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CHAPTER 1

Introduction
This book is intended primarily for readers who already have at least a basic knowledge 

of neural networks but are interested in learning about, experimenting with, and perhaps 

even programming deep belief nets. The salient features of this book are the following:

•	 The book provides motivation for the deep belief net paradigm.

•	 It presents the most important equations for the most common deep 

belief net components and justifies them to a modest degree.

•	 The book provides training, execution, and analysis algorithms for 

common deep belief net paradigms in language-independent forms.

•	 This book serves as a detailed user’s manual for the DEEP program, 

which is available as a free download from the author’s web site.  

I describe the internal operations of the program in depth.

•	 The book provides C++ code for many essential deep belief net 

algorithms. This includes versions for multiple-thread execution on 

Windows-based computers, as well as CUDA C implementations 

for using the supercomputer capabilities of NVIDIA CUDA-capable 

GPU cards.

It must be noted that several items are not included in this book.

•	 I largely avoid detailed mathematical theory. If we want to 

understand the quite advanced theory behind deep belief nets, 

numerous papers are available on the Internet. I will identify a few of 

the best later in this chapter.

•	 I present only those models I found to be of greatest practical, 

real-world value in my own work. This does not imply that the 

omitted models are inferior, only that I have not found them to be 

outstandingly useful in my particular applications.
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In summary, I have attempted to fill gaps in the public domain material on deep 

belief nets. Rigorous theory is available in numerous papers, especially those of 

Dr. Geoffrey Hinton and other pioneers in the field. Reproducing these excellent 

discussions would be redundant. Also, general statements of basic algorithms are widely 

available on the Internet, though these are generally devoid of the practical nuances 

that make the difference between a useful algorithm and something suitable for only toy 

problems. What appears to be lacking in the public domain are the specific, practical bits 

of information needed by someone who wants to program deep belief nets and use them 

to solve real-world problems. This book focuses on such practicalities.

�Review of Multiple-Layer Feedforward Networks
A multiple-layer feedforward network is generally illustrated as a stack of layers of 

“neurons,” similar to what is shown in Figures 1-1 and 1-2. The bottom layer is the input 

to the network, what would be referred to as the independent variables or predictors in 

traditional modeling literature. The layer above the input layer is the first hidden layer. 

Each neuron in this layer attains an activation that is computed by taking a weighted 

sum of the inputs and then applying a nonlinear function. Each hidden neuron in this 

layer will have a different set of input weights.

Figure 1-1.  A shallow network

Chapter 1  Introduction
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If there is a second hidden layer, the activations of each of its neurons are computed 

by taking a weighted sum of the activations of the first hidden layer and applying a 

nonlinear function. This process is repeated for as many hidden layers as desired.

The topmost layer is the output of the network. There are many ways of computing 

the activations of the output layer, and several of them will be discussed later. For now 

let’s assume that the activation of each output neuron is just a weighted sum of the 

activations of the neurons in the prior layer, without use of a nonlinear function.

Figures 1-1 and 1-2 show only a small subset of the connections. Actually, every 

neuron in every layer feeds into every neuron in the next layer above.

Figure 1-2.  A deep network

Chapter 1  Introduction
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To be more specific, Equation 1-1 shows the activation of a hidden neuron, 

expressed as a function of the activations of the prior layer. In this equation, x = {x1, …, xK} 

is the vector of prior-layer activations, w = {w1, …, wK} is the vector of associated weights, 

and b is a bias term.

	
a f b w x

k=

K

k k= +
æ

è
ç

ö

ø
÷å

1 	
(1-1)

It’s often more convenient to consider the activation of an entire layer at once. In 

Equation 1-2, the weight matrix W has K columns, one for each neuron in the prior layer, 

and as many rows as there are neurons in the layer being computed. The bias and layer 

inputs are column vectors. The nonlinear activation function is applied element-wise to 

the vector.

	 a f b Wx= +( ) 	 (1-2)

There is one more way of expressing the computation of activations, which is most 

convenient in some situations. The bias vector b can be a nuisance, so it can be absorbed 

into the weight matrix W by appending it as one more column at the right side. We then 

augment the x vector by appending 1.0 to it: x = {x1, …, xK, 1}. The equation for the layer’s 

activations then simplifies to the activation function operating on a simple matrix/vector 

multiplication, as shown in Equation 1-3.

	 a f Wx= ( ) 	 (1-3)

What about the activation function? Traditionally, the hyperbolic tangent function 

has been used because it has some properties that make training faster. However, for 

reasons that will become clear later, we will exclusively use the logistic function shown in 

Equation 1-4 and graphed in Figure 1-3.

	
f t =

+e t( ) 1
1 -- 	 (1-4)
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There are numerous theorems that show the power of a neural network having 

even a single hidden layer. We will not pursue these here, but know that in a broad class 

of problems such a network is theoretically capable of solving the problem. Adding a 

second hidden layer for all practical purposes mops up the few remaining issues. So, it’s 

no surprise that multiple-layer feedforward networks are so popular.

�What Are Deep Belief Nets, and Why Do We Like 
Them?
Prior to the development of neural networks, researchers generally relied on large 

doses of human intelligence when designing prediction and classification systems. One 

would measure variables of interest and then brainstorm ways of massaging these “raw” 

variables into new variables that (at least in the mind of the researcher) would make 

it easier for algorithms such as linear discriminant analysis to perform their job. For 

example, if the raw data were images expressed as arrays of gray-level pixels, one might 

apply edge detection algorithms or Fourier transforms to the raw image data and feed 

the results of these intermediate algorithms into a classifier.

Figure 1-3.  The logistic activation function

Chapter 1  Introduction



6

The data-analysis world shook when neural networks, especially multiple-layer 

feedforward networks, came into being. Suddenly prediction and classification 

tools, compared to earlier methods, relied to a much lesser degree on human-driven 

preprocessing. It became feasible to simply present an array of gray-level pixels to a neural 

network and watch it almost miraculously discover salient class features on its own.

For many years, the prevailing wisdom stated that the best architecture for a 

feedforward neural network was shallow and wide. In other words, in addition to the 

input (often called the bottom layer) and the output (often called the top layer), the 

network would have only one, or perhaps two at most, intervening hidden layers. This 

habit was encouraged by several powerful forces. Theorems were proved showing that in 

broad classes of problems, one or two hidden layers were sufficient to solve the problem. 

Also, attempts to train networks with more than two hidden layers almost always met 

with failure, making the decision of how many layers to use a moot point. According 

to the theorems of the day, you didn’t need deeper networks, and even if you did want 

more layers, you couldn’t train them anyway, so why bother trying?

The fly in the ointment was the fact that the original selling point of neural networks 

was that they supposedly modeled the workings of the brain. Unfortunately, it is well 

known that brains are far from shallow in their innermost computational structure 

(except for those of a few popular media personalities, but we won’t go there). Then 

new theoretical results began appearing that showed that for many important classes 

of problems, a network composed of numerous narrow layers would be more powerful 

than a wider, shallower network having the same number of neurons. In effect, although a 

shallow network might be sufficient to solve a problem, it would require enormous width 

to do so, while a deep network could solve the problem even though it may be very narrow. 

Deep networks proved enticing, though still enormously challenging to implement.

The big breakthrough came in 2006 when Dr. Geoffrey Hinton et al. published the 

landmark paper “A Fast Learning Algorithm for Deep Belief Nets.” This work laid the 

foundation for what is, roughly stated, a good general procedure for training deep networks.

	 1)	 Use unsupervised training to teach a single layer of hidden 

neurons to reflectively reproduce the raw data inputs without 

regard to the desired outputs. If there are fewer hidden neurons 

than inputs, this forces the layer to learn patterns rather than 

rote memorization to spit back. This pattern learning resembles 

what happens with principal components or some types of data 

compression. Even if there are not fewer hidden neurons than 

inputs, pattern learning can occur if training is done properly.
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	 2)	 For each training case, use the activations of the trained hidden 

layer as inputs to another hidden layer. Teach this second hidden 

layer to reflectively reproduce its inputs.

	 3)	 Repeat this for as many hidden layers as desired. Each new hidden 

layer encodes higher-level patterns. For example, the raw data 

input may be a rectangular array of gray-level pixels. The first 

hidden layer may detect edges in various parts of the image. The 

second hidden layer may detect patterns of connection of these 

edges. A third hidden layer may assemble recognizable objects 

out of the connected edges. Such progressive feature discovery is 

impossible in a shallow network.

	 4)	 Use supervised training to map the activations of the hidden 

neurons in the last (topmost) hidden layer to classes or 

predictions. Alternatively, use the weights learned in the 

unsupervised training as initial values for supervised training of a 

traditional but very deep feedforward neural network.

Many variations of this general algorithm are possible, and we will explore several of 

the most popular and useful variations in this book. But in a broad sense, the algorithm 

described here covers much of the application of deep belief nets today.

One of the most fascinating properties of deep belief nets is their remarkable ability 

to generalize beyond the universe of training examples. This is likely because the 

output layer, rather than seeing the raw data, is seeing “universal” patterns in the raw 

data—patterns that because of their universality are likely to reappear in the general 

population.

A closely related property is that deep belief nets are shockingly robust against 

overfitting. Every beginning statistics student learns the importance of using many, many 

more training cases than optimizable parameters. The standard wisdom is that if one 

uses 100 cases to train a model with 50 optimizable parameters, the resulting model will 

learn as much about the noise in the training set as it learns about the legitimate patterns 

and will hence be worthless. But consider the MNIST dataset of handwritten digits. Its 

standard training set has 60,000 training cases and 10,000 independent test cases. One 

can use these 60,000 cases to train a deep belief net that has several million optimizable 

parameters and yet achieve on the order of 1 percent error rate on the test set!

Chapter 1  Introduction
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In all likelihood, the reason for this robustness against overfitting is the fact that 

until the final layer is trained, all learning is unsupervised. During training of the hidden 

layers, the learning algorithm knows nothing about the true class of each training case. 

(Actually, there are some hybrid algorithms that employ limited knowledge of the true 

class, and supervised fine-tuning of the hidden layers is sometimes done, but we’ll put 

off discussion of such algorithms for now.) Because the training algorithm must operate 

without knowing true class membership, it must instead learn to recognize consistent 

patterns in the data. By definition, noise is unlikely to have consistent patterns. Only 

legitimate patterns will appear regularly in the data. This provides incentive for the 

model to learn the actual structure of the data while ignoring random noise.

Chapter 1  Introduction
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CHAPTER 2

Supervised Feedforward 
Networks
Deep belief nets are generally trained in stages. First, one or more (usually more) 

layers are trained with unsupervised algorithms. Rather than seeking to learn class 

memberships or predicted values, the model simply tries to find consistent patterns 

within the independent variables. Only after such patterns have been found does 

training switch to supervised mode. However, because supervised training algorithms 

are easier to understand than the usual unsupervised algorithms, we will begin this 

study of deep belief nets with supervised training.

�Backpropagation of Errors
The fundamental goal of supervised training can be summarized simply: find a set of 

parameters (weights and biases as in Equation 1-2) such that, given an input to the 

neural network, the output of the network is as close as possible to the desired output. To 

find such parameters, we must have a performance criterion that rigorously defines the 

concept of close. We then find parameters that optimize this criterion.

A traditional favorite criterion is the mean squared error. For each training case, 

we sum the squared differences between the desired activation of each output neuron 

and the obtained activation. The mean of squared differences, taken across all training 

cases, has numerous desirable theoretical and practical properties that are outside the 

scope of this text.
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Suppose we have K output neurons numbered 1 through K. For a given training case, 

let tk be the true value for this case, the value that we hope the network will produce, and 

let ok be the output actually obtained. Then the mean squared error (MSE) for this single 

case is given by Equation 2-1. To compute the MSE for the entire training set, sum this 

quantity for all cases and divide by the number of cases.

	
E

K
o t

k

K

k k= -( )
=
å1

1

2

	
(2-1)

Supervised training of a multiple-layer feedforward network amounts to finding 

the weights and bias terms that minimize Equation 2-1. In any numerical minimization 

algorithm, it is of great benefit to be able to efficiently compute the gradient, the partial 

derivatives of the criterion being minimized with respect to each individual parameter. 

Luckily, this is quite easy in this application. We just start at the output layer and work 

backward, repeatedly invoking the chain rule of differentiation.

The activation of output neuron k is just a weighted sum of the activations of the 

neurons in the prior layer. We’ll use the Greek letter delta to designate the derivative of 

the error with respect to this weighted sum coming into output neuron k. Examination 

of Equation 2-1 shows this to simply be as shown in Equation 2-2. In this equation, the 

superscript O means that this signifies the delta of an output neuron.

	 ddk
O

k ko t= -( )2 	 (2-2)

This neuron is receiving a weighted sum of activations from all neurons in the 

prior layer. How can we compute the derivative of the error with respect to the weight 

from neuron i in the prior layer? The simple chain rule says that this is the product of 

the derivative in Equation 2-2 times the derivative of the net input (the weighted sum 

coming into this output neuron) with respect to this weight.

This latter term is trivial. The contribution to the weighted sum from neuron i in 

the prior layer is just the activation of that neuron times the weight connecting it to the 

output neuron k. We shall designate this output weight as wki
O. So, the derivative of that 

weighted sum with respect to wki
O is just the activation of neuron i. This leads us to the 

formula for the partial derivatives of the error with respect to the weights connecting the 

last hidden layer to the output layer. In Equation 2-3 we use the superscript M on a to 
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indicate that it is the activation of a neuron in hidden-layer M, where there are M hidden 

layers numbered from 1 through M.

	

¶¶
¶¶
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(2-3)

There are two complications when we deal with the weights feeding hidden layers. 

Let’s consider the weights leading from hidden-layer M−1 to hidden-layer M, the last 

hidden layer. We ultimately want the partial derivatives of the error with respect to each 

of these weights. As when dealing with the output layer, we’ll split this derivative into the 

product of the derivative of the net input feeding this neuron with respect to the weight 

times the derivative of the error with respect to this neuron’s net input. As before, the 

former term here is trivial; it’s just the activation of the prior neuron feeding through this 

weight. It’s the latter that’s messy.

The first complication is that the outputs are linear: the output activation is just the 

net input to that output neuron. But the hidden neurons are nonlinear. In particular, 

the function that maps the net input of a hidden neuron to its activation is the logistic 

function shown in Equation 1-4. So, the chain rule states that the derivative of the error 

with respect to the net input is the derivative of the error with respect to the output 

times the derivative of the output with respect to the input. Luckily, the derivative of the 

logistic function f (a) is simple, as shown in Equation 2-4.

	
¢( ) = ( ) - ( )( )f a f a f a1 	 (2-4)

The remaining term is more complicated because the output of a neuron in a hidden 

layer feeds into every neuron in the next layer and thus impacts the error through 

every one of those paths. Recall that δk
O is the derivative of the error with respect to 

the weighted sum coming into output neuron k. The contribution to this weighted 

sum going into output neuron k from neuron i in the prior layer M is the activation of 

hidden neuron i times the weight connecting it to output neuron k. So, the impact on 

the derivative of the error from the activation of neuron i that goes through this path is 

δk
O times the connecting weight. Since neuron i impacts the error through all output 

neurons, we must sum these contributions, as shown in Equation 2-5.
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(2-5)
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Pant pant. We are almost there. Our goal, the partial derivative of the error with 

respect to the weight connecting a neuron in hidden-layer M−1 to a neuron in hidden-

layer M, is the product of the three terms which we have already presented, listed here:

•	 The derivative of the net input to the neuron in hidden-layer M with 

respect to the weight in which we are interested

•	 The derivative of the output of this neuron with respect to its net 

input (the derivative of its nonlinear activation function)

•	 The derivative of the error with respect to the output of this neuron

The derivative of the error with respect to wij
M (the weight connecting neuron j in 

layer M−1 to neuron i in layer M) is the product of these three terms. The product of 

the second and third of these terms is given by Equation 2-6, with fʹ(.) being given by 

Equation 2-4. The multiplication is completed in Equation 2-7.
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There is no need to derive the equations for partial derivatives of weights in hidden 

layers prior to the last hidden layer, as the equations are the same, just pushed back one 

layer at a time by successive application of the chain rule. In particular, for some hidden-

layer m<M, we have Equation 2-8 for the partial derivative of the error with respect to the 

weighted sum coming into neuron i in layer m. Equation 2-9 then provides the partial 

derivative of the error with respect to the weight connecting neuron j in hidden-layer 

m−1 to neuron i in hidden-layer m. In this case, there are K neurons in hidden-layer m+1.
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�SoftMax Outputs for Classification
The discussion so far has been restricted to using mean squared error as the measure of 

quality. This is usually an excellent choice when the goal is numeric prediction. But MSE 

is problematic when the goal is classification. In addition to some subtle problems that 

are beyond the scope of this text, there are two obvious problems.

First, the usual and reasonable approach to classification is to use a separate output 

neuron for each class and train the model to attain an output value of one for the correct 

class and zero for all other classes. When a trial case is presented to the model, the class 

decision is whichever output has the highest value. But wouldn’t it be nice if the outputs 

could be interpreted as probabilities? The outputs described so far can even be negative, 

which is not conducive to their use as probabilities!

Figure 2-1 illustrates another serious problem with using MSE as a performance 

criterion for classification. This is a fantasy-easy classification problem. We have two 

predictor variables, X1 and X2, and a single binary target, which is zero for one class and 

one for the other class. This figure is a scatterplot of the training cases. Obviously, we can 

find a linear combination of these two predictors that produces perfect class separation, 

as shown by the dotted line. Since we are trying to discriminate between target values of 

zero and one, setting a prediction threshold of 0.5 seems reasonable.

Chapter 2  Supervised Feedforward Networks
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There are two oddball cases in the lower left of the plot. These are awesome 

members of the 1 class. Unfortunately, a linear model corresponding to the dotted line 

would leave these two outliers quite distant from the truly optimal decision boundary. 

This ideal model would be producing an output of around 3.0 or so, which produces a 

large MSE when compared to the desired prediction of 1.0. When we minimize MSE, the 

resulting model will shift the decision boundary, which as noted earlier is perhaps the 

line for which the output is 0.5, in such a way that these two outliers are not so far out 

in left field. In effect, the model is sacrificing practical performance (classification) to 

improve a type of performance (MSE) that is irrelevant to the task.

An excellent solution to this problem is to make use of the long-standing and 

common method of handling the exact problem just discussed: logistic regression. 

This venerable technique uses a linear combination of variables (plus a bias term) to 

Figure 2-1.  MSE makes for poor classification
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predict the log of the odds ratio of class membership. In the two-class case, let π be 

the probability that a case belongs to a class of interest. Then the odds ratio is π/(1−π). 

Equation 2-10 shows the logistic regression model.

	
log
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(2-10)

So, instead of asking this linear combination to predict either the exact value 1.0 

or 0.0 according to class membership, it is instead being asked to predict a continuous 

value closely associated with a probability. When logistic regression is used for the 

output layer of a multiple-layer feedforward network, the xi terms in Equation 2-10 

would be the activations of the neurons in the final hidden layer.

Equation 2-10 can be generalized to the multiple-class situation easily. We will once 

again assume that the bias terms are absorbed into the weights by appending 1.0 to 

every x vector, similar to what was done in Equation 1-3. Let wk be the vector of weights 

(with the bias appended) for computing the value fed to output neuron k. This value, the 

dot product of the weights and x, is often called the logit and is defined in Equation 2-11. 

In this context, x is the vector of activations of the final hidden layer, with 1.0 appended 

for the bias term.

	 logit w xk k= · 	 (2-11)

Suppose there are K classes. Equation 2-12 gives the model’s estimated probability 

that the case that produced x belongs to class k (the activation of output neuron k). 

These are called SoftMax activations because they are a smoother version of “hard max” 

winner-takes-all classification in which the model simply chooses the class that has 

maximum activation.
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It should be obvious that these output activations are non-negative and sum to one. 

Just as in the prior situation of predicting one or zero and minimizing MSE, we have K 

weight vectors, each of which has m+1 elements, where m is the number of neurons in 

the last hidden layer.
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But wait, astute readers will say, we are now constrained because the output 

activations must sum to one. The implication is that if we know K−1 activations, the 

remaining activation is determined. So, for SoftMax we need only K−1 weight vectors. 

Great observation!

What we can do is assume that the weight vector for the last class is identically zero. 

(Actually, we could choose any class for this distinction and the results would be the 

same. But tradition rules.) In this case, Equation 2-12 takes two forms according to the 

class. For all classes except the last, we use Equation 2-13, and for the last class we use 

Equation 2-14. Note that the 1.0 in the denominator comes from the fact that e0=1.
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The mean squared error optimization criterion was defined in Equation 2-1. We  

now need a different optimization criterion to find good values for the parameters 

(weights and biases) for the SoftMax output layer. The best choice is maximum 

likelihood. Any set of parameters defines, by means of the equations just shown, the 

probability of each possible class given x. The training set is assumed to be random 

draws from a population, each of which provides an x vector and a true class. If we 

were to consider a given set of model parameters as defining the true model, we could 

compute (in a sense best left undiscussed here) the probability of obtaining the set of 

training cases that were observed. So, we find that set of parameters that maximizes this 

probability. In other words, we seek the model that provides the maximum likelihood of 

having obtained the training set in these random draws from the population.

In this particular application, the likelihood of a case is just the probability given by 

the model for the class to which that case belongs. We want a criterion that is summable 

across the training set, so instead of considering the likelihood, which is multiplicative, we 

will use the log likelihood as your criterion. This way we can compute the criterion for the 

entire training set by summing the values for the individual cases in the training set.

Also, to conform to more general forms of the log likelihood function we may 

encounter in more advanced texts, as well as to conform to the expression of the 
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derivative that will soon be discussed, we express the log likelihood of a case in a more 

complex manner. For a given training case, define tk as 1.0 if this case is a member of 

class k, and 0.0 otherwise. Also, define pk as the activation of output neuron k, as given  

by Equation 2-12 or the two equivalent equations, Equation 2-13 and Equation 2-14. 

Then the log of the likelihood corresponding to the model’s parameters is given by 

Equation 2-15. This equation is called the cross entropy, and interested readers might 

wish to can look up this term for some fascinating insights.
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Observe that in the inner summation over classes, every term is zero except the term 

corresponding to the correct class. Thus, the log likelihood is just the log of the model’s 

computed probability for the correct class of the case. Here are some observations about 

the log likelihood:

•	 Because p is less than one, the log likelihood is always negative.

•	 The better the model is at computing the correct class probabilities, 

the larger (closer to zero; smaller magnitude) this quantity will be 

since it is the log probability of the correct class, and a good model 

will provide a large probability for the correct class.

•	 If the model is perfect, meaning that the computed probability of the 

correct class will be 1.0 for every case, the log likelihood will be zero, 

its maximum possible value.

Now comes a bit of almost unbelievable luck. Recall that Equation 2-2 gave us the 

derivative of the MSE with respect to the weighted sum coming into output neuron k. This 

was trivial calculus. Just imagine how horrendously complicated will be the formula for the 

derivative of the log likelihood shown in Equation 2-15, especially given the complexity of 

the probabilities defined in Equation 2-12 and its two equivalents. But here’s the surprise. 

Without going through a considerable number of steps, we can state that this derivative of 

Equation 2-15 for a case is given by Equation 2-16. Yup. It’s that simple.
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Amazingly, except for a factor of two, the delta for a SoftMax output layer and 

maximum likelihood optimization is identical to that for a linear output layer and 

mean-squared-error optimization. All subsequent equations for the gradient hold. So, 

these two different approaches to modeling can be handled with almost the same code.

�Code for Gradient Calculation
All of the routines discussed in this book can be downloaded free of charge from the 

author’s web site. Nonetheless, it is instructive to list many of them in the text so that I 

can explain how they operate.

We begin with a workhorse routine that will be used heavily in supervised training. 

This routine simply computes the dot product of two vectors: the sum of their 

element-wise products. However, it’s shown here because it illustrates an unusual 

approach that can provide a significant speed-up in some hardware. Here it is:

double dotprod (

   int n ,                 // Length of  vectors

   double *vec1 ,   // One of  the vectors to be dotted

   double *vec2 )   // The other vector

{

   int k, m ;

   double sum ;

   sum = 0.0 ;  // Will cumulate dot product here

   k = n / 4 ;     // Divide vector into this many groups of  4

   m = n % 4 ;  // This is the remainder of  that division

   while (k--) {    // Do each group of  4

      sum += *vec1 * *vec2 ;

      sum += *(vec1+1) * *(vec2+1) ;

      sum += *(vec1+2) * *(vec2+2) ;

      sum += *(vec1+3) * *(vec2+3) ;

      vec1 += 4 ;

      vec2 += 4 ;

      }
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   while (m--)      // Do the remainder

      sum += *vec1++ * *vec2++ ;

   return sum ;

}

This subroutine implements a technique called loop unrolling. Many CPUs look 

into the future in their execution stream and try to “work ahead” as much as possible 

by doing things such as starting to fetch data from memory before it’s needed so that 

it’s ready when called for. But for some processors, hitting the end of a loop grinds this 

process to a halt because it does not know which way a branch will go: repeat the loop or 

pass on down. The best modern processors and compilers make effective use of branch 

prediction heuristics to minimize the impact of such pipeline stalls, but some don’t, and 

in any case it can never be perfect. So, fanatics will perform multiple calculations in a 

row before handling loop logic. If the vectors are long and the processor heavily reliant 

on pipelining but not so good at branch prediction, loop unrolling can make a significant 

difference in execution time. It’s always worth trying, and it certainly doesn’t hurt.

The next subroutine is also called often. Many users will want to forego its use and 

instead embed this small amount of code into the calling routines. But by making this 

common operation a separate routine, subsequent code becomes shorter and clearer. 

This routine takes an input vector and computes the activation of a single neuron. 

Normally it would be called with outlin true for the output layer to produce a linear 

output, and false for hidden neurons so that the logistic activation function is used.

void activity (                     // Implement Equation 1-1 on Page 4

   double *input ,                // This neuron's input vector, ninputs long

   double *coefs ,               // Weight vector, ninputs+1 long (bias is at end)

   double *output ,              // Achieved activation of  this neuron

   int ninputs ,                    // Number of  inputs

   int outlin                         // Activation function is identity if  nonzero, else logistic

   )

{

   double sum ;

   sum = dotprod ( ninputs , input , coefs ) ;

   sum += coefs[ninputs] ;       // Bias term
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   if  (outlin)

      *output = sum ;

    else

      *output = 1.0 / (1.0 + exp(-sum)) ;

}

Now let’s step up the complexity a little. The following subroutine executes the entire 

network in that it takes an input vector and computes the activations of all hidden and 

output neurons. The _thr in its name is my own flag that this is a thread-safe version of a 

subroutine that also exists in a not-so-safe form.

Some of the calling parameters deserve explanation because this routine has been 

pulled directly from the much larger and more complex DEEP program. The suffix _all 

used in some names is a flag that means the variable is talking about the entire network, 

as opposed to just part of it. (Later we will see that the entire deep model is subdivided 

into sections.) The array nhid_all holds the number of neurons in each hidden layer. The 

array of pointers weights_opt holds pointers to the weights for each layer. The weights in 

layer i, pointed to by weights_opt[i], consist of nhid_all[i] sets of weights, each set consisting 

of as many elements as there are neurons in the prior layer (or model inputs, for the first 

hidden layer), plus one for the bias. The array hid_act contains pointers to the activation 

vector for each hidden layer, with each vector containing as many elements as there are 

neurons in this layer. These values will be computed and saved for possible subsequent 

use. Finally, final_layer_weights contains ntarg sets of weight vectors for the output layer, 

with each weight vector containing as many elements as there are neurons in the final 

hidden layer, plus one for the bias.

static void trial_thr (

   double *input ,                  // Input vector n_model_inputs long

   int n_all ,                         // Number of  layers, including output, not including input

   int n_model_inputs ,       // Number of  inputs to the model

   double *outputs ,             // Output vector of  the model, ntarg long

   int ntarg ,                         // Number of  outputs

   int *nhid_all ,                   // nhid_all[i] is the number of  hidden neurons in hidden layer i

   double *weights_opt[] ,   // weights_opt[i] points to the weight vector for hidden layer i

   double *hid_act[] ,           // hid_act[i] points to the vector of  activations of  hidden layer i

   double *final_layer_weights , // Weights of  final layer

   int classifier                     // If  nonzero use SoftMax output; else use linear output

   )
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{

   int i, ilayer ;

   double sum ;

   for (ilayer=0 ; ilayer<n_all ; ilayer++) {

      if  (ilayer == 0 && n_all == 1) {                   // Direct input to output? (No hidden)

         for (i=0 ; i<ntarg ; i++)

            activity ( input , final_layer_weights+i*(n_model_inputs+1) ,

                          outputs+i , n_model_inputs , 1 ) ;

         }

      else if  (ilayer == 0) {                                  // First hidden layer?

         for (i=0 ; i<nhid_all[ilayer] ; i++)

            activity ( input , weights_opt[ilayer]+i*(n_model_inputs+1) ,

                          hid_act[ilayer]+i , n_model_inputs , 0 ) ;

         }

      else if  (ilayer < n_all-1) {                           // Subsequent hidden layer?

         for (i=0 ; i<nhid_all[ilayer] ; i++)

            activity ( hid_act[ilayer-1] , weights_opt[ilayer]+i*(nhid_all[ilayer-1]+1) ,

                          hid_act[ilayer]+i , nhid_all[ilayer-1] , 0 );

         }

      else {                                                        // Output layer

         for (i=0 ; i<ntarg ; i++)

            activity ( hid_act[ilayer-1] , final_layer_weights+i*(nhid_all[ilayer-1]+1) ,

                          outputs+i , nhid_all[ilayer-1] , 1 ); 

         }

      }

   if  (classifier) { // Classifier is always SoftMax (Equation 2-12) on Page 15

      sum = 0.0 ;

      for (i=0 ; i<ntarg ; i++) {               // For all outputs

         if  (outputs[i] < 300.0)                // SoftMax can occasionally produce huge outputs

            outputs[i] = exp ( outputs[i] ) ;

         else

            outputs[i] = exp ( 300.0 ) ;

         sum += outputs[i] ;

         }
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      for (i=0 ; i<ntarg ; i++)

         outputs[i] /= sum ;

      }

}

Now we come to the real core of the code, that for computing the optimization 

criterion and gradient. We’ll break up this subroutine into sections and discuss each 

separately. Here are the calling parameters:

double batch_gradient (

   int istart ,                            // Index of  starting case in input matrix

   int istop ,                             // And one past last case

   double *input ,                    // Input matrix; each case is max_neurons long

   double *targets ,                 // Target matrix; each case is ntarg long

   int n_all ,                             // Number of  layers, including output, not including input

   int n_all_weights ,              // Total num of  weights, including final layer and all bias terms

   int n_model_inputs ,           // N of  inputs to the model; Input matrix may have more cols

   double *outputs ,                // Output vector of  the model; used as work vector here

   int ntarg ,                            // Number of  outputs

   int *nhid_all ,                      // nhid_all[i] is the number of  hidden neurons in hidden layer i

   double *weights_opt[] ,       // weights_opt[i] points to the weight vector for hidden layer i

   double *hid_act[] ,              // hid_act[i] points to the vector of  activations of  hidden layer i

   int max_neurons ,              // N of  columns in input matrix; max exceed n_model_inputs

   double *this_delta ,            // Delta for the current layer

   double *prior_delta ,           // And saved for use in the prior (next to be processed) layer

   double **grad_ptr ,             // grad_ptr[i] points to gradient for layer i

   double *final_layer_weights ,   // Weights of  final layer

   double *grad ,                     // All computed gradients, strung out as a single long vector

   int classifier                        // If  nonzero use SoftMax output; else use linear output

   )

Most of the parameters in the calling list have already been discussed, but a few are 

new. This routine is able to be called for subsets of the entire training set, so the starting 

and stopping (one past the last) indices are specified. The gradient, which encompasses 

all layers, is strung out into a single vector, grad, which contains n_all_weights elements. 

Chapter 2  Supervised Feedforward Networks



23

The trickiest parameter is grad_ptr. This contains as many elements as there are layers 

in the model, including the output layer but not including the input. Each element in 

grad_ptr is a pointer to the beginning of the gradient vector (in grad) for the corresponding 

layer. Each gradient vector is a set of subvectors, one for each neuron in the layer. Each 

subvector contains as many elements as there are neurons in the prior layer (or inputs 

for the first hidden layer), plus one for the bias.

The first thing done is to initialize for the cumulation of the gradient and error (or 

negative log likelihood for SoftMax) across the batch of training cases. Then the loop that 

processes each training case in the batch begins. The training dataset may contain more 

columns than the network has inputs, although the inputs will always be together in the 

first columns. So, the pointer to the current training case, dptr, takes this into account. 

The entire network is activated for this case by calling trial_thr, which has already been 

discussed. Then we get a pointer to the target vector that corresponds to this training 

case. If this model is being used for prediction, the target vector may contain any real 

values. But if it is a classifier, in which case a SoftMax output layer will be used, then the 

target vector usually contains 1.0 for the correct class and 0.0 for all other classes.

{

   int i, j, icase, ilayer, nprev, nthis, nnext, imax ;

   double diff, *dptr, error, *targ_ptr, *prevact, *gradptr, delta, *nextcoefs, tmax ;

   for (i=0 ; i<n_all_weights ; i++)       // Zero gradient for summing

      grad[i] = 0.0 ;                               // All layers are strung together here

   error = 0.0 ;                                    // Will cumulate total error here

   for (icase=istart ; icase<istop ; icase++) {

      dptr = input + icase * max_neurons ; // Point to this sample

      trial_thr ( dptr , n_all , n_model_inputs , outputs , ntarg , nhid_all ,

                  weights_opt , hid_act , final_layer_weights , classifier ) ;

      targ_ptr = targets + icase * ntarg ;

The next step is to compute and cumulate the optimization criterion. If the output is 

SoftMax, we find the true class by looking for the largest target value. While doing this, 

we use Equation 2-16 to compute the output delta. The contribution of this case to the 

negative log likelihood is given by Equation 2-15. Recall that the algorithm is minimizing 
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the error but we want to maximize the likelihood, so we flip its sign. If the output is not 

SoftMax, we just cumulate the MSE and compute delta with Equation 2-2.

      if  (classifier) {                // SoftMax

         tmax = -1.e30 ;

         for (i=0 ; i<ntarg ; i++) {   // Find the true class as that having max target

            if  (targ_ptr[i] > tmax) {

               imax = i ;

               tmax = targ_ptr[i] ;

               }

            this_delta[i] = targ_ptr[i] - outputs[i] ; // Neg deriv of  cross entropy wrt input (logit) i

            }

         error -= log ( outputs[imax] + 1.e-30 ) ; // We minimize negative log likelihood

         }

      else {

         for (i=0 ; i<ntarg ; i++) {

            diff  = outputs[i] - targ_ptr[i] ;

            error += diff  * diff  ;

            this_delta[i] = -2.0 * diff  ; // Neg deriv of  squared error wrt input to neuron i

            }

         }

Next we compute the gradient of the output layer, the (negative) partial derivatives 

of the criterion with respect to the weights feeding the output neurons. Here is the code, 

and an explanation will follow:

      if  (n_all == 1) {                                         // No hidden layer

         nprev = n_model_inputs ;                     // Number of  inputs to the output layer

         prevact = input + icase * max_neurons ; // Point to this sample

         }

      else {

         nprev = nhid_all[n_all-2] ;                      // n_all-2 is the last hidden layer

         prevact = hid_act[n_all-2] ;                    // Point to layer feeding the output layer

         }
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      gradptr = grad_ptr[n_all-1] ;       // Point to output gradient in grand gradient vector

      for (i=0 ; i<ntarg ; i++) {              // For all output neurons

         delta = this_delta[i] ;                // Neg deriv of  criterion wrt logit

         for (j=0 ; j<nprev ; j++)

            *gradptr++ += delta * prevact[j] ; // Cumulate for all training cases

         *gradptr++ += delta ;                // Bias activation is always 1

         }

If there is no hidden layer (the total number of layers is one, just the output), then 

we set the number of inputs feeding each output neuron to the number of inputs to the 

model. This does not include the bias, which is handled separately. And for the vector of 

values feeding each output neuron, we just grab the input case. But if there is at least one 

hidden layer, then the number of feeds coming into each output neuron is the number of 

neurons in the last hidden layer, and the feeds are these neurons’ activations.

We set gradptr to point to the start of the output gradient in the grand gradient vector, 

grad.

For each output neuron we get its delta, which was computed in the block of code 

presented just before this one. Then we apply Equation 2-3 to each weight for that output 

neuron. The bias feed is assumed to have a constant value of 1.0, so its gradient term 

does not involve a prior-layer activation.

We’re done with the output gradient, so we get ready to step back one layer by 

setting nnext, the number of neurons in the layer after the one being done, and by setting 

nextcoefs to the coefficient matrix for that next layer.

      nnext = ntarg ;                       // Prepare for moving back one layer

      nextcoefs = final_layer_weights ;

We now process all hidden layers, working backward from the last hidden layer to 

the first. Here is the code that will do this, and a discussion follows:

      for (ilayer=n_all-2 ; ilayer>=0 ; ilayer--) { // For each hidden layer, working backwards

         nthis = nhid_all[ilayer] ;            // Number of  neurons in this hidden layer

         gradptr = grad_ptr[ilayer] ;       // Point to gradient for this layer

         for (i=0 ; i<nthis ; i++) {            // For each neuron in this layer

            delta = 0.0 ;
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            for (j=0 ; j<nnext ; j++)          // Equation 2-5 on Page 11, or sum in Equation 2-6 on Page 12

               delta += this_delta[j] * nextcoefs[j*(nthis+1)+i] ;

            delta *= hid_act[ilayer][i] * (1.0 - hid_act[ilayer][i]) ; // Derivative

            prior_delta[i] = delta ;            // Save it for the next layer back

            if  (ilayer == 0) {                     // First hidden layer?

               prevact = input + icase * max_neurons ; // Point to this sample

               for (j=0 ; j<n_model_inputs ; j++)

                  *gradptr++ += delta * prevact[j] ;

               }

            else {      // There is at least one more hidden layer prior to this one

               prevact = hid_act[ilayer-1] ;

               for (j=0 ; j<nhid_all[ilayer-1] ; j++)

                  *gradptr++ += delta * prevact[j] ;

               }

            *gradptr++ += delta ;  // Bias activation is always 1

            } // For all neurons in this hidden layer

For each layer, we set nthis to the number of neurons in this layer and set gradptr to the 

gradient for this layer. We then process each neuron in this layer. The first step is to sum 

the effect of this neuron on the criterion through every neuron in the next layer. For the 

first pass through the layer loop, when the next layer is the output layer, this is Equation 

2-5 or the sum in Equation 2-6. In subsequent layers, it is the summation shown in 

Equation 2-8. When the summation is complete, we multiply by the derivative of the 

activation function (Equation 2-4) to complete Equation 2-6 or Equation 2-8. This delta 

must be saved in prior_delta because it will be needed for processing the next layer back. 

Of course, this saving is a minor waste when we are working on the first hidden layer 

because then there is no prior layer. But the waste is trivial.

After delta is computed, we complete Equation 2-7 (for the last hidden layer) or 

Equation 2-9 (for all earlier hidden layers) by multiplying by the activations feeding 

the current neuron. If this is the first hidden layer, these “activations” are the inputs to 

the model. Otherwise, they are the activations of the layer feeding the current layer. 

These calculations are wrapped up by handling the weight for the bias. Recall that bias 

activation is always 1.0 by definition.

At this point, all calculations for the current layer are complete. The deltas for the 

current layer were saved in prior_delta, and we now move them to this_delta where they will 

be used in the next pass through the loop that works backward through layers. We set 

Chapter 2  Supervised Feedforward Networks



27

nnext (the number of neurons in the next layer forward) and nextcoefs (their weights) and 

then loop back. This subroutine returns the criterion that will be minimized, either the 

MSE or the negative log likelihood.

      for (i=0 ; i<nthis ; i++)            // These will be delta for the next layer back

         this_delta[i] = prior_delta[i] ;

      nnext = nhid_all[ilayer] ;          // Prepare for the next layer back

      nextcoefs = weights_opt[ilayer] ;

      } // For all layers, working backwards

   } // for all cases

return error ; // MSE or negative log likelihood

�Weight Penalties
There are at least two reasons why weights in the model often tend to become overly 

large, and hence one usually should discourage this effect. First is the fact that inputs to a 

layer may be seriously collinear. For example, suppose we have two inputs and a desired 

output. The cases may look like this:

X1 X2 Y

1 2 3

2 4 6

3 6 9

4 8 12

5 10 15

Suppose our linear combination looks like this:

	 Y aX bX c= + +1 2 	 (2-17)

It is immediately apparent that a=1; b=1; c=0 is a solution that provides exactly 

the outcome we want. But a little thought reveals that there are an infinite number of 

solutions, among which we can find a=–1,999,999,999,997; b=1,000,000,000,000; c=0. 

