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Introduction

This book is a continuation of Volumes 1 and 2 of this series. Numerous references are 

made to material in the prior volumes, especially in regard to coding threaded operation 

and CUDA implementations. For this reason, it is strongly suggested that you be at 

least somewhat familiar with the material in Volumes 1 and 2. Volume 1 is especially 

important, as it is there that much of the philosophy behind multithreading and CUDA 

hardware accommodation appears.

All techniques presented in this book are given modest mathematical justification, 

including the equations relevant to algorithms. However, it is not necessary for you to 

understand the mathematics behind these algorithms. Therefore, no mathematical 

background beyond basic algebra is necessary.

The two main purposes of this book are to present important convolutional net 

algorithms in thorough detail and to guide programmers in the correct and efficient 

programming of these algorithms. For implementations that do not use CUDA 

processing, the language used here is what is sometimes called enhanced C, which is 

basically C that additionally employs some of the most useful aspects of C++ without 

getting into the full C++ paradigm. Strict C (except for CUDA extensions) is used for 

the CUDA algorithms. Thus, you should ideally be familiar with C and C++, although 

my hope is that the algorithms are presented sufficiently clearly that they can be easily 

implemented in any language.

This book is divided into four chapters. The first chapter reviews feedforward 

network issues, including the important subject of backpropagation of errors. Then, 

these issues are expanded to handle the types of layers employed by convolutional 

nets. This includes locally connected layers, convolutional layers, and several types of 

pooling layers. All mathematics associated with computing forward-pass activations and 

backward-pass gradients is covered in depth.

The second chapter presents general-purpose C++ code for implementing the 

various layer types discussed in the first chapter. Extensive references are made to 

equations given in the prior chapter so that you are able to easily connect code to 

mathematics.



xii

The third chapter presents CUDA code for implementing all convolutional net 

algorithms. Again, there are extensive cross-references to prior theoretical and 

mathematical discussions so that the function of every piece of code is clear. The chapter 

ends with a C++ routine for computing the performance criterion and gradient by calling 

the various CUDA routines.

The last chapter is a user manual for the CONVNET program. This program can be 

downloaded for free from my web site.

All code shown in the book can be downloaded for free either from my web site 

(www.timothymasters.info/deep-learning.html) or via the Download Source Code 

button on the book’s Apress product page (www.apress.com/9781484237205). The 

complete source code for the CONVNET program is not available, as much of it is related 

to my vision of the user interface. However, you have access to every bit of code needed 

for programming the core convolutional net routines. All you need to supply is the user 

interface.

Introduction

http://www.timothymasters.info/deep-learning.html
http://www.apress.com/9781484237205
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CHAPTER 1

Feedforward Networks
Convolutional nets are multiple-layer feedforward networks (MLFNs) having a special 

structure that makes them especially useful in computer vision. In this chapter, we 

will review MLFNs and then show how their structure can be specialized for image 

processing.

�Review of Multiple-Layer Feedforward Networks
A multiple-layer feedforward network is generally illustrated as a stack of layers of 

“neurons” similar to what is shown in Figure 1-1 and Figure 1-2. The bottom layer is 

the input to the network, what would be referred to as the independent variables or 

predictors in traditional modeling literature. The layer above the input layer is the first 

hidden layer. Each neuron in this layer attains an activation that is computed by taking 

a weighted sum of the inputs, plus a bias, and then applying a nonlinear function. In 

the fully general case, each hidden neuron in this layer will have a different set of input 

weights.

If there is a second hidden layer, the activations of each of its neurons is computed 

by taking a weighted sum of the activations of the first hidden layer, plus a bias, and 

applying a nonlinear function. This process is repeated for as many hidden layers as 

desired.

The topmost layer is the output of the network. There are many ways of computing 

the activations of the output layer, and several of them will be discussed later in the 

book. For now let’s assume that the activation of each output neuron is just a weighted 

sum of the activations of the neurons in the prior layer, plus a bias, without use of a 

nonlinear function.
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In Figures 1-1 and 1-2, only a small subset of the connections is shown. Actually, 

every neuron in every layer feeds into every neuron in the next layer above.

Figure 1-1.  A shallow network

Figure 1-2.  A deep network

Chapter 1  Feedforward Networks
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To be more specific, the activation of a hidden neuron, expressed as a function of the 

activations of the prior layer, is shown in Equation 1-1. In this equation, x = {x1, …, xK} is 

the vector of prior-layer activations, w = {w1, …, wK} is the vector of associated weights, 

and b is a bias term.

	
a= f b+ w xk k

k=

K

1
åæ

è
ç

ö

ø
÷ 	

(1-1)

It’s often more convenient to consider the activation of an entire layer at once. In 

Equation 1-2, the weight matrix W has K columns, one for each neuron in the prior layer, 

and as many rows as there are neurons in the layer being computed. The bias and layer 

inputs are column vectors. The nonlinear activation function is applied element-wise to 

the vector.

	 a= f b+Wx( ) 	 (1-2)

There is one more way of expressing the computation of activations that is most 

convenient in some situations. The bias vector b can be a nuisance, so it can be absorbed 

into the weight matrix W by appending it as one more column at the right side. We then 

augment the x vector by appending 1 to it: x = {x1, …, xK, 1}. The equation for the layer’s 

activations then simplifies to the activation function operating on a simple matrix/vector 

multiplication.

	 a= f Wx( ) 	 (1-3)

What about the activation function? Traditionally, the hyperbolic tangent function 

has been used because it has some properties that make training faster. This is what we 

will use here. The hyperbolic tangent function is shown in Equation 1-4 and graphed in 

Figure 1-3.

	
tanh t =

e e
e + e

t t

t t( ) - -

- 	
(1-4)

Chapter 1  Feedforward Networks
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�Wide vs. Deep Nets
Prior to the development of neural networks, researchers generally relied on large 

doses of human intelligence when designing prediction and classification systems. One 

would measure variables of interest and then brainstorm ways of massaging these “raw” 

variables into new variables that (at least in the mind of the researcher) would make 

it easier for algorithms such as linear discriminant analysis to perform their job. For 

example, if the raw data were images expressed as arrays of gray-level pixels, one might 

apply edge detection algorithms or Fourier transforms to the raw image data and feed 

the results of these intermediate algorithms into a classifier.

The data-analysis world shook when neural networks, especially multiple-layer 

feedforward networks, came into being. Suddenly we had prediction and classification 

tools that, compared to earlier methods, relied to a much lesser degree on human-driven 

preprocessing. It became feasible to simply present an array of gray-level pixels to a neural 

network and watch it almost miraculously discover salient class features on its own.

For many years, the prevailing wisdom stated that the best architecture for a 

feedforward neural network was shallow and wide. In other words, in addition to the 

input (often called the bottom layer) and the output (often called the top layer), the 

network would have only one, or perhaps two at most, intervening hidden layers. This 

Figure 1-3.  Hyperbolic tangent function
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habit was encouraged by several powerful forces. Theorems were proved showing that 

in very broad classes of problems, one or two hidden layers were sufficient to solve the 

problem. Also, attempts to train networks with more than two hidden layers almost 

always met with failure, making the decision of how many layers to use a moot point. 

According to the theorems of the day, you didn’t need deeper networks, and even if you 

did want more layers, you couldn’t train them anyway. So why bother trying?

The fly in the ointment was the fact that the original selling point of neural networks 

was that they supposedly modeled the workings of the brain. Unfortunately, it is well 

known that brains are far from shallow in their innermost computational structure 

(except for those of a few popular media personalities, but we won’t go there). And then 

new theoretical results began appearing that showed that for many important classes 

of problems, a network composed of numerous narrow layers would be more powerful 

than a wider, shallower network having the same number of neurons. In effect, although a 

shallow network might be sufficient to solve a problem, it would require enormous width 

to do so, while a deep network could solve the problem even though it may be very narrow. 

Deep networks proved enticing though still enormously challenging to implement.

The big breakthrough came in 2006 when Dr. Geoffrey Hinton et al. published 

the landmark paper “A Fast Learning Algorithm for Deep Belief Nets.” The algorithm 

described in this paper is generally not used for the training of convolutional nets, so we 

will not pursue it further here; for details, see Volume 1 of this series. Nevertheless, this 

algorithm is relevant to convolutional nets in that it allowed researchers to discover the 

enormous power of deep networks. We will see later that convolutional nets, because of 

their specialized structure, are much easier to train with conventional algorithms than 

fully general deep networks.

One of the most fascinating properties of deep belief nets, in their general as well 

as convolutional form, is their remarkable ability to generalize beyond the universe of 

training examples. This is likely because the output layer, rather than seeing the raw data, 

is seeing “universal” patterns in the raw data—patterns that due to their universality are 

likely to reappear in the general population.

A closely related property of deep belief nets is that they are shockingly robust 

against overfitting. Every beginning statistics student learns the importance of using 

many more training cases than optimizable parameters. The standard wisdom is that if 

one uses 100 cases to train a model with 50 optimizable parameters, the resulting model 

will learn as much about the noise in the training set as it learns about the legitimate 

patterns and will hence be worthless. But a properly constructed deep network can 

contain thousands or even millions of optimizable parameters and still avoid overfitting.
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�Locally Connected Layers
As a general rule, the more optimizable weights we have in a neural network, the more 

problems we will have. All else being equal, training time goes up exponentially with the 

number of parameters being optimized. This is a major reason why, before the advent 

of specialized training algorithms and specialized network architectures, models having 

more than two hidden layers were practically unknown. Also, the more parameters we 

optimize, the more likely we are to overfit the model, treating noise in the training data 

as if it were authentic information.

When the input to the model is an image, it is often reasonable for neurons in a given 

layer to respond to only neurons in the prior layer that are nearby in the visual field. For 

example, a neuron in the upper-left corner of the first hidden layer may, by design, be 

sensitive to only pixels in the upper-left corner of the input image. It may be overkill to 

cause a neuron in the upper-left corner of the first hidden layer to react to pixels in the 

opposite corner of the input image.

By implementing this design feature, we tremendously reduce the number of 

optimizable weights in the model, yet we do not much reduce the total information 

capture. Even though the neurons in the first hidden layer may each respond to 

only nearby input neurons, taken as a whole the set of hidden neurons encapsulates 

information about the entire input image.

Figure 1-4.  Simple local connections

Figure 1-4 may be confusing at first. In a conventional neural network, illustrated in 

Figures 1-1 and 1-2, each layer can be portrayed in one dimension, a line of hidden neurons. 

But Figure 1-4 has neurons laid out in two dimensions, with its neurons corresponding to 

those in the prior layer (or input). In fact, it’s even more complicated than that. The neural 

networks presented in this book have three-dimensional layers. Let me explain.
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�Rows, Columns, and Slices
Think about an input image. It may have multiple bands, such as RGB (red, green, blue). 

The image has a height (number of rows) and width (number of columns) that are the 

same for all three bands. In the context of convolutional nets, instead of speaking of 

bands, we may call them slices. In the same way, each hidden layer will occupy a volume 

described by a height, width, and depth (number of slices). Sometimes the height and 

width (the visual field) of a hidden layer will equal these dimensions of the prior layer, 

and sometimes they will be less. They will never be greater.

It can be helpful to think of a slice of a hidden layer as corresponding (roughly!) to a 

single hidden neuron in a conventional neural network. For example, in a conventional 

network we might have one hidden neuron responding to the sum of two inputs, and 

a different hidden neuron responding to the difference between these two inputs. In 

the same way, neurons in one slice may specialize in responding to the total input in 

the nearby visual field, while neurons in a different slice may specialize in detecting 

horizontal edges in the nearby visual field. This specialization may vary across the 

visual field, or it may be forced to be the same across the visual field. We will pursue this 

concept later.

To compute the activation of a single neuron in a hidden layer, we use an equation 

similar to Equation 1-1. However, it is considerably more complicated now because it 

involves only the prior-layer neurons that are nearby in the visual field and all prior-layer 

slices in this neighborhood. This is roughly expressed in Equation 1-5.

The equation for computing the activation of a single neuron in a locally connected 

hidden layer involves the following terms:

R : Row of neuron in layer being computed (we call this the current layer)

C : Column of neuron in current layer

S : Slice of neuron in current layer

ARCS : Activation of the neuron (or input) being computed

r : Row of neuron in prior layer (or input)

c : Column of neuron in prior layer (or input)

s : Slice of neuron in prior layer (or input)

arcs : Activation of the prior-layer neuron (or input) at r, c, s

wRCSrcs : Weight associated with the prior-layer neuron (or input) at r, c, s

when computing the activation of the neuron at RCS

b : The single bias term
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(1-5)

The developer defines what is meant by near in the model. Let NEARR be the number 

of prior-layer rows that, by design, are near the row being computed (which we call the 

current layer), and define NEARC similarly. Let NS be the number of slices in the prior 

layer, the depth of that layer. Then the number of weights involved in computing the 

activation of a neuron is NEARR * NEARS * NS plus one for the bias. As a convention in 

this book, I will often refer to this quantity (including the bias term) as nPriorWeights.

Suppose there are NR rows in the current layer, as well as NC columns and NS slices. 

Then the total number of weights connecting the prior layer to the layer being computed 

is NR * NC * NS * nPriorWeights.

Astute readers will balk at one aspect of this computation. What about the edges of 

the prior layer, where on one or two sides there are no nearby prior-layer neurons? Great 

observation! Have patience…we will address this important issue soon.

�Convolutional Layers
A few pages ago we mentioned that the pattern in which neurons in a slice specialize 

may be the same across the visual field, or it may vary. Neither is universally better than 

the other. If one is dealing with a variety of images, in which specific features do not 

have a pre-ordained position in the visual field, it probably makes sense for each layer 

to have a common specialization. For example, all neurons in one slice may respond to 

the local total brightness, while all neurons in a different slice may contrast the upper 

part of the local visual field with the lower part and hence be sensitive to a horizontal 

edge. On the other hand, if the input image is a prepositioned entity, such as a centered 

face or unknown military vehicle, then it probably makes sense to allow position-relative 

specialization. For example, neurons a little way in from the top left and top right may 

specialize in aspects of eye shape on a face.

If the application allows, there is one huge advantage to consistent specialization 

of a slice across the visual field. In this situation, the weight sets wRCSrcs are the same for 

all values of R and C, the position in the visual field of the neuron being computed. All 

neurons across the visual field of a given slice have the same weight set, meaning that the 

total number of weights connecting the prior layer to the current layer is now just  

NS * nPriorWeights, which is a lot less than NR * NC * NS * nPriorWeights.
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Such a layer is called a convolutional layer because each of its slices is based on 

the convolution of the prior layer’s activations with the nPriorWeights weight set that 

defines that slice’s specialization. (Convolution is a term from filtering theory. If you 

are unfamiliar with the term, no problem.) For clarity, the activation of a neuron in a 

convolutional layer is given by Equation 1-6.

	

A = f b+ w aRCS
s rnearR cnearC
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(1-6)

�Half-Width and Padding
So far we have been vague about the meaning of near in the visual field. It’s time to 

be specific. Look back at Figure 1-4. We see that in both the vertical and horizontal 

directions, there are two neurons on either side of the center neuron. This distance 

is called the half-width of the filter. Although the vertical and horizontal half-widths 

are equal in this example, both being two, they need not be. However, the distance on 

either side (left-right and up-down from the center) are always equal; otherwise, the 

center would not be, um, the center. Denote the vertical and horizontal half-widths as 

HWV and HWH, respectively. Then Equation 1-7 gives the number of weights involved in 

computing the activation of a single neuron. Recall that NS is the number of slices in the 

prior layer. The +1 at the end is the bias term.

	 nPriorWeights = N HW + HW + +s H V2 2 1 11( ) ( ) 	 (1-7)

We can now think about edge effect, the problem of a filter extending past the edge of 

the prior layer into undefined nothingness. We have two extreme options and perhaps a 

(rarely used) compromise between these two extremes.

	 1.	 Instead of letting the leftmost column of the prior layer be the 

center for the leftmost hidden neuron in the current layer, 

which causes HWH columns of needed activation values to be 

devastatingly undefined, we begin computation HWH columns 

inside the left edge. In other words, the leftmost column of the 
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current layer will have its center in the prior layer at column 

HWH instead of the leftmost column. Thus, the intuitively nice 

alignment will be lost; each column of the current layer will 

be offset from the corresponding column of the prior layer by 

HWH. Similarly, we stop computation HWH columns before the 

right edge, and we also inset the top and bottom. This has the 

advantage of making use of all available information in an exact 

manner, but it has the disadvantage that rows and columns of the 

current layer are no longer aligned with rows and columns of the 

prior layer. This is usually of little or no practical consequence, but 

it is troubling on a gut level. See Figure 1-5.

	 2.	 Pad the prior layer with HWH columns of zeros on the left and right 

sides, and HWV rows of zeros on the top and bottom, to provide 

“defined” values for the outside-the-visual-field neurons when 

we place the center of the filter on the edge. This lets us preserve 

layer-to-layer alignment of neurons in the visual field, which gives 

most developers a warm, fuzzy feeling and hence is common. It 

also has an advantage in many CUDA implementations, which I’ll 

touch on in a moment. But it’s fraught with danger, as we’ll discuss 

in a moment. See Figure 1-6.

Figure 1-5.  Filter option 1
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In Figures 1-5 and 1-6, the square box outlines the neurons in the visual field of the 

prior layer that impact the activation of the top-left neuron in a slice of the current layer. 

The center of the box is circled. The top-left X in these figures is the top-left neuron in 

the prior layer. Figure 1-5 shows that the top-left neuron in the slice being computed is 

centered in the visual field two neurons in and two neurons down from the prior layer’s 

top left. In Figure 1-6, we see that the top-left neuron in the slice being computed also 

corresponds to the top-left neuron in the prior layer because those zeros let the filter 

extend past the edge.

