
www.allitebooks.com

http://www.allitebooks.org

CodeIgniter 1.7 Professional
Development

Become a CodeIgniter expert with professional tools,
techniques, and extended libraries

Adam Griffiths

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

CodeIgniter 1.7 Professional Development

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2010

Production Reference: 1190410

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-90-5

www.packtpub.com

Cover Image by Filippo (filosarti@tiscali.it)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Adam Griffiths

Reviewers
Jose Argudo

Saidur Rahman

Acquisition Editor
Dilip Venkatesh

Development Editor
Dilip Venkatesh

Technical Editor
Aaron Rosario

Indexer
Monica Ajmera Mehta

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Dirk Manuel

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Adam Griffiths is a student and freelance CodeIgniter Developer based in the
United Kingdom. He has five years of web development experience, the last two
being largely influenced by CodeIgniter. He has worked on many websites, both
large and small, from small blogs to large websites for multi-national corporate
companies. He is well versed in development techniques and how to squeeze that
little bit more from an application. He has also made a number of contributions to
the CodeIgniter Community, most notably The Authentication Library, a very
simple to use but full-featured Authentication Library for CodeIgniter.

When CodeIgniter and PHP aren't spiralling around his head, Adam enjoys
practising card and mentalism tricks, mainly sleight of hand and card handling
tricks. He has performed at local and formal functions for hundreds of people.
He is also a guitar player and enjoys playing acoustically at pubs and small gigs.
Moving back towards computing, he has a deep interest in Cryptography. He
loves finding patterns in data and loves using pen and paper to decipher any
cipher text he may find around the web. Find out more and read his blog at
http://www.adamgriffiths.co.uk.

I would like to thank my parents for encouraging me to better
myself. If it weren't for them I may not have written this book. I
would also like to thank my friends for letting me bounce ideas off
of them and develop these ideas. I've wanted to write a book for a
while now, so a big thank you goes to Packt Publishing for giving
me this opportunity; and to everybody involved in reviewing,
editing, and managing the book as a whole.

To the readers—Thank you for purchasing this book. It means a
great deal to me that you will be reading the content that I spent
a lot of time on, and you will hopefully learn a lot from it.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jose Argudo is a web developer from Valencia, Spain. After finishing his studies
he started working for a web design company. Six years later, he decided to start
working as a freelancer.

Now that some years have passed as a freelancer, he thinks it's the best decision he
has ever taken—a decision that let him work with the tools he likes, such as Joomla!,
Codeigniter, Cakephp, Jquery, and other well-known open source technologies.

His desire to learn and share his knowledge has led him to be a regular reviewer
of books from Packt, such as Joomla! With Flash, Joomla! 1.5 SEO, Magento Theme
Design or Symfony 1.3 web application development.

Recently he has even published his own book, Codeigniter 1.7, which you can also
find at Packt's site. If you work with PHP, take a look at it!

If you want to know more about him, you can check out his site at
www.joseargudo.com

To my girlfriend and to my brother, I wish them the best.

Saidur Rahman Bijon is an open source enthusiast from Bangladesh. He
graduated in computer science in from BRAC university and has been developing
web applications for over four years. In this time, he has developed ecommerce, web
2.0, social networking, and microblogging applications. He shares his knowledge
and ideas at http://saidur.wordpress.com.

He started his career by developing a large scale application for the Bangladesh
Navy. Since then, he has worked mainly for Japanese and USA based outsourcing
companies, where he has built applications in CodeIgniter. Currently, he is working
for a USA based company, Blueliner Bangla (http://www.bluelinerny.com/) as a
senior software engineer.

I'd like to thank Packt for giving me the opportunity to review
this book.

I enjoyed it thoroughly.

I'm really thankful for my family, friends, and colleagues for their
help and support.

I dedicate this book to my family.

Table of Contents
Preface 1
Chapter 1: Getting Started with CodeIgniter 7

Upgrading from older versions of CodeIgniter 8
Downloading and installing CodeIgniter 8

Getting the CodeIgniter files 8
Introducing Model View Controller (MVC) 10
Controllers: The business logic 11

Defining a default Controller 12
Remapping function calls 12

Models: Data abstraction layer 13
Loading a Model 14
Connecting to your database automatically 15

Views: Your template files 15
Loading a view 15
Loading multiple views 16
Adding dynamic data 16
Creating loops 17
Returning views as data 18

Autoloading resources 18
Formatting your code—PHP Style Guide 18

PHP closing tag 18
Incorrect 19
Correct 19

Class and method naming 19
Incorrect 19
Correct 19
Incorrect 20
Correct 20

Table of Contents

[ii]

Variable names 20
Incorrect 20
Correct 21

Commenting 21
Poor 21
Good 21

Use of TRUE, FALSE, and NULL 22
Incorrect 22
Correct 22

Short opening tags 22
Incorrect 22
Correct 22

One statement per line 22
Incorrect 23
Correct 23

CodeIgniter URLs 23
Removing the index.php file 23
Adding a URL Suffix 23

CodeIgniter specific files 24
Helpers 24

Loading a helper 24
Using a helper 24
"Extending" Helpers 25

Plugins 25
Loading a plugin 25
Loading multiple plugins 25
Using a plugin 25

Libraries 26
Creating your own libraries 26
Extending core libraries 27
Replacing core libraries 27

Summary 28
Chapter 2: Learning the Libraries 29

What is a library? 29
What do libraries do? 30
Benchmarking Class 30

Setting a benchmark 30
Setting multiple benchmarks 31
Profiling your benchmarks 31

Making use of the Profiler Class 31
Display total execution time 33
Display memory consumption 33

Input and Security Class 34
XSS filtering 34

Table of Contents

[iii]

Filtering a single item 34
Automatic filtering 34
Filtering images 35
Retrieving POST data 35
Retrieving GET data 35
Retrieving GET and POST data 35
Retrieving COOKIE data 35
Retrieving SERVER data 35
IP Addresses 36
Retrieving a user agent 36

Email Class 36
Send an e-mail 36
Build a contact form 38

Our contact form 39
Checking if the form has been submitted 40
Checking the values of the form 41
Validate the e-mail 41
Using the XSS filter 42
Send the e-mail 42

Batch e-mail processing 43
File Uploading Class 43

Create the Upload Views 44
Create the Upload Controller 46

Our initial controller 46
Specify the allowed file types and maximum file size 47
Uploading the file 47

Image Manipulation Library 48
Initializing the library 48
Creating a thumbnail 49
Cropping an image 49
Rotating an image 50
Clearing values in loops 51

Pagination Class 51
Example 51
Customizing the pagination 52
Customize the "First" link 52
Customize the "Last" link 52
Customize the "Next" link 53
Customize the "Previous" link 53
Customize the "Current Page" link 53
Customize the "Digit" link 53

Session Class 53
Initializing the Session Class 54

Autoload the Session Class 54

Table of Contents

[iv]

Manually load the Session Class 54
How do CodeIgniter sessions work? 54
What is stored in a session? 55
Adding session data 55
Retrieving session data 56
Removing session data 56

Removing a single session item 56
Removing multiple session items 57
Destroying a session 57

Flash data 57
Add flashdata 57
Read flashdata 57
Keep flashdata 58

Using a session database 58
Unit testing a class 59

Initializing the class 59
Running tests 59
Generating reports 61
Strict mode 61
Enabling or disabling unit testing 61
Create a template 62

Summary 62
Chapter 3: Form Validation and Database Interaction 63

Why should I validate my forms? 64
Using the Form Validation Library 64

The form validation process 64
The user's process 64
The development process 64

Contact form 65
Loading the assets 65
Setting the rules 65
Check the validation process 67
Sending the email 68
Final controller code 68

Changes to the form view 69
Re-populating field values 70
Showing individual errors 70
Final form view 70
Changing the error delimiters 71

Saving sets of validation rules to a config file 72
Creating sets of rules 72
Calling a specific set of rules 73
Associating a rule group with a controller 74

Table of Contents

[v]

Using callbacks 74
Include the callback in the rules 75
Creating the callback 75

Create the function 75
Load the database library 75
Performing the database query 76
Adding a condition 76
Show a success page 76

Database interaction 77
Loading the library 77

Performing simple queries 77
Returning values 78

Returning a result object 78
Returning a result array 79
Returning a row object 79
Returning a row array 79

Result helper functions 80
Number of rows returned 80
Number of fields returned 80
Free result 80

Active Record 80
Selecting data 80

$this->db->get(); 81
$this->db->get_where(); 81
$this->db->select(); 81
$this->db->from(); 82
$this->db->join(); 82
$this->db->where(); 82
$this->db->like(); 84
$this->db->group_by(); 84
$this->db->order_by(); 84
$this->db->limit(); 85

Inserting data 85
$this->db->insert(); 85
$this->db->set(); 86

Updating data 86
$this->db->update(); 86

Deleting data 87
$this->db->delete(); 87
$this->db->empty_table(); 87
$this->db->truncate(); 88

Active Record caching 88
$this->db->start_cache(); 88
$this->db->stop_cache(); 88
$this->db->flush_cache(); 89

Table of Contents

[vi]

Method chaining 89
Manipulating databases with Database Forge 90

Loading the Forge class 90
Creating a database 90
Dropping a database 90
Adding fields 90
Creating a table 91
Dropping a table 91
Renaming a table 91
Modifying a table 92

$this->dbforge->add_column(); 92
$this->dbforge->drop_column(); 92
$this->dbforge->modify_column(); 92

Summary 92
Chapter 4: User Authentication 1 93

Defining our goals 93
Our goals 94

Creating and connecting to the database 94
Front end code 95

Index function 96
Details view 97

Dashboard function 98
Dashboard view 98

Login function 99
Form validation 99
Running the validation 101
Full login code 101
Login view 102
Success view 104

Register function 104
Form validation 104
Running the validation 106
Full register code 107
Full controller code 109
Register view 113
Error view 114

Logout function 115
Logout view 115

Model code 116
Model constructor 116
Create function 117
Login function 117
Logged in check function 117
Full model code 118

Table of Contents

[vii]

Addressing some issues 119
The Authentication Library 119
Summary 120

Chapter 5: User Authentication 2 121
Using Twitter oAuth 121

How oAuth works 121
Registering a Twitter application 122
Downloading the oAuth library 123

Library base class 123
Controller base class 124
Library constructor 125
Requesting user tokens 125
HTTP function 126
Parse function 128
Controller index function 128
get_authorize_URL function 129
Main view file 129
Change your callback URL 130
Creating the access function 131
The view file 131
Getting access tokens 132
Logging out 133
Debug function 134
Final library code 134
Final controller code 138

Using Facebook Connect 139
Registering a Facebook application 140
Download the Client library 141
Our CodeIgniter Wrapper 141

Base class 142
Class constructor 143
_session(); 144
Final library code 145

The Controller 147
The View file 148

Summary 151
Chapter 6: Application Security 153

CodeIgniter's defenses 153
URI security 154

Why does CodeIgniter use URIs? 154
Why does CodeIgniter restrict URI characters? 155

Global data 155
Best practices 156

Filtering data 156
Validation 156

Table of Contents

[viii]

Escaping data 157
Strong password policies 157

Example form Validation library rules 158
Storing passwords securely 160

Storing hashes 160
Hashing a password using sha1 161

Static salting 162
Simple salts 162
Complex salts 162

Dynamic salting 164
Simple dynamic salts 164
Complex dynamic salts 165

Encrypting passwords 165
Setting an encryption key 166
Message length 166
Loading the class 166
Encoding passwords 166
Decoding passwords 167
Set mcrypt cipher 167

Database security 167
Escape queries 167

The $this->db->escape() function 168
The $this->db->escape_str() function 168
The $this->db->escape_like_str() function 168
Query bindings 168

Limiting account access 169
Cross-site scripting (XSS) 169
Changing the default file structure 170
Staying up-to-date 170
Summary 171

Chapter 7: Building a Large-Scale Application 173
Running benchmarks 173

Why run benchmarks? 174
Where should I use benchmarks? 174
Types of bottlenecks 174

Database 174
Code 175
API 176
Bandwidth 177
Static 178

Caching 179
How does it work? 179
How long should I cache pages for? 179
Using caching 179

Table of Contents

[ix]

Optimize SQL queries 180
Query caching 180

To cache or not to cache? 180
How query caching works 180
Managing cache files 180
Using query caching 181
Deleting cache files 181
Deleting all cache files 181

Limit results 182
LIMIT clause 182
Only select what you need 182

Avoid disk activity 183
Memcache example 183
Memcache CodeIgniter library 184

Constructor 184
Data functions 185
Maintenance functions 186
Full library code 186
Using the library 187

Run multiple application instances 188
Advantages 189
Disadvantages 189

Summary 190
Chapter 8: Web Services 191

What is a web service? 191
Types of web service 192

Remote procedure call 192
Representational State Transfer 192

RESTful web service 192
Defining the resource 192
How it will work 193
Creating our files 193
Setting up the database 195
REST library 195

Base class 195
Performing a GET request 196
Performing a PUT request 197
Performing a POST request 198
Performing a DELETE request 198
Response function 199
The format XML function 200
The format JSON function 201
Final library code 201

Rest Controller 205
Base class 205

Table of Contents

[x]

The _remap() function 207
Server Controller 208

Base class 208
The post_get() function 209
The post_put() function 210
The post_delete() function 210
The post_post() function 211
Final server controller code 211

Post Model 213
Base class 213
The get_post() function 214
The update_post() function 215
The create_post() function 216
The delete_post() function 216
Final post model code 217

Create a new post 219
Update a post 220
Delete a post 221
Get a blog post 222
Summary 223

Chapter 9: Extending CodeIgniter 225
Hooks 225

Hook points 226
pre_system 226
pre_controller 226
post_controller_constructor 226
post_controller 226
display_override 226
cache_override 226
scaffolding_override 226
post_system 226

Our hook 227
Enable hooks 227
Define a hook 227
Our hook 227

Extended controllers 228
Admin controller 228

Extended libraries 230
The library 230

Base class 231
userdata() 232
set_userdata() 232
unset_userdata() 233
Full library code 233

Custom libraries 235
The features 235

Table of Contents

[xi]

The library 235
The controller 237

Helpers 241
CodeIgniter's hidden gems 241

doctype() 242
Array helper 242

element() 242
random_element() 243

Inflector helper 243
singular() 243
plural() 243
camelize() 243
underscore() 244
humanize() 244

highlight_code() 244
directory_map() 244

Summary 245
Chapter 10: Developing and Releasing Code to the Community 247

Find a need in the community (or fill your own need) 248
Search for existing solutions 248

Use the solutions 248
Reinvent the wheel 248
List the problems of these solutions 249

Create a plan 249
List the features 249
Prioritize the features 250

Writing the library 250
Review your code 250

Comments 251
Fix the problems 251

Write a user guide 251
Explain the function 252
Show the user how to use the function 252
Let the user know of any shortcomings 252
Use the style sheet given in the CodeIgniter User Guide 252

Release options 253
Forum post 254
Post on your website 255
GitHub 256

Handling database tables 257
Include a .sql file 257
Include an install file 257

Table of Contents

[xii]

Supporting the code 257
Update regularly 258
Listen to the users 258
Accept contributions 259
Communicate regularly 259
Don't give a release date 259
Keep testing 260
Archive old versions 260
Use the wiki 260

Summary 261
Index 263

Preface
This book takes you beyond the CodeIgniter user guide and into more advanced
subjects that you need to know if you plan to use CodeIgniter on a daily basis.
The book will teach you how to build libraries in order to complete different tasks
and functions. You will create mini-applications each of which teaches a specific
technique and builds on top of the CodeIgniter base. By the time that you finish this
book you will be able to create a CodeIgniter application of any size with confidence,
ease, and speed.

What this book covers
Chapter 1, Getting Started with CodeIgniter—This chapter guides you from installing
CodeIgniter to learning about its URL structure, the MVC design pattern, helpers,
plugins, and extending and replacing libraries.

Chapter 2, Learning the Libraries—You are taken through a number of the core
CodeIgniter libraries, being introduced to each library, what it does and how you go
about using it. Some libraries work together, and if this is the case, then this chapter
explains how they can be used together.

Chapter 3, Form Validation and Database Interaction—Form validation is a task that
some users find difficult. This chapter focuses on teaching you the correct way to
validate your forms, by using the Form Validation library. You will also cover the
Database library and Database Forge, a way to easily manage database tables.

Chapter 4, User Authentication 1—The first User Authentication chapter focuses
on building your own authentication system. We build a model that handles the
registration and logging in of users. We also include a function to check whether a
user is logged in or not.

Preface

[2]

Chapter 5, User Authentication 2—The second and final User Authentication chapter
focuses solely on user log-in in through Twitter oAuth and Facebook Connect. For
each example the CodeIgniter code is explained, as well as how both company's
APIs work, and to some extent how each differs from the other.

Chapter 6, Application Security—This chapter discusses how CodeIgniter is secure
by design, for example, disallowing certain characters in the URI strings. We also
go over what you can do to make your CodeIgniter application more secure than a
default installation.

Chapter 7, Building a Large-Scale Application—This chapter takes you through some
of the techniques that you can use to make your CodeIgniter application scalable.
You learn about identifying bottlenecks via benchmarking results, caching, using
better PHP functions, optimizing SQL queries, and using memcache and multiple
application instances.

Chapter 8, Web Services—This chapter builds an example web service by using the
REST principle. This includes a simple client library that issues requests, and a
server library that deals with requests and responds as appropriate.

Chapter 9, Extending CodeIgniter—This chapter covers everything you need to know
about extending CodeIgniter's default functionality without hacking at the core files.
This is very useful, especially when it is time to upgrade to the newest version
of CodeIgniter.

Chapter 10, Developing and Releasing Code to the Community—In this chapter you
will learn how to release code to the community, gain exposure for your released
code, and how to properly maintain the code and give good support to those
using your code.

Who this book is for
This book is written for advanced PHP developers with a good working knowledge
of Object Oriented Programming techniques who are comfortable with developing
applications and wish to use CodeIgniter to make their development easier, quicker
and more fun. Basic knowledge of CodeIgniter will be helpful. This book will suit
developers who fall into three categories:

•	 Professional Developers—Employees of a software house or other type of
development company

•	 Freelance Developers—A sole developer working in the industry on
their own

•	 Just for fun Developer—A person using PHP to build web applications is
their spare time for fun

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
on the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note via the SUGGEST A TITLE form on www.packtpub.com, or send an e-mail to
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/0905_Code.zip
to directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us to improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with
CodeIgniter

CodeIgniter is an open source web application framework for the PHP language.
CodeIgniter has many features that make it stand out from the crowd. Unlike
some other PHP frameworks you may have come across, the documentation is very
thorough and complete—covering every aspect of the framework. CodeIgniter will
also run in shared hosting environments as it has a very low footprint, yet it still has
exceptional performance.

On the programming side, CodeIgniter is both PHP4 and PHP5 compatible, so
it will run on the majority of web hosts out there. It also uses the Model View
Controller (MVC) design pattern, which is a way to organize your application into
three different parts: models—the database abstraction layer, views—the front end
template files, and controllers—the business logic of your applications. In the core,
CodeIgniter also makes extensive use of the Singleton design pattern. This is a way
to load classes so that if they are called multiple times, the same instance of the class
will be returned. This is highly useful for database connections, as you would only
want one connection each time that the class is used.

CodeIgniter also has an implementation of the Active Record pattern. This makes
it easy to write complex SQL queries and makes your application more readable.
Active Record also allows you to easily swap and change database drivers. This
allows you to write the queries in PHP and still use a MySQL backend, and also
gives you the option to switch to an Oracle database –without having to rewrite
the queries in your application.

CodeIgniter also comes with a number of highly useful libraries and other sets of
functions that help you to build your applications. This leaves you to focus on the
small part of your application that is unique, rather than the part that is used across
all projects, such as database queries and parsing data.

Getting Started with CodeIgniter

[8]

In this chapter, we will:

Install CodeIgniter
Learn about the MVC Design Pattern
Learn how to format your code according to the CodeIgniter PHP
Style Guide
Learn how CodeIgniter URLs work
Learn about CodeIgniter-specific files

Upgrading from older versions of
CodeIgniter
Users on older versions of CodeIgniter should upgrade to the latest version for a
number of reasons.

Firstly, each new release comes with many bug fixes, and more importantly, security
patches. This makes applications running on older versions of CodeIgniter more
vulnerable to attack than the newer versions.

There are also more features. For example, a new Cart Library was introduced in
CodeIgniter 1.7, allowing users to build a simple shopping cart application easily,
using a native supported library rather than a third-party one.

To upgrade to CodeIgniter 1.7, follow the instructions given next and simply migrate
your application folder over to the newer codebase.

Downloading and installing CodeIgniter
This book assumes prior knowledge of PHP—this should also stretch to a web
server. CodeIgniter needs a web server to run on, just like any other PHP application.
You can install CodeIgniter locally just for testing, or use it on your current web
server; anywhere will suffice.

Getting the CodeIgniter files
The first step to getting started with CodeIgniter is to download the files from the
website. The website is located at www.codeigniter.com. This website includes
a backlog of all of the previous versions of CodeIgniter, as well as a Subversion
Repository (SVN) for the latest version. In our case, we can simply download the
latest version straight from the home page—currently 1.7.2— by clicking on the
Download CodeIgniter button, as seen in the next screenshot.

•
•
•

•
•

Chapter 1

[9]

When you have downloaded the ZIP file, unzip it using your favourite file archiving
program. You will now have a folder named CodeIgniter_1.7.2. The folder should
contain two files and two directories, as seen in the next screenshot.

The system directory holds the core CodeIgniter files, libraries, and other CI
specific stuff, such as the logs and cache directories. It also houses the application
folder—this is the only folder you truly need to worry about, as this is the only place
where you need to put your files. As you can guess, this is the folder where all your
application-specific code goes, and includes the configuration files that you may
need to edit.

Simply open this folder in your code editor of choice and we'll go ahead
and install CodeIgniter in our final step. We need to edit the base URL—the URL
at which you will you access your application—and to do this we need to open
the file /system/application/config/config.php. The value that we need
to change is the array item $config['base_url'] which is currently set to
http://example.com/—simply change this to your URL.

The base URL value needs to have a trailing slash (a forward
slash) at the end.

Getting Started with CodeIgniter

[10]

When that is done, navigate to your base URL and you should see the CodeIgniter
welcome screen, as seen in the next screenshot.

Introducing Model View Controller (MVC)
Although you have heard this term mentioned in this book already, you may
not know what the term means. In short, Model View Controller—from now
on, referred to as MVC—is a software development design pattern. MVC is an
approach to separating your applications into three segments: Models, Views, and
Controllers. MVC structures your application in this way in order to promote the
reuse of program code.

The Model represents any type of data that your application may use. Some
examples of data that your application might use would be: a database, RSS Feeds,
API calls, and any other action that involves retrieving, returning, updating, and
removing data.

Views are the information that is being presented on the screen to users through
their web browsers. These are usually HTML files, sometimes containing PHP code
that builds the template for the website. In CodeIgniter however, views can be page
segments, partial templates, or any other type of page or template.

Chapter 1

[11]

Finally, Controllers are the business logic of your application. They serve as an
intermediary between Models and Views. The Controller will respond to HTTP
requests and generate web pages.

However, CodeIgniter's approach to MVC is very loose. This means that Models are
not required. This is for a number of reasons. Firstly, CodeIgniter's Database Library
can be used in both Models and Controllers—meaning that the extra separation of
Models can be bypassed. Secondly, the Model isn't tied to the database, as it is in
other frameworks such as Ruby on Rails, so the Model isn't needed in this regard.
Finally, if using a Model in your application will cause unnecessary complexity,
then the Model can simply be ignored.

However, Models are extremely useful, even though they are optional. Models can
be loaded from any Controller, so if you use a Model function in multiple controllers
and you need to change the function, you only need to edit it in one place rather
than in all of the controllers. Complex queries should really be put into a Model.
A collection of related queries should also be put into a Model as they can be
grouped together. This makes your applications simpler, and it allows you to
use the functions in any Controller.

Controllers: The business logic
Controllers are the core of your application because they determine how HTTP
requests should be handled. Let's dive right in and create a simple Hello World
controller. Create a file called helloworld.php in system/application/
controllers/.

<?php
 class Helloworld extends Controller
 {

 function HelloWorld()
 {
 parent::Controller();
 }

 function index()
 {
 echo("Hello, World!");
 }
 }
?>

Getting Started with CodeIgniter

[12]

Let's dissect this controller to get a better understanding of controllers.

Firstly, you can see that the controller is a class that extends the base Controller class.
The next thing to note is that there is a function with the name index. This is the
default function, and will be called when another function has not been called. To see
this being run, simply navigate to the URL http://yourwebsite.ext/index.php/
helloworld/ and you should see the words Hello, World! on the screen.

All Controller class names should start with an uppercase letter, and the rest of the
name should be lowercase. Controllers should always extend the base class so that
you can use all of CodeIgniter's syntax and have access to all CI resources.

If you have a constructor in your Controller then you need to call upon the
Controller constructor, as we have in the example HelloWorld Controller.
You should call it as follows:

Parent::Controller();

Defining a default Controller
CodeIgniter has the ability to set a Controller as the default controller. This
is the controller that is to be called when no other controller is passed to
index.php. A default CodeIgniter install will set the default controller to
welcome_message.php– this is the default CI welcome page, as shown earlier.

To set a different default controller, open the file system/application/config/
routes.php and change welcome to the name of any other controller in
your application.

$route['default_controller'] = "welcome";

Remapping function calls
You can remap function calls by using a function in your controller called
_remap()—this will be called every time that the controller is called, even if a
different function is used. This is useful for developers who wish to easily remap
their function calls in order to provide a different Uniform Resource Identifier (URI)
structure, or to remap functions instead of extending CodeIgniter's routing class.

Chapter 1

[13]

The function string will be passed to the function. You would usually have a function
that looks like this:

Function _remap($method)
{
 if($method == "method_name")
 {
 $this->$method();
 }
 else
 {
 $this->default_method();
 }

}

Models: Data abstraction layer
Now that you know what a Model is and what it's used for, we can take a look at
how to construct a Model.

Models are stored in system/application/models/. The class of your model
should have the first letter capitalized and the rest of the name lowercase, and also
extend the base class of Model. The class should also have a constructor that calls
upon the base class constructor, as seen in the next code example.

<?php
class Mymodel extends Model
{
 funcion Mymodel()
 {
 parent::Model();
 }
}
?>

The filename of this model should be an all-lowercase version of the name; the
filename therefore will be mymodel.php.

Getting Started with CodeIgniter

[14]

Loading a Model
A model is loaded from Controller functions. Loading a model takes just one line
of code.

$this->load->model('model_name');

In this instance, you should replace model_name with the name of your model. If
your model is located in a sub-folder, you would load the model as follows:

$this->load->model('sub_folder/model_name');

Once loaded, you access your model functions by using the global object with the
same name as your model name.

$this->model_name->function_name();

You can assign a new name for your Model object by passing it to the second
parameter of the loading function.

$this->load->model('model_name', 'different_name');

Now you would call your model functions as follows:

$this->different_name->function_name();

Here's an example of a controller calling a model and serving a view.

<?php
class Shop extends Controller
{
 function Shop()
 {
 parent::Controller();
 }

 function index()
 {
 $this->load->model('products');
 $products = $this->products->build_list();
 $this->load->view('shop', $products);
 }
}
?>

Chapter 1

[15]

Connecting to your database automatically
When a model is loaded, it does not connect to the database automatically unless you
autoload the database class for your application. You can tell the model to connect to
the database automatically by passing boolean TRUE as the third parameter.

$this->load->model('model_name', '', TRUE);

The model will now connect to the database using the setting defined in your
database.php configuration file, which is located in system/application/config/.

You can pass an array of configuration details to the third parameter if you wish to
use a database other than the one that's set up in your database configuration file.

$config['hostname'] = "localhost";
$config['username'] = "myusername";
$config['password'] = "mypassword";
$config['database'] = "mydatabase";
$config['dbdriver'] = "mysql";
$config['dbprefix'] = "";
$config['pconnect'] = FALSE;
$config['db_debug'] = TRUE;

$this->load->model('model_name', '', $config);

Views: Your template files
Views are your template files. They are what is output to the browser, and should be
mostly HTML code, with some PHP code. Put simply, views are HTML files of your
template; they can also be page segments, such as a header or footer. View files can
also call other views, if you need such flexibility.

Views are located in the system/application/views/ folder, and can be stored in
subfolders inside this main views folder.

Loading a view
Loading a view is done in the same way as loading a model; it takes just one line
of code.

$this->load->view('view_name');

Getting Started with CodeIgniter

[16]

Here, view_name would be the name of the view file that you wish to load. You can
also pass an array of data to a view file by passing an array as the second parameter
of the load->view function.

$data['title'] = "My Web Page";
$this->load->view('view_name', $data);

You would then be able to use the variable $title in your view file to echo out the
page title.

Loading multiple views
You load multiple views in the same way as you load just one view. CodeIgniter
intelligently handles multiple calls to $this->load->view, and will append these
calls together. Here is an example:

function index()
{
 $data['title'] = "My Web Page";
 $this->load->view('header', $data);
 $this->load->view('navigation');
 $this->load->view('content');
 $this->load->view('footer');
}

Adding dynamic data
Adding data to a view file is a very simple process, which we have touched
upon already. You pass data to a view file by using the second parameter of the
load->view function. All view data must be passed as an array or an object. This is
because CI runs this array or object through PHP's extract function, which simply
takes an object or array key and creates a variable for it with the same name. Let's
look at an example:

$data = array(
 'title' => "My Web Page",
 'heading' => "Welcome to my web page",
 'content' => "This is my first web page using Codeigniter!"
);
$this->load->view('main', $data);

Chapter 1

[17]

You will then be able to use this data in your view, as illustrated below:

<html>
<head>
 <title><?php echo $title; ?></title>
</head>
<body>
<h1><?php echo $heading; ?></h1>
<?php echo $content; ?>
</body>
</html>

Creating loops
Creating loops in view files has been a stumbling block for a few developers. By
passing a multidimensional array to a view file, you can easily establish a loop in
any of your view files. Let's take a look at an example.

<?php
 class Todo extends Controller
 {
 function index()
 {
 $data['todo_list'] = array("buy food", "clean up", "mow lawn");
 $this->load->view('todo', $data);
 }
 }
?>

This is a very simple Controller. Your view file for this would be as follows:

<html>
<head>
 <title><?php echo $title; ?></title>
</head>
<body>
<h1><?php echo $heading; ?></h1>
<?php echo $content;?>
<h2>My Todo List</h2>
<?php
foreach($todo_list as $item)
{
 echo $item;
}
?>
</body>
</html>

Getting Started with CodeIgniter

[18]

Returning views as data
You are also able to return view files as data; this can be useful if you wish to process
this data in some way. Simply set the third parameter to boolean TRUE—and it will
return the view data.

$this->load->view('welcome', NULL, TRUE);

CodeIgniter uses an output buffer to take all calls to the load view function, and
processes them all at once, sending the whole page to the browser at the same time.
So when you return views as data, you will be able to save the contents of the view
inside a variable for whatever use you need.

Autoloading resources
CodeIgniter comes with built-in functionality that enables you to load libraries,
plugins, helpers, models, and so on, on each request. This is useful for database
intensive applications, as you can autoload the Database Library so that you won't
need to load it yourself.

Simply open up the application/config/autoload.php file and put the name of
the library or other type of file that you want to autoload into the appropriate array.

Formatting your code—PHP Style Guide
CodeIgniter does not force any specific coding style on you as a developer. However
there is a PHP Style Guide that sets a number of rules that you can use when
developing for CodeIgniter. These are mostly style rules to help your code fit in
with the core code better, as the core development team follows these rules, as well
as those of us who develop using the framework. I will not go over the entire style
guide, but I will highlight the most noteworthy conventions.

PHP closing tag
The PHP closing tag ?> is optional to the PHP parser. If used, any whitespace after
the PHP closing tag can result in PHP errors, warnings, or even blank pages. For this
reason, all PHP files should omit the closing PHP tag, and instead use a comment
block to display relevant details for the file location. This allows you to signify that
a file is complete.

Chapter 1

[19]

Incorrect
<?php
 class Helloworld extends Controller
 {
 function index()
 {
 echo("Hello, World!");
 }
 }
?>

Correct
<?php
 class Helloworld extends Controller
 {
 function index()
 {
 echo("Hello, World!");
 }
 }

/* End of file helloworld.php */
/* Location: system/application/controllers/ */

Class and method naming
As we have touched upon before, class names should always have their first letter in
uppercase and the rest of the name in lowercase. Multiple words should be separated
with an underscore and not use the CamelCase convention.

Incorrect
class myClass
class MYClass

Correct
class My_class

Getting Started with CodeIgniter

[20]

The class and constructor method should have identical names. Take this example:

class My_class
{
 function My_class()
 {

 }
}

Here is a set of examples of improper and proper method naming, taken directly
from the PHP Style Guide of the CodeIgniter user guide.

Incorrect
function fileproperties() // not descriptive and needs underscore
 // separator
function fileProperties() // not descriptive and uses CamelCase
function getfileproperties() // Better! But still missing underscore
 // separator
function getFileProperties() // uses CamelCase
function get_the_file_properties_from_the_file() // wordy

Correct
function get_file_properties() // descriptive, underscore separator,
 // and all lowercase letters

Variable names
The guidelines for variable names are very similar to those for class and method
names. Variable names should only contain lowercase letters, should use underscore
separators to separate words and not use CamelCasing, and should be named to
indicate their contents.

Incorrect
$f = 'foo'; // single letter variable name, does not explicitly show
 //what it contains
$Text // contains uppercase letters
$someTextHere // uses camelCase and does not show it's contents
$userid // multiple words, needs an underscore to separate them

Chapter 1

[21]

Correct
for ($i = 0; $i <= 10; $i++)
$text
$user_id

Commenting
CodeIgniter recommends that you comment your code as much as possible. This is
for two reasons: it helps inexperienced programmers who may be working on the
same project as you, or if you release your code; and it will help you months down
the line to understand the code more quickly than if there were no comments. There
isn't a particular required commenting style, but CodeIgniter recommends that
you use DocBlock styling. This is recommended as it will be picked up by many
Integrated Development Environments (IDE).

/**
* Class Name
*
* @package Package name
* @subpackage Subpackage Name
* @category category name
* @author Author Name
* @linkhttp://example.com
*/

When commenting your code, you should use singe line comments and leave a line
between a large comment block and the code. I would personally recommend that
comments mean something.

Poor
// a foreach loop

foreach($posts as $post)
{
 echo $post;
}

Good
// loop through the blog posts and echo each out

foreach($posts as $post)
{
 echo $post;
}

Getting Started with CodeIgniter

[22]

This is my personal recommendation, because silly comments such as the first won't
help you a few months down the line, simply because you can already tell it's a
Foreach loop.

Use of TRUE, FALSE, and NULL
When using the keywords TRUE, FALSE, and NULL in your applications, you
should always write them in uppercase letters.

Incorrect
if($active == true)
$zero = null;
function test($test = false)

Correct
if($active == TRUE)
$zero = NULL;
function test($test = FALSE)

Short opening tags
You should always use full PHP opening tags and not short tags, just in case a
server does not have short_open_tag enabled. CodeIgniter can rewrite short
tags, although the PHP Style Guide states that full opening tags should be used.

Incorrect
<? echo $foo; ?>
<?=$foo?>

Correct
<?php echo $foo; ?>

One statement per line
You should always have one statement per line in CodeIgniter applications.
This improves code readability, and will also makes things easier to find.

Chapter 1

[23]

Incorrect
$foo = 'bar'; $bar = 'foo'; $baz = 'zip';

Correct
$foo = 'bar';
$bar = 'foo';
$baz = 'zip';

CodeIgniter URLs
CodeIgniter URLs use Uniform Resource Identifiers (URI). In simple terms,
CodeIgniter's URLs are simply segments. These segments are then split up and
used to load a particular controller and method. Here is a typical CodeIgniter URL:

http://mywebsite.ext/index.php/controller/method/parameters

Everything after the index.php segment is used by CodeIgniter to determine what
to load. The first segment is the name of the Controller. The second segment is used
to determine which function to load—if this is blank then the index function will be
used. The final segment will be used to pass any data to the function.

Removing the index.php file
You can remove the index.php part of the URL by adding a .htaccess file to the
root of your CodeIgniter install. Here is an example file:

RewriteEngine on
RewriteCond $1 !^(index\.php|images|robots\.txt)
RewriteRule ^(.*)$ /index.php/$1 [L]

This will redirect anything to the index.php file except for index.php, the images
folder, and robots.txt. You can add any other items to the list as you so wish,
such as a folder for .css files or even JavaScript files.

Adding a URL Suffix
You can specify in your system/application/config/config.php file to add a
suffix to your URLs. Take this example:

http://mywebxite.ext/products/books/

Getting Started with CodeIgniter

[24]

You can add a suffix so that the URL becomes:

http://mywebsite.ext/products/books.html

You don't have to use .html, I just used it as an example.

CodeIgniter specific files
CodeIgniter has a number of different file types that can be used in your applications
to make your job easier. These are helpers, plugins, and libraries. They all differ in
some way, with their own unique abilities.

Helpers
Helper files are a collection of functions in a particular group. For example,
CodeIgniter has a URL helper, which lets you easily print your website URL or the
current URL, build links, and a few other functions too. Helpers can be used within
Models, Controllers, and View files.

Helpers are not written in an object oriented format in the way that Controllers and
Models are, they are simply a collection of procedural functions.

Loading a helper
Loading a helper is just like loading anything else in CodeIgniter; it takes just one
line of code.

$this->load->helper('form');

Loading multiple helpers
You can load multiple helpers by passing an array of values to the first parameter.

$this->load->helper(array('form', 'url', 'cookie'));

Using a helper
Because helper files are procedural files, you simply use the function in the same way
as you call a standard PHP function, and not in the objective format as you would
with models.

For example, to echo your site URL using the URL helper, you would use:

<?php echo base_url(); ?>

Chapter 1

[25]

"Extending" Helpers
Even though helpers are procedural files, you can extend them in a literal sense. To
do this, create a file in the system/application/helpers/ folder, with the same
name as a core CI helper with the prefix MY_. You can change this prefix, but we
won't go into that right now.

Then you simply create a function inside this file with the same name as the function
that you wish to replace, or add a new function.

For example, if you wanted to extend the Form Helper, you would create a file
called MY_form_helper.php inside the system/application/helpers/ folder,
and create any functions that you wish to add.

Plugins
Plugins work in almost exactly the same way as Helpers. The main difference is that
a plugin should be used to add a single function, instead of a collection of functions.
Helpers are also considered to be part of the core framework, whereas plugins are
intended to be created and shared by the community. Plugins are stored inside the
system/application/plugins/ folder.

Loading a plugin
Loading a plugin is almost the same as loading a helper. The only difference is the
function used.

$this->load->plugin('name');

Where name is the name of the plugin you wish to load.

Loading multiple plugins
To load more than one plugin, simply pass an array to the load function.

$this->load->plugin(array('name1', 'name2', 'name3'));

Using a plugin
Once a plugin is loaded, you simply call it in the same way as you would call a
standard PHP function.

Getting Started with CodeIgniter

[26]

Libraries
Libraries provide extra functionality that can be used across multiple projects.
Libraries usually abstract functions for many different tasks. For example, the
Database Library provides a way to create SQL functions in very simple, readable
ways. It is advisable to keep Library calls out of your View files, and a helper should
be used to perform the operation instead.

Creating your own libraries
You can easily create your own libraries. The first step in creating a library is to
create a file inside the system/application/libraries/ folder, with a relevant
name; you should also take the naming conventions outlined in the style guide
into account.

The next step is to create a class inside this file, with the same name as your PHP
file—but without the .php extension. You do not need to extend any classes when
creating your own library.