Collinear variables (which may occur in the raw data, activations of hidden neurons, or 

both) produce enormous instability in most training algorithms. Not good.
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The other reason is that large magnitude weights are often the hallmark of 

overfitting, the process of teaching the model to explain noise in the data in addition 

to legitimate patterns. Suppose the data consists of significant real patterns that are 

contaminated with random noise. As training begins, with weights near zero, the 

algorithm will probably gravitate toward weights that explain the patterns. But as 

training continues and the legitimate patterns become fully explained by the model, the 

algorithm will shift its focus to the noise components, which of course will not repeat 

when the model is presented with data it has not yet seen. To fit the vagaries of random 

noise, weights will tend to grow large. Thus, if we can prevent this increase in weights, we 

will likely create a model that will generalize better than a model that has larger weights 

that enable the model to explain the random noise in the training data.

A simple yet effective method for discouraging large magnitude weights is to add 

the sum of their squares to the optimization criterion. This has at least three benefits, 

listed here:

•	 It clearly accomplishes the task of discouraging large weights because 

we are minimizing the criterion.

•	 The larger a weight becomes, the more impact small changes in 

its weight produce. This, at least intuitively, is better than a linear 

penalty such as absolute value. Large weights incur an enormous 

penalty so that weights are allowed to become modestly large with 

little penalty, but truly large weights become nearly impossible.

•	 The sum of squares penalty is differentiable, meaning that it can be 

incorporated into the gradient easily.

At the risk of seeming overly pedantic, the penalty shown in Equation 2-18 has the 

partial derivative shown in Equation 2-19. PenFac is the user’s specified penalty factor, 

typically quite small, such as 0.001 or so.

	
Penalty PenFac w

i
i= å 2

	
(2-18)

	

¶¶
¶¶

Penalty
w

2 PenFac w
i

i= · ·
	

(2-19)
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To implement this weight penalty, simply add the penalty to the optimization 

criterion and add its derivative to each corresponding element of the gradient vector.

One generally should not include the bias terms in the weight penalty, although 

there may be special situations in which it is necessary. This is because a large bias may 

be needed to compensate for large offsets in the inputs to the network. If you know that 

the inputs will always be centered near zero, then bias penalties may be appropriate.

�Multithreading Gradient Computation
This section is of interest to only those who want to program the relatively complex but 

extremely efficient threaded version of gradient computation. Most modern processors 

contain multiple cores that can execute code simultaneously. Training time can be 

greatly reduced if the expensive process of computing the gradient can be split across 

these multiple cores and run concurrently. The discussion here is directed at Windows 

applications, although programmers working with other platforms can likely adapt the 

basic principles appropriately.

Subroutines launched as a thread take only a single parameter, a (void *). Therefore, 

the programmer must embed all required parameters in a structure and pass a pointer 

to it. The structure used here and the threaded routine are shown next. Note that the 

variable names are identical to those used in the gradient routine just discussed to 

reduce possible confusion.

typedef  struct {

   int istart ;

   int istop ;

   int classifier ;

   int n_all ;

   int n_all_weights ;

   int n_model_inputs ;

   int ntarg ;

   int *nhid_all ;

   int max_neurons ;

   double *input ;

   double *targets ;

   double *outputs ;
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   double **weights_opt ;

   double **hid_act ;

   double *this_delta ;

   double *prior_delta ;

   double **grad_ptr ;

   double *final_layer_weights ;

   double *grad ;

   double error ;

} GRAD_THR_PARAMS ;

static unsigned int __stdcall batch_gradient_wrapper ( LPVOID dp )

{

((GRAD_THR_PARAMS *) dp)->error = batch_gradient (

                           ((GRAD_THR_PARAMS *) dp)->istart ,

                           ((GRAD_THR_PARAMS *) dp)->istop ,

                           ((GRAD_THR_PARAMS *) dp)->input ,

                           ((GRAD_THR_PARAMS *) dp)->targets ,

                           ((GRAD_THR_PARAMS *) dp)->n_all ,

                           ((GRAD_THR_PARAMS *) dp)->n_all_weights ,

                           ((GRAD_THR_PARAMS *) dp)->n_model_inputs ,

                           ((GRAD_THR_PARAMS *) dp)->outputs ,

                           ((GRAD_THR_PARAMS *) dp)->ntarg ,

                           ((GRAD_THR_PARAMS *) dp)->nhid_all ,

                           ((GRAD_THR_PARAMS *) dp)->weights_opt ,

                           ((GRAD_THR_PARAMS *) dp)->hid_act ,

                           ((GRAD_THR_PARAMS *) dp)->max_neurons ,

                           ((GRAD_THR_PARAMS *) dp)->this_delta ,

                           ((GRAD_THR_PARAMS *) dp)->prior_delta ,

                           ((GRAD_THR_PARAMS *) dp)->grad_ptr ,

                           ((GRAD_THR_PARAMS *) dp)->final_layer_weights ,

                           ((GRAD_THR_PARAMS *) dp)->grad ,

                           ((GRAD_THR_PARAMS *) dp)->classifier ) ;

   return 0 ; 

}
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I’ll now show the routine that the user calls, one small section at a time. This routine 

is a member of the Model class, so most of its variables are members of the class rather 

than being passed in its calling list. However, almost without exception, their names 

are identical to the names we’ve been using all along, so there should be no confusion. 

Readers wishing to more or less copy the code, should download it from the author’s 

web site. The only reason for presenting the code in this text is to facilitate longer 

explanations than can be presented in comments within the code. Of necessity, niceties 

such as memory allocation and error checking must be omitted from the text.

The calling list and local variable declarations are shown next. Also, we divide the 

user’s weight penalty factor by the number of weights to make it per weight and hence 

more intuitive.

double Model::gradient_thr (

   int nc ,               // Number of  cases

   double *input ,   // Inputs, nc rows and max_neurons columns; n_model_inputs used

   double *target ,  // Targets, nc rows and ntarg columns

   double *grad     // Concatenated gradient vector which is computed here

   )

{

   int i, j, ilayer, ineuron, ivar, n, istart, istop, n_done, ithread ;

   int n_in_batch, n_threads, ret_val, nin_this_layer ;

   double error, *wptr, *gptr, factor ;

   double*hid_act_ptr[MAX_THREADS][MAX_LAYERS] ;

   double *grad_ptr_ptr[MAX_THREADS][MAX_LAYERS] ;

   double wpen, penalty ;

   char msg[256] ;

   GRAD_THR_PARAMS params[MAX_THREADS] ;

   HANDLE threads[MAX_THREADS] ;

   wpen = TrainParams.wpen / n_all_weights ;

Earlier we referred to grad_ptr as the vector of pointers to the gradient for each layer. 

Here is where we build this vector of pointers.

   gptr = grad ; // This was allocated n_all_weights * max_threads long

   for (ilayer=0 ; ilayer<n_all ; ilayer++) {

      grad_ptr[ilayer] = gptr ;
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      if  (ilayer == 0 && n_all == 1) {                   // Direct input to output? (no hidden layer)

         n = ntarg * (n_model_inputs+1) ;           // This many inputs to each neuron in layer

         gptr += n ;                                               // Not needed, but it illustrates the process

         }

      else if  (ilayer == 0) {                                  // First hidden layer?

         n = nhid_all[ilayer] * (n_model_inputs+1) ;  // This many ins to each neuron in layer

         gptr += n ;

         }

      else if  (ilayer < n_all-1) {                            // Subsequent hidden layer?

         n = nhid_all[ilayer] * (nhid_all[ilayer-1]+1) ;  // This many ins to each neuron in layer

         gptr += n ;

         }

      else

         n = ntarg * (nhid_all[ilayer-1]+1) ;           // Not needed but illustrates the process

      } // For all layers, including output

We now initialize the structure through which parameters will be passed to the 

gradient routine. These are the members that will remain unchanged throughout 

execution of this routine. Many of them are constants. But some of them are work 

vectors, and we need a separate such vector for each thread. They must be allocated 

sufficiently long.

Also note that hid_act and grad_ptr require special treatment because they are arrays 

of pointers to work areas. So, their elements need to be initialized before the pointer 

to the array is placed in the parameter structure. Particularly subtle, grad is allocated 

n_all_weights long times the number of threads, which is max_threads here. If what’s going 

on with it in the following code is not clear, look back at the prior code block, in which 

grad_ptr is built from grad. This array of pointers is copied into the parameter structure, 

with each copy offset by the total number of weights.

   for (i=0 ; i<max_threads ; i++) {

      params[i].input = input ;

      params[i].targets = targets ;

      params[i].n_all = n_all ;

      params[i].n_all_weights = n_all_weights ;

      params[i].n_model_inputs = n_model_inputs ;

      params[i].ntarg = ntarg ;
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      params[i].nhid_all = nhid_all ;

      params[i].max_neurons = max_neurons ;

      params[i].weights_opt = weights_opt ;

      params[i].final_layer_weights = final_layer_weights ;

      params[i].this_delta = this_layer + i * max_neurons ;

      params[i].prior_delta = prior_layer + i * max_neurons ;

      params[i].outputs = outputs + i * ntarg ;

      params[i].grad = grad + i * n_all_weights ;

      for (j=0 ; j<n_all ; j++) { // n_all is the number of  layers, including the output layer

         hid_act_ptr[i][j] = hid_act[j] + i * max_neurons ;

         grad_ptr_ptr[i][j] = grad_ptr[j] + i * n_all_weights ;

         }

      params[i].hid_act = hid_act_ptr[i] ;

      params[i].grad_ptr = grad_ptr_ptr[i] ;

      params[i].classifier = classifier ;

      }

The DEEP program sets an absolute upper limit on the number of threads possible. 

By default, the global variable max_threads is initialized to this value, although the user 

has the option of reducing it. The training set will be divided into as many batches as 

there will be threads running, with each batch beginning with index istart and ending just 

before index istop. The code to start the threads is shown next. The error handling code 

is omitted for clarity; in the unlikely event that beginthreadex() fails, we should close all 

threads that have already begun and return a special error code to the caller to indicate 

that an unexpected and serious error has occurred.

   n_threads = max_threads ;           // Try to use as many as possible

   if  (nc / n_threads < 100)                // But because threads have overhead

      n_threads = 1 ;                           // Avoid using them if  the batch is small

   istart = 0 ;                                      // Batch start = training data start

   n_done = 0 ;                                  // Number of  training cases done in this epoch so far

   for (ithread=0 ; ithread<n_threads ; ithread++) {

      n_in_batch = (nc - n_done) / (n_threads - ithread) ; // Cases left / batches left

      istop = istart + n_in_batch ;        // Stop just before this index
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      params[ithread].istart = istart ;   // Tell the threaded routine which

      params[ithread].istop = istop ;    // training cases to process

      threads[ithread] = (HANDLE) _beginthreadex (

                             NULL , 0 , batch_gradient_wrapper , &params[ithread] , 0 , NULL ) ;

      n_done += n_in_batch ;

      istart = istop ;

      } // For all threads / batches

We now wait for all of these threads to finish, as shown in the code on the next page. 

The timeout parameter, 1200000 milliseconds here, is an important consideration. If 

even one thread is still running when this limit is hit, the process will fail, in which case 

we must return a catastrophic error flag. So, we should be inspired to make this limit 

large. But if it is made too large, the user could be left staring at an unresponsive screen 

for a very long time.

   ret_val = WaitForMultipleObjects ( n_threads , threads , TRUE , 1200000 ) ;

   CloseHandle ( threads[0] ) ;

   for (ithread=1 ; ithread<n_threads ; ithread++) {

      params[0].error += params[ithread].error ;

      for (i=0 ; i<n_all_weights ; i++)

         params[0].grad[i] += params[ithread].grad[i] ;

      CloseHandle ( threads[ithread] ) ;

      }

   factor = 1.0 / (nc * ntarg) ;

   error = factor * params[0].error ;

   for (i=0 ; i<n_all_weights ; i++)

      grad[i] = factor * params[0].grad[i] ;   // Note: grad and params[0].grad are the same!

The previous code illustrates a standard method for pooling results from multiple 

threads. Each thread has its own copy of the scalar error and the vector grad. We simply 

add them all, starting with thread 1, to the values in thread 0. Then we divide by the 

number of cases and the number of targets (output neurons) to normalize results to a 

“per-case, per-output” scale. Of course, the thread handles must be closed.

The final step is to implement weight penalties as described on page 27. This is done 

in two blocks of code. The first block handles all hidden layers. Observe how grad_ptr and 
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weights_opt supply the pointers to the start of the gradient and weights respectively for 

each layer. The user’s weight penalty factor is applied to each gradient but applied to the 

error only when finished to save a bit of time.

Recall that this gradient routine actually computes the negative of the gradient, as we 

are minimizing. So for applying the weight penalty to the gradient terms, we flip the sign 

of Equation 2-19.

This code does one thing of arguable wisdom: it does not include the bias weights in 

the penalty. Some experts argue that because these are just constant offsets, not weights 

applied to inputs coming into a neuron, they should be allowed to take whatever values 

the training algorithm desires. This is good if the inputs to the model may themselves 

have large offsets from zero. But it may also be argued that if bias weights are allowed to 

grow without restraint, the result may be that one or more neurons remain permanently 

switched on or off at near saturation, rendering them useless. In any case, it’s usually a 

moot point if the user simply makes sure that the inputs to the model are well behaved 

(centered reasonably near zero with modest variance and tails that are not obnoxiously 

heavy). I choose to not penalize bias weights because although my inputs are under 

control (standardized if no unsupervised layer, 0-1 if fed by an unsupervised layer), all 

inputs from an unsupervised layer are non-negative and there may be a lot of them. If 

you would prefer to penalize bias weights, just change the < loop test to <= in ivar<nin_

this_layer, and the bias weight, which is last in each neuron’s weight set, will be included 

for both the penalty and the derivative.

   penalty = 0.0 ;

   nin_this_layer = n_model_inputs ;

   for (ilayer=0 ; ilayer<n_all-1 ; ilayer++) { // Do all hidden layers

      for (ineuron=0 ; ineuron<nhid_all[ilay er] ; ineuron++) {

         wptr = weights_opt[ilayer] + ineuron*(nin_this_layer+1) ; // This neuron in this layer

         gptr = grad_ptr[ilayer] + ineuron*(nin_this_layer+1) ;

         for (ivar=0 ; ivar<nin_this_layer ; ivar++) {

            penalty += wptr[ivar] * wptr[ivar] ;

            gptr[ivar] -= 2.0 * wpen * wptr[ivar] ;

            }

         }

      nin_this_layer = nhid_all[ilayer] ;

      }
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   for (ineuron=0 ; ineuron<ntarg ; ineuron++) {

      wptr = final_layer_weights + ineuron * n_final_layer_weights ;

      gptr = grad_ptr[n_all-1] + ineuron * n_final_lay er_weights ;

      for (ivar=0 ; ivar<nin_this_layer ; ivar++) {

         penalty += wptr[ivar] * wptr[ivar] ;

         gptr[ivar] -= 2.0 * wpen * wptr[ivar] ;

         }

      }

   return error + wpen * penalty ;

}

�Gradient Computation with CUDA
Many excellent books have been written on the subject of general CUDA programming; 

this is not one of them. It would be impossible to do justice to such a broad and 

important topic in a few sections of a book whose primary focus is deep belief nets. 

However, we will attempt to satisfy these two goals:

•	 For the at least moderately experienced CUDA programmer, this 

book will present ready-to-use efficient source code, along with 

explanations of its motivation and operation.

•	 For readers with no experience in parallel programming, this book will 

provide an intuitive overview of neural network CUDA programming 

techniques, enough to satisfy curiosity and enable a decision as to 

whether the reader should pursue this fascinating subject.

For the sake of the latter category of readers, I should emphasize that most modern 

NVIDIA GPUs are CUDA-capable, and the CUDA software development kit, available 

for free from the NVIDIA web site, is fast and easy to install. Also, the documentation is 

excellent. So, do not be afraid to tackle this subject; it’s easier than you may think.
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�Basic Architecture
The architecture of a CUDA-enabled display adapter GPU is far too complex to treat in 

detail here. However, so that readers new to CUDA can understand the code that will 

follow, we will present a basic outline of the subject.

A CUDA device runs many threads concurrently, and the programmer needs a 

logical way to address these threads to facilitate communication of data to and from each 

thread. What complicates this process is that the architecture generally looks different 

from the perspective of the hardware and the software. Truly expert programmers who 

strive for optimal performance can devote enormous effort to tuning their program so 

that the software addressing scheme cooperates tightly with the hardware.

Adding to the confusion is the fact that NVIDIA encourages programmers to, as far 

as possible, disregard much of the hardware perspective and design programs to be 

independent of the hardware on which they will be run. For this reason, all of the code 

in this book will take the approach of being hardware-independent, even though this 

means that performance may vary on different generations of CUDA hardware. Experts 

should feel free to tune the code to targets as desired.

From the software perspective, threads are grouped at two levels, a grid of blocks 

and the individual threads within a block. Individual blocks within the grid, as well 

as individual threads within a block, can be addressed in one of three ways, at the 

discretion of the programmer. They can be addressed linearly, from the first (0) 

to the last. Or they can be addressed in two dimensions, with x and y coordinates. 

Finally, blocks and threads can be addressed in three dimensions, with x, y, and z 

coordinates. The choice of addressing scheme, as well as the size of each dimension 

in multidimensional addressing, are and should be (if the programmer is to 

conform to recommendations) independent of hardware issues such as the number 

of multiprocessors on the device and the number of computation cores on each 

multiprocessor.

There is one vital aspect of hardware that must be considered when designing 

the program. The threads in a block are grouped into sets of 32 threads, called warps. 

(This warp size is not guaranteed by nVidia, but it has always been 32, and nVidia 

has implies that for the foreseeable future it will remain at 32.) Every thread in a warp 

is executed simultaneously. The implication is that if a warp contains fewer than 32 

threads that perform useful computation, efficiency suffers. Those unused threads take 

up valuable resources but perform no work. This is almost the only significant hardware 

consideration that will play a role in program design in this text.

Chapter 2  Supervised Feedforward Networks



38

Figure 2-2 illustrates one possible software-defined way of addressing the threads in 

an application. Individual threads are shown only in the upper-left block, although they 

would be duplicated in all blocks.

Figure 2-2.  An example CUDA grid

In the example grid layout shown in Figure 2-2, we have a total of 30 blocks, which 

will be addressed in two dimensions: six rows and five columns. Each block contains 512 

threads, also arranged in two dimensions of 16 rows and 32 columns. The fact that the 

number of columns equals the warp size is just coincidence; this need not be the case. 

But blocks will always be executed with an integer number of warps, whether the design 

specifies this or not. So, for example, suppose the programmer chose to use 513 threads. 

This would be bumped up to 512+32=544 threads in actual execution, with 31 of them 

sitting idle while nevertheless taking up resources.
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�A Simple Example
In the next section, we’ll take up the topic of gradient computation in earnest and 

in a logical order. But first we’ll present the simplest algorithm involved in gradient 

computation: transfer of the “prior” delta vector to the “current” delta vector for each 

case in a batch. On page 27 we saw it done for a single case with the following two trivial 

lines of code:

      for (i=0 ; i<nthis ; i++)            // These will be delta for the next layer back

         this_delta[i] = prior_delta[i] ;

To do this in CUDA, we need two separate routines. One of them is the code that 

runs on the CUDA device, and the other is the host routine that will be called to invoke 

the device routine. Here is the device code:

__global__ void device_move_delta (

   int nhid      // Number of  neurons in the layer just processed

)

{

   int icase, ihid ;

   ihid = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (ihid >= nhid)

      return ;

   icase = blockIdx.y ;

   d_this_delta[icase*nhid+ihid] = d_prior_delta[icase*nhid+ihid] ;

}

The keyword __global__ tells the compiler that this code will run on the CUDA device. 

We pass as a parameter the number of deltas that will need to be moved for each case. 

This is the number of neurons in the layer just processed. Each thread will move a single 

value, the delta for a particular neuron and case.

As is virtually always the case, the device code makes use of several built-in variables. 

In this example, they are as follows:

blockIdx.x: The x coordinate in the grid of the block being executed. 

In Figure 2-2 this would be the column (zero through four because 

there are five columns).
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blockDim.x: The number of threads per block in this application 

because it uses linear thread addressing (which will become 

clear when the host routine is presented). If the application used 

multidimensional thread addressing, this would be the size of the x 

dimension of this block. But with linear thread addressing (and in 

Figure 2-2), this is the total number of threads in each block, 512.

threadIdx.x: The index of the thread being executed because linear 

thread addressing is being used in this application. If the thread 

layout were multidimensional, this would be the x coordinate of 

the thread being executed within the block. But with linear thread 

addressing this would be the linear thread ID (0 through 511 

because there are 512 threads per block) of the thread in the block.

blockIdx.y: The y coordinate of the block being executed.  

In Figure 2-2 this would be the row (zero through five because 

there are six rows).

To understand the addressing used in this small example, suppose we have 64 

threads per block (blockDim.x=64, not the 512 of Figure 2-2), and suppose we have 200 

neurons, meaning that we will need 200 threads for each case, with each thread moving 

a single delta value. Then neurons 0 through 63 will be handled by block 0, neurons 

64–127 by block 1, and so forth. In particular, the neuron handled by a given thread in a 

given block is the block number times the number of threads per block, plus the thread 

number. This leads to the first line of code in the routine shown earlier:

   ihid = blockIdx.x * blockDim.x + threadIdx.x ;

But because there will in general be (ideally just slightly) more threads than neurons 

and the neuron index is used to address neurons within the delta vectors, we must return 

immediately if a thread is assigned to a neuron that does not exist.

Finally, we get the case index as the row in the grid of blocks and use the combination 

of the neuron index and the case index to address the move of a single delta value.
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Astute readers will notice a source of inefficiency in the addressing scheme 

presented earlier. Unless the number of neurons happens to be an exact multiple of 

the number of threads per block, the last block of every row (case) will be incomplete; 

some threads will return immediately without doing any work but will still need to be 

scheduled and take up resources. We could reduce this inefficiency by addressing in the 

following manner:

   index = blockIdx.x * blockDim.x + threadIdx.x ;

   icase = index / nhid ;

   ihid = index % nhid ;

   if  (icase >= ncases)

      return ;

This way, every block except the last is guaranteed to be full. But this would usually 

introduce memory alignment problems that cause even worse inefficiency. Moreover, 

there are at least three reasons why this problem may not be as serious as one might think.

•	 Unused warps within a block are not nearly as problematic as 

unused threads within a warp. The nearly immediate return causes 

completely unused warps to zip in and out of a processor in the blink 

of a gnat’s eye, so their cost is negligible. It’s partially filled warps that 

are the time problem because the entire warp must remain resident, 

even if only a few threads are executing.

•	 These inefficiencies are most pronounced in small tasks, when 

the idle threads are a high percentage of the total task. But in such 

cases, the time taken by the task is likely small relative to the entire 

application. Large tasks, whose time really matters, have only a small 

fraction of their threads idle.

•	 This is the most important reason. It’s easy to think that as long as a 

warp is resident in a multiprocessor, it’s executing. But it may stall 

from any of several causes. The hardware has a limited number of 

pipelines, such as for arithmetic, memory transfers, and so on. Also, 

global memory accesses may cause stalls while waiting for memory 

requests to be serviced. So, having the full number of threads resident 
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and ready to execute will often overburden computational resources 

to the point that they stall anyway. In fact, nVidia’s Best Practices 

Guide says that once you hit an occupancy rate over 50 percent, you 

are at the point of rapidly diminishing returns because of stalls from 

resource scarcity.

Now that we’ve seen the tiny module that runs on the CUDA device, we can examine 

the host routine that invokes it. This code fragment is as follows:

   int warpsize, threads_per_block ;

   dim3 block_launch ;

   threads_per_block = (nhid + warpsize - 1) / warpsize * warpsize ;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize ;

   block_launch.x = (nhid + threads_per_block - 1) / threads_per_block ;

   block_launch.y = ncases ;

   block_launch.z = 1 ;

   device_move_delta <<< block_launch , threads_per_block >>> ( nhid ) ;

   cudaDeviceSynchronize() ;

In this code, dim3 is a built-in vector type that is used when we want to specify a 

multidimensional launch parameter rather than a scalar, and warpsize was earlier set to 

32 in the program. This is the hardware-fixed number of threads in a warp.

The first executed line in the previous code sets threads_per_block equal to the smallest 

number possible to handle all nhid neurons and be an integer multiple of the warp size.

Of course, if there are many neurons, the value just computed may exceed hardware 

or efficiency limits on the number of threads per block, the block size. The next two lines 

set an upper limit on the block size. The exact manner of doing so is not critical as long 

as the following basic precautions are taken:

•	 The final value should be an integer multiple of the warp size. Doing 

otherwise, while legal, guarantees unfilled warps, which is a silly waste.

•	 If the device code has a lot of register use, too many threads per block 

may exceed hardware limits. The register use of the routines in this 

text is small enough that there is a lot of leeway on block size. Having 

four warps, used here, is not even close to problematic.
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•	 If the block size is too small, the hardware limit on the number of 

blocks that can run on each multiprocessor will impose an undue 

restraint on the number of warps eligible to execute, which will under-

utilize the hardware. Again, using a block size of four warps is far from 

problematic on current and near-term foreseeable CUDA hardware.

The x dimension of the grid, block_launch.x, which handles the neuron index, is 

computed as the minimum number of blocks such that we’ll have enough threads to 

handle every neuron. The y dimension is the number of cases, and the z dimension is 

one because we do not process blocks in that third dimension.

Finally, we run the device code with the following lines:

   device_move_delta <<< block_launch , threads_per_block >>> ( nhid ) ;

   cudaDeviceSynchronize() ;

The first line names the device routine, specifies the launch parameters, and 

provides the parameter list (just one variable here). The second line halts execution on 

the host until the device code completes. If this command were not present, the host 

could go on to launch another stage of computation dependent on these results before 

this routine was finished, an obvious disaster.

�Initialization
Many things need to be done before we can begin using the CUDA device to compute 

the gradient whenever it is called upon to do so from the training algorithm. Most 

notably, these include allocating global memory on the device and allocating host 

memory for translating between the host’s double precision and the single-precision 

floats used for most storage on the device. The initialization code is much too long to list 

here, but much of it is redundant, so we’ll discuss only a couple of items. The complete 

CUDA code is available for free download from the author’s web site.

We begin with the complete set of variable declarations. This is unfortunately long, 

but it is handy to have it available for reference as the various routines are discussed. 

Several aspects of these declarations are noteworthy.

•	 They are all declared to reside in the read-only (for device code) 

constant memory space, which has faster access than global 

memory.
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•	 By my own convention, variables that begin with h_ are accessed by 

the host, and variables that begin with d_ are accessed by the device. 

If their names are otherwise identical, the variables will refer to the 

same quantity.

static float *fdata = NULL ;

static int n_hid_weights ;                  // Total number of  hidden weights across all layers

static int n_out_weights ;                  // Total number of  output weights

static float *reduc_fdata = NULL ;

__constant__ int d_ncases ;            // Number of  cases in complete training set

__constant__ int d_n_trn_inputs ;    // Number of  first-layer inputs (training data)

__constant__ int d_ntarg ;                // Number of  targets (output neurons)

static	 int *h_nhid = NULL ;            // Number of  neurons in each of  the hidden layers

__constant__ int *d_nhid ;

static	 float *h_trn_data = NULL ; // Raw training data; ncases by n_trn_inputs

__constant__ float *d_trn_data ;

static	 float *h_targets = NULL ;    // Target data; ncases by ntarg

__constant__ float *d_targets ;

static	 int *h_class = NULL ;          // If  classification (SoftMax), class id is here

__constant__ int *d_class ;

static	 float *hidden_weights = NULL ; // Weight matricies for hidden layer

static	 float **h_whid = NULL ;

__constant__ float **d_whid ;

static	 float *h_wout = NULL ;

__constant__ float *d_wout ; 

static	 double *activations = NULL ; // Activations of  this layer, which we compute

static	 double **h_act = NULL ;   // Array of  pointers to each layer

__constant__ double **d_act ;

static	 double *h_output = NULL ; // Output activations

__constant__ double *d_output ;
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static	 float *h_mse_out = NULL ;

__constant__ float *d_mse_out ;

static	 double *h_this_delta = NULL ; // Delta for current layer

__constant__ double *d_this_delta ;

static	 double *h_prior_delta = NULL ; // Delta for next layer back

__constant__ double *d_prior_delta ;

static	 int h_gradlen ;                 // Length of  complete gradient for a case

__constant__ int d_gradlen ;

static	 float *h_gradient = NULL ;     // Gradient for all layers, including output

__constant__ float *d_gradient ;

static	 float **h_grad_ptr = NULL ;   // Pointers to locations in gradient for each layer

__constant__ float **d_grad_ptr ;

One important memory allocation is that for the hidden-layer weights. (The output 

layer weights are kept separately.) Each layer’s weights are in a separate array, although 

on the device these arrays are contiguous. An array of the pointers to each layer’s weights 

allows fast access.

Here is the code for allocation of hidden-layer weights, and an explanation will 

follow:

   n_hid_weights = 0 ;

   n_prior = n_inputs ;

   for (i=0 ; i<n_layers-1 ; i++) {

      n_hid_weights += nhid[i] * (n_prior + 1) ; // Include bias via +1

      n_prior = nhid[i] ;

      }

   memsize = n_hid_weights * sizeof(float) ;

   cudaMalloc ( (void **) &hidden_weights , (size_t) memsize ) ;

   memsize = (n_layers-1) * sizeof(float *) ;

   cudaMalloc ( (void **) &h_whid , (size_t) memsize ) ;

   cudaMemcpyToSymbol ( d_whid , &h_whid , sizeof(void *) , 0 ,

                                          cudaMemcpyHostToDevice ) ;
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   n_hid_weights = 0 ;

   n_prior = n_inputs ;

   for (i=0 ; i<n_layers-1 ; i++) {

      fptr[i] = hidden_weights + n_hid_weights ;

      n_hid_weights += nhid[i] * (n_prior + 1) ;

      n_prior = nhid[i] ;

      }

   cudaMemcpy ( h_whid , &fptr[0] , (n_layers-1) * sizeof(float *) ,

                          cudaMemcpyHostToDevice ) ;

The first step is to compute the total number of hidden-layer weights and the 

storage space needed for them. The weights will be stored as floats rather than doubles 

to conserve memory. Only quantities that propagate from layer to layer are stored as 

doubles as we do not want rounding errors in them to cumulate. We allocate hidden_

weights to hold the complete set of all network weights.

Next we allocate the small amount of memory for the array that holds the pointers to 

the weights for each layer. There are n_layers total, but this includes the output layer, so 

we subtract one. The cudaMemcpyToSymbol call copies the address of this pointer vector, in 

h_whid, to the location on the device from which it will be accessed by the device routines.

We then fill in this pointer array with the locations within hidden_weights of the 

weights for each layer. The final step is to copy this vector of pointers to the device.

Copying the weights from the training algorithm to the device is not part of 

initialization; it will be done frequently during training. However, as long as we just 

allocated space for the weights, we’ll now show the code for copying trial weights from 

the host to the device.

Within a layer, the weight matrix is kept as the transpose of the weight matrix on the 

host. On the host it is most efficient to have the inputs to each neuron vary the fastest, 

with each neuron having an array of input weights followed by the bias. This allows the 

use of fast dot product routines. But on a CUDA device it is much more efficient to have 

the neurons in the weight matrix vary the fastest, with each input having its own vector 

of weights to the neurons in the layer, and one last such vector for the bias.

The reason for this storage scheme has to do with optimal fetches of data from 

global memory. This will be discussed in more detail when the activation functions are 

presented, but the general reason is that CUDA devices (usually) fetch global memory 

in blocks of 128 bytes, regardless of the size of the memory request. These fetches are 
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most efficient when most or all of the fetched data is immediately used, a process called 

coalescing. We’ll see that making the weights for neurons being processed adjacent in 

memory facilitates good coalescing. Here is the code fragment for copying the weights, 

in hid_weights on the host, to the device:

   float *fptr ;

   fptr = fdata ;

   n_prior = n_inputs ;

   for (ilayer=0 ; ilayer<n_layers-1 ; ilayer++) {

      wptr = hid_weights[ilayer] ;

      for (ivar=0 ; ivar<=n_prior ; ivar++) {

         for (ineuron=0 ; ineuron<nhid[ilayer] ; ineuron++)

            *fptr++ = (float) wptr[ineuron*(n_prior+1)+ivar] ;

         }

      n_prior = nhid[ilayer] ;

      }

   cudaMemcpy ( hidden_weights , fdata , n_hid_weights * sizeof(float) ,

                          cudaMemcpyHostToDevice ) ;

In this code, fdata is a float scratch array already allocated. The layers are processed 

one at a time, with hid_weights being the pointers to the weights as they exist on the host. 

The weights for each layer are transferred to the scratch array with the computed neuron 

changing the fastest, which is the opposite of their storage on the host in which the input 

index changes the fastest. After all layers are done, the array of weights is copied to the 

device. The copying loop uses <= rather than < to include the bias weight.

�Hidden Neuron Activation
The most basic operation in a multiple-layer feedforward network is computing the 

activation of a neuron. This was expressed in Equation 1-1. We simply find the dot 

product of the inputs to the neuron with the weights for this neuron. Recall that the 

bias is implemented as one additional weight with a constant input feed of one. Then 

apply the activation function, the logistic function here, to the dot product. We’ll use 

the x coordinate of each block in the grid to define the neuron being computed, and the 

y coordinate will be the case number of the case. We allow the complete set of training 
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cases to be processed in subsets so that the CUDA computation can be split into groups 

small enough that their processing will not freeze the video display and possibly cause 

Windows to complain with a forced timeout.

The code fragment for launching the neuron activation code is as follows:

   threads_per_block = (nhid + warpsize - 1) / warpsize * warpsize ;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize ;

   block_launch.x = (nhid + threads_per_block - 1) / threads_per_block ;

   block_launch.y = istop - istart ;

   block_launch.z = 1 ;

   device_hidden_activation <<< block_launch , threads_per_block >>>

                                                  ( istart , istop , ilayer ) ;

   cudaDeviceSynchronize() ;

In this code, nhid is the number of neurons in this hidden layer. We’ll use one thread 

for each neuron, so exactly as in the simple example of the previous section, we compute 

the number of threads as the minimum warps sufficient to handle all neurons, set an 

upper limit, and compute the x dimension as the minimum number of blocks needed. 

Again, the y dimension is the number of cases being processed. We are processing the 

training set in groups, with istart being the starting index of the case in this group and istop 

being one past the last case.

The device code is shown here, and a discussion follows:

__global__ void device_hidden_activation (

   int istart ,      // First case in this group

   int istop ,      // One past last case

   int ilayer       // Layer to process

   )

{

   int icase, ihid, i_input, n_inputs, nhid ;

   float *f_inptr, *wptr ;

   double sum, *actptr, *d_inptr ;

   ihid = blockIdx.x * blockDim.x + threadIdx.x ;

   nhid = d_nhid[ilayer] ;
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   if  (ihid >= nhid)

      return ;

   icase = blockIdx.y ;

   wptr = d_whid[ilayer] ;

   actptr = d_act[ilayer] ;

   sum = 0.0 ;

   if  (ilayer == 0) {

      n_inputs = d_n_trn_inputs ;

      f_inptr = d_trn_data + (icase+istart)*n_inputs ;

      for (i_input=0 ; i_input<n_inputs ; i_input++)

         sum += wptr[i_input*nhid+ihid] * f_inptr[i_input] ;

      sum += wptr[n_inputs*nhid+ihid] ; // Bias

      }

   else {

      n_inputs = d_nhid[ilayer-1] ;

      d_inptr = d_act[ilayer-1] + icase*n_inputs ;

      for (i_input=0 ; i_input<n_inputs ; i_input++)

         sum += wptr[i_input*nhid+ihid] * d_inptr[i_input] ;

      sum += wptr[n_inputs*nhid+ihid] ; // Bias

      }

   actptr[icase*nhid+ihid] = 1.0 / (1.0 + __expf(-sum)) ;

}

As is nearly always the case in CUDA coding, the first thing done is to get the index of 

whatever is being processed by the thread, which is a neuron here. Check the upper limit 

for this index, which here is nhid, the number of neurons in this layer. Return immediately 

if we are beyond the limit.

We then get the index of the case in this group, a pointer to the weights for this layer, 

and a pointer to the activation vector for this layer. We’ll be computing the element of 

this vector corresponding to neuron ihid. Initialize the sum (dot product) to zero, double 

precision for accuracy.

If ilayer is zero, this is the first hidden layer, in which case its input vector is a training 

case. Otherwise, the input to this neuron is the vector of activations from the prior 

layer. We process each possibility separately, mainly because the training cases are 
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floats, while the activations are doubles and hence require different pointer types. The 

computation is identical for both possibilities. We just sum the dot product, add in the 

bias term, and apply the activation function.

CUDA experts may wonder why I don’t use some form of reduction to sum the dot 

product. Although I admit that I did not try this approach, preferring the simplicity 

of a direct attack, I doubt that any significant gain would be obtained. The reason is 

that, according to the nVidia profiler, this routine is already limited by stalls because of 

saturation of the arithmetic pipeline from the massive amount of double-precision math 

operations. This algorithm, as implemented, is already getting everything the device has 

to offer in the way of computational power. Besides, in real-life problems the number 

of cases and hidden neurons will be so large that work will already be well distributed 

across computation cores.

There is one vital concept to note in this code. For all of the threads within a warp 

and also often within a block depending on warp scheduling, the only thing that varies 

from thread to thread is ihid, the index of the neuron being computed. This index is 

primarily used to access the weight array in a loop that will be quite large if there are 

many inputs. Thus, it is necessary for this memory access to be as efficient as possible.

CUDA devices access cached global memory in 128-byte chunks. All 128 bytes are 

read in a single expensive operation, even if just one byte is needed! These chunks are 

always aligned on addresses that are multiples of 128 bytes. The CUDA memory allocation 

functions guarantee that the global memory address returned is aligned on such addresses.

Consider the first weight vector in the weight matrix. It is for the first input to the 

neuron, and its elements cover all neurons in the layer being processed. The first thread 

in the first block, ihid=0, will read the four bytes (a float) of the first element in this weight 

vector. Simultaneously, the second thread, ihid=1, will want to read the next four bytes to 

get the next weight, and so on. Together, the 32 threads in the warp will simultaneously 

want to access the first 32*4=128 bytes of the weight vector. Hey, that’s the size of the 

cache chunk. How nice! With a single read from global memory through the cache, the 

device can get the weights needed by all 32 threads. The next warp will get the next 32 

weights in one shot also, and so on. This is called coalescing, and it is a concept utterly 

crucial to effective CUDA programming.

Now consider what would happen if instead of storing the weights with the neuron 

changing the fastest, we stored them as we do in the host, with the inputs changing the 

fastest. Then the first thread would want the first four bytes, meaning that the full 128-

byte cache line would be accessed. Unfortunately, the second thread, which is supposed 

to be operating concurrently with the first thread (all threads in the warp, in fact), would 
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want a weight that is further down the line by a distance equal to four (size of float) times 

the number of inputs, a distance that would be much larger than 128 bytes in any but 

small applications. So, 124 of those 128 bytes read for the first thread are wasted. The 

same is true for all threads in the warp; no sharing at all would be possible. The device 

has limited resources for fetching global memory data, so many threads would stall 

as they wait for their data. This is an enormous issue that must always be taken into 

consideration in program design.

There is one closely related issue not handled in this code, though it’s 

inconsequential in this application. If there are a multiple of 32 neurons, the second row 

of the weight matrix, that for the second input, would also line up exactly on a cache 

address. But if not, the first weight will lie somewhere in the middle of a cache address 

range, which always begins on a multiple of 128 bytes. So to access that weight, thread 

zero will read a chunk of 32 weights, some of which are “below” it in memory and 

hence worthless. Of course, the weights above it in the 128-byte chunk can be used by 

subsequent threads, so the loss is not huge. But when it gets to the end, some weights 

beyond those needed may also be discarded. There is some waste.

The usual way to solve this problem is to allocate enough extra memory at the end 

of each row to bring its length up to a multiple of 128 bytes. This way, each row (input 

for the weight matrix) is guaranteed to start at a cache address boundary, ensuring 

that a single global read will fetch all weights for an entire warp. The price paid is 

increased memory use on the device, an occasional deal killer, and somewhat increased 

complexity of the code.

I tried that and was surprised to see that it made no measurable difference in 

execution speed. The answer came when I ran the code under the nVidia profiler. It 

turns out that the limiting factor is arithmetic. Between the fact that multiplication and 

addition are needed to compute addresses within the weight vector and the cumulation 

of the dot product is in double precision, the arithmetic pipeline runs at nearly 100 

percent capacity and is the overwhelming reason for stalls. The few additional global 

memory accesses, though expensive, are completely hidden by the arithmetic pipeline. 

They happen at their leisure while threads are waiting their turn for math.

Just so that the reader can see an example of what I am talking about when I refer 

to padding the weight matrix rows, I do this later when restricted Boltzmann machines 

are presented. But for the multiple-layer feedforward network (MLFN) code, I take the 

simple approach of refraining from padding in order to keep the code clear and memory 

requirements as small as possible. This apparently has a negligible impact on speed, 

and it does save valuable memory space on the device. Of course, it would be a useful 
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exercise for the reader to modify the code for row padding. After studying the restricted 

Boltzmann machine code in the next chapter, the method for doing this modification 

should be clear.