But make no mistake, those zeros have an impact. It’s easy to dismiss them as 

“nothing” numbers. This feeling is made all the more acceptable because when 

we program this, we simply avoid adding in the components of Equation 1-5 that 

correspond to the overhang. Hey, if you don’t add them in, they can’t do any harm, right? 

Those weights are just ignored.

Unfortunately, zero is not nothing; it is an honest-to-goodness number. For example, 

suppose the prior layer is an input image, scaled 0–255. Then zero is pure black! If the 

weight set computes an average luminance, these zeros will pull the average well down 

into gray even if the legitimate values are bright. If the weight set detects edges and the 

legitimate values are bright, a profound edge will be flagged here. For this reason, I am 

cautious about zero padding. On the other hand, it appears to be more or less standard. 

You pays your money, and you take your choice.

This fact does, however, provide powerful motivation for using a neuron activation 

function that is symmetric around zero, such as the hyperbolic tangent shown in 

Equation 1-4. If one were to use a strictly positive activation function such as the logistic 

Figure 1-6.  Filter option 2
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function, the effect of zero padding would be even more severe. Also note that in my 

CONVNET program, I rescale input images to minus one through one rather than the 

more common 0–255. This lessens the impact of zero padding.

I should add that full zero padding can be advantageous in many CUDA 

implementations. This will be discussed in detail later when we explore CUDA code, 

but the idea is that certain numbers of hidden neurons, such as multiples of 32, speed 

operation by making memory accesses more efficient. On the other hand, lack of full 

zero padding impacts only the size of the visual field, not the depth, and good CUDA 

implementations can compensate for shrinking visual fields by handling the depth 

dimension properly.

Note that one is not bound to employ one of these two extreme options. It is perfectly 

legitimate to compromise and pad with fewer than HWH columns of zeros on the left 

and right, and HWV rows of zeros on the top and bottom. Nobody seems to do it, but you 

needn’t let that stop you.

�Striding and a Useful Formula
A common general principle of neural network design is that the size of hidden layers 

decreases as you move from input toward output. Of course, we can (and usually do) 

decrease the depth (number of slices) of successive layers. But effective information 

compression is also obtained by decreasing the size of the visual field (rows and 

columns) in successive layers. If we pad with half-width zeros as in option 2 in the prior 

section, the size of the visual field remains constant. And even if we do not pad, the 

visual field only slightly decreases. There is a more direct approach: striding.

It should be emphasized that the modern tendency is to avoid striding and use 

pooling to reduce the visual field. That topic will be discussed later in the chapter. 

However, because striding does have a place in our toolbox, we’ll cover it now.

The idea of striding is simple: instead of marching the centers of the prior layer and the 

current layer together, moving each one place at a time, we move the prior layer neurons 

faster. For example, we might move the prior layer twice as fast as the current layer. 

Suppose we have fully padded so that row 1, column 1 in the current layer is centered on 

row 1, column 1 of the prior layer. Then row 1, column 2 of the current layer is centered 

at row 1, column 3 of the prior layer, and so forth. Each time we move one row/column in 

the current layer, we move two rows/columns in the prior layer. This cuts the number of 

rows/columns approximately in half (or whatever the stride factor is), hence reducing the 

number of neurons in the visual field by a factor of the square of the striding value.
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We now present a simple formula for the number of rows/columns in the current 

layer, given the size of the prior layer and the size of the filter, the amount of zero 

padding, and the stride. No identification of vertical or horizontal is needed, as this 

formula applies to each dimension. The following definitions for the terms of the 

formula in Equation 1-8 apply:

W: Width/height of the prior layer

F: Width/height of the filter; two times half-width, plus one

P: Padding rows/columns appended to each edge; less than or equal to half-width

S: Stride

C: Width/height of the current layer

	 C= W F+ P S-( ) +2 / 1 	 (1-8)

There is widespread belief that the division by the stride must be exact; if the 

numerator is not a multiple of the stride, the layer is somehow invalid. A brief Internet 

search shows this belief to be ubiquitous. But it’s not really true. There are two things 

that make this belief appealing.

•	 If the division is not exact, the alignment of the current layer with 

the prior layer will not be symmetric; the current layer may be 

inset from the prior layer by different amounts on the right and 

left, or top and bottom. However, I do not see any reason in any 

application why this lack of symmetry would be a problem. If this 

is a problem in your application, then select your parameters 

in such a way as to make the division exact. But it’s silly for the 

padding to exceed the half-width, and the filter size may be 

important and not amenable to change. This can make it difficult 

to produce perfect division.

•	 Many popular training algorithms, which generally use packaged 

matrix multiplication routines, require exact division. So if you use 

such an algorithm, you have no choice. The algorithms presented in 

this book and employed in the CONVNET program do not impose 

this requirement.
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�Pooling Layers
The prior section discussed striding, a means of reducing the size of the visual field when 

progressing from one layer to the next. Although this method was popular for some time 

and is still occasionally useful, it has recently been supplanted by the use of a pooling 

layer. In particular, the stride of a locally connected or convolutional layer is generally 

kept at one so that the visual field is left unchanged (if full padding) or only slightly 

reduced (if less than full padding). Then, a layer whose sole purpose is to reduce the 

visual field is employed.

Pooling layers are similar to locally connected/convolutional layers in that they 

move a rectangular window across the prior layer, applying a function to the activation 

values in each window to compute the activation of a single neuron in the current layer. 

But the biggest difference is that pooling layers are not trainable. Their function, which 

maps window values in the prior layer to an activation in the current layer, is fixed in 

advance.

There are three other differences. Padding is generally not used; it is avoided in this 

book, as I believe the distortion introduced by padding a pooling layer is too risky. Also, 

filter widths can be even; they do not take the form 2*HalfWidth+1. The implication is 

that pooling destroys layer-to-layer alignment.

Finally, the pooling function that maps the prior layer to the current layer is applied 

separately to each slice. The locally connected/convolutional layers discussed in the 

previous few sections look at all prior-layer slices simultaneously. So, for example, 

if we have a five-by-five filter operating on a prior layer that has ten slices, a total of 

5*5*10=250 activations in the prior layer take part in computing the activation of a 

neuron in the current layer. But in a pooling layer, there are as many slices as in the prior 

layer, and each layer is computed independently. So, using these same numbers, each 

of the ten neurons in the current layer occupying the same position in the visual field 

would be computed from 25 prior-layer activations in the corresponding slice. We map 

first slice to first slice, second slice to second slice, and so forth.

�Pooling Types
Historically, the first type of pooling was average pooling. The mapping function simply 

takes the average of the activations in the window placed on the prior layer. Average 

pooling has recently fallen out of favor, but some developers still find it appropriate in 

some applications.
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The most popular type of pooling as of this writing is max pooling. This mapping 

function chooses the neuron in the prior layer’s window, which has maximum 

activation. Much experience indicates that this is more effective than average 

pooling.

One small but annoying disadvantage of max pooling is that it is not differentiable 

everywhere. At the activation levels where the choice transitions from one neuron to 

another, the derivative of the performance criterion with respect to a particular weight 

goes to zero on the neuron suddenly losing the contest and jumps away from zero on the 

winner. This slightly impedes some optimization algorithms, and it makes numerical 

verification of gradient computations a bit dicey. But in practice, these problems do not 

seem to be overly serious, so we put up with them.

Other pooling functions are appearing. Different norms can be used, and some even 

more exotic functions have been proposed. None of these alternatives is discussed in 

this book.

�The Output Layer
This book, as well as the CONVNET program, follows the simple convention that the 

output layer contains one neuron for each class. Each of these neurons is fully connected 

to all neurons in the prior layer. Because the concept of visual field makes no sense in 

the concept of output-layer classes, this layer by definition is organized as a single row 

and column (the “visual field” is one pixel) with a depth (number of slices) equal to the 

number of classes. The exact organizational layout is not vital, but this layout proves to 

simplify programming and mathematical derivations.

�SoftMax Outputs
Back in the olden days when I was a graduate student, classification performed with 

numerical prediction models was typically done by having as many predicted outputs 

as there are classes and assigning a target value of 1.0 to the output corresponding to 

the correct class and of 0.0 for all of the incorrect classes. When the model was put to 

use, whichever output had the largest prediction was chosen as the predicted class. The 

exact values of the predictions usually had little theoretical or practical meaning; we just 

picked the largest. One might call this a “hard” selection process.
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In these more enlightened times, we can “soften” the selection process, making 

the predicted outputs resemble probabilities. This is extremely useful, not just because 

it’s nice to be able to talk about the predicted probability of each class (even though 

in many applications this interpretation is excessively optimistic!) but also for an even 

more important reason. These SoftMax outputs make the model far more robust against 

outliers in the training and test data. This vital topic is discussed in detail in Volume 

1 of this series, so it will be glossed over here. But we do need to review the relevant 

equations that we will program.

We know that the activation of a single hidden neuron is computed as a nonlinear 

function of a weighted average of prior-layer activations (plus a bias term). For the 

output neurons we drop the nonlinear function and speak only of the weighted average 

(plus bias). This quantity is called the logit of the neuron being computed. This is shown 

in Equation 1-9 for output neuron k. In this equation, x = {x1, x2, …} is the vector of 

activations of the final hidden layer, w = {wk1, wk2, …} is the vector of associated weights, 

and bk is a bias term. In other words, the logit of an output neuron is computed exactly 

like we compute the activation of a hidden-layer neuron, except that we do not apply the 

nonlinear activation function.

	
logit = b + w xk k

i
ki iå 	

(1-9)

Once we have the logit of every output neuron, computing the SoftMax output 

values, which can roughly be thought of as probabilities of class membership, is done 

with Equation 1-10. This equation assumes that there are K output neurons (classes).  

It should be obvious that these output activations are non-negative and sum to one.
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(1-10)

The traditional mean squared error optimization criterion is of little value when 

dealing with SoftMax outputs. We now need a different optimization criterion to find 

good values for the parameters of the model. An excellent choice is maximum likelihood. 

This is not the venue for a detailed description of maximum likelihood, but we will try for 

an intuitive justification.
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Any set of model parameters defines, by means of the equations just shown, the 

probability of each possible class given an observed case. Our training set is assumed to 

be random draws from a population, each of which provides an input vector and a true 

class. If we were to consider a given set of model parameters as defining the true model, 

we could compute (in a sense best left undiscussed here) the probability of obtaining the 

set of training cases that were actually observed. So we find that set of parameters that 

maximizes this probability. In other words, we seek the model that provides the maximum 

likelihood of having obtained our training set in these random draws from the population.

In our particular application, the likelihood of a case is just the probability given by 

the model for the class to which that case belongs. We want a criterion that is summable 

across the training set, so instead of considering the likelihood, which is multiplicative, 

we will use the log likelihood as our criterion. This way we can compute the criterion for 

the entire training set by summing the values for the individual cases in the training set.

Also, to conform to more general forms of the log likelihood function that you 

may encounter in more advanced texts, as well as to conform to the expression of the 

derivative that will soon be discussed, we express the log likelihood of a case in a more 

complex manner. For a given training case, define tk as 1.0 if this case is a member of 

class k, and 0.0 otherwise. Also define pk as the SoftMax activation of output neuron k, 

as given by Equation 1-10. Then, for our single training case, the log of the likelihood 

corresponding to the model’s parameters is given by Equation 1-11. This equation is 

called the cross entropy, and interested readers might want to look up this term for some 

fascinating insights.

	
L= t p

k=
k k
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(1-11)

Observe that in the summation over classes, every term is zero except the term 

corresponding to the correct class. Thus, the log likelihood is just the log of the model’s 

computed probability for the correct class of the case. Here are some observations about 

the log likelihood:

•	 Because p is less than one, the log likelihood is always negative.

•	 The better the model is at computing the correct class probabilities, 

the larger (closer to zero) this quantity will be since it is the log 

probability of the correct class and a good model will provide a large 

probability for the correct class.
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•	 If the model is nearly perfect, meaning that the computed probability 

of the correct class is nearly 1.0 for every case, the log likelihood will 

approach zero, its maximum possible value.

We will soon discuss gradient computation, at which time we will need the derivative 

of the log likelihood. Without going through the considerable number of steps, we state 

that this derivative of Equation 1-11 for a case is given by Equation 1-12.
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(1-12)

Developers with experience in computing the gradient of traditional neural networks 

will be amazed to see that, except for a factor of two, the delta for a SoftMax output 

layer and maximum likelihood optimization is identical to that for a linear output layer 

and mean-squared-error optimization. This means that traditional predictive model 

gradient algorithms can be used for SoftMax classification with only trivial modification. 

Nonetheless, we will summarize gradient computation in the next section.

�Back Propagation of Errors for the Gradient
The fundamental goal of supervised training can be summarized simply: find a set of 

parameters (weights and biases as in Equation 1-2) such that, given an input to the 

neural network, the output of the network is as close as possible to the desired output. To 

find such parameters, we must have a performance criterion that rigorously defines the 

concept of “close.” We then find parameters that optimize this criterion.

Suppose we have K output neurons numbered 1 through K. For a given training case, 

let tk be the true value for this case, the value that we hope the network will produce, 

and let pk be the output actually obtained. Then the log likelihood for this single case is 

given by Equation 1-11. To compute the log likelihood for the entire training set, sum 

this quantity for all cases. To keep this quantity to “reasonable” values, most people 

(including me) divide this sum by the number of cases and the number of classes. If 

there are N training cases, this performance criterion is given by Equation 1-13.

	
L =

L

KNtset
i=

N

i
1
å

	 (1-13)
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Supervised training of a multiple-layer feedforward network amounts to finding the 

weights and bias terms that maximize Equation 1-13 (or minimize its negative, which 

is what we really do). In any numerical minimization algorithm, it is of great benefit to 

be able to efficiently compute the gradient, the partial derivatives of the criterion being 

minimized with respect to each individual parameter. Luckily, this is quite easy in this 

application. We just start at the output layer and work backward, repeatedly invoking the 

chain rule of differentiation.

The activation of output neuron k is given by Equation 1-10. Neural net aficionados 

use the Greek letter delta to designate the derivative of the performance criterion with 

respect to the net input coming into a neuron; in the current context this is output 

neuron k, and its delta is given by Equation 1-12.

In other words, this neuron is receiving a weighted sum of activations from all 

neurons in the prior layer, and from Equation 1-12 we know the derivative of the log 

likelihood criterion with respect to this weighted sum.

How can we compute the derivative of the criterion with respect to the weight from 

neuron i in the prior layer? The simple chain rule tells us that this is the product of the 

derivative in Equation 1-12 times the derivative of the net input (the weighted sum 

coming into this output neuron) with respect to this weight.

This latter term is trivial. The contribution to the weighted sum from neuron i in 

the prior layer is just the activation of that neuron times the weight connecting it to the 

output neuron k. We shall designate this output weight as wki
O. So the derivative of that 

weighted sum with respect to wki
O is just the activation of neuron i. This leads us to the 

formula for the partial derivatives of the criterion with respect to the weights connecting 

the last hidden layer to the output layer. In Equation 1-14 we use the superscript M on 

a to indicate that it is the activation of a neuron in hidden layer M, where there are M 

hidden layers numbered from 1 through M.
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(1-14)

There are two complications when we deal with the weights feeding hidden layers. 

Let’s consider the weights leading from hidden layer M−1 to hidden layer M, the last 

hidden layer. We ultimately want the partial derivatives of the criterion with respect to 

each of these weights. As when dealing with the output layer, we’ll split this derivative 

into the product of the derivative of the net input feeding this neuron with respect to 

the weight times the derivative of the criterion with respect to this neuron’s net input. 
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As before, the former term here is trivial: just the activation of the prior neuron feeding 

through this weight. It’s the latter that’s messy.

The first complication is that the hidden neurons are nonlinear. In particular, the 

function that maps the net input of a hidden neuron to its activation is the hyperbolic 

tangent function shown in Equation 1-4. So the chain rule tells us that the derivative of 

the criterion with respect to the net input is the derivative of the criterion with respect 

to the output times the derivative of the output with respect to the input. Luckily, the 

derivative of the hyperbolic tangent function f (a) is simple, as shown in Equation 1-15.

	 f a = f a¢( ) - ( )1 2 	 (1-15)

The remaining term is more complicated because the output of a neuron in a hidden 

layer feeds into every neuron in the next layer and thus impacts the criterion through 

every one of those paths. Recall that δk
O is the derivative of the criterion with respect 

to the weighted sum coming into output neuron k. The contribution to this weighted 

sum going into output neuron k from neuron i in the prior layer M is the activation of 

hidden neuron i times the weight connecting it to output neuron k. So the impact on 

the derivative of the criterion from the activation of neuron i that goes through this path 

is δk
O times the connecting weight. Since neuron i impacts the error through all output 

neurons, we must sum these contributions, as shown in Equation 1-16.
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Pant pant. We are almost there. Our goal, the partial derivative of the criterion with 

respect to the weight connecting a neuron in hidden layer M−1 to a neuron in hidden 

layer M is the product of the three terms that we have already presented.