Using CodeIgniter resources within your library
When using CodeIgniter, you load helpers, libraries, and other resources by using
the super object $this->. However, when creating your own library, you will not
have access to this unless you explicitly add it in by using the following function:

$CI =& get_instance();

Once you do this inside a function, you would use $CI in place of $this when
utilizing CodeIgniter resources.

Using your class
To load your library, you simply use the following function:

$this->load->library('name');

Where name is the name of the library you wish to load.

Chapter 1

[27]

Extending core libraries
To extend a core CodeIgniter library, first create a file with the same name as
the library you wish to extend, but add the MY_ prefix. For example, to extend
the Session class, create a file called MY_Session.php and place it inside the
system/application/libraries folder. Once this is done, you simply extend
the core library as follows:

<?php
 class MY_Session extends CI_Session
{
 function MY_Session()
 {
 parent::CI_Session();
 }
}
?>

Loading your extended library
You load your extended library in exactly the same way as you load the core library.
In our example, we'd use the following line of code. Note that I do not include the
MY_ prefix.

$this->load->library('session');

Replacing core libraries
Replacing core libraries is similar to extending them. Instead of using the MY_ prefix
in your file name and class name, you drop the prefix for the filename and use the
prefix CI_ for the class name. This is because all CodeIgniter core libraries have the
prefix CI_. Staying with the session class, we would replace it as follows:

<?php
 class CI_Session
 {

 }
?>

To load the library, you would do so as if you hadn't changed anything:

$this->load->library('session');

Getting Started with CodeIgniter

[28]

Summary
Well done. You've made it through Chapter 1. That's all you need to know to get
started with CodeIgniter. In Chapter 2, Learning the Libraries, we'll go over some
of the great libraries that CodeIgniter comes with, taking you to a higher level
of knowledge.

Learning the Libraries
CodeIgniter comes with a set of class files that are used throughout many
applications—these are known as "Libraries". In short, a library is a file that helps
developers write better code, build better applications, and become more productive
through the use of abstracted functions. A library creates a wrapper for your
application's functions which, for example, enables you to swap database
drivers without changing any code. In this chapter you will learn:

How to benchmark your application
How to send e-mails and create a contact form
How to create a file uploader
General application security points
Pagination
Using CodeIgniter sessions
How to run unit tests

What is a library?
A CodeIgniter library is simply a class file that abstracts functionality into
easy-to-use functions that take much of the strain off the developer. Take the
Database Library as an example. It contains many functions that make the creation
of complex SQL queries very easy; it also makes queries much more readable. The
terms "class" and "library" are used interchangeably throughout this chapter.

Project-specific libraries are located in the system/application/libraries/ folder
and all of the CodeIgniter core libraries are located in the system/libraries/ folder.

•

•

•

•

•

•

•

Learning the Libraries

[30]

What do libraries do?
Libraries abstract out functionality for developers and make it easy to re-use
code. CodeIgniter comes with many core libraries that provide ways to code your
applications much faster than without libraries, removing much of the unnecessary
code from your applications, and taking the strain off the developer.

There are many types of libraries included with CodeIgniter, and many more
released by community members. In this chapter, we will cover the eight most
important libraries.

Every library has a different set of collected functions, but all work to make coding
applications much simpler than they would be if you were not using a framework.

Benchmarking Class
The Benchmarking Class is used to calculate the time between two points in your
application. It's always ON, which means you do not need to load the library before
using it. The timing between the two points that you specify in your application is
very accurate because this library is loaded at the same time as CodeIgniter, and
ended by the output class immediately before data is sent to the browser.

Benchmarking is important in any application that should expect a large number of
users. If, at some point, you realize that your application is slowing down for users at
any one point, you can run a benchmark to find out where the bottleneck is, and how
to remedy it.

Setting a benchmark
Creating a Benchmark is a very simply process. Benchmarks can be added to
Controllers, Views, and Models in three simple steps:

1. Mark the starting point.
2. Mark the ending point.
3. Run the function to show the elapsed time.

Look at the next code example to see these steps in action:

$this->benchmark->mark('start');
// something happens here
$this->benchmark->mark('end');
echo $this->benchmark->elapsed_time('start', 'end');

Here you can see the code in action. We mark the code start and end by using the same
function, and simply echo out the returned value via the function elapsed_time().

Chapter 2

[31]

The names start and end are arbitrary, and can be anything you choose.

Setting multiple benchmarks
With the Benchmark Class, you can set multiple benchmarks and calculate the
time difference between any of them, not just two. For example, we could set three
benchmarks and time the difference between the first and second benchmark, and
the first and third benchmark. We can use any combination of the benchmarks we
set. Here's an example:

$this->benchmark->mark('tea');
// something happens here
$this->benchmark->mark('coffee');
// something else happens here
$this->benchmark->mark('biscuits');

echo $this->benchmark->elapsed_time('tea', 'coffee');
echo $this->benchmark->elapsed_time('coffee', 'biscuits');
echo $this->benchmark->elapsed_time('tea', 'biscuits');

As you can see from the example above, we can retrieve the time between two
benchmark points even if there are one or more benchmarks between them.

Profiling your benchmarks
If you want your benchmarks to be available to the Profiler Class then you will need
to set your benchmarks up in pairs. These pairs should end with _start and _end, but
be otherwise identically named. See the next example:

$this->benchmark->mark('first_mark_start'):
// something happens
$this->benchmark->mark('first_mark_end');
$this->benchmark->mark('second_mark_start');
// something else happens
$this->benchmark->mark('second_mark_end');

Making use of the Profiler Class
As the Profiler Class is very small, we'll go over it here. The Profiler Class will output
all benchmark results, queries you have run, and $_POST data at the bottom of your
pages. The class will be automatically instantiated by the Output class as long as it is
enabled. To enable the Profiler, you should place the following line of code anywhere
in your Controller:

$this->output->enable_profiler(TRUE);

Learning the Libraries

[32]

Once enabled, a report will be output at the bottom of your pages. Below is an
example of what the profiler information looks like.

Chapter 2

[33]

To disable the profiler, simply place the following code anywhere in your Controller:

$this->output->enable_profiler(FALSE);

Display total execution time
If you would like to display the total execution time for your application, simply
place the following line of code anywhere in one of your view files:

<?php echo $this->benchmark->elapsed_time(); ?>

You may notice that this is the same function as when calculating the time between
two benchmark points; except in this case we do not pass any parameters to the
function. When no parameters are passed, the benchmark class simply runs and
outputs the total execution time. Another, shorter way of displaying this data is to
use the following line of code:

{elapsed_time}

The above is a pseudo-variable and is provided for developers who do not wish to
use pure PHP in their View files.

Display memory consumption
If your PHP installation is configured with the option –enable-memory-limit, you
can display the amount of memory used by the system by including the following
line of code in your application:

<?php echo $this->benchmark->memory_usage(); ?>

This function can only be used in your View files. The memory consumption
shown will be of the entire CodeIgniter application, not of two benchmarked
points. Another way to show your memory consumption is to use the following
pseudo-variable:

{memory_usage}

That's all you need to know in order to be able to use the CodeIgniter
Benchmark Class. This is one of the simpler libraries that CodeIgniter offers,
but is possibly one of the most underused, as well. Benchmarks offer a great
way to monitor your application's speed, and greatly help developers who are
building large-scale applications.

Learning the Libraries

[34]

Input and Security Class
The Input and Security Class sanitizes all global data and filters all POST and
COOKIE data to ensure that only alphanumeric characters are present. We've
already used this class when we built our contact form, but there are a few things
that we didn't cover.

XSS filtering
The Input and Security Class comes with a Cross Site Scripting hack prevention filter,
which can be run on a per-item basis, or can be set to filter all POST and COOKIE
data automatically. It is not set to run by default because it has a small processing
overhead and is not always needed in every case.

The XSS filter works by looking for JavaScript that can be run on the page to hijack
cookies or in other cases with malicious intent. All XSS found will be rendered safe
by converting it into HTML entities.

Filtering a single item
This is mainly a recap: To filter POST or COOKIE data for Cross Site Scripting
exploits, you run the data through the filter as shown:

$name = $this->input->xss_filter($this->input->post('name'));

In this instance, I took the value of the name field of an imaginary form. It can be the
name of any form field that you like.

Automatic filtering
You can turn on XSS filtering all of the time and filter everything that comes through
the library by changing the following line in the system/application/config/
config.php file from:

$config['global_xss_filtering'] = FALSE;

to:

$config['global_xss_filtering'] = TRUE;

Chapter 2

[35]

Filtering images
To ensure file upload security, there is an optional second parameter to the XSS clean
function: is_image. This is used to check images for XSS attacks. When the second
parameter is set to TRUE, the function returns TRUE if the image is safe, and FALSE
if it is not, instead of simply returning an altered string.

Retrieving POST data
To retrieve post data, you should use the function shown next. The first parameter is
the name of the POST item that you are looking for.

$this->input->post('some_field');

This function returns the item it if exists, and returns FALSE if it does not. The
second function lets you run the data through the XSS filter without writing any
more code. This is an easier way of running the XSS filter on a per-item basis.

$this->input->post('some_field', TRUE);

Retrieving GET data
The function for retrieving GET data is identical to the POST function, except that it
only retrieves GET data.

$this->input->get('some_field', TRUE);

Retrieving GET and POST data
This function will search through the GET and POST streams for data; looking inside
POST first, then GET. It works in the same way as the previous functions.

$this->input->get_post('some_field', TRUE);

Retrieving COOKIE data
This function is the same as those listed previously, but will only look in the
COOKIE data.

$this->input->cookie('some_field', TRUE);

Retrieving SERVER data
This function is the same as the previous examples, except it only returns
SERVER data.

$this->input->server('some_field', TRUE);

Learning the Libraries

[36]

IP Addresses
To retrieve the user's IP address, you should use the next function. If the IP address
isn't valid, it will return 0.0.0.0.

$this->input->ip_address();

To validate an IP address, you should use the next function. It will return TRUE or
FALSE. The previous function validates the IP automatically.

if (! $this->input->valid_ip($ip))
{
 echo "Not a valid IP";
}
else
{
 echo "Valid IP!";
}

Retrieving a user agent
To determine the user agent of the user, you would use the next line of code. This
will return the user agent of the user's web browser; if one isn't available it will
return FALSE.

echo $this->input->user_agent();

Email Class
The Email Class is a CodeIgniter gem. It enables you to easily send e-mails from your
application; this is great for simple contact forms, and even mailing lists for handling
thousands of e-mails. The Email Class also serves as a wrapper class. This means
that you can change the way that e-mails are sent, without having to change any of
your Controller's code. You can choose between the standard PHP mail function,
sendmail, or even Simple Mail Transfer Protocol (SMTP).

Send an e-mail
To get us started with the Email Class, we'll simply send an e-mail using the PHP
mail function, which is also the default option for this library. To start using the
library, you need to load it in the same way as you would any other library.

$this->load->library('email');

Chapter 2

[37]

The next thing that we will need to do is to set our e-mail parameters, the sender,
the recipient, any e-mail address to send a carbon copy or blind carbon copy to, the
subject of our e-mail, and the message body. Take a look at the following code and
see if you can distinguish the different parts of our e-mail:

$this->email->from('you@example.com', 'Your Name');
$this->email->to('someone@example.com');
$this->email->cc('another@person.com');
$this->email->bcc('theboss@example.com');

$this->email->subject('Email Test');
$this->email->message('This is a simple test we wrote for the email
class.');

Hopefully you can read the previous code example pretty easily. This is one of the
benefits of CodeIgniter and its libraries. It's very easy to read CodeIgniter code. In
the first line of code we set our e-mail address, which is the address that we will send
the e-mail from, and also pass along a name to identify ourselves. In the next line,
we set the recipient, who is the person that we are sending the e-mail to. The next
line down is an e-mail address to send a carbon copy of the e-mail to. A carbon copy
is simply a copy of the e-mail, just sent to another person. The final line of the first
block is the e-mail address to which we will send a blind carbon copy to. A blind
carbon copy is the same as a carbon copy, except for the other recipients of the
e-mail do not know that this person also has received a copy of this e-mail.

We don't need to supply a CC and BCC e-mail for all of our e-mails; we're
just covering it here so that you know that the library supports these extra
e-mail parameters.

Now, to send our e-mail we simply call the send function of the e-mail library. Here's
how we do it.

$this->email->send();

There is another function available to us from this library. It's a debugger that echo's
out some information provided to us by the various mail sending protocols, and
we are also notified what has been sent and whether or not the e-mail was sent
successfully. To show the debugging information, we use the following line of code:

echo $this->email->print_debugger();

Learning the Libraries

[38]

Our final code looks like this:

$this->load->library('email');
$this->email->from('you@example.com', 'Your Name');
$this->email->to('someone@example.com');
$this->email->cc('another@person.com');
$this->email->bcc('theboss@example.com');

$this->email->subject('Email Test');
$this->email->message('This is a simple test we wrote for the email
class.');

$this->email->send();
echo $this->email->print_debugger();

You are not just limited to sending e-mail from inside Controllers; e-mails can also be
sent from Models.

Build a contact form
Before we go ahead and build our contact form, we need to specify what resources we
need to create a usable contact from. The first thing is a contact form, which will be a
view file, and will simply contain our form and echo out any errors that may occur. For
this, we create a file inside the system/application/views/ folder, called email.php.

Now we'll also need a Controller so that we can access and process our contact form.
Create a file inside the system/application/controllers/ folder, called email.php.

Chapter 2

[39]

Our contact form
Our contact form will be very simple. All it will display is a message that we will
pass to the view file (if one is provided), input boxes in which the user can enter
their name, e-mail, and subject, and a text area for the message. This book assumes
knowledge of HTML, so this file should be easy to understand.

<?php

if(isset($msg))
{
 echo $msg;
}

?>
<form method="POST">
Name

<input type="text" name="name" />

Email

<input type="text" name="email" />

Subject

<input type="text" name="subject" />

Message

<textarea rows="17" cols="70" name="message"></textarea>

<input type="submit" name="contact" value="Send Email" />
</form>

Here's what the form looks like in the browser:

Learning the Libraries

[40]

The Controller code will be much more complex. Before we dive into writing the
code, we need to know what security measures we can put in place to ensure that
this contact form is as secure as possible.

Firstly, we need to check that the form has been submitted; if it hasn't then we'll
display the form. If it has been submitted then we'll process the data supplied from
the form.

Secondly, we'll need to check that all of the fields are filled with data; we don't
want any of the fields to be empty. If they are empty, we may be sending ourselves
blank e-mails.

Also, we'll make sure that the e-mail provided is correctly formatted, so that we can
e-mail the user back when we need to. This will be very easy, as we'll use the e-mail
helper for this.

Finally we'll run all of the form fields through CodeIgniter's XSS filter, removing any
code from the form and protecting our site against other types of vulnerability.

But before all that, we will load the Email Library and the Email Helper. The
following two lines of code do exactly that. To send e-mails, we only need to use the
Email Library; we load the Email Helper to easily validate any e-mail address we get
from the user as a reply-to e-mail address. We can also use this library to send an
e-mail with a single function.

$this->load->library('email');
$this->load->helper('email');

Checking if the form has been submitted
The first thing that we need to do is to check if the form has been submitted. We will
do this by using the CodeIgniter Input Class. In brief, the Input Class destroys all
global data not utilized by CodeIgniter, filters POST and COOKIE data, and provides
an XSS filter. Here's the code that we need in order to check if the form has been
submitted or not:

if($this->input->post('contact'))
{
 // process data here
}
else
{
 $this->load->view('contact');
}

Chapter 2

[41]

The first line of code checks that the submit button has a value; this means the form
has been submitted. If the form has been submitted then we will process the data
(this part will come in a minute) but if not, then we'll simply load the form view file.

Checking the values of the form
We need to ensure that all of the form fields have been filled in. We can do this by
simply using the empty() PHP function.

Before we do this, we want to assign the value of the form fields to variables.
This makes it easy for us by saving us from having to type out $this->input-
>post('name') every time. Here's the code for this; it should be placed inside
the if statement where the comment // process data here was.

$name = $this->input->post('name');
$email = $this->input->post('email');
$subject = $this->input->post('subject');
$message = $this->input->post('message');

With that out of the way, we can check to see if any of the fields were left blank, and
show an error if they were.

if(empty($name) OR empty($email) OR empty($subject) OR
empty($message))
{
 show_404("The form submitted left fields blank, all fields are
required. Please go back and fill in all of the fields.");
}

Let me explain this code. What we do in the if statement is say "If the name is
empty, or the email is empty, or the subject is empty or the message is empty:
show this error". I've used OR in place of || in this instance as it's more readable,
and is recommended by the CodeIgniter Style Guide.

Validate the e-mail
The next step that we need to take is to ensure that the email is correctly formatted.
The Email Helper gives us an easy solution. It contains a function that checks
whether a string is in the format name@domain.ext. Here's how we check
the e-mail:

if(!valid_email($email))
{
 show_404("The email address provided is not a valid email. Please go
back and fill in all of the fields.");
}

Learning the Libraries

[42]

Because of the way that I have coded it, I'm actually checking to see if the email
is NOT valid, so I don't need an else statement. We simple use the function
valid_email() provided by the Email Helper, by passing the e-mail to it. It
will return TRUE or FALSE depending on whether the e-mail is valid or not.

Using the XSS filter
The final step to our security check is to pass all of the field data through the XSS filter.
We could do this automatically, but I want to show you how to do it manually. All
that we need to do is to pass the data to the function $this->input->xss_clean(),
in order to ensure that everything is secure. Here's how we do that:

$name = $this->input->xss_clean($name);
$email = $this->input->xss_clean($email);
$subject = $this->input->xss_clean($subject);
$message = $this->input->xss_clean($message);

All that we do is to assign the variables the value of the cleaned variables from the
XSS filter.

Send the e-mail
Finally, we can send our email! I'll cover two ways of sending an e-mail. The first
way uses the Email Class, and the second way uses the Email Helper.

Using the Email Class
I covered how to send an e-mail using the Email class at the beginning of this section,
except that in this case, I'll be using the data from the form.

$this->email->from($email, $name);
$this->email->to('youremail@yourdomain.ext');

$this->email->subject($subject);
$this->email->message($message);

$this->email->send();

There are a few differences this time around. To set the from e-mail address,
I passed the e-mail to the first parameter of the from() function and the name to the
second. The to e-mail address should be set to your e-mail. The subject and message
are self-explanatory. Both have only one parameter: the subject or the e-mail
message, respectively.

Finally the last line of code sends the e-mail.

Chapter 2

[43]

Using the Email Helper
The Email Helper gives us a much simpler way of sending e-mails. We can do it with
one line of code:

send_email('youremail@yourdomain.ext', $subject, $message);

There are a few down-sides to this solution, though. If you want to send both the
user's e-mail and name, you'd need to concatenate them in either the subject or the
message. The function is basically a wrapper for the PHP mail() function. If the
native PHP function were to change slightly, you'd have to wait a short period for
it to be updated in the Email Helper as well.

Batch e-mail processing
Batch email processing is great for users who want to have a mailing list with a large
amount of users subscribed to it. What batch processing does is break up the emails
into smaller chunks, so instead of sending 10,000 emails all at once, it would send 200
(by default) at a time. To enable Batch Processing, we will initialize the Email Class
with a configuration value. Here's the code:

$config['bcc_batch_mode'] = TRUE;
$config['bcc_batch_size'] = 500; // 200 by default

$this->email->initialize($config);

The first configuration value sets the batch mode to TRUE; this enables batch
processing. The second configuration value sets the number of e-mails per batch; this
is 200 by default. Then, the final line initializes the config values for the class to use.

Now when you send large amounts of e-mails using this class, they will be sent in
batches of 500 (unless you leave it at the default 200).

Please take note that the batch processing will only work for BCC e-mails;
so each email that you send to users should use the bcc() function rather
than to() or cc(). For example:
$this->email->bcc('email@domain.ext');

File Uploading Class
The File Uploading Class provides a simple way to upload files to your web server.
It lets you easily change the types of files that can be uploaded and the maximum file
size, and also gives you a few different preferences for file names.

Learning the Libraries

[44]

Uploading files using this class is very simple, and usually the process of uploading
a file will look something like this:

The user is shown a form, and selects a file to upload
The file is then validated to ensure that it meets your preferences
If the file meets your preferences, then the file will be uploaded to the
directory that you specify
The user will be shown either a success message or an error message if the
file doesn't meet the preferences that you set

Before we can create our Upload utility, we need to create an upload folder. Create a
new folder in the system/application/ folder, and call it uploads. If you are on a
web server, you will need to CHMOD this directory to 777.

Create the Upload Views
Our upload form is going to be very simple; we'll just have one field – the upload
field. We'll open the form by using the form helper because it's easier this way,
and we can easily set the action to a Controller. So, create a file inside the system/
application/views/ folder, called upload_form.php, and type the following code
into it:

<?php echo $error;?>

<?php echo form_open_multipart('upload/do_upload');?>

 File:

 <input name="file" type="file" />

 <input type="submit" name="submit" value="Upload" />
<?php echo form_close(); ?>

On the first line you'll notice that we're echoing out a variable. This is where we echo
out any errors provided by the File Upload Class. This will also allow users to select
a file that meets the requirements that we set.

•

•

•

•

Chapter 2

[45]

We'll also need a view file showing the user a success message and the details of
their file. We'll also add a link so that the user can choose to upload another file.
You should name this file upload_success.php.

<h3>Your file was successfully uploaded!</h3>

<?php foreach($upload_data as $item => $value):?>
<?php echo $item;?>: <?php echo $value;?>
<?php endforeach; ?>

<p><?php echo anchor('upload', 'Upload Another File!'); ?></p>

A quick note. We use a function called anchor() to create the link to upload another
file. This function lets us easily create a link to a URI string, without needed to include
the whole URL, making it much easier than simply including the HTML. We pass
the URI string to the first parameter and the link text to the second parameter of
the function.

The foreach loop I used here simply loops through all of the upload data
provided by the Upload Class about the file, and echo's it out to the user. You
probably wouldn't want to do this on a live website, but for our purposes it's
good to learn from.

Learning the Libraries

[46]

Create the Upload Controller
We need to create an Upload Controller to handle the uploading of the file and to
complete all of our business logic. Here's a list of what the Controller will do:

Load the necessary dependencies (libraries, helpers, and so on)
Show the upload form to the user
Specify the type of files that users can upload, and the maximum file size
Validate the file to be uploaded
Upload the file
Show a success message

Now that we know what the Controller needs to do, we can decide on what types of
files we'll allow users to upload. So let's build an image uploader. We'll allow GIF,
JPEG, and PNG, and the images should be no larger than 1 MB. The reason behind
defining this now is so that we can focus on the code later, rather than this, which
can be worked out in this small planning phase.

Our initial controller
Here's our initial Controller; for now it just loads the dependencies that we need,
shows our view file, and has an empty function for our upload process. We set the
upload forms action to be upload/do_upload – this is simply a URI string and is
why the function is named do_upload; we could set it to anything that we like if
we wanted to.

<?php

class Upload extends Controller
{
 function Upload()
 {
 parent::Controller();
 $this->load->helper(array('form', 'url', 'file'));
 }

 function index()
 {
 $this->load->view('upload_form', array('error' => ' '));
 }

•

•

•

•

•

•

Chapter 2

[47]

 function do_upload()
 {
 }

}
?>

Specify the allowed file types and maximum file size
The next thing we need to do is to specify the types of file and the maximum
file size to the Upload Class. To do this, change the configuration values for the
Upload Class, and initialize the class with the following edited values:

$config['upload_path'] = APPPATH . 'uploads/';
$config['allowed_types'] = 'jpeg|jpg|gif|png';
$config['max_size'] = '1024';
$this->load->library('upload', $config);

Uploading the file
The next task on our list is to validate the file. This is done in the same process as
uploading the file, because the Upload Class makes it easy for us by providing a
way to see if the file has been uploaded and easily see the errors if it hasn't.

$field_name = "file";

if (! $this->upload->do_upload($field_name))
{
 $error = array('error' => $this->upload->display_errors());

 $this->load->view('upload_form', $error);
}
else
{
 $data = array('upload_data' => $this->upload->data());

 $this->load->view('upload_success', $data);
}

The first thing that we do in this part of the code is initialize a variable with the value
of the field name in the form for the uploaded file. Then we check to see if the value
of the upload is invalid (that is, the upload hasn't completed); if this is the case then
we show the errors above the upload form. If the file has been uploaded successfully,
though, we grab the upload data and pass it through to the upload success view file.

Learning the Libraries

[48]

Navigate to http://yourwebsite.ext/index.php/upload/ and upload a few
images. Try to upload a file type that isn't allowed and see what happens. This is a
very simple uploader and can form the basis of a more complex system with a little
more work.

Image Manipulation Library
Now that we've built ourselves a simple image uploader, we can take a look at the
Image Manipulation Library. This class let's you create thumbnails, crop and resize
images, rotate images, and even watermark images.

Watermarking images is only available using the GD or GD2 library.
Although other libraries are supported, the GD library needs to be
used for this process.

In order for most of the functions provided by this class to work, the image folder
will need write permissions. In our case we have changed the permissions of the
uploads folder to 777; this gives it read, write, and execute permissions, so we
don't need to change anything else.

Initializing the library
Before using the Image Manipulation Library we need to set a few configuration
values. We need to specify the image processing library to use (from GD, GD2,
ImageMagick and NetPBM), the image that we are going to perform an action on,
and a few more configuration values. We might also need to set some values if we
are creating a thumbnail. Here's how we'd initialize the class to create
a thumbnail:

$config['image_library'] = 'gd2';
$config['source_image'] = APPPATH . 'uploads/myimage.jpg';
$config['new_image'] = APPPATH . 'uploads/mynewimage.jpg';
$config['create_thumb'] = TRUE;
$config['maintain_ratio'] = TRUE;
$config['width'] = 75;
$config['height'] = 50;

$this->load->library('image_lib', $config);

Chapter 2

[49]

On the first line, I set the image library to GD2; it's GD2 by default so it's there
for teaching purposes. If you want to use GD2, you usually won't need to change
it. The next line sets the source image—all you'd need to change here is the
myimage.jpg filename, and the path is set correctly. We have also specified
the name for the thumbnail image when we create it.

To create a thumbnail, you should set the create_thumb value to TRUE. You can also
choose to maintain the ratio of the image and set the width and height.

The last line simply loads the library with the configuration values instead of
the defaults.

Creating a thumbnail
Although we've set our configuration values to accommodate the creation of a
thumbnail, we haven't actually done it yet. This is a very easy process, and only
takes one function:

$this->image_lib->resize();

This resize function will simply resize the original image if create_thumb or
new_image have been used. So make sure that you specify these values if you
want to create a new thumbnail rather than change the uploaded image.

Cropping an image
Cropping an image using this library is also a painless operation. It requires two
extra configuration values, to set the x and y values of where to crop the image.

$config['x_axis'] = '100';
$config['y_axis'] = '40';

You would then check to see if the function returns a success, and show the errors if
it didn't complete.

if (! $this->image_lib->crop())
{
 echo $this->image_lib->display_errors();
}

It is very difficult to crop images without a visual representation of the image so this
function is fairly useless unless you intend to build an interface to easily select the
cropping area.

Learning the Libraries

[50]

Here's a full example of cropping an image. Note that on line six we utilize the
initialize() function. This lets us set up the library with different configuration
values. This is useful if we need to make multiple calls to the same library for
different tasks.

$config['image_library'] = 'gd2';
$config['source_image'] = APPPATH . 'uploads/myimage.jpg';
$config['x_axis'] = '100';
$config['y_axis'] = '60';

$this->image_lib->initialize($config);

if (! $this->image_lib->crop())
{
 echo $this->image_lib->display_errors();
}

Rotating an image
This function requires an additional configuration value to set the angle of rotation.

$config['rotation_angle'] = '90';

There are five available options for this value:

90 – rotates counter-clockwise 90 degrees
180 – rotates counter-clockwise 180 degrees
270 – rotates counter-clockwise 270 degrees
hor – flips the image horizontally
vrt – flips the image vertically

Here's a full example of rotating an image:

$config['image_library'] = 'gd2';
$config['source_image'] = APPPATH . 'uploads/myimage.jpg';
$config['x_axis'] = '100';
$config['y_axis'] = '60';

$this->image_lib->initialize($config);

if (! $this->image_lib->crop())
{
 echo $this->image_lib->display_errors();
}

•

•

•

•

•

Chapter 2

[51]

Clearing values in loops
If you are looping through files, then you need to clear all of the values from the
previous image. To do this you should add the following line of code at the end of
the loop. This line must be included, or the image manipulation library will not
process multiple images.

$this->image_lib->clear();

Pagination Class
Pagination refers to the system of numbering pages—a list of numbered links,
usually found at the bottom of the page, which allow you to navigate to a different
page. CodeIgniter's Pagination Class is easy to use and can be totally customized.

Example
Here's a simple example to show you how to use the Pagination Class in one of
your Controllers:

$this->load->library('pagination');
$this->load->helper('url');

$config['base_url'] = site_url() . '/index.php/results/page/';
$config['total_rows'] = 200;
$config['per_page'] = 20;

$this->pagination->initialize($config);

echo $this->pagination->create_links();

This is all that you need in order to create paginated links. The library comes with
around 20 configurable items, but you only need the three used previously to create
the links.

The base_url is the URL of your controller. We used a function from the URL
helper, which substitutes in the site URL for us, so we only have to change it in one
place (config/config.php) if we need to, and not in every instance. The URI shows
that we use a Controller called Results in a function called page. The final URI item
will be the page number; it is usually located in the third parameter (there is no need
to include the page number in your base URL), but you can use URI routing to use a
different structure.

The next item, total_rows is the number of rows you have in your database. Usually
this will be the number of rows returned from your database query.

Learning the Libraries

[52]

Finally, per_page is the number of results that you want to show per page. In
this example, we're showing twenty items per page; this would result in ten
pages overall.

Customizing the pagination
There are more items that you can add to the $config variable upon initializing the
class. The following items change the way that the pagination is displayed:

$config['uri_segment'] = 3;

This specifies the URI segment which will contain the page number. The class sets
this automatically, but you can change it if you need to.

$config['num_links'] = 2;

This specifies the number of links to show on each side of the current page.

Customize the "First" link
You can also customize the "First" link.

$config['first_link'] = 'First';

This will set the first link text to "First". You can set it to anything; some other
examples might be "<<" or "1st".

$config['first_tag_open'] = '<div>';
$config['first_tag_close'] = '</div>';

You can also wrap this link with a tag. In this case, we're wrapping it up in a div tag,
but you can use anything that you like.

Customize the "Last" link
This is used in the same way as the first link; simply rename your config items as
shown below:

$config['last_link'] = 'Last';
$config['last_tag_open'] = '<div>';
$config['last_tag_close'] = '</div>';

Chapter 2

[53]

Customize the "Next" link
To customize the "Next" link, you would once again use the config values in the
same way mentioned previously. If you intend to use a > for the next link, you will
need to use the HTML entities for it, >.

$config['next_link'] = '>';
$config['next_tag_open'] = '<div>';
$config['next_tag_close'] = '</div>';

Customize the "Previous" link
As with all the other customizable items, there are three possibilities that can be used
to change the way the previous link is shown.

$config['next_link'] = '<';
$config['next_tag_open'] = '<div>';
$config['next_tag_close'] = '</div>';

Customize the "Current Page" link
You can customize the way in which the current page link is shown. There are two
options. The first is the tag to put before the link, and the second is the tag to put
after the link.

$config['cur_tag_open'] = '';
$config['cur_tag_close'] = '';

Customize the "Digit" link
The two tags below would be wrapped around the link for the numbered pages.

$config['num_tag_open'] = '<div>';
$config['num_tag_close'] = '</div>';

Session Class
The Session Class allows you to maintain a user's state as they browse your website.
The Session Class stores data inside a cookie, which can optionally be encrypted. You
are also able to store data inside a database for added security, as this means that the
user's cookie must match the database record. By default only a cookie is used. If you
enable the database option then you'll need to create a database table, by using the
steps given next.

Learning the Libraries

[54]

The Session class doesn't make use of native PHP sessions. It uses
it's own variation that utilizes cookies for storing data. You can
optionally use a database to store all custom information as well.
More on that is provided later in this chapter.

Initializing the Session Class
Sessions typically run globally upon each page load, so the Session Class must either
be initialized by one of your Controllers, or be autoloaded by using CodeIgniter's
autoload feature.

Autoload the Session Class
If you wish to autload the session class, simply open up the system/application/
config/autoload.php file and add session to the libraries array. This will then be
loaded with each page load so you won't have to add any code to your Controller in
order to load the library.

Manually load the Session Class
To load the Session Class manually, simply put the following line of code into any of
your Controllers:

$this->load->library('session');

How do CodeIgniter sessions work?
Upon every page load, the Session Class will check to see if a current session is
active for the particular user. If the session doesn't exist or has expired, it will be
regenerated. If a session does exist, its information will be updated. Every time the
page is loaded, the user will be given a new session ID.

Once the Session Class is loaded, it will run automatically. You do not need to
do anything to get the above operations to happen. You can work with the
session data, and even add your own data to the session, but everything else
is done automatically.

Chapter 2

[55]

What is stored in a session?
A CodeIgniter session is simply an array containing the following data:

The user's unique Session ID (this is a randomly-generated number, which is
hashed with MD5 for portability, and is regenerated every five minutes)
The user's IP address
The user's User Agent string
The "last activity" timestamp

This data is stored in a cookie as a serialized array. Take a look at this example:

[array]
(
 'session_id' => random hash,
 'ip_address' => 'string - user IP address',
 'user_agent' => 'string - user agent data',
 'last_activity' => timestamp
)

You can enable encryption on the cookie so that the array will be encrypted before
being stored in the cookie. This makes the data highly secure and reduces the
chances of people being able to edit their session cookie.

Adding session data
As I noted earlier, you are able to add your own custom session data. This
allows you to store much needed information, such as whether or not a user is
authenticated, quickly. To add data to the session array, you would use the
code given next:

$data = array(
 'username' => 'joebloggs',
 'email' => 'j.bloggs@jbloggs.com',
 'logged_in' => TRUE
);

$this->session->set_userdata($data);

This will add another three items to the session array: username, email and
logged_in. If you wish to add session data one item at a time, the function also
supports this syntax:

$this->session->set_userdata('item_name', 'item_value');

•

•

•

•

Learning the Libraries

[56]

Cookies can only store 4KB of data, so please be aware of this when
storing data. If you have turned on encryption this will make the string
substantially longer than normal.
If you are storing session data in a database table too, custom data will
only be stored in the database so this won't be a concern, as only the
default session data will be stored in the cookie, and not all of the data.

Retrieving session data
So now you've stored your custom session data, you'll need to know how to retrieve
it! To return the session data on a per-item basis you simply use the following code:

$this->session->userdata('item');

where item is the item name of the data that you stored. Let's keep going with the
user authentication notion, and retrieve the username.

$username = $this->session->userdata('username');

If the item that you are trying to retrieve doesn't exist, then the function will
return FALSE.

Hopefully this clears up exactly how to use this function.

Removing session data
It's likely that at some point during your applications life span you will want to
remove some or all of the session data that you previously set. This can be done
in two ways: removing a session item or multiple session items, or destroying
the session.

Removing a single session item
To remove a single session item—the username, for example—you would use the
following function:

$this->session->unset_userdata('username');

This is used in much the same way as retrieving an item: simply pass the name of the
item to the first parameter of the function, and it will be removed.

Chapter 2

[57]

Removing multiple session items
If you wish to remove a number of items from the session data, then you would pass
an array to the first parameter. Take a look at the following example:

$items = array('username' => '', 'email' => '');

$this->session->unset_userdata($items);

This will remove the username and email address from the session data.

Destroying a session
To destroy a session completely, you would use the following function:

$this->session->sess_destroy();

This function should be called last, as it will destroy the
session. If you use the Session Class for user authentication,
this will essentially log the user out.

Flash data
CodeIgniter supports flashdata – data that is only available for one server request,
and is then removed. Flash data is very useful, and is usually used for informational
messages such as "You have been logged out" or "Removed user account".

Flash variables are prefixed with flash_, so avoid using this prefix for your own
custom session data.

Add flashdata
Adding flashdata is much like adding custom session data. Take a look at the
following example:

$this->session->set_flashdata('item', 'value');

You can also send an array to this function, exactly as you would when adding
custom session data.

Read flashdata
Reading flashdata is done in the same way as reading normal session data; the only
difference is the function used.

$this->session->flashdata('item');

Learning the Libraries

[58]

Keep flashdata
If you need to keep flashdata active for an additional request, you should do so by
using the following function:

$this->session->keep_flashdata('item');

Using a session database
As an added layer of security, you can store session data inside a database. This is
great for applications that require a higher level of security, because it offers a way to
validate the session data stored in the cookie.

When the session data is stored in a database, every time that a valid cookie is found
a database query will be made to match it. If the session ID does not match, then the
session is destroyed. Session ID's can never be updated; they can only be regenerated
when a new session is created.

To store session data in a database you need to create a table. Here's a basic MySQL
SQL query, taken from the CodeIgniter User Guide.

CREATE TABLE IF NOT EXISTS 'ci_sessions' (
session_id varchar(40) DEFAULT '0' NOT NULL,
ip_address varchar(16) DEFAULT '0' NOT NULL,
user_agent varchar(50) NOT NULL,
last_activity int(10) unsigned DEFAULT 0 NOT NULL,
user_data text NOT NULL,
PRIMARY KEY (session_id)
);

You also need to change a configuration value in order to enable the database option.

Open up the system/application/config/config.php file, and find the
following line:

$config['sess_use_database'] = FALSE;

Change it to:

$config['sess_use_database'] = TRUE;

If youe table name is something other than ci_session, then you can rename it by
changing another config value:

$config['sess_table_name'] = ci_session';

Chapter 2

[59]

Simply change the value of the variable to the name of your session database. Here's
what the block of code looks like:

Unit testing a class
Unit testing is the process of writing a test for each function in your application.
Ideally, each test case is independent from all of the other tests.

Initializing the class
The Unit Testing Class is loaded in the same way as all of the CodeIgniter classes: by
using the $this->load->library function.

$this->load->library('unit_test');

Once loaded, the class will be available by using $this->unit.

Running tests
Running a test involves supplying a test, an expected result, and a name for the test.
You do not need to name your tests—this is optional, but is highly recommended if
you have multiple tests.

Learning the Libraries

[60]

Here's an example test:

$test = 1 + 1;
$expected_result = 2;
$test_name = "One add one";

$this->unit->run($test, $expected_result, $test_name);

This is a very simple example of a test, and hopefully gives you an understanding of
how tests work.

If you were to test the return value of a function, you would do it like this:

$test = function_name();
$expected_result = 2;

$this->unit->run($test, $expected_result);

This would then compare the value returned from the function with the expected
result. The results do not have to be numbers; I've used numbers here for simplicity.

Expected results should either be a literal match or a data type match. Here's an
example of a literal match:

$this->unit->run('test', 'test');

Here is an example of a data type match:

$this->unit->run('test', 'is_string');

The value of the second parameter – is_string – will evaluate whether the test is a
string or not. Here's a list of supported comparison types:

is_string
is_bool
is_true
is_false
is_int
is_numeric
is_float
is_double
is_array
is_null

•

•

•

•

•

•

•

•

•

•

Chapter 2

[61]

Generating reports
You can generate reports after each test, or you can see a report of all tests at the end.
To show a single report, simply echo out the run function.

echo $this->unit->run($test, $expected_result, $test_name);

To see a full report of all tests, use this function:

echo $this->unit->report();

The report will generate an HTML table for viewing. If you prefer to see raw data,
you can by using the following function:

echo $this->unit->result();

Strict mode
By default, the Unit Testing Class will evaluate literal matches loosely. Take this
example test:

$this->unit->run(1, TRUE):

This test is evaluating an integer, but the expected result is a Boolean. Due to PHP's
loose data typing, the previous code will be evaluated as TRUE. Take the following
raw PHP test as an example:

if (1 == TRUE) echo 'This evaluates as TRUE';

If you put the Unit Testing Class into strict mode, it essentially does this.

if (1 === TRUE) echo 'This evaluates as FALSE';

You can enable strict mode as follows:

$this->unit->use_strict(TRUE);

Enabling or disabling unit testing
If you would like to leave your tests in place in your scripts but do not want them
to be run unless you need them to be run, you can disable unit testing with the
following function:

$this->unit->active(FALSE);

Simply set it back to TRUE if you want to run the tests again:

$this->unit->active(TRUE);

Learning the Libraries

[62]

Create a template
If you want the Unit Testing Class to format the final report differently from the
default layout, you can set a different template, as follows:

$str = ''
<table border="0" cellpadding="4" cellspacing="1">
 {rows}
<tr>
<td>{item}</td>
<td>{result}</td>
</tr>
 {/rows}
</table>';

$this->unit->set_template($str);

Take note of the required pseudo-variables.

