2-12. Using the Create button, you can generate a SAS token using the
Shared Access Policies created before

109

https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

We are now ready to take the first backup to Azure using SQL Server. We will use
TSQL to accomplish this task using the script below:

o Create a CREDENTIAL object. You need to strictly use the syntax below
to set it up; the CREDENTIAL name has to contain the URI path to the
container that we will use for the backup, the IDENTITY name must be
"SHARED ACCESS SIGNATURE' and the SECRET must be the SAS token.
Please remember to remove the first character, ?, from the token, to
make it work.

o Backup the database using the TO URL option

CODE SNIPPET 2
USE MASTER
Go

--create credential object using SAS

CREATE CREDENTIAL [https://dataplat.blob.core.windows.net/backuptourl]
WITH IDENTITY= 'SHARED ACCESS SIGNATURE'

, SECRET = 'sv=2017-04-178&sr=c8sig=8Y1%2FMFbo%2BWjEYysLIQsXLXK%2
BiGzV5XUpS1ruSsP1qzE%3D&st=2018-01-04T18%3A29%3A44Z&se=2018-02-
04T18%3A29%3A44Z8sp=racwdl’

USE AdventureWorks
GO

BACKUP DATABASE AdventureWorks

TO URL = 'https://dataplat.blob.core.windows.net/backuptourl/advworks.bak"
WITH COMPRESSION, STATS = 5

GO

110

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

SOLGueryRoqt - EUL ter (OB (B4 & X

Cormect- 7% 8 T & =/BACKUP DATABASE AdventureWorks
o O — TO URL = 'https://dataplat.blob.core.windows.net/backuptourl/advworks.bak’
® W Sacurty WITH COMPRESSION,
5 Sarer st STATS = &
= o Repleaton L
x 1 Pobyle GO
5 Syt O High dvadisibty
@ Management
2 :*kam(&lbil Wim =4 C
= o S0L Server Agent
 [i] et roties A Menagen
= I dtipint (Awe Seeage Acceust - Eacped) S percent processed.
& W Centainers 10 percent processed.
Backwptour 15 percent processed.
] 20 percent processed.

25 percent processed.
30 percent processed.

t processed.
zocessed.
rocessed.
zocessed.
rocessed.

t processed.
rocessed.
BS percent processed.
§0 percent processed.
$5 percent processed.
Processed 24336 pages for datab: s eWorks®,
100 percent processed.
Frocessed 2 pages for database 'AdventureWorks', file ‘AdventureWorks2014 Log' cn file 1.

file * eWorks2014_Data' on file 1.

BACKUP DATABASE successfully processed 24338 pages in 26.022 seconds (7.306 MB/sec).

dataplat (Azure Storage Account - Encrypted)
= Containers
2 backuptourl

[advworks.bak

Figure 2-13. The output of the command in SQL Server Management Studio. You
can also see the backup file created in the destination, as SSMS also has the ability
to connect, using the Connect button, to Azure Storage, providing the storage
account name and the storage access key

Some of the options that will make your BACKUP TO URL experience better:

¢ COMPRESSION. Enables backup compression; a must use option,
especially if your SQL Server instance is located on-premises.

o« FORMAT. To overwrite backup file, append is not supported.

o STATS. To display the percentage of progress. When omitted, 10% is
used.

Restore to a different virtual machine

The RESTORE option is also supported, and it is very useful also for dev/test or basic
disaster recovery scenarios. Imagine that you want to give a backup of your production
database to a developer that needs to test a new feature. You could deploy a SQL Server
image from the Azure Marketplace, add the CREDENTIAL object in the same exact

111

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

way as the script above, and restore the database from the Azure Storage. SQL Server
Management Studio includes in the GUI the possibility to manage backups and restores
using Azure Storage.

RESTORE DATABASE AdventureWorks
FROM URL = 'https://dataplat.blob.core.windows.net/backuptourl/advworks.bak"

(=) Select a Backup File Location x
P

To browse the Azure Storage Container, you can do one of the following:
1) Select a pre registered storage container from the drop down

2) Enter a new storage container and a shared access signature (A new SQL Credential will be registered for you).
3) Click the Add button to brewse more storage: containers from your Azure subscriptions
Py —— |itps://dataplat blob.core windaws net/backuptourd ~

sv=2017-04-174sr=clsig=8Y1 %2FMFbo % 2BWIEYysLIGsXLXK
%2BGzV5XUpSiruSsPlqzE % 3D8st=2018-01-

Shared Access Signature 4T18%3A297%3A44 2856 =2018-02-04 T18% 32973044 Z8sp racwdl]
[ok || Ccancel
:.5; Restore Database - AdventureWorks . (]
Restoring. I 1007 Stop
Select a page. LT Seript @ Help
& General
K& Fies
& Oplions
..... —, v
|hetp
AdventureWorks =
AdvertureWarks
[The last backup taken (Friday. January 5. 2018 11:14:02 AM)] [Timeine... |
ft SOL Server M Studio % Pton FrstLSN LastLSN |
47000000041500037 | 4700000004
i i 4
Connection
¥ SQL2017Win
[SGL201 TWin'\francescodiaz]
w " ’
Progress.
s < 2
Verfy Backup Media
o e |

Figure 2-14. The support to Backup To URL is also available in SQL Server
Management Studio

112

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Use archive tier on blob files for long-term data retention or archiving

As we described earlier in the chapter, general-purpose storage v2 and blob storage
have tiers that define how frequently data are accessed. Using archive tiers gives
you the ability to achieve long-term retention and archiving options. When a blob is
set to archive tier, the blob goes offline and cannot be read again from applications
until it goes to cool or hot tiers again. To change the tier property you can use the
SetStandardBlobTier method contained in the CloudBlockBlob class, like in the
example below. You can append the C# code that we used before and run it after the
T-SQL statement has been executed.

CloudBlockBlob blob = cbco.GetBlockBlobReference(blobName);
blob.SetStandardBlobTier(StandardBlobTier.Archive);

Azure Portal also has also the ability to change the blob tier property. Consider that
changing from archive to cool or hot can take several hours, see the image below that
warns before confirming the operation.

ACCESS TIER

Optimize storage costs by placing your data in the appropriate access
tier. Learn more

ACCESS TIER [cool >]
Optimize storage costs by placing your data in the appropriate access
tier. Learn more Rehydrating a blob from Archive to Hot or Cool may| &z
Archive o take several hours to complete.
Vi

Figure 2-15. Screenshots taken from Azure Portal, in the container section.
Changing the access tier from Archive to Cool/Hot could take several hours to
complete

Note To try additional scripts that use the Backup TO URL feature,
read this document: https://msdn.microsoft.com/library/
dn435916(v=sql.120).aspx#credential

SQL Server Managed Backup to Microsoft Azure

SQL Server Managed Backup is a very interesting feature introduced in SQL Server 2014,
and improved in SQL Server 2016. It basically gives SQL Server the authority to perform
backups, based on database usage, using Azure Storage as the destination. Unless

113

https://msdn.microsoft.com/library/dn435916(v=sql.120).aspx#credential
https://msdn.microsoft.com/library/dn435916(v=sql.120).aspx#credential

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

advanced options are required to customize the standard behavior of the feature, SQL
Server is able to take care of everything without user intervention, managing backups
automatically. SQL Server Managed Backup is a feature useful to implement for small
workloads, where the DBA intervention required for backups is usually minimal. It is
also useful for hosting providers and ISVs that host many small databases in multi-
tenant environments, where the backup design is very similar for many workloads or can
be clustered in few usage database patterns. A third scenario where SQL Server Managed
Backup is an interesting feature is for SQL Server running in Azure Virtual Machines,
where the Azure Portal contains options available to enable the feature and define
settings.

Main components and features of SQL Server Managed Backup:

o Itcanbe enabled at Database Level or Instance Level. At Database
Level, you can override Instance Level Settings. When enabled at
Instance Level, SQL Server Managed Backup takes care of newly
added databases, also including them in the backup policy.

e Data are saved to Azure Storage, and the way to access it is the same
as the Backup TO URL feature, therefore you will need CREDENTIAL
objects, a Storage Account, a Container to host blob files (Private
access recommended as usual for security reasons), and a Shared
Access Signature token.

e SQL Server Agent is required to use SQL Server Managed Backup.

e In the case of SQL Server Managed Backup, the preferred way
to do the configuration and monitor the execution is to use
T-SQL. Powershell is also supported and cmdlets are available, while
SSMS does not contain a GUI to administer SQL Server Managed
Backup. SSMS restore database GUI supports restore of databases
managed using SQL Server Managed Backup though.

e SQL Server Managed Backup supports backup of user databases.
Backup of master, model, msdb, tempdb is not supported.

e All metadata and backup history information for SQL Server
Managed Backup are stored into msdb database.

e Backup files can be encrypted using certificates or asymmetric keys.

114

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Note SQL Server Managed Backup GUI was available in older versions of SQL
Server Management Studio, under the Management node. This is not the case
anymore for newer versions, and for on-premises installations we recommend that
you use T-SQL to setup SQL Server Managed Backup instead. For Virtual Machines
that run SQL Server, you could use both T-SQL and Azure Virtual Machines specific
features for SQL Server that we are going to describe later in this section.

As a first step, you need to configure a Shared Access Signature on an Azure Storage
blob container, and then create a CREDENTIAL object in SQL Server. This step is the
same as we did in the Backup TO URL paragraph previously in this chapter. We will omit
this step, as there are no differences.

MNAME LAST MODIFIED PUBLIC ACCESS LE.. LEASE STATE

backuptourl 1/4/2018, T:29:47 PM Private Available

managedbackup 1/6/2018, 1217:50 FM Private Available

Now you have basically two main choices: you could either just enable SQL Server
Managed Backup with default settings, or you could set advanced settings first and
then enable the feature. You can combine the two options for example, use the default
settings at instance level and custom settings for a specific database. In the Transact
SQL script below, we will first enable SQL Server Managed Backup using default settings
at instance level, then we will use advanced settings for a specific database, overriding
default settings. For database4 we will add encryption and a custom schedule for
backups.

USE MASTER
Go

--CREATE CREDENTIAL OBJECT USING SAS TOKEN

CREATE CREDENTIAL [https://dataplat.blob.core.windows.net/managedbackup]
WITH IDENTITY= 'SHARED ACCESS SIGNATURE'

, SECRET = 'sv=2017-04-17&si=managedbackup-policy18sr=c&sig=%2FqcWK6rvceuQr
9DWGz1aVdH490ruUu01iLXHARqEbVO%3D"

115

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

-- ENABLE SQL SERVER MANAGED BACKUP AT INSTANCE LEVEL WITH DEFAULT SETTINGS

USE MSDB;

GO

EXEC managed backup.sp_backup _config basic

@enable_backup=1
,@container url =
"https://dataplat.blob.core.windows.net/managedbackup’
,@retention days=30;

GO

= FH dataplat (Azure Storage Account - Encrypted)
= Containers
® backuptourl
[databasel_bd%4ed24805c4b34%b1eab41e1e59a09_20180106141001+01.bak
[databasel_bd%4ed24805c4b34%b1eab4d1e1e59209_20180106141511+01.log
[databasel_bd94ed24805c4b349b1eabdle1e59209_20120106161910+01.log
[database2_45f1b337f8fa44008146dfb2840763¢8_20120106135431+01.bak
[database2_45f1b337f8fa44008146dfb2840763¢8_20180106135942+01.log
[database2_45f1b337f8f244008146dfb2840763¢8_20180106160341+01.leg
[database3_dabbf851eddedaf5920552b1febf5717_20180106135431+01.bak
[database3_dabbf851eddedaf5920552b1febf5717_20180106135941+01.log
[database3_dabbf851edded4af5920552b1febf5717_20180106160341+01.log
[databased_cdaT1d18cfa14d012518a6b4a022F11_20180106155320+ 01.bak
[databased_c4aT1d18cfa14d012512a6b4a022ff11_20180106155831+01.log
[databased_cda71d18cfa14d012518a6b4a022ff11_20180106160341+01.log
[databased_cdaT1d18cfa14d012518a6b4a022f11_20180106161401+01.log
[0 databased_cdaT1d18cfa14d012518a6b4a022f11_20180106161910+01.log
[databased_cdaT1d18cfa14d012512a6b4a022f11_20180106162420+01.log
[databased_cdaT1d18cfa14d012512a6b4a022f11_20180106163440+01.l0g

Figure 2-16. The managedbackup container view from SQL Server Management
Studio, where . bak (full backups) and . 1og (log backups) files are stored and
saved automatically from SQL Server Managed Backup

/*

CONFIGURE ADVANCED OPTIONS AND CUSTOM SETTINGS FOR ADVENTUREWORKS
*/

-- DB MASTER KEY CREATION
USE MASTER;
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'P4ssword';
GO

116

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

-- CREATE CERTIFICATE
USE MASTER;
Go
CREATE CERTIFICATE ManagedBackupCert
WITH SUBJECT = 'ManagedBackupCert';
GO

-- CUSTOM ADVANCED SETTINGS FOR databases4

USE MSDB;

Go

EXEC managed backup.sp_backup config advanced

@database name = 'databases4’
,@encryption_algorithm ="AES 128’
,@encryptor type = 'CERTIFICATE'
,@encryptor_name = 'ManagedBackupCert';

GO

USE MSDB;

GO

EXEC managed backup.sp_backup config schedule
@database name = 'databases4'
,@scheduling option = 'Custom'
,@full backup freq type = 'Daily’
,@days of week = "'
,@backup _begin time = '15:50'
,@backup_duration = '02:00'
,@log backup freq = '00:05'

GO

Note Enabling SQL Server Managed Backup at database level, you will receive a
message like the following: SQL Server Managed Backup to Microsoft Azure is
configured for the database, 'database4', with container url 'https://dataplat.
blob.core.windows .net/managedbackup’, retention period 5 day(s),
encryption is on, backup is on, and a Custom backup schedule has been set.

117

https://dataplat.blob.core.windows.net/managedbackup
https://dataplat.blob.core.windows.net/managedbackup

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

-- FUNCTIONS & PROCEDURES
USE MSDB
Go

SELECT managed backup.fn_is master switch on () -- 1 = active; 0 = paused
SELECT * FROM managed backup.fn _backup db_config (NULL)

WHERE is_managed backup_enabled = 1 -- managed database status

SELECT * FROM msdb.managed backup.fn get current xevent settings() --
extended events settings

EXEC managed_backup.sp_get backup_diagnostics -- see backup diagnostics

B Resuts g Messages

@ rame & _pud e e d. s managed_ cortane: leton_days encyobon_dgoahvs encYDLr e encrpler_name
1 datsbasel BD34ED24805C4EM4SBVEABLIEIESSAS O 0 1 hips://dataplat blob core windows nel/managecba . | 30 NULL NULL NuLL
7 dasbawe? 4SFIBNITFEFAMO0-SUESOFBINN0EXE O (] 1 igs /7t aplat bob core wndows net/mansgedbe | 30 KU N NuLL
3 dmsbaee) DABBFISTEDME-AAFS920552BIFERFSTIT O L] 1 hps / biot V3o NULL HULL NULL
4 datsbased CAATIDISCFAT4DOTASIS-AGBLAIZZFFIT O 0 1 Hips //cat aplet bob core wevdows d

Figure 2-17. The output in SSMS of the managed_backup. fn_backup_db_
config (NULL) function. Highlighted the container url, retentation days,
encryption_algorithm, encryptor type, encryptor name fields.

-- DISABLING SQL SERVER MANAGED BACKUP

USE MSDB;

GO

EXEC managed_backup.sp_backup_config basic
@enable_backup=0;

GO

Conditions that will trigger Full Database backups and Log Database backups:
Below are the standard conditions in which SQL Server Managed backup will run,
unless you decide to customize default settings.

118

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS
Full Database backup:

e When SQL Server Managed Backup is enabled with default settings at
instance level and when SQL Server Managed Backup is enabled for a
database

e Loggrowth since last full backup is >=than 1GB
o 1 week has passed since last full backup

e Logchain is broken, e.g. for a backup launched in T-SQL without
using the COPY ONLY option.

Transaction Log backup:
e T-LOG space used is >= 5MB
e 2hours have passed since last log backup
e Nolog backup history

o Lastlogbackup timestamp is older than last full backup

Note We recommend applying at least CU1 for SQL 2017 and CU5 for SQL
2016 SP1, as there is a fix available for SQL Server Managed Backup for custom
schedules. More info here: https://support.microsoft.com/en-us/
help/4040535/fix-sql-server-managed-backups-do-not-run-a-
scheduled-log-backup-in

Restore database options available in SQL Server support accessing backups taken
using SQL Server Managed Backup. In the image below you can see the SSMS Database
Restore GUI accessing backups taken using managed backups.

119

https://support.microsoft.com/en-us/help/4040535/fix-sql-server-managed-backups-do-not-run-a-scheduled-log-backup-in
https://support.microsoft.com/en-us/help/4040535/fix-sql-server-managed-backups-do-not-run-a-scheduled-log-backup-in
https://support.microsoft.com/en-us/help/4040535/fix-sql-server-managed-backups-do-not-run-a-scheduled-log-backup-in

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

laZ Restore Database - databased -] X
ia:nmmmdedammuMm.\wmmmmmpage.
Select a page | LJ Script ~ | @) Help
& General
K Fles
& Options Seurce
@® Database: databased v
O Device:
Database:
Dastinal
Database: [ol
Restore to: [The last backup taken (ssbato 6 gennaio 2018 17-00:34) | | Tmelne...
Restore plan
Backup sets to restore:
Restore Name Component Type Server Database Postion First LSI
[0 datsbasestanaged Backup Datat Ful EUNBI7266 dstabased 1 360000
% databased-Managed Backup Log Transaction Log EUNB17266 databased 1 360000
[detabasedManaged Backup Log Transaction Log EUNB17266 dastabased 1 360000
databased-Managed Backup Log Transaction Log EUNB17266 databased 1 360000
= databased-Managed Backup Log Transaction Log EUNB17266 dalabased 1 360000
[F] databased-Managed Backup Log Transaction Log EUNB17266 dstabased 1 360000
Connection [l databased-Managed Backup Log Transaction Log EUNB17265 databased 1 360000
¢ EUNB1T266 [HQ\idiaz] [F] databased-Managed Backup Log Transaction Log EUNB17265 dastabased 1 360000
] databased-Managed Backup Log Transaction Log EUNB17266 databased 1 360000
| databased-Managed Backup Log Transaction Log EUNB17266 databased 1 360000
[l databased-Managed Backup Log Transaction Log EUNB17266 dastabased 1 360000
- databased-Managed Backup Log Trenssction Log EUNBI7266 datebased 1 360000
Progress
< >
gy Done L - |
@ | Verfy Backup Media

Figure 2-18. Restore options in SQL Server can access backup data from Azure
Storage taken using SQL Server Managed Backup

If the SQL Server instance is running on a SQL Server Virtual Machine deployed
choosing an instance from the Azure Marketplace and the server operating system is
Windows, you can enable SQL Server Managed Backup using the Azure Portal, choosing
the options that we have explained before, but using a graphical interface. The image
below displays the options that you can configure:

120

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

g Virtual machines > L2017Win > SOL Server configuration

SQL Server configuration b
New . . -
Maintenance start hour (local time) ~ 02:00
Dashboard Maintenance window duration 50
(minutes)
B Al resources
Resource groups Automated backup ¥ Cancel
. Dicat
Function Apps * Retention period (days) —_ 30
SQL databases
*
‘s iataplat ?
Azurs Cosmos DB torage account dataplat
8 virtual machines
Load balancers
Y v
Storage accounts Passward | |
2 Virtual networks * Backup system L] Disable “
databases
Azure Active Directory . - T
Configure backup L] Manual Automated
schedule
Monitor
All your SQL Server databases in this virtual machine will be backed up automatically per the
b Advisor settings you choose, If you decide to change settings via SQL Server Managed Backup in the
future, the new settings will override the Automated Backup settings.
8 Security Center

Figure 2-19. SQL Server Managed Backup can be enabled from Azure Portal, if
the SQL Server virtual machine is running on Windows and it has been deployed
using a SQL Server image available in the Azure Marketplace

Using Azure Storage to host SQL Server Database Files and Use
Azure Snapshots

SQL Server, starting from SQL 2014, introduces native support to put primary data files
(.mdf), secondary data files (.ndf) and log files (.1df) in Azure Storage directly, instead of
using disks. This functionality can be used both for SQL Server running on-premises and
SQL Server running on Azure Virtual Machines. Although it is supported to have SQL
Server database engine running on-premises and database files on Azure Storage, we
recommend that you implement this feature only when SQL Server database engine is
running on Azure Virtual Machines.

121

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

SQL SERVER RUNNING ON A VM
OR ON-PREMISES

Figure 2-20. SQL Server engine with database files hosted on Azure Storage high
level diagram

SQL Server 2016 introduced backup possibilities taking File-Snapshot backups for
database files hosted in Azure Storage. It is a very interesting possibility as it provides
nearly instantaneous backups of data.

The T-SQL script below contains the following:

o CREDENTIAL object creation, with authentication information to
access an Azure Storage blob container, using a SAS token, as seen
before in chapter

o CREATE DATABASE with SQL Server database files hosted on Azure Storage

e Backup database using the WITH SNAPSHOT option

CREATE CREDENTIAL [https://dataplat.blob.core.windows.net/databasefiles]
WITH IDENTITY='SHARED ACCESS SIGNATURE',

SECRET = 'sv=2017-04-17&si=databasefiles-policy1&sr=c&sig=teW%2Bf%2FKHinbF6
P7thwHrs2tXEYApVE2]ZIuJBGIN9b8%3D'

CREATE DATABASE filesonazure

ON

(NAME = filesonazure dat,
FILENAME = 'https://dataplat.blob.core.windows.net/databasefiles/
datafile1l.mdf')

LOG ON

(NAME = filesonazure log,
FILENAME = ‘'https://dataplat.blob.core.windows.net/databasefiles/
logfile1.1df")

122

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

W Database Properties - filesonazure - o 5 | © BB dataplat (Azure Storage Account - Encrypted)
B Containers
Selectapoge O 5cpl ~ @ Hep M i automaticbackup
; %;’d] backupcontainer
kuptourl
z Fiegroups Database name: Hesonarure = datebasehles
5 Otors Ourer —— . 0 daatiet mat
K Parnzoong O logfilelicf
i&mﬂﬁmﬁ @ B managedbackup
Mirasing

r'E Log Shipei Dalabase fies:
K Query Store Logical Name Autcgrowth / Masze Path Fle Name

fescranre. . By B4 M8, Uririted — || Hips:idataplat Hob. c L datafie] md

fiescnazwre... By 64 ME. Limtedto 104857 |.. tpx: 2 loghle 1 Jf

Figure 2-21. Screenshot taken from SSMS that displays database files hosted on
Azure Storage

BACKUP DATABASE filesonazure

TO URL = 'https://dataplat.blob.core.windows.net/databasefiles/
backupwithsnapshot.bak'

WITH FILE_SNAPSHOT;

GO

:

[backupwithsnapshot.bak
[datafilel.mdf
O logfilel.ldf

The command above will succeed as the database files that are hosted directly on
Azure. Launching the command above on a database hosting files on disks, both on-
premises and Azure, will raise an exception like the following:

Msg 3073, Level 16, State 1, Line 16

The option WITH FILE_SNAPSHOT is only permitted if all database files are
in Azure Storage.

Msg 3013, Level 16, State 1, Line 16

BACKUP DATABASE is terminating abnormally.

-- to view the database snapshots

USE filesonazure

Go

select * from sys.fn _db_backup file snapshots (NULL) ;

123

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

BH Resuts gl Messages
Be_nd snapshot_time snapshot_ud
1 Ll_ | 2018-01-13T14:47:28.5749131Z hitps-//dataplat blob core windows net/databasefiles/datafile | mdf 7snapshot=2018-01-13T14:47:28 57491312

22 201801-13T14:47-28.58992867 https://dataplat blob core windows net/databasefiles logfle 1 ldf 7snapshot=2018-01-12T14:47:28 58992867

Figure 2-22. Datafile and log file snapshots

Note A snapshot backup consists of one snapshot per each database file (data
and log), plus a backup file that contains pointers to snapshot files. In our example,
we have two snapshots plus one backup file that is very small, as it only contains
pointers. See the image below

I _‘l backupwithsnapshot.bak I 1/13/2018, 3:47:28 PM Cool (Inferred) Block blob Available
3 datafilel.mdf 1/13/2018, 3:47:28 PM Cool (Inferred) Page blob 8 Mmis Leased
=] logfilet.ldf 1/13/2018, 410:27 PM Cool (Inferred) Page blob & Mig Leased

Figure 2-23. The backup file that contains pointers to snapshot files, not displayed
in the Azure Portal

A few considerations on SQL Server database files on Azure Storage and backup
database WITH FILE_SNAPSHOT option:
Database files on Azure Storage

o Easy to maintain, if you are using a SQL Server running on an Azure
Virtual Machine. For example, detach and attach operations from
one Virtual Machine to another are very simple, as data and log files
are decoupled from the Virtual Machine.

o Simplified HA and DR scenarios for basic workloads. In case of
simple scenarios, without SQL Server high availability features
enabled such as AlwaysOn, it is very fast to provide a quick restore
option of a VM that might crash, simply switching on a new VM and
attaching files.

124

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

You can overcome Azure Virtual Machines disk limits. Each VM on
Azure has a limit in terms of maximum numbers of disks that can

be attached. Using a small VM on Azure could become a limit for
databases with big storage requirements. Putting data on Azure
Storage excludes this limitation, as you are not attaching disks to VMs
but writing to Azure Storage directly

Support for snapshot backups is only available if you put data and log
files on Azure Storage

If you DROP a database, database files will not be deleted

BACKUP TO URL WITH FILE_SNAPSHOT

Use the sys.sp_delete_backup system stored procedure to delete
snapshot backups. Deleting the backup file without using the stored
procedure will keep snapshots, as they are directly linked to blob
database files. Dropping blobs that have snapshots, the actual
database files, is instead prevented.

o Failed to delete blobs 4:40 PM

Failed to delete 1 out of 1 blobs:
datafile1.mdf: This
operation is not permitted because the blob has snapshots.

If you have orphaned snapshots because you deleted the backup file,
you can use the sys.sp_delete_backup_file_snapshot system stored
procedure to delete backup snapshots. Database still has to exist to
execute the stored procedure. If you deleted the database too, you
could still use tools or the Azure API to perform snapshots and blobs
deletion, such as the Azure Storage Explorer.

sys.sp_delete_backup_file_snapshot @db_name=filesonazure,
@snapshot_url=N"https://dataplat.blob.core.windows.
net/databasefiles/datafile1.mdf?snapshot=2018-01-
13T14:47:28.57491312'

125

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

SQL Server Stretched Databases

So far in this chapter we have worked with data in hybrid cloud scenarios mainly,
focusing on backups. SQL Server 2016 introduced a functionality called Stretched
Databases that allows us to leverage on Azure to store data used with less frequency
while keeping data online for applications. It is a very powerful feature in our opinion,
especially for scenarios where you can identify use cases that could benefit from it.
The most typical one is related to historical data, like invoices of previous years, that
still need to be used inside the ERP and not only via reports. Keeping data live inside
the ERP in such scenarios is a huge productivity benefit for users. One cool thing that
Stretched Database feature allows is to be transparent for existing applications, as the
client connection will still use TDS protocol to connect to the same SQL Server, so the
application will not see any change and will continue working as before.

Note Not all tables are eligible to be stretched to Azure. See this document
to understand more on limitations and eligibility criteria for SQL Server tables
https://docs.microsoft.com/en-us/sql/sql-server/stretch-
database/limitations-for-stretch-database

Steps needed to enable SQL Server Stretched Database feature:

o Create an Azure SQL Server Database, if none exist already, to host
the Azure SQL Database that will have the stretched tables. Do not
forget to open SQL firewall port on Azure SQL Database for the local
server IP Address that will use the functionality

o Enable the server for Stretch using EXEC sp_configure 'remote data
archive' , '1';
o Enable the database for Stretch
Executing the T-SQL script below will enable the Stretch Database feature for the
SQL Server instance and a specific database, WideWorldImporters sample database
in our case. The script could take a few minutes to complete. What it will do is create a

database on the Azure SQL Database server that you created, and this database will be
used to stretch your data.

126

https://docs.microsoft.com/en-us/sql/sql-server/stretch-database/limitations-for-stretch-database
https://docs.microsoft.com/en-us/sql/sql-server/stretch-database/limitations-for-stretch-database

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

This database will be dedicated to your stretch operations, and its specific storage
and performance features; at the time of writing, storage limits for the database is 240TB
of data and, depending on the performance that you need for the data that you will
stretch, you can choose from different performance levels, measured in Database Stretch
Units (DSU).

Note To get more details on DSU and the pricing model applied to Stretched
Databases, we recommend that you visit this document: https://azure.
microsoft.com/en-us/pricing/details/sql-server-stretch-
database/

-- enable the server for stretch

EXEC sp _configure 'remote data archive' , '1';
GO

RECONFIGURE;

GO

-- enable a database for stretch
USE WideWorldImporters;
GO0

CREATE MASTER KEY ENCRYPTION BY PASSWORD='P4ssword!';
Go

CREATE DATABASE SCOPED CREDENTIAL sqldbcredential
WITH IDENTITY = 'francescodiaz' , SECRET = '@@Granturismo6’ ;
GO

ALTER DATABASE WideWorldImporters
SET REMOTE_DATA ARCHIVE = ON

(
SERVER = 'stretchdbs.database.windows.net' ,

CREDENTIAL = sqldbcredential

)
GO

127

https://azure.microsoft.com/en-us/pricing/details/sql-server-stretch-database/
https://azure.microsoft.com/en-us/pricing/details/sql-server-stretch-database/
https://azure.microsoft.com/en-us/pricing/details/sql-server-stretch-database/

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

After command completion, SSMS will display a different icon for the database, to
show that the database has been enabled for stretch.

® Database Diagrams
® Tables
® Views
® External Resources
® Synonyms
® Programmability
® Query Store
@ Service Broker
) Storage
) Security
@ @ WideWorldimportersDW

Figure 2-24. Database icon changes in SSMS when the db is stretched

Now that the server and the database are ready, you need to identify the tables
that could benefit from a stretch scenario. To do that, you can use the Data Migration
Assistant (DMA), a separate tool that can help to identify the tables that are eligible for
stretching.

SQAL Server 2017 on Windows

WideWorldimporters / SOLServer2017 Compat 130 Size 310GB

Performance () | Security(2) | Storage (3)

Recommendation Objects Stretch database to minimize storage costs
= High value (1) Details Objects
Stretch database to minimize storage co... 2 mpact
Provides cost-effective availability for cold data. Stretch warm and | Type Name
= Medium value (1) cold transactional data dynamically from SOL Server to Microsoft . I -
Azure with SOL Server Stretch Database. Unlike typical cold data | Table B Archive
Stretch database to optimize storage co.. 1 storage, your data is always enline and available to query. You ean | fpbis Warehouse StockitemTransactions
provide longer data ion timelines without breaking the bank
= Low value (1) for large tables. Benefit from the low cost of Azure rather than
scaling expensive, on-premises storage. Object details
Stretch database for storage savings 1 g P g)
Recommandation Type: Table
Select each table in the "Objects” saction, look if there are any Name: Waret ColdRoomTemy . Archive
blocking issues that you need to impl the d migrati Rew count: 2654736
steps to be able to enable the selected table for stretch. If no goo. 7484 M8
blocking issues reported, the table is ready to stretch now. Review
the steps in the article, to configure the table for stretch database. Ready for stretch database .

More info
Stretch Database

Figure 2-25. Data Migration Assistant screenshot displays the two tables that are
elegible for stretching

128

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Note You can download DMA here https://www.microsoft.com/en-us/
download/details.aspx?id=53595; you can also find a tutorial on how to
use the tool here: https://docs.microsoft.com/en-us/sql/sql-server/
stretch-database/stretch-database-databases-and-tables-
stretch-database-advisor

We will move both tables to Azure. Narehouse.ColdRoomTemperatures_Archive will
be entirely migrated, while rows in Waxrehouse.StockItemTransaction will be moved
using a filter criterion, to display a scenario where both cold and hot data are kept in the
same table.

--enable stretch for table - data will be moved all to Azure
USE WideWorldImporters;
GO
ALTER TABLE Warehouse.ColdRoomTemperatures Archive
SET (REMOTE_DATA ARCHIVE = ON (MIGRATION STATE = OUTBOUND)) ;
GO

Depending on the amount of data and the internet connection speed, the data
movement could take a while to complete. You can use monitor mechanisms such as the
Stretch Database Monitor tool available in SSMS, by going to Database/Tasks/Stretch/
Monitor. You can also use the data management view sys.dm_db_xrda_migration_status.

Last Updated: 13/01/2018 20:48:27
EUNB17266:WideWorldimporters
Auto Refresh: |

You are not signed in to Microsoft Azure

Source Server Azure Server
Name EUNB17266 Name stretchdbs
Datab Wi port Database RDAWIdeWorldimportersF8TAS5ES-EF13-4031-A0FC-EB10BCSBEEE
Size 5802.13 MB Service Tier Mot Available
Region Mot Available
Stretch Configured Tables View Stretch Database Health Events
Mame Migraticn State Eligible Rows Local Rows Rows In Azure Details |

' Warehouse.C, Temperatures_Archive Outbound Not Available Not Available 3579284 View |

Figure 2-26. The Stretch Database Monitor tool available in SSMS
129

https://www.microsoft.com/en-us/download/details.aspx?id=53595
https://www.microsoft.com/en-us/download/details.aspx?id=53595
https://docs.microsoft.com/en-us/sql/sql-server/stretch-database/stretch-database-databases-and-tables-stretch-database-advisor
https://docs.microsoft.com/en-us/sql/sql-server/stretch-database/stretch-database-databases-and-tables-stretch-database-advisor
https://docs.microsoft.com/en-us/sql/sql-server/stretch-database/stretch-database-databases-and-tables-stretch-database-advisor

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

SELECT * FROM sys.dm_db_rda_migration_status

161% - 4
BB Resuts gl Messages

L
85
86

s28889

table_id
1413580074
1413530074
1413530074
1413580074
1413580074
1413580074
1413580074
1413580074
1413580074
1413580074

database_jd migrated_rows stat_time_utc
n 4339 20180113 20:28:29.757

1 4559 2018-01-13 20:28:34 350
" 4399 2018-01-13 20:28:38.393
n 4599 20180113 20:28:43.213
1 4559 2018-01-13 20:28:47.280
n 4599 20180113 20:28:51.667
n 4599 201801-13 20:28:55.653
1 0 2018-01-13 20:29:12.887
n 4589 20180113 20:29:12.887
n 4599 20180113 20:29:17.300

end_time_utc emor_number emor_severdly emor_siale .
201801-13 20:28:34.350 NULL NULL NULL
20180113 20:28:38.393 NULL NULL HULL
20180113 20:28:43.213 NULL NULL NULL
2018-01-13 20:28:47.280 NULL NULL NULL
201801-13 20:28:51 667 NULL NULL NULL
20180113 20:28:55.652 NULL NULL NULL
20180113 20:29:00.313 NULL NULL NULL
2018-01-13 20:29:12.887 NULL HNULL NULL
20180113 20:29:17.300 NULL NULL NULL
20180113 20:29:21.242 NULL NULL NULL

Figure 2-27. Monitoring data movement using sys.dm_db_rda_migration_status

BB Table Properties - ColdRoomTemperatures_Archive

Selecta page

!-USGUTOHeb

8501 | =

Table is parttioned

Compression type Page

False

Text filegroup

Fiegroup

Data space

USERDATA

0,008 MB

Vardecimal storage format is enabled

Index space

0.211 MB

Row count.

_| An exception occumed while executing a Transact-3

Figure 2-28. Checking the table properties in SSMS, you will see that, after
enabling stretched tables, space occupied by tables on-premises will be reduced in
case of filters, or freed if all data are moved to Azure

In the script below we are using an inline table-valued function to apply a filter

predicate, to keep part of the data on-premises and move the rest to the cloud.

-- enable stretch using tvf to filter data
USE WideWorldImporters;

GO

CREATE FUNCTION dbo.fn_filterdata

(

@filter datetime2

)

130

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN SELECT 1 AS is ok
WHERE @filter < CONVERT(datetime2, '1/1/2015', 101)
Go

ALTER TABLE Warehouse.StockItemTransactions
SET (REMOTE_DATA ARCHIVE = ON (
FILTER PREDICATE = dbo.fn filterdata(TransactionOccurredWhen),
MIGRATION STATE = OUTBOUND)) ;
Go

In case you need to disable Stretch Database for a table, you can use one of the two
commands below. You can either decide to bring data on-premises or leave data in the
cloud.

--disable stretch db and bring data on-premises
USE WideWorldImporters;
GO
ALTER TABLE Warehouse.ColdRoomTemperatures Archive
SET (REMOTE_DATA ARCHIVE (MIGRATION STATE = INBOUND)) ;
GO

--disable stretch and leave data on azure
USE WideWorldImporters;
GO
ALTER TABLE Warehouse.ColdRoomTemperatures Archive
SET (REMOTE_DATA ARCHIVE = OFF_WITHOUT DATA RECOVERY (MIGRATION STATE
= PAUSED)) ;
GO

Considerations on connectivity for client applications

SQL Server Stretched Database feature is really an interesting feature, as it allows
you to keep live old data and have them stored remotely in the cloud. This architectural
change, transparent for applications, however needs some important consideration
and, in the real world, applications should actually take care of this change. First of

131

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

all, connection stability and performance becomes crucial; executing a [SELECT * ..]
query on a big amount of data could become a real performance issue if data are in the
cloud. Furthermore, if the connection is not stable, exception handling and retry logic
become a priority for the application. To minimize performance issues and exceptions,
you can change the scope of the queries using the sys.sp_rda_set_query_mode stored
procedure, but please consider that this is a database-wide setting, so you can’t
achieve user level granularity. Options are:

o DISABLED - All queries against stretched tables will fail
e LOCAL_ONLY - Queries are executed on local data only
e LOCAL_AND_REMOTE - All data are returned; it is the default option

Another consideration is related to the table-valued function that you will use to
filter data when cold and hot data live together in the table. If the function is slow, then
performance will degrade. A recommendation here is, when possible, separate archive
data in dedicated tables, and use those tables with the stretched feature enabled.

Migrate databases to Azure laaS

Database migration to Azure Virtual Machine is a task that, depending on the scenario,
could be achieved in different ways. There’s not a best choice that fits all scenarios, it is
important to understand the workload and then decide the most appropriate strategy to
perform database migrations. Below you could find the most common scenarios that we
experienced in our consulting activities with Azure and SQL Server

1. Backup a database on-premises to disk, move data to Azure
Storage and restore it into an Azure Virtual Machine. To perform
the copy of the database backup file to Azure, you can use a
command-line tool such as AzCopy, available for Windows and
Linux. You can use a command like the following to upload a
backup file.

AzCopy /Source:C:\temp /Dest:https://dataplat.blob.core
.windows.net/backup /DestKey:[Azure Storage KEY] /Pattern:
"AdventureWorks.bak"

132

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

B C\WINDOWS\system32\cmd.exe -] x

P
C:\Program Files (x86)\Microsoft SDKs\Azure\AzCopy>AzCopy /Source:C:\temp /Dest:https://dataplat.blob.core.windows.net/b
jackup /Des tK ey e Pt tern: “Advent
Iureuorks‘hak"

Finished 1 of total 1 file(s).

[2e18/€1/19 12:11:21] Transfer summary:

Total files transferred: 1

Transfer successfully: 1
Transfer skipped: -]
Transfer failed: 8
Elapsed time: 8e.80:08:15

l(.:\Progr‘am Files (x86)\Microsoft SDKs\Azure\AzCopy>

Figure 2-29. Use AzCopy to upload a backup file to Azure Storage

2. Perform a Backup TO URL and perform a restore in Azure as we
described in the Backup TO URL section in this chapter.

3. Putthe database files of the on-premises virtual machine on Azure
Storage, and use a Detach/Attach approach from the source SQL
Server on-premises to the Azure Virtual Machine at destination,
described previously in this chapter as well.

4. Export a data-tier application using SQL Server Management
Studio or the command line tool sqlpackage.exe available in
[installation folder]/Microsoft SQL Server/140/DAC/bin
folder, and then import it into the destination SQL Server instance.

5. Azure Site Recovery (ASR) replication. Azure Site Recovery is a
disaster recovery (DR) service that enables DR from on-premises
locations to Azure. On-premises virtual machines could run on
Hyper-V, VMware or physical hardware. Its replication service
can also be used for migration purposes, when several virtual
machines are involved, therefore we recommend exploring this
feature in case you are facing this scenario. Use this option if you
want to migrate an entire server to the cloud, not only a database.
It could be an interesting option in the case where you have the
database engine plus other services enabled, such as Analysis
Services. To learn more about ASR, you can visit this page:
https://docs.microsoft.com/en-us/azure/site-recovery/
site-recovery-overview. We will also speak a bit more about
ASR later in this chapter for an Azure-to-Azure disaster recovery
scenario.

133

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-overview
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-overview

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

6. Use the Microsoft Azure Import/Export Service to ship your hard
drives with database backups to Microsoft, to deal with very large
files that could take too much time to upload to the Azure Storage.
Once the files will be available in the Azure Storage, you could restore
them from the Virtual Machine on Azure. For further information on
this service, you can visit this page: https://docs.microsoft.com/
en-us/azure/storage/common/storage-import-export-service.

7. In High Availability scenarios, you could also rely on AlwaysOn
Availability Groups, Database Mirroring (although deprecated),
Log shipping and Transactional replication.

Migrate a Database Using the Data-Tier
Application Framework

A data-tier application (DAC) is a self-contained unit of a user database that allows
DBAs and developers to package SQL Server objects like tables, stored procedures, etc.
inside a package called DACPAC. It is based on the DACfx AP], that can run against
versions of SQL Server 2008 and later, and Azure SQL Server Database as well. The API
exposes several functionalities, and one is useful to export or import schema and data
of a database. When we use the import/export functionality we generate a file package
with the .bacpac extension that is basically a zip file with a set of xml files that contain
the schema of the database objects that we have selected for the export, plus the BCP
files with the data. The DAC framework can be used by SSMS, and a command line tool
called sqlpackage.exe is also available with the installation of SQL Server.

To export a database using the DAC framework, you can launch the wizard from the
Tasks section of the database you want to export and then select the Extract Data-tier
Application option, like in the image below.

Extract Data-tier Application...
Deploy Database to Microsoft Azure SOL Database...
I Export Data-tier Application... I

Register as Data-tier Application...
Upgrade Data-tier Application...

Delete Data-tier Application...

Figure 2-30. To export database objects and data using the DAC framework, you
can use SQL Server Management Studio, displayed in this picture

134

https://docs.microsoft.com/en-us/azure/storage/common/storage-import-export-service
https://docs.microsoft.com/en-us/azure/storage/common/storage-import-export-service

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

The .bacpac file can be saved to disk or you can save it directly to an Azure Storage
container, which is a good idea if you need to import the file from an Azure Virtual
Machine. As you can see from the image below, it can be done using SSMS. In the
Advanced tab, you can select the tables’ data that you want to be exported during the
.bacpac file generation.

@ Help

Export Settings

This operation will create a BACPAC file that contains the logical contents of your database. To continue,
specify the location where you want the BACPAC file to be created, and then click Next. To specify a subset
of tables to export, use the Advanced option.

Settings Advanced

) Save to local disk

®) Save to Microsoft Azure

Storage account: |€lllp|at | Connect. |
Container: [bacpac <]

File name: [AdventureWorks.bacpac |

Temperary file name:

[c"" Afdiar\AppDataiLocah TemphAd Waorks-20180118194306 bacpac | Browse.. |

Figure 2-31. Schema and data export using the DAC framework

The size of a bacpac file is significantly less than a backup file, even when backup
compression is enabled. But it is very important to highlight here that bacpac is just a
sort of a snapshot of a database, and it should never be considered as an alternative to
backups. It is also important to notice that it is not consistent to a point in time restore,
unless modify activities are prevented.

Iu AdventureWorks.bacpac 18/01/2018 18:52 File BACPAC 17.333 KB I
|| AdventureWorks.bak 18/01/2018 19:54 File BAK 195.673 KB
|| AdventureWorks_compressed.bak 18/01/2018 19:55 File BAK 45.743 KB

Renaming a .bacpac file into a .zip file, you can also notice the contents inside the
file, a set of xml files containing the schema plus the bulk import BCP files generated by
the APL.

135

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

|] (Content_Types)aml Decumento XML 1KB No 1KB 43% 18/01/2018 19:52
[] DacMetadataml Decumento XML 1KB Ne 1KB 18% 18/01/2018 19:52
[modelxml Documento XML T6KE No 1423K8 95% 18/01/2018 1%:52
C] Origin.aeml Decumento XML 3KB MNo 3KB 0% 18/01/2018 19:52
[7] TableData-000-00000.8CP File BCP 4KB MNe 9KB 64%

[7] TableData-001-00000.8CP File BCP 4KB No 8KB 56%

[] TableData-002-00000.8CP File BCP 4KB Mo 8KB 55% 18/01/2018 19:52
[} TableData-003-00000.8CP File BCP 4KB Mo 8KB 355% 18/01/2018 19:52
[TableData-004-00000.8CP File BCP 4KB Mo 8KB 55% 18/01/2018 19:52
D TableData-005-00000.8CP File BCP 4KB No 8KB 55% 18/01/2018 18:52
r’] TableData-006-00000.BCP File BCP 4KBE Mo 8KB 55% 18/01/2018 19:52

Figure 2-32. In this image you can see a portion of the files contained in the
.bacpac file, that displays the folder structure above plus part of the contents of the
data folder, a set of BCP files to be used in bulk import operations

Import a .bacpac file at destination is exactly the same operation, and it can be done
using SSMS and sqlpackage.exe as well. Below you can see the command to restore a
.bacpac file from an Azure Virtual Machine at destination.

sqlpackage.exe /Action:Import /tsn:tcp:(local),1433 /tdn:AdventureWorksDACPAC
/tu:[user] /tp:[password] /sf:C:\temp\AdventureWorks.bacpac

B Administrator: Command Prompt - [w] X

IC:\Program Files (x86)\Microsoft SQL Server\14@\DAC\bin>sqlpackage.exe /Action:Import /tsn:tcp:(local),1433 /tdn:Adventu
relorksBACPAC /tu D/ tp (D /s :C: \temp\AdventureWorks.bacpac
Importing to database "AdventureWorksBACPAC® on server "tcp:(local),1433°.
ICreating deployment plan

Initializing deployment

verifying deployment plan

lAinalyzing deployment plan

Importing package schema and data into database

lUpdating database

Importing data

Processing Import.

Disabling indexes.

Disabling index ‘PK_Databaselog_DatabaselogID’.

Disabling index "AK_Department_Name'.

Disabling index ‘AK_Employee_NationallDNumber'®.

Disabling index "IX_Employee_OrganizationLevel_OrganizationNode'.
Disabling index "AK_Employee LoginID’.

Disabling index ‘IX_Employee_OrganizationNode'.

Disabling index ‘AK_Employee_rowguid®.

Disabling index ‘IX_EmployeeDepartmentHistory ShiftID'.

Disabling index ‘IX_EmployeeDepartmentHistory DepartmentID’.

Disabling index ‘IX_JobCandidate_ BusinessEntityID®.

Disabling index ‘AK_Shift_StartTime_EndTime".

Disabling index ‘AK_Shift_Mame'.

Disabling index "IX_Address_StateProvinceID’.

Disabling index ‘IX_Address_AddressLinel_AddressLine2_City StateProvinceID PostalCode”.
Disabling index "AK_Address_rowguid’.

Disabling index "AK_AddressType_rowguid'.

Disabling index ‘AK_AddressType_Mame'.

icahling inday "AK BucingccEntity esougouid’

Figure 2-33. In this example we are using the sqlpackage.exe tool to import a
bacpac file. The path where you can find sqlpackage.exe is c:\program files (86)\
Microsoft SQL Server\ [version number]\DAC\bin

136

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Note If you are thinking of migrating directly to Azure SQL Database instead, we
recommend that you also explore the Azure Database Migration Service, in preview
at the time of writing this book. You could find a tutorial here: https://docs.
microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql

Run SQL Server on Microsoft Azure Virtual
Machines

So far, in this chapter, we spoke mainly of features of SQL Server that can support hybrid
configurations for backups and stretched databases. In this section we will focus more
on the execution of SQL Server on Azure Virtual Machines, describing when installing
SQL Server on Azure Virtual Machines is the best option, the considerations on storage
design in [aaS and the performance best practices to implement.

Why Choose SQL Server on Azure Virtual Machines

In the previous chapter we detailed what Azure SQL Database can offer in terms

of functionalities for developers and database administrators. As you saw, features
available are very rich, so why should we opt for SQL Server installed on Azure Virtual
Machines instead? If you had asked us this question a couple of years ago, we would
had answered with many points to support the Azure Virtual Machines choice; now that
Azure SQL Server database has become a very mature service, reasons to put databases
on Azure Virtual Machines are fewer than in the past. Don’t get us wrong, we are not
saying here that it is a wrong choice to put SQL on Azure VMs, we are just saying that
now both SQL Database and SQL Server are mature, real options to choose from and
choices are no longer driven by the limitations available in Azure SQL Database. Below
are the main reasons, based on our experience, why we recommend SQL Server installed
in Azure Virtual Machines as the first choice:

o Ifyou have additional SQL Server services all installed in a single
VM, and you want to migrate them to the cloud keeping changes
at the application level close to zero. For example, if you are using
SQL Server Integration Services in the same box together with SQL
Server Analysis Services or SQL Server Reporting Services, plus the

137

https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql
https://docs.microsoft.com/en-us/azure/dms/tutorial-sql-server-to-azure-sql

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

138

database engine, then it is probably better to keep the same structure
at destination also, or at least in the first phase of the project. If the
workload is small enough to tolerate such configuration, it makes
perfect sense to keep it on Azure too, and migrate the image to

an Azure Virtual Machine. The second step of the transformation
process could be to evaluate additional PaaS services that Azure
offers, such as Azure Analysis Services, as an example, or to separate
layers in a different way to leverage Azure possibilities.

Ifyou do an intense usage of Linked Servers, SQL Agent, Filestream,
and all the other features of SQL Server that Azure SQL Database
doesn’t support today. If the migration to an alternative solution
requires too much effort, then it is better to stay on Azure Virtual
Machines.

Authentication model. If you have implemented the Windows
Authentication model in your application to access SQL Server,

you should go with SQL Server as SQL Database supports

SQL Authentication and Azure Active Directory, so probably
reengineering all database authentication models plus changing the
application authentication method would waste too much effort on
the first stage.

Very large databases. For databases bigger than 4TB, at the time of
writing, 4TB is the size limit of a database on Azure SQL Database.

If you want to keep a complete control on the SQL Server instance
from the administration point of view, to overcome the level of
abstraction that a PaaS solution like Azure SQL Database adds.

Database design limits. If your database is using schema features that
are too old, then it would be better to stay on SQL Server first, and
then modify the database before moving to Azure SQL Database. For
this aspect, the Data Migration Assistant tool is a very good friend
here, to support with the analysis of the features that would need
adjustments before the migration.

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

o Applications limits. If your application is not designed to implement
a good retry logic to access the database and it is not designed to
work with disconnected datasets, then it is better to keep SQL Server
installed on an Azure Virtual Machine, to avoid the Azure SQL
Database gateway layer dropping connections.

o Network resource access. Azure SQL Database runs outside the
Azure Virtual Network infrastructure, therefore if a database stored-
procedure requires access to a network share, for example, then
keeping the database on an Azure Virtual Machine becomes a
requirement.

Azure Virtual Machines Sizes and Preferred Choice
for SQL Server

Talking about Virtual Machine sizes in Azure is a topic that needs constant updates, as
Microsoft is continuously increasing the offerings in terms of memory and computing
power provided and workload optimization. We like that Microsoft introduced workload
categories to simplify choices during architectural design definition, in a way similar
to what Amazon AWS does. At the time of writing, there are six categories available,
optimized for specific workloads, and for each category you can find optimized virtual
machine series and sizes. For each series, you have virtual machines size names to
choose from, each one with its specific characteristics. Each virtual machine size has
pre-defined characteristics in terms of CPU and RAM and capacity limits in terms of
storage that you can add, network throughput, number of network interfaces that you
can add, etc.

The Azure Compute Unit (ACU) Concept

Microsoft introduced the concept of ACU to identify in a simple way the CPU
performance of each Virtual Machine. It is not an accurate value but just a guideline,
but we think it is quite useful to support the architect during the choice of the right VM
to execute a database workload. It is standardized to a Standard_A1 virtual machine
performances, with a value of 100 and you can find a list of all ACUs per virtual machine
sizes here at this link: https://docs.microsoft.com/en-us/azure/virtual-machines/
windows/acu

139

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/acu
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/acu

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Azure Virtual Machines Categories

Category workloads Series VM Sizes VM Size example name ACU
B Els,Blms,B2s,B2ms, B4ms,BSms Standard_B4ms
Dsv3 _v3(D2s,D4s,D8s,D16s,0325,D64s) Standard_D32s_v3 160-190
Dv3 _v3(D2,D4,D8,D16,D32,D64) Standard_D16_v3 160-190
Balanced CPU-to-memory ratio, [DSv2 _v2(DS51,052,D53,054,D55) Standard_DS3_v2 210-250
General Purpose good for dev/test, small to medium |pvz _v2(D1,D2,D3,D4,D5) Standard_D2_v2 210-250
databases DS DS1,052,053,054 Standard_D51 160
D D1,D2,D3,D4 Standard_D4 160
Av2 _v2(Al,A2, A4, A8,A2mM,A4m, ABM) Standard_Ad4m_v2 100
A A0,A1,A2 A3, A4,A5 A6, A7 Standard_as 50-100
A-Basic |Basic(AD,A1,A2,A3,A4)
High CPU-to-memory ratio, good
- A for network appliances, batch |Fsv2 _v2(F2s,F4s,F8s,F165,F325,F645,F725) |Standard_F64s_v2 195-210
" p , web and application |Fs F1s,F25,F4s,F85,F165 210-250
servers F F1,F2,F4,F8,F16 210-250
Esv3 _v3(E2s,E4s,E8s5,E165,E325,E325,E645) |Standard_E2s_v3 160-190
Ev3 _v3(E2,E4,E8,E16,E32,E64) Standard_E8_v3 160-190
High memory- to- CPU ratio, good] ME4s,M64ms,M128s,M128ms Standard_M128ms 160-180
-) ; GS GS1,652,653,654,G55 Standard_GS3 180-240
Memory-0Optimized for relational databases, medium to
large cache, in-memery analytics G1,62,63,G4,G5 Standard_G1 180-240
DSv2 _v2(DS11,D0512,0513,0514,D515) Standard_DS13_v2 210-250
Dv2 _v2(D11,D12,013,D14,D15) Standard_D13_v2 210-250
DS DS11,0512,0513,0514 Standard_DS12 160
D D11,012,013,014 Standard_D12 160
o Optimized for disk throughput and
S 10, ideal for BigData, SQL, NoSQL |15 L4s,L8s,L165,L32s lstandard_uls 180-240
N a"{:'gg”r;‘;i?_’in‘;'::i:?:';:lzi';:_ NC NC6,NC12,NC24,NC24r Standard_NC24
GPU-optimized Providad|withsinglalor mulbpla NCv2 _v2(NC6,NC12,NC24,NC24r) Standard_NC24r_v2
NVIDIA GPUS ND ND6,ND12,ND24,ND24r Standard_ND24
NV NVE,NV12,NV24 Standard_Nv12
High-performance compute Coamut a?-ld . l- Y H HB8,H16,H8m,H16m,H16r, H16mr Standard_H16mr 290-300
applications, including HPC Sihinhis £ ad L =
A AB,A9,A10,A11 |Standard_A11 225

Figure 2-34. The Azure Virtual Machines categories, Series, VM Sizes, and ACUs
available on Azure

In the table above we tried to put on a single page the complete offering available

today for Azure Virtual Machines. Let us tell you first how to read it.

1. Category column. It contains the list of categories available today.

Categories are just a logical way to group virtual machines series,

it is not something that you will find on Azure but only in the

documentation. At the time of writing, there are six categories

a. General-purpose. They are ideal for dev/test and small and

medium databases. They have a balanced CPU-to-memory ratio.

b. Compute optimized. These virtual machine series have a

higher CPU-to-memory ratio, and they are good for batch

processing, web and application servers, and network

appliances.

140

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

c. Memory optimized. These virtual machines have a higher
memory-to-CPU ratio, and are optimized for memory
intensive workloads. They are good for relational database
servers, medium to large caches, and in-memory analytics
services. For database servers like SQL Server and Oracle
that, for some workloads, don’t have high CPU requirements
but have high memory needs, it is possible, for some virtual
machine sizes, to constrain the number of virtual CPUs
to alower number compared to the default. This is very
important for licensing purposes, when the pricing model is
per-core based. To have additional details about the list of the
constrained vCPU VM sizes, you can visit this page: https://
docs.microsoft.com/en-us/azure/virtual-machines/
windows/constrained-vcpu

d. Storage optimized. VMs optimized for storage I0 and
throughput. Useful for data workload, such as BigData, NoSQL
and SQL.

e. GPU optimized. Perfect for graphics-intensive workloads,
these virtual machines come with one or more NVIDIA GPUs.

f. High performance optimized. Optimized for compute-
intensive workloads, such as simulations, HPC clusters, they
have last generation Intel Xeon CPUs and in some of them you
can also find low-latency and high-performance networking
capabilities with RDMA and InfiBand support.

2. Typical workloads. The main workloads that could run in the
specified category.

3. Series, VM Sizes, VM Size example name. When Microsoft
launched IaaS on Azure, only Virtual Machines of the A series
were available, with no support to SSD disks and just a few
CPU/RAM configurations available. Now, as you can see from
this column, there are quite a lot of VM Series available on

141

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/constrained-vcpu
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/constrained-vcpu
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/constrained-vcpu

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

142

Azure. If you look at the column VM Sizes, for each series the
corresponding row contains the list of Virtual Machines sizes
from where you can choose from. Let’s try now to understand

something on the naming conventions used.

a. v2,v3...vx: when you find this acronym, it means that the VM
series you are looking at is a version 2 or x of the main series,
probably with new generation CPUs or in general with some
enhancement introduced by the platform. For example, the
DSv2 series is an evolution of the DS.

b. When you find the letter S on the second letter of the series
name, it means that the series supports Premium storage.

c. Looking at column VM Sizes, we have the actual VM sizes,
each one with its own characteristics. For example, if we pick
DS2 VM in the General-purpose category, this VM, with the
name Standard_DS2 will have: 2 vCPU, 7GB RAM, 14GB of
temp SSD storage, max 2 NICs, max 8 data disks, support for

Premium Storage.

DS2 Standard

2 VCPUs
78 cs
8
* Data disks
=) 6400

Max IOPS

14 GB
Local SSD

]
A8 premium disk support

d. The column VM Size example name contains the actual
names, one example per row, that Azure uses to identify VMs.
When you interact with Azure using the management APIs or
the administration tools such as powershell, you need to use
that naming convention to create Virtual Machines on Azure.

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

4. ACU. The range of ACU that you can expect choosing one of the
corresponding rows.

Scale-up and scale-down of VM sizes is supported on Azure, but consider that not
all virtual machine series support changing to another virtual machine series, as per
limitations that other VM series might have. You can anyway, in extreme cases where the
VM series is not the right one and you can’t migrate to another one, attach data disks to a
newly created virtual machine with the right features that you need.

Note Biggest VM that you can create on Azure today is the Standard:M128ms,
with 128 vCPUs, 3.8 TB RAM, 8 NICs and 64 data disks

Now, we as data architects don’t have an easy life if our customer asks us to
recommend the best VM series and size to host the database server. The good thing
is that with Azure is quite easy to change the design with time and starting with small
workloads and then changing the approach is something that with Azure you do almost
every day. We tried, based on our experience, to create a simple matrix to support these
choices, and please take it as guidance only, as there is not a perfect answer to this
question. What we can say is that the most common adopted VMs that we have seen
for database workloads are in the DS series, as they usually offer a good compromise
between pricing and performance.