•	 The derivative of the net input to the neuron in hidden layer M with 

respect to the weight in which we are interested

•	 The derivative of the output of this neuron with respect to its net 

input (the derivative of its nonlinear activation function)

•	 The derivative of the criterion with respect to the output of this 

neuron
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The derivative of the criterion with respect to wij
M (the weight connecting neuron j 

in layer M−1 to neuron i in layer M) is the product of these three terms. The product of 

the second and third of these terms is given by Equation 1-17, with f ′(.) being given by 

Equation 1-15. The multiplication is completed in Equation 1-18.
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There is no need to derive the equations for partial derivatives of weights in hidden 

layers prior to the last hidden layer, as the equations are the same, just pushed back one 

layer at a time by successive application of the chain rule. In particular, for some hidden 

layer m<M, we have Equation 1-19 for the partial derivative of the criterion with respect 

to the weighted sum coming into neuron i in layer m. Equation 1-20 then provides 

the partial derivative of the criterion with respect to the weight connecting neuron j 

in hidden layer m−1 to neuron i in hidden layer m. In this case, there are K neurons in 

hidden layer m+1.
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That was a long haul, especially for those for whom math is not pleasant. So as an aid 

to those who are mainly interested in programming, here is a more concise summary of 

the procedure for computing the gradient:

	 1.	 Allocate two scratch vectors, this_delta[] and prior_delta[]. These must 

be as long as the maximum number of hidden neurons in any 

layer, as well as the number of classes (output neurons).

	 2.	 Compute activations for all hidden layers and the output layer.

	 3.	 Use Equation 1-12 to compute the output deltas. Put these in 

this_delta.

	 4.	 Use Equation 1-14 to compute the gradient of the output layer.
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	 5.	 Designate the last hidden layer as the “current” layer, which makes 

the output layer the “next” layer.

	 6.	 This is the beginning of the main loop that moves backward 

through the network, from the last hidden layer to the first. At 

this time, this_delta[k] contains the derivative of the criterion with 

respect to the input (post-weight) to neuron k in the next layer.

	 7.	 Backpropagate delta. To get the contribution of that neuron k from 

neuron i in the current layer, the layer whose gradient is currently 

being computed, we multiply delta[k] by the weight connecting 

current-layer neuron i to next-layer neuron k. This gives us the 

part of the total derivative due to the output of neuron i in the 

current layer going through neuron k in the next layer. But the 

output of neuron i impacts the criterion derivative through all 

neurons in the next layer. Thus, we must sum these parts across 

all neurons (values of k) in the next layer. To get the derivative of 

the criterion with respect to the input to neuron i, we multiply 

this sum by the derivative of neuron i’s activation function. This is 

Equation 1-19, or Equation 1-17 if this is the last hidden layer. The 

arguments for this equation are in this_delta, and we put the results 

in prior_delta.

	 8.	 Move the contents of prior_delta to this_delta.

	 9.	 To get the derivative of the criterion with respect to a weight 

coming into neuron i, we multiply delta by the input coming 

through this weight (the output of the prior layer’s neuron). This 

is Equation 1-20, or Equation 1-18 if this is the last hidden layer. If 

there are more hidden layers to process, go to step 6.

Even though we will be dealing with specialized types of layers, such as locally 

connected, convolutional, and pooling layers, the steps just described apply for all. We 

merely have to be careful to identify items that are identically zero and hence ignored. In 

the conventional implementation (page 42), we get the deltas for step 9 from prior_delta, 

so we can perform step 8 after step 9 is complete. In the CUDA version (page 111), we 

will get the deltas for step 9 from this_delta, so we must perform step 8 before step 9.
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CHAPTER 2

Programming Algorithms
The source code that can be downloaded for free from my web site contains four large 

source files that handle the vast majority of the computation involved in propagating 

activations and backpropagating deltas for all layer types involved in convolutional nets.

•	 MOD_NO_THR.CPP: Nonthreaded versions of all routines. These 

are not used in the CONVNET program, but they are the routines 

listed and discussed in this book. Because they are not designed 

for threaded use, they are somewhat simpler than the threaded 

versions. In this way, the focus of discussion can be on the algorithms 

themselves, avoiding the complexities of threading.

•	 MOD_THR.CPP: Threaded versions of all routines. The last section 

of this chapter will explore how they differ from the nonthreaded 

versions and how they are incorporated into a fully multithreaded 

program.

•	 MOD_CUDA.CPP: Host routines that call the CUDA routines and 

coordinate all CUDA-based computation.

•	 MOD_CUDA.cu: All CUDA source code, as well as their host-code 

wrappers. Note that cu is lowercase. For some bizarre reason, Visual 

Studio has problems when it is in uppercase. Go figure.

Here is the order in which routines will be presented in this chapter:

	 1.	 Extract of Model declaration, showing key declarations

	 2.	 Extract of Model constructor, showing how architecture is built

	 3.	 trial_no_thr(), externally callable routine that computes all 

activations

	 4.	 Activation functions for each layer type; called from trial_no_thr()
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	 5.	 trial_error_no_thr(), externally callable routine to compute 

criterion

	 6.	 grad_no_thr(), externally callable routine to compute gradient

	 7.	 Gradient routines for each layer type; called from grad_no_thr()

	 8.	 Backprop routines for each layer type; called from gradient 

routines

	 9.	 Discussion of threading the algorithms

�Model Declarations
The complete set of model declarations can be found in the file CLASSES.H. However, 

most of them are irrelevant to the discussion of the activation and gradient algorithms, 

so they are not printed in the text.

Also, there are a handful of variables used so extensively that I (please forgive me!) 

made them global. They are as follows:

int n_pred;                         // Number of  predictors present (input rows*cols*bands)

int n_classes;                    // Number of  classes

int n_db_cols;                    // Size of  a case in the database = n_pred + n_classes

int n_cases;                       // Number of  cases (rows) in database

double *database;             // They are here, variables changing fastest

int IMAGE_rows;               // Input number of  rows

int IMAGE_cols;                // and columns

int IMAGE_bands;             // Its number of  bands

Here are the important Model class declarations for convenient reference. Note that some 

duplicate globals. The declarations that are arrays have separate values for each layer.

int n_pred;                         // Number of  predictors present (input grid size; rows*cols*bands)

int n_classes;                    // Number of  classes

int n_layers;                       // Number of  hidden layers (does not include input or output)

int layer_type[];                  // Each entry is type of  layer

int height[];                         // Number of  neurons vertically in a slice of  this layer

int width[];                          // Ditto horizontal; these are both 1 for a fully connected layer

int depth[];                         // Number of  slices in this layer; number of  hidden if  fully connected
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int nhid[];                            // Number of  neurons in this layer = height times width times depth

int HalfWidH[];                    // Horizontal half  width looking back to prior layer

int HalfWidV[];                     // And vertical

int padH[];                           // Horizontal padding, must not exceed half  width

int padV[];                           // And vertical

int strideH[];                        // Horizontal stride

int strideV[];                         // And vertical

int PoolWidH[];                    // Horizontal pooling width looking back to prior layer

int PoolWidV[];                   // And vertical

int n_prior_weights[];         // N of  inputs per neuron (including bias) from prior layer

                                           // = prior depth * (2*HalfWidH+1) * (2*HalfWidV+1) + 1

                                           // A CONV layer has this many weights per slice

                                           // A LOCAL layer has this times its nhid

int n_hid_weights;              // Total number of  all hidden weights; includes bias

int n_all_weights;               // As above, but also includes output layer weights

int max_any_layer;            // Max n of  neurons in any layer, including input and output

double *weights;                 // All ‘n_all_weights’ weights, including final weights, are here

double *layer_weights[];     // Pointers to each layer’s weights in ‘weight’ vector

double *gradient;                // ‘n_all_weights’ gradient, aligned with weights

double *layer_gradient[];    // Pointers to each layer’s gradient in ‘gradient’ vector

double *activity[];                // Activity vector for each layer

double *this_delta;             // Scratch vector for gradient computation

double *prior_delta;           // Ditto

double output[];                  // SoftMax activation for each class

int *poolmax_id[];               // Used only for POOLMAX layer; saves from forward pass ID

�Order of Weights and Gradient
The weights for layer i begin at layer_weights[i]. Similarly, the gradient (which aligns 

element by element with the corresponding weights) for layer i begin at layer_gradient[i].

Two general ordering rules govern all layer types.

	 1.	 Within each layer the weights (and gradient) are ordered with the 

input to the layer changing faster than the neuron being computed.

	 2.	 The width changes fastest, then the height, and finally the depth 

slowest.
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For a fully connected layer, these two rules clearly describe the situation. First we 

have the n_prior_weights weights connecting the prior layer to the first hidden neuron, 

with the bias last. Within that vector, the prior layer’s width changes fastest, then the 

height, and finally the depth slowest. After this, we have a similar vector for the second 

neuron in the current layer, and so forth. Recall that in a fully connected layer, the height 

and width are both one, with neurons strung out along the depth.

For other layer types, the order is slightly more complex and will be described as 

each activation routine is presented.

�Initializations in the Model Constructor
Most of the code in the Model constructor is mundane and not worth listing in this text. 

You can see the full module in MODEL.CPP. However, some of this code reinforces 

discussions in the prior chapter and so is presented here.

In the loop shown next, we compute n_prior_weights in three steps for locally connected 

and convolutional layers. First we set it equal to the size of the moving-window filter, the 

number of weights in the filter. Then we multiply this by the number of slices in the prior layer 

because the filter is applied to all prior-layer slices simultaneously. Finally, we add 1 to include 

the bias term. Also in this loop we use Equation 1-8 to compute the size of the visual field.

   for (i=0; i<n_layers; i++) {

      nfH = 2 * HalfWidH[i] + 1;        // Filter width

      nfV = 2 * HalfWidV[i] + 1;

      if  (layer_type[i] == TYPE_LOCAL || layer_type[i] == TYPE_CONV) {

         n_prior_weights[i] = nfH * nfV; // Inputs, soon including bias, to neurons in layer

         if  (i == 0) {

            height[i] = (IMAGE_rows - nfV + 2 * padV[i]) / strideV[i] + 1;

            width[i] = (IMAGE_cols - nfH + 2 * padH[i]) / strideH[i] + 1;

            n_prior_weights[i] *= IMAGE_bands;

            }

         else {

            height[i] = (height[i-1] - nfV + 2 * padV[i]) / strideV[i] + 1;

            width[i] = (width[i-1] - nfH + 2 * padH[i]) / strideH[i] + 1;

            n_prior_weights[i] *= depth[i-1];

            }

         n_prior_weights[i] += 1;          // Include bias

         }
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By common convention, a fully connected layer is implemented as a one-pixel visual 

field, with a slice for each neuron. It has a weight from every prior-layer activation, plus 

the bias term.

      else if  (layer_type[i] == TYPE_FC) {

         height[i] = width[i] = 1;

         if  (i == 0)

            n_prior_weights[i] = n_pred + 1;

         else

            n_prior_weights[i] = nhid[i-1] + 1;

         }

Pooling layers also have their visual field size defined by Equation 1-8. They align 

slice by slice with the prior layer, each processed independently, so a pooling layer has 

the same number of slices as the prior layer. Padding is never used (by me anyway) for 

pooling layers. Pooling layers are a fixed function, with no trainable weights, so n_prior_

weights is zero. Finally, the number of hidden neurons in this layer, regardless of type, is 

the product of the dimensions.

      else if  (layer_type[i] == TYPE_POOLAVG || layer_type[i] == TYPE_POOLMAX) {

         if  (i == 0) {

            height[i] = (IMAGE_rows - PoolWidV[i]) / strideV[i] + 1;

            width[i] = (IMAGE_cols - PoolWidH[i]) / strideH[i] + 1;

            depth[i] = IMAGE_bands;

            }

         else {

            height[i] = (height[i-1] - PoolWidV[i]) / strideV[i] + 1;

            width[i] = (width[i-1] - PoolWidH[i]) / strideH[i] + 1;

            depth[i] = depth[i-1];

            }

         n_prior_weights[i] = 0;

         }

      nhid[i] = height[i] * width[i] * depth[i];

      }
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The previous code handles the hidden layers. We do the output layer, which is always 

fully connected, in the following code. We don’t need to worry about the height, width, 

and depth because they will never be referenced in subsequent code that processes the 

output layer.

   if  (n_layers == 0)

      n_prior_weights[n_layers] = n_pred + 1;     // Output layer, always fully connected

   else

      n_prior_weights[n_layers] = nhid[n_layers-1] + 1;

Lastly, we compute the total number of weights in all hidden layers, not including 

the output layer. We also need the maximum size of any layer, input, hidden, or output. 

These will be used for memory allocation, not shown here. This code is presented only to 

reinforce architectural issues in the model.

The most important fact here is that locally connected and fully connected layers 

have a number of weights equal to n_prior_weights times the number of hidden neurons 

in the layer because each hidden neuron has its own set of weights. But a convolutional 

layer has a number of weights equal to n_prior_weights times the depth of this layer 

because every neuron in the visual field of a given slice shares the same set of weights.

   max_any_layer = n_pred;             // Input layer is included in max

   if  (n_classes > max_any_layer)

      max_any_layer = n_classes;     // Output layer is included in max

   n_hid_weights = 0;

   for (ilayer=0; ilayer<n_layers; ilayer++) { // For each of  the hidden layers

      if  (nhid[ilayer] > max_any_layer)

         max_any_layer = nhid[ilayer];

      if  (layer_type[ilayer] == TYPE_FC || layer_type[ilayer] == TYPE_LOCAL)

         n_hid_weights += nhid[ilayer] * n_prior_weights[ilayer];

      else if  (layer_type[ilayer] == TYPE_CONV)

         n_hid_weights += depth[ilayer] * n_prior_weights[ilayer];

      else if  (layer_type[i] == TYPE_POOLAVG || layer_type[i] == TYPE_POOLMAX)

         n_hid_weights += 0;                // Just for clarity; pooling has no trainable weights

      } // For ilayer (each hidden layer)

   n_all_weights = n_hid_weights + n_classes * n_prior_weights[n_layers]; // Add output
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�Finding All Activations
The routine trial_no_thr() can be called from elsewhere. It does a forward pass to compute 

all activations in the model. None of the nitty-gritty calculations appears here; the 

routine simply calls the appropriate specialist for each layer.

void Model::trial_no_thr (double *input)

{

   int i, ilayer;

   double sum;

   for (ilayer=0; ilayer<n_layers; ilayer++) {    // These do not include output layer

      if  (layer_type[ilayer] == TYPE_LOCAL)

         activity_local_no_thr (ilayer, input);

      else if  (layer_type[ilayer] == TYPE_CONV)

         activity_conv_no_thr (ilayer, input);

      else if  (layer_type[ilayer] == TYPE_FC)

         activity_fc_no_thr (ilayer, input, 1);

      else if  (layer_type[ilayer] == TYPE_POOLAVG ||

                  layer_type[ilayer] == TYPE_POOLMAX)

         activity_pool_no_thr (ilayer, input);

      }

   activity_fc_no_thr (n_layers, input, 0);       // Output layer

   // Classifier is always SoftMax. Use Equation 1-10 on Page 16.

   sum = 1.e-60;                                // Denominator below must never be zero

   for (i=0; i<n_classes; i++) {

      if  (output[i] < 300.0)                    // Be safe against rare but deadly problem

         output[i] = exp (output[i]);

      else

         output[i] = exp (300.0);

      sum += output[i];

      }

   for (i=0; i<n_classes; i++)

      output[i] /= sum;

}
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�Activating a Fully Connected Layer
Computing the activation of a fully connected layer is relatively easy because every 

neuron in the layer is connected to every neuron in the prior layer. We do not have 

to worry about the position of a moving window or whether we are past the edge of 

the prior layer, or striding, and so forth. These considerations can be surprisingly 

complicated to implement efficiently. Thus, we begin with this easy routine.

One potential source of confusion is the input parameter. This is not the input to the 

layer being computed; if this layer is past the first hidden layer, the input to this layer will 

be fetched directly from the activity vector of the prior hidden layer. Rather, this is the 

input to the model, and it is used only if this is the first layer after the input.

void Model::activity_fc_no_thr (int ilayer, double *input, int nonlin)

{

   int iin, iout, nin, nout;

   double sum, *wtptr, *inptr, *outptr;

   wtptr = layer_weights[ilayer];                // Weights for this layer

   if  (ilayer == 0) {                                     // The ‘prior layer’ is the input vector

      nin = n_pred;                                     // This many elements in the vector

      inptr = input;                                       // They are here

      }

   else {                                                     // The prior layer is a hidden layer

      nin = nhid[ilayer-1];                            // It has this many neurons

      inptr = activity[ilayer-1];                      // Prior layer’s activations

      }

   if  (ilayer == n_layers) {                         // If  this is the output layer

      nout = n_classes;                              // There is one output neuron for each class

      outptr = output;                                  // Outputs go here

      }

   else {                                                     // This is a hidden layer

      nout = nhid[ilayer];                             // We must compute this many activations

      outptr = activity[ilayer];                       // And put them here

      }
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   for (iout=0; iout<nout; iout++) {             // Compute each activation

      sum = 0.0;

      for (iin=0; iin<nin; iin++)                     // Equation 1-1 on Page 3

         sum += inptr[iin] * *wtptr++;

      sum += *wtptr++;                               // Bias

      if  (nonlin) {                                         // Hidden layers are nonlinear; output is not

         sum = exp (2.0 * sum);                   // Hyperbolic tangent function

         sum = (sum - 1.0) / (sum + 1.0);     // Equation 1-4 on Page 3

         }

      outptr[iout] = sum;

      }

}

�Activating a Locally Connected Layer
First, we must be clear on how the weights that connect the prior layer to this locally 

connected layer are ordered. They can best be visualized as they would be processed in a 

set of nested loops:

Current layer depth

Current layer height

Current layer width

Prior layer depth

Prior layer height

Prior layer width

Bias

The depth dimension of the neuron being computed changes slowest, then the 

height, and finally the width. At the width point (three levels in), we are looking at the 

weights for computing a single neuron in this layer. We have the weights that connect it 

to the prior layer, in the order shown. After these prior-layer weights appear, we have the 

single bias term.