The template must be set before running the unit test process.

Summary
This chapter has taught you all you need to know in order to ensure that your
application runs smoothly, by running benchmarks and unit tests, staying
secure, using the input class, the security class, and the session class for secure
authentication—and has also shown you how to build smaller applications such
as a contact form and image uploader.

This is only a small part of CodeIgniter, and over the next two chapters you'll
learn how to create secure forms and how to utilize CodeIgniter's awesome
Database Library.

Form Validation and
Database Interaction

Form validation is an important part of any application. Take a look at your
favorite web application, notice that there are many forms in these web apps,
and it is important that they be secure. It is also important that you have rules
that should be adhered to; this also helps to keep a layer of security.

CodeIgniter's Form Validation Library gives you a great way to easily validate and
secure your forms.

In this chapter you will:

Learn how the form validation process works
Build a contact form
Apply validation rules to the form's input fields
Use callbacks to create your own rules
Perform database queries with the database library
Return query results using the database helper functions
Create queries using the active record library
Learn how to cache active record queries
Modify database tables using database forge

•

•

•

•

•

•

•

•

•

Form Validation and Database Interaction

[64]

Why should I validate my forms?
The answer to this question is simple: security. If you simply left your forms bare,
with no validation, and then stored this information directly in a database, you are
liable to attack. People can simply place in some SQL code and can see a dump of a
part or all of your database.

By using form validation and creating rules, you will disallow most, if not all, of
these practices from occurring. By having set validation rules you can limit the
types of data being allowed in your forms. Best of all, the Form Validation Library
makes it easy to re-populate your form fields and to show individual errors for each
field, making the overall end user experience better; which can mean a lot in an
environment with many forms.

Even if you are building a contact form, it is a good idea to validate your forms to
stop people abusing your form.

Using the Form Validation Library
In this chapter, we'll go back over the Contact Form we built in Chapter 2, Learning
the Libraries, but we'll use the Form Validation Library instead of our own methods.

The form validation process
The Form Validation processes are different for the developers and for users. Read
on to see how the user interacts with the forms, as well as how the developer will
create the forms.

The user's process
A form is displayed to the user, who then fills it in and submits it. The Form
Validation Library then checks the form against any rules that the developer has
set. If an error occurs the library returns these errors and they are shown against
the form with the fields re-populated. This process proceeds until a valid form
is submitted.

The development process
You create a form, along with a dynamic value from a form helper function—this
will re-populate the data if needed. You will also display individual or global errors
in the form view file. You set validation rules, which must be adhered to. Then you
check to see if the validation process has been run, and if it has not, you load the
form view file.

Chapter 3

[65]

Contact form
We previously validated the form data ourselves, checked when the form had been
submitted, checked for empty fields, validated the e-mail, and then sent the e-mail
off. In this chapter, we'll use the Form Validation Library to complete these tasks.
All of the code shown should be in the index() function of your email controller.

Loading the assets
We need to load two libraries for our contact form: the Form Validation Library
and the Email class. We can do this in one line, by passing an array to the
load->library function.

$this->load->library(array('email', 'form_validation'));

We also need to load two helpers: the email helper and the form helper. We will do
this in the same way as we loaded the two libraries in the previous line of code.

$this->load->helper(array('email', 'form'));

Setting the rules
The next step in using the Form Validation Library is to set the rules for the form.
These rules are set and must be adhered to. The way we set rules is by using the
set_rules() function of the Form Validation Library. We use the function
as follows:

$this->form_validation->
 set_rules('field_name', 'human_name', 'rules');

As you can see, the function accepts three parameters. The first is the name of the
form field that you wish to set the rule for. The second parameter is the name that
you wish to be assigned to this, for humans to read. The final parameter is where
you pass any validation rules.

List of validation rules
The following rules are readily available for use:

required
matches[field_name]
min_length[x]
max_length[x]
exact_length[x]
alpha

•

•

•

•

•

•

Form Validation and Database Interaction

[66]

alpha_numeric
alpha_dash
numeric
integer
is_natural
is_natural_no_zero
valid_email
valid_emails
valid_ip
valid_base64

As you can see, some of these rules have a single parameter.

The rule matches[] will return TRUE if the field matches the field name passed to it.

The min_length[], max_length[], and exact_length[] rules will take an integer
as a parameter and check if the minimum length, maximum length respectively, or
exact length matches the rule.

The rules with no parameters are pretty much self-explanatory. You are able to
use more than one rule, simply separate rules with a vertical bar '|' and they
will cascade.

These rules can also be called as discrete functions. You may also use
any native PHP function that accepts one parameter as a rule.

$this->form_validation->required($string);
$this->form_validation->is_array($string); // native PHP function as a
 // rule

Prepping data
We can also use various prepping functions to prep the data before we apply rules to
it. Here's a list of the prepping rules that we can perform:

xss_clean
prep_for_form
prep_url
strip_image_tags
encode_php_tags

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3

[67]

The first function listed is xss_clean. This basically strips out any code and
unwanted characters, and replaces them with HTML entities.

The function prep_for_form will convert special characters so that HTML data can
be shown in a form without breaking it.

The function prep_url will simply add http:// to a URL, if it is missing.

The function strip_image_tags will remove image tags, leaving the RAW
image URL.

The function encode_php_tags will convert PHP tags into entities.

You may also use any native PHP function that accepts one parameter
as a rule.

The rules
Now that we know how to set rules and what the rules we can use are, we can go
ahead and set the rules necessary for our form. All fields should be required, and
the e-mail field should be validated to ensure that the e-mail address is correctly
formatted. We also want to run all of the data through the XSS filter.

$this->form_validation->
 set_rules('name', 'Name', 'required|xss_clean');

$this->form_validation->
 set_rules('email', 'Email Address',
 'required|valid_email|xss_clean');

$this->form_validation->
 set_rules('subject', 'Subject', 'required|xss_clean');

$this->form_validation->
set_rules('message', 'Message', 'required|xss_clean');

Check the validation process
Instead of checking one of the form field's POST value to check if the form has been
submitted, we simply check to see if the Form Validation Library has run. We do this
by using the following code:

if($this->form_validation->run() === FALSE)
{
 // load the contact form

Form Validation and Database Interaction

[68]

}
else
{
 // send the email
}

It's fairly simple: if the Form Validation Library hasn't processed a form, we display
the form to the user; if the library has processed a form and there are no errors, we'll
send the e-mail off.

Sending the email
As you'll notice, everything is the same as how we got the field data earlier.

$name = $this->input->post('name');
$email = $this->input->post('email');
$subject = $this->input->post('subject');
$message = $this->input->post('message');

$this->email->from($email, $name);
$this->email->to('youremail@yourdomain.ext');

$this->email->subject($subject);
$this->email->message($message);

$this->email->send();

Final controller code
Here is the entirety of our controller code:

<?php

class Email extends Controller
{
 function Email()
 {
 parent::Controller();
 } // function Email()

 function index()
 {
 $this->load->library(array('email', 'form_validation'));
 $this->load->helper(array('email', 'form'));

Chapter 3

[69]

 $this->form_validation->
 set_rules('name', 'Name', 'required|xss_clean');
 $this->form_validation->
 set_rules('email', 'Email Address',
 'required|valid_email|xss_clean');
 $this->form_validation->
 set_rules('subject', 'Subject', 'required|xss_clean');
 $this->form_validation->
 set_rules('message', 'Message', 'required|xss_clean');

 if($this->form_validation->run() == FALSE)
 {
 $this->load->view('email'); // load the contact form
 }
 else
 {
 $name = $this->input->post('name');
 $email = $this->input->post('email');
 $subject = $this->input->post('subject');
 $message = $this->input->post('message');

 $this->email->from($email, $name);
 $this->email->to('youremail@yourdomain.ext');

 $this->email->subject($subject);
 $this->email->message($message);
 $this->email->send();
 }
 } // function index()
} // class Email extends Controller

?>

Changes to the form view
There are a couple of changes that we need to make to the form view in order to get
the data to re-populate, and to show any errors next to the form field.

Form Validation and Database Interaction

[70]

Re-populating field values
This is a fairly simple process. If an error has occurred, all we need to do to get the
field data to re-populate is to set the value attribute of our input box. We then set the
value using a form helper function, set_value(). We pass the name of the form field
to the first parameter of this function.

value="<?php echo set_value('name'); ?>"

Showing individual errors
To display the errors, we do the same as we did earlier, but this time we use a
different function and place it below the input box. The function that we use this
time is form_error().

<?php echo form_error('name'); ?>

Final form view
Here is the complete code for our view file:

<?php echo form_open(); ?>

Name

<input type="text" name="name"
 value="<?php echo set_value('name'); ?>" />
<?php echo form_error('name'); ?>

Email

<input type="text" name="email"
 value="<?php echo set_value('email'); ?>" />
<?php echo form_error('email'); ?>

Subject

<input type="text" name="subject"
 value="<?php echo set_value('subject'); ?>" />
<?php echo form_error('subject'); ?>

Message

<textarea rows="17" cols="70" name="message">
 <?php echo set_value('message'); ?></textarea>
<?php echo form_error('message'); ?>

<input type="submit" name="contact" value="Send Email" />
<?php echo form_close(); ?>

Chapter 3

[71]

The form should appear as follows:

Changing the error delimiters
You can change the way that the errors are displayed to have them contained within
custom HTML tags. This is useful for when you want to assign a CSS class in order
to the errors to display them differently.

Changing delimiters globally
To change the error delimiters globally, add the next line of code after loading the
Form Validation Library:

$this->form_validation->
 set_error_delimiters('<div class="error">', '</div>');

Changing delimiters individually
You can change the delimiters on a case-by-case basis. In the form view file change
the way you show the errors by including two parameters in the errors function(s).

<?php

 echo form_error('field name', '<div class="error">', '</div>');

?>

You can also use:

<?php echo validation_errors('<div class="error">', '</div>'); ?>

Form Validation and Database Interaction

[72]

Saving sets of validation rules to a
config file
You can save sets of rules to a config file. To start, create a new file called
form_validation.php, inside the application/config/ directory. The rules
must be contained within a variable $config, as with all other config files.
The rules from our contact form would now appear as follows:

$config = array(
 array(
 'field' => 'name',
 'label' => 'Name',
 'rules' => 'required|xss_clean'
),
 array(
 'field' => 'email',
 'label' => 'Email Address',
 'rules' => 'required|valid_email|xss_clean'
),
 array(
 'field' => 'subject',
 'label' => 'Subject',
 'rules' => 'required|xss_clean'
),
 array(
 'field' => 'message',
 'label' => 'Message',
 'rules' => 'required|xss_clean'
)
);

Creating sets of rules
If you have more than one form that needs validating, you can create sets of rules. To
do this, you need to place the rules into 'sub-arrays'. The rules for our contact form
would appear as follows when we place it into a set:

$config = array(
 'email' => array(
 array(
 'field' => 'name',
 'label' => 'Name',
 'rules' => 'required|xss_clean'

Chapter 3

[73]

),
 array(
 'field' => 'email',
 'label' => 'Email Address',
 'rules' =>
 'required|valid_email|xss_clean'
),
 array(
 'field' => 'subject',
 'label' => 'Subject',
 'rules' => 'required|xss_clean'
),
 array(
 'field' => 'message',
 'label' => 'Message',
 'rules' => 'required|xss_clean'
)
)
);

This method allows you to have as many sets of rules as you need.

Calling a specific set of rules
You need to specify the rule set that you want to validate the form against, on the
run function. Our edited controller would now look like this:

if($this->form_validation->run('email') == FALSE)
{
 $this->load->view('email'); // load the contact form
}
else
{
 // send the email
}

Form Validation and Database Interaction

[74]

Associating a rule group with a controller
You can use these groups to automatically associate them with a controller
and function. This time, instead of calling the group email, we'll call it
email/index—this will associate the rule group with the controller email
and the function index.

$config = array(
 'email/index' =>
 array(
 array(
 'field' => 'name',
 'label' => 'Name',
 'rules' => 'required|xss_clean'
),
 array(
 'field' => 'email',
 'label' => 'Email Address',
 'rules' => 'required|valid_email|xss_clean'
),
 array(
 'field' => 'subject',
 'label' => 'Subject',
 'rules' => 'required|xss_clean'
),
 array(
 'field' => 'message',
 'label' => 'Message',
 'rules' => 'required|xss_clean'
)
)
);

This way, you won't need to explicitly say which rule group you want your form to
be validated against.

Using callbacks
The Form Validation Library allows you to use callbacks as rules. A callback is
simply a function in your Controller code that is used in place, or along with, a rule.

Say, for example, you want to add the user's e-mail address to the database if they
haven't sent you an e-mail before. We can do this with a callback.

Chapter 3

[75]

Firstly though, let's create the database table. There will be three fields: an ID, the
user's name, and the user's e-mail address.

CREATE TABLE IF NOT EXISTS `user_data` (
 `id` INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY ,
 `name` VARCHAR(255) NOT NULL ,
 `email` VARCHAR(255) NOT NULL
);

Include the callback in the rules
To add a callback into the rules, simply prefix the name of the function with
callback_. Here is the rule for the e-mail field, again, with our callback added:

$this->form_validation->
 set_rules('email', 'Email Address',
 'required|valid_email|callback_add_user|xss_clean');

Here you can see that we've added the rule callback_add_user—this will run the
e-mail through the function add_user() in our controller.

Creating the callback
To create the callback, first we need to decide how it will work.

Firstly, we will want to see if the e-mail already exists in the database; if so we
won't do anything. If the e-mail isn't in the database, we'll add it along with the
persons name.

Create the function
Creating a function is easy. A note about using callbacks, first. When using a
callback, the Form Validation Library will pass the value of the field to the callback,
so to get the e-mail into our callback we simply need to create a variable to retrieve it.

function add_user($email) { }

Load the database library
We'll need to load the database library. We do this slightly differently than other
libraries, because it is larger than the others.

$this->load->database();

Form Validation and Database Interaction

[76]

Performing the database query
There won't be lots of detail here, because the next chapter covers everything that
you will need to know about the database library. To perform a basic SQL query,
we use the following function:

$this->db->query();

So our code will look like this:

$query = $this->db->
 query("SELECT * FROM `user_data` WHERE `email` = '$email'");

Adding a condition
We only want to add the user's name and their e-mail address if the email doesn't
exist already. To do this, we'll need to check to see if the number of rows returned
from the query is zero.

To do this, we will use a helper function provided by the database library called
num_rows.

if($query->num_rows() === 0)
{
 $name = $this->input->post('name');

 $this->db->
 query("INSERT INTO `user_data` (name, email)
 VALUES ('$name', '$email')");
}

In this example we used an explicit comparison (===); we check that
the value of the number of rows returned is identical to 0. If we had
used == then the result FALSE would run through the comparison as
TRUE and the code in the loop would run when we didn't want it to.

You will also notice from this code that we are using the same function as we did
to get the data from the database to insert the e-mail as well. The code inside the if
statement will only be run if there is no previous record of the e-mail in the database.

Show a success page
To show the user that some progress has been made, let's add in the success page.
Find the following line of code:

$this->email->send();

Chapter 3

[77]

Add the following lines below it:

$data['msg'] = "Thank you, your email has now been sent.";
$this->load->view('email_success', $data);

Now, create a file inside the system/application/views/ folder called
email_success.php and add the following line of code into it.

<?php echo $msg; ?>

All we need to do is echo the variable out. You should, of course, add any layout
code if you're using this on a live website, because at the moment, we simply
display the message as seen in the next screenshot.

Database interaction
Databases are the backbone behind any Web application. Without a database,
you'd have nowhere to hold all of your data, and SQL queries can become long and
cumbersome to type out. Thankfully, CodeIgniter gives us a brilliantly simple way
to interact with our Database. The database library also makes changing between
database types—from MySQL to Oracle, for example—easier, because it acts as a
wrapper and provides many functions for us to use on the database.

Loading the library
Loading the Database library is slightly different from loading other libraries. This is
because it is large and resides in a different folder, unlike the other libraries.

$this->load->database();

Performing simple queries
Let's dive straight in by starting with the simple stuff. CodeIgniter gives us a
function that we can pass a SQL Query to, and the query will be run on the
database. Here's how it works:

$this->db->query('PUT YOUR SQL HERE');

This function is incredibly simple to use; you simply use this function in place of any
native PHP functions you would use to run queries. This function will return TRUE
or FALSE for write queries, and will return a dataset for read queries.

Form Validation and Database Interaction

[78]

There is another function that you can use for very simple queries; this will only
return TRUE or FALSE. It won't let you cache your query or run the query timer.
In most cases you won't want to use this function.

$this->db->simple_query('PUT YOUR SQL HERE');

The SQL code that you pass to these functions are database-dependent.
Only Active Record queries are independent of any type of Database SQL.

Returning values
You can assign the function $this->db->query() to a variable. You can then run
a number of helper functions on the variable in order to return the data in different
formats. Take the following example:

$query = $this->db->query('SELECT * FROM 'users'');

Returning a result object
In this case, returning the result will return an array of objects, or an empty array if
the query failed. You would usually use this function in a foreach loop.

foreach($query->result() as $row)
{
 echo $row->username;
 echo $row->email;
}

If your query does not return a result, the CodeIgniter User Guide encourages you to
check for a failure before using this function.

if($query->num_rows > 0)
{
 foreach($query->result() as $row)

{
 echo $row->username;
 echo $row->email;

}
}

Chapter 3

[79]

Returning a result array
You are also able to return the result dataset as an array. Typically, you would use
this function inside a foreach loop as well.

foreach($query->result_array() as $row)
{
 echo $row['username'];
 echo $row['email'];
}

Returning a row object
If your query is only expected to return a single result, you should return the row by
using the following function. The row is returned as an object.

if($query->num_rows() > 0)
{
 $row = $query->row();

 echo $row->username;
 echo $row->email;
}

You can return a specific row by passing the row number as a digit in the
first parameter.

$query->row(2);

Returning a row array
You can return a row as an array, if you prefer. The function is used in the same way
as the previous example.

if($query->num_rows() > 0)
{
 $row = $query->row_array();

 echo $row['username'];
 echo $row['email'];
}

You can return a numbered row by passing the digit to the first parameter, also.

$query->row_array(2);

Form Validation and Database Interaction

[80]

Result helper functions
Besides the helper function that helps to return the dataset in different ways, there
are some other more generalized helper functions.

Number of rows returned
Used in the same way as the other helper functions, this will return the total number
of rows returned from a query. Take the following example:

echo $query->num_rows();

Number of fields returned
Just like the previous function, this will return the number of fields returned by
your query.

echo $query->num_fields();

Free result
This function will remove the resource ID associated with your query, and free the
associated memory. PHP will usually do this by default, although when using many
queries you may wish to use this to free up memory space.

$query->free_result();

Active Record
The Active Record in CodeIgniter is quite different to the AR you may find in Rails
or other frameworks. The way that Active Record in CodeIgniter works is that you
build up your queries using different functions. For simple queries, you might only
need to use one or two functions, but for some you may need to use more—for
example, if you have to look for certain conditionals, such as where a username
and password are the same.

Selecting data
All of the functions in this section will build SQL SELECT queries. All of the SQL in
this section is MySQL; other database systems may differ slightly.

Chapter 3

[81]

$this->db->get();
The simplest query that you can do with Active Record is to select a full database
table. This is done with one single function:

$this->db->get();

This would create the SQL query:

SELECT * FROM `table_name`

This function has three parameters. The first is the name of the database table. The
second lets you set a limit, and the third lets you set an offset.

$query = $this->db->get('table_name', 10, 20);

This would then produce the SQL query:

SELECT * FROM `table_name` LIMIT 20, 10

$this->db->get_where();
This function works in much the same way as the previous function. The only
difference is that the second parameter should be passed as an array. The array
should have the name of the field and the value to use to fill in the WHERE part of
your query.

$query = $this->db->get('table_name', array('id' => $id), 10, 20);

This would produce the following SQL query:

SELECT * FROM 'table_name' WHERE 'id' = $id LIMIT 10, 20

$this->db->select();
This function allows you to write the SELECT portion of your query. Take a look at
the following example:

$this->db->select('name, username, email');
$query = $this->db->get('users');

The SQL query produced from this function will be:

SELECT name, username, email FROM `users`

Form Validation and Database Interaction

[82]

You should take note that when using this function, and any of the other
functions that let you write a portion of your query, that you still need to
use the get() function to actually produce and run the query.
If you are selecting everything form your database (*) then you do
not need to use this function as CodeIgniter assumes that you mean to
select everything.

$this->db->from();
This function allows you to write the FROM portion of your query. This is basically the
same as using the get() function, although it is slightly more readable. You can use
whichever method you prefer.

$this->db->from('table_name');
$query = $this->db_>get();

$this->db->join();
This function lets you write the JOIN part of your query. Here's an example:

$this->db->select('*');
$this->db->from('blogs');
$this->db->join('comments', 'comments.id = blogs.id');

$query = $this->db->get();

You can specify a different type of join in the third parameter. You can choose from
left, right, outer, inner, left outer, and right outer.

$this->db->join('comments', 'comments.id = blogs.id', 'left');

$this->db->where();
This function is used to build the WHERE portion of your query. This function can be
used in a variety of ways.

Single key or value method
$this->db->where('name', $name);

Chapter 3

[83]

This will produce the following SQL query. Note that the equals sign has been added
for your convenience.

WHERE `name` = '$name'

Multiple key or value method
$this->db->where('name', $name);
$this->db->where('email', $email);

These two clauses will be appended to each other, and the word AND will be placed
in between them.

Custom key or value method
You can include an operator in the first parameter, in order to change the default
behavior (that is, using an = sign).

$this->db->where('name !=', $name);

// Produces WHERE `name` != '$name'

Associative array method
You can pass values to the where() function by using an associative array. Take a
look at the following example:

$array = array('name' => $name, 'email' => $email);
$this->db->where($array);

You can include operators in the array, just as you would use in the first parameter.

$array = array('name !=' => $name, 'email' => $email);
$this->db->where($array);

Custom string
You can write your own custom WHERE clauses by passing a string to the
first parameter.

$where = "name = 'Billy' AND job_title = 'MD'";
$this->db->where($where);

The where() function includes an optional third parameter. When set to FALSE,
CodeIgniter will not try to protect your queries by adding backticks.

Form Validation and Database Interaction

[84]

$this->db->like();
This function allows you to write the LIKE portion of your query, and functions in
almost the exact same way as the where() method.

Single key or value method
This method is the same as the where() method, when used as follows:

$this->db->like('name', $name);

Multiple key or value method
This method is also the same as the where() method. Multiple calls will be
chained together.

$this->db->like('name', $name);
$this->db->like('email', $email);

This function actually has three parameters. The first is the title of the field, the
second is the match, and the third specifies where you want the wildcard to be
placed. Your options are before, after and both (both is the default).

Associative array method
You can pass values to the like() function by using an associative array. Take a
look at the following example:

$array = array('name' => $name, 'email' => $email);
$this->db->like($array);

$this->db->group_by();
This function lets you write the GROUP BY portion of your query.

$this->db->group_by('name');
$this->db->group_by(array('name', 'title'));

$this->db->order_by();
This lets you write the ORDER BY portion of your query. The first parameter is
for your field name. The second is the type of order that you want to use, and
can be asc, desc, or random.

Chapter 3

[85]

Random sorting is not currently supported in Oracle or MSSQL Drivers.
These will default to asc.

$this->db->order_by('name', 'desc');

You can also pass a string as the first parameter.

$this->db->order_by('name desc, title asc');

Multiple function calls can also be used, as for other functions.

$this->db->order_by('name', 'desc');
$this->db->order_by('title', 'asc');

$this->db->limit();
This function lets you add a LIMIT specification to your query. The first parameter
will be the number to limit to, and the second parameter let's you set an offset.

$this->db->limit(10, 20);

Inserting data
Inserting data using Active Record is a very simple process, and there are just two
functions that you may need to use in order to insert data into your database.

$this->db->insert();
This will generate an insert string based upon the data that you supply to it. The first
parameter is the name of the table that you want to add the data to, and the second
parameter can either be an array or an object of the data.

$data = array('name' => 'Bob Smith',
 'email' => 'bob@smith.com');

$this->db->insert('table_name', $data);

This would then produce the following SQL statement:

INSERT INTO mytable (name, email)
 VALUES ('Bob Smith', 'bob@smith.com')

All values will be properly escaped before being inserted into
the database.

Form Validation and Database Interaction

[86]

$this->db->set();
This function lets you set data for inserts or updates to your table. This can be used
in place of passing an array of data to the insert or update function.

$this->db->set('name', 'Bob Smith');
$this->db->insert('table_name');

If you use multiple function calls they will be properly formatted, depending on
whether you are performing an update or an insert.

This function also supports a third parameter. When set to FALSE, this third
parameter will prevent data from being escaped.

You can also pass an associative array to this function.

$array = array('name' =>'Bob Smith', 'email' => 'bob@smith.com');

$this->db->set($array);
$this->db->insert('table_name');

Updating data
Updating data is a highly important part of any web application. CodeIgniter makes
this really simple to do. The update function works in largely the same way as the
insert function.

$this->db->update();
This will generate an update string based upon the data that you supply to it.
The first parameter is the name of the table you want to add the data to, and the
second parameter can either be an array or an object of the data. The third,
optional parameter enables you to set the WHERE clause of your SQL query.

$data = array('name' => 'Bob Smith',
 'email' => 'bob@smith.com');

$this->db->where('id', 5);
$this->db->update('table_name', $data);

This would then produce the following SQL statement:

UPDATE mytable SET name = 'Bob Smith', email = 'bob@smith.com'

All values will be properly escaped before being inserted into
the database.

Chapter 3

[87]

You can optionally use the where() method to set the WHERE clause of the query.
Here's how you would use the third parameter to set the WHERE clause:

$data = array('name' => 'Bob Smith',
 'email' => 'bob@smith.com');

$this->db->update('table_name', $data, 'id = 5');

Just as for inserting data, you may use the set() method in place of an array.

Deleting data
You can delete data from your tables in a variety of ways. You can either delete fields
from a database or empty a database.

$this->db->delete();
This function accepts two parameters. The first is the name of the table, and the
second should be an array from which to build the WHERE clause.

$this->db->delete('table_name', array('id' => 5));

You can also use the where() function to build the WHERE clause:

$this->db->where('id', 5);
$this->db->delete('table_name');

An array of table names can be passed into this function, if you wish to delete more
than one table.

$tables = array('table1', 'table2', 'table3');
$this->db->where('id', '5');
$this->db->delete($tables);

$this->db->empty_table();
This function provides an easy way to delete all of the data from a table. Simply pass
the name of the table to the first parameter, to empty it.

$this->db->empty_table('table_name');

Form Validation and Database Interaction

[88]

$this->db->truncate();
This function will generate a TRUNCATE command and run it. It can be used in
two ways:

$this->db->from('table_name');
$this->db->truncate();

or

$this->db->truncate('table_name');

Use whichever you feel more comfortable with, or the one that you find is
most readable.

Active Record caching
Although the Active Record caching functionality provided by CodeIgniter is not
true caching, it enables you to save a query for use later on in your script execution.
Usually, an SQL query is reset after it has been completed. With Active Record
caching you can prevent this reset and reuse queries easily.

The three caching functions available are listed next.

$this->db->start_cache();
This function must be called in order to begin the caching process. Not all queries
can be cached. The cacheable queries are as follows:

SELECT
FROM
JOIN
WHERE
LIKE
GROUPBY
HAVING
ORDERBY
SET

$this->db->stop_cache();
This function must be called in order to stop caching.

•

•

•

•

•

•

•

•

•

Chapter 3

[89]

$this->db->flush_cache();
This function will delete all items from the Active Record cache.

Here's an example of Active Record caching:

$this->db->start_cache();
$this->db->select('field_1');
$this->db->stop_cache();

$this->db->get('tablename');

// Produces: SELECT `field_1` FROM (`tablename`)

$this->db->select('field_2');
$this->db->get('tablename');

// Produces: SELECT `field_1`, `field_2` FROM (`tablename`)

$this->db->flush_cache();

$this->db->select('field_2');
$this->db->get('tablename');

// Produces: SELECT `field_2` FROM (`tablename`)

Method chaining
Method chaining is available to everyone using PHP5. It enables you to vastly
simplify your syntax by connecting multiple functions. Take a look at this example:

$this->db->select('name, email')->from('users')->
 where('id', 5)->limit(10, 20);
$query = $this->db->get();

This would produce the following SQL statement:

SELECT name, email FROM `users` WHERE `id` = 5 LIMIT 10, 20

Form Validation and Database Interaction

[90]

Manipulating databases with Database
Forge
The Database Forge class includes functions that enable you to perform operations
on your databases and create new database schemas.

Loading the Forge class
Loading the Forge class is similar to loading the Database class.

$this->load->dbforge();

Once loaded, you can use all of the functions shown in this section.

Creating a database
Creating a database by using dbforge is fairly simple. It only takes a single function.
The function will return TRUE or FALSE, depending upon the success or failure of
the call.

if ($this->dbforge->create_database('my_db'))
{
 echo 'Database created!';
}

Dropping a database
Dropping a database is much like creating a database. It, too, only takes a single
function, which returns TRUE or FALSE depending upon the success or failure
of the call.

if ($this->dbforge->drop_database('my_db'))
{
 echo 'Database deleted!';
}

Adding fields
To add fields to your database table, you use the function $this->dbforge->add_
field();. Once the fields have been defined, a call to the create_table function
should be made.

Chapter 3

[91]

You can add fields by using a multi-dimensional array. Here's an example:

$fields = array(
 'users' =>
 array(
 'type' => 'VARCHAR',
 'constraint' => '100',
)
);

When adding a field like this, each defined field must have a 'type' key. This relates
to the data type of the field. Some types require a constraint key. In this example the
VARCHAR is limited to 100 characters.

Creating an ID field has it's own exception. To create an ID, you need to
use the following function. ID fields are automatically assigned as an
INT(9) auto_incrementing Primary Key.

$this->dbforge->add_field('id');

Creating a table
After fields and keys have been defined, you can create a table by using the
following function:

$this->dbforge->create_table('table_name');

An optional second parameter will add IF NOT EXISTS when set to TRUE.

$this->dbforge->create_table('table_name', TRUE);

Dropping a table
Dropping a table is made very simple with the Forge Class. Just a single function
is needed:

$this->dbforge->drop_table('table_name');

Renaming a table
Renaming a table takes one function. The first parameter is the old table name, and
the second is the new table name.

$this->dbforge->rename_table('old_table_name', 'new_table_name');

Form Validation and Database Interaction

[92]

Modifying a table
There are a few functions that you can use in order to modify a table. You can add,
modify, and drop columns.

$this->dbforge->add_column();
This function accepts two parameters. The first is the name of the table that you wish
to add to, and the second is an array of the columns that you wish to add.

$fields = array(
 'preferences' =>
 array('type' => 'TEXT')
);
$this->dbforge->add_column('table_name', $fields);

$this->dbforge->drop_column();
This function is used to drop a column from a table. There are two parameters: the
first should be the table name and the second should be the name of the table that
you wish to drop.

$this->dbforge->drop_column('table_name', 'column_to_drop');

$this->dbforge->modify_column();
This function is identical to that of the add_column function, except that it renames
the column.

$fields = array(
 'old_name' => array(
 'name' => 'new_name',
 'type' => 'TEXT',
),
);
$this->dbforge->modify_column('table_name', $fields);

Summary
That's it. There you have it, you've now learned how to validate your forms and use
the Database Library properly.

In the next chapter, we'll create a new library that allows us to handle User
Authentication. The library we create will be fairly simple but will handle all
logins and registration of new user accounts.

User Authentication 1
User authentication is an important part of any web application; it is also important
that you know how to handle user authentication yourself, without relying on
third-party sites such as Twitter and Facebook.

This chapter will show you:

How to handle user registrations
How to authenticate users by using a Model
A real world example of the Form Validation Library

Defining our goals
Before we go ahead and jump into writing code, we need to define what we need to
do. Setting goals before we write code is beneficial in three ways.

Firstly we will know all of the features that our code should have, and can limit
ourselves to just that, which will eliminates scope creep (also known as feature creep).

Secondly, when given a set of goals, we can visualize how we will write the code
in our heads. If you know what to expect at the end, you can build it much faster,
because you will already know what it should look like.

Finally, once we finish writing our code we can go back and check if we have met all
of our goals. This helps us to decide whether or not we were successful. If for some
reason we did not meet a goal, we could consider it a failed project unless there is
a good reason for this. For example, we could start writing a portion of code and
realize that there is a better way of doing it. In this case, not meeting the goal would
be a good thing. But this would not be the case in all of our projects. Goals are an
important way to decide if an application is successful, and can help us to create
better code and better projects in the future.

•

•

•

User Authentication 1

[94]

Our goals
We need to be able to handle user registrations and allow new users to sign up for an
account. We'll have to ensure that the username they have chosen is available, and
that the e-mail address isn't already being used for an existing account. This will help
to prevent people from having multiple accounts.

We must use the Form Validation Library to handle all of our forms. This gives us
two benefits:

We can make use of callbacks to easily check if a username or email address
is in use or not
We can easily show form errors and repopulate the form data

We will be using a Model and a Controller to handle everything, instead of writing
a Library. Sometimes Libraries can offer us some extra benefits; but in this case we
don't need any benefits, we simply need to handle user accounts easily.

Creating and connecting to the database
Before we do anything, we need to create our database. Open up your favorite
database editor and create a new database. Next, you should run the following SQL
code to create the users table.

This SQL has only been tested with MySQL. Therefore it is advised that
if you are using another database platform, you create the same table
schema graphically or write your own SQL code.

CREATE TABLE `users` (
 `id` INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY ,
 `username` VARCHAR(255) NOT NULL ,
 `email` VARCHAR(255) NOT NULL ,
 `password` VARCHAR(255) NOT NULL
)

ENGINE = MYISAM;

•

•

Chapter 4

[95]

Once that is done we need to edit our database configuration file. We do this
by opening up /system/application/config/database.php and editing the
following lines to correctly reflect our own details:

$db['default']['hostname'] = "localhost";
$db['default']['username'] = "";
$db['default']['password'] = "";
$db['default']['database'] = "";
$db['default']['dbdriver'] = "mysql";

If you are running on your local machine or a shared hosting account, it is likely that
you won't need to change the hostname value. You must set the username, password
and database values correctly, or CodeIgniter will not be able to connect to the
database when needed, and will display an error message. With all of that done, we
can get on with our Controller code. We'll load the Database library from our Model,
which we will go over once the front end code is complete.

Front end code
In this section, we will go through the Controller code and create all of the view files
for the front end. Once this is done, we will go through our Model. The first thing
that we need to do for our Controller is to create a new file called account.php in the
/system/applications/controller/ directory. Once that is done, we can put the
following code into it:

<?php
class Account extends Controller
{
 function Account()
 {
 parent::Controller();
 $this->load->library(array('form_validation', 'session'));
 $this->load->helper(array('url', 'form'));
 $this->load->model('account_model');

 $this->_salt = "123456789987654321";
 }
}
?>

User Authentication 1

[96]

As you can see, this is simply our class declaration and our constructor function.
Take note of the resources that we are loading. We are loading two libraries: the
form_validation library, and the session library. We have also loaded two helpers:
the url and form helpers. Finally, we load a model called 'account_model'—this is the
model that we use to abstract our data functions out to.

I have loaded the libraries and helpers slightly differently from the previous
method. You'll notice that I am passing an array of the library and helper names
to the load function. This is because CodeIgniter can accept an array as input from
the loading functions.

Here we also create a class variable for our password salt. This is important as it
makes our password hashes more secure and harder to break.

Index function
The next function that we need to create is the index function. This is going to be
fairly easy, as all we need to do is check to see if the user is logged in or not, and
show them either the dashboard or the login page as appropriate. Take a look at
the following code:

function index()
{
 if($this->account_model->logged_in() === TRUE)
 {
 $this->dashboard(TRUE);
 }
 else
 {
 $this->load->view('account/details');
 }
}

The first thing that we do in this function is check to see if the user is logged in, by
using a function in the account model. We will build this out once the Controller is
complete, so there's no need to worry about that for a while. If the function returns
TRUE, the user is logged in and we load the dashboard. This is the Controller
function that we will write next. If the user is not logged in, however, we show
them the login page.

Chapter 4

[97]

Details view
You'll also notice that we show a view called 'details' to a user if they go to a page
which requires authentication but they are not authenticated. Create a new folder
inside the /system/application/views/ directory called account—we'll use this
folder to keep everything organized. Then create a file inside this directory called
details.php—this is the file that we will use to show the user a friendly message
asking them to either login or register an account.

<!DOCTYPE HTML>
<html>
<head>
<title>Login or Register to continue!</title>
</head>
<body>

<p>This page requires authorization to continue, please
 <?php echo anchor('account/login', 'Login'); ?> or
 <?php echo anchor('account/register', 'Register'); ?>
 to continue.</p>

</body>
</html>

User Authentication 1

[98]

Dashboard function
This function gives us a small problem to overcome. We want to be able to call this
function from other functions in the class, as we have in the index function. In this
case we will already be checking to see if the user is logged in or not, so we may
not want to perform this check twice. To overcome this, we should pass along the
Boolean TRUE to the function, as we have already performed a check, as you can see
in the previous function. Let's have a look at the dashboard function, to get a look at
the function.

function dashboard($condition = FALSE)
{
 if($condition === TRUE
 OR $this->account_model->logged_in() === TRUE)
 {
 $this->load->view('account/dashboard');
 }
 else
 {
 $this->load->view('account/details');
 }
}

Let me explain this in a little more detail. If we pass the Boolean value TRUE to
this function, then we simply load the view file. If not, and its value is FALSE,
then we check to see if the user is logged in, and load whichever view is needed
depending on whether or not they are logged in. The logic behind this is that if we
have this function with no checks, then a user could go straight to it without being
authenticated. But on the other hand, we don't want to check to see if someone is
logged in twice. This method overcomes both problems.

Dashboard view
The dashboard view file is a simple HTML file. We display a heading tag and explain
to the user what they are seeing. We also provide a logout link. Create a new file
inside the /system/application/views/account/ directory called dashboard.php,
and paste the following code into it:

<!DOCTYPE HTML>
<html>
<head>
<title>Dashboard</title>
</head>
<body>

Chapter 4

[99]

<h1>Dashboard</h1>
<p>Welcome to the Dashboard! You can only see this page when you are
logged in. This would be the page in your application where you show
users their most recent activity, anything they may have missed or
give them links to other areas of your application. In this case we
simply welcome you to the logged in area. I guess you could <?php echo
anchor('account/logout', 'logout'); ?> if you wanted to?</p>

</body>
</html>

Login function
Next up, we'll build the login function. This has a lot more going on so we'll go
through it one step at a time.