�Output Neuron Activation
The code for computing output activation is so similar to that for hidden neuron activation 

that it’s almost not worth listing here. But to clarify a couple of key points, here it is:

__global__ void device_output_activation (

   int istart ,          // First case in this batch

   int n_inputs ,    // Number of  inputs to the output layer, not counting bias

   int ilayer            // Hidden layer which feeds the output layer

   )

{

   int icase, iout, i_input ;

   double sum, *inptr ;

   iout = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (iout >= d_ntarg)

      return ;

   icase = blockIdx.y ;

   inptr = d_act[ilayer] + icase * n_inputs ;

   sum = 0.0 ;

   for (i_input=0 ; i_input<n_inputs ; i_input++)

      sum += d_wout[i_input*d_ntarg+iout] * inptr[i_input] ;

   sum += d_wout[n_inputs*d_ntarg+iout] ; // Bias

   d_output[(icase+istart)*d_ntarg+iout] = sum ;

}

The biggest difference is that in the last line we incorporate istart so that we can 

save the outputs for all of the training cases rather than just saving result for the current 

subset of the training set. This facilitates fast final processing, will be seen later.

Chapter 2  Supervised Feedforward Networks



53

Also, the input to the output layer will always be the activations of a hidden layer, so 

we get them from d_act.

�SoftMax Output
The SoftMax modification of the outputs employs Equation 2-12. The code is shown 

here, and the fragment for invoking it follows:

__global__ void device_softmax (

   int istart , // First case in this batch

   int istop    // One past last case

   )

{

   int icase, iout ;

   double *outptr, sum ;

   icase = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (icase >= istop - istart)

      return ;

   outptr = d_output + (icase + istart) * d_ntarg ; // Output vector for this case

   sum = 0.0 ;

   for (iout=0 ; iout<d_ntarg ; iout++) {

      if  (outptr[iout] < 300.0)

         outptr[iout] = __expf  ( outptr[iout] ) ;

      else

         outptr[iout] = __expf  ( 300.0 ) ;

      sum += outptr[iout] ;

      }

   for (iout=0 ; iout<d_ntarg ; iout++)

      outptr[iout] /= sum ;

}

------------------------------------------------------------------------------------------

   n = istop - istart ; // Number of  elements in training subset

   threads_per_block = (n + warpsize - 1) / warpsize * warpsize ;
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   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize ;

   blocks_per_grid = (n + threads_per_block - 1) / threads_per_block ;

   device_softmax <<< blocks_per_grid , threads_per_block >>> ( istart , istop ) ;

   cudaDeviceSynchronize() ;

This code processes the istart-to-istop subset of the training set. Each thread handles a 

single case, and the thread index is the offset within this subset of the case to be processed.

Observe that outptr, the pointer to the output vector for this case, incorporates istart, 

the index in the training set of the start of the subset. This is because although the 

training set is processed in subsets, the predicted outputs for all training cases are saved 

as they are computed.

Checking the value of each output before it is exponentiated is critical. In 

pathological situations, computed outputs can occasionally be large enough such 

that their exponentiated value overflows floating-point representation. If this were to 

happen, the result would be a non-number, and further operations on such values would 

propagate the non-number status. This leads to much ugliness.

Invocation of this device code is slightly different in this routine than in prior 

routines. Previously, the block launch parameter was multidimensional, so it was 

declared as dim3 type, and we specified x, y, and z values. But in this application, thread 

assignment is by case only, not case and neuron. So, the block identifier needs to have 

only one dimension. Thus, we declare it as an integer and specify that integer in the 

launch, just as we have been doing with the thread parameter.

�Output Delta
The routine for computing the output delta (Equation 2-2) appears next, and the 

fragment for its invocation follows:

__global__ void device_output_delta (

   int istart ,     // First case in this batch

   int istop ,     // One past last case

   int ntarg      // Number of  targets (outputs)

   )

{

   int icase, iout ;
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   iout = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (iout >= d_ntarg)

      return ;

   icase = blockIdx.y ;

   d_this_delta[icase*ntarg+iout] = 2.0 * (d_targets[(icase+istart)*ntarg+iout] -

                                                                d_output[(ic ase+istart)*ntarg+iout]) ;

}

------------------------------------

   threads_per_block = (ntarg + warpsize - 1) / warpsize * warpsize ;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize ;

   block_launch.x = (ntarg + threads_per_block - 1) / threads_per_block ;

   block_launch.y = istop - istart ;

   block_launch.z = 1 ;

   device_output_delta <<< block_launch, threads_per_block >>> ( istart , istop , ntarg );

   cudaDeviceSynchronize() ;

First, note that the indices for the targets and outputs incorporate istart because they 

are all stored, while deltas are saved for only the subset.

There is one gotcha to be aware of. Usually there are few outputs, perhaps just one, 

which results in numerous idle threads in each warp. Hence, one might be tempted to 

reverse identities and use the thread index for the case and blockIdx.y for the output. But 

delta, the targets, and the outputs are all stored with the output changing fastest. So if 

there were numerous outputs, reversing identities would cause massive memory stalls, 

as discussed on page 50.

�Output Gradient
The code for computing the output gradient is slightly more complex than we’ve seen before 

because the block layout is fully three-dimensional. We’ll implement Equation 2-3. It might be 

helpful to turn back to page 31-32 to review how grad_ptr is constructed. Each element of this 

array is a pointer to the concatenated gradient vector for a layer. The device code is as follows:

__global__ void device_output_gradient (

   int nc ,         // Number of  cases in batch

   int ilayer      // Hidden layer which feeds the output layer

   )
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{

   int icase, iout, ihid, nhid ;

   float *gptr ;

   double input ;

   ihid = blockIdx.x * blockDim.x + threadIdx.x ;

   nhid = d_nhid[ilayer] ;       // Neurons in last hidden layer

   icase = blockIdx.y ;

   if  (ihid > nhid)

      return ;

   else if  (ihid < nhid)

      input = d_act[ilayer][icase*nhid+ihid] ;

   else

      input = 1.0 ; // Bias

   iout = blockIdx.z ;

   gptr = d_grad_ptr[ilayer+1] + icase * d_gradlen ; // Gradient of  output layer

   gptr[iout*(nhid+1)+ihid] = d_this_delta[icase*d_ntarg+iout] * input ;

}

This code is highly instructive in how to efficiently assign thread identities. Please 

review the discussion of memory coalescing on page 50 if needed. We could let the 

thread index be the case, the output neuron, or the neuron in the last hidden layer that 

feeds the output layer. Look at the last line of the routine. If the thread index were the 

case, accesses to d_this_delta would be done in potentially large strides throughout each 

warp as each increment of icase for the threads running parallel in the warp increments 

the memory address by the number of outputs, d_ntarg. No good. And if the thread index 

were the output, writes through gptr in the last line would stride by nhid+1. Also bad. But 

ihid is used for memory access in only two places: for getting the prior layer’s activity d_act 

and for writing the gradient in the last line. Bingo. In both cases, the memory locations 

are adjacent, so it’s a no-brainer; both of these memory accesses are coalesced or close 

to it, and all other memory accesses in a warp are duplicates. Then it’s a toss-up for 

which of the other two to assign to the y and z block indices.
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The only item of note in this code is the three-way decision: if the hidden neuron 

index exceeds the number of neurons, we are out of range, so return immediately. In the 

most common case we are getting the activation of a neuron. But if this thread handles 

the bias term, set the “input” to the constant 1.0.

The launch code shown here is straightforward. Just note that we have nhid+1 threads 

because thread nhid handles the weight for the bias.

   threads_per_block = (nhid + 1 + warpsize - 1) / warpsize * warpsize ;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize ;

   block_launch.x = (nhid + 1 + threads_per_block - 1) / threads_per_block ;

   block_launch.y = nc ;

   block_launch.z = ntarg ;

   device_output_gradient <<< block_launch , threads_per_block >>> ( nc , ilayer ) ;

   cudaDeviceSynchronize() ; 

�Gradient of the First Hidden Layer
We now come to the most complex algorithm shown so far. Let’s jump right in with the 

code and walk through it after. Please be sure that you fully understand the code for the 

output gradient, shown in the prior section. This code is an extension of that algorithm.

__global__ void device_first_hidden_gradient (

   int istart ,           // First case in this batch

   int istop ,            // One past last case

   int only_hidden  // Is this the only hidden layer?

   )

{

   int j, icase, iin, ihid, nhid, ninp1, n_next ;

   float *gptr, *next_weights, input ;

   double *delta_ptr, this_act, delta ;

   iin = blockIdx.x * blockDim.x + threadIdx.x ;

   icase = blockIdx.y ;

   if  (iin > d_n_trn_inputs)

      return ;
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   else if  (iin < d_n_trn_inputs)

      input = d_trn_data[(icase+istart)*d_n_trn_inputs+iin] ; // Feed coming into this layer

   else

      input = 1.0f  ;                             // Bias

   ihid = blockIdx.z ;

   nhid = d_nhid[0] ;                         // Neurons in this hidden layer

   ninp1 = d_n_trn_inputs + 1 ;       // We mustn't forget the bias

   if  (only_hidden) {                         // Is the next layer the output or another hidden?

      n_next = d_ntarg ;

      next_weights = d_wout + ihid * n_next ;

      }

   else {

      n_next = d_nhid[1] ;

      next_weights = d_whid[1] + ihid * n_next;

      }

   delta_ptr = d_this_delta + icase * n_next ; // Delta for this case

   delta = 0.0 ;                                                  // Sum for Equation 2-8

   for (j=0 ; j<n_next ; j++)

      delta += delta_ptr[j] * next_weights[j] ;

   this_act = d_act[0][icase*nhid+ihid] ;          // Complete Equation 2-8

   delta *= this_act * (1.0 - this_act) ;             // Equation 2-4

   gptr = d_grad_ptr[0] + icase * d_gradlen ;  // Gradient of  first hidden layer

   gptr[ihid*ninp1+iin] = delta * input ;             // Equation 2-9

}

The first third of this code is closely related to the output gradient code. There, the 

thread index was the hidden neuron feeding the output. Here, by analogy, the thread index 

is the input feeding this first layer. The case in this subset is the y dimension of the block. 

Still by analogy, we make a three-way choice. If the thread index exceeds the number of 

inputs, we are out of range and must immediately return. If it is less than the number of 

inputs, it is an input. And if it equals the number of inputs, then this thread handles the bias, 

so we set the “input” to 1.0, exactly as before. Still by analogy, the z dimension of the block is 

the hidden neuron in this layer, just as before this dimension was the output neuron.
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A difference we now encounter is that this first hidden layer may be the only hidden 

layer, in which case it feeds the output. Or there may be one or more subsequent hidden 

layers, in which case this layer feeds that next hidden layer. We find the number of 

neurons in the layer being fed by this layer, either the output or the next hidden layer.  

We also get a pointer to the weights going to that next layer.

This “next layer” information is used to compute the summation in Equation 2-8. 

This equation is completed by multiplying by the derivative of the activation function, 

given by Equation 2-4.

The final step is to get the pointer to the gradient for this first hidden layer (index 

0 in grad_ptr), offset it for this case in the subset being processed, and store the result of 

Equation 2-9.

The concept of memory coalescing is important enough to again analyze the 

situation here, exactly as was done for the output gradient. The thread index is iin, the 

input index. Observe that this index is used for memory access twice: once for getting 

this input from the training data and once for storing the element of the gradient 

computed by the thread. In both cases, increments of iin refer to successive memory 

locations. Thus, memory accesses will be coalesced, except at the ends if these arrays 

do not start at multiple of the 128-byte cache line. But as pointed out before, the effect of 

such a slight mismatch is negligible when the limiting factor is the arithmetic pipeline.

We end this section with the code fragment used to launch this routine. It is nearly 

identical to code shown before, so no special explanation is needed.

   threads_per_block = (nin + 1 + warpsize - 1) / warpsize * warpsize ;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize ;

   block_launch.x = (nin + 1 + threads_per_block - 1) / threads_per_block ; // Include bias

   block_launch.y = istop - istart ;

   block_launch.z = nhid ;

   device_first_hidden_gradient <<< block_launch , threads_per_block >>>

                                                        ( istart , istop , only_hidden ) ;

   cudaDeviceSynchronize() ; 
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�Gradient of Subsequent Hidden Layers
This algorithm computes the gradient for any hidden layer other than the first. It is 

similar to the algorithm for the first hidden layer. However, there are enough differences 

to make coding it separately worthwhile.

__global__ void device_subsequent_hidden_gradient (

   int nc ,               // Number of  cases in subset

   int ilayer ,          // Hidden layer being processed

   int last_hidden  // Is this the last hidden layer?

   )

{

   int j, icase, iin, ihid, nhid, nin, ninp1, n_nex t ;

   float *gptr, *next_weights ;

   double *delta_ptr, *prior_delta_ptr, this_act, delta, input ;

   iin = blockIdx.x * blockDim.x + threadIdx.x ;

   icase = blockIdx.y ;

   nin = d_nhid[ilayer-1] ;    // Number of  inputs to each neuron in this layer

   if  (iin > nin)

      return ;

   else if  (iin < nin)

      input = d_act[ilayer-1][icase*nin+iin] ;

   else

      input = 1.0 ;                  // Bias

   ihid = blockIdx.z ;

   nhid = d_nhid[ilayer] ;     // Neurons in this hidden layer

   ninp1 = nin + 1 ;              // We mustn't forget the bias, so nin+1

   if  (last_hidden) {

      n_next = d_ntarg ;

      next_weights = d_wout + ihid * n_next ;

      }

   else {

      n_next = d_nhid[ilayer+1] ;

      next_weights = d_whid[ilayer+1] + ihid * n_next ;

      }
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// Pointer to delta coming from the next layer, which was just done

   delta_ptr = d_this_delta + icase * n_next ;

// Save delta for the next layer done, one layer back

   prior_delta_ptr = d_prior_delta + icase * nhid ; 

   delta = 0.0 ;                                                         // Sum for Equation 2-8

   for (j=0 ; j<n_next ; j++)

      delta += delta_ptr[j] * next_weights[j] ;

   this_act = d_act[ilayer][icase*nhid+ihid] ;           // Complete Equation 2-8

   delta *= this_act * (1.0 - this_act) ;                     // Equation 2-4

   prior_delta_ptr[ihid] = delta ;                               // Save it for the next layer back

   gptr = d_grad_ptr[ilayer] + icase * d_gradlen ;   // Gradient of  this hidden layer

   gptr[ihid*ninp1+iin] = delta * input ;

}

We’ll zip through this quickly because of the many similarities with the first hidden-

layer gradient. As before, the thread index is iin, the index of the input to this layer, which 

was a training case for the first hidden layer but is a neuron for this subsequent hidden 

layer. The y index of the block is the case being processed, and the z index is the neuron 

under consideration. We compare iin to the number of inputs and either return (or get) a 

prior-layer activation or use the constant 1.0 for the bias term.

Also, as we did for the first hidden layer, we inquire as to the next layer; is it the 

output layer or yet another hidden layer? We find the number of neurons there and get a 

pointer to the weights connecting to it. Then we compute the sum for Equation 2-8 and 

multiply by the derivative of the activation function. But unlike for the first hidden layer, 

we must now save the delta vector for this layer because we will need it when we process 

the next layer back.

It’s worth noting that once again by using the input index iin as the thread index we 

have good memory coalescing. I’ll leave it to the reader to confirm that both memory 

references with iin are adjacent.
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There is one more little bit of device code associated with computing the gradient 

for hidden layers other than the first. When we computed delta in the previous code, 

we saved it in d_prior_data. Every time we move back one layer we need to transfer those 

deltas to d_this_delta for use in summing Equation 2-8. Here is the routine for doing so, 

followed by the code fragment for launching these two routines:

__global__ void device_move_delta (

   int nhid // Number of  neurons in the layer just processed

   )

{

   int icase, ihid ;

   ihid = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (ihid >= nhid)

      return ;

   icase = blockIdx.y ;

   d_this_delta[icase*nhid+ihid] = d_prior_delta[icase*nhid+ihid] ;

}

   threads_per_block = (nhid_prior + 1 + warpsize - 1) / warpsize * warpsize ;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize ;

   block_launch.x = (nhid_prior + 1 + threads_per_block - 1) / threads_per_block ;

   block_launch.y = nc ;

   block_launch.z = nhid_this ;

   device_subsequent_hidden_gradient <<< block_launch , threads_per_block >>>

                                                                     ( nc , ilayer , last_hidden ) ;

   cudaDeviceSynchronize() ;

   threads_per_block = (nhid_this + warpsize - 1) / warpsize * warpsize ;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize ;

   block_launch.x = (nhid_this + threads_per_block - 1) / threads_per_block ;

   block_launch.y = nc ;

   block_launch.z = 1 ;

   device_move_delta <<< block_launch , threads_per_block >>> ( nhid_this ) ;

   cudaDeviceSynchronize() ; 
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�Fetching the Gradient
We’ve seen how to compute the gradient for the output layer, the first hidden layer, and 

other hidden layers. Now we explore how to retrieve the gradient from the CUDA device 

so that the training routine running on the host computer can use it.

Recall that for each case the gradient is strung out as one long vector, with one 

gradient vector for each case. We perform the fetching operation in two steps. First we 

use the device to sum the contribution of each case into the vector for the first case, and 

then we copy this sum to the host.

There is no good reason to employ a sophisticated algorithm such as reduction for 

the summing because the act of summing and fetching the gradient is a tiny fraction of 

the total gradient compute time. Even a huge improvement in its speed would contribute 

little to the overall speed of the application. Moreover, in all cases of practical interest, 

the gradient vector is huge. Consider, for example, the MNIST dataset with 784 inputs. 

If the first hidden layer has 500 neurons, we have 500*(784+1)=392500 elements in that 

layer’s gradient alone. This allows ample opportunity for parallel operation. Here is the 

gradient-fetching code:

__global__ void device_fetch_gradient (

   int nc         // Number of  cases in batch

   )

{

   int index, icase ;

   float *gptr ;

   double sum ;

   index = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (index >= d_gradlen)

      return ;

   sum = 0.0 ;

   gptr = d_gradient + index ;

   for (icase=0 ; icase<nc ; icase++) // For all cases in this batch

      sum += gptr[icase*d_gradlen] ;

   *gptr = sum ;

}
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Notice that here, as in all other routines, memory accesses are well coalesced, and 

perfectly so when d_gradlen happens to be a multiple of 128 bytes. This is because all memory 

access is through gptr, and this pointer is incremented by the thread index, ensuring that 

reads and writes by adjacent threads in a warp are reading and writing adjacent memory.

Also notice that the gradient is single precision to save space and computation time, 

but the summation is done in double precision to preserve significant digits when the 

magnitudes of summands differ by large amounts. The sum is rounded back to single 

precision when complete.

Here is the code for launching this routine and fetching the gradient:

int cuda_fetch_gradient (

   int nc ,                // Number of  cases in batch

   double *grad      // Gradient sum output here

   )

{

   int i, warpsize, blocks_per_grid, threads_per_block ;

   char msg[256] ;

   warpsize = deviceProp.warpSize ;      // Threads per warp, likely 32 well into the future

   threads_per_block = (h_gradlen + warpsize - 1) / warpsize * warpsize ;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize ;

   blocks_per_grid = (h_gradlen + threads_per_block - 1) / threads_per_block ;

   device_fetch_gradient <<< blocks_per_grid , threads_per_block >>> ( nc ) ;

   cudaDeviceSynchronize() ;

   cudaMemcpy ( fdata , h_gradient , h_gradlen * sizeof(float) ,

                          cudaMemcpyDeviceToHost ) ;

   for (i=0 ; i<h_gradlen ; i++)

      grad[i] += fdata[i] ;

   return 0 ;

}
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The launch parameters are computed in the usual way, ensuring the minimum 

number of blocks needed to handle all gradient elements. Then we launch the device 

routine, wait for it to finish, and copy the summed gradient to the host. The variable fdata 

is a static float array that was already allocated for multiple uses.

The final step is to sum the gradient for this subset of the training set into the host’s 

gradient vector.

One subtle point about this code should be of interest to many readers. We call 

cudaDeviceSynchronize() in order to halt host execution until the device is finished with 

the task. In reality, this is not necessary because cudaMemcpy() blocks execution until the 

device is finished. Still, I make it a habit to insert the redundant cudaDeviceSynchronize() 

to make profiling more informative. If that call were not present, the runtime API call 

summary would lump device execution time in with memory copy time because we 

sit in the copying routine while the device runs. By synchronizing before copying, the 

individual times (execution and copy) are displayed correctly.

�Mean Squared Error by Reduction
This section presents a fascinating and powerful algorithm for rapid parallel processing 

of long arrays. We need such an algorithm for computing the mean squared error of the 

model’s predictions. Even though the training set was processed in subsets and the MSE 

could have been computed for each subset and summed, it turns out that it’s faster to save 

them all and then compute the MSE at once with a very efficient algorithm. Moreover, it is 

always good to preserve the complete set of all predictions for post-training analysis.

The mean squared error is defined as the mean across all training cases and outputs 

of the squared difference between the predicted values and the actual values of the 

target. To make it possible to illustrate the process of computing the sum of these terms, 

we assume a small number of terms, just 59. Figure 2-3 shows the indices of these terms, 

laid out in an arrangement that will help to make the algorithm clear.
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In this example, we’ll assume that the algorithm will employ three blocks (single 

rows) and eight threads (columns) per block. Naturally, in a real application there will 

be many blocks and a multiple of 32 threads per block. We will also soon see that the 

number of threads per block must be a power of two.

The algorithm has three major steps. In the first step, partial sums are cumulated in 

the upper set of number of blocks times threads per block threads, which is 3*8=24 here. 

The sums are taken in steps of this product. So, the entry in location 0 would become 

the sum of the values in locations 0, 24, and 48. We may run out of data, which is fine. 

The sums do not all need to have the same number of terms. For example, the entry 

in location 11 would become the sum of the values in locations 11 and 35 because there 

is no data in location 59. When this first step is complete, all of the data that we need will 

be in the first 24 locations.

The second step sums the columns of each row, leaving the partial sums in the first 

column. This is done in substeps, cutting the number of partial sums in half each time 

by summing two values. In the first substep, the value in location 0 will have the value 

in location 4 added to it. Similarly, we have (in ideally clear notation) the following:

1 += 5

2 += 6

3 += 7

8 += 12

and so forth through

19 += 23

Figure 2-3.  Fifty-nine cases to be processed by reduction
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This operation is repeated in the next substep.

0 += 2

1 += 3

8 += 10

9 += 11

16 += 18

17 += 19

One more repetition completes the second step.

0 += 1

8 += 9

16 += 17

At this point we have just three partial sums, one for each of the three blocks. Some 

implementations do the final sum on the device, but I chose to do it on the host, which is 

just as fast and is easier.

The device code for implementing this algorithm is as follows:

#define REDUC_THREADS 256

#define REDUC_BLOCKS 64

__global__ void device_mse ()

{

   __shared__ double partial_mse[REDUC_THREADS] ;

   int i, index ;

   unsigned int n ;

   double diff, sum_mse ;

   index = threadIdx.x ;

   n = d_ncases * d_ntarg ; // Number of  components; cases times targets (outputs)

   sum_mse = 0.0 ;

   for (i=blockIdx.x*blockDim.x+index ; i<n ; i+=blockDim.x*gridDim.x) {

      diff  = d_output[i] - d_targets[i] ;

      sum_mse += diff  * diff  ;

      }
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   partial_mse[index] = sum_mse ;

   __syncthreads() ;

   for (i=blockDim.x>>1 ; i ; i>>=1) {

      if  (index < i)

         partial_mse[index] += partial_mse[index+i] ;

      __syncthreads() ;

      }

   if  (index == 0)

      d_mse_out[blockIdx.x] = partial_mse[0] ; 

}

The shared declaration at the top of this code allocates extremely fast memory that is 

shared among all threads in a block. A separate allocation exists for each block, and they 

are invisible to one another.

The thread index threadIdx.x will range from 0 through one less than the number of 

threads per block, REDUC_THREADS.

The total number of elements (squared differences between the output and the true 

value) is n. The cumulation is done in double precision to avoid loss of significant digits 

when the components greatly differ in magnitude.

The first loop executes the first step described previously. Each thread steps through 

the number of blocks times threads per block elements. The former is gridDim.x, and the 

latter is blockDim.x. When this loop is complete, the sum is placed in the shared memory 

area corresponding to this thread. Recall that each block has its own private copy of 

shared memory, so there is no interference across blocks.

We then execute the synchthreads() function. When a thread calls this function, the 

thread halts its execution at that point until all threads in the block reach that same 

point. The execution scheduler in the device can (and does) run warps in undefined 

order within a resident block, and in the next step we will access the shared memory 

computed in this first step. To ensure that the required information is available and 

correct, we must wait until all threads finish their computation of the first step.

The second step does the repeated “cut partial sums in half” algorithm previously 

described. In the first pass through the loop, a column in the right half of the block (when 

visualized as in Figure 2-3) is added to a column in the left half. Again, a call to syncthreads() 

is needed to ensure that data needed for the next pass through the loop will be available. 

This merging of pairs of partial sums continues until it is down to one column.

Chapter 2  Supervised Feedforward Networks



69

After that step is complete, the sum of each block (row in the figure) will be in the first 

column, which is partial_mse[0] of that block. We store it in an array dedicated to the block 

sums. This array was allocated during initialization. The code shown previously uses 

thread 0 to do this store, but actually it could be any thread because the shared memory 

partial_mse is the same for all threads in the block. Of course, we have to pick one and only 

one to avoid an attempt at multiple threads in a block trying to store to the same location!

The host code for performing the MSE computation is shown here:

int cuda_mse (

   int n ,                 // Number of  values; ncases * ntarg

   double *mse      // Computed mse criterion

   )

{

   int i, blocks_per_grid ;

   double sum ;

   char msg[256] ;

   blocks_per_grid = (n + REDUC_THREADS - 1) / REDUC_THREADS ;

   if  (blocks_per_grid > REDUC_BLOCKS)

      blocks_per_grid = REDUC_BLOCKS ;

   device_mse <<< blocks_per_grid , REDUC_THREADS >>> () ;

   cudaDeviceSynchronize() ;

   cudaMemcpy ( reduc_fdata , h_mse_out , blocks_per_grid * sizeof(float) ,

                          cudaMemcpyDeviceToHost ) ;

   sum = 0.0 ;

   for (i=0 ; i<blocks_per_grid ; i++)

      sum += reduc_fdata[i] ;

   *mse = sum / n ;

   return 0 ;

}

As usual, we use the minimum number of blocks necessary to sum all n squared 

errors. Many implementations of this algorithm would invoke reduction a second time, 

with the block partial sums as the input and using a single block. The result would 

be a single value, the complete sum. However, I found it just as easy and a bit more 
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straightforward to copy the block partial sums to the host and sum there. You pay your 

money and you take your choice.

As a final note, there exist some considerably more complex reduction algorithms 

that are marginally faster than the version used here. Because I value simplicity, I chose 

this straightforward version. Interested readers can find examples of other approaches in 

the CUDA SDK.

�Log Likelihood by Reduction
Classification tasks that use a SoftMax output layer require that instead of minimizing 

mean squared error we minimize the negative log likelihood as per Equation 2-15. The 

device code for doing this is shown next. It is almost identical to the MSE code, so little 

explanation is needed. We use the same pre-allocated array, d_mse_out, as we used for 

MSE. Also note that we add 1.e−30 to the output activation just to prevent the unlikely 

but disastrous situation of trying to take the log of zero.

__global__ void device_ll ()

{

   __shared__ double partial_ll[REDUC_THREADS] ;

   int i, n, ntarg, index ;

   double sum_ll ;

   index = threadIdx.x ;

   n = d_ncases ;

   ntarg = d_ntarg ;

   sum_ll = 0.0 ;

   for (i=blockIdx.x*blockDim.x+index ; i<n ; i+=blockDim.x*gridDim.x)

      sum_ll -= log ( d_output[i*ntarg+d_class[i]] + 1.e-30 ) ;

   partial_ll[index] = sum_ll ;

   __syncthreads() ;

   for (i=blockDim.x>>1 ; i ; i>>=1) {

      if  (index < i)

         partial_ll[index] += partial_ll[index+i] ;

      __syncthreads() ;

      }
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   if  (index == 0)

      d_mse_out[blockIdx.x] = partial_ll[0] ; 

}

�Putting It All Together
We’ve seen all of the individual components of CUDA gradient computation. This 

section will show an outline of the order in which they would be called to accomplish 

this task. Some components, such as error handling, are omitted because those are 

specific to the implementation and would just clutter this presentation. However, the 

code available as a free download from the author’s web site does demonstrate the 

details of a reasonable approach.

All of the CUDA routines given in prior sections were designed so that the training 

set could be processed in subsets, which are sometimes referred to as batches in the 

following code. This must not be confused with the more common use of the term batch. 

In that common use, the training algorithm computes the gradient and optimization 

criterion in batches (subsets of the training set) and updates the weight matrix for each 

batch. This is not done here because it has been my experience that when a high-quality 

deterministic training algorithm is used, fastest convergence is obtained when the entire 

training set is processed for each gradient/criterion computation and weight update. 

Of course, it should be easy for programmers to modify the code that follows to employ 

traditional batch processing.

So, why are we breaking up the training set into separately processed subsets? 

The reason is that many operating systems, including Windows, allow the display 

adapter to be tied up with computation for only short intervals of time, generally two 

seconds. If computation is not complete by the time the clock runs out, the operating 

system unceremoniously dumps the program or inflicts other less dramatic but 

equally disastrous punishment. This notorious WDDM timeout is the bane of CUDA 

programmers. The most common solution is to allow computations to be broken up into 

chunks that are processed one at a time. This is our approach.
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The essential code for calling the CUDA gradient routines appears here, and a step-

by-step explanation follows:

double Model::gradient_cuda (

   int nc ,                // Number of  cases

   double *input ,   // Training set matrix, nc by Model::n_model_inputs

   double *target , // Target matrix, nc by Model::ntarg

   double *grad     // Complete gradient

   )

{

   int i, k, n, ilayer, ineuron, ivar, ret_val, ibatch, n_in_batch, n_batches ;

   int istart, istop, n_done, max_batch ;

   int n_prior, gradlen, nin_this_layer ;

   double mse, wpen, *wptr, *gptr ;

// Set up pointers to gradient for each layer

   gptr = grad ; // Training routine allocated this

   for (ilayer=0 ; ilayer<n_all ; ilayer++) {

      grad_ptr[ilayer] = gptr ;

      if  (ilayer == 0 && n_all == 1) {         // Direct input to output?

         n = ntarg * (n_model_inputs+1) ; // This many inputs to each neuron in this layer

         gptr += n ;                                     // Not needed, but it illustrates the process

         }

      else if  (ilayer == 0) {                       // First hidden layer?

         n = nhid_all[ilayer] * (n_model_inputs+1) ; // This many inputs to each neuron

         gptr += n ;

         }

      else if  (ilayer < n_all-1) {                  // Subsequent hidden layer?

         n = nhid_all[ilayer] * (nhid_all[ilayer-1]+1) ; // This many inputs to each neuron

         gptr += n ;

         }

      else

         n = ntarg * (nhid_all[ilayer-1]+1) ; // Not needed but it illustrates the process

      } // For all layers, including output
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/*

   In order to prevent integer overflow in allocating memory for the gradient

   we compute the minimum number of  batches needed to get each batch small enough.

*/

   gradlen = 0 ;

   n_prior = n_model_inputs ;

   for (i=0 ; i<n_all-1 ; i++) { // Hidden layers

      gradlen += nhid_all[i] * (n_prior + 1) ;

      n_prior = nhid_all[i] ;

      }

   gradlen += ntarg * (n_prior + 1) ;    // Output layer

   max_batch = MAXPOSNUM / (gradlen * sizeof(float)) ; // Memory allocation size

   if  (max_batch > 65535)                              // Grid dimension

       max_batch = 65535 ;

   n_batches = nc / max_batch + 1 ;

/*

   Initialize CUDA device if  not yet done for this session

*/

   if  (! mlfn_cuda_initialized) {

      n_done = 0 ;         // Must find max batch size for cuda init

      for (ibatch=0 ; ibatch<n_batches ; ibatch++) {

         n_in_batch = (nc - n_done) / (n_batches - ibatch) ;     // Cases left / batches left

         if  (ibatch == 0 || n_in_batch > max_batch)

             max_batch = n_in_batch ;

         n_done += n_in_batch ; 

         }

      mlfn_cuda_init ( ... max_batch ... ) ;

      mlfn_cuda_initialized = 1 ;

      }
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   if  (cuda_weights_changed) {

      cuda_weights_to_device ( ... ) ;

      cuda_weights_changed = 0 ;

      }

/*

   Gradient computation starts here

*/

   for (i=0 ; i<n_all_weights ; i++)

      grad[i] = 0.0 ;

   istart = 0 ;         // Batch start = training data start

   n_done = 0 ;     // Number of  training cases done in this epoch so far

   for (ibatch=0 ; ibatch<n_batches ; ibatch++) {

      n_in_batch = (nc - n_done) / (n_batches - ibatch) ;   // Cases left / batches left

      istop = istart + n_in_batch ;                                   // Stop just before this index

/*

   Forward pass

*/

      for (ilayer=0 ; ilayer<n_all-1 ; ilayer++)

         cuda_hidden_activation ( istart , istop , ... , ilayer ) ;

      cuda_output_activation ( istart , istop , ... ) ;

      if  (classifier)

         cuda_softmax ( istart , istop ) ;

/*

   Backward pass

*/

      cuda_output_delta ( istart , istop , ... ) ;

      cuda_output_gradient ( n_in_batch , ... ) ;

      for (ilayer=n_all-2 ; ilayer>0 ; ilayer--)

         cuda_subsequent_hidden_gradient ( n_in_batch , ilayer , ... ) ;

      cuda_first_hidden_gradient ( istart , istop , ... ) ;

      cuda_fetch_gradient ( n_in_batch , grad ) ;
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      n_done += n_in_batch ;

      istart = istop ;

      } // For all batches

   for (i=0 ; i<n_all_weights ; i++)

      grad[i] /= nc * ntarg ; 

   if  (classifier) {

      cuda_ll ( nc , &mse ) ;

      mse /= ntarg ; // cuda_ll() divided by n but not ntarg

      }

   else

      cuda_mse ( nc * ntarg , &mse ) ;

/*

   Deal with weight penalty

   First block of  code does hidden layers, second does output layer

*/

   wpen = TrainParams.wpen / n_all_weights ;

   penalty = 0.0 ;

   nin_this_layer = n_model_inputs ;

   for (ilayer=0 ; ilayer<n_all-1 ; ilayer++) { // Do all hidden layers

      for (ineuron=0 ; ineuron<nhid_all[ilay er] ; ineuron++) {

         wptr = weights_opt[ilayer] + ineuron*(nin_this_layer+1) ; // Weights for this neuron

         gptr = grad_ptr[ilayer] + ineuron*(nin_this_layer+1) ;       // Ditto grad

         for (ivar=0 ; ivar<nin_this_layer ; ivar++) {                        // Do not include bias

            penalty += wptr[ivar] * wptr[ivar] ;                                  // Equation 2-18

            gptr[ivar] -= 2.0 * wpen * wptr[ivar] ;                              // Equation 2-19

            }

         }

         nin_this_layer = nhid_all[ilayer] ;

         }
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   for (ineuron=0 ; ineuron<ntarg ; ineuron++) {

      wptr = final_layer_weights + ineuron * n_final_layer_weights ;

      gptr = grad_ptr[n_all-1] + ineuron * n_final_lay er_weights ; 

      for (ivar=0 ; ivar<nin_this_layer ; ivar++) {                            // Do not include bias

         penalty += wptr[ivar] * wptr[ivar] ;                                      // Equation 2-18

         gptr[ivar] -= 2.0 * wpen * wptr[ivar] ;                                  // Equation 2-19

         }

      }

   penalty *= wpen ;

   return mse + penalty ;

}

The entire first page of this code sets up grad_ptr to contain pointers to the gradient 

for each layer. There are slightly easier ways to do this, but the algorithm shown here is 

easy to understand.

The next block of code deals with a subtle but potentially deadly problem. Perfectly 

reasonable problems can have millions of optimizable weights. When a gradient this long 

is multiplied by the number of cases in a batch, which also may be large, the product can 

easily overflow four-byte integers, which are treated as signed in all of my CUDA code. 

This can also impact memory allocation size. Therefore, we divide the maximum positive 

number by the number of bytes required to hold the gradient to find the maximum legal 

number of cases in a batch. Also, current CUDA devices impose an upper limit of 65,535 

on the grid dimension that my CUDA code uses to index the case within a batch, so we 

also impose this upper limit. This determines the minimum number of batches needed. 

The program should allow the user to increase this value in the unlikely situation that the 

application is so large and slow that WDDM timeouts occur.

The global variable mlfn_cuda_initialized flags whether the device has been initialized, 

which involves doing things like allocating scratch memory. A key parameter for the 

initialization routine is the maximum size of any batch. Given the number of batches just 

computed (and possibly increased by the user with code not shown here), a simple loop runs 

through all of the batches that will soon run and keeps track of the largest. We can then call 

the initialization routine with this number. The calling parameter list is not entirely shown, as 

most of its components are application-specific and would confuse this presentation.

The global variable cuda_weights_changed flags whether the weights have changed 

since the last time a CUDA routine was called. If so, we copy the revised weights to the 

device. As with the initialization routine, the calling parameter list is omitted for clarity.
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Gradient computation begins by setting the entire gradient vector to zero. The 

gradient will be summed in this vector with each batch.

The batch loop is straightforward. For each batch we divide the number of cases 

remaining to be processed by the number of batches remaining. Add this batch size to 

the starting index istart to get the stopping index, istop.

The forward pass, in which all activations for this batch are computed and saved, is 

accomplished by first doing the n_all-1 hidden layers and then the output layer. If this is a 

classifier, apply the SoftMax modification to the output activations.

The backward pass reverses the order of processing. The output delta is computed 

and then the output gradient. The hidden layers other than the first are processed, 

starting with the last and working backward. Finally, the first hidden layer is processed, 

which is the one fed by the inputs to the model.

The last step in the batch loop is to fetch the gradient, cumulating the contribution 

of this batch into the grand sum in grad. The number of training cases done so far is 

updated per this batch, and the starting index for the next batch is set to the stopping 

index for the batch just done.

After all batches are complete, the summed gradient is divided by both the number 

of cases and the number of targets because the optimization criterion is also divided by 

these quantities.

If this is a classifier, we compute the negative log likelihood as the optimization 

criterion. Otherwise, we compute the mean squared error.

Finally, we implement the weight penalty. The first block of code handles the hidden 

layers, and the second block does the output layer. These lines of code look complicated, 

but really they are just straightforward walks through the weights and gradient vector, 

implementing Equations 2-18 and 2-19 along the way.

�Basic Training Algorithms
Now that we know how to compute a good measure of the quality of the model, the 

mean squared error or log likelihood, and how to compute the partial derivative of 

the criterion with respect to every weight, we can talk about finding parameters that 

optimize the criterion. The world is filled with excellent treatments of training algorithms 

for multiple-layer feedforward networks, so we will not overly dwell on the subject. 

However, several important algorithms should be discussed to a reasonable degree.
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�Simulated Annealing for Starting Weights
The common wisdom says that one can choose small random weights for the model and 

commence training from that point. There is something to be said for this approach; 

evaluating the optimization criterion is expensive in most real-world problems, and 

we don’t want to waste a lot of computational resources randomly casting about for a 

good starting point. And it is universally agreed that the point of diminishing returns is 

reached quickly if someone does randomly search for good starting weights. But it has 

been my experience that a small amount of intelligently guided random search for a 

starting point is almost always worthwhile.

My favorite starting-weight algorithm is primitive but effective simulated annealing. 

The idea is that we randomly cast about the parameter space, looking for an area of good 

performance (minimum criterion). But as time passes we gradually nudge the search 

location toward areas that have proved good, and we simultaneously lessen the degree of 

randomness. We will thereby become more and more narrowly focused on a promising 

region of the parameter space.

The user must specify two search criteria: the initial range for the randomly 

generated trial weights and the number of trial iterations. I generally use 50 to 1000, with 

several hundred being a good compromise.

Here is the basic simulated annealing code:

   anneal_rng = TrainParams.anneal_rng ;               // Initial range for trial weights

   anneal_frac = 0.3 / TrainParams.anneal_iters ;     // Anneal_iters is number of  tries

   for (i=0 ; i<n_weights_to_optimize ; i++)

      center_wts[i] = 0.0 ;

   for (i_anneal=0 ; i_anneal<TrainParams.anneal_iters ; i_anneal++) {

      if  (i_anneal % 10 == 1)

         factor = anneal_rng * 10.0 ;

      else if  (i_anneal % 10 == 2)

         factor = anneal_rng * 4.0 ;

      else if  (i_anneal % 10 == 3)

         factor = anneal_rng / 10.0 ;

      else if  (i_anneal % 10 == 4)

         factor = anneal_rng / 4.0 ;
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      else

         factor = anneal_rng ;

      for (i=0 ; i<n_weights_to_optimize ; i++)

         wts[i] = center_wts[i] + factor * (2.0 * unifrand () - 1.0) ;

      wvec_to_weights ( n_weights_to_optimize , wts ) ;

      if  (ok_to_use_svd)

         find_final_weights ( ... ) ; // Use SVD to find optimal output weights

      crit = trial_error ( ... ) ;

      if  (i_anneal==0 || crit < best_crit) {

         best_crit = crit ;

         for (i=0 ; i<n_weights_to_optimize ; i++)

            best_wts[i] = wts[i] ; 

         }

      if  (i_anneal < 100)

         continue ;

      // Slowly update center and range

      for (i=0 ; i<n_weights_to_optimize ; i++)

         center_wts[i] = (1.0 - anneal_frac) * center_wts[i] + anneal_frac * best_wts[i] ;

      anneal_rng *= (1.0 - anneal_frac) ;

      } // Annealing loop

We initialize the center about which weights will be perturbed to zero and then 

commence the trial loop, which will be done a user-specified number of times.