The input parameter is the input to the entire model, which will be used only if the 

layer we are about to compute is the first layer after the input.
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void Model::activity_local_no_thr (int ilayer, double *input)

{

   int k, in_row, in_rows, in_col, in_cols, in_slice, in_slices, iheight, iwidth, idepth;

   int rstart, rstop, cstart, cstop;

   double sum, *wtptr, *inptr, *outptr, x;

   if  (ilayer == 0) {                            // This is the first layer after the input

      in_rows = IMAGE_rows;

      in_cols = IMAGE_cols;

      in_slices = IMAGE_bands;

      inptr = input;                              // Input to this layer is the model’s input image

      }

   else {                                            // The prior layer is a hidden layer

      in_rows = height[ilayer-1];

      in_cols = width[ilayer-1];

      in_slices = depth[ilayer-1];

      inptr = activity[ilayer-1];             // Input to this layer is the prior layer’s activations

      }

   wtptr = layer_weights[ilayer];       // Weights for this layer, order as described above

   outptr = activity[ilayer];                 // We put the computed activations here

   k = 0;                                            // This will index the computed activations in outptr

   for (idepth=0; idepth<depth[ilayer]; idepth++) {

      for (iheight=0; iheight<height[ilayer]; iheight++) {

         for (iwidth=0; iwidth<width[ilayer]; iwidth++) {

            // Compute activation of  this layer’s neuron at (idepth, iheight, iwidth)

Here’s where things get a little complicated. We are about to compute the activation 

of this neuron. This computation is based on a rectangle in the prior layer whose 

position is determined by the position (iheight, iwidth) of the current neuron in the visual 

field of this layer. In both the vertical and horizontal directions, the center of the first 

filter (first row or column of the current layer) is at the location HalfWidth-Pad in the 

prior layer, and the first row/column of this first rectangle is at -Pad, which will be in the 

zero-padding area if padding is done. If this is not clear, please draw yourself a little one-

dimensional picture using two rows of dots, a row for each layer. Understanding this is 

crucial!
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We can now compute the inclusive starting and stopping rows and columns of the 

rectangle in the prior layer, which contributes to the activation of the neuron in the 

current layer. We start at -Pad, advance by Stride as the current layer advances, and end 

at twice the HalfWidth.

            sum = 0.0;             // Will sum the filter here

            // Center of  first filter is at HalfWidth-Pad; filter begins at -Pad.

            rstart = strideV[ilayer] * iheight - padV[ilayer];

            rstop = rstart + 2 * HalfWidV[ilayer];

            cstart = strideH[ilayer] * iwidth - padH[ilayer];

            cstop = cstart + 2 * HalfWidH[ilayer];

We are now ready to compute the weighted sum of the prior layer’s activations 

in the rectangle. Recall that the filter sums across all slices in the prior layer. Astute 

readers, and even not-so-astute readers, will notice a small but significant inefficiency 

in how I program the logic for handling zero padding outside the edges of the prior 

layer. The row test can be done outside the column loop since its result will be the 

same for all columns! However, I deliberately did it this way here for clarity. It should 

be trivial for interested readers to fix this. It is also possible to limit the rectangle 

bounds in advance so that no test is necessary. But that complicates weight addressing 

a lot and likely would be no faster.

            for (in_slice=0; in_slice<in_slices; in_slice++) {

               for (in_row=rstart; in_row<=rstop; in_row++) {

                  for (in_col=cstart; in_col<=cstop; in_col++) {

                     // This logic is a bit inefficient

                     if  (in_row >= 0 && in_row < in_rows && in_col >= 0 && in_col < in_cols)

                        x = inptr[(in_slice*in_rows+in_row)*in_cols+in_col];

                     else                // We are outside the visual field, in the zero padded area

                        x = 0.0;

                     sum += x * *wtptr++;                  // Equation 1-1 on Page 3

                     } // For in_col

                  } // For in_row

               } // For in_slice
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            sum += *wtptr++;                                // Bias in Equation 1-1

            sum = exp (2.0 * sum);                       // Hyperbolic tangent activation function

            sum = (sum - 1.0) / (sum + 1.0);         // Equation 1-4 on Page 3

            outptr[k++] = sum;

            } // For iwidth

         } // For iheight

      } // For idepth

}

�Activating a Convolutional Layer
The code for activating a convolutional layer is almost identical to that for activating a 

locally connected layer. This is because the only difference between the two is that in a 

convolutional layer, for a given slice, all neurons in the visual field share the same set of 

weights. In a more general locally connected layer, the neurons all have their own weight sets.

For this reason, it’s a borderline waste of trees to reproduce the code here. Still, 

I think it’s instructive to compare them. I suggest that you flip pages back and forth, 

comparing the two algorithms. I’ll jump right in, stopping only to point out the salient 

differences.

First, let’s again consider how the weights that connect the prior layer to this 

convolutional layer are ordered. This is identical to the locally connected ordering, 

except that the height and width are omitted because the weights are the same for every 

neuron in the visual field.

Current layer depth

Prior layer depth

Prior layer height

Prior layer width

Bias

void Model::activity_conv_no_thr (int ilayer, double *input)

{

   int k, in_row, in_rows, in_col, in_cols, in_slice, in_slices, iheight, iwidth, idepth;

   int rstart, rstop, cstart, cstop;

   double sum, *wtptr, *inptr, *outptr, x;
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   if  (ilayer == 0) {

      in_rows = IMAGE_rows;

      in_cols = IMAGE_cols;

      in_slices = IMAGE_bands;

      inptr = input;

      }

   else {

      in_rows = height[ilayer-1];

      in_cols = width[ilayer-1];

      in_slices = depth[ilayer-1];

      inptr = activity[ilayer-1];

      }

Here’s the first difference. In the locally connected version, we initialized wtptr to 

the current layer’s weight vector here, and it was incremented throughout the following 

(idepth, iheight, iwidth) nested loops because every neuron in the current layer had its own 

set of weights. But in a convolutional layer, each slice has its own weight set, with all 

neurons in the visual field of that slice sharing the same weights.

   outptr = activity[ilayer];

   k = 0;          // Will index computed activations in outptr

   for (idepth=0; idepth<depth[ilayer]; idepth++) {

      for (iheight=0; iheight<height[ilayer]; iheight++) {

         for (iwidth=0; iwidth<width[ilayer]; iwidth++) {

            // Compute activation of  this layer’s neuron at (idepth, iheight, iwidth)

            // The weights for this layer are the same for all neurons in the layer’s visual field

            // but a different such set is used for each slice

Here’s the other difference, again having to do with the weights. Because every 

neuron in the visual field of a slice shares the same weight set, we must reset the weight 

pointer for each row and column. Past this point, everything is the same.

            wtptr = layer_weights[ilayer] + idepth * n_prior_weights[ilayer];

            sum = 0.0;

            // Center of  first filter is at HalfWidth-Pad; filter begins at -Pad.

            rstart = strideV[ilayer] * iheight - padV[ilayer];
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            rstop = rstart + 2 * HalfWidV[ilayer];

            cstart = strideH[ilayer] * iwidth - padH[ilayer];

            cstop = cstart + 2 * HalfWidH[ilayer];

               for (in_slice=0; in_slice<in_slices; in_slice++) {

                  for (in_row=rstart; in_row<=rstop; in_row++) {

                     for (in_col=cstart; in_col<=cstop; in_col++) {

                        // This logic is a bit inefficient; see the CUDA implementation for better

                        if  (in_row >= 0 && in_row < in_rows && in_col >= 0 && in_col < in_cols)

                           x = inptr[(in_slice*in_rows+in_row)*in_cols+in_col];

                        else

                           x = 0.0;

                        sum += x * *wtptr++;

                        } // For in_col

                     } // For in_row

                  } // For in_slice

               sum += *wtptr++;                           // Bias in Equation 1-1

               sum = exp (2.0 * sum);                  // Hyperbolic tangent activation function

               sum = (sum - 1.0) / (sum + 1.0);   // Equation 1-4 on Page 3

               outptr[k++] = sum;

               } // For iwidth

            } // For iheight

         } // For idepth

      }

�Activating a Pooling Layer
A pooling layer has no trainable weights. Like locally connected and convolutional 

layers, it moves a window across the prior layer to compute the activations of its neurons. 

However, the function that maps activations in a prior-layer window to a neuron in the 

current layer is fixed in advance. The sole purpose of a pooling layer is to efficiently 

reduce the visual-field resolution while preserving as much information as possible.
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This text presents the two most popular types of pooling layers: average and max. 

Others exist but are not yet in widespread use. As in the previous layer types, the input 

parameter is the model’s input image, used only in the rare circumstance that the first 

hidden layer is a pooling layer. The code starts just like that for earlier layers, gathering 

essential parameters and identifying the source of prior-layer activations.

void Model::activity_pool_no_thr (int ilayer, double *input)

{

   int k, in_row, in_rows, in_col, in_cols, in_slices, iheight, iwidth, idepth;

   int pwH, pwV, strH, strV, rstart, rstop, cstart, cstop;

   double value, *inptr, *outptr, x;

   pwH = PoolWidH[ilayer];              // Pooling width

   pwV = PoolWidV[ilayer];

   strH = strideH[ilayer];                   // Stride

   strV = strideV[ilayer];

   if  (ilayer == 0) {                            // This is the first hidden layer (rare for pooling)

      in_rows = IMAGE_rows;

      in_cols = IMAGE_cols;

      in_slices = IMAGE_bands;

      inptr = input;

      }

   else {

      in_rows = height[ilayer-1];

      in_cols = width[ilayer-1];

      in_slices = depth[ilayer-1];

      inptr = activity[ilayer-1];

      }

   outptr = activity[ilayer];                // Computed activations will go here

   k = 0;                                          // Will index computed activations in outptr

   for (idepth=0; idepth<depth[ilayer]; idepth++) { // Each prior-layer slice has slice here

      for (iheight=0; iheight<height[ilayer]; iheight++) {

         for (iwidth=0; iwidth<width[ilayer]; iwidth++) {
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            // Compute activation of  this layer’s neuron at (idepth, iheight, iwidth)

            // Pooling layers never have padding, so we do not have to worry about

            // logic for determining if  we are outside the prior layer’s visual field

            rstart = strV * iheight;

            rstop = rstart + pwV - 1;

            cstart = strH * iwidth;

            cstop = cstart + pwH - 1;

One type of pooling we can do is to simply take the average of the activations in the 

window. This was the original pooling, but it has fallen from favor recently.

            if  (layer_type[ilayer] == TYPE_POOLAVG) {

               value = 0.0;

               for (in_row=rstart; in_row<=rstop; in_row++) {

                  for (in_col=cstart; in_col<=cstop; in_col++)

                     value += inptr[(idepth*in_rows+in_row)*in_cols+in_col];

                  } // For in_row

               value /= pwV * pwH;

               }

The other type of pooling presented here is currently the most popular. We examine 

all prior-layer activations in the window and choose whichever is the largest. We also 

save in poolmax_id the position in the window of this maximum activation. This will prove 

handy later when we backpropagate delta.

            else if  (layer_type[ilayer] == TYPE_POOLMAX) {

               value = -1.e60;

               for (in_row=rstart; in_row<=rstop; in_row++) {

                  for (in_col=cstart; in_col<=cstop; in_col++) {

                     x = inptr[(idepth*in_rows+in_row)*in_cols+in_col];

                     if  (x > value) {

                        value = x;

                        poolmax_id[ilayer][k] = in_row * in_cols + in_col; // Save id of  max

                        }

                     } // For in_col

                  } // For in_row

               }
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            outptr[k++] = value;             // Save this activation

            } // For iwidth

         } // For iheight

      } // For idepth

}

�Evaluating the Criterion
As part of a training procedure, we regularly want to pass through the entire training set 

in order to evaluate the performance criterion for a trial set of model parameters. We 

will use Equation 1-11. Also, many developers want to impose a small weight penalty 

to discourage the training algorithm from producing “optimal” weights that are overly 

large. This is primarily because larger weights tend to create overfitting. Advanced 

training algorithms may want to evaluate over only part of the training set, which is why 

we have istart and istop parameters. Here is the code for computing the criterion:

double Model::trial_error_no_thr (int istart, int istop)

{

   int i, icase, imax, ilayer, ineuron, ivar, n_prior;

   double err, tot_err, *dptr, tmax, *wptr, wt, wpen;

   tot_err = 0.0; // Total error will be cumulated here

   for (icase=istart; icase<istop; icase++) {    // Do all cases requested by caller

      dptr = database + icase * n_db_cols;     // Point to this case

      trial_no_thr (dptr);

      err = 0.0;

      tmax = -1.e30;

      imax = 0;                                                 // Not needed; be clean

      for (i=0; i<n_classes; i++) {                     // The true class is that having max target

                                    // This is more general than using a single integer class id,

                                    // as it allows for probability-based class membership

         pred[icase*n_classes+i] = output[i];     // Save for other routines
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         if  (dptr[n_pred+i] > tmax) {

            imax = i;

            tmax = dptr[n_pred+i];

            }

         }

      err = -log (output[imax] + 1.e-30);         // Equation 1-11 on Page 17

      tot_err += err;

      } // for all cases

There are several things to note in the code just shown.

•	 We save the outputs for every case in pred. This is optional, but some 

specialized performance criteria routines (such as for computing 

a confusion matrix) may call this routine for the sole purpose of 

generating all predictions. If you don’t need them saved, don’t 

bother.

•	 For each case, we check all targets and find the one having 

largest value. This is the “true” class. All this checking, repeated 

every time this routine is called, is inefficient (although usually 

tiny compared to the time taken by the call to trial_no_thr()). I 

did it this way here to show exactly what’s going on and also to 

allow use of this routine in advanced situations in which true 

class probabilities may evolve. Most users would be best off 

precomputing the class membership, which in fact is what I do in 

the CUDA implementation presented later.

The last step is to implement the optional weight penalty. This is straightforward, but 

I’ll list it here just to reinforce the architecture of the model. The most important thing to 

note is that we do not include the bias in the weight penalty because forcing the bias to 

be small might prevent properly centering activations near zero. Some developers might 

want to include the bias.

   wpen = TrainParams.wpen / n_all_weights;            // Normalize to per-weight

   penalty = 0.0;

   for (ilayer=0; ilayer<=n_layers; ilayer++) {               // Do all hidden layers, plus output

      wptr = layer_weights[ilayer];

      n_prior = n_prior_weights[ilayer];                         // This is per neuron
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      if  (ilayer == n_layers) {                                         // Output layer

         for (ineuron=0; ineuron<n_classes; ineuron++) {

            for (ivar=0; ivar<n_prior-1; ivar++) {               // Do not include bias in penalty

               wt = wptr[ineuron*n_prior+ivar];

               penalty += wt * wt;                                       // Penalty is sum of  squares

               }

            }

         }

      else if  (layer_type[ilayer] == TYPE_FC) {               // Fully connected layer

         for (ineuron=0; ineuron<nhid[ilayer]; ineuron++) {

            for (ivar=0; ivar<n_prior-1; ivar++) {   // Do not include bias in penalty

               wt = wptr[ineuron*n_prior+ivar];

               penalty += wt * wt;

               }

            }

         }

      else if  (layer_type[ilayer] == TYPE_LOCAL) {        // Locally connected layer

         for (ineuron=0; ineuron<nhid[ilayer]; ineuron++) {

            for (ivar=0; ivar<n_prior-1; ivar++) { // Do not include bias in penalty

               wt = wptr[ineuron*n_prior+ivar];

               penalty += wt * wt;

               }

            }

         }

      else if  (layer_type[ilayer] == TYPE_CONV) {

         // For CONV layers, each depth has its own weight set,

         // but weights across visual field are identical

         for (ineuron=0; ineuron<depth[ilayer]; ineuron++) {

            for (ivar=0; ivar<n_prior-1; ivar++) {    // Do not include bias in penalty

               wt = wptr[ineuron*n_prior+ivar];

               penalty += wt * wt;

               }

            }

         }

      }
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   penalty *= wpen;

   return tot_err / ((istop - istart) * n_classes) + penalty;

}

Note that we divide the total log likelihood criterion by the number of cases and 

classes. This is not strictly necessary, but such normalization is nice, both for printing 

the criterion for users as well as putting it on par with any weight penalty.

�Evaluating the Gradient
Now would be a good time to flip back to page 21 and review the general description of 

gradient computation. We will refer to the numbered steps during this presentation of 

the code.

double Model::grad_no_thr (int istart, int istop)

{

   int i, j, icase, ilayer, nprev, imax, n_prior, ineuron, ivar;

   double *dptr, error, *prevact, *gradptr, delta, *nextcoefs, tmax, *wptr, *gptr, wt, wpen;

   for (i=0; i<n_all_weights; i++)       // Zero gradient for summing

      gradient[i] = 0.0;                         // All layers are strung together here

   error = 0.0;                                    // Will cumulate total error here for return to user

   for (icase=istart; icase<istop; icase++) {

      dptr = database + icase * n_db_cols;       // Point to this case

/*

   Cumulate error criterion

*/

      trial_no_thr (dptr);                   // Step 2: Compute all activations

      tmax = -1.e30;

      imax = 0;                                  // Not needed

      for (i=0; i<n_classes; i++) { // Find the true class as that having max target

                                      // This is more general than using a single integer class id,

                                      // as it allows for probability-based class membership
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         if  (dptr[n_pred+i] > tmax) {

            imax = i;

            tmax = dptr[n_pred+i];

            }

         // Delta is the (negative) deriv of  cross entropy wrt input (logit) i

         // We flip the sign because we are minimizing

         // This is Step 3, compute delta and put it in this_delta

         this_delta[i] = dptr[n_pred+i] - output[i];             // Equation 1-12 on Page 18

         }

      error -= log (output[imax] + 1.e-30);                      // Equation 1-11 on Page 17

/*

   Cumulate output gradient: Step 4

*/

      if  (n_layers == 0) {                                                // No hidden layer

         nprev = n_pred;                                                  // Number of  inputs to the output layer

         prevact = dptr;                                                     // Point to this sample

         }

      else {

         nprev = nhid[n_layers-1];                                   // The last hidden layer

         prevact = activity[n_layers-1];                            // Point to layer feeding the output layer

         }

      gradptr = layer_gradient[n_layers];                       // Point to output gradient

      for (i=0; i<n_classes; i++) {                                   // For all output neurons

         delta = this_delta[i];                                            // Neg deriv of  criterion wrt logit

         for (j=0; j<nprev; j++)

            *gradptr++ += delta * prevact[j];                      // Equation 1-14 on Page 19

         *gradptr++ += delta;                                           // Bias activation is always 1

         }

/*

   Cumulate hidden gradients.