Form validation
The first thing that we are going to do is set some form validation rules. You'll
notice that we include some callbacks in the rules. To refresh your minds, a callback
is a custom function that we write to validate the content of the form field. We run
everything through the XSS filter to ensure that everything we process is safe. We
also set two class variables for the username and the password. This is so that we can
easily access the username and password in the password check callback, as you can
only send one parameter to a callback—the value of the form field.

function login()
{
 $this->form_validation->

User Authentication 1

[100]

 set_rules('username', 'Username',
 'xss_clean|required|callback_username_check');
 $this->form_validation->
 set_rules('password', 'Password',
 'xss_clean|required|min_length[4]|max_length[12]|sha1|
 callback_password_check');
 $this->_username = $this->input->post('username');
 $this->_password =
 sha1($this->_salt . $this->input->post('password'));
}

Let's take a look at the password callback.

Password check
The password check looks for both the username and password together, to ensure
the correct password was given for the username.

function password_check()
{
 $this->db->where('username', $this->_username);
 $query = $this->db->get('users');
 $result = $query->row_array();

 if($result['password'] == $this->_password);
 {
 return TRUE;
 }

 if($query->num_rows() == 0)
 {
 $this->form_validation->set_message('password_check',
 'There was an error!');
 return FALSE;
 }
}

Chapter 4

[101]

Running the validation
The next thing that we need to do is to check if the form validation has run through
its process yet. If it has, it means that the form has been submitted, and we should
process the information; if not, we should show the form to the user.

if($this->form_validation->run() == FALSE)
{
 $this->load->view('account/login');
}
else
{
 $this->account_model->login();

 $data['message'] = "You are logged in! Now go take a look at the "
 .anchor('account/dashboard', 'Dashboard');
 $this->load->view('account/success', $data);
}

This code first checks to see if the form validation process has been run. If it hasn't,
we show the form to the user. If it has, we log the user in by using a function in the
Model, and display a success message to the user.

Full login code
Here is the full login code, for clarity.

function login()
{
 $this->form_validation->
 set_rules('username', 'Username',
 'xss_clean|required|callback_username_check');
 $this->form_validation->
 set_rules('password', 'Password',
 'xss_clean|required|min_length[4]|max_length[12]|sha1|
 callback_password_check');

 $this->_username = $this->input->post('username');
 $this->_password =
 sha1($this->_salt . $this->input->post('password'));

 if($this->form_validation->run() == FALSE)
 {
 $this->load->view('account/login');
 }
 else
 {
 $this->account_model->login();

User Authentication 1

[102]

 $data['message'] =
 "You are logged in! Now go take a look at the "
 . anchor('account/dashboard', 'Dashboard');
 $this->load->view('account/success', $data);
 }
}

function password_check()
{
 $this->db->where('username', $this->_username);
 $query = $this->db->get('users');
 $result = $query->row_array();

 if($result['password'] == $this->_password);
 {
 return TRUE;
 }

 if($query->num_rows() == 0)
 {
 $this->form_validation->
 set_message('password_check', 'There was an error!');
 return FALSE;
 }
}

Login view
Here is the code for the login view file. We're all set up to show individual errors for
each field, and to repopulate the form when needed.

We also use the form helper to open the form tags, as it's easier for us to set the
action of the form to a URI string.

Create a new file called login.php inside our account views sub-directory, and add
the following code into it:

<!DOCTYPE HTML>
<html>
<head>
<title>Login</title>
</head>
<body>

Chapter 4

[103]

<?php echo form_open('account/login'); ?>

<p>Username:</p>
<p><input type="text" name="username"
 value="<?php echo set_value('username'); ?>" /></p>
<p><?php echo form_error('username'); ?></p>

<p>Password:</p>
<p><input type="password" name="password"
 value="<?php echo set_value('password'); ?>" /></p>
<p><?php echo form_error('password'); ?></p>

<p><input type="submit" name="submit" value="Login" /></p>

</body>
</html>

The form will appear similar to the one shown in the next screenshot:

User Authentication 1

[104]

Success view
As we're using another view file for the success page, we should create it here.
Create a new file inside the account sub-directory of views, called success.php.
Put the following code into this new file:

<!DOCTYPE HTML>
<html>
<head>
<title>Success</title>
</head>
<body>

<h1>Success!</h1>
<p><?php echo $message; ?></p>

</body>
</html>

We simply echo out a variable, because each time we show this file we will have a
different error message; this is the most flexible way to do this.

Register function
The register function works in a similar way to the login function. We'll split it up
in the same way as we did the login function.

Form validation
Here is a list of the form validation rules that we set for the register form. You'll
notice that we're using a callback on the user and email fields to ensure that the
username and email do not already exist in the database. We also automatically
sha1 the user password fields. Once again, everything is put through the XSS filter
to ensure that it's all safe.

function register()
{

 $this->form_validation->
 set_rules('username', 'Username', 'xss_clean|required');

 $this->form_validation->
 set_rules('email', 'Email Address',
 'xss_clean|required|valid_email|callback_email_exists');

Chapter 4

[105]

 $this->form_validation->
 set_rules('password', 'Password',
 'xss_clean|required|min_length[4]|max_length[12]|
 matches[password_conf]|sha1');

 $this->form_validation->
 set_rules('password_conf', 'Password Confirmation',
 'xss_clean|required|matches[password]|sha1');

Take a closer look at the two password fields. You should notice one of the
rules—matches. What this rule does is ensure that one field is exactly the same as
another. We've got this function on both the password and password confirmation
fields to ensure that both are exactly the same as each other.

User exists check
The callback that we use to check the username is not in use is not too dissimilar to
the callbacks used in the login function.

function user_exists($user)
{
 $query = $this->db->get_where('users', array('username' => $user));

 if($query->num_rows() > 0)
 {
 $this->form_validation->set_message('user_exists', 'The
 %s already exists in our database, please use a different one.');
 return FALSE;
 }

 $query->free_result();

 return TRUE;
}

The function takes one parameter, which is the value of the form field. If a user types
in '1234' as their username, then '1234' will be passed to this function. Then we build
an SQL query to check if the username is in the database. If the query returns any
number of rows (it should only return one row because of the restrictions put in
place, but it's there just in case) then we set an error message to display to the user
and return FALSE. This tells the Form Validation Library to stop validating the form
and display the error message. If everything is fine however, we free the result and
return TRUE, allowing the library to continue processing the form.

User Authentication 1

[106]

Email exists check
This function is almost identical to the previous function; the only thing that changes
is that we use the word 'email' in place of 'username'. In every other case it works in
an identical fashion.

function email_exists($email)
{
 $query = $this->db->get_where('users', array('email' => $email));

 if($query->num_rows() > 0)
 {
 $this->form_validation->set_message('email_exists',
 'The %s already exists in our database,
 please use a different one.');
 return FALSE;
 }

 $query->free_result();

 return TRUE;
}

Running the validation
The next thing that we need to do is to check if the validation routine is running. If it
isn't running, we'll show the user the register view. If it is running, then we will take
action to register the user account.

if($this->form_validation->run() == FALSE)
{
 $this->load->view('account/register');
}
else
{
 $data['username'] = $this->input->post('username');
 $data['email'] = $this->input->post('email');
 $data['password'] =
 sha1($this->_salt . $this->input->post('password'));

 if($this->account_model->create($data) === TRUE)
 {
 $data['message'] =
 "The user account has now been created! You can login "
 . anchor('account/login', 'here') . ".";
 $this->load->view('account/success', $data);

Chapter 4

[107]

 }
 else
 {
 $data['error'] =
 "There was a problem when adding your account to the database.";
 $this->load->view('account/error', $data);
 }
}

Let's go over adding a new user account. Once the form has been processed
successfully, we set three key or value pairs in an array—$data. We do this by
pulling in the value of the form field from the POST data by using the Input class.

Then we pass this array to a function in the model called create. This creates a new
user account. If the function return FALSE, however, a database error has occurred
and the user will be informed of that.

We then load a success or error message, depending on whether the create database
operation was successful or not.

Full register code
Here is the full register function code, for clarity:

function register()
{

 $this->form_validation->
 set_rules('username', 'Username', 'xss_clean|required');
 $this->form_validation->
 set_rules('email', 'Email Address',
 'xss_clean|required|valid_email|callback_email_exists');
 $this->form_validation->
 set_rules('password', 'Password',
 'xss_clean|required|min_length[4]|max_length[12]|
 matches[password_conf]|sha1');

 $this->form_validation->
 set_rules('password_conf', 'Password Confirmation',
 'xss_clean|required|matches[password]|sha1');

 if($this->form_validation->run() == FALSE)
 {
 $this->load->view('account/register');
 }
 else

User Authentication 1

[108]

 {
 $data['username'] = $this->input->post('username');
 $data['email'] = $this->input->post('email');
 $data['password'] =
 sha1($this->_salt . $this->input->post('password'));

 if($this->account_model->create($data) === TRUE)
 {
 $data['message'] =
 "The user account has now been created! You can login "
 . anchor('account/login', 'here') . ".";
 $this->load->view('account/success', $data);
 }
 else
 {
 $data['error'] =
 "There was a problem when adding your account to the database.";
 $this->load->view('account/error', $data);
 }
 }
}

function user_exists($user)
{
 $query = $this->db->
 get_where('users', array('username' => $user));

 if($query->num_rows() > 0)
 {
 $this->form_validation->set_message('user_exists', 'The
 %s already exists in our database, please use a different one.');
 return FALSE;
 }

 $query->free_result();

 return TRUE;
}

function email_exists($email)
{
 $query = $this->db->get_where('users', array('email' => $email));

 if($query->num_rows() > 0)

Chapter 4

[109]

 {
 $this->form_validation->set_message('email_exists', 'The %s
 already exists in our database, please use a different one.');
 return FALSE;
 }

 $query->free_result();

 return TRUE;
}

Full controller code
Here is the full account controller code for clarity.

<?php

class Account extends Controller
{
 function Account()
 {
 parent::Controller();
 $this->load->library(array('form_validation', 'session'));
 $this->load->helper(array('url', 'form'));
 $this->load->model('account_model');

 $this->_salt = "123456789987654321";
 }

 function index()
 {
 if($this->account_model->logged_in() === TRUE)
 {
 $this->dashboard(TRUE);
 }
 else
 {
 $this->load->view('account/details');
 }
 }

 function dashboard($condition = FALSE)

User Authentication 1

[110]

 {
 if($condition === TRUE OR $this->account_model->logged_in() === TRUE)
 {
 $this->load->view('account/dashboard');
 }
 else
 {
 $this->load->view('account/details');
 }
 }

 function login()
 {
 $this->form_validation->
 set_rules('username', 'Username',
 'xss_clean|required|callback_username_check');
 $this->form_validation->
 set_rules('password', 'Password',
 'xss_clean|required|min_length[4]|max_length[12]|
 sha1|callback_password_check');

 $this->_username = $this->input->post('username');
 $this->_password =
 sha1($this->_salt . $this->input->post('password'));

 if($this->form_validation->run() == FALSE)
 {
 $this->load->view('account/login');
 }
 else
 {
 $this->account_model->login();

 $data['message'] =
 "You are logged in! Now go take a look at the "
 . anchor('account/dashboard', 'Dashboard');
 $this->load->view('account/success', $data);
 }
 }

 function register()
 {

 $this->form_validation->
 set_rules('username', 'Username', 'xss_clean|required');

Chapter 4

[111]

 $this->form_validation->
 set_rules('email', 'Email Address',
 'xss_clean|required|valid_email|callback_email_exists');
 $this->form_validation->set_rules('password', 'Password', 'xss_
clean|required|min_length[4]|max_length[12]|matches[password_
conf]|sha1');

 $this->form_validation->
 set_rules('password_conf', 'Password Confirmation',
 'xss_clean|required|matches[password]|sha1');

 if($this->form_validation->run() == FALSE)
 {
 $this->load->view('account/register');
 }
 else
 {
 $data['username'] = $this->input->post('username');
 $data['email'] = $this->input->post('email');
 $data['password'] =
 sha1($this->_salt . $this->input->post('password'));

 if($this->account_model->create($data) === TRUE)
 {
 $data['message'] =
 "The user account has now been created! You can login "
 . anchor('account/login', 'here') . ".";
 $this->load->view('account/success', $data);
 }
 else
 {
 $data['error'] =
 "There was a problem when adding your account to the database.";
 $this->load->view('account/error', $data);
 }
 }
 }

 function logout()
 {
 $this->session->sess_destroy();
 $this->load->view('account/logout');
 }

 function password_check()
 {

User Authentication 1

[112]

 $this->db->where('username', $this->_username);
 $query = $this->db->get('users');
 $result = $query->row_array();
 if($result['password'] == $this->_password);
 {
 return TRUE;
 }

 if($query->num_rows() == 0)
 {
 $this->form_validation->
 set_message('password_check', 'There was an error!');
 return FALSE;
 }
 }

 function user_exists($user)
 {
 $query = $this->db->get_where('users', array('username' => $user));

 if($query->num_rows() > 0)
 {
 $this->form_validation->
 set_message('user_exists',
'The %s already exists in our database, please use a different one.');
 return FALSE;
 }

 $query->free_result();

 return TRUE;
 }

 function email_exists($email)
 {
 $query = $this->db->get_where('users', array('email' => $email));

 if($query->num_rows() > 0)
 {
 $this->form_validation->
 set_message('email_exists',
'The %s already exists in our database, please use a different one.');
 return FALSE;
 }

 $query->free_result();

Chapter 4

[113]

 return TRUE;
 }

}

?>

Register view
Now we need to create our view file. Create a new file in the account directory
called register.php, and insert the following code into this new file:

<!DOCTYPE HTML>
<html>
<head>
<title>Register</title>
</head>
<body>

<?php echo form_open('account/register'); ?>

<p>Username:</p>
<p><input type="text" name="username"
 value="<?php echo set_value('username'); ?>" /></p>
<p><?php echo form_error('username'); ?></p>

<p>Email:</p>
<p><input type="text" name="email"
 value="<?php echo set_value('email'); ?>" /></p>
<p><?php echo form_error('email'); ?></p>

<p>Password:</p>
<p><input type="password" name="password"
 value="<?php echo set_value('password'); ?>" /></p>
<p><?php echo form_error('password'); ?></p>

<p>Password Confirmation:</p>
<p><input type="password" name="password_conf"
 value="<?php echo set_value('password_conf'); ?>" /></p>
<p><?php echo form_error('password_conf'); ?></p>
<p><input type="submit" name="submit"
 value="Register Account" /></p>

</body>
</html>

User Authentication 1

[114]

The registration form should appear similar to the one shown in following screenshot:

You should be able to see some similarities between this view and that of the login
form. There's just more fields to deal with.

Error view
We didn't need a view file for any errors for the login function, but we do for the
register function. In any scenario, it's unlikely that anyone will see this error,
because if the application isn't connected to the database a CodeIgniter error will
be displayed. However, we will cover all eventualities. Create a new file inside our
account view directory called error.php. This is what the file's content looks like:

<!DOCTYPE HTML>
<html>
<head>
 <title>Error</title>
</head>
<body>

<h1>Error</h1>

Chapter 4

[115]

<p><?php echo $error; ?></p>

</body>
</html>

Logout function
As well as registering and logging in, we also want to allow our users to log out.
Here's how we do that:

function logout()
{
 $this->session->sess_destroy();
 $this->load->view('account/logout');
}

This function is pretty simple. We destroy any session data that has been saved in
the CodeIgniter Session library—this is the part that logs the user out. The next line
simply loads in the logout view.

Logout view
Create a new file—again inside our account view directory—called logout.php,
and put the following code into it:

<!DOCTYPE HTML>
<html>
<head>
<title>Logout</title>
</head>
<body>

<h1>Success!</h1>
<p>You are now logged out! You can log back in again
 <?php echo anchor('account/login', 'here'); ?>.</p>

</body>
</html>

User Authentication 1

[116]

The logout screen should appear similar to the one shown in the next screenshot:

Model code
The Model is a very important piece of the puzzle. If you tried to register a user
account you will see an error message, because currently the Model does not exist.
Let's add it now. Create a new file inside the /system/application/models/
directory, and call it account_model.php.

Model constructor
Here's what our Model constructor looks like. It's very simple, as we're simply
calling on the parent class construct and loading the database library.

<?php
class Account_model extends Model
{
 function Account_model()
 {
 parent::Model();
 $this->load->database();
 }
}
?>

Chapter 4

[117]

Create function
The create function is as simple as it could get, thanks to CodeIgniter's Active
Record implementation. We can simple take the array passed to it and insert it
into the database by using the insert() function.

function create($data)
{
 if($this->db->insert('users', $data))
 {
 return TRUE;
 }

 return FALSE;
}

We always return either TRUE or FALSE in capital letters, as this is what is set out
in the CodeIgniter PHP Style Guide. We don't have to conform to the Style Guide,
but it helps.

Login function
The login function creates a new session for the user, and adds the username and
the Boolean logged_in, set to TRUE. Once again, this is made incredibly easy by the
CodeIgniter Session library.

function login()
{
 $data = array(
 'username' => $this->input->post('username'),
 'logged_in' => TRUE
);

 $this->session->set_userdata($data);
}

Logged in check function
This function checks the session data of a user to see whether or not they are logged
in. If they are we return TRUE and if not we return FALSE.

function logged_in()
{
 if($this->session->userdata('logged_in') == TRUE)
 {

User Authentication 1

[118]

 return TRUE;
 }

 return FALSE;
}

Full model code
Once again, here is the full Model code, for clarity:

<?php

class Account_model extends Model
{
 function Account_model()
 {
 parent::Model();
 $this->load->database();
 }

 function create($data)
 {
 if($this->db->insert('users', $data))
 {
 return TRUE;
 }

 return FALSE;

 }

 function login()
 {
 $data = array(
 'username' => $this->input->post('username'),
 'logged_in' => TRUE
);
 $this->session->set_userdata($data);
 }

 function logged_in()
 {
 if($this->session->userdata('logged_in') == TRUE)
 {

Chapter 4

[119]

 return TRUE;
 }

 return FALSE;
 }
}
?>

Addressing some issues
Firstly, it's easier to teach you the principle behind user authentication and the
MVC design pattern as a whole. Hopefully you can see that a Model is not simply
a database abstraction layer, but a data abstraction layer. In the Account Model, we
use it to handle both database interaction and session manipulation.

Secondly, as we were using the Form Validation Library and were using callbacks, we
needed to use a Controller. The Form Validation Library only allows callbacks to be
inside a Controller. If I had used a Library, I would have needed to use an extended
Controller, and that's too complicated for users inexperienced with the framework.

Finally, the way that we've built it is the way that many people do it anyway. I have
already created my own authentication library, aptly named The Authentication
Library, which people can use. This way, however, is more suited to the MVC style
for newer users. Everything is laid out in an easy way and it is much easier to pick
up the principle of user authentication.

I'm hoping that by learning the principle behind things, and not just directly copying
from the book, that you will be able to code these things much more quickly; and
you'll know which way is the best when you need to do things for yourself.

The Authentication Library
If you are looking for a third-party authentication library with a lot more features
than the one we are able to build in a chapter in a book, may I recommend my own
library—"The Authentication Library"—as an alternative.

The Authentication Library includes a secure 'remember me' function, which allows
users to stay logged in without the possibility of their cookies being stolen or forged
by malicious users to gain unauthorized access to your systems.

User Authentication 1

[120]

The best part of The Authentication Library is that all you need to do to use it is to
extend a different Controller. Rather than extending the default Controller class,
you would instead extend the Application class. You don't need to build any
forms or process the forms—it is all taken care of for you. It is the easiest method
of authentication for CodeIgniter, as you don't really need to do anything.

To find out more about The Authentication Library, you can read the User Guide
I've written for it, at http://www.adamgriffiths.co.uk/user_guide/ or
alternatively go straight to the download over on Github at http://github.com/
adamgriffiths/the-codeigniter-authentication-library/tree/master/.

Summary
There we have it. An easy way to authenticate users, without relying on a
third-party system. We used a Controller and Model instead of a Library,
and we used the Model to access two types of data sources—a database
and a session.

In the next chapter, we'll create a new set of libraries that will allow us to
authenticate users by using Twitter oAuth and Facebook Connect.

User Authentication 2
User authentication is an important part of many applications. Now that we've
built our own authentication method, let's look at how we would utilize third-party
authentication methods.

In this chapter we will:

Learn how Twitter oAuth and Facebook Connect work
Create a library for each authentication method
Utilize these libraries in order to create separate applications to demonstrate
how each works, and the differences between the two protocols

Using Twitter oAuth
oAuth is an open protocol for secure user authentication across APIs. It allows users
to gain limited access to websites by using their Twitter credentials. It's a very sound
method of user authentication, and doesn't take too much work to get going. Twitter
oAuth is used by hundreds of third-party Twitter clients and mashups—just to give
you an idea of how useful it can be.

How oAuth works
Getting used to how Twitter oAuth works takes a little time.

When a user comes to your login page, you send a GET request to Twitter for a set of
request codes. These request codes are used to verify the user on the Twitter website.

The user then goes through to Twitter to either allow or deny your application access
to their account. If they allow the application access, they will be taken back to your
application. The URL they get sent to will have an oAuth token appended to the end.
This is used in the next step.

•

•

•

User Authentication 2

[122]

Back at your application, you then send another GET request for some access codes
from Twitter. These access codes are used to verify that the user has come directly
from Twitter, and has not tried to spoof an oAuth token in their web browser.

Registering a Twitter application
Before we write any code, we need to register an application with Twitter. This
will give us the two access codes that we need. The first is a consumer key, and the
second is a secret key. Both are used to identify our application, so if someone posts
a message to Twitter through our application, our application name will show up
alongside the user's tweet.

To register a new application with Twitter, you need to go to
http://www.twitter.com/apps/new. You'll be asked for a photo for
your application and other information, such as website URL, callback URL,
and a description, among other things.

You must select the checkbox that reads Yes, use Twitter for login or you
will not be able to authenticate any accounts with your application keys.

Once you've filled out the form, you'll be able to see your consumer key and
consumer secret code. You'll need these later. Don't worry though; you'll be able to
get to these at any time so there's no need to save them to your hard drive. Here's a
screenshot of my application:

Chapter 5

[123]

Downloading the oAuth library
Before we get to write any of our CodeIgniter wrapper library, we need to download
the oAuth PHP library. This allows us to use the oAuth protocol without writing the
code from scratch ourselves.

You can find the PHP Library on the oAuth website at www.oauth.net/code. Scroll
down to PHP and click on the link to download the basic PHP Library; or just visit:
http://oauth.googlecode.com/svn/code/php/—the file you need is named
OAuth.php.

Download this file and save it in the folder system/application/libraries/
twitter/—you'll need to create the twitter folder. We're simply going to create
a folder for each different protocol so that we can easily distinguish between them.

Once you've done that, we'll create our Library file. Create a new file in the
system/application/libraries/ folder, called Twitter_oauth.php. This is
the file that will contain functions to obtain both request and access tokens from
Twitter, and verify the user credentials.

The next section of the chapter will go through the process of creating this
library alongside the Controller implementation; this is because the whole process
requires work on both the front-end and the back-end. Bear with me, as it could get
a little confusing, especially when trying to implement a brand new type of system
such as Twitter oAuth.

Library base class
Let's break things down into small sections. The following code is a version of the
base class with all its guts pulled out. It simply loads the oAuth library and sets up
a set of variables for us to store certain information in. Below this, I'll go over what
each of the variables are there for.

<?php

require_once(APPPATH . 'libraries/twitter/OAuth.php');

class Twitter_oauth
{

 var $consumer;
 var $token;
 var $method;
 var $http_status;
 var $last_api_call;

}
?>

User Authentication 2

[124]

The first variable you'll see is $consumer—it is used to store the credentials for our
application keys and the user tokens as and when we get them.

The second variable you see on the list is $token—this is used to store the user
credentials. A new instance of the oAuth class OAuthConsumer is created and
stored in this variable.

Thirdly, you'll see the variable $method—this is used to store the oAuth Signature
Method (the way we sign our oAuth calls).

Finally, the last two variables, $http_status and $last_api_call, are used to
store the last HTTP Status Code and the URL of the last API call, respectively.
These two variables are used solely for debugging purposes.

Controller base class
The Controller is the main area where we'll be working, so it is crucial that we design
the best way to use it so that we don't have to repeat our code. Therefore, we're going
to have our consumer key and consumer secret key in the Controller. Take a look at
the Base of our class to get a better idea of what I mean.

<?php
session_start();

class Twitter extends Controller
{

 var $data;

 function Twitter()
 {
 parent::Controller();

 $this->data['consumer_key'] = "";
 $this->data['consumer_secret'] = "";
}

The global variable $data will be used to store our consumer key and consumer
secret. These must not be left empty and will be provided to you by Twitter when
creating your application. We use these when instantiating the Library class, which
is why we need it available throughout the Controller instead of just in one function.

Chapter 5

[125]

We also allow for sessions to be used in the Controller, as we want to temporarily
store some of the data that we get from Twitter in a session. We could use the
CodeIgniter Session Library, but it doesn't offer us as much flexibility as native PHP
sessions; this is because with native sessions we don't need to rely on cookies and a
database, so we'll stick with the native sessions for this Controller.

Library constructor
The Library constructor needs to know if we have an authenticated user or not.
So here's what we do. Firstly, we set up a new instance of the oAuth Consumer
class, creating our application details. Then we check to see if oAuth tokens have
been passed to the function. If they have, it means that the user has returned from
Twitter; if not, they have just come onto the site and are ready to click on the link to
authenticate themselves. We pass the data to the function as an array, as this is the
only way that CodeIgniter lets us do this with the $this->load->library function.

function Twitter_oauth($data)
{
 $this->method = new OAuthSignatureMethod_HMAC_SHA1();
 $this->consumer = new OAuthConsumer($data['consumer_key'],
 $data['consumer_secret']);

 if(!empty($data['oauth_token'])
 && !empty($data['oauth_token_secret']))
 {
 $this->token = new OAuthConsumer($data['oauth_token'],
 $data['oauth_token_secret']);
 }
 else
 {
 $this->token = NULL;
 }
}

Requesting user tokens
The first thing that we need to do to authenticate a user is to query Twitter for request
tokens. These tokens are used to authenticate a user to let Twitter know that they
came from our application. Let's take a look at the function for requesting tokens:

function get_request_token()
{
 $args = array();

 $request = OAuthRequest::

User Authentication 2

[126]

 from_consumer_and_token($this->consumer, $this->token,
 'GET', "https://twitter.com/oauth/request_token", $args);
$request->sign_request($this->method, $this->consumer, $this->token);
$request = $this->http($request->to_url());

$token = $this->parse_request($request);

$this->token = new OAuthConsumer($token['oauth_token'],
$token['oauth_token_secret']);

return $token;
}

As you can see here, we are using the OAuthRequest class provided by us in the
PHP library that we downloaded earlier, to set up a new request to Twitter. Next,
we have to sign our request; this is so that we can encrypt data between our own
application and Twitter. The final thing that we do to complete the request is to
use a function called http() to go ahead and pull the data from Twitter.

Once this is all done, we pass the array to the function parse_request()—this
simply parses all of the data for this request, and gives it back to us in an
associative array.

Finally, after all of that is complete, we can create a new instance of the
OAuthConsumer class, with the new tokens from Twitter. Then we simply
return the tokens from the function in a variable.

HTTP function
Because this is quite a large dependant to the previous function, we'll go through
building it here. This function is slightly more complex than the others. We use cURL
to initiate the request to Twitter and to return all values from Twitter. If you already
have some cURL knowledge, then you can skip the explanation after the next
code block.

function http($url, $post_data = null)
{
 $ch = curl_init();

 if(defined("CURL_CA_BUNDLE_PATH"))
 curl_setopt($ch, CURLOPT_CAINFO, CURL_CA_BUNDLE_PATH);

 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_CONNECTTIMEOUT, 30);
 curl_setopt($ch, CURLOPT_TIMEOUT, 30);

Chapter 5

[127]

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

 if(isset($post_data))
 {
 curl_setopt($ch, CURLOPT_POST, 1);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $post_data);
 }

 $response = curl_exec($ch);
 $this->http_status = curl_getinfo($ch, CURLINFO_HTTP_CODE);
 $this->last_api_call = $url;
 curl_close($ch);

 return $response;
}

The first thing that we need to do to use cURL is run the curl_init() function.
This will return a cURL handle to a function. All subsequent functions must pass
this handle as their first parameter.

Observe the following code:

if(defined("CURL_CA_BUNDLE_PATH"))
 curl_setopt($ch, CURLOPT_CAINFO, CURL_CA_BUNDLE_PATH);

This allows us to validate the SSL certificate to make sure that the peer's SSL
certificate is valid. In short we setup cURL to check if Twitter's SSL certificate
is valid.

The next few lines of code set up the connection to the URL and set some conditions
for the connection, such as the timeout, and set the SSL verifier to false.

Next up, we check to see if the variable $post_data has already been set. This
will set the data that we would like to send to Twitter if we make a POST request.
This is setting up the Library so we can send status messages to Twitter if we
wanted to.

Finally, we get to the part of the code that performs the operation:

$response = curl_exec($ch);
$this->http_status = curl_getinfo($ch, CURLINFO_HTTP_CODE);
$this->last_api_call = $url;
curl_close($ch);

User Authentication 2

[128]

The first line shown here executes our cURL session. This will return the result on
success, or FALSE upon failure. The next two lines simply save some details for
debugging purposes, and then on the last line we close the cURL session.

The very last line of this function returns the $response variable, which contains the
data from the request.

Parse function
The next dependant function we have is the one that parses the response from
Twitter into an array that we can actually use.

Observe the following function:

function parse_request($string)
{
 $args = explode("&", $string);
 $args[] = explode("=", $args['0']);
 $args[] = explode("=", $args['1']);

 $token[$args['2']['0']] = $args['2']['1'];
 $token[$args['3']['0']] = $args['3']['1'];

 return $token;
}

This function takes a string and splits it up at every occurrence of an ampersand (&).
This splits it up into an array with two key value pairs. Then we split those two pairs
at the equals (=) sign. Then we simply format them so that instead of the array keys
being numbers, they are oauth_token and oauth_token_secret—the two items
that we parse in the function.

Controller index function
As all Controllers have a default function called index, this is where we will start our
code. The index function will get request tokens from Twitter and then build a URL
from that. The URL will go to Twitter with one of the tokens attached, so that Twitter
knows the user has come from our application. We'll save these tokens in a session so
that we can verify the user when they come back to our application from Twitter.

function index()
{
 $this->load->library('twitter_oauth', $this->data);

 $token = $this->twitter_oauth->get_request_token();

Chapter 5

[129]

 $_SESSION['oauth_request_token'] = $token['oauth_token'];
 $_SESSION['oauth_request_token_secret'] =
 $token['oauth_token_secret'];

 $request_link = $this->twitter_oauth->get_authorize_URL($token);

 $data['link'] = $request_link;
 $this->load->view('twitter/home', $data);
}

As you can see here, the first thing that we do is load the Twitter oAuth library and
pass the global variables to it—our consumer key and consumer secret. The next thing
that we do is get the request tokens from Twitter and then save these to a session. The
next line is where we build the request link, so that when we link people to Twitter
they'll be recognized correctly. This uses a function get_authorize_url(), which
we'll build in the next section. Then we put this link into an array so that we can
easily pass it to the view file.

get_authorize_URL function
This function takes the token passed to it and appends it to a Twitter URL. It's fairly
straightforward.

function get_authorize_URL($token)
{
 if(is_array($token)) $token = $token['oauth_token'];
 return "https://twitter.com/oauth/authorize?oauth_token=" . $token;
}

Main view file
We need to create a folder for our Twitter-related view files. Go ahead and create
a folder inside the system/application/views/ folder, called twitter. This is
simply to make everything easily maintainable. When that's done, create a new file
called home.php and, enter the code given next.

This is a simple HTML page that just echoes out the URL to Twitter so that users can
easily be authorized. You'll notice the only element on the page is the link to Twitter.
Right now we don't need to include anything else.

<!DOCTYPE HTML>
<html>
<head>
<title>Twitter oAuth</title>
</head>

User Authentication 2

[130]

<body>

<p>
 <a href="<?php echo $link; ?>">
 Click here to login with Twitter oAuth
</p>

</body>
</html>

This is simply a link. In a browser, it should appear similar to the example shown in
the next screenshot:

Change your callback URL
Once a user comes back to your application, you can verify their new access tokens
with Twitter to ensure that they have come from Twitter and are not trying to spoof
tokens to gain unauthorized access to your application. For this, we need to change
our callback URL slightly.

We'll be creating a function in our Twitter Controller that will handle all of this;
it will be called access()—this is where you need to change your callback URL. It
should look something like this:

http://www.example.com/index.php/twitter/access/

That way, when a user comes back to your application, they will be in the right place
for you do to the rest of the legwork.

Chapter 5

[131]

Creating the access function
The access function does a few things that are crucial to authenticating users
correctly. Firstly, we set the tokens that we saved in the sessions and pass them to the
library in order to create a new instance of the oAuth Consumer class, but this time
as the user who is using the users tokens. Next, we query Twitter for access tokens.
These are the tokens that verify that the user has come from Twitter and that we
can authenticate them. Once that is done, we save the new tokens and then display
another view file. The view file simply tells you to take a look at your connections
page on Twitter to check if your application is on there.

function access()
{
 $this->data['oauth_token'] = $_SESSION['oauth_request_token'];
 $this->data['oauth_token_secret'] =
 $_SESSION['oauth_request_token_secret'];

 $this->load->library('twitter_oauth', $this->data);

 $tokens = $this->twitter_oauth->get_access_token();

 $_SESSION['oauth_access_token'] = $tokens['oauth_token'];
 $_SESSION['oauth_access_token_secret'] =
 $tokens['oauth_token_secret'];

 $this->load->view('twitter/accessed', $tokens);
}

The view file
The view file that we use for this is very simple. We passed the $tokens variable to
the view file; this lets us echo the user's screen name in the title of the page.

<!DOCTYPE HTML>
<html>
<head>
<title>Twitter oAuth - @<?php echo $screen_name; ?></title>
</head>
<body>

<p>Your account should now be registered with Twitter. Check here:

 https://twitter.com/account/connections

</p>

</body>
</html>

User Authentication 2

[132]

The page should appear similar to the example shown in the next screenshot:

Getting access tokens
Getting the access tokens from Twitter takes two new functions. Firstly, there is the
function get_access_tokens(), which is almost identical to the get_request_
tokens() function. Then there is a new function called parse_access()—this is
very much like the parse_request() function, although it works slightly differently.

get_access_tokens()
This function works in almost exactly the same way as the get_request_tokens()
function. It just queries a different URL and uses a different parsing function.

function get_access_token()
{
 $args = array();

 $request = OAuthRequest::
 from_consumer_and_token($this->consumer, $this->token, 'GET',
 "https://twitter.com/oauth/access_token", $args);
 $request->
 sign_request($this->method, $this->consumer, $this->token);
 $request = $this->http($request->to_url());

 $token = $this->parse_access($request);

 $this->token = new OAuthConsumer($token['oauth_token'],
 $token['oauth_token_secret']);

 return $token;
}

Chapter 5

[133]

parse_access()
This function takes the string returned from Twitter and splits it up at each & and
=, splitting them into pairs of array keys and values. The function then returns the
array for use in the class.

function parse_access($string)
{
 $r = array();

 foreach(explode('&', $string) as $param)
 {
 $pair = explode('=', $param, 2);
 if(count($pair) != 2) continue;
 $r[urldecode($pair[0])] = urldecode($pair[1]);
 }

 return $r;
}

Logging out
When you log users out of your application, you need to destroy all session data.
This is so that you can easily create a new session for them if they wish to log in
again with a clean slate. Here's the function to do this.

This should go in your Controller code so that you can access it from the URI
index.php/twitter/logout/.

function logout()
{
 session_destroy();

 $this->load->view('twitter/logout');
}

The view file for this page is fairly simple. Create a new file inside your Twitter
views folder called logout.php.

<!DOCTYPE HTML>
<html>
<head>
<title>Twitter oAuth - Logged Out</title>
</head>
<body>

User Authentication 2

[134]

<p>You are no longer logged in!</p>

</body>
</html>

Debug function
We should add in a debug function for ease of use. When the debug function is
called, we want to echo out the URL of the last API call, and the HTTP Status
Code. Here's how we do that:

function debug_info()
{
 echo("Last API Call: ".$this->last_api_call."
\n");
 echo("Response Code: ".$this->http_status."
\n");
}

Final library code
Here is the final library code, in context:

<?php

require_once(APPPATH . 'libraries/twitter/OAuth.php');

class Twitter_oauth
{

 var $consumer;

Chapter 5

[135]

 var $token;
 var $method;
 var $http_status;
 var $last_api_call;

 function Twitter_oauth($data)
 {
 $this->method = new OAuthSignatureMethod_HMAC_SHA1();
 $this->consumer = new OAuthConsumer($data['consumer_key'],
 $data['consumer_secret']);

 if(!empty($data['oauth_token'])
 && !empty($data['oauth_token_secret']))
 {
 $this->token = new OAuthConsumer($data['oauth_token'],
 $data['oauth_token_secret']);
 }
 else
 {
 $this->token = NULL;
 }
 }

 function debug_info()
 {
 echo("Last API Call: ".$this->last_api_call."
\n");
 echo("Response Code: ".$this->http_status."
\n");
 }

 function get_request_token()
 {
 $args = array();

 $request = OAuthRequest::from_consumer_and_token($this->consumer,
 $this->token, 'GET',
 "https://twitter.com/oauth/request_token", $args);
 $request->sign_request($this->method, $this->consumer,
 $this->token);
 $request = $this->http($request->to_url());

 $token = $this->parse_request($request);

 $this->token = new OAuthConsumer($token['oauth_token'],
 $token['oauth_token_secret']);

User Authentication 2

[136]

 return $token;
}

 function get_access_token()
 {
 $args = array();

 $request = OAuthRequest::from_consumer_and_token($this->consumer,
 $this->token, 'GET', "https://twitter.com/oauth/access_token",
 $args);
 $request->sign_request($this->method, $this->consumer,
 $this->token);
 $request = $this->http($request->to_url());

 $token = $this->parse_access($request);

 $this->token = new OAuthConsumer($token['oauth_token'],
 $token['oauth_token_secret']);

 return $token;
 }

 function parse_request($string)
 {
 $args = explode("&", $string);
 $args[] = explode("=", $args['0']);
 $args[] = explode("=", $args['1']);

 $token[$args['2']['0']] = $args['2']['1'];
 $token[$args['3']['0']] = $args['3']['1'];

 return $token;
 }

 function parse_access($string)
 {
 $r = array();

 foreach(explode('&', $string) as $param)
 {
 $pair = explode('=', $param, 2);
 if(count($pair) != 2) continue;
 $r[urldecode($pair[0])] = urldecode($pair[1]);
 }

Chapter 5

[137]

 return $r;
 }

 function get_authorize_URL($token)
 {
 if(is_array($token)) $token = $token['oauth_token'];
 return "https://twitter.com/oauth/authorize?oauth_token=" .
 $token;
 }

 function http($url, $post_data = null)
 {
 $ch = curl_init();

 if(defined("CURL_CA_BUNDLE_PATH"))
 curl_setopt($ch, CURLOPT_CAINFO, CURL_CA_BUNDLE_PATH);

 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_CONNECTTIMEOUT, 30);
 curl_setopt($ch, CURLOPT_TIMEOUT, 30);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

 if(isset($post_data))
 {
 curl_setopt($ch, CURLOPT_POST, 1);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $post_data);
 }

 $response = curl_exec($ch);
 $this->http_status = curl_getinfo($ch, CURLINFO_HTTP_CODE);
 $this->last_api_call = $url;
 curl_close($ch);

 return $response;
 }

}

?>

User Authentication 2

[138]

Final controller code
Here is the final Controller code, in context:

<?php
session_start();

class Twitter extends Controller
{

 var $data;

 function Twitter()
 {
 parent::Controller();

 $this->data['consumer_key'] = "";
 $this->data['consumer_secret'] = "";
 }

 function index()
 {
 $this->load->library('twitter_oauth', $this->data);

 $token = $this->twitter_oauth->get_request_token();

 $_SESSION['oauth_request_token'] = $token['oauth_token'];
 $_SESSION['oauth_request_token_secret'] =
 $token['oauth_token_secret'];

 $request_link = $this->twitter_oauth->get_authorize_URL($token);

 $data['link'] = $request_link;
 $this->load->view('twitter/home', $data);
 }

 function access()
 {
 $this->data['oauth_token'] = $_SESSION['oauth_request_token'];
 $this->data['oauth_token_secret'] =
 $_SESSION['oauth_request_token_secret'];

Chapter 5

[139]

 $this->load->library('twitter_oauth', $this->data);

 /* Request access tokens from twitter */
 $tokens = $this->twitter_oauth->get_access_token();

 /*Save the access tokens.*/
 /*Normally these would be saved in a database for future use. */
 $_SESSION['oauth_access_token'] = $tokens['oauth_token'];
 $_SESSION['oauth_access_token_secret'] =
 $tokens['oauth_token_secret'];

 $this->load->view('twitter/accessed', $tokens);
 }

 function logout()
 {
 session_destroy();
 $this->load->view('twitter/logout');
 }
}

?>

Using Facebook Connect
Facebook Connect is just like Twitter oAuth, but for Facebook accounts. It doesn't
use the oAuth protocol, so its workings might seem slightly different to developers.
To users, however, the difference is marginal.