143

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Category Series VM Sizes Recommended Workloads
for SQL
B Bls,B1ms,B2s,B2ms,B4ms,B8ms NO
Dsv3 _v3(D2s,D4s,D8s5,0165,0325,D64s) YES Dev/Test and production workloads
Dv3 _v3(D2,D4,D8,D16,032,D64) YES Dewv/Test and non intensive 10 production workloads
DSv2 _v2(D51,D52,D053,054,D55) YES Dev/Test and basic/medium production workloads
General Purpose Dv2 _v2(D1,02,03,04,D5) YES Dev/Test and non intensive 10 production workloads
DS DS1,052,053,054 YES Dev/Test and basic/medium production workloads
D D1,02,03,04 YES Dev/Test and basic DB workloads
Av2 _v2(Al1,A2,A4 A8 A2m, Adm, ABM) YES Dev/Test and basic DB workloads
A AD,A1,A2,A3,04, A5 A6, AT YES Dev/Test and basic DB workloads
A-Basic _|Basic(A0,A1,A2,A3,A4) NG
Compute-optimized Fsv2 _v2(F2s,F4s,F8s,F165,F325,F645,F725) |NO
Fs F1s,F2s,F4s,F8s,F16s NO
F F1,F2,F4,F8,F16 NO
Esv3 _v3(E2s,E4s,E8s E16s,E325,E325,EG4s) |YES in-memory
Ev3 _v3(E2,E4,E8,E16,E32,E64) YES in-memory, non-intensive 10
M M&4s,M64ms,M128s,M128ms YES \Very large enterprise DBs, very high memory request
Memory-Optimized GS G51,652,G53,G54,G55 YES in-memory warklt_)ads)
G G1,G2,G3,G64,G5 YES in-memory, non-intensive 10
DSv2 _v2(D511,0512,0513,0514,D0515) YES production
Dv2 _v2(D11,012,D13,014,D15) YES production with non-intensive 10 workloads
DS DS11,0512,0513,0514 YES production
D D11,012,013,014 YES roduction with non-intensive 10 workloads
Storage- optimized |
Ls L4s,18s,1168,1325 YES la databases
NC NCGE,NC12,NC24,NC24r NO
GPU-optimized NCv2 _v2(NC6,NC12,NC24,NC24r) NO
ND ND6,ND12,ND24,ND24r MNO
NV NVE,NV12,NV24

High-performance compute

HB8,H16,H8m,H16m, H16r, H16mr
AB,A9,A10,A11

Figure 2-35. A simple matrix to help during the choice of the right VM size to use
in a database workload configuration

Note

To see all the details about virtual machine series, you can visit the

following pages: General-purpose - https://docs.microsoft.com/en-us/
azure/virtual-machines/windows/sizes-general; Memory-optimized -
https://docs.microsoft.com/en-us/azure/virtual-machines/
windows/sizes-memory; Compute-optimized - https://docs.microsoft.
com/en-us/azure/virtual-machines/windows/sizes-compute ; GPU-
optimized - https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/sizes-gpu; Storage-optimized - https://docs.
microsoft.com/en-us/azure/virtual-machines/windows/sizes-
storage; High-performance-optimized - https://docs.microsoft.com/en-
us/azure/virtual-machines/windows/sizes-hpc

144

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes-hpc

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Embedded Features Available and Useful for SQL Server

When you install SQL Server using one of the images available in the Azure Marketplace,
you get a few helper options that Azure automatically provides to simplify your database
administrator work. You can find them under the SQL Server Configuration settings area
in the Azure Portal. This area is available because the SQL Server IaaS Agent Extension
(SQLIaaSExtension) is provisioned together with the Virtual Machine. It is possible, if
you provision a Virtual Machine and you add SQL Server manually, to provision the
SQLIaaSExtension, with the following Powershell command:

Set-AzureRmVMSqlServerExtension -ResourceGroupName "resourcegroup" -VMName
"vm" -Name "SQLIaasExtension" -Location "West Europe"

SETTINGS

&5 Networking
¢ Disks

A size

[} Extensions
% Availability set

& Configuration

I & sQL Server configuration I

'I! properties
a Locks
EX automation script

NAME TYPE VERSION

SqllaasExtension Microsoft.SqlServer. Management.SqllaaSAgent 1.*

Figure 2-36. Each SQL Server virtual machine installed from the Azure
Marketplace comes with a SQL Server configuration dashboard. This is because
the SQL Server laaS Agent Extension is installed

145

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

It comes with six configuration options:

1. Storage usage. It contains a dashboard that gives a graphical
overview of the storage used by SQL Server, and the possibility
to increase the storage size dedicated to SQL Server, adding
additional data disks, as you can see from the image below.

Storage usage # edit

140518 [avaiass

| o Storage usage % cancel
= | scw oata Storage optimization General

1006 | s 06

80618 “10PS — b 1| 5000
(]

ey * Throughput (MBps) E| 96
— "Somgese 19 . ’

¢ ¢ 1 premium disks will be added to a new drive.
SOLDATA SOLLOG OTHER EMBILABLE
126 11 344 104.3 e

Figure 2-37. On the left side you can see that the data used by SQL Server is
displayed and, using the Edit button, you can open an edit mask where you can
add additional storage, IOPSs or throughput to the virtual machine. Maximum
limit number depend on the size and the category of the virtual machine that you
chose

2. SQL Connectivity level. Here you define the connectivity options,
in case you want to use SQL Authentication, of your SQL Server
instance and the scope of accessibility:

a. Local. The SQL Server instance is not exposed outside the VM.

b. Private. Scope of access is to the Azure Virtual Network. If
there is an application server VM in an Azure Virtual Network
that needs to access SQL Server, this option must be selected.

c. Public. Your SQL Server TCP port will be exposed on the
web, so any external client could access it, without any VPN
access. This option is only recommended for test purposes,
as it represents a security risk. If you choose this option, an
inbound rule will be created on the network security group
to allow TCP connections on the SQL port, e.g. the 1433. The

146

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

network security group is associated to the network interface
used by the virtual machine, so the inbound and outbound
rules are inherited. If you are using a standalone virtual
machine, all this part is simplified by the azure portal that
exposes many of the features. If you need a more complex
scenario, then you need to understand more how Azure

Virtual Networks work.
SQL connectivity level ¥ cancel
* SQL connectivity | Public (internet) ~ i
Local (inside VM only)
* Port Private (within Virtual Network)
Public (Internet)
SQL Authentication Enabled

Figure 2-38. The SQL Connectivity option on the Virtual Machine dashboard

3. Automated patching. In this area you can define the time window
and the preferred day where automatic updates should run.

Automated patching ¥ cancel
* Automated patching Disable Enable

* Maintenance schedule Sunday ~

* Maintenance start hour (local 02:00 -
time)

* Maintenance window duration __| 1 [60

(minutes)

4. Automated backup. We described this part in SQL Server
Managed Backup section in this chapter, as this option in the
Azure Portal controls this feature.

5. Azure Key Vault integration. It enables the integration with Azure
Key Vault service, in case you want to use this service to store the
cryptographic keys used by encryption features in SQL Server, such as
transparent data encryption (TDE). Configuring this feature installs
the SQL Server Connector add-in to the SQL Server virtual machine
that enables the interaction between Azure Key Vault and SQL Server.

6. SQL Server Machine Learning Services. Enables them for the SQL
Server instance.

147

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Design for Storage on SQL Server in Azure Virtual
Machines

At the beginning of this chapter we spoke about Azure Storage and described the main
differences between the types of storage accounts available, focusing more on blob
storage, both block and page blobs. Then we have described the differences between
standard HDD disks and premium SSD disks, and unmanaged and managed disks as
well. In this section we will speak a bit more on the storage part, but related to Azure
Virtual Machines, which means that we will focus more on Azure Storage page blobs,
which are the type of blobs used for disks.

All Azure Virtual Machines come with at least two disks, one for the operating system
and one temporary disk, automatically added during provisioning. Then you can add one
or more data disks, with the limit of disks that is driven by the size of the virtual machine.
Each disk can be up to 4TB and, if the VM Size permits it, you can also add SSD disks.

Operating system and data disks on Azure use the Virtual Hard Disks (VHD) format,
therefore if you want to migrate an image to Azure you need to adhere to this format.
You could, in case your image is running on VMware, use Azure Site Recovery that
automatically converts to VHD format during migration. The Microsoft Virtual Machine
Converter was also available, but support from Microsoft ended on June 2017.

Storage Design and Performance Considerations on Azure Virtual
Machine Running SQL Server

Temporary disk. Temporary disks do not reside on the same storage layer that Azure
Storage offers; disks data is not replicated and disks are not persistent, as a maintenance
event, an unplanned VM failover or redeploy of a VM could make your temporary disk
lose data. In essence, do not use this disk to store SQL server data and log files! You could
be tempted, as some sizes of VMs come with very large solid state temporary disks, but
again do not use it. You could put the TempDB on the temporary disk. We recommend
this choice if you are using Standard Storage and your virtual machine is using an SSD
temporary disk. But if your application stresses the TempDB a lot and you are using
Premium storage, then we recommend putting the TempDB on a Premium data disk as
you can know in advance the performances that the disk will provide. In addition, if you
don’t put the TempDB on the temporary drive, you don’t have to add additional windows
tasks to manage the failure of the temporary disk in case of failures of the virtual machine.
Windows Tasks would be required to give SQL Server the permissions to create the file.

148

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Geo-redundant storage replication. It is not supported to use it with SQL Server
if you put data and log files on separate disks, as the replica of data is asynchronous,
therefore you could face consistency issues with your database. This means that, for
geographical high-availability scenarios, you should not consider it as part of the
solution, unless you keep all data in one single data disk, which is a good option only for
very small workloads. Using AlwaysOn Availability Groups is instead a good option for
geo-replication of data and service availability.

Premium Storage is the recommended choice by Microsoft for production
environments with SQL Server. If the VM supports it, you can add up to 256TB of data
storage for a VM, if you use a P50 disk: 64 data disks * 4TB = 256TB storage.

Note At the time of writing, a P60 disk category is also available on Premium
storage, and it supports 8TB of storage. You cannot attach to a Virtual Machine as a
data disk tough.

Do not use the Operating System disk to store database data and logs.
Disk caching. OS Disks and Data Disks on Azure can have three levels of caching:

e None. Place SQL Server log files here, in one or more data disks, as
caching is not needed for write-only workloads such as the log file.

o ReadOnly (default setting for Data Disks on Premium Storage). Place
SQL Server data files here, as they are read-heavy workloads.

e ReadWrite (default setting for OS Disk). Leave the operating system
disk with this setting. When creating the VM, and if you are using a
Premium storage capable VM, consider using Premium storage for
the operating system also.

The following Powershell script uses the Add-AzureRmDataDisk cmdlet to add a new
data disk and sets the caching to none, as this disk will be used for the log file.

$rg = 'rg_dataplatform_book'
$vm = 'sql2017win’
$region = 'West Europe'

$storage = 'PremiumLRS'
$datadisk = 'logdatafile’
$diskconfig = New-AzureRmDiskConfig -Location $Region -AccountType $storage
-CreateOption Empty -DiskSizeGB 128
149

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

$diskl = New-AzureRmDisk -DiskName $datadisk -Disk $diskconfig
-ResourceGroupName $rg

$sqlvm = Get-AzureRmVM -Name $vm -ResourceGroupName $rg
$sqlvm = Add-AzureRmVMDataDisk -VM $sqlvm -Name $datadisk -CreateOption
Attach -Caching None -ManagedDiskID $Disk1.Id -Lun 1

Update-AzureRmVM -VM $sqlvm -ResourceGroupName $rg

PS Azure:\> Sr
hzure:\
PS hArure:\> S=
Azure:l
PS5 Azure:\> 5d
Azore:\
PS5 Azure:\> $disk
Nzuze:

PS Azure:\> $diskl

$atorage —CreateOption Empty -DiskSizeGE 128

Az
PS5 Azure:\> $aglvm = Add-AzureRmVMDataDisk -vM
Rzuze:\
PS5 Azure:\> Update-AzureRmVM -VM Ssglvm -Resourced

disk -CreateCpticn Attachji-Caching Nonej-ManagedDiskID 5Diskl.Id -Lun 1

RequestId I tusCode Sta ode se

True OE OR

Figure 2-39. The script above is executed using the Azure Cloud Shell from the
Azure Portal, an interactive console that allows you to use Powershell or Bash to do
scripting on Azure resources. Lo learn more about the Azure Cloud Shell, visit this
page: https://docs.microsoft.com/en-us/azure/cloud-shell/overview

After launching the script, the Azure Portal Disk section of the Virtual Machine will
look like the following:

OS disk
NAME SIZE STORAGE ACCOUNT TYPE ENCRYPTION HOST CACHING
SQLZO1TWin_OsDisk_1_210476cT4be840 5003841 ac 46622000 128 G Premium_LRS Not enabled Reac/wnte
Data disks
WN NAME SIZE STORAGE ACCOUNT TYPE ENCRYPTION HOST CACHING
(] SQL201TWin_disk2_51484(7580794690001912260147d724 1023 Gié Premium_LRS Not enabled Read-only
logdatafile 128 Gi@ Premium_LRS Not enabled None

Figure 2-40. The Disks section in the Azure Virtual Machines dashboard in the
Azure Portal

Now you also need to ensure that newly created databases will use the new disks as
the default path for data and log files, like in the simple T-SQL script below, that changes

150

https://docs.microsoft.com/en-us/azure/cloud-shell/overview

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

SQL Server Instance property to the default data and log location, using registry keys in
Windows. This change requires you to restart the SQL Server instance.

USE MASTER

GO

EXEC xp_instance regwrite
N'HKEY LOCAL_MACHINE',
N'Software\Microsoft\MSSQLServer\MSSQLServer',
N'DefaultData’,
REG_SZ,
N'F:\DataFiles'

GO

EXEC xp_instance_regwrite
N'HKEY LOCAL_MACHINE',
N'Software\Microsoft\MSSQLServer\MSSQLServer',
N'Defaultlog',
REG_SZ,
N'G:\LogFiles'

GO

Move System Databases to Data Disks. System databases, after the Virtual Machine
provisioning using the Azure Marketplace, will reside in the operating system disk. To
change this, follow the steps described in this document: https://docs.microsoft.
com/en-us/sql/relational-databases/databases/move-system-databases

Multiple data disks. Using multiple data disks can help you to increase the number
of IOPS available. Like we described earlier in the chapter, depending on the size of
the disk that we will choose on Premium disks, they will be associated with a Premium
Disk Type. For example, in the script above, we have created a 127GB disk, which
means that the disk will become a P10 Premium Disk Type. Each disk type has specific
IOPS associated with it and specific throughput. See the table below to see IOPS and
throughput associated to different premium disk types.

151

https://docs.microsoft.com/en-us/sql/relational-databases/databases/move-system-databases
https://docs.microsoft.com/en-us/sql/relational-databases/databases/move-system-databases

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Premium DisksType | P4 | P6 | PO | P20 | P30 | Pa0 | PsO |
Disk size | 3268 | 6468 | 12868 | 51268 | 178 | 218 | 418 |
IOPS | 120 | 240 | so0o | 2300 | soo0 | 7500 | 7500 |
Throughput | 25 mB/s | s0Mme/s | 100 MB/s | 150 MB/s | 200 MB/s | 250 MBys | 250 Me/s |

Figure 2-41. Premium Disks and related IOPS and throughput

When adding multiple disks to a VM to increase performances, take into account the
limits that the VM itself has in terms of IOPS and storage throughput that it can manage,
to avoid your performance limit being constrained to the lower value. As an example,
the Standard_DS2_v2 virtual machine is limited to 6,400 IOPS, therefore adding a P50
disk will give you 4TB of storage, but you will not be able to achieve 7500 IOPS. This is
something that requires an application performance requirement analysis to get the
best performance results in your production environment. To go more in depth on this
aspect, we recommend reading this Microsoft document: https://docs.microsoft.
com/en-us/azure/virtual-machines/windows/premium-storage-performance

Note You can read additional performance tips for SQL Server running on Azure
Virtual Machines here: https://docs.microsoft.com/en-us/azure/
virtual-machines/windows/sql/virtual-machines-windows-sql-
performance

Considerations on High Availability and Disaster
Recovery Options with SQL Server on Hybrid Cloud
and Azure laaS

Let’s start the last section of the chapter with a table that lists the options available for
SQL Server for high availability and disaster recovery in both hybrid cloud configurations
and full Azure IaaS configurations.

152

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Solution scope Solution name HA and/or DR |En re Yes or No Requires external tools
Hybrid Cloud Log Shipping DR ¥, if combined with other options N
Hybrid Cloud AlwaysOn AG HA/DR Y N
Hybrid Cloud Backup To Azure Storage [DR Y, if combined with other options N
Hybrid Cloud Azure Site Recovery DR Y, if combined with other options Y
Azure Iaas AlwaysOn AG HA/DR Y N
Azure Iaas AlwaysOn FCI HA Y A
Azure Iaas Backup To Azure Storage |DR ¥, if combined with other options N
Azure Iaas Log Shipping DR Y, if combined with other options N
Azure 1aas Azure Site Recovery DR Y, if combined with other options Y

Figure 2-42. The list of options available for HADR SQL Server configurations in
both hybrid cloud and public cloud scenarios. Note that database mirroring has
not been included in the list as it has been deprecated by Microsoft, which means
that it will disappear in future versions of SQL Server

Note If you decide to run SQL Server on a standalone Azure Virtual Machine,

you can get a 99.9% SLA provided by Microsoft, a new option available since
November 2016. It is not of course a high availability option, but having a SLA on
a single VM could be an option for small and non-critical databases, maybe adding
SQL Server Backup to URL as an additional insurance option.

Hybrid Cloud HA/DR Options

In hybrid cloud configurations, you usually have the main workload running on-
premises, and you use Azure for high availability and disaster recovery purposes. This
means that you first need to design your HADR solution to be highly available on-
premises, and then leverage the possibilities offered by the Azure platform. Not doing so
will make the solution weak as it could often trigger into a disaster recovery scenario as
the on-premises is not well designed. So, whether you decide to use high availability at
the virtualization layer or to use high availability options available in SQL Server such as
AlwaysOn, either way this is a must when you need to design your HADR scenario that
involves Azure too.

153

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

SQL Server Backup to URL or SQL Server Managed Backup

We have extensively described these two options in this chapter. If used alone, they
represent a basic disaster recovery scenario as, in case of failure on-premises, you need
to have another virtual machine on Azure to restore backups and bring the database
online. Things could become more complex if you need to guarantee access to clients
after the disaster happens on-premises.

7, SR AN

Blob Storage

On-Premise Network

Figure 2-43. SQL Server backup to Azure Storage

We would like to make a couple of recommendations, in case you choose this
solution as the only one for disaster recovery:

e On-premises. Have a local high availability solution. Active is, of
course, recommended.

e On Azure. To reduce the impact on clients and reduce the time
to recover the server, we recommend having a VPN Site to Site
configured with Azure, and a virtual machine with SQL Server
installed and connected to the virtual network, able to communicate
with the on-premises datacenter. You could keep the virtual machine
turned off to save compute costs, and turn it on only for system and
SQL Server updates, restore tests, and in case of a disaster. This is not
an enterprise DR solution if used alone, and it is a decent option only
in case of very small workloads where it is acceptable to have some
downtime. In addition, having the SQL Server machine on Azure and
the clients on-premises could result in performance issues, and this
must be considered during analysis and accepted by the customer as
a compromise.

154

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Log Shipping

The configuration of Log Shipping with Azure is the same as you do the configuration
with a Secondary SQL Server on-premises. Since it requires access to a shared folder, you
need to have a VPN Site-to-Site active, and the Secondary SQL Server must reside in a
Virtual Network and Subnet that is able to communicate with your Primary SQL Server.
It is possible to combine it with other HADR solutions, such as AlwaysOn Availability
Groups, in case you want to enrich the solution you want to propose to the customer. It is
not good enough to keep it alone as the only DR solution available, as it requires manual
intervention in case of disasters that make the on-premises site unavailable.

VPN Tunnel

% | SHippn | ’%
Primar)/ Secondary

On-Premise Network

Figure 2-44. Log shipping configuration using Azure. A VPN tunnel is
required

AlwaysOn Availability Groups

In this scenario you have a complete HADR solution provided by SQL Server, where

you have different replicas, synchronous and asynchronous of your databases. Using

a Listener you can also setup automatic failover in case of a disaster on-premises. On

top of that, you could also set the Secondary Replica on Azure to be readable, and you
could use it to offload some on-premises workloads, such as reporting and backups. As a
requirement, you need to have a VPN Site-to-Site active and a Domain Controller on the
Azure side is strongly recommended to avoid continuously querying active directory on-
premises and in case the Primary site becomes unavailable. This is the HADR option that
we recommend for enterprise scenarios, as it is the most complete.

155

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Secondary Replica

% | VPN Tunnel

@ On-Premise Network

Domain Controller

Asynchronous
Commit

P
e

WSFC Cluster

. Synchronous
%7 Commit } %

Primary Replica Secondary Replica File Share Witness

Figure 2-45. SQL AlwaysOn AG configuration using Azure for a secondary replica

Azure Site Recovery

Azure Site Recovery (ASR) is one of the most interesting services that Microsoft offers

in Azure. After the acquisition of InMage in 2014, a company focused on developing
disaster recovery tools, Microsoft gave a boost to its DR technology that today is probably
the most advanced across all the public cloud vendors.

Storage (Azure)

On-Premise Network

Figure 2-46. Azure Site Recovery replicates data to Azure Storage

ASR allows implementation of a disaster recovery configuration starting from an on-
premises virtualized environment with VMware, Hyper-V, or an installation on physical
hardware. Data are replicated to Azure and the virtual machines remains offline unless
you want to do a test failover or a real disaster recovery is necessary. Having only the

156

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

storage replica on the cloud and the VMs that are not active makes Azure Site Recovery
a cost-effective solution to implement, as you don’t have to pay for the compute power,
but only for the storage occupied and the ASR cost of each protected virtual machine.

The replica does not require a VPN to work as an HTTPS connection is sufficient. To
implement the most complete DR configuration, and to allow connections from on-
premises virtual machines, it is better to setup a VPN tunnel too. IT will not be used for
the replica, but it will make your life easier in case of a disaster recovery in scenarios of
hybrid cloud.

Replica works with both Windows and Linux, and for some server application,
such as SQL Server, application consistency is also guaranteed. This is the reason why
we decided to cover ASR in this book, because if you are involved as an architect in a
broader discussion that touches other workloads, it is possible that ASR will become part
of the conversation for SQL Server too.

It is also important to highlight that ASR can be combined with SQL Server high
availability features, such as AlwaysOn Availability Groups, AlwaysOn Failover Cluster
Instances and Database Mirroring. It can also work with a standalone installation of SQL
Server, in case you are implementing virtual machine availability through the hypervisor.

At the time of writing, Microsoft added in preview the support of ASR between two
Azure sites. We will describe it the next section.

Azure only HA/DR Options

Now we will describe the options available for Azure only scenarios that are more or less
the same here.

AlwaysOn Availability Groups

Like on hybrid configurations, AlwaysOn availability groups provide both a high-
availability and a disaster recovery solution when running on Azure. In the case of high
availability, the configuration has all nodes in the same Azure Region, including the
Domain Controller.

157

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

o

Domain Controller

WSFC Cluster

Synchrous

Commit —

Primary Replica Secondary Replica File Share Witnes

Figure 2-47. AlwaysOn Availability groups synchronous replicas running on the
same Azure Region

When you want to add disaster recovery, you can setup AlwaysOn Availability
Groups across different regions, using a VPN site-to-site configuration between the two
virtual networks using either the Azure VPN Gateway or a firewall virtual appliance of

your choice.

2

Domain Controller Replica

Figure 2-48. AlwaysOn Availability Groups running on different Azure Regions
using asynchronous replicas across datacenter

AlwaysOn Failover Cluster Instances

In the case of AlwaysOn Failover Cluster Instances, you can setup a high availability
solution using a shared virtual storage, for example using a software storage clustering
solution available in the Azure Marketplace or Windows Server Storage Spaces.

158

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Azure Site Recovery

We have presented ASR in the previous paragraph. Microsoft has enhanced the service
adding the support for Azure-to-Azure replications, in preview at the moment of writing.

northeurope westeurope
Azure Site Recovery
Virtual machine Log storage account(s) Storage account(s)
35201 Tasrwin rgaEreala T dacheasr rgasrdisiaT 1 far

o = =

Figure 2-49. ASR supports replication between two Azure regions

You can configure and Azure-to-Azure ASR at service level, in case you need to
design DR for an entire infrastructure or you can enable it at virtual machine level, for
standalone virtual machines. We will describe this second option here, protecting a SQL
Server 2017 Virtual Machine running on Windows Server 2016.

First thing you need to setup is the ASR service, which is a one step operation, where
you basically define the Azure Region where the service will run. It is an important
choice as the ASR service must reside in a different region than the source servers that
you want to protect. In our example, our service is called AzureSiteRecovery, located
in West Europe region, and we will protect a VM located in the paired Azure region, in
North Europe.

“‘ AzureSiteRecovery rg_azuresiterecovery West Europe
Now we need to setup the ASR service for a specific virtual machine, in our case

the VM name is sql2017asxwin. To do that, you need to go to the Disaster recovery
section. You will need to configure the options described in the image below.

159

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

p 1 50 that you can necower your appications in the svent of outages in source region. Lear more about
1
Target settings
souece TaRgET
VM resource growp e (new rg_asr-ase - -
Acvailability set Yot Appleesic Mot Appicable v L
| Virtual natmork rg -t (e r_atrovmatoer ~ I o 3 2
Storage settings [-] Hide detaits
"FOURLE STCRAGE TRRGAT STORAE CACHI SI0RAGE,
rgasndaksT 16 [PremumLRE] Inew) rgasrtisisT Basr [Premium L. v | | (newd rgasrdaksT16cachessr [Saand. v LI
wcheation settings -] Hide detaits
Source region (Nerth Ewope]
Recovery services vault AzureliteRecovery b L W Selactad tirge: reginn (Ve Surape)
- ¥ Zvailable target regions
Vault resource group rg_szuresiterecvery ~| e
|leplculmpo|ky Inew) 2-hour-retertionpaicy [- @
5

Figure 2-50. The ASR configuration dashboard of Azure Virtual Machines

Setting the options above you define:

1. Targetregion. The destination region where you want to replicate
the source VM.

* Target region

West Europe

2. Ttdisplays the source and the target region in the map.

160

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

3. The source Virtual Network with the destination Virtual Network
that in this example will be created during the setup.

Virtual network rg_asr-vnet (new) rg_asr-vnet-asr v

4. Storage. It maps the source storage with the target storage, and
it uses cache storage, located on the source region, for caching

purposes.
SOURCE STORAGE TARGET STORAGE CACHE STORAGE
rgasrdisks716 [PremiumLRS) (new) rgasrdisks716asr [Premium_L... v (new) rgasrdisks7 16cacheasr [Stand...\

5. Replication policy. You can define it in advance or you can
customize it later. You can define the retention period (up to 72
hours) of each recovery point and the frequency of application-
consistent snapshots, which is a very important feature for SQL
Server workloads.

Replication policy | (new) 24-hour-retention-policy

The first configuration plus the first full replication process could take from 30
minutes to a few hours, in cases where you are replicating a lot of data.

When the first full replica is completed, you will see a dashboard like the one below,
that displays the status of replication, RPO, and recovery points details, including
application consistent recovery points.

161

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Replication
Health
Replication health @ Healthy
Status Protected
{rPO 1 minute [As on 1/22/2018... |

Latest Recovery Points

Crash-consistent 1/22/2018, 9:31:13 AM

App-consistent 1/22/2018, 6:46:00 AM

Figure 2-51. Status of RPO and app-consistent recovery points on the ASR section
in the Virtual Machine Dashboard

It is worth mentioning that you can do some customization on the configuration that
will be configured in the target site. As an example, if you don’t want to guarantee the
same performances at destination because you think that it would be acceptable for a
temporary downtime to have reduced performances, you could choose a different virtual
machine series and size. Of course, keep in mind that VMs at destination must be able to
meet minimum requirements, for example the possibility to attach Premium storage and
the number of data disks that the source VM has.

PROPERTIES ON-PREMISES MICROSOFT AZURE

Name 5q12017asrwin 5ql2017asrwin

Resource group rg_asr rg_asr-asr v
e 052.2 Qcores T GBmemery 2G| D132 e 33 B memery 2+

Figure 2-52. You can select different VMs sizes and series at destination

162

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS
Test Failover

Test Failover

G " e
& Falover £y

Once the first full replica is completed, you have two options available. The first one
is to perform a Test Failover, which will simulate everything at destination, keeping
the production active and turning on all the resources at destination. In this simple
example, basically it will create the virtual machine at destination using the selected
configuration and using the disks in the target storage. Test Failover is a very helpful
feature and a recommended one to use, as it guarantees your customer the ability to
periodically check if the disaster recovery infrastructure is healthy. The second one is to
run an actual Failover that can also be triggered manually. This will make the failover
site the active one. In case of failover of multiple virtual machines, you need to set a
Recovery plan, which is not covered here in this book. A recovery plan will give you the
ability to define the rules that you want to give to your disaster recovery strategy. For
example, you could define dependencies that set the boot sequence of VMs, and you
can also define very sophisticated scripts using Azure Automation runbooks, your Swiss
Army Knife for complex scenarios. To learn more about ASR Recovery Plans, you can
visit this page: https://docs.microsoft.com/en-us/azure/site-recovery/site-
recovery-create-recovery-plans.

To perform a failover test, you just need to select two options. The first one is to
choose the recovery point. The dropdown list will provide you with the list of all recovery
points available including, as in the case of the picture, the app-consistent recovery
points. The second choice is related to the Azure Virtual Network that you will use to
place objects. It is recommended, like in the example, to avoid using the Azure Virtual
Network that you chose for the actual disaster recovery.

163

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-create-recovery-plans
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-create-recovery-plans

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Failover direction
From @

| MNorth Europe ‘

To®

| West Europe ‘

Recovery Point

Choose a recovery point@®

. Latest app-consistent (1/22/2018, 10:46:2... v

* Azure virtual network @

| rg_dataplatform_book-vnet v

Figure 2-53. The failover test mask

The Test Failover took just five minutes in this case, as we had to test one virtual
machine only. Once the failover is completed, you have a virtual machine at destination
with a different name, running in parallel with the source virtual machine. After verifying
that everything is working as expected, you can delete the Test Failover environment
using the Cleanup test failover option.

g 5ql2017asrwin Virtual machine Running rg_asr

u 5ql2017asrwin-test Virtual machine Running rg_asr-asr

Figure 2-54. The two virtual machines running in parallel, both source with
production and target with the DR in test

164

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

T Eeportjob Q) Environment Details

; Test fadover for the virtual machine has completed. To delete the virbual machine created during test failover usefCleanup test failover’
B option on the virtusl machine.

Properties
Vault AzureSiteRecovery
Protected item 5g1201Tasewin
Jobid c0deb97c-543¢-4b60-0501-86c341da4033-2013-01-22 23:00:53Z-1bz Activityld: 95549cbe-b2de-4d71 .
Source North Europe
Target West Eurape
Job
HAME STATUS START TIME DURATION
Prarequisites check for test failover O Successiul 1/23/2018, 12:01:05 AM 00:00:00
Create test virtual machine O Successhul 1/23/2018, 12:01:06 AM 00:01:39
Preparing the virtual machine @ Successhul 1/23/2018, 12:02:45 AM 00:01:52
Start the virtual machine @ Successful 1/23/2018, 120437 AM 00:00:00
- -
'm' Settings g Failove &y Test Failove v/ Cleanup test failover

Figure 2-55. The steps executed during the test failover and the Cleanup test
failover to delete the objects created during tests.

Failover

The Failover follows the same approach, with the difference being that steps
will be executed against the target Azure Virtual Network that you chose during the
configuration. You also have the opportunity to turn-off the source VM, in case it is still
accessible, which is a recommended option if you are performing the Failover for real
reasons. This ASR feature is often used to migrate workloads from on-premises to cloud.
Failover is always a manual task that you trigger; it is not an automatic action.

165

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Failover direction

From @

To®

Recovery Point
Choose a recovery point®

Latest processed (low RTO) (1/23/2018, 12... v

Shut down machine before beginning
failover.

Figure 2-56. Failover procedure

To close this section, and considering that Azure Site Recovery is not a common tool
that data architects use, we decided to put some additional information and links below,
to go more in depth on this service:

o Azure Site Recovery Q&A: https://docs.microsoft.com/en-us/
azure/site-recovery/site-recovery-faq

e In case you want to script ASR configuration and management, you
can use the Azure Site Recovery Powershell, cmdlets here: https://
docs.microsoft.com/en-us/powershell/module/azurerm.siterec
overy/?view=azurermps-5.1.1

o Failback. After the Failover from one Azure region to another, the
virtual machine goes on an unprotected state. If you want to do a
failback to the source region you need to protect the VM again using
the Re-protect dashboard and then do another failover. This is how
the failback works at the moment on an Azure-to-Azure DR with ASR

166

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-faq
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-faq
https://docs.microsoft.com/en-us/powershell/module/azurerm.siterecovery/?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.siterecovery/?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.siterecovery/?view=azurermps-5.1.1

CHAPTER 2 WORKING WITH SQL SERVER ON HYBRID CLOUD AND AZURE IAAS

Re-protect 8 X

v

Resource group, Network, Storage and Availability sets ' Customize

By default, Site Recovery will pick the original source resource group, virtual network, storage
accounts and availability sets as below. Click ‘Customize’ above to change the configuration. The
resources created are appended with “asr” suffix.

Target resource group @ Target virtual network @
rg_asr rg_asr-vnet

Cache storage accounts @ Target storage accounts @
(new) rgasrdisks716ascacheasr rgasrdisks716

Target availability sets @

Not Applicable

e Add Azure Automation runbooks to recovery plans: https://docs.
microsoft.com/en-us/azure/site-recovery/site-recovery-
runbook-automation

Summary

This concludes the chapter where we spoke about SQL Server running on Azure in both
hybrid and Azure-only configurations, covering aspects like backups and the setup of
SQL Server in Azure IaaS, including disaster scenarios. We move now to chapter 3, where
the focus is on NoSQL workloads that you can run on Azure.

167

https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-runbook-automation
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-runbook-automation
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-runbook-automation

CHAPTER 3

Working with NoSQL
Alternatives

We often deal with projects which have not involved anything outside the “plain-old”
RDBMS as the storage engine. Fortunately, the law saying SQL should be the primary
data source of enterprise application, is a guideline belonging to the past, and it’s been
few years we can see NoSQL alternatives around the corner in almost every complex
project.

In this chapter, we are going to understand how much value we can get from NoSQL
alternatives of Microsoft Azure, designing usage patterns and highlighting useful tips to
catch out the most from the composition of those services.

Understanding NoSQL

We would avoid to write “yet-another-what-is-NoSQL-paragraph” but unfortunately, we
have to, since we need to set a baseline. Let’s try with an example as shown in Figure 3-1.

169

© Francesco Diaz, Roberto Freato 2018
E Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_3

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

@ Transactions
I— —Tracing
Web App Web App SQL
Everything
Orders
===

e

Storage (Azure)

SQL DocumentDB

Figure 3-1. We should read NoSQL as “not-only-SQL; since there are a lot of
products with specific features very useful to address small (but important) pieces
of our applications

Suppose we have an e-commerce with online transactions with different payment
gateways, where users can choose one at runtime, depending on their preference.
Each payment gateway has its own protocol and message formats; even the payload
exchanged between the e-commerce and the gateway is different. One broker may
include in the payload some credit card data; another one may return additional
information about the merchant and/or the acquirer.

It doesn’t matter what the information exchanged is: we want to trace everything
exchanged between those actors for further eventual analysis.

A first design approach would analyze the various gateways, finding a sort of
common fields of the entire set, and designing the appropriate SQL table to put those
data into. Additional fields, the ones related to a specific gateway, can be either skipped
(bad!) or aggregated in a special field like in the structure below:

CREATE TABLE [tracing].[PaymentsTracingData]
(
[ID] INT NOT NULL PRIMARY KEY IDENTITY,
[Type] INT NOT NULL,
[Timestamp] INT NOT NULL,
[Amount] DECIMAL(8,2) NULL,

170

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

[TransactionID] VARCHAR(100) NULL,
[AdditionalData] VARCHAR(MAX)

This approach normalizes the basic subset of information in common for the various
gateways (but in fact only the ones known at the state of the art) and delegates the
additional information to a “catch-all” field, in a free-text fashion.

We can extract all the tracing data by an Amount filtering, with the following query:

SELECT * FROM tracing.PaymentsTracingData
WHERE Amount IS NOT NULL AND Amount > 5000

This leads to the following facts:
e We can use well known SQL to perform queries on the tracing data

e We can use SQL the perform advanced grouping or filtering
techniques

e We have all the advantages of using an RDBMS, like: transactions,
referential integrity, foreign keys, etc.

All this stuff is, for tracing data, kindly useless. It is very unlikely we need integration
logs over a tracing table nor we need to enforce some referential integrity rules between
this table and other. We may, of course, but we think it is and edge-case.

More important: what if we eventually need to query every tracing entries of type
X, filtering on the specific field that type has, for the limitation of the design, in the
AdditionalData field?

This simple scenario does not justify NoSQL alternatives, it just emphasizes the
limitation of the RDBMS option in front of a simple problem of saving eterogeneous
tracing data.

Actually, there are some ways to accommodate the need of eterogeneous data in
traditional RDBMS. In SQL Server as well as Azure SQL Database, we can also use
the native support for JSON fields, in conjunctions with the indexing and querying
support.

171

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Simpler Options

It not uncommon to see enterprise application making use of the File System. Yes, the
same file system we use to store files and folders, but to save business critical data which
is not a traditional BLOB.

In the previous sample, every tracing “row’, can be either a “file” in a folder on the
file system. We can store message payloads in the content of a plain text file and name it
to represent basic properties, for instance:

e /
e /[brokerType]
o /[brokerType]/[transactionID]_[timestamp].json
With some instances (files) as follows:
e /2/999AA12019_1505060089.json
e /4/A00-12019-EE-1_1505060190.json

With this basic files and folder structure, we can “query” every transaction occurred
for the broker “2’) with a simple directory listing API.

The “query options” of this very simple strategy are three (corresponding to the
segments of the path):

1. Query by the broker type
2. Query by the transaction ID
3. Query by the timestamp value
Of course, we are not able yet to query by the actual information inside the payloads;
in fact, we are in a worse condition as the SQL alternative, since there is no way to get
this query working:
SELECT * FROM tracing.PaymentsTracingData
WHERE Amount IS NOT NULL AND Amount > 5000
Except by writing custom code like the following:

var basePath = "[path]";
Func<T, bool> predicate = T=> true; //Specify a predicate
var files = Directory.EnumerateFiles(basePath, "*.json", SearchOption.
AllDirectories)
.Select(p => JsonConvert.DeserializeObject<T>(File.ReadAllText(p)))
.Where(predicate);
172

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

So we got those downsides:

o Everyfile should deserialize in a common format to “read” the
common property we are expecting

o The code is very time consuming since it reads and deserializes every
single file of the tracing folder (which is growing continuously)

o Ifthe T definition changes, that code is useless and we are at the
same point as we were with the RDBMS solution

We can expand the Path pattern to include more fields to query on, but this seems
very awkward and it only moves the problem from SQL to file-system.
Thus, from those two distinct experiences, we learned:

o SQLisn’t the only way to solve the tracing problem and it has
limitations

o File System can be an alternative, but it has other limitations

We finally should find something useful to solve the problems above, in the optimal way.

Document-oriented NoSQL

In the previous section, we learned RDBMS isn’t the only option to save tracing data.
However, a file system alternative can be poor too, and we would like to highlight which
are the requirements of our scope. Let’s try to focus on those three documents:

Type "2" Type "4" Type "5"

{ { {

"Type": "2", "Type": "4", "Type": "5",
"Timestamp": 1505061982, "Timestamp": 1505061982, "Timestamp": 1505061982,
"mpTrxAmount”: 100, "Amount": 12.34, "PaymentCurrency"”:
"mpTrxID": "999AA12019", "TransactionID": "EUR",
"mpTrxCardHolder": "A00-12019-EE-1", "PaymentNetAmount": 34,
"Roberto Freato", "Account": "Wallet", "PaymentTaxAmount": 7,
"mpTrxMaskedPan": "Status": "Refused" "TransactionRef":

"XXXX - XXXX - XXXX- XXXX" , } "BB15827287391872"
"mpTrxResult": "OK" }

}

173

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Every document can be the serialization of the payload resulting from a message
exchanged with a specific payment gateway. In some cases, we have some information
and in other cases we have not. We notice we have the same information (the Amount
of the operation) in each document, but in different format, since specific providers can
have different naming conventions.

The only two fields in common are Type and Timestamp, since we assume this
information is mandatory for every tracing entry and can be either autogenerated
by the system itself.

If those documents were files, we have already said we should read the files one
by one, parse them and find the appropriate values: all this nightmare just for a basic
filtering query!

In a document-oriented NoSQL engine, we instead assume we can put the
documents as they are, and then query them per their actual fields. Assuming a SQL-like
language, we can setup a query as follows:

SELECT * FROM Documents
WHERE mpTrxAmount > 20 OR Amount > 20 OR
(PaymentNetAmount+PaymentTaxAmount) > 20

With this approach we now can easily save documents in different formats and query
them according to their actual structure, without thinking in advance to normalized
tables of well-defined structures to contain all the fields we need. This moves the
problem on the query itself, which has to be defined to deal with multiple types of
document.

Be aware this is only a concept explained, since the underlying technology which
can handle this type of query, efficiently, is to be discussed later in the chapter.

NoSQL is not related only on this property/feature, which is commonly known as
“schemaless” NoSQL products often break some of the classic RDBMS assumptions,
like to ACID ones (Atomicity-Consistency-Isolation-Durability) in order to provide
scalability scenarios which are not easy to achieve in the pure relational ecosystem.

174

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

NoSQL alternatives in Microsoft Azure

Assuming we have got just the minimal knowledge of the NoSQL initiative, we are going
to explain which services of the Microsoft Azure platform are NoSQL-oriented and how
to use them in our solutions, paying attention to the specific features they provide to
maximize the efficiency and to provide much value to applications.

In the rest of the chapter we are exploring:

o Azure Storage: mainly Blobs and Tables

e Azure Redis Cache: the managed key-value store, acting like a fast

in-memory cache

e Azure Search: a document-based store, similar to the open-source
Elastic Search engine

There also Azure Data Lake, a repository for Big Data: but it has a dedicated chapter
later in the book.

We are strong supporters of polyglot persistence, meaning we strongly encourage
architects to use the appropriate technology to save persistent data, according to the
business requirements and using/maximizing the specific features of the individual
components instead normalizing all the data operations into a single-type repository.

Using Azure Storage Blobs

The Blob Storage (Figure 3-2) is one of the 4 services associated to a Storage Account,

where the other three are:
o Table storage: we are going to discuss it later
e Queue storage: a container of FIFO queues to integrate systems

o File storage: a SMB-like file service to be mounted remotely from
inside and outside Azure

175

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Blobs Tables Queues Files

Figure 3-2. Those are the four services/endpoints of a storage account. Some
services may overlap in features with other Azure services

In the next pages we will talk about a specific type of Blob, the block blob.

Azure Storage Blobs can be of two main types: Block Blobs and Page Blobs. We
think Page Blobs, used to provide random access features and mainly to be used
as the backing technology for virtual disks (VHD), are out of the scope of this
chapter since they are not really fitting NoSQL scenarios.

Understanding Containers and Access Levels

Block Blobs (Figure 3-3) are generally large objects representing unstructured data,
accessed for read/write through a REST API. Once a Storage Account is created, the
location of the Blob service is at the following URL pattern:

http(s)://[account].blob.core.windows.net

A sample structure for a Blob storage account can be the following:
o http(s)://[account].blob.core.windows.net
o /containerl
e /containerl/images/small/P001.jpg
o /containerl/images/small/P002.jpg
e /containerl/js/jquery.js
e /container2/configuration.json
e /$root

e /$root/index.html
176

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

o — @ = ¢ =B | [

Upload Download Open New Folder CopyURL Select All Copy
& — v P containerl > images > small
D P001,jpg Fri, 24 Nov 2017 16:41:00 GMT Block Blob

Figure 3-3. This is taken from the Microsoft Azure Storage Explorer client
application, one of the most comprehensive applications to operate against the
Azure Storage service

In the simple scenario above there a lot of concept explained. First, we do not create

folders in the Blob storage but “containers”. A container is like a first-level folder, defining

an Access Level between those three options:

No public access (aka “Private”): despite the contained blobs have
unique URLs, they cannot be accessed publicly, without the proper
access key. This is the most restrictive option (Figure 3-4).

Public read access for container and blobs (aka “Container”): every
object inside the container is publicly accessible through its URL
and the container itself exposes its information and metadata to the
public. This is the less restrictive option.

Public read access for blobs only (aka “Blobs”): as the previous
option, every blob contained here is public, but the container
information is kept private (we cannot, for instance, ask the container
to list its blobs).

177

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Set Container Public Access Level

Choose the access level:

[®] No public access
Public read access for container and blobs

Public read access for blobs only

Cancel

Figure 3-4. This dialog (taken from Microsoft Azure Storage Explorer) lets us
change the access level of a container among the three options explained

In the sample above we can suppose “containerl” is Public for blobs. Everyone can
access the P001 image through its public URL:

http(s)://[account].blob.core.windows.net/container1/images/small/P001. jpg

The same stands for “P002.jpg” and the “jquery.js” JavaScript file. However, “images’,
“small" and “js” are not real folders. There is not an API on the Blob Storage to create
those folders nor to assign them permissions and/or ACLs. Those segments of the URL
are just prefixes of the blobs or, if we would like to see it differently, the blob names are
comprehensive of the entire “path’, beginning just after the container name (Figure 3-5):

o images/small/P001.jpg

e js/jquery.js

This concept is also known as “Flat namespace” and it exists only for querying
purposes.

Coming back to the previous sample, we can instead suppose “container2” is Private.
This means that despite “http(s)://[account].blob.core.windows.net/container2/
configuration.json” is a valid URL, only authenticated clients will connect to it and,
in case someone tries to access it anonymously, the service returns a generic not found

error message.
178

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

A

@ Samltxt Mon, 18 Sep 2017 13:41:57 GMT Block Blob text/plain 8.7KB
B samlixt

Figure 3-5. Blob storage is case sensitive and we need to pay attention to this in
order to avoid the situation above. In that case, we have the same file persisted two
time with different case but the same name and content

A special mention for the “$root” container. As the name suggests, it is the special
container that is mapped to the root of the Blob Storage account. This means the blob
“/$root/index.html” can be accessed through the “http(s)://[account].blob.core.
windows.net/index.html” URL. All the considerations about Access Level are still valid
for the $root container, since it must be explicitly created from the user along with its
Access Level.

Understanding Redundancy and Performance

As solution architects, we must know in advance the limits of the services we use, to
design proper relationships between all the components of the solution.

Just to make a concrete example, at the time of writing, a single storage account
has a target bandwidth of about 20-30Gbps for egress (data “coming from” the storage
account) and about 10-20Gbps for ingress (date “going to” the storage account). In
practical, this means we need to plan the capacity in order to avoid bottlenecks or, worse,
service interruption.

Let’s think about a Blob storage account containing tons of Images for a B2C
website. The pages of the website, hosted on any web server, can include
tags referencing the storage account, to release resources form the Web Server
and instead loading the content Tier, which can be the Blob storage itself. In case
the average page loads about 20 images of 10KB each, we can achieve about
20K pageviews/second to reach the maximum throughput of the Storage Account
(30Gbps ~ 30.000.000.000bits/sec - 10KB ~ 81920bits - 366.210 images/sec -
18310 pages/sec).

179

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

This is a high-end number and it is more likely we encounter issues on the Web
Tier first (to serve this number of simultaneous request) before the Storage
Account can be saturated. However, it is a limit we should consider, to plan our
infrastructure accordingly.

To understand the point of view we should adopt to design robust applications, there
is an interesting checklist for Performance and Scalability of Storage Accounts here:

https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-
checklist?toc=%2fazure%2fstorage%2fblobs%2ftoc.json

Another good example of how a service limit can influence the behavior of an
application is explained by the following story: let’s think about an e-learning
system where students can get courses and labs independently but concurrently.
A course about Azure VM could tell the student to import a VHD from the Blob
Storage into his/her private account, to use it for the lab environment. Well, given
that we know there is a cap on the bandwidth for a single Blob of about 60MB/sec
or 500requests/sec, we realize students will download their VHD with a variable
speed, depending on the current traffic on that specific Blob. For instance, with
100 students downloading, they will experience a “slow” speed of about 614KB/
sec, resulting in a 60-hours download for a VHD of about 127GB.

Even this example happened in the real world.

In addition to the checklist above, we should also consider the Scalability Targets of
the Storage Accounts, as mentioned here:

https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-
targets?toc=%2fazurek2fstoragek2fblobs%2ftoc.json

In the previous reference link, we can understand of the Service Tier and the Region
can influence those limits: knowing them before going in production can be extremely
valuable.

A comprehensive checklist about performance of the Storage, is available here:

https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-
checklist?toc=%2fazure%2fstorage%2fblobs%2ftoc.json

180

https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-checklist?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-checklist?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-checklist?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-performance-checklist?toc=/azure/storage/blobs/toc.json

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Service Tiers

At the time of writing, those are the Service Tiers of the Storage Account:

LRS (Locally redundant storage): data is replicated three times but in
the same datacenter (~ facility). This can ensure the best in terms of
performance and the worst in terms of availability.

ZRS (Zone redundant storage): data is replicated across datacenters
and then replicated three times as the LRS. This ensures a higher
availability with a cost increase.

GRS (Geo-redundant storage): data is replicated to a secondary
region, according to the matching table available here (https://
docs.microsoft.com/en-us/azure/storage/common/storage-re
dundancy?toc=%2fazure%2fstorage%2fblobs%2ftoc. json). This
option costs more, but ensures the best level of availability in case of
service interruption of an entire region.

RA-GRS (Read-access Geo-redundant storage): it the same as GRS with
the plus that the replica on the secondary region is readable (with the
URL pattern [myAccount]-secondary.blob.core.windows.net).

The latest option is a hidden gem, since provides us a replica of the Storage endpoint,

which is unable to write by design. This can be extremely useful to use in read-only

scenarios or, as mentioned above, as the frontend tier for static resources of high-end

web applications.

In addition to the Service Tiers we can define an “access tier’, between those three

options:

Hot access tier: this is the default one and the behavior is exactly
what expected from blobs.

Cold access tier: it is like a reduced-availability option, where it is
suggested to use it for data less frequently accessed, compared to the
data stored in the Hot mode.

Archive access tier: this is, at time of writing, a preview feature, letting
us archive blobs with the lowest price, at the cost of availability. In
fact, an archive Blob cannot be read or modified: to do this, it must
be rehydrated changing its tier to Hot or Cold, using the Set Blob Tier

API, which is itself also a preview feature.
181

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy?toc=/azure/storage/blobs/toc.json
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy?toc=/azure/storage/blobs/toc.json

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

The Set Blob Tier API, aka Blob-Level Tiering, let us decide blob-by-blob which
policy to apply, providing a flexible management without the need to physically separate
blobs by their access patterns.

At the time of this writing, there are two General Purpose versions of the Storage
Account: GPv1 and GPv2. Currently, new features like tiering are available only in
the GPv2 version. We do not enter too much in those versions specifications since
it may change over time.

Backup and Disaster Recovery

The underlying infrastructure of Azure Storage guarantees availability as long as
durability of its Storage Accounts, with a very high SLA. Since the Storage is one the
foundation services for the whole Azure infrastructure, it is very likely that a great focus
is around it to prevent service disruption and unavailability.

For a complete reference about SLA for Storage, follow this link:
https://azure.microsoft.com/en-us/support/legal/sla/storage/vi 3/

In the unlikely case a service disruption occurs on the infrastructure side, there are
no options to make a user-initiated transparent failover against a secondary replica.
Instead, we need to use the RA (Read-Access) endpoint of the RA-GRS account to bulk
copy the entire contents into a new Storage Account for both read/write operations. To do
that, at the time of this writing, we can use manual tooling (AzCopy, PowerShell) of the
Azure Data Movement library (which is manual too, but it saves some time in coding).

The Azure Storage Data Movement library is explained here: https://docs.
microsoft.com/en-us/azure/storage/common/storage-use-data-
movement-library.

However, the real issue is not on the Azure side, which we expect is managed by
Microsoft, but on the user side, where the focus is on the necessary measures to prevent
damages on the storage account themselves, made by the user using them.

182

https://azure.microsoft.com/en-us/support/legal/sla/storage/v1_3/
https://azure.microsoft.com/en-us/blog/introducing-azure-storage-data-movement-library-preview-2/
https://azure.microsoft.com/en-us/blog/introducing-azure-storage-data-movement-library-preview-2/
https://azure.microsoft.com/en-us/blog/introducing-azure-storage-data-movement-library-preview-2/

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Let’s suppose those kind of incidents:
e Ablob has been overridden with the wrong content
o Auser accidentally deletes the entire storage account (or a container)
e Ablob has been deleted

Unfortunately, Azure does not help us under those circumstances, and we need to
setup a recovery plan immediately before going in production.

AzCopy is a good cross-platform (Windows/Linux) command-line utility to perform
multiple downloads/uploads from/to storage accounts.

In this example we are downloading all the blobs of a container to a local folder:

AzCopy /Source:https://[account].blob.core.windows.net/[container]
/Dest:[localPath] /SourceKey:[key] /S

However, we must keep in mind that we may put in place some infrastructure code
to achieve resiliency, in order to orchestrate the data movement appropriately.

Azure Storage Data Movement Library has been released to implement exactly those
scenarios, using the same core data movement framework that powers AzCopy.

Implement a Simple-but-resilient Backup Service

There are several online Software-as-a-Service solutions to manage the backups of Azure
Blob Storage, each one involving those three building blocks:

e Asource Blob Storage account
e Adestination Blob Storage account (or another storage type)

e A compute tier which should perform the data movement

Take a look at CherrySAFE (https://www.cherrysafte.com), which is a SaaS
solution to backup to and from various Azure data sources.

In case we would give a try by yourselves, we can use the Azure Storage Data
Movement Library, which offers a managed SDK over the robust AzCopy features.

183

https://www.cherrysafe.com/

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Here there are the requirements:

o Write a job that copies the entire content of a Blob Storage account
inside another one

« Inthe destination storage account, map each source account to
a specific container (which would permit a many-to-one backup
relationship)

o Perform the copy using the fastest method but minimizing the overall
costs

o Ensure the job is resilient and robust

The Copy Process
Let’s go straight to the point:

var task = TransferManager.CopyDirectoryAsync(
sourceBlobDir: sourceDirectory,
destBlobDir: destinationDirectory,
isServiceCopy: true,
options: new CopyDirectoryOptions() { Recursive = true },
context: context,
cancellationToken: tokenSource.Token);

In this code snippet, we use the TransferManager class to ask the library to initiate
the copy process from the sourceBlobDir Blob Directory to the destBlobDir Blob
Directory. The TransferManager, in fact, can copy blobs one-by-one or in a per-directory
basis.

We know directories are just aliases in the Blob Storage, so we can point the source to

un

the first-level directory of a given container (the “” -empty directory):
var sourceDirectory = container.GetDirectoryReference("");
While the destination can be a prefix representing the source container:

var destinationDirectory = destinationAccountContainer
.GetDirectoryReference(container.Name);

184

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

The “isServiceCopy” flag indicates TransferManager will use the integrated service-
level copy feature of a storage account. This feature provides us with a convenient way
to initiate a copy process without physically downloading the resource on the compute
tier. This will increment copy performance and, at the same time, will save a lot of money
since minimal outbound bandwidth is used.

Since we are pointing to the “root” of a source container, we implement a “Recursive”
copy, using the CopyDirectoryOptions object. Finally, a cancellation token is passed to
the TransferManager to gracefully end the process in case of termination (think about a
high-level signal that indicates a shutdown attempt of the compute tier is doing the job).

The DirectoryTransferContext Object

The context parameter can be passed as a null value (bad), or can we take advantage
of assigning it explicitly. This will be a context object keeping several interesting

information around our copy process:
o Bytes transferred
e Blobs transferred, failed, or skipped
o Callback logics for conflict management
o Checkpointing features to resume a copy process previously aborted

This is a sample implementation of this context object:

DirectoryTransferContext context = new DirectoryTransferContext
(lastCheckpoint);

var collectFailed = new List<TransferEventArgs>();

var collectSkipped = new List<TransferEventArgs>();
context.FileFailed += (sender, e) =>

{
collectFailed.Add(e);
};
context.FileSkipped += (sender, e) =>
{
collectSkipped.Add(e);
};

context.ProgressHandler = new Progress<TransferStatus>((progress) =>

{

185

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Console.WritelLine($"0K: {progress.NumberOfFilesTransferred} " +

$"- Skipped: {progress.NumberOfFilesSkipped} " +
$"- Failed: {progress.NumberOfFilesFailed} " +
$"- Bytes transferred: {progress.BytesTransferred}");

IOk

context.ShouldOverwriteCallback = new ShouldOverwriteCallback((source,

destination) =>

{

return true;

};

We are collecting the EventArgs of the FileFailed and FileSkipped events, for further
statistics. We are attaching a callback to the ProgressHandler property to inform the
user of the progress of the operation and, for reference purposes, we are using the
ShouldOverwriteCallback property to perform decisions about conflicts (in the case
above, we always overwrite an existing destination blob).

Some Other Context

We decided to setup a transfer between two Storage Account, dumping the entire source
storage account (container-by-container) into a single destination container. To do this,
itis useful to track progress and make the job resilient, since it could be interrupted
by several actors (internal or external) and it should restart/resume from the point it
stopped.

The Azure Storage Data Movement library helps us on this task but we need to add

some custom logic too:

o Thelibrary continuously updates a TransferCheckpoint object which
represent the status of a single TransferManager operation. In case
we are copying an entire Directory, it will contain the status of the
copy process.

e We need to track the containers we have already copied, to resume
from the correct one in case of stop/start.

186

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

To save those two state item, we use a Storage Account too, with two distinct blobs
representing the serialization of this states:

var checkpointBlob = CloudStorageAccount
.Parse(cAccount)
.CreateCloudBlobClient()
.GetContainerReference("dm-operations")
.GetBlockBlobReference($"{sAccountName}.checkpoint.json");
var containersCheckpointBlob=checkpointBlob.Container
.GetBlockBlobReference($"{sAccountName}.containers.json");

We assume those files could exists and, in case, we deserialize them into real objects:

var lastCheckpoint = default(TransferCheckpoint);
var processedContainers = new List<string>();
if (checkpointBlob.Exists())
{
lastCheckpoint = JsonConvert.DeserializeObject<TransferCheckpoint>
(checkpointBlob.DownloadText());

}
if (containersCheckpointBlob.Exists())
{
processedContainers = containersCheckpointBlob.DownloadText()
.Split(',").TolList();
}

In the previous step, we saw a lastCheckpoint object passed into the constructor of
the DirectoryTransferContext class. With this switch, the TransferManager will initiate
the transfer at the correct point. Additionally, when we cycle the source containers to
copy one-by-one, we can avoid the ones already processed:

var containers = sourceAccount.ListContainers()
.Where(p => !processedContainers.Contains(p.Name)).ToArray();
foreach (var container in containers)

{
/...