A modification to the traditional algorithm that I have found to be effective for neural 

network use is to occasionally use exceptionally large or small perturbations. This is 

because the user may fail to specify a good perturbation range, either through ignorance 

or through carelessness. It helps if the algorithm can bail out such users. The block of if 

statements at the start of the loop does just that.

A set of trial weights is derived by randomly perturbing around the center, and then 

these trial weights are copied to the model’s private weights. The call to find_final_weights() 

uses an extremely efficient algorithm to explicitly compute the optimal output weights 

given the randomly generated hidden-layer weights. This subject will be discussed in the 

next section. Then the performance criterion is evaluated by calling trial_error().
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If we just set a new record for criterion quality, these weights are saved in best_weights. 

If we have done only a few iterations (100 is an ad hoc choice), we just keep 

randomly casting about. But if we’ve had a good chance to find a reasonably good region 

of the parameter space, then we can begin slowly moving your search toward that good 

region and simultaneously shrinking the radius of the search.

The choice of 100 for the point at which to begin shifting the search region and 

the choice of 0.3/anneal_iters for the rate at which the shifting takes place were both 

arbitrary. The reader should feel free to seek better values.

�Singular Value Decomposition for Optimal Output Weights
If the output layer is linearly connected to the last hidden layer, which would be the 

case if we are not doing SoftMax modification, we can often use a technique that 

tremendously speeds convergence. The process of mapping the activations of the last 

hidden layer to one or more output targets to minimize mean squared error is just 

ordinary linear regression. So, why would we use expensive random search such as 

simulated annealing to find good output weights when we can explicitly compute the 

exact optimal values? Granted, using regression to find these weights is somewhat 

expensive itself. But the cost is small when one consider that what it buys is perfectly 

optimal output weights, given any trial set of hidden-layer weights.

There is little controversy about the wisdom of using linear regression to find the 

output weights when one is using simulated annealing (or some other random process) 

to find a starting point for more sophisticated training. The number of parameters that 

must be searched is reduced, and you are guaranteed that no matter what hidden-layer 

weights are employed, the output weights will be optimal. It’s a no-brainer. But what 

about using regression during more sophisticated training algorithms, such as the 

method of conjugate gradients discussed in the next section? The output weight gradient 

vector for weights computed by regression is identically zero, so it can be ignored. 

This can significantly reduce the size of the optimization problem, which is good. But 

regression is not free. The trade-off is whether the time saved for the training algorithm 

justifies the increased cost of regression. This is a gray area, and my own choice is to trust 

the training algorithm and avoid regression. Others may differ.

Traditional linear regression involves inverting a matrix. Unfortunately, in neural 

network applications, this network will often be singular because of the high correlation 

in the input variables or their resulting activations as they propagate through the 
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network. This is a total deal killer. Thus, we must use an alternative method that is 

immune to collinearity. It is called singular value decomposition, and its code (SVDCMP.

CPP) can be downloaded for free from the author’s web site. The code contains detailed 

comments describing its correct use. We’ll present a rough overview here.

To use singular value decomposition, one must first create a new SingularValueDecomp 

object using the following parameters:

SingularValueDecomp (

   int nr ,          // Number of  rows (cases)

   int nc ,          // Number of  columns (neurons in last hidden layer, plus 1 for bias)

   int save_a ) // Preserve the input data matrix for later reference?

The following code, shown in outline form, fills in the data and then computes 

the singular value decomposition. Once this is done, call backsub() for each output to 

compute the optimal weights for that output.

   aptr = sptr->a ;    // The data matrix, ncases by nvars (plus 1 for bias) goes here

   for (icase=0 ; icase<nc ; icase++) {                          // For each case in the training set

      for (ilayer=0 ; ilayer<nlayers-1 ; ilayer++) {            // For each of  the hidden layers

         for (i=0 ; i<nhid[ilayer] ; i++)

            // Compute activation of  this neuron from prior layer

         } // For ilayer (each hidden layer)

         // We now have the activations of  the final hidden layer

         for (i=0 ; i<nhid_final_layer ; i++)

            *aptr++ = this_layer[i] ; // Move the final hidden layer activations to the SVD input

      *aptr++ = 1.0 ; // Constant term for bias

      } // For all cases

   sptr->svdcmp () ;

   for (itarg=0 ; itarg<ntarg ; itarg++) {

      bptr = sptr->b ; // True values go here

      for (icase=0 ; icase<nc ; icase++)

         *bptr++ = targets[icase*ntarg+itarg] ;

      sptr->backsub ( 1.e-2 , final_layer_weights+itarg*n_final_layer_weights ) ;

      }
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One thing to keep in mind is that execution time for SVD blows up rapidly. Hence, for 

huge problems (very large number of cases and neurons in the last hidden layer), the time 

can be impractical. Also, in rare pathological cases the algorithm can become numerically 

unstable. Thus, programmers should allow users the option of disabling SVD.

�Stochastic Gradient Descent
The method roughly outlined in this section is old and not used much anymore, so we 

will only sketch the general idea. But it is simple and easy to explain, so it serves as a 

good foundation for the more sophisticated algorithm shown in the next section.

Recall that the gradient of a function is the direction of maximum increase of the 

function. So, by definition, if we move a tiny amount in the opposite direction, we will 

see, at least locally, a maximum decrease in the function. That’s the essence of this 

primitive but venerable training algorithm. We generate a random set of starting weights 

and keep moving opposite the gradient. The earliest versions did this one case at a time; 

the gradient for a single training case would be evaluated, and we would take a tiny step 

in the opposite direction. Then a new case would be chosen, and we would do the same 

thing. A relative of exponential smoothing of the gradient, called momentum, could be 

used to prevent wild gyrations in the direction of parameter movement.

At the other extreme, one could evaluate the gradient for all cases and find the 

average across the entire training set. This would give the most accurate estimate of 

the gradient, and therefore this approach would usually require the fewest number of 

iterations to converge to a minimum. Unfortunately, evaluating the average gradient for 

the entire training set is a time-consuming operation.

Over the years a compromise was reached. The generally best approach when 

using this (primitive) algorithm is to divide the training set into a large number of 

small, randomly selected batches. Evaluate the mean gradient for a single batch and 

adjust the weights accordingly. Then do the same for another small batch. Repeat until 

convergence is obtained.

This works relatively well because the trade-off between time per batch and number 

of batches is not equally balanced; they do not cancel perfectly. In particular, when we 

use more batches, the time per batch usually decreases more rapidly than the number of 

batches increases.
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For example, suppose we divide the training set into 100 batches. The gradient for each 

batch will have high error variance, thus requiring more adjustments than if we evaluated 

the gradient for the entire training set. But the number of adjustments needed will not 

go up as fast as the gradient evaluation time goes down. In this example, which uses 100 

batches, the time per batch will be about 100 times smaller than the time to evaluate the 

mean gradient for the entire training set, but we may need only 50 times more batches. (I 

pulled that 50 out of the air.) So, overall, we would be ahead by a factor of two.

This training algorithm, though delightfully simple and widely used in the early days 

of neural networks, suffers from two serious flaws.

•	 It’s difficult to know how far to step in the negative gradient direction 

each time. If we step too little, an enormous number of steps will be 

needed to achieve convergence, as shown in Figure 2-4. But if we 

step too far, we’ll overshoot and likely end up increasing the criterion 

instead of decreasing it. And even if we don’t completely overshoot, 

we may bounce too far and gyrate badly, as shown in Figure 2-5.

•	 The contours of the criterion as a function of the parameters rarely 

look like a rubber sheet with a ball weighing down the middle. In 

fact, Figures 2-4 and 2-5 are quite generous in their portrayal of the 

difficulty of this optimization problem. Rather, the contours typically 

resemble the Grand Canyon, a steep, narrow, winding channel cut 

through a broad plain. The gradient by definition is perpendicular 

to the “walls” of the canyon, so a simple gradient descent is liable to 

look more like a zigzag path bouncing wildly back and forth against 

the walls. Smoothing the path via a momentum modification helps, 

but rarely just the right amount.

In the next section we will explore a vastly superior training method.
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�Conjugate Gradient Optimization
This section will present one of the most popular and effective families of multivariate 

optimization algorithms. Implementations of it are widely available, both as source code 

and as linkable libraries, so I won’t delve into the code here. But because this is such an 

important neural network training algorithm, I feel it’s worthwhile to at least roughly 

describe the algorithm so that its users will have some understanding of its operation. 

This section does involve some mathematics beyond the level elsewhere in this book, 

and it may safely be skipped.

Figure 2-4.  The gradient descent step size is too small

Figure 2-5.  The gradient descent step size is too large
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There is an almost magical beauty in conjugate gradient methods. They have nearly 

(or entirely) the power and convergence speed of full second-order methods. Yet they 

require neither the computation nor even the storage of any second-order information. 

That is a matter of no small importance. When there are more than a handful of variables 

to be optimized, storage and manipulation of an n2 Hessian matrix can be a heavy 

burden. And computing all those second derivatives is prohibitively expensive. An 

algorithm that behaves as if it were based on second-order information yet that neither 

explicitly computes nor stores anything having to do with second derivatives is one step 

this side of a miracle.

The full mathematics of conjugate gradients is not overly complicated, but it is rather 

long and tedious. Therefore, our presentation will be cursory and will feature an intuitive 

approach. Readers who want the complete story, should start by carefully studying the 

excellent general discussions of multivariate minimization in numerous standard texts.

A major goal of intelligent optimization algorithms is the elimination of the bouncing 

off the walls that plagues naive algorithms. We mentioned that introducing momentum 

helps but does not solve the problem entirely. Explicit second-order methods do much 

better than momentum by using second derivatives (or their approximations) to rotate 

the gradient so that it points toward the minimum, and they also provide a good estimate 

of how far to step, a crucial bit of information for minimizing the number of steps. 

Unfortunately, in most practical situations, those methods are so uneconomical (storage 

space and derivative computation time) that they simply cannot be used, no matter how 

good their theoretical performance might be.

The root cause of the difficulties associated with naive gradient descent is that every 

time we descend in some direction, we lose a sizable amount of your hard-earned 

progress from previous steps. We compute the gradient at the starting point and step 

in that direction. The gradient at that new point is perpendicular to the first search 

direction if we have done a good job of choosing a jump distance. We then step in that 

new direction. Unfortunately, when we get there, we are dismayed to find that the 

gradient is not much different from what it was at the starting point. We already put a 

tremendous amount of effort into computing that gradient and stepping in that same 

direction not too long ago, and now we must do it again. Ouch! Wouldn't it be nice if we 

could instead move along a direction that had the property of not taking back progress 

already made? We can. All we do is minimize in a direction that is conjugate to the 

previous direction (or directions).
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Most readers know what it means for two directions (vectors) to be perpendicular 

(orthogonal). In words, it means that motion along one of them does not generate any 

motion along the other. In mathematics, it means that their dot product is zero.

What does it mean for a pair of vectors to be conjugate? The concepts are not entirely 

different. A major difference is that the concept of orthogonality involves only the pair of 

vectors in question. The concept of conjugacy additionally involves a quadratic function 

(a multivariate polynomial having no terms higher than the second order). In other 

words, we cannot really say that two vectors are simply conjugate. To be precise, we must 

say that two vectors are conjugate with respect to some quadratic function. In practice, 

the quadratic function is assumed to be known, so we usually omit any mention of it. 

But the reader must understand that its presence is crucial. We can now state what is 

implied by two vectors, say r and s, being conjugate. It means that when we move along 

one of them, say r, the change in the gradient of the function is perpendicular to the other 

vector, s in this case. An equivalent mathematical formulation of this condition is shown 

without proof in Equation 2-20. See any of the many available references for proof. In that 

equation, H is the Hessian matrix of second derivatives of the function.

	 ¢ =r H s 0 	 (2-20)

What are the implications of this to function minimization? First, it should be emphasized 

that the definition of conjugacy depends on the function being quadratic, which implies a 

constant Hessian matrix. In real life we will never be blessed in this way, so everything we 

are about to say will be compromised to the degree that the function is not quadratic. On 

the other hand, many practical functions have a fairly constant Hessian, especially in the 

neighborhood of a minimum. So, we generally are quite safe in this assumption.

With that warning taken, let’s think about minimization. We start at a point, compute 

the gradient there, and step in the negative gradient direction. If we are ambitious, 

we may even descend to the minimum along that line using an efficient algorithm, 

an operation that requires only computation of the criterion but not the gradient. The 

naive approach would be to compute the gradient again (if we are at the minimum in 

that direction), noting that it will be perpendicular to the previous search direction and 

descend once more.

But what if we instead computed a direction that is conjugate to the first search 

direction and minimized along that line? By the definition of conjugacy, any change in 

the gradient resulting from that minimization motion will be orthogonal to the previous 

search direction. In other words, if we were already at a minimum in that previous search 
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direction, we will remain at a minimum in that direction. This new minimization does 

not cost us any of our winnings in the previous minimization. That is in sharp contrast 

to the situation with naive steepest descent, in which each step in a negative gradient 

direction costs us much of the progress already made in previous directions.

It’s time for an example. Look at Figure 2-6 and Equation 2-21. A specific case 

involving explicit points and search directions is illustrated there.
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Figure 2-6.  Conjugate gradient optimization in two dimensions
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This example is primitive in that it involves only two independent variables, and 

the function being minimized is a perfect quadratic. However, it is instructive to study 

its geometry and actually work through some steps. The reader will then ideally better 

appreciate the power of the conjugate gradient method. Observe that Equation 2-21 not 

only tells us the form of the function but also shows us how to compute the gradient at 

any point. Also notice that the Hessian is constant, with the value 2.0 at both diagonals 

and –1.5 in the off-diagonal positions. The following discussion is terse, but most readers 

should be able to verify each step. In fact, that is recommended.

We have a simple quadratic function for which we seek the minimum. The search 

starts at point 1 whose location happens to be (6, 4), an arbitrarily chosen point. The 

gradient at that point is (6, –1). A line in that direction through point 1 passes through 

the inner of the two level ellipses that are shown. Note that, as expected, the gradient is 

perpendicular to the ellipse at the point of tangency. If we parameterize that line as point 

1 plus t times the gradient, the derivative of the parameterized function with respect to 

t is 92 t + 37. Set that equal to zero to find the location of the function’s minimum along 

the gradient line. The solution, t = –0.4022, gives us a location of approximately (3.587, 

4.402). That line minimum is labeled as point 2.

Everything has been straightforward so far. Here is the important part: if we simply 

compute the gradient at this new point and naively minimize along that direction, we 

would be following the dotted line. That’s not terrible, but it’s not very good either. Let’s 

compute a conjugate direction instead. (Since we have only two variables, there is only one 

direction that is conjugate here. In higher dimensions there will be more.) We compute 

the conjugate direction using Equation 2-20. Let r be the gradient direction and H be the 

Hessian. If s = (x, y), then we get 13.5x + 11y = 0. Notice in Figure 2-6 that the line through 

point 2 in this direction passes directly through the minimum of the function! Lovely!

Actually, that observation is not unexpected. In fact, it can be proved that if we are 

minimizing a perfect quadratic in n variables, then n line minimizations in directions 

that are mutually conjugate are all that are needed to find the minimum. This should 

agree with intuition if we recall what it means for directions to be conjugate. Every time 

we minimize along one of these directions, previous minimizations are preserved. 

After we have done this n times, we are at a minimum in all directions. As long as the 

directions span the entire space, which is easily proved, we can do no better.

This is all very nice, but so far we have really done nothing special. When we 

computed the direction that is conjugate to the previous search direction, we casually 

glossed over the role that the Hessian played. Since this was a simple contrived example, 
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we knew the Hessian. Unfortunately, in real-life problems, the Hessian will be difficult or 

impossible to compute. In those rare cases in which it can be economically computed, 

we might as well use Newton’s method or a relative. Here is where the magic enters.

Let gi be the negative gradient at point i in the search for the minimum. Let hi be the 

direction that we will search from this point. To initialize the algorithm, set g0 and h0 

both equal to the negative gradient at the starting point. At each step we must keep track 

of the gradient and the search direction at the previous step (but only that one previous 

step). Compute the search direction for the current step using Equation 2-22.
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It can be shown that as long as we are careful to locate the minimum in each 

successive search direction, the sequence of hi search directions will be mutually 

conjugate to the extent that the Hessian is constant. The remarkability of this result 

cannot be overstated. We have attained that holy grail of multivariate optimization, a 

set of mutually conjugate search directions, with no explicit knowledge of the Hessian. 

In fact, unlike some other methods that also avoid computing the Hessian (such as 

Levenberg-Marquardt), we don’t even have to store any approximation to it. The only 

extra storage space that we need is a few vectors to preserve the gradient and the search 

direction from the previous step, a mere pittance. I consider this algorithm to be one of 

the seven wonders of modern mathematics.

Astute readers will immediately notice the similarity of this algorithm to traditional 

backpropagation with momentum. The second line in Equation 2-22 tells us that 

the new search direction is the gradient at this point plus a scalar times the previous 

search direction. There are only two differences. First, in traditional backpropagation 

with momentum, the step size is set according to a preordained schedule, while in the 

conjugate gradient algorithm, the step size is carefully chosen to be the line minimum 

along the search direction. Also, in traditional backpropagation, the momentum term 

is fixed or slowly varying according to a schedule. In the conjugate gradient algorithm, 

the momentum is optimally adjusted for each new step. These are actually two quite 

significant differences, and they account for the typically huge difference in performance.
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CHAPTER 3

Restricted Boltzmann 
Machines
This chapter explores what is probably the most common building block of deep 

belief nets: the restricted Boltzmann machine (RBM). There are numerous excellent 

treatments of RBMs; my favorite “introduction” is Learning Deep Architecture for AI by 

Yoshua Bengio (Now Publishers, 2009) because the discussion, though relatively short, 

is enclosed in fabulous background and supplementary material. When it comes to 

practical aspects of training RBMs, “A Practical Guide to Training Restricted Boltzmann 

Machines” by Geoffrey Hinton (2010) can’t be beat. Also, the numerous technical 

papers by Geoffrey Hinton cover specific aspects of RMBs in glorious detail. Finally, 

deeplearning.net is an incredible resource. Because of this wealth of material, we will 

avoid unnecessary duplication. This chapter will be limited to an outline of the essentials 

of RBMs, in other words, the information necessary to understand and use the programs 

presented here.

�What Is a Restricted Boltzmann Machine?
An RBM is in essence a two-layer neural network that is bidirectional and partially 

controlled by randomness. Also, the RBMs studied here have strictly binary 

activations of their hidden neurons, and binary inputs are favored. Continuous 

inputs and hidden activations are much more complex and cantankerous. Their 

study is still in the early stages.

An RBM does not have an output layer as such. It has only an input layer (usually 

called the visible layer in the context of RBMs) and a hidden layer whose activations 

often serve as outputs that will be used in ways described later.
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Recall that for a traditional feedforward network, the activation of a neuron in a given 

layer is computed by forming the dot product of a weight vector with the activations of 

the prior layer, adding a bias term, and applying the logistic activation function. The 

same formulation applies to an RBM but with one exception. Instead of this procedure 

determining the activation of a hidden neuron given the inputs, it determines the 

probability that the hidden neuron will have the value one (as opposed to zero). Then 

the hidden neuron is randomly set to either zero or one according to this probability. 

This is made explicit in Equation 3-1.

We have a weight matrix W that has D columns, one for each input (visible 

neuron), and as many rows as there are neurons in the hidden layer. The bias c and 

input (visible neurons) v are column vectors. Let Wi• signify row i of the weight matrix, 

and let ci be element i of the hidden neuron bias vector. Then the probability that 

hidden neuron i is one (versus zero) is given by Equation 3-1, in which f (.) is the 

logistic function shown in Equation 1-4.

	 P h v f c W vi i i=( ) = +( )1 | · 	 (3-1)

Aside from their binary and stochastic natures, what differentiates RBMs from 

traditional feedforward networks is the fact that they are bidirectional. We just saw that, 

given an input (visible neuron) vector, we could compute the probability that each hidden 

neuron is one. Let W•j signify column j of the weight matrix, and let bj be element j of the 

visible neuron bias vector. Then for some set of hidden neuron states h, the probability 

that visible neuron j is one (versus zero) is given by Equation 3-2.

	
P 1v h f b W hj i j=( ) = + ¢( )| · 	 (3-2)

Here’s where it gets really interesting. Suppose we set the visible neurons v to some 

random state and use Equation 3-1 to set the hidden neurons to random states with 

the computed probabilities. Then we use Equation 3-2 to randomly set the states of 

the visible neurons. Apply these “bounced back” inputs to Equation 3-1 to get new 

hidden-layer activations. Repeat many times. (We could just as well have begun by 

setting the hidden neurons to random initial states and used Equation 3-2 as the first 

step. The final result would be the same.) After a considerable number of back-and-

forths, the sequence of states will converge to a stable Markov chain. The rate at which 

convergence is obtained is called the mixing rate and depends on W (smaller weights 

lead to faster mixing), but it is generally fast enough to be practical. Once convergence 
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to a stable chain is obtained (which we cannot verify but which in practice we can count 

on happening after a reasonable number of iterations), the set of visible and hidden 

neuron activations obtained from continued cycles represents random samples from a 

probability distribution that depends on the weight matrix and bias vectors. They will 

not be independent, of course, but they will be unbiased in that they are honestly from 

the probability distribution implied by the weights and biases.

So, what’s the big deal? We specify a parameter set consisting of a weight matrix, 

hidden neuron bias vector, and visible neuron bias vector. In return we get a means 

of generating random samples of visible and hidden neuron states that have a fixed 

probability distribution. So what?

The big deal is that we have collected a training set, a (presumably) random sample 

of visible states taken from some universe with a fixed probability distribution. What 

if we could find a parameter set such that the distribution of random visible neuron 

states produced by the Markov chain of alternating Equations 3-1 and 3-2 mimics 

the distribution of cases in the training set? We would then have a representation of 

the structure of the training data. The RBM would encapsulate the patterns inherent 

in the data. In particular, Equations 3-1 and 3-2 would define an explicit mapping 

between input vectors and hidden neuron activations that is based on the patterns in 

the data. Thus, the hidden neurons present an alternative and often (usually!) clearer 

representation of the information in the inputs. Moreover, if there are fewer hidden 

neurons than inputs, the representation is more compact.

�Reconstruction Error
Suppose we are able to find a parameter set that provides a good (in some sense) 

bidirectional mapping between input vectors and hidden neuron activation vectors. 

Then it is reasonable to assume that when we use Equation 3-1 to map an input vector 

to a hidden neuron activation vector and then use Equation 3-2 to bounce activations 

back to the visible layer, the visible activations attained will resemble the original input. 

That’s the whole idea of alternate representations of information. For this reason, we 

often want to compute a measure of this agreement.

Using these equations to define probabilities and then sampling to set the activations 

to zero or one is acceptable. However, this sampling introduces annoying randomness into 

what might rather be a deterministic measure. For this reason, we are inclined to stick with 

probabilities in both directions, as shown in Equations 3-3 and 3-4, which define the entire 

hidden and visible probability vectors. The logistic function f (.) is applied element-wise. 
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Later we will use h and v strictly for activations, but for the moment we allow them to also 

represent probabilities to simplify the presentation of this section.

	 h f c Wv= +( ) 	 (3-3)

	 v f b W h= +( )¢ 	 (3-4)

Let vi denote the ith element of the reconstruction v, and let xi similarly denote the 

ith element of the input x. Then the most common measure of reproduction error is 

the mean squared error shown in Equation 3-5. If the inputs are either binary or can be 

considered to be binomial probabilities, then the cross entropy shown in Equation 3-6 

may be preferred in that it is more sensitive to extremely erroneous reconstructions. 

(Consider what happens if vi is extremely close to zero or one when xi is the opposite.) In 

both cases, this quantity would be averaged over the training set.

	 ReconErr v x
i

i i= -( )å 2
	 (3-5)

	
ReconErr x v x v

i
i i i i= ( ) + -( ) -( )éë ùûå- log log1 1

	
(3-6)

Intuition would lead one to believe that either of these might be a great criterion 

to optimize to find a desirable parameter set. This intuition would be wrong. If the 

goal is to reproduce the input data in a training set, these are fabulous criteria, but that 

is not the usual goal! A simple identity transform, which does not find an alternative 

representation at all, would have perfect reconstruction. The real goal is to encapsulate 

legitimate patterns that will also appear out-of-sample. For this task, a different 

optimization criterion is needed, although a reconstruction error is a useful quantity to 

monitor as learning progresses. It is not without merit, just without supremacy.

�Maximum Likelihood Training, Sort Of
Much of this section, especially the beginning, is intensely theoretical and may safely be 

skipped by mathematically challenged readers. None of this initial development is used 

in programming RBMs, nor is it crucial to understanding RBM algorithms. It is included 

only to let interested readers know why in practice we cannot do what we would like to 

do. Life is hard, and this is one of the reasons why (for some of us anyway).

Chapter 3  Restricted Boltzmann Machines



95

Glance back at Equation 1-3. In that equation we showed how the bias could be 

conveniently absorbed into the weight matrix. This is almost always inconvenient for 

RBMs; we will mostly keep the hidden and visible bias as vectors separate from the 

weight matrix, especially in programs. However, for this brief presentation it is most 

convenient to absorb the bias vectors into the weight matrix by implicitly including a 

single visible neuron and a single hidden neuron with the constant value 1.0 so that their 

weights will be the corresponding biases.

With this in mind, suppose we have an RBM model with weight matrix W. Define  

the scalar energy of a visible and hidden neuron state for this model, as shown in 

Equation 3-7. For any given W, which completely defines the RBM model, the probability 

of a visible and hidden neuron state is given by Equation 3-8, where Z(W), shown in 

Equation 3-9, is the normalizing term that ensures that the probabilities sum to one.

	 E v h W hWv, ,( ) = - ¢ 	 (3-7)

	
P v,h W

Z W
E v h W| exp( ) = ( )

- ( )( )1
, ,

	
(3-8)

	
Z W P v,h W

v h

( ) = ( )åå |
	

(3-9)

We get the first hint that this line of inquiry will not end well when we ponder 

Equation 3-9. Those two summations are over every possible visible and hidden state, so 

the number of terms being summed is two to the power of the total number of neurons, 

visible plus hidden. Yikes!

Recall that on page 94 we pointed out that a reconstruction error, while interesting 

and useful for observation, is not ideal for finding an optimal RBM model. The ultimate 

goal is to find a model that encapsulates authentic patterns in the training data, rather 

than just spitting back inputs. Such a model is thereby able to reproduce the distribution 

of the training data (and hence the universe, we hope), so we are inspired to find a model 

that maximizes the likelihood of the training set. In other words, we seek a maximum 

likelihood weight matrix W, a weight matrix that enjoys, from among all possible weight 

matrices, the highest probability of producing the training set that we observed.

Despite any apprehension based on the frightening Equation 3-9, let’s plug on 

toward the goal of finding a maximum likelihood W. The log likelihood of a single 

training case x is found by summing Equation 3-8 across the marginal of all possible 
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hidden neuron states and then taking the log, as shown in Equation 3-10. As we did on 

page 16 for SoftMax maximum likelihood, instead of using the straight likelihood, which 

is multiplicative, we use its log. This way we can find the (log) likelihood of the entire 

training set by summing the log likelihood of the individual cases.

	
log | log exp logP x W E x h W Z W

h

( ) = - ( )( ) - ( )å , ,
	

(3-10)

The first term in Equation 3-10 is not as bad as Equation 3-9 because we are 

summing just hidden states, not hidden and visible both. But it is nonetheless intractable 

in all but the smallest models. Still, this is a handy equation to have in our toolbox 

because in small “research” problems it is easy to evaluate it using Equations 3-7 and 3-9 

for the intermediate terms.

Equation 3-11 shows the partial derivative of Equation 3-10 with respect to an 

individual element of W. Equation 3-12 is a more general expression of the partial 

derivative, appropriate for our use, which involves random sampling to approximate 

expectations rather than explicit calculation. In Equation 3-12, the angle brackets denote 

statistical expectation under the named distribution.
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The first term, not surprisingly called the positive term, is easy to handle. Just pick a 

case from the training set. Then to get an unbiased sample of h given W and the chosen 

training case, apply Equation 3-1. You either can sample hi as zero or one using the 

probability given by that equation or can use the probability directly. Later, when the 

gradient algorithm is presented, we’ll see when one must sample 0/1 and when one 

would preferably use the probability.

Unfortunately, the second term in Equation 3-11, called the negative term, is intractable 

in any practical application, as the number of summands going into the double sum is two 

to the power of the total number of neurons, visible and hidden. The best we can do is view 

the situation through the lens of Equation 3-12 and attempt to get a reasonably unbiased 

and low variance sample of this term from its distribution. We then hope that the average 

across a large number of samples will be close to the true expectation.
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The algorithm for doing so, while tractable, is quite expensive. Fortunately, there 

is a much faster algorithm that almost always provides an inferior but acceptable 

approximation. We’ll present these algorithms in the next section.

�Contrastive Divergence
It must be emphasized that our approach to training an RBM is not a nice deterministic 

algorithm, one that explicitly calculates the exact gradient like we could do when 

training a multiple-layer feedforward network. Rather, we will do stochastic gradient 

descent, an approach in which we take random samples of the positive term, which 

depends on training cases, and take other random samples from the RBM’s distribution 

implied by W, which (ideally, though not quite in practice) is independent of training 

cases. We then subtract them as shown in Equation 3-12 and hope that errors induced by 

randomness will largely cancel. They almost always do.

A few paragraphs back we saw that the positive term is easy. But how do we get 

samples from the theoretical distribution of the RBM as determined by W? Recall that 

on page 92 I pointed out that if we bounce back and forth between visible and hidden 

activations using Equations 3-1 and 3-2 for many repetitions, we will converge toward 

(correlated) samples from the true RBM distribution.

This convergence will happen for any random starting state, but if the starting 

state is chosen from a distribution that is close to the RBM’s theoretical distribution, 

then convergence will happen quickly. In fact, if the random starting state happens to 

be chosen from the exact RBM distribution, convergence will be instantaneous, so no 

iteration will be needed. We naturally assume that as learning occurs, the distribution of 

the RBM will approach that of the training set; this is the whole point of our endeavor! 

So, it behooves us to choose as a starting point the training case x under consideration. 

Early in training this won’t do any good if the initial weights were randomly chosen 

because then the empirical distribution from which x is drawn will only by good luck 

bear any resemblance to the starting RBM distribution. But as training progresses, they 

will become closer and closer, making this starting selection more and more beneficial. 

And later we will present a method for intelligently choosing an initial weight matrix W 

that causes the RBM’s distribution to be closer to that of x than a random weight matrix 

would usually be.
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We now present the basic algorithm for stochastically estimating the gradient of 

the log likelihood function at a training case x. Recall that when we get the hidden 

neuron activations via Equation 3-1 or 3-3 and when we get the visible activations via 

Equation 3-2 or 3-4, we can either sample from 0/1 per the computed probabilities or 

use the probabilities directly. There are three rules to be followed.

•	 When getting the hidden activations, for all iterations except the 

last we must sample from 0/1. This is critical to the regularization 

inherent in RBMs.

•	 When getting the hidden activation from the final iteration for use 

in Equation 3-12, it is almost certainly best to use the probability 

directly.

•	 When getting the visible activations, either is fine, although directly 

using the probabilities is considered better by most experts. This is 

called a mean field approximation.

The following notation will be used:

W    �  Weight matrix, a column for each visible neuron and a row for each hidden 

neuron

b        Column vector of visible neuron biases

c         Column vector of hidden neuron biases

K        The number of Monte Carlo iterations to perform

x         The training case being processed (column vector)

qData   � Vector of probabilities under the data distribution that each hidden neuron 

will be one (as opposed to zero)

hData    Hidden neuron activation vector under the data distribution, zero or one

pModel � Vector of reconstruction probabilities under the model distribution that each 

visible neuron will be one (as opposed to zero)

vModel  Reconstructed visible neuron activation vector, zero or one

qModel � Vector of probabilities under the model distribution that each hidden neuron 

will be one (as opposed to zero)

hModel  Hidden neuron activation vector under the model distribution, zero or one

It is to be understood that p is a vector of length equal to the number of inputs 

(visible neurons), and it contains probabilities computed by Equation 3-2 or 3-4. Each 

element of v is individually sampled from 0/1 according to these probabilities. The 

hidden neuron probabilities and activations are defined similarly.
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vData = x
qData = f (c + WvData)	 Equation 3-3

Optionally compute the reconstruction error using the slow, accurate method.

qModel = qData	 MC chain loop below initializes from data

k = 0

while k < K	 K must be at least 1

    Sample hModel from qModel	 This sampling is critical; must not use q

    pModel = f (b + W ′hModel)	 Equation 3-4

    If k=0, optionally compute the reconstruction error using the fast method.

    if mean field

        qModel = f (c + WpModel)

    else

        vModel is sampled from pModel

        qModel = f (c + WvModel)

    k = k+1

end while

if mean field

    Visible bias gradient = pModel − vData

    Hidden bias gradient = qModel − qData

    Weight gradient = qModel p ′Model − qData v ′Data      This product is a matrix

else

    Visible bias gradient = vModel − vData

    Sample hData from qData

    Hidden bias gradient = qModel − hData

    Weight gradient = qModel v ′Model − hData v ′Data

    A few things should be noted about this algorithm. First, the weight gradient is a matrix 

that, like W, has a row for each hidden neuron and a column for each visible neuron. The 

products given in Equation 3-12 are efficiently represented in the algorithm by showing them 

as the product of a column vector for hidden neurons times a row vector for visible neurons.

There are two different places in the algorithm in which one can compute the 

reconstruction error. This error has no use in the training algorithm itself, but it is nice to 

display it for the user. Regardless of which place we choose, Equations 3-3 and 3-4  
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are used to jump from the visible layer to the hidden layer and then bounce back 

to the visible layer. The reconstruction error will compare the original data with the 

reconstructed data. The only question is whether we use the raw probabilities from 

these equations or samples based on the probabilities. As was pointed out in that 

section, using the raw probabilities is more accurate.

The practical problem with using probabilities is that then we need to do a 

significant amount of computation that is not used anywhere else. For computing the 

gradient, it is vital that the hidden neurons be sampled. The information loss because 

of sampling is critical to the robust behavior of the model. But if we compute the 

reconstruction error from the probabilities, then for each visible neuron we have to sum 

a dot product over all hidden neurons to evaluate Equation 3-4. This is expensive, a 

total number of multiplications and additions equal to the number of inputs times the 

number of hidden neurons. And these unsampled values will have no other use. In a 

time-critical situation, the usual situation, this is a huge waste. It is much more efficient, 

if slightly less accurate, to compute the reconstruction error in the first pass through the 

Monte Carlo chain loop using the sampled hidden activations that are required for the 

gradient.

Lastly, a surprising fact about gradient computation is that a huge amount of 

information about the model’s distribution is obtained from the first pass through the 

Monte Carlo chain loop (K=1). The bias from using just one pass means that more 

training epochs will be needed and convergence cannot be perfect. But because the 

chain loop is so expensive, the trade-off is almost always well worthwhile, at least for 

early epochs.

�Weight Penalties
As was the case for supervised training discussed in the prior chapter, large weights can 

be problematic. We saw that in the context of supervised training, colinearity of predictors 

was a significant potential source of overly large and problematic weights. This is not a 

problem with unsupervised training. But the two situations still share the problem of 

overfitting. If the RBM weights are prevented from becoming large, perhaps the ability of 

the model to encapsulate the distribution of the training data will be slightly impaired, but 

at the same time the model will be less likely to include “patterns” that are due to noise. 

Thus, the model will be better able to generalize to data outside the training set.
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An even more important reason for discouraging large weights in an RBM has to 

do with the mixing rate. We saw on page 92 that the mixing rate is the speed at which 

the “bouncing back and forth” between the visible and hidden units converges to an 

unbiased random sample from the RBM’s distribution implied by the weights. This 

rate depends on the size of the weights, with smaller magnitude rates producing faster 

mixing. Since the degree to which the negative term in Equation 3-12 is an unbiased 

sample from the RBM’s distribution impacts the accuracy of the stochastic gradient 

estimate, we want the mixing to be as fast as possible. Thus, we want the weights to 

be as small as possible, consistent with them being large enough to adequately model 

the data.

A good weight penalty is provided by the same squared magnitude that was used 

for supervised training. This is given by the penalty shown in Equation 2-18. It has the 

partial derivative shown in Equation 2-19. PenFac is the user’s specified penalty factor. 

Because RBM training does not include the ability to compute a criterion function, 

only its gradient, the value of the penalty itself is of no use. But we still add the partial 

derivative to each gradient term computed by the algorithm shown earlier.

�Encouraging Sparsity
It should be obvious that a hidden neuron that is always on or always off (a situation 

usually caused by its bias having excessive magnitude) is a worthless neuron. Therefore, 

we are inspired to, at a minimum, gently encourage neuron activation rates to avoid 

extremes.

There is often a second reason for encouraging neurons to not only avoid extremes 

but gravitate to activation rates (fraction of training cases for which it is turned on) that 

are small but positive, such as 0.1 or so. Later we will explore several methods to see the 

patterns learned by neurons. When we do so, it will become clear that these patterns 

are most interpretable by humans when they activate well under half the time. If some 

neuron activates for about half of the training cases, its reason for existing may not be 

obvious. But if it activates for only one-tenth of the training cases, it will probably be 

more apparent exactly what patterns in the training data they are responding to.

A good penalty function to encourage sparse activation is the cross entropy between 

the desired (p) and actual (q) activation rates. This function, defined in Equation 3-13, is 

graphed in Figure 3-1 for a desired rate of 0.1.

	
Spen PenFac p q p q= - * ( ) + -( ) -( )éë ùûlog log1 1 	 (3-13)
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In this equation, PenFac is a small user-supplied penalty strength factor. This function 

satisfies the basic need of having its minimum when p=q. But three properties make this 

function especially appealing. First, as the achieved activation rate approaches the limits 

of zero and one, the log terms blow up, meaning that neurons that are always on or always 

off become essentially impossible. Second, the function is relatively flat near its minimum, 

meaning that it will not violently force conformity to the exact desired activation rate but 

will allow some flexibility as long as the achieved rate is fairly close to the desired rate.

The third property is great for programming the penalty: the cross entropy’s 

derivative with respect to the neuron’s net input is delightfully simple, q−p. The 

derivative of the net input with respect to a given weight is just the input (visible neuron 

activation) feeding through that weight. So, by the chain rule, we have the simple 

formula in Equation 3-14 for the partial derivative of the sparsity penalty with respect to 

the weight connecting visible neuron j to hidden neuron i.

	

¶¶
¶¶
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(3-14)

It’s not practical (and probably not even desirable) to evaluate this function for each 

training case. Rather, we let vj be the mean across all training cases of input j. For qi, we 

can compute the mean activation of hidden neuron i in a batch and then exponentially 

smooth this quantity to prevent rapid changes that might whipsaw the gradient.

Figure 3-1.  Sparsity cross-entropy penalty function for p=0.1
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The primary use for a sparsity penalty is to encourage mean activations to be some 

small but not tiny rate, such as 0.1, to make weight interpretation easier. But I have found 

it useful to include two additional sparsity penalties in RBM training. One is invoked 

only when q is tiny, such as less than 0.01, and the other is invoked when q is very large, 

such as greater than 0.99. By using a large penalty factor, one can further strengthen the 

force and keep neurons from saturating at zero or one. This is handy if one wishes to use 

little or no “traditional” sparsity penalty.

�Finding Initial Weights
The first step in training an RBM network is to come up with a set of weights and biases 

that will serve as an effective starting point for optimization using some gradient-based 

approach. The traditional method seems to be just generating a small random set of 

weights and then choosing initial bias vectors with a modest degree of intelligence. 

This may indeed be fine because the early stages of subsequent gradient-descent 

training rapidly improve the quality of the parameters. Since RBM operations are 

computationally expensive, it can be argued that any approach more sophisticated than 

a single initial random shot at starting weights is a waste of resources.

However, it has been my experience that a small amount of searching for a good 

starting weight set is worthwhile. A stage of computing reconstruction error is much 

faster than a stage of gradient evaluation, especially if the gradient evaluation employs 

more than one iteration of the Markov chain. One minute of computer time spent trying 

a variety of parameter sets can greatly reduce the probability of accidentally starting out 

in the Bermuda Triangle of weight space. On average it may be a wasted minute, but 

every now and then a lot of agony is spared.