Just like in Twitter oAuth, users do not need to enter any of their account credentials
on your website or application—it is all handled by Facebook.

User Authentication 2

[140]

Registering a Facebook application
You need to register a new Facebook Application so that you can get an API key and
an Application Secret Key. Head on over to www.facebook.com/developers/ and
click on the Set up New Application button in the upper right–hand corner.

This process is very similar to setting up a new Twitter application, so I won't bore
you with all of the details.

Once you've done that, you should have your API key and Application Secret Key.
These two things will enable Facebook to recognize your application.

Chapter 5

[141]

Download the Client library
When you are on your applications page showing all your applications' information,
scroll down the page to see a link to download the Client Library. Once you've
downloaded it, simply untar it.

There are two folders inside the facebook-platform folder, footprints and php.
We are only going to be using the php folder. Open up the php folder; there are two
files here that we don't need, facebook_desktop.php and facebook_mobile.php—
you can delete them.

Finally, we can copy this folder into our application. Place it in the
system/application/libraries folder, and then rename the folder
to facebook. This helps us to keep our code tidy and properly sorted.

Our CodeIgniter Wrapper
Before we start coding, we need to know what we need to code in order to make the
Facebook Client Library work with our CodeIgniter installation.

Our Wrapper library needs to instantiate the Facebook class with our API Key and
Secret Application Key. We'll also want it to create a session for the user when they
are logged in. If a session is found but the user is not authenticated, we will need to
destroy the session.

You should create a new file in the system/application/libraries/ folder, called
Facebook_connect.php. This is where the Library code given next should be placed.

User Authentication 2

[142]

Base class
The Base Class for our Facebook Connect Wrapper Library is very simple:

<?php

require_once(APPPATH . 'libraries/facebook/facebook.php');

class Facebook_connect
{
 var $CI;
 var $connection;

 var $api_key;
 var $secret_key;
 var $user;
 var $user_id;
 var $client;
}

?>

The first thing that our Library needs to do is to load the Facebook library—the one
we downloaded from facebook.com. We build the path for this by using APPPATH,
a constant defined by CodeIgniter to be the path of the application folder.

Then, in our Class we have a set of variables. The $CI variable is the variable in
which we will store the CodeIgniter super object; this allows us to load CodeIgniter
resources (libraries, models, views, and so on) in our library. We'll only be using this
to load and use the CodeIgniter Session library, however.

The $connection variable will contain the instance of the Facebook class. This will
allow us to grab any necessary user data and perform any operations that we like,
such as updating a user's status or sending a message to one of their friends.

The next few variables are pretty self-explanatory—they will hold our API Key and
Secret Key.

The $user variable will be used to store all of the information about our user,
including general details about the user such as their profile URL and their
name. The $user_id variable will be used to store the user ID of our user.

Finally, the $client variable is used to store general information about our
connection to Facebook, including the username of the user currently using the
connection, amongst other things such as server addresses to query for things
like photos.

Chapter 5

[143]

Class constructor
Our class constructor has to do a few things in order to allow us to authenticate our
users using Facebook Connect. Here's the code:

function Facebook_connect($data)
{

 $this->CI =& get_instance();

 $this->CI->load->library('session');

 $this->api_key = $data['api_key'];
 $this->secret_key = $data['secret_key'];

 $this->connection =
 new Facebook($this->api_key, $this->secret_key);
 $this->client = $this->connection->api_client;
 $this->user_id = $this->connection->get_loggedin_user();

 $this->_session();

}

The first line in our function should be new to everyone reading this book. The
function get_instance() allows us to assign the CodeIgniter super object by
reference to a local variable. This allows us to use all of CodeIgniter's syntax for
loading libraries, and so on; but instead of using $this->load we would use
$this->CI->load. But of course it doesn't just allow us to use the Loader—it allows
us to use any CodeIgniter resource, as we normally would inside a Controller or a
Model. The next line of code gives us a brilliant example of this: we're loading the
session library using the variable $this->CI rather than the usual $this.

The next two lines simply set the values of the API key and Secret Application
Key into a class variable so that we can reference it throughout the whole class.
The $data array is passed into the constructor when we load the library in our
Controller. More on that when we get there.

Next up, we create a new instance of the Facebook Class (this is contained within the
Facebook library that we include before our own class code) and we pass the API
Key and Secret Application Key through to the class instance. This is all assigned to
the class variable $this->connection, so that we can easily refer to it anywhere in
the class.

User Authentication 2

[144]

The next two lines are specific parts of the overall Facebook instance. All of the
client details and the data that helps us when using the connection are stored in a
class variable, in order to make it more accessible. We store the client details in the
variable $this->client. The next line of code stores all of the details about the user
that were provided to us by the Facebook class. We store this in a class variable for
the same reason as storing the client data: it makes it easier to get to. We store this
data in $this->user_id.

The next line of code calls upon a function inside our class. The underscore at
the beginning tells CodeIgniter that we only want to be able to use this function
inside this class; so you couldn't use it in a Controller, for example. I'll go over this
function shortly.

_session();
This function manages the user's CodeIgniter session. Take a look at the
following code:

function _session()
{
 $user = $this->CI->session->userdata('facebook_user');

 if($user === FALSE && $this->user_id !== NULL)
 {
 $profile_data = array('uid','first_name', 'last_name',
 'name', 'locale', 'pic_square', 'profile_url');
 $info = $this->connection->api_client->
 users_getInfo($this->user_id, $profile_data);

 $user = $info[0];

 $this->CI->session->set_userdata('facebook_user', $user);
 }
 elseif($user !== FALSE && $this->user_id === NULL)
 {
 $this->CI->session->sess_destroy();
 }

 if($user !== FALSE)
 {
 $this->user = $user;
 }
}

Chapter 5

[145]

This function initially creates a variable and sets its value to that of the session data
from the CodeIgniter session library.

Then we go through a check to see if the session is empty and the $this->user_id
variable is false. This means that the user has not yet logged in using Facebook
Connect. So we create an array of the data that we want to get back from the
Facebook class, and then use the function users_getInfo() provided by the class
to get the information in the array that we created. Then we store this data into the
$user variable and create a new session for the user.

The next check that we do is that if the $user variable is not empty, but the
$this->user_id variable is empty, then the user is not authenticated on Facebook's
side so we should destroy the session. We do this by using a function built in to the
Session Library sess_destroy();

Finally, we check to see if the $user variable is not equal to FALSE. If it passes this
check, we set the $this->user class variable to that of the local $user variable.

Final library code
Here is the full library code in context:

<?php

require_once(APPPATH . 'libraries/facebook/facebook.php');

class Facebook_connect
{
 var $CI;
 var $connection;

 var $api_key;
 var $secret_key;
 var $user;
 var $user_id;
 var $client;

 function Facebook_connect($data)
 {

 $this->CI =& get_instance();

 $this->CI->load->library('session');

User Authentication 2

[146]

 $this->api_key = $data['api_key'];
 $this->secret_key = $data['secret_key'];

 $this->connection =
 new Facebook($this->api_key, $this->secret_key);
 $this->client = $this->connection->api_client;
 $this->user_id = $this->connection->get_loggedin_user();

 $this->_session();

 }

 function _session()
{
 $user = $this->CI->session->userdata('facebook_user');

 if($user === FALSE && $this->user_id !== NULL)
 {
 $profile_data = array('uid','first_name', 'last_name',
 'name', 'locale', 'pic_square', 'profile_url');
 $info = $this->connection->api_client->
 users_getInfo($this->user_id, $profile_data);

 $user = $info[0];

 $this->CI->session->set_userdata('facebook_user', $user);
 }
 elseif($user !== FALSE && $this->user_id === NULL)
 {
 $this->CI->session->sess_destroy();
 }

 if($user !== FALSE)
 {
 $this->user = $user;
 }
}

}

?>

Chapter 5

[147]

The Controller
The Controller is where all of our logic will go. The Controller that we use for our
Facebook authentication will need to call upon the Facebook Connect Wrapper, set
some local variables for some user information, and load a view file. The view file
will contain special HTML elements to show Facebook information. These tags are
known as Facebook Markup Language (FBML). We'll go over FBML briefly after
this section.

<?php

class Facebooker extends Controller
{

 function Facebooker()
 {
 parent::Controller();

 $this->load->helper('url');
 }

 function index()
 {
 $data['api_key'] = "";
 $data['secret_key'] = "";

 $this->load->library('facebook_connect', $data);

 $data['user'] = $this->facebook_connect->user;
 $data['user_id'] = $this->facebook_connect->user_id;

 $this->load->view('facebook', $data);
 }

}
?>

As you can see, the Controller is fairly short and isn't as complex a way of
authenticating users as Twitter oAuth (generating keys, and so on). I have named
the Controller "Facebooker" because the class name "Facebook" has already been
used for the core Facebook Client. If I had called the Controller Facebook there
would be no output to the browser after a PHP failure. You should copy this code
and save it in the system/application/controllers/ folder as Facebooker.php.

User Authentication 2

[148]

In the class constructor, we load the URL Helper. We use the URL Helper in the view
file to tell Facebook the location of our application.

The first thing that we do in the index function is to declare two array keys: one for
our API Key and another for the Secret Application Key. You should set these to
the keys that you received from Facebook when you created a new application. We
subsequently load the Facebook Connect Wrapper library, and pass the $data array
containing our API key and Secret Application Key to it.

The next two lines add to our $data array, this time adding the user and user ID
information. On the final line we load the view file and pass the $data array to it.

The View file
The View file is very important to us and needs some explaining. As you would
expect from a Facebook Connect application, the logo will be placed on the web
page. A pop-up box will appear when you click on it, allowing you to log in to
Facebook and allow access to the application. To do this however, you need to
know FBML. FBML is a superset of HTML and adds on to HTML's features,
basically letting you easily add Facebook specific details. The example
application is immensely simple, but it gives you a quick look at FBML,
giving you an idea of what it can do and how it does it.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:fb="http://www.
facebook.com/2008/fbml">
<head>
 <title>Facebook Connect</title>
</head>
<body>
 <script src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/
FeatureLoader.js.php" type="text/javascript"></script>
 <?php if (!$user_id): ?>
 <fb:login-button onlogin="window.location='<?=current_url()?>'">
 </fb:login-button>
 <?php else: ?>
 <p><img class="profile_square" src="<?=$user['pic_square']?>" />
 Hi <?=$user['first_name']?>!</p>
 <p><a href="#" onclick="FB.Connect.logout(function()
 { window.location='<?=current_url()?>' });
 return false;" >(Logout)</p>

 <p>You are now logged in!!</p>
 <?php endif; ?>

Chapter 5

[149]

 <script type="text/javascript">
 FB.init("<?php echo $api_key; ?>", "/xd_receiver.htm");
 </script>
</body>
</html>

As you can see, this is just a normal HTML document. We start off with a DOCTYPE
declaration, open our html and head tags, set a page title and open our body tag.
After this, though, we're in FBML territory.

The first thing that I have done is load in a JavaScript file so we can make use of
all the Facebook Connect objects. Yes, I should do this in the <head> as opposed
to after the <body> tag, but I've put it here to group all of the Facebook-specific
stuff together.

In the following snippet of code, all I want to go through is the part that shows the
Facebook Connect login button if a user is not logged in.

<?php if (!$user_id): ?>
<fb:login-button
 onlogin="window.location='<?=current_url()?>'">
</fb:login-button>

The first line is just a simple PHP if statement. If the variable $user_id is not set,
we show the login button. Let's take a closer look at the code behind adding the
login button.

Firstly you should notice that the tag we are using, it's an <fb> tag. You should also
notice that there is a colon in the tag, followed by a string to describe the object that
we want to place on the web page—in this case it is the login-button. Then we set
an attribute onlogin, which sets the redirect page to the one we are currently on;
once a user is authenticated they'll still be on the same page. The current_url()
function is part of the URL Helper that we loaded in the Controller constructor.
Finally, we close the login button tag </fb:login-button>.

There isn't much to digest here, considering the operations behind this single button.
All you need to take away from this section are the following points:

Facebook tags begin with <fb preceded by a colon and a string describing
what you are adding to the page
Tags end the same as any HTML tag. The ending tags open with a </ instead
of a <
Tags can have attributes

•

•

•

User Authentication 2

[150]

The next part of the code determines what happens when a user is logged in.
Obviously we don't want to show a logged in user the login button! Instead, we
will display their profile picture, print the text "Hi!" followed by their first name,
and then show a logout link.

<?php else: ?>
 <p><img class="profile_square" src="<?=$user['pic_square']?>" />
 Hi <?=$user['first_name']?>!<p>
 <p><a href="#" onclick="FB.Connect.logout(function()
 { window.location='<?=current_url()?>' });
 return false;" >(Logout)</p>

 <p>You are now logged in!!</p>
 <?php endif; ?>

To begin with, we are simply following our initial if statement with an else.
(Note that we are using shorthand PHP.) Next, we use an image tag to show the
users profile picture. We add in the welcoming text and echo out the user's first
name. Then we show the user a logout link.

The logout link uses the JavaScript onclick event to call a function (contained
within the JS file that we loaded from Facebook), which logs the user out. Just like
when showing the login button, we also send along the window.location as the
current URL, so that the user will be sent back to this page after logging out. We
also show the user a short message telling them they are now logged in.

The final part to the view file is simply including a JavaScript file. Notice that we are
sending the string /xd_receiver.htm as a parameter. This is a file that we need to
add to our CodeIgniter application so that we can make use of the JavaScript Library
provided by Facebook.

<script type="text/javascript">
 FB.init("<?php echo $api_key; ?>", "/xd_receiver.htm");
</script>

Chapter 5

[151]

The file xd_receiver.html is a Cross Domain Communication Channel that allows
us to us the JavaScript Library that Facebook has provided for us. The file should be
placed at the root of our application—in the same folder as CodeIgniter's index.php
file—so that it can be easily accessed. The file should contain the following code:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" >
 <head>
 <title>Cross-Domain Receiver Page</title>
 </head>
 <body>
 <script
src="http://static.ak.facebook.com/js/api_lib/v0.4/XdCommReceiver.js"
type="text/javascript">
 </script>
 </body>
</html>

The only difference between the previous code and the code that Facebook provides
directly is the differing doctypes. I have used an HTML5 doctype, whereas Facebook
uses an XHTML 1.0 Strict doctype in the example shown on their developer wiki.

Now that you have added this file, you can go ahead and login with
Facebook Connect!

Summary
There you have it—user authentication using Twitter oAuth and Facebook Connect.
There are many similarities in how these systems work, but for us developers they
both work slightly differently; Twitter makes us jump through hoops, and Facebook
handles it all for us.

In the next chapter, we will go through Application Security—more specifically
what CodeIgniter does to protect you, and some of the most common ways that a
user can compromise your site, as well as how you can take preventative measures
to stop them.

Application Security
Ensuring that your application is as secure as is humanly possible is no mean feat.
There are so many that ways your application can be compromised that it's often
difficult to keep your application locked down all of the time. However, there are
steps that you can easily take to reduce the chances of anybody with some technical
knowledge to gain unauthorized access to your application, or parts of or all of
your databases.

CodeIgniter handles some of these steps, and you won't need to do anything to make
use of them; they'll always be there. However, some of its defenses need to be turned
on, or an action needs to happen for you to take full advantage of them. We have
already touched upon this with the XSS Filter: it can be turned on permanently
or it can be used on a case-by-case basis for each form field.

We will discuss the following topics in this chapter:

URI security
Global security
Filtering data
Password salting
Database security
Cross-site scripting

CodeIgniter's defenses
CodeIgniter comes with built-in security filters; some of these filters are by
convention, and some need to be configured. We'll go over some of these now.

•

•

•

•

•

•

Application Security

[154]

URI security
To refresh your memory, a URI is everything that comes after your web address.
When using CodeIgniter, you will have a URI that looks like this:

index.php/controller/method/parameters

As a security precaution, CodeIgniter only allows certain characters in your URIs.
You may only have the following characters in your URIs. You can change this in
your application/config/config.php file, to add or remove any characters that
should be allowed in your URIs; characters such as:

Lowercase and Uppercase letters
Numbers (0—9)
Tilde (~)
Underscore (_)
Dash (-)
Period (.)
Colon (:)

Why does CodeIgniter use URIs?
CodeIgniter favors URI segments to map URLs to Controller files for one simple
reason. Using other methods—such as building query strings—is not search engine
friendly and also creates some security issues.

For example, you can get the URI string by using PHP quite simply as follows:

$uri = $_SERVER['REQUEST_URI'];
echo $uri;

This is a pretty safe method. However, if you were to use query strings, in most
cases you would be using the $_GET variable to find this information. Using
$_GET poses its own security problems, such as giving users the possibility to load
scripts from outside the domain and run them on your own server. CodeIgniter
does give you an option to enable query strings, but this is disabled by default.

•

•

•

•

•

•

•

Chapter 6

[155]

On another note, URI strings are more search engine friendly and are also more
readable for your site's visitors. There is no question that URIs are more user-friendly
and are easier to read. Take a look at an example website URL, given next. The first
is in the CodeIgniter URI style and the second is in the older query string based style.
Both URLs would take you to the same page full of products in a web shop, but they
both look totally different.

www.example.com/index.php/product/page/1

www.example.com/?c=product&m=page

CodeIgniter allows you to use query strings, and by default the trigger to set the
controller name is c and the trigger for method names is m.

Why does CodeIgniter restrict URI characters?
There are a few reasons as to why CodeIgniter restricts what you can and cannot put
into your URI segments.

Firstly, by allowing characters such as an asterisk (*) or quotations—either single
quotes or double quotes—CodeIgniter is effectively allowing SQL statements to be
passed into a function or used as input, as these characters feature heavily in SQL. If
an SQL query were to be passed through a function and run against your database,
you would be at risk of having someone delete or corrupt your database. Only
allowing certain characters eliminates this risk.

Secondly, if these types of characters were to be allowed in your URI strings, you
would have to sanitize all parameters passed to all functions where you accept them.
This places an unwanted burden on you as a CodeIgniter developer to complete a
task that would usually be expected of the framework.

Finally, by allowing characters into the controller and model segments that are
not allowed in a PHP class name or function name, you are effectively disallowing
CodeIgniter to map to a correct class or function. For this reason, CodeIgniter only
allows the characters that can be used in a class name or function name to be used
in URL strings, as anything else will result in a fatal PHP error.

Global data
Because CodeIgniter does not allow query strings to be used by default, the Input
and Security Class unsets the $_GET array during initialization of the system.

All global variables are unset during system initialization, except those found
in the $_COOKIE and $_POST arrays. This is effectively the same as turning
register_globals off.

Application Security

[156]

Global variables have always been a very high security risk, as global variables
can be overwritten by using malicious scripts. This can allow users to change the
way that your application was intended to be run and alter the way it works. For
example, an overwritten global variable can allow a user to bypass a registration
process and gain unauthorized access to your application.

register_globals has been turned off in PHP since version 4.2.0, but as
CodeIgniter could be run on older versions or versions with register_globals
specifically turned on, then it is best to carry out this security measure without
making assumptions about the type of system that CodeIgniter will be run on.

Best practices
Before accepting any type of data into your application, whether it be from a form
submission, COOKIE data, URI data, or even SERVER data, you are encouraged by
the user guide to follow this three step guide:

1. Filter the data as if it were tainted
2. Validate the data to ensure that it is as expected (correct length, type, size,

and so on)
3. Escape the data before inserting it into your Database

Filtering data
We have touched upon the XSS filter previously. CodeIgniter provides an excellent
XSS Filter that filters data for any commonly used techniques for inserting malicious
JavaScript code, or other types of code, into your application.

You can filter all types of data through the XSS Filter by opening up the file
/system/application/config/config.php and setting the following variable:

$config['global_xss_filtering'] = TRUE;

Or you can filter data separately, by using the next function:

$data = $this->input->xss_clean($data);

Validation
We have already discussed validating data, previously. The Form Validation Library
is the best tool that CodeIgniter offers for ensuring that the submitted data is of the
correct type, size and even length. We have gone through this at length in Chapter 4,
User Authentication 1, so there is no need to go through this again.

Chapter 6

[157]

Escaping data
We have touched upon the functions for escaping data that are built in to the
Active Record portion of the Database library. You can also escape data by using
the function:

$this->db->escape();

which can be used when performing an SQL query using this function:

$this->db->query();

We'll go into this in much more detail later on in the chapter.

Strong password policies
You should make sure that your users always have a strong password. It is very easy
to create a password policy with CodeIgniter, by using the Form Validation Library.

For example, you can set the minimum and maximum length of the password
field. You can also easily make sure that the data entered in the password field
and password confirmation field are the same.

An example password policy could be:

Minimum length 6 characters
Maximum length 12 characters
Must be alpha-numeric characters, no symbols
Must not be very commonly-used passwords
Must not be the person's name
Must not be the person's username

The advantages of having a strong password policy is that users will be aware of
the security implications once they have an error saying that their password is
too short. If you check the password to ensure it is not the same as the username,
not "password", "1234", the user's name, or anything else that could be deemed
inappropriate, then you can give a valid and helpful error message.

You could also go one step further and include a password strength meter, and only
allow a user to have a strong password as deemed by the meter. Password strength
meters are usually coded using JavaScript, so we won't delve into this.

•

•

•

•

•

•

Application Security

[158]

Example Form Validation Library rules
Here's what the validation rules might look like for the password policy
stated previously:

$this->form_validation->set_rules('name', 'First Name', 'required');
$this->form_validation->
 set_rules('username', 'Username', 'required');
$this->form_validation->
 set_rules('password', 'Password',
 'required|min_length[6]|max_length[12]|alpha_numeric|
 callback_not_obvious|callback_not_name|callback_not_username');

$this->form_validation->
 set_rules('password_conf', 'Password Confirmation',
 'required|matches[password]');

You'll notice that we make use of three callbacks. not_obvious() will be a function
to determine if the password is one of the top five most commonly-used passwords.
not_name() will determine whether the password is the persons name or not.
not_username() will determine whether the password is the person's username
or not. Let's create those functions.

function not_obvious($password)
{
 switch($password)
 {
 case "qwerty":
 $this->form_validation->
 set_message('not_obvious', 'The password provided is one of
the most used passwords, please try a more obscure password.');
 return FALSE;
 break;

 case "123456":
 $this->form_validation->
 set_message('not_obvious', 'The password provided is one of
the most used passwords, please try a more obscure password.');
 return FALSE;
 break;

 case "letmein":
 $this->form_validation->set_message('not_obvious', 'The password
provided is one of the most used passwords, please try a more obscure
password.');
 return FALSE;

Chapter 6

[159]

 break;

 case "123":
 $this->form_validation->
 set_message('not_obvious', 'The password provided is one of
the most used passwords, please try a more obscure password.');
 return FALSE;
 break;

 case "password":
 $this->form_validation->
 set_message('not_obvious', 'The password provided is one of
the most used passwords, please try a more obscure password.');
 return FALSE;
 break;
}

return TRUE;

}

This function is fairly repetitive. Basically, it checks that the password string
provided does not match any of the five most common passwords. If a given
password matches one of the top five, then an error message will be set and the
function will return FALSE and break out of the loop.

The next function is not_name(), where we check to see if the password is the
person's name.

function not_name($password)
{
 $name = set_value('name');

 if($name !== $password)
{
 return TRUE;
}
 else
{
 $this->form_validation->
 set_message('not_name', 'You user password provided was your
name. For security reasons we do not allow this.');
 return FALSE;
}
}

Application Security

[160]

There is a function in here that might be new to you. set_value() allows you to
grab the value of another one of the fields, provided that there are rules set for it
to allow the Form Validation Library to handle it. This function checks to see if the
password is the same as the name; if they are different we simply return TRUE,
but if they are the same we set an error message and return FALSE.

The final callback function that we are going to write works in the same way as the
previous one. The only difference is that we are checking whether the password is
the same as the username this time, instead of the name.

function not_username($password)
{
 $username = set_value('username');

 if($username !== $password)
{
 return TRUE;
}
 else
{
 $this->form_validation->
 set_message('not_name', 'You user password provided was the same
as your username. For security reasons we do not allow this.');
 return FALSE;
}
}

Storing passwords securely
User passwords are quite possibly the most important data that you store on your
server, so you should ensure that you have taken reasonable steps to store these
securely. We'll go over some of the different methods that you can use to store
passwords in a secure manner.

Storing hashes
Storing a password as a hash is possibly the easiest way to store user passwords, and
is used by many websites. Most developers would go straight to using an MD5 hash
because it is the most well-known of the types of hashing available to developers.
However, I would recommend you use sha1 hashes, because these are longer than
MD5 and have proved harder to find the plaintext to than MD5 hashes.

Chapter 6

[161]

Hashing a password using sha1
There are two ways to hash a password using this method. Firstly, if your PHP
installation supports it (the chances are that it will) then you will be able to use the
function sha1()—this is the easiest way to hash a password. The second way is done
in exactly the same way but instead uses a function provided by CodeIgniter, for the
cases where sha1 is not available on your server.

The sha1() function
The process is brilliantly simple. Once a password has been given to you by the
user—usually via a form—then you simply pass this value to the first parameter
of the sha1 function.

$password = '1234';
$hash = sha1($password);

You can now store the password in the database safe in the knowledge that you have
made it much more difficult for somebody to find the user passwords if they were
somehow able to get hold of your database.

The $this->encrypt->sha1() function
This function is provided by CodeIgniter and is available to the developers out there
who might not have sha1 available on their server. It works in exactly the same way
as before, the only difference is that it doesn't use the native sha1() function.

Load the library
The first thing that you have to do to use this function is to load the CodeIgniter
Encryption Library. This is the Library that holds the sha1 function. Here's how
you load it:

$this->load->library('encryption');

Hash the password
This is done in the exact same way as hashing a password using the native function.
The only difference is that instead of using sha1() you would use $this->encrypt-
>sha1();.

$password = '1234';
$hash = $this->encrypt->sha1($password);

Both functions will provide the exact same resulting hash. The only difference is that
one function is native to the language and one is native to the framework.

Application Security

[162]

Static salting
The next step up from hashing passwords is to salt your password hashes. This is
the process of adding a string to a password to change its end hash, which will be
completely different from the original password hash. Let's take a look at a few
examples of how to do this.

When using salts, remember to salt the user password in exactly the
same way, each time you need to check it against a database. This
means that every time a user logs in, you need to salt the password in
the same way, or else you won't be able to verify the password, even
if it is typed in correctly.

Simple salts
Here's something I will call a 'simple' salt. This is where you put a salt string at the
beginning or end of the password, then hash it.

$salt = '123456789987654321';
$password = 'password';

$start_hash = sha1($salt . $password);
$end_hash = sha1($password . $salt);

Complex salts
Once again I'm giving this my own name. A complex salt is where you split the
password up somewhere, and add the salt in the middle. You should have strict
password rules set up by using the Form Validation Library, so you should know
how long the shortest password is so you don't split it at the last character.

Split at second character
You can split a password from every second character as follows:

$salt = '123456789987654321';
$password = 'pass';

$password_array = str_split($password, 2);

The contents of $password_array will look something like this.

Array
(
 [0] => pa
 [1] => ss
)

Chapter 6

[163]

Now, to add the salt you would simply use:

$hash = sha1($password_array[0] . $salt . $password_array[1]);

Here's the code for clarity:

$salt = '123456789987654321';
$password = 'pass';

$password_array = str_split($password, 2);

$hash = sha1($password_array[0] . $salt . $password_array[1]);

Split the password in the middle
We can easily split the password in the middle, no matter how long or short the
password is, by finding the length of the password and then dividing that by two
to get our split point.

$salt = '123456789987654321';
$password = 'password';

$password_length = length($password); // int 8
$split_at = $password_length / 2; // int 4

$password_array = str_split($password, $split_at);

$hash = sha1($password_array[0] . $salt . $password_array[1]);

In the previous code snippet, the first two lines are simple; we're just setting
values for our salt and the user password. The next line lets us find the length of the
password; in this case its value will be 8. The next line is where we find the middle of
the string; in this case its value will be 4. So we split the password variable up at the
fourth character, as set in the $split_at variable. The next line is the same as before;
we're simply adding a salt in the middle of the password.

You could create a function out of this so that you won't have to repeat yourself over
and over. In fact, let's build a CodeIgniter plugin.

Create a new file inside the system/application/plugins/ folder, called
hash_pi.php.

Application Security

[164]

Now paste the following code into this file:

<?php

function hash_password($password, $salt)
{
$password_length = length($password);
$split_at = $password_length / 2;

$password_array = str_split($password, $split_at);

$hash = sha1($password_array[0] . $salt . $password_array[1]);

return $hash;
}

?>

To use the plugin, you have to load it into one of your Controllers, as follows:

$this->load->plugin('hash');

Then you can simply use the function in a procedural way:

$hashed_password = hash_password($password, $salt);

Dynamic salting
Dynamic salting is just like using a static salt, except that the salt is different for
every user, and is stored inside the database. Of course, if somebody were to grab a
copy of the database, they would have the hashes and the salt. This is why we use
both static salts and dynamic salts together. A dynamic salt is usually a random
number, as this is easy to generate with PHP.

Simple dynamic salts
A simple dynamic salt is when you have a salt at either end of the password. For
example, we could have the dynamic salt at the front of the password and the static
salt at the end:

$static_salt = '123456789987654321';
$dynamic_salt = mt_rand();
$password = 'password';

$hash = sha1($dynamic_salt . $password . $static_salt);

Chapter 6

[165]

This is pretty simple stuff. All you need to do is store the dynamic salt inside the
database when you generate the salt for the first time (that is, at user registration)
so that you can use it to check the user password when they log in to your website.

Complex dynamic salts
A complex dynamic salt is where we split the password up and put a salt in the
middle, and one at the end. Of course you don't need to do it this way; you could
split the password up however you like, and place the salt wherever you like—I'm
just doing it this way because it's easier.

We'll re-use the code from the plugin that we made earlier, and update it.

<?php

function hash_password($password, $static_salt)
{
 $dynamic_salt = mt_rand();
$password_length = length($password);
$split_at = $password_length / 2;

$password_array = str_split($password, $split_at);

$hash = sha1($password_array[0] . $static_salt . $password_array[1] .
$dynamic_salt);

return $hash;
}

?>

The difference here is that we place the $static_salt variable in the middle and the
$dynamic_salt at the end. We could've split the password anywhere, as many times
as we liked, and rearranged it to make it even more secure. But this way is simple
and we didn't need to change all that much.

Encrypting passwords
The CodeIgniter Encryption class provides a two way method of data encryption.
You are able to store user passwords and retrieve them again. Using the Encryption
class can be useful as it can provide resulting password strings that look much
different to an md5 or sha1 hashed password. This can throw off many potential
crackers at first sight. If a cracker has access to your database, there is no way to
decrypt the user passwords unless you store your key in the database. Overall,
the Encryption library provides a high level of security when compared to a
simple hashing algorithm.

Application Security

[166]

Setting an encryption key
To take full advantage of the potential of this library, you need to set an encryption
key. Your key should be 32 characters long, with both uppercase and lowercase
letters, numbers, and symbols. This should be as random as possible, so you
should use a generator for this.

You store your key in the /system/application/config/config.php file. All you
need to do is set the following array key:

$config['encryption_key'] = "YOUR KEY";

It is imperative that you keep your key as secret as possible. Should somebody find this key
then they will be able to decode the strings easily.

Message length
You should take note that the encryption process will make the password roughly
2.6 times longer than the plain text password. You should bear this in mind when
choosing to store passwords in a cookie (if it is imperative that the password is
stored in a cookie and not in a more secure way, such as a session) as they can
only hold 4K of data.

Loading the class
Before we can actually use the Encryption class we must first load it into one of our
Controllers. This is the same as loading any other class in CodeIgniter:

$this->load->library('encrypt');

As always, once loaded we can use the library by using the $this->encrypt method.

Encoding passwords
Now that we have loaded the library, we can start encoding information! This is a
fairly simple process.

$password = 'password';
$ciphertext = $this->encrypt->encode($password);

You can also pass in an Encryption key to the second parameter if you do not wish to
use the one in your configuration file.

$password = 'password';
$key = 'veTadewEBE8a4Abatrat2e3TenaZusta';

$ciphertext = $this->encrypt->encode($password, $key);

Chapter 6

[167]

Decoding passwords
You should never really need to decode user passwords. Nobody other than the
user should know their password. Even if they forget it, they should simply be
sent a new one. We'll go over how to decode information, for a full picture of the
Encryption library.

Once again, as is the nature of CodeIgniter, everything is very simple.

$ciphertext = 'kdbvlkjasdbvlbdvbzkxbfsdfblkd';

$plaintext = $this->encrypt->decode($ciphertext);

We simply pass in the encrypted string—the cipher text—through to the decode()
function, and assign the returned value—the plain text—to a variable, to allow us to
reuse this elsewhere in our application.

Set mcrypt cipher
The Encryption Library uses the mcrypt PHP Library to encrypt information. The
Encryption library allows you to set your preferred cipher, a list of which can be found
on the PHP website at http://www.php.net/manual/en/mcrypt.ciphers.php.

$this->encrypt->set_cipher(MCRYPT_DES);

Database security
Another very important part of general application security is that of your database.
Ensuring that your queries are all correct, that all data has been escaped before
you use it in a query, and never ever trusting any user input will all help with
safeguarding your database.

Escape queries
We have already been over the methods that CodeIgniter uses to escape your
data, at the start of this chapter. This time around we'll go over how to escape the
different parts of a query without CodeIgniter, as this is a skill that every developer
should have.

Firstly, all database table names and field names should be escaped by using
backticks (`). This will also avoid any issues where the name is a reserved word. This
is especially useful when using a WHERE clause that uses the primary key id field.
Here's an example:

SELECT * FROM `users` WHERE `username` = '$username' AND `id` = '$id'

Application Security

[168]

Secondly, all variables that are included in a query should be properly escaped by
using one of the methods shown at the beginning of this chapter.

The $this->db->escape() function
This function will determine the data type so that it can properly escape only string
data. It will automatically add single quotes around the data so you don't have to.
Here's how you would use it:

$sql = "INSERT INTO table (name)
 VALUES(".$this->db->escape($name).")";
$this->db->query($sql);

The $this->db->escape_str() function
This function will escape all data, regardless of type. In most cases you will be using
the previous function rather than this one. In any case, here's how you use it:

$sql = "INSERT INTO table (name)
 VALUES(".$this->db->escape_str($name).")";
$this->db->query($sql);

The $this->db->escape_like_str() function
This function is useful when strings are used in the LIKE portion of your query.
This enables the wildcards to be correctly escaped along with the string. Here's
an example of its usage:

$like = 'adam';
$sql = "SELECT id FROM table
 WHERE column LIKE '%".$this->db->escape_like_str($like)."%'";
$this->db->query($sql);

Query bindings
Although data will be escaped using a bound query, CodeIgniter does it for you.
Here is an example of how you would bind the values to your query:

$sql = "SELECT * FROM column
 WHERE id = ? AND name = ? AND group = ?";
$this->db->query($sql, array(1, 'adam', 'administrators');

In short, query binding allows you to write a query and bind certain values to it for
later use. Query bindings will also significantly simplify your SQL strings; this can
be a huge benefit if you have long queries.

Chapter 6

[169]

Limiting account access
You should create a new user account for your database each time a new application
has specific needs. For example, if you use the root account for an application, but
you are only performing read, write, and delete operations then you will not need
the ability to create, edit, or remove tables.

The reasoning behind doing this is that if somebody were to gain access to your
database and were able to run queries on it, they would not be able to drop the
tables, as MySQL (or whatever database you use) will limit the types of query that
the user account can make.

The main case for this point would be SQL Injection. SQL Injection is where a
string such as 'OR', or '= ', is inserted into a form or a URL where it will be run on the
database. This will usually return an error message that can be used by the malicious
user to return a dump of part or all of your database. If you haven't properly escaped
your queries then a user could run a query like this on your database:

SELECT * FROM `users` WHERE `id` = 14; DROP TABLE `users`

This would allow them to completely drop the users table from the database. But
by limiting the access to the database account we can completely stop this from
happening, as the query will not be able to run correctly.

Cross-site scripting (XSS)
Cross-site scripting (XSS) is a way of injecting malicious JavaScript code into your
application. This type of exploit can be used to hijack a user's cookie, which can
effectively let the user who injected the code take the ID of any user on your
website, simply by linking them to your site with the code added in.

CodeIgniter comes with an XSS Filter, and can be turned on to run all the
time. We discussed this at the beginning of the chapter. You can also run
POST data through the XSS Filter on a case-by-case basis. You do this by
passing the Boolean TRUE to the second parameter of the post function.

$this->input->post('username'); // not filtered
$this->input->post('password', TRUE); // filtered

You can also use the XSS filter as a rule with the Form Validation Library. Just set the
last rule to be xss_clean.

Application Security

[170]

Changing the default file structure
Changing the way that your application works can be a good way to secure your
application. With CodeIgniter you can rename your system folder and even place it
above the web root, making it inaccessible from a browser window. You can rename
your application folder and pull it out of the system folder. Doing this may keep
your application more secure than by simply keeping the default structure. The main
reason behind this is that if vulnerability were to be found in the CodeIgniter core
then nobody could act upon it, because you would have renamed your system folder
and it won't be accessible to him or her anyway. Renaming your application folder
keeps people from easily identifying it as a CodeIgniter project, therefore limiting the
ways they could try to breach the application.

Once you rename your application and system folders and move them both
(application out of system, and system out of the web root), open up index.php
and change the following variables:

$system_folder = "system";
$application_folder = "application";

Here's what you file structure should look like:

It's worth pointing out here that you can put your application folder pretty much
anywhere, and CodeIgniter will find it for you. All you need to do is ensure that the
name of your folder is the same as the variable you set in index.php.

Staying up-to-date
Remember to update your CodeIgniter applications and versions of PHP (if possible)
to stay up-to-date and cover any security patches. By removing your system folder
out of the web root, you are able to use one system folder for all of your applications;
this makes it much easier to upgrade a number of applications at once with no fuss
at all. Keep an eye on the CodeIgniter website and Twitter stream for the latest
version updates.

Chapter 6

[171]

Summary
This chapter has covered a range of areas that you can easily act upon in order to
improve the security of your applications enormously. In the next chapter we'll go
over the different areas in which you can improve your application in order to allow
it to handle large amounts of traffic. Essentially, we'll go over the steps for building a
large-scale application.