187

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

At the end of a single container iteration, we can have two possible status:

o The iteration was stopped by the cancellation token, so we need to
save the current checkpoint

e The iteration finished due to its natural completion (i.e. every blob
of the container was copied to the destination), so we need to update
the processedContainers state variable.

if (!tokenSource.IsCancellationRequested)
{
processedContainers.Add(container.Name);
containersCheckpointBlob.UploadText(string.Join(",",
processedContainers));

}

else

{
var checkpoint = JsonConvert.SerializeObject(context.LastCheckpoint);
checkpointBlob.UploadText(checkpoint);

}

For reference purposes, we attach the entire snippet, including some minor
infrastructure code:

var sourceAccount = new CloudStorageAccount(
new StorageCredentials(sAccountName,sAccountKey),true)
.CreateCloudBlobClient();
var destinationAccountContainer = CloudStorageAccount
.Parse(dAccount)
.CreateCloudBlobClient().GetContainerReference($"dm-{sAccountName}");
destinationAccountContainer.CreateIfNotExists();

var lastCheckpoint = default(TransferCheckpoint);
var processedContainers = new List<string>();
if (checkpointBlob.Exists())
{
lastCheckpoint = JsonConvert.DeserializeObject<TransferCheckpoint>
(checkpointBlob.DownloadText());

188

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

if (containersCheckpointBlob.Exists())
{
processedContainers = containersCheckpointBlob.DownloadText()
LSplit(',').TolList();
}

var containers = sourceAccount.ListContainers()
.Where(p => !processedContainers.Contains(p.Name)).ToArray();
foreach (var container in containers)

{

if (tokenSource.IsCancellationRequested) break;

DirectoryTransferContext context = new DirectoryTransferContext(last
Checkpoint);

var collectFailed = new List<TransferEventArgs>();

var collectSkipped = new List<TransferEventArgs>();
context.FileFailed += (sender, e) =>

{
collectFailed.Add(e);
1
context.FileSkipped += (sender, e) =>
{
collectSkipped.Add(e);
b

context.ProgressHandler = new Progress<TransferStatus>((progress) =>
{
Console.WritelLine($"0K: {progress.NumberOfFilesTransferred} " +

$"- Skipped: {progress.NumberOfFilesSkipped} " +
$"- Failed: {progress.NumberOfFilesFailed} " +
$"- Bytes transferred: {progress.BytesTransferred}");

D;

context.ShouldOverwriteCallback = new ShouldOverwriteCallback((source,

destination) =>

{

return true;

};

189

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Console.WritelLine($"Processing container: {container.Name}");

var sourceDirectory = container.GetDirectoryReference("");

var destinationDirectory = destinationAccountContainer
.GetDirectoryReference(container.Name);

try
{
var task = TransferManager.CopyDirectoryAsync(
sourceBlobDir: sourceDirectory,
destBlobDir: destinationDirectory,
isServiceCopy: true,
options: new CopyDirectoryOptions() { Recursive = true },
context: context,
cancellationToken: tokenSource.Token);
while (!task.IsCompleted)

{
if (Console.KeyAvailable)
{
var keyinfo = Console.ReadKey(true);
if (keyinfo.Key == ConsoleKey.Q)
{
tokenSource.Cancel();
}
}
}
task.ConfigureAwait(false).GetAwaiter().GetResult();
}
catch (Exception e)
{
//Actual type would be OperationCanceledException
}
finally
{

if (!tokenSource.IsCancellationRequested)

190

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

{
processedContainers.Add(container.Name);
containersCheckpointBlob.UploadText(string.Join(",",
processedContainers));
}
else
{
var checkpoint = JsonConvert.SerializeObject(context.
LastCheckpoint);
checkpointBlob.UploadText (checkpoint);
}
}
}
Using Snapshots

Each Blob stored into the Blob Storage can be versioned using the Snapshot mechanism.
A Snapshot is a read-only version of the Blob taken at the time of the snapshot request.
A typical snapshot URL is in the following form:

https://[myAccount].blob.core.windows.net/[container]/blob.
txt?snapshot=[dateTime]

We can take an indefinite number of snapshot (except for Premium Storage VHDs,
which the limit for them is 100 per blob) and they are related to the base blob until it will
be deleted. We must know in advance this requirement, since there is no way to preserve
only the snapshots while deleting the base blob instead.

As a further measure of control, we need to explicitly delete snapshots before
deleting the corresponding base blob. If a blob has one or more snapshots on it, we can’t
delete it until they have gone.

Pay attention to the pricing model for snapshots. As we can imagine, we are
billed just for the blocks changed from a snapshot to the next one. However,
what is a block? For non-page blobs (a.k.a. the Block Blobs) a blob is made of
blocks and, in case we are updating a portion of the blob, we can update just
one or few block. In that case, the next snapshot will capture just the difference

191

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

between state 0 and state 1, so only the updated blocks will generate additional
costs. However, under some conditions (for example using the UploadFromText
methods of the SDK), the intended behavior is the replace the entire blob
contents, which will trigger a complete re-dump of the new content in case of a
Snapshot. Thus, it is very important to understand this to accurately plan how to
deal with snapshots.

Understanding Concurrency

Let’s say we have two or more concurrent clients impacting the same blob, for example a
single blob containing an index, populated from various sources in different timeframes.
We would like to avoid this scenario:

1. Client A gets the blob content, read it and add some information
2. Inthe meantime, Client B does the same

3. Client A save the changes by rewriting the blob contents

4. Client B does the same, eventually

This is the trivial situation of a “Later writer wins” that is often unsuitable for most
scenarios.
We can approach the problem in two ways:

e Optimistic concurrency: Client B writes the updated content if, and
only if, the actual blob content has not been changed since its read.

e Pessimistic concurrency: Client B cannot even read the blob content
until Client A releases the resource, with a lock.

Optimistic Concurrency
Suppose we have initiated a Blob Container as follows:

var container=CloudStorageAccount
.Parse("[connString]")
.CreateCloudBlobClient().GetContainerReference("private");
container.CreateIfNotExists();

192

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

And we created a TXT file containing a number “0” in it. We can now build a sample
console application like this:

var counter = container.GetBlockBlobReference("counter.txt");
var random = new Random(DateTime.Now.Millisecond);

while (true)

{
var counterInt = int.Parse(counter.DownloadText());
var etag = counter.Properties.ETag;
counterInt++;
try
{
counter.UploadText(counterInt.ToString(), null,
AccessCondition.GenerateIfMatchCondition(etag));
Console.WriteLine($"Success while saving: {counterInt}");
}
catch (Exception)
{
Console.WritelLine($"Error while saving: {counterInt}");
}
Thread.Sleep(random.Next(100));
}

Which tries to get the counter, increment it and upload it again to the same source.
A Blobk Blob comes with a ETag property, which is very useful to track changes while
re-write it against the store. Specifically, during the UploadText phase we specify a
conditional access, based on the ETag obtained during the reading phase. This ensures,
on the service side, that the write will occur if and only if the target ETag is the same
as the one declared in the write operation. If we run two or more instances of the
application (Figure 3-6), we can notice this result:

193

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Error while saving: 571 JSuccess while saving: 571 while saving: 570
Error while saving: 572 Success while saving: 572 Error while saving: 571
Success while saving: 573 while saving: 573 Error while saving: 572
Success while saving: 574 while saving: 574 Error while saving: 573
Success while saving: 575 while saving: 575 Error while saving: 574
Success while saving: 576 while saving: 576 Error while saving: 575
Success while saving: 577 while saving: 577 Error while saving: 576
Success while saving: 578 while saving: 578 Error while saving: 577
Success while saving: 579 while saving: 579 Error while saving: 578
Success while saving: 580 while saving: 588 Error while saving: 579
Error while saving: 581 while saving: 581 Error while saving: 58e
Error while saving: 582 while saving: 582 Error while saving: 581
Error while saving: 583 while saving: 583 Error while saving: 582
Error while saving: 584 while saving: 584 Error while saving: 583
Error while saving: 585 while saving: 585 Error while saving: 584
Error while saving: 586 while saving: 586 Error while saving: 585
Error while saving: 587 Error while saving: 587 Error while saving: 586
Success while saving: 588 Error while saving: 588 Success while saving: 587
Success while saving: 589 Error while saving: 589 Error while saving: 588

Success while saving: 5980 Error while saving: 598 Error while saving: 589
Error while saving: 591 Success while saving: 591 Error while saving: 59@
Error while saving: 591

Figure 3-6. We see three concurrent jobs trying to change/increment the same
content on Blob Storage. Only ones per increment is successfully, since the others
fail due to the conditional access policy (Optimistic Concurrency)

Pessimistic Concurrency

Now we work in a scenario where we do not want to “try’, but we need the guarantee our
operation will succeed. This is the case where, instead of incrementing a number, we
need to perform a time/resource-consuming job.

We can modify the code above as follows:

while (true)
{
string lease = null;
try
{
lease = counter.AcquirelLease(TimeSpan.FromSeconds(15), null);
}
catch (StorageException)
{
Console.WritelLine("Error while obtaining the lease. Waiting...");
Thread.Sleep(random.Next(1000));
continue;

194

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

var counterInt = int.Parse(counter.DownloadText());
counterInt = Process(counterInt);

try
{
counter.UploadText(counterInt.ToString(), null,
AccessCondition.GeneratelLeaseCondition(lease));
Console.WriteLine($"Success while saving: {counterInt}");
counter.Releaselease(AccessCondition.GenerateleaseCondition
(lease));
}
catch (StorageException ex)
{
if (ex.RequestInformation.HttpStatusCode ==
(int)HttpStatusCode.PreconditionFailed)
Console.WritelLine($"Error while saving: {counterInt}");
else
throw;
}

Thread.Sleep(random.Next(1000));

First, we try to get the Lease (a sort of lock) on the blob before reading it, for a
maximum duration of 15 seconds (after that, the lease will be released automatically). In
case of failure, we simply wait without perform the actual work, while in case of success,
we download the contents, perform the long-running job and then release the lease.

Notice that, in this second example, we used the strong-typed StorageException, to
catch exactly the case where precondition has failed.

195

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

In this second scenario (Figure 3-7), the result is quite different:

Success while saving: 4243 Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Success while saving: 4241
Error while obtaining the lease. Waiting... Success while saving: 4242
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting..
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting..
Success while saving: 4246 Success while saving: 4244
Error while obtaining the lease. Waiting... Success while saving: 4245
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Success while saving: 4247
Error while obtaining the lease. Waiting... Success while saving: 4248
Error while obtaining the lease. Waiting... Success while saving: 4249
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting... Success while saving: 4251

Error while obtaining the lease. Waiting...
Success while saving: 4258

Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting...
Error while obtaining the lease. Waiting...

Figure 3-7. We see two concurrent jobs trying to acquire a lease to perform a job.
Only one worker can get the lease and enter the critical section. Finally, in case
someone else has changed/released/re-acquired the lease under-the-hood, the
write action will fail due to the conditional access policy

So we have two ways to deal with concurrency, even if I would like to emphasize
to reduce its usage at minimum, since we are dealing with HTTP stack and network
latency, which is not the best choice to use them for high-performance synchronization
patterns. Instead, we suggest to define distributed architectures to use immutable Blobs,
in order to avoid (where possible) the need of changing them.

Understanding Access and Security

Every blob in the Blob storage (also Page blobs, which are not covered in this book) is
represented by an URL that uniquely identifies it worldwide:

http(s)://[account].blob.core.windows.net/[container]/[blob]

196

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

This URL is the fully qualified name of the blob itself and, in case the blob stays in a
“Public” container, this URL also gives others access to its content publicly.

For most situations where Blob storage is used to store public assets (i.e., products
imagery, web content, scripts) this is a ready-to-go solution; at the other side, users are
prevented from directly access blobs contained in a “Private” container.

We now focus on a third option which is very useful in many scenarios. Let’s
think about a common Web Application providing bookings to users (flight bookings,
e-commerce orders, hotel bookings) where the “order” can be often represented by a
PDF with the transaction data plus some sensitive data about the user.

We want to focus on the workflow starting when a user clicks on the Download
button in his/her profile page, to download the transaction summary. We also suppose
this PDF is not generated on-the-fly and it is stored somewhere in the Blob storage.

In the first approach we can assume PDFs are stored into a “Public” container and
we can embed the public URL into the page:

<a link=https://[account].blob.core.windows.net/pdfs/ORDXXXXXX.pdf
>Download

This approach is the simplest but exposes the entire PDF set to the Internet. A user
can easily infer another order number to try download other’s content. Some real-world
applications use to prepend a GUID somewhere in the URL to make guessing harder, but
in our opinion, it is not a real solution:

<a link=https://[account].blob.core.windows.net/pdfs/[random-number-or-
guid]/ORDXXXXXX.pdf >Download

We can now protect the Blob using a “Private” container, but this prevents the
browser form directly download it. In a first attempt, we can proceed as follows:

1. The Web Application displays an internal URL like
“/DownloadPDF”

2. Ahandler inside the web app, using the Storage Account keys, first
downloads the contents into a temporary file and it serves it as a
download stream to the browser

This approach forces two distinct transfers, one for the server-to-storage download
and one for the server-to-browser push. Even in case we are not paying for the intra-
region bandwidth, it represents a waste of resources.

197

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

The ideal solution is the one we are now approaching, using the Shared Access
Signature feature of the Storage Account itself.

Shared Access Signatures

With SAS, we can generate a signed URL based on a private resource, to let it be available
to end-users without knowing the administration key of the entire storage. The process is
quite simple:

1. Identify the private blob we want to “share”
2. Identify some parameters:
a. The timeframe the share link will be valid

b. The type of operations permitted (read, read/write, only
write, etc.)

3. Using a public algorithm and one of the Access Keys, generate
a signature for that blob with the parameters above, in order to
generate a deep link to the secured resource

If we had a blob like this:
https://apress.blob.core.windows.net/private/counter.txt
A SAS-enabled URL can be as follows:

https://apress.blob.core.windows.net/private/counter.txt?st=2017-12-
01T14%3A26%3A00Z&se=2017-12-02T14%3A26%3A00Z8sp=r18&sv=2015-12-118sr=b&sig=%
2FUdYY1H%2B36swEINIaExizietG%2FWTS9T1FckR89kykrU%3D

This URL embeds the timeframe of validity of the URL itself (form 12/01/2017 to
12/02/2017) with the appropriate permission set (sp=rl stands for “Read” and “List”
permissions).

This could be the link we can provide to end-users, to be downloaded directly from

the browser.

198

https://apress.blob.core.windows.net/private/counter.txt
https://apress.blob.core.windows.net/private/counter.txt?st=2017-12-01T14:26:00Z&se=2017-12-02T14:26:00Z&sp=rl&sv=2015-12-11&sr=b&sig=/UdYYlH+36swEINIaExizietG/WTS9TlFckR89kykrU=
https://apress.blob.core.windows.net/private/counter.txt?st=2017-12-01T14:26:00Z&se=2017-12-02T14:26:00Z&sp=rl&sv=2015-12-11&sr=b&sig=/UdYYlH+36swEINIaExizietG/WTS9TlFckR89kykrU=
https://apress.blob.core.windows.net/private/counter.txt?st=2017-12-01T14:26:00Z&se=2017-12-02T14:26:00Z&sp=rl&sv=2015-12-11&sr=b&sig=/UdYYlH+36swEINIaExizietG/WTS9TlFckR89kykrU=

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

If SAS are used more often, we can rely on the SAPs (Shared Access Policies) to
define a single policy which can be applied to multiple resources. For example,
if we define a Policy with fixed parameters, we can apply it to multiple blobs to
centralize the revocation of the permissions. In case of a single SAS is setup,
revocation is available only through changing the Access Key used for the
signature generation.

To generate SASs and SAPs we can use:
o the REST API directly
o the Azure Storage managed library

o Azure Storage Explorer (https://azure.microsoft.com/it-it/
features/storage-explorer/) - Free

o Azure Management Studio (https://www.cerebrata.com/products/
azure-management-studio) - Commercial

o CloudBerry Explorer (https://www.cloudberrylab.com/explorer/
microsoft-azure.aspx) - Free/Commercial

Encryption Options

We can (to read “must”) use HTTPS instead the plain HTTP to access blobs. It is strongly
recommended to enforce this behaviour in the client applications, even if a recent
service upgrade introduced this option (Figure 3-8):

* Secure transfer required @

Enabled

Figure 3-8. We can set the option on Enabled, in the Configuration blade of
the storage account, to prevent clients to connect using plain HTTP (for the blob
service) or using SMB without encryption (for the file service)

The previous option is also known as Encryption-in-transit, since prevents
the contents be intercepted in the middle of the connection. Another option is the
Encryption-at-rest (Figure 3-9), which includes an encryption pass when the data is
stored on the underlying media.

199

https://azure.microsoft.com/it-it/features/storage-explorer/
https://azure.microsoft.com/it-it/features/storage-explorer/
https://www.cerebrata.com/products/azure-management-studio
https://www.cerebrata.com/products/azure-management-studio
https://www.cloudberrylab.com/explorer/microsoft-azure.aspx
https://www.cloudberrylab.com/explorer/microsoft-azure.aspx

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

* Storage service encryption @

Figure 3-9. The encryption option will encrypt all the new contents arriving
to the account after its enablement. Old content won’t be encrypted (except it is
overwritten) and this option cannot be reverted once enabled

At the time of this writing, encryption key is managed, secured, and rolled by
Microsoft itself. There is a preview feature letting customers choose their keys
using Azure Key Vault.

Security Perimeter

Since the beginning of the Azure Storage Service, every Storage Account have been
available on the Internet by default. There was no way to prevent specific users to access
the account or, conversely, to enable just few IPs or VNets to access it securely.

Recently, Microsoft introduces a Firewall capability similar to the one used in SQL
Database, with the additional benefit to include one or more Virtual Networks in the
trusted ring of permitted clients (Figure 3-10). In this last case, it is also guaranteed that
the path followed by the clients, inside a VNet, will not pass through the public internet.
For more information of this feature, known as Virtual Network Service Endpoints, you
can follow this link: https://docs.microsoft.com/en-us/azure/virtual-network/
virtual-network-service-endpoints-overview.

200

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

H save X Discard

Allow access from
O All networks @) Selected networks
Configure network security for your storage accounts. Learn more.

Virtual networks
Secure your storage account with virtual networks. + Add existing virtual network + Add new virtual network

VIRTUAL NETWORK SUBNET ADDRESS RANGE

No network selected.

Firewall
Add IP ranges to allow access from the internet or your on-premises networks. Learn more.

ADDRESS RANGE

IP address or CIDR G

Exceptions
Allow trusted Microsoft services to access this storage account @

D Allow read access to storage logging from any network

D Allow read access to storage metrics from any network

Figure 3-10. We see how to include new or existing VNets to the allowed clients for
the Storage Account, as well as specific IPs on the public internet. In case we have
external monitoring software using the logging and metrics features of the storage
account, we can check the last two options above

Using Azure Storage Tables

Azure Storage Tables have been one of the first services offered in the Azure Platform

from the beginning. For many reasons, its adoption has not been as huge as the

blob storage or SQL Database, but it represents a great NoSQL alternative for whom

looking for a simple but performant key-value storage service with minimal indexing

capabilities.

201

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Now, the new growing trend is to emphasize the usage of the Storage Account for
Blobs only, moving the need of Storage Tables to Cosmos DB. In fact, since Storage
Tables are available only for General Purpose storage accounts (which often are
not included in new features), it can be read as an implicit suggestion to invest on
the Blob Storage endpoint or, for Tables, on the Table API of CosmosDB.

But what is the Table service? Despite the name resembles the relational world, we
are not dealing with tables at all.

Planning and Using Table Storage

One of the biggest misconception about Table Storage is the query capability of it. Since
there are client libraries which let us write code as follows:

context.CreateQuery<Order> ("MyQuery").Where(p=> p.LastName.Equals("Doe"))

Itis a very common misconception to think about Table Storage as an indexed data
store. In fact, this is not true, and the only indexed fields, mandatory for each entity and
to be explicitly populated, are those three:

o PartitionKey
¢ RowKey
o Timestamp (it is populated by the service and it cannot be modified)

This means the query above will perform an explicit Scan on the table, so records
will be fetched in bulk from the storage to clients until the condition has been satisfied.

As stated above, we are enforcing the schema of the query/table on the client side. In
fact, on the service side, there is no concept of Order and, as mentioned before, we can
have two completely different entities in the same table as well.

Understanding PartitionKey, RowKey, Timestamp, and Fields

The PartitionKey can be a string value up to 1KB in size. The purpose of the PartitionKey,
under the hood, is to let the service partition the storage across storage nodes.

The RowKey is the unique identifier of an entity of a given partition. Together with
the PartitionKey, it represents the primary key of an entity in a table. The RowKey can be
also a string value up to 1KB.

202

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

The Timestamp is a server-maintained fields with the time an entity was last
updated.

As mentioned above, other fields are defined at entity-level, meaning that two
entities can define the field “Amount” as string and double, respectively.

The supported data types are:

EDM (OData) Data Type CLR Type Description

Edm.Binary byte[] An array of bytes up to 64KB
Edm.Boolean Bool A boolean

Edm.DateTime DateTime A 64-Dbit datetime in UTC format
Edm.Double Double A 64-bit floating point value
Edm.Guid Guid A 128-bit GUID

Edm.Int32 Int32 (int) A 32-bit integer

Edm.Int64 Int64 (long) A 64-bit integer

Edm.String String (string) A UTF-16 encoded string up to 64KB

Since the PartitionKey and RowKey fields are often used in the resources URLs,
there are some restrictions applied. We can even use the common sense, avoiding slash,
backslash, question mark and special characters. Here a sample of a URL for a PUT
request updating and entity:

PUT https://[account].table.core.windows.net/[table](PartitionKey="Heatmaps",
RowKey="'591769:2:015beb5f-8e67-426b-93d7-e3e8€4536269")

We use “Heatmaps” as PartitionKey to group the sampling by its type; in the RowKey
field, instead, we make a concatenation of different fields to use them while querying
later.

In Table service, we cannot index any fields explicitly. The only two usable fields in
queries are PartitionKey and RowKey. If we want to retrieve data in a certain order, it is
very important to design the values of those fields appropriately.

PartitionKey is designed to suggest the engine to partition unrelated data; so it is
important to keep related data in the same partition to improve performance of queries.
On the other side, the RowKey is the actual primary key of the entity inside a given
partition, ad it can be composed to fill as much information as we can.

203

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Ordering is important too and Table Service automatically orders the entity retrieved
by its PartitionKey and then by the RowKey. This means, in case we would like to order
the results by the most recent, we should format the RowKey appropriately. Let’s take a

concrete case:

Partitionkey = RowKey

Orders EW002341;00034;636483420626403391
Orders AC120013;00125;636483421493850048

The two orders in the table above have a RowKey composed as follows:
ORDERID;AMOUNT; DATETIME TICKS

We can easily see how the second is the latter one, since the Ticks value is higher.
However, while querying the Table Service with the query “PartitionKey eq ‘Orders” this
would be the result:

Partitionkey RowKey

Orders AC120013;00125;636483421493850048
Orders EW002341;00034;636483420626403391

Because the Table storage will order the result by the RowKey value. Let’s say we
always want a reverse chronological ordering in place (meaning the first result should
be the last order arrived). We cannot say the key composition above will satisfy the
requirement, since another order can change the result set:

PartitionKey RowKey

Orders AC120013;00125;636483421493850048
Orders EW002341;00034;636483420626403391
Orders WW12999;00014;636483424083654861

We now have a third order which is the most recent (with higher Ticks value). Let’s

change the RowKey composition pattern as is:

REVERSE _DATETIME_ TICKS;ORDERID;AMOUNT

204

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

For REVERSE_DATETIME_TICKS we mean the subtraction HIGHEST NUMBER-
DATETIME_TICKS or, in C#:

DateTime.MaxValue.Ticks-DateTime.Now.Ticks

Under this strategy, we produce decreasing numbers while the time flows,
guaranteeing the latter order will have the lowest number:

Partitionkey RowKey

Orders 2518895551916345138;WW12999;00014
Orders 2518895554506149951;AC120013;00125
Orders 2518895555373596608;EW002341;00034

GUIDELINES FOR TABLE DESIGN

As explained in the previous section the most important advice while implementing a Table Storage
solution is the choice of the right RowKey composition. Choosing the right strategy for this can
workaround the limitation of the Table Storage itself missing secondary indexes on custom fields.

It is also important to use PartitionKey to effectively group unrelated data. In conjunction with
this, it is recommended to always specify both PartitionKey and RowKey in queries; otherwise,
if just the RowKey is specified, the query will perform the lookup across partitions, which is
slower and more expensive.

If a single RowKey pattern is not enough to speed up the query process, think about storing
the same value multiple times, using different RowKey composition patterns. Also, consider to
de-normalize data, since Table Storage was intended to be used for Big Data purposes.

Finally, consider asking for the only fields needed in the query, by using projection, to avoid
unnecessary bandwidth consumption and to improve the overall performance of the query itself.

Dealing with CRUD Operations

A single Table Storage endpoint can contain several tables and, in each one, there can
be several different PartitionKey values and entities. Starting from the recommendations
above, we should place related data into the same table and using the same PartitionKey.
This will ensure we can join multiple entities in an Entity Group Transaction, which is
the transaction type supported in Table Storage.

205

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Entity Group Transactions are batch transaction applied to entities in the same table
and with the same PartitionKey value. The supported operations are the following:

o Insert (Or Replace, Or Merge) Entity
o Update Entity

¢ Merge Entity

e Delete Entity

However there are some limitations around EGT, with on the top the maximum
number of entities involved into a single transaction (100) and the request
max size (4MB).

Those limitations suggest to use some patterns to deal with common scenarios.
Let’s take one as an example:

PartitionKey RowKey Coordinates
Locations 000121;00001 45.464204:9.189982
Locations 000121;00002 41.902783:12.496366
Locations 000121;00003 40.851775:14.268124

As shown above, the DeviceID ‘000121’ generates some coordinates samples to be
captured for further maps pinning. A single entity is written for each sample. Using EGT,
we can save a bulk of 100 samples in a single transaction, which seem okay. However, in
case of deletion of an entire DevicelD, we need to cycle a lot around entities.

We can avoid this by proceeding in two distinct ways:

o Aggregate multiple coordinates samples in a single entity: we can
store up to 1MB for a single entity and we can reduce the number of
total entities with the consequent reduction of the total operations
needed to insert/update/delete them.

o Use adifferent table for each DevicelD: this will not save by itself time
while inserting/updating data but, in case of deletion, we can delete
the entire table in a single shot and recreate it later.

206

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES
Besides those considerations, here it is a simple Point Query to get a range of results:

TableQuery<MyEntity> rangeQuery = new TableQuery<MyEntity>().Where(
TableQuery.CombineFilters(
TableQuery.GenerateFilterCondition("PartitionKey", Query
Comparisons.Equal, "Locations"),
TableOperators.And,
TableQuery.GenerateFilterCondition("RowKey", QueryComparisons.
LessThan, "000121;99999")));

This is SDK-based code, where MyEntity is a POCO with strong-typed properties,
decorated with Attributes mapping to Table fields.

OData and Supported Queries

Table Service uses REST to operate with resources. The base endpoint is in the following
form:

http(s)://[account].table.core.windows.net
A single table is expressed as follows:

http(s)://[account].table.core.windows.net/Samples() - It returns all the
entities

Not the whole OData clauses are supported; actually just those three:
o $filter: used to apply conditions (max 15 per query)
e S$top: used to take the first N results
e S$select: used to project only the desired fields
The $filter clause supports the following operators:
e eq-ne: Equal, NotEqual
e gt-lt: GreaterThan, LowerThan
e ge - le: GreaterOrEqual, LessThanOrEqual

e and, not, or

207

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

For whom are already familiar with OData the encoding we must apply to queries is
probably well known. Since the query string is part of the URL itself, a starting query like
this:

$filter=LastName eq 'Freato' and FirstName eq 'Roberto’
Must be encoded as follows:

$filter=LastName%20eq%20' Freato'%20and%20FirstName%20eq%20'Roberto’

LIMIT THE BANDWIDTH CONSUMED

By default, the Table Service echoes the request body payload in a successful response

of insertion methods like Insert Entity. We can set the HTTP header “Prefer” to “return-no-
content”, to avoid this default behavior. This is particularly useful in scenarios where massive
data is inserted from “outside” the Azure DCs. In those cases, while every ingress byte is free,
every egress one is paid. This strategy also saves time while requests are generated from
inside the same Region of the Table Service.

Understanding Monitoring

This part applies also to Blob Storage, but it is covered here since Tables are involved.
Azure Storage is one of the core services of the Azure platform and there is an extensive
approach to monitoring, diagnosing and troubleshooting it (Figure 3-11).

Total requests # Total egress » Average E2E latency »
i 1568 -
‘ 158 A
] /‘ 168 ‘ /\ . III \
. o [\ / \ W . g B 7
e i Bl g L. ! N LR PR AR U PR
Bec 10 8am 128M e Dec 10 sam 128M LEY Bec 10 saM 1280 8pM
BLOB @ TABLE © CUEUE B BLOS © TABLE @ QUEUE © = TABLE @ QUEUE &
1.88 K 0 0 704.41 M OB (1]} 835.95 ms Oms Oms

Figure 3-11. This is a quick view into some of the collected metrics of Azure
Storage. We see the Total Request metric, the Total Egress traffic (which is the paid
traffic related to the service account), the Average End-to-End latency, which is the
time taken to process the request and send back the response to the clients. We see
those metric for the three services “Blob, Table, Queue”

208

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Apart from the quick look on your Storage account, Azure Storage Analytics performs
logging and provides metrics for a storage account (Figure 3-12). Storage Analytics is not
a standalone service: instead, it is related to a given Storage Account and we should opt-
in explicitly while creating a new one.

Status
o [“on |

@ Blob aggregate metrics
M Table aggregate metrics
@ Queue aggregate metrics
D File aggregate metrics

[] Blob per API metrics

I:‘ Table per API metrics
I:‘ Queue per APl metrics
[] File per API metrics

[] eiob logs

[:‘ Table logs

[] Queue logs

Figure 3-12. As we see, there are some metrics to enable. For each service, there are
the aggregates metric and the API metrics. Instead, for logging, Azure Files is not
yet supported at time of writing

Metrics and Logging can be also enabled via REST API and, consequently, via the
SDK and C# code. In the following excerpt, we enable Logging and hourly Metrics:

//Creating the Blob Client

var connStr = "DefaultEndpointsProtocol=https;AccountName=[name];AccountKey
=[key]";

var account = CloudStorageAccount.Parse(connStr);

var blobClient = account.CreateCloudBlobClient();

//Enable logging

var properties = new ServiceProperties();
var retention = 7;

var version = "1.0";

properties.Logging = new LoggingProperties()

209

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

{
LoggingOperations= LoggingOperations.All,
RetentionDays=retention,
Version=version

};

//Enable metrics
properties.HourMetrics = new MetricsProperties()

{
MetricsLevel=MetricsLevel.ServiceAndApi,
RetentionDays=retention,
Version=version
}s
properties.MinuteMetrics = new MetricsProperties()
{
MetricslLevel = MetricslLevel.ServiceAndApi,
RetentionDays = retention,
Version = version
};

blobClient.SetServiceProperties(properties);

Exploring Metrics and Logging

At one side, we have metrics, which represents aggregate measures for a given KPI
(RequestTime, E2ELatency, etc.); in other words, statistics. At the other side, we have
logging, which includes the details of successful/failed requests. To avoid recursion, all
request made by the Storage Analytics itself are not logged.

Metrics go to Table Storage, while Logs go to Blob Storage. Both generates billable
traffic and capacity consumption.

There are special tables for the metrics, for example:

e $MetricsTransactionsBlob
e $MetricsTransactionsTable

e $MetricsTransactionsQueue

210

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Actually, those three tables are the “old” tables containing hourly metrics. Now, the
recommendation is to use the specific tables:

e $MetricsHour[Primary|Secondary]Transactions[Blob|Table|Queue|File]
e $MetricsHour[Primary|Secondary] Transactions[Blob|Table|Queue|File]
e $MetricsCapacityBlob

As stated above, we have the $MetricsCapacityBlob table containing statistics of
capacity and actual size of the Blob Storage. However, this useful information is not yet
available for the other sub-services (Tables/Queues/Files).

If enabled, a rich set of data is collected for each service and APl operation in a
per-hour and per-minute basis. Metrics are not supported for the Storage Account
of Account Kind “Storage”, since there are no tables where Storage Analytics could
rely on.

$MetricsCapacityBlob

This tables contains the metrics of size occupancy of Blob storage. Data is collected daily
with the retention specified in configuration. An example is shown below (Figure 3-13):

2017120570000 data 2017-12-05701:23:30.670Z 695235535163 5388938
20171206TO000 analytics 2017-12-06T01:21:05.449Z 58 1 0
2017120670000 data 2017-12-06T01:21:05.119Z 695940940017 62 5389532
2017120770000 analytics 2017-12-07T01:24:53.948Z 58 1 0
2017120770000 data 2017-12-07701:24:53.700Z 696604921508 62 5390302
2017120870000 analytics 2017-12-08T01:24:16.489Z 58 1 0
2017120870000 data 2017-12-08T01:24:16.478Z 697093363776 62 5391080
2017120970000 analytics 2017-12-09701:23:36.321Z 58 1 0
2017120970000 data 2017-12-09T01:23:36.081Z 697211853929 62 5391240
2017121070000 analytics 2017-12-10T01:22:24.3872 58 1 0
2017121070000 data 2017-12-107T01:22:24.131Z 697332157313 62 5391434
20171211T0000 analytics 2017-12-11701:24:04.496Z 1515142 1 15
2017121170000 data 2017-12-11T01:24:03.770Z 697427231925 62 5301444

Figure 3-13. This is an excerpt of the $MetricsCapacityBlob table, showing
capacity for the Blob Storage account. In the case above, we have an average of
about 5.390.000 object of an average size of 12-13KB

211

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

We see two distinct rows for each of the last (at time of capturing) 7 days of retention,
with the fields:

o PartitionKey: determines the day of sampling

e RowKey: determines if the row is user data (data) or analytics data

(analytics)
o Timestamp: indicates the actual time of sampling
o Capacity: the size in bytes of the used Blob storage
o ContainerCount: the number of containers
e ObjectCount: the number of objects

$MetricsHourPrimaryTransactionsBlob

This table contains a lot of useful information about the activity generated on the Blob

storage (and there are other ones respectively for Tables/Queues/Files).

Partition¥ey =~

28

5130

2012100 s)cstem Al 20171211 10224355342 | 28 W32ek 00 3B.392857
2017121170100 | userListBlobs 2017-12-11T02:24:35.5342 | 7 7 3028 1897365 100 263
2017121170200 | system;All 2017-12-11T03:21:55.511Z | 27 27 17017 4970 100 51777778
2017121170200 | userAll 2017-12-11T03:21:55.516Z | 1424 1424 661306 2436858922 100 1124341377
2017121170200 | user;GetBlob 2017-12-11703:21:55.511Z | 552 552 157846 146647283 100 T07.521415
2017121170200 | wserListBlobs 2017-12-11703:21:55.511Z | 871 &7 02162 2288194823 100 1382598163

) e e S N S S N R
2017121170300 | system:all 2017-12-11T04:24:17.2642 73444444
2017121170300 | userAll 2017-12-11T04:24:17.8452 | 1136 1156 401779 568910348 100 556.335371
2017121170300 | user;GetBlob 200T-12-11T048:28:17.2647 | 921 941 299147 186134118 100 466078485
2017121170300 | user;GetBlobProperties 2017-12-11T04:24:17.264Z | 10 10 2855 4034 100 6.7
2017121170300 | user:GetBlockList 2017-12-11T04:24:17.264Z | 10 10 4065 5184 100 B34
2017121170300 | userListBlobs 2017-12-11704:24:17.264Z | 195 195 95163 372766149 100 1038974359
201TI21IT0S00 | systemcAll 2017-12-11T05:22:36.7552 | 26 26 396239 4745 100 59553848

Figure 3-14. We notice the table is similar to the previous one. In this case we have
hourly sampling aggregated and pivoted for each API service call (i.e., GetBlob,
ListBlobs, etc.)

We have a lot of metrics available here (Figure 3-14), each one in a row aggregated

for the whole account and the whole service API call:

212

PartitionKey: determines the time of sampling

RowKey: determines if the row is user data (user) or analytics data

(system)

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

o Timestamp: indicates the actual time of sampling
o TotalRequests: includes the successful and failed requests

o TotalBillableRequests: indicates how many billable requests among
the total request are registered. Azure can self-demote some requests
to the non-billable status, if it classifies them ineligible.

We analyze each request received and then classify it as billable or not
billable based upon our ability to process the request and the request’s
outcome.

(from MSDN)

o Totallngress: the amount of (free) ingress data to the account
o TotalEgress: the egress (subject to billing) data from the account

o Availability: indicates the calculated availability of the system, by
dividing the TotalBillableRequests on the TotalRequests.

o AverageE2ELatency: as mentioned earlier, it is the time to Read the
request, Send the response, Receive ack of the response.

o PercentSuccess: indicates the percentage of successful request. If not,
requests are made to the account, the value will be zero.

o Success metrics will provide the related number (not percentage)

e PercentThrottlingError, PercentTimeoutError,
PercentServerOtherError, PercentClientOtherError,
PercentAuthorizationError, PercentNetworkError

o Indicates a percentage of failed request for a given Error

The complete list is available here:

https://docs.microsoft.com/it-it/rest/api/storageservices/Storage-
Analytics-Metrics-Table-Schema?redirectedfrom=MSDN

Exploring Logging
There is a special container in the Blob Storage named $logs. This is the candidate

container for the logs of the account, which are organized as follows:

[service-name]/YYYY/MM/DD/hhmm/[counter].log
213

https://docs.microsoft.com/it-it/rest/api/storageservices/Storage-Analytics-Metrics-Table-Schema?redirectedfrom=MSDN
https://docs.microsoft.com/it-it/rest/api/storageservices/Storage-Analytics-Metrics-Table-Schema?redirectedfrom=MSDN

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES
Inside each Log entry, we should expect a semicolon(;)-separated file in this format:

<version-number>;<request-start-time>;<operation-type>;<request-status>;
<http-status-code>;<end-to-end-latency-in-ms>;<server-latency-in-ms>;
<authentication-type>;<requester-account-name>;<owner-account-name:;
<service-type>;<request-url>;<requested-object-key>;<request-id-header>;
<operation-count>;<requester-ip-address>;<request-version-header>;
<request-header-size>;<request-packet-size>;<response-header-size>;
<response-packet-size>;<request-content-length>;<request-md5>;<server-md5>;
<etag-identifier>;<last-modified-time>;<conditions-used>;
<user-agent-header>;<referrer-header>;<client-request-id>

The first four fields have the following semantics:

e Version number: it is important if we plan to automatically parse
those logs

e Request start time (trivial) and Request type (API type)

¢ Request status: the various status a request can have, like to
AnonymousSuccess or failures

A complete list is available here:

https://docs.microsoft.com/it-it/rest/api/storageservices/storage-
analytics-log-format

To give an example of using this dataset, we can pivot on the <request-url> fields
to calculate how much a single blob would costs in terms of transactions and
bandwidth.

Another interesting piece of information about logs comes from the Blob metadata
itself. Each log blob is saved with the following Metadata:

o StartTime: the time of the earliest entry of the log
o EndTime: the time of the latest entry of the log
o LogType: write/read/delete, or a combination of the three

o LogVersion: it is the same version number as the first fields of the
blob content
214

https://docs.microsoft.com/it-it/rest/api/storageservices/storage-analytics-log-format
https://docs.microsoft.com/it-it/rest/api/storageservices/storage-analytics-log-format

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Since the various log files are organized by the [counter] number and it is not
predictable how many entries and of which timeframe they consist of, we can use
the StartTime and EndTime to lookup for specific content. Specifically, we can list
blobs of a specific day range using the ListBlob API (with prefix), specifying to fetch
the Metadata attributes, in order to understand the only relevant files to download
actually.

Using Azure Monitor

Azure Monitor is the central point of discovery of the metrics coming from the whole
of the Azure Platform services. While some features are still in preview, it enables to
consume metrics from a variety of Azure services in a central location, providing the
capability of filtering, drilling and pinning the results to the Dashboard (Figure 3-15).

RESOURCE SUB SERVICE METRIC AGGRIGATION
+
A £ Blob £, TotalEgress 2. Sum - X | A
= o
Avg
768
Min
5GB
Max
5GB
Sum
4GB
3GB
2GB
168
0B
Mon 11 06 AM 12 M
TOTALEGRESS (SUM)
239

Figure 3-15. This is a view of the TotalEgress metric of a production Storage
account for Blobs in the last 24 hours

Azure Monitor can integrate to OMS to ship every metric collected for further
analysis inside Log Analytics. Data can be consumed by REST API to setup custom
action or, through the Alerts feature, can notify the administrators in case a condition
is satisfied. Alerts can also be re-used inside the Azure Platform itself to trigger some
platform events, like autoscaling.

215

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES
Using Azure Redis Cache

Redis is an open source (BSD licensed), in-memory data structure store,
used as a database, cache and message broker. It supports data structures
such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps,
hyperloglogs and geospatial indexes with radius queries. Redis has built-in
replication, Lua scripting, LRU eviction, transactions and different levels of
on-disk persistence, and provides high availability via Redis Sentinel and
automatic partitioning with Redis Cluster.

From the official site “Redis.io”

However this chapter is not about Redis itself, but on caching and its declination onto
the Azure Platform. The distributed cache problem is the final point of a series of
considerations about performance. Let’s investigate this point in the next section.

Justifying the Caching Scenario

Suppose we have a simple, custom Blog engine which serves blog posts to the users. The
simplified editorial workflow can be the following:

e An author writes the piece for further review from the editor

o After performing one or multiple editorial passes, the content is
published

e Anonymous users read blog posts
o Authenticated users can comment the posts
e Authors and Editors can change the contents whenever

From the technical point of view, let’s suppose we have an ASP.NET application (just
for the minimal code snippets we need in the chapter) with a SQL Database as the data
store. The simplest system design can be the following (Figure 3-16):

¢ When an author/editor writes/edits a blog post, it is saved into a row
of a table in the SQL Database

e When a user (either authenticated or not) navigates to a blog post
page, the contents are fetched from the SQL Database and displayed

216

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

This first approach is very trivial but effective and correct. Let’s now suppose some
metrics:

o Pageviews: 100/sec
e SQL queries (read): 300/sec
e SQL queries (write): 5/sec

Those are realistic metrics for a given Blog website with moderate traffic. We notice
immediately the write operations are less than read ones and, on an average, we have
about 3 SQL queries for each web request.

Having a high ratio of queries/request is a normal pattern. Since we need to build
the page aggregate (the post content, the comments, the Ul configuration, other
elements, etc.) we can imagine each piece generates its own query. It’s not bad by
itself but it can be optimized for sure.

I |
J~ L

Lookup the cach

A 4

condition

Cache hit

Cache miss

Figure 3-16. In this first step, we actively feed the cache with data (if not already
present) from the fresh DB

217

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

From the development perspective, using C# and the StackExchange.Redis library
(we can connect to Redis using several libraries as well), the approach is near to the
following:

var conn = ConnectionMultiplexer.Connect("[connStr]");
var db=conn.GetDatabase(10);

try
{
IEnumerable<BlogPost> posts = null;
var res = db.StringGet("GetBlogPosts");
if (!res.HasValue)
{
res = JsonConvert.SerializeObject(posts=GetBlogPosts());
db.StringSet("GetBlogPosts", res);
}
else
{
posts = JsonConvert.DeserializeObject<BlogPost[]>(res);
}
}
catch (Exception)
{
throw;
}

As we can see, we create a connection to the Redis cache and to a given Database
(in Redis we deal with the concept of Databases that are logical groups of keys isolated
between each other. We then try to get the value from the key “GetBlogPosts”. In case
of a cache miss, we proceed to the active materialization through the GetBlogPosts()
method, to further serialize the results and feed the cache for the next lookup. In case of
a cache hit, we proceed to the deserialization to use the results.

218

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Unit of Caching

One of the biggest problem in caching is what to cache. In the previous sample we
cached the generic GetBlogPosts method, that is provocatory, since it’s very unlikely
there is a Database query to get all the blog posts in a single shot.

But think about it for a moment: wouldn’t be great to take in-memory all the blog
posts to serve them directly from the memory, instead looking one by one on the DB?

It is completely up to the developer/architect what to cache in terms of aggregate. In
the case above is probably wrong to cache the entire blog posts collection since, in case
of new posts, a complete refresh of the entire cache item is needed. Instead, we can work
on a per-posts caching pattern.

var res = db.StringGet("GetBlogPost 12142312");

if (!res.HasValue)

{
res = JsonConvert.SerializeObject(post = GetBlogPost(12142312));
db.StringSet("GetBlogPost 12142312", res);

In the modified code, we have a new data method fetching a single post, based
on the post ID passed as parameter. We can use that ID to construct the proper key to
lookup the Redis cache and to feed it.

This approach can be useful in the Blog Post page, where a single post is shown full
page. But what about the Homepage? If we had to show the latest 10 posts in a preview
fashion? Let’s discuss it in the next section.

Cache Invalidation

One of the biggest problems around caching is its invalidation, that can be explicit
(someone deletes the specific Key from the cache, or replaces it with a new value) or
implicit (by defining a timeout while inserting the Key, after that the item is removed
automatically from the caching engine).

Thinking about the discussed scenario, we identified those two cases:

e Homepage: we need an excerpt of the latest 10 blog posts

o Blog post page: we need the complete blog post to show

219

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

As for the initial specifications, we need to invalidate the cache every time an author/
editor will re-publish the post. This means, as a first attempt, we need to write code in
the blog engine, to link the publishing action with a cache invalidation statement, like
this one:

db.KeyDelete("[key]");

This tells Redis to remove immediately the key and, as we setup before, at the next
attempt to read that blog post, the cache would be refreshed with the new value.

We can also work on the requirements to find the perfect fit of our caching pattern.
Think about the real world: is it really important to have the very latest updated content
on a blog website? We mean, it is mandatory for the company to push updates in real
time? If the response is yes, the pattern above is okay; however, some optimization can
be made.

Supposing we can tolerate a delay of maximum 30 minutes between the post has
changed and the result is live, we can feed the cache specifying an explicit timeout, to tell
Redis to keep that key for the timeout specified:

db.StringSet("[key]", res,TimeSpan.FromMinutes(30));

Under this constraint, we can dramatically improve the performance of page views of
a blog post.

Caching is an open theme. A variety of mixed approach exist and they are working
well. In a hybrid solution, where Editorial edits must be propagated immediately to the
end-users, while the author edits can wait the 30 minutes, the Blog Engine can use both
approaches altogether.

Now it is clear that the Homepage requirements can easily fit the caching pattern
with timeout. Smaller units of cache are preferable since they require few
resources for the round-trip and storage. Bigger units are preferable when we need
an aggregate where we are confident it’s not changing frequently. To summarize,
we need to focus on the frequency of our data and, based on this, tune the caching
pattern appropriately.

220

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Why a Distributed Cache

We explained (by over-simplifying) why we should need a cache into our applications.
But now it is important to understand with we need a distributed cache and why Redis,
eventually.

Let’s suppose we have just the VM hosting the Web Application and the DB server.
We can change the previous sequence diagram accordingly (Figure 3-17):

I |
L e

A 4

Lookup the cach

condition

|
|
|
|
|
|
Cache hit |
|
|
|
|

Cache miss

Set the cach: s

Figure 3-17. We see the scenario is the same, with the difference that we go to the
local memory of the Web Application instance

We can obviously work on the assumptions above and make our own cache using
the local memory of the Web VM. However, this approach tends to lead to some issues.
The first is about scalability: since we can have hundreds of VM serving our requests
(even 2 are okay for this demonstration), keeping the cached objects inside a single VM’s
memory can produce a waste of memory (the same data occupies, at the same time, the
size of the object multiplied by the number of VM).

This waste can be however accepted most of time. The other issue, instead, is not
well accepted at all. How about the Cache Invalidation discussed above? Let’s see how
the explicit invalidation fails (Figure 3-18):

221

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

RAM o RAM ot
WebVM1 WebVI1 WebVM2 | WebVi2 | | Database |
| | | |
L 1 s 1

|
|
+—————1ookup the cache————J» +——Lockup the cache——J :
condition) :
Cache hit |
= — — — —Retunvalue— — — — — e — — — —Returnvalue— — — — — |
|
|
|
L e e e] Y) R N () RS 4 —]
Cache miss
Update to the DB, >
- ———————— E Retyl faligs — — = = = — — e e e - - —
E——— T S =

Figure 3-18. In this sequence, we notice disalignment between the two instances
hosting the web application

It’s clear we have two instances with a different view on data. In the first instance, a
user publishes an update that refreshes the DB and the cache (we can either remove the
Key or replace its value with the refreshed one). However, the second instance will not
receive an update and it continues to serve the old cached data from its local memory.

But also, timeout invalidation fails (Figure 3-19):

of | RAM of
WebVM1 | WebVM2 Database
WebVM1 WebVM2
T } T I B
| | | |
L L L L

+———1ookup the cache————J»
k= —Return value with 30min timeout — —

p—————————Lo0kup the cache———pp»

I_— Return value with 30min timecut— —

|
I
I
I
|
I
I
I
I
I
|
I
I

Update to the DB

L I LJ | I

Figure 3-19. In this sequence too, we notice disalignment between the two
instances hosting the web application

222

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Now we have an instance that is updating the Database during the validity timeframe
of the cache item of a second instance. WebVM2 is again misaligned with the real data,
since there is no propagation of updates to it.

We can bypass those issues by externalizing the state outside of the running
machine, using an actor which serves as a cache server as a single central point.

Why Redis

But Why Redis? We would say performance. Since we are externalizing hot data into a
single central datastore, we need a software capable of:

¢ Working in-memory with the best efficiency and performance

e Which means less latency, less bandwidth consumption, less
CPU and VM resources

e Scale up/down as the traffic increase

o Redis scales extremely well

Is proven there are various options to solve the problems above with other than
Redis, but it is also a de-facto standard for caching and many companies use it in
production for huge workloads. Apart its amazing performance, its capability to scale,
through replication, enables complex scenario where we need huge resources.

In conjunction with PaaS, where replication is performed automatically, Redis (used
as a Cache) can be an effective solution for the application’s in-memory needs.

Understanding Features

Azure Redis Cache is a fully featured Platform-as-a-Service for Redis. Azure manages
everything, from the VMs to the Storage, Network and the underlying Redis installation
and configuration. The main metric of choice of a Redis instance is obviously the
memory size, since is primarily an in-memory data store.

Currently there are three different tiers of Redis Cache:

o Basic: the simplest offer with no SLA and limited features, ideal for
dev/test scenarios.

o Standard: suitable for the most of scenarios, with various sizes and SLA.

¢ Premium: suitable for the most intensive scenarios, with advanced

features, sharing and private deployment options.
223

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Those three tiers, in conjunction with the various memory sizes they support,
provide users with a comprehensive set of options to build even high-end in-memory
applications.

Eviction

We often deal with memory (the persistent, HDD/SSD-based one) as something that
can grow in an indefinite way. Compared to volatile memory, this is still true, since the
limits of persistent data stores are very high compared to the (often physical) limits of
the maximum RAM we can install on a computing unit. We can have nodes with up to
hundreds of GB of RAM, but no more, generally.

In an in-memory solution, we cannot simply “swap-to-disk” what is not fitting
anymore in the main memory. This would invalidate at all the main purpose of products
like this, like Redis. So, we need to define what happens if the memory is full: this policy
is often known as Eviction Policy.

Data Fragmentation

Total Memory

Figure 3-20. This is how the total memory of a Redis instance is allocated. Despite
the graphic does not suggest proportions, we should consider we have not the total
amount of memory available for data

As shown in the figure above (Figure 3-20), if we have, for instance, a Redis Cache of
6GB, we must reserve a portion of this space to two dedicated slots:

e Maxmemory-reserved: the amount of memory reserved for non-
cache operations, like the replication overhead and more.

o Maxfragmentationmemory-reserved: the amount of memory
reserved to deal with fragmentation. Fragmentation occurs mainly
when eviction occurs.

224

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

maxmemory-reserved @
— 1| 50
maxfragmentationmemory-reserved @

— 1| s0

Figure 3-21. This is how we configure the reserved memory of our Redis instance.
This section is available under the Advanced Settings page of the Redis instance
blade on the Azure Portal

In both the cases above (Figure 3-21), there is no the magic number or percentage to
allocate for those values. It depends entirely on the data, the load and the usage patterns.
So, let’s take this flow as an example:

1. We create a Redis instance of 1GB with 100MB reserved memory
(50MB + 50MB)

2. We start to feed memory with data up to cache exhaustion
3. Three things can happen:

a. One or more items have been saved with expiration and, by
expiring, they are freeing up some resources.

b. Ifthe configuration does not allow eviction, the cache is full
and cannot accept any more writes.

c. Ifthe configuration allows eviction, the cache picks one or
more existing keys and deletes them to free up some space.

We can configure eviction in those six ways (there is no Azure in the middle of this,
it’s entirely a Redis-level option):

e noeviction: an error is raised when the memory reaches its full size.
o allkeys-Iru: tries to remove the less-recently-used keys.

o volatile-Iru: tries to remove the less-recently-used keys, but only
among the ones which have an expiration set by the user.

o allkeys-random: removes random keys.

o volatile-random: removes random keys, but only among the ones
which have an expiration set by the user.

225

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

o volatile-ttl: in conjunction with providing TTL when creating cached
object, it tells Redis to evict first objects with shorter TTL and a valid
expiration set by the user.

Generally, the allkeys-lru could be the best option in most cases.

Please note that the default option, volatile-Iru, works as noeviction is there are no
candidate keys matching the eviction condition.

Local Caching and Notifications

In the “Why a distributed cache” section, we see why a distributed cache is good to avoid
inconsistency between multiple nodes. However, a drawback of this outsourcing, is that
for each cache request (either hits or misses) we are involving an external actor (the
distributed cache), which always introduces network latency.

Additionally, that’s a pity, for the same source node, to subsequently request the same
data to the cache server, if it has not changed. Therefore, we can “cache-the-cache’; by
introducing a first-level cache in the in-process memory of the application itself.

The actual scenario of this “final” workflow, can be the following (Figure 3-22):

of | AM ot
WebVM1 | WebvM1 | WebVM2 | WebVM2 | Cache
T T T

| | I I
A A L 1

|

|
1+————Lookup the local cache————» :
k— — — — —Retunvalue— — — — — |
p————~L0ckup the local cache——)» :
|
A

— — — — Nodata — — — — —|

e 00 kup the distributed cache————Jp|

(———————— -Retumvalug - — — = = — — — —]

t————Save to the local cache———p

L] | L I |

Figure 3-22. In this last scenario, two nodes with local first-level cache behave
differently. The first finds the value in its local cache, while the second needs to look it
up into the distributed cache first, to then set its returning value to its local cache too

226

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

This solution seems optimizing, but it still leads to the same issues we had before.

In case one of the nodes updates/deletes a key during the timeframe it is materialized
on the local cache side, there is no way for the nodes to know that, introducing serious
inconsistencies.

However, Redis is, other than a Cache server, also an in-memory Message Broker. It
is not actually a reliable message broker, but a good option to be notified in a Pub/Sub
manner, for those events related to the usage of the keys of the data store.

This feature is known as Keyspace events notifications (Figure 3-23), as explained here:

https://redis.io/topics/notifications
There are two types of events (Figure 3-24) in Redis:

o keyspace: it is the channel from the “key” point of view. It notifies all
the events occurring for a given key. The form of the notification is
“__keyspace@[dbNumber]__:[key]”

e keyevent: it is the channel form the “operation” point of view. It
notifies all the keys related to a given operation. The form of the
notification is “__keyevent@[dbNumber|__:[operation]”

e Operations are represented by the commands of Redis, like DEL,
EXPIRE, SET

>CONFIG SET notify-keyspace-events KEA
>l

Figure 3-23. We are enabling the KEA notifications from the Redis Console
integrated in the Azure Portal. KEA stands for “K-Keyspace channel, E-Keyevent
channel, A-all commands

notify-keyspace-events @
KEA

Figure 3-24. We are enabling the same settings from within the Advanced Settings
page of the Redis Cache blade in the Azure Portal

227

https://redis.io/topics/notifications

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Simple Local Cache Provider

By using the notification engine above, we can write the proper code to use a faster,
in-process, local cache and also be notified from the remote Cache in case something
has changed.

We can do this as follows:

public class SimplelocalCacheProvider
{
private MemoryCache localCache = null;
private string cachePrefix = "slcp:";
private ConnectionMultiplexer connection = null;
private IDatabase database = null;
private int dbNumber = 10;
public SimplelLocalCacheProvider()
{
connection=ConnectionMultiplexer.Connect("[connStr]");
database = connection.GetDatabase(dbNumber);
localCache = MemoryCache.Default;
Task.Run(() =>
{
connection.GetSubscriber()
.Subscribe($" keyevent@{dbNumber} :*", (channel, value) =>
{
localCache.Remove(value.ToString());
D;
D;

With the code above, we are saying to be notified on the Keyevent channel, for
a given DB Number for every (*) commands. The local invalidation policy removes
the key from the local first-level cache in reaction to any event on that key (a simple

assumption).

228

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES
The method feeding the cache can be the following:

public T GetOrAdd<T>(string key,Func<(T,TimeSpan)> resolve)
{

try
{
T res = default(T);
//Local lookup
var local = localCache.Get($"{cachePrefix}{key}");
if (local != null) return (T)local;
else
{
//Remote lookup
var str = database.StringGet($"{cachePrefix}{key}");
if (!str.HasValue)
{
var solution = resolve();
str = JsonConvert.SerializeObject(res = solution.Item1);
database.StringSet($"{cachePrefix}{key}", str, solution.
Item2);
}
else
{
res = JsonConvert.DeserializeObject<T>(str);
}
localCache.Set($"{cachePrefix}{key}", res,null);
return res;
}
}
catch (Exception)
{
throw;
}

229

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

In this method, we:
e Try to perform alocal lookup
o Iffailed, we try to perform a remote lookup
o Iffailed, we materialize the data from the underlying lambda

It is a simplistic scenario, but it gives the sense of the problem we are trying to solve.

In those samples, we used the StackExchange.Redis C# library.

Persistence

Do not think about persistence as a consistent, real-time, filesystem replication of what
is in memory. This isn’t possible and is contrary to the purpose a Cache has. Redis cache
must be in-memory and very fast, so we now discover how persistence is made and for
what purpose.

Redis Persistence is a Premium feature (available in the Premium tiers of the Azure
Redis Cache), which can be enabled to save, periodically, the state of the cache into
Azure Storage. We must think about persistence if and only if we are working in the
following assumptions:

o The Cache is not really a cache, but a reliable data store

e The Cache is so hard to build (hours, days, weeks) that a full refresh
operation is not to be considered

In the first case, suppose we use the Cache as the data store to accept incoming
Orders in an e-Commerce platform. An order cannot simply go to an in-memory store,
but it is common to save it immediately into a reliable store like a DB, a Queue or a
persistent NoSQL product. With Redis, every cache object is stored in-memory: a system
failure will result in a loss of data.

In the second case, we are working in a scenario where the actual cache population
has come from weeks of materialization and tuning and we do not want to lose this grace
state and restart from the point zero.

In the Premium Tier, we have two options to persist the Redis state:

« RDB
e AOF

230

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

With the RDB method (Figure 3-25), Redis persists snapshots of the entire Redis
instance at specific intervals (15/30/60 mins, 6/12/24 hours). The advantage of this
method is the portability of the backup item, which is a self-contained file easy to store,
move and restore. The main disadvantage is the frequency of the operation: even under
the shortest frequency, there could be a gap between the last snapshot and the actual
cache data.

New Redis Cache Redis data persistence

* DNS name Disabled | RDB | AOF
enter 3 name
Jredis.cache.windows.net RDB Backup
% Stibecription * Backup Frequency
Enterprise Subscription - Prod b | 15 minutes e l

* Resource group @
* Storage Account @

® Create new O Use existing >
161670westeurope
Apress v |
PR * Storage Key @
ocation
Primary ke v
West Europe bl | X

* Pricing tier (View full pricing details)
Premium P1 (6 GB Cache, Replication) b4

Figure 3-25. We are configuring the Redis Persistence of a Premium Tier, with
RDB method and 15 minutes frequency

With the AOF method (Figure 3-26), a write log is continuously appended to the
backup file, in order to replicate writes in case of restart. That log is saved at least once
per second, which guarantees a good trade-off between performance and durability. The
main disadvantage is that AOF is much more resource-intensive compared to RDB and,
in case of restart, the restore process would be slower.