   Each of  these calls also backprops delta from this_delta to prior_delta.

   This is why we also have a call to grad_no_thr_POOL, even though

   a pooled layer has no weights and hence no gradient.

   That call handles backpropping delta just like the other calls.

*/
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The following ilayer loop marks steps 5 and 6, which are more like bookkeeping steps 

than actual computation. The following calls to grad_no_thr_? implement steps 7 and 

9, and step 8 follows as the last item in the loop. The CUDA implementation follows the 

steps exactly, while the slight reordering here improves efficiency.

      for (ilayer=n_layers-1; ilayer>=0; ilayer--) { // For each hidden layer, backwards

         if  (layer_type[ilayer] == TYPE_FC)

            grad_no_thr_FC (icase, ilayer);                    // Step 7 and 9

         else if  (layer_type[ilayer] == TYPE_LOCAL)

            grad_no_thr_LOCAL (icase, ilayer);             // Step 7 and 9

         else if  (layer_type[ilayer] == TYPE_CONV)

            grad_no_thr_CONV (icase, ilayer);              // Step 7 and 9

         else if  (layer_type[ilayer] == TYPE_POOLAVG ||

                     layer_type[ilayer] == TYPE_POOLMAX)

            grad_no_thr_POOL (ilayer); // POOL has no weights, but this backprops delta

         for (i=0; i<nhid[ilayer]; i++)        // These will be delta for the next layer back

            this_delta[i] = prior_delta[i];   // Step 8

         } // For all layers, working backwards

      } // for all cases

   for (i=0; i<n_all_weights; i++)

      gradient[i] /= (istop - istart) * n_classes;

At the end of the code just shown, we divide the gradient sum by the number of cases 

and the number of classes. This is because we do the same for the performance criterion 

as a form of optional but nice normalization.

The last step is to compute the weight penalty. This was already discussed in the 

prior section, but here we have one additional task. Because the penalty is the sum of the 

square of each weight, the derivative is twice the value of the weight. Subtract that from 

the gradient.

   wpen = TrainParams.wpen / n_all_weights;

   penalty = 0.0;

   for (ilayer=0; ilayer<=n_layers; ilayer++) { // Do all hidden layers, plus final
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      wptr = layer_weights[ilayer];

      gptr = layer_gradient[ilayer];

      n_prior = n_prior_weights[ilayer];

      if  (ilayer == n_layers) {                                          // Output layer

         for (ineuron=0; ineuron<n_classes; ineuron++) {

            for (ivar=0; ivar<n_prior-1; ivar++) {   // Do not include bias in penalty

               wt = wptr[ineuron*n_prior+ivar];

               penalty += wt * wt;

               gptr[ineuron*n_prior+ivar] -= 2.0 * wpen * wt;

               }

            }

         }

      else if  (layer_type[ilayer] == TYPE_FC) {               // Fully connected layer

         for (ineuron=0; ineuron<nhid[ilayer]; ineuron++) {

            for (ivar=0; ivar<n_prior-1; ivar++) {   // Do not include bias in penalty

               wt = wptr[ineuron*n_prior+ivar];

               penalty += wt * wt;

               gptr[ineuron*n_prior+ivar] -= 2.0 * wpen * wt;

               }

            }

         }

      else if  (layer_type[ilayer] == TYPE_LOCAL) {        // Locally connected layer

         for (ineuron=0; ineuron<nhid[ilayer]; ineuron++) {

            for (ivar=0; ivar<n_prior-1; ivar++) {    // Do not include bias in penalty

               wt = wptr[ineuron*n_prior+ivar];

               penalty += wt * wt;

               gptr[ineuron*n_prior+ivar] -= 2.0 * wpen * wt;

               }

            }

         }

      else if  (layer_type[ilayer] == TYPE_CONV) {          // Convolutional layer

         // For CONV layers, weights across visual field are identical for each slice

         for (ineuron=0; ineuron<depth[ilayer]; ineuron++) {

            for (ivar=0; ivar<n_prior-1; ivar++) { // Do not include bias in penalty

               wt = wptr[ineuron*n_prior+ivar];
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               penalty += wt * wt;

               gptr[ineuron*n_prior+ivar] -= 2.0 * wpen * wt;

               }

            }

         }

      }

   penalty *= wpen;

   return error / ((istop - istart) * n_classes) + penalty; // Negative log likelihood

}

�Gradient for a Fully Connected Layer
A fully connected layer has the easiest gradient calculation algorithm because one does 

not need to worry about moving a window around the prior layer. Every neuron in the 

prior layer connects to every neuron in the current layer.

In the following code, note that database and n_db_cols are global.

void Model::grad_no_thr_FC (int icase, int ilayer)

{

   int i, j, nthis, nnext;

   double *gradptr, delta, *prevact, *nextcoefs;

   nthis = nhid[ilayer];           // N of  neurons in this hidden layer (height * width * depth)

   if  (ilayer == n_layers-1)   // Next layer is output layer?

      nnext = n_classes;       // Number of  neurons in next layer

   else                                  // Next layer is another hidden layer

      nnext = nhid[ilayer+1];

   if  (ilayer == 0)                   // First hidden layer?

      prevact = database + icase * n_db_cols; // Point to this sample

   else                                  // There is at least one more hidden layer prior to this one

      prevact = activity[ilayer-1];

   gradptr = layer_gradient[ilayer];        // Point to grad for this layer; will put results here

   nextcoefs = layer_weights[ilayer+1]; // Weights for the next layer are here
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All of these gradient routines (but not the CUDA versions) implement steps 7 

(backpropping delta) and then step 9 (gradient computation), letting the caller do 

step 8 (copy prior_delta to this_delta) later. Each of the nthis hidden neurons in this layer is 

processed individually. Within this loop, the first step is to see whether the next layer 

is a fully connected layer. Recall that the output layer is always fully connected. If fully 

connected, then the summation in Equation 1-19 is trivial. We just sum delta over the 

nnext neurons in the next layer.

      for (i=0; i<nthis; i++) {      // For each neuron in this layer

         if  (ilayer+1 == n_layers || layer_type[ilayer+1] == TYPE_FC) { // Simple; just sum

            delta = 0.0;

            for (j=0; j<nnext; j++)

               delta += this_delta[j] * nextcoefs[j*(nthis+1)+i]; // The +1 is for the bias term

            }

But if the next layer is anything other than fully connected, backpropagating delta is 

a lot more complicated than just summing all connections; we have a moving window 

to deal with. So, we call a subroutine to do it. We have two such routines, one for locally 

connected and convolutional layers (nonpooled) and one for pooled layers. These two 

subroutines compute all deltas simultaneously. Thus, we call them for only the first pass 

through the neuron loop, i=0. For subsequent neurons, we just fetch delta from the array 

that was computed for the first neuron.

         else if  (i == 0) {  // Will compute all deltas at once

            if  (layer_type[ilayer+1] == TYPE_LOCAL || layer_type[ilayer+1] == TYPE_CONV)

               compute_nonpooled_delta (ilayer);

            else if  (layer_type[ilayer+1] == TYPE_POOLAVG ||

                        layer_type[ilayer+1] == TYPE_POOLMAX)

               compute_pooled_delta (ilayer);

            delta = prior_delta[i];

            }

         else                                           // We’re past the first neuron

            delta = prior_delta[i];              // Delta is already computed (just above) and saved

We still have to multiply the sum by the derivative of the activation function 

(Equation 1-15) to complete Equation 1-19. We do that and save the result in prior_delta.

         delta *= 1.0 - activity[ilayer][i] * activity[ilayer][i];    // Eq (1.15) finishes Eq (1.19)

         prior_delta[i] = delta;                                             // Save it for the next layer back
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Finally, compute the gradient using Equation 1-20.

      for (j=0; j<n_prior_weights[ilayer]-1; j++)          // Don’t include bias yet

         *gradptr++ += delta * prevact[j];                     // Equation 1-20 on Page 21

      *gradptr++ += delta;                                          // Bias activation is always 1

      } // For all neurons in this hidden layer

}

�Gradient for a Locally Connected Layer
In terms of what we are actually doing, computation of the gradient of a locally 

connected layer is the same as for a fully connected layer. The hitch is that for a locally 

connected layer, most of the connections from the prior layer to the current layer are 

zero; only the weights in each window are nonzero. It is vital that we have an efficient 

way to process only the nonzero weights.

Much of this code is similar to that in the prior section, so explanations of those parts 

will be omitted. The only early difference is that we now need the dimensions of the 

prior layer.

void Model::grad_no_thr_LOCAL (int icase, int ilayer)

{

   int j, k, nthis, nnext, idepth, iheight, iwidth;

   int in_row, in_col, in_slice, in_rows, in_cols, in_slices;

   int rstart, rstop, cstart, cstop;

   double *gradptr, delta, *prevact, *nextcoefs, x;

   nthis = nhid[ilayer];          // N of  neurons in this hidden layer (height * width * depth)

   if  (ilayer == n_layers-1)   // Next layer is output layer?

      nnext = n_classes;

   else

      nnext = nhid[ilayer+1];

   if  (ilayer == 0) {

      prevact = database + icase * n_db_cols;            // Point to this case

      in_rows = IMAGE_rows;                                      // These, too, are global

      in_cols = IMAGE_cols;

      in_slices = IMAGE_bands;

      }
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   else {

      prevact = activity[ilayer-1];

      in_rows = height[ilayer-1];

      in_cols = width[ilayer-1];

      in_slices = depth[ilayer-1];

      }

   gradptr = layer_gradient[ilayer];                          // Point to gradient for this layer

   nextcoefs = layer_weights[ilayer+1];                   // Weights for next layer

For the fully connected layer discussed in the prior section, we looped over all 

neurons in the current layer. We do the same here, except that now we must break it into 

each dimension separately.

   k = 0; // This will index the nhid[ilayer] neurons in this layer

   for (idepth=0; idepth<depth[ilayer]; idepth++) {

      for (iheight=0; iheight<height[ilayer]; iheight++) {

         for (iwidth=0; iwidth<width[ilayer]; iwidth++) {

            //-------------------------------------------------------------------------------------------

            // We are now inside the three nested loops that cover all nhid[ilayer]

            // neurons in this layer. Compute delta for this neuron by summing

            // across all connections to the next layer.

            //-------------------------------------------------------------------------------------------

Exactly as in the fully connected case, we do simple summation across all neurons in 

the next layer. But for locally connected and convolutional next layers, we must call the 

specialized subroutine that computes all deltas.

            if  (ilayer+1 == n_layers || layer_type[ilayer+1] == TYPE_FC) { // Simple case

               delta = 0.0;

               for (j=0; j<nnext; j++)

                  delta += this_delta[j] * nextcoefs[j*(nthis+1)+k];

               }
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            else if  (idepth == 0 && iheight == 0 && iwidth == 0) { // Will compute all deltas

               if  (layer_type[ilayer+1] == TYPE_LOCAL ||

                    layer_type[ilayer+1] == TYPE_CONV)

                  compute_nonpooled_delta (ilayer);

               else if  (layer_type[ilayer+1] == TYPE_POOLAVG ||

                           layer_type[ilayer+1] == TYPE_POOLMAX)

                  compute_pooled_delta (ilayer);

               delta = prior_delta[k];

               }

            else

               delta = prior_delta[k]; // It’s already computed (just above) and saved

               // At this point, delta for this layer’s hidden neuron k at (idepth, iheight, iwidth)

               // is the derivative of  the criterion wrt the output of  this hidden neuron.

               // To make it be wrt the input to this neuron, multiply by the derivative

               // of  the activation function.

               // Note that this multiplication takes place only once for each neuron k.

               delta *= 1.0 - activity[ilayer][k] * activity[ilayer][k]; // Eq (1.15) finishes Eq (1.19)

               prior_delta[k] = delta; // Save it for the next layer back

                                        // Delta is now the derivative of  the crit wrt net input to neuron k

To get the gradient, we use Equation 1-20. The method for computing the location 

of the current neuron’s rectangle in the prior layer is exactly as described in the section 

on computing activation of this neuron, page 31, so it won’t be repeated here. While 

you’re in that section, please review the order of neurons in a layer and the layout of the 

gradient vector.

Also, this code uses the same inefficient but clear logic of needlessly checking the 

row bounds for every column. The extra time is a tiny fraction of the total time, but many 

readers will want to fix it. Note that the CUDA code presented later does it efficiently.

               //----------------------------------------------------------------------------------

               // To get the derivative of  the criterion with respect to the

               // n_prior_weights coming into this neuron, multiply delta

               // by the corresponding input to the weight.

               //----------------------------------------------------------------------------------
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               // Center of  first filter is at HalfWidth-Pad; filter begins at -Pad.

               rstart = strideV[ilayer] * iheight - padV[ilayer];

               rstop = rstart + 2 * HalfWidV[ilayer];

               cstart = strideH[ilayer] * iwidth - padH[ilayer];

               cstop = cstart + 2 * HalfWidH[ilayer];

            for (in_slice=0; in_slice<in_slices; in_slice++) {

               for (in_row=rstart; in_row<=rstop; in_row++) {

                  for (in_col=cstart; in_col<=cstop; in_col++) {

                     // This logic is a bit inefficient

                     if  (in_row >= 0 && in_row < in_rows && in_col >= 0 && in_col < in_cols)

                        x = prevact[(in_slice*in_rows+in_row)*in_cols+in_col];

                     else

                        x = 0.0;

                     *gradptr++ += delta * x;

                     } // For every column in the prior layer

                  } // For every row in the prior layer

               } // For every slice in the prior layer

            *gradptr++ += delta; // Bias activation is always 1

            ++k;

            } // For width dimension in this hidden layer

         } // For height dimension in this hidden layer

      } // For depth dimension in this hidden layer

}

�Gradient for a Convolutional Layer
The code for computing the gradient for a convolutional layer is almost exactly the same as 

the code for a locally connected layer. The only difference is that a locally connected layer 

has a separate weight set for every hidden neuron, so gradptr is set at the start of processing 

and incremented throughout. However, a convolutional layer uses the same weight set for 

all neurons in the visual field of a given slice. Thus, we reset gradptr according to the current 

slice every time we begin processing a new neuron in the visual field. Here is this change, 

shown in context. All other code is the same for both layer types and hence omitted here.
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               delta *= 1.0 - activity[ilayer][k] * activity[ilayer][k];   // Eq (1.15) finishes Eq (1.19)

               prior_delta[k] = delta;    // Save it for the next layer back

                                        // Delta is the derivative of  the crit wrt net input to neuron k

               //----------------------------------------------------------------------------------

               // To get the derivative of  the criterion with respect to the

               // n_prior_weights coming into this neuron, multiply delta

               // by the corresponding input to the weight.

               //----------------------------------------------------------------------------------

               // Weights for this layer are the same for all neurons in the visible field

               // But a different set is used for each slice in this layer

               // The line below is the only difference between this code and that

               // for a locally connected layer.

               gradptr = layer_gradient[ilayer] + idepth * n_prior_weights[ilayer];

               // Center of  first filter is at HalfWidth-Pad; filter begins at -Pad.

               rstart = strideV[ilayer] * iheight - padV[ilayer];

               rstop = rstart + 2 * HalfWidV[ilayer];

               cstart = strideH[ilayer] * iwidth - padH[ilayer];

               cstop = cstart + 2 * HalfWidH[ilayer];

�Gradient for a Pooled Layer (Not!)
In the section on general gradient computation (page 42) you may have noticed a call to 

subroutine grad_no_thr_POOL(). On the surface, this seems rather silly, as a pooled layer is a 

fixed function, and hence it has neither trainable weights nor a gradient. It is, nevertheless, a 

functional layer and hence plays a role in both forward activation and delta backpropagation. 

The set of specialized routines presented in the past few sections all perform two duties: they 

backpropagate delta, and they compute the gradient. To preserve the structure, I included 

grad_no_thr_POOL(), which has the single duty of handling backpropagation.

There is no point in showing the code for this routine here. It is, in essence, the 

first part of the two prior routines that handle locally connected and convolutional 

layers. This code just organizes the backpropagation as shows earlier and stops before 

computing the nonexistent gradient. Naturally, this code can be found in the source files 

able to be downloaded from my web site.

Chapter 2  Programming Algorithms



53

�Backpropagating Delta from a Nonpooled Layer
The specialized gradient routines shown in the previous few sections directly 

backpropagate delta in the simple case that the next layer is fully connected. However, 

other layer types call a specialized backpropagation routine. The one that handles locally 

connected and convolutional layers is presented in this section.