Building a Large-Scale
Application

Being able to build and run a large-scale application is a great skill for any developer
looking to broaden their horizons with freelancing opportunities, to build that web
app you've always wanted to create or take CodeIgniter into a corporate setting. The
techniques we'll be going through in this chapter can be applied to an application
of any size, but the effects will be more noticeable on a larger application. We'll be
going through the kinds of changes we need to make to the application for different
hardware implementations or cloud storage.

In this chapter you will:

Learn how to run benchmarks on your application
Identify and rectify bottlenecks in your application
Use the CodeIgniter Output Cache to cache view files
Use the Database Library Query Cache to optimize SQL operations
Build and utilize a memcache library to avoid disk activity
Know the advantages and disadvantages of using multiple instances to
balance load over your application

Running benchmarks
Benchmarks let you log the time it takes for a part, or multiple parts, of your
application to run. For example, you could log the time it takes to log a user in. You
should put benchmarks in the core of your application and anywhere else that you
feel you would need to time so that you can make it run faster in the future.

•

•

•

•

•

•

Building a Large-Scale Application

[174]

Why run benchmarks?
We know how to run benchmarks and what they do. But why should we bother?
Once you've benchmarked your application, you can generate a report by using the
Benchmarking class. This allows you to easily see the timings of your application
wherever you have set a benchmark. You can then seek out any bottlenecks in your
application, and rectify them.

Where should I use benchmarks?
It is a good idea to benchmark your application as much as possible; this is useful
because it allows you to look at very specific areas of your site. The CodeIgniter
Benchmarking class is very good because it allows you to run benchmarks inside
other benchmarks. This can be very useful if you want to run a benchmark for each
of your Controller and Model functions, and allows you to run benchmarks for other,
more specific parts of your application.

Ideally, you should benchmark anywhere that your application accessess data
(your Models). Whenever you access the database, an API, RSS Feed, or other source
of data, benchmark it. If you're using a third-party API or a third-party hosted RSS
Feed, there might not be much you can do to speed things up; in some cases you can
be put on a whitelist for access.

I would recommend benchmarking all of your database queries. This will enable
you to look at how long every query takes to run and optimize them as needed.

Types of bottlenecks
A bottleneck is a part of your application that is slower than the other parts, and
that is slowing down the application as a whole. In it's basic form, your application
is the beer in a bottle, and the bottleneck is slowing your application flow. Here are a
number of different types of bottlenecks, along with how to identify them and how
to rectify the problem.

Database
A database bottleneck is where the database is delivering data slower than you'd like
in your application.

Chapter 7

[175]

Identifying a database bottleneck
Look at all of the benchmarks that you are running that encompass just database
queries, and find the average load time for each query. You should be able to see the
ones that take longer than the others, at a glance. Of course, if some of your queries
are fairly long and some are fairly brief, then you should only look at the queries that
are similar to any shown with a long load time.

Identifying a bottleneck in the database is easy, but identifying why it is a bottleneck
isn't so easy. Sometimes the bottleneck may simply be a bad query. In other cases it
could be a slow connection to the database server, or high latency. In any case, it is
up to you to determine why a database issue has occurred.

Rectifying a database bottleneck
There are a few ways in which a database can be a problem for you. The first thing
I do when I find a slow SQL query is immediately look at the query. If I can see a
glaring problem with the query, then I can rectify it, and then, rerun the benchmarks,
and have a look at the profiler. If the problem isn't fixed I look at other avenues.

Using the Active Record class will slow down your queries. If you can, you should
try a query without using the Active Record class, just to see the difference. If this
doesn't speed up the query, then it may well be a network problem between your
database server and web server. If you are only on one server, then the server might
be under a lot of load.

If you are seeing a lot of load on the database, I would suggest buying another
server. You should use the same company for this server, as usually they do not
charge for internal bandwidth. You can then set up this second server as a sole
database server. This should give the database the extra resources it needs to
run smoothly.

Alternatively, if you find that all of your database SELECT queries are returning the
whole table, but you are only using a small subset of the table, then you should just
return what you need. You can use the LIMIT clause to limit the number of rows you
return, and even set an offset to get the correct area of your table. If you only use one
row for some queries, then you should only be returning one row to use in the code.

Code
A code bottleneck is where your code is the weak link in the chain; it is running
slower than all (or most) of the other resources in your application.

Building a Large-Scale Application

[176]

Identifying a code bottleneck
If your application has a fast database, the front-end files are minified (compressed
or otherwise) and you have plenty of bandwidth available, then it is likely that your
code is running slow. You have yourself a code bottleneck.

Look at the more general benchmarks that you have set for your application.
You should be able to see where the code is lagging behind, and where the code is
speedy. You should then open up the correct Controllers or Models where you are
seeing this, to investigate more closely.

Rectifying a code bottleneck
There are a lot of different ways in which you can speed up your code.

Firstly, if you can use a native PHP functions but aren't, then you should be. Native
PHP functions are going to run faster than your own brew or even the CodeIgniter
functions. Of course, in some cases, there aren't any native PHP functions that do the
same thing (an example of this would be all of the CodeIgniter libraries, helpers, and
so on) so you have to take this into account, too.

Moreover, if there is a better native PHP function to use, then do so because
better usually means faster. For example, navigate to the pages on php.net for the
functions rand() and mt_rand()—www.php.net/rand and www.php.net/mt_rand
respectively—and look at the descriptions of the functions.

Notice how the description for mt_rand() is"Generate a better random value"?
There are many examples of this in the PHP language and many of those examples
are quicker functions.

API
An API bottleneck is where you are pulling in data from an external source, by using
a third-party API. An example of this could be a user's timeline on Twitter.

Chapter 7

[177]

Identifying an API bottleneck
By looking at the benchmarks for the code that encompasses the API calls, you
should be able to see how fast the code runs. If any particular API call is slower
than the others for no particular reason, there may be a problem with the API
itself. Of course, you'd have to take into account authenticated API calls versus
non-authenticated API calls, as authenticated calls may take a little longer.

Rectifying an API bottleneck
There might not be anything that you can do to fix an issue with a third-party API.
In some cases you can get whitelisted if you make a lot of calls to the API, so the
company won't throttle your speed for using up too many resources. This is entirely
up to the company who created and is maintaining the API, though. In this instance
all you can do is contact them.

Bandwidth
Bandwidth is the allocated volume of data that you can send and receive from your
server. This is usually an order of magnitude higher than the allocated web space
that your hosting company gives you.

Identifying a bandwidth bottleneck
You can tell if you have a bandwidth bottleneck because the traffic going to your
website will be much higher than the bandwidth allows, leaving some of your users
with a blank screen; the server will just max out and use all of the bandwidth it has.
If you use all of your bandwidth before the billing period on your hosting revolves
(usually one month) you could incur extra charges.

Rectifying a database bottleneck
If users are reporting that they are seeing an empty screen, then there are two things
that you can do to try to solve the problem.

Firstly, you can try to: minify your application; compress all your images; reduce
the number of HTTP requests your app makes; use freely-available hosted versions
of JavaScript libraries; anything that will cut down on the size of your application's
pages. Any of these things will help to cut down bandwidth usage.

Secondly, and finally, if the bandwidth needs are genuinely much higher than is
available to you, upgrade your hosting package. I would recommend moving to a
cloud-based hosting service or an easily-expandable Virtual Private Server (VPS) or
other similar service. As long as you can add and remove resources as and when you
need to, you'll be in the clear with regards to bandwidth troubles.

Building a Large-Scale Application

[178]

Static
A static bottleneck is where the front end of your application is slowing the overall
loading time. This is usually broken down into JavaScript, CSS, and image files.

Identifying a static bottleneck
There are a number of ways in which you can identify these types of bottlenecks. By
far, the best way is to use Browser Tools. Safari comes with built-in developer tools
that allow you to see the time that it took to load each item on the page. This enables
you to see if any static content needs to be compressed.

Firefox also allows this functionality. You can install the YSlow! add-on from Yahoo!.
This lets you see the time that each item on the page took to load. It also grades your
website based on its performance, and gives you feedback on how you can get a
better grade in the areas that you need to. There is also the opportunity to simply
take all of that the images on the page and upload them to a compression site
so that you can download them again, compressed. Google Chrome also has
this functionality.

Rectifying a static bottleneck
There are many ways in which you can make your pages load faster. The first thing I
would do is to place all of the JavaScript link tags or JavaScript code before the body
tag of your website. This way, the server will not wait to download the scripts before
the rest of the website. The user will see the website first and the scripts will load
last; this means that the website is available much more quickly, especially if you
have a lot of scripts, or if the scripts are fairly large.

The next thing I would do is to compress all of the static content, JavaScript, images,
and CSS. You should always chose the correct file size for your images to ensure
that they will load quickly. You could also try to use a sprite map. A sprite map is
basically a set of related images all as one image; this lets you only use one HTTP
request to download one file. To use the images you would simply use CSS to change
the absolute positioning to the correct pixels where the corner or the different image
might be on the spite map.

Another way that you can save some time on the page loading of your application
is to use a Content Delivery Network (CDN). A CDN basically saves multiple
copies of your images and other resources across many servers in different locations.
So when a user comes to your website they load the static content closest to them,
essentially eliminating the bottleneck in the method of using a single server to
deliver everything.

Chapter 7

[179]

Caching
Caching is an important part of the performance of any large-scale application.
Without any type of cache, a large-scale application will need extra resources, which
can be quite expensive if your application is CPU-intensive. Therefore, you should
always take advantage of the tools that are available to you, which in our case is the
CodeIgniter Output Cache.

How does it work?
The CodeIgniter Output Cache lets you turn on caching on a per-page basis. This
means that you can essentially cache only the pages that take too long to load. When
you turn caching on, you also set the time for which the cache should keep the
cached page saved before refreshing it.

The first time that a user goes to the page, the output cache will save a cached copy
of the page inside /system/cache/ folder, and will serve it to the user. Every request
for the page thereafter will simply serve up the cached page. If the cache has expired,
however, then the cache will re-cache the page.

How long should I cache pages for?
You should set the expire time for your pages based on what the pages content is.
If the page is the front page to a blog, and you only post once a week, set the expire
time for a week from the time that you add a post. If your page is a user list for a web
app and is heavily used, set it for a few minutes.

Using caching
The caching functionality of CodeIgniter is contained within the Output class.
The Output class is instantiated when CodeIgniter loads, so there's no need to
load anything special to use this.

To enable caching, put the following line of code anywhere inside one of your
Controller functions. You should place this line of code in each function that you
wish to be cached.

$this->output->cache(n);

The first (and only) parameter is the length of time for which you want to keep the
cached page, specified in minutes.

Building a Large-Scale Application

[180]

Optimize SQL queries
You will most definitely need to optimize your SQL queries for use on a large-scale
application. Here is a list of the things that you can do to speed them up.

Query caching
Query caching is a part of the CodeIgniter Database library, and allows you
to store information in a text file on your server, essentially cutting out the
database altogether.

To cache or not to cache?
There are many deciding factors on whether you should cache your queries or not,
but generally it is a good idea to do this. A shared hosting environment will benefit
more from query caching over a cloud-based system, as retrieving files across
multiple servers can be an unwanted burden. Also, if your database is already highly
optimized, you are unlikely to see a massive difference in speed—you're simply
shifting the speed from a database retrieval system to a file system retrieval system.

Only SELECT queries are cacheable, as these queries are the only ones
that produce a result, which can then be stored inside a file.

How query caching works
Every query that you run through the cache will have its own file inside a cache
folder that you specify to CodeIgniter—the result of the query will then be stored
inside the corresponding file. CodeIgniter will organize these files into sub-folders
as needed.

Managing cache files
Because there is no way for cache files to expire, you will need to build in your own
deletion routines into your application. For example, if you have a blog and you
publish a new post, you will want to delete the cache files for your home page
so that the new post will show up.

Chapter 7

[181]

Using query caching
There are two functions that you need to be aware of to start using query caching.
These are $this->db->cache_on() and $this->db->cache_off(). You guessed
it; they turn the query cache on and off, respectively. You should wrap each of your
queries with these two functions. Here's an example:

// Turn caching on
$this->db->cache_on();
$query = $this->db->query("SELECT * FROM table");

// Turn caching off for this one query
$this->db->cache_off();
$query = $this->db->query("SELECT * FROM users WHERE id ='$id");

// Turn caching back on
$this->db->cache_on();
$query = $this->db->query("SELECT * FROM table_2");

Deleting cache files
As was mentioned before, you need to build in routines to your application to delete
cache files. Thankfully, CodeIgniter has included a function to help make that much
easier to do.

Cache files are created according to the URI string of your site. Taking the example
form the user guide, if your URI is index.php/blog/comments/ then the sub-folder
that your file will be stored in will be blog+comments. Therefore, to delete the file
containing the cache queries, you would use the following line of code:

$this->db->cache_delete('blog','comments');

Deleting all cache files
CodeIgniter also has the ability to delete all of the cache files. This is a fairly simple
process; just call the following function in one of your Controllers:

$this->db->cache_delete_all();

Building a Large-Scale Application

[182]

Limit results
If your queries look something like:

$this->db->query('SELECT * FROM table');
$this->db->get('table');

Then you might want to take a look at limiting your queries.

LIMIT clause
If you find these types of queries and you are not using all of the data, or are using
only a single line, then you should consider limiting your queries. This will save on
database overhead and will make your queries run much faster. This will also help
to keep file size down, when used in conjunction with query caching. Utilizing the
LIMIT clause of a query is also useful when using pagination.

$this->db->query('SELECT * FROM table LIMIT 10');

$this->db->limit(10);
$this->db->get('table');

I have provided two examples of the new query: one pure SQL statement and
another using CodeIgniter's Active Record implementation.

Only select what you need
Another way to limit queries is to only select what you need. Take the following
example of a database:

CREATE TABLE `users` (
`id` INT(11) PRIMARY KEY AUTO_INCREMENT,
`username` VARCHAR(255) NOT NULL,
`password` VARCHAR(255) NOT NULL,
`email` VARCHAR(255) NOT NULL,
`group` INT(11) NOT NULL,
`first_name` VARCHAR(255) NOT NULL,
`last_name` VARCHAR(255) NOT NULL
)

Let's say we are building a member list, and our query looks like this
(Active Record):

$this->db->get('users');
// produces: SELECT * FROM users

Chapter 7

[183]

If we only use the user's id, their username, their group and their email, then we can
simply limit our query to only select that data:

$this->db->select('id, username, group, email');
$this->db->from('users')
$this->db->get();
// produces: SELECT id, username, group, email FROM users

Avoid disk activity
The slowest part of a web application is where a file is being retrieved; it is much
quicker to access the data in memory than inside a file. Therefore you should always
look at the option of using a library such as memcache or APC to cache your pages
into memory, making it easier and quicker to get hold of them when they are needed.

You could take this a step further and cache pages by using the CodeIgniter Output
Cache, and then cache those static pages into memory using memcache.

PHP has a memcache module available for installing. You should check with your
host if this is available to you or if it can be installed, either by them or yourself.

Memcache example
Here is an example of how you would interface with the memcache library, using
pure PHP.

<?php

$memcache = new Memcache;
$memcache->connect('localhost', 11211) or die ("Could not connect");

$tmp_object = new stdClass;
$tmp_object->str_attr ='test';
$tmp_object->int_attr = 123;

$memcache->set('key', $tmp_object, false, 10) or die ("Failed to save
data at the server");
echo"Store data in the cache (data will expire in 10 seconds)
\n";

$get_result = $memcache->get('key');
echo"Data from the cache:
\n";

var_dump($get_result);

?>

Building a Large-Scale Application

[184]

Let's go over this code before moving on. The first thing that we do is to create a new
variable, $memcache, and assign it to a new instance of the memcache class. Then we
connect to the memcache server on port 11211—the default port for memcache to
listen to requests on. The next three lines of code simply create a variable and assign
an object to it and give it two parameters. Then we immediately save the value of
this variable to memcache. Finally we simply retrieve the data back again and echo
it out.

Memcache CodeIgniter library
CodeIgniter allows us to create libraries for any purpose. In this instance, we will
create a wrapper library that will let us use memcache by using the CodeIgniter
syntax. We will also add debugging information to the library, to allow us to debug
the code more easily using CodeIgniter logs, if needed.

Create a file called memcached.php inside /system/application/libraries/ folder.

Constructor
As we want to be able to use the memcache library in our applications quickly, we
will connect to the memache server in the constructor.

<?php

class Memcached
{

 var $memcache;

 function Memcached()
 {
 $this->memcache = new Memcache;
 $this->memcache->connect('localhost', 11211);
 log_message('debug','Created Memcache connection.');
 }

?>

This is fairly simple. Simply, we are creating a new memcache connection and
logging a debug message stating that the connection has been created. The
connection is always created on port 11211, as this is the default memcache port, as
stated before. If your installation of memcache has it listening on another port, you
should change this to reflect the correct port number.

Chapter 7

[185]

Data functions
Here are our wrapper functions that deal with the data stored on the server:

function set($key, $data, $flag, $expires)
{
 $this->memcache->set($key, $data, $flag, $expires);
}

function replace($key, $data, $flag, $expires)
{
 $this->memcache->replace($key, $data, $flag, $expires);
}

function get($key, $flag)
{
 return $this->memcache->get($key, $flag);
}

function delete($key, $timeout)
{
 $this->memcache->delete($key, $timeout);
}

The first function allows us to set data on the server. The first and second parameters
should be self-explanatory; we set a key to identify the data and then set the data.
The flag that we set will usually be 0 but can be set to MEMCACHE_COMPRESSED, in
order to store the data compressed.

The replace function works in exactly the same way as the set function, except that
it will replace the data already stored by the key passed.

Moving on, we have a function that lets us retrieve the data that we have set already.
The first parameter is the key that we use to set the data in the first place. The second
parameter is where we pass MEMCACHE_COMPRESSED, to return the data compressed.

Finally, the delete function allows us to delete data from the memcache server. The
first parameter is simply the key that we use to identify the data, and the second
parameter is a timeout. This means that when this parameter set to 30, the data will
be deleted after 30 seconds. This defaults to 0.

Building a Large-Scale Application

[186]

Maintenance functions
There are two functions that allow us to maintain the memcache server. The
first is flush(), which marks all memcache items as expired, allowing us to
overwrite any occupied memory. The second is close() , which closes the
connection to memcache.

function flush()
{
 $this->memcache->flush();
 sleep(1);
}

function close()
{
 $this->memcache->close();
 log_message('debug','Closed Memcache connection.');
}

We use the sleep() function to delay our application for one second. This is because
we will not be able to write anything to memcache for a second, so we sleep whilst
this period runs its course.

Full library code
Here is the full library code for clarity:

<?php

class Memcached
{

 var $memcache;

 function Memcached()
 {
 $this->memcache = new Memcache;
 $this->memcache->connect('localhost', 11211);
 log_message('debug','Created Memcache connection.');
 }

 function set($key, $data, $flag, $expires)
 {
 $this->memcache->set($key, $data, $flag, $expires);
 }

Chapter 7

[187]

 function replace($key, $data, $flag, $expires)
 {
 $this->memcache->replace($key, $data, $flag, $expires);
 }

 function get($key, $flag)
 {
 return $this->memcache->get($key, $flag);
 }

 function delete($key, $timeout = 0)
 {
 $this->memcache->delete($key, $timeout);
 }

 function flush()
 {
 $this->memcache->flush();
 sleep(1);
 }

 function close()
 {
 $this->memcache->close();
 log_message('debug','Closed Memcache connection.');
 }

}

?>

Using the library
To use the library, simply load it into one of your Controllers, as follows:

$this->load->library('memcached');

Then you can use the functions as follows:

$this->memcached->set($key, $data, $flag, $expires);

Building a Large-Scale Application

[188]

Here is our example from before, but this time we're using the CodeIgniter library
instead of the native PHP functions.

<?php

class Memcachetest extends Controller
{
 function Memcachetest()
 {
 parent::Controller();
 $this->load->library('memcached');
 }

 function index()
 {
 $tmp_object = new stdClass;
 $tmp_object->str_attr ='test';
 $tmp_object->int_attr = 123;

 $this->memcached->
 set('key', $tmp_object, false, 10)
 or die ("Failed to save data at the server");
 echo
"Store data in the cache (data will expire in 10 seconds)
\n";

 $get_result = $this->memcached->get('key');
 echo"Data from the cache:
\n";

 var_dump($get_result);

 }
?>

You can see that both examples are almost identical. The only difference is that
instead of creating a memcache connection ourselves we have the library do it for us.

Run multiple application instances
You might want to think about running multiple instances of your application,
either on the same server or spread across numerous servers.

Chapter 7

[189]

Advantages
There are many ways in which you can benefit from having multiple instances of
your application running across multiple servers.

Mainly, this will help to reduce the load and strain on any one part of your server.
You will also be able to handle more requests by having more instances to handle
them. Imagine buying a ticket at a cinema. If there is only one person selling tickets,
it might take a while to serve everybody, and a queue is likely to form. If there are
two or more people selling tickets at booths, then the people will get served much
quicker and the queue is likely to be shorter. The same principle applies to web
development; if there are more application instances then the application will
scale better.

Of course, you couldn't just have 100 application instances and expect everything
to speed up 100-fold. You'd need extra database resources, too. This would all
depend on how your application works, though, and how you cache your database
queries. If your queries are all file-system based then you would see an increase in
performance, but probably not by as much. The trick is to find out what the best
number of instances that you can run whilst still seeing an increase in performance.

Moreover, running multiple instances of your application will help when testing
out new features. You could perform an update to one application and be able to
essentially bucket test it. If you're using a version control system, then it will be
easy to roll back to a previous commit if there is a problem.

If the application that you are running is a software platform, and each application
instance is for a different customer, then you can make changes to the individual
applications as needed. This could get messy, but as long as you keep the base
application the same, there will be no problem with adding things for your clients
on a per-client basis.

Disadvantages
Of course there are disadvantages as well as advantages to running many instances
of your application.

The first thing that comes to mind is that you would need to write some kind of
loading functionality that runs before CodeIgniter loads the application. In this
case, you'll need to look at writing a hook to decide where to send the user. Writing
the code to load from a different application isn't the hard bit, though; the hard
part is deciding how to split the users up between the applications, in order to ensure
that they use the same one throughout their session. One idea would be to set a piece
of session data, or save a database record, so the loader always loads from the same
application instance.

Building a Large-Scale Application

[190]

The easiest way to code this would be to hook into the system before the application
is loaded. A pre_system hook is likely to be the best bet, although this could be done
in a Controller—but then you would be complicating things more for yourself.

If you are also running multiple database instances, you will face a problem with
syncing up the databases. If a user performs an action on one instance then comes
back to the site later and they get directed to a different instance than before, then
they expect everything to work the same. Therefore you will need to run a cron job
periodically, to sync the different databases.

You could find it difficult managing multiple application instances, especially if you
are using a version control system, as you could make a change to one application
and you will have to copy everything to the other applications. Some version control
systems make this easy for you, but others don't have an easy way to do it at all.
This is something to think about when deciding whether or not to run multiple
application instances.

Summary
There you have it—some of the best ways to streamline your application ready
for enormous amounts of traffic. In the next chapter, we will take a look at web
services, and how to open up your application to third-party developers, by
using a REST server.

Web Services
The Web, as it stands now, is full of web services. You have probably heard of most
of them. Websites such as Twitter provide a service where you can grab tweets from
their APIs. Pretty much any website with an API can be described as a web service.

In this chapter we will:

Learn about web services
Learn what a RESTful web service is
Learn how to build and interact with a RESTful web service
Create a REST Server to make creating RESTful web services simple
Create an extended Controller to abstract the REST implementation and
allow us to focus on building the service

What is a web service?
The W3C describes a Web Service as "a software system designed to support interoperable
machine-to-machine interaction over a network". This means that a connection can be
established between two computers regardless of operating system or programming
language. As long as both sides recognize the protocol used, they can communicate.

In short, a web service allows you to connect to it and perform queries on the data
and functions that it holds just as if you were using the service on your own server.
The service could be anything from a post code validation service to a blog that
allows you to edit the contents from elsewhere.

•

•

•

•

•

Web Services

[192]

Types of web service
There are a number of ways in which you can build a web service.

Remote procedure call
RPC web services provide a set of functions that interface to the application directly.
Usually these services are simply a number of functions that have been set to do one
task. This style of web service may be familiar to many web developers as it mimics
the way models might work. The only difference is that the call is happening across
the Internet.

CodeIgniter gives us a great set of libraries for using RPC, in the form of the
XML-RPC Client and Server Libraries. XML-RPC is a specification and a set of
implementations that allows software to communicate with a server by using the
XML as the request.

Representational State Transfer
REST is a method which, rather than defining functions that can be used in
applications, defines a resource—a URI—to be used to perform actions on.

REST simply uses the assets that the HTTP protocol has. By using GET, POST, PUT, and
DELETE HTTP methods, we can distinguish between the different types of requests and
deal with them accordingly. We'll be building a RESTful web service in this chapter.

RESTful web service
The first step in building a RESTful web service is to define what it is we want to
provide a service to. To keep things simple, we'll create the web service for a blog.
We'll be able to add, edit, delete, and get a list of all of the blog posts.

Defining the resource
Our resource will be located at http://yourdomain.ext/index.php/—this allows
us to use the same URLs for our REST Web Service as for our actual web frontend.

The URI that we will be using to access our data is going to be from
http://yourdomain.ext/index.php/server/post/ and our client is going to be
located at http://yourdomain.ext/index.php/client/. Now of course usually
the web service will be on a different server to the client application, but in our case
we'll be using the same server, and even the same application. We could use two
CodeIgniter applications if we wanted to.

Chapter 8

[193]

How it will work
Before we write any code, we need to go over how our REST web service will work.

The Client Controller acts as the client. This could be another CodeIgniter application
on another server. In fact, it could even be a Rails or Django project on another server.
As long as all requests are formatted in the way that the server expects, the language
and environment doesn't matter at all. The client performs all requests and waits for
the server to return something, whether this is returned data or just an OK message.

The client sends data to the server in the form of a serialized array. The library will
format this as necessary, depending on what type of request you are making. The
server (Post Controller) will send data back, also as an array.

The Post Controller works out what type of request is being made, and deals with it
accordingly. In most cases, it is simply a call to a Model and sending the data back to
the client.

All types of requests will be sent to the same server URL, http://yourdomain.ext/
index.php/server/post/. We differentiate the different types of request on the
server side by using a different function for each type of request: PUT, POST,
GET, and DELETE. So the request made on the single URL will be routed
automatically by the server to the relative function for the request type. So if we
perform a GET request on the URL, the server will route us through to the function
<cit>post_get(). We can extend this web service as far as we like, as long as we
have four functions for each type. So we could change the second parameter to
comments, and be able to perform actions on a theoretical comments table. We can
also add in an ID to the third parameter of the URL to focus our actions on one post
entry, such as retrieving a single post.

Creating our files
We're going to be using a number of different files to create our web service. Create
two new Controller files called Client.php and Server.php.

Web Services

[194]

We will also be using a library. Create a new library file called Rest.php.

We will also be using a Model. Create a new Model file called postmodel.php.

Finally, we'll use an extended Controller as well. Create a new Library file called
Rest_controller.php.

Chapter 8

[195]

Setting up the database
Create a new database table and run the following SQL command on it to add our
posts table:

CREATE TABLE `posts` (
`id` MEDIUMINT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY ,
`author` VARCHAR(255) NOT NULL ,
`title` VARCHAR(255) NOT NULL ,
`content` TEXT NOT NULL
) ENGINE = MYISAM ;

REST library
Because the library is the backbone of our REST Implementation, let's build out
the functions now. We only have two functions in this Library. The request()
function allows us to send a GET, POST, PUT or DELETE request easily. The
response() function allows us to easily send back a response if an error occurs.
We use _format_xml() and _format_json() to format the error if we send one
using this library.

Base class
Here is the base to our class; this is where it all starts before we start fleshing the
functions out.

<?php

class Rest
{
 var $CI;
 var $_formats = array(
 'xml' => 'application/xml',
 'json' => 'application/json'
);

 function request($url, $method = "GET", $data = NULL)
 {
 switch($method)
 {
 case "GET":

 break;

Web Services

[196]

 case "PUT":

 break;

 case "POST":

 break;

 case "DELETE":

 break;

 }
 }

 function response($data, $http_status = 200, $format = 'xml')
 {

 }

 _format_xml($data)
 {

 }

 _format_json($data)
 {

 }
}
?>

Performing a GET request
To perform a GET request, we will be using cURL. The code that we use inititalises a
curl session, we then set a few settings for cURL. Once we execute the cURL request
and save it to a variable, we close the session, as we don't need it anymore. Finally,
we send the $data variable to the response() function. This lets us easily get the
response from the client.

case "GET":

 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

Chapter 8

[197]

 curl_setopt($ch, CURLOPT_HEADER, 0);
 $data = curl_exec($ch);
 curl_close($ch);

 $this->CI->output->set_output($data);

 break;

Performing a PUT request
To perform a PUT request, we need to supply data to the function. The first thing
that we do is to check if the $data variable is empty or not, and provide an error
message if necessary. The next thing that we do is to format the array (all of the
data that we send will be in an associative array) into the correct format to send
across with the PUT request. The cURL code given next is the same sort of code
as we discussed previously. The only difference is that we set some different
settings—most notably the CURLOPT_CUSTOMREQUEST—this allows us to send
a PUT request.

case "PUT":

if($data === NULL)
{
 $response =
 array('error' =>
 'You cannot perform a POST request with no data!');
 $this->response($response);
}
else
{
 $fields_string = "";

 foreach($data as $key=>$value)
 { $fields_string .= $key.'='.$value.'&'; }
 rtrim($fields_string,'&');

 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch,CURLOPT_CUSTOMREQUEST, "PUT");
 curl_setopt($ch,CURLOPT_POSTFIELDS,$fields_string);
 $data = curl_exec($ch);
 curl_close($ch);

 echo($data);
}

break;

Web Services

[198]

Performing a POST request
Performing a POST request is almost identical to performing a PUT request, the
difference being that we don't send a custom request parameter. Take a look at
the following code:

case "POST":

if($data === NULL)
{
 $response = "You cannot perform a POST request with no data!";
 $this->response($response);
}
else
{
 $fields_string = "";

 foreach($data as $key=>$value)
 { $fields_string .= $key.'='.$value.'&'; }
 rtrim($fields_string,'&');

 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch,CURLOPT_POST,count($data));
 curl_setopt($ch,CURLOPT_POSTFIELDS,$fields_string);
 $data = curl_exec($ch);
 curl_close($ch);

 echo($data);
}

break;

Performing a DELETE request
Performing a DELETE request, again using cURL, is very simple. Just as for
performing a PUT request, we set the CURLOPT_CUSTOMREQUEST option. The
rest of the code is the same as the previous functions.

case "DELETE":

$ch = curl_init($url);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch,CURLOPT_CUSTOMREQUEST, "DELETE");

Chapter 8

[199]

curl_setopt($ch, CURLOPT_HEADER, 0);
$data = curl_exec($ch);
curl_close($ch);

echo($data);

break;

Response function
Now we need to create the response function. We use this to return any errors to
the client. We need to use a function for this so we can format the response as either
XML or JSON.

function response($data, $http_status = 200, $format = 'xml')
 {
 if(empty($data))
 {
 $this->output->set_status_header(404);
 return;
 }

 $this->output->set_status_header($http_status);

 if(method_exists($this, '_format_'.$format))
 {
 $this->output->
 set_header('Content-type: ' . $this->_formats[$format]);

 $final_data = $this->{'_format_'.$format}($data);
 $this->output->set_output($final_data);
 }
 else
 {
 $this->output->set_output($data);
 }
 }

In this function we take the data, an HTTP response code, and the format type that
we wish to use to format the data. If the data is empty we set the status header as
404 and return; otherwise we set the header as whatever header was passed to the
function, or default to 200 OK. If the format method exists, then we set the content
header, pass the data to the format function and pass the formatted data to the
output buffer. If the format method requested does not exist, we simply return
the data.

Web Services

[200]

The format XML function
This function is used to take an array and format it into XML. This function uses the
XMLWriter class in PHP and uses it to format the data to XML. The first few lines set
up an XMLWriter object, set what version of XML we want to return, and set a root
element. Next we have a function inside this function. We use this function so that
if we have arrays contained within our array we can call this function from within
the function. We could recursively call _format_xml(), but then we'd end up with
another XML opening tag. The write function simply takes the $xml object and the
$data array and adds it to the XML object, which in turn is turned into XML.

function _format_xml($data)
{
 $xml = new XmlWriter();
 $xml->openMemory();
 $xml->startDocument('1.0', 'UTF-8');
 $xml->startElement('root');

 function write(XMLWriter $xml, $data)
 {
 foreach($data as $key => $value)
 {
 if(is_array($value))
 {
 if(is_numeric($key))
 {
 $key = 'id';
 }
 $xml->startElement($key);
 write($xml, $value);
 $xml->endElement();
 continue;
 }
 $xml->writeElement($key, $value);
 }
 }
 write($xml, $data);

 $xml->endElement();
 echo $xml->outputMemory(true);
}

Chapter 8

[201]

The format JSON function
The format JSON function is used for the same purpose as the format XML function.
This function is much simpler, though—we simply call json_encode() and pass the
array to it.

function _format_json($data)
{
 return json_encode($data);
}

Final library code
Here is our final library code, for clarification:

<?php

class Rest
{
 var $CI;
 var $_formats = array(
 'xml' => 'application/xml',
 'json' => 'application/json'
);

 function Rest()
 {
 $this->CI =& get_instance();
 }

 function request($url, $method = "GET", $data = NULL)
 {
 if($url === NULL) { $url = $this->server . $this->uri; }

 switch($method)
 {
 case "GET":
 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch, CURLOPT_HEADER, 0);
 $data = curl_exec($ch);
 curl_close($ch);

 echo($data);

Web Services

[202]

 break;

 case "PUT":

 if($data === NULL)
 {
 $response = array('error' =>
 'You cannot perform a POST request with no data!');
 $this->response($response);
 }
 else
 {
 $fields_string = "";

 foreach($data as $key=>$value)
 { $fields_string .= $key.'='.$value.'&'; }
 rtrim($fields_string,'&');

 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch,CURLOPT_CUSTOMREQUEST, "PUT");
 curl_setopt($ch,CURLOPT_POSTFIELDS,$fields_string);
 $data = curl_exec($ch);
 curl_close($ch);

 echo($data);
 }

 break;

 case "POST":

 if($data === NULL)
 {
 $response =
 "You cannot perform a POST request with no data!";
 $this->response($response);
 }
 else
 {
 $fields_string = "";

 foreach($data as $key=>$value)
 { $fields_string .= $key.'='.$value.'&'; }

Chapter 8

[203]

 rtrim($fields_string,'&');

 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch,CURLOPT_POST,count($data));
 curl_setopt($ch,CURLOPT_POSTFIELDS,$fields_string);
 $data = curl_exec($ch);
 curl_close($ch);

 echo($data);
 }

 break;

 case "DELETE":

 $ch = curl_init($url);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch,CURLOPT_CUSTOMREQUEST, "DELETE");
 curl_setopt($ch, CURLOPT_HEADER, 0);
 $data = curl_exec($ch);
 curl_close($ch);

 echo($data);

 break;
 }
 }

 function response($data, $http_status = 200, $format = 'xml')
 {
 if(empty($data))
 {
 $this->output->set_status_header(404);
 return;
 }

 $this->output->set_status_header($http_status);

 if(method_exists($this, '_format_'.$format))
 {
 $this->output->
 set_header('Content-type: ' . $this->_formats[$format]);

Web Services

[204]

 $final_data = $this->{'_format_'.$format}($data);
 $this->output->set_output($final_data);
 }
 else
 {
 $this->output->set_output($data);
 }
 }

 function _format_xml($data)
{
 $xml = new XmlWriter();
 $xml->openMemory();
 $xml->startDocument('1.0', 'UTF-8');
 $xml->startElement('root');

 function write(XMLWriter $xml, $data)
 {
 foreach($data as $key => $value)
 {
 if(is_array($value))
 {
 if(is_numeric($key))
 {
 $key = 'id';
 }
 $xml->startElement($key);
 write($xml, $value);
 $xml->endElement();
 continue;
 }
 $xml->writeElement($key, $value);
 }
 }
 write($xml, $data);

 $xml->endElement();
 echo $xml->outputMemory(true);
}

 function _format_json($data)
 {

Chapter 8

[205]

 return json_encode($data);
 }
}

?>

Rest Controller
The Rest Controller that we will use is an extended Controller with all of our
Rest functionality inside of it. You'll learn all about extended Controllers in the
next chapter.

Base class
This is the Base to our class. The only thing that we'll go over is the _remap()
function. We've seen the other functions before, as we're just placing the response
functions in this Controller.

<?php

class Rest_controller extends Controller
{

 var $request_method;
 var $id;
 var $method;
 var $_formats = array(
 'xml' => 'application/xml',
 'json' => 'application/json'
);

 function Rest_controller()
 {
 parent::Controller();
 $this->request_method = $_SERVER['REQUEST_METHOD'];
 $this->id = (int) $this->uri->segment("3");
 $this->method = $this->uri->segment("2");
 }

 function _remap()
 {
 if($this->method != "index")
 {
 if($this->id == NULL)
 {

Web Services

[206]

 switch($this->request_method)
 {
 case "GET":

 break;

 case "POST":

 break;

 case "DELETE":

 break;
 }
 }
 else
 {
 switch($this->request_method)
 {

 case "GET":

 break;

 case "PUT":

 break;

 case "DELETE":

 break;
 }
 }
 }
 else
 {

 }
 }

 function response($data, $http_status = 200, $format = 'xml') { }

 function _format_xml($data) { }

Chapter 8

[207]

 function _format_json($data) { }
}

?>

The _remap() function
The _remap() function is used to remap the REST requests from the usual
CodeIgniter URI to another function, depending on the type of request. If we have a
GET request to the posts function, the function we'll remap to will be post_get(),
which is the name of the requested function with the request method appended to
the end. The _remap() function also checks to see whether or not an ID was given.
If one was, it limits the types of requests, and passes the ID to the function.

function _remap()
{
 if($this->method != "index")
 {
 if($this->id == NULL)
 {
 switch($this->request_method)
 {
 case "GET":
 $this->{$this->method . "_get"}();
 break;

 case "POST":
 $this->{$this->method . "_post"}();
 break;

 case "DELETE":
 $this->{$this->method . "_delete"}();
 break;
 }
 }
 else
 {
 switch($this->request_method)
 {

 case "GET":
 $this->{$this->method . "_get"}($this->id);
 break;

Web Services

[208]

 case "PUT":
 $this->{$this->method . "_put"}($this->id);
 break;

 case "DELETE":
 $this->{$this->method . "_delete"}($this->id);
 break;
 }
 }
 }
 else
 {
 $this->index();
 }
}

Server Controller
The Server Controller is our gateway to the data in the database. This is the
Controller that we will be performing all of our requests on in order to get,
create, update, and delete data.

Base class
Here is the our base class before we start building it all out:

<?php

include(APPPATH . "libraries/Rest_controller.php");

class Server extends Rest_controller
{

 function Server()
 {
 parent::Rest_controller();
 $this->load->database();
 }

 function post_get($id = NULL)
 {
 if($id == NULL)
 {

Chapter 8

[209]

 }
 else
 {

 }
 }

 function post_put($id)
 {

 }

 function post_post()
 {

 }

 function post_delete($id = NULL)
 {

 }
}

?>

As you can see, we have four different functions. post_get() handles all of the GET
requests; post_put() handles all of the PUT requests; post_post() handles all of
the POST requests; and post_delete() handles all of the DELETE requests.

The post_get() function
The first function that we will be coding is when a GET request has been made.

function post_get($id = NULL)
{
 if($id == NULL)
 {
 $data = $this->postmodel->get_post();
 $this->response($data);
 }
 else
 {
 $data = $this->postmodel->get_post($id);
 $this->response($data);
 }
}

Web Services

[210]

The first thing that we do is to check whether or not an ID has been passed in. If
there is no ID, then we simply call the model function get_post() and pass the data
to the response function that is contained in the rest controller. If there is an ID, then
we do exactly the same thing but we pass the ID to the model function so that it can
limit the result to the correct ID.