231

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

New Redis Cache

Redis data persistence

* DNS name Disabled ~ RDB AOF |

enter a name

(PREVIEW) AOF Backup

i)

redis.cache.windows.net
* Subscription
Enterprise Subscription - Prod e The slave will output AOF files into
the optional second storage
account if provided. Otherwise, it
will output to the first storage
account.

* Resource group @

@ Create new O Use existing

[Apress v |

* Location * First Storage Account @ >
West Europe %z 161670westeurope

* Pricing tier (View full pricing details) * Storage Key @
Premium P1 (6 GB Cache, Replication) N | Primary key el |
Redis Cluster @ 5 Second Storage Account ©
Not configured Premium Storage recommended
Redis data persistence @ > Storage Key ©
Not configured Not configured ~

Figure 3-26. We are configuring the Redis Persistence of a Premium TwZ2ier, with
AOF method using the master only

In a plain Redis installation outside Azure, we can mix the two methods (RDB and
AOF) to provide the greater flexibility and reliability of the backups, which is often
the same backup strategy used by relational databases.

RDB and AOF methods use Page Blobs, so it is advised to use Premium Storage, to
boost up the backup process by using the fastest storage option we have in Azure.

Private Deployments

Recently Azure started to invest a lot into private deployments, to enable customers to
deploy PaaS directly inside their VNets, in order to gain endpoint protection and to be
compliant with company policies.

There are two types of scenarios currently available in some Azure services:

232

Public deployment with Firewall and VNet bridging

Private deployment

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

When we say “private” we don’t want to mean “dedicated”. It’s different since in
the public cloud resources are, almost always, shared between tenant. Instead,
“private” means the actual deployment is made into a private SDN (Software
defined network) of the tenant itself.

Azure Redis Cache applies to the second scenario: a Premium Tier is deployable into

a private customer VNet in order to prevent to be publicly addressable.

Understanding Management

Redis Cache is a Platform-as-a-Service, so minimal administrative effort is required to

govern it in production. It is important, however, to know in advance its limitations to

provide the most effective usage patterns.

Clustering and Sharding

The Standard Tier of Redis Cache is a high SLA tier, but with a Master/Slave
relationship. In the Premium Tier instead, we can enable Clustering (Figure 3-27), which

is completely managed by Azure. Redis Clusters are used both to scale-out/sharding

(and have bigger caches) and to provide reliability.

When working with a Redis Cluster, we must know some limitations in advance:

After a cluster is created, the action cannot be reversed

We cannot “upgrade” a cache to a cluster, we can do it only during
the creation phase

Clustering is not supported by all the clients. StackExchange.Redis
supports it.

We can create up to 10 shards with self-provisioning (and more by
asking to Microsoft) of a max size of 53GB (so 530GB total)

When clustering is enabled on a Redis Cluster, we can only use the
Database number 0.

233

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

New Redis Cache Redis Cluster

* DNS name Clustering

enter a name Disabled

redis.cache.windows.net

* Subscription Shard count @
Enterprise Subscription - Prod h ----q:] | I | 6
Total size: 156 GB
*
Resource group @ 8353.41 EUR/Month (Estimated)

® Create new O Use existing

Once enabled, the Redis nodes

communicate using the Redis
Cluster protocol. This action is

* Location 0 irreversible. The number of shards

can be increased or decreased

later.

Apress v |

West Europe hd

* Pricing tier (View full pricing details)

Premium P3 (26 GB Cache, Replication) v

Figure 3-27. We define a cluster of a shard size of 26GB, scaled to 6 nodes, to
provide an overall cache size of 156GB. Actual prices may vary. Each shard is a
primary/replica cache pair managed by Azure

Advanced Options

In Premium Tier, we can enable a series of features (currently in preview) which makes
the Tier the most appropriate for Enterprise scenarios.

Geo-replication

Geo-replication is a Premium Tier feature that enable to replicate the cache across
two different Azure Regions, in order to have a read-only copy accessible for a remote
location or for disaster recovery purposes.

Import/Export

In Premium Tiers, we can take the RDB file from any Redis cache inside or outside
Azure and restore it on the Azure Redis Cache seamlessly. The process uses the storage
account, on which we need to load the RDB files in advance, with one or more Page or
Block blobs.

For Export, however, only Page Blobs are supported, which makes the Premium
Storage a great option in terms of performance.

234

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Scaling and Limitations

As the majority of PaaS, Redis Cache can scale up and out, under some constraints.
As we see in the previous paragraph, scale out is available only, through sharding, on
Premium Tiers. Scale up however is available, with limitations, between those Tiers:

e Basic:

o Scaling between sizes of the same Tier results in a shutdown and
reboot. This means availability can be interrupted and all data
cache is lost.

o Itis possible to scale to the Standard Tier, which results in a data
copy and no downtime is generated. However, we cannot change
the cache size at the same time. We can do this after the first
scaling process is done.

o Standard:
o Scaling between sizes will preserve hot data

e Itis possible to scale up to the Premium Tier, but it’s not possible
to scale down back to Basic

e Premium:

o Itis not possible to scale back down to Standard or Basic tiers

Premium Tier is not just about sizes, it is a completely new Tier which used, under
the hood, much more powerful VMs and hardware. As we mentioned earlier, we can use
Persistence, Clustering, Isolation, Geo-Replication, Import/Export with Premium, which
makes it the most appropriate choice for high-end, enterprise systems.

Finally, Premium instances let us reboot them (to test resiliency) and define the
maintenance windows preferred.

Security, Monitoring, and Performance

Security management in Redis is very important. In cached object applications usually
store sensitive data, either voluntarily or not. Think about in case we are redirecting the
ASP.NET Sessione State to Redis. This is possible by just appending those lines in the
Web.config file, without the developer even know that (it is almost transparent):

235

CHAPTER 3

WORKING WITH NOSQL ALTERNATIVES

<sessionState mode="Custom" customProvider="MySessionStateStore">

<providers>

<!l--

<add name="MySessionStateStore"

/>
-->

host = "127.0.0.1" [String] - The cache endpoint
port = "" [number] - The cache endpoint's port
accessKey = "" [String] - One of the two access keys
ssl = "false" [true|false] - Connect with SSL or not (depends on
the port)
throwOnError = "true" [true|false] - Choose to silently fail or not
retryTimeoutInMilliseconds = "0" [number] - Millis to retry an
operation (0=no replies)
databaseId = "0" [number] - Which database to use for Session State
applicationName = "" [String] - Useful to build a good key
"appName_sessionID Data"
connectionTimeoutInMilliseconds = "5000" [number] - equivalent to
connectTimeout
operationTimeoutInMilliseconds = "5000" [number] - equivalent to
syncTimeout

</providers>
</sessionState>

It's not uncommon to think about the Session State as an in-process store where to

save any information like it is in volatile memory. However, in the case we inadvertently

save sensitive data, this would go to the Redis cache and it can be read from the console

or by any clients having the proper Access Keys.

In short, we have three security hot spots in the “managed” Redis:

236

Public addressability: anyone in the internet can try to access the
cache

Ports: we should disable the plain non-SSL port (Figure 3-28) of the

service

Keys: we have, as many services provide, two independent keys, to
accommodate rolling strategies

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Allow access only via SSL

BB Overview A No

W Activity log Non-SSL Port
;,." Access control (I1AM) L ,ard”,i _|
& Tags SSL Port

'5.".‘"

X Diagnose and solve problems

Figure 3-28. This let us disable the non-SSL port, which may permit man in the
middles to read the traffic from/to the cache

Understanding Metrics

Let’s start from one of the most important metric in a cache. The ratio Hits/Misses
(Figure 3-29), which determines the health state and the good/bad caching pattern we
setup.

A higher ratio is always preferred, since the main purpose of a cache is to serve
frequently accessed data. At the opposite, a ratio near, equal or less than 1, shows a
wrong usage pattern, where there are too many misses compared to the hits.

This can happen in short-expiration scenarios, as explained here:

1. The code looks up for the cached information
2. Ifitdoes not find it (that’s a miss), it populates it

a. However, since it is a core information which has to be
updated near realtime, it sets an expiration of 5 seconds

3. The subsequently request arrives at second 6, resulting in a cache
miss, plus the point 2 executed again.

237

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Hits and Misses Gets and Sets
REDIS: REDIS: |
Edit Edit
4K sk

4K
3K
2K

1K

oxw oxw

I%“E'l"‘sssx 184.2. |749 06« 197.11.

Figure 3-29. On the left, we see the Hits and Misses (with a ratio of 7.8 about,
good but not best). On the right, we see operations splitted by Gets/Sets. Gets is the
approximate sum of Hits/Misses

But itis very common to fall under these conditions, even while implementing
microcaching:

1. The user is navigating to the 3rd information tab of a product page
on an e-commerce website

2. Developers decided to micro-cache that specific information
with a normal expiration (it does not matter how, short/long is
irrelevant)

3. Since the specific piece of information is very less accessed, it
would expire without being hit once

The second scenario will raise the questions again: “What should I cache? Smaller
object? Bigger ones?”. We notice a smaller piece of cache may be useful to micro-cache a
specific portion to avoid waste. However, in the case above, it is very likely that caching
the whole product page had better results.

Those metrics are useful to understand if the caching approach was developed
correctly. But in any case, we must ensure the performance of the instance is not
compromised by the usage itself. In those cases, we need a scaling strategy. In the figure
below, we see a “relaxed” condition of a real Redis instance:

238

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Netwerk Bandwidth
RECHS: _J

10MB/s
EMB/s
by
AMESs
VB

OMB/E

12 LI Cec1d &AM

19.95 0. |3.44 uas

Edit

Connections {1000 max)
REDES: -

aPM Doc 18 3AM &AM

|cmam.bm|ms

Redis Server Lead
REDdS:
Edit
100%
0%
&%

A

0%

S

12PM SFM

7.

L1 1

Dec 18 &AM

Figure 3-30. We notice a good number of connected clients, a quiet server load

and bandwith usage

Despite the metric above (Figure 3-30) are the main ones to have a quick look on the
service, we can investigate in:

e Used Memory: the memory used by actual data object

e User Memory RSS: the actual memory footprint (Resident Set Size) of

the process, which may be higher than “User Memory” due to delays
in memory releasing

o Total operations: it is self-explaining

o Total/Expired/Evicted Keys: the number of the keys in the given state

As any other Azure service, we can export Diagnostics to the Storage Service for

further analysis.

239

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Using Azure Search

There are a lot of applications which are almost entirely a SERP (Search Engine Result
Page). Think about an eCommerce portal (Figure 3-31), where there are usually these
common areas:

e Homepage: which is a SERP with default options (most-wanted,
cheapest, offers)

o Search page: accessed by a canonical search text box on the top of the
page, it shows the results of a specific search criteria. In addition to
the entry point of the search (the text query) in the Search page it is
very common to have advanced filters to refine the current search

o Category pages: if the user navigates by category, the result is a SERP
“filtered” on that specific category, with a very similar result as the
Search page

e Product page: despite it does not seem a SERP, it could be a “TOP 1”
Search page, where the search filter is the specific Product we want to
show

240

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

@ Secure | https//'www.amazon.com

amazon

Departments - Your Amaron com Last-Minute Deals G ~ Account& Lists - Orders Try Prime -

echo dot fireHps firety

Holiday tagm 3209 sygm 54999 g 55,459
< Deals
on Amazon Devices ﬁg

[T p——

i et

Counl, Ldalid,

amazon : : % Sdaysleft ™ soping
Al

EM Hebs Sign in
Departments - < & i Gift Cards = Account& Lists - Orders Try Pnime - b

Coll Phones & ACCossores Camir FRones Uniocked PRomes Prime Exciusve PRones ACCRSSOnes Cases Wearats Technology BestiSellers Dask

Introducing LG to Prime Exclusive Phones
Starting at 114 with offers

s for Unlocked Cell Phones

arel 7 Plus, Sameung Galaxy S8 and B Pl iPhore & and § Plus, iPhone 5 55 and S Semiumng Galaxy 57

Cell Phones & Accessories

Cell Phones
Undocked Cell Phones.

SAMSUNG

Internation ShIpping cwmur: e

Ship to faly

featured Brands

amazon

Departments - Your Amazon com Last-M nbs Gift Cards &~ nt& Lists = Orders Try Prime =

1-24 of 193 results for Grocery & Gourmet Food : Dairy, Cheese & Eggs - Milk & Creaam : Dairy Milk : "milk” Sort by | Relevance

Show results for
Arry Categery r ¥ SPONTORED BY MAPPY BARY
Grocery & Gourme: Food ~r Modeled after breast milk

J J
Dairy, Cheess & Eggs | Shop now

Dairy Milk prime drirfrdrydy 102

Refine by

Showing results in Grocery & Gourmet Food. Show instead results in All Dep

International Shapping s s m

Ship ta Italy

Subscribe & Save
Subscribe & Save Eligible

Amazon Prime

Figure 3-31.

241

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Starting from these assumptions, for the eCommerce scenario, as well as for many
others, the search component is central, so it is its importance for the business too.
Better the search is, better experience and, eventually, sales are.

Traditionally, since the majority of the applications runs with a relation DB as the Data
Tier, developers and or DB specialists used to adapt (or try to) the DB to serve well as a search
engine. There are a lot of articles and discussions about Full-text Search in SQL Server, as well
as other strategies to accommodate the same requirements for other RDBMSs.

Using SQL to Implement Search

A first attempt to implement full-text search can be made on SQL itself. There are a lot
of people that state SQL Server is far enough for full-text search. We do not agree with
this opinion, not because of an underestimation of what SQL Server can do and does,
but since we believe that today there are specific products/services to solve specific
problems in a very deep and advanced way.

However, let’s suppose we are working on this subset of the AdventureWorksLT
database (Figure 3-32):

ProductModelProductDescription (SalesLT) Product (SalesLT)
% ProductModellD % ProductiD
@ ProductDescriptioniD Name
¥ Culture ProductNumber
rowguid Color
MedifiedDate StandardCost
| ListPrice
E 8 Size
é Weight
ProductModel (SalesLT) _m ProductCategorylD
¥ ProductModellD ProductModellD
Name SellStartDate
CatalogDescription SellEndDate
ProductDescription (SalesLT) rowguid DiscontinuedDate
© ProductDescriptioniD ModifiedDate ThumbNailPhoto
Description ThumbnailPhotoFileName
rowguid rowguid
ModifiedDate ModifiedDate

Figure 3-32. We can create a Sample instance of this database in the Azure Portal,
during the creation wizard of a new SQL Database instance

242

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Now suppose we want to search terms “leather” and “aluminium” into the
Description field of the ProductDescription table and, at the same time, we want to
produce the output dataset composed by the Name and Description of the Product. This
can be the query:

SELECT p.[Name], pd.[Description]

FROM SalesLT.ProductDescription pd

JOIN SalesLT.ProductModelProductDescription pmpd ON
pd.ProductDescriptionID=pmpd.ProductDescriptionID

JOIN SalesLT.Product p ON p.ProductModelID=pmpd.ProductModelID
WHERE pd.[Description] LIKE '%alluminium%' OR pd.[Description] LIKE
"%leather%'

We think this approach is very basic, since there are no specific optimizations
involved, except indexes, if any. When the rows are many (more that millions) we would
see a sensible performance degradation, which would lead us to introduce FTS (Full-text
Search) capabilities.

With FTS, we need first to create a catalog:

CREATE FULLTEXT CATALOG awCatalog AS DEFAULT;
Then we create a full text index that indexes the Description field:

CREATE FULLTEXT INDEX ON SalesLT.ProductDescription([Description]) KEY
INDEX ui_PD ON awCatalog;

FTS needs a UNIQUE index on the table where FTS is enabled. If not defined, define
it as follows:

CREATE UNIQUE INDEX ui PD ON SalesLT.ProductDescription(Product
DescriptionID);

Once created, the index needs to be enabled:
ALTER FULLTEXT INDEX ON SalesLT.ProductDescription ENABLE;
And populated:

ALTER FULLTEXT INDEX ON SalesLT.ProductDescription START FULL POPULATION;

243

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

We can check the population status with ‘SELECT * FROM sys.dm_fts_index_
population’

The result is an index like this (Figure 3-33):

keyword display_tem column_id document_count -~
523 (x006C006500610068002D00700072006F00... leak proof 1
524 (x00DECO06500610074006300650072 leather 3
525 ([x00EC00650067 leg 2
526 (x006C006500670065007200000208 léger 14

527 (x006C006500670065007200650000020E020F légére
528 (x006C006500670065007200650073000002... légéres
529 (x006C0O06500670065007200730000020E légers

Ay = = s n

2

2

2

2

2

2

2
530 (x006C00B500670073 legs 2
531 (xDOBCO0650073 les 2 7
532 (x006C006500730073 less 2 2
533 (x006C006500740073 lets 2 1
534 (xD0SC006500760065006C level 2 E
535 (xD0SCO06500760065006C0073 levels 2 1
536 (xD0GC00650076006500720073 levers 2 1
537 (x006CO0ES00760069008500720073 leviers 2 1
538 (x0DEC0063006100650073006F006E kaison 2 2
519 (xD06C0069006700680074 ight 2 7
540 (xD06C0069006700680074002D0077006500... light-weight 2 2
541 (x006C006900670068007400650072 ighter 2 1

A 1

47 NuANECANEANNETANE ONNTANNE EANTINATL Lk i

Figure 3-33. This is the generated index with keywords, available through
the query: ‘SELECT * FROM sys.dm_fts_index_keywords(DB_ID(‘ADWorks’),
OBJECT _ID(‘SalesLT.ProductDescription’))’

We believe relational DBs are not really suited for these kind of approaches, not from
the performance point of view, where someone could say that they can rock. Instead,
from these points:

o Effort: the overall effort in building and maintaining the FTS structure
is high
e Structure: an RDBMS table is designed to be normalized, effective

and optimized. So, each search will probably involves multiple JOINs
to build the appropriate aggregate

o Load: since search is often a “client-requested” feature, we are not
really fans of the exposure a SQL database may have to the B2C traffic

Now, we are investigating on Azure Search, a Platform-as-a-Service product that acts
like a search-as-a-service.

244

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Understanding How to Start with Azure Search

The main issues while starting a search-as-a-service solution come from the
inexperience with the specific area. So, instead to provide the method, let’s start
immediately with an example.

Let’s define this query:

SELECT *

FROM SalesLT.ProductDescription pd

JOIN SalesLT.ProductModelProductDescription pmpd ON
pd.ProductDescriptionID=pmpd.ProductDescriptionID

JOIN SalesLT.Product p ON p.ProductModelID=pmpd.ProductModelID

Now refine it to get explicit fields and avoid name duplication:

SELECT CONCAT(pd.ProductDescriptionID,'-",pmpd.Culture) as [SearchKey],
pd.ProductDescriptionID,pd.Description,pd.ModifiedDate as
[pdModifiedDate],pmpd.ProductModelID,pmpd.Culture,pmpd.ModifiedDate as
[pmpdModifiedDate],
p.ProductID,p.Name,p.ProductNumber,p.Color,p.StandardCost,p.ListPrice,p.Size,
p.Weight,p.ProductCategoryID,p.SellStartDate,p.DiscontinuedDate,
p.ThumbnailPhoto,p.ThumbnailPhotoFileName,p.ModifiedDate as [pModifiedDate]
FROM SalesLT.ProductDescription pd

JOIN SalesLT.ProductModelProductDescription pmpd ON
pd.ProductDescriptionID=pmpd.ProductDescriptionID

JOIN SalesLT.Product p ON p.ProductModelID=pmpd.ProductModelID

We now have a resultset of the entire projection of the 3 tables joined together. We
make a view based on this query as follows:

CREATE VIEW SalesLT.vProducts AS (
[...]
)

We added the computed SearchKey field to create the view in order to have a
unique field.

245

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Now we would like to make full-text search on these fields:
e Description, Name
¢ ProductNumber *, Color *
Additionally, we would like to filter on the fields with the star (*) plus the following:
e ProductModellID, ProductID, ProductCategoryID
e Culture

StandardCost, ListPrice

e Size, Weight

o SellStartDate, DiscontinuedDate

Finally, we create an Index on a Search Service instance, using the wizard, as follows
(Figure 3-34):

Import data X Data Source New data source
. * Name
Data Source 5 Existing data source 5
Connect to your data v-products v
Index a & Samples N * 5QL Database ©@
Customize target index azure-demos/ADWorks >
Indexer a & Azure SQL Database g Or input a connection string
Import your data
* UserId
=) AL Server on Azure VMs N azDemoAdmin@azure-demos
* Password
= | asssssssssssseREe v
@ DocumentDB >
B Azure Blob Storage >
o Connection validated.
5 Azure Table Storage >
* Table/View
SalesLT.vProducts e

Figure 3-34. With this wizard, we can connect an existing Azure resource (among
the supported ones) to Azure Search. The operation creates three items: an Index, a
Data Source and an Indexer

246

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

During the creation process, we can customize the mappings between the fields of
the View and the index, to accommodate specifications (Figure 3-35):

* Index name ©

v-products v
I |
* Key ®

I SearchKey ~ |

Basic | Analyzer Suggester

@ Delete

FIELD NAME TYPE EVABLE IIi'j’l:‘lhhl!l.f ﬁmms E}:]ZEI'MLE [SiIAIICHMH.E
SearchKey Edm.String O O O |
ProductDescriptionID Edm.String O kil O
Description Edm.String [l]]
pdModifiedDate Edm.DateTim... O O [l

ProductModellD Edmint32 O O

Culture Edm.String O]]
pmpdModifiedDate Edm.DateTim...]]]

ProductiD Edm.Int32 O O O

Name Edm.String O N]
ProductNumber Edm.String []]
Color EdmSting v =] O

Figure 3-35. We define, for each field of the view, what Data type on Azure Search
will have and the field properties. Based on the Index definitions, the underlying
engine of Azure Search will organize the data structure to accommodate search

We now have a working index, updated periodically with fresh data, available for
full-text queries like this one:

247

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Search explorer

|] Change index @ Set APl version

Query string @ ~
. Index: v-products
search=customifilter=Color eq 'Blue’ m API version: 2016-09-01
Request URL

https://azure-demos.search.windows.net/indexes/v-products/docs?api-version=2016-09-018tsearch=custom:24filter3%3DColori20eq%20'B... E

Results
1{
2 “@odata.context”: “https://azure-demos.search.windows.net/indexes('v-products’)

/$metadatat#tdocs”,

"value": [

{

3

4

5 "@search.score”: ©.36858783,

6 “SearchKey”: "554-en ",

7 "ProductDescriptionID": "554",

8 "Description”: "The plush custom saddle keeps you riding all day, and there's
plenty of space to add panniers and bike bags to the newly-redesigned carrier. This bike has
stability when fully-loaded.”,

9 "pdModifiedDate": "2007-06-01T00:00:00Z",

Figure 3-36. We see a query against an HT'TP endpoint which returns documents
matching the FTS plus the filters

In this REST query (Figure 3-36), we are not loading the DB; instead, we are working
on a document-based, denormalized, cached copy of the DB structures involved.

Planning Azure Search

Since it is a PaaS, we need to understand which Tier we need considering the
requirements of our scenario. Let’s understand Azure Search has a pricing model based
on size limits, like these main ones as follows:

» Storage size: the actual storage consumption by the index data and
metadata

¢ Number of Indexes/Indexers: the total number of different indexes
we can have concurrently

¢ Number of total documents: the total documents we can store in the

account (not in a single index)

248

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Table 3-1. This table (taken from https://docs.microsoft.com/en-us/azure/
search/search-sku-tier) shows the actul limits for each tier of the Azure Search

Resource Free Basic S1 S2 S3 S3HD

Service Level No Yes Yes Yes Yes Yes

Agreement

(SLA)

Index limits 3 5 50 200 200 1000

Document 10,000 1 million 15 million 60 million per 120 million per 1 million per

limits total per service per partition partition partition index

Maximum N/A 1 12 12 12 3

partitions

Partition size 50 MB 2 GB per 25GBper 100 GB per 200 GB per 200 GB (up to
total service partition partition (up partition (up a maximum

to a maximum to a maximum of 600 GB per
of 1.2TBper of 24TBper service)
service) service)

Maximum N/A 3 12 12 12 12
replicas

They are exclusive, so if we have a S1 with just one index of 26GB, we are out. The
same happens for a solution of 60 indexes with an overall consumption of 10Million
documents and 10GB of storage space.

We need to plan accurately the tiers to use according to the solution we need to
implement.

In late 2017, new Azure Search instances were provisioned using a more powerful
hardware and without some limits as above, this blog post can explain better
what’s changed: https://azure.microsoft.com/en-us/blog/azure-
search-unlimited-document-counts/.

249

https://azure.microsoft.com/en-us/blog/azure-search-unlimited-document-counts/
https://azure.microsoft.com/en-us/blog/azure-search-unlimited-document-counts/
https://docs.microsoft.com/en-us/azure/search/search-sku-tier
https://docs.microsoft.com/en-us/azure/search/search-sku-tier

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Multitenancy with Azure Search

One of the first question in Azure Search is often “How to deal with multi-tenancy?”.

A single S1 deployment of two nodes costs around 0,5k$/month, so it is a legitimate

to achieve density and maximize its usage by tenant. In fact, if we can deal with the
problem of noisy neighbourhood (where a heavy tenant will consume much resources
degrading the others’ performance), we can definitely use a single deployment for even a
huge number of different tenants.

Initially, Azure has set the approximate point around the performance target of a
Search Tier. For example, defined that a given Tier would serve around N QPS (Queries
per second). However, since it depends entirely on the index topology, the document
size and factors 100% related to its usage, there are no official statements around this,
actually. And it is correct there aren’t.

There are some platform limits, like:

e Maxrequest size: 16MB

e Maxrequest URL length: 8KB

e Max number of documents indexed in a batch: 1000
e Maxfields included in an $orderby clause: 32

e Maxlength of a search term: 32KB (minus 2 bytes)

The complete and comprehensive list and tables of service limits by Tiers, is
available here:

https://docs.microsoft.com/en-us/azure/search/search-limits-quotas-capacity

So, let’s think about this scenario: we have an e-commerce solution with 1000
customers. Each customer has a catalog of around 5000 items (2KB each) and we need
to design the proper Azure Search topology. Each catalog is updated by two distinct
sources, one for the nightly update, and another one for 5-minute price changes update.

So we have:

e 1000 indexes, one per customer
e 5M of documents, considering 5000 items x 1000 customers
e ~9,5GB of space, considering 2KB x 5M documents

e 2000 indexers, considering 2 distinct indexers for each index (1000)

250

https://docs.microsoft.com/en-us/azure/search/search-limits-quotas-capacity

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Let’s try to evaluate tier one by one to identify the most appropriate one:

Free: it is just for testing purposes, next.
Basic: every limit is under our requirements, next.

S1: documents and storage size is okay (15M/p and 25GB/p) but we
can have just 50 indexes per service, next

S2:indexes are now 200, but it is a per-service limit, so we cannot
have all the 1000 indexes in a single service.

S3: the same as S2, since the only changes are in documents and total

size, next.

S3 HD: it has been designed to achieve density and, in fact, it
supports up to 1000 indexes per partition and 3000 per service (since
3 is the maximum number of partitions we can have). This would
ensure us the capability to grow without changing the service or
pooling elsewhere. However, there is no support for indexers in the
S3 HD, so we must implement our own technology to index data.

This example wanted to show how to setup a planning phase around Azure Search

by starting from service limits which is, in Platform-as-a-Service, a standard pattern to

evaluate the compatibility of a service with a given scenario.

Finally, we suggest to mix patterns to achieve the best option, between the most
popular models “one-index-per-tenant” and “one-service-per-tenant”. Effective
solutions can have multiple service pools with many tenants, as already discussed
in previous chapters.

Security and Monitoring

As usual for the PaaS service, in Azure Search we have two Keys with full rights on the

service itself. The two administrative keys (whose job is to permit their rolling) can create

indexes, delete them as long as any other operation against the service.

251

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

However, it’s not uncommon (but we do not suggest it) to expose the search API on
the frontend of the application. Think about this scenario:

1. User navigates to the e-commerce store frontend

2. He/she types some words in the search bar, resulting in a series of
ajax calls to the frontend tier of the web application

3. The web application, for each request, acts as a proxy and makes
the request against the search service using the administrative key

To reduce the involved actors, we can even modify the scenario as follows:
1. User navigates to the e-commerce store frontend

2. He/she types some words in the search bar, resulting in a series
of ajax calls to the Search service directly, using the Azure Search
library for javascript. No web tier is involved anymore.

Despite we do not like this scenario (it is always better to have the complete control
over the backend resources, even to apply traffic limiting and throttling, in case), it is
possible to achieve. However, we should disclose, in the frontend page’s code, a key
which has just the capability of query data, in a read-only mode (Figure 3-37).

? Manage query keys

NAME KEY

<empty> B6DDO18AO4ABACEBTE5C093167D817C83
Tenant01 3D6326149F8256BBBAABCEDS97870795
Tenant02 765476431A30BCFCD91420487687CF5B
Tenant03 A41D802D1471ADDO043A831CT50651158
TestApplication E78249863FDBFE6AGT7FO9573ABBEABE
AngularFE A16CA42271C63C946DDE2659AT13AD45

Figure 3-37. Here we define the “query keys, which are special read-only keys.
Despite it is supported, nothing will prevent a user from fiddlering the traffic or
reading the client’s code and crawling the entire Search Service

252

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

The three metrics exposed by Azure Search are: Search Latency (which indicates
both the complexity of search queries and the load on the search node), Search Queries
(which is an aggregate number of the total queries against the service) and Throttled
Queries (which is an aggregate number of the queries which are refused by the service).

Azure Search can throttle queries in order to preserve its general status of
availability. For instance, is a user submits a query, specifying the target minimum
coverage of 100%, the Search engine will return the result only if the target coverage has
completed. If the service is not able to fit that coverage, since it would require a loss of
overall performance or an unacceptable degradation, the query would be throttled and
refused.

At the other side, much the concurrent queries are, much more we would expect the
latency will be and, possibly, the throttled queries (Figure 3-38). Those three metrics are
obviously related and, considering those, we can have a quick look at the health state of

our instance.
30ms
180
25ms | 160
II II 140
20ms I 120
15m II | 1
|: \ 080
10ms | i 060
|I I| 040
5.0ms
N ul I| 0
Dsec /S \ | L™ [
5 P Tue 26 06 AM 12 P 5 P 6 06 AM ™
SEARCH LATENCY (A SEARCH QUERSES PE_
1.6 m 142

Figure 3-38. These are the Search Latency metric and the Search Queries metric
for the same period. We see a peak around 11PM that can be a sudden, isolated
event of load, since the corresponding metric about queries is normal

253

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Implementing Azure Search

We believe Azure Search should not be the primary copy of your data. RDBMS are
usually involved into transactions, concurrent operations from multiple sources on the
same destination, punctual updates of fields and constraints checks among tables. Those
are just a few of the things we cannot guarantee with a Search service.

A search service can be easily seen as a document-oriented, multi-indexed cache of
our data, with a specific set of features related to full-text search.

However, differently from an ordinary cache, we cannot achieve the “on-demand”
caching pattern, since the consumer want to rely on the availability of the entire search
set upon search and it does not want (and know how) to actively populate it. The general
suggestion is to then maintain some idempotency around the state of the search nodes:
a set of scripts that bring the search nodes to the desired state, can be a good example.

Establishing the Search

A good “search establisher” is a component which does the following tasks:
e Index definition:
o C(Creation in case it does not exists

e Drop/creation in case of missing fields (Azure Search does not
support index changes)

e Index contents:
e Active population with the desired data set

o Configuration of the appropriate jobs to populate it further

We can write a C# method, using the Microsoft.Azure.Search NuGet package, to
drop/create an index, as follows:

private static void BuildIndex
(string searchService, string searchKey, string indexName)

var search = new SearchServiceClient(searchService,
new SearchCredentials(searchKey));

search.Indexes.Delete(indexName);

var index = new Microsoft.Azure.Search.Models.Index()

254

1)

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Name = indexName,
Fields = CommonFields.TolList()

}s

index.ScoringProfiles = new List<ScoringProfile>() {
new ScoringProfile()

{
Name = "Relevance",
TextWeights = new TextWeights(new Dictionary<string, double>()
{ { "CategoryName", 5 }, { "Description”, 3 }, { "Brand", 1 }
}
};
index.DefaultScoringProfile = "Relevance";

search.Indexes.CreateOrUpdate(index);

In this snippet, we first drop the existing index and we create the definition of a new

one along with a scoring profile to attach to it. A scoring profile is an attribution model

of scores to the search result, based on custom properties and logics. By default, Azure

Search has a balanced score profile, which awards equally search results, based on the

“natural relevance” of the input keywords.

In case we are searching “milk” in a document set like this (with all the three fields

“searchable”):

{

CategoryName: "Bath products",
Description: "Active Shampoo with Nuts Milk"
Brand: "F&D Milk Products"

CategoryName: "Milk",
Description: "Organic Milk"
Brand: "F&D Dairy Products"

255

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Azure Search can place the two documents in the result set with a very similar
score. It is even possible two consecutive searches shows those results in a different
order, since the default attribution model spans equally between the two occurrences of
“milk” in, relatively, Description and Brand for the first product and CategoryName and
Description for the second.

However, in the e-commerce scenario, we would like to boost the relevance of a
product based “first” on its category, leaving the brand as the least important. Why
this decision? It is obviously a domain-based decision, but it makes sense, since many
brands can have specific keywords in their claims which are not relevant at all with sold
products (i.e. “Nuts and Co.” can be a family name, not a company selling nuts).

Therefore we created, along with the index, the Scoring Profile:

new ScoringProfile()

{
Name = "Relevance",
TextWeights = new TextWeights(new Dictionary<string, double>()
{ { "CategoryName", 5 }, { "Description”, 3 }, { "Brand", 1 } })
}

We are telling Azure to give specific weights to text matches on fields. With the model
above, a single match on the CategoryName can win over two matches on Description
and Brand which, in the case above, will award the second product always.

Defining Fields and Properties

We can notice that, in the index definition, we used the CommonFields property, which
encapsulates all the field definition as follows:

public static IEnumerable<Field> CommonFields

{
get

{

return new Field[]

{
new Field("SearchId",DataType.String){IsKey=true},

new Field("Brand",DataType.String)

256

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

{ IsSearchable=true, IsFilterable=true,IsFacetable=true},
new Field("Description”,DataType.String)
{ IsSearchable=true,IsSortable=true,

Analyzer =AnalyzerName.ItMicrosoft},
new Field("CategoryName",DataType.String)
{ IsSortable=true, IsFilterable=true,IsFacetable=true,
IsSearchable=true,

Analyzer =AnalyzerName.ItMicrosoft},
new Field("IsPromo",DataType.Boolean)
{ IsFilterable=true,IsSortable=true,IsFacetable=true},
new Field("PromoStart",DataType.DateTimeOffset)
{ IsFilterable=true},
new Field("PromoExpiration",DataType.DateTimeOffset)
{ IsFilterable=true,IsSortable=true},
new Field("Price",DataType.Double)
{ IsSortable=true,IsFilterable=true,IsFacetable=true},
new Field("Tags",DataType.Collection(DataType.String))
{ IsSearchable=true }

b

A field defined in a search index, can be decorated with the following properties:

IsKey: it is reserved to the key field. Inside a single index, every
document must have a unique value for the field defined with the
IsKey flag.

IsSearchable: only DataType.String values can be defined searchable
and, when enabled, the field is marked to be indexed for the full-text
search.

IsFilterable: we can specify which fields can be included in a filtering
clause, to optimize the index. Not every field is involved by default, to
avoid waste of resources and degradation of performance.

IsSortable: it works like the IsFilterable, except it denotes a sortable
capability on that specific field.

257

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

« IsFacetable: this is very interesting, since it denotes “attributes”.
Usually, a “facetable” field is a field where we want to group our
results for a search refinement. Every field decorated with that flag,
is returned in the search results with an occurrence counter, to refine
the search later. It involves computation and storage resource, so we
need to use this only if necessary.

o IsRetrievable: it marks a field to be included in the result set of a
search query. This is not enabled by default because we can even
search among fields we do not want in results. This is probably
uncommon, but it is a supported scenario.

Along with these flags, we see we decorated some fields with the Analyzer attribute.
Azure Search supports text analyzers, to make more effective the search query with
the destination language we choose. In the case above, we specify the contents of the
Description and CategoryName are to be interpreted as Italian-localized (ItMicrosoft)
strings, which gives us some interesting features out-of-the box:

o Lemmatization
e Decompounding
o Entity recognition

To make a simple example, the default analyzer (the language-agnostic one) will
just remove punctuation, normalizes upper/lower casing, rooting, while the language-
specific will be the foundation to implement even Phonetic search.

Populating Index

A search index can be populated via REST AP], so it is possible to let several sources feed
it as they want.

258

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

Hourly
updates
Nighly
products
feed

Single
updates

Search
Index

Figure 3-39. We can feed an index from different sources, each one using the REST
API autonomously

However, there is an integrated mechanism to provide contents to the indexes.
Azure Search can instantiate, in the same nodes of the search engine, some jobs, called
Indexers, which can perform a fetch against some supported sources (like SQL Database,
Cosmos DB, Blob Storage) and populate the indexes accordingly (Figure 3-39).

We can define an Indexer through the portal or the REST API or, via C#, as follows:

search.Indexers.CreateOrUpdate(
new Indexer(name:indexerName, dataSourceName:dsName, targetIndexName:
indexName)
{
Schedule = new IndexingSchedule(TimeSpan.FromMinutes(minutes),
DateTimeOffset.UtcNow),
Parameters = new IndexingParameters()
{
Configuration = new Dictionary<string, object>() { {
"queryTimeout", "00:20:00" } }

};

This will create a job that, every “minute” interval (minimum 5 minutes) will execute
against the DataSource defined in “dsName” populating the “indexName” index.

259

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

We are also specifying a queryTimeout, which is a custom property telling the
indexers to use that timeout in case of SQL Connections.

The Data Source, in case of SQL Database, can be something like that:

search.DataSources.CreateOrUpdate(new DataSource(dsName, DataSourceType.
AzureSql,
new DataSourceCredentials(connStr), new DataContainer(viewName))

DataChangeDetectionPolicy =

new HighWaterMarkChangeDetectionPolicy("SearchUpdate"),
DataDeletionDetectionPolicy =

new SoftDeleteColumnDeletionDetectionPolicy("SearchDelete", "True")

1

With this Data Source we are specifying the DB through the “connStr” parameter
and the “viewName” view where to fetch data. Finally, we are defining two important
properties, which are discussed now in the next section.

Change and Delete Detection

The update process of an indexer cannot be defined a synchronization process.

First, it is one-way: there is no update in the search-datasource direction and it
shouldn’t, since the first is generally an aggregate produced for the only purpose of a full-
text search.

Second, there is no an automatic way to track changes and items deletion. For
example, if we are running an indexer that, in first execution produces 1000 items and, at
the next execution produces just 998 items, there is no way to tell the Search to remove
the “missing items”.

If we think about it, it is correct. Since we can have multiple indexers around the
same Index and also external sources which feeds the index by API, it is obvious we
cannot just think a single indexer will make the rule of what is to be deleted or not.
An indexer may index just a subset of items or an external job may enrich the saved
documents with extended properties (i.e., the Tag field in the example above).

260

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

However, a common scenario to realize is to provide a sort of synchronization,

guaranteeing the indexer will both insert/update and delete the missing items. To be

smarter, the update should occur only on the changed items and not on the entire

subset.

Therefore, the supported data sources of Azure Search have these two properties:

HighWaterMarkChangeDetectionPolicy: it marks a column of the
source Table/View of the SQL Database as the change tracking field.
The indexer will save the highest value of this field encountered
during the first execution, to execute the next ones in this form:

e SELECT * FROM [ViewName] WHERE [HighWatermark]>[highest
ValuePreviouslyEncountered]

SoftDeleteColumnDeletionDetectionPolicy: since there is no way
to remove missing items (on the Data source side) from the index,
we must mark a column/field with a flag (or value) indicating if

the actual item is to be preserved or deleted. This is also known

as “soft deletion” since this requires, on the data source side, to
avoid deleting items. Instead, we should consider to keep them and
producing a View/Table where a proper field indicates its validity
state.

If we implement those two search-specific fields in the View/Table, we can have

a pseudo-synchronization in place, sure we are updating only the changed items and

deleting the old ones.

The HighWaterMark field can be a field of DateTime, Rowversion or another type,
updated by the business logic when a record is updated too. This makes the above
query work with the compare operator.

Summary

In this chapter, we learned how to maximize the usage of NoSQL alternatives and how to

fit them into scenarios often monopolized by RDBMS products. We learned how to use

Blobs efficiently for basic storage requirements and how to use Tables for basic filtering

requirements.

261

CHAPTER 3 WORKING WITH NOSQL ALTERNATIVES

We introduced Redis Cache to speed up existing solutions or setup a fast and
volatile storage alternative and Azure Search where the application is really focused on
searching features.

In the next chapter, we look into data orchestration with Azure Data Factory.

262

CHAPTER 4

Orchestrate Data
with Azure Data Factory

In this chapter you will learn how to architect an integration service solution using
Azure Data Factory (ADF), starting from the most common adopted solutions up to the
customization scenarios. The aim of this chapter is to give the data architect an overview
of the options available with ADF to move and transform data using this service,
providing some practical example. To do that, we will use, like in other parts of the book,
the AdventureWorksLT sample database.

The chapter will cover three sections:

e Anintroduction to Azure Data Factory, focused on the advantages of
using this service, the terminology we need to become familiar with,
and the options to administer the service

e Designing an Azure Data Factory solution. This is the longest part,
where we will see how to author a solution, working with the tools
and with cloud and on-premises data

o Considerations on performance and scalability, with suggestions and
best practices

Azure Data Factory Introduction

Even though Azure Data Factory is not one of the oldest services available in the Azure
platform, it is already quite a powerful service, rich in functionalities to help the data
architect and the developer in designing an orchestration solution. It is aimed to support
both extract-transform-load (ETL) and extract-load-transform (ELT) projects. It is
designed with the cloud in mind and to support modern and traditional data sources,

and accessing data on-premises is possible as well.

263
© Francesco Diaz, Roberto Freato 2018
E Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_4

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

For those of you that, like us, are coming from work experience with SQL Server
Integration Services (SSIS), you will find similarities in the concepts, with an additional
“as a service” approach and a native support for modern cloud data stores, such as big
data stores, machine learning, and high performance computing services. Furthermore,
comparing ADF with SSIS, the Transform part is different, as ADF works more with
external compute services and it is not focused much on transforming data directly. It is
more of a cloud orchestrator engine rather than a compute engine. Another difference
is that ADF is focused on processing time series of data, instead of having a control flow
system like in SSIS.

Other services in the market that adopt a similar as-a-service approach to Azure Data
Factory are Informatica Cloud or Amazon AWS Data Pipeline, just to mention a few.

Note You may find additional information on SQL Server Integration Services,
Informatica Cloud and Amazon AWS Data Pipeline at the following links:
https://docs.microsoft.com/en-us/sql/integration-services/
sql-server-integration-services; https://www.informatica.com/
products/cloud-integration/integration-cloud.html ; https://
aws.amazon.com/datapipeline/

Figure 4-1 below displays the typical workflow on an Azure Data Factory solution,
where you can ingest and prepare data coming from several data sources, transform
and analyze them with the support of external compute services, and publish results to
a sink data store, ready to be consumed by a report, an application, etc.

o

. =) g
% W
< 8 .

ot B &,
o] (GG O B
BhE o i

DATA SOURCES *;-+ 2 +*-;- DATA CONSUMPTION

+n

Figure 4-1. The typical flow of an Azure Data Factory implementation

264

https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services
https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services
https://www.informatica.com/products/cloud-integration/integration-cloud.html#fbid=FaBj_6Lm8t2
https://www.informatica.com/products/cloud-integration/integration-cloud.html#fbid=FaBj_6Lm8t2
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Main Advantages of using Azure Data Factory

We will now explore the main advantages of relying on Azure Data Factory as your data

movement and data transformation service.

Itis a cloud based service that runs on Microsoft Azure, and it doesn’t
require having anything installed locally. Potentially, the authoring
part can all be done using Data Factory Editor provided out of the
box.

It is a PaaS service; therefore, the surface of administration you
need to do it is much lower, and you can focus on the design of
the solution instead. Azure Data Factory SLAs guarantee that “at
least 99.9% of the time will successfully process requests to perform
operations against Data Factory resources,” and that “at least 99.9%
of the time, all activity runs will initiate within 4 minutes of their
scheduled execution times.”

Numerous data stores are supported and the number grows regularly.
They can be on-premises and on cloud, from text files up to big data.

Everything you design with Azure Data Factory generates JSON
(JavaScript Object Notation), therefore maintaining a solution
becomes easy, and it is also supported by a visual designer to display
workflows.

It is open to be tailored by writing custom code, when the
functionalities provided out of the box are not sufficient.

Copy activities, very common in ETL scenarios, are simplified thanks
to a tool provided within the platform.

To verify that workflows are working as expected, a monitor and
manage tool is also provided by Azure Data Factory.

265

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Terminology

It is now important to become familiar with the terminology used by Azure Data Factory,
to understand the aim of each functionality included herein. An Azure Data Factory
workflow is built upon four main components, which we are going to cover in detail in
the pages below:

1. Linked Service. A connection to a data store

2. Dataset. A representation of the structure of the data
3. Activity. They consume, transform, and produce data
4. Pipeline. A group of one or more activities

In Figure 4-2 below you can find a visual illustration of how the four components
interact with each other. First you create a linked server to connect to a data store, and
then you create a dataset with the representation of the data, e.g. a table, contained
in the data store. Then you run an activity on the linked service that can consume
data using the dataset and produce data putting them in another dataset. If you need
to group a number of activities that are designed with the same scope, you can use a

pipeline.

23] m
DATA SET LGN AcTIVITY YR PIPELINE
(o.g.table flle) o A R E e (e.g.hive, stored proc., copy) Is a logical o T T T
Produces grouping of
i Represents
i adata item(s)

i stored in
H -~ Runs on

& v

LINKED SERVICE v

(e.g. SQL Server, Hadoop Cluster)

Figure 4-2. Shows the relationship between the main features of Azure Data
Factory

There is a fifth component, the Data Management Gateway (DMG), which is
fundamental when the linked service needs to access data from an on-premises data
store. We will cover the DMG in a specific section later in this chapter.

266

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Linked Services

Linked Services represent the information needed by Azure Data Factory to connect to a
specific datasource. A linked service is basically the connection string to the data store or
to a compute resource. Linked Services can be:

e« A connection to a data store, a container of data, used for data
movement activities. The data store can reside in the cloud or on-
premises.

e A connection to a compute resource that can host the execution of a
data transformation activity. The compute resource can be on cloud
or, ifit is a stored procedure activity, on-premises.

Every linked service is provided with a JSON template. The script below represents
the way to connect to an Azure Machine Learning service. We will get deeper in the
authoring and coding part later in the chapter.

{

"name": "AzureMLLinkedService",
"properties": {
"type": "AzureML",
"description”: "",
"typeProperties”: {
"mlEndpoint": "<Specify the batch scoring URL>",
"apiKey": "<Specify the published workspace model's API key>",
"updateResourceEndpoint”: "<(Optional) Specify the Update
Resource URL >",
"servicePrincipalIld": "<(Optional) Specify the ID of the
service principal »",
"servicePrincipalKey": "<(Optional) Specify the key of the
service principal »",

267

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Datasets

A dataset is simply the representation of the structure of the data you want to access from
a data store. The datasets can be used as an input or as an output of an activity.
The JSON template below contains an example of an Azure SQL Database table.

"name": "AzureSQLDatasetTemplate",
"properties": {
"type": "AzureSqlTable",
"linkedServiceName": "<Name of the linked service that refers
to an Azure SQL Database. This linked service must be of type:
AzureSqlDatabase>",
"structure": [],
"typeProperties": {
"tableName": "<Name of the table in the Azure SQL Database
instance that linked service refers to>"
}J
"availability": {
"frequency": "<Specifies the time unit for data slice
production. Supported frequency: Minute, Hour, Day, Week,
Month>",
"interval": "<Specifies the interval within the defined
frequency. For example, frequency set to 'Hour' and interval
set to 1 indicates that new data slices should be produced
hourly>"

268

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY
Activities

An activity is the minimal unit of operation of Azure Data Factory. It may be a copy task
from a source to a destination, or it may be a transformation task executed by a compute
resource, like the Azure Data Lake Analytics.

Azure Data Factory has two categories of activities:

1. Data movement activities
2. Data transformation activities

An activity can have zero or more datasets in input, a source, and one or more
datasets in output, a sink. In Table 4-1 you will find a matrix of all data stores that can be
manipulated by Azure Data Factory, and if it is available as a source, as a sink, and if it
requires the Data Management Gateway.

Table 4-1. Data stores available for data movement activities

Data store Available Available Data Management
name as source as sink Gateway required
Azure Blob YES YES NO
Azure Cosmos DB YES YES NO
Azure Data Lake YES YES NO
Azure SQL Database YES YES NO
Azure SQL Data Warehouse YES YES NO
Azure Search Index NO YES NO
Azure Table Storage YES YES NO
AWS Redshift YES NO NO
AWS S3 YES NO NO
HTTP/HTML YES NO NO
OData YES NO NO
Salesforce YES NO NO
FTP/SFTP YES NO NO
(continued)

269

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Table 4-1. (continued)

Data store Available Available Data Management
name as source as sink Gateway required
DB2 YES NO YES
MySQL YES NO YES
Oracle YES YES YES
PostgreSQL YES NO YES
SAP BW / HANA YES NO YES
SQL Server YES YES YES
Sybase YES NO YES
Teradata YES NO YES
Cassandra YES NO YES
MongoDB YES NO YES
File System YES YES YES
HDFS YES NO YES
ODBC YES NO YES
GE Historian YES NO YES

Note Azure Search Index is only supported as a sink and not as a source.

In Table 4-2 you can find the list of the data transformation activities supported by
Azure Data Factory. We will go in to detail later in the chapter.

270

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Table 4-2. Compute resources for data transformation activities

Transformation activity Compute environment

Hive HDInsight

MapReduce HDInsight

Hadoop Streaming HDInsight

Pig HDInsight

Spark HDInsight

Azure Machine Learning Azure Machine Learning

U-SQL Azure Data Lake Analytics

Stored Procedure Azure SQL Database, Azure SQL Data Warehouse,
SQL Server*

DotNet Azure Batch, HDInsight

*SQL Server requires that the Linked Service connects via Data Management Gateway

Pipelines

Pipelines allow grouping of activities together. Each activity can share the same window
of execution and, in general, the logical task for which it has been designed. You can
have one or more activities in each pipeline, and you can have many pipelines in an
Azure Data Factory workflow. A JSON template for a pipeline is as follows:

{

"name": "PipelineTemplate",

"properties": {
"description": "<Enter the pipeline description here>",
"activities": [],
"start": "<The start date-time of the duration in which data
processing will occur >",
"end": "<The end date-time of the duration in which data processing
will occur>"

271

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Azure Data Factory Administration

The administration of Azure services can be done in several ways, many of them
available also for Azure Data Factory. As a reference, in Table 4-3 you can find the
possibilities you have to manage Azure Data Factory; in the Link to tutorial column you
can also find a getting started document.

Table 4-3. Administration options available in Azure Data Factory

Tool/API Available for Link to tutorial
ADF
Azure CLI NA NA
Azure Powershell YES https://docs.microsoft.com/en-us/azure/

data-factory/data-factory-build-your-first-
pipeline-using-powershell

Azure Portal YES https://docs.microsoft.com/en-us/azure/
data-factory/data-factory-build-your-first-
pipeline-using-editor

.NET API YES https://docs.microsoft.com/en-us/azure/

data-factory/data-factory-create-data-
factories-programmatically

Powershell Core NA NA

REST API YES https://docs.microsoft.com/en-us/azure/
data-factory/data-factory-copy-activity-
tutorial-using-rest-api

Designing Azure Data Factory Solutions

So far, we have explored the terminology and the main advantages of using Azure Data
Factory. This section of the chapter is the longest one, and we will focus on the authoring
of ADF solutions.

Like other services in the Azure platform, ADF is available in different regions. At the
time of writing, the service is available in four Azure regions: East US, North Europe,
West Central US, West US, but data can be taken from all the Azure regions where the

272

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-powershell
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-powershell
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-powershell
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-editor
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-editor
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-build-your-first-pipeline-using-editor
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-data-factories-programmatically
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-data-factories-programmatically
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-data-factories-programmatically
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-tutorial-using-rest-api
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-tutorial-using-rest-api
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-tutorial-using-rest-api

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

supported data sources are distributed. In the case of on-premises data or VMs located
in a cloud or service provider, it is enough to install the Data Management Gateway;, if

the data store is supported.

* Location @
l East US| v
East US

North Europe
West Central US
West US

Figure 4-3. The list of Azure locations where an Azure Data Factory service can be
published

Note It is important to highlight that, while the Azure Data Factory service will
run in the regions above, the regions where the copy tasks may be executed

are available globally. To ensure data movement efficiency, Azure Data Factory
automatically chooses the location close to the data store destination. You may also
specify it manually, using the executionLocation parameter in the copy activity
JSON definition file.

Exploring Azure Data Factory Features using Copy Data

To explain how Azure Data Factory works, we will play with the Copy data feature, a
visual tool available in the Azure Data Factory dashboard that permits the movement of
data from a source to a destination. Walking through the steps below, we will describe
what Azure Data Factory generates under the hoods, and we will modify the code to
upgrade our solution. Figure 4-4 displays how to launch the Copy data tool from the

Azure Portal.

273

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Jl ., adfdataplatform

ﬂ Delete =% Move
Essentials ~

Resource group
rg_dataplatform_book
Subscription name
INS_GOLD

Lecation
northeurope
Provisioning state
Succesded

Subscription id

Actions
2
Author and 3] Copydata

m deploy :LO (PREVIEW)

Ii{;) Sample pipelines E‘_-; Diagram
Contents

Datasets Pipelinas

0= 0

O Witherrors 0 Scheduled 0

One time 0

All settings =

Monitor &
Manage

©

R

Metrics and
operations

Linked services

Data Stores 0
Data Gateways 0

See more

Figure 4-4. The Copy data wizard is one of the web tools available in the Azure

Data Factory management dashboard

During the exercise, we will cover the following parts:

o How to move data from a source to a destination, using a relational

database
¢ Understand how Pipelines work
e Understand how Datasets and slices work
e Understand monitoring and retry logic

e Become familiar with tooling

We will move data between two Azure SQL Databases. The source, the
AdventureWorksLT sample database, is in the West Europe datacenter, while the

destination is hosted in the West US datacenter.

274

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

@:‘ dataplatform Available West Europe

ﬁ:‘ dataplatformwestus Available West US

We will move the data contained in the SalesLT.Customer table of the source to the
destination table, which is empty, but has the same schema. On the source database, we
have slightly modified the data of the sample database, in order to have a bit of partitioning
of information, useful in explaining how ADF Datasets work. The column ModifiedData,
which we will use in a moment, is a datetime column where we have changed data in order
to have slices at intervals of three hours each. You can see it in Figure 4-5 below:

o ST o (Dot B] Salesd 1. ustoemes [Design] -
G iw - g
4 g S0l Seve - [t Mo | Tate [Femiame [i [Lomiome | sulfe | Comperttame. | Satespersen | e | 2. | P | P [£ [Moifieddute =
: gummu.mnems:wkm_mwl [% FaloMs e B Goeer WL Matro Mamsfac... adventurewor.. jaoel. Tho gC. gn. T.. |BT0/2017 2OGH0PM
‘@ D‘lllbw N _5‘5 Fal. Me Aleandes IS Dabords NULL Neighborkosd . adventurs-wor.. shess.. 39 OQC. Ui, e [21702017 20000 PM
b Syrtem Dutab | |m Fal. Mo Despat NULE Kumar ML Outdoor Aerobl. adventure-wor.. deepa. 1. Od3_ 8. 2. [8172017 20000 PM
4 sqbadamaris! 7 Rl Ms Mugaet T Kupke Nt Outdoor Sports.. adventurewor.. marga. 0. dieo (. 9. [B172017 20000PM
2 @ Tables [17 Falo M. Chistoghes M. Bright L ParcelBpress . adventure-wor chiist., 1o fwa B T [31772017 20000PM
b Spstem Tables T Rl M Ade NULL Dsliney [PastSupgly adventwrewor. sdanl. 3. Se. Do 5. [En720720000PM
b o FileTables T 1% Rale M James L Enow L Out-ef-the Wa. sdventurewor. jemes.. 6o QH., Pl 5. [S70/2017 20000PM
B Ebemal Tebles [17 Rl Me Michad ML Brundage UL Mechanical Pro.. adventure-wor. micha.. 12. loh.. M. b. [B17/2017 20000 PM
b [dboBulNerion T Rl M. S ML Daimaes [Prefeed Bies adventure-wor. stefan.. 81 %O Br. 8. 2170017 200008M
: g:::me [1% mlm e NULL Kenwady [RescnableBlc.. adventurewor. miech. 99 Aed_ 1. 0. %
P mEETE [= Rl e B Kamer [Refined Depart.. adventure-wor.. jamen.. $1. Bfl. 5. 9. [B17/2917 S0000PM
b P SaeelT Costomeradiress [m Rl M. Eic L Brumfiekd L RequiitePat S, acventure-wor. eickh. 6l pd. M. B [B7/2017 50000PM
b B SaleslT Product [1% flts Del o Demettle [Rewaeding Acti— adventurewor. delill, T ofl 96 4. 31772017 50000PM
B [SaeslT ProcuctCategony L Fal- Ms. Pamala M Kot AL Clesest Bicycle . adventure-wor. pamal. 1. Je. /. 1. 317207 50000 PM
b B SuleslT ProductDescripbion [T 9 RlMn sy R Kodki UL Scocters and Bl adventurewor., jmy0@. 1o e, b % (8172017 00000M
b [SaleslT Proseciade | (% Rl M vt A Cormody UL Sports Commo. adventure-wor. jovialle 6o die, 2. 6. [BT2017 S0MOPM
P B SaleslTProgwctModeProductDesan lf |™ 52 Fal. Me Prashanth NULL Dessi UL Sutionary Blee. adventurewor. pusha. 13- AT_ . Z. [S172017 $0000PM
b SelT SalnOrderDennd T 5 Rl M Sen NULL Konesmann NULL Speciaty Sporti.. adventunewor. scottb 5. PW.. A. . [BAT/0IT SO000PM
N "- E:"’m“‘m‘" [1% Rl Swh 5 Meseon [Rursl Depastre, . adventure-wor. jweed Tho T0. B e. [B1T2917 50000PM
o _ar: Fal. M. Eorwie B Lepio N Micee Bikes! adhvent e, . bormi. 35 OF. W.. b 270017 50000 PM
; -%” -:mun, ™% Rl M Fugeme AL Kogen e Meutein Bike _ adventwewor.. eugea.. 13- Tpl_ G 3. (8177017 500009M
T ——— 0 Fale Me Kk T g L Up-ToDete Spo. adventure-wor. K. 9T 056 b e [M17/2017 BORKOPM
b o Service Broker [101 el e W L Conner L Urban Sports B adventure-wor willee, 3. GZ. B 6. [B172017B0000PM
b Serage W Rl M Leds UL Leste e Natoned Manuf... sdvenburcwar., badsio 49 he., O % [317/2017 B0BIOPM
bl Security ™ % Rl M Andres A Thomsen L West SdeMat adventurewor. andre. 1. o Me . [S172017 80000FM
o Security [15 Falo M Daid . Thompson NL TevelSpots adventure-wor. danigh. 3. Dg. jo. T. |EUT2017 E0MOPM
“ A, N0 Rl Ms Kendra N Thempien MU VintaguSpon .. sdventurewor, kende. 46 dB. [5. B, |S17207 B0MOPM
“ ’ﬂ E‘mn.m :m Fal. Me St A Cobén UL Westside Cycle .. adventurewor. scottl_ 11_ 40 & 0. [S172017 20000PM
- - [e Ralows B L Lewin L Townindidries adventurewor.. ehied. 80 she. UL 5. [S172017 800009M
Pty [1" Pl M Donald M Thompion NILL Teendy Depart.. sdventurewor., doral. 2T Hi. ke B [B172017 R0D00PM
B System Tables. |14 Fel. M kb L Colm UL Tweo Wheels Cy— adventure-wor.. johnl 39- SH. 6. b [37172017 20000PM
b FileTables ns Fal. Me Gesege zZ u L Security Facks .. adventure-wor. geog. 8. yIV_ 4. 0. [3172017 0000 PM
b Gtemal Tebies ™™ ML L [RapdBkes adventure-wor. yalede 3o Bl 5. S fB72017 80000PM
b [dboBuldVeion | (s Rk M Pl A Thomas L Red Bocycle Con. adventure-wor. phylia.. 6. hA. ye.. d. [B717/2007 ROGOOPM
P dookmorog ™ 10 Rl M. Pam NULL Cotaman UL Machings & Cy.. adventunwor.. paD.. 39_ SL. 7. . 31772007 B0000PM
b B SateslTAcdien ™13 Rl Ms Yeheng ML U WL Mearby Sportin... adventurswor yuhon.. 1. Xr. A x_m
: =’;‘:ﬂ"‘:“:‘:x”“‘ [1 Rl M doseph M Ligue o Front Sporting .. adventure-wor.. joseph 11 Td.. jH.. e 87017
bR Salesll Product _l?ﬁ Fal. M. By 8 Tharne N Demand Ditrib, . adventure-wor... Judyl. T EMo O 0. 2T
b B SaleslT ProdectCon T e comme L Coffman e Discount Bicyel. advenbuewor. connio 42 Wi 3 e. fanTaeT
w0 RloMe Padke H. Lishos UL [6te Dikes adventure-wor.. padlo. M. M. Q. 6. [3172017 11oocopm| =

|
i

ploies Cloud Exploses . vrvi20iSiErancescodia: | sqldbadvworks

Figure 4-5. SalesLT.Customer has been modified to have ModifiedData data
partitioned with a 3hrs interval

Now we will explore a bit more of what the Copy data wizard allows you to do,
focusing on the main options, with the objective being to better understand the service.
Figure 4-6 represents the first step, where we can type the name of the pipeline and if it
should run once or on scheduled mode. We select the scheduled option, and the Start
date time and End date time, in combination with the Recurring pattern, are important
options because they define how data movements will be segmented.