There are some basic principles to be followed in choosing trial weight sets. These 

include the following:

→ It’s better to have the magnitudes be too small than too large. 

If they are small, the training algorithm will pull them to better 

values soon enough. But if they are too large, they may cause 

some neurons to saturate in an always-on or always-off state, 

thus effectively destroying the link between visible-hidden pairs 

and driving the gradient to zero. Remember, your goal is to find 

starting weights, which are values more likely to be in a “good” 

region of the parameter space than a “bad” region. We don’t need 

to try to find even remotely optimal weights.
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→ There should be equal probability of generating positive and 

negative weights. To take a trivial example, suppose we have 

two inputs and there are two patterns: the first input is positive, 

and the second is negative, versus the first is negative and the 

second positive. Suppose your trial weight generator produces 

only positive weights, with the misguided idea that encouraging 

positive weights produces more interpretable patterns. Since the 

optimal weight set would have opposite signs for the inputs, no 

trial weight set could come close to the optimal weight set.

→ The variation of the weights must depend on the dimensions 

of the weight matrix. If you are summing a dot product of 

neuron activations and a weight vector, the magnitude of the 

sum will depend on the length of the vector. In particular, under 

reasonable assumptions of independence and identical activation 

distributions, the standard deviation of the sum is proportional 

to the square root of the number of terms in the dot product. 

Unfortunately, we have to deal with sums in two directions: 

across columns for mapping the visible neurons to the hidden 

and down rows for mapping hidden to visible. If the weight matrix 

is profoundly nonsquare, we may have a quandary, in which 

case we should always err on the side of weights that have small 

magnitude. But in practice the number of hidden neurons is 

usually well within an order of magnitude of the number of visible 

neurons, so we have plenty of leeway. A reasonable procedure is 

to use the harmonic mean of the dimensions, which is the square 

root of their product. This leads to the guideline in Equation 3-15 

for the variation of the weights.

	

Variation
nvis nhid

µ
1

* 	
(3-15)
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To create a range of variations, I use Equation 3-16 to define a “grand” variation 

for an entire weight set, and I use Equation 3-17 to sample each weight. Uniform(0,1) is a 

uniform random number in (0,1).

	 Variation
Uniform

nvis nhid
=

* ( )
*

4 0 1,
	 (3-16)

	
Weight Variation Uniform= * ( ) -( )0 1 0 5, . 	 (3-17)

�Hidden Neuron Bias
It is vital that no hidden neuron net input be inclined to be so extreme that the neuron 

is saturated to a probability near zero or one for most or all training cases. This will 

certainly happen if the bias has an extreme magnitude, which is why a common habit 

is to initialize all hidden neuron biases to zero. This habit is fine if there are so many 

weights that their net sum likely sums to around zero relative to their variation. But if 

there are not a lot of inputs, then near saturation, though unlikely if the weights are 

small, is possible. All inputs are, by definition, non-negative. So, for example, if a random 

trial weight set happens to have a row that is severely unbalanced in positive and 

negative weights, the dot product of this row with the inputs can be far from zero.

A good way to compensate for this potential unbalance is to compute the initial bias 

for each hidden neuron such that its net input is zero for an “average” training case. Let 

x j  be the mean of variable j in the training set. Then the initial bias for hidden neuron i 

is given by Equation 3-18.

	
c x Wi

j
j ij= -å

	
(3-18)

If the user wants to impose a sparsity penalty (page 101) to encourage specialization 

among the hidden neurons, then a modification of this equation might be appropriate. 

Suppose f (.) is the neuron’s logistic activation function (Equation 1-4). We leave it as a 

simple exercise for the reader to confirm that f (log(q/(1−q))=q. In other words, a net input 

of log(q/(1−q)) produces an activation probability of q. If q is the user’s desired activation 
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probability, then the initial bias could be computed with Equation 3-19. However, it has 

been my experience that initializing with Equation 3-18 tends to be slightly more stable, 

and subsequent training does an excellent job of producing the desired sparsity.
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(3-19)

�Visible Neuron Bias
The goal in finding a good parameter set for subsequent refinement is to minimize 

the reconstruction error. Even though this is not the ultimate training goal, the 

reconstruction error is so highly correlated with the statistical likelihood of a parameter 

set that beginning maximum likelihood training at a low point of reconstruction error is 

a virtuous goal.

A necessary (though naturally not sufficient) condition for small reconstruction error 

is that the probabilities for the reconstructed visible neurons be close to the probabilities 

for the inputs as observed in the training set. As in the prior section, let x j  be the mean 

of variable j in the user’s training set. Recall from the prior section that a visible neuron’s 

net input of log(p/(1−p)) produces an activation probability of p.

In the case of setting the initial bias for hidden neurons, we knew from the training 

set the probability that each input would be activated. But now we have no such 

neuron-by-neuron knowledge. Well, that’s not quite true. For any trial weight set and 

accompanying hidden bias vector, we could go through the training set and thereby 

find the average activation of each hidden neuron. But that would be an awful lot of 

computation.

A much faster approach is to just let q be the average hidden neuron activation that 

we expect. This would be 0.5 if Equation 3-18 was used for the hidden biases and would 

be the specified q if Equation 3-19 was used. Then Equation 3-20 provides reasonable 

values for the input neuron biases.
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�Code for Reconstruction Error
Reconstruction error was discussed on page 93. There, we saw that by using 

Equations 3-3 and 3-4, we could find the hidden neuron probabilities corresponding 

to a training case and then bounce back to the visible layer. Either Equation 3-5 or 3-6 

could be used to compare the original case with its reconstruction and thereby define 

an error measurement. This section will show code for implementing this algorithm, 

broken into two separately discussed sections.

The calling parameter list is straightforward, with one small exception. The data 

array has a row for each of the nc cases, and it has max_neurons columns, but only the 

first n_inputs of these columns contain data. The reason for this will become clear in the 

next chapter when I discuss greedy multiple-layer training. The reconstruction error is 

cumulated across cases, and the first step for each case is to get its data into visible1.

double rbm1_threaded (

   int nc ,                             // Number of  cases

   int n_inputs ,                   // Number of  inputs

   int max_neurons ,           // Maximum number of  neurons in any layer, as well as nin

   double *data ,                  // Nc rows by max_neurons columns of  input data; 0-1

   int nhid ,                          // Number of  hidden neurons

   double *w ,                      // Weight matrix, nhid rows, n_inputs cols

   double *in_bias ,             // Input bias vector

   double *hid_bias ,           // Hidden bias vector

   double *visible1 ,             // Work vector n_inputs long

   double *hidden1              // Work vector nhid long

   )

{

   int icase, ihid, ivis ;

   double error, sum, *wptr, *dptr, P ;

   error = 0.0 ; // Will cumulate reconstruction error

   for (icase=0 ; icase<nc ; icase++) {            // Pass through all cases, cumulating error

      dptr = data + icase * max_neurons ;       // Point to this case in the data

      for (ivis=0 ; ivis<n_inputs ; ivis++)

         visible1[ivis] = dptr[ivis] ;
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The following loop is a straightforward implementation of Equation 3-3. Initialize the 

sum to the hidden bias and then sum the dot product of the input vector with this hidden 

neuron’s weight vector. Apply the logistic activation function to the neuron’s net input.

      for (ihid=0 ; ihid<nhid ; ihid++) {

         wptr = w + ihid * n_inputs ;       // Weight vector for this neuron

         sum = hid_bias[ihid] ;

         for (ivis=0 ; ivis<n_inputs ; ivis++)

            sum += wptr[ivis] * visible1[ivis] ;

         hidden1[ihid] = 1.0 / (1.0 + exp(-sum)) ;

         }

The next loop similarly evaluates Equation 3-4 to get the reconstructed value P for 

each input. A runtime choice could be made for whether to use the mean squared error 

of Equation 3-5 or the cross entropy of Equation 3-6. Here I make it a compile-time 

choice simply because I believe MSE is better and I have no problem with carving it in 

stone. But by coding both, I can still experiment with both versions.

      for (ivis=0 ; ivis<n_inputs ; ivis++) {

         sum = in_bias[ivis] ;

         for (ihid=0 ; ihid<nhid ; ihid++)

            sum += w[ihid*n_inputs+ivis] * hidden1[ihid] ;

         P = 1.0 / (1.0 + exp(-sum)) ;

#if  RECON_ERR_XENT

         error -= visible1[ivis] * log(P+1.e-10) + (1.0 - visible1[ivis]) * log(1.0-P+1.e-10) ;

#else

         double diff  ;

         diff  = visible1[ivis] - P ;

         error += diff  * diff  ;

#endif

         }

      } // For icase

   return error ;

}
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�Multithreading Initial Weight Selection
The code presented in this section covers both generating the trial parameter sets and 

evaluating their reconstruction errors with a multithreaded algorithm. Many concepts 

vital to multithreading in Windows were covered starting on page 29. Readers should 

review that material because many of the issues presented there will be glossed over in 

this section to avoid redundancy.

The parameters, addresses of work areas, and so forth, are passed to the threaded 

routine via the following structure. The wrapper routine follows.

typedef  struct {

   int nc ;                               // Number of  cases

   int n_inputs ;                     // Number of  inputs

   int max_neurons ;              // Maximum number of  neurons in any layer, including input

   double *data ;                     // Nc rows by max_neurons columns of  input data; 0-1

   int nhid ;                            // Number of  hidden neurons

   double *w ;                          // Weight matrix; nhid sets of  n_inputs weights

   double *in_bias ;                // Input bias vector

   double *hid_bias ;               // Hidden bias vector

   double *visible1 ;                // Work vector n_inputs long

   double *hidden1 ;                // Work vector nhid long

   double crit ;                       // Computed criterion returned here

} RBM_THR1_PARAMS ;

static unsigned int __stdcall rbm1_wrapper ( LPVOID dp )

{

   ((RBM_THR1_PARAMS *) dp)->crit = rbm1_threaded (

                           ((RBM_THR1_PARAMS *) dp)->nc ,

                           ((RBM_THR1_PARAMS *) dp)->n_inputs ,

                           ((RBM_THR1_PARAMS *) dp)->max_neurons ,

                           ((RBM_THR1_PARAMS *) dp)->data ,

                           ((RBM_THR1_PARAMS *) dp)->nhid ,

                           ((RBM_THR1_PARAMS *) dp)->w ,

                           ((RBM_THR1_PARAMS *) dp)->in_bias ,

                           ((RBM_THR1_PARAMS *) dp)->hid_bias ,
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                           ((RBM_THR1_PARAMS *) dp)->visible1 ,

                           ((RBM_THR1_PARAMS *) dp)->hidden1 ) ;

   return 0 ;

}

The calling parameter list is similar to that for the reconstruction error routine 

already presented. However, there is one vital difference. The prior routine, which 

is called for each thread, must have its own private copy of parameters (weights and 

biases) as well as work areas (visible1 and hidden1). Otherwise, different threads would 

overwrite one another’s data and create mass chaos. Thus, when this routine is called, 

these vectors must be allocated with sufficient space for max_threads sets of parameters 

and work areas. Here is the calling parameter list and local variable declarations:

double rbm_thr1 (

   int nc ,                                 // Number of  cases

   int n_inputs ,                       // Number of  inputs

   int max_neurons ,                // Maximum number of  neurons in any layer, including input

   double *data ,                       // Nc rows by max_neurons columns of  input data; 0-1

   int nhid ,                                // Number of  hidden neurons

   double *w ,                           // Returned weight matrix, nhid sets of  n_inputs weights;

                                                // max_threads sets of  them

   double *in_bias ,                  // Returned input bias vector; max_threads sets

   double *hid_bias ,                // Returned hidden bias vector; max_threads sets

   double *visible1 ,                  // Work vector n_inputs long; max_threads sets

   double *hidden1 ,                // Work vector nhid long; max_threads sets

   double *in_bias_best ,         // Work vector n_inputs long

   double *hid_bias_best ,       // Work vector nhid long

   double *w_best ,                    // Work vector n_inputs * nhid long

   double *data_mean             // Work vector n_inputs long

   )

{

   int irand, ivis, ihid, i, k, n_rand, n_threads, empty_slot, ret_val ;

   double error, best_err, sum, wt, *dptr, *wptr, *hid_bias_ptr, *in_bias_ptr, diff  ;

   char msg[4096] ;

   RBM_THR1_PARAMS params[MAX_THREADS] ;

   HANDLE threads[MAX_THREADS] ;
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The mean of each input variable is needed for computing reasonable bias vectors 

given a random weight set. But because we will be taking the log of these means and one 

minus the means, they must be kept away from zero and one. This is done in the next 

section of code, shown here:

   for (ivis=0 ; ivis<n_inputs ; ivis++)

      data_mean[ivis] = 0.0 ;

   for (i=0 ; i<nc ; i++) {                         // Pass through all cases, cumulating mean vector

      dptr = data + i * max_neurons ;    // Point to this case in the data

      for (ivis=0 ; ivis<n_inputs ; ivis++)

         data_mean[ivis] += dptr[ivis] ;

      }

   for (ivis=0 ; ivis<n_inputs ; ivis++) {

      data_mean[ivis] /= nc ;

      if  (data_mean[ivis] < 1.e-8)

         data_mean[ivis] = 1.e-8 ;

      if  (data_mean[ivis] > 1.0 - 1.e-8)

         data_mean[ivis] = 1.0 - 1.e-8 ;

      }

Most of the parameters needed by the routine that computes the reproduction error 

remain constant for each thread invocation (trial of a weight set). Some of them, such as 

the number of cases, inputs, and hidden neurons, are the same for every thread. Others, 

such as addresses of work areas, are different for each thread to avoid trespassing on one 

another’s private property. These assignments are done now.

   n_rand = TrainParams.n_rand ;    // Number of  random weight sets to test

   for (i=0 ; i<max_threads ; i++) {

      params[i].nc = nc ;

      params[i].n_inputs = n_inputs ;

      params[i].max_neurons = max_neurons ;

      params[i].nhid = nhid ;

      params[i].data = data ;

      params[i].visible1 = visible1 + i * max_neurons ;

      params[i].hidden1 = hidden1 + i * max_neurons ;

      params[i].w = w + i * nhid * n_inputs ;
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      params[i].hid_bias = hid_bias + i * max_neurons ;

      params[i].in_bias = in_bias + i * max_neurons ;

      }

We do some initializations and begin the “endless” loop that will start separate 

threads for weight set trials. The global variable max_threads is the maximum number of 

threads that will be allowed. Larger values will require more memory, as noted in the 

calling parameter list. We will do n_rand trials, and irand will count them. The software 

thread to be started is indexed by k. While the initial queue is filling, k just counts up. But 

after the queue is filled and threads are starting and completing, k is set to the thread that 

just finished its work and returned, ready for a new task.

   n_threads = 0 ;                // Counts threads that are active

   for (i=0 ; i<max_threads ; i++)

      threads[i] = NULL ;

   irand = 0 ;                       // Index of  try

   empty_slot = -1 ;            // After full, will identify the thread that just completed

   best_err = 1.e40 ;            // Will keep track of  best reconstruction error

   for (;;) {                           // Main thread loop processes all tries

      if  (irand < n_rand) {     // If  there are still some weight trials to do

         if  (empty_slot < 0)    // Negative while we are initially filling the queue

            k = n_threads ;

         else

            k = empty_slot ;     // This thread has finished and can now be used

At this point we are ready to generate a trial weight set and bias vectors for the 

hidden and visible neurons. This trial run will be performed by thread k, so we must 

get the pointers to the parameter areas for this thread. Then we use Equation 3-16 to 

compute diff as the “grand variation” for this trial. By using a separate grand variation for 

each trial, we avoid the problem of a homogeneous search, with all trials having small 

weights or all trials having at least a few large weights.

         wptr = params[k].w ;

         hid_bias_ptr = params[k].hid_bias ;

         in_bias_ptr = params[k].in_bias ;

         diff  = 4.0 * unifrand_fast() / sqrt ( sqrt ( (double) n_inputs * nhid ) ) ;
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Now we can use Equation 3-17 to get trial weights and then use Equation 3-18 to 

compute the associated hidden neuron bias. I chose to forego Equation 3-19 simply 

because my (limited) experience is that the randomness inherent in the trial generation 

process can occasionally put neurons out in left field if Equation 3-19 is used to initially 

unbalance activation. However, users should feel free to experiment on their own. I 

could easily be wrong on this choice.

         for (ihid=0 ; ihid<nhid ; ihid++) {

            sum = 0.0 ;

            for (ivis=0 ; ivis<n_inputs ; ivis++) {     // Get visible weights for this hidden neuron

               wt = diff  * (unifrand_fast() - 0.5) ;     // Equation 3-17

               wptr[ihid*n_inputs+ivis] = wt ;

               sum += data_mean[ivis] * wt ;          // We'll need this for Equation 3-18

               }

            hid_bias_ptr[ihid] = -sum ;                   // Equation 3-18

            } // For ihid

The input neuron bias vector is computed with Equation 3-20.

         for (ivis=0 ; ivis<n_inputs ; ivis++) {        // Also center the visible

            sum = 0.0 ;

            for (ihid=0 ; ihid<nhid ; ihid++)

               sum += wptr[ihid*n_inputs+ivis] ;

            in_bias_ptr[ivis] = log ( data_mean[ivis] / (1.0 - data_mean[ivis]) ) - 0.5 * sum ;

            }

We can now start the thread that tests this trial parameter set. Increment the counter 

of the number of threads executing, and also increment the counter of the number of 

trials tested.

         threads[k] = (HANDLE) _beginthreadex ( NULL , 0 , rbm1_wrapper , &params[k] ,

                                                                           0 , NULL ) ;

         ++n_threads ;

         ++irand ;

         } // if  (irand < n_rand)
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At this point, one of three situations exists.

•	 We are just beginning, still filling the queue of threads.

•	 The maximum allowable number of threads are running, and we still 

have more trial parameter sets to test.

•	 All trial parameter sets have had threads started, and now we are just 

waiting for the threads to finish.

The first case does not require anything to be done. We just let the “endless” loop 

iterate again to generate a new trial parameter set and start its thread. The next block of 

code handles the second case. The timeout constant of 12000000 milliseconds must be 

large enough to give the threads time to finish but small enough that the user is not left 

clueless when the computer apparently freezes. Finally, we set empty_slot to the slot just 

freed for reuse, close the thread, and decrement the counter of threads executing.

      if  (n_threads == max_threads && irand < n_rand) {

         ret_val = WaitForMultipleObjects ( n_threads , threads , FALSE , 12000000 ) ;

         error = params[ret_val].crit ;

         // If  we just improved, save the best-so-far parameters

         if  (error < best_err) {

            best_err = error ;

            for (ihid=0 ; ihid<nhid ; ihid++) {

               hid_bias_best[ihid] = params[ret_val].hid_bias[ihid] ;

               for (ivis=0 ; ivis<n_inputs ; ivis++)

                  w_best[ihid*n_inputs+ivis] = params[ret_val].w[ihid*n_inputs+ivis] ;

               }

            for (ivis=0 ; ivis<n_inputs ; ivis++)

               in_bias_best[ivis] = params[ret_val].in_bias[ivis] ;

            }

         empty_slot = ret_val ;

         CloseHandle ( threads[empty_slot] ) ;

         threads[empty_slot] = NULL ; // Need this for user escape code not shown here

         --n_threads ;

         }
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The third case is similar to the second but a little easier. We wait until all of the 

threads are finished. Then we must check the criterion of each of the n_threads threads 

that we just waited for and keep track of the best. Finally, we close all of these threads 

and break out of the “endless” loop that we have been in.

      else if  (irand == n_rand) {

         ret_val = WaitForMultipleObjects ( n_threads , threads , TRUE , 1200000 ) ;

         for (i=0 ; i<n_threads ; i++) {

            error = params[i].crit ;

            // If  we just improved, save the best-so-far parameters

            if  (error < best_err) {

               for (ihid=0 ; ihid<nhid ; ihid++) {

                  hid_bias_best[ihid] = params[i].hid_bias[ihid] ;

                  best_err = error ;

                  for (ivis=0 ; ivis<n_inputs ; ivis++)

                     w_best[ihid*n_inputs+ivis] = params[i].w[ihid*n_inputs+ivis] ;

                  }

                for (ivis=0 ; ivis<n_inputs ; ivis++)

                  in_bias_best[ivis] = params[i].in_bias[ivis] ;

               }

            CloseHandle ( threads[i] ) ;

            } // For i, processing all threads just returned

         break ; // All done so break out of  endless loop

         } // Waiting for final threads to finish

The final step is to copy the best parameters for the user and return the 

reconstruction error, scaled per the number of cases and inputs.

   for (ihid=0 ; ihid<nhid ; ihid++) {

      hid_bias[ihid] = hid_bias_best[ihid] ;

      for (ivis=0 ; ivis<n_inputs ; ivis++)

         w[ihid*n_inputs+ivis] = w_best[ihid*n_inputs+ivis] ;

      }

   for (ivis=0 ; ivis<n_inputs ; ivis++)

      in_bias[ivis] = in_bias_best[ivis] ;

   return best_err / (nc * n_inputs) ;
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�Stochastic Gradient Descent Basic Principles
This section discusses some general principles of training an RBM that I have found to 

be useful. Please understand that this field is still young and evolving. Other researchers 

likely have even better ideas than those presented here, and still better refinements are 

being developed regularly. But the algorithms given here are well established and stable 

and are a solid foundation for more exotic approaches.

�The Core Algorithm
The idea behind stochastic gradient descent is that you compute an estimate of the 

gradient for some parameter set and then adjust the parameters by moving slightly in 

the direction opposite the gradient. At least for small moves, the error criterion will, on 

average, decrease. This simple algorithm is shown in Equations 3-21 and 3-22. In these 

equations, Wk is the weight set (including bias vectors) as of update k, rate is a very small 

number called the learning rate, and Δk is the gradient at Wk.

	 increment ratek k= - *DD 	 (3-21)

	 W W incrementk k k+ = +1 	 (3-22)

One problem with this simple approach is that when the error criterion function is a 

long, narrow chasm, which happens often, the updates will bounce back and forth across 

the walls of the chasm, making little net progress with each bounce. For this reason, a 

momentum term is usually included to propel adjustments in the average direction of 

movement. Each increment includes a fraction of the increment from the prior update, 

as shown in Equation 3-23. We can see the effect of momentum in Figure 3-2. Observe 

that without momentum the path would be perpendicular to the level curve. But by 

including an extra shove in the direction of the prior update, we push the net movement 

deeper into the chasm.

	 increment mom increment ratek k k= * - *-1 DD 	 (3-23)
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�Dividing Epochs into Batches
I discussed this subject in the context of supervised training on page 82. However, it is 

particularly relevant for RBM training, so we’ll repeat the discussion here. One could 

evaluate the gradient for each case, one at a time, and apply a small update to the 

weights accordingly each time. However, this would incur enormous overhead.

At the other extreme, we could sum the gradients for all cases and apply a single 

weight update after passing through the entire training set. This would have minimal 

overhead, and moreover, the error variance of the gradient would be relatively small 

because random errors would largely cancel when we sum the individual gradient 

estimates. Having an accurate gradient estimate is great.

Between these two extremes we could divide the training set into batches. Sum the 

gradient for each batch and do one update per batch. But how large should we make the 

batches? An important consideration is that the trade-off between gradient evaluation 

time per batch and number of batches required for satisfactory training is not a net wash. 

In particular, when we decrease the batch size and hence decrease the compute time 

per batch, the number of batches required for convergence does not increase as fast as 

the gradient time decreases. Pulling some numbers out of the air, we may find that if we 

decrease the batch size (and hence compute time per batch) by a factor of ten, we may 

find that five times as many batches are required because of the increased error of the 

gradient in each batch. But still, we are ahead by a factor of two.

Figure 3-2.  Momentum pushes rapidly into the chasm
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This, of course, is offset by the increased overhead of using numerous batches. 

The overhead for starting a thread under Windows is quite small, so it is not much 

of a consideration. On the other hand, the overhead of launching a CUDA kernel is 

significant, so we might be inclined to use larger batches with CUDA processing than 

with Windows multithreading.

�Shuffling Epochs
If we were to process the entire training set in one huge batch, the order in which 

training cases appear in the dataset would be irrelevant. However, because in most 

practical situations we will be separating the dataset into batches as described in the 

prior section, the order of training cases will make a difference.

There are two order-dependent issues to consider. First, suppose the training set has 

significant serial correlation. This may happen, for example, if the data involves time 

series. It may also happen if the experimenter has deliberately varied some aspect of the 

test, with cases derived from different test conditions grouped together. If there is serial 

correlation, we may find that with one batch the gradient moves in one direction, and 

with the next batch it moves back the other way. This is not good.

Second, even without overt serial dependency, the training set may contain one or 

more very unusual cases or accidental groupings of like cases. It is better not only to 

disperse unusual cases or clusters of patterns throughout batches, but even to vary this 

dispersion from epoch (pass through the entire training set) to epoch so that we don’t 

keep getting the same gradient backtracking each time.

Of course, in practice it makes little sense to shuffle the actual cases; this would be too 

expensive if there are more than a few variables. Rather, a programmer should address 

cases through a vector of indices into the dataset and then just shuffle the index vector.

�Updating the Learning Rate and Momentum
The simplest way to handle learning rate and momentum is to fix them at preordained 

values throughout training. The problem with this approach is that if they are too small, 

convergence to a minimum criterion will be virtually assured but will also take far longer 

than need be. Thus, one is inclined to make them large. But if the learning rate is too 

large, the minimum will be overshot repeatedly, and convergence will be difficult if not 

impossible. And if the momentum is too large, the path through parameter space will not 

be able to turn corners well and will shoot right through sharp curves (which does happen).
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For these reasons, more advanced methods were devised for determining learning 

rate and momentum. One might set the learning rate to change at a steady rate as 

training progresses or set it to be a constant fraction of the average weight size. Similarly, 

one might assume that as training progresses, the weights will be more and more 

contained in a well-behaved canyon and thus increase momentum steadily.

But these are disturbingly heuristic approaches. The truly optimal learning rate is a 

function of the Hessian matrix, which is impractical to compute. And simpler methods 

such as directional minimization and conjugate gradients (page 84), while excellent 

when deterministic gradients are available, are worthless when the gradient estimates 

include substantial random variation, as is the case here. What to do?

In my own work I have found a simple yet highly effective method for achieving 

nearly optimal learning rates and at least reasonable momentum factors. The motivation 

for this technique is the idea that if the learning rate is too small, successive gradient 

estimates will point in nearly the same direction. Conversely, if the rate is too high, we 

will overshoot the minimum in this direction, and hence the gradient will point us 

right back toward where we came from. Thus, we use the cosine of the angle between 

the current gradient and the prior gradient as an indicator of the quality of the learning 

rate. If the cosine is very small (the gradients are pointing in nearly the same direction), 

the learning rate should be increased, and if it is very large (the gradients are pointing in 

nearly opposite directions), we need to cut the learning rate.

The cosine of the angle between two vectors is their dot product divided by the 

product of their lengths, as shown in Equation 3-24.

	
GradCosk

k k

k k

= -

-

DD DD
DD DD

× 1

1 	
(3-24)

This same measure can be used to keep tabs on the momentum factor, although not 

with as much efficacity as for the learning rate. The idea is that when things are going 

well, the successive gradients will be somewhat perpendicular. They need not be exactly 

perpendicular, as is illustrated in Figure 2-6. But if the learning rate is reasonable yet 

the angle is excessively large or small, the momentum is the likely suspect. Remember 

that momentum is really a departure from the direction of steepest descent and hence 

is a dangerous source of instability. You are always safe using little or no momentum; 

the only price paid is slower convergence. But excessive momentum can prevent 

convergence or lead to a local minimum far out in left field. In case of doubt, cut 

momentum.
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This leads to a simple algorithm for determining momentum: start out small 

and slowly but steadily increase it as training progresses. But if the absolute value of 

Equation 3-24 becomes excessive, slash the momentum. And avoid the temptation to 

increase the momentum if the angle is small; this leads to instability. Instead, increase 

the learning rate and then let the momentum naturally increase. This seems to work 

well in practice.

�Determining Convergence
When one is doing deterministic minimization, determining convergence is 

straightforward. One can look at the rate at which the criterion is decreasing and stop 

when the rate drops below a specified threshold. Or one can look at the length of the 

gradient vector and stop when the length becomes sufficiently small.

These approaches are problematic for training an RBM. Except for tiny toy 

applications, we cannot compute the likelihod criterion that we want to optimize, 

so we cannot use its rate of decrease as a stopping test. It’s tempting to use the 

reconstruction error (page 93) for the test and stop iterating when its rate of decrease 

drops to nearly zero. This is not totally inappropriate because this value has solid 

intuitive appeal and is often highly correlated with the likelihood. But this is not the 

function whose gradient we are computing, so gradient descent does not necessarily 

correspond to a reduction of the reconstruction error.

This is especially true if we perform many iterations of contrastive divergence 

(page 97), which produces a better approximation to the likelihood gradient. If we do 

just one iteration, the correspondence between the gradient and the reconstruction 

error is usually close, but even then it’s far from perfect. And as training progresses, the 

correspondence becomes progressively worse. This is because the weights generally 

increase in magnitude as we train longer, and larger weights result in slower mixing 

rate, meaning that the reconstruction error can be small while the model is still far from 

providing a good representation of the distribution of the training data. So, if we stop 

training when the rate of decrease of the reconstruction error drops to near zero, we are 

probably stopping much too soon.

The other reason that stopping criteria for deterministic problems are inappropriate 

for RBM training is that the gradient is stochastic; even if the weights happen to be 

at exactly the optimum, the gradient will still jump around because of the impact of 

randomness in setting hidden (and perhaps visible) neuron activations. Conversely, a 

gradient of essentially zero need not correspond to an optimum weight set.
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Still, it’s possible to use a variation of this measure as a fairly good stopping test. By 

looking at the gradient element having maximum magnitude, we can have a measure 

of the worst that randomness can do when we are near the optimum. Then we compare 

this to the size of the largest magnitude weight (not necessarily the weight corresponding 

to the largest gradient element) because we want a measure of convergence relative to 

how much any input can impact hidden neuron activations.

Another benefit of this test is that if one or more weights are blowing up (a fairly 

unusual pathological situation, especially if a weight penalty is in force), we probably 

want to stop.

That test should be secondary, though. I have found that the best measure of 

convergence is the number of times in a row for which this gradient-to-weight ratio fails 

to decrease from its minimum so far. This counting test can fail in the rare instance that 

some weight is blowing up, which is why the ratio test just described should be included. 

But under normal conditions, once we are near a likelihood maximum, randomness 

will at some point provide a small value for the gradient/weight ratio, which is difficult 

to further reduce in subsequent epochs. So if we find that a considerable number of 

epochs have passed with no reduction of this ratio, we can conclude that we are close 

to an optimal weight configuration. This should be the primary convergence criterion 

because it is quite effective.

�Code for Multithreaded RBM Training
We now present code (minus error checking and so on) for approximate maximum-

likelihood training of an RBM using contrastive divergence. It will be shown in sections, 

alternating with explanations. The complete source code for this module is available 

for free download from the author’s web site. The calling parameter list for the gradient 

routine (algorithm is on page 99) is given first. The constants at the beginning are for fast 

random number generation later.

#define IA 16807

#define IM 2147483647

#define AM (1.0 / IM)

#define IQ 127773

#define IR 2836
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static void rbm2_threaded (

   int istart ,                          // First case in this batch

   int istop ,                          // One past last case

   int ncols ,                          // Number of  columns in data

   int n_inputs ,                     // Number of  inputs

   double *data ,                   // ‘Training cases’ rows by ncols columns of  input data; 0-1

   int nhid ,                             // Number of  hidden neurons

   int n_chain ,                      // Length of  Markov chain

   int mean_field ,                  // Use mean field instead of  random sampling?

   double *w ,                        // Weight matrix, nhid sets of  n_inputs weights

   double *in_bias ,               // Input bias vector

   double *hid_bias ,             // Hidden bias vector

   int *shuffle_index ,            // For addressing shuffled data

   double *visible1 ,               // Work vector n_inputs long

   double *visible2 ,               // Work vector n_inputs long

   double *hidden1 ,               // Work vector nhid long

   double *hidden2 ,               // Work vector nhid long

   double *hidden_act ,         // Work vector nhid long

   double *in_bias_grad ,      // Cumulates gradient here

   double *hid_bias_grad ,  // Cumulates gradient here

   double *w_grad ,              // Cumulates gradient here

   double *hid_on_frac ,      // Cumulates fraction of  time each hidden neuron is on

   double *error                      // Cumulates reconstruction criterion

   )

Most of these parameters should be self-explanatory, especially for readers who have 

studied prior modules. As with the routine for finding starting weights, the training data 

array has ncols columns, with the first n_inputs of them being used. The reason for this will 

become clear in the next chapter when I present greedy learning.

The array shuffle_index is as long as there are cases in the complete training set, and it 

contains the integers zero through number of cases minus one. These will be shuffled by 

the calling routine and used in this routine to access the cases in random order.

Next are the variable declarations and initialization for the random number 

generator. By including istop and shuffle_index[0] in the random initialization, we ensure 

that for each batch and epoch we get a different sequence of random numbers for 
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determining hidden neuron activations. One peculiarity of this random number 

generator is that the value zero must never be used for initialization, so we explicitly 

prevent this.

   int k, randnum, icase, ivis, ihid, ichain ;

   double sum, *wptr, *dptr, P, Q, frand ;

   randnum = (istop + shuffle_index[0]) % IM ;

   if  (randnum == 0)

      randnum = 1 ;

We zero the areas in which the gradient and error will be cumulated for this batch. 

The array hid_on_frac tallies the fraction of time each hidden neuron is on. This is needed 

later for sparsity penalties.

   for (ihid=0 ; ihid<nhid ; ihid++) {

      hid_bias_grad[ihid] = 0.0 ;

      hid_on_frac[ihid] = 0.0 ;

      for (ivis=0 ; ivis<n_inputs ; ivis++)

         w_grad[ihid*n_inputs+ivis] = 0.0 ;

      }

   for (ivis=0 ; ivis<n_inputs ; ivis++)

      in_bias_grad[ivis] = 0.0 ;

   *error = 0.0 ;

The main loop processes each case in this batch, using the algorithm listed on  

page 99 to estimate the gradient for each case and summing the gradient across the 

batch. The first step in this algorithm is to use Equation 3-3 to compute the activation 

probabilities of the hidden neurons. We’ll save these in hidden1 for use in the positive 

gradient term and also put them into hidden2 for sampling in the Monte Carlo chain.

   for (icase=istart ; icase<istop ; icase++) {

      dptr = data + shuffle_index[icase] * ncols ;               // Point to this case in the data

      for (ivis=0 ; ivis<n_inputs ; ivis++)                             // Get this case

         visible1[ivis] = dptr[ivis] ;
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      for (ihid=0 ; ihid<nhid ; ihid++) {

         wptr = w + ihid * n_inputs ;                     // Weight vector for this neuron

         sum = hid_bias[ihid] ;

         for (ivis=0 ; ivis<n_inputs ; ivis++)          // Equation 3-3 summation

            sum += wptr[ivis] * visible1[ivis] ;

         Q = 1.0 / (1.0 + exp(-sum)) ;                    // Probability = f(sum)

         hidden1[ihid] = hidden2[ihid] = Q ;          // We'll need hidden2 for CD-k loop below

         hid_on_frac[ihid] += Q ;                          // Need this for sparsity penalty

         }

We can optionally compute the reconstruction error here using the slow, accurate 

method. We can also use either mean squared error (Equation 3-5) or cross entropy 

(Equation 3-6). These could be user options.

#if  RECON_ERR_DIRECT

      // Compute the reconstruction error the deterministic but expensive way

      for (ivis=0 ; ivis<n_inputs ; ivis++) {          // This loop is not needed for gradient

         sum = in_bias[ivis] ;                               // It is only for reconstruction error

         for (ihid=0 ; ihid<nhid ; ihid++)               // and may be an expensive waste

            sum += w[ihid*n_inputs+ivis] * hidden1[ihid] ; // because it is a nested loop!

         P = 1.0 / (1.0 + exp(-sum)) ;                  // Equation 3-4

#if  RECON_ERR_XENT

         *error -= visible1[ivis] * log(P+1.e-10) + (1.0 - visible1[ivis]) * log(1.0-P+1.e-10) ;

#else

         double diff  = visible1[ivis] - P ;

         *error += diff  * diff  ;

#endif

         }

#endif

We now run the Markov chain that gives us successively better approximations to 

a random sample from the “natural” RBM distribution corresponding to the current 

weight set. Each time the loop begins, hidden2 contains the probabilities of hidden 

neuron activations. We generate a random number and sample to get hidden_act.
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      for (ichain=0 ; ichain<n_chain ; ichain++) {

         for (ihid=0 ; ihid<nhid ; ihid++) {

            k = randnum / IQ ;

            randnum = IA * (randnum - k * IQ) - IR * k ;

            if  (randnum < 0)

               randnum += IM ;

            frand = AM * randnum ;

            hidden_act[ihid] = (frand < hidden2[ihid]) ? 1.0 : 0.0 ;

            }

Compute the visible activation probabilities using Equation 3-4. And now that 

these probabilities are available, we can compute the reconstruction error as either 

mean squared error (Equation 3-5) or cross entropy (Equation 3-6). The probabilities 

P are based on sampled hidden activations, so this measure is not as accurate as the 

deterministic version, but we need these probabilities for the gradient anyway, so there 

is no wasted effort as there would be for the deterministic method.

         for (ivis=0 ; ivis<n_inputs ; ivis++) {

            sum = in_bias[ivis] ;

            for (ihid=0 ; ihid<nhid ; ihid++)

               sum += w[ihid*n_inputs+ivis] * hidden_act[ihid] ;

            P = 1.0 / (1.0 + exp(-sum)) ; // Equation 3-4

#if  ! RECON_ERR_DIRECT

            if  (ichain == 0) {

#if  RECON_ERR_XENT

               *error -= visible1[ivis] * log(P+1.e-10) + (1.0-visible1[ivis]) * log(1.0-P+1.e-10) ;

#else

               double diff  = visible1[ivis] - P ;

               *error += diff  * diff  ;

#endif

               }

#endif
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The last step in the “visible neuron” loop is to either just save the probability directly 

or, if not mean_field, generate a random number and use it to sample the reconstructed 

visible activation.

         if  (mean_field)

            visible2[ivis] = P ;

         else {

            k = randnum / IQ ;

            randnum = IA * (randnum - k * IQ) - IR * k ;

            if  (randnum < 0)

               randnum += IM ;

            frand = AM * randnum ;

            visible2[ivis] = (frand < P) ? 1.0 : 0.0 ; // Sample the activation

            }

         } // For each visible neuron

The last step in the Markov chain is to use the visible neuron values, either the 

probabilities or the sampled activations, to compute the hidden neuron activation 

probabilities.

         for (ihid=0 ; ihid<nhid ; ihid++) {

            wptr = w + ihid * n_inputs ;      // Weight vector for this neuron

            sum = hid_bias[ihid] ;

            for (ivis=0 ; ivis<n_inputs ; ivis++)

               sum += wptr[ivis] * visible2[ivis] ;

            hidden2[ihid] = 1.0 / (1.0 + exp(-sum)) ;

            }

         } // For Markov chain

At this point we have the “data” and “model” visible and hidden neuron 

probabilities and/or activations. We can then use Equation 3-12 to compute the 

(negative) gradient. This equation is in terms of expectations. The “data” values we now 

have are unbiased random samples from the training set distribution. The “model” 

values are biased, with the degree of bias decreasing as the Monte Carlo chain repeats. 