A potentially confusing reversal of loop nesting happens in this algorithm. Look 

back at Equation 1-19, and review the discussion of backpropagation that precedes this 

equation if necessary. For a given neuron in the current layer, the summation is over 

connections to the next layer. However, as should be clear by now from the sections on 

activation and gradient computation, connections are defined between a neuron and its 

associated rectangle in the prior layer. For a given neuron, it’s easy to define the neurons 

in the prior layer to which it connects. On the other hand, it can be quite difficult to 

define, and inefficient to compute, the connections from a given layer to the next layer. 

Unfortunately, this is precisely what a superficial implementation of Equation 1-19 

requires.

To circumvent this problem, we reverse the order of summation in this equation, 

which implies that we must compute all deltas simultaneously. In other words, we zero 

all deltas before beginning. Then we have an outer set of loops over neurons in the next 

layer, and an inner set of loops over neurons in the current layer. As each connection is 

processed, update the associated delta. Thus, the summation of Equation 1-19 is split 

into many parts, cumulated in widely separated passes. Ideally, this will become clearer 

after studying the code.

void Model::compute_nonpooled_delta (int ilayer)

{

   int i, next_row, next_col, next_slice, next_rows, next_cols, next_slices;

   int this_slices, this_rows, this_cols, idepth, iheight, iwidth;

   int hwH, nH, hwV, nV, pdH, pdV, rstart, rstop, cstart, cstop, strH, strV, k_this, k_next;

   double *wtptr;

   for (i=0; i<nhid[ilayer]; i++)         // Zero all deltas before beginning

      prior_delta[i] = 0.0;

   hwH = HalfWidH[ilayer+1];         // Filter half-width in next layer

   nH = 2 * hwH + 1;                      // And its number of  columns

   hwV = HalfWidV[ilayer+1];         // Ditto for rows
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   nV = 2 * hwV + 1;

   strH = strideH[ilayer+1];

   strV = strideV[ilayer+1];

   pdH = padH[ilayer+1];

   pdV = padV[ilayer+1];

   this_rows = height[ilayer];

   this_cols = width[ilayer];

   this_slices = depth[ilayer];

   next_rows = height[ilayer+1];

   next_cols = width[ilayer+1];

   next_slices = depth[ilayer+1];

/*

   Loop through every possible connection from a neuron in ilayer

   to a neuron in the next layer. This is a loop reversal from Equation 1-19.

   In that equation, we pick a neuron in the current layer and loop over

   connections to the next layer. But here we pick a neuron in the next layer

   and loop over the current layer (which the next layer’s prior layer).

*/

   k_next= 0; // Will index every neuron in the next layer

   for (next_slice=0; next_slice<next_slices; next_slice++) {

      for (next_row=0; next_row<next_rows; next_row++) {

         for (next_col=0; next_col<next_cols; next_col++) {

We now point to the weights connecting this “next” layer to its “prior” layer, which 

we might call the current layer. A convolutional layer has the same weight set for all 

neurons in the visual field of a given slice, while a locally connected layer has different 

weights for each neuron.

            if  (layer_type[ilayer+1] == TYPE_CONV)

               wtptr = layer_weights[ilayer+1] + next_slice * n_prior_weights[ilayer+1];

            else if  (layer_type[ilayer+1] == TYPE_LOCAL)

               wtptr = layer_weights[ilayer+1] + k_next * n_prior_weights[ilayer+1];

            else

               wtptr = NULL;    // Not needed. Shuts up picky compilers.
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Here we have the old, familiar bounding rectangle. We also have the same inefficient 

but clear excessive row checking, which picky readers will revise. Again, the CUDA 

implementation does it better.

            // Center of  first filter is at HalfWidth-Pad; filter begins at -Pad.

            rstart = strV * next_row - pdV;

            rstop = rstart + 2 * hwV;

            cstart = strH * next_col - pdH;

            cstop = cstart + 2 * hwH;

            for (idepth=0; idepth<this_slices; idepth++) {

               for (iheight=rstart; iheight<=rstop; iheight++) {

                  for (iwidth=cstart; iwidth<=cstop; iwidth++) {

                     if  (iheight >= 0 && iheight < this_rows &&

                          iwidth >= 0 && iwidth < this_cols) {

                        k_this = (idepth * this_rows + iheight) * this_cols + iwidth;

                        prior_delta[k_this] += this_delta[k_next] * *wtptr++;

                        }

                     else

                        ++wtptr;

                     } // For iwidth

                  } // For iheight

               } // For idepth

            ++k_next;

            } // For next_col

         } // For next_row

      } // For next_slice

}

Ideally, the concept of loop reversal is clear now. Instead of picking one neuron 

at a time and summing Equation 1-19 over the next layer, we pick from the next layer 

one term of a sum at a time and compute (k_this) the particular sum to which this term 

belongs. This method is much more efficient than naive computation of each sum, 

which requires complex logic.
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�Backpropagating Delta from a Pooled Layer
When we backpropagate delta from a pooled layer, we do the same loop reversal that 

we did for a nonpooled layer. In fact, the algorithm here is similar to the algorithm 

presented in the prior section. It’s somewhat easier, though, because pooled layers 

are never padded (at least not by me), which means we do not have to check for the 

rectangle extending over the edge of the prior layer’s visual field. We begin by zeroing all 

deltas and then fetching some constants that will be referenced often later.

void Model::compute_pooled_delta (int ilayer)

{

   int i, pwH, pwV, next_row, next_col, next_slice, next_rows, next_cols, next_slices;

   int this_slices, this_rows, this_cols, iheight, iwidth;

   int rstart, rstop, cstart, cstop, strH, strV, k_this, k_next;

   double wt;

   for (i=0; i<nhid[ilayer]; i++)

      prior_delta[i] = 0.0;

   pwH = PoolWidH[ilayer+1]; // Pooling filter width in next layer

   pwV = PoolWidV[ilayer+1];

   strH = strideH[ilayer+1];

   strV = strideV[ilayer+1];

   this_rows = height[ilayer];

   this_cols = width[ilayer];

   this_slices = depth[ilayer];

   next_rows = height[ilayer+1];

   next_cols = width[ilayer+1];

   next_slices = depth[ilayer+1];

As we did in the prior section, the outer loop here is what would be the inner loop in 

Equation 1-19. The counter k_next indexes neurons (and hence this_delta) in the next layer.

   k_next= 0; // Will index every neuron in the next layer

   for (next_slice=0; next_slice<next_slices; next_slice++) {

      for (next_row=0; next_row<next_rows; next_row++) {

         for (next_col=0; next_col<next_cols; next_col++) {
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If this pooled layer is the “average” type, we find the bounding rectangle and process 

every connection in it. Note that the bounding rectangle here is considerably simpler 

than the bounding rectangle for locally connected and convolutional layers. This is 

because there is no padding. We also compute wt, the effective weight that went into 

computing the activation. Recall that when we computed the pooled average, we just 

divided the sum by the number of neurons going into the sum.

Also note that wt is a constant. I put the multiplication where it is most clear. 

However, it is somewhat inefficient to do all that multiplication deep inside a bunch of 

nested loops. Many readers will want to remove that multiplication from where it is and 

then just do it to each prior_delta at the end, outside all loops.

            if  (layer_type[ilayer+1] == TYPE_POOLAVG){

               wt = 1.0 / (pwH * pwV);

               rstart = strV * next_row;

               rstop = rstart + pwV - 1;

               cstart = strH * next_col;

               cstop = cstart + pwH - 1;

               for (iheight=rstart; iheight<=rstop; iheight++) {

                  for (iwidth=cstart; iwidth<=cstop; iwidth++) {

                     k_this = (next_slice * this_rows + iheight) * this_cols + iwidth;

                     prior_delta[k_this] += this_delta[k_next] * wt;

                     } // For iwidth

                  } // For iheight

               } // If  POOLAVG

Now we look at max pooling. In this type of pooling, we check each prior-layer 

neuron in the window and choose the one having maximum activation. This was 

discussed in the section that begins on page 36. The activation function saved the index 

of this winning neuron. We now decode this saved identity, getting the row as iheight and 

the column as iwidth. The “weight” of this connection is 1.0 because it is an exact copy. 

The weight of all other neurons in the rectangle is zero.

            else if  (layer_type[ilayer+1] == TYPE_POOLMAX) {

               iheight = poolmax_id[ilayer+1][k_next] / this_cols;

               iwidth = poolmax_id[ilayer+1][k_next] % this_cols;

               k_this = (next_slice * this_rows + iheight) * this_cols + iwidth;

               prior_delta[k_this] += this_delta[k_next]; // Weight is 1

               }
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            ++k_next;

            } // For next_col

         } // For next_row

      } // For next_slice

}

�Multithreading Gradient Computation
The source code that can be downloaded from my web site includes threaded versions of 

both criterion and gradient computation; these are in file MOD_THR.CPP. However, the 

criterion algorithm is just a subset of the gradient algorithm, so we will present only the 

gradient version here.

One thing that makes multithreaded computation a bit more difficult than single-

thread code is that when a threaded routine is launched, you can pass only one 

parameter to the routine. So, you’d better make it a good one. The usual method is to 

define a data structure that contains everything the routine needs, put everything into 

that structure, and then pass a pointer to it as the sole legal argument.

Although it is possible to run class member functions in threaded mode, this is 

fraught with a wide assortment of gotchas. So I always prefer to take the old but safer 

route of making every function stand-alone, with all required parameters passed in a 

long parameter list. It’s ugly, but you are a lot less likely to be stuck with a bizarre runtime 

error that can be horrendous to debug.

Here is the data structure that encapsulates everything that gradient computation 

needs. I made sure to give them names identical to Model class names as much as 

possible to reduce confusion.

typedef  struct {

   int istart;                         // Index of  first case in batch

   int istop;                         // And one past last case

   int n_all_weights;           // Includes bias and final layer weights

   double *gradient;            // ‘n_all_weights’ gradient; aligned with weights

   int n_layers;                   // N of  hidden layers; does not include input or output layer

   int *layer_type;                // Type of  each layer

   double *output;               // Put the computed outputs here

   double **activity;            // Activity vector for each layer; used only when ilayer>0
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   int *HalfWidH;                 // Horizontal half  width looking back to prior layer

   int *HalfWidV;                  // And vertical

   int *padH;                        // Horizontal padding; must not exceed half  width

   int *padV;                        // And vertical

   int *strideH;                     // Horizontal stride

   int *strideV;                     // And vertical

   int *PoolWidH;                // Horizontal half  width looking back to prior layer

   int *PoolWidV;                 // And vertical

   double **layer_weights;  // Pointers to each layer’s weights in ‘weight’ vector

   double **layer_gradient; // Pointers to each layer’s gradient in ‘gradient’ vector

   int *height;                       // N of  neurons vertically in a slice of  this layer

   int *width;                        // Ditto horizontal

   int *depth;                       // Number of  slices in this layer

   int *nhid;                          // Total number of  neurons in this layer = H * W * D

   double *this_delta;          // Scratch vector for gradient computation

   double *prior_delta;        // Ditto

   int **poolmax_id;            // Used only for POOLMAX layer; saves ID of  max

   int *n_prior_weights;      // N of  inputs per neuron (including bias) to prior layer

   double error;                   // performance criterion is returned here

} GRAD_PARAMS;

After the members of this data structure have been filled in, a thread runs the routine 

shown next. Most of the interior of the parameter list is omitted for clarity. Note that this 

routine has a single parameter, dp, and it calls the real worker, batch_grad(). This latter 

routine is essentially identical to the grad_no_thr() routine presented on page 42. The only 

difference is that this routine cannot reference any model variables. Instead, everything 

must be passed to it in the long parameter list. (Well, it does reference several read-only 

globals, such as the database. See MOD_THR.CPP for details. It’s straightforward, I 

promise.)

static unsigned int __stdcall batch_grad_wrapper (LPVOID dp)

{

((GRAD_PARAMS *) dp)->error = batch_grad (

   ((GRAD_PARAMS *) dp)->istart,

   ((GRAD_PARAMS *) dp)->istop,

   ((GRAD_PARAMS *) dp)->n_all_weights,

   ...
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   ((GRAD_PARAMS *) dp)->poolmax_id,

   ((GRAD_PARAMS *) dp)->n_prior_weights);

   return 0;

}

This brings us to the nuts-and-bolts part of this multithreading presentation. Here 

is the Model member function that computes the gradient by running multiple threads 

simultaneously. The first step is to fill in the data structure as much as we can right now.

double Model::grad_thr (int jstart, int jstop)

{

   int i, nc, ret_val, ithread, n_threads, n_in_batch, n_done, istart, istop;

   int ilayer, ineuron, ivar, n_prior;

   double error, wpen, wt, *wptr, *gptr;

   GRAD_PARAMS params[MAX_THREADS];

   HANDLE threads[MAX_THREADS];

   nc = jstop - jstart;                        // Number of  cases

   for (i=0; i<max_threads; i++) {    // max_threads may be up to MAX_THREADS

      params[i].n_all_weights = n_all_weights;

      params[i].gradient = thr_gradient[i]; // Each is allocated n_all_weights long

      params[i].n_layers = n_layers;

      params[i].layer_type = layer_type;

      params[i].output = thr_output + i * n_classes; // Allocated n_classes*max_threads

      params[i].activity = thr_activity[i]; // See Page 63 for allocation

      params[i].HalfWidH = HalfWidH;

      params[i].HalfWidV = HalfWidV;

      params[i].padH = padH;

      params[i].padV = padV;

      params[i].strideH = strideH;

      params[i].strideV = strideV;

      params[i].PoolWidH = PoolWidH;

      params[i].PoolWidV = PoolWidV;

      params[i].layer_weights = layer_weights;

      params[i].layer_gradient = thr_layer_gradient[i];      // See Page 63 for allocation

      params[i].height = height;

      params[i].width = width;
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      params[i].depth = depth;

      params[i].nhid = nhid;

      params[i].this_delta=thr_this_delta+i*max_any_layer; //max_any_layer*max_threads

      params[i].prior_delta = thr_prior_delta + i * max_any_layer; // Ditto

      params[i].poolmax_id = thr_poolmax_id[i]; // See Page 63 for allocation

      params[i].n_prior_weights = n_prior_weights;

      }

Several of the parameters that go into the data structure are somewhat complicated 

because they are work areas that must not be shared among threads; each thread needs 

its own private copy so that they do not interfere with one another. These allocations are 

shown in the section that begins on page 63.

We will split up the training set into subsets that will be processed simultaneously 

by multiple threads. Launching a thread involves significant overhead, so we use an 

arbitrary rule (feel free to change it) to set the number of threads.

   n_threads = nc / 100;                     // This is the number of  threads that we will launch

   if  (n_threads < 1)                           // Division by 100 is arbitrary; change 100 at will

      n_threads = 1;

   if  (n_threads > max_threads)

      n_threads = max_threads;

   istart = jstart;                                  // Batch start = training data start

   n_done = 0;                                    // Number of  training cases done so far

This is the loop that launches all threads simultaneously. We use istart and istop to 

delineate the bounds of the subset being launched. The size of each launch (n_in_batch) 

is the number of training set cases left to do, divided by the number of threads left to 

process batches.

   for (ithread=0; ithread<n_threads; ithread++) {

      n_in_batch = (nc - n_done) / (n_threads - ithread); // Cases left / batches left

      istop = istart + n_in_batch;                                       // Stop just before this index

      // Set the pointers that vary with the batch

      params[ithread].istart = istart;    // The ithread batch will process this range of  cases

      params[ithread].istop = istop;
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      // This is the Windows API call that launches the thread

      threads[ithread] = (HANDLE) _beginthreadex (NULL, 0, batch_grad_wrapper,

                                                                                &params[ithread], 0, NULL);

It would be extremely unusual for the launch to fail, but a responsible programmer 

handles this possibility.

      if  (threads[ithread] == NULL) {

         // Post an error message here

         for (i=0; i<n_threads; i++) {

            if  (threads[i] != NULL)

               CloseHandle (threads[i]);             // Clean up after yourself

            }

         return -1.e40;                                     // Return an error flag to the caller

         }

      n_done += n_in_batch;                         // Update number of  cases running

      istart = istop;                                         // Advance to the next batch

      } // For all threads / batches

The threads are running. Now we sit right here and wait until they are all finished. 

The time parameter, 1200000, is arbitrary but must be large enough to handle huge 

problems yet small enough that users don’t give up and reboot. As in the launch, failure 

here is highly unlikely, but we must prepare for it.

   ret_val = WaitForMultipleObjects (n_threads, threads, TRUE, 1200000);

   if  (ret_val == WAIT_TIMEOUT || ret_val == WAIT_FAILED ||

       ret_val < 0 || ret_val >= n_threads) {

      // Issue a general error message here

      if  (ret_val == WAIT_TIMEOUT)

         // A ‘problem too large’ message may be appropriate here

      return -1.e40;             // Return an error flag to the caller

      }

All computation is done, and the results are in private areas of each thread. We will 

cumulate these results, so zero the sums here.
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   error = 0.0;                                // Cumulates performance criterion

   for (i=0; i<n_all_weights; i++)    // Zero gradient for summing

      gradient[i] = 0.0;                     // All layers are strung together here

Here is where we add up the performance criterion and gradient for all threads 

and store them in the Model variables. As each thread’s results are fetched, we close 

the thread. Finally, we normalize the gradient by dividing by the number of cases and 

classes. We will do this same division to the criterion at the end, when we return.

   for (ithread=0; ithread<n_threads; ithread++) {

      error += params[ithread].error;

      for (i=0; i<n_all_weights; i++)

         gradient[i] += params[ithread].gradient[i];

      CloseHandle (threads[ithread]);

      }

   for (i=0; i<n_all_weights; i++)

      gradient[i] /= nc * n_classes;

The last step is to handle the weight penalty. We won’t bother showing this long 

stretch of code because we already saw it in conjunction with the nonthreaded criterion 

code. That section begins on page 39.

   wpen = TrainParams.wpen / n_all_weights;

   penalty = 0.0;

   for (ilayer=0; ilayer<=n_layers; ilayer++) { // Do all hidden layers, plus final

      ...