275

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Copy Data (adfdataplatform)

O Properties Propertles

Enter name and description for the copy data task and specify how often you want to run the
-

Task name (required) 0

AdventureWorksCopy

Task description

Copies Customer Table data from SQL DB in West EU
server to SOL DB in West US server

Task cadence or Task schedule
Run once now

(® Run regulary on schedule

Recurring pattermn

Hourly v | every | 3 ¥ | hours

Start date time (UTC)

08/17/2017 06:00 am

End date time (UTC)
08/17/2017 11:00 pm

Figure 4-6. Pipeline name definition and scheduling options

The pipeline will be active within the Start date time and End date time interval,
between 6AM and 11PM on 08/17/2017. The recurring pattern will define a scheduler
that will execute the activities inside this pipeline every three hours within the Start date
time and End date time interval. This option requires that you also create an output
dataset, in order to contain the data generated by the activity. Every three hours, in our
example, the activity run will produce what Azure Data Factory calls a data slice.

This is a bit of a tricky concept to digest at the beginning, so we will elaborate more
on this part. Let’s have a look at Figure 4-7 to explain what is happening in this step of
the wizard. The pipeline, in the center of the image, will run from 6AM to 11PM, if not
paused. We said that a pipeline can contain one or more activities. In our case we are
creating only one activity. The activity, a copy activity, has what Azure Data Factory calls
activity windows, tumbling windows with contiguous invervals of execution that we are
defining using the Recurring pattern option. In our case we chose Hourly, every three

276

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

hours. That means that we will have six activity window intervals in total, therefore the
activity will run six times. The input dataset and the output dataset will undergo this
option, and six slices of data will be produced when the activity runs.

Pipeline

Input dataset Activity Output dataset
| 12PM-3PM I [12pPM -3PM | - 12PM-3PM
6PM — 9PM | 6PM —9PM 6PM — 9PM

Slices activity windows Slices

\VJ

Figure 4-7. How data slices are produced by activity runs

We are now ready to choose the source dataset. You can see from Figure 4-8 that
we have the list of available sources displayed here. In our example, we select Azure
SQL Database, the one highlighted. The next step, omitted here to save space, asks for
the connection string information. What the tool is doing under the hood is to define a

Linked Service for us.

WO s ergos Misa ome L=

8 8 »> 8 B8

HI

Figure 4-8. Now we need to select the source, some of them will require the DMG
277

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

In the second part of step 2 of the wizard, we can select tables, views, or use a custom
query; we will select SalesLT. Customer table, therefore we will generate one dataset and

one activity.

EXISTING TABLES USE QUERY

Filter by table name L] Show views
O (Select all)
O M ravolisuiversion]

m [dbe){Errarlog]

[(salestT]iAddress]

LT} [CustomerAddress]

] [(salesiTh{Product]

It is also useful to see in real time a preview of the data that we are selecting. As you
can see from Figure 4-9, the data in the ModifiedData field are within the timeline range
that we defined in the first step of the wizard, where we specified the options for the

pipeline. We will tell the tool how to use this field later.

Showing °

& PasswordHash PasswordSalt rowguid ModifiedDate

358-0172 L/RiwapdwTRWmEQXX+/ATcXaePEPcp+ KwChiZiLTw= 1K Ysd= 3f3ae05e-bE7d-2aed-05b4-c3 T afcb TS 81T/2017 2:00:00 AM
355-0127 YPdwRdvgeAhiGwnEsFdshBDMNIOkCrn+CRabvitimw= 31ZGhY= #552865T-a%af- 137 d- 304 5- 0200002491 8/17/2017 2:00:00 AM
$55-0130 LNoK2TabGQos3gGue3 eV UnYSTovD/s3TdlRV Tulk= YTNHSRws 130774b1-db21-2ef3-98¢8-c104bcabedbd | 8/17/2017 2:00:00 AM
355-0173 ERTpSNbUWIUt+LScWIRTMFonEZa8WemGatPiLOJA=z nm7Dsad= ffe862851-1daa-404d-beTc-3e85583c054d | 8/17/2017 Z:00:00 AM
355-01868 KlgV1SwsXEPGETSSGEddpSLFFVad3CoRfIMARD=Rd= eNFKULw= 83905bdc-6f5e-41T1-b162-c08dalbef38a | 8/17/2017 2:00000 AM
355-0112 OKTOscizCalnymHHCoyIKQIOACI LSooSZ8dQ2 Y3 VM= ThWis0M= 1a92df88-bfaz-467d-bd54-fcbPefdTiddT | 8/17/2017 2:00:00 AM
555-01}'3 ZeeoRJZG0m+XpzcTRAWDRS 11 YFNybwePVRYTSNenSg= sPolUBSQ= 03e92732-b193-248e-9823-felcddneedTd | 8/17/2017 2:00:00 AM
355-0127 QasaMCxNEVLGroD CaiVgwYDfHcsKBGZSUncTM = Ls05Wig= cdbb698d- 2ff1-4fba-5f22-60ad1d11dabd | 8/17/2017 2:00:00 AM
355-0158 uRlorVZDGNIIXSI = ehTIRK<IITAUKRgWhARIgUMCZdd= jpHKbgE= 750f3495-50¢4-48a0-80e1-23Tecb0e77d9 | 8/17/2017 2:00:00 AM
355-0181 jtFOjBoFYelTaETTx+elDkd7BzMz15WoBodbGPEalake wWlnvHos 24Tbcaf1-1132-4413-b3¢c3-001 1105 foesSd BAT/2017 200000 AM

Figure 4-9. Step 2-b of the wizard, that allows us to select one or more views/
tables or to write a custom query

278

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

There is the ability to define a custom query, displayed in Figure 4-10, and this is
the option that we choose. Azure Data Factory provides a set of system variables and
functions that can be used to define filter expressions. In the Query textbox, we use
the $$ keyword to invoke an Azure Data Factory function, Text, to format the datetime
field in the query. We also use two system variables, WindowStart and WindowEnd, to
filter data with the same timeline range expressed when we have defined the pipeline
execution period, in the first step of the wizard.

Note To learn more about system variables and function, visit the official Azure
Data Factory documentation, here: https://docs.microsoft.com/en-us/
azure/data-factory/data-factory-functions-variables

Copy Data (adfdataplatform)

B iopertias Select tables from which to copy the data or use a custom query.

You can select multiple tables, or you can provide single custom query

@ Source
Connection EXISTING TABLES USE QUERY
g Datase

Query B
§8Text.Format(: seec 'c’r' SalesLT.Cust omer where ModifiedDate > = \{ Coyyyy-MM-dd HH:mmj\' AND
ModifiedDate < \{1:yyyy-MM-dd HH:mm}\", WindowStart, WindowEnd)

WindowStant Windowind
08/17/2017 06:00 am 08/17/2017 11:00 pm
Validate Query |

Figure 4-10. We can define a custom query, using system variables and functions
provided by Azure Data Factory

279

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-functions-variables
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-functions-variables

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

After defining the source Linked Server and the source dataset, we can define the

sink data store, Figure 4-11. In this case we will specify the connection string to access
the Azure SQL Server database available in the West US datacenter.

Destination data store

@ peeste N
) tavontes
-
| === o3
- - |
{) =
Azure Bk Seage Atue Dats Labe o Asure Decumpt! 108 Anoe Tatle Rouge Actury Semch Tie Syatem Crachy
=
&
S e

Figure 4-11. We need to select the sink data store

Table mapping and schema mapping are represented in Figure 4-12 and 4-13. In
Figure 4-12 we are mapping our custom query with the destination table, and in

Figure 4-13 we are mapping the columns of the source and sink.

Copy Data (adf

1 Properties Table mapplng

d to copy in the source data store, select a corresponding table in

store o specify the stored procedure 1o run at the destination.

2 Source
Source Dy
@ Destination
<Cuitom quisy> = [SalesLT].[Customer] v "
Connection
Dataset Use stared procedure

PREVIEW SCHEMA

There is no data to preview

Figure 4-12. Table mapping

280

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Schema mapping

Figure 4-13. Table mapping

Let’s zoom-in on Figure 4-13 for a second, on the red rectangle, and look at
Figure 4-13b. This section contains the Repeatability settings options. These are very
important to manage how Azure Data Factory will behave when working with relational
data stores, in the case of a rerun of a slice, or if you apply a retry-logic that needs to be
triggered in case of failures. In both cases you want data that are read again and written
to the destination, without creating any duplicates and forcing an UPSERT semantics.
You have four options:

e None: no action will be taken by ADE

e Autogenerated cleanup script: you can let Azure Data Factory
generate a script for you to clean up data before the rerun or the
retry-logic.

e Custom script: same as above, but you provide your own script.

281

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Slice identifier column: it corresponds to the
sliceldentifierColumnName in the JSON file. In this case you specify
a column dedicated to Azure Data Factory that it will use to uniquely
identify the slice, in order to clean up data in case of a rerun.

Repeatability settings @

Method 0
Autogenerated cleanup script v

Select date-time column (required) 0
ModifiedDate d

Autogenerated script

SSText.Format({delete [SaleslT).[Customer] where
[McdifiedDate] > = \'{O:yyyy-MM-dd HH:mm}\" AND
[MedifiedDate] <\'{1yyyy-MM-dd HH:mm)\",
Windowstart, WindowEnd)

Figure 4-13b. Repeatability settings options for relational data stores

282

Figure 4-14 is also a relevant part to discuss. It basically covers two things:

1.

Error handling. The red rectangle on the top; it contains the
options that we can set to decide what happens if an exception
is raised during the copy activity, like a constraint violation. We
can stop the copy, and copy fails, or we can skip errors, and copy
succeeds. In this second option, we can write logs to an Azure
Storage Account for further analysis.

Performance settings. Please visit the Considerations on
performance, scalability and costs section, later in this chapter

ata (adfdataplatform)

1 Properties

2 Source

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Settings

More options for data movement

3 Destination

@ Settings

~ Fault tolerance settings

Errer handling for incompatible rows L source and d

Actions

Skip and log all incompatible rows (copy succeeds) ¥

Storage account to store the log

New connection v
Connection name [required) [i]
RedirectingStorage-rhd
Account selection method [required| [i]
From Azure subscriptions v
Azure subseription (required) i]

STOrBgE BCCOUNT NAME (required

b Browse

~ Performance settings

~ Advanced settings

Parallel copy @

Clowd writs

-

Figure 4-14. Error handling settings and performance settings

Figure 4-15 displays the summary and invites us to visit the Monitor & Manage tool,

to check how the tasks are going on.

283

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Copy Data (adfdataplatform)

Properties

— Azure SQL Database Copy Run Time Regh West US e Azure SQL Database
I n: Yvest
@ 1 table{s) @ Py Run Time Regle © > 1 table(s) @
Source . Region: West Europe Wl Region: \est US

Destination

Deployment complete

Settings

; ~ Validating runtime environment
Summary Validation passed @

- Registering Connections @
~ Creating Datasets @

~ Creating Pipelines @

Click here to monitor copy pipeline

Figure 4-15. Deployment to Azure Data Factory starts in this step. We can also
monitor it using a tool

In Figure 4-16 we have highlighted three parts of the monitor and manage tool:

1. The wizard produced a diagram that contains the source table, the
copy activity, and the sync table.

2. The status of the activity windows, where we can see that the first
slice (3 hours, from 6AM to 9AM) has been executed.

Window Start Window End

ry... 08/17/2017 6:00 AM UTC 08/17/2017 900 AM UTC

3. Information on the attempts. We can see that the activity worked
on first attempt, and that nine records have been moved from
source to sink.

284

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Attempts ~

@ 08/17/2017 1101 AM UTC ~

Succeeded(100% complete)

Run ID

4b35430d-ebd2-2522-9321-

9d0ddd1abeed, 5 53638 Cutputd
stazet-rhd

Data read: 2.78 KB

Data written: 2.75 KB

Rows: 9

Throughput 26.29 Bytes/s

Copy duration: 00:01:01

Billed duration for data movement 00:01:01

M psplitform | AdventureWorksCegy

Acthity Wendew Explorer ~
PR

- e e x e

ot e e h H h !
- Lo o= il g " O N O
rPp— T emm e P
Ay v 111 1 1 1 1 |
os wa [N I N I I I

meanns (NN NN N N N -
Tha, 11T I N [

Activity Window P
Ve O

Saart & fcd Time
S6TTIINT £90.AM LT - CITTNT S0 AM UTC

Status
© Resay
F |

Attempts =
G 08172017 1101 AMUTT ~

Sutrasasa(I00 camplets)

Figure 4-16. The monitor and manage tool, useful to track progress of a pipeline
or to troubleshoot errors

The Monitor and Manage tool will become your best friend; you can also find it in
the Azure Data Factory dashboard.

® Monitor &
Manage

You can setup email alerts, like shown in Figure 4-17

285

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

CREATE ALERT / FILTERS X
Event [i]
Activity Run Firished v
Status [i]
Failed v
Substatus (optional) 0

Failed Resource Allocation
Failed Execution

Timed Qut

Failed Validation
Abandoned

Figure 4-17. Email alerts in the Monitor and Manage tool

Note To learn more on how to use the Monitor and Manage tool, you can
read this document: https://docs.microsoft.com/en-us/azure/
data-factory/data-factory-monitor-manage-app

Coming back to the copy activity, records with ModifiedDate data modified at BAM
have been added, and the range ties with the first slice, so the task worked as expected.

B Solusiont - B x
ST Cistares 0] 8 | .
G (BT % MeRows 1000 -l oo

| Homesepe | Tite | Firthiame | midah.. |Lastha_ | Suft | Com... | Salespe. | Emaithddress | Phane | Passworstiash | Pas—. | rowguia | Modfiedmate

False [Tim NUL Geist NULL TwoB_ adventu jmi@adveniue. T24555-0161 cvqeCallkwldl.. off.. cbebbi_ [&17/2017 0000 AM

Fals [Betty M Hiines NULL Finer.. adventu. betyd@advert. B6T-S55-0114 Q/nGAVIOOIZ. 6hvc. eSedadf. J217/2017 0000 AM

False M. Shaon L Looney NULL Fitnes, advinti.. sharon2@udve.. STT-S55-0132 UodkAulbg3S. uHg.. 6308ble.. [3/17/2017 30000 AM

False. Mr, Darren NULL Gehring NULL Joum... advenba. damend@adven.. 417-555-0182 kapteZTLaTulh., Xelg- sadel.. 1712017 2:00:00 AM

False Ms. Erin M Hegens NULL Disto. adventu. eninl@odventu. 2445551127 92SFw/bIDUIC.. Bsol. elbadle.. [17/2017 BO000AM

False: M1, Jevermy KWL Les UL Healt... advertu.. jeorery0Badve. 911-555-006% jIMkpmNutZFe.. JK.. Glacd30.. BAT2017 20000 AM

False [Elia KL Lewitt NUL Fruge. adventu eha0Badvents. &83.S55-0174 BmlaMeld76e. YAD.. Seddodd [817/2017 £:00:00 AM

False [David [] Lusrence NULL Gear.. adventi.. doidi9fudve.. 6533550159 HhZeWTTLACMh.. /kef.. 21845ec.. [817/2017 B0000AM

False M. Hattie L Hatmon NULL Great. adventi.. hattiedDadvent. 15550172 Rlemw@Ukby.. 8n3S.. Odiabe. 371772017 30000 AM

L N NULL NUL ML NULL NULL ML ML [T Nt L 4
] Connection Ready . | sqdbadvworksdest]

Figure 4-18. Records within the range of the first slice have been moved to the
destination table

If we wait for the second slice to be executed, then the records within the timeline
range will be moved to the second table. If we look at Figure 4-19 below, we can see that
the wizard created six slices, the second has been also executed therefore we can now

see the new records have been added, Figure 4-20.

286

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-monitor-manage-app
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-monitor-manage-app

Monitoring

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Recently updated slices

LAST UPDATE TIME SLICE START TIME SLICE END TIME STATUS
17/08/2017, 12:03:.. 17/08/2017, 900 A.. 17/08/2017, 1200 P... @ Ready
17/08/2017, 11:03:.. 17/08/2017, 6:00 A... 17/08/2017, 9:00 A.. @ Ready

17/08/2017, 10:59:...
17/08/2017, 10:59:...
17/08/2017, 10:59:...

17/08/2017, 10:59:...

17/08/2017, 9:00 P...
17/08/2017, 6:00 P...
17/08/2017, 3:00 P...

17/08/2017, 12:00 P...

18/08/2017, 12:00 A...

17/08/2017, 9:00 PM
17/08/2017, 6:00 PM

17/08/2017, 2:00 PM

@ Pending execution
... @ Pending execution
... @ Pending exscution

... @ Pending execution

Figure 4-19. The list of slices with the related status

Salation] -
|0 & [B]Y B MuRows 10m - oo
| 'c..swmunn | Momestge | Tate | Firthame | Midal.. | Lasthi.. | Sutfex | Com., | SalesPe... | Emailtdaress | Phone | Passwordbash | Pas... | sowguid |Mr-m
CEE Fabie Mr. Jim ML GEm ML TwoB.. adventu. mi@adventur_ T24-555.0161 cvqeCAflcknid. otf.. chebbl. [/17/2017 BOG00 AM
s False Ms. Betty " Hiines NULL Finer.. adventu. betnO@advet. S67-555-01M OYRGAVIOOIZ.. Shve.. eSedaifu. [4/17/2017 ROGD0 AM|
. Faise M. Sharon U, loomey MULL Fdeth. sdventu. shwond@adve.. 377-555.0132 UpSkAuNNO3. uHg.. S608bTe [811712017 B00:00 AM|
T False Mr. Damen ML Gehing MULL Journ.. adventu.. damen0@sdven.. 417-5550182 keptoZilqTuD— Xefg.. seSe2f.. [A/17/2017 R0G:00 AM
([T [False M. frin M Hagens MULL Diste.. sdventu. einl@edventu.. 2445550127 S2SPw/bIOCUNO.. Baol. elba20e.. [4r17/2017 200:00 AM|
1| False M. Jeery WL los ML Healt. adventu. jeemgO@adve. 9115550165 AMkprbuiZFr. IS/ Sdacd30_ JAna/m0m aon00 am
T |smes Fale Ms. s ML Lewitt ML Froge. sdventu.. eheODodventu. 4425550074 BmbaMeldTGe. YAD.. Seddid3. [/17/2017 ROG00 A6
T |sear False Mr. owid O Lawnence WULL Guar-. adventu. dnid9Dades.. 6335530150 HyZedTTUKIN., fech.. Z18&ec.. [4/17/2017 200:00 AM|
| . False Ms. Hatie 1. Hiemon MULL Grest. sdventu_ hatiedadvent. M1-S55.0172 BlemwoSUbhy.. 3. Ocfabe. [4/17/2017 200:00 AM|
[|5 False Ms. Anita [luceme MULL Grand. sdventu. snitad@edvent. 1645550118 YYTWMHEIXOZ. ZbS. e656560.. [8/17/2017 110040 ..
[|som False Ms. Aebeces MULL Lasle NULL dnstuo adventu. sebeceadBadve. 1(11) 5005550, exdSPBIVPRYC.. nlyd. b3abd.. [NE017 110000 ..
[|mem False Mr. Eric MEL Lang ML Kickst. adventu. eic6@adventur. SIZ-SSS-O16] katpSn2iZglo. xed. §5d3097.. JAN1/2017 1HOGH0...
I]aese False M. frian ML Groth MULL Latest. adventu.. brsmS@advent. 461-555-0118 IbRTTwACSsqE~ hpO.. ST0b16A. [AN3/Z017 110000,
e Fake M Judy [Lundshl MULL Leaci. adventu_ judyi@adventu.. 260-555-0130 VaG/EDRRZm_. NSAL. THIZ. JA17/z017 11.0060...
e False M. Peter ML Kwris. NULL Lege. sdventu. peterd@advent. 436-5550160 effsechWebe.. Ogij. e32dfee. [/17/2017 1100400 ..
T False M. Dougs MULL Grongk MULL Locks. adventu. doughsd@adv. 3855350040 Nnhewhskpord. KIAA.. 6070880.. JAN7/2017 110040 .
] [| False Mr. Sean L lunt MULL Main. adventu. seané@advent.. 183-555-0111 NCEMFAWGrg.. eKb. 0291 [8/17/2017 110040 ..
| [wos Faise M. lefrey WAL Ketz NULL Mamye sdventu. jeffrei@adven. 4525550170 an3NKDipef.. SMZ. cecsibdo J1HE017 110040 ..
| B L oL o ML NULL NULL NULL NOE ML [ML NULL MU RO
| &l Cannection Ready | sqdbadvwaridest]

Figure 4-20. Records of the second slice have been added

We are now ready to move to the next passage, where we will use the JSON scripts to
continue exploring Azure Data Factory.

Note Copy Data options and masks change depending on the data store source
and sink that you select.

287

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Anatomy of Azure Data Factory JSON Scripts

We have now populated the SQL Database table on the sink data store, and our Azure
Data Factory deployment has a pipeline, datasets, and linked services that we can
explore to see how ADF uses JSON to store information.

We will also apply some changes to explain additional functionalities available
in ADE

You may recall that the authoring part can be done using the Data Factory Editor
that you can launch using Author and deploy action, Figure 4-21.

Actions
74 2
W Author and "] Copy data @ Monitor 8
P deploy (PREVIEW) Manage
e _— o " Metrics and
% Sample pipelines E"_ Diagram l I ll srarstisng

Figure 4-21. The author and deploy option launches the Data Factory Editor

The Data Factory Editor contains two main areas:

1. A treeview on the left that contains the list of linked services,
datasets, pipelines, and gateways that we created. In our case we
have six JSON documents, and there are dependencies between
them. I cannot delete a dataset if it is referenced by a pipeline. I
cannot delete a linked service if it is referenced by a dataset. On
the menu on the top left, we may add additional objects to our
solution.

2. The JSON editor on the right and a menu on the top allows us to
do actions like Add activity, Deploy actions, etc.

288

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

o) New dan pore e Mose | £ scdacvey o X T

tureworksCopy”,

* Datagets .
npusiscaset-d N perties™: {
OutputDataset-rivk "

ype :

"sqlsource”,
v Ppsines

“sqlReaderQuery™: “$§Text.Format('select * from SaleslV.Customer where ModifiedDate »= \\'{0:yyyy-Mi-dd Hizm)\\" A0 Modif]
AdventuseWorksCogy
b Dot Gatewsys

Drans 1

t7: "$§Text. Format('delote [SalesLT].[Customer] whore [ModifiedDate] >« \\"{ocyyyy-MMecdd mimm}\\ anl

bulartranslator”,
*: "mamostyle:mamostyle, Title:Title, Firstiame:Firstiame, Midd loname :idd] oamo, Lastiome: Las thame, Suff ix: suffi

“pame™: “InoutDataset.rha”

Figure 4-22. The Data Factory Editor on the Azure Data Factory portal

Linked Services Script

A linked service is basically a connection to a data store or a compute resource; the JSON
definition file is structured as follows:

1. name (*):linked service name

2. properties: this section includes several options, most
relevant are:

a. type (*):the type of the dataset, such as AmazonRedshift,
Hdfs, etc. In our example below, type is set to AzureStorage

b. typeProperties (*):itdepends on the data store or compute
you are using. In our example is connectionString

Let’s look at the code generated to access an Azure Storage account to store activity
logs, the JSON file named RedirectingStorage-rh4.

{
"name": "RedirectingStorage-rh4",
"properties": {
"hubName": "adfdataplatform_hub",
"type": "AzureStorage",
"typeProperties": {

289

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

"connectionString": "DefaultEndpointsProtocol=https;Account

* = required

Dataset Script

Defining a dataset file requires us to fill some important information in the JSON file,
such as:

1. name (*):name of the dataset

2. properties: this section includes several options, most relevant
are:

a. type (*):the type of the dataset, such as AzureSQLTable,
AzureBlob, etc.

b. typeProperties (*):in our example is the name of the table,
but they are different for each data store or compute you may
choose

c. linkedServiceName (*):name of the linked service

d. structure: the schema of the dataset, that includes name and
data type of the column

e. availability (*):defines the data activity window, in
terms of frequency (*) and interval (*).Supported values
for frequency are Minute, Hour, Day, Week, and Month. In
our example the slice is produced every three hours, as the
frequency is set to Hour and interval is set to 1.

f. policy: therules that each dataset slice must adhere to. If
you are working with an Azure Blob storage, you can set
the minimumSizeMB policy that defines the minimum size in
megabytes of the slice. If you are working with Azure SQL
Database or Azure Table, you can set the minimumRows policy,
which defines the minimum number of rows allowed by the slice.

290

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

g. external: defines if the dataset is not produced as an output
of an activity. "external" :true means that data are not
produced by Azure Data Factory. It usually applies to the first
input dataset in the workflow. In the case of external datasets,
you may also apply an ExternalData policy, in case you need
to apply a retry logic to the workflow.

* = required

Note In case the frequency is set to Minute, the interval should be at least
15. You also have the ability to set the style property, which defines if the slice
should be produced at the beginning of the interval, StartOfInterval, or at the
end of the interval, EndOfInterval. If you set frequency to Day and you set
style to StartOfInterval, the slice is produced in the first hour.

Now we are ready to read the datasets JSON scripts created with the Copy Data

wizard, in the case below we have the output dataset OutputDataset-rh4.

{

"name": "OutputDataset-rh4",
"properties": {
"structure": [

{
"name": "NameStyle",
"type": "Boolean"

})

{
"name": "Title",
"type": "String"

})

{
"name": "FirstName",
“type": "String"

}J

291

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

{
"name": "MiddleName",
"type": "String"

}J

{
"name": "LastName",
"type": "String"

})

{
"name": "Suffix",
"type": "String"

})

{
“name": "CompanyName",
"type": "String"

}J

{
"name": "SalesPerson",
"type": "String"

}J

{
"name": "EmailAddress",
"type": "String"

})

{
"name": "Phone",
"type": "String"

})

{
"name": "PasswordHash",
"type": "String"

}J

{
"name": "PasswordSalt",
"type": "String"

}J

292

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

{
"name": "rowguid",
"type": "Guid"

}J

{
"name": "ModifiedDate",
"type": "Datetime"

}

1,
"published": false,

"type": "AzureSqlTable",
"linkedServiceName": "Destination-SQLDB-Customer",
"typeProperties": {
"tableName": "[SalesLT].[Customer]"
})
"availability": {
"frequency": "Hour",
"interval": 3

1

"external": false,
"policy": {}

Pipeline and Activity Script

Pipelines and activities files often require a higher amount of information. The structure
of the JSON schema includes:

name (*):name of the pipeline

2. properties: this section includes several options, most

relevant are:

a. activities (*):contains the description of all activities, one
or more

i. name (*):name of the activity

ii. type (*):type of the activity, e.g. a Copy activity
293

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

iii. typeProperties: they depend on the activity we are
using. We are using Azure SQL Database, and there
are several parameters that we can specify, such as
SqlSource to specify the source, Sq1Sink to specify the
destination, sqlReaderQuery to define the query string,
columnMappings to map columns of the two tables,
enableSkipIncompatibleRow to define the error
handling, etc.

iv. policy: used to define how the pipeline should behave
during runtime. When an activity is processing a table
slice, you can define the retry logic applied to it, the
concurrency, and execution processing order of slices as
well, executionPriorityOrder. In our example the value
is set to NewestFirst, which means that if more than
one slice is pending execution, the newest will be
processed first

v. inputs (*):input objects used by the activity

vi. outputs (*):same as above, but for output objects
b. start: start date and time for the pipeline
c. end: end date and time for the pipeline
d. isPaused: set true if you want to pause it

e. pipelineMode: Scheduled if you specify start and end, Onetime
ifit only runs once

* = required

We are now able to read the JSON script that we generated for the AdventurelWorks
Copy pipeline:

{

"name": "AdventureWorksCopy",

"properties": {
"description": "",
"activities": [

294

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

"type": "Copy”,
"typeProperties": {
"source": {

"type": "SqlSource",
"sqlReaderQuery": "$$Text.Format('select *
from SalesLT.Customer where ModifiedDate >=
\\'{0:yyyy-MM-dd HH:mm}\\"' AND ModifiedDate
< \\'"{1:yyyy-MM-dd HH:mm}\\"'', WindowStart,

WindowEnd)"

}J

"sink": {
"type": "SqlSink",
"sqlWriterCleanupScript": "$$Text.Format('delete
[SalesLT].[Customer] where [ModifiedDate] »>=
\\"{0:yyyy-MM-dd HH:mm}\\' AND [ModifiedDate]
<A\\'"{1:yyyy-MM-dd HH:mm}\\"'', WindowStart,
WindowEnd)",
"writeBatchSize": o,
"writeBatchTimeout": "00:00:00"

})

"translator": {
"type": "TabularTranslator",
"columnMappings": "NameStyle:NameStyle,Title:Title,
FirstName:FirstName,MiddleName:MiddleName, LastName:
LastName, Suffix:Suffix,CompanyName:CompanyName,Sale
sPerson:SalesPerson,EmailAddress:EmailAddress,Phone
:Phone, PasswordHash:PasswordHash,PasswordSalt:Passw
ordSalt,rowguid:rowguid,ModifiedDate:ModifiedDate"
}J
"parallelCopies”: 1,
"cloudDataMovementUnits": 1,
"enableSkipIncompatibleRow": true,
"redirectIncompatibleRowSettings": {
"linkedServiceName": "RedirectingStorage-rh4",

295

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

"pathll: llpub"

}s
"inputs": [
{

"name": "InputDataset-rhg"

1,
"outputs": [
{
"name": "OutputDataset-rh4"

])

"policy": {
"timeout": "1.00:00:00",
"concurrency": 1,
"executionPriorityOrder": "NewestFirst",
"style": "StartOfInterval",
"retry": 3,
"longRetry": 0,
"longRetryInterval”: "00:00:00"

})

"scheduler": {
"frequency": "Hour",
“interval”: 3

})

"name": "Activity-0-_Custom query ->[SalesLT] [Customer]"

]’

"start": "2017-08-17T06:00:00Z",
"end": "2017-08-17T23:00:00Z",
"isPaused": false,

"hubName": "adfdataplatform_hub",
"pipelineMode": "Scheduled"

296

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Note In order to go more in depth with JSON scripting in Azure Data Factory, you
can visit the Azure Data Factory - JSON Scripting Reference page: https://
docs.microsoft.com/en-us/azure/data-factory/data-factory-
json-scripting-reference

Azure Data Factory Tools for Visual Studio

Azure Data Factory tools for Visual Studio provide a rich set of tools to accelerate
authoring productivity using the power of Visual Studio.

It is a plug-in fully integrated with the Visual Studio IDE, therefore you can manage
the solution using Solution Explorer, like in Figure 4-22 below, and benefit from all of the
other options available, including the Azure SDK.

fa] Solution 'adfdataplatform’ (1 project)
4 |y adfdataplatform
=21 References
4 N LinkedServices
X Destination-SOLDB-Customer.json
¥ RedirectingStorage-rhd.json
¥ Source-SOLDB-Customer.json
4 = Pipelines
= AdventureWorksCopy.json
4 2l Tables
EH InputDataset-rhd.json
EH OutputDataset-rhd.json
Dependencies

Figure 4-23. ADF tools for Visual Studio are seamless integrated with Visual
Studio IDE

You can write your JSON scripts using Visual Studio, see a Diagram view in real time,
and deploy the solution to ADE, when ready to go in to production, like in Figure 4-24
below.

297

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-json-scripting-reference
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-json-scripting-reference
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-json-scripting-reference

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

OutputDataset-thd
>

T Activiy-0- Custom query_>[Selen. (0

“name”: “AdventurellorksCopy™,
“properties”: {
"description”: "Copies Customer table data from SQL DE in West EU server to SQL DB in West US server”,
"activities": [
{

"type”: "Copy",
"typeProperties”: {
"source”: {
"type": "SglSource”,
"sqlReaderQuery™: “$$Text.Format(select * from SaleslLT.Customer where ModifiedDate »= \\'{8:yyyy-MM-dd HH:em}\\' AND Mod
b
“sink™: {
"type": "Sqlsink”,
"sqlWriterCleanupSeript™: "$8Text.Format('delete [SalesLT].[Customer] where [ModifiedDate] >= \\'{0:vyyy-MM-dd HH:mm}Y\"
"writeBatchSize™: @,
"writeBatchTimeout™: "08:00:00"
1

ranslator": {
“type": “"TabularTranslator®,
"columnMappings™: “HameStyle:NameStyle,Title:Title,FirstName:FirstName,Middlefame:MiddleName,LastName: LastName, Suffix: Sufily

Figure 4-24. JSON editor in Visual Studio also includes a Diagram view of our
projects

ADF tools add two project templates to Visual Studio:

1. Data Factory templates. You can use it to start from a use case
template that can help you to familiarize yourself with the service,
or you can launch a Copy Data template to implement an assisted
data movement activity.

2. Empty Data Factory Project. Self explanatory, you can start from
an empty solution and start authoring your project from scratch.

298

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Mew Project

b Recent MNET Framework 4.52 -~ Sortby: Default] B E Search Installed Templates (Ctrl+E) P~
4 Installed =

"z Data Factory Templates DataFactory Type: DataFactory
4 Templates

An empty project for creating a data

b Business Intelligence integration solution

b Visual C#
DataFactory

b Other Languages

b Other Project Types

Samples

P Online

Figure 4-25. Azure Data Factory tools for Visual Studio 2015 project templates

Good Practices for Authoring ADF solutions

Authoring online only using the Data Factory Editor is not properly a best practice. Let’s
see why:

o Data Factory Editor does not have a versioning system embedded in
the platform, therefore any change made on the Data Factory Editor
goes straight to production, and you lose the previous version of the
document.

e Azure Data Factory does not have a cloning option embedded in the
portal. Imagine you have designed a solution, but you are not sure of
the changes you are about to apply. Today you can only clone a single
object, like a Dataset, but it would remain part of the production
solution. Therefore in some cases you risk creating a result that could
be worse than the original one.

¢ Orimagine you want to start a new project reusing a previous
solution, without repeating each step again. The Data Factory
Editor doesn’t permit that, at the moment. You could, but this
is different scenario, migrate an existing ADF project from one
subscription to another subscription or to another resource group.

299

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Luckily there is an easy solution to overcome the considerations above and we
recommend, like in all good families, to have a test environment, with a dedicated
Azure Data Factory service for testing purposes, and data stores and compute resources
specifically for this. To do that, one of the best solutions is to use Azure Data Factory
tools for Visual Studio to have at least one project for testing and one for production,
to edit JSON files offline, to use a source control if needed, and to deploy to the right
environment when ready.

Using, as example, our adfdataplatform solution, we could open it in Visual Studio as
a new Azure Data Factory Project, make required changes, and deploy to another Azure
Data Factory provisioned service, as displayed in Figure 4-26.

-
8+ © appsenices |
o ¥ @ Application Insights 5
0 @ s =
2 4 [Dota Factories L oTees L

» Ead[:opy

s ==
L= | pen o
| (] Export to New Data Factory
oY Delete

b B O Search From Here .

b i
Refresh
» l“roml..uU -

Figure 4-26. Export the production to a New Data Factory project and deploy it to
a test environment after changes

Note 1 Azure Data Factory tools for Visual Studio are available to
download from the Visual Studio marketplace: https://marketplace.
visualstudio.com/items?itemName=AzureDataFactory.
MicrosoftAzureDataFactoryToolsforVisualStudio2015

Note 2 Azure Data Factory tools are not yet available for Visual Studio 2017, so
you will need to install Visual Studio 2015 (or Visual Studio 2013 Update 4) to
use them. There is a request for change open on the Azure forums, you can read
it here and support it with your vote, if you would like to: https://feedback.
azure.com/forums/270578-data-factory/suggestions/18773008-
support-adf-projects-in-visual-studio-2017

300

https://marketplace.visualstudio.com/items?itemName=AzureDataFactory.MicrosoftAzureDataFactoryToolsforVisualStudio2015
https://marketplace.visualstudio.com/items?itemName=AzureDataFactory.MicrosoftAzureDataFactoryToolsforVisualStudio2015
https://marketplace.visualstudio.com/items?itemName=AzureDataFactory.MicrosoftAzureDataFactoryToolsforVisualStudio2015
https://feedback.azure.com/forums/270578-data-factory/suggestions/18773008-support-adf-projects-in-visual-studio-2017
https://feedback.azure.com/forums/270578-data-factory/suggestions/18773008-support-adf-projects-in-visual-studio-2017
https://feedback.azure.com/forums/270578-data-factory/suggestions/18773008-support-adf-projects-in-visual-studio-2017

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Working with Data Transformation Activities

We explored data movement activities earlier in the chapter. In this section we will work

with data transformation activities, modifying the ADF solution we used so far.

To execute a data transformation activity, we need a compute environment. A data

transformation activity can be added to an existing pipeline and live together with other

activities, or it can be part of a new pipeline, depending on the need.

Azure Data Factory supports the following data transformation activities:

Hive, Pig, MapReduce, Streaming, Spark (*) Activities: they can run
in an existing or on-demand HDInsight cluster, Windows or Linux
based.

Azure Machine Learning activities:

o Batch Execution Activity: used to invoke an Azure ML web
service to make predictions - "type": "AzureMLBatchExecution"

o Update Resource Activity: to update the web service with Azure
ML newly trained models - "type": "AzureMLUpdateResource"

o Batch Scoring Activity: use Batch Execution Activity instead, as

newer

Stored Procedure Activity: used to invoke a stored procedure in an
Azure SQL Database, Azure SQL Data Warehouse or a SQL Server**

Data Lake Analytics U-SQL Activity: used to run a U-SQL script in
Azure Data Lake Analytics

.NET Custom Activity: for any transformation not included out of
the box in Azure Data Factory, you may rely on custom activities,
and write your .NET code that can run inside Azure Batch or Azure
HDInsight

* Spark Activities do not support on-demand HDInsight clusters

** Data Management Gateway required

301

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Note On-demand HDInsight clusters are managed by Azure Data Factory.

They are a very good solution when the cluster doesn’t have to be persistent and
it is only needed to execute activities. Azure Data Factory will create the cluster
just before the activity execution, and the cluster will be removed after the task
completion. On-demand clusters are a very good practice to leverage the power of
public cloud services like Microsoft Azure, especially because they often can help
to reduce the costs of the project.

Stored Procedure Activity

We will now upgrade adfdataplatformto insert a Stored Procedure Activity. We want
to see how multiple activities can work together and how to chain them, when needed.

We have added four objects to Azure SQL Database sqldbadvworksdest1, the sink
store in the Copy Data activity used before in this chapter. Objects are:

1. The stored procedure dbo.spAppendToArchive: it contains a
very simple business logic, just needed to explain how a data
transformation activity can be invoked. It basically copies the
records modified in the current day from the table SalesLT.
Customer to the dbo.Archive. After that, it inserts a record in the
table dbo. LogArchive to store the number of inserted records in
dbo.Archive. The stored procedure runs once per day, in the time
interval of the last slice, from 9PM to 12AM, to be able to move
all the records inserted during the day. The time interval will be
provided by the activity using two parameters, @hourstoadd1 and
@hourstoadd2

2. The table dbo.Archive: used by dbo.spAppendToArchive to
archive records with the ModifiedData field data that match the
current day

3. The table dbo.LogArchive: used by dbo.spAppendToArchive to
force one execution per day, at most, to track the execution and
the total number of records inserted in dbo.Archive

302

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

4. The table dbo.dummyTable: empty, used only because a Stored
Procedure Activity requires an output dataset

Let’s now have a look at the T-SQL code
[/*¥¥%%% gbject: Table [dbo].[Archive]******/

CREATE TABLE [dbo].[Archive](
[id] [int] IDENTITY(1,1) NOT NULL,
[FirstName] [nvarchar](50) NOT NULL,
[LastName] [nvarchar](50) NOT NULL,
[CompanyName] [nvarchar](128) NULL,
[EmailAddress] [nvarchar](50) NULL,
[ModifiedDate] [datetime] NOT NULL,
CONSTRAINT [PK Archive] PRIMARY KEY CLUSTERED
(
[id] ASC
JWITH (PAD_INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY = OFF,
ALLOW ROW LOCKS = ON, ALLOW PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
GO
/***xxx ghject: Table [dbo].[LogAxchive]******/

CREATE TABLE [dbo].[LogArchive](
[id] [int] IDENTITY(1,1) NOT NULL,
[archiveexecuted] [datetime] NOT NULL,
[numofrows] [int] NOT NULL,

CONSTRAINT [PK Log] PRIMARY KEY CLUSTERED

(
[id] ASC

JWITH (PAD_INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

###xrk Object: Table [dbo].[dummyTable]***+++/

303

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

CREATE TABLE [dbo].[dummyTable](
[dummyColumn] [char](1) NULL
) ON [PRIMARY]
[***xxx ghject: StoredProcedure [dbo].[spAppendToAxrchive]******/

CREATE PROCEDURE [dbo].[spAppendToArchive]

@hourstoaddl int,
@hourstoadd2 int

AS
BEGIN
SET NOCOUNT ON;
DECLARE @base datetime = CONVERT(date,GETDATE())
DECLARE @minDate datetime = DATEADD(HOUR, @hourstoaddi,@base)
DECLARE @maxDate datetime = DATEADD(HOUR, @hourstoadd2,@base)
IF (GETDATE() >= @minDate AND GETDATE() <= @maxDate)
BEGIN
IF NOT EXISTS(SELECT archiveexecuted FROM dbo.LogArchive
WHERE archiveexecuted = @base) --only one run permitted
per day
BEGIN
INSERT INTO dbo.Archive -- inserts all the records of the
current day
SELECT FirstName, LastName, CompanyName,
EmailAddress, ModifiedDate
FROM SalesLT.Customer
WHERE ModifiedDate >= @base AND
ModifiedDate <= @maxDate;
INSERT dbo.LogArchive VALUES (@base,®@ROWCOUNT) -- tracks
operation and number of records
END
END
END

304

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

We can now have a look at the additional JSON scripts that we have used to
implement the Stored Procedure Activity.

Output dataset: only needed because it is mandatory to have an output dataset
linked to an activity. We have added it just to make the activity work, which is why the
structure property is empty.

{

"$schema”: "http://datafactories.schema.management.azure.com/
schemas/2015-09-01/Microsoft.DataFactory.Table.json",
“name": "OutputDatasetDummy",
"properties": {
"type": "AzureSqlTable",
"linkedServiceName": "Destination-SQLDB-Customer",
"structure": [],
"typeProperties": {
"tableName": "dummyTable"
1
"availability": {
"frequency": "Hour",
"interval": 3

Pipeline: in this first example we are deploying the activity in a new pipeline, not
connected to the other one. Therefore, an input dataset is not required. We will explore
additional options in the next paragraph. The typeProperties section contains the
name of the stored procedure and the parameters. Below you can find only the relevant
portion of code related to the pipeline object.

{

"$schema”: "http://datafactories.schema.management.azure.com/
schemas/2015-09-01/Microsoft.DataFactory.Pipeline.json",
"name": "AdventureWorksArchive",
"properties": {

"description": "",

"activities": [

305

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

{

"name": "ArchiveActivity",

"type": "SqlServerStoredProcedure",

"outputs": [

{
"name": "OutputDatasetDummy"
}

])

"typeProperties": {
"storedProcedureName": "dbo.spAppendToArchive",
"storedProcedureParameters": {

"@hourstoaddi”: "6",
"@hourstoadd2": "24"

}

}J

"policy": {
"concurrency”: 1,
"executionPriorityOrder": "OldestFirst",
"retry": 3,
"timeout": "01:00:00"

})

"scheduler": {
"frequency": "Hour",
"interval": 3

}

}
])

"start": "2017-08-19T06:00:00Z",
"end": "2017-08-19T23:00:00Z",
"isPaused": false,
"pipelineMode": "Scheduled"

306

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

After the execution of both activities, we can query the three tables in the sink
datastore to verify results. As you can see from Figure 4-27 below, 13 customer records
have been copied to the archive and the activity has been logged.

Sselect * from dbo. Logarchive
select * frem dbo.Archive
select * from SalesLT.Customer
ek
@ Resits G Messages
i archivessscuted rramalrowe
1 [7] awroeronoomone 13
id Fsthlame LastNawe ComparyName EmalAddess ModfedDate
1 [] davesn Gama Fursl Cycle Emposum com 21706
H Hadng Sham Bhes 01708
1 Caprio Bhes and Molobdues. s 201708
4 Beck Buk Discourt Store christopher 21708
5 ™ Catsiog Store 20 1706
L Baaver Centar Cycle Shep o 21708
Ll Handley Cortral Dscount Stere # 21708
Chic Depariment Stores i 201708
Travel Systerns 201708
Biue VWorid 0 20708
Eastede Deaszect Som klmmwl.wm 2017-08-19 05:00-00.000
; Tde Frtaws MddeMame Loshlame Sufix ComparyName SalesFerson EmaiAcdress Phens romguid
FiE o Ms. Kahieen M. Gon NULL Rursl Cycle Emporuan st 3 15085 GaleMOMNSNL. LsDSWige CDE6SSS. 20170819 03:00:00.000
[Ms. Hahers NULL Hadng NULL Sham Bhes adverbmmockaiosdl hatherne0@adv. 655 uRlViDGNJDL pHMBGEs TSOFMSS. 20170819 09:00:00.000
[M by A Cawo & BhesandMolobkes advertuewoks'gamett] jobomy0@edven.. 11255 jPYEoFYelTaE. wWlnwHos S4TBCAF. 2017-0819 03.00.00.000
0 M. Chisogher R Beck k. BukDscourt Rore advetuwwokseel chistopherl@a.. 1(11). sRSAaCIEEKW.. BPfods CSINISL. 2017:081903:00:00.000
[M. Danid i ™ HULL Catslog Steee dh . MOS5. GlaeTHOwsiSgd. €7TwvOr CO4DEEA. 2017-08-19 09:00:00.000
[} L A Beaver HULL Center Cycle Shep advetuewoks'pantal jhnb@advestr . 52185 DubgWXTHIER. niNgrhwe ESAESD4.. 20170819 09:00:00.000
[Ms e P Hadey NULL Cortral Discount Sow adverbumwodks'daidl jeand@advertir . 58255 o1GVolvExeNs uMwfdos EOUCI0. 2017-08-19 03:00-00.000
[H. Joghao NULL [™ HULL Chic Depamert S0, advertuweworksylland jnghool@acve., 92855 laDSAeqiOuRl. . plpOqics SS4EDBL. 2017-08-1903.00.00 000
[Ms. Unda E Bumet NULL Trawel Systems h llar 12185 ZihwhgCoXYS.. SmylFiEs STT4AED.. 201708
o M Hesm HuLL Hard HULL Bhe Wedd dverture-wokahshul @, .. 2185 Tri. 3gSede THFES. 20170819 09:00:00.000
[M. Kevn KuLL ™ HULL Esstsde Depodmert.. advertuwwworkainded kevinS@odvent. 92655 iTokiOHsLgh.. ToZnUOg= CITIESL. 20170819 09:00:00.000
[M Donad L Bonton NULL Coslton Bie Comp. ach chatabusl) 8755 HOsOws JDOISE. 20170819 03:00:00 000
] Ms. lackie E Blackwel NULL Commuter 2. 1 Oadvert... 97255 KOTIe4Z_ SZwflos 988ADSA_ 2017-08-19 03:.00.00.000

Figure 4-27. Data in the destination database after the execution of the Stored
Procedure Activity

Chaining Azure Data Factory Activities

Figure 4-28 below shows three different deployment options we have tested, each one of
them can be a good solution depending on the need.

1. Stored Procedure Activity is deployed within a new pipeline, not
connected the other one. There is no dependency between the
two. It may be a good solution if the data transformation activity
doesn’t need to wait for the copy activity to run. In our case we
don’t need to have a dataset in input, as the stored procedure will
consume the data directly accessing tables without the help of
Azure Data Factory. The output dataset is required instead, not
because the Stored Procedure will use it, but because the Stored
Procedure Activity needs it, since it controls the scheduling. So, it
is sufficient to create a dummy table, with no records, and use it as
an output dataset for the Stored Procedure Activity.

307

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

2. Stored Procedure Activity is deployed to a new pipeline, chained

to the other pipeline. To be more accurate, the activities are

chained. To implement such a solution it is sufficient to set the

output dataset of the Copy Activity as input dataset of the Stored

Procedure Activity, and after the deployment the dependency

between the two will be displayed in the diagram.

"inputs”: [

{

“name” :

)
1,
“outputs”: [

{

“name” ;

}

"QutputDataset-rha”

"OutputDatasetDummy™

3. Same as above, with the difference that the Stored Procedure

Activity will be deployed inside the same pipeline.

Implementation is the same as point two, setting the output of

Copy Activity as input of SP Activity.

Choosing the best solution really depends on how the workflow should behave. In
the case of options 2 and 3, in general it is a good practice to group activities within the

same pipeline, if they are designed to run within the same start and end time of the

pipeline and if they are designed to share the same logical part of the workflow.

e 3 o = % P]
1 s) "N\ /
1 = \ 4/ \ rd
Lt 2 et e
1 - y - [1. -
- : — . —— s
R g N/ /
.
. 0// N\, c\\
3a 3b | |
2 i I) [= Tace o=

Figure 4-28. 3 different deployments of the Stored Procedure Activity. 3b is the

same as 3a, with the difference that in 3b you have the detail view of the activities

contained in the pipeline.

308

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Custom Activities

Custom activities are a type of data transformation activities that consist of code
written in .NET and executed in a compute environment based on an HDInsight cluster
or an Azure Batch pool of virtual machines. HDInsight can also be an on-demand
cluster provisioned by Azure Data Factory before the activity execution and removed
after the conclusion. In this section we will provide the high-level information needed to
implement a custom activity in .NET.

High level requirements are:

o A.NET Class Library. A reference to the Microsoft.Azure.
Management.DataFactories assembly is required, and the
installation can be done via NuGet. The design of the class that
contains the application logic must implement the IDotNetActivity.
It contains one method, Execute() and four parameters:

e linkedServices: IEnumerable<LinkedService> - linked servers
o datasets: IEnumerable<Dataset> - input and output datasets

o activity:Activity - the current activity

o logger: IActivitylogger - used to write debug comments

Bnamespace ADF
{
8 public class customActivity:IDotNetActivity
{

public IDictionary<string, string> Execute(
IEnumerable<lLinkedService> linkedServices,
IEnumerable<Dataset> datasets,
Activity activity,

® IActivitylLogger logger)

After implementing the business logic all you need to do is compile

it and create a zip file with the files contained in the bin\release

or bin\debug folder, depending on how you have compiled the
solution. This file will be uploaded to an Azure Storage account and it

will be consumed by the compute environment.

309

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Release
Home Share View
v 4 « doc » chapterS » code » ADF » ADF » bin » Release »

¥ Downloads # ~ Name ; Date modified
| Documents o It]
=] Pictures + ko
images ™

Jﬂ Nusic zh-Hans

zh-Hant
] ADF.dI
¥ ADF.dll
£ OneDrive <1 ADF
% Hyak.Comman.dil
=] Hyak.Comman
I Desitop 4| Microsoft-Azure.Common.dil
| Decuments | Microsoft. Azure.Common NetFramewor...

w
B videos

3 This PC

¥ Downloads 2] Microsoft.Azure.CommonNetFrameweork

D Music %] Microsoft.Azure.Common

| Microseft.Azure.Management.DataFacto... Application &aens...
%] Microsoft.Azure.Management DataFacto... XML Document

=] Pictures
B videos
% Local Disk (G}
z v

%} Microsoft.Data.Edm.dil M Application extens.
%] Microsoft.Data.Edm an M XML Document

156 M8
ADF

e A compute environment. In our case we are using Azure Batch.
Azure Batch is a service able to run intensive jobs in parallel across a
pool of virtual machines. Azure Batch is a PaaS service, therefore the
administration surface is very much reduced compared to a standard
high performance computing (HPC) solution. Files that need to be
processed can be uploaded to Azure Storage, and our .NET library
will be executed by the nodes in the pool. We do not need to launch
tasks from Azure Batch, because Azure Data Factory will manage this
aspect for us. To get information on how to create a Batch account
you can read this document: https://docs.microsoft.com/en-us/
azure/batch/batch-account-create-portal.

e An Azure Storage Account is used to store the zip file that contains
the .NET code and to log in a file the results from the execution.

The code inside the .NET Class library does nothing but write a string inside a text
file which is stored in Azure Storage, to confirm that the execution has been successfully
completed by Azure Batch.

310

https://docs.microsoft.com/en-us/azure/batch/batch-account-create-portal
https://docs.microsoft.com/en-us/azure/batch/batch-account-create-portal

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

CloudStorageAccount outputStorage = CloudStorageAccount.Parse(connectionString);

Uri outputUri = new Uri(outputStorage.BlobEndpoint, path);

logger.Write("URI: {0}", outputUri.ToString());

CloudBlockBlob outputBlob = new CloudBlockBlob(outputUri, outputStorage.Credentials);
logger.Write("output blob", output);

outputBlob.UploadText("ADF executed by Azure Batch");

The JSON code of the Azure Batch linked server is below. The batchUri specifies
the datacenter where the Azure Batch has been deployed, and together with the
accountName, hidden here, represent the FQDN of the service. linkedServiceName
parameter points to the linked services that contain the Azure Storage Account
connection string. We also specify the pool that will be used, using the poolName
parameter.

{

"name": "AzureBatchlLinkedService",
"properties": {
"description”: "",
"hubName": "adftestingfdiaz_hub",
"type": "AzureBatch",
"typeProperties": {
"accountName"; "¥¥kdtkickt]
"accessKey" . kskoskokskkokskkok 1 ,
"poolName": "adf jobs",
"batchUri": "https://northeurope.batch.azure.com”,
"linkedServiceName": "AzureStoragelLinkedService"

The portion of code of the pipeline below contains the most relevant information.
e assemblyName: contains the name of the .NET assembly

o entryPoint: ADE.customActivity, where ADF is the namespace name
and customActivity is the name of the class

o packageFile: container/filename, the path where the zip file is stored
in the Azure Storage account

311

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

"activities": [
{

"type": "DotNetActivity",

"typeProperties": {
"assemblyName": "ADF.d11",
"entryPoint": "ADF.customActivity",
"packagelinkedService": "AzureStoragelinkedService",
"packageFile": "customactivity/ADF.zip",

NAME NAME
adfjobs ADFzip
customactivity

input

output

Figure 4-29. Containers inside the storage account. The ADEzip file contains the
.NET class library

After the provisioning of all services, results are as follows:

e An Azure Data Factory service that contains a custom .net activity

oustomactivity

O
Input wer sty B Qutput

] AZURE 5108 sToRAGE Fall (-] AZURE BLOS STORAGE

K

e Slices on the output have all been processed.

Recently updated slices

312

LAST UPDATE TIME SLICE START TIME SLICE END TIME STATUS
20/08/2017, &13:51... 16/08/2017, 4:00 A.. 16/08/2017, 5:00 A.. @ Ready
20/08/2017, 8:13:10... 16/08/2017, 3:00 A.. 16/08/2017, 4:00 A.. @ Ready
20/08/2017, 8:13:10... 16/08/2017, 200 A... 16/08/2017, 3:00 A.. @ Ready
20/08/2017, &12:19... 16/08/2017, 1:00 A... 16/08/2017, 200 A... @ Ready
20/08/2017, &:12:18... 16/08/2017, 12:00 A.. 16/08/2017, 1:00 A... @ Ready

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

o Virtual Machines in the Azure Batch pool have changed status from
idle (the two grey squares in the picture below) to running (green
squares) each time Azure Data Factory triggered a slice processing.
Each square represents a virtual machine.

Q) fefresh e addjob [scale [Delete

Essentials A

Currert cores: Cperating System

2 MicrosoftWindowsServer WindowsServer 2012-R2-Datacenter latast)
Dedicated nodes VM size

2 standard_a1

Low-prigity nodes Aosation state
L] Steady

Summiary

Uzevesn dpacon Bsae B teme

[E— Sonering Sy

2 MicrssoftWindonsServer Windowsserver 2012-R2-Datacenter fiatest)
Oeaag noses uess
standaed_al
pT—— Asocuion e
0 Stendly

o Each execution has been tracked by the application, saving a new file
in Azure Storage.

|§_] 2017-08-16-00.tt Sun, 20 Aug 2017 20:11:59 GMT Block Blob apphication/octet-stream 248
O 2017-08-16-01.0¢ A ! t tet-st :
[2017-08-16-02.xt

[2017-08-16-03.ext

O 2017-08-16-04.0xt

Note To execute an Azure Data Factory custom activity, the nodes in the
HDInsight cluster and the virtual machines in the Azure Batch pool must run a
Windows operating system to run the .NET Framework.

313

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Microsoft Data Management Gateway

Copying data from and to on-premises locations requires the Data Management
Gateway (DMG) installation, an agent that enables the communication between the
source and the sink data store, using a secure HTTPS channel.

Some considerations for the Data Management Gateway:

e Itruns on Windows, 32-bit and 64-bit MSI packages are available. It
can be installed on the same machine where the data store resides, or
in a separate machine.

° One instance can serve more data stores.

e One instance can be tied with only one Azure Data Factory instance.
If you need to use a DMG with another Azure Data Factory, you need
to install it in a separate virtual machine, as two instances of DMG
can'’t coexist.

e Outbound ports in the corporate firewall must be open. In
particular: *.servicebus.windows.net:443,80; *.core.windows.
net:443; *.frontend.clouddatahub.net:443. And, of course, the
DMG must be also able to communicate with the ports of the data
store source and sink, for the copy operations, e.g. TCP 3306 for
MySQL default listening port.