But they are nevertheless reasonable. An entire batch of samples, when averaged, will 

be an acceptable approximation to the expectations in Equation 3-12. Note that if we are 

not using a mean field approximation, we must sample the “model” hidden activations.
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      for (ihid=0 ; ihid<nhid ; ihid++) {

         if  (mean_field) {

            hid_bias_grad[ihid] += hidden1[ihid] - hidden2[ihid] ;

            for (ivis=0 ; ivis<n_inputs ; ivis++)

               w_grad[ihid*n_inputs+ivis] += hidden1[ihid] * visible1[ivis] -

                                                               hidden2[ihid] * v isible2[ivis] ;

            }

         else {

            k = randnum / IQ ;

            randnum = IA * (randnum - k * IQ) - IR * k ;

            if  (randnum < 0)

               randnum += IM ;

            frand = AM * randnum ;

            hidden_act[ihid] = (frand < hidden1[ihid]) ? 1.0 : 0.0 ;

            hid_bias_grad[ihid] += hidden_act[ihid] - hidden2[ihid] ;

            for (ivis=0 ; ivis<n_inputs ; ivis++)

               w_grad[ihid*n_inputs+ivis] += hidden_act[ihid] * visible1[ivis] -

                                                               hidden2[ihid] * v isible2[ivis] ;

            }

         }

      for (ivis=0 ; ivis<n_inputs ; ivis++)

         in_bias_grad[ivis] += visible1[ivis] - visible2[ivis] ;

      } // For each case in this batch

}

The routine just shown is the gradient computation workhorse that will be called in 

threads. Threading has been discussed several times already, so we will rush through 

it this time, trusting that the reader will review the prior discussions if needed to 

understand what’s going on. We begin with the data structure used to pass parameters 

and the wrapper that is called for each thread. These are listed here:

typedef  struct {

   int istart ;                        // First case in this batch

   int istop ;                        // One past last case

   int ncols ;                       // Number of  columns in data
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   int n_inputs ;                    // Number of  inputs

   double *data ;                    // ‘Training cases’ rows by ncols columns of  input data; 0-1

   int nhid ;                             // Number of  hidden neurons

   int n_chain ;                     // Length of  Markov chain; often 1

   int mean_field ;                // Use mean field instead of  random sampling?

   double *w ;                        // Weight matrix; nhid sets of  n_inputs weights

   double *in_bias ;             // Input bias vector

   double *hid_bias ;           // Hidden bias vector

   int *shuffle_index ;          // For addressing shuffled data

   double *visible1 ;             // Work vector n_inputs long

   double *visible2 ;             // Work vector n_inputs long

   double *hidden1 ;              // Work vector nhid long

   double *hidden2 ;             // Work vector nhid long

   double *hidden_act ;        // Work vector nhid long

   double *in_bias_grad ;    // Cumulates gradient here

   double *hid_bias_grad ;  // Cumulates gradient here

   double *w_grad ;             // Cumulates gradient here

   double *hid_on_frac ;     // Cumulates fraction of  time each hidden neuron is on

   double *error ;                  // Cumulates MSE

} RBM_THR2_PARAMS ;

static unsigned int __stdcall rbm2_wrapper ( LPVOID dp )

{

rbm2_threaded (

                          ((RBM_THR2_PARAMS *) dp)->istart ,

                          ((RBM_THR2_PARAMS *) dp)->istop ,

                          ((RBM_THR2_PARAMS *) dp)->ncols ,

                          ((RBM_THR2_PARAMS *) dp)->n_inputs ,

                          ((RBM_THR2_PARAMS *) dp)->data ,

                          ((RBM_THR2_PARAMS *) dp)->nhid ,

                          ((RBM_THR2_PARAMS *) dp)->n_chain ,

                          ((RBM_THR2_PARAMS *) dp)->mean_field ,

                          ((RBM_THR2_PARAMS *) dp)->w ,

                          ((RBM_THR2_PARAMS *) dp)->in_bias ,

                          ((RBM_THR2_PARAMS *) dp)->hid_bias ,

                          ((RBM_THR2_PARAMS *) dp)->shuffle_index ,
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                          ((RBM_THR2_PARAMS *) dp)->visible1 ,

                          ((RBM_THR2_PARAMS *) dp)->visible2 ,

                          ((RBM_THR2_PARAMS *) dp)->hidden1 ,

                          ((RBM_THR2_PARAMS *) dp)->hidden2 ,

                          ((RBM_THR2_PARAMS *) dp)->hidden_act ,

                          ((RBM_THR2_PARAMS *) dp)->in_bias_grad ,

                          ((RBM_THR2_PARAMS *) dp)->hid_bias_grad ,

                          ((RBM_THR2_PARAMS *) dp)->w_grad ,

                          ((RBM_THR2_PARAMS *) dp)->hid_on_frac ,

                          ((RBM_THR2_PARAMS *) dp)->error ) ;

   return 0 ;

}

The calling parameter list for the training routine is shown next. Most of these 

parameters have been seen before, so they need no explanation. However, there are a 

few items that may need explanation.

•	 As noted on page 100, if one makes just a single pass through the 

(very expensive!) Markov chain loop, the resulting “sample” from 

the model distribution will be significantly biased toward the data 

distribution. Nonetheless, it will contain a large amount of gradient 

information, more than enough to quickly pull us toward the 

maximum likelihood weights. Thus, we are inspired to start with a 

small number of passes, n_chain_start, typically 1, and work toward a 

somewhat larger number, n_chain_end, at an exponential smoothing 

rate of n_chain_rate.

•	 The two convergence criteria, max_no_improvement and convergence_crit, 

were discussed on page 120.

•	 The learning_rate parameter is an initial value only. It will be 

automatically adjusted, as discussed on page 118. The start_momentum 

and end_momentum parameters are discussed in that section as well.

•	 Many of the work vectors need to have separate copies for each 

thread. Therefore, the caller must allocate for the apparent required 

size times the maximum number of threads possible.
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double rbm_thr2 (

   int nc ,                                      // Number of  training cases

   int ncols ,                                   // Number of  columns in data

   double *data ,                            // Nc rows by ncols columns of  input data; 0-1

   int n_inputs ,                            // Number of  inputs

   int nhid ,                                   // Number of  hidden neurons

   int max_neurons ,                     // Maximum number of  neurons in any layer

   int n_chain_start ,                      // Starting length of  Markov chain, generally 1

   int n_chain_end ,                     // Ending length of  Markov chain

   double n_chain_rate ,                // Exponential smoothing rate for n_chain

   int mean_field ,                        // Use mean field instead of  random sampling?

   int n_batches ,                         // Number of  batches per epoch

   int max_epochs ,                      // Maximum number of  epochs

   int max_no_improvement ,      // Converged if  this many epochs no improvement

   double convergence_crit ,          // Convergence criterion for max inc / max weight

   double learning_rate ,                // Learning rate (starting value; quickly adjusted)

   double start_momentum ,        // Learning momentum start value

   double end_momentum ,          // Learning momentum end value

   double weight_penalty ,            // Weight penalty

   double sparsity_penalty ,         // Sparsity penalty

   double sparsity_target ,             // Sparsity target

   double *w ,                                 // Computed weight matrix, nhid sets of  n_inputs wts

   double *in_bias ,                      // Computed input bias vector

   double *hid_bias ,                    // Computed hidden bias vector

   int *shuffle_index ,                   // Work vector nc long

   double *data_mean ,                // Work vector n_inputs long

   double *visible1 ,                       // Work vector n_inputs * max_threads long

   double *visible2 ,                        // Work vector n_inputs * max_threads long

   double *hidden1 ,                        // Work vector nhid * max_threads long

   double *hidden2 ,                      // Work vector nhid * max_threads long

   double *hidden_act ,                 // Work vector nhid * max_threads long

   double *hid_on_frac ,                // Work vector nhid * max_threads long

   double *hid_on_smoothed ,       // Work vector nhid long

   double *in_bias_inc ,               // Work vector n_inputs long

   double *hid_bias_inc ,             // Work vector nhid long

   double *w_inc ,                           // Work vector n_inputs * nhid long

Chapter 3  Restricted Boltzmann Machines



131

   double *in_bias_grad ,            // Work vector n_inputs * max_threads long

   double *hid_bias_grad ,          // Work vector nhid * max_threads long

   double *w_grad ,                     // Work vector n_inputs * nhid * max_threads long

   double *w_prev                         // Work vector n_inputs * nhid long

   )

The variable declarations are shown here. The algorithm contains nested subsetting; 

in other words, each epoch (a complete pass through all the training data) is broken up 

into batches for weight update, and each batch is distributed across multiple threads.

   int i_epoch ;                     // Each epoch is a complete pass through all training data

   int n_threads ;                  // Each batch is broken into this many threads

   int ivis ;                             // Index within visible layer

   int ihid ;                              // Index of  hidden neuron

   int istart ;                          // Index in dataset of  first batch case

   int istop ;                             // And one past last batch case

   int jstart ;                          // Offset in batch of  first thread case

   int jstop ;                            // And one past last thread case

   int n_in_batch ;                // Number of  training cases in the batch being processed

   int n_in_thread ;                  // Number of  training cases in the thread being processed

   int ibatch ;                          // Batch number being processed

   int ithread ;                       // Thread number being processed

   int n_done ;                      // Number of  training cases done in this epoch so far

   int nt_done ;                     // Number of  training cases done in this batch so far

   int n_no_improvement ;   // N of  consecutive times convergence crit failed to improve

   double chain_length ;         // Chain length, which may be smoothed upwards

   double error ;                     // Mean squared error for each epoch; sum of  squared diffs

   double best_err ;                // Best error seen so far

   int i, j, k, ret_val ;

   double *dptr, momentum, max_inc, max_weight, error_vec[MAX_THREADS] ;

   double best_crit, double sp_pen, x_this, x_prev, len_this, len_prev, dot ;

   double smoothed_this, smoothed_dot, most_recent_correct_error ;

   char msg[4096] ;

   RBM_THR2_PARAMS params[MAX_THREADS] ;

   HANDLE threads[MAX_THREADS] ;
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The first step is to compute the mean vector of the inputs. This will be needed for 

the sparsity penalty. Then the data structure for passing information to the threads is 

initialized with those values that will not change. This code is shown here:

   for (ivis=0 ; ivis<n_inputs ; ivis++)

      data_mean[ivis] = 0.0 ;

   for (i=0 ; i<nc ; i++) {                     // Pass through all cases, cumulating mean vector

      dptr = data + i * ncols ;              // Point to this case in the data

      for (ivis=0 ; ivis<n_inputs ; ivis++)

         data_mean[ivis] += dptr[ivis] ;

      }

   for (ivis=0 ; ivis<n_inputs ; ivis++)

      data_mean[ivis] /= nc ;

   for (i=0 ; i<max_threads ; i++) {

      params[i].mean_field = mean_field ;

      params[i].n_inputs = n_inputs ;

      params[i].ncols = ncols ;

      params[i].nhid = nhid ;

      params[i].data = data ;

      params[i].in_bias = in_bias ;

      params[i].hid_bias = hid_bias ;

      params[i].w = w ;

      params[i].shuffle_index = shuffle_index ;

      params[i].visible1 = visible1 + i * max_neurons ;

      params[i].visible2 = visible2 + i * max_neurons ;

      params[i].hidden1 = hidden1 + i * max_neurons ;

      params[i].hidden2 = hidden2 + i * max_neurons ;

      params[i].hidden_act = hidden_act + i * max_neurons ;

      params[i].in_bias_grad = in_bias_grad + i * max_neurons ;

      params[i].hid_bias_grad = hid_bias_grad + i * max_neurons ;

      params[i].hid_on_frac = hid_on_frac + i * max_neurons ;

      params[i].w_grad = w_grad + i * nhid * n_inputs ;

      params[i].error = error_vec + i ;

      }
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In the previous code, the parameters in the first half are identical for all threads. The 

second half are work areas that must be maintained separately for each thread to avoid 

different threads stomping on one another’s territory.

We’ll be doing momentum smoothing of the parameter increments (Equation 3-23), 

so these increments must be initialized to zero. Also, the sparsity penalty will require a 

smoothed version of the fraction of time each hidden neuron is activated, hid_on_smoothed. 

We initialize this to 0.5.

   for (ihid=0 ; ihid<nhid ; ihid++) {

      hid_bias_inc[ihid] = 0.0 ;

      hid_on_smoothed[ihid] = 0.5 ;

      for (ivis=0 ; ivis<n_inputs ; ivis++)

         w_inc[ihid*n_inputs+ivis] = 0.0 ;

      }

   for (ivis=0 ; ivis<n_inputs ; ivis++)

      in_bias_inc[ivis] = 0.0 ;

We now do several more initializations: set up the shuffled index vector (page 118),  

zero the counter of contiguous failures to improve, and set the momentum and Markov 

chain length to their starting values. Then begin the loop that processes epochs 

(complete passes through the training set). The first step in each epoch is to shuffle the 

dataset indices.

   for (i=0 ; i<nc ; i++)

      shuffle_index[i] = i ;

   momentum = start_momentum ;

   n_no_improvement = 0 ;              // Counts failure of  ratio to improve

   chain_length = n_chain_start ;

   for (i_epoch=0 ; i_epoch<max_epochs ; i_epoch++) {

      i = nc ;                          // Number remaining to be shuffled

      while (i > 1) {                // While at least 2 left to shuffle

         j = (int) (unifrand_fast () * i) ;

         if  (j >= i)

            j = i - 1 ;

Chapter 3  Restricted Boltzmann Machines



134

         k = shuffle_index[--i] ;

         shuffle_index[i] = shuffle_index[j] ;

         shuffle_index[j] = k ;

         }

Within the epoch loop just begun, we have a batch loop. The training set is divided 

into batches, each of which is used to compute a gradient estimate and thereby update 

the weights.

      istart = 0 ;                     // Batch start = training data start

      n_done = 0 ;                 // Number of  training cases done in this epoch so far

      error = 0.0 ;                  // Cumulates reproduction error

      max_inc = 0.0 ;            // For testing convergence

      for (ibatch=0 ; ibatch<n_batches ; ibatch++) {       // An epoch is split into batches

         n_in_batch = (nc - n_done) / (n_batches - ibatch) ; // Cases remaining / batches

         istop = istart + n_in_batch ;                               // Stop just before this index

At this point we are about to process a batch of n_in_batch cases beginning with case 

istart and ending just before case istop. We will break this batch into n_threads threads that 

run simultaneously. If the batch is large, use max_threads of them. But because of the 

overhead of starting a thread, we make sure each thread handles a fair number of cases. 

The constant 10, used here, is arbitrary and system dependent but not at all critical. Start 

all threads for this batch, first setting the parameters that vary.

         n_threads = max_threads ;   // Try to use as many as possible

         while (n_threads > 1 && n_in_batch / n_threads < 10) // But respect overhead

            --n_threads ;                      // The choice of  constant is difficult

         jstart = 0 ;                             // Thread within this batch

         nt_done = 0 ;                        // Number in this batch done

         for (ithread=0 ; ithread<n_threads ; ithread++) {

            n_in_thread = (n_in_batch - nt_done) / (n_threads - ithread) ;

            jstop = jstart + n_in_thread ;

            params[ithread].istart = istart + jstart ;                          // Batch start + thread start

            params[ithread].istop = istart + jstop ;                          // Batch start + thread stop

            params[ithread].n_chain = (int) (chain_length + 0.5) ; // Constant for epoch
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            threads[ithread] = (HANDLE) _beginthreadex ( NULL , 0 , rbm2_wrapper ,

                                                                                      &param s[ithread] , 0 , NULL ) ;

            nt_done += n_in_thread ;      // Cases in this batch done so far

            jstart = jstop ;                        // Start the next thread where this thread stopped

            } // For all threads in this batch

Now we just wait for all of the threads to finish. Recall from the initialization early 

in this routine that the gradient and error cumulation areas are offset for each thread by 

the amount of space needed. So, for example, params[0].hid_bias_grad contains the same 

address as hid_bias_grad and so forth for the other gradients and the error. Thus, we can 

start at thread 1 and sum the quantities for each thread into the root variable, which has 

the values for thread 0. This gives the net result for the entire batch. And we must close 

the thread handles.

         ret_val = WaitForMultipleObjects ( n_threads , threads , TRUE , 1200000 ) ;

         CloseHandle ( threads[0] ) ;

         for (ithread=1 ; ithread<n_threads ; ithread++) { // Pool results into thread 0

            for (ihid=0 ; ihid<nhid ; ihid++) {

               hid_bias_grad[ihid] += (params[ithread].hid_bias_grad)[ihid] ;

               hid_on_frac[ihid] += (params[ithread].hid_on_frac)[ihid] ;

               for (ivis=0 ; ivis<n_inputs ; ivis++)

                  w_grad[ihid*n_inputs+ivis] += (params[ithread].w_grad)[ihid*n_inputs+ivis] ;

               }

            for (ivis=0 ; ivis<n_inputs ; ivis++)

               in_bias_grad[ivis] += (params[ithread].in_bias_grad)[ivis] ;

            error_vec[0] += error_vec[ithread] ;

            CloseHandle ( threads[ithread] ) ;

            }

A batch has ended, and we have the gradient and reconstruction error for its pooled 

cases. We now perform the following actions:

•	 Cumulate in error the reconstruction error for this batch. We will sum 

this for the entire epoch.

•	 Divide hid_on_frac by the number of cases in this batch to get the 

average time each hidden neuron was activated in this batch.
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•	 Exponentially smooth this quantity to get hid_on_smoothed.

•	 Use Equation 3-14 to compute sp_pen, the derivative of the sparsity 

penalty with respect to the net input of each neuron. Use the 

smoothed version of the mean activation just computed in order to 

prevent whipsawing.

•	 If the mean activation for a hidden neuron in this batch is very close 

to zero or one, impose an additional “sparsity” penalty to adjust the 

hidden bias and weights to pull the errant neuron away from useless 

saturation. The penalty factor of 0.5 is my heuristic and may safely be 

adjusted if desired.

•	 Use Equation 3-23 to compute the increment for the hidden bias. 

Since the input for the bias is fixed at one by definition, the derivative 

of the net input to the hidden neuron with respect to the bias is one; 

hence, the derivative of the sparsity penalty with respect to the bias is 

just sp_pen.

•	 Adjust the hidden bias per the increment.

This is done as follows:

         error += error_vec[0] ;

         for (ihid=0 ; ihid<nhid ; ihid++) {

            hid_on_frac[ihid] /= n_in_batch ;

            hid_on_smoothed[ihid] = 0.95*hid_on_smoothed[ihid] + 0.05*hid_on_frac[ihid] ;

            sp_pen = sparsity_penalty * (hid_on_smoothed[ihid] - sparsity_target) ;

            if  (hid_on_frac[ihid] < 0.01)

               sp_pen += 0.5 * (hid_on_frac[ihid] - 0.01) ;      // 0.5 is heuristic

            if  (hid_on_frac[ihid] > 0.99)

               sp_pen += 0.5 * (hid_on_frac[ihid] - 0.99) ;      // 0.5 is heuristic

            hid_bias_inc[ihid] = momentum * hid_bias_inc[ihid] +

                                  learning_rate * (hid_bias _grad[ihid] / n_in_batch - sp_pen) ;

            hid_bias[ihid] += hid_bias_inc[ihid] ;
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Still within this hidden neuron loop, we handle the weight adjustments by doing the 

following in a visible neuron loop:

•	 Divide the gradient sum by the number of cases in the batch to get 

the mean gradient.

•	 Use Equation 2-19 to compute the weight penalty, which prevents 

weights from blowing up. This is also discussed on page 100. Adjust 

the gradient accordingly.

•	 We already computed sp_pen, the derivative of the sparsity penalty 

with respect to the input to each hidden neuron. The contribution 

to the input to a hidden neuron from a given visible neuron is 

the activation of that visible neuron times the weight connecting 

them. So, by the chain rule, the derivative of the sparsity penalty 

with respect to a weight is sp_pen for that hidden neuron times the 

activation of the visible neuron for that weight. Adjust the gradient 

per this quantity. Rather than trying to isolate each individual 

training case, it is easier and more stable to just use the mean of each 

input across the training set.

•	 Use Equation 3-23 to compute the increment for the weight and then 

adjust the weight by this quantity.

•	 Keep track of the maximum increment magnitude for the 

convergence test at the end of the epoch.

            for (ivis=0 ; ivis<n_inputs ; ivis++) {

               w_grad[ihid*n_inputs+ivis] /= n_in_batch ;

               w_grad[ihid*n_inputs+ivis] -= weight_penalty * w[ihid*n_inputs+ivis] ;

               w_grad[ihid*n_inputs+ivis] -= data_mean[ivis] * sp_pen ;

               w_inc[ihid*n_inputs+ivis] = momentum * w_inc[ihid*n_inputs+ivis] +

                                                         learning_rate * w_grad[ihid*n_inputs +ivis] ;

               w[ihid*n_inputs+ivis] += w_inc[ihid*n_inputs+ivis] ;

               if  (fabs(w_inc[ihid*n_inputs+ivis]) > max_inc) // For convergence test

                  max_inc = fabs(w_inc[ihid*n_inputs+ivis]) ;

               } // For ivis

            } // For ihid
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Finally, we compute the increment for the visible bias and adjust accordingly.

         for (ivis=0 ; ivis<n_inputs ; ivis++) {

            in_bias_inc[ivis] = momentum * in_bias_inc[ivis] +

                                          learning_rate * in_bias _grad[ivis] / n_in_batch ;

            in_bias[ivis] += in_bias_inc[ivis] ;

            }

Now we can compute the angle (actually, its cosine) between the prior gradient and 

the current gradient in order to automatically adjust the learning rate and momentum, as 

discussed on page 118. If this is the first batch of the first epoch, there is no prior gradient, 

so initialize. Subsequently, we can compute the cosine of the angle, as shown here:

         if  (i_epoch == 0 && ibatch == 0) {

            len_this = 0.0 ;

            for (ihid=0 ; ihid<nhid ; ihid++) {

               for (ivis=0 ; ivis<n_inputs ; ivis++) {

                  x_this = w_grad[ihid*n_inputs+ivis] ;

                  w_prev[ihid*n_inputs+ivis] = x_this ;

                  len_this += x_this * x_this ;

                  }

               }

            len_prev = len_this ;

            }

         else {

            len_this = dot = 0.0 ;

            for (ihid=0 ; ihid<nhid ; ihid++) {

               for (ivis=0 ; ivis<n_inputs ; ivis++) {

                  x_this = w_grad[ihid*n_inputs+ivis] ;

                  x_prev = w_prev[ihid*n_inputs+ivis] ;

                  w_prev[ihid*n_inputs+ivis] = x_this ;

                  len_this += x_this * x_this ;

                  dot += x_this * x_prev ;

                  }

               }

            dot /= sqrt ( len_this * len_prev ) ; // Cosine of  angle between this and previous

            len_prev = len_this ;
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With this angle cosine in hand, we can adjust the learning rate and momentum. The 

constants used here were heuristically determined from a few experiments and seem to 

work well. Readers should feel free to modify them as desired.

            if  (dot > 0.5)

               learning_rate *= 1.2 ;

            else if  (dot > 0.3)

               learning_rate *= 1.1 ;

            else if  (dot < -0.5)

               learning_rate /= 1.2 ;

            else if  (dot < -0.3)

               learning_rate /= 1.1 ;

            if  (learning_rate > 1.0)

               learning_rate = 1.0 ;

            if  (learning_rate < 0.001)

               learning_rate = 0.001 ;

            if  (fabs(dot) > 0.3)

               momentum /= 1.5 ;

            } // Else we are in a subsequent batch

This is the end of the batch loop (within an epoch). Update the count of cases done 

in this batch and set up the starting index to begin the next batch where this one ended.

         n_done += n_in_batch ;

         istart = istop ;

         } // For each batch

We normalize the reconstruction error by dividing by the number of cases that went 

into the error sum as well as by the number of inputs. This gives us a mean error per case 

and input. Keep track of the best seen so far for the caller.

      error /= nc * n_inputs ;

      if  (i_epoch == 0 || error < best_err)

         best_err = error ;
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There are two tests for convergence, as described on page 120. The first shown here 

is secondary but important. It compares the maximum increment during the epoch to 

the maximum weight.

      max_weight = 0.0 ;

      for (ihid=0 ; ihid<nhid ; ihid++) {

         for (ivis=0 ; ivis<n_inputs ; ivis++) {

            if  (fabs(w[ihid*n_inputs+ivis]) > max_weight)

               max_weight = fabs(w[ihid*n_inputs+ivis]) ;

            }

         }

      if  (max_inc / max_weight < convergence_crit)

         break ;

The primary convergence test is to count how many times in a row the ratio just 

computed fails to decrease. Numerous contiguous failures indicate that we are as close 

to a minimum as is practical to obtain.

      if  (i_epoch == 0 || max_inc / max_weight < best_crit) {

         best_crit = max_inc / max_weight ;

         n_no_improvement = 0 ; // Number of  epochs with no improvement

         }

      else {

         ++n_no_improvement ;

         if  (n_no_improvement > max_no_improvement) // Test for convergence

            break ;

         }

That’s almost it; the epoch is done. Slowly advance the momentum and Monte Carlo 

chain lengths toward their ending values.

        momentum = 0.99 * momentum + 0.01 * end_momentum ;

        chain_length = (1.0 - n_chain_rate) * chain_length + n_chain_rate * n_chain_end ;

One final bit of heuristic machination is done. In nearly all practical applications, 

when we are approaching convergence, the automatic learning rate adjustment already 

shown will do an excellent job; it will see that overshooting (a gradient reversing direction 

unless the steps are tiny) is a problem and hence will reduce the learning rate to a very 

Chapter 3  Restricted Boltzmann Machines



141

small value. But in some pathological situations, generally associated with a lack of 

patterns in the training data, that algorithm produces learning rates that are somewhat 

too large. For this reason, when n_no_improvement tells us that we are nearly as low as we 

can get, it’s good to force the learning rate to small values. In practice, this final heuristic 

will be invoked only rarely. But if the training data is essentially random, meaning that 

the RBM has little or nothing in the way of consistent patterns to model, the weights will 

bounce around for too long. No serious damage is done by this, other than delaying the 

completion of the algorithm. Still, delay is unpleasant, so this final heuristic can be useful.

      if  (n_no_improvement > 50 && learning_rate > 0.03)

         learning_rate = 0.03 ;

      if  (n_no_improvement > 100 && learning_rate > 0.02)

         learning_rate = 0.02 ;

      if  (n_no_improvement > 150 && learning_rate > 0.01)

         learning_rate = 0.01 ;

      if  (n_no_improvement > 200 && learning_rate > 0.005)

         learning_rate = 0.005 ;

      if  (n_no_improvement > 250 && learning_rate > 0.002)

         learning_rate = 0.002 ;

      } // For each epoch

   return error ;

}

�CUDA Code for RBM Training
Many principles of CUDA programming relevant to neural network training were 

discussed in the context of multiple-layer feedforward networks starting on page 36. 

You should review that material because the presentation of CUDA programming for 

RBMs will be much more terse and assume familiarity with previous material. Also, 

because complete CUDA source code for RBM training for free from the author’s web 

site, not discuss all routines in this section. The discussion here will be limited to 

those routines that demonstrate important principles, are potentially confusing, or are 

unusual in some other way.
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�Initialization and Cache Line Matching
We already saw on page 50 that the first (L1) cache on CUDA devices is accessed 

through 128-byte reads and writes, and it is important to align global memory accesses 

in accordance with this as much as possible. Later, on page 51, we saw that there is a 

method for assuring perfect memory alignment, but that method was not used at that 

time because I felt that its relative complexity for MLFNs did not justify the trivial speed 

gain achieved, relative to the “almost perfect” method I used. So that the reader can see 

an example of this more complex technique, I employ it in the RBM training code where 

its inclusion is much easier than in an MLFN.

This technique applies to storage of matrices. The CUDA library guarantees that 

the address returned by a memory allocation routine is aligned with cache lines. But 

suppose a matrix contains a number of columns such that the number of bytes per row is 

not a multiple of 128 bytes? The first row will be perfectly aligned, but many subsequent 

rows will not be. This reduces the efficiency of global memory transfers.

The solution to this problem is to allocate extra space and pad the rows to contain 

a multiple of 128 bytes. This wastes scarce memory and makes the program a bit more 

complex, but it may increase speed enough to be worthwhile, though on modern CUDA 

devices the effect is often small.

We illustrate this process with several short code fragments. To facilitate efficient 

memory access when going from the visible layer to the hidden layer, as well as the 

reverse direction, we keep two copies of the weight matrix, one the transpose of the 

other. During initialization we extend the column dimensions of these matrices to a 

multiple of 128 bytes, which is 32 four-byte floats. Here is how these dimensions are 

computed, the memory allocated, and the weight matrix w on the host copied to the 

original matrix h_w and transpose h_wtr on the CUDA device. Note that we pad the 

unused memory at the end of each row with zeroes. We will see why this is necessary 

when we later discuss reduction algorithms. Array fdata is a temporary allocation for 

double-to-float conversion.

   n_inputs_cols = (n_inputs + 31) / 32 * 32 ; // Row length of  original matrix

   nhid_cols = (nhid + 31) / 32 * 32 ;               // And transposed matrix

   fdata = (float *) MALLOC ( n_inputs_cols * nhid_cols * sizeof(float) ) ;

   cudaMalloc ( (void **) &h_w , (size_t) (n_inputs_cols * nhid * sizeof(float)) ) ;
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   for (j=0 ; j<nhid ; j++) {

      for (i=0 ; i<n_inputs ; i++)

         fdata[j*n_inputs_cols+i] = (float) w[j*n_inputs+i] ;

      for ( ; i<n_inputs_cols ; i++)

         fdata[j*n_inputs_cols+i] = 0.0f  ;

      }

   cudaMemcpy ( h_w , fdata , n_inputs_cols * nhid * sizeof(float) ,

                           cudaMemcpyHostToDevice ) ;

   cudaMalloc ( (void **) &h_wtr , (size_t) (n_inputs * nhid_cols * sizeof(float)) ) ;

   for (i=0 ; i<n_inputs ; i++) {

      for (j=0 ; j<nhid ; j++)

         fdata[i*nhid_cols+j] = (float) w[j*n_inputs+i] ; // Transpose

      for ( ; j<nhid_cols ; j++)

         fdata[i*nhid_cols+j] = 0.0f  ;

      }

   cudaMemcpy ( h_wtr , fdata , n_inputs * nhid_cols * sizeof(float) ,

                           cudaMemcpyHostToDevice ) ;

�Fetching Training Cases
This section presents the algorithm that fetches the training data from d_data into 

d_visible1, shuffled and selected according to the batch index limits. If what you see is not 

clear, please review the material on MLFN CUDA training that began on page 36. Except 

for row padding, the addressing scheme used here is practically identical to that in the 

MLFN section. A code fragment from the host routine that invokes the device code for 

fetching appears first, followed by the device routine.

   threads_per_block = (n_inputs + warpsize - 1) / warpsize * warpsize ;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize ;

   block_launch.x = (n_inputs + threads_per_block - 1) / threads_per_block ;

   block_launch.y = istop - istart ;

   block_launch.z = 1 ;
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   device_fetch_vis1 <<< block_launch , threads_per_block >>> ( istart ) ;

__global__ void device_fetch_vis1 (

   int istart // First case in this batch

   )

{

   int icase, ivis ;

   ivis = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (ivis >= d_n_inputs)

      return ;

   icase = blockIdx.y ;

   d_visible1[icase*d_n_inputs_cols+ivis] =

                                                d_data[d_s huffle_index[istart+icase]*d_n_inputs+ivis] ;

}

A key point to observe here is that the column multiplier for d_visible1 is d_n_inputs_

cols because this array has rows whose length is a multiple of the cache line width for 

maximum transfer efficiency. The multiplier for d_data is d_n_inputs because this row 

padding is not done for the training data.

The implication of not padding the training data matrix is that memory transfers 

from it will be less efficient than they would be if padding were done. However, this is 

not a serious problem. Data transfer from the training data matrix to d_visible1 happens 

only once per batch, while accesses to d_visible1 repeat during processing of a batch. 

The potentially large increase in storage space required to pad every row (case) of the 

training set does not justify the insignificant amount of time saved by padding.

�Visible-to-Hidden Layer
This section discusses the CUDA code for computing hidden-layer probabilities from 

visible activations. We won’t bother showing the host code that invokes it because it 

uses the same method as the code in the prior section. Each thread will handle a single 

hidden neuron.
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__global__ void device_vis_to_hid (

   int nc                // Number of  cases in this batch

   )

{

   int icase, ivis, ihid ;

   float sum, Q ;

   ihid = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (ihid >= d_nhid)

      return ;

   icase = blockIdx.y ;

   sum = d_hid_bias[ihid] ;

   for (ivis=0 ; ivis<d_n_inputs ; ivis++)

      sum += d_wtr[ivis*d_nhid_cols+ihid] * d_visible1[icase*d_n_inputs_cols+ivis] ;

   Q = 1.0f  / (1.0f  + __expf(-sum)) ;

   d_hidden1[icase*d_nhid_cols+ihid] = Q ;

   d_hidden2[icase*d_nhid_cols+ihid] = Q ;     // We'll need this for MC chain loop

   d_hid_on_frac[icase*d_nhid_cols+ihid] = Q ;

}

The big issue here, as usual, is memory access. We must use the transposed version 

of the weight matrix, d_wtr, so that the hidden neuron index changes the fastest in the 

matrix. This way, adjacent threads in a warp access adjacent elements in the weight 

matrix. The same access pattern happens in the three last lines, which store results. 

At first glance, d_visible1 may seem problematic because ivis changes the fastest. But 

with each pass through the loop, ivis will be constant for all threads, so a single fetch 

is sufficient to serve all threads! The hidden neuron index ihid doesn’t even appear in 

addressing d_visible1.

�Hidden-to-Visible Layer
The routine for bouncing back to the visible layer is slightly more complex because we 

have to deal with optional sampling of the visible activation. We use the nontransposed 

weight matrix for correct memory coalescing, and note that d_hidden_act has the same 

index for all threads in a warp, so memory issues are all taken care of.
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The trick is the random number for sampling. We take advantage of the fact that 

d_shuffle_index is random. By combining the case index, the visible neuron index, and a 

random offset provided by the host caller, we can get a random integer ranging from zero 

through n_cases-1. Cute!

__global__ void device_hid_to_vis (

   int nc ,                             // Number of  cases in this batch

   int random_offset            // Starting index in shuffle_index for random sampling

   )

{

   int k, icase, ivis, ihid ;

   float sum, P, frand ;

   ivis = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (ivis >= d_n_inputs)

      return ;

   icase = blockIdx.y ;

   sum = d_in_bias[ivis] ;

   for (ihid=0 ; ihid<d_nhid ; ihid++)

      sum += d_w[ihid*d_n_inputs_cols+ivis] * d_hidden_act[icase*d_nhid_cols+ihid] ;

   P = 1.0f  / (1.0f  + __expf(-sum)) ;

   if  (d_mean_field)

      d_visible2[icase*d_n_inputs_cols+ivis] = P ;

   else {

      k = ((unsigned int) (icase * d_n_inputs + ivis + random_offset)) % d_ncases ;

      frand = (float) d_shuffle_index[k] / (float) d_ncases ;

      d_visible2[icase*d_n_inputs_cols+ivis] = (frand < P) ? 1.0f  : 0.0f  ;

      }

}

�Gradient Length and Dot Product by Reduction
Reduction was covered in great detail on page 65, so we won’t repeat that material. But 

the device code is listed here to show the reader why, when we copied the weights from 

the host to the device on page 142 and when we allocated the gradient, we had to pad the 
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unused end of each row with zeros. This reduction algorithm, as well as one not shown 

that finds the maximum weight, string out the matrices as vectors, which leaves the 

unused ends interspersed throughout the vector!

__global__ void device_len_dot ()

{

   __shared__ float partial_len[REDUC_THREADS], partial_dot[REDUC_THREADS] ;

   int i, n, index ;

   float sum_len, sum_dot ;

   index = threadIdx.x ;

   n = d_n_inputs_cols * d_nhid ; // Includes unused padding at end of  each row!

   sum_len = sum_dot = 0.0f  ;

   for (i=blockIdx.x*blockDim.x+index ; i<n ; i+=blockDim.x*gridDim.x) { // String it out

      sum_len += d_w_grad[i] * d_w_grad[i] ;

      sum_dot += d_w_grad[i] * d_prev_grad[i] ;

      d_prev_grad[i] = d_w_grad[i] ;

      }

   partial_len[index] = sum_len ;

   partial_dot[index] = sum_dot ;

   __syncthreads() ;

   for (i=blockDim.x>>1 ; i ; i>>=1) {

      if  (index < i) {

         partial_len[index] += partial_len[index+i] ;

         partial_dot[index] += partial_dot[index+i] ;

         }

      __syncthreads() ;

      }

   if  (index == 0) {

      d_len_out[blockIdx.x] = partial_len[0] ;

      d_dot_out[blockIdx.x] = partial_dot[0] ;

      }

}
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�Updating the Input Bias
Updating the input bias is easy, but we’ll list it here as an introduction to the more 

complex tasks of updating the hidden bias and weights. We use one thread per visible 

neuron. Here is the code:

__global__ void device_update_in_bias (

   int nc ,                             // Number of  cases in this batch

   float rate ,                        // Learning rate

   float momentum              // Learning momentum

   )

{

   int icase, ivis ;

   float sum ;

   ivis = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (ivis >= d_n_inputs)

      return ;

   sum = 0.0f  ;

   for (icase=0 ; icase<nc ; icase++)

      sum += d_visible1[icase*d_n_inputs_cols+ivis] -

                   d_visible2[icase*d_n_inputs_cols+ivis] ;

   d_in_bias_inc[ivis] = momentum * d_in_bias_inc[ivis] + rate * sum / nc ;

   d_in_bias[ivis] += d_in_bias_inc[ivis] ;

}

The most important thing to note is that every memory access is coalesced because 

adjacent memory locations are accessed by adjacent threads. The computation is just a 

straightforward application of Equation 3-12 and Equation 3-23.
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�Updating the Hidden Neuron Bias
The hidden neuron bias is more complex than the input bias because a sparsity 

penalty applies and also because random sampling may be required if a mean field 

approximation is not used. Here is the device code, and a discussion follows. We use 

one thread per hidden neuron.

__global__ void device_update_hid_bias (

   int nc ,                             // Number of  cases in this batch

   float rate ,                       // Learning rate

   float momentum ,           // Learning momentum

   int random_offset ,         // Starting index in shuffle_index for random sampling

   float sparse_pen ,          // Sparsity penalty

   float sparse_targ            // Sparsity target

   )

{

   int icase, ihid, k ;

   float sum, frac_on, frand ;

   ihid = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (ihid >= d_nhid)

      return ;

   sum = frac_on = 0.0f  ;

   if  (d_mean_field) {

      for (icase=0 ; icase<nc ; icase++) {    // Sum is Equation 3-12

         sum += d_hidden1[icase*d_nhid_cols+ihid] - d_hidden2[icase*d_nhid_cols+ihid] ;

         frac_on += d_hid_on_frac[icase*d_nhid_cols+ihid] ;  // Probability of  being on

         }

      }

   else {

      for (icase=0 ; icase<nc ; icase++) {

         k = ((unsigned int) (icase * d_nhid + ihid + random_offset)) % d_ncases ;

         frand = (float) d_shuffle_index[k] / (float) d_ncases ;

         d_hidden_act[icase*d_nhid_cols+ihid] =

                                           (frand < d_hidden1[ic ase*d_nhid_cols+ihid]) ? 1.0f  : 0.0f  ;
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         sum += d_hidden_act[icase*d_nhid_cols+ihid] -

                      d_hidden2[icase*d_nhid_cols+ihid] ;

         frac_on += d_hid_on_frac[icase*d_nhid_cols+ihid] ;

         }

      }

   sum /= nc ;

   frac_on /= nc ;

   d_hid_on_smoothed[ihid] = 0.95f  * d_hid_on_smoothed[ihid] + 0.05f  * frac_on ;

   sum -= sparse_pen * (d_hid_on_smoothed[ihid] - sparse_targ) ;

   if  (d_hid_on_smoothed[ihid] < 0.01)

      sum -= 0.5 * (d_hid_on_smoothed[ihid] - 0.01) ;       // 0.5 is heuristic

   if  (d_hid_on_smoothed[ihid] > 0.99)

      sum -= 0.5 * (d_hid_on_smoothed[ihid] - 0.99) ;

   d_hid_bias_inc[ihid] = momentum * d_hid_bias_inc[ihid] + rate * sum ;

   d_hid_bias[ihid] += d_hid_bias_inc[ihid] ;

}

First we sum the negative gradient according to Equation 3-12. If the user requests 

a mean field approximation (the generally preferable approach because it reduces 

random variation), then we can plug in the original (from the data) activation 

probabilities directly. But if mean field approximation is not desired, then we must 

sample that activation to get hidden_act. As we did earlier, we combine the case index, 

hidden neuron index, and a random offset supplied by the host caller to get a random 

integer from zero through d_n_cases-1 from the shuffle index array. This then lets us 

sample the hidden activation. In the same loop, we sum the fraction of time (probability) 

each hidden neuron was turned on by the input. This is needed for the sparsity penalty.

We exponentially smooth this fraction and plug it into Equation 3-14 to get the user’s 

sparsity penalty gradient adjustment. The “visible activation” for a bias term is 1.0 by 

definition. We apply two more limited-effect “sparsity” penalties to prevent a hidden 

neuron from becoming saturated on or off. Finally, we use Equation 3-23 to adjust the 

hidden bias.
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�Updating the Weights
The final routine presented is that for updating the weight matrix. Here is the device 

code. A description will follow.