      }

   return error / (nc * n_classes) + penalty; // Negative log likelihood

}

�Memory Allocation for Threading
As we saw a few pages back, the first thing done in the multithreaded version of gradient 

computation is to fill in the data structure that is passed to threads. Several of these 

entries are for work areas that must be private to each thread. Allocating some of them 

can be tricky, so this section will present code fragments that illustrate how to do this.
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Here are the Model declarations of the four items discussed now:

   double *thr_activity[MAX_THREADS][MAX_LAYERS];

   int *thr_poolmax_id[MAX_THREADS][MAX_LAYERS];

   double *thr_gradient[MAX_THREADS];

   double *thr_layer_gradient[MAX_THREADS][MAX_LAYERS+1];

The two-dimensional arrays thr_activity and thr_poolmax_id are, for each value of the 

first dimension, exact analogs of the activity and poolmax_id member variables of the Model 

class. Every thread needs its own private copy, so this accounts for the first dimension. 

To implement this, we start by doing the master allocation and then split it up among the 

threads.

   for (ilayer=0; ilayer<n_layers; ilayer++) {

      thr_activity[0][ilayer] = (double *) malloc (max_threads * nhid[ilayer] * sizeof(double));

      if  (layer_type[ilayer] == TYPE_POOLMAX)

         thr_poolmax_id[0][ilayer] = (int *) malloc (max_threads * nhid[ilayer] * sizeof(int));

      for (i=1; i<max_threads; i++) {

         thr_activity[i][ilayer] = thr_activity[0][ilayer] + i * nhid[ilayer];

         if  (layer_type[ilayer] == TYPE_POOLMAX)

            thr_poolmax_id[i][ilayer] = thr_poolmax_id[0][ilayer] + i * nhid[ilayer];

         }

      }

Because for each thread the gradient for all layers needs to be contiguous, we do 

things a little differently. We allocate the full gradient for each thread and then compute 

the position of each layer’s gradient in this grand vector.

   thr_gradient[0] = (double *) malloc (n_all_weights * max_threads * sizeof(double));

   for (i=0; i<max_threads; i++) {

      k = 0;

      gptr = thr_gradient[0] + i * n_all_weights; // Gradient for this thread starts here

      thr_gradient[i] = gptr;

      for (ilayer=0;; ilayer++) {            // For each of  the hidden layers, plus the final

         thr_layer_gradient[i][ilayer] = gptr + k;

         if  (ilayer >= n_layers)             // Are we done?

            break;
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         if  (layer_type[ilayer] == TYPE_FC || layer_type[ilayer] == TYPE_LOCAL)

            k += nhid[ilayer] * n_prior_weights[ilayer]; // Add in weights for this layer

         else if  (layer_type[ilayer] == TYPE_CONV)

            k += depth[ilayer] * n_prior_weights[ilayer]; // Convolution uses same per slice

         else if  (layer_type[i] == TYPE_POOLAVG || layer_type[i] == TYPE_POOLMAX)

            k += 0;                                   // Just for clarity; pooling has no trainable weights

         } // For ilayer

      } // For i (thread)
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CHAPTER 3

CUDA Code
The source code for the CUDA implementation of convolutional nets is in two files, both 

of which can be downloaded for free from my web site. MOD_CUDA.CPP provides the 

high-level organization. It calls subroutines to initialize, compute forward activation, 

backpropagate delta, and compute the gradient. MOD_CUDA.cu contains the CUDA 

device routines, as well as the low-level C++ host routines that are called from MOD_

CUDA.CPP and that in turn launch computation kernels and provide communication 

between the host and the device.

Many excellent books on CUDA programming exist. It would be hopeless to try in 

this book to educate inexperienced readers in even the most basic aspects of CUDA 

programming. Volume 1 of my Deep Belief Networks in C++ and CUDA C series does 

contain an overview for the curious and uninitiated. However, this entire chapter will 

assume that you have at least modest competence in CUDA programming.

There are, however, several topics at what one might call the “advanced beginner” 

level that I will emphasize in the coding when appropriate, even though programmers 

at the intermediate level or beyond will be intimately familiar with these topics. These 

include the following:

•	 When doing large-scale accesses of global memory, it is crucial that, 

at a minimum, adjacent threads in a warp address adjacent memory 

addresses so that reads from the cache can be coalesced.

•	 In addition, it is even more profitable if memory accesses of the first 

thread in a warp are on an address that is divisible by 128 bytes. This 

allows full coalescing, matching warps with cache line blocks.

•	 Shared memory has much faster read access than global memory. 

Therefore, whenever possible one should do a single global memory 

read to shared memory and perform subsequent accesses from the 

shared memory.
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•	 Especially with the most modern CUDA devices, it is almost always 

best to use a large number of relatively small blocks to give the 

scheduler maximum flexibility.

�Weight Layout in the CUDA Implementation
On page 31 we saw how weights in memory on the host machine are organized for a 

locally connected layer, and on page 34 we saw the same for a convolutional layer. Please 

review those sections if needed. That layout facilitates the use of highly efficient dot 

product routines such as those described in Volume 1 of this series (though not shown 

in this volume). However, for reasons that will become clear later, that layout would be 

disastrous for a CUDA implementation.

On the device, the weights for a locally connected layer are organized as follows:

Input height

Input width

Input depth

Bias

Layer height

Layer width

Layer depth

Pad so nhid = layer height*width*depth is a multiple of 128 bytes

In a convolutional layer, which has identical weights for all neurons in the visual field 

of a given slice, or a fully connected layer, which has a 1×1 visual field, the organization is 

as follows:

Input height

Input width

Input depth

Bias

Layer depth

Pad so layer depth is a multiple of 128 bytes
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If this is not clear, it should be made clearer on page 72 when the subject of copying 

host weights to the device is discussed. The most critical aspect of this layout is that 

weights along the depth dimension of the current layer change fastest, and they are 

padded to ensure full cache line coalescing.

�Global Variables on the Device
Everything that any device routine may need is stored in globally accessible memory 

on the device, in constant memory whenever possible. Recall that constant memory 

occupies a special status that grants it very high-speed access. Moreover, if all threads in 

a warp access the same constant memory simultaneously, which is the usual case, speed 

is nearly as fast as register access. Here, for convenient reference as various routines are 

presented, is a complete list of all such memory:

__constant__ int d_ncases;               // Number of  cases in complete training set

__constant__ int d_img_rows;           // Number of  rows in input image

__constant__ int d_img_cols;            // Number of  cols in input image

__constant__ int d_img_bands;        // Number of  bands in input image

__constant__ int d_n_pred;               // Number of  predictors

__constant__ int d_n_classes;          // Number of  classes

__constant__ int d_n_classes_cols; // Ditto, extended to multiple of  128 bytes (32 floats)

__constant__ int d_n_layers;            // Number of  hidden layers

__constant__ int d_n_weights;          // Total number of  weights across all layers

__constant__ int d_convgrad_cols[MAX_LAYERS]; // n_prior_weights[ilayer]

                                                           // bumped up to multiple of  32

__constant__ int d_max_convgrad_each;    // Max hid * convwts_cols

                                                           // in a CONV hid grad launch (work area per case)

__constant__ int d_layer_type[MAX_LAYERS];          // Type of  each layer

__constant__ int d_nhid[MAX_LAYERS]; // N of  neurons in each of  the hidden layers

__constant__ int d_nhid_cols[MAX_LAYERS];            // Extended to mult of  128 bytes

__constant__ int d_height[MAX_LAYERS];                 // Height (rows) of  each layer

__constant__ int d_width[MAX_LAYERS];                   // And width

__constant__ int d_depth[MAX_LAYERS];                  // And number of  slices

__constant__ int d_depth_cols[MAX_LAYERS];         // Ditto, extended to multiple of  128

__constant__ int d_n_prior_weights[MAX_LAYERS]; // N of  inputs per neuron
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__constant__ int d_HalfWidH[MAX_LAYERS];           // Horizontal half  width

__constant__ int d_HalfWidV[MAX_LAYERS];           // And vertical

__constant__ int d_padH[MAX_LAYERS];                  // Horizontal padding

__constant__ int d_padV[MAX_LAYERS];                  // And vertical

__constant__ int d_strideH[MAX_LAYERS];               // Horizontal stride

__constant__ int d_strideV[MAX_LAYERS];               // And vertical

__constant__ int d_PoolWidH[MAX_LAYERS];          // Horizontal pooling width

__constant__ int d_PoolWidV[MAX_LAYERS];           // And vertical

static float *h_predictors = NULL;                                // Training set; n_cases by n_pred

__constant__ float *d_predictors;

static int *h_class = NULL;                                           // Class id is here

__constant__ int *d_class;

static double *activations = NULL;                                // Activations of  this layer

__constant__ double *d_act[MAX_LAYERS];             // Pointers to activation vector

static double *h_output = NULL;                                   // Output activations

__constant__ double *d_output;

static int *h_poolmax_id[MAX_LAYERS];                    // Used only for POOLMAX layer

__constant__ int *d_poolmax_id[MAX_LAYERS];      // Pointers to id vector each layer

static float *weights = NULL;                                        // All weights, including output

__constant__ float *d_weights[MAX_LAYERS+1];     // Pointers to weight vector of  each

static float *grad = NULL;                                             // Gradient for all weights

__constant__ float *d_grad[MAX_LAYERS+1];          // Pointers to grad vector of  each

static float *h_convgrad_work = NULL;                        // Scratch for unflattened convolution grad

__constant__ float *d_convgrad_work;

static double *h_this_delta = NULL;                            // Delta for current layer

__constant__ double *d_this_delta;

static double *h_prior_delta = NULL;                           // Delta for next layer back

__constant__ double *d_prior_delta;

static float *h_ll_out = NULL;                                        // Log likelihoods put here

__constant__ float *d_ll_out;
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�Initialization
Volumes 1 and 2 went into considerable detail in the “Initialization” section with the 

philosophy that because initialization is done first, it should appear first in the CUDA 

chapter. After some reflection, I decided to change this for Volume 3 and instead cover 

individual initialization topics in conjunction with the algorithms that rely on each 

topic. However, to illustrate an important general principle that appears repeatedly, this 

section examines the method for copying the training set from the host to the device.

Cases in host memory are stored as doubles, but to save precious device memory, 

they are stored as floats on the device. Thus, we need to allocate scratch memory fdata 

to handle size translation. We also call cudaMalloc to allocate memory on the device. We 

transfer data from host memory to device memory in a set of nested loops that reorder it 

so that the band changes fastest. Finally, we copy the dataset to the device and copy the 

allocated pointer to d_predictors in the device’s constant memory.

   fdata = (float *) malloc (n_cases * n_pred * sizeof(float));

   memsize = n_cases * n_pred * sizeof(float);             // Size of  training set

   error_id = cudaMalloc ((void **) &h_predictors, (size_t) memsize);

   j = 0;

   for (i=0; i<n_cases; i++) {                             // Move cases one at a time

      xptr = data + i * ncols;                               // Point to this case

      for (irow=0; irow<n_img_rows; irow++) {

         for (icol=0; icol<n_img_cols; icol++) {

            for (iband=0; iband<n_img_bands; iband++) // Band changes fastest on device

               fdata[j++] = (float) xptr[(iband*n_img_rows+irow)*n_img_cols+icol];

            }

         }

      }

   error_id = cudaMemcpy (h_predictors, fdata, n_cases * n_pred * sizeof(float),

                                           cudaMemcpyHostToDevice);

   free (fdata);    // We no longer need this scratch memory

   error_id = cudaMemcpyToSymbol (d_predictors, &h_predictors, sizeof(float *), 0,

                                                           cudaMemcpyHostToDevice);
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�Copying Weights to the Device
The initialization routine, called once after the architecture is set but before any 

computation is performed, allocates float memory on the device and fills in the pointer 

array that identifies the start of the weights for each layer. The first step in this allocation 

is to tally the total number of weights. Note that nhid_cols[ilayer] is the number of hidden 

neurons in this layer, bumped up to a multiple of 128 bytes (32 floats). The number of 

classes and the depth of convolutional layers are similarly bumped up. My convention 

is to append the suffix _cols to a quantity to indicate that the root quantity has been 

increased this way. The formula for bumping to a multiple of 32 is simple.  

In Equation 3-1, the division is integer division, discarding any remainder.

	
N Nbumped = +( ) *31 32 32/ 	 (3-1)

Here is the code that sums the number of weights and allocates sufficient memory 

on the device:

   n_weights_on_device = 0;           // Counts total number of  weights

   for (ilayer=0; ilayer<= n_layers; ilayer++) { // For each of  the hidden layers, plus final

      if  (ilayer == n_layers)                // Output layer?

         n_weights_on_device += n_classes_cols * n_prior_weights[ilayer];

      else if  (layer_type[ilayer] == TYPE_FC || layer_type[ilayer] == TYPE_LOCAL)

         n_weights_on_device += nhid_cols[ilayer] * n_prior_weights[ilayer];

      else if  (layer_type[ilayer] == TYPE_CONV)

         n_weights_on_device += depth_cols[ilayer] * n_prior_weights[ilayer];

      else if  (layer_type[i] == TYPE_POOLAVG || layer_type[i] == TYPE_POOLMAX)

         n_weights_on_device += 0;       // Just for clarity; pooling has no trainable weights

      } // For ilayer

   memsize = n_weights_on_device * sizeof(float);

   error_id = cudaMalloc ((void **) &weights, (size_t) memsize);

We now have to repeat the same sort of loop to fill in the pointer array that holds the 

starting address of the weights for each layer. Once this array of pointers is filled in, we 

copy it to constant memory on the device.
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   float *fptr[MAX_LAYERS+1];

   n_total = 0;

   for (ilayer=0;; ilayer++) {                // For each of  the hidden layers, plus the output

      fptr[ilayer] = weights + n_total;   // Point to the weights for this layer

      if  (ilayer >= n_layers)                 // Do it through the output layer

         break;

      if  (layer_type[ilayer] == TYPE_FC || layer_type[ilayer] == TYPE_LOCAL)

         n_total += nhid_cols[ilayer] * n_prior_weights[ilayer];

      else if  (layer_type[ilayer] == TYPE_CONV)

         n_total += depth_cols[ilayer] * n_prior_weights[ilayer];

      else if  (layer_type[i] == TYPE_POOLAVG || layer_type[i] == TYPE_POOLMAX)

         n_total += 0;                            // Just for clarity; pooling has no trainable weights

      } // For ilayer

   error_id = cudaMemcpyToSymbol (d_weights, &fptr[0], (n_layers+1) * sizeof(float *),

                                                           0, cudaMemcpyHostToDevice);

The code just shown is executed once, during initialization. But every time the 

weights change during the training process, we must recopy them to the device. This 

code is nasty because the weights are laid out on the host as shown on pages 31 (locally 

connected layers) and 34 (convolutional layers), but on the device they are laid out 

as shown on page 68, a very different ordering. The code for copying the weights to 

the device, properly ordered, is as shown now. Please study this code carefully to 

understand the weight layout because this will be important later when activation and 

backpropagation are shown.

int cuda_weights_to_device (

   int n_classes,                 // Number of  outputs

   int n_layers,                   // Hidden layers; does not include output

   int *layer_type,               // Each entry (input to final) type

   int img_rows,                 // Size of  input image

   int img_cols,

   int img_bands,
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   int *height,                     // Height of  visible field in each layer

   int *width,                       // Width of  visible field in each layer

   int *depth,                      // Number of  slices in each layer

   int *nhid,                        // Number of  hidden neurons in each layer

   int *hwH,                        // Half-width of  filters

   int *hwV,

   double **host_weights) // Vector of  pointers to weights for each layer

{

   int n, n_prior, ilayer, ineuron, isub, n_cols_each;

   int idepth, iheight, iwidth, ndepth, nheight, nwidth;

   int in_row, in_col, in_slice, in_n_height, in_n_width, in_n_depth;

   double *wptr;

   float *fptr;

   cudaError_t error_id;

   fptr = fdata;                  // Device weights will go here; fdata is already allocated

   for (ilayer=0; ilayer<=n_layers; ilayer++) {               // Process each layer individually

      wptr = host_weights[ilayer];                                  // Host weights for this layer

/*

   Fully connected (output layer is always fully connected)

*/

      if  (ilayer == n_layers || layer_type[ilayer] == TYPE_FC) {

         if  (ilayer == 0) {

            in_n_height = img_rows;                // Size of  layer feeding this layer

            in_n_width = img_cols;                   // First hidden layer is fed by inputs

            in_n_depth = img_bands;

            }

         else {

            in_n_height = height[ilayer-1];        // Subsequent hidden layer is fed by prior

            in_n_width = width[ilayer-1];

            in_n_depth = depth[ilayer-1];

            }
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         n_prior = in_n_height * in_n_width * in_n_depth + 1; // N of  weights per neuron

         if  (ilayer == n_layers)                            // Output layer?

            n = n_classes;                                    // Equals depth in fully connected

         else

            n = nhid[ilayer];                                   // Equals depth in fully connected

         n_cols_each = (n + 31) / 32 * 32; // For memory alignment to 128 bytes

         for (in_row=0; in_row<in_n_height; in_row++) { // See page 68 for layout

            for (in_col=0; in_col<in_n_width; in_col++) {

               for (in_slice=0; in_slice<in_n_depth; in_slice++) {

                  for (idepth=0; idepth<n; idepth++) { // Height and width are 1 in FC layer

                     // Compute location of  this neuron’s weight vector in host

                     isub = idepth*n_prior + (in_slice*in_n_height + in_row)*in_n_width + in_col;

                     *fptr++ = (float) wptr[isub];

                     } // For idepth

                  while (idepth++ < n_cols_each) // Pad to multiple of  128 bytes

                     *fptr++ = 0.0f;

                  } // For in_slice

               } // For in_col

            } // For in_row

         // Bias

         for (idepth=0; idepth<n; idepth++) {

            // Compute location of  this neuron’s bias in host

            isub = idepth * n_prior + n_prior - 1;

            *fptr++ = (float) wptr[isub];

            } // For idepth

         while (idepth++ < n_cols_each) // Pad to multiple of  128 bytes

            *fptr++ = 0.0f;

         }

/*

   Locally connected layer

*/
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      else if  (layer_type[ilayer] == TYPE_LOCAL) {

         // For LOCAL layers, neuron and filter layout is (height, width, depth).

         n = nhid[ilayer];

         n_cols_each = (n + 31) / 32 * 32;          // For memory alignment to 128 bytes

         ndepth = depth[ilayer];                           // Size of  the current layer

         nheight = height[ilayer];

         nwidth = width[ilayer];

         in_n_height = 2 * hwV[ilayer] + 1;          // Filter rectangle dimensions

         in_n_width = 2 * hwH[ilayer] + 1;

         if  (ilayer == 0)                                         // First hidden layer

            in_n_depth = img_bands;                   // so input in image

         else                                                         // Subsequent hidden layer

            in_n_depth = depth[ilayer-1];              // Fed by prior hidden layer

         n_prior = in_n_height * in_n_width * in_n_depth + 1;       // N weights per neuron

         for (in_row=0; in_row<in_n_height; in_row++) {               // See page 68 for layout

            for (in_col=0; in_col<in_n_width; in_col++) {

               for (in_slice=0; in_slice<in_n_depth; in_slice++) {

                  for (iheight=0; iheight<nheight; iheight++) { // nhid = ndepth*nheight*nwidth

                     for (iwidth=0; iwidth<nwidth; iwidth++) {

                        for (idepth=0; idepth<ndepth; idepth++) {

                           // Compute location of  this neuron’s weight in host

                           // We do this in two steps.