When a copy activity is performed between two cloud data stores, the service
that is performing the Copy Activity handles it, including type conversions,
column mappings etc. When a Copy Activity involves an on-premises data store,
DMG manages the Copy Activity, and most of the logic resides on the client side,
including compression and serialization/deserialization. This is a very important
aspect to consider, as the machine running DMG could have peaks of resource
usage, therefore it is better to have it installed in a dedicated machine, in case of
production environments, or in any case consider the additional resource power
required, in coexistence scenarios. Microsoft recommends at least a 2GHz, 4 cores,
8-GM RAM configuration.

314

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Note The Data Management Gateway is also used by Azure Machine
Learning to access on-premises data sources. To avoid confusion on the tools
used to access on-premises data, it is important to highlight that gateways like
DMG are also used by other Microsoft services, such as Power BI; the concept is
basically the same, but tools are different, with a different setup too. You can learn
more about the On-Premises data gateway (e.g. for Power BI) here: https://

powerbi.microsoft.com/en-us/documentation/powerbi-gateway-
onprem/.

After installing the client and registering it using the key provided by the portal, the
DMG definition file generates JSON too, and you can look in the portal and on the client
using the Microsoft Data Management Gateway Configuration Manager, to check if
everything is working fine.

& New data store **+ More | LF Add activity J@ Encrypt [J) Clone ¥ Discard P Deplo
b Linkad services ¢ " w, = . -
name": “on-premises”,
P Datasets “properties”: {
P Pipelines “description™: "",
' Data Gateways “hostServiceUri”: "https://vmvs2815:8850/HostServiceRemote. sve/™,
- “dataFactoryName"”: “adfdataplatform”,
LA L “status”: "Online”,
Drafts "capabilities”: {

Figure 4-30. Data Management Gateway script on the Data Factory Editor

‘! Microsoft Data Management Gateway Configuration M

Home Settings Diagnostics Help

0 on-premises is connected to the cloud service

Register Stop Service

Figure 4-31. Microsoft Data Management Gateway Configuration Manager

315

https://powerbi.microsoft.com/en-us/documentation/powerbi-gateway-onprem/
https://powerbi.microsoft.com/en-us/documentation/powerbi-gateway-onprem/
https://powerbi.microsoft.com/en-us/documentation/powerbi-gateway-onprem/

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

The Linked Service definition must include a reference to the gateway name, using
the gatewayName parameter. The JSON below represents the connection to an
on-premises MySQL development VM.

{
"name": "Source-MySQL-oct",
"properties": {
"hubName": "adfdataplatform hub",
"type": "OnPremisesMySql",
"typeProperties": {
"server": "localhost",
"database": "world",
"schema": null,
"authenticationType": "Basic",
"username": "",
"password" . Tkskskokeskoskoskeskkok 1 s
"gatewayName": "on-premises”,
"encryptedCredential™: "***"

Considerations of Performance, Scalability
and Costs

When designing a solution with Azure Data Factory, you need to have performance
and scalability in mind. Answering the how long the activity will take to finish question

depends, at least, on three aspects:

1. Copy activities between data sources that do not use a Data
Management Gateway. In this case, you need to tweak the
solution more on the activity itself, working on the parameters to
control parallelism. Of course, how fast the data store source and
sink are reading and writing data, is also very important.

316

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

2. Copy activities that include linked services that use the Data
Management Gateway. In this case, the performances at DMG
level becomes relevant, so you may check if scaling is required
on the client side, adding more instances of the DMG that can
execute copies in parallel.

3. Data transformation activities. As seen earlier in the Stored
Procedure Activity section, in this case the execution depends
heavily on the compute resources that are outside Azure Data
Factory, each one of them with dedicated performance and
scalability options. You may have an HDInsight cluster running a
Hive script on several nodes, Azure Batch running a .NET custom
code distributed across several VMs in the pool, or a U-SQL script
used by Azure Data Lake Analytics to perform jobs on an Azure
Data Lake Store. It is important to check the Monitor and Manage
area to wee if the bottleneck is on one data transformation
activity. If so, likely you may have to check the performances of
the compute resource also. For this reason, we will focus more on

points 1 and 2 here.

Copy Activities

Copy activities are designed to be optimized for terabytes of data loading per day.
Microsoft tested several copy activities in-house and has produced the table in
Figure 4-32 below that can be used as a reference to plan an ADF solution.

317

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Cloud Sinks On-prem Sinks**
£ 8 =) 5 £
] —_— >
33 2 883 8gz| & | ¢
S| 8 s 323 e = |83l 4 &
>~ B L @ w8z o E™t K
T8 b2 a v 5 % eg5 5 3zg 9 E
ssl 32| % ize ik £ 5 |9<4] E £
5 a a vow|l @
T o < v < 3 ac o i
® g q PolyBase Bulk <8 = £ <
{Unit: MBps) < Y Insert = ° o
Azure Blob 1 17 16 0.3 2 0.1 0.04
1250 11 129
(GRS) 8 105 105 | [— 9 0.2
1 13 16 0.3 1 0.1 0.04
Azure Data Lake Store 2 o e 1060 = G = = 10 114
Azure SOL Data Warehouse | 1 4 3 3 0.4 3 0.2 0.05 1 "
(2000 DWU) 4 9 8 6 1 8 0.3 -
Cloud Azure SQL Database 1 4 4 3 0.5 4 0.1 0.04 14 -~
Sources (P11) 4 9 8 6 1 8 0.3 -
1 1 1 & 0.7 1 0.4 0.07
Azure Table 2 2 2 -~ 2 2 1 B 1 e
Azure CosmosDB | 1 1 1 * 0.6 1 0.3 * * -
(DocDB AP, single partition) | 4 2 2 ~ 2 2 = &
A 1 53 8 107 101 69 & = & s & =
Amazon Redshift 4 * = 7.2 % i = ud = &
On-premises SQL Server 1 7 7 | 18 0.4 7 0.2 0.04 = =
. 1 195 192 102 = L
Os::::::rsn On-premises File System 2 508 510 = 0.3 6 0.2 0.04 . -
. 1 ilz) 183 &3 ~ o
On-premise HDFS 2 500 525 -~ 0.3 3 0.2 0.04 - ~

\Unit: MBps
*: The throughput numbers for this source-sink combination will be published later.
**: For copying from cloud sources to on-prem sinks, single gateway node was used.

Figure 4-32. Performance table for data store sources and data store sinks of a
Copy Activity

Data Movement Units (DMU), Parallel Copies, Concurrency,
Compression and DMG

Data Movement Units are useful when source and sink are both on cloud, as the copy
is not driven by the Data Management Gateway. DMU is a way to measure the power
of each unit of execution in Azure Data Factory. They are a combination of network,
CPU, and memory resources associated to ADFE. You may find a similar concept in
other Azure services, such as Azure SQL Database, where you define performances
using Data Transaction Units (DTU). You can set the number of DMUs using the
cloudDataMovementeUnits parameter in the Activity script. Default is 1, and you can
have 2,4,8,16,0r 32. You can ask for more, if needed, by contacting Microsoft Azure
Support.

318

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Parallel copies represent the ability to execute a single activity run in parallel. The
parallelCopies parameter affects the single activity run, such as the processing of a
specific slice. Parallel copies configuration touches both cloud data stores and DMG data
stores, and you could set up to 32 parallel copies simultaneously.

You define both parallelCopies and CloudDataMovementUnits inside the
typeProperties section of the JSON file.

"parallelCopies™: 1,
"cloudDataMovementUnits™: 2,

Concurrency gives you the ability to improve performances executing in parallel
activities that affect different activity windows, like the processing of different slices of
data. You can define it using the concurrency parameter, under the policy section of the
activity file.

"policy™": {
"timeout": "1.00:00:00",
"concurrency": 2,

Compression is also an important aspect of a copy activity. You can configure
compression using the compression parameter under the typeProperties section of
the activity definition file. You can define the type (GZip, BZip2, Deflate, ZipDeflate)
and the level of compression, considering the balance between the additional compute
resources needed to compress data at optimal levels plus the reduced amount of data
copied (Optimal) and, on the other side, a higher amount of data due to the lower
compression ratio, with less impact on the CPU (fastest).

"compression": {
Iltypell: IIGZipIt,
"level™: "Fastest"

Note Azure Data Factory supports several file format types, such as Text format,
JSON format, Avro format, ORC format, Parquet format. The compression setting
is not supported by file format types Avro, ORC, and Parquet, as Azure Data Factory
chooses the default compression codec for that format. To understand more

about file format types, you can visit Microsoft documentation here: https://
docs.microsoft.com/en-us/azure/data-factory/data-factory-
supported-file-and-compression-formats

319

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-supported-file-and-compression-formats
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-supported-file-and-compression-formats
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-supported-file-and-compression-formats

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Data Management Gateway also has the ability to scale. You can scale it up,
adding more resources to the VM if you see that it is suffering on the CPU or memory
component, or you can scale it out, configuring a multi-node environment, part of a one
logical gateway connected to an Azure Data Factory service. In a scale-out scenario, you
can add up to four nodes, all active, each one installed in a different virtual machine,
that you can also use for fault tolerance reasons, in case one node goes down. In
Figure 4-33 below you will find a diagram on how a multi-node gateway works:

Logical gateway

Data Factory

4
Ei‘

Database server
Azure storage

laasS Storage
N
7

Data
flow

Data flow

Figure 4-33. How to design DMG for high availability and scalability

Note You can find a detailed Microsoft document on the performance aspects of
copy activities here: https://docs.microsoft.com/en-us/azure/data-
factory/data-factory-copy-activity-performance.A tutorial on how
to configure a multi-node logical gateway is available here: https://docs.
microsoft.com/en-us/azure/data-factory/data-factory-data-
management-gateway-high-availability-scalability

320

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-performance
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-performance
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-data-management-gateway-high-availability-scalability
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-data-management-gateway-high-availability-scalability
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-data-management-gateway-high-availability-scalability

Costs

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

There are only a few considerations of costs, before ending this chapter. This section

doesn’t aim to be exhaustive, but to give the main factors used by Microsoft Azure to

calculate costs of Azure Data Factory usage.

Costs of Azure Data Factory are calculated based on:

The Region where the service is deployed
Where the activity runs, on-premises or on cloud

The frequency of activities. They can be LOW or HIGH; LOW is when
an activity runs not more than once per day, while HIGH is when an
activity runs more than once per day. Cost is calculated in activity per
month. For example, if you are in a LOW scenario and you execute an
activity per day in December, you will pay 31 units.

Data movement of data. In this case you pay depending on the
amount of time, as the cost is per hour of execution. For example, if
your data movement activities last two hours for the execution, you
pay for two hours.

An inactive pipeline also generates costs, and in this case you pay per
pipeline per month.

Re-running activities has a fixed cost, based on units of 1,000 re-runs.

External resources invoked by Azure Data Factory have their own
pricing models, like Azure Batch, HDInsight, Azure Machine
Learning, Azure Storage, data transfers, etc.

Note We have not included costs numbers here, as they change from time

to time. We recommend, for a more comprehensive and updated view on

costs, visiting the official page of Azure Data Factory, here: https://azure.
microsoft.com/en-us/pricing/details/data-factory/.You can also
practice with the Azure Pricing Calculator online, available here: https://azure.
microsoft.com/en-us/pricing/calculator/?service=data-factory

321

https://azure.microsoft.com/en-us/pricing/details/data-factory/
https://azure.microsoft.com/en-us/pricing/details/data-factory/
https://azure.microsoft.com/en-us/pricing/calculator/?service=data-factory
https://azure.microsoft.com/en-us/pricing/calculator/?service=data-factory

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Azure Data Factory v2 (Preview)

Note While writing this chapter, Microsoft released a Public Preview of Azure
Data Factory v2. As it contains significant changes compared to the previous
version, we decided to add a very short introduction to the service here, and some
extra pages in the next chapter to demonstrate how it works with Azure Data Lake.

Azure Data Factory v2 Key Concepts

Azure Data Factory v2 (ADFv2) adds the following implementation scenarios, features,
and components:

1. Authoring. The designer has been enriched with the ability to
do all authoring parts using the visual tool. JSON is still there, as
the result of what is done visually, but this new addition could
simplify the learning curve and give an immediate representation
of what the workflow will look like. The copy wizard is still
available in v2, and it has pretty much the same masks, only with
different options related to the new features of ADFv2.

Azure Dat:

Let's gét started

2060

Create pipeline Copy Data Configure SSIS Integration Configure Git Repository
Runtime

Figure 4-34. ADFv2 comes with a login page that helps you to launch the Create
Pipeline to design you workflows, launch the Copy Data wizard, Configure

SSIS Integration Runtime (we'll come to that in a second), and to Configure Git
Repository to implement source control.

322

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

Branching of activities. We now have the ability to better manage
error handling and in general the flow of activities, for example,
because each activity now has the ability to be linked to another
activity, but are based on events such as execution failures.

§@ Copy-adfv2_adfi2

W @ @

Add activity on:

B Success

B Failure

B Completion

Parameters. When you link two pipelines together, you can pass
parameters between them. Parameters will be also available

to activities to read information inside it, which enriches the
workflow design process.

General Parameters

4+ New
(1 name TVPE VALUE
parameterl String v “test”

Triggers. This is one of the most relevant additions, as it allows
the introduction of additional use cases, without the need to
rely on custom activities only to handle specific events, like in
v1. The time dimensions and slices approach used in v1 will add
additional use cases scenarios now. You can trigger the start

of a workflow on-demand or based on a schedule, or based on
watching for file and folders on storage sources.

Control flow tasks. The designer contains a graphical toolbox
and you now have the ability to use activities like ForEach and If
Condition, to control the iteration or to verify specific conditions
inside a workflow.

323

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

324

4 |teration & Conditionals
B9 ForEach
§% 1f Condition
+] Until

.'_ Wait

6. Working with ADFv2 on Linux is now possible not only calling the

REST APIs, but also using the Python package for Data Factory:
pip install azure-mgmt-datafactory.You also have new
powershell cmdlets available for Windows; you can find some
here: Set-AzureRmDataFactoryV2 (create a datafactory);
Set-AzureRmDataFactoryV2LinkedService (create a Linked
Service); Set-AzureRmDataFactoryV2Dataset (create a Dataset);
Set-AzureRmDataFactoryV2Pipeline (create a Pipeline).

Integration Runtime. This is also new in ADFv2, a very important
addition too. An Integration Runtime (IR) is a compute engine,
and there are three types of IR:

a. Azure: Useful for data movement activities or to dispatch
the execution of a task to an external service, such as Azure
HDInsight.

b. Self-hosted: Same concept as above, with the ability to work
with data movement activities and to dispatch them externally,
with the addition of being able to communicate with services
that typically are on-premises or behind a virtual network.
Conceptually this does the same job as the Data Management
Gateway in v1.

CHAPTER 4 ORCHESTRATE DATA WITH AZURE DATA FACTORY

c. Azure-SSIS: SSIS package execution: Thanks to this IR
you can natively execute SQL Server Integration Services
packages inside ADFv2, which provides the execution engine
in combination with Azure SQL Server Database that hosts
the SSIS package in the SSISDB database catalog. A typical
scenario is related to the migration of on-premises SSIS
packages to an Azure SQL Server Database; when you deploy
an Azure-SSIS integration runtime, you choose the size of the
compute node (an Azure Virtual Machine) and the number of
nodes that will be used to perform package execution.

In the next chapter we will use the v2 of the service to move data to Azure Data Lake
Store.

Summary

In conclusion, we can say that Azure Data Factory is a service rich in functionalities; it
gives data architects and developers the ability to orchestrate data movement and data
transformation workflows using a platform fully managed by Microsoft Azure. Solutions
are easy to manage during time, thanks to the fact that everything produces JSON files.
We have spent the majority of the time working with the authoring part, and we have
also seen how Visual Studio can improve our productivity and support in designing
more elegant and robust solutions. In the last section of the chapter we also considered
the impacts on performances and costs. We also introduced the changes coming in the
next version of Azure Data Factory, now in preview.

In the next chapter we will present Azure Data Lake, an Azure PaaS service designed
to store and analyze big data.

325

CHAPTER 5

Azure Data Lake Store
and Azure Data Lake
Analytics

Microsoft Azure has done a lot to support data administrators and developers to provide
arich platform for big data workloads. Historically, Microsoft Azure, as a platform, was
born being a PaaS offering solution only, and in this area we have always seen a more
comprehensive offering compared to its competitors. On big data services, we must

say that the effort Microsoft is providing in making the tools and technology rich and
simple is remarkable. Azure Data Lake is one of the most ambitious services Microsoft
is working on, and there is quite a lot of background and experience on which Microsoft
is basing the design of the service, thanks to internal big data projects called Cosmos
and Scope. This chapter is focused on Azure Data Lake Store, a PaaS big data store
service, and Azure Data Lake Analytics, a PaaS big data compute service. We will cover
the key concepts of each service, the different possibilities to work with them, and some
considerations on how to optimize performances and design.

A data lake is a method of storing data within a system or repository, in its
natural format, that facilitates the collocation of data in various schemas
and structural forms, usually object blobs or files.

Ifyou look at this definition, it says that a data lake is a place where you can put
different types of data in their natural format, and it is designed to store a large amount
of information.

A data lake repository usually is aligned with the concept of Extracting and Load
first, and then Transform later, if needed (ELT); this is because the storage and the
compute are designed to work with any form of data. In a data lake project, you usually

327

© Francesco Diaz, Roberto Freato 2018
E Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_5

https://en.wikipedia.org/wiki/Data#Data

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

don’t spend much time in doing the transformation phase at the beginning, while
focusing instead on how to access sources in a simple way and on giving tools the ability
to load data in its original form. You could use a data lake to ingest and analyze tons of
logs coming from servers, as a repository for IoT events raw data, to extend your data
warehouse capabilities, etc.

In Figure 5-1, you can see the high-level description of what Azure Data Lake
offering is. It includes two categories of services, one for the storage, based on HDFS
and is able to store unstructured, semi-structured, and structured data, and one for the
analytics, that includes a managed version of Hadoop clusters, called HDInsight, and
a PaaS service called Azure Data Lake Analytics. In this chapter we will focus on Azure
Data Lake Store (ADLS) and Azure Data Lake Analytics (ADLA) only, both released after
HDInsight, at the end of 2016.

Azure Data Lake

Analytics
v clusters (HDInsight)

analytics service

U-sQL N Spaik’ 2k

WebHDFS

Store

unstructured semi-structured structured

Figure 5-1. Azure Data Lake services

Azure Data Lake components:

e Azure Data Lake Store (ADLS): a repository for big data, capable of
storing a virtually infinite amount of data.

e Azure Data Lake Analytics (ADLA): an on-demand analytics service
able to execute jobs on data stores to perform big data analysis.

o HDInsight: A managed Hadoop cluster service, where the
provisioning and the maintenance of cluster nodes is done by the
Azure Platform.

328

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

How Azure Data Lake Store and Analytics were
Born

Microsoft has several years of experience with big data, including the internal
management of the data related to their business and consumer services available in the
market, such as Bing, Skype, XBOX Live, and on the business side, the experience that
Microsoft has with providing services on a massive scale through Azure is also part of the

game.

SQL-like language able to querying on very
large amount of data

A massive parallel processing system,
similar to a map-reduce engine

Storage system able to handle several
petabytes of data

Figure 5-2. Azure Data Lake Store and Analytics are based on the experience that
Microsoft has with internal projects, aimed to manage and analyze huge amounts
of data coming from their services largely adopted worldwide

At a very high level, we can summarize the three projects that Microsoft used as a
base to design Azure Data Lake as the following:

e Cosmos [Storage]. An append-only file system, optimized for large
sequential I/0. The system contains a replication engine to make
data tolerant to failures. Files stored in Cosmos can be very large and
they are divided in blocks called extents. Extents reside in the cluster
nodes managed by Cosmos.

e Dryad [Computing]. A system able to distribute jobs across multiple
execution engine nodes, responsible for accessing and manipulating
data in storage. Dryad also contains the logic able to manage failures
of nodes.

329

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

e Scope [Querying]. A query engine that is able to combine SQL
scripting language with C# inline code. Even if the data on Cosmos
can be structured and unstructured, Scope is able to return rows of
data, made of typed columns.

Mapping internal projects with the now public and commercial services, Cosmos is
related to Azure Data Lake Store, while Dryad and Scope are the base on which Azure
Data Lake Analytics has been built.

Note 1 To learn more about Microsoft internal projects that inspired Azure Data
Lake, we recommend reading the following documents: SCOPE and COSMOS -
http://www.vldb.org/pvldb/1/1454166.pdf ; DRYAD - https://www.
microsoft.com/en-us/research/project/dryad/?from=http%3A%2F%2
Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fdryad%2F;

Note 2 A clarification is required to avoid confusion with names: Microsoft
internal project called Cosmos IS NOT Azure CosmosDB, formerly DocumentDB
that is instead a NoSQL database engine service available on Azure.

Azure Data Lake Store

Azure Data Lake Store (ADLS) is a repository designed to store any type of data, of any
size. It is designed to be virtually unlimited in terms of the storage available for a single
file and for the entire repository.

Key Concepts

o [Itisa pure PaaS service; therefore the administration effort required
is nearly zero. You only need to focus on the design of the solution
that includes ADLS.

e ADLS can store data in its native format, without any restrictions in

terms of size and structure

330

http://www.vldb.org/pvldb/1/1454166.pdf
https://www.microsoft.com/en-us/research/project/dryad/?from=http://research.microsoft.com/en-us/projects/dryad/
https://www.microsoft.com/en-us/research/project/dryad/?from=http://research.microsoft.com/en-us/projects/dryad/
https://www.microsoft.com/en-us/research/project/dryad/?from=http://research.microsoft.com/en-us/projects/dryad/

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

o [Itis afile system, compatible with the Hadoop Distributed File
System, accessible by all HDFS compliant projects, and that supports
POSIX-compliant ACL on file and folders.

o Itexposes WebHDFS via REST API, that can be used by Azure
HDInsight or any other WebHDES capable application.

o Itis highly available by design, with built-in replication of data, and it
provides ‘read-after-write’ consistency. Three copies of data are kept
within a single Azure region.

o Itis designed and optimized to support parallel computation.
o Itsupports encryption at rest, with support for Azure Key Vault too.

o Itisnatively integrated with Azure Active Directory, with support for
OAuth 2.0 tokens for authentication.

In the image below, you can see the list of open source applications, installed in an
HDInsight cluster that can work with Azure Data Lake Store using a WebHDFS interface.
Any application able to work with HDEFS file system can benefit from ADLS too.

Sqoop, Storm, Hive, Heatalog, Mahout, '
Pig, Oozie, Any HDFS application
Zookeeper, Tez, Spark |

@ Azure HDInsight

Hadoop WebHDFS client
Hadoop WebHDFS client

WebHDFS-compatible interface

Azure Data Lake Store

Figure 5-3. To see a detailed matrix of the versions of open source applications
and HDInsight supported, you can visit this page: https://github.com/
MicrosoftDocs/azure-docs/blob/master/articles/data-lake-store/
data-lake-store-compatible-oss-other-applications.md

331

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/data-lake-store/data-lake-store-compatible-oss-other-applications.md
https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/data-lake-store/data-lake-store-compatible-oss-other-applications.md
https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/data-lake-store/data-lake-store-compatible-oss-other-applications.md

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Note The WebHDFS REST API exposes access to client using the namespace
webhdfs://<hostnames : <http_ports/<file_pathy, and you can find a
description here: https://hadoop.apache.org/docs/r1.0.4/webhdfs.html

Hadoop Distributed File System

Before jumping into the details of ADLS, let’s spend some time describing what H DFS
is first, as it is important to understand how ADLS implementation behaves behind the
scenes, even if, being a full PaaS service, everything can be more or less ignored as Azure
takes care of most of the aspects.

Some of the features of HDFS that are worth mentioning are:

1. Ttis part of Apache Hadoop family of services.

2. Itis designed to run on low cost hardware, and it is designed to
quickly react to hardware failures.

3. TItis bestin batch processing of data, while the interactive
low-latency access to data is not the best scenario to implement
an HDFS file system.

4. Ttis designed using a Master-Slave architecture, with a single
NameNode and several DataNodes, usually one per cluster node:

a. NameNode main functions:

i. Ttexposes the HDFS namespace, used by clients to access
data. Files are organized in hierarchical way

ii. Executes operations on files and directories of the file
system - opening, closing, and renaming

iii. Contains the map of the file blocks assigned to data nodes

332

https://hadoop.apache.org/docs/r1.0.4/webhdfs.html

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

b. DataNode main functions:

i. Eachfile is split in blocks, and blocks are stored in
datanodes. Blocks have the same size, and data are
replicated for fault tolerance. Customization is granular so
you could define, at file level, the size of the block and the
number of replicas you want to have

ii. Datanode servers read and write requests from clients
iii. Performs block creation, deletion, and replication

iv. It sends replica hearthbeats to NameNode

Changes that occur in the file system metadata are stored in a log file called EditLog,

in the server hosting the NameNode application. The file system is stored in a file called

FsImage, stored in the NameNode server too. Of course, being EditLog and FsImage

critical, it is possible to have multiple copies of these files.

Create an Azure Data Lake Store

To create an Azure Data Lake Store, you need to provide the following information:

Name. It has to be unique as the service is exposed on the web, and it
uses the suffix .azuredatalakestore.net.

* Name

| book v

book.azuredatalakestore.net
Resource Group. It can be an existing one or a new one.

Location. It defines the Azure Region where ADLS will be and, at the
time of writing, ADLS is available in Central US, East US 2, North
Europe, and West Europe regions.

Encryption [optional parameter]. You can specify if the account
will be encrypted using keys managed by ADLS (default if nothing
is specified) or Azure Key Vault. You can also decide not to use
encryption.

333

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

e Tier [optional parameter|. Represents the payment plan of
your preference for the account. You can choose to have a
Consumption (pay-as-you-go) based commitment, or you could
use a monthly commitment plan for a specific amount of storage,
using the following options: Commitment1TB, Commitment10TB,
Commitment100TB, Commitment500TB, Commitment1PB,
Commitment5PB. Monthly commitments give the ability to have a
discount on the cost of the storage.

Select your monthly plan
| Pay-as-You-Go A

Pay-as-You-Go

To create an Azure Data Lake Store, you have different options, including Azure
Portal, Powershell, Azure CLI, and SDKs. Below is an example of how to create an Azure
Data Lake Store using Powershell.

The Get-AzureRmDataLakeStoreAccount Powershell cndlet returns the list of
existing ADLS accounts already available in the active Azure subscription.

334

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Type "help” to learn about Cloud Shell

VERBOSE: Authenticating to Azure ...
VERBOSE: Building your Azure drive ...
Azure:\

PS Azure:\> Get-AzureRmDatalakeStoreAccount

Identity

EncryptionState :
EncryptionProvisioningState :

EncryptionConfig

FirewallState

FirewallRules

TrustedIdProviderState

TrustedIdProviders

DefaultGroup

NewTier

CurrentTier

FirewallAllowAzurelps

ProvisioningState : Succeeded

State : Active

CreationTime : 42172017 2:53:55 PM
LastModifiedTime : A4/21/2017 2:53:55 PM
Endpoint : .azuredatalakestore.net

Figure 5-4. Screenshot taken from the Azure Cloud Shell tool, with the output of
the Get-AzureRmDataLakeStoreAccount cmdlet. The Azure Cloud Shell can be
invoked directly from the Azure Portal, and can use both PowerShell and BASH
scripting engines.

To create a new ADSL account, we use the New-AzuxreRmDataLakeStore
Account -ResourceGroup "rg_dataplatform_book" -Name "book™ -Location
"North Europe" cmdlet. To test the existence of an ADLS account, you can use the
Test-AzureRmDatalakeStoreAccount, that returns a Boolean value, Txrue or False.

335

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Azure:\
PS Azure:\> New-AzurefmDatalakeStorefccount -ResourceGroup "rg_dataplatform_book™ -Name "book"™ -Location “"North Europe”
WARNING: No Encryption type passed in, defaulting to Service managed encryption. Teo opt ocut, explicitly pass in -DisableEncryption

Identity : Microsoft.Azure.Management . Datalake.Store.Models . EncryptionIdentity
ProvisioningState : Succeeded

State : Active

CreationTime : 2/3/2018 B:19:18 AM

LastModifiedTime @ 27372818 B:19:18 AM

Endpoint : book.azuredatalakestore.net

AccountId : 1d2d86e8-68db-Acab-5933-66bc56bA3706

EncryptionState : Enabled

EncryptionProvisioningState :

EncryptionConfipg : Microsoft.Azure.Management.Datalake.Store.Models. EncryptionConfig
FirewallState : Disabled

FirewallRules : {}

Figure 5-5. The New-AzureRmDataLakeStoreAccount cmdlet creates a new ADLS
account

The ADLS creation will take just a couple of minutes. Being a public PaaS service, it
is also important to define security access rules to the service, and using the Add-AzuxreR
mDatalLakeStoreFirewallRule or the Azure Portal, you can define the IP ranges that can
access the service. Using the two cmlets below, you can first enable the firewall in ADLS,
and then add a firewall rule to allow access to the service from the IP of your choice.

Set-AzureRmDatalakeStoreAccount -Name "book" -FirewallState "Enabled"
Add-AzureRmDatalakeStoreFirewallRule -AccountName "book" -Name myip
-StartIpAddress "82.84.125.110" -EndIpAddress "82.84.125.110"

Azure
PS Arure:\> Add-ArureRsDatalakeStoreFirewallRule -AccountName “book™ -Name myip -StartIpAddress “82.84.125.118° EndIpAddress “82.84.125.118"

Name StartIpAddress EndIpAddress

myip 82.84.125.110 82.84.125.118

Common Operations on Files in Azure Data Lake Store

After the account creation and the firewall configuration, you will have an empty data
lake where you can store your data organizing them in folders and subfolders with
related ACLs in POSIX format. Do not forget that names are case sensitive, for example
using DataFolder is different than using datafolder.

Now we introduce the Azure CLI that we will use to do some operations like copy
sample files, change permissions, and so on. Commands for ADLS are in preview at the time
of writing and they are divided in two subgroups of commands, one dedicated to manage
the account (az dls account), and one dedicated to manage the file system (az dls fs).

336

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Group

(PREVIEW) Manage Data Lake Store accounts.
Subgroups:

firewall : (PREVIEW) Manage Data Lake Store account firewall rules.

trusted-provider: (PREVIEW) Manage Data Lake Store account trusted identity providers.
Commands :

create : Creates a Data Lake Store account.

delete : Delete a Data Lake Store account.

enable-key-vault: Enable the use of Azure Key Vault for encryption of a Data Lake Store account.

list : Lists available Data Lake Store accounts.

show : Get the details of a Data Lake Store account.

update : Updates a Data Lake Store account.
Group

(PREVIEW) Manage a Data Lake Store filesystem.
Subgroups:

access : Manage Data Lake Store filesystem access and permissions.
Commands :

append : Append content to a file in a Data Lake Store account.

create : Creates a file or folder in a Data Lake Store account.

delete : Delete a file or folder in a Data Lake Store account.

download : Download a file or folder from a Data Lake Store account to the local machine.

join : Join files in a Data Lake Store account into one file.

list : List the files and folders in a Data Lake Store account.

move : Move a file or folder in a Data Lake Store account.

preview : Preview the content of a file in a Data Lake Store account.

remove-expiry: Remove the expiration time for a file.

set-expiry 1 Set the expiration time for a file.

show : Get file or folder information in a Data Lake Store account.

test : Test for the existence of a file or folder in a Data Lake Store account.

Figure 5-6. The list of commands available in the Azure CLI to manage Azure
Data Lake Store. The first group manages the account (first red square), and the
second one manages the file system (second red square)

The ADLS dashboard in the Azure Portal contains a visual explorer for the storage
called Data Explorer. It can work with many of the settings available with the APIs
exposed by ADLS. We will display some screenshots of the Data Explorer to clarify some
of the commands that we will use in the script below.

Note The Azure CLI script below uses csv files that are part of the Ambulance
sample dataset available here on github: https://github.com/Azure/usql/
tree/master/Examples/Samples/Data/AmbulanceData

login to Azure
az login

#sets the active subscription

az account set -s [subscription name]

lists the ADLS accounts
az dls account list
337

https://github.com/Azure/usql/tree/master/Examples/Samples/Data/AmbulanceData
https://github.com/Azure/usql/tree/master/Examples/Samples/Data/AmbulanceData

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

creates a folder called "folder1"
az dls fs create --account book --path /folderi --folder

uploads a file in /folderi1/
az dls fs upload --account book --source-path C:\adls\AmbulanceData\
vehiclel 09142014.csv --destination-path /folderi/vehiclel 09142014.csv

uploads all files in a specified folder to /folderl - overwrites existing
files

az dls fs upload --account book --source-path C:\adls\AmbulanceData*.csv
--destination-path /folder1/ --overwrite

checks if a specified file exists (returns TRUE or FALSE)
az dls fs test --account book --path /folderi/vehicle4 09172014.csv

returns information on a file or a folder
az dls fs show --account book --path /folderi
az dls fs show --account book --path /folderi/vehiclel 09142014.csv
outputi
{
"accessTime": 1517672964545,
"aclBit": false,
"blockSize": o,
"group": "dbd51d38-bd51-4b57-ae3d-de1d41667495",
"length": 0,
"modificationTime": 1517674017744,
"name": "folder1",
"owner": "dbd51d38-bd51-4b57-ae3d-de1d41667495",
"pathSuffix": "",
"permission": "770",
"replication": 0,
"type": "DIRECTORY"

output2
{

"accessTime": 1517674008507,
"aclBit": false,

338

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

"blockSize": 268435456,
"group": "dbd51d38-bd51-4b57-ae3d-de1d41667495",
"length": 1561082,
"modificationTime": 1517674010629,
"msExpirationTime": 0,
"name": "folderi/vehiclel _09142014.csv",
"owner": "dbd51d38-bd51-4b57-ae3d-de1d41667495",
"pathSuffix": "",
"permission": "770",
"replication": 1,
"type": "FILE"

}

previews the content of a file. If you want to preview a file that is
greater than 1048576 bytes you need to use the --force option

az dls fs preview --account book --path /folderi/vehiclel
09142014.csv --force

moves a file from a folder to another inside ADLS
az dls fs move --account book --source-path /folderi/vehiclel_
09142014.csv --destination-path /folder2/vehicle4 09172014.csv

w B book IY Filter [Newfolder 48 Upload B Access #° Renamefolder 35 Folderproperties [Deletefolder) Refresh | 2
3 felderl
b [0 folder2 book B folder] Vs
3
1 AME SizE LAST MOBIFIED
i [7] DriverShifeTrips.csv 216 KB 2/3/2018, 5:06:48 PM
[7] vehicle1 09152014.cov 157 MB 2/3/2018, 5:06:50 PM
[7] vehicle1 09162014.c5v 157 M8 2/3/2018, 5:06:50 PM
[7] vehicle 09172014.c5v 157 M8 2/3/2018, 5:06:52 PM
[7] vehicle2_09142014.c5v 157 M8 2/3/2018, 5:06:52 PM

Figure 5-7. The Data Explorer tool available in the ADLS dashboard in the Azure
Portal. In evidence: 1 - the folder structure of the account; 2 - the action bar that
allows to do actions on the ADLS account; 3 - a subset of the files available in
folderl

339

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

downloads a file or a folder locally
az dls fs download --account book --source-path /folder1/
--destination-path c:\adls\downloads\

displays permissions in a file or a folder
az dls fs access show --account book --path /folderi
az dls fs access show --account book --path /folderi/vehiclel 09152014.csv

outputl - output2, both are the same
{
"entries": [
"user::rwx",
"group::rwx",
"other::---"
])
"group": "dbd51d38-bd51-4b57-ae3d-de1d41667495",
"owner": "dbd51d38-bd51-4b57-ae3d-de1d41667495",
"permission”: "770",
"stickyBit": false
}

gives write access privileges to a file to a specific Azure AD User
az dls fs access set-entry --account book --path /folder1/ --acl-spec
user:e511cdaa-3496-4077-8bde-0137d5815c9b: -w-

340

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Fadd Hioe X0 B Advanced

Your permissions

francescodiaz@hotmail.com's effective parmissions on this folder are: Read Write Execute.

n You have superuser privileges on this account.

Owners Read Write Execute
Francesco Diaz
g francescodiaz_hotmail. com*EXT#@franceddev.onmi... z‘ Zl
Francesco Diaz
Rq francescodiaz_hotmail.com#EXT# @franceddev.onmi... z E
Assigned permissions
Roberto ;)
R roberto@franceddev.onmicrosoft.com [—] -ﬂ -J
Everyone else
@ Users not covered above will be limited by these D :| :|

permissions

Figure 5-8. The command above assigns Write permissions to folder1 to the Azure

AD user Roberto, using his Object ID property

Copy Data to Azure Data Lake Store

Copying data to and from big data stores is one of the most common activities to become

familiar with. There are many ways to copy data to ADLS and many factors determine

the method used, such as:

o The copy performance that you want to achieve. This depends also
on the capability of the service, in this case ADLS, to achieve specific
storage copy performance targets, and of course on the solution that

you are using, that might require some degree of parallelism.

o Ifyouneed to transform data while moving them from source to

destination. If it is not just a pure copy, then a tool designed for data
transformation and orchestration might be the right choice.

341

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

The distance between the service that performs the copy activity

and the data at source and destination. For an architect it is

extremely important to recommend to the customer the best way to

position services, especially on cloud solutions. Having the services

performing copy and analysis activities close to data is a design best

practice.

In the table below you can see some of the possibilities you have to copy data to

Azure Data Lake Store.

Sqoop

Azure Data Lake Store SDK

=

Tool Requirements

SSIS Azure Feature Pack for SSIS
Azure CLI or Powershell

Azure Data Factory ADF service

AdICopy

Distcp HDInsight cluster

HDInsight cluster

Good for orchestration scenarios
Not for large amounts of data
Good for orchestration scenarios
It can be combined with ADLA

Good to copy data from relational DBs
Good for heavy customizations

Figure 5-9. In the picture you can see some of the options that you could use to
copy data to Azure Data Lake Store

342

SSIS. SQL Server Integration Services, with the Azure Feature Pack

for SSIS, is a good option, in case you need to orchestrate and modify

data between source and destination. It is important to consider

where you put the SSIS engine, as it is important, for performance

reasons, to have it close to the data you need to move and, if you are

installing it on an Azure Virtual Machine, to choose the right size of

the VM in order to have the right throughput required.

Azure Data Factory. As in SSIS, ADF is good in case you need to

orchestrate and transform data before moving them to and from

Azure Data Lake Store.

Azure CLI, Powershell. In the previous paragraph we have seen

some of the possibilities offered by the Azure CLI to upload or move

data to ADLS. Powershell has similar cmdlets to perform the same

operations. We recommend using these tools in case you don’t have a

big amount of data to transfer.

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

e AdlCopy. A command line tool that you can use to copy data from
Azure Data Storage Blobs to Azure Data Lake Store, or between
two Azure Data Lake Store accounts. You can use it as a standalone
tool, or using an Azure Data Lake Analytics account, in order to
assign the number of compute units you need to obtain predictable
performances.

o DistCp. The Hadoop Distributed Copy tool needs to be installed in
a Hadoop cluster, such as HDInsight, to be used. You can leverage
the parallelism possibilities offered by MapReduce, finding the right
number of mappers needed to perform the copy. If you need to copy
data coming from an Azure Storage Blob or an Amazon AWS S3
account, this is a good option to consider.

e Sqoop. Like with DistCp, a Hadoop cluster is required here. Scoop is a
tool that you should consider in case the source of data is a relational
database, such as Azure SQL Database or MySQL.

e Azure Import/Export service. In case you have a huge amount of
data to transfer from on-premises to the cloud, you can use the Azure
Import/Export service, preparing a set of hard drives with the content
that you want to move to the cloud.

Note The Azure Feature Pack for SSIS is available for SQL Server 2012, SQL
Server 2014, SQL Server 2014 and SQL Server 2017. You can download it here:
https://docs.microsoft.com/it-it/sql/integration-services/
azure-feature-pack-for-integration-services-ssis; you can
download AdICopy here: https://www.microsoft.com/en-us/download/
details.aspx?id=50358; you can download Apache Sqoop here: http://
www.apache.org/dyn/closer.lua/sqoop/;

343

https://docs.microsoft.com/it-it/sql/integration-services/azure-feature-pack-for-integration-services-ssis
https://docs.microsoft.com/it-it/sql/integration-services/azure-feature-pack-for-integration-services-ssis
https://www.microsoft.com/en-us/download/details.aspx?id=50358
https://www.microsoft.com/en-us/download/details.aspx?id=50358
http://www.apache.org/dyn/closer.lua/sqoop/
http://www.apache.org/dyn/closer.lua/sqoop/

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Ingress/Process/Egress

The image below provides a recap of the possibilities we have to work with Azure Data
Lake in terms of:

o Ingress data using a bulk or a service designed for event ingestion

o Process data using Azure Data Lake Analytics, Azure HDInsight, or
any other application able to work with ADLS file system

» Egress information using tools capable of working with ADLS

Process data

Hodoop
Storm

.....

Figure 5-10. Some of possibilities to work with Azure Data Lake Store to ingest,
process, and download data

Copy Data to Azure Data Lake using AdiCopy

AdICopy is a command-line tool specifically designed and optimized to work with Azure
Data Lake Store. Its use is simple, you basically need to have the information to access
the source and the destination and that’s it. In the example below, we are moving the
content of an Azure Blob Storage container to a folder in Azure Data Lake Store.

adlcopy /source https://dataplat.blob.core.windows.net/adlcopy/ /dest
swebhdfs://book.azuredatalakestore.net/adlcopy/ /sourcekey [storage
account key]

344

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

:\Users\francescodiaz\Documents\AdlCopy>adlcopy /source https://dataplat.blob.core.windows.net/adlcopy/ /dest swebhdfs:
/book .azuredatalakestore.net/adlcopy/ /sourcekey

The source and destination accounts are not in the same Azure region.
lease refer to https://azure.microsoft.com/en-us/pricing/details/bandwidth for bandwidth charges that will be applicabl

you wish to continue (Y/N)

opy Completed. 18 files copied.

:\Users\francescodiaz\Documents\AdlCopy>,

Figure 5-11. You will get prompted to insert your Azure credentials, needed to
access the Azure Data Lake account

In the example above, we used the standalone option available with AdICopy, that
doesn’t require you to rely on additional services to function. In case you need to obtain
predictable performances, running parallel copies, then you could use an Azure Data
Lake Analytics account. The syntax doesn’t change, only you need to add the two options
below, to specify the ADLA service and the number of ADLA units you want to utilize for
the copy.

e /Account. The name of the Azure Data Lake Analytics account.

e /Units. The number of Azure Data Lake Analytics units you

want to use.

Authenticate and Copy Data to Azure Data Lake Store using SSIS

As you know, SQL Server Integration Services is one of the most powerful tools available
for ETL workloads. The Azure Feature Pack for SSIS adds the ability to work with Azure
services like Azure Blob Storage and Azure Data Lake Store; you don’t need to learn

a different visual tool to design ETL workflows that include Azure storage engines, as

345

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

everything is added to SQL Server Data Tools. Installing the Azure Feature Pack for SSIS,
you will get the following:

1. The SSIS Connection Manager adds the connection provider to
connect to Azure Data Lake Store.

W Azure Data Lake Store Connection Manager Editor X
ADLS Host:
Authentication: | Azure AD User Identity v
User Name: [fdiaz@iranceddev.onmicrosoft.com |
Password: [s0000neas |
| TestComnection | Lok | | Cancel

2. The SSIS Toolbox adds the data flow components to use Azure
Data Lake Store as a source or as a destination in your .dtsx
packages.

4 Azure
< Azure Blob Destination
G Azure Blob Source

BB Azure Data Lake Store Destination
R Azure Data Lake Store Source

3. The canvas to design the SSIS Data Flow task can be used to
integrate Azure Data Lake Store in your workflows. In the example
below, we are transferring the rows of a «csv blob file stored in an
Azure Storage Blob container to a new file that will be created in a
folder in an Azure Data Lake Store account.

346

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Qutput Data Viewer at Data Flow Task *0OX
Prop_0 Prop_1 Prop_2

1 27941 2014-09-15 23:17:03

1 27942 2014-09-15 23:17:06

1 27943 2014-09-15 23:17:09

1 27944 2014-09-15 23:17:12

1 27945 2014-09-15 23:17:15

1 27946 2014-09-15 23:17:18

1 27947 2014-09-15 23:17:21

@ 1 27948 2014-09-15 23:17:24

C;s Azure Blob Source 1 27948 2014-09-15 23:17:27

1 27950 2014-09-15 23:17:30

1 27951 2014-09-15 23:17:33

1 27952 2014-09-15 23:17:36

ﬂzs, rows h | 27953 2014-09-15 23:17:39

@ 1 27954 2014-09-15 23:17:42

f— 1 27955 2014-09-15 23:17:45

Azurs Dats Lake Stove Dactination 1 27956 2014-08-15 23:17:48
1

Attached Total rows: 28799, buffers: 1 Rows displayed = 859

Itis important to spend a few words on the authentication method that you need
to use against Azure Data Lake Store. ADLS uses Azure Active Directory (AAD) as the
authentication method for applications, and you have two options to authenticate, and
both of them release an OAuth 2.0 token to authenticated clients:

o End-user authentication. In this case, you use the credentials of
an AAD user to do an interactive connection to ADLS, and the
application runs using the user’s context credentials. When we
created a new connection to ADLS in step 1, we used the user
fdiaz@franceddev.onmicrosoft.comto connect. This user had
been created in Azure Active Directory first, and then we also had
authorized it to connect to Azure Data Lake Store, giving it the role
of Contributor for the service. We also received the prompt request
below to authorize SSIS to access the ADLS account.

347

http://fdiaz@franceddev.onmicrosoft.com/

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

B™ Microsoft

francescodiaz@hotmail.com

SQL Server Integration Service
(Azure Data Lake)

This app would like to:

“ Have full access to the Azure Data Lake service
v Sign you in and read your profile

You should only accept if you trust the publisher (Microsoft) and if
you selected this app from a store or website you trust. Ask your
admin if you're not sure.

Cancel Accept

o Service-to-service authentication. In this case you register an Azure
Active Directory application first, and then you use a secret key
to authenticate with Azure Data Lake Store, so the authentication
process is not interactive. We will quickly describe this approach in
the next paragraph, using a few .NET snippets.

Authenticate Against ADLS using .NET

We will use this small section to describe how to use the service-to-service
authentication method to connect to ADLS using Azure Active Directory with
OAuth 2.0. To demonstrate it, we use a .NET console application. You need to
perform three steps:

1. Register a new application in Azure Active Directory and generate
a secret key that will be used by the application. To do that, go
to the App Registration section in the Azure Active Directory
dashboard in the Azure Portal, then click the New application
registration button to add a new application registration.

348

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

dataplatformbookapp

Registered app

- "3 .
ﬂSet‘c:ngs # Manifest [Delete

Display name Application ID
dataplatformbookapp 23adcYfe-c457-45de-ad1e-4051989272fd
Application type Object ID
Web app / API d496fd15-292f-4003-9e85-00ecb50c200e
Home page Managed application in local directory
-- dataplatformbookapp

A

Figure 5-12. The application created in Azure Active Directory. Properties of the
application will be used in the client application. To see a tutorial on how to create
an Azure Active Directory Application, visit this page: https://docs.microsoft.
com/en-us/azure/azure-resource-manager/resource-qgroup-create-service-
principal-portal

-+ . X 2 * Upload Public Key

: Copy the key value. You won't be able to retrieve after you leave this blade.

Passwords
DESCRIPTION EXPIRES VALUE
adlsapp 2/6/2019)
Key description Duration A4 Value will be displayed on save

2. Authorize the application to access ADLS folders. The application
is an Active Directory object; therefore you can use it to give the
authorization to ADLS resources, like the file system folders.

349

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-service-principal-portal

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Assign permissions X Select permissions
[* Select user or group 5 Permissions
dataplatformbookapp Read
Write
* Select permissions S Execute
Configure required settings
Add to:
This folder

®): This folder and all children

Add as:
®) An access permission entry
A default permission entry
An access permission entry and a default
permission entry

Figure 5-13. When you assign permissions to ADLS folders, conceptually you can
see the application as a user. In our case we assigned the permissions to the root
folder and we have authorized it to also access the subfolders. The screenshot is taken
from the Data Explorer tool, available in the ADLS dashboard in the Azure Portal

3. InVisual Studio, download and add references to the nuget
packages below:

a. Microsoft.Azure.Management.Datalake.Store (we used
version 2.2)

b. Microsoft.Rest.ClientRuntime.Azure.Authentication
(v2.3.2)

c. Microsoft.Azure.Datalake.Store (v1.0.5)

4. Use a code snippet like the following to connect to Azure Data
Lake Store and perform activities on the storage; in the example
below we create a folder and a file.

using System;

using System.IO;

using System.Ling;

using System.Text;

using System.Threading;

using System.Collections.Generic;

using Microsoft.Rest;
using Microsoft.Rest.Azure.Authentication;

350

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

using Microsoft.Azure.Management.Datalake.Store;

using Microsoft.Azure.Management.Datalake.Store.Models;
using Microsoft.Azure.Datalake.Store;

using Microsoft.IdentityModel.Clients.ActiveDirectory;

namespace service2service

{

class Program

{

private static void Main(string[] args)

{

//define variables

System.Uri adltoken = new System.Uri
(@"https://datalake.azure.net/");

string aadtenant = "azure active directory ID";

string applicationid = "23adc9fe-c457-45de-ad1e-4051989272fd";
string appsecretkey = "app secret key";

string adlsstoreaccount = "book.azuredatalakestore.net";
string foldername = "/chaptero6"”;

string fileName = "/desc.txt";

//create client service credentials
SynchronizationContext.SetSynchronizationContext

(new SynchronizationContext());

var serviceSettings = ActiveDirectoryServiceSettings.Azure;
serviceSettings.TokenAudience = adltoken;

var adlCreds = ApplicationTokenProvider.
LoginSilentAsync(aadtenant, applicationid, appsecretkey,
serviceSettings).GetAwaiter().GetResult();

//connects to adls account and creates a folder and a file
AdlsClient client = AdlsClient.CreateClient(adlsstoreaccount,
adlCreds);

client.CreateDirectory(foldername);
using (var streamWriter = new StreamWriter(client.CreateFile
(foldername + fileName, IfExists.Fail)))

351

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

{

streamWriter.Writeline("data lake store test");

Copy data to Azure Data Lake using Azure Data
Factory v2 (Preview)

Note While writing this chapter, Microsoft released a Public Preview of Azure
Data Factory v2. As it contains significant changes compared to the previous
version, we decided to add a very short introduction to the service in chapter 04,
and add some extra information here to describe how to use it to copy data to
Azure Data Lake Store.

The purpose of this section is to perform a copy of the blob files stored on an Azure
Storage account container, https://dataplatformbook.blob.core.windows.net/
adfv2, to Azure Data Lake Store, using Azure Data Factory v2. We will use a Boolean
parameter, isnotstage, to determine if the copy should go to a folder, adl://book.
azuredatalakestore.net/adfv2, or another, adl://book.azuredatalakestore.net/
adfv2stage, in ADLS, depending on its value. In this simple activity we can use many
of the things introduced in ADFv2 (please review the end of the previous chapter if
needed); we will utilize the new designer, an Integration Runtime, a parameter, a control
flow activity, a trigger, and the monitoring tool. Some of the activities are done using the

new designer, which you can launch from the Azure Portal.

Quick links

Author 8
ﬁ| Documentation F
Monitor

352

https://dataplatformbook.blob.core.windows.net/adfv2
https://dataplatformbook.blob.core.windows.net/adfv2

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Stepl. We need to create linked servers and datasets, needed to access services
and map source and destinations. This part is very similar to v1, with the addition of
the Integration Runtime that is the compute service that is needed to execute data
movement activities or a dispatch to an external service. ADFv2, during creation, creates
a default Integration Runtime; we have added another one, WestEuropelR, only to
explain that is possible to assign the compute engine to a specific Azure Region, in our
case West Europe. This is important if you have several services to orchestrate that are
located in different regions, and you want to have IRs close to data sources to reduce

latency.
Integration Runt mes
+ New) Refresh
Name Actions Type ¢ Status Region
cetautintagratiznfuntime (¢] Azure @ Aurning Ate Sesove

Figure 5-14. You can have several Integration Runtimes, to perform computation
in different regions. This screenshot is taken from the designer, under the
Connections tab

Linked Servers and Datasets are very similar to vl, and they can be authored using
the web tool; behind that you still have JSON, and below you can see the script to create

the five objects that we need here:

o adlsbook. The Linked Service that can access Azure Data Lake
Store. We need to use a service-to-service authentication with Azure
Active Directory, so we used the same method used in the .NET
SDK paragraph before, providing the application ID and the secret
key during the connection configuration. adlsbook is connected to
WestEuropelR Integration Runtime.

353

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

354

(T

Mame * (O]

Description

Type *

Connect via integration runtime *
WestEuropelR

Edit Integration Runtime

©

Data Lake Store selection method

Enter manually

Account Uri *

https://book.azuredatalakestore.net/webhdfs/v1

sourcestorageblob. The Linked Service that connects to Azure
Storage. sourcestorageblob is also connected to WestEuropelIR.

sourcefile. A Dataset linked to sourcestorageblob that accesses the
container adfv2.

destfileadls. A Dataset linked to adlsbook that accesses the folder
adfv2. A binary copy is specified therefore schema and column

mappings will not be used.

o

——
Azure Data Lake Store
destfileadls

General Connection Schema Parameters Advanced
Linked service * adlsbook = @ Test connection / Edit + New
File path * /| File name Browse %= Preview data
Compression Type MNone -

B sinary copy (D)

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

o destfileadlsstage. A Dataset linked to adlsbook that accesses the
adfv2stage folder.

Below you can find two JSON snippets; one for the Linked Service and one for the
Dataset, both are related to Azure Data Lake Store.

ADLS Linked Service
{
"name": "adlsbook",
"properties": {
"type": "AzureDatalakeStore",
"typeProperties": {
"datalakeStoreUri": "https://book.azuredatalakestore.net/
webhdfs/v1",
"servicePrincipalld": "72cebb04-04be-43ee-9fed-dae67ad658de"”,
"servicePrincipalKey": {
"type": "SecureString",
"value": "Frkdckdoksokk!
})
"tenant": "[tenant]",
"subscriptionId": "[subscription id]",
"resourceGroupName": "rg dataplatform book"
}J
"connectVia": {
"referenceName": "WestEuropeIR",
"type": "IntegrationRuntimeReference"
}
}
}
ADLS dataset
{

"name": "destfileadls",
"properties": {
"linkedServiceName": {
"referenceName": "adlsbook",
"type": "LinkedServiceReference"

355

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

b

"type": "AzureDatalakeStoreFile",
"typeProperties": {

"fileName": "",
"folderPath": "adfv2"

Step2. Now that we have defined the Linked Server and the Dataset, we need to
define a pipeline and the activities needed for the implementation. The script below
contains three activitiesj one of them is IfCondition activity, used to read a parameter
and, based on a True/False condition, define the list of the activities that will be executed
when == true, and the activities to run when == false. Look at the code below first, and
then we will look at the designer. As you can see in the script, the copy activities are

nested in the IfCondition activity.

{
"name": "copyToADLS",

"properties”: {
"activities": [
{
"name": "checkStage",
"type": "IfCondition",
"dependsOn": [],
"policy": {
“timeout": "7.00:00:00",
"retry": o0,
"retryIntervalInSeconds": 30
})
"typeProperties": {
"expression”: {
"value": "@bool(pipeline().parameters.isnotstage)",
"type": "Expression”

b

356

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

"ifTrueActivities": [
{
"type”: "Copy”,
"typeProperties": {
"source": {
"type": "BlobSource",
"recursive": true

}J
"sink": {
"type": "AzureDatalakeStoreSink",
"copyBehavior": "PreserveHierarchy"
})

"enableStaging": false,
"cloudDataMovementUnits": 0

b
"inputs": [
{
"referenceName": "sourcefile",
"parameters": {},
"type": "DatasetReference"
}
])
"outputs": [
{
"referenceName": "destfileadls",
"parameters": {},
"type": "DatasetReference"
}
])
"policy": {
"timeout": "7.00:00:00",
"retry": 0,
"retryIntervalInSeconds": 30
2

357

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

"name": "AdlsCopy",
"dependsOn": []

}
])
"ifFalseActivities": [
{
"type": "Copy”,
"typeProperties": {
"source": {

"type": "BlobSource",
"recursive": true

})
"sink": {
"type": "AzureDatalakeStoreSink",
"copyBehavior": "PreserveHierarchy"
}J

"enableStaging": false,
"cloudDataMovementUnits": 0

})
"inputs": [
{
"referenceName": "sourcefile",
"parameters": {},
"type": "DatasetReference"
}
])
"outputs": [
{
"referenceName": "destfileadlsstage",
"parameters": {},
"type": "DatasetReference"
}
I,
"policy": {
"timeout": "7.00:00:00",
"retry": 0,

358

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

"retryIntervalInSeconds": 30
b
"name": "AdlsCopyStage",
"dependsOn": []

1,

"parameters": {
"isnotstage": {
“type": "Bool",
"defaultValue": true,
"identity": "isnotstage"

@ cop sX M X X W Connections X
g Activities s ~ validate [TestRun 5
jal
b Batch Service
» Data Flow If Condition L
n 4
¥ Data Lake Analytics ﬁ checkStage
b General
CE Pipelines [1]
» HDInsigh
copyTaADLS Dinsight
'g_mnm El 4 Meration & Conditionals
sourcefile 1 B Ferkach
destfileads | N e .
+ -8 FRNES
destfileadlsstage =
Parameters
= wait
+ Mew |
0 wame TVRE VALUE
2
isnctstage Bool v true

Figure 5-15. The ADFv2 designer

359

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

The image above represents the ADFv2 designer, where you can see:
1. The objects created, such as the Datasets and the Pipeline

2. 'The Pipeline variables section, in our case the isnotstage
Boolean parameter

3. The toolbox, where we picked the IfCondition control flow activity

4. Asyou can see from the canvas, only the IfCondition activity is
displayed, as the two copy activities are nested, therefore you can
see them only using the JSON editor.

5. You can trigger the execution on-demand or schedule it

V/ Validate [TestRun *@ Trigger
Trigger Now

New/Edit

Step3. Execution and monitoring. When you trigger the execution of the Pipeline,
you get prompted to insert the value for the parameter that will define which activity will
be executed inside the IfCondition.

Pipeline Run

Parameters
NAME TYPE VALUE
isnotstage Bool true

You can monitor the execution using the Pipeline Monitor tool that helps you to
understand how the workflow is progressing. In the example below, we performed two
runs setting the parameter to true first, and then to false, therefore both folders in
ADLS have received the files coming from Azure Storage.

360

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

previewadfv2 | Monitor Pipeline Runs

O Refresh

- Il

[T Last 24 Hours 0207/2018 %38 PM - 02082018 333 FM ~ @ Time Zone MTC-01:00) Rome

Al Succeeded InFrogress Faled Cancelled

Pipeline Mame 7 Actions Run Start & Duratian Triggered By Status Parameters Errar RuniD

oSN

copyTeADLS o 02/08/2018, G:42:45 PM 000024 Manual trigger @ succeeded [fo0aa255-9f85-449a-adib-ecf16055da55

copyToaADLS B 02/08/2018, §:41:28 PM 00:00:26 Manual trigger ° Succeeded L] b1b6d681-ch2e-4835-2145-200802c24f00

Considerations on Azure Data Lake Store Performance

Before moving to the next section, where we will speak about Azure Data Lake Analytics,
we highlight a few performance guidelines that might help you to design a proper
solution that includes Azure Data Lake Store as part of it.