__global__ void device_update_weights (

   int nc ,                              // Number of  cases in this batch

   float rate ,                        // Learning rate

   float momentum ,            // Learning momentum

   float weight_pen ,            // Weight penalty

   float sparse_pen ,           // Sparsity penalty

   float sparse_targ             // Sparsity target

   )

{

   int icase, ivis, ihid ;

   float sum ;

   ivis = blockIdx.x * blockDim.x + threadIdx.x ;

   if  (ivis >= d_n_inputs)

      return ;

   ihid = blockIdx.y ;

   sum = 0.0f  ;

   if  (d_mean_field) {

      for (icase=0 ; icase<nc ; icase++)

         sum += d_hidden1[icase*d_nhid_cols+ihid] *

                      d_visible1[icase*d_n_inputs_cols+ivis] -

                      d_hidden2[icase*d_nhid_cols+ihid] *

                      d_visible2[icase*d_n_inputs_cols+ivis] ;

      }

   else {

      for (icase=0 ; icase<nc ; icase++)

         sum += d_hidden_act[icase*d_nhid_cols+ihid] *

                      d_visible1[icase*d_n_inputs_cols+ivis] -

                      d_hidden2[icase*d_nhid_cols+ihid] *

                      d_visible2[icase*d_n_inputs_cols+ivis] ;

      }
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   sum /= nc ;

   sum -= weight_pen * d_w[ihid*d_n_inputs_cols+ivis] ;

   sum -= d_data_mean[ivis] * sparse_pen * (d_hid_on_smoothed[ihid] - sparse_targ) ;

   if  (d_hid_on_smoothed[ihid] < 0.01)

      sum -= d_data_mean[ivis] * 0.5 * (d_hid_on_smoothed[ihid] - 0.01) ; // 0.5 is heuristic

   if  (d_hid_on_smoothed[ihid] > 0.99)

      sum -= d_data_mean[ivis] * 0.5 * (d_hid_on_smoothed[ihid] - 0.99) ;

   d_w_grad[ihid*d_n_inputs_cols+ivis] = sum ;

   d_w_inc[ihid*d_n_inputs_cols+ivis] =

                                        momentum * d_w_inc[ihid*d_n_inputs+ivis] + rate * sum ;

   d_w[ihid*d_n_inputs_cols+ivis] += d_w_inc[ihid*d_n_inputs_cols+ivis] ;

}

First and most important, observe that the two variables that vary per thread, ihid and 

ivis, are defined such that the one that changes with contiguous threads, ivis, is also the 

one that defines contiguous memory locations in all arrays referenced in the routine. I 

know you are sick of hearing this, but such an arrangement is crucial to efficient memory 

access.

Astute readers will notice that I conveniently avoided updating d_wtr, the transposed 

weight matrix, in this routine. It would be addressed with these indices as d_wtr[ivis*d_

nhid_cols+ihid]. As a result, contiguous threads, with their contiguous values of ivis, would 

have memory accesses that stride through memory with jumps of d_nhid_cols, causing 

very inefficient access. There are efficient ways to transpose a matrix using shared 

memory, so my original plan was to use such a routine to transpose the weight matrix 

after updates. But I programmed a naive transpose algorithm and, after a timing study, 

discovered that it ran in a tiny fraction of the time taken by the update, largely because 

the update requires math-intensive looping through the cases in the batch. So, I left 

my original design in place, but I do the transpose with a harmlessly inefficient naive 

algorithm, which I won’t even bother listing here.

We sum the negative gradient according to Equation 3-12. Notice that if the user 

does not request a mean field approximation, d_hidden_act is used in the gradient 

computation, as was the case for the hidden neuron bias update. But we already 

computed this activation vector in the hidden bias routine, so there is no need to 

sample again.

The user’s weight penalty, as described on page 100, is applied to the gradient.
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The user’s sparsity penalty, along with the same two additional penalties to avoid 

saturation, are applied just as they were for the hidden neuron bias in the prior section. 

This is a straightforward application of Equation 3-14.

Finally, we use Equation 3-23 to adjust the weights.

�Putting It All Together
We have shown some of the most important CUDA routines for computing essential 

components of RBM training. The complete set of all routines is available for free 

download from the author’s web site. In this section, we will show how these components 

can be assembled for CUDA-based RBM training. Here is the calling parameter list. All of 

these items have been seen before, so they will not be explained here.

double rbm_cuda (

   int nc ,                                                           // Number of  cases in complete dataset

   int ncols ,                                                      // Number of  columns in data

   double *data ,                                               // Nc rows by ncols columns of  input data

   int n_inputs ,                                                 // Number of  inputs

   int nhid ,                                                        // Number of  hidden neurons

   int n_chain_start ,                                        // Starting length of  Markov chain, generally 1

   int n_chain_end ,                                          // Ending length of  Markov chain

   double n_chain_rate ,                                  // Exponential smoothing rate for epochs

   int mean_field ,                                              // Use mean field instead of  random sampling?

   int n_batches ,                                               // Number of  batches per epoch

   int max_epochs ,                                            // Maximum number of  epochs

   int max_no_imp ,                                          // Converged if  this many epochs with no ratio imp

   double convergence_crit ,                            // Convergence criterion for max inc / max weight

   double learning_rate ,                                  // Learning rate

   double start_momentum ,                             // Learning momentum start value

   double end_momentum ,                             // Learning momentum end value

   double weight_pen ,                                        // Weight penalty

   double sparsity_penalty ,                             // Sparsity penalty

   double sparsity_target ,                                 // Sparsity target

   double *w ,                                                     // Computed weight matrix, nhid sets of  n_inputs wts

   double *in_bias ,                                            // Computed input bias vector

   double *hid_bias ,                                          // Computed hidden bias vector
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   int *shuffle_index ,                                     // Work vector nc long

   double *data_mean ,                                 // Work vector n_inputs long

   double *err_vec                                         // Work vector n_inputs long

   )

The local variable declarations are shown next. Initialize the random number seed 

to a legal value and compute the mean of the inputs, which will be needed for sparsity 

penalties. Also initialize the shuffle index vector. For each epoch we will shuffle this 

and recopy it to the device for random batch selection as well as a random sampling of 

activations.

{

   int i, j, k, i_epoch, icase, ivis, n_no_improvement, ret_val, timer ;

   int istart, istop, ibatch, n_done, n_in_batch, max_batch, ichain, randnum ;

   double error, best_err, max_inc, momentum, chain_length ;

   double dtemp, sum, len_this, len_prev, dot, smoothed_this ;

   double smoothed_dot, max_weight, best_crit, most_recent_correct_error ;

   char msg[256] ;

   randnum = 1 ;

   for (ivis=0 ; ivis<n_inputs ; ivis++)

      data_mean[ivis] = 0.0 ;

   for (icase=0 ; icase<nc ; icase++) {

      for (ivis=0 ; ivis<n_inputs ; ivis++)

         data_mean[ivis] += data[icase*ncols+ivis] ;

      }

   for (ivis=0 ; ivis<n_inputs ; ivis++) {

      data_mean[ivis] /= nc ;

      if  (data_mean[ivis] < 1.e-8)

         data_mean[ivis] = 1.e-8 ;

      if  (data_mean[ivis] > 1.0 - 1.e-8)

         data_mean[ivis] = 1.0 - 1.e-8 ;

      }

   for (icase=0 ; icase<nc ; icase++)

      shuffle_index[icase] = icase ;
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CUDA initialization will require the maximum batch size so that memory allocation 

can be performed correctly. So, we perform the batch loop that will be used later and 

keep track of the maximum size. We pass a character array to the initialization for it to 

pass back an error message if something goes wrong.

   n_done = max_batch = 0 ;

   for (ibatch=0 ; ibatch<n_batches ; ibatch++) {

      n_in_batch = (nc - n_done) / (n_batches - ibatch) ; // Cases left / batches left to do

      if  (n_in_batch > max_batch)

         max_batch = n_in_batch ;

      n_done += n_in_batch ;

      }

   ret_val = rbm_cuda_init ( nc , ncols , n_inputs , nhid , mean_field , max_batch , data ,

                                             data_mean , in_bias , hid_bias , w , msg ) ;

We now begin the epoch loop, with each pass through this loop processing every case 

in the training set. Each epoch will be broken into batches for parameter update. Before 

beginning the epoch loop, we initialize the momentum and Markov chain length to their 

starting values. We also initialize to zero the counter of contiguous failures to improve. 

This will be your main convergence criterion. The first step of an epoch is to shuffle the 

index vector for random case selection. We then send this vector to the CUDA device.

   momentum = start_momentum ;

   chain_length = n_chain_start ;

   n_no_improvement = 0 ; // Counts failure of  ratio to improve

   for (i_epoch=0 ; i_epoch<max_epochs ; i_epoch++) {

      i = nc ;                          // Number remaining to be shuffled

      while (i > 1) {                // While at least 2 left to shuffle

         j = (int) (unifrand_fast () * i) ;

         if  (j >= i)                     // This should never happen, but avoid disaster

            j = i - 1 ;

         k = shuffle_index[--i] ;

         shuffle_index[i] = shuffle_index[j] ;

         shuffle_index[j] = k ;

         }

      cuda_shuffle_to_device ( nc , shuffle_index ) ;
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We now begin the batch loop within this epoch. Error will cumulate the 

reconstruction error across the epoch (all batches).

      istart = 0 ;                    // Batch start = training data start

      n_done = 0 ;                // Number of  training cases done in this epoch so far

      error = 0.0 ;                  // Cumulates reconstruction error across epoch

      max_inc = 0.0 ;            // For testing convergence: increment relative to max weight

      for (ibatch=0 ; ibatch<n_batches ; ibatch++) {        // An epoch is split into batches

         n_in_batch = (nc - n_done) / (n_batches - ibatch) ;  // Cases left to do / batches left

         istop = istart + n_in_batch ;                                 // Stop just before this index

         // Get visible1 from data array

         cuda_fetch_vis1 ( istart , istop , n_inputs , NULL ) ;

         // Compute hidden1 probability (no sampling); also copy to hidden2 for MC chain

         cuda_vis_to_hid ( n_in_batch , nhid , NULL , NULL , NULL ) ;

      for (ichain=0 ; ichain<(int)(chain_length+0.5) ; ichain++) { // Markov chain

         // Sample hidden2 into hidden_act

         k = randnum / IQ ;

         randnum = IA * (randnum - k * IQ) - IR * k ;

         if  (randnum < 0)

            randnum += IM ;

         cuda_sample_hidden2 ( n_in_batch , nhid , randnum , NULL ) ;

         // Use hidden_act to get visible2, sampling visible2 if  not mean_field

         k = randnum / IQ ;

         randnum = IA * (randnum - k * IQ) - IR * k ;

         if  (randnum < 0)

            randnum += IM ;

         cuda_hid_to_vis ( n_in_batch , n_inputs , randnum , NULL ) ;

         if  (ichain == 0) // Cumulate reconstruction error

            cuda_recon_error ( n_inputs , n_in_batch , err_vec ) ;
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         // Use visible2 (which is probabilities or samples per mean_field)

         // to get hidden2 probabilities (no sampling of  hidden2)

         ret_val = cuda_vis2_to_hid2 ( n_in_batch , nhid , NULL ) ;

         } // For Markov chain

The algorithm for computing the gradient just shown is given in outline form on 

page 99. We now continue that algorithm by updating the bias vectors and weight 

matrix. The random number is needed in case the user has not chosen a mean field 

approximation because the hidden probabilities under the data distribution must be 

sampled. After updating the weight matrix, save its transpose.

         cuda_update_in_bias ( n_in_batch , n_inputs , learning_rate , momentum ,

                                               NULL , NULL ) ;

         k = randnum / IQ ;

         randnum = IA * (randnum - k * IQ) - IR * k ;

         if  (randnum < 0)

            randnum += IM ;

         cuda_update_hid_bias ( n_in_batch , nhid , learning_rate , momentum ,

                                  randnum , sparsity_penalty , sparsity_target , NULL , NULL ) ;

         cuda_update_weights ( n_in_batch , n_inputs , nhid , learning_rate ,

                                               momentum , weight_pen , sparsity_penalty ,

                                               sparsity_target , NULL , NULL , NULL ) ;

         cuda_transpose ( n_inputs , nhid ) ;

We cumulate the reconstruction error across this epoch. Also keep track of the 

maximum weight increment so that we can use it for the secondary convergence 

criterion described on page 120.

         for (ivis=0 ; ivis<n_inputs ; ivis++)

            error += err_vec[ivis] ; // Cumulates across epoch (all batches)

         cuda_max_inc_w ( n_inputs * nhid , &dtemp , 1 ) ;

         if  (dtemp > max_inc)

            max_inc = dtemp ;
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Compute the length of the weight gradient vector as well as its dot product with the 

prior gradient. If this is the very first evaluation, initialize.

         if  (i_epoch == 0 && ibatch == 0)

            cuda_len_dot ( n_inputs * nhid , &len_prev , &dot ) ;

We already have a previous gradient, so compute the dot product of the current 

with the previous and use the cosine of the angle separating the gradients to adjust the 

learning rate and momentum. The thresholds and adjustment factors are heuristic, so 

readers should feel free to experiment.

         else {

            cuda_len_dot ( n_inputs * nhid , &len_this , &dot ) ;

            dot /= sqrt ( len_this * len_prev ) ;   // Cosine of  angle

            len_prev = len_this ;

            if  (dot > 0.5)       // Heuristic threshold

               learning_rate *= 1.2 ;

            else if  (dot > 0.3)

               learning_rate *= 1.1 ;

            else if  (dot < -0.5)

               learning_rate /= 1.2 ;

            else if  (dot < -0.3)

               learning_rate /= 1.1 ;

            if  (learning_rate > 1.0)

               learning_rate = 1.0 ;

            if  (learning_rate < 0.001)

               learning_rate = 0.001 ;

            if  (fabs(dot) > 0.3)

               momentum /= 1.5 ;

            }

This batch is complete. Tally the number of cases done so far in this epoch and 

set the starting case for the next batch to be the one right after the ending case for the 

current batch.
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         n_done += n_in_batch ;

         istart = istop ;

         } // For ibatch

All batches of this epoch are complete. Normalize the reconstruction error to be 

per case and input. We already know the maximum increment across all batches, so 

now find the maximum weight. If the maximum increment is very small relative to the 

maximum weight, we are probably in a pathological situation of one or more weights 

blowing up, so quit. Or perhaps the user set the primary convergence criterion (checked 

next) to be unrealistically huge, so this ratio criterion gets us out.

      error /= nc * n_inputs ;

      cuda_max_inc_w ( n_inputs * nhid , &max_weight , 0 ) ;

      if  (max_inc / max_weight < convergence_crit)

         break ;

Keep track of the smallest value of this ratio criterion. As long as it’s regularly 

decreasing, either we are still moving toward the optimal parameter set (the usual 

situation) or a weight is blowing up (a rare pathological situation). The latter is handled 

by the secondary convergence criterion just presented. The normal situation is handled 

by counting how many times in a row we fail to improve. Once reasonable convergence 

is achieved, this count will rise. If not yet converged, adjust the momentum and Markov 

chain length. After convergence, fetch the parameters from the device and clean up 

(which frees memory on the device).

      if  (i_epoch == 0 || max_inc / max_weight < best_crit) {

         best_crit = max_inc / max_weight ;

         n_no_improvement = 0 ; // Number of  epochs with no improvement

         }

      else {

         ++n_no_improvement ;

         if  (n_no_improvement > max_no_imp) // Test for convergence

            break ;

         }
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      momentum = 0.99 * momentum + 0.01 * end_momentum ;

      chain_length = (1.0 - n_chain_rate) * chain_length + n_chain_rate * n_chain_end ;

      } // For i_epoch

   cuda_params_from_device ( n_inputs , nhid , in_bias , hid_bias , w ) ;

   rbm_cuda_cleanup () ;

}

On page 141 we saw a final heuristic for forcing a small learning rate in pathological 

situations involving nearly random training data. It looked like this:

      if  (n_no_improvement > 50 && learning_rate > 0.03)

         learning_rate = 0.03 ;

      if  (n_no_improvement > 100 && learning_rate > 0.02)

         learning_rate = 0.02 ;

      if  (n_no_improvement > 150 && learning_rate > 0.01)

         learning_rate = 0.01 ;

      if  (n_no_improvement > 200 && learning_rate > 0.005)

         learning_rate = 0.005 ;

      if  (n_no_improvement > 250 && learning_rate > 0.002)

         learning_rate = 0.002 ;

This code block actually exists in the code shown on the prior page, occurring just 

before the end of the epoch loop, exactly as was the case in the threaded code of page 141. 

However, to keep end-of-training actions together and uncluttered, I omitted it from the 

prior page. If this is not clear, review that earlier reference, and examine the RBM_CUDA.CPP 

source file available for free download from the author’s web site.

�Timing
This section presents the comparative timing of the CUDA implementation just shown. To 

get an idea of the relative time of the various steps in the optimization, I used the 60,000-

case 28×28 MNIST digit database with 400 hidden neurons, 10 epochs, and 100 batches 

per epoch. The performance of each step of the algorithm is shown in the following table. 

The first column of numbers is the total time for ten epochs, the second column is the 
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time expressed as a percent of the total, and the last column is the time per kernel launch. 

In practice, this is a critical measure because most Windows systems automatically and 

without warning terminate a program that hits two seconds in a launch.

This information appears in a file called CUDA.LOG, which is automatically generated 

each time DEEP runs.

RBM CUDA times in seconds: total, (percent), per launch

   Fetch batch data =            0.062    ( 0.4 percent)     0.000062 per launch

   Visible to hidden1 =           2.478    ( 16.6 percent)   0.002478 per launch

   Hidden to visible2 =           2.781    ( 18.6 percent)   0.001391 per launch

   Visible2 to hidden2 =         2.434    ( 16.3 percent)   0.001217 per launch

   Sample hidden2 =             0.094    ( 0.6 percent)     0.000094 per launch

   Reconstruction =               0.232    ( 1.6 percent)     0.000232 per launch

   Update input bias =           0.248    ( 1.7 percent)     0.000248 per launch

   Update hidden bias =        0.282    ( 1.9 percent)     0.000282 per launch

   Update weights =              5.928    ( 39.7 percent)   0.005928 per launch

   Transpose =                       0.062    ( 0.4 percent)     0.000062 per launch

   Find max inc/w =               0.142    ( 1.0 percent)     0.000141 per launch

   Dot product =                     0.186    ( 1.2 percent)     0.000186 per launch

�Updating Weights Analysis
Updating the weights is the biggest single eater of time, so a more detailed study will 

focus first on this routine. This study used the 60,000-case 28×28 MNIST digit database 

with 400 hidden neurons, 10 epochs, and 100 batches per epoch.

The first step in any CUDA analysis should be to check the occupancy, which 

(roughly) is the average ratio of the number of active warps to the maximum number 

that can be supported by the CUDA hardware. We want this to be as high as possible so 

that the warp scheduler can have numerous candidates from which to choose when one 

or more warps stall for any of various reasons discussed later.

The hardware-imposed limit on the number of active warps possible comes from 

a complex interaction between the number of blocks launched, the number of threads 

per block, shared memory usage, and register usage. The details are beyond the scope 

of this second, but we can take a look at the occupancy table shown in Figure 3-3. 

The theoretical occupancy is the upper limit attainable with your kernel and launch 

parameters. We should always strive to make this as close to 100 percent as possible, 
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and this goal is attained here. The achieved occupancy is that which we obtain in real 

life, and execution inefficiencies almost never allow this to reach the theoretical limit. 

Anything over 50 percent is considered good, so 85.96 is great.

Figure 3-3.  Weight update occupancy chart

Figure 3-4.  Weight update occupancy chart

It is also beneficial to examine the way work is distributed among the 

multiprocessors. The workload should be balanced. If one or more of the 

multiprocessors are being assigned little work, the programmer has done a poor job of 

breaking the task into similar algorithms that can run in parallel and assigning those 

tasks to blocks and threads. The workload graphs are shown in Figure 3-4.
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Instructions Per Clock overlays the number of instructions issued and actually 

executed on each clock cycle. The quantity executed should be as close as possible to the 

quantity issued.

SM Activity is the percent of time each multiprocessor was active. If too few blocks 

are launched, some multiprocessors will finish their work and have nothing more 

queued up, resulting in wasted resources.

Instructions Per Warp is the average executed instructions per warp for each 

multiprocessor. This should be well balanced.

Warps Launched is the total number of warps launched per multiprocessor. 

Misbalance can happen when the program provided too few blocks in the launch. All of 

these weight update graphs are excellent.

Issue efficiency studies can reveal the subtle limitations imposed by the way the 

application is demanding hardware resources. The center chart in Figure 3-5 shows 

that for 63.65 percent of clock cycles, no warps were eligible for execution. This is 

not uncommonly high, but we need to find the cause for this stall. The right chart 

shows that the overwhelming reason is that a pipe was busy. Figure 3-6 shows that the 

arithmetic pipe is running nearly full-time, and 93.38 percent of that work is 32-bit 

integer arithmetic. The work of computing all those matrix subscripts is the limiting 

factor. Switching to direct pointer arithmetic might be faster, although pointers are 64 

bits, so maybe not.

Figure 3-5.  Weight update issue efficiency and stall reasons
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Figure 3-6.  Weight update pipe utilization

Last but certainly not least, it always pays to examine line-by-line global memory 

access efficiency since this can be excruciatingly slow and will certainly be a limiting 

factor if accesses are done poorly. We’ve already beaten to death the idea that adjacent 

threads must, if at all possible, access adjacent memory locations, and to be perfect, the 

first thread in each warp should access a memory location that is an integer multiple 

of the cache line size, 128 bytes. We put a lot of effort into ensuring this, so it’s worth 

checking to see if we succeeded. More than once I’ve noticed a suspicious memory 

efficiency statistic in the profiler and thereby found a serious bug in the program!

Look at Figure 3-7 and note the following items:

•	 At the very top we see that there are 6*400=2400 blocks launched, 

which is a goodly number and largely responsible for the excellent 

load balancing shown earlier.

•	 L1 Above Ideal Transactions is the number of memory transfer 

requests in which the ideal byte count was exceeded and hence 

transfer time was wasted. It’s always zero, which is perfect.

•	 L1 Transfer Overhead is the ratio of the average number of bytes 

transferred to the number requested. Values greater than one 

indicate inefficient global memory access, and we have none.
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•	 L2 Transfer Overhead is the similar statistic for the later, larger L2 

cache. Curiously, two lines have values less than one, meaning that 

fewer bytes were transferred than requested. This comes about 

because these two lines of code have global references to memory 

whose address does not depend on ivis. As a result, the same quantity 

can sometimes be reused after by other threads in the warp after 

being fetched. This is a great bonus, but it’s something that’s difficult 

to plan for.

In summary, the memory access efficiency for this routine is excellent and about as 

perfect as it gets.

Figure 3-7.  Weight update memory access statistics
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�Visible-to-Hidden Analysis
The second of the three fundamental time-eating RBM training algorithms is the one 

that computes the hidden layer from the visible layer. Its profiling charts are shown in 

Figures 3-8 through 3-12 without explanation to demonstrate its excellent behavior with 

the same task as used in the prior examples.

Figure 3-8.  Visible-to-hidden occupancy
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Figure 3-9.  Visible-to-hidden load balancing

Figure 3-10.  Visible-to-hidden issue efficiency and stall reasons
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Figure 3-11.  Visible-to-hidden pipe utilization

Figure 3-12.  Visible-to-hidden memory access statistics
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�Hidden-to-Visible Analysis
The last of the three fundamental time-eating RBM training algorithms is the one that 

computes the visible layer from the hidden layer, also an excellent performer. The 

anomalous last line in the source code memory use listing is because of the optimizing 

compiler slightly confusing the profiler with its end-of-routine cleanup code (I checked 

the assembly output). See Figures 3-13 through 3-17.

Figure 3-13.  Hidden-to-visible occupancy
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Figure 3-14.  Hidden-to-visible load balancing

Figure 3-15.  Hidden-to-visible issue efficiency and stall reasons
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Figure 3-16.  Hidden-to-visible pipe utilization

Figure 3-17.  Hidden-to-visible memory access statistics
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�Advanced Training and Future Versions
Much work is being done in the development of training algorithms that run faster than 

the straight contrastive divergence algorithm shown here. These include particle methods, 

rapid weight decay methods, and various hybrid approaches. I am currently implementing 

some of these algorithms in threaded and CUDA versions and studying their behavior. 

I am also implementing auto-encoder algorithms as an alternative to RBMs.

There is an alternative CUDA programming approach to propagating activations 

from one layer to another, and this alternate algorithm is applicable to both supervised 

feedforward networks and RBMs. The CUDA implementations presented in this book 

have used the straightforward approach of distributing work according to individual 

neurons and carefully ensuring nearly perfect (for the feedforward nets) or perfectly 

perfect (for the RBMs) coalescing of global memory access. But propagation can also 

be seen as essentially a matrix-matrix multiplication followed by application of the 

activation function. When seen this way, one can implement highly efficient matrix 

multiplication using shared memory. I have a strong gut feeling that there is little to be 

gained with this vastly more complex method because arithmetic processing appears to 

be the limiting factor, with it completely hiding global accesses. However, I do intend to 

pursue this alternative to perform a rigorous comparison of the two methods.

My plan is to update the DEEP program and issue a supplement to this book when 

my development is complete. Stay tuned. Any announcements will be posted on the 

author’s web site.
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CHAPTER 4

Greedy Training
We saw in Chapter 2 how to construct and train (supervised) a traditional multiple-layer  

feedforward network. In Chapter 3 we learned how to construct and train without 

supervision a single-layer Restricted Boltzmann Machine (RBM). Now we will explore 

how to stack multiple RBMs into a deep belief network, train this multiple-layer network 

without supervision, and append an output layer that is trained with supervision. The 

resulting network can be enormously powerful.

The algorithm for stacking RBMs is surprisingly simple. Roughly stated, we train the 

bottom-most RBM, the one whose input is the training data. Once that’s trained, we run 

the training cases through this model and use its hidden-layer activations as inputs to 

the next RBM, which we then train. When it is trained, we run the training data through 

the first and second RBMs and use the second’s hidden activation as inputs for the 

third, which is then trained, and so on. This is why this training process is called greedy; 

no attempt is made to intelligently train the entire model at once. Rather, the training 

algorithm grabs as much as it can from the first layer alone and then locks it down and 

grabs as much as it can from the second layer, and so forth.

The traditional greedy training algorithm looks like this:

   for (training_layer=0 ; training_layer<n_layers ; training_layer++) {  // Train this layer

      --> Initialize weights for training_layer

      While not converged { // Training loop                                                  |

         --> Get the raw input data from the database                                   |

         for (prop_layer=0 ; prop_layer<training_layer ; prop_layer++) {        |

            --> For each hidden neuron in prop_layer, compute probability     |

            --> Optionally sample hidden value using its probability                |

            } // Propagating through prior layers                                               |

         --> Compute gradient, update weights for training_layer                  |

         } // Training loop                                                                                 |

      } // For all layers being trained
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The lines marked with bars on the right are the training algorithm for the RBM being 

trained. There is nothing special about the algorithm itself; it can be the method shown 

in the prior chapter or whatever method the developer prefers. But a crucial difference 

is the fact that if we are sampling the hidden neurons at each stage, then the values 

used for computing the gradient for each batch change according to the vagaries of the 

random sampling. When we are training a single RBM or the bottom layer of a multiple-

layer network, the inputs remain constant from batch to batch. But for layers past the 

first, the training inputs change.

This changing imposes a significant problem with the algorithm just shown when we 

sample the hidden neurons of each layer for presentation to the next layer as inputs. For 

every batch we must propagate the raw inputs through all layers prior to the one being 

trained. This is an expensive operation that adds considerable overhead to the training 

process.

For this reason I modified the prior algorithm so that if sampling is desired, it does 

so only for the single layer feeding the RBM being trained. All prior propagation is 

deterministic. This is a compromise that may trouble some experts, but it does allow 

random sampling yet without the overhead of constant repropagation. My algorithm is 

as follows:

   for (training_layer=0 ; training_layer<n_layers ; training_layer++) {    // Train this layer

      --> Get the raw input data from the database

      for (prop_layer=0 ; prop_layer<training_layer ; prop_layer++)    // Propagate thru priors

         --> For each hidden neuron, compute probability for prop_layer

      --> Initialize weights for training_layer

      While not stopping criterion {                                                  |

         --> Optionally sample value of  feed from prior layer           |

         --> Compute gradient, update weights for training_layer    |

         } // Training this layer                                                           |

      } // For training_layer; greedy training of  all layers

As before, the lines marked on the right are the training algorithm. But now the only 

addition is the optional sampling of the hidden layer of the prior RBM that serves as 

input to the layer being trained. The propagation through all earlier layers is done just 

once before training begins, and those propagated values remain unchanged throughout 

all training batches.
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�Generative Sampling
One advantage of RBMs over other greedy model-building methods such as auto-

encoding is that a trained RBM can be easily persuaded to reveal valuable insights 

about what it has learned. Recall from the introductory discussion that begins on page 

5, as well as the insights given on page 93, that a properly trained RBM encapsulates the 

(mostly) authentic patterns inherent in the distribution represented by the training set. 

But what exactly are the patterns it is seeing? We can actually generate random samples 

from the distribution of patterns that it has encapsulated.

Now would be a good time to review page 91 and the several pages that follow. 

In particular, it must be clear that the distribution of random visible neuron states 

produced by the Markov chain of alternating Equations 3-1 and 3-2 mimics the 

distribution of cases in the training set. Naturally, contiguous samples from the chain 

would be substantially correlated. But samples from highly different starting vectors 

would have negligible correlation, especially as the randomness inherent in the 

sampling plays its role. The key point is that the trained RBM is a representation of the 

structure of the training data in the sense that it encapsulates the distribution of patterns 

inherent in the data.

No matter what visible or hidden set of activations one begins with, if you iterate 

between Equations 3-1 and 3-2 a very large number of times, the samples will eventually 

converge to the natural Markov chain implied by the RBM parameters, although perhaps 

tens of thousands of iterations will be required. If one happens to begin with an authentic 

sample from this distribution, the convergence will be instantaneous. The implication is 

that if the RBM has been well trained from a set of training data so that the RBM is a good 

representation of the data, then if one begins with a case sampled from the training set, 

convergence will usually be faster than if one begins with a totally random set of hidden or 

visible activations. This inspires us to frequently take this approach. Alternatively, one can 

begin with completely random activations and employ a very large number of iterations.

Things become slightly more complicated when one has constructed a deep belief 

network via the greedy training method described in the prior section. In this situation, 

we have one or more “trained and then fixed” layers that connect the raw input data at 

the bottom of the stack to the most recently trained layer at the top. This top layer is still 

an RBM. (Prior layers ceased being an RBM as soon as their weights were fixed and the 

layers were used to feed a subsequent RBM being trained.) Now we have to sample from 

this top-level RBM and then propagate its visible activations downward, all the way to 

the raw input layer at the bottom.
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There are at least two ways to handle this situation. The most general way is to 

create a random activation vector for the RBM, run the Markov chain (often called Gibbs 

sampling) many times, and then propagate the final visible activations down to the 

bottom. This does have the disadvantage that it is unlikely that the random hidden-layer 

activations used to start the chain will be close to a legitimate sample from the RBM’s 

distribution. Thus, a huge number of iterations will be required to achieve convergence 

to the Markov distribution. A frequently better approach is to randomly sample a 

training case and propagate it upward through the layers until it reaches the visible layer 

of the RBM sitting at the top of the stack. If the greedy training has been thorough, this 

set of visible activations will usually be close to the natural distribution of the RBM, and 

hence convergence will be fast.

A subroutine for performing this generative sampling is now shown. The calling 

parameter list is as follows:

static void gen_threaded (

   int nvis ,                            // Number of  inputs to the first (bottom) layer

   int max_neurons ,            // Maximum number of  neurons in any layer, as well as nvis

   int n_unsup ,                    // Number of  unsupervised layers

   int *nhid_unsup ,              // N_unsup vector containing the n of  neurons in each layer

   double **weights_unsup ,// N_unsup pointers to weight matrices

   double *in_bias ,              // Input bias vectors; n_unsup sets of  max_neurons each

   double *hid_bias ,            // Hidden bias vectors; n_unsup sets of  max_neurons each

   int nchain ,                       // Length of  Gibbs (Markov) chain, 0 to return raw data

   int input_vis ,                   // Start with visible (as opposed to hidden)?

   double *workvec1 ,          // Work vector max_neurons long, also inputs starting case

   double *workvec2 ,          // Work vector max_neurons long, also inputs starting hidden

   unsigned char *image      // Computed image, 0-255 returned here

   )

There are nvis raw data inputs. The maximum number of neurons in any layer is max_

neurons. There are n_unsup layers in the deep belief net, including the RBM. The vector 

nhid_unsup contains the number of hidden neurons in each layer, and the vector weights_

unsup contains pointers to the weight matrix for each layer. The vectors in_bias and 

hid_bias contain the concatenated (all layers) input and hidden bias vectors, respectively. 

Each layer’s bias vector is max_neurons long, although elements at the end will generally 

be unused. We will perform nchain Gibbs sampling (Markov chain) iterations, beginning 

with a visible activation vector input in workvec1 if input_vis is true or beginning with 
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a hidden activation vector input in workvec2 if input_vis is false. The output of this 

subroutine is in image, with the values 0 through 255 according to the sampled input 

activations. If actual probabilities are desired, the modification is trivial and obvious. 

Finally, if nchain is input as zero, no sampling is done; the input activations are scaled 0 to 

255 and returned in image.

The constant (for random numbers) and variable declarations are shown next. We 

will be switching back and forth between using workvec1 and workvec2 for the visible and 

hidden neuron activations. Initialize them. If the user wants no sampling, just rescale the 

inputs and return.

#define IA 16807

#define IM 2147483647

#define AM (1.0 / IM)

#define IQ 127773

#define IR 2836

   int i, k, ichain, ivis, nin, ihid, nhid, i_layer, randnum ;

   double *vis_layer, *hid_layer, *w, *wptr, *ibptr, *hbptr, sum, Q, frand ;

   vis_layer = workvec1 ;

   hid_layer = workvec2 ;

   if  (nchain == 0) {    // User wants original image? This overrides input_vis.

      for (i=0 ; i<nvis ; i++)

         image[i] = (unsigned char) (255.9999 * vis_layer[i]) ;

      return ;

      }

If the user wants to start the chain with an input vector sample (typically a training 

case for rapid convergence), then we must propagate upward to the RBM that sits at the 

top. We’ll need a random number generator for sampling hidden neuron activations in 

the Gibbs chain. Use a crude but effective method for initializing the seed.

   if  (input_vis) {

      randnum = 1 ;                 // Get a somewhat random seed

      for (i=0 ; i<nvis ; i++) {    // The seed must never be zero!

         if  (vis_layer[i] > 0.5)

            ++randnum ;

         }
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   // Propagate up until we reach the RBM

      nin = nvis ;                                   // Number of  inputs to the current layer

      for (i_layer=0 ; i_layer<n_unsup-1 ; i_layer++) {

         nhid = nhid_unsup[i_layer] ;     // Number of  hidden neurons in the current layer

         w = weights_unsup[i_layer] ;    // Its weight matrix

         hbptr = hid_bias + i_layer * max_neurons ;   // Hidden bias vector for this layer

           for (ihid=0 ; ihid<nhid ; ihid++) {            // Compute all hidden neuron activations

              wptr = w + ihid * nin ;                         // Weight vector for this neuron

              sum = hbptr[ihid] ;                              // This hidden neuron's bias

              for (ivis=0 ; ivis<nin ; ivis++)               // Equation 3-3

                 sum += wptr[ivis] * vis_layer[ivis] ;

              hid_layer[ihid] = 1.0 / (1.0 + exp(-sum)) ;

              }

         nin = nhid ;                                              // Hidden for this layer is ‘visible’ for next

         if  (vis_layer == workvec1) {                    // Switch back and forth

            vis_layer = workvec2 ;

            hid_layer = workvec1 ;

            }

         else {

            vis_layer = workvec1 ;

            hid_layer = workvec2 ;

            }

         } // For i_layer, propagating up until the RBM

      } // If  input_vis

If, instead, the user is inputting a vector of (presumably random) hidden neuron 

activations for the RBM at the top (layer n_unsup-1), then we use those activations as a 

crude way to initialize the random seed. Also, we set the number of inputs to the RBM. If it 

happens to be the only layer, this is just the number of raw data inputs. But if there are one or 

more layers below the RBM, then its inputs are the hidden neurons for the layer just under it.

   else { // Not input_vis, so user is inputting hidden layer of  RBM

      randnum = 1 ;               // Get a somewhat random seed

      for (i=0 ; i<nhid_unsup[n_unsup-1] ; i++) {

         if  (hid_layer[i] > 0.5)

            ++randnum ;

         }
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      if  (n_unsup == 1)             // If  there are no layers below the RBM

         nin = nvis ;

      else

         nin = nhid_unsup[n_unsup-2] ;

      } // If  not input_vis

We are now ready for the Markov chain, which alternates between visible-to-hidden 

activation using Equations 3-3 and 3-4. Recall that we must sample when computing the 

hidden activations. Sampling is optional when computing the visible activations, and 

here we avoid this sampling, which introduces an extra degree of randomness.

The first step is to set the number of hidden neurons of the RBM and get pointers to 

its weight matrix and bias vectors.

   nhid = nhid_unsup[n_unsup-1] ;

   w = weights_unsup[n_unsup-1] ;

   hbptr = hid_bias + (n_unsup-1) * max_neurons ;

   ibptr = in_bias + (n_unsup-1) * max_neurons ;

The Gibbs sampling (Markov iterations) chain is shown next. The first half of the 

loop computes the vector of hidden-layer activations, with sampling. The second half 

computes the visible layer activations, without sampling. Note that if the user has chosen 

to input hidden-layer activations as the starting point (input_vis false), then we must skip 

the first half of the chain loop for the first pass. We jump right in with the hidden-to-

visible phase.

   for (ichain=0 ; ichain<nchain ; ichain++) {

      if  (ichain || input_vis) {              // Skip first visible-to-hidden if  user inputs hidden

         for (ihid=0 ; ihid<nhid ; ihid++) {   // Visible to hidden, with sampling

            wptr = w + ihid * nin ;                 // Weight vector for this neuron

            sum = hbptr[ihid] ;                      // This hidden neuron's bias

            for (ivis=0 ; ivis<nin ; ivis++)       // Equation 3-3

               sum += wptr[ivis] * vis_layer[ivis] ;

            Q = 1.0 / (1.0 + exp(-sum)) ;

            k = randnum / IQ ;                     // Random generator for sampling

            randnum = IA * (randnum - k * IQ) - IR * k ;
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            if  (randnum < 0)

               randnum += IM ;

            frand = AM * randnum ;

            hid_layer[ihid] = (frand < Q) ? 1.0 : 0.0 ;  // Sample

            }

         }

      for (ivis=0 ; ivis<nin ; ivis++) {                  // Hidden to visible, without sampling

         sum = ibptr[ivis] ;                                   // Input bias

         for (ihid=0 ; ihid<nhid ; ihid++)              // Equation 3-4

            sum += w[ihid*nin+ivis] * hid_layer[ihid] ;

         vis_layer[ivis] = 1.0 / (1.0 + exp(-sum)) ;

         }

      } // For ichain

After the Gibbs sampling of the Markov chain is complete, we must propagate the 

RBM’s visible layer down through prior layers until we reach the raw data input layer. As 

we did when propagating upward, we alternate using workvec1 and workvec2 for the visible 

and hidden layers.

   for (i_layer=n_unsup-2 ; i_layer>=0 ; i_layer--) {

      nhid = nin ;                  // Hidden neurons for this layer are RBM’s visible neurons

      if  (i_layer == 0)           // If  we reached the bottom (raw data) layer

         nin = nvis ;                // Then n of  ‘inputs’ for this layer are n of  raw inputs

      else                             // Else they are hidden of  the layer just below this one

         nin = nhid_unsup[i_layer-1] ;

      w = weights_unsup[i_layer] ;                    // This layer’s weight matrix

      ibptr = in_bias + i_layer * max_neurons ; // And input bias vector

      if  (vis_layer == workvec1) {        // Swap so we always map to the ‘other’ vector

         vis_layer = workvec2 ;

         hid_layer = workvec1 ;

         }

      else {

         vis_layer = workvec1 ;

         hid_layer = workvec2 ;

         }

Chapter 4  Greedy Training



181

      for (ivis=0 ; ivis<nin ; ivis++) {                  // Hidden to visible, without sampling

         sum = ibptr[ivis] ;

         for (ihid=0 ; ihid<nhid ; ihid++)              // Equation 3-4

            sum += w[ihid*nin+ivis] * hid_layer[ihid] ;

         vis_layer[ivis] = 1.0 / (1.0 + exp(-sum)) ;

         }

      } // For i_layer, propagating down to the data input layer

The final step is to map the 0–1 activations to the 0–255 image tones. Feel free to 

modify this step as desired.

   for (i=0 ; i<nvis ; i++)

      image[i] = (unsigned char) (255.9999 * vis_layer[i]) ;

}
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CHAPTER 5

DEEP Operating Manual
This chapter presents a concise operating manual for DEEP 1.0, a Windows application. 

It describes every menu option and lists the page number where you can find more 

details if the short description here is not sufficient. (Version 2.0, which is fully backward 

compatible, is now available for free download.)

�Menu Options
This section covers the menu options.

�File Menu Options
These are the File menu options:

Read a database, page 186

A text file in standard database format (such as Excel CSV) is read. 

The first line names the variables, and subsequent lines are the 

data, one case per line. Spaces, tabs, and commas can be used as 

delimiters. Subsequent training will produce a predictive model 

by default, not a classifier.

Read MNIST image, page 186

A standard MNIST-format image file is read. The corresponding 

MNIST label file must be read after the image file is read. 

Subsequent training will produce a model that is a classifier by 

default, not a predictive model.

Read MNIST labels, page 187

A standard MNIST-format label file is read. The corresponding 

MNIST image file must be read before the label file is read.
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Write activation file, page 187

A text file containing the activation of a specified neuron for all 

training set cases is written.

Clear all data, page 187

All training data is erased, but a trained model (if it exists) is 

retained. The purpose of this command is to allow reading a test 

dataset and evaluating the performance of a trained model on this 

new dataset.

Print

The currently selected display window (created under the Display 

menu) is printed. If no window is selected, Print is disabled.