The post_put() function
Because a PUT request is basically how we edit blog posts, we should always
provide an ID. In this function, if there is no ID then a PHP error will occur.

function post_put($id)
{
 // get the put data from the input stream
 parse_str(file_get_contents("php://input"), $put_data);
 $this->postmodel->update_post($put_data, $id);

 $message = array('id' => $id, 'message' => 'Edited!');
 $this->response($message);
}

Instead of running a model function to get the data, this time we get the contents
from the PHP input stream. By running the input stream through parse_str(), we
eliminate the need to parse the stream ourselves. We store the array in $put_data,
and run this through the model function in order to update the post, along with the
ID of the post that we want to edit. We set a response as an array with the ID and the
message "Edited!"

The post_delete() function
This is how we delete items from the database.

function post_delete($id = NULL)
{
 if($id == NULL)
 {
 $this->postmodel->delete_post();

 $message = array('message' => 'Deleted!');
 $this->response($message);
 }
 else
 {
 $this->postmodel->delete_post($id);

Chapter 8

[211]

 $message = array('message' => 'Deleted!');
 $this->response($message);
 }
}

This is much the same as performing a GET request. We check to see if an ID has
been passed or not; if not, then we know to delete all of the posts, so we run the
model function delete_post() and it will delete all of the posts. If an ID has been
supplied then we do the same thing, but pass in the ID to the model function so it
knows to only delete one record.

The post_post() function
This function allows us to add a new blog post. We won't need an ID as this
function creates a new record with a new ID, so there is no need to check if an
ID has been passed.

function post_post()
{
 $this->postmodel->create_post($_POST);

 $message = array('message' => 'Added!');
 $this->response($message);
}

We simply call a model function and pass the $_POST global variable to it. We set a
success message and return it as a response.

Final server controller code
As always, here's the full server controller code:

<?php

include(APPPATH . "libraries/Rest_controller.php");

class Server extends Rest_controller
{

 function Server()
 {
 parent::Rest_controller();
 $this->load->database();
 }

Web Services

[212]

 function post_get($id = NULL)
 {
 if($id == NULL)
 {
 $data = $this->postmodel->get_post();
 $this->response($data);
 }
 else
 {
 $data = $this->postmodel->get_post($id);
 $this->response($data);
 }
 }

 function post_put($id)
 {
 // get the put data from the input stream
 parse_str(file_get_contents("php://input"), $put_data);
 $this->postmodel->update_post($put_data, $id);

 $message = array('id' => $id, 'message' => 'Edited!');
 $this->response($message);
 }

 function post_post()
 {
 $this->postmodel->create_post($_POST);

 $message = array('message' => 'Added!');
 $this->response($message);
 }

 function post_delete($id = NULL)
 {
 if($id == NULL)
 {
 $this->postmodel->delete_post();

 $message = array('message' => 'Deleted!');
 $this->response($message);
 }
 else
 {
 $this->postmodel->delete_post($id);

Chapter 8

[213]

 $message = array('message' => 'Deleted!');
 $this->response($message);
 }
 }

}

?>

Post Model
The last piece of our REST Web Service puzzle is our Post Model. So far we haven't
built any of the model, we only have an empty file.

Base class
Here is our Base class. We simply create out functions and the general structure
of them. The functions that have an optional ID parameter check to see if the ID
variable is NULL and will perform the appropriate action depending on the result.

<?php

class Postmodel extends Model
{

 function Postmodel()
 {
 parent::Model();
 $this->load->database();
 }

 function get_post($id = NULL)
 {
 if($id === NULL)
 {

 }
 else
 {

 }
 }

 function update_post($data, $id)

Web Services

[214]

 {

 }

 function create_post($data)
 {

 }

 function delete_post($id = NULL)
 {
 if($id === NULL)
 {

 }
 else
 {

 }
 }

}

?>

The get_post() function
The get post function is used to retrieve either a single blog post or all of the
blog posts.

function get_post($id = NULL)
{
 if($id === NULL)
 {
 $query = $this->db->get('posts');
 $result = $query->result_array();

 return $result;
 }
 else
 {
 $id = (int) $id;

 $this->db->where('id', $id);

Chapter 8

[215]

 $query = $this->db->get('posts');
 $result = $query->row_array();

 return $result;
 }
}

The first thing that we do is to check the ID variable's value. If it is NULL then we
know that the request is for all of the blog posts. We perform the query by using the
CodeIgniter Active Record Library, grab the result and return it from the function.

If the ID variable has a value other than NULL, then we typecast the variable to
an Integer in order to avoid any SQL Errors. Then we set the WHERE clause of our
query by using the Active Record Library, and then perform the query the same as
before. This time though, instead of returning the result_array() we return the
row_array()—this will only return a single row, because that's all we need, and this
is the best way to generate the result. Then we finally return the resulting variable.

The update_post() function
The update post function can only work with data passed into it along with an ID.

function update_post($data, $id)
{
 $id = (int) $id;
 $items = array();

 if(array_key_exists('author', $data))
 { $items['author'] = $data['author']; } else { return FALSE; }
 if(array_key_exists('title', $data))
 { $items['title'] = $data['title']; } else { return FALSE; }
 if(array_key_exists('content', $data))
 { $items['content'] = $data['content']; } else { return FALSE; }

 $this->db->where('id', $id);
 $this->db->update('posts', $items);
}

The first thing that we do is to typecast the ID variable to ensure that it is an Integer.
We also create a variable to put the array items into. We create a new array so that
anyone trying to insert anything into the database that isn't expected can't do it. We
only add the expected array items into this final "clean" array.

Web Services

[216]

Once this is done, we check the array to see if the three array keys exist: author, title,
and content. If either of these keys is missing from the array then we simply return
FALSE. If everything works fine, however, we set the WHERE clause of the query and
update the database by using the Active Record Class.

The create_post() function
The create post function can only be used in one way, unlike the get post function.
This function is much like the function that was explained previously, with some
minor differences, such as no ID being given, and we use the insert() function
instead of the update() function of the Active Record Class.

function create_post($data)
{
 $items = array();

 if(array_key_exists('author', $data))
 { $items['author'] = $data['author']; } else { return FALSE; }
 if(array_key_exists('title', $data))
 { $items['title'] = $data['title']; } else { return FALSE; }
 if(array_key_exists('content', $data))
 { $items['content'] = $data['content']; } else { return FALSE; }

 $this->db->insert('posts', $items);
}

The delete_post() function
The delete post functions works in the same way as the get post function.

function delete_post($id = NULL)
{
 if($id === NULL)
 {
 $this->db->empty_table('posts');
 }
 else
 {
 $id = (int) $id;
 $this->db->where('id', $id);
 $this->db->delete('posts');
 }
}

Chapter 8

[217]

Firstly, we check to see if the ID variable is NULL. If it is, we simply empty the table
because the ID of a specific post wasn't specified. If the ID variable is not NULL we
typecast it to an Integer, to avoid any errors and perform the query just like we
have always done.

Final post model code
Here is the final post model code:

<?php

class Postmodel extends Model
{

 function Postmodel()
 {
 parent::Model();
 $this->load->database();
 }

 function get_post($id = NULL)
 {
 if($id === NULL)
 {
 $query = $this->db->get('posts');
 $result = $query->result_array();

 return $result;
 }
 else
 {
 $this->db->where('id', $id);
 $query = $this->db->get('posts');
 $result = $query->row_array();

 return $result;
 }
 }

 function update_post($data, $id)
 {
 $id = (int) $id;
 $items = array();

 if(array_key_exists('author', $data))

Web Services

[218]

 { $items['author'] = $data['author']; } else { return FALSE; }
 if(array_key_exists('title', $data))
 { $items['title'] = $data['title']; } else { return FALSE; }
 if(array_key_exists('content', $data))
 { $items['content'] = $data['content']; } else { return FALSE; }

 $this->db->where('id', $id);
 $this->db->update('posts', $items);
 }

 function create_post($data)
 {
 $items = array();

 if(array_key_exists('author', $data))
 { $items['author'] = $data['author']; } else { return FALSE; }
 if(array_key_exists('title', $data))
 { $items['title'] = $data['title']; } else { return FALSE; }
 if(array_key_exists('content', $data))
 { $items['content'] = $data['content']; } else { return FALSE; }

 $this->db->insert('posts', $items);
 }

 function delete_post($id = NULL)
 {
 if($id === NULL)
 {
 $this->db->empty_table('posts');
 }
 else
 {
 $id = (int) $id;
 $this->db->where('id', $id);
 $this->db->delete('posts');
 }
 }

}

?>

Chapter 8

[219]

Create a new post
To create a new post, all we need to do is perform a new POST request to the URL of
the Post Controller (or server if we were doing this on a real project). We also need
to send the new blog post across. We do this by creating a new serialized array with
three keys: author, title, and content. Then we simply fill the array keys with the blog
post author, post title and the post content, and we're all set.

Take special care when going over the line of code where we perform the request.
The first parameter is the URL of the server. The second parameter is the type
of request that we want to make. This is optional and defaults to GET. The final
parameter is the data that you want to send across the request. This is also optional.

<?php

class Client extends Controller
{

 function Client()
 {
 parent::Controller();
 $this->load->library('rest');
 }

 function index()
 {
 $data = array(
 'author' => 'blog post author',
 'title' => 'blog post title',
 'content' => 'blog post content'
);

 $request = $this->rest->
 request("http://localhost/0905_08/index.php/server/post/",
 "POST", $data);

 }

}

?>

Web Services

[220]

Update a post
Updating a post is essentially exactly the same as creating a new post. The only
difference is that the URL that you perform the request on will contain an ID in the
third URI string segment, and the request type will be PUT and not POST. Take a look
at the next example. The ID that you put in the third URI string segment should be
the same as the ID stored inside the database.

<?php

class Client extends Controller
{

 function Client()
 {
 parent::Controller();
 $this->load->library('rest');
 }

 function index()
 {
 $data = array(
 'author' => 'blog post author new',
 'title' => 'blog post title new',
 'content' => 'blog post content new'
);

 $request = $this->rest->
 request("http://localhost/0905_08/index.php/server/post/index/4",
 "PUT", $data);

 }

}

?>

Chapter 8

[221]

Delete a post
Deleting a blog post is very easy. We change the request method from either of the
two previous examples from POST or PUT to DELETE. We can remove the serialized
array from the code altogether, as in this case it isn't needed. Then we select our URL
carefully. If we want to delete a single post, we supply a URL with an ID appended
to the third URI string segment, as seen in the next example:

<?php

class Client extends Controller
{

 function Client()
 {
 parent::Controller();
 $this->load->library('rest');
 }

 function index()
 {
 $request = $this->rest->
 request("http://localhost/0905_08/index.php/server/post/4/",
 "DELETE");

 }

}

?>

If we wanted to delete all of the blog posts, however, we simply remove the ID from
the URL altogether.

<?php

class Client extends Controller
{

 function Client()
 {
 parent::Controller();
 $this->load->library('rest');
 }

Web Services

[222]

 function index()
 {
 $request = $this->rest->
 request("http://localhost/0905_08/index.php/server/post",
 "DELETE");

 }

}

?>

Get a blog post
Just like deleting a blog post, we can get either a single blog post or all of the posts.
It works in pretty much the same way as deleting a blog post. If we want all of the
posts we simply perform a GET request using the REST Library on the server URL. If
we only want a single blog post we add the ID to the third URI string segment. Here
are two examples of this. The first example shows how we would get all blog posts,
whilst the second shows how we would get a single post. Remember that we don't
need to explicitly set the request method to GET, as this is the default.

<?php

class Client extends Controller
{

 function Client()
 {
 parent::Controller();
 $this->load->library('rest');
 }

 function index()
 {
 $request = $this->rest->
 request("http://localhost/0905_08/index.php/server/post/");

 }

}

?>

Chapter 8

[223]

<?php

class Client extends Controller
{

 function Client()
 {
 parent::Controller();
 $this->load->library('rest');
 }

 function index()
 {
 $request = $this->rest->
 request("http://localhost/0905_08/index.php/server/post/4");

 }

}

?>

Summary
There we have it. We have now built ourselves a fully working REST Web Service.
Although this implementation is currently at a basic level, we could expand it more
to include authentication and a more rigid way of determining the request method,
making it even easier for us to create web services. Now that we know how REST
works, we are all able to implement this in more of our projects, helping us to create
projects even faster than before by utilizing other web services instead of reinventing
the wheel.

Extending CodeIgniter
CodeIgniter is an awesome PHP Framework, but it doesn't have everything that
anyone could ever need in the core. Instead, it allows us to extend pretty much
every aspect of the framework. We can extend the core libraries to include additional
features, or overwrite them completely. We can create extended Controller and
Model classes to include extra functionality for different types of pages and features.
If we simply want to add a few functions to the framework, we can create helpers
to simply add these few functions into our arsenal. At the other end of the scale, if
we want to change the way that CodeIgniter works, or want to run a script mid way
through the application flow, then we can create a hook to do this for us, without
having to hack the core files, which could potentially screw up our installation
when we come to upgrade.

In this chapter we will:

Learn about hooks, and build a very simple hook into our
CodeIgniter installation
Learn about extended Controllers and why you would need them,
with examples
Build our own custom User Authentication Library
Extend the CodeIgniter Session Library to use native PHP sessions
Build a helper to make some of our user authentication jobs easier
Learn about some of the hidden gems in CodeIgniter

Hooks
Hooks are a way to change the way that CodeIgniter runs without actually hacking
any of the core files. Hooks allow you to run a function at eight different points in the
system execution.

•

•

•

•

•

•

Extending CodeIgniter

[226]

Hook points

pre_system
This hook point is called very early during system execution. Only the benchmark
and hooks class have been loaded at this point.

pre_controller
This is called immediately before your Controller is called. All other classes have
been loaded by this point.

post_controller_constructor
Called immediately after your Controller has been instantiated, but prior to any
method calls being made.

post_controller
Called immediately after your Controller is executed.

display_override
This overrides the _display() function, which is used to send the page to the
browser after execution. This lets you use your own display methodology. You
will need to access the CodeIgniter Super Object by using $this->CI =& get_
instance() and finalize the data by using $this->CI->output->get_output().

cache_override
This allows you to use your own _display_cache() function from the output class.

scaffolding_override
This lets a scaffolding request trigger your script.

post_system
This is run after the page has been delivered to the browser, which happens after the
system has gone through full execution and the finalized data has been sent to the
browser. This is great for hooks that log data, such as user data (where a user has
been on the website) as it is called after everything has been sent to the browser, so
you know it will not effect how the website looks.

Chapter 9

[227]

Our hook
We will create a very simple hook. We will create a hook to define whether or not
our site is on maintenance. We'll simply set a variable and show an error if we
should be on maintenance.

Enable hooks
Before we can use hooks we need to enable them. Open up your config.php file and
find the following line:

$config['enable_hooks'] = FALSE;

Change it to:

$config['enable_hooks'] = TRUE;

Define a hook
Open up config/hooks.php and enter the following code into it. This will ensure
that our hook is loaded.

$hook['pre_controller'] = array(
 'class' => 'Maintenance',
 'function' => 'decide',
 'filename' => 'maintenance.php',
 'filepath' => 'hooks',
 'params' => 'FALSE'
);

This sets the class, function, filename, and filepath to our hooks file. We also send a
single parameter, which will be passed to the function decide(). This hook will be
called before the system has executed. This is because if we are on a maintenance
break, we don't need to load all of the CodeIgniter Libraries, routing functions, and
so on. To put the system offline, simply change the params to TRUE, and change it
back to FALSE to put it back online again.

Our hook
Create a new file inside the application/hooks/ folder, called Maintenance.php.
The following code is the content of our file:

<?php

class Maintenance
{

Extending CodeIgniter

[228]

 function decide($maintenance)
 {
 if($maintenance == TRUE)
 {
 show_error('The system is offline for maintenance.');
 }
 }
}

?>

This file is very simple. If the parameter sent to the function is TRUE then we show
an error that the site is offline for maintenance. If not, we don't do anything. This is
a very simple example of a hook, but shows how they work very well.

Extended controllers
Extended Controllers can be extremely helpful when building CodeIgniter
applications. You might find, when developing different applications with
CodeIgniter, that some of your Controllers have overlapping functionality.
Instead of recreating the functions each time, you can make use of an extended
Controller class.

Essentially what you do is create a new file in the libraries folder called
MY_Controller.php—simply create this Controller like you would any
other Controller. This file will be called by the system automatically.

If you want to have a number of extending Controllers, however, you may want to
use a different name for your files.

I have given these controllers a suffix of _controller so that I can
easily identify them as a Controller file and not a general purpose
library. You may use any type of naming convention that you please as
long as it works for you. I simply do it this way because I find it easy
and it helps me work better.

Admin controller
When building a web application with CodeIgniter, you may find yourself repeating
code for an administration panel—such as checking that users are logged in before
being allowed access to the admin panel.

Chapter 9

[229]

To do this, simply create a new file inside system/application/libraries/ called
admin_controller.php.

This will build on the User Authentication system that we created in Chapter 5, User
Authentication 2. We'll check that the user is logged in before sending them to the
admin panel or displaying an error message.

Copy the following code into this newly-created file:

<?php

class admin_controller extends Controller
{

 function admin_controller()
 {
 parent::Controller();

 $this->load->model('account_model');

 if($this->account_model->logged_in() === FALSE)
 {
 show_error("You must be logged in to view this page.");
 }
 }

}

?>

To use this Controller instead of the usual base Controller class, simply require
the admin Controller file as shown next, and extend admin_controller instead of
Controller. If your Controller has a constructor, you should also run the admin
constructor as follows: parent::admin_controller(); so that we can have access
to the CodeIgniter objects.

The Admin Controller is very basic. All we do is load the account model from
Chapter 5, User Authentication 2, and check to see if the user is logged in. If so, we
display an error message. We do it this way around because when the function
show_error() is used it will only display the error message, and will omit any
of the page that may have been loaded.

Extending CodeIgniter

[230]

Extending Controllers is a great way to add new functionality to
Controllers without hacking the core or repeating yourself unnecessarily.
This method will also work for Models and Libraries. For example, you
could create an extended Model with basic CRUD functions built in.

Extended libraries
We are going to extend the Session library to use native PHP sessions instead of
being cookie based.

Before we start to create the library, we need to know how to extend libraries. All
CodeIgniter classes are prefixed with CI_ - and all our extended classes should be
prefixed with MY_ - this is configurable, just open up your config.php file and edit
the following line:

$config['subclass_prefix'] = 'MY_';

Our filename needs to be MY_Session.php (or whatever you set your prefix to be)
and the class will be MY_Session and it will extend CI_Session. When loading
the class, though, we don't need to use the prefix; we simply use session and
CodeIgniter will load the extended class for us.

We could completely replace the class by leaving out the extends clause on our class
declaration—but we don't want to do that as we don't want to overwrite the flash
data functionality. This library will work in exactly the same way as the CodeIgniter
Session Class: we don't change the way we use it, only the way it stores information.

The library
Go ahead and create a new library file inside the /system/application/
libraries/ folder, called MY_Session.php.

The functions that we'll be building are: set_userdata(), unset_userdata(),
userdata(), and sess_destroy().

Chapter 9

[231]

Base class
Here is the base of our class; we simply create the functions that we'll be using. We
have built the function sess_destroy() because this is only a wrapper function for
a native PHP function.

<?php
session_start();

class MY_Session extends CI_Session
{
 function MY_Session()
 {
 parent::CI_Session();
 }

 function userdata($item)
 {

 }

 function set_userdata($items, $value = NULL)
 {

 }

 function unset_userdata($items)
 {

 }

 function sess_destroy()
 {
 session_destroy();
 }
}

?>

Extending CodeIgniter

[232]

userdata()
This function takes an item key and checks that it exists in the session variable; if it
does, then we return it; if not we return FALSE.

function userdata($item)
{
 if(empty($_SESSION[$item]))
 {
 return FALSE;
 }
 else
 {
 return $_SESSION[$item];
 }
}

set_userdata()
This function creates user data. We can set data by using an associative array or by
passing the item key to the first function and the value to the second. Because we can
accept two types of input, we have to check if the first variable is an array. If it is then
we simply run through it and set all of the items. If it isn't, we just set the first, and
use the second variable to get the value.

function set_userdata($items, $value = NULL)
{
 if(is_array($items))
 {
 foreach($items as $item => $value)
 {
 $_SESSION[$item] = $value;
 }
 }
 else
 {
 $_SESSION[$items] = $value;
 }
}

Chapter 9

[233]

unset_userdata()
This function works identically to the previous one, except that we don't need a
second parameter, and instead of setting the data, we use unset() to remove it.

function unset_userdata($items)
{
 if(is_array($items))
 {
 foreach($items as $item => $value)
 {
 unset($_SESSION[$item]);
 }
 }
 else
 {
 unset($_SESSION[$items]);
 }
}

Full library code
Here is the full library code, for clarity:

<?php
session_start();

class MY_Session extends CI_Session
{
 function MY_Session()
 {
 parent::CI_Session();
 }

 function userdata($item)
 {
 if(empty($_SESSION[$item]))
 {
 return FALSE;
 }
 else
 {
 return $_SESSION[$item];
 }

Extending CodeIgniter

[234]

 }

 function set_userdata($items, $value = NULL)
 {
 if(is_array($items))
 {
 foreach($items as $item => $value)
 {
 $_SESSION[$item] = $value;
 }
 }
 else
 {
 $_SESSION[$items] = $value;
 }
 }

 function unset_userdata($items)
 {
 if(is_array($items))
 {
 foreach($items as $item => $value)
 {
 unset($_SESSION[$item]);
 }
 }
 else
 {
 unset($_SESSION[$items]);
 }
 }

 function sess_destroy()
 {
 session_destroy();
 }
}

?>

Chapter 9

[235]

Custom libraries
Just as we can extend the native CodeIgniter Libraries, we can also create entirely
new libraries and use them just as seamlessly as native libraries. We'll take our
Account Model from earlier in the book and create a library out of it, and then
add some extra features.

The features
The Authentication library will have the basic functions you would expect:

Login
Logout
Register

We'll leave the form validation stuff in our Controller, as we've already built that. We
could contain all of the functionality, including the form views and form validation,
in the library as I have done with my own open-source authentication library, but
that seems like overkill—especially for the book format.

The library
The first thing to do is to create our Library file. Create a new file inside the
/system/application/libraries/ folder, called Auth.php.

<?php

class Auth
{

 var $CI;

 function Account_model()
 {
 parent::Model();
 $this->CI->load->database();
 $this->CI->load->library('session');
 }

 function create($data)
 {
 if($this->CI->db->insert('users', $data))
 {

•

•

•

Extending CodeIgniter

[236]

 return TRUE;
 }
 else
 {
 return FALSE;
 }
 }

 function login()
 {
 $data = array(
 'username' => $this->CI->input->post('username'),
 'logged_in' => TRUE
);

 $this->CI->session->set_userdata($data);
 }

 function logged_in()
 {
 if($this->CI->session->userdata('logged_in') == TRUE)
 {
 return TRUE;
 }
 else
 {
 return FALSE;
 }
 }

 function logout()
 {
 $this->CI->session->sess_destroy();
 }
}

?>

This is essentially the same as our Model, except we have added a logout function.
The whole point of creating this library is that we can easily extend the functionality
of it, for example by adding group functions and a restricting function to groups. If
we added these types of functions to a Model, we'd be breaking MVC, as the Model
is a data abstraction layer. This library helps us to keep everything in one file.

Chapter 9

[237]

The controller
We need to make a few changes to our Controller. We need to use the functions in
the library instead of the Model. Here is the code, with the changes:

<?php

class Account extends Controller
{
 function Account()
 {
 parent::Controller();

 // Load the resources needed for the Controller
 $this->load->library('auth');
 $this->load->helper(array('url', 'form'));
 $this->load->model('account_model');

 $this->_salt = "123456789987654321";
 }

 function index()
 {
 if($this->auth->logged_in() === TRUE)
 {
 $this->dashboard(TRUE);
 }
 else
 {
 $this->load->view('account/details');
 }
 }

 function dashboard($condition = FALSE)
 {
 if($condition === TRUE OR $this->auth->logged_in() === TRUE)
 {
 $this->load->view('account/dashboard');
 }
 else
 {
 $this->load->view('account/details');
 }
 }

Extending CodeIgniter

[238]

 function login()
 {
 // Set the form validation rules
 $this->form_validation->
 set_rules('username', 'Username',
 'xss_clean|required|callback_username_check');
 $this->form_validation->
 set_rules('password', 'Password',
 'xss_clean|required|min_length[4]|max_length[12]|
 callback_password_check');

 // Set the username and password as class variables so
 // we can use them in the callbacks
 $this->_username = $this->input->post('username');
 $this->_password =
 sha1($this->_salt . $this->input->post('password'));
 // hash and salt the password

 if($this->form_validation->run() == FALSE)
 {
 $this->load->view('account/login');
 }
 else
 {
 $this->auth->login();

 $data['message'] =
 "You are logged in! Now go take a look at the "
 . anchor('account/dashboard', 'Dashboard');
 $this->load->view('account/success', $data);
 }
 }

 function register()
 {
 // Set the form validation rules
 $this->form_validation->
 set_rules('username', 'Username', 'xss_clean|required');
 $this->form_validation->
 set_rules('email', 'Email Address',
 'xss_clean|required|valid_email|callback_email_exists');
 $this->form_validation->
 set_rules('password', 'Password',
 'xss_clean|required|min_length[4]|max_length[12]|

Chapter 9

[239]

 matches[password_conf]|sha1');

 $this->form_validation->
 set_rules('password_conf', 'Password Confirmation',
 'xss_clean|required|matches[password]');

 if($this->form_validation->run() == FALSE)
 {
 $this->load->view('account/register');
 }
 else
 {
 $data['username'] = $this->input->post('username');
 $data['email'] = $this->input->post('email');
 $data['password'] =
 sha1($this->_salt . $this->input->post('password'));

 if($this->auth->create($data) === TRUE)
 {
 $data['message'] =
 "The user account has now been created! You can login " .
 anchor('account/login', 'here') . ".";
 $this->load->view('account/success', $data);
 }
 else
 {
 $data['error'] =
 "There was a problem when adding your account to the database.";
 $this->load->view('account/error', $data);
 }
 }
 }

 function logout()
 {
 $this->session->sess_destroy();
 $this->load->view('account/logout');
 }

 function password_check()
 {
 $query = $this->db->get_where('users',
 array('username' => $this->_username,
 'password' => $this->_password));

Extending CodeIgniter

[240]

 if($query->num_rows() == 0)
 {
 $this->form_validation->
 set_message('username_check', 'There was an error!');
 return FALSE;
 }

 $query->free_result();

 return TRUE;
 }

 function user_exists($user)
 {
 $query = $this->db->
 get_where('users', array('username' => $user));

 if($query->num_rows() > 0)
 {
 $this->form_validation->
 set_message('user_exists',
 'The %s already exists in our database, please use a
different one.');
 return FALSE;
 }

 $query->free_result();

 return TRUE;
 }

 function email_exists($email)
 {
 $query = $this->db->get_where('users', array('email' => $email));

 if($query->num_rows() > 0)
 {
 $this->form_validation->
 set_message('email_exists',
 'The %s already exists in our database, please use a
different one.');
 return FALSE;
 }

Chapter 9

[241]

 $query->free_result();

 return TRUE;
 }

}

?>

Helpers
We'll be creating a helper file to make it easier (and quicker) to see if a user is logged
in or not. First, create a file inside the /system/application/helpers/ folder,
called auth.php. Take a look at the code given next; it is very simple and is already
contained within our library. It simply checks the logged_in portion of the session
data, and if it is TRUE it will return TRUE, allowing the user to proceed to whichever
part of the site they're trying to access.

<?php

function logged_in()
{

 $CI =& get_instance();

 if($CI->session->userdata('logged_in') == TRUE)
 {
 return TRUE;
 }
 else
 {
 return FALSE;
 }
}

?>

CodeIgniter's hidden gems
CodeIgniter is a fairly well equipped framework, and it's easy to let some of its
functions slip away from you. This section is dedicated to bringing your attention
to some of its lesser-known but also awesome functions, such as:

$this->load->helper('html');

Extending CodeIgniter

[242]

doctype()
CodeIgniter comes with a function that lets you easily add doctypes to your view
files. This is stored in the HTML helper. It will default to XHTML 1.1 Strict, and
supports HTML4 and 5 doctypes.

Here's an example of some of the doctypes that you can display by using
this function.

doctype('html5'); // HTML5
doctype('xhtml11'); // XHTML 1.1
doctype('xhtml1-strict'); // XHTML 1.0 Strict
doctype('xhtml1-trans'); // XHTML 1.0 Transitional
doctype('xhtml1-frame'); // XHTML 1.0 Frameset
doctype('html4-strict'); // HTML 4 Strict
doctype('html4-trans'); // HTML 4 Transitional
doctype('html4-frame'); // HTML 4 Frameset

This is very useful because you won't need to find a doctype to copy and paste in
from somewhere, or have to remember the doctype yourself. This function also
makes it easier to update a doctype on your site quicker than when placing the
doctype in there by hand.

Array helper
The array helper has two functions, in it and they are both very useful.

$this->load->helper('array');

element()
The element function makes it very easy to find an element in an array. If the element
doesn't exist, it will return FALSE, or whatever you pass as the third parameter.

$items = array(
 'England' => 'London',
 'Wales' => 'Cardiff',
 'Scotland' => 'Edinburgh',
 'Northen Ireland' => 'Belfast');

// returns 'Edinburgh'
echo element('scotland', $items);

// returns FALSE
echo element('france', $items);

// returns NULL
echo element('spain', $items, NULL);

Chapter 9

[243]

random_element()
This function is also very useful. It allows you to pull a random element from an
array. Simply echo out the function call with an array passed as the first parameter,
and it will return a random element.

$items = array(
 'England' => 'London',
 'Wales' => 'Cardiff',
 'Scotland' => 'Edinburgh',
 'Northen Ireland' => 'Belfast');

echo random_element($items);

This is useful for random quotes on your website, or a random ad banner.

Inflector helper
The Inflector helper can be a highly useful helper. Its functions allow you to change
words into singular, plural, camelcase, underscore-separated, and to humanize
sentences that have been separated by underscores. You load the helper as follows:

$this->load->helper('inflector');

singular()
$word = 'computers';
echo singular($word); // returns computer

plural()
$word = 'computer';
echo plural($word); // returns computers

camelize()
$word = 'computers_are_awesome';
echo camelize($word); // returns computersAreAwesome

$word = 'computers use electricity';
echo camelize($word); // returns computersUseElectricity

Extending CodeIgniter

[244]

underscore()
$word = 'computers are overrated';
echo underscore($word); // returns computers_are_overrated

humanize()
$word = 'computers_are_overrated';
echo humanize($word); // returns Computers Are Overrated

highlight_code()
I just found this function. It is a way to highlight a string of code—PHP, HTML, and
so on. This function is found in the text helper.

$this->load->helper('text');
$code =
 "<html><head><title>Hello, World!</title></head>
 <body><p>Hello, World!</p></body></html>";

echo highlight_code($code);

directory_map()
This is a very useful function if you need to do lots of directory traversal. This
function reads the directory path and builds an array of all of the directories
within the path. All sub-folders will be mapped as well. If you only want to map
the top-level directories, then set the second parameter to TRUE. Hidden files will
not be included in the map by default; to override this, set the third parameter to
TRUE. Here's an example, taken from the CodeIgniter User Guide.

Array
(
 [libraries] => Array
 (
 [0] => benchmark.html
 [1] => config.html
 [database] => Array
 (
 [0] => active_record.html
 [1] => binds.html
 [2] => configuration.html
 [3] => connecting.html
 [4] => examples.html
 [5] => fields.html

Chapter 9

[245]

 [6] => index.html
 [7] => queries.html
)
 [2] => email.html
 [3] => file_uploading.html
 [4] => image_lib.html
 [5] => input.html
 [6] => language.html
 [7] => loader.html
 [8] => pagination.html
 [9] => uri.html
)

This might be especially helpful if you are building an image manager, or something
along those lines. This would also be a good debugging tool if you are creating or
purging lots of files.

Summary
There we have it. We've extend CodeIgniter to suit our needs, and more. We've seen
how we can create extended Controllers to keep functionality in multiple Controllers
without repeating ourselves all the time. We've also created our own library, as well
as extended a CodeIgniter library. Finally we've gone through CodeIgniter and dug
up some real treats—some small functions that work and help in a very big way,
especially when used on large projects.

Developing and Releasing
Code to the Community

Most developers will want to develop code and release it to the community.
I would encourage you to release code to the community as it makes the
community better and allows you to give something back. This chapter goes
into detail about what you could do if you create a library and then want to
release into the CodeIgniter community.

In this chapter, you will:

Learn about the different avenues for finding a library to code
Learn about the ways in which you can market your library and gain
exposure within the community
Learn the different ways of setting up the database tables for your library
Learn the importance of writing a user guide for your library
Learn the best ways to update users
Learn the best way to introduce new updates
Learn how to ask for feedback
Learn how to-and why-you should accept user contributions

•

•

•

•

•

•

•

•

Developing and Releasing Code to the Community

[248]

Find a need in the community (or fill your
own need)
The first thing I did when I wanted to create a library (at first it was just for myself)
was fill a need I had. The web app that I was building at the time required quite
a comprehensive authentication library. Because CodeIgniter didn't have its own
authentication library, I went through these steps and decided to create one myself.

If you don't have a problem that you want to fill, then look on the forums for
inspiration. There are numerous forum threads with people discussing ideas for
CodeIgniter—ideas that you could use to put into a library. You might see people
looking for something and then realize that you also might benefit from that.
In this case it would seem very logical to build out that type of library, or even
a library extension.

Search for existing solutions
The next thing I did was to look for existing solutions. No matter how much you
want to build a library, if there's something out there that does exactly what you
want to do and does it well, then there's no point in reinventing the wheel. Here's
what to do when you've found a number of solutions. Depending on what type of
library you want to build, try to find at least two to three solutions.

Use the solutions
If a solution that you find is actually really good, you might never know it. I always
used a number of the libraries I found, just to see if they worked and if they might
save me a lot of work in creating my own library.

If the solution that you found doesn't work all that well, or lacks some features,
then you'll know what to fix, and what to do differently. This will be a great chance
to list all of its shortcomings. Like I said previously, if it's great, there's no point in
reinventing the wheel.

Reinvent the wheel
Yes, I did just say there was no point in reinventing the wheel. And yes, this heading
tells you to reinvent the wheel. It's not a typo.

The point I'm trying to make with this section is that in most cases, the wheel isn't
perfect. Of course by 'wheel' I mean the current implementation of a library.

Chapter 10

[249]

When I needed an authentication library I tried two different libraries and found
them to be difficult to get used to. They didn't handle form processing, and lacked
some features. I really tried using them; I prototyped my web app twice, both
times scrapping it because the authentication library wasn't good enough.

This ultimately led me to creating The Authentication Library—which is extremely
easy to use. Simply extend the class 'Application' instead of 'Controller' in your
controllers. How much easier can it get?

List the problems of these solutions
By making a list of everything that is missing from the solutions that you've tried,
or something that doesn't quite work, or if it could have been done better, is a great
way for you to really give something different and better to the community.

This is also a very good lead-in to the next point.

Create a plan
I am an advocate of proper planning and preparation. If your library is quite small,
you might get away with not creating a plan. But, if like The Authentication Library,
your library is quite large and made up of more than a few files, then a plan is a
really good idea.

List the features
You should create a list of the features that your library is going to have. This is
important to do. Without a list of features, you could start developing the library and
then keep adding more and more features as they come up. This is called scope creep
and could kill your library before you even have a chance to release it. Having a list
of features that you need before you start developing will help you stay on track,
not allowing any more features to be added until you finish the ones that you have
written down and release the library.

If you forget a few of the features that you want, leave them out. Release the features
you had in the first place. If you add in the ones that you forgot about, you will be
tempted to add in more and more. If you forgot it in the first place, it probably isn't
all that important.

Developing and Releasing Code to the Community

[250]

Prioritize the features
Now that you have a list of the features that you want your library to have, put them
into order. Put the most important features at the top, and the ones you'd just like to
have at the bottom. Then all you have to do is work your way down the list.

Writing the library
Writing the code is made very easy by having a list of features organized into a
priority list. By adding the most important features first, and not the easiest, you are
ensuring that you get the features that you really need. So if you end up finishing
the code before everything is done, you're more likely to have a fairly well featured
library than if you had just developed the easiest things to do first.

You should remember when you're writing the code to make it easy to
understand for other people and yourself when you come to view it later
on in another project. Leave comments in the code explaining what's going on,
wherever you feel necessary.

As you are creating the library, it might be a good idea to create little tests. The tests
may only be getting and/or setting session data through your library—but try to
get something down just to ensure that the function works. You can create more
meaningful tests when the library is deemed 'complete', if you feel the need to.

Review your code
This can be a hard task to do for some people, because some people are not all that
suited to finding flaws in code. When you've written your code, you tend to think
along the lines of what you've written, instead of thinking things like "How can I
make this better?", "How is it valuable?", "Does it work as intended?", and so on.

You can make your code review easier by asking a set of simple questions. Some of
which I have already stated.

How can I make this better?
Is it as fast as it could be?
Is it readable to others?
Have I included relevant comments?
How will it add value to other people's work?
Does it do what I say it should do?

•

•

•

•

•

•

Chapter 10

[251]

You can ask yourself as many questions as you like to ensure that you're churning
out the best code you can.

Comments
Before we move on, I want to give you a quick note about comments. Comments
should be valuable and help you read the code you've put down. Consider the
following comments in your code:

// while 1 = 1—print "1 = 1" on the screen

while(1 = 1)
{
 echo "1 = 1";
}

The previous comment doesn't help anybody read the code. People will be able to
see that there is a while loop and see perfectly clearly what the loop does. It's not a
very complex loop. Instead, you should place comments in code to tell people why
you've done something when things get difficult. If there is a really complicated part
of your code that nobody could ever read, explain what the code does and why you
made it totally unreadable. There's always a perfectly good explanation for code, you
just need to express that in your comments.

Fix the problems
It is inevitable that there will be problems with your code. We always miss
something, or a feature we built doesn't work perfectly. What we should do when
we have things to fix is create another list. We're going over the same processes used
to write the code in the first place. Once you have your list, organize it into priority
order, with the highest priority at the top. Then, once again, work your way down
the list.

Write a user guide
Once your code is ready, you should write a user guide so that anybody who wants
to use your library can simply go to your user guide and read about how to use the
functions contained within the library.

Some of the features and functions of your library might be self-explanatory. I know
that with The Authentication Library most people don't need to know how to use
login(), register() or logout()—you just make a call to them. But others,
such as the restrict() function, need some explaining.

Developing and Releasing Code to the Community

[252]

Explain the function
You should explain what each of your functions does. This could be a single
sentence that states the purpose of the function, or it could be a whole paragraph.
It all depends on the function that you are describing.

Show the user how to use the function
The next thing that you should do is to give the user an example of how to use the
function. It's likely that this might only be a couple of lines of code, but it will make
the difference in helping the user gauge how to use the library and decide if it
will work for them or not.

Let the user know of any shortcomings
Don't hold false pretenses. Ensure that all functions are documented carefully and
that a user wouldn't expect your library to do something that it doesn't. The last
thing that you want is a user coming back to you because your library doesn't do
what they thought it would, or that your user guide says it works in one way, when
it actually works slightly differently. Now, I'm not sure somebody in the CodeIgniter
community would ever be that banal, its just a matter of being prepared for any
problems that might occur.