ADLS is designed to automatically adopt its performance to workloads, and
Microsoft support is also there in case you need to increase some service limits for a
specific need. Its throughput is automatically tuned based on needs, but throughput is
of course not only related to ADSL, but also other factors may be part of the discussion,
such as the systems handling data at source.

o Connectivity. If you are running workloads on-premises that need to
move data to Azure, the performance of the network connection is
essential. You can connect to ADLS without a VPN connection, but
in case you are designing a hybrid workload that might include data
present also on Azure region, a VPN might be required. In that case,
consider using a VPN Gateway that provides high performances,
such as the VpnGw1, that could potentially achieve up to 650 Mbps. Of
course, in case of a VPN IPSec tunnel, performance is also dependent
on the on-premises gateway and the internet connection itself. To
overcome this possible limitation, you could consider a private
connection to Azure, using Azure ExpressRoute to achieve up to 10
Gbps. If you need to transfer a huge amount of data, consider also
using the Azure Import/Export service, sending your physical hard
drives to an Azure datacenter location in order to avoid network data
transfer time. If your workloads are already on Azure, consider having
data and ADLS in the same Azure Region if possible, to avoid
intra-datacenter data movement that increases latency.

361

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

o Throughput allowed by the service that needs to move data to ADLS. As
an example, if you are moving data from an Azure Virtual Machine,
you need to take in to consideration the throughput limits of the virtual
machine itself, as we have described in Chapter 2 of this book.

o Parallel copies of data. If you are using a tool capable of
implementing parallelization, use it to increase the amount of data
that you are able to move. For example, in the Azure Data Factory
chapter we described how to execute multiple copies in parallel.

e Do not consider ADLS as a host of data when you need to work
mainly with very small files, and the access is interactive. ADLS is
a preferred choice for batch processing and try to avoid small files
when possible. Structuring the file system in a way that is easy for
the batch processing engines like HDInsight is also important for
performances, as it reduces the jobs needed to organize files in a way
that is easier to manage.

Note 1 To learn more about Azure VPN Gateways and Azure ExpressRoute, you
can visit the following links: https://docs.microsoft.com/en-us/azure/
vpn-gateway/vpn-gateway-about-vpngateways, https://docs.
microsoft.com/en-us/azure/expressroute/expressroute-faqs

Note 2 In Azure Data Lake Store, you pay for the storage occupied and for the
Read and Write transaction operations performed on data. Consider that, using
Azure services, you also pay for the outbound data transfers; if you are moving,

as an example, data from an Azure Storage Account to an Azure Data Lake Store,
and the two services reside on different datacenters, the traffic that will come from
Azure Storage will be paid. That’s why it is also important to consider having, when
possible, the services in the same Azure Region, to avoid incurring extra costs.
Inbound traffic is instead free.

To get more information on Azure Data Lake Store pricing, you can visit this page:
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/. To
get more information on Bandwidth pricing, you can visit this page: https://azure.
microsoft.com/en-us/pricing/details/bandwidth/.

362

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-faqs
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-faqs
https://azure.microsoft.com/en-us/pricing/details/data-lake-store/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Azure Data Lake Analytics

This section starts the second part of the chapter; we will focus on the analytics engines
available in Azure Data Lake, mainly on Azure Data Lake Analytics (ADLA), as it is the
newest and has some features that make it suitable for cloud big data scenarios.

ADLA is a distributed analytics service, on-demand, built on Apache YARN, and that
relies on Azure Data Lake Store to function. Its compute system handles analytics jobs
that are designed to scale based on the compute required to perform tasks, and it uses
alanguage called U-SQL that mixes the simplicity of a query language like SQL with the
power of programming languages like C#.

Comparing ADLA to a standard Hadoop installation, in ADLA you don’t need to
care about how the cluster configuration will have to be, in terms of compute power,
number of nodes, etc. It is a pure PaaS$ service, able to execute jobs on-demand, scaling
based on the compute power required. As in other similar PaaS services available in the
Azure platform, ADLA follows the concept of the focus-on-design, instead of dedicating
too much time to administer the availability of the system. The developer productivity
is strongly improved because of the new U-SQL language, a SQL-like language where
functions and expressions can be written using the power of a language like C#.

Key Concepts

Here is a summary of the key features and concepts that ADLA offers:

e A PaaS service, with near zero effort to setup and administer the
service. You can literally create a new ADLA service in seconds.

e A pay-per-use model, where the on-demand compute units will be
only used when the jobs is launched against ADLA

e Built with Azure Active Directory support to manage users that need
to access the service

o Apowerful development language, U-SQL, with a simple learning
curve, being based on SQL-like syntax, and with the possibility to be
combined with C# coding

o Extensible to offer custom code and modules to cover specific
workloads, such as cognitive services

o Able to execute scripts written in R and Python
363

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

e Able to access external sources, such as Azure SQL Database, Azure
Storage, etc.

o Proficient authoring system, thanks to the integration with the Azure
Portal and the tools available for Visual Studio and Visual Studio
Code

Built on Apache YARN

Resources in ADLA are managed using Apache Hadoop YARN (Yet Another Resource
Negotiator) under the hoods; YARN is a cluster management technology, responsible
for the data processing activities. It is sometimes called MapReduce v2, as it brought
the compute part on HDFS storage to the next level, separating the data layer from
the compute layer a bit more, and enabling the ability to develop new data processing
engines, like ADLA, able to work with HDFS storage, and managed using a generic
resource manager service, which YARN is.

|I MapReduce Status—— |
" Job Submission - — — — =

Node Status — - —
Resource Request — — —)

Figure 5-16. A high level overview of how YARN manages resouces

364

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

YARN main components are:

e Resource Manager. It manages all the resources available in the
cluster, and its job is to schedule the correct utilization of all the
cluster resources, based on policies that you can plug to define how
the allocation rules of resources will work.

o Node Manager. It is responsible to manage the resources in a specific
node of the cluster. Each node in the cluster runs a Node Manager
that receives directions from the Resource Manager, and provides a
health status for it.

e Application Master. An instance of a library that can specialize the
work that needs to be executed in the containers. It talks with the
Resource Manager to negotiate resources and works with the Node
Manager (one or more) for the execution and monitoring. Thanks to
this component, YARN can run different frameworks, such as Azure
Data Lake Analytics.

e Container. It is the compute unit, responsible for executing tasks.

In Figure 5-17 below, you can see a recap of the four steps involved in the negotiation
of resources:

: e, Resource Manager ApplicationMaster ApplicationMaster
Client application . | h k
i _ starts negotiates aunches tasks on
ApplicationMaster Resources containers
1 2 3 4

Figure 5-17. The 4 steps of the negotiation of resources

Note For more detail on Apache YARN, you can read the official documentation
here: http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html

365

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Tools for Managing ADLA and Authoring U-SQL Scripts

Now that we presented the key concepts of ADLA and did a quick introduction to
Apache YARN, we are ready to start talking about managing and authoring, listing the
tools that we can use to accomplish this. ADLA has a wide range of options to choose
from, both for Microsoft and non-Microsoft operating systems; the table below offers a
recap of the options available today:

Tool Purpose Platform
Azure Portal Manage and authoring |cross
Azure CLI Manage cross
Azure PowerShell Manage Windows
.NET SDK Manage Windows
Python SDK Manage Cross
Java SDK Manage cross
Node.js SDK Manage Cross
Azure Data Lake Tools for Visual Studio Code |Authoring cross
Azure Data Lake Tools for Visual Studio Authoring Windows

Figure 5-18. The list of tools available to manage jobs and author scripts with
Azure Data Lake Analytics

Note Links to download tools for Visual Studio Code and Visual
Studio Code extensions for ADLA - search "Azure Data Lake Tools for
VSCode" in the Marketplace; Visual Studio tools for ADLA - https://
marketplace.visualstudio.com/items?itemName=ADLTools.
AzureDatalakeandStreamAnalyticsTools;

Working with ADLA using the Azure Portal

We will start creating an account using the Azure Portal, action represented in
Figure 5-19 below.

366

https://marketplace.visualstudio.com/items?itemName=ADLTools.AzureDataLakeandStreamAnalyticsTools
https://marketplace.visualstudio.com/items?itemName=ADLTools.AzureDataLakeandStreamAnalyticsTools
https://marketplace.visualstudio.com/items?itemName=ADLTools.AzureDataLakeandStreamAnalyticsTools

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

New Data Lake Analytics acc... O X

MName
I book o

book.azuredatalakeanalytics.net
* Subscription

INS_GOLD v

* Resource group
Create new (® Use existing

rg_dataplatform_book v
* Location

Nerth Eurcpe v
* Data Lake Store @ 5

book

Pricing package @

®) Pay-as-You-Go Monthly commitment

Figure 5-19. Azure Data Lake Analytics account creation

The options in Figure 5-19 are the only ones you need to define during the ADLA
account creation in the Azure Portal. Like ADLS, ADLA requires a unique Fully
Qualified Domain Name (FQDN) as it is a service exposed on the web that uses the
.azuredatalakeanalytics.net suffix. Another option that you need to select is the
Azure Data Lake Store account (red square) that will be used by ADLA to store the U-SQL
catalogue.

The Azure Portal dashboard experience for ADLA contains several options that are
helpful to configure the behavior of the service. Below you can find a description of some

of them:

o Firewall. Like in other Azure PaaS services, including ADLS, you can
enable a firewall and create rules to allow access only to authorized

IP ranges

o Datasources. You can add additional data sources to ADLA, and they
can be both Azure Data Lake Store accounts and Azure Storage accounts

8 Add data source
Data sources
NAME TYPE
] book (default) Azure Data Lake Store
dataplatiormbook Azure Storage

367

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

o Pricing Tier. You can decide to use a classical pay-as-you-go model,
or commit to a number of Analytics Units (AU) per month and get a
discount on the cost of each AU

Select your monthly plan
500 AU-Hours for 450 USD v |

Pay-3-You-Go
Monthly Plans
100 AU-Hours for 100 USD
500 Al-Hours for 430 USD
1,000 AU-Hours for 800 USD
5,000 AU-Hours for 3,600 USD
10,000 AU-Hours for 6,500 USD
50,000 AL-Hours for 29,000 USD
100,000 AU-Hours for 52.000 USD
500,000 AU-Hours for 234,000 USD

e Add Users. You can add authorized users to access the service.
ADLA comes with four Roles you can choose from; we recommend
assigning the Data Lake Analytics Developer role to users
responsible for U-SQL script authoring. You can also choose the type
of permissions to assign to catalogs, files, and folders

Accounts b
First, browse and select files or folders to assign permissions. Next. determine the permissions to be assigned on the selected files and folders:
To select a row. hover over the row then click the check box 1o
the left. ACCOUNT PATH READ WRITE EXECUTE APPLY TO
MAME book (vl vl [v! This folder and all children
- — - (| & "
v B book ook B ¥ vl [+ This folder enly

o Data Explorer. Same tool as ADLS, here you can also explore the
content of the other data sources you have added, and the treeview
includes the ADLA database objects too

w [Storage accounts
» B8 book (default)
» = dataplatformbook

* [Cataleg
b --'_'boolc
- i master

» Tables
L Views
P [T Table Valued Functions
¥ [Procedures
» [Assemblies
» [Cradentials
P [External data sources
¥ [Packages

368

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

U-SQL job authoring editor. From here you can write and submit a
U-SQL job to ADLA and decide the number of AUs that you want to
use for the job. An estimation of costs, per-minute based, will be also

displayed.

B Dataexplorer AN Openfile W Saveas

Account | * Job name @ Alse Submitter @ Estimated cost @
baalk r_ 1 francascodiaz@hotmail.... 0.03 USD/minute
1 Min 250 Max o5
More options
1 DECLARE @in string = "/Samples/Data/SearchLog.tsv”;
2 DECLARE @out string = "/foutput/result.tsv”;
3
4 [@searchlog =
5 EXTRACT Userld int,
[Start DateTime,
7 Region string,
8 Query string,
g Duration int?,
1@ Urls string,
11 Clickedurls string
12 FROM @in
13 USING Extractors.Tsv();
14
15 @rsl =
16 SELECT Start, Region, Duration
17 FROM @searchlog
18 VWHERE Region == “en-gb";
19
28 @rsl =
21 SELECT Start, Region, Duration
22 FROM @rsl
23 WHERE Start >= DateTime.Parse("2012/82/16") AND Start <= DateTime.Parse("2012/82/17");
24
25 OQUTPUT @rsi
26 TO gout

27 USING Outputters.Tsv()s]

» Job management. Gives a view of the jobs run history in ADLA,
including execution details on each one.

STATUS JOB NAME AUs TYPE DURATION AUTHOR SUBMITTED

@ Succeeded Ambulance-2-2-LoadingTables 2 (0.8%) U-5QL Imin 59s francescodiaz@hotmail.com 2/M/2018, 4:29:01 PM
@ Succeeded Ambulance-2-2-LoadingTables 1(0.4%) u-saL Tmin 445 fra-l-'ueuodia:@homail.:om 2/1/2018, 4:26:34 PM
@ Succeeded Ambulance-2-2-LoadingTables 4 (1.6%) u-saL Tmin 175 francescodiaz@hotmail.com 2/M/2018, 4:24:06 PM
@ Succeeded Ambulance-2-2-LoadingTables 6 (2.4%) U-saL Imin 185 francescodiaz@hotmail.com 2/1/2018, 4:21:31 FM
@ Succeeded Ambulance-2-2-LoadingTables 4 (1.6%) U-saL Imin 475 francescodiaz@hotmail.com 2/1/2018, 4:16:36 PM

369

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Azure Data Lake Analytics Units (AU) give the developer the ability to submit a job
to multiple compute units to achieve better scaling and performances. Each AU is
the equivalent of 2 CPU cores and 6 GB of RAM and, if you think about how YARN
works, they can be considered as the containers that you have in YARN. Choosing
the right number of AUs for a job is one of the most important aspects for both
performance and costs. We will revisit this topic with more details when we
describe how ADLA executes jobs, later in the chapter.

Azure Data Lake Tools for Visual Studio

Before starting to explore U-SQL, let’s spend some time describe what Visual Studio
offers to developers, as we will use it in this chapter.

Fle Ed8 Vies Popa Buld Deug Tem | Took | Tet Avhae Window bep
N A T Gt Tesls and Faatwes..
[tmer: - 1-ha-Drvenont0t = > DRI 0 (ovesiors o Uy
St |~ || ool Y mactsr "® Ceanctio Daubase.
Tvers = 5 =
EXTRACT driver_id int
name string,

Gomnct o Server.-
500 Server
Data Lake
. ek Code Aeshs

street string = e s

: : 1 Code Sriopets Manager.. CHLK CEhE b0
city string, OpomADLS Path-.
region string -Colecsmber 1

Uses Gude

: i BuGet Packape Mana '

zipcode strin D Mansger

4 Ambulanc0ataset

i Cenata GUID & Options and Sattinge..
country strin S G2 Cheektor Updates
phone_numbers Ectemnal Tovh. Fadback ¥ T Amsulance-2-S-ncrementalnurtusgl
FROM @INPUT_DRIVERS — Aow Ovon Likw b T Al Shonfesutissgl
IJSING@ExtraZtors Text Eh ‘rue, encoding : Encoding.Unicode); ¥ Amidance-3-1-FSetsusy
' Curontize.. jFues E: E- i b] Ambulance:3-2-CrestePaniisnedTable.uig
B Optiors_ [. —
//2. SELECT Transformaticn b ol Samplea
b Saaschheg
EResult = =] Resdenc him

SELECT country,

Figure 5-20. Azure Data Lake tools for Visual Studio

1. Data Lake Tools options. Setup ADLA tools is integrated with the
Visual Studio toolbar

2. Code behind is supported, so you can write your C# code
in the .cs file

3. This is quite important, as you can author your scripts offline,
without deploying them to ADLA all the time. In case you need to
deploy them to the ADLA account, you can choose the account
and the database you want to use. Pay attention to the number

370

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

of AU units you use, do not use many if they are not needed.
Remember that you pay for them! The maximum number of AUs
per ADLA account is 250, but in case you need more you can open
a ticket to Microsoft support to increase it.

ADLA Account Database Schema AU @
book v | master v | | dbo - Dzso More Opticns Submit

Note Authoring scripts offline with the emulator is a good feature offered by the
ADLA tools, as it avoids spending time (and money) in testing your scripts against
a live ADLA account, even when it is not necessary. For more detail on how to do
local authoring, you can visit this document that explains how to configure Visual
Studio for that: https://docs.microsoft.com/en-us/azure/data-
lake-analytics/data-lake-analytics-data-lake-tools-local-run

U-SQL Language

Now let’s describe what U-SQL is and how we can start using it. As we discussed in the
introduction of this chapter, Azure Data Lake, including Azure Data Lake Analytics, is
based on Microsoft internal projects created to manage their big data workloads. In
particular, U-SQL is SCOPE’s son, and it combines SQL syntax with C# type, expressions,
etc. Is it Transact-SQL? No, it isn’t, but if you are familiar with T-SQL or ANSI SQL, you
will feel at home here. Do you already know how to code with C#? Then it is even simpler
to understand. But U-SQL is executed as a batch script, as it is designed for big data
workloads, so don’t expect interactivity like you could have with T-SQL and a relational
database; you will design a script, the script will be passed to the execution engine that
will distribute it across one or more execution units in batch mode, and then you will
receive results.

371

https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-local-run
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-local-run

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

B NN D

EXTRACT from
supported store location OUTPUT results to a file

or SELECT from a or store in a U-SQL table
schematized tables

Figure 5-21. The general execution pattern of ADLA, that follows a Read/Process/
Store model

In Figure 5-21, we put the general execution pattern used by ADLA, which from
a logical point of view works with a flow where you read data from a source, a rowset,
process it, and store the results, another rowset, at destination. Source and destination
can be the Azure Data Lake Store, or another data source supported by Azure Data Lake
Analytics.

U-SQL Query Anatomy

To understand how U-SQL works, we will use the samples available within the service
dashboard in the Azure Portal and as templates when you create a new ADLA project in
Visual Studio.

{NET Framework 46.1 = Sort by: | Default - u

ﬂ U-SQL Project Azure Data Lake
(4]

g:i. Class Library (For U-SQL Application) Azure Data Lake
c=

IE_] U-SQL Unit Test Project Azure Data Lake

J

ﬁcj U-SQL Unit Test Sample Azure Data Lake

Figure 5-22. The ADLA project templates in Visual Studio

Let’s have a look at a U-SQL query:

372

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

ADLA Account ~ Database ~ Schema AU®
book - | master - | dbo - !rzso More Options Submit

1 |DECLARE|@in string
DECLARE @out string

2al@searchlog =

Samples/Data/SearchLog.tsv";
output/result.tsv";

"/
"/

EXTRACT UserId int,
Start DateTime,
Region string, 3
Query string,
Duration int?,
Urls string,
ClickedUrls string

FROM @in

USINGIExtractors.Tsvii;I 53
25 [erss -]

SELECT Start, Region, Duration
FROM @searchlog
WHERE Region == "en-gb";

@rsl =
SELECT Start, Region, Duration
FROM @rsl
WHERE Start >=IDateTime.Parse{"ZBlZ/GZ/lG")IﬂND Start <= DateTime.Parse("2012/02/17");

4

QUTPUT @rsl
TO @out
USING| Outputters.Tsv();| 5b

Figure 5-23. U-SQL query anatomy

1. All U-SQL keyworks must be in UPPERCASE. As you can have a
mix of SQL and C# in the same editor, do not forget this to avoid
exceptions (as and AS is a typical example in c#/SQL)

2. 2aand 2b. The ROWSETS are used by U-SQL to pass data from one
statement to another

3. The types are the same as in C#. When you find a question mark
"?" like in the Duration variable, it means that the type is nullable

4. Expression language inside statements is C#

5. Extractors and Outputters are used by U-SQL to generate a rowset
from a file (Extractor) and to transform a rowset into a file. U-SQL
has three built-in extractors and three built-in outputters to work
with txt files (Extractors.Text()), csv files (Extractors.Csv()),
and tsv files (Extractors.Tsv()).

373

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Note

An important point to highlight here is that a U-SQL script is not executed

in a sequential order, as it may seem at a first look. In the script above, the variable
@searchlog is not receiving the resultset of the statement, U-SQL is instead
assigning the statement to the variable. Same is for @rs1. U-SQL will compose a
bigger statement and it will optimize and execute it. This is called expression tree
and a U-SQL script could have many execution trees that could be executed in
parallel. To learn more about how a U-SQL script is executed, you can read

this document: https://msdn.microsoft.com/en-us/azure/data-
lake-analytics/u-sql/u-sql-scripts

User Defined Objects

Extractors and Outputters can be extended to add user defined objects (UDO). You can

generate UDOs for the following six categories:

Extractors. To EXTRACT (keyword) data from custom structured files
Outputters. To OUTPUT (keyword) data to custom structured files

Processors. To PROCESS (keyword) data to reduce the number of
columns or create new columns

Appliers. To be used with CROSS APPLY and OUTER APPLY
keywords to invoke a C# function for each row coming from the
outer table

Combiners. To COMBINE (keyword) rows from left and right rowsets

Reducers. To REDUCE (keyword) the number of rows

Create Database Objects in ADLA

Every U-SQL script will run in the default context of the master database and the dbo

schema. You can create your own database and additional schemas, and change the

default execution context using the USE statement. It sounds familiar ©

We could, for example, create a view on the SearchLog. tsv file that we used above,

to avoid schematizing data in each statement.

374

https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/u-sql-scripts
https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/u-sql-scripts

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

CREATE DATABASE IF NOT EXISTS booksamples;
USE booksamples;
DROP VIEW IF EXISTS SearchlogView;
CREATE VIEW SearchlogView AS EXTRACT
UserId int,
Start DateTime,
Region string,
Query string,
Duration int?,
Urls string,
ClickedUrls string
FROM "/Samples/Data/SearchLog.tsv" USING Extractors.Tsv();

@rs = SELECT * FROM SearchlogView;
OUTPUT @rs TO "/output/result.tsv" USING Outputters.Tsv();

w [Storage accounts Y Fiter [Newfolder b Upload JB Access # Reramefolder IS Folderproperties [Deletefolder () Refresh

+ B book (default

» sl dataplatformbaok bock » output 7
w [Catalog

v [} book HAME size LAST MODIFIED

" W bocksamples
Tabl result.tsy 35KB 2/10/2018, 6:23:25 PM
ables

- Vigws

[dbo SearchiogView

» Table Valued Functions
» Procedures
L3 Assemblies
L4 Credentials

xternal dals sources
b [Packages

b master

Figure 5-24. A view from the Data Explorer of the database and the view we have
created, and the result.tsv file that has been stored in Azure Data Lake Store

If you want to optimize how data are stored, you can create a table, with the same
concepts that you can find in SQL Server, such as indexes and partitions. The code below
stores the data coming from SearchLog.tsv in a table, partitioning data using a HASH
distribution scheme on the UsexId column.

375

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

USE booksamples;

DROP TABLE IF EXISTS tSearchlLog;
CREATE TABLE tSearchlog
(
UserId int,
Start DateTime,
Region string,
Query string,
Duration int?,
Urls string,
ClickedUrls string,
INDEX sl idx CLUSTERED (UserId ASC)

)
DISTRIBUTED BY HASH(UserId);

INSERT INTO tSearchLog SELECT * FROM booksamples.dbo.SearchlogView;

- Storage accounts O\ Query table

» Il book (default)

p— | book.booksamples.dbo.tSearchL
b = dataplatformbook - P °9

- Catalog

- ‘_-_'b:\ok Indexes
v [booksamples NAME COLUMNS UNIQUE
v [Tables

sl_idx Userld (ASC) N/A

» [dbotSearchlog

Figure 5-25. The table tSearchLog in the booksamples database

Note To learn more on how to create tables in U-SQL, visit this document:
https://msdn.microsoft.com/en-us/azure/data-lake-analytics/
u-sql/create-table-u-sql-creating-a-table-with-schema?f=2558M
SPPError=-2147217396

376

https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/create-table-u-sql-creating-a-table-with-schema?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/create-table-u-sql-creating-a-table-with-schema?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/create-table-u-sql-creating-a-table-with-schema?f=255&MSPPError=-2147217396

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Federated Queries

ADLA offers the ability to federate queries with external data sources, like what SQL
Server (2016 or above) does with external tables, using the PolyBase engine to query
external sources, for example an HDFS file system.

Working with federated queries adds a design scenario where you can use ADLA as a
hub keeping data at source; at the time of writing, the supported sources are Azure SQL
Database (AZURESQLDB), Azure SQL Datawarehouse (AZURESQLDW), SQL Server 2012 or
above(SQLSERVER).

Accessing external data requires that the source opens the firewall ports to allow
ADLA to get data. In the case of Azure SQL Database and Azure SQL Datawarehouse, it is
sufficient to allow communication to Azure Services in the firewall configuration.

Allow access to Azure services

In the case of SQL Server, you need to configure the firewall to allow the IP ranges
related to the Azure Region where ADLA resides:

Region IP Ranges

North Europe 104.44.91.64/27
West Europe 104.44.93.192/27

US Central 104.44.91.160/27,
40.90.144.0/27

US East 2 104.44.91.96/27,
40.90.144.64/26

To create a federated query, you need to first create a credential object to store
the credentials needed to access the remote database. Then you need a data source
connection and, in case you also want to schematize data, you can optionally create an
external table. The CREATE CREDENTIAL U-SQL command has been deprecated; therefore
you need to use the New-AzureRmDataLakeAnalyticsCatalogCredential cmdlet to
do that, like in the example below that sets credential access to an Azure SQL Server
Database.

377

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

New-AzureRmDatalakeAnalyticsCatalogCredential -Account "[ADLA accountname]"
-DatabaseName "[ADLA dbname]" -CredentialName "sqldbcred" -Credential (Get
Credential) -DatabaseHost "[AZURESQLDB].database.windows.net" -Port 1433

book P booksamples P Credentials

NAME

sqldbcred

USE DATABASE booksamples;

CREATE DATA SOURCE IF NOT EXISTS azuresqldbsource

FROM AZURESQLDB

WITH

(
PROVIDER_STRING = "Database=book;Trusted Connection=False;Encrypt=True",
CREDENTIAL = sqldbcred,
REMOTABLE_TYPES = (bool, byte, sbyte, short, ushort, int, uint, long,
ulong, decimal, float, double, string, DateTime)

)5
@rs = SELECT * FROM EXTERNAL azuresqldbsource EXECUTE @"SELECT FirstName,
LastName FROM dbo.tUsers";

OUTPUT @rs TO "/output/getdatafromsql.csv" USING Outputters.Csv();

o0
L] 0.00 USO
12.26%

u-squ
adl 201711016 P16 5684

Figure 5-26. The result of the script in the Azure Portal editor for U-SQL

378

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

The script below can be used to create and query an external SQL Database
table.

USE booksamples;

// CREATES THE EXTERNAL TABLE
CREATE EXTERNAL TABLE IF NOT EXISTS dbo.tUsersExternal

(
id int,
FirstName string,
LastName string

)

FROM azuresqldbsource LOCATION "[dbo].[tUsers]";

// QUERY THE EXTERNAL TABLE
@rs =

SELECT *

FROM dbo.tUsersExternal;

OUTPUT @rs
TO "/Output/tUsersExternal.csv"
USING Outputters.Csv();

Using an external table can be a good choice to simplify query syntax and
maintenance of scripts. As an example, a schema change on the original source would
require a change only on the external table instead of modifying all the external queries.

The script below, which is not related to federated queries, can also be helpful
if you want to access data sources that are Azure Storage Accounts or Azure Data Lake
Store Accounts. Before using the script, you first need to create a Data Source, like we
did before in the chapter when we described the options available in the Azure Portal
to create additional data sources. The code below accesses the inputfile.txt, located
in input container in the dataplatformbook storage account, then stores it in the Azure
Data Lake Store default account used by ADLA.

USE booksamples;

DECLARE @in string = "wasb://input@dataplatformbook/inputfile.txt";
DECLARE @out string = "/output/output.txt";

379

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS
@rs= EXTRACT stringtext string FROM @in USING Extractors.Text();

OUTPUT @rs TO @out USING Outputters.Text();

To summarize this section, we can use ADLA to access external data available in the

following sources and destinations:

SOURCE READ FROM |WRITE TO
Azure SQL Database YES NO

Azure SQL Datawarehouse |YES NO

SQL Server in a VM NES NO

Azure Storage blob MES NES

Azure Data Lake Store YES YES

Use Code-Behind and Assemblies

ADLA tools for Visual Studio help to separate the U-SQL part from C# supporting
code-behind. In the script below you can see first a U-SQL script, and then a simple
function written in C# that is invoked inline in the U-SQL script. Submitting the script to
ADLA takes care of both portions of code to make it work.

U-SQL

USE booksamples;

DROP TABLE IF EXISTS dbo.tUsers;
CREATE TABLE dbo.tUsers
(
id int,
FirstName string,
LastName string,
INDEX clx_id
CLUSTERED(id)
DISTRIBUTED BY
HASH(id)
)

380

CHAPTER 5

INSERT dbo.tUsers

VALUES
(
1,
"Roberto",
"Freato"
)5
(
2,

"Francesco",
"Diaz"

USE booksamples;

@rs =

AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

SELECT [id],FirstName,LastName,
USQLSampleApplicationi.myFunctions.fnFullNames(FirstName,

LastName) AS FullName

FROM book.booksamples.dbo.tUsers;

OUTPUT @rs
TO "/output/csharpfunctioni.tsv"
USING Outputters.Tsv();

C#

using Microsoft.Analytics.Interfaces;

using Microsoft.Analytics.Types.Sql;

using System;

using System.Collections.Generic;
using System.IO;

using System.Ling;

using System.Text;

namespace USQLSampleApplicationi
{

public class myFunctions

{

381

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

public static string fnFullNames(string firstName, string lastName)

{

return lastName + ", " + firstName;

The ability to make your code more elegant and reusable is achievable by
transforming your C# code in assemblies (CREATE ASSEMBLY in U-SQL), uploading
them to ADLA catalogue, and creating a reference (REFERENCE ASSEMBLY in U-SQL) in
your scripts, when needed. To do that, you can use the Class Library for U-SQL project
template in Visual Studio, like in the image below.

New Project ? X
b Recent = | .NET Framework 4.5 ~| Sort by: | Default | Search (Ctrl+E) P~
4 Installed "
rﬁ U-5QL Project Azure Data Lake Type: Azure Data Lake
b Visual C# - A project for creating a C# class library
4 Azure Data Lake ;][:ﬁ! Class Library (For U-5QL Applica...Azure Data Lake (di) that can run on U-SQL.
HIVE (HDInsight) 2 -
Pig (HDInsight) ﬁj U-SQL Unit Test Project Azure Data Lake
Storm (HDInsight)
U-s0L m U-SQL Sample Application Azure Data Lake
b Business Intelligence -
b Azure Stream Analytics ﬁ_] U-SQL Unit Test Sample Azure Data Lake

b Other Languages
b Other Project Types

b Online i

Not finding what you are looking for?
Open Visual Studio Installer

Name: [myusglassembly |

Location: | c\users\francescodiaz\source\repos -| B

Solution: [Create new solution -

Solution name: myusqlassembly Create directory for solution

[:] Add to Source Control

Figure 5-27. ADLA tools for VS have a template to create assemblies for ADLA

All you need to do is copy and paste the C# code that you used as code-behind
before, and then build the solution to generate the assembly «d11 file. Then you need to
register the assembly in the data lake account of choice, like we did in the image below.
As you can see from the Data Explorer, the assembly name is visible in the Assemblies
node. The same result can be achieved using the CREATE ASSEMBLY U-SQL command.

382

CHAPTER 5

AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

el Data explorer
book

‘ -

Catalog

Storage accounts B ez
» B book (default)
¥ S dataplatiormback bock b booksamples

* [Catabog

. ‘-_' book NAME

* [l bocksamples

Assembly Registration
ADLA Account: [ook
Database: bocksamples
Load aszembly from path: :' Ma]
Assembly Name: | |m;,-usq13 ssembly l]

. 8 myusglassembly
Tabies o y

Replace assembly if it already exists
Replace assembly (and its included files if any) if it is already registered.

£ Managed Dependencies

) Additional Files
£ Debug Info

Mame Path

Mete that replacing an existing assembly may remove code that other assemblies depend on.

Debug infe contains assembly's source code and pdb file for debugging. Learn more

Views

I Table Valued Functions

*

L3

L3

L3 Procedures
L3 Aszemblizs

L3 Credentials

b [External data sources
13 Packages

b master

AppDataiLocal Temp\2\DatalakeTemp)

[¥] dil.zip C:

Add

Analytics Unit:
€ Advanced

Input Status: Ready

1 fs0

| submit

Figure 5-28. The assembly registration process, done using Visual Studio

Now you just need to use REFERENCE ASSEMBLY in your script to call the user

defined object.

USE booksamples;

REFERENCE ASSEMBLY myusqlassembly;

USING myusqlassembly;

@rs =

SELECT [id],FirstName,LastName,
myFunctions.fnFullNames(FirstName, LastName) AS FullName

FROM booksamples.dbo.tUsers;

OUTPUT @rs
TO "/output/csharpassemblyi.tsv"
USING Outputters.Tsv();

383

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

U-SQL Extensions for R and Python

A clarification on R and Python extensions for U-SQL, you may find documents that
describe the integration of R and Python in U-SQL. It is a different level of integration
than C#, that is built-in in the language and it is part of it. Python and R are extensions,
therefore their level of integration is granted thanks to the REFERENCE ASSEMBLY (ExtR
for R and ExtPython for Python) statement. With the extensions you can enable the
execution of R and Python scripts inside a U-SQL script using a reducer (Extension.
Python.Reducer for Python and Extension.R.Reducer in the case of R). Microsoft
published additional extensions, for example to work with Cognitive recognition services
libraries for faces, emotions, OCR, etc. All of them are a good option to extend the
capabilities of the language and keep the design logic in the same place.

Note To learn more about how to use Python and R with U-SQL, you can read
this document: https://docs.microsoft.com/en-us/azure/data-
lake-analytics/data-lake-analytics-u-sql-develop-with-
python-r-csharp-in-vscode

Considerations on U-SQL Jobs and Analytics Units

So, what happens when you execute a U-SQL job? We have seen that you can use one
or more Analytics Units (AU) to improve performances. We also have seen that the cost
model is based on AUs; therefore it is also important from this point of view.

The U-SQL compiler creates an execution plan, and the plan is divided in tasks, each
of them is called a vertex. Each U-SQL job has one or more vertices.

When you run a job, the AUs are assigned to vertices for the execution. When the
vertex is finished the AU is free to work with another vertex, until all the vertices are
finished. Having more AUs available helps to run vertices in parallel. AUs are released
when the job is finished.

As an example, if you have a job that needs ten vertices but only have one AU,
vertices will be executed one at the time. Increasing the number of AUs might increase
execution time. We used the verb might because this also depends on how much the
execution of vertices can be run in parallel.

384

https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-develop-with-python-r-csharp-in-vscode
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-develop-with-python-r-csharp-in-vscode
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-develop-with-python-r-csharp-in-vscode

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

RIS Tach iage Fl
Froping | Ouowd | Dovetiy | Fimslig ok Gongh | Metsdsta Oprratams | Dats | St biotoey | Digaorics

G—&—E6—0 | 1 o a cole Popen]- .l-i-u Wil Bheieg Dvhitng
Moo bamceh Qusoedt Tissd . R

— -
ytan Read fre T
Hyten Wnster, IR
2
Comgleied "
By L

Bales L

s | | et

Figure 5-29. The Job View tool available both with Visual Studio and within the
Azure Portal

In Figure 5-29 you can see the Job View tool that is displayed every time you launch
a U-SQL job. In this case this simple job copies data from two files in Azure Data Lake
Store to two tables in an Azure Data Lake Analytics database. The left pane displays the
properties of the job that has been executed. In particular:

1. Asummary of the time spent in the four phases of a job: Preparing
(the script is compiled), Queued (job enters a queue, and if there
are enough AUs to start it, AUs are allocated for the execution),
Executing (code execution), Finalizing (finalize outputs)

Preparing Queued Executing Finalizing
v < < © 1

34 seconds 6 seconds 42 seconds 17 seconds

2. The total amount of vertices included in this job, 18 in this case

Total Vertices 18 2

3. The number of Analytics Units, 1, and the priority assigned to
this job.

Priority 1000
Analytics Unit 1 3

385

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

4. The time spent in Compilation (equivalent to Preparing time),
queued, and Running (the sum of Executing plus Finalizing time)

Compilation 34 seconds
Queued 6 seconds 4
Running 60 seconds

If you look at the right pane, you can see a graph that represents the job. You have
12 green rectangles (green means that the execution is succeeded, rectangle number 6).
The green rectangles indicate the Stages in which the job has been divided, and they are
organized in an execution sequence, which means that vertices in later stages may depend
on vertices in a previous stage. Each stage can have one or more vertices, and they are
grouped because they are doing the same operation on different parts of the same data.

It is important to understand how many AUs you need to execute a job. The rectangle
number 5, after a couple of tests, is the area that takes the most time Executing.

Stage Progress: Stage Progress:

That rectangle includes two stages, SV8 Split and SV2 Aggregate Split, for a total of
four vertices. In the run that you can see in the figure, we used one Analytics Unit, and
the time spent in the Executing phase has been 42 seconds (rectangle 1). Doing a couple
of runs and increasing the number of AUs up to 18 (the total amount of vertices in the
job), we noticed that, the most of the time was spent in rectangle number 5, having four
vertices was the right amount of vertices to use for this job, as we achieved an Executing
time of 23 seconds (Figure 5-30), very similar to the result obtained adding more than
four AUs. Time for Preparing, Queued, Finalizing was instead independent of the
number of AUs, in this specific job.

Preparing Queued Executing Finalizing
@ Vv, v, v,
31 seconds 6 seconds 23 seconds 16 seconds

Figure 5-30. The output of a job run with 4 AUs, where the Executing time has
been reduced to 23 seconds

386

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Talking about job priority, rectangle number 2, this is also important for execution.
The queue that contains jobs is ordered by job priority and, if a job is at the top of it, it
will start running, if there are AUs available. Consider that all running jobs, including
those with low priority, will not be terminated to give priority to a job that is waiting in
the queue; running jobs must finish to release AUs.

Now, the job above is really a simple one, and you could have hundreds of vertices
and stages to take care of in a more complex job to manage; so, is there any guidance or
help for the developer on how to find the right amount of AUs required for a specific job?
Luckily, you have some help, from the tools first. The diagnostic section in Visual Studio
gives advice on the possible issues found during execution, like an excessive amount of
AUs allocated and unused. Based on the execution profile information (do not forget to

load the profile using the button highlighted below), you can get details on how the job
performed.

| X | MiewBetsted sobs

o | Mty | | ot [i |

](j‘l Lowd Profile t

ot ees bstle |#

Figure 5-31. The diagnostics section gives access to the AU usage dashboards

[110, PRI
Thin wirw shonws the resoures wge of the job
x

EEEE’E

J

Bimel Ed Banis e b

] ﬂ =] m‘ﬁ m-[Jﬁ ==

Figure 5-32. The image represents the number of allocated AU for this specific job
(blue arrow, in this example 18 AUs), and the actual number of AUs used during
the execution time (peak represented by the red arrow). Consider that you pay for
the number of AUs allocated, even if unused, while you are using the resources

under the red line, therefore this tuning phase is very important for every U-SQL
script, to avoid unnecessary costs.

387

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

You also have an AU usage modeller that suggests, based on the data loaded in the
profile, the number of AUs that you could use to run the job.

‘I Estimated best time (sec): 20.77, max useful AUs: 4 I

G Arbdnce 23 sabegTables b 5L aga Ve
UUiage Suge sl rage [N

W i " £l

Figure 5-33. The AU Usage Modeler dashboard

Note 1 The details of the U-SQL language and a developer’s guide are explained
in the following reference documents:

U-SQL Language Reference: https://msdn.microsoft.com/en-us/azure/
data-lake-analytics/u-sql/u-sql-language-reference

U-SQL Programmability guide: https://docs.microsoft.com/en-us/
azure/data-lake-analytics/data-lake-analytics-u-sql-
programmability-guide

Note 2 We recommend reading this document, for developers and administrators
that helps to understand how to manage costs in Azure Data Lake Analytics:
https://blogs.msdn.microsoft.com/azuredatalake/2018/01/
08/how-to-save-money-and-control-costs-with-azure-data-
lake-analytics/

388

https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/u-sql-language-reference
https://msdn.microsoft.com/en-us/azure/data-lake-analytics/u-sql/u-sql-language-reference
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-programmability-guide
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-programmability-guide
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-programmability-guide
https://blogs.msdn.microsoft.com/azuredatalake/2018/01/08/how-to-save-money-and-control-costs-with-azure-data-lake-analytics/
https://blogs.msdn.microsoft.com/azuredatalake/2018/01/08/how-to-save-money-and-control-costs-with-azure-data-lake-analytics/
https://blogs.msdn.microsoft.com/azuredatalake/2018/01/08/how-to-save-money-and-control-costs-with-azure-data-lake-analytics/

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Job Submission Policies

Another important aspect to consider is the ability to limit the maximum amount of

AUs that a specific user or group can use for a job. This is of course important to avoid
unexpected costs and to avoid finishing the AUs available to run other jobs. To achieve
this, you can create a job submission policy, and you can use the Azure Portal to perform
this task, going to the Properties section and clicking the Add policy button under the
Job submission limits.

Job submission limits

Set the maximum amount of AUs and the highest priority each user has access to when they submit a job. You ¢can override the
default by adding policies for different users, and groups. If a submitter has multiple policies that apply to them, the most
permissive limit will take effect.

Default N/A 250 1

Figure 5-34. The Job submission area in the properties section of the ADLA
dashboard. A Default policy is created together with the account creation

Create policy

* Compute policy name

dev_policy 4

* Select user or group

fdiaz
Set the job AU limit. This is the highest AU's

ossible for a single job.

10 v
Set the job priority limit. This is the highest
priority possible for the submitter(s). :
| 100 v

389

CHAPTER 5

NAME

Default

AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

DISPLAY NAME

N/A

fdiaz

AU LIMIT

250

PRIORITY

1

100

Figure 5-35. We created a policy for the user fdiaz, that limits, for a job, the
utilization of maximum 10 AUs and the maximum priority that this user can

assign to a job, 100 in this specific case. A higher number means a lower priority

Job Monitoring

You can monitor the execution of Jobs using the Azure Portal. You can use Job

management section to see the full list of jobs executed by the account, and you also have

the ability to use the Job insights section, which adds the ability to group recurring

jobs and, in the case of jobs scheduled using Azure Data Factory, pipeline jobs.

W ohiter % Myjoks o Newjes £ Refresn

Taral: 78
STATUS 08 HAE s et DURATION AUTHOR SBMITTED 4
@ Succeeded Anbulance-2-2-LoadingTables 10 (40%) usaL tmin 435 franceseodiaz G hatmailzom 47122018, 110217 AM Cempare

OSmxeeded Newis 110.4%) wsaL min 5 feancescodisz@hatmailcom A172008, 10714 AM Ceenpare
@ Succeeded Ambulance-2-2-LoadingTables 10 (4.0%) u-satL min 385 feancescodia @ hotmailcom A/TVI008, 34330 PN Compare
& Succeeded Armbulince-2-2-LoadingTables &[24%) u-saL 2min 125 franceicodiaa@hotmaileom ATVI018, 33847 PM Coenpare
O Succeeded Ambulance-2-2-LoadingTobles 4(L6%) usaL Tmin 333 froncercodioshatmailcom AMVI0NE, 33510 PM
@ Succeeded Hew jals 2 (08%) usal 56y Trancescelin: @ hatmail com ATI0N8, 2604 PM Compuare
@ Suceeded Hew ot 1004%) u-sL 528 fransescodio: Ohotmulsom ANVIOM, £SEVPM Ceenpare
O Succeded Ambulance-2-2-LoadingTables 4 (L6%) u-saL min 203 froncescodies@hotmailcom ANWV208, 39409 PM Compare
O Succesded Ambulance-2-2-Loading Tables 2 (08%) u-sal min 34y francescodia: Ohatmail com A0/ I0NE, &3701 PM Compare
@ Suceeded Ambulance-2-1-CreateObpects. 1[04%) u-saL 20 francescodins@hotmarlcom A/WYI0M, £3538 PM Cempare
0 Fuled Ambulance-2-1-CreateObjects 1 0u4%) u-saL 9 francescodies @hotmailcom 47020, &3208 PM Compare

Figure 5-36. Job management section in the Azure Portal. You can also compare
the execution of jobs, using the Compare option (red rectangle)

390

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

Ambulance-2-2-LoadingTables Ambulance-2-2-LoadingTables
Status: Succeeded No change Succeeded
AUs 10 -6 4
Vertices 18 0 18
Preparing 32s -0s 31s
Queued Os Os 0Os
Running 1min 55 -14s 51s
Duration 1min 38s -14s 1min 235
Submitter francescodiaz@hotmail.com No change francescodiaz@hotmail.com
Submitted 4/12/2018, 11:08:17 AM -19hr 32min 6s 4/11/2018, 3:36:10 PM
AU-hours 39 -14s 44s
Input size 196 KB 0 bytes 196 KB
Output size 360 KB 0 bytes 360 KB
Runtime version release_20180117_ad|_778615 Different release_20180117_adl_753515

| Remove from comparison | Clear comparison Remove from comparison

Figure 5-37. The comparison between two ADLA jobs

Note To learn more about job policies and job monitoring, you can read
this document: https://docs.microsoft.com/en-us/azure/data-
lake-analytics/data-lake-analytics-manage-use-portal

Azure HDInsight

Before closing the chapter, we want to quickly mention Azure HDInsight, that is not
covered in this book, and that completes the Azure Data Lake offering. HDInsight offers
the possibility to run Hadoop clusters running on Linux (Windows is not supported
anymore), but managed by Azure. You basically need to choose:

o Cluster type (Hadoop - processing engine, supporting Hive, Pig, etc;
HBase - NoSQL; Storm - real-time streaming, Spark - in-memory
analytics, R Server - R engine, Kafka - messaging system, Interactive
Query - In-memory engine)

391

https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-manage-use-portal
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-manage-use-portal

CHAPTER 5 AZURE DATA LAKE STORE AND AZURE DATA LAKE ANALYTICS

o Storage (Azure Storage or Azure Data Lake Store)
e Number of nodes in the cluster
Evaluate HDInsight instead of Azure Data Lake Analytics in case you want:

e Have more customization options than Azure Data Lake Analytics,
which is a pure PaaS service, where most of the customization
options are automatically managed. HDInsight is a managed service
instead, so you can have access to cluster nodes, if needed.

o Ifthe team, or your customer, are already using and are familiar with
open source tools included in the services exposed, like Hive, Pig, etc.

Summary

In this chapter we covered Azure Data Lake Store and Azure Data Lake Analytics, two
PaaS services dedicated to big data workloads.

ADLS is a HDFS storage that offers the ability to scale to petabytes of data. You can
use it to store any type of data and of any size (e.g. ingest telemetry data, logs, IoT data,
archive of information, to extend a data warehouse architecture, etc.)

ADLA is a distributed job engine, based on Apache YARN, able to do analytics on
big data stores, such as ADLS. It offers a powerful language called U-SQL, that combines
SQL with C#, and it is extensible to offer flexibility to developers. You can use it to
analyze data on big data stores, to run massive job processing activities that may also
include external sources, such as a relational database.

In the next chapter, the last of the book, we will focus on how to manage and analyze
streams of events using Azure services.

392

CHAPTER 6

Working with In-Transit
Data and Analytics

Working with Data is not only related to Data at rest. While it’s a typical building block
of any complex system, a RDBMS represents a classic data store for data at-rest. Often,
the relational DB is the final point where the data goes to be safely persisted and to be
re-used later. However, it is very common to let the data pass through many intermediate
actors, which define integrations between parties and which are involved in specific
business-related workflows.

Therefore, before data is considered at-rest, it is obviously in-transit, with a wide
variety of options around this. There are transient data stores, persistent ones, and
messaging solutions with the specific purpose of managing the real-time data ingestion.
At the same time, when data is ingested, it is very likely to desire to have a quick look at
it, even before it reaches the final destination into a persistent and, maybe relational,
data store. This quick look is also known as real-time analytics, a method of collecting
and organizing data while it’s arriving.

This is probably the first touch point with big data we all had in the last few years.
Even before talking massively about big data, we were collecting a huge amount of
information from on-the-field devices or from the navigation on our web applications’
users. One of the first consumer-available high-end ingestion tools has been Google
Analytics and, forgive us if you do not agree with this definition, but its big data. It is,
because for every website on the entire Internet that implements the tag of GA, Google
Analytics will collect a huge amount of de-normalized data. Collected data is not only a
page view, it can be a mouse move, a click, a custom event, and everything we want to
track and analyze later. In 2015, when IoT started to be a buzzword, someone already
developed its own IoT backend solution using Google Analytics!

393

© Francesco Diaz, Roberto Freato 2018
E Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4_6

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

But this is not a chapter about GA; we mentioned it just because it represented one
of the first globally available ingestion services. It can be forced, but it has not been
designed to be general purpose, it has a strong focus on web analytics and behavioral
tracking, for both page insight and advertising purposes.

In the rest of this chapter, we will discover how we can deal with data in-transit, with
basic and advanced messaging solutions, designed to be both persistent and transient.
We are looking into ingestion and real-time manipulation of data, to build aggregates
not only at the end of the process but while the data was being generated. Finally, we
take a look at Azure AppInsights that was probably the initial response to Google’s
GA, which now a series of powerful features that integrate analytics with application
telemetry.

Understanding the Need for Messaging

By oversimplifying, we can split the two goals of messaging into two greater areas:

o Decoupling/integrating components/systems: the messaging layer
stands between two different components of the same architecture
to better separate the concerns or, between two different parties, to
integrate them safely.

o Implement event-driven architectures: the messaging layer is the
primary layer where the business information goes and the entire
system is based on the state changes arriving in the messages.

For the sake of simplicity, we are discussing just the first scenario, where messages
are used to make connections between parties and where they have the primary purpose
of storing information for a temporary, limited, period of time.

There are primarily two methods of interconnecting systems: synchronous and
asynchronous. In the first, a component A wants to communicate with someone at the
other side B and make a direct request to it, which will reply properly. In the second, the
component A puts a message on an intermediate queue and when B is ready to read it, it
reads and processes the message.

394

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

Please note some aspects:

o Inthe first case, we are not required, on the side of B, to immediately
process the request. We can also return an ACK (acknowledgement)
and perform the operation later. However, the client A will know this
contract exactly, both for the calling parameters and the behavior of
the response.

o Inthe second case, A can even ignore all of what is under the hood on
the receiving side. From its point of view, there is only a queue where
messages are sent or, conversely, a queue to read responses from
remote systems.

We are not digging too much into the pros/cons of the two methods, since it is
not in the scope of the book. The only point to focus on is that messaging enables
asynchronous systems easily. In this case we would like to achieve synchronous
communication with messaging, while it’s still possible, it is harder to implement.

Let’s suppose we have system A sending emails to a queue. Then, system B reads the
queue and sends the actual email through SMTP. We want to notify A with the delivery
receipt. With a synchronous system, it’s far easier: A asks B to send and B holds A while it
completes the operation. But with messages things are different:

e Asends amessage X to the queue

e B processes the message X, sends the email to the destination and
collects the ACK

o Then B sends a message to another queue, indicating a correlation
between the message X received from A and the reply

e A, which is waiting for notifications on the second queue, receives
the message and correlates it with the previous message send.

Returning to the first case, we are now analyzing the simpler fire-and-forget case,
when the caller sends a message to a queue and it does not require/handle any callback
from the remote system.

395

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

For the advanced reader, you probably know in Azure there is another queue
technology inside the Storage Account. They are called just Azure queues or
Storage queues and they are lightweight queues with missing features, compared
to the Service Bus ones. We do not cover them here but there is a comprehensive
reading about this here: https://docs.microsoft.com/en-us/azure/
service-bus-messaging/service-bus-azure-and-service-bus-
queues-compared-contrasted

Use Cases of Uni-Directional Messaging

There are a lot of scenarios when unidirectional messaging provides benefits. Here are

some examples:

e A content management system collects the images from a third-party
and sends to a queue to request to resize images as soon as possible
(Figure 6-1):

o The processing component can scale independently based on the
actual resizing load and it can perform the job independently.

| m—
5
E—

Image collector :
’ Queue Resizer

Figure 6-1. The simplest scenario where a producer enqueues images for further
resizing in a different component

e Ane-commerce platform collects catalogue information from
vendors and sends updates to a queue to let consumers update data
stores (Figure 6-2).

e The processing component can introduce any logic while
processing updates, while the producer isn’t aware of the
complex technical details of the operations.

396

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

Catalog [—
source 1 |}— M
H

Queue Catalog
updater

Catalog
source N

Figure 6-2. Multiple sources of catalog updates go to the queue to be processed by
a single updater process

e Ane-commerce platform collects the order from a navigating
user and sends it to a notification queue (also referred as “topic”
further) to notify several parties (order management systems,
user notification systems, CRMs) (Figure 6-3)

o Multiple endpoints can be notified for a single action
collected on the producer side and they can perform various
operations in reply to an event.

iL CRM

r Updater
E-commerce

Orders Topic

DB Updater

Figure 6-3. An e-commerce system sends orders to a topic, which notifies all the
proper actors simultaneously

397

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

o Several etherogeneous components of a company send emails
through messages into a queue to decouple the actual mailing
logic from the applications (Figure 6-4).

e Achange to the service provider sending emails or to the
workflow involved can be managed on a single consumer
component instead of maintaining all the applications using
the mailing feature.

H

—
u

Queue Email
sender

App N

Figure 6-4. Multiple applications will send their email messages to a queue to
let a single process take them to make the actual communication with the email
provider

DESIGN EVENT-DRIVEN APPLICATIONS

The other relevant aspect involved while talking about queues are event-driven architectures.
With event-driven architectures, we are preventing changing the way of thinking of our
application as a combined set of components talking each other by a chain of events. We

are not discussing the benefits of this kind of approach, which are many, but the focus on
messaging.

In an EDA, messages are events which produce a change of in state. The state changes

itself can transit within the message or not: in the latter case, the most common, this is due
to the fact that messages should be used to notify only the sink (the receiving party). It is
always considered a best practice, while talking about messaging, to use messages to deliver
lightweight content, maybe referring some other attachment somewhere else to be fetched
independently.

398

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

Using Service Bus

Azure Service Bus has been one of the first services available in the Azure Platform
from its birth. It enables messaging solutions at-scale and connectivity between
etherogeneous systems. From the service topology perspective, these are the basic
concepts we should know:

e Aservice namespace is an “instance” of Service Bus, which is a

logical collection of sub-services

o Each service namespace supports many instances of those sub-

services:
¢ Queues: FIFO queues
o Topics: Pub/Sub queues

o Relays: internet-faced relays which let us expose private services
to the public

As an example, we can have even a single Service Bus namespace for an entire
company, since we can handle multiple queues, topics, and relays in it. Of course,
namespace allocation often falls into the infrastructure area, so we can have multiple
namespaces to isolate domains, to provide better scalability and to refine security policies.

The Service Bus namespace comes in three flavors (Figure 6-5):

e Basic: it’s the cheapest option with no topic support

o Standard: it has an included amount of brokered messages plus
topics support

e Premium: despite the previous options, Premium runs with
dedicated capacity (Basic and Standard are shared resources). It can
scale up to 4 scale/messaging units and it has a fixed price despite the
number of messages processed.

There are some other technical differences (most of them on the underlying
infrastructure) between the Premium and non-Premium tiers, but they are not as
relevant for the scope of the book.

399

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

. k%

== Shared capacity === Shared capacity Dedicated capacity
Max message size Max message size Max message size

E 256 KB 9 E 256 KB ? B 1024 KB 9

— — p—

as Queues == Queues = = Queues

(:) Vvariable pricing Topics Topics

Messaging operations Messaging operations
12.5M Ops/Month Free

Variable pricing Fixed pricing

o8BI

Recommended
For Production Workloads

s Woll - HK NI

0,04 843 581,93

EUR/MILLION/MONTH (ESTIMATED) [EUR/12.5MILLION/MONTH (ESTIM... EUR/MESSAGING UNIT/MONTH (E...

Figure 6-5. These are the three tiers of Service Bus currently supported

In the next pages we will investigate Queues and Topic, which is often called the
Brokered Messaging feature of Service Bus. The unit of data, the message, is actually also
known as Brokered Message.

Enqueuing some Messages

As .NET developers, we are writing a few lines of C# code to enque some messages
in a Service Bus queue. With the supported SDK, we can connect to Service Bus to
send/receive messages and perform administrative operations on the queues/topics
themselves.

However, as a general-purpose suggestion, we recommend creating entities (queues/
topics) via dedicated procedures, except for those cases where temporary queues are
needed. The following snippet, given an existing pre-created queue, enqueues a message
with some properties:

var connectionsString= "[connstr]";

var queueName = "helloworld";

var queueClient = QueueClient
.CreateFromConnectionString(connectionsString,queueName);

400

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

for (int i = 0; i < 10; i++)

{
var msg = new BrokeredMessage($"Hello from the iteration {i}");
msg.Properties["Sender"] = "Rob's laptop";
msg.Properties["Index"] = i;
queueClient.Send(msg);

}

Here are some basic explanations:
o Connection string is the composition of those three segments:

e Endpoint address: the endpoint URL which inherits the

namespace name of the services bus.

o Shared Access Key name: the namespace and its inner entities
(queues/topics) may manage authorization with access keys,
everyone consisting in the couple KeyName/KeyValue. The
RootManageSharedAccessKey is the default key created at the
top level, with maximum permissions on the entire Service Bus

instance.

« Shared Access Key secret: the secret(s) key(s). They are actually
two to provide rotation support.

e Queue name is the name of the queue we assume is already created
on the bus

¢ QueueClient is a class holding the logic to send/receive messages
on a Service Bus queue. In this case, we are using it for sending
purposes.

o BrokeredMessage is the class holding the appropriate structures to
wrap and serialize the message content (in the case above it is just a
string, but it can be an arbitrary object, with some limitations).

e We also used the Properties dictionary to hold some metadata,
which are technically “headers” of the message. These headers
will have a primary function in the Publish/Subscribe approach
while using topics.

401

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

At the other side of the system, we may have the receiver application, which can be
very similar to the one above:

var queueClient = QueueClient
.CreateFromConnectionString(connectionsString, queueName,ReceiveMode.

PeekLock);
while (true)
{
var msg = queueClient.Receive();
if (msg != null)
{
var content = msg.GetBody<string>();
Console.WriteLine($"Receiving from {msg.Properties["Sender"]}:
{content}");
msg.Complete();
}
}

The differences here are the following:

e Asthe third parameter of the QueueClient factory method, we
specify the ReceiveMode. ReceiveMode can be ReceiveAndDelete or
PeekLock. In the first case, a message is taken from the receiver and
immediately deleted from the queue. In the second, the message
is taken and put into invisibility for a given timeout; a timeout
that would be enough for the processing logic to process it and
“complete” to remove it eventually form the queue.

o The Receive method receives the message and returns a wrapper
object which is a BrokeredMessage instance. GetBody deserializes
the content using the default DataContractSerializer approach.

o The Complete() method tells the Service Bus to remove the message
from the queue, in order to avoid it being reprocessed in case of
timeout expiration.

402

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

This two receive modes are the core concept of the majority of queue systems.

To ensure reliability, we must choose PeekLock, since the consumer process may
fail between receiving the message and actually completing the processing. This
has a drawback, since the consumer process cannot complete in time, resulting

in @ message put again into a queue. To avoid this, we need to design at best the
timeouts of the message to set a trade-off between reliability and efficiency. At

the other side, where reliability is not the primary requirement, ReceiveAndDelete
guarantees a performance improvement on the queue, which will not need any more
than the explicit call to the Complete() method to permanently remove the message.

Using Service Bus Explorer

One of the best and most recognized tools to work with Service Bus is the open-sourced
management tool written by Paolo Salvatori, the Service Bus Explorer (Figure 6-6).

B8 Service Bus Explorer 4.0.105 - o x
Fle Edt Adions View Hep

= Service Bus Namespace | 'View Queue: hetlowarid “ha
=Bl so//apress senvicebus windows ne
& 3 Quess Descrigtion | Authorization Rules | Metics ~ Messages |

& helowodd (10.0.0) | 7
 Topics - § -

?E\,mm Messagel| Seq | Size | Label EnquevedTimel| Expiresitltc | ~ A

"‘9‘ Mt Hubs il SeT2. _2314? g _2!2 | _1_11-’132!2918 1 3NN2/85592..