Exit

The program is terminated.

�Test Menu Options
These are the Test menu options:

Use CUDA (Toggle Yes/No)

This option is enabled only if a CUDA-capable device is present 

on the computer. If a check mark appears next to this option, the 

CUDA device will be used for compute-intensive operations. Click 

this option to toggle the check mark on and off.

Model Architecture, page 188

The number of unsupervised and supervised layers is specified, 

as well as the number of neurons in each layer. If the data was 

read with the “Read a database” command, the model will be 

predictive by default, predicting numeric values of the target 

variables. If MNIST data was read, the model will be a classifier by 

default, employing a SoftMax output layer to classify according to 

the labels in the label file.
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Database inputs and targets, page 189

The user specifies one or more predictor variables and one or 

more target variables. If MNIST data was read, the predictors 

and targets are predefined and need not be specified by the 

user. However, the user can still change them through this menu 

command if desired. During model training, predictors that are 

constant for all training cases are omitted from the model.

Advanced options

Options of an advanced nature and that would not normally be 

changed by the user can be set here. In DEEP 1.0 the only such 

option is the maximum number of threads allowed for non-CUDA 

threaded computation. The default should be excellent in all 

practical applications. It cannot be set to more than 64 because of 

limitations imposed by the Windows operating system.

RBM training params, page 189

Parameters relevant to unsupervised RBM training can be set.

Supervised training params, page 193

Parameters relevant to training the supervised layers can be set.

Train, page 196

The complete model is trained using the data currently present.

Test, page 198

The trained model is tested with the data currently present.

Analyze, page 200

Two basic analyses of the trained model are performed. The first is 

a comparison of the mean activation of inputs compared to those 

for the reconstructed data, and the second is a mean activation of 

the final unsupervised layer.
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�Display Menu Options
These are the Display menu options:

Receptive field, page 201

A plot of the receptive fields (weights of the first/bottom layer) 

for one or more hidden neurons is displayed. This display can be 

printed with the File ➤ Print command.

Generative sample, page 202

A plot of one or more generative samples is displayed. This display 

can be printed with the File ➤ Print command.

�The “Read a database” Option
A text file in standard database format is read. In particular, standard-format Excel CSV 

files may be read, as well as databases produced by many common statistical and data 

analysis programs. The first line must specify the names of the variables in the database. 

The maximum length of each variable name is 15 characters. The name must start with a 

letter and may contain only letters, numbers, and the underscore (_) character.

Subsequent lines contain the data, one case per line. Missing data is not allowed.

Spaces, tabs, and commas can be used as delimiters for the first (variable name) and 

subsequent lines.

Here are the first few lines from a typical data file. Six variables are present, and three 

cases are shown.

RAND0 RAND1 RAND2 RAND3 RAND4 RAND5

-0.82449359   0.25341070     0.30325535   -0.40908301   -0.10667177   0.73517430

-0.47731471  -0.13823473    -0.03947150    0.34984449    0.31303233   0.66533709

 0.12963752  -0.42903802     0.71724504    0.97796118   -0.23133837   0.81885117

�The “Read MNIST image” Option
A standard MNIST image file is read. It is assumed that there will be ten labels. The 

number of rows and columns is read from the file and not assumed by DEEP, although 

the common file is 28 rows and columns. In DEEP 1.0, the product of the number of 
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rows and columns must not exceed 4096–10=4086. There is no hard-coded limit on the 

number of images; it is limited only by available memory.

Models in DEEP 1.0 can be either classifiers, in which case the output layer is 

SoftMax, or predictive, in which case the output layer is linear with no range limiting, 

and it makes numeric predictions. When MNIST data is read, the classifier form of model 

is used by default. For database data, the default is numeric prediction. In both cases, the 

user can override the default and force the model to be a classifier or predictive.

The MNIST image file must be read before a label file can be read.

�The “Read MNIST labels” Option
A standard MNIST label file is read. It is assumed that there are ten possible labels. The 

label file cannot be read until the image file has been read.

�The “Write activation file” Option
This option writes a text file containing the activation of a single neuron for all cases, one 

line per case. The user specifies whether the neuron to be written is in the unsupervised 

or supervised section, which layer within that section it is in (with 1 being the first layer), 

and the neuron number within that layer (also with 1 being the first neuron).

An activation file is mainly for diagnostic use, although some users may find it 

convenient to pass an activation file to other programs.

�The “Clear all data” Option
Sometimes the user will want to test a trained model on data that the model has not yet 

seen, often called a test set or out-of-sample (OOS) data. This can be done by reading 

the training data, training the model, clicking “Clear all data,” reading the test set, and 

clicking Test.

When a trained model exists and data is cleared, subsequently read data must have 

the same variables in the same order as the data that was used to train the model.
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�Model Architecture
A model in DEEP 1.0 consists of zero or more unsupervised layers created by greedy 

RBM training, followed by one or more supervised layers trained by using the outputs 

of the final unsupervised layer (or the raw data if there are no unsupervised layers) 

as inputs and targets as outputs. The user defines the architecture by specifying the 

following quantities:

Number of unsupervised layers: This may be zero to create a model 

that is entirely supervised.

Hidden neurons in first unsupervised layer: This refers to the 

bottom layer, the one closest to the input data.

Hidden neurons in last unsupervised layer: This refers to the 

topmost RBM layer, the one that feeds the supervised section. If 

there is only one unsupervised layer, this must equal “Hidden 

neurons in first unsupervised layer.” If there are multiple layers, 

interior sizes are linearly interpolated.

Number of supervised layers: This must be at least one (the 

output layer), which is the usual case when there are one or more 

unsupervised layers. But it is legal for an unsupervised RBM 

section to feed a “traditional” supervised model, one having one 

or more hidden layers prior to the output layer. It is also possible 

to use DEEP 1.0 for strictly supervised models.

Hidden neurons in first supervised layer: This is relevant only if 

“Number of supervised layers” is greater than one, in which case 

it is the number of hidden neurons in the first layer encountered 

by the unsupervised layer outputs or the raw data if there are no 

unsupervised layers.

Hidden neurons in last supervised layer: This refers to the last 

hidden layer before the output layer. If “Number of supervised 

layers” is two (one hidden, plus output), this must equal “Hidden 

neurons in first supervised layer.” If there are multiple hidden 

layers (“Number of supervised layers” exceeds two), interior sizes 

are linearly interpolated.
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�Database Inputs and Targets
This option is used to specify the variables that will be used as inputs to the model (the 

predictors) and the variables that will be predicted (the targets). One or more of each 

can be selected using standard Windows methods: dragging across a range, holding 

down Shift while clicking the first and last in a range, or holding down Control to select 

individual variables.

If “Read a database” was used to read the training data, then the user must specify 

the inputs and targets. But if the data is an MNIST file set, then the inputs and targets are 

automatically preset. Nonetheless, the user is free to use this menu option to change the 

preset selection.

All MNIST input variables will follow the naming convention of P_row_column to 

identify the location of each pixel in the input grid, with the naming origin (first row/

column) being zero. Thus, the upper-left pixel will be P_0_0.

The MNIST target variables will be named Label_digit to identify the digit with which 

each class is associated. Thus, the targets will be named Label_0 through Label_9.

For MNIST data, the model will be a classifier with SoftMax outputs by default. For 

training data read from a database, the model will by default be predictive, attempting to 

predict numeric values for each target. But a supervised training option (described later) 

allows the user to force the model to be a classifier or predictor. For a forced classifier, the 

user must specify at least two targets using the “Data inputs and target” menu option, 

and for each case, the target having the maximum value will be assumed to identify the 

class of the case.

�RBM Training Params
This menu option sets the parameters that are relevant to RBM training. All parameters 

are preset to defaults that should be reasonable for many or most applications. The 

following parameters may be set:

Random initialization iterations: This is the number of trial weight 

sets that are tested to find a good starting point for stochastic 

gradient descent training. This algorithm is described starting on 

page 103. It is definitely worthwhile doing at least a few dozen trials 

so that subsequent training begins with a reconstruction error that is 

not outrageous. More than several hundred trials is probably overkill.
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Number of batches: The training set is divided into this many 

batches (though the exact number may be adjusted by the 

program when necessary) for stochastic gradient descent. 

Concepts vital to this choice are discussed beginning on page 117. 

Here are the basic principles:

•	 Recall from the cited discussion that the trade-off between 

time-per-batch and batches-for-convergence is unbalanced in 

the direction of favoring many small batches. But consider the 

next point.

•	 Although Windows threads have fairly small overhead, the 

overhead of launching a CUDA kernel can be considerable. 

Thus, one should be inclined to use fewer batches if using CUDA 

processing.

•	 The automatic learning rate and momentum adjustment 

algorithms described in the section starting on page 118 perform 

best with relatively large batches. This should inspire us to use 

few batches.

•	 Most important in practice, most Windows installations impose 

an upper limit of two seconds for a CUDA kernel, after which it is 

given the boot. Kernel time is almost linearly related to batch size, 

so if your screen blacks out and recovers with a message that the 

driver was reset, increase the number of batches. CUDA.LOG lists 

kernel times and hence can be used to see how close to criticality 

you are (see page 160).

Markov chain length (CD-k) start: When stochastic gradient 

descent begins, this is the number of iterations taken by executing 

the Markov chain in the contrastive divergence algorithm shown 

on page 99. The gradient estimate’s accuracy is improved by 

taking more iterations, with the result that convergence requires 

fewer epochs. But these samples are expensive to obtain. Early 

in training we do not need accurate gradient estimates; a rough 

approximation is sufficient. This parameter should almost always 

be left at its default value of one.
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Markov chain length (CD-k) end: This is the number of iterations 

taken as learning progresses. As convergence nears, it is 

worthwhile to expend computation time to obtain more accurate 

gradient estimates. The default value of four is good in nearly 

all applications. In case the user wants to obtain true maximum 

likelihood parameter estimates (usually pointless in practice), you 

can set this parameter to a very large value.

Markov chain length (CD-k) rate: This is the rate at which the 

chain length increases from the starting value to the end value. 

Standard exponential smoothing is employed, with the ending 

chain length being the “new value” of the series.

Learning rate: This is the initial learning rate. This should be 

small, probably smaller than the value the user is accustomed 

to for other programs. This is because the automatic adjustment 

algorithm described starting on page 118 will rapidly move it to 

an optimal value.

Momentum start: This is the initial momentum. This should be 

small, probably smaller than the value the user is accustomed 

to for other programs. As with the learning rate, the automatic 

adjustment algorithm described starting on page 118 will rapidly 

move it to an optimal value.

Momentum end: As training progresses, the momentum will 

progress toward this value unless the adjustment algorithm swats 

it down because of instability in the gradient descent algorithm. 

Values greater than the default are dangerous, and even the 

default is pretty high.

Weight penalty: This is the degree to which large weights are 

penalized. This must be small to allow weights to approach their 

optimal values. But it should not be zero. If no weight penalty is 

applied, in unusual but annoying pathological situations one or 

more weights can blow up to enormous values.
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Sparsity penalty: This is the degree to which hidden neuron 

activation rates are encouraged to approach the sparsity target 

specified as the next parameter. This is not a critical parameter, 

and it can safely be set to zero if desired. However, in most cases 

it is good to gently nudge weights toward values that result in 

smallish hidden neuron activation rates, such as 0.1 or so. Among 

other things, this makes the weights more interpretable because 

one can then study which patterns are associated with activation 

of certain hidden neurons. If all hidden neurons are activated 

about half the time, such interpretation is more difficult than if 

activation is rarer.

Sparsity target: This is the value toward which hidden neuron 

activation rates are nudged by the sparsity penalty. This is typically 

around 0.1 or so. This parameter is ignored if the sparsity penalty 

is zero.

Increment convergence criterion: This is the secondary 

convergence criterion, as described starting on page 120. If the 

ratio of the magnitude of the largest weight adjustment in an 

epoch to the magnitude of the largest weight drops below this 

threshold, convergence is decreed to be complete. This should be 

small to avoid early exits from the training algorithm.

Max epochs with no improvement: This is the primary convergence 

criterion. The ratio of the magnitude of the largest weight adjustment 

in an epoch to the magnitude of the largest weight is a good (though 

not perfect; see page 120) measure of how close we are to a local 

minimum of the negative log likelihood criterion being minimized. 

If the specified number of epochs passes without this ratio beating 

its minimum so far, convergence is said to have been achieved.

Max epochs: This is a backstop, in other words, insurance 

against endless iteration. It should never be used as an actual 

convergence criterion because it is a brute-force rule, with no 

intelligence about actual convergence. Make it large, and trust 

that except in very rare pathological situations, one of the main 

convergence criteria will handle the situation well.
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Visible mean field (vs stochastic): If this box is checked, the 

reconstruction of the visible layer will use the mean field 

approximation of Equation 3-4. If not checked, the reconstruction 

will sample according to Equation 3-2. It is likely that using the 

mean field approximation is best, although this is not universally 

agreed upon. In practice, the difference seems slight.

Greedy mean field: If this box is checked, propagation of input data 

through early layers for greedy training strictly uses mean field 

approximations. If not checked, sampling is done for the inputs 

to the layer being trained (except the first layer, which is never 

sampled). This topic is discussed in detail on page 173.

Binary splits: If this box is checked, the raw input data will be 

quantized to strictly binary data by setting variables above their 

mean to one and those equal or below the mean to zero. If not 

checked, the raw input data will be linearly scaled to a range of 0–1.

Fine tune complete model: If this box is checked, after the entire 

deep belief net is constructed (all RBMs greedily trained, then 

all subsequent layers trained with supervision), supervised 

training will be used to tweak the entire model, including the 

RBM layers. This will always improve in-sample performance 

and often improve out-of-sample performance. But display of 

reconstruction samples becomes pointless garbage.

�Supervised Training Params
This menu option sets the parameters that are relevant to supervised training of the 

layers following the RBM layers, as well as the optional fine-tuning of the complete deep 

belief net. All parameters are preset to defaults that should be reasonable for many or 

most applications. The following parameters may be set:

Subsets to prevent CUDA timeout: This has no effect whatsoever 

on the model produced. It affects only the degree to which 

computations are split up; the results of the computations 

remain the same. This is different from batches in RBM training. 

RBM batch division does impact the model and the nature of 
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convergence because the weights are updated for each batch. 

In supervised training, all batches are pooled, with one weight 

update per epoch (pass through the entire training set). To reduce 

kernel-launch overhead, the number of subsets should be set as 

low as possible. But keep an eye on the CUDA time summary in 

CUDA.LOG and be prepared to use more subsets if any time-per-

kernel approaches the two-second Windows limit.

Annealing iterations for supervised: This is the number of 

simulated annealing passes used to find a good weight set from 

which to begin training. This topic is discussed in detail in the 

section that begins on page 78. This is usually a fairly cheap 

operation with good returns for the first few hundred passes. More 

than a few thousand iterations is probably overkill because of 

rapidly diminishing returns.

Initial random range: This is the average range of weight 

perturbation for simulated annealing. The program will 

periodically raise and lower the user-specified figure to make 

this parameter less critical. For this reason, the progress plot of 

error will have clearly visible periodic variation. This is normal 

operation. The exact algorithms that govern simulated annealing 

perturbation are shown in the section that begins on page 78.

Supervised max iterations: After RBM training is complete, the 

supervised layers following the RBM layers are trained. This 

parameter limits the number of epochs to prevent wildly excessive 

runtimes. It should be set to a very large value and used as 

insurance only, not as the usual convergence determiner.

Supervised convergence tolerance: This is the primary method 

for determining convergence of training the supervised layers. 

Training is stopped when the relative change in the error from one 

epoch to the next falls below this level. Because the supervised 

training algorithm used in DEEP is deterministic, this can safely 

be set to a very small value, although doing so is usually without 

merit because most improvement happens early in training.
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Complete max iterations: This is identical to “Supervised max 

iterations” except that it applies to the optional fine-tuning of 

the complete (unsupervised RBMs plus subsequent supervised 

layers) deep belief net.

Complete convergence tolerance: This is identical to “Supervised 

convergence tolerance” except that it applies to the optional 

fine-tuning of the complete (unsupervised RBMs plus subsequent 

supervised layers) deep belief net.

Weight penalty: This penalty discourages large weights during 

supervised training. It should nearly always be set to a very small 

value, small enough that it does not have an overly strong impact 

on learning “best” weights yet large enough that it prevents the 

large weights that can happen in some unusual pathological 

situations that are especially likely when the inputs to the 

supervised section are strongly correlated. This topic is discussed 

in detail beginning on page 27.

Is model a classifier: By default, MNIST data produces a classifier 

model, and database data produces a predictive model. This 

option allows the user to override the default. If database data 

is read and the user forces the model to be a classifier, at least 

two targets must be selected, and for each case the target having 

greatest value is assumed to be the correct case.

Prohibit singular value decomposition: The section beginning 

on page 80 discusses how the extremely efficient singular value 

decomposition (SVD) algorithm can be used to explicitly compute 

optimal output weights for a predictive model and discover 

excellent starting weights for iterative training of classifiers. But 

for gigantic problems and in some rare pathological situations, 

SVD can fail, even (rarely) producing not-a-number results. For 

this reason, SVD is disabled if there are more than 400 inputs 

to the output layer. Moreover, the user may choose to disable 

SVD. Because SVD is such an enormous help in achieving rapid 

and high-quality convergence, it should always be allowed if at all 

possible.
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�Train
The Train selection trains the entire deep belief net. First, all RBM layers are trained with 

unsupervised greedy training. Then, all subsequent layers (typically just one, the output) 

are trained using supervision. Finally and optionally, the entire deep belief net is fine-

tuned with supervision. The steps for complete training are shown on the left side of the 

screen. Those that will not be used in the current configuration are grayed out. A marker 

arrow identifies the step currently executing, and particularly slow operations indicate 

the percent completion.

The first step in RBM training is to find initial weights by randomly generating weight 

sets and finding the one with a minimum reconstruction error. In Figure 5-1, below we 

can see this operation in progress. The top line on the left side says that we are training 

RBM layer 1. The initial weight operation is 55 percent complete. The graph is the RMS 

reconstruction error, with the light blue line showing the individual tries and the heavy 

black line showing the best so far.

Figure 5-1.  Finding initial weights for RBM training
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After initial weight selection is complete, the program trains the RBM using 

stochastic gradient descent. The screen will resemble Figure 5-2.

Figure 5-2.  RBM training

On the left side we can see that we are in the Training operation and we are 1 percent 

done. This percentage is relative to the “Max epochs” parameter, which, as stated earlier, 

should always be set overly large and used only as a backstop. Hence, this percentage 

will nearly always be very pessimistic relative to the actual training progress.

The largest window plots three values, whose current, minimum, and maximum 

values are written in the top center of the plot. The reconstruction error is in red, and it 

typically drops off fast and then levels out. The increment ratio (the maximum increment 

divided by the maximum weight) typically decreases fairly linearly before hitting a sharp 

knee and flattening, with a few subsequent small bounces. The RMS gradient often 

displays peculiar behavior, with very gradual decreases punctuated by sharp jumps up as 

blocks of weights suddenly go from near zero to larger, more useful values.
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Be aware that these plots are the logs of the values, not the actual values. Also, each 

plot is scaled so that the entire historical range of the parameter exactly covers the 

vertical extent of the plot. The net effect is that as training progresses and values become 

small, tiny changes in the actual values are magnified to large changes in the plot. 

This magnification is useful in that it shows in great detail exactly what is happening. 

Unfortunately, it can be deceptive, making the user think that violent gyrations are 

occurring when, in fact, the changes in the actual values are miniscule.

The lower-left graph shows the dynamically adjusted learning rate and momentum, 

also scaled so that the historical values exactly fill the vertical extent of the plot. 

Typically, the learning rate will show a net decrease, dropping to a very small value after 

several dozen iterations during which it bounces. The momentum only rarely stabilizes, 

climbing steadily until it becomes excessive and causes an overshoot that results in 

backtracking, at which point the adjustment algorithm slaps it back down for a while.

The bottom-center graph shows the cosine of the angle between successive 

gradients, scaled to a fixed range of minus one to one. It should always be near the center, 

indicating that the weight increments are neither undershooting nor overshooting.

The lower-right bar graph shows the number of contiguous failures of the increment 

ratio to decrease, relative to the user-specified limit. When the red interior reaches the right 

side of the bar’s outline, training will terminate. This is the primary convergence criterion.

Supervised training of the post-RBM layers, as well as the optional fine-tuning, also 

cause graphs of the error to be displayed as training progresses. There is nothing fancy or 

confusing about them, so we’ll dispense with a detailed discussion.

�Test
The Test selection tests the trained model on the current dataset. There is little point in 

training and then immediately testing a model because the test would just reproduce the 

same results given when training is complete. However, this selection facilitates testing 

the model on new data.
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The usual procedure for training and testing a model is as follows:

	 1.	 Read the training data.

	 2.	 Define the architecture.

	 3.	 Select the predictor and target variables.

	 4.	 Set training parameters if something other than the default is 

desired.

	 5.	 Train.

	 6.	 Clear all data.

	 7.	 Read the test data.

	 8.	 Test.

The test dataset must contain the same variables in the same order as the training 

dataset. The user must not change the architecture or the predictor/target variables.

Note T he Test option does not use CUDA processing. If the model was trained 
with CUDA enhancement, it is possible that the slightly different floating-point 
computations with and without CUDA may result in slightly different test results. 
Any differences should be small.

Chapter 5  DEEP Operating Manual



200

�Analyze
This selection computes and prints to the DEEP.LOG file two tables of information. The 

first is a comparison, for each input variable, of the probability of it being activated in the 

training set versus the probability of it being activated in the reconstructed input layer. 

Here is a short segment illustrating this table:

Variable Visible Reconstructed

P_8_10 0.616 0.617

P_8_11 0.551 0.547

P_8_12 0.522 0.519

P_8_13 0.516 0.513

P_8_14 0.517 0.511

P_8_15 0.520 0.514

P_8_16 0.517 0.513

P_8_17 0.514 0.510

P_8_18 0.539 0.536

P_8_19 0.606 0.603

P_8_20 0.706 0.706

P_8_21 0.806 0.810

P_8_22 0.887 0.891

P_8_23 0.942 0.943
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The other analysis output is the probability (across the training set) of each final 

(topmost) layer hidden neuron being activated. Here is an example of this table:

Hidden Activation

1 0.837

2 0.449

3 0.723

4 0.596

5 0.578

6 0.501

7 0.501

8 0.418

�Receptive Field
The receptive field of a hidden neuron in an RBM is (loosely) defined as the pattern of 

weights connecting the input layer to the hidden neuron. If the input happens to be an 

image, such as is the case with MNIST data, then it is possible to display these weights 

in the same dimensions as the input image. Figure 5-3 shows the receptive fields of a 

dozen neurons trained with MNIST data. Large positive weights are white, large negative 

weights are black, and intermediate values are shades of gray. A color display is also an 

option, with positive weights colored cyan, negative weights colored red, and brightness 

corresponding to magnitude. The gray areas around the perimeter are pixels that are 

constant for all cases and hence omitted from the model.
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�Generative Sample
We saw on page 175 that a trained RBM or set of RBM layers can be made to spit out 

random samples from the distribution that it has learned. Examination of such random 

samples can be interesting because they show examples of the primitive patterns that 

the model has learned.

As with a receptive field display, this option is valid only for MNIST images (at least 

in DEEP version 1.0). Again, the user must specify the number of rows and columns to 

display. Each of the nrows*ncolumns images is a separate sample.

Figure 5-3.  Receptive fields for some neurons trained on MNIST data
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As discussed on page 175, there are two ways to begin the Markov chain whose final 

value will be the computed sample. One can begin with a member of the training set. 

To do this, set the “First case” field to a positive number, the sequential number of the 

training case that will be used for the first sample. Subsequent samples will start from 

subsequent training cases. The degree to which the final reconstruction resembles 

the starting pattern is an indication of the quality of training and the degree to which 

efficient mixing is taking place in the Markov chain.

Figure 5-4 shows the first 12 cases from the MNIST test set of 10,000 cases. Figure 5-5 

shows generative samples obtained from these cases using 10,000 iterations. What makes 

this interesting is that this was derived from a single RBM layer having just 15 hidden 

neurons! The degree to which this tiny model has encapsulated training set patterns is 

astounding.

Figure 5-4.  First 12 cases of MNIST test set
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Alternatively, one can set the topmost hidden neuron layer to random values, thus 

divorcing the computed samples from training data. This lets us see the actual primitive 

patterns that the model is recognizing. Figure 5-6 shows 108 random samples obtained 

from an RBM having 100 hidden neurons, using 50,000 iterations. Note that if one were 

to append ten more visible neurons to the input layer to identify the digit represented, an 

option that may be added in a future version, and then clamp these ten neurons to the 

“correct” value, one would see representations of the actual digits. This is not done here, 

so rather than seeing digits, we see the components of the digit images that the model has 

learned.

Figure 5-5.  Generative samples after 10,000 iterations
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Figure 5-6.  Samples using 100 hidden neurons randomly set
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�The DEEP.LOG File
When a database or MNIST file is read, the program creates a new file called DEEP.LOG 

in the same directory as the data file being read. If a file of that name already exists, it is 

erased. This log file begins by showing the directory in which it is created, along with the 

date and time. It then lists the mean and standard deviation of every variable read. Here 

is a typical example:

Deep (D:\DEEP\TEST\DEEP.LOG) 1/26/15 15:42:16

Found 23 variables in input file D:\DEEP\TEST\SYNTH.TXT

6304 cases read

Means and standard deviations...

         Variable      Mean       StdDev

         RAND0      0.00711    0.57541

         RAND1      0.01422    0.58043

         RAND2      0.01027    0.57694

         RAND3     -0.00765    0.58143

         RAND4      0.00713    0.57911

         RAND5     -0.01166    0.57263

         RAND6     -0.00648    0.57742

         RAND7     -0.01424    0.58015

         RAND8      0.00659    0.57533

         RAND9     -0.00366    0.57733

It then shows the architecture of the model, including the unsupervised and 

supervised sections.

Beginning training a model with the following architecture:

   There are 1 unsupervised layers, not including input

      Hidden layer has 5 neurons

   There are 1 supervised layers, including output

Since there is at least one RBM layer, the training parameters for this layer are listed.
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Restricted Boltzmann Machine training parameters...

  Initial random iterations for starting weights = 50

  Number of  batches = 24

  Markov chain length start = 1

  Markov chain length end = 4

  Markov chain length rate = 0.0050

  Learning rate = 0.05000

  Starting momentum = 0.10000

  Ending momentum = 0.90000

  Weight penalty = 0.00010

  Sparsity penalty = 0.00100

  Sparsity target = 0.10000

  Increment convergence criterion = 0.00001

  Max epochs with no improvement = 500

  Max epochs = 10000

  Visible layer using mean field, not stochastic

  Inputs will be rescaled to cover a range of  0-1

  Unsupervised section weights will be fine tuned by supervised training

The training parameters for the supervised section are also listed.

Supervised layer(s) training parameters...

  Initial annealing iterations for starting weights = 100

  Initial random range for starting weights = 1.00000

  Supervised optimization max iterations = 1000

  Supervised optimization convergence tolerance = 0.0000500

  Complete model optimization max iterations = 2000

  Complete model optimization convergence tolerance = 0.0000100

  Weight penalty = 0.00100

The results of training the unsupervised layer are printed first.

Training unsupervised layer 1

  Initial weight search RMS reconstruction error = 0.27098

  Unsupervised training complete; RMS reconstruction error = 0.31654
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There is one curious issue in that result. The initial weight search gave a 

reproduction error of 0.27098, but after real training was done, we see that the 

reproduction error has increased to 0.31654. How did this happen?

Actually, this is unusual, happening only when the input variables have little or no 

patterns that the RBM can learn. In this example, the inputs are all random numbers, 

so there are obviously no patterns. We must remember that the reconstruction 

error is measured slightly differently during weight initialization and training. In 

the section that begins on page 93, we see that the initial search reconstruction 

error is computed in a deterministic manner using mean field approximation in 

both directions. But during learning we use random sampling of the hidden neuron 

activations for the reconstruction error, as discussed on page 100. This tends to increase 

the error somewhat. If the RBM is able to learn real patterns, the difference because 

of randomization during the reconstruction error computation is swamped out by 

the model’s ability to reconstruct authentic patterns. But if there are no patterns to 

reconstruct, we just get the effect of randomization.

After the greedy training of the unsupervised section is complete, the supervised 

section that follows the unsupervised section is trained. Fine-tuning was selected, so the 

last step is to tweak the entire model, unsupervised plus supervised sections. Here we 

see that fine-tuning produces a huge improvement in the criterion, which is negative log 

likelihood in this example because a classification model was forced.

Optimization of  supervised section is complete with negative log likelihood = 0.12270

Fine tuning of  the entire model is complete with negative log likelihood = 0.02327

The targets are listed, and it is noted that the inputs are rescaled 0–1, so the weights 

that will be printed soon refer to these rescaled values.

Trained weights for this model, predicting the following target(s)...

  RAND1

  RAND2

  RAND3

Each raw input has been rescaled 0-1 to cover the min/max range.

Thus, all weights refer to the rescaled value, not the raw value.

The weights for the single unsupervised layer are now printed. If there were multiple 

layers, each set of weights would appear. These weights are after fine-tuning.
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Weights for unsupervised hidden layer 1

                             1             2              3             4              5

         Q mean   0.4522     0.4796     0.4556     0.4138     0.4717

     skewness    0.1310     0.0700     0.1271     0.2440     0.0618

         RAND1   -7.0347    -4.5028     0.9392    -2.5469    1.4879

         RAND2    4.7047    -1.7225    -0.5104     7.0462    2.0824

         RAND3    2.8726     6.0903     1.6480    -4.7952   -2.6467

         RAND4   -0.0131     0.1551    -1.6304    -0.2535    0.3858

         RAND5   -0.0032    -0.3523    -0.0453     0.1271   -0.8947

         RAND6   -0.0619    -0.1453    -1.8291    -0.1889   -0.2881

            BIAS     0.7231    -0.5790     0.8983    -0.6242    0.4237

The model was specified to have five hidden neurons, so we have five columns, one 

for each. At most ten columns are printed. After each unsupervised layer is trained, the 

hidden neuron weights are sorted so that the hidden neuron having maximum sum of 

absolute values becomes the first hidden neuron, and so forth. This way, if we examine 

the weights to obtain hints about the interpretation of features detected, we can focus 

your efforts on the early columns. However, if fine-tuning is done, as is the case in this 

example, this sorting can be subverted. This is not a practical problem because fine-

tuning almost always largely or entirely destroys the interpretability of weight patterns 

that were discovered by the RBM.

The “Q mean” row is the mean activation of each hidden neuron, and the “skewness” 

row is the statistical skewness of the activations. In general, a positive skewness means 

that the neuron is usually off, and vice versa. These two values are computed before fine-

tuning; they refer to the actions of the trained RBM before its weights are adjusted by 

supervised fine-tuning.

We then see the weights that connect the (last and only) unsupervised layer to the 

(first and only) supervised layer. Also, the final value of the optimization criterion, which 

we saw earlier, is repeated.

Weights for final (output) layer

Target 1 of  3: RAND1

         -9.158017 Unsupervised output 1

         -6.844571 Unsupervised output 2
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          0.781757 Unsupervised output 3

         -2.436789 Unsupervised output 4

          2.660202 Unsupervised output 5

          6.449515 CONSTANT

Target 2 of  3: RAND2

          5.160418 Unsupervised output 1

         -1.469535 Unsupervised output 2

         -0.629605 Unsupervised output 3

          9.063721 Unsupervised output 4

          2.708100 Unsupervised output 5

         -8.018184 CONSTANT

Target 3 of  3: RAND3

          3.467198 Unsupervised output 1

          8.798016 Unsupervised output 2

          1.170767 Unsupervised output 3

         -8.699801 Unsupervised output 4

         -3.433103 Unsupervised output 5

         -2.159271 CONSTANT

Negative log likelihood = 0.02327

Lastly, the confusion matrix is shown. Usually, when one is training a classifier, the 

target vector for each case has 1.0 in the position corresponding to the correct class 

and 0.0 in all other positions. But this is just a common convention and is not required 

in DEEP. Instead, whichever target has the maximum value is defined to be the correct 

class. So, when a model having continuous targets is forced to be a classifier, as is the 

situation in this example, the results are reasonable. In particular, we would expect good 

classification in this example since all three targets are also present as inputs! Indeed,  

we can see this is the case.

Confusion matrix... Row is true class, column is predicted class

   In each set of  three rows for a true class, the first row is the count,

   the second row is the percent for that row (true class)

   and the third row is the percent of  the entire dataset.
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        1        2         3

1    2128         3        8

     99.49    0.14    0.37

     33.76    0.05    0.13

2        9      2088       15

     0.43     98.86    0.71

     0.14     33.12    0.24

3        8          7     2038

     0.39     0.34     99.27

     0.13     0.11    32.33

Total misclassification = 0.7931 percent
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read MNIST image, 183, 186
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Display menu options, 186

F
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workvec1 and workvec2, 180–181

Gibbs sampling, 176
Gradient calculation

compute and cumulate, optimization, 23
DEEP program, 20
deltas, 24, 26
element-wise products, 18
error, 23
grand gradient vector, 25
hidden layers, 25–26
inputs feeding, 25
layers, 22
loop unrolling, 19
modern processors and compilers, 19
MSE, 24, 27
neurons, final hidden layer, 20–22
outlin, 19
output layer, 24
parameters, 22
routines, 19
SoftMax output layer, 23
_thr, 20
weight vector, 20

Gradient computation with CUDA
architecture, 37–38
batch loop, 77
block_launch.x, 43
block size, 42
code fragment, 42
cuda_weights_changed flags, 76
device code, 39
fetching, 63–65
first hidden layer, 57–60
goals, 36
hidden layers

first, 57–59
subsequent, 60–62

inefficiency, addressing scheme, 41
initialization

coalescing, 47
code, 43
copying trial weights, 46
cudaMemcpyToSymbol, 46
hidden-layer weights, 45–46
hid_weights, 47
storage scheme, 46
variable declarations, 43–45

mlfn_cuda_initialized flags, 76
neuron activation

hidden (see Hidden neuron 
activation)

output, 52
neuron index and case index, 40
output delta, 54–55
output gradient, 55–57
reduction

log likelihood, 70–71
MSE, 65–69

routines, 39, 40, 43, 71–76
SoftMax output, 53–54, 77
threads_per_block, 42
training set, 71
variables, device code, 39–40
vector type, 42

Greedy mean field, 193
Greedy training

algorithm, 173–174
generative sampling (see Generative 

sampling)
random sampling, 174

H, I, J, K, L
Hidden neuron activation

coalescing, 50
code fragment, 48
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MLFN code, 51
nVidia profiler, 51
threads, 50
weights, 47, 50–51

M
Markov chain, 190–191
Mean squared error (MSE)

cross entropy, 17
linear output layer, 18
logistic regression model, 15
logit, 15
log likelihood function, 16–17
optimization, 16
performance, 14
poor classification, 14
reduction

algorithm, 65
device code, 67–68
host code, 69
implementations, 69
notation, 66
number of blocks, 66
post-training analysis, 65
repetition, 67
shared declaration, 68
shared memory area, 68
synchthreads(), 68
thread index, 68
threads per block, 66

SoftMax activations, 15
usual and reasonable approach, 13
vector of activations, 15
venerable technique, 14
weight vector, 16

MNIST image option, 183, 186
MNIST label option, 183, 187
Multiple-layer feedforward networks 

(MLFNs), 51
activation, hidden neuron, 4
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deep network, 3
first hidden layer, 2
hyperbolic tangent function, 4
independent variables, 2
logistic activation function, 5
shallow network, 2

Multithreaded RBM training
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calling parameter list, 121, 129
data structure, 127–128, 132
epoch loop, 134
gradient and reconstruction error, 135
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activations, 123, 124, 126
learning rate, 141
learning rate and momentum, 138–139
maximum weight, 140
max_threads, 134
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lengths, 140
n_in_batch, 134
n_no_improvement, 141
parameter increments, 133
params[0].hid_bias_grad, 135
primary convergence test, 140
random number generation, 121
reconstruction error, 124, 139
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shuffled index vector, 133
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weight adjustments, visible neuron 

loop, 137
Multithreading
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catastrophic error flag, 34
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scalar error and vector grad, 34
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reconstruction error, 115
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Output gradient, 55–57

R
RBM training params
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fine tune complete model, 193
greedy mean field, 193
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initial weights, 196–197
learning rate, 191
Markov chain, 190–191
max epochs, 192
momentum end, 191
momentum start, 191
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post, 198
random initialization  

iterations, 189
sparsity penalty, 192
sparsity target, 192
stochastic gradient descent, 197–198
visible mean field, 193
weight penalty, 191

Receptive field, 201–202
Restricted Boltzmann machine (RBM)

CUDA source code (see CUDA code, 
RBM training)

initial weights
Bermuda Triangle, 103
gradient-based approach, 103
hidden neuron bias, 105–106
magnitudes, 103
multithreading (see Multithreading)
positive and negative, 104
reconstruction error, 103, 107–108
variation, 104–105
visible neuron bias, 106

inputs and hidden  
activations, 91

maximum likelihood
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divergence, 97–100
encouraging sparsity, 101–103
log likelihood, 95
negative term, 96
partial derivative, 96
positive term, 96
reconstruction error, 95
scalar energy, 95
SoftMax, 96

weight matrix, 95
weight penalties, 100–101

mixing rate, 92
parameter set, 93
probability, 92
reconstruction error, 93–94
stochastic gradient descent  

(see Stochastic gradient descent)
visible layer, 91
visible neurons, 92

S
Singular value decomposition (SVD), 80, 

82, 195
SoftMax modification, 53–54
Sparsity penalty, 102, 192
Sparsity target, 192
Stochastic gradient descent, 97

algorithm, 116
convergence  

determination, 120–121
epochs to batches, 117
learning rate, 116, 118–119
momentum, 116, 118, 120
shuffling epochs, 118

Subsequent hidden layers, 60–62
Supervised feedforward networks

code, gradient calculation  
(see Gradient calculation)

errors, backpropagation  
(see Backpropagation of errors)

multithreading gradient computation 
(see Multithreading)

training algorithms (see Training 
algorithms)

weight penalties, 27–29
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T, U, V
Test menu options, 184–185
Test set, 187
Training algorithms

conjugate gradient (see Conjugate 
gradient optimization)

simulated annealing,  
starting weights, 78–80

singular value decomposition,  
optimal output weights, 80, 82

stochastic gradient descent
maximum, 82
momentum, 82
neural networks, 83
step size, 84

W, X, Y, Z
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Weight penalties, 27–29, 100–101

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Review of Multiple-Layer Feedforward Networks
	What Are Deep Belief Nets, and Why Do We Like Them?

	Chapter 2: Supervised Feedforward Networks
	Backpropagation of Errors
	SoftMax Outputs for Classification

	Code for Gradient Calculation
	Weight Penalties
	Multithreading Gradient Computation
	Gradient Computation with CUDA
	Basic Architecture
	A Simple Example
	Initialization
	Hidden Neuron Activation
	Output Neuron Activation
	SoftMax Output
	Output Delta
	Output Gradient
	Gradient of the First Hidden Layer
	Gradient of Subsequent Hidden Layers
	Fetching the Gradient
	Mean Squared Error by Reduction
	Log Likelihood by Reduction
	Putting It All Together

	Basic Training Algorithms
	Simulated Annealing for Starting Weights
	Singular Value Decomposition for Optimal Output Weights
	Stochastic Gradient Descent
	Conjugate Gradient Optimization


	Chapter 3: Restricted Boltzmann Machines
	What Is a Restricted Boltzmann Machine?
	Reconstruction Error

	Maximum Likelihood Training, Sort Of
	Contrastive Divergence
	Weight Penalties
	Encouraging Sparsity

	Finding Initial Weights
	Hidden Neuron Bias
	Visible Neuron Bias
	Code for Reconstruction Error
	Multithreading Initial Weight Selection

	Stochastic Gradient Descent Basic Principles
	The Core Algorithm
	Dividing Epochs into Batches
	Shuffling Epochs
	Updating the Learning Rate and Momentum
	Determining Convergence

	Code for Multithreaded RBM Training
	CUDA Code for RBM Training
	Initialization and Cache Line Matching
	Fetching Training Cases
	Visible-to-Hidden Layer
	Hidden-to-Visible Layer
	Gradient Length and Dot Product by Reduction
	Updating the Input Bias
	Updating the Hidden Neuron Bias
	Updating the Weights
	Putting It All Together
	Timing
	Updating Weights Analysis
	Visible-to-Hidden Analysis
	Hidden-to-Visible Analysis
	Advanced Training and Future Versions


	Chapter 4: Greedy Training
	Generative Sampling

	Chapter 5: DEEP Operating Manual
	Menu Options
	File Menu Options
	Test Menu Options
	Display Menu Options

	The “Read a database” Option
	The “Read MNIST image” Option
	The “Read MNIST labels” Option
	The “Write activation file” Option
	The “Clear all data” Option
	Model Architecture
	Database Inputs and Targets
	RBM Training Params
	Supervised Training Params
	Train
	Test
	Analyze
	Receptive Field
	Generative Sample
	The DEEP.LOG File

	Index