Use the style sheet given in the CodeIgniter
User Guide
The CodeIgniter User Guide is awesome. In fact, I know a number of people who
started using CodeIgniter simply because the User Guide is brilliant and tells you
everything that you need to know about the framework, and is always kept up
to date.

The guys at EllisLab know this, and provide a stylesheet and example page so
that you can create user guides for your own libraries that look just like the official
CodeIgniter User Guide. You can access these yourself, by visiting their site at
http://codeigniter.com/user_guide/doc_style/index.html, as seen in the
next screenshot.

Chapter 10

[253]

I believe this is beneficial to developers, as developers are comfortable with the
CodeIgniter User Guide style and if you carry that on with your own user guide
then you can only make them feel more comfortable by doing so.

Release options
When you come to release your library there are a number of things I would suggest
that you do in order to get more exposure and make it easier for developers to
download and use your library.

Developing and Releasing Code to the Community

[254]

Forum post
A forum post is the least that you should do to tell people about your library.
Simply create a new post in the 'Ignited Code' section at http://codeigniter.com/
forums/ and tell people about your library. Be sure to put the features that it has in
the post so that people know what to expect. You don't have to put every little detail
into it; just indicate some of the more important features.

Chapter 10

[255]

Post on your website
If you have a website of blog I also suggest making a post on there to direct people
to your Library User Guide or a GitHub repository. Obviously, only post on your
website or blog if it is related to CodeIgniter—don't post about your new library if
you run a photography blog, for example. The tips for a forum post apply here, as
well. In fact you could post the same thing on both the forum post and your website.

Developing and Releasing Code to the Community

[256]

GitHub
GitHub is a social network built around sharing code. It is comprised of Git
repositories that developers set up to allow other developers to easily download
their code, or fork it to create a new project. You can follow other developers to
keep up to date with what they're doing, and also watch specific repositories, at
http://github.com.

GitHub is a great way to maintain a library because it also comes with issue tracking.
So if somebody finds a problem with the library, they can create a new ticket in the
issue tracker instead of emailing you directly. This keeps everything related to your
library on the GitHub repository site, and helps you to better organize things.

The best thing about it, though, is that it is based on Git repositories. Git is a revision
control system that helps you manage version of your software, and helps you to roll
back changes if you need to.

Chapter 10

[257]

Handling database tables
You might find that your library needs to make use of a database table. There are
a few ways that you can go about including a database table, but which way is
the best?

Include a .sql file
Personally, this is my preferred method of including a database table with
my libraries.

I simply include a .sql file, along with all of the MySQL queries needed to create all
of the tables. This is the easiest method of including a way to create the tables for the
library developer, although it's not so easy for the developer trying to use the library.
It's not ideal, but it works well.

Include an install file
Another method would be to create an install file that connects to the database and
creates all of the tables. The problem with this method is that it takes time to build
and you don't know how far to go with it. Do you ask for the database details? Do
you write over config/database.php?

To be honest with you, I feel that an install file for a library would be total overkill.
You could end up writing more code for the installer than the library itself. The
previous method is quicker, and most developers see a .sql file and immediately
know what to do with it.

Supporting the code
Now that you've got your code out there and people are using it, you'll probably
want to start supporting your code. Here are some easy steps to follow to make sure
that you keep the developers who are using your code in the loop, and to help you
update your code with valuable additions.

Developing and Releasing Code to the Community

[258]

Update regularly
Once your library is out there, you will ultimately come up with new ideas for
features that you want to include. The original version of my authentication library
was fairly simple and lacked some features. The next version I created included
groups and a more comprehensive restrict function. Then I went further and made
it so that the developer could call their database tables anything, and made it
generally easier to fit into an existing project. Finally I made it so that the only
thing a developer needs to do to use the library is extend a different Controller
class (Application). This includes form validation and all the backend functions too.

See how the code developed over time? I didn't think of everything and include it
all right from the start. The code would be too complex to do that right from the
beginning. The same will happen with your code. Ultimately you'll create what you
think you need; once you start using it you might want to add more and more. This
is great.

Try not to update the code too regularly, though. I remember when releasing version
1.0.1 of The Authentication Library I had missed out some of the features that people
had recommended, and as a result I released 1.0.2 a day after 1.0.1. This means that
developers had to upgrade twice in two days. Make sure you don't do this; try to
bunch up the additions so that when you release an updated version there is
enough in there to justify the user upgrading.

Listen to the users
The more people that use your code, the better the code you will write. This
essentially means that you have many more reviewers of your code. Users can post
in the CodeIgniter forum thread that you created and talk to you directly about the
code, how it works, and so on. They can also talk to other people using your library
as well.

Mostly, though, people will make recommendations and request other features. I
wouldn't suggest adding in everything that a user asks for; sometimes it is better to
leave a feature out. I always say to myself "If this addition is only going to benefit the
user requesting it, then I'm not going to build it for them". That statement might make me
look like I don't care, but I want my additions to benefit as many people as possible;
and if I make an addition and people question me as to why I added something in, I
don't want to reply "Oh because Mr X asked me for it."

I recommend that other developers really evaluate how an extra feature will benefit
you and the other developers using it.

Chapter 10

[259]

Accept contributions
I always find it extremely helpful when a user asks me for an extra feature, and
somebody else replies with an updated version of my library with it already added
in. In most cases the user will be glad to have their contribution included in the
library, and I am always glad to put other people's code in my Library. In fact, it's
an open source library, so no one person really 'owns' it.

Of course, proper testing will need to be performed for the code. Try to devise a
short checklist for code that you get from others. If it ticks all of the boxes, then you
could add it to the main code.

Communicate regularly
You should keep the community updated as to what you're doing with the code.
You could update your forum thread with the features that you'll be adding into
the library. This not only helps people to know what to expect, but also cements
the features. It also ensures that you build those features. If you say that you'll build
something publically and you don't, then people will question you. This is good
because it makes you more reliable; nobody wants to be questioned. That's why,
when you announce you'll build something on the forums, you will build it and it
will be added into your library.

EllisLab, the company behind CodeIgniter and the popular web publishing platform
ExpressionEngine, did this when they were developing ExpressionEngine 2.0.
EllisLab gave regular updates to the developers on their blog, giving screenshots
and explaining new features and even how they went about creating some of the
new features.

Take a leaf out of EllisLab's book if you need to; it worked perfectly, kept developers
in the loop, and kept everyone excited about the new software.

Don't give a release date
From past experience, I can tell you that it is a very bad idea to give a release date
for code before it's ready. If your code is done, its fine to say "I will release this code on
Monday". However, never declare a release date before the code is ready.

EllisLab found this out when developing ExpressionEngine 2.0. Their original release
date was blown out of the water and the software was released a year later. But they
worked through it by updating regularly.

Developing and Releasing Code to the Community

[260]

We all know the importance of releasing only when the code is ready, and when
we're not ready to release, keep the developers who depend on us in the loop.

As soon as the code is ready, however, you have two options. You can give a release
date and create some hype behind the new version, or you could simply release the
code on GitHub and post on the forums again. It is totally up to you and it really
depends on how you like to work. Personally, I just get the code out there and
tweet about it, blog about it, and post in the forums.

Keep testing
Just because your original code worked doesn't mean that new additions will. Before
releasing any new versions of the library make sure you test all the new code and test
the old features too. I have released new code a few times and found out the old stuff
was affected by it.

I cannot stress how important proper code testing is. The last thing that you want is
for people on the forums to be telling you that something's broken. Find out all the
kinks before you release, and remove them.

Archive old versions
I found it is a very good idea to archive the old versions of your code. This is
especially easy if you use a Version Control System such as Git or SVN. This is
helpful for developers when you release a new update as your new code could
interfere with their code and it helps them roll back the version easily. Of course,
they should be testing as well, but it is always nice to have another failsafe, in
any event.

Use the wiki
This is a good idea and one that isn't used by quite a few developers I know. The
wiki is a great place to look for code and sometimes people always overlook it.
Create a short wiki entry for your library at http://codeigniter.com/wiki/. It
won't take that long and you could even use the copy from your forum post. It is
simply another possible point of exposure for your library and will ultimately help
people to find you and your library.

The wiki is a perfect format for easily keeping your users informed as well. If there
is a small code fix that wouldn't warrant a new update and is fairly small, you can
put it in the forum thread. This, however, will be harder to find, when compared to
searching on the wiki page.

Chapter 10

[261]

You should make sure that as many people as possible know about the wiki entry. It
can be very helpful to use but it is all useless if people don't actually know about the
entry. Whenever you post a link to GitHub (or wherever you hold your user guide or
other download point) include a link to the wiki entry.

Summary
The steps in this chapter are all fairly easy to do and don't take too much time. But
when you put them all together they serve as a great platform to develop code with
and support both the code and end users. This chapter should also help you to
streamline the process and better manage the code that you release.

Index
Symbols
$_GET variable 154
$CI variable 142
$client variable 142
$connection variable 142
$consumer variable 124
$http_status variable 124
$last_api_call variable 124
$method variable 124
$post_data variable 127
$split_at variable 163
$static_salt variable 165
$this->db->delete(); function 87
$this->db->empty_table(); function 87
$this->db->escape() function 168
$this->db->escape_like_str() function 168
$this->db->escape_str() function 168
$this->db->flush_cache(); function 89
$this->db->from(); function 82
$this->db->get(); function 81
$this->db->get_where(); function 81
$this->db->group_by(); function 84
$this->db->insert(); function 85
$this->db->join(); function 82
$this->db->like(); function

about 84
associative array method 84
multiple key or value method 84
single key or value method 84

$this->db->order_by(); function 84, 85
$this->db->select(); function 84
$this->db->set(); function 86
$this->db->start_cache(); function 88
$this->db->stop_cache(); function 88
$this->db->truncate(); function 88

$this->db->update(); function 86, 87
$this->db->where(); function

about 82
associative array method 83
custom key or value ,method 83
custom string 83
multiple key or value method 83
single key or value method 83
value method 83

$this->dbforge->add_column(); function 92
$this->dbforge->drop_column(); function

92
$this->dbforge->modify_column(); function

92
$this->encrypt->sha1() function 161
$this->encrypt method 166
$this->user_id variable 145
$this->user class 145
$tokens variable 131
$token variable 124
$user_id variable 142
$user variable 142
_display() function 226
_display_cache() function 226
_format_json() function 195
_format_xml() function 195
_remap() function 12, 205-208
_session(); function 144, 145

A
access function 131
Active Record

$this->db->delete(); function 87
$this->db->empty_table(); function 87
$this->db->from(); function 82

[264]

$this->db->get(); function 81
$this->db->get_where(); function 81
$this->db->group_by(); function 84
$this->db->insert(); function 85
$this->db->join(); function 82
$this->db->like(); function 84
$this->db->limit(); function 85
$this->db->order_by(); function 84, 85
$this->db->select(); function 81
$this->db->set(); function 86
$this->db->truncate(); function 88
$this->db->update(); function 86, 87
$this->db->where(); function 82
data, deleting 87
data, inserting 85
data, selecting 80
data, updating 86

Active Record, caching
$this->db->flush_cache(); function 89
$this->db->start_cache(); function 88
$this->db->stop_cache(); function 88

admin_controller 229
API bottleneck

identifying 177
rectifying 177

application
benchmarks, running 173
caching 179
disk activity, avoiding 183
SQL queries, optimizing 180

application, security
best practices 156
Cross-site scripting (XSS) 169
data, escaping 157
data, filtering 156
data, validating 156
database, security 167
default file structure, changing 170
global data 155
password policy, creating 157
strong password, storing 160
URI 154

Application class 120
array helper function

element() function 242
random_element() function 243

Authentication Library 120
authorize URL function 129

B
Bandwidth bottleneck

identifying 177
rectifying 177

base class, Facebook Connect Wrapper
Library 142

basic PHP Library 123
benchmarking class

about 30
benchmark, setting 30
benchmarks, profiling 31
benchmarks profiling, profiler class used

31, 33
memory consumption, displaying 33
multiple benchmarks, setting 31
total execution time, displaying 33

benchmarks
about 173
running 174
uses 174

blog post. See post
bottlenecks

API bottleneck 176
bandwidth bottleneck 177
code bottleneck 175
database bottleneck 174
static bottleneck 178
types 174

C
cache_override, hook point 226
caching

about 179
pages caching, duration 179
using 179
working 179

callbacks
about 74
adding, in rules 75
conditional, adding 76
creating 75
database interaction 77

[265]

database library, loading 75
database query, performing 76
database table, creating 75
function, creating 75
library, loading 77
success page, displaying 76, 77

camelize() function, inflector helper 243
code, library

comments 251
communication 259
contributions, accepting 259
issues, fixing 251
old versions, archiving 260
release date 259
reviewing 250
testing 260
updating 258
users, listening to 258
wiki, using 260

code bottleneck
identifying 176
rectifying 176

code formatting, rules
class and method naming 19, 20
code, commenting 21, 22
keywords, using 22
one statement per line 22, 23
PHP closing tag 18, 19
short opening tags 22
variable names 20, 21

CodeIgniter
about 7
Active Record 80
Active Record, caching 88
array helper 242
benchmarks 173
caching 179
callbacks 74
code formatting, rules 18
community 248
data, escaping 157
data, filtering 156
data, validation 156
default file structure, changing 170
directory_map() function 244, 245
disk activity, avoiding 183
doctype() function 242

downloading 8, 9
element() function, array helper 242
encryption class 165
extended controllers 228
files 24
files, getting 8-10
form validation 64
Form Validation Library 64
highlight_code() function 244
hooks 225
inflector helper 243
multiple application instances, running

188, 190
MVC 10, 11
PHP Style Guide 18
queries 77, 78
random_element() function, array helper

243
resources, autoloading 18
result helper functions 80
security filters 153
SQL queries, optimizing 180
upgrading, from old version 8
URI characters, restricting 155
URIs, uses 154
URLs 23
validation rules set, saving to config file 72
values, returning 78

CodeIgniter Database library
query caching 180

CodeIgniter Output Cache 179
CodeIgniter URLs

about 23
index.php file, removing 23
URL Suffix, adding 23, 24

community
need for 248

contact form, Form Validation Library
about 65
assets, loading 65
controller code 68, 69
data, prepping 66, 67
email, sending 68
rules, setting 65
validation process, checking 67

Content Delivery Network (CDN) 178
validation rules, list 65, 66

[266]

controller
_remap() function 12
about 11, 12
class 12
default controller, defining 12
function calls, remapping 12, 13

controller base class, oAuth 124
Controller class 120
controller index function 128
create_post() function 216
create function 117
Cross-site scripting. See XSS
CSS class 71
curl_init() function 127
current_url() function 149

D
dashboard function

about 98
dashboard view 98

data
escaping 157
filtering 156

database
connecting to 95
creating 94

database bottleneck
identifying 175
rectifying 175

Database Forge class
about 90
database, creating 90
database, dropping 90
fields, adding 90, 91
loading 90
table, creating 91
table, dropping 91
table, modifying 92
table, renaming 91

database security
$this->db->escape() function 168
$this->db->escape_like_str() function 168
$this->db->escape_str() function 168
about 167
account access, limiting 169
queries, escaping 167, 168

query bindings 168
database tables, library

.sql file, including 257
handling 257
install file, including 257

debug function 134
default file structure

changing 170
delete_post() function 216, 217
DELETE request 198, 199
directory_map() function 244, 245
discrete functions 66
disk activity

avoiding 183
display_override, hook point 226
doctype() function 242
dynamic salting

complex dynamic salts 165
simple dynamic salts 164

E
element() function, array helper 242
email class

about 36
batch e-mail processing 43
contact form 39, 40
contact form, building 38
e-mail, sending 36, 37
e-mail, validating 41
email sending, email helper used 43
form submission, checking 40
form values, checking 41
used, for sending email 42
XSS Filter, using 42

encode_php_tags function 67
encryption class 165
extended controllers

about 228
admin controller 228, 229

F
Facebook Connect

about 139, 140
client library, downloading 141
controller 147, 148
Facebook application, registering 140

[267]

view file 148-151
Wrapper library 141
Wrapper library, _session(); function

144, 145
Wrapper library, base class 142
Wrapper library, class constructor 143, 144
Wrapper library, final library code 145

Facebook Markup Language. See FBML
FBML 147
files, CodeIgniter

helpers 24
libraries 26
plugins 25

file uploading class
about 43, 44
allowed file types, specifying 47
file, uploading 47, 48
maximum file size, specifying 47
upload controller, creating 46
upload views, creating 44, 45

flashdata
adding 57
keeping 58
reading 57

form_error() function 70
format JSON function 201
format XML function 200, 201
form validation

need for 64
Form Validation Library

benefits 94
callbacks, using as rules 74
contact form 65
form validation process 64
form view, changes 69

form validation process, Form Validation
Library

development process 64
users process 64

form view, Form Validation Library
changes 69
error delimiters changing, globally 71
error delimiters changing, individually 71,

72
field views, re-populating 70
final form, view 70
individual errors, displaying 70

front end code
about 95
dashboard function 98
index function 96
login function 99
logout function 115
register function 104

G
get_instance() function 143
get_post() function 214, 215
get_request_tokens() function 132
GET request 196, 197
global data 155
goals, user authentication

about 94
defining 93

H
hashing

password, sha1 used 161
helper functions

free result 80
number of fields returned 80
number of rows returned 80

helpers
creating 241

helpers, CodeIgniter files
about 24
extending 25
loading 24
multiple helpers, loading 24
using 24

highlight_code() function 244
hook points

cache_override 226
display_override 226
post_controller 226
post_controller_constructor 226
post_system 226
pre_controller 226
pre_system 226
scaffolding_override 226

hooks
about 225
creating 227, 228

[268]

defining 227
enabling 227
points 226

HTTP Function 126
humanize() function, inflector helper 244

I
image manipulation library

about 48
image, cropping 49, 50
image, rotating 50
library, initializing 48, 49
thumbnail, creating 49
values in loops, clearing 51

index() function 65
index function 128

about 96
details view 97

inflector helper
camelize() function 243
humanize() function 244
plural() function 243
singular() function 243
underscore() function 244

input and security class
about 34
automatic filtering 34
COOKIE data, retrieving 35
GET and POST data, retrieving 35
GET data, retrieving 35
images, filtering 35
IP addresses 36
POST data, retrieving 35
SERVER data, retrieving 35
single Item, filtering 34
user agent, retrieving 36
XSS filtering 34

insert() function 117, 216

J
JavaScript Library 150

K
keywords, PHP Style Guide

L
Large-Scale Application. See application
libraries

about 230
Base class 231
code 233, 234
set_userdata() 232
unset_userdata() 233
userdata() 232

libraries, CodeIgniter files
about 26, 29
benchmarking class 30
CodeIgniter resources, using 26
core libraries, extending 27
core libraries, replacing 27
creating 26
email class 36
extended library, loading 27
features 30
file uploading class 43
image manipulation library 48
input and security class 34
loading, function used 26
pagination class 51
session class 53
unit testing class 59

libraries, custom
controller 237-240
features 235
file, creating 235, 236

library, writing
about 250
code, comments 251
code, reviewing 250
code, supporting 257
code issues, fixing 251
database tables, handling 257
plan, creating 249
release options 253
user guide, writing 251

library base class, oAuth 123
load->library function 65
login function

about 99
form validation rules, setting 99, 100
full login code 101, 102

[269]

login view 102, 103
password check 100
success view 104
validation, running 101

logout function
about 115
logout view 115

M
memcache CodeIgniter library

constructor 184
data functions 185
example 183
full library code 186, 187
library, using 187, 188
maintenance functions 186

method chaining 89
model

about 10, 13
class 13
constructor 116
create function 117
database, connecting automatically 15
full model code 118, 119
loading 14, 15
logged in check function 117, 118
login function 117

Model View Controller. See MVC
multiple application instances

running, advantages 188, 189
running, disadvantages 189, 190

MVC 10, 11

N
not_obvious() function 158

O
oAuth

about 121
library, downloading 123
Twitter application, registering 122
website, URL 123
working 121, 122

OAuthConsumer class 126

oAuth library, downloading
access function, creating 131
access tokens, getting 132
callback URL, changing 130
controller base class 124
controller code, final 138, 139
controller index function 128
debug function 134
get_access_tokens() 132
Get authorize URL function 129
HTTP function 126, 127
library base class 123, 124
library code, final 134-138
library constructor 125
main view file 129
parse_access() 133
parse function 128
users, logging out 133
user tokens, requesting 125, 126
view file 131, 132

OAuthRequest class 126
oAuth Signature Method 124

P
pagination class

Current Page link, customizing 53
Digit link, customizing 53
example 51
First link, customizing 52
Last link, customizing 52
Next link, customizing 53
pagination, customizing 52
Previous link, customizing 53

parent--admin_controller(); 229
parse_access() function 133
parse function 128
password

$this->encrypt->sha1() function 161
complex dynamic salt 165
complex salts 162
dynamic salting 164
encrypting 165
Form Validation Library rules, example

158, 160
hashes, storing 160

[270]

hashing, $this->encrypt->sha1(); used 161
hashing, sha1 used 161
library, loading 161
policies 157
sha1() function 161
simple dynamic salts 164
simple salts 162
splitting, at second character 162, 163
splitting, in middle 163, 164
static salting 162
storing 160

password, encrypting
class, loading 166
encryption key, setting up 166
mcrypt cipher, setting 167
message length 166
passwords, decoding 167
passwords, encoding 166

PHP closing tag 18, 19
PHP Style Guide

class and method naming 19, 20
code, commenting 21, 22
keywords, using 22
one statement per line 22, 23
PHP closing tag 18, 19
rules 18
short opening tags 22
variable names 20, 21

plan, library
creating 249
features, listing 249
features, prioritizing 250

plugins, CodeIgniter files
about 25
loading 25
multiple plugins, loading 25
using 25

plural() function, inflector helper 243
post

creating 219
deleting 221
getting 222, 223
updating 220

post_controller, hook point 226
post_controller_constructor, hook point 226
post_delete() function 210, 211
post_get() function 209

post_post() function 211
post_put() function 210
post_system, hook point 226
Post Model, RESTful web service

about 213
base class 213, 214
code 217
create_post() function 216
delete_post() function 216, 217
final post model code 218
get_post() function 214, 215
update_post() function 215, 216

POST request 198
pre_controller, hook point 226
pre_system, hook point 226
prep_for_form function 67
prep_url function 67
PUT request 197, 198

Q
query caching, SQL queries

cache files, deleting 181
cache files, managing 180
To cache or not to cache? 180
using 181
working 180

R
random_element() function, array helper

243
register_globals 156
register function

email exists check 106
error view 114, 115
form validation 104, 105
full register code 107-109
register view 113, 114
user exists check 105
validation, running 106, 107

release options, library
forum post 254
GitHub 256
post, on website 255

Remote procedure call. See RPC
Representational State Transfer. See REST
request() function 195

[271]

response() function 195, 196, 199
REST 192
REST Controller, RESTful web service

_remap() function 207, 208
base class 205-207

RESTful web service
about 192
database, setting up 195
files, creating 193, 194
Post Model 213
resource, building 192
REST Controller 205
REST library 195
Server Controller 208
working 193

REST library, RESTful web service
base class 195, 196
code 201
DELETE request, performing 198, 199
final library code 202-205
format JSON function 201
format XML function 200, 201
GET request, performing 196, 197
POST request, performing 198
PUT request, performing 197, 198
response function 199

RPC 192

S
scaffolding_override, hook point 226
scope creep 249
security filters, CodeIgniter

global data 155
URI security 154

Server Controller, RESTful web service
base class 208, 209
code 211
full server controller code 212
post_delete() function 210, 211
post_get() function 209
post_post() function 211
post_put() function 210

sess_destroy() function 231
session class

about 53
autolaoding 54

CodeIgniter session, data 55
CodeIgniter sessions, working 54
flashdata, adding 57
flashdata, holding 58
flashdata, reading 57
initializing 54
loading, manually 54
multiple session item, removing 57
session, destroying 57
session data, adding 55, 56
session data, removing 56
session data, retrieving 56
session database, using 58
single session item, removing 56

session data, session class
adding 55, 56
removing 56
retrieving 56

set_rules() function 65
set_userdata() function 232
sha1() function 161
short opening tags 22
singular() function, inflector helper 243
solutions, library

problems, listing 249
using 248

SQL Infection 169
SQL queries

LIMIT clause 182, 183
optimizing 180
query caching 180
results, limiting 182

static bottleneck
identifying 178
rectifying 178

static salting
about 162
complex salts 162
simple salts 162

strip_image_tags function 67
Subversion Repository. See SVN
SVN 8

T
table, Database Forge class

creating 91

[272]

dropping 91
modifying 92
renaming 91

The Authentication Library 119, 249
this->db->select(); function 81
Twitter

URL 122
Twitter oAuth. See oAuth

U
underscore() function, inflector helper 244
Uniform Resource Identifier. See URI
unit testing class

about 59
disabling 61
enabling 61
loading 59
reports, generating 61
strict mode 61
template, creating 62
tests, running 59-61

unset_userdata() function 233
update_post() function 215, 216
upload controller, file uploading class

creating 46
upload views, file uploading class

creating 44
URI 12
URI, security

about 154
characters 154
characters, restricting 155
uses 154

user authentication
about 93, 121
front end code 95
issues, addressing 119
model code 116
The Authentication Library 119, 120

userdata() function 232
user guide, library

function, explaining 252
function using, guidelines 252
shortcomings 252
style sheet on CodeIgniter User Guide,

using 252

writing 251
users_getInfo() function 145

V
validation rules

rule group, associating with controller 74
sets, creating 72, 73
sets, saving to config file 72
specific sets, calling 73

values, returning
about 78
result array, returning 79
result object, returning 78
row array, returning 79
row object, returning 79

view
about 10, 15
dynamic data, adding 16, 17
loading 15, 16
location 15
loops, creating 17
multiple views, loading 16
returning, as data 18

W
web service

about 191
Remote procedure call (RPC) 192
Representational State Transfer (REST) 192
RESTful web service 192
types 192

X
XML-RPC 192
XMLWriter class 200
XMLWriter object 200
XSS 169
XSS Filter 156
XSS filtering, input and security class 34

Thank you for buying
CodeIgniter 1.7 Professional Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

CodeIgniter 1.7
ISBN: 978-1-847199-48-5 Paperback: 300 pages

Improve your PHP coding productivity with the free
compact open-source MVC CodeIgniter framework!

1. Clear, structured tutorial on working with
CodeIgniter for rapid PHP application
development

2. Careful explanation of the basic concepts of
CodeIgniter and its MVC architecture

3. Use CodeIgniter with databases, HTML forms,
files, images, sessions, and email

4. Full of ideas and examples with instructions
making it ideal for beginners to CodeIgniter

CodeIgniter for Rapid PHP
Application Development
ISBN: 978-1-847191-74-8 Paperback: 260 pages

Improve your PHP coding productivity with the free
compact open-source MVC CodeIgniter framework!

1. Clear, structured tutorial on working with
CodeIgniter

2. Careful explanation of the basic concepts of
CodeIgniter and its MVC architecture

3. Using CodeIgniter with databases, HTML
forms, files, images, sessions, and email

4. Building a dynamic website quickly and easily
using CodeIgniter’s prepared code

Please check www.PacktPub.com for information on our titles

PHP 5 CMS Framework
Development
ISBN: 978-1-847193-57-5 Paperback: 348 pages

Expert insight and practical guidance to creating an
efficient, flexible, and robust framework for a PHP
5-based content management system

1. Learn how to design, build, and implement
a complete CMS framework for your custom
requirements

2. Implement a solid architecture with object
orientation, MVC

3. Build an infrastructure for custom menus,
modules, components, sessions, user tracking,
and more

4. Written by a seasoned developer of
CMS applications

Zend Framework 1.8 Web
Application Development
ISBN: 978-1-847194-22-0 Paperback: 380 pages

Design, develop, and deploy feature-rich PHP web
applications with this MVC framework

1. Create powerful web applications by
leveraging the power of this Model-View-
Controller-based framework

2. Learn by doing – create a “real-life” storefront
application

3. Covers access control, performance
optimization, and testing

4. Best practices, as well as debugging and
designing discussion

Please check www.PacktPub.com for information on our titles

AJAX and PHP: Building
Responsive Web Applications
ISBN: 1-90-4811-82-5 Paperback: 284 pages

Enhance the user experience of your PHP website
using AJAX with this practical tutorial featuring
detailed case studies

1. Build a solid foundation for your next
generation of web applications

2. Use better JavaScript code to enable powerful
web features

3. Leverage the power of PHP and MySQL to
create powerful back-end functionality and
make it work in harmony with the smart
AJAX client

PHP 5 E-commerce Development
ISBN: 978-1-847199-64-5 Paperback: 356 pages

Create a flexible framework in PHP for a powerful
ecommerce solution

1. Build a flexible e-commerce framework using
PHP, which can be extended and modified for
the purposes of any e-commerce site

2. Enable customer retention and more business
by creating rich user experiences

3. Develop a suitable structure for your
framework and create a registry to store core
objects

4. Promote your e-commerce site using techniques
with APIs such as Google Products or Amazon
web services, SEO, marketing, and customer
satisfaction

Please check www.PacktPub.com for information on our titles

Expert PHP 5 Tools
ISBN: 978-1-847198-38-9 Paperback: 468 pages

Proven enterprise development tools and best
practices for designing, coding, testing, and
deploying PHP applications

1. Best practices for designing, coding, testing,
and deploying PHP applications – all the
information in one book

2. Learn to write unit tests and practice
test-driven development from an expert

3. Set up a professional development environment
with integrated debugging capabilities

4. Develop your own coding standard and enforce
it automatically

5. Document your code for easy maintainability
for yourself and others

jQuery 1.3 with PHP
ISBN: 978-1-847196-98-9 Paperback: 248 pages

Enhance your PHP applications by increasing their
responsiveness through jQuery and its plugins

1. Combine client-side jQuery with your
server-side PHP to make your applications
more efficient and exciting for the client

2. Learn about some of the most popular jQuery
plugins and methods

3. Create powerful and responsive user interfaces
for your PHP applications

4. Complete examples of PHP and jQuery with
clear explanations

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started with CodeIgniter
	Upgrading from older versions of CodeIgniter
	Downloading and installing CodeIgniter
	Getting the CodeIgniter files

	Introducing Model View Controller (MVC)
	Controllers: The business logic
	Defining a default Controller
	Remapping function calls

	Models: Data abstraction layer
	Loading a Model
	Connecting to your database automatically

	Views: Your template files
	Loading a view
	Loading multiple views
	Adding dynamic data
	Creating loops
	Returning views as data

	Autoloading resources
	Formatting your code—PHP Style Guide
	PHP closing tag
	Incorrect
	Correct

	Class and method naming
	Incorrect
	Correct
	Incorrect
	Correct

	Variable names
	Incorrect
	Correct

	Commenting
	Poor
	Good

	Use of TRUE, FALSE, and NULL
	Incorrect
	Correct

	Short opening tags
	Incorrect
	Correct

	One statement per line
	Incorrect
	Correct

	CodeIgniter URLs
	Removing the index.php file
	Adding a URL Suffix

	CodeIgniter specific files
	Helpers
	Loading a helper
	Using a helper
	"Extending" Helpers

	Plugins
	Loading a plugin
	Loading multiple plugins
	Using a plugin

	Libraries
	Creating your own libraries
	Extending core libraries
	Replacing core libraries

	Summary

	Chapter 2: Learning the Libraries
	What is a library?
	What do libraries do?
	Benchmarking Class
	Setting a benchmark
	Setting multiple benchmarks
	Profiling your benchmarks
	Making use of the Profiler Class

	Display total execution time
	Display memory consumption

	Input and Security Class
	XSS filtering
	Filtering a single item
	Automatic filtering
	Filtering images
	Retrieving POST data
	Retrieving GET data
	Retrieving GET and POST data
	Retrieving COOKIE data
	Retrieving SERVER data
	IP Addresses
	Retrieving a user agent

	Email Class
	Send an e-mail
	Build a contact form
	Our contact form
	Checking if the form has been submitted
	Checking the values of the form
	Validate the e-mail
	Using the XSS filter
	Send the e-mail

	Batch e-mail processing

	File Uploading Class
	Create the Upload Views
	Create the Upload Controller
	Our initial controller
	Specify the allowed file types and maximum file size
	Uploading the file

	Image Manipulation Library
	Initializing the library
	Creating a thumbnail
	Cropping an image
	Rotating an image
	Clearing values in loops

	Pagination Class
	Example
	Customizing the pagination
	Customize the "First" link
	Customize the "Last" link
	Customize the "Next" link
	Customize the "Previous" link
	Customize the "Current Page" link
	Customize the "Digit" link

	Session Class
	Initializing the Session Class
	Autoload the Session Class
	Manually load the Session Class

	How do CodeIgniter sessions work?
	What is stored in a session?
	Adding session data
	Retrieving session data
	Removing session data
	Removing a single session item
	Removing multiple session items
	Destroying a session

	Flash data
	Add flashdata
	Read flashdata
	Keep flashdata

	Using a session database

	Unit testing a class
	Initializing the class
	Running tests
	Generating reports
	Strict mode
	Enabling or disabling unit testing
	Create a template

	Summary

	Chapter 3: Form Validation and Database Interaction
	Why should I validate my forms?
	Using the Form Validation Library
	The form validation process
	The user's process
	The development process

	Contact form
	Loading the assets
	Setting the rules
	Check the validation process
	Sending the email
	Final controller code

	Changes to the form view
	Re-populating field values
	Showing individual errors
	Final form view
	Changing the error delimiters

	Saving sets of validation rules to a config file
	Creating sets of rules
	Calling a specific set of rules
	Associating a rule group with a controller

	Using callbacks
	Include the callback in the rules
	Creating the callback
	Create the function
	Load the database library
	Performing the database query
	Adding a condition
	Show a success page

	Database interaction
	Loading the library

	Performing simple queries
	Returning values
	Returning a result object
	Returning a result array
	Returning a row object
	Returning a row array

	Result helper functions
	Number of rows returned
	Number of fields returned
	Free result

	Active Record
	Selecting data
	$this->db->get();
	$this->db->get_where();
	$this->db->select();
	$this->db->from();
	$this->db->join();
	$this->db->where();
	$this->db->like();
	$this->db->group_by();
	$this->db->order_by();
	$this->db->limit();

	Inserting data
	$this->db->insert();
	$this->db->set();

	Updating data
	$this->db->update();

	Deleting data
	$this->db->delete();
	$this->db->empty_table();
	$this->db->truncate();

	Active Record caching
	$this->db->start_cache();
	$this->db->stop_cache();
	$this->db->flush_cache();

	Method chaining
	Manipulating databases with Database Forge
	Loading the Forge class
	Creating a database
	Dropping a database
	Adding fields
	Creating a table
	Dropping a table
	Renaming a table
	Modifying a table
	$this->dbforge->add_column();
	$this->dbforge->drop_column();
	$this->dbforge->modify_column();

	Summary

	Chapter 4: User Authentication 1
	Defining our goals
	Our goals

	Creating and connecting to the database
	Front end code
	Index function
	Details view

	Dashboard function
	Dashboard view

	Login function
	Form validation
	Running the validation
	Full login code
	Login view
	Success view

	Register function
	Form validation
	Running the validation
	Full register code
	Full controller code
	Register view
	Error view

	Logout function
	Logout view

	Model code
	Model constructor
	Create function
	Login function
	Logged in check function
	Full model code

	Addressing some issues
	The Authentication Library
	Summary

	Chapter 5: User Authentication 2
	Using Twitter oAuth
	How oAuth works
	Registering a Twitter application
	Downloading the oAuth library
	Library base class
	Controller base class
	Library constructor
	Requesting user tokens
	HTTP function
	Parse function
	Controller index function
	get_authorize_URL function
	Main view file
	Change your callback URL
	Creating the access function
	The view file
	Getting access tokens
	Logging out
	Debug function
	Final library code
	Final controller code

	Using Facebook Connect
	Registering a Facebook application
	Download the Client library
	Our CodeIgniter Wrapper
	Base class
	Class constructor
	_session();
	Final library code

	The Controller
	The View file

	Summary

	Chapter 6: Application Security
	CodeIgniter's defenses
	URI security
	Why does CodeIgniter use URIs?
	Why does CodeIgniter restrict URI characters?

	Global data
	Best practices
	Filtering data
	Validation
	Escaping data

	Strong password policies
	Example form Validation library rules

	Storing passwords securely
	Storing hashes
	Hashing a password using sha1

	Static salting
	Simple salts
	Complex salts

	Dynamic salting
	Simple dynamic salts
	Complex dynamic salts

	Encrypting passwords
	Setting an encryption key
	Message length
	Loading the class
	Encoding passwords
	Decoding passwords
	Set mcrypt cipher

	Database security
	Escape queries
	The $this->db->escape() function
	The $this->db->escape_str() function
	The $this->db->escape_like_str() function
	Query bindings

	Limiting account access

	Cross-site scripting (XSS)
	Changing the default file structure
	Staying up-to-date
	Summary

	Chapter 7: Building a Large-Scale Application
	Running benchmarks
	Why run benchmarks?
	Where should I use benchmarks?
	Types of bottlenecks
	Database
	Code
	API
	Bandwidth
	Static

	Caching
	How does it work?
	How long should I cache pages for?
	Using caching

	Optimize SQL queries
	Query caching
	To cache or not to cache?
	How query caching works
	Managing cache files
	Using query caching
	Deleting cache files
	Deleting all cache files

	Limit results
	LIMIT clause
	Only select what you need

	Avoid disk activity
	Memcache example
	Memcache CodeIgniter library
	Constructor
	Data functions
	Maintenance functions
	Full library code
	Using the library

	Run multiple application instances
	Advantages
	Disadvantages

	Summary

	Chapter 8: Web Services
	What is a web service?
	Types of web service
	Remote procedure call
	Representational State Transfer

	RESTful web service
	Defining the resource
	How it will work
	Creating our files
	Setting up the database
	REST library
	Base class
	Performing a GET request
	Performing a PUT request
	Performing a POST request
	Performing a DELETE request
	Response function
	The format XML function
	The format JSON function
	Final library code

	Rest Controller
	Base class
	The _remap() function

	Server Controller
	Base class
	The post_get() function
	The post_put() function
	The post_delete() function
	The post_post() function
	Final server controller code

	Post Model
	Base class
	The get_post() function
	The update_post() function
	The create_post() function
	The delete_post() function
	Final post model code

	Create a new post
	Update a post
	Delete a post
	Get a blog post
	Summary

	Chapter 9: Extending CodeIgniter
	Hooks
	Hook points
	pre_system
	pre_controller
	post_controller_constructor
	post_controller
	display_override
	cache_override
	scaffolding_override
	post_system

	Our hook
	Enable hooks
	Define a hook
	Our hook

	Extended controllers
	Admin controller

	Extended libraries
	The library
	Base class
	userdata()
	set_userdata()
	unset_userdata()
	Full library code

	Custom libraries
	The features
	The library
	The controller

	Helpers
	CodeIgniter's hidden gems
	doctype()
	Array helper
	element()
	random_element()

	Inflector helper
	singular()
	plural()
	camelize()
	underscore()
	humanize()

	highlight_code()
	directory_map()

	Summary

	Chapter 10: Developing and Releasing Code to the Community
	Find a need in the community (or fill your own need)
	Search for existing solutions
	Use the solutions
	Reinvent the wheel
	List the problems of these solutions

	Create a plan
	List the features
	Prioritize the features

	Writing the library
	Review your code
	Comments

	Fix the problems

	Write a user guide
	Explain the function
	Show the user how to use the function
	Let the user know of any shortcomings
	Use the style sheet given in the CodeIgniter User Guide

	Release options
	Forum post
	Post on your website
	GitHub

	Handling database tables
	Include a .sql file
	Include an install file

	Supporting the code
	Update regularly
	Listen to the users
	Accept contributions
	Communicate regularly
	Don't give a release date
	Keep testing
	Archive old versions
	Use the wiki

	Summary

	Index