0 Relays ac3(f9.. 562%4.. 212 0102208 1. | 129959 2.

3 01/02/20181... |
33as0.. 11258.. (212 01/0272018 1., | 312599992,

2f1ed w73 Lop | lmmamar | mazmssaz ¥ Eoranle [31/T59 2150
ForcePersisters False
lsBodyConsum False

- - Labe!
Hello for the 2 time e LockedUntilke Operation is not vab
LockToken Operation is not val
Sender Rob's lap.. Messageld 75addcO0Oadd?
Index 4 PartiionKey
Fropedies
FeplyTo
Reply ToSessio
ScheduledEndg &
Puge DLG | | Get Metrics | | Close Tabs Messages Deadietier Transf DLG Refresh Disable Delete Upe
< > < >

<15:05:37> The application is now ccnnected to the sb://apress.servicebus.windows.net/ service bus namespace.
| €15:08:37> MessagingFactory successfully created

<16:05:3% The queue helloworld has been successfully zetrieved.

| ©18:05:48> [10] messages peeked from the gueue [hellowezld].

Figure 6-6. This is the main window of the Service Bus Explorer, which lets us
create queues and other artifacts, as well as reading messages, setup advanced
properties and more

403

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

With Service Bus Explorer we can administer a Service Bus namespace and its
resources, by creating queues, reading messages in both the ReceiveAndDelete and
PeekLock modes, inspect them through a pre-configured inspector and many other
features, which make SBE a must-have.

Using Topics to Notify Parties and Route Messages

Topics is the name of the queues related to Publish/Subscribe messaging, where the
messaging pattern is more considered to be for many-to-many notifications.

el 1
B

Figure 6-7. This is the topology of a Topic. We can have multiple subscriptions
and, for each of them, a set of rules to route only the appropriate messages on it.

A Topic is a high-level collector of incoming messages and, from the perspective
of the producer, can be seen as a simple queue. However, we can define one or more
subscriptions under it (Figure 6-7), which behave like a queue. Each subscription, in
fact, can be accessed by multiple consumers to process individual messages.

The killing feature, like in any other Pub/Sub mechanisms, is the capability to define
routing rules for incoming messages, based on the headers/properties of the messages
themselves. For example, if we flag our messages with a property “ClientID” and we
create the “ClientID=4" rule on a subscription, that subscription will receive only the

messages matching this rule.

404

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

This powerful mechanism provides a solid foundation for a set of needs we all have
in distributed system development. We can implement a huge variety of notification
systems by using Pub/Sub queues.

B8 Service Bus Explorer 4.0.106 = o e
File Edit Actions View Help

Q n :
55 sbe/apeess servicebus windows net/
5 Oueves

] 08022018 160813 < Defat

£1{82) Frortend (0. 0.0
& @ Rues
143 sDelak
7 Event Hibs
€. Nothication Hubs
P el

“L7:08:47> The APPlicaticn LS Aov CoRRested B2 the SBI//APTess.servicebus.windsus.net/ SOIVice DUS RARGSPASE. -
<17:08:17> HessagingFactory successfully created
< >

Figure 6-8. We see the “emails” topic having three subscriptions with three
different routing rules

In the figure above (Figure 6-8), for example, we see how a Topic collecting emails
can be configured. The single topic “emails” in the collector of the incoming messages.
Every message sent to that topic flows directly to every subscription which has
compatible rules. A rule telling 1=1 is the default rule accepting every message on the
topic, as for a catch-all subscription. In the case above, we split messages by application
tiers and, for the sake of simplicity, we assumed just three areas: API, Backend, and
Frontend. The Frontend subscription’s rule is “APPNAME='FE”, which means that
incoming messages with the corresponding header (APPNAME) set to “FE” will flow
directly into this subscription. Messages with this value not set or set with other values,
will not go into this subscription.

A subscription can be interpreted like an individual Queue. We can attach one or
more consumers to a subscription, like we do with a Queue, to scale independently of
the implement reliability. The subscription behaves like a queue, it has timeout and
locks, the receive modes as we mentioned eelier.

405

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

From the development point of view, the actual code to use a Topic is pretty
straightforward:

var topicName = "emails";
var queueClient = TopicClient
.CreateFromConnectionString(connectionsString, topicName);

for (int i = 0; i < 10; i++)

{
var payload = new
{
MailFrom = "no-reply@...",
MailTo = "idontknow@...",
Body = $"My important email {i}"
};
var msg = new BrokeredMessage(payload);
msg.Properties["APPNAME"] = "FE",
queueClient.Send(msg);
}

However, this code will not work, since the payload object is an anonymous object,
which cannot be serialized with the default DataContractSerializer. We have two choices:

o Implement a transfer object which is serializable with DataContract
and DataMember attributes

o Pre-serialize the object with JSON and pass the resulting string as the
BrokeredMessage payload

406

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

B Service Bus Explorer 4.0.106 i a %
File Edit Actions View Help
-5 sbiapeess servicebus windows net/ |
o7 helomend (10,0, 0)
&, Topis
= 4y emaie ~
82 APID.0.0) | 796db8... | 56294 251 08/022018 16... | 11299892 | Dlaad|stterSour
18] Bockend ©.0.0) |0549053. |B2adz . (251 08/02/2018 16... | NN299892.. |v DefvenyCount 1
EH{EE) Frontend (10.0.0) EnaueusdSequ 1
l.-@m“ EnquevedTmel, 08/12/2018 16:22
2 EqresAtlle 31/12/9939 2359
R4 S0elak 1 ForcePersistenc False
("mailfroa™:"no- " Name Value IsBodyCorsume Faloe
? EMH_‘H replyd. ..", "ailTo™ : " idontinow L 4” l‘::'f‘“*“! ahe
) Netfication Hubs §...,"Body™: Wy important APPHANE FE
G Relays eanil 17} LockedUtiLke Oparation is not valid
LockToken Operation ts riot vald
| Memageld 8M5a77clacM%t v
Purge Purge DLQ | | Get Matics | | Close Tabs Messages Deadiester Fisfresh Drsable: Delete Update

4> [10] messages peeked frem the subscriprion [Fremzend]. -
5> The subscription Backend for the emails topic has been successfully zetrieved.

%> The rule Default for the Backend subscripticn of the emails topic has been successfully retrieved.

<17:23:1%> [10] messages have been purged from the [email:) in [3000) milliseconds.

5> The subscripcion API for the emails topic has been successfully retrieved,
5> The rule for the API subscription of the emails Tcpic has been succossfully retrieved.
5> [10] messages have been puzged fzom the [emails, AFII n in [2901] =illiseccnds.
<17:24:24> [10] messages peeked from the subscription [Frontend]. b

Figure 6-9. We now have 10 messages in the Frontend subscription and none in
others

As we see in the figure above (Figure 6-9), we sent 10 messages in the topic “emails”
but just one subscription, the ones with compatible rules, have received the messages.
This is a powerful mechanism to notify eterogeneous systems, to decouple components
and to perform message routing without any knowledge on the sender side (except for
the message header attributes).

Now, we made a simple example, but the recommendation is to use message
headers/properties to decorate messages with some parameters which are not useful
just at the time of writing, but with some in-advance thinking to create rules on them
in the future. For instance, if we are collecting an order aggregate from an e-commerce
platform, we may want to proceed as follows:

o Extract from the order aggregate some high-value information like:
e Customer ID
e OrderID

¢ Amount

407

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

e Putthose values in headers too
o Serialize the entire payload and send it to the topic
Then, we can create some subscriptions to handle some scenarios, for example:

o A subscription with “huge amounts rule” (over $1000 for instance) to
notify anti-fraud checks and trigger enhanced monitoring

e A subscription for customers with IDs between X and Y, to perform

partitioning based on IDs, if it makes sense.

We can even create a subscription at runtime for a specific need. Assume we want
to debug a specific order, without looking for it inside a subscription with thousands of
other messages. We can create a specific subscription with the most restrictive rule to
filter just the messages we expect to receive and it’s done.

DUPLICATE DETECTION: A GAME CHANGER FOR MESSAGING SOLUTIONS

Each Service Bus Queue or Topic can be configured for duplicate detection. In practice,

the engine behind the duplicate detection mechanism provides us with a method to avoid
duplicates to be forwarded to the queue and, then, be read from the consumers. In the queue/
topic, we specify how long the duplicate detection window is: a longer value means more
resources consumed and poorer performance, a shorter value means we can miss some
duplicates if they arrive outside the timeframe.

The Service Bus will use the Messageld property of the BrokeredMessage to perform the
detection. That value is automatically generated while accepting the message, except if it has
been provided explicitly by the sender. In that case, the sender can generate the Messageld
according to the duplicate detection strategy (for example by hashing the content of the
message) to guarantee two messages with the same payloads are considered equal for the
Service Bus).

This has been a game changer for many scenarios, to guarantee the at-most-once logic in
conjunction with the at-least-once logic provided by the PeekLock receive mode.

408

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

Using Event Hubs

Some years ago we experimented with the birth of the IoT movement for the masses.
“Ingestion” was the buzzword for a while (it is already) and everyone was looking for
a good ingestion technology to handle hundreds/thousands/millions of messages per
second.

The reality has been different, but the market offered some alternatives. Azure
already had Service Bus, which was great but the underlying SQL Server infrastructure
to handle Queues and Topics cannot scale to those numbers. So, it was decided to
create a spin-off product, Event Hubs, which can be considered a lightweight version
of a Service Bus (partitioned) queue. In fact, if we strip off a Queue from its advanced
features, like Sessions, Duplicate Detection, PeekLock, Timeouts, and more, we can
obtain a queue which is much more performant, at the cost of losing some advanced
features.

Event Hubs can be seen as lightweight queues, with some huge differences:

e An Event Hub instance IS partitioned by design and this partitioning
is not transparent to senders and receivers (which require the
sender/receiver awareness).

e An Event Hub does not offer the message deletion. Thus, if we
successfully read a message, we must ensure by ourselves to not read
it anymore. We must take the count.

e An Event Hub does not have advanced features, like Duplicate
Detection, message forwarding, Deadlettering, and many more. If
we are implementing a messaging solution which needs them, Event
Hub is not an option.

So, why should we use Event Hubs? In our opinion, the response is only one:
performance. If we need to scale out for a million messages, Event Hub can handle this
and ingest a huge amount of messages. The challenge is to implement a reliable system
on top of it, to fill the gap of missing features.

409

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

The experienced reader may think “why Event Hubs and not loT Hubs here?” The
answer is simple. Event Hubs is related to messaging, while loT Hubs, despite it
not being a secret that it has been recommended by Microsoft for most scenarios,
is a composition of services designed for loT primarily. While loT Hubs has some
components based on Event Hubs, we think it’s better to understand Event Hubs
for any messaging scenarios, instead of a newer service that is more specific.

The Reliability Problem

The first gap to fill is reliability or processing. In Event Hubs we do not ask for a Message
(to then delete it). Instead, we are reading a sort of stream, where the next message is an
advance of a specific offset in that stream. This takes us to the next big question: “how
can I manage failures?” If message three (among ten messages) is broken, how can we
mark that message to process it again later? We cannot.

At the opposite, we read a message and we are ready to get the next one, but the
consumer process crashed. How can the resumed process know from which message in
the stream it should start? It cannot.

So, the reliability of systems built on Event Hubs have to be defined on top of Event
Hub itself, with strategies at infrastructure level, by using stronger algorithms and other
Azure technologies.

Let’s think about a solution to the problems above, with the following process:

e Aprocess which has to read from the Event Hub starts
o Itreads from a persistent, external data source the starting offset
o [t starts to read messages and, for each one:

e Incase of failure, it sends the failing message to somewhere else
(a Queue or another Event Hub)

o Inboth cases, it moves to the next message and saves a new offset
in the external storage.

410

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

This workflow should parallelize for every partition of the Event Hub itself, since
partitioning is not transparent and a partition equals, more or less, a dedicated
connection to read. Also, this simple workflow can help to solve the issues encountered,
but adds a layer of complexity to the overall process. We notice the following:

o The “external, persistent” data source may be a bottleneck if, for
every single message on a million-message queue, we hit it for a
progress save.

e The “somewhere else” location for the failing messages must be
handled properly. In case of another Event Hub, we must guarantee
we are not just moving the problem away. In case of a Service Bus
Queue, we must also deal with a separate process to consume the
failed messages.

A good trade-off between reliability and performance is probably in the middle, with

some arrangements in constraints definition.

The Concurrency Problem

As mentioned in the previous paragraph, as Event Hubs consumers, we must deal
with multiple individual connections, one-per-partition. This leads very quickly to a
concurrency problem: what happens in cases of multiple readers? Since Event Hubs is
potentially fed with millions of messages per second, it is very likely the reader would
scale in size and number of instance as the throughput increases.

In case there is an individual reader, we said there are multiple individual
connections (one per partition) from it to the Event Hub. Each partition is a separate
stream with elements. With the limits above, how can we setup a resilient job which
reads from the Event Hub and can scale independently?

We must keep track of the complexities related to this scenario:

e There is an Event Hub with four partitions.

e Aprocess on a single machine starts and opens four connections, one
per partition.

e The program workflow is the one mentioned earlier, with external

persistence for offset management and failure redirection.

411

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

o The same process is started on another server to scale out.

» Since there is no logic to mutually assign partitions
complementarily, the process will connect to the whole set of
partitions and it will duplicate the reading logic.

A resilient reader should be implemented to handle scaling from the first day, in this
style:
o The initial process looks up somewhere if there are other instances
running.

o Ifnot, it connects to the whole set of partitions.

o The second instance, performing the check, will notice an instance
already running and tries to get access to a portion of the partitions.

¢ The optimal solution should be an equal distribution of partitions
between instances.

This logic can be achieved with another component on top of the previous ones, a
sort of distributed lock mechanism which in Microsoft Azure, can be offered indirectly
by the Blob Lease API in the Storage Account.

Since an Event Hub partition is not strictly a Queue, we cannot read-and-delete the
messages. This makes it impossible for multiple consumers to efficiently read the
same partition, as there are no simple ways to split the work. We must be aware
of this, because this limits the number of maximum concurrent consumers reading
from an Event Hub to the number of actual partitions. This is not a technical
limitation: instead, it’s a practical one.

Some Code and the EventProcessor Library

From the sender perspective, we can be unaware of the partitioning that is happening on
the Event Hub. In fact, we can just say “send” with no worries about explicitly connecting
to a specific partition (but we will learn it better if we are aware of it).

412

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS
The code following sends random weather information to an Event Hub:

var client =EventHubClient.CreateFromConnectionString(connStr);

var cities = new string[]

{ "Milan", "London", "New York", "Mumbai", "Florence", "San Francisco" };
var weathers = new string[]

{ "Good", "Rainy", "Foggy", "Sunny", "Cold", "Hot", "Warm" };

var startDate = DateTime.Today;

for (int i = 0; i < 1000; i++)

{
foreach (var city in cities)
{
var ev = new
{
City = city,
Weather = weathers.Random(),
When = startDate.AddDays(i)
};
client.SendAsync(
new EventData(
Encoding.UTF8.GetBytes(
JsonConvert.SerializeObject(ev))))
.GetAwaiter().GetResult();
}
}

Suppose now we are attaching a reader to the Hub and suppose this reader reads
only a single partition. It would be interesting to make some sort of real time analytics on
the incoming data, perhaps based on the City provided. For example, we can group all
the information of a single city together.

413

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

So, it is considered “good” to group all the events which are relevant to each other in
the same partition. In the case above, we can partition for City and, for the simplicity of
the randomization algorithm, we can assume a good distribution between partitions.

With the code above, we are sending the event without indicating the actual
partition, but we can fix it as follows:

client.SendAsync(
new EventData(
Encoding.UTF8.GetBytes(
JsonConvert.SerializeObject(ev))),ev.City)
.GetAwaiter().GetResult();

The “ev.City” is passed as the PartitionKey item to the sender. PartitionKey is a value
where a hash is calculated on to assign one of the N partitions available in the Hub.
Assigning explicitly a PartitionKey is like having control of the way items are assigned.
In the case above, since the hash for the same city will be the same on subsequent
iterations, we are de-facto grouping events for the same city in the same partition.

We also definitely “can” send to a specific partition explicitly (by indicating the
partition number), but it is better to use this transparent way, by indicating a preference
using a Partition Key.

414

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

S8 Listener for Consumer Group SDefault - o »
File Edit View Help

Statists
Listener Performance Counters ﬂ
- Events Total: Events/Sec:]
934]|2_znm [+ -
60000 I
Y Average Durdbion (Sec): KB/Sec
40000 YA B | [oaten [v -] [sams |v -]
f/ 1
.."I { — Latency
20000 | /| s
/ \ — KB/Sec
/ \ Parttion:
o ———— - 0 =
76 76 476 676 876
Events infe
} J Name Value
_m Patiionid [
Event Hub Path westhes
Refresh Interval (sec). Receive Timeout fsec): Max Batch Size: Starting Date Time UTC: L dOffset 14104
[30] [0] [0 | O 20121217 @~ LastEnqueuedTime Utc 012018 11....
Begin Sequence Number 0
E Loggng [Verbose E4] Tracking [Graph [Offset Inc. O

=12:17:41> [EventProcessoz] Svent: Partisvionld=(3) 228) 259761 (1170272008 11:17:40]) ~
«<l2:17:41> [EventProcessor] Event: Partitionld=(0] [228] [2€87€] [11/02/2018 11:17:40]
<12:17:41> [EventProcesscr] Event: Pazticicnld=[1] 228] © 2587€) [L1/02/2008 11:17:40)
<12:17:41> [EventProcessor] Event: PartitionIds(2] 228]) 2€87€) (11/02/2018 11:17:41]
<12:17:41> [EventProcessor] Event: Parcicienld=[3] Seq H 22€) Offser=[2€05€) EnguevedTimeUce=[11/02/2018 11:17:41)
<12:17:41> [EventProcessor] Event: PartitionIde(d] 22€] [2€€5€] i (11/02/2018 11:17:41]
<12:17:41> [EventProcessoxr] Event: Partisionld=(l) 228] ofz 2E05E] E: (L1/02/20L8 11:17:41)
<12:17:41> [EventProcessor] Event: Partitionld=([2] 2281 [2€€8€] [11/02/2018 11:17:41]
<12:17:41> [EventProcesscr] Eveat: Parzicienld=([3] 227] © 2€218] E LIz [11/02/20L8 11:17:41]
«12:17:41> [EventProcessor] Event: PartitionId=(0] 2271 2€824) [11/02/2018 11:17:41]
<12:17:42> [EventProcessor] Event: Parcicionld=[1] S H 227) Offser=[2€21€]) EnquevedTimeUce=[11/02/2018 11:17:41) o

Figure 6-10. Service Bus Explorer is reading the events generated by the
previous application from the Hub. As we may notice, it is cyclying four partitions
(from 0 to 3).

Despite the sending process seeming to be very simple and straightforward, the
reading counterpart can be tricky (Figure 6-10). As we discussed earlier, we must take
into consideration several aspects to guarantee reliability and support for concurrency.

With the library we used for the sample above (NuGet - Microsoft.Azure.EventHubs),
we can also implement retrieving logic, but at a very low level, dealing directly with
partitions. A good library already written and maintained by Microsoft, that does all of
the work for us, in order to be compliant with the issues above, is the Event Processor
Host library (NuGet - Microsoft.Azure.EventHubs.Processor).

415

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

The library implements the following key concepts:
o Connecting to the whole set of partitions transparently

o Incase other processes are making the same, using a remote Storage
Account to mutually synchronize the partition assignments

o Using the same storage account, keeping track of the reading
progress by saving the offset

To use that library, the key contract to implement is the IEventProcessor interface:

public class WeatherProcessor : IEventProcessor

{
public async Task ProcessEventsAsync(PartitionContext context,
IEnumerable<EventData> messages)
{
foreach (var msg in messages)
{
dynamic ev =
JsonConvert.DeserializeObject(
Encoding.UTF8.GetString(msg.Body.ToArray()));
//Process
Console.WritelLine($"Receiving {ev.Weather} from {ev.
City}");
}
await context.CheckpointAsync();
}
}

The EventProcessorHost will trigger this function where there are available
messages. We don’t know the number of messages and it depends on the runtime.
Additionally, through the PartitionContext object, we can call the Checkpoint function to
save the progress of the elaboration.

416

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

Keep in mind that this is a high-level library built on top of Event Hubs and Azure
Storage. There’s no concept of Checkpoint in Event Hubs themselves, and its usage
is to be watched to avoid unwanted bottlenecks.

Final Thoughts on Event Hubs

The next lines may appear opinionated so please take them as purely our point of view.
During the last years, we used a lot Event Hubs in production with the whole options
to read/write on it. In case we need a reliable message store without loss, not a single
message, with Event Hub it is harder to achieve. The open issues are:

o In cases where we checkpoint every message processed, we are
limiting the actual power of Event Hubs, at the maximum operation
speed of the storage account used for checkpoints

o In cases where we checkpoint a set of messages, we cannot deal with
individual failed messages

o In cases where the code or the coordination runtime between
multiple instances is not 100% safe, we can read streams concurrently
by multiple messages. This should be avoided, however, in cases of
robust and well-proven consumers

We can use Event Hub as the ingestor, which safely persists every message that
arrived. But at the consumer side, we can also setup some pass-through logic to flood
another data store, which has more reliability features, like a Queue. The reader may
think a Queue after an Event Hub may represent a bottleneck, and it is, definitely. But we
can also write an intelligent event consumer that does this work reliably.

We finally think that Event Hubs is very powerful if used in conjunction with a
robust consumer, either a custom application or a managed service. The most important
managed service that can be placed after an Event Hub, in Azure, is the Stream Analytics
Job, which is the next topic discussed.

417

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

Understanding Real-Time Analytics

The current hype around the term real-time in conjunction with Analytics can be
explained by the growing trend to move the moment in time aggregate data is built on
raw (punctual) data closer. In the last few decades, we developed data-driven solutions
which generated streams of information that went to RDBMS, to be ETLized (Extract-
Transform-Load) in second time (very often, during the night).

This process is, in the majority of cases, very resource-intensive and expensive,
both for maintenance and for computation. In addition, the aggregate data will become
available after a considerable timespan (typically a day) which is a loss in terms of
competitive gain for the “clients” of analytical data (which are, usually, the executives).

Forgive the over-simplification, but the momentum around Analytics is very
interesting, in our opinion. We are moving from standard ETL solutions, which
are performed “offline’, where the data is at rest, to real-time solutions, where the
aggregations are made while the data is in transit. This has two concurrent goals:

o Be more competitive, by having summarized data earlier

e Beleaner, by reducing the dependencies from the normalized
database as the primary source of information

Of course, there are not just good points. Some critical issues are around the corner:

o ETL aggregations often start from a normalized database and,
through various complex projections (using multiple JOINs to merge
data from several tables), produce the output

o In cases of real-time processing, ALL the information must transit
in a single event, since there isn’t (or shouldn’t be) a continuous
lookup into other data stores

o With ETL as a decoupled process, analytics can be done with
complete unawareness of the other components of the system

o Incase of real-time processing, the event producer must be aware
AND produce the appropriate aggregate during its generation

418

CHAPTER 6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

e With the traditional transformation process, we can ingest little
non-redundant messages of few fields; the ETL will enrich the data
appropriately.

o Incases of real-time processing, each event should be enriched
with the full set of useful (but redundant) information.

Last, but not least, the real-time processing engine must be designed to be resilient,
robust, and, more importantly, powerful, in terms of computational power needed to
build aggregates in real-time, especially with wide windows of aggregation.

In Azure, the best option for managed service that does this work is Stream Analytics,
which is discussed in the next section.

Understanding Stream Analytics

Stream Analytics relies on the concept of processing data while it is in transit. If you have,
for example, a dataset of customers like the following:

OrderlD CustomerlD CustomerName Amount Iltems AcquiredOn

0ID2145 CID5500 Mario Rossi 49,00 € 7 05/05/1938 18:03
0ID8339 CID9766 John Doe 120,00 € 12 16/02/2011 08:16
0ID1001 CID6800 Jane Doe 175,00€ 25 11/11/1919 19:29
0ID9475 CID5500 Mario Rossi 24,00 € 4 04/01/2008 06:54
0ID1870 CID9766 John Doe 486,00 € 54 12/12/2000 08:54
0ID3324 (ID3066 Francesco Diaz 210,00€ 21 19/02/1904 05:36
0ID2096 CID9496 Roberto Freato 104,00 € 13 22/08/1934 11:47
0ID2744 CID9496 Roberto Freato 80,00 € 10 16/10/1927 20:30

It’s pretty straightforward to understand what the following query does:

SELECT CustomerID,AVG(Amount)
FROM Customers
GROUP BY CustomerID

419

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

In an ordinary SQL engine, this query takes the dataset, scans the rows and
calculates the aggregate values. Now suppose we can write the same query in a real-time
processing technology like Stream Analytics (and we can, since the query language is a
SQL-like dialect): how will it work?

With in-transit data, we don’t have the dataset yet at the time of query execution.
Instead, data arrives “row” by “row” or event-by-event. Writing such a query is an
abstraction to let us imagine we are grouping data as we did in SQL, but what happens
under the hood is completely different.

In a given time TO, the first event arrived to Stream Analytics. While evaluating the
query above, we can think “how can it group results if there is just one?” With in-transit
data, aggregate functions hide a wait buffer of a given time, useful to perform aggregate
calculations. This is why the previous query is incomplete for Stream Analytics, because
there’s no indication of what time should be considered for the window. Remember, with
data in-transit, there’s no concept of the “entire dataset’, since it would probably be an
indefinite wait to the end of a never-ending stream.

As mentioned above, we can also enrich data while it’s in transit, by using the
concept of “Reference Data” of Stream Analytics. In practice, we can define a

Blob source from where ASA will fetch the most-updated blob with some data in
JSON. That data then becomes usable from within the Analytics query, with a JOIN
clause. This method is very practical and useful to provide a set of data which is
less-frequently modified to attach to live stream at runtime.

Let’s look at another one:

SELECT System.TimeStamp AS SamplingYear, CustomerID, AVG (Amount)
FROM Customers TIMESTAMP BY AcquiredOn
GROUP BY CustomerID, TumblingWindow(year,3)

This is an almost-correct SQL-like query for Stream Analytics:

e We define the input source and we set the field containing the
temporal information (TIMESTAMP BY clause)

e We group by the CustomerID with an additional built-in function that
evaluates the aggregate on a timespan basis

420

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

o We project the sampling reference end time (System TimeStamp) to
enrich the result

However, let’s think for a moment: is Stream Analytics really taking events (maybe
millions) in a buffer for an entire year? Fortunately, it is not. The maximum size of a
window is currently seven days, expressed as TumblingWindow(d,7).

Finally, we need to forward those results to a sink, which may be chosen from a good
variety of managed Azure services. To redirect the results to a sink, we can modify the
query as follows:

SELECT System.TimeStamp AS SamplingYear, CustomerID, AVG (Amount)
INTO AvgAmounts

FROM Customers TIMESTAMP BY AcquiredOn

GROUP BY CustomerID, TumblingWindow(d,7)

Given that Customers is defined as the input, AvgAmounts has been defined as the
output and the INTO clause makes the rest (Figure 6-11).

i

Inputs Query
1 1 SELECT System.TimeStamp AS SamplingYear, CustomerID, AVG (Amount)
2 INTO AvgAmounts
Customers 3 FROM Customers TIMESTAMP BY AcquiredOn
4 GROUP BY CustomerID, TumblingWindow(d,7)
5
Quitputs

1

AvgAmounts

[

Figure 6-11. We see a Stream Analytics Job with an input, an output, and the
query

A “sink” is an output port for the Stream Analytics query. We can define a sink going
into the following series of Azure services:

e Azure Data Lake Store
¢ SQL Database

e Blob Storage

e Event Hub

e Power BI

421

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

o Table Storage

¢ Service Bus Queues
o Service Bus Topics
e Azure Cosmos DB

e Azure Functions

This enables scenarios where we filter, aggregate, project, and route incoming events
into several different (and even multiple) outputs.

This is just an introduction to Stream Analytics, since we do not go deep into
technical details or service features. Also, there are a lot of interesting built-in functions
to inspect real-time data and where there is not integrated language; we can integrate it
using JavaScript custom functions.

Understanding Applinsights

Beginning this chapter we wrote about web analytics, we quoted Google Analytics
as a powerful tool to get insight from Web Application’s users. We also introduced
Applnsights, as a great Microsoft alternative to Google Analytics, for both Web Analytics
and application telemetry. In these last few lines of the book, we try to summarize how
to approach to Applnsights to get the most out of it.

Let’s start by assuming AppInsights is big data. This is not relevant by the statement
itself, but helps to define some boundaries:

e We can call the AppInsights API an indefinite number of times,
storing tons of information generated by our side

» Every single message has to be sent de-normalized. So, if we are
tracking a Page View, we need to include every relevant details to do
further analysis and pivots on that

o Every application, for every Azure user, can send to AppInsights
information on every method calls (at a cost, either in terms of
money and application performance), and the AppInsights engine
will accept them gracefully

422

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

Think about Applnsights as a sink for the emotions of our applications. We can track
everything, from the users behavior on the web page, to exceptions on the server-side,
to custom events where we define variables that we are going to use later to perform
analysis.

var client = new TelemetryClient();

var properties = new Dictionary<string, string>();

var metrics = new Dictionary<string, double>();
properties["Username"] = user.Username;

properties["Gender"] = user.Gender;

properties["ZipCode"] = user.ZipCode;

metrics["TimeToRegister"] = (user.RegisteredAt-user.LandedTime).
TotalSeconds;

client.TrackEvent("userRegistered", properties, metrics);

The code above shows how to perform explicit event tracking through AppInsights,
while the basic tracking is offered automatically via configuration and minor initialization
code. In the code above, we are tracking a website registration as a lead/conversion,
measuring the time between the landing and the registration itself. Username,

Gender, and ZipCode are custom properties on which we will make pivots later, while
TimeToRegister is a metric (a numeric value) useful to calculate aggregates on.
We can also configure a factory to create TelemetryClient instances:

public TelemetryClient Client

{
get
{

if (Debugger.IsAttached)

{
TelemetryConfiguration.Active.TelemetryChannel.DeveloperMode =
true;

}

TelemetryConfiguration.Active.InstrumentationkKey = key;

return new TelemetryClient(TelemetryConfiguration.Active);

}
}

423

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

In this case we are telling the library to force it to speed up the pipeline to the data if
we are debugging, to see results as soon as possible.

To see results, we can use the AppInsights Analytics portal as in the screenshot
below:

Demo » Analytics

SCHEMA FILTER New Query 1 w NerueryZ = % +

f# Home Page X Mew Query
MKB Last 24 hours v B @ G

customEvents

| where name=="userRegistered"

| summarize avg(toint(customMeasurements.TimeToRegister))
by tostring(customDimensions.Gender)

| render barchart |

v ¥ Demo

* APPLICATION INSIGHTS
traces

customEvents

pageViews

requests
dependencies
exceptions
availabilityResults
customMetrics
performanceCounters
browserTimings

vy v Vv Vv Vv v Vv v v v

Figure 6-12. We wrote a query using the Log Analytics query language

The query above (Figure 6-12) will render a bar chart with the average registration
time for every gender of user registered to the application, in the last 24 hours (by
default) or within a timeframe of choice.

This query can also be placed inside an API call (Figure 6-13), to use AppInsights
Analytics as a server-to-server service, without user interaction:

424

CHAPTER6 WORKING WITH IN-TRANSIT DATA AND ANALYTICS

zure App

Hame Quickstart

Metrics Application use demo app) Request
GET /metrics Application 1D
Application ID
HTTP cURL
POST /metrics N
XX
GET /metrics/metadata
AP Key GET fvl/apps/ X0/ queryiquery=customEventsN7CK2dnher eXidnameRIDNIDN Juserfegiste
Events redk22%7C%20summarizeXzfavg(toint {customMeasurements. TimeToRegister)) X20%28%820%
=i WK 20x20byX20tostring{ custonDimensions .Gender J47(%28renderiibarchartX2é HTTP/1.1
T fevents

Host: api.applicationinsights.io

-api-key: 0K
GET fevents/Smetadats IR

Parameters tquery syntan
Query query sy
GET fquery Timespan Response
POST fquery It: PT I
GET fau hem, HTTP
T fqueryfschema Query
avg(toint{customMeasurements.Time WITPrLLL 200
ToRegister]) content-type: application/json; charset=utf-8
by
tostring(custol
| render barchart

nensions.Gender) {
“tables®™: [

Figure 6-13. The API portal for AppInsights Analytics

Summary

In this chapter, we learned how data can be in-transit and which options are available.
Messaging, through Service Bus and Event Hubs, is great for many scenarios where

we need to decouple systems and where the complexity can be handled by loose
integration. We closed the book with an introduction to real-time analytics with powerful
services like Stream Analytics and Applnsights to let the reader take action on those
powerful technologies. Thanks for reading!

425

Index

A managed backup-Microsoft, 113
RESTORE option, 111
retention, 104
URL, 105

blob objects, 100

blob storage (see Blob storage)

data lake
components, 328
Cosmos and Scope, 327
high-level description, 328
optimize performances and

Analytics Units (AU), 370, 384
AU usage modeler dashboard, 388
diagnostics section, 387
image represents, 387
job properties, 385
Job View tool, 385
output of job, 386
Anomalies/security detection, 76
database auditing, 76

feature, 76 esion 327
threat detection, 78 esigi, s
services,
Applnsights

data movement library, 182
disks and managed disks, 102
embedded features, 145
backup, 147
configuration options, 146
edit button, 146
integration, 147
patching, 147
Powershell command, 145
SQL connectivity level, 146
SQL connectivity option, 147

analysis, 423
API port, 424-425
definition, 422
log analytics query language, 424
TelemetryClient instances, 423
Archive access tier, 181
Atomicity-Consistency-Isolation-
Durability (ACID), 174
Azure
access tiers, 97
account creation, 99
backup data, 104
button creation, 109
database files and snapshots, 121
Program.cs file, 106
free cross-platform tool, 109
key points, 104

storage usage, 146
features, 95
HDInsight, 391
hybrid cloud (see Hybrid Cloud and
IaaS)
migration (see Migrations)
427

© Francesco Diaz, Roberto Freato 2018
E Diaz and R. Freato, Cloud Data Design, Orchestration, and Management Using Microsoft Azure,
https://doi.org/10.1007/978-1-4842-3615-4

https://doi.org/10.1007/978-1-4842-3615-4

INDEX

storage design and performance
considerations, 148
typical workloads, 141
Azure Active Directory (AAD), 347
Azure Compute Unit (ACU), 139
Azure Data Factory (ADF), 263, 342

Azure (cont.)
Redis Cache (see Redis)
replication, 98
search, 240
category pages, 240
eCommerce portal, 240

full-text search implementation, 242
homepage, 240
implementation, 254
planning, 248
product page, 240
search-as-a-service solution, 245
search page, 240

Service Bus, 399

storage account types, 95

storage tables, 201

stretched databases, 126
database icon, 128
data migration assistant

screenshot, 128
data on-premises, 131
DSU and pricing model, 127
feature, 126
filter criterion, 129
inline table-valued function, 130
monitor tool, 129
options, 132
sys.dm_db_rda_migration_
status, 130

table properties, 130

Virtual Machines, 137
ACU concept, 139, 143
categories, 140
database workload configuration, 144
installation, 137
scale-up and scale-down, 143
sizes, 139
storage design, 148

428

administration, 272
advantages, 265
cloud orchestrator engine, 264
copy activities
compression, 319
concurrency, 319
data management gateway, 320
data movement units, 318
parallel copies, 319
performance table, 317
copy data tool, 273
costs, 321
data management gateway, 314
data movement and transformation
service, 265
data transformation activities, 301
ETL and ELT projects, 263
JSON Scripts, 288
orchestration solution, 263
performance, scalability and costs, 316
solutions, 272-273
terminology, 266
components, 266
data movement activities, 269
datasets, 268
linked services, 267
pipelines, 271
relationship, 266
transformation activities, 271
v2 (see Azure Data Factory v2 (ADFv2))
Visual Studio, 297
workflow, 264

Azure Data Factory v2 (ADFv2)

ADLS copy data, 352
adlsbook, 353
blob files, 352
dataset, 355
designer, 359
destfileadls, 354
destfileadlsstage, 355
execution and monitoring, 360
IfCondition activity, 356
integration runtimes, 353
linked service, 355
sourcefile, 354
sourcestorageblob, 354

authoring, 322

branching, 323

control flow tasks, 323

integration runtime, 324

key concepts, 322

Linux, 324

login page, 322

parameters, 323

triggers, 323

Azure Data Lake Analytics
(ADLA), 328, 363

account creation, 367

Apache YARN, 364

data explorer, 368

data sources, 367

description of, 367

firewall, 367

job management, 369

key concepts, 363

pricing Tier, 368

tools, 366

users, 368

U-SQL (see U-SQL language)

Visual Studio, 370

INDEX

Azure Data Lake Store
(ADLS), 328-329
analytics, 329
copy data
ADE 342
AdlCopy, 343-344
authentication, 345
Azure Data Factory v2, 352
CLI, Powershell, 342
DistCp, 343
import/export service, 343
ingress/process/egress, 344
method, 341
.NET console application, 348
possibilities, 342
Sqoop, 343
SSIS, 342, 346
Cosmos, 329
creation
.azuredatalakestore.net, 333
encryption, 333
Get-AzureRmDataLake
StoreAccount, 334
location, 333
New-AzureRmDataLake
StoreAccount cmdlet, 336
resource group, 333
screenshot, 335
subscription, 334
tier, 334
data explorer tool, 339
Dryad, 329
HDFS, 332
key concepts, 330
Object ID property, 341
operations, 336
performance, 361
Scope, 330

429

INDEX

Azure Resource Manager (ARM)

model, 84

Azure Site Recovery (ASR), 156, 159

automation runbooks, 167
AzureSiteRecovery, 159
cleanup test failover, 165
configuration dashboard, 160
failover procedure, 166
failover test mask, 164
options, 160

production and target, 164
replication, 133, 159, 161
RPO and app-consistent, 162
storage, 161

target region, 160

VMs sizes and series, 162

Backup

disaster recovery, 182

context, 186

copy process, 184

cross-platform, 183

DirectoryTransferContext
object, 185

minor infrastructure code, 188

serialization, 187

service disruption and
unavailability, 182

simple-but-resilient backup
service, 183

snapshots, 191

user side, 182

Bad connection management

connection pool, 41
Dispose(), 42
fragmentation, 41

430

Blob storage
access and security
browser, 197
encryption options, 199
public and private container, 197
security perimeter, 200
shared access signatures, 198
worldwide, 196
concurrency, 192
containers and access levels
case sensitive, 179
comprehensive applications, 177
container, 178
options, 177
structure, 176
URL patterns, 176
redundancy and performance, 179
backup and disaster
recovery, 182
components, 179
high-end number, 180
scalability targets, 180
service tiers, 181
services/endpoints, 175, 176
Bring your own license (BYOL), 84

C

Cloud orchestrator engine, 264
Cold access tier, 181
Complete() method, 403
Concurrency
ADF copy activities, 319
approach, 192
event hubs problem, 411
optimistic concurrency, 192
pessimistic concurrency, 194
scenario, 192

Copy data tool, ADF
activity runs, 277
custom query, 278
data slice, 276
deployment, 284
email alerts, 285-286
error handling, 282-283
exercise, 274
list of slices, 287
ModifiedDate data, 286
monitor and manage tool, 285
performance, 282
pipeline, 276
records of, 286, 287
relational data stores, 282
SalesLT.Customer, 275, 278
sink data store, 280
slice, 284
source, 277
system variables and functions, 279
table mapping, 280-281
UPSERT semantics, 281
West US datacenter, 274
wizard, 273-274

D

Database files and snapshots, 121
database engine, 121
datafile and log file snapshots, 124
pointers-snapshot files, 124
primary data files (.mdf), secondary
data files (.ndf) and log
files (.1df), 121
screenshot, 123
T-SQL script, 122
URL WITH FILE_SNAPSHOT, 125
WITH FILE_SNAPSHOT option, 124

INDEX

Database services
adoption phase, 1
connectivity
authentication, 4
connection modes, 3
libraries, 5
properties, 3
security, 4
consumer perspective, 2
index design
creation, 13
evaluation, 15
management, 17
MySQL, 79
PostgreSQL, 81
service constraints, 3
SQL Server (see SQL Database)
tiers and size, 5
Database Stretch Units (DSU), 127
Database Transaction Unit (DTU), 5
Data generation, 8
Data Management Gateway (DMG), 266
configuration manager, 315
considerations, 314
copy activities, 314, 320
data factory editor, 315
installation, 314
linked service definition, 316
Data Migration Assistant (DMA), 128
Data Movement Units (DMU), 318
Data-tier application (DAC)
.bacpacfile, 135
bulk import operations, 136
export database objects, 134
schema and data export, 135
sqlpackage.exe tool, 134, 136
.zip file, 135
Data Transaction Units (DTU), 318

431

INDEX

Data transformation activities, 301 IEventProcessor interface, 416
chaining activities, 307 library implementation, 416
compute environment, 301 lightweight queues, 409
custom activities reliability problem, 410

ADEzip file, 312 EventProcessor library, 412
HDInsight cluster/Azure Batch Extract-load-transform (ELT), 263
pool, 309 Extract-transform-load (ETL), 263

execution, 313
JSON code, 311
.net activity, 312

F

pipeline, 311 Filesystem dependencies, 2
requirements, 309 Flat namespace, 178
slices output, 312 Fully Qualified Domain Name (FQDN), 367

virtual machines, 313
key points, 301 G
stored procedure activities, 302
Design Event-Driven Applications, 398
Disaster recovery (DR) service, 133
Domain dependencies, 2
Duplicate detection mechanism, 408

Geo-redundant storage (GRS), 98, 181
Geo-replication, 31
Google Analytics (GA), 393

H

E Hadoop Distributed File
System (HDFS), 332
cluster node, 332
DataNode functions, 333
features of, 332
NameNode functions, 332
HDInsight, 391
High performance computing (HPC)
solution, 310
HighWaterMarkChange

Elastic database tools, 51
E-learning system, 180
executionLocation parameter, 273
Encryption
approach, 60
blob storage, 199
CategoryName column, 62
scenarios, 60
transparent data encryption, 60
Wizard process, 61 DetectionPolicy, 261

End-user authentication, 347 Hot access tier, 181
Event hubs, 409 Hybrid Cloud and IaaS

concurrency problem, 411 AlwaysOn availability groups, 157

EventProcessor library, 412 asynchronous replicas, 158
final thoughts, 417 failover cluster instances, 158

432

site recovery, 159
synchronous replicas, 158
configurations, 152
HA/DR options, 153
AlwaysOn availability groups, 155
Azure Site Recovery, 156
disaster recovery, 154
log shipping, 155
URL/SQL Server managed
backup, 154
HADR SQL Server configurations, 153

Index design, 13
automatic tuning, 18
creation, 13
evaluation, 15
management, 17
migrate existing solutions, 20
DB export, 24
move option, 22
preparation, 20
theoretical approach, 13
Integration Runtime (IR), 324-325
In-transit data, 393
big data, 393
event hubs, 409
messaging, 394
service bus, 399
unidirectional messaging, 396

J, K

Jobs, 384

JSON scripts, 288
author and deploy option, 288
data factory editor, 288

INDEX

linked services, 289
dataset file, 290
pipelines and activities files, 293
RedirectingStorage-rh4 file, 289
structure, 289

portal, 289

L

lastCheckpoint object, 187
Linux, 88
Locally redundant storage (LRS), 98, 181

Messaging layer, 394
aspects, 395
decoupling/integrating components/
systems, 394
implement event-driven
architectures, 394
sending emails, 395
$MetricsCapacityBlob, 211
$MetricsHourPrimary
TransactionsBlob, 212
Microsoft Azure
components and features, 114
encryption and a custom schedule, 115
managed backup, 113
managedbackup container view, 116
output, 118
restore options, 120
SQL Server image, 121
transaction log backup, 119
trigger, 118
Migrations, 20, 132
AzCopy, 133
data-tier application (DAC), 134

433

INDEX

Migrations (cont.)
DB, 24
moving option, 22
preparing database, 20
scenarios, 132

MySQL
administration tool, 81
differences, 80
server-level parameters, 80
similarities, 79

N

Not only SQL database (NoSQL)
blob storage, 175
design approach, 170
documents, 173
facts, 171
features, 170
Microsoft Azure, 175
simpler options, 172
tracing data, 171

O

On-demand HDInsight clusters, 302
Optimistic concurrency, 192

Orchestration, see Azure Data Factory

(ADF)

PQ

PartitionKey, 202
Pessimistic concurrency, 194
Pipelines, 271

JSON activities files, 293
PostgreSQL service, 81
Pre/Post-deployment scripts, 8

434

R

R and Python extensions, 384
Read-access geo-redundant storage
(RA-GRS), 99, 181
Real-time analytics, 418
Applnsights, 422
concurrent goals, 418
decoupled process, 418
ETL aggregations, 418
over-simplification, 418
stream analytics
AvgAmounts file, 421
concepts of, 419
output port, 421
query, 421
query execution, 420
SQL-like query, 420

traditional transformation process, 419

Redis, 216

basic tier, 235

caching scenario
approach, 217
distributed cache, 221
editorial workflow, 216
fresh DB, 217
invalidation, 219
single central datastore, 223
system design, 216
unit of, 219
web application, 221-222

eviction policy
flow, 225
fragmentation, 224
level option, 225
meaning, 224
memory reserved, 224
total memory, 224

features, 223
local caching and notifications, 226
blade, 227
faster, in-process and
local cache, 228
KEA notifications, 227
Keyspace events, 227
scenario, 226
management, 233
clustering and sharding, 233
geo-replication, 234
Import/Export, 234
metrics, 237
Hits/Misses, 237, 238
microcaching, 238
quiet server load and
bandwidth, 239
service, 239
short-expiration scenarios, 237
non-SSL port, 237
persistence, 230
premium tier, 235
private deployments, 232
RDB and AOF method, 231
scaling and limitations, 235
security, monitoring and
performance, 235
standard tier, 235
Web.config file, 235

RowKey, 202

Scaling SQL Database

drawbacks, 50

elasticity management, 51
elastic database tools, 51

evolution, 49

INDEX

existing application, 49
multi-tenant, 50
pooling option
elastic pools, 54
price cap, 53
SaasS solution, 49
scaling up, 55
Search Engine Result Page (SERP), 240
Search service, 254
duplication, 245
full-text search implementation, 242
AdventureWorksLT
database, 242
capabilities, 243
description field, 243
index, 243-244
key points, 244
query, 243
HTTP endpoint, 248
implementation
change and delete detection, 260
establishment, 254
features, 254
fields definition, 256
index, 258
out-of-the box, 258
properties, 257
scoring profile, 256
planning
concurrent queries, 253
multitenancy, 250
pricing model, 248
query keys, 252
read-only mode, 252
security and monitoring, 251
table, 249
resource, 246
search-as-a-service solution, 245

435

INDEX

Server-wide commands, 2
Service Bus
Complete() method, 402
concepts, 399
differences, 402
enque some messages, 400
explorer, 403, 415
namespace, 399
notify parties and route
messages, 404
DataContractSerializer, 406
development point, 406
Frontend subscription, 407
high-value information, 407
many-to-many notifications, 404
routing rules, 405
scenarios, 408
subscriptions, 404, 405
Receive method, 402
sub-services, 399
tiers, 400
Service tiers and performance levels, 6
Service-to-service authentication, 348
Shared Access Signatures (SAS), 198
Snapshots, 191
SoftDeleteColumnDeletion
DetectionPolicy, 261
Source control integration, 8
SQL Database, 25
approach, 8
backup options, 63
export option, 64
long-term retention, 64
SSMS, 63
compile-time checks, 8
design failures, 26
buffering, 26
retry policies, 27

436

development environments
database copies, 38
topology, 37
feature, 8
hot features, 34
in-memory, 35
JSON support, 36
temporal tables, 35
monitoring options, 65
anomalies/security detection, 76
consumption pattern, 67
elastic pools, 68
pattern, 68
pay attention, 66
resources monitoring, usage and
limits, 66
storage option, 68
troubleshooting features, 69
multi-tenant, 9
logical pools, 12
schema, 11
single-tenant architecture, 10
official documentation, 9
per-consumption, 26
scaling (see Scaling SQL Database)
security options, 56
authentication, 57
dynamic data masking, 62
encryption, 60
firewall, 58
split (read/write) applications, 29
failover groups, 33
geo-replication, 30
multiple applications act, 29
replica relationship, 30
worst practices
bad connection management, 41
batching operations, 47

client-side queries, 43
entity framework, 43
potential bottleneck, 40
several projects, 39

INDEX

pipeline, 305
stored procedure, 302
T-SQL code, 303

SQL Server 2017
different editions, 86
hybrid cloud (see Azure)

T

Table storage, 201

Hybrid Cloud workloads, 83

TaaS scenario, 83

overview, 85

relational database server, 84
SQLPAL, 87

SQL Server Operations Studio, 91

Azure Monitor, 215
client libraries, 202
CRUD operations, 205
data types, 203
fields, 203
monitoring
diagnosing and troubleshooting, 208

SQL Server Integration Services (SSIS), 264
SQL Server Management Studio (SSMS), 91
SQL Server Operation Studio (SSOS)

logging, 213
metadata, 214

Backup options, 93

database dashboard views, 93
docker container, 92

features, 92

overview, 91

metrics and logging, 209, 210
OData and supported queries, 207
PartitionKey, 202-203
planning option, 202
RowKey, 202-204

table space widget, 94 solution, 205

T-SQL, 92 Timestamp, 203
SQL Server Platform Abstraction Layer Timestamp, 203
(SQLPAL) Transparent data encryption (TDE), 60, 147

Troubleshooting
dynamic management views, 71
elastic pool, 70
features, 69
query performance insight, 74

Docker container, 89
high level architecture, 87
installation, 87
Linux, 88
sqlcmd tool, 90

Stored procedure activities
adfdataplatform, 302 U
dbo.Archive table, 302
dbo.dummyTable table, 303
dbo.LogArchive table, 302
destination database, 307
objects, 302
output dataset, 305

Ubuntu Server, 88

Unidirectional messaging
benefits, 396
content management system, 396
e-commerce platform, 396-397

437

INDEX

Unidirectional messaging (cont.) sizes, 139
etherogeneous components, 398 ACU concepts, 139
multiple applications, 398 categories, 140
multiple sources, 397 storage design, 148

User defined objects (UDO), 374 storage design and performance

U-SQL language, 363, 371 considerations
Analytics Units, 384 Add-AzureRmDataDisk cmdlet, 149
assemblies, 382 disk caching, 149
C#, 381 geo-redundant storage
code-behind and assemblies, 380 replication, 149
CREATE ASSEMBLY U-SQL IOPS and throughput, 152

command, 382 multiple data disks, 151
database objects, 374 portal disk section, 150
general execution pattern, 372 Powershell script, 149
job authoring editor, 369 premium disk types, 151
management section, 390 premium storage, 149
monitoring job, 390 SQL Server instance, 151
query anatomy, 372 system databases, 151
R and Python extensions, 384 temporary disks, 148
REFERENCE ASSEMBLY, 383 typical workloads, 141
submission policies, 389 Visual Studio, 297
tSearchLog table, 376 ADF solutions, 299
T-SQL/ANSI SQL, 371 JSON editor, 298
user defined objects, 374 project templates, 298-299
tools, 297

V, W, X

Virtual Hard Disks (VHD), 148 Y

Virtual Machines, 137 Yet Another Resource Negotiator
dashboard, 147 (YARN), 364
database workload configuration, 144
installation, 137
scale-up and scale-down, 143 Y4
Series, VM Sizes, VM Size, 141 Zone-redundant storage (ZRS), 98, 181

438

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Foreword
	Introduction
	Chapter 1: Working with Azure Database Services Platform
	Understanding the Service
	Connectivity Options
	Libraries

	Sizing & Tiers

	Designing SQL Database
	Multi-tenancy
	One Database for Each Tenant
	Single Database with a Single Schema
	Single Database with Different Schemas
	Multiple Logical Pools with a Single Schema Preference

	Index Design
	Index Creation
	Index Evaluation
	Index Management
	Automatic Tuning

	Migrating an Existing Database
	Preparing the Database
	Moving the Database
	Exporting the DB

	Using SQL Database
	Design for Failures
	Buffering
	Retry Policies

	Split between Read/Write Applications
	Using Geo-Replication
	Using Failover Groups

	Hot Features
	In-memory
	Temporal Tables
	JSON Support

	Development Environments
	Database Copies

	Worst Practices
	Bad Connection Management
	The Driver/Provider to Connect to the DB does not Use Connection Pools
	The Connection Pools are Fragmented
	The Connections are not Disposed Properly

	Client-Side Querying
	Pay Attention to Entity Framework
	Batching Operations

	Scaling SQL Database
	Managing Elasticity at Runtime
	Elastic Database Tools

	Pooling Different DBs Under the Same Price Cap
	SQL Database Elastic Pools

	Scaling Up

	Governing SQL Database
	Security Options
	Authentication
	Firewall
	Encryption
	Transparent Data Encryption
	Always Encrypted

	Dynamic Data Masking

	Backup options
	Long-term Retention

	Monitoring Options
	Resources Monitoring, Usage and Limits
	SQL Database Elastic Pools

	Troubleshooting Features
	Dynamic Management Views
	Query Performance Insight

	Anomalies/Security Detection
	Database Auditing
	Threat Detection

	MySQL and PostgreSQL
	MySQL
	PostgreSQL

	Summary

	Chapter 2: Working with SQL Server on Hybrid Cloud and Azure IaaS
	Database Server Execution Options On Azure
	A Quick Overview of SQL Server 2017
	Installation of SQL Server 2017 on Linux and Docker
	SQL Server on Linux
	SQL Server on a Docker container

	SQL Server Operations Studio

	Hybrid Cloud Features
	Azure Storage
	Storage Account Types
	Storage Access Tiers
	Storage Replication
	Storage Account Creation
	Blob Objects
	Disks and Managed Disks

	Backup to Azure Storage
	SQL Server Backup to URL
	SQL Server Managed Backup to Microsoft Azure
	Using Azure Storage to host SQL Server Database Files and Use Azure Snapshots

	SQL Server Stretched Databases

	Migrate databases to Azure IaaS
	Migrate a Database Using the Data-Tier Application Framework

	Run SQL Server on Microsoft Azure Virtual Machines
	Why Choose SQL Server on Azure Virtual Machines
	Azure Virtual Machines Sizes and Preferred Choice for SQL Server
	The Azure Compute Unit (ACU) Concept
	Azure Virtual Machines Categories

	Embedded Features Available and Useful for SQL Server
	Design for Storage on SQL Server in Azure Virtual Machines
	Storage Design and Performance Considerations on Azure Virtual Machine Running SQL Server

	Considerations on High Availability and Disaster Recovery Options with SQL Server on Hybrid Cloud and Azure IaaS
	Hybrid Cloud HA/DR Options
	SQL Server Backup to URL or SQL Server Managed Backup
	Log Shipping
	AlwaysOn Availability Groups
	Azure Site Recovery

	Azure only HA/DR Options
	AlwaysOn Availability Groups
	AlwaysOn Failover Cluster Instances
	Azure Site Recovery

	Summary

	Chapter 3: Working with NoSQL Alternatives
	Understanding NoSQL
	Simpler Options
	Document-oriented NoSQL
	NoSQL alternatives in Microsoft Azure

	Using Azure Storage Blobs
	Understanding Containers and Access Levels
	Understanding Redundancy and Performance
	Service Tiers
	Backup and Disaster Recovery
	Implement a Simple-but-resilient Backup Service
	The Copy Process
	The DirectoryTransferContext Object
	Some Other Context

	Using Snapshots

	Understanding Concurrency
	Optimistic Concurrency
	Pessimistic Concurrency

	Understanding Access and Security
	Shared Access Signatures
	Encryption Options
	Security Perimeter

	Using Azure Storage Tables
	Planning and Using Table Storage
	Understanding PartitionKey, RowKey, Timestamp, and Fields
	Dealing with CRUD Operations
	OData and Supported Queries

	Understanding Monitoring
	Exploring Metrics and Logging
	$MetricsCapacityBlob
	$MetricsHourPrimaryTransactionsBlob

	Exploring Logging

	Using Azure Monitor

	Using Azure Redis Cache
	Justifying the Caching Scenario
	Unit of Caching
	Cache Invalidation
	Why a Distributed Cache
	Why Redis

	Understanding Features
	Eviction
	Local Caching and Notifications
	Simple Local Cache Provider

	Persistence
	Private Deployments

	Understanding Management
	Clustering and Sharding
	Advanced Options
	Geo-replication
	Import/Export

	Scaling and Limitations
	Security, Monitoring, and Performance
	Understanding Metrics

	Using Azure Search
	Using SQL to Implement Search
	Understanding How to Start with Azure Search
	Planning Azure Search
	Multitenancy with Azure Search
	Security and Monitoring

	Implementing Azure Search
	Establishing the Search
	Defining Fields and Properties
	Populating Index
	Change and Delete Detection

	Summary

	Chapter 4: Orchestrate Data with Azure Data Factory
	Azure Data Factory Introduction
	Main Advantages of using Azure Data Factory
	Terminology
	Linked Services
	Datasets
	Activities
	Pipelines

	Azure Data Factory Administration

	Designing Azure Data Factory Solutions
	Exploring Azure Data Factory Features using Copy Data
	Anatomy of Azure Data Factory JSON Scripts
	Linked Services Script
	Dataset Script
	Pipeline and Activity Script

	Azure Data Factory Tools for Visual Studio
	Good Practices for Authoring ADF solutions

	Working with Data Transformation Activities
	Stored Procedure Activity
	Chaining Azure Data Factory Activities
	Custom Activities

	Microsoft Data Management Gateway

	Considerations of Performance, Scalability and Costs
	Copy Activities
	Data Movement Units (DMU), Parallel Copies, Concurrency, Compression and DMG

	Costs

	Azure Data Factory v2 (Preview)
	Azure Data Factory v2 Key Concepts

	Summary

	Chapter 5: Azure Data Lake Store and Azure Data Lake Analytics
	How Azure Data Lake Store and Analytics were Born
	Azure Data Lake Store
	Key Concepts
	Hadoop Distributed File System
	Create an Azure Data Lake Store
	Common Operations on Files in Azure Data Lake Store
	Copy Data to Azure Data Lake Store
	Ingress/Process/Egress
	Copy Data to Azure Data Lake using AdlCopy
	Authenticate and Copy Data to Azure Data Lake Store using SSIS
	Authenticate Against ADLS using .NET
	Copy data to Azure Data Lake using Azure Data Factory v2 (Preview)

	Considerations on Azure Data Lake Store Performance

	Azure Data Lake Analytics
	Key Concepts
	Built on Apache YARN
	Tools for Managing ADLA and Authoring U-SQL Scripts
	Working with ADLA using the Azure Portal
	Azure Data Lake Tools for Visual Studio

	U-SQL Language
	U-SQL Query Anatomy
	User Defined Objects
	Create Database Objects in ADLA
	Federated Queries
	Use Code-Behind and Assemblies
	U-SQL Extensions for R and Python
	Considerations on U-SQL Jobs and Analytics Units
	Job Submission Policies
	Job Monitoring

	Azure HDInsight
	Summary

	Chapter 6: Working with In-Transit Data and Analytics
	Understanding the Need for Messaging
	Use Cases of Uni-Directional Messaging
	Using Service Bus
	Enqueuing some Messages
	Using Service Bus Explorer

	Using Topics to Notify Parties and Route Messages

	Using Event Hubs
	The Reliability Problem
	The Concurrency Problem
	Some Code and the EventProcessor Library
	Final Thoughts on Event Hubs

	Understanding Real-Time Analytics
	Understanding Stream Analytics
	Understanding AppInsights

	Summary

	Index