                           // First, locate the neuron in the current layer.

                           // Multiply this by the number of  weights per current neuron (n_prior)

                           // Then add the location in the filter rectangle

                           isub = (idepth * nheight + iheight) * nwidth + iwidth; // Current layer loc

                           isub = isub*n_prior+(in_slice*in_n_height+in_row)*in_n_width+in_col;

                           *fptr++ = (float) wptr[isub];

                           } // For idepth

                        } // For iwidth

                     } // For iheight

                  // The entire current layer for this single input location is done. Pad.

                  ineuron = nhid[ilayer];
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                  while (ineuron++ < n_cols_each) // Pad to multiple of  128 bytes

                     *fptr++ = 0.0f;

                  } // For in_slice

               } // For in_col

            } // For in_row

         // Bias

         for (iheight=0; iheight<nheight; iheight++) { // nhid = ndepth * nheight * nwidth

            for (iwidth=0; iwidth<nwidth; iwidth++) {

               for (idepth=0; idepth<ndepth; idepth++) {

                  // Compute location of  this neuron’s weight vector in host

                  isub = (idepth * nheight + iheight) * nwidth + iwidth; // Neuron in this layer

                  isub = isub * n_prior + n_prior - 1; // Location of  bias

                  *fptr++ = (float) wptr[isub];

                  } // For idepth

               } // For iwidth

            } // For iheight

         // Pad the bias set

         ineuron = nhid[ilayer];

         while (ineuron++ < n_cols_each) // Pad to multiple of  128 bytes

            *fptr++ = 0.0f;

         }

/*

   Convolutional layer

*/

      else if  (layer_type[ilayer] == TYPE_CONV) {

         nheight = height[ilayer];                           // Size of  the current layer

         nwidth = width[ilayer];

         ndepth = depth[ilayer];

         n_cols_each = (ndepth + 31) / 32 * 32;  // For memory alignment to 128 bytes

         in_n_height = 2 * hwV[ilayer] + 1;           // Size of  the filter rectangle

         in_n_width = 2 * hwH[ilayer] + 1;

         if  (ilayer == 0)

            in_n_depth = img_bands;
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         else

            in_n_depth = depth[ilayer-1];

         n_prior = in_n_height * in_n_width * in_n_depth + 1;    // N of  weights per neuron

         for (in_row=0; in_row<in_n_height; in_row++) {             // See page 68 for layout

            for (in_col=0; in_col<in_n_width; in_col++) {

               for (in_slice=0; in_slice<in_n_depth; in_slice++) {

                  for (idepth=0; idepth<ndepth; idepth++) {

                     // Compute location of  this neuron’s weight vector in host

                     isub = idepth*n_prior + (in_slice*in_n_height + in_row)*in_n_width + in_col;

                     *fptr++ = (float) wptr[isub];

                     } // For idepth

                  // All current-layer depths for this filter element are done. Pad.

                  while (idepth++ < n_cols_each) // Pad to multiple of  128 bytes

                     *fptr++ = 0.0f;

                  } // For in_slice

               } // For in_col

            } // For in_row

         // Bias

         for (idepth=0; idepth<ndepth; idepth++) {

            // Compute location of  this neuron’s bias in host

            isub = idepth * n_prior + n_prior - 1;

            *fptr++ = (float) wptr[isub];

            } // For idepth

         // Pad the bias

         while (idepth++ < n_cols_each) // Pad to multiple of  128 bytes

            *fptr++ = 0.0f;

         }

      } // For ilayer

   error_id = cudaMemcpy (weights, fdata, n_weights_on_device * sizeof(float),

                                            cudaMemcpyHostToDevice);

   return 0;

}
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�Activating the Output Layer
We’ll ease into the CUDA code with the simplest routine. The code shown here is for 

the usual situation of the model containing at least one hidden layer. The routine for the 

situation of no hidden layer can be found in MOD_CUDA.cu but will not be listed here, 

as it is practically identical to this and offers no new insights.

Here is the host routine that is called from the supervisor routine. This will often be a 

bit inefficient because the number of classes will usually be less than the warp size (32), 

resulting in incomplete warps, generally a severe no-no. However, the fraction of actual 

runtime taken by this step is almost invisibly tiny, so trading some inefficiency for simplicity 

is good. The limitation of block size to four warps is arbitrary but reasonable; feel free to 

change it if you want.

int cuda_output_activation (

   int istart,     // First case in this batch

   int istop       // One past last case

   )

{

   int warpsize, threads_per_block;

   dim3 block_launch;

   cudaError_t error_id;

   warpsize = deviceProp.warpSize;    // Threads per warp, likely 32 well into the future

   threads_per_block = (n_classes + warpsize - 1) / warpsize * warpsize;

   if  (threads_per_block > 4 * warpsize)          // This is arbitrary but reasonable

      threads_per_block = 4 * warpsize;

   block_launch.x = (n_classes + threads_per_block - 1) / threads_per_block;

   block_launch.y = istop - istart;

   block_launch.z = 1;

   device_output_activation <<< block_launch, threads_per_block >>> (istart);

   cudaDeviceSynchronize();

   return 0;

}
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The device code for performing this task is shown on the next page. The following 

issues should be noted:

•	 The computed outputs for the entire training set are saved in device 

memory. This facilitates rapid criterion computation later, and it 

prepares the way for more advanced performance stats as well as the 

dumping of all results to the host if desired.

•	 Intermediate results such as activations are retained only for the 

batch currently being processed. This saves valuable device memory.

•	 The implication of these two facts is that we need the batch start, 

istart, to offset the output storage properly, but istart is not used when 

referencing activations.

•	 The most time-critical line in this code is the sum += *wptr * inptr[i_input] 

line. This has two global accesses, and it is inside a loop.

•	 The reference to inptr[i_input] in this line is independent of the thread 

index, which makes it unavoidably impossible to coalesce. But for 

this same reason, it has the same value for all threads, and hence 

a single read will service all threads simultaneously, which is very 

efficient.

•	 The reference to the weight is perfectly coalesced because weights are 

ordered with the output neuron changing fastest, which is defined by 

the thread. Moreover, it is padded so that each warp starts on a 128-

byte address.

•	 The output storage, while not 128-byte aligned (that would waste too 

much memory), is nevertheless coalesced in that adjacent threads 

write to adjacent memory.

__global__ void device_output_activation (

   int istart       // First case in this batch; needed for output

   )

{

   int icase, iout, i_input, n_inputs;

   double sum;

   float *wptr;

   double *inptr;
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   iout = blockIdx.x * blockDim.x + threadIdx.x;

   if  (iout >= d_n_classes)

      return;

   icase = blockIdx.y;                              // Activities are zero origin, not offset by istart

   wptr = d_weights[d_n_layers] + iout; // Current neuron weight changes fastest

   n_inputs = d_nhid[d_n_layers-1];

   inptr = d_act[d_n_layers-1] + icase * n_inputs;  // Feed from prior layer is here

   sum = 0.0;                                                           // Will cumulate logit

   for (i_input=0; i_input<n_inputs; i_input++) {     // Equation 1-9 on page 16

      sum += *wptr * inptr[i_input];

      wptr += d_n_classes_cols;                     // Weights are zero-padded to 128 bytes

      }

   sum += *wptr;                                             // Bias

   d_output[(icase+istart)*d_n_classes+iout] = sum;    // We save the logit

}

�Activating Locally Connected and Convolutional 
Layers
This is the first of two CUDA routines for computing the activation of locally connected 

and convolutional layers. It is the easier of the two to understand and is a prerequisite 

to understanding the second. The second algorithm uses shared memory to speed 

operation. Nevertheless, the routine presented in this section is necessary, as it handles 

“cleanup” operations that will be discussed later. So, studying this code is far from a 

waste of time.

int cuda_hidden_activation_LOCAL_CONV (

   int local_vs_conv,          // Is this a LOCAL (vs CONV) layer?

   int istart,                         // First case in this batch

   int istop,                         // One past last case
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   int nhid,                         // Number of  hidden neurons in this layer = H*W*D

   int n_slices,                   // Depth of  this layer

   int ilayer                        // Layer to process

   )

{

   int warpsize, threads_per_block;

   dim3 block_launch;

   cudaError_t error_id;

   warpsize = deviceProp.warpSize;       // Threads per warp, likely 32 well into the future

   threads_per_block = (n_slices + warpsize - 1) / warpsize * warpsize;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize;          // Arbitrary but reasonable

   block_launch.x = (n_slices + threads_per_block - 1) / threads_per_block;

   block_launch.y = nhid / n_slices;  // Visual field size; MUST be less than 65535!

   block_launch.z = istop - istart;      // Number of  cases in this batch

   device_hidden_activation_LOCAL_CONV <<< block_launch, threads_per_block >>>

                                       (local_vs_conv, istart, 0, 0, n_slices, ilayer);

   cudaDeviceSynchronize();

   return 0;

}

The device code is quite long and complex, so I’ll present it in sections, with 

explanations of operation interspersed. We begin with the calling parameter list. Several 

of the parameters might be a little confusing at this point. We are already familiar 

with case_start; this is just istart in the interface routine, the case in the training set that 

begins the batch currently being processed. Breaking the training set into batches has 

the important purpose of limiting the time taken by each launch so we can avoid the 

infamous Windows WDDM timeout error. It also facilitates more advanced operations, 

such as cross validation or walkforward testing.

The next two parameters, case_offset and slice_start, are specialized. The former 

applies an additional offset to the case being processed in the batch, and the latter lets us 

begin processing with slices past the first. If this routine were being exclusively used for 

computing the activation, both of these would be zero. However, we will see later that these 

offsets are needed when this routine is used for cleanup after the shared-memory version.
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Each depth slice is handled by a thread, as shown here. We then compute the 

location in the current layer of the neuron being activated.

__global__ void device_hidden_activation_LOCAL_CONV (

   int local_vs_conv,          // Is this a LOCAL (vs CONV) layer?

   int case_start,                // First case in this batch (relative to dataset)

   int case_offset,              // Offset relative to this batch (used in shared version)

   int slice_start,                // First slice in this batch

   int n_slices,                   // Number of  slices to be done in this launch

   int ilayer                         // Layer to process

   )

{

   int kwt, kin, wtsub, insub, iheight, iwidth, idepth, n_height, n_width, n_depth, wt_c ols;

   int rstart, rstop, cstart, cstop, rbase, cbase, in_slice, in_row, in_col, ihid, nH;

   float *f_inptr, *wptr;

   double sum, *actptr;

   idepth = blockIdx.x * blockDim.x + threadIdx.x;

   if  (idepth >= n_slices)

      return;

   idepth += slice_start;

   iheight = blockIdx.y / d_width[ilayer];

   iwidth = blockIdx.y % d_width[ilayer];

   nH = 2 * d_HalfWidH[ilayer] + 1;     // We’ll reference this deep inside a loop later

We are about to compute the activation of neuron (iheight, iwidth, idepth) in this layer. 

Note that it is critical that idepth be associated with the thread. This ensures that adjacent 

threads reference the same input, which allows efficient memory use (a single global 

fetch services all threads in the warp). Also, the weights are ordered so that depth-fastest 

changes produce perfect or very good coalescing. Thus, the neuron layout in the current 

layer is (height, width, depth).

This layout gives strong motivation for locally connected layers to have the depth be 

a multiple of 32. To see why, note the ihid= line in the following code. That multiplication 

ensures perfect, as opposed to just very good, coalescing of the weight fetches (as long as 

slice_start is zero; if not, the coalescing is still very good).
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We note with a comment that the case (not yet offset) is in the z dimension of the 

block. We fetch the padded length of each row of the weight matrix and find the location 

in the weight array of the first filter weight. Just to pound it in, observe that adjacent 

threads reference adjacent weights.

   // icase = blockIdx.z; // Avoid using a register by directly referencing it later

   if  (local_vs_conv) {

      wt_cols = d_nhid_cols[ilayer]; // Padded size of  weight matrix rows

      ihid = (iheight * d_width[ilayer] + iwidth) * d_depth[ilayer] + idepth;

      wptr = d_weights[ilayer] + ihid;

      }

   else {

      wt_cols = d_depth_cols[ilayer];

      wptr = d_weights[ilayer] + idepth; // First filter weight for this slice is here

      }

Just as was done on page 32 when activation of locally connected and convolutional 

layers was first discussed (please review that if needed), we compute the bounds of the 

rectangle in the prior layer, which contributes to the activation of the current neuron. 

We keep start/stop bounds, which do not extend over the boundaries of the prior layer’s 

visual field, and we also keep “base” bounds, which let us locate positions in the filter 

rectangle.

   sum = 0.0;

   // Center of  first filter is at HalfWidth-Pad; filter begins at -Pad.

   rbase = rstart = d_strideV[ilayer] * iheight - d_padV[ilayer];

   rstop = rstart + 2 * d_HalfWidV[ilayer];

   cbase = cstart = d_strideH[ilayer] * iwidth - d_padH[ilayer];

   cstop = cstart + 2 * d_HalfWidH[ilayer];

   if  (rstart < 0)      // These limit the top and left

      rstart = 0;       // We’ll limit the bottom and right below

   if  (cstart < 0)

      cstart = 0;
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We must duplicate the same code for the situation of this being the first hidden layer 

(fed by the input) versus a subsequent hidden layer (fed by prior activations). The input 

uses a float pointer, and activations a double pointer. Deciding which pointer to use in 

the inner loop would be too slow!

If this is the first hidden layer, get a pointer to the input case, taking both case offsets 

into account. Also, limit the bottom and right rectangle bounds to not extend past the 

input’s visual field.

   if  (ilayer == 0) {

      f_inptr = d_predictors + (blockIdx.z + case_offset + case_start) * d_n_pred;

      if  (rstop >= d_img_rows)

         rstop = d_img_rows - 1;

      if  (cstop >= d_img_cols)

         cstop = d_img_cols - 1;

Sum the filter over the prior layer’s rectangle for all prior-layer slices. By using the 

start/stop limits, we avoid the inefficient check for being outside the visual field that was 

used in the code we saw in MOD_NO_THR.CPP.

The indexing inside this loop may be a bit confusing. We compute (in_row - rbase) *  

nH + in_col - cbase as the position occupied by (in_row, in_col) in the visual field of the 

filter. If this is not clear, draw a rectangle of dots representing the filter elements and 

confirm this math. One of these filter rectangles exists for each input slice, but the filter 

is ordered with the slice changing fastest. So we multiply this filter visual field position 

by the number of slices (bands for the input) and then add the slice to get the exact filter 

element. If this latter operation is not clear, make a small stack of your dotted rectangles 

and realize that counting moves up the stack before changing position in the visual field. 

Similar math locates the input. For extra clarity, two commented lines show the math 

that’s really going on. Last of all, we add in the bias.

      for (in_row=rstart; in_row<=rstop; in_row++) {

         kwt = (in_row - rbase) * nH;

         kin = in_row*d_img_cols;

         for (in_col=cstart; in_col<=cstop; in_col++) {

            wtsub = (kwt + in_col - cbase) * d_img_bands;

            insub = (kin+in_col) * d_img_bands;
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            for (in_slice=0; in_slice<d_img_bands; in_slice++) {

               // wtsub = ((in_row - rbase) * nH + in_col - cbase) * d_img_bands + in_slice;

               // insub = (in_row*d_img_cols+in_col)*d_img_bands+in_slice;

               sum += f_inptr[insub] * wptr[wtsub*wt_cols];

               ++wtsub;

               ++insub;

               } // For in_slice

            } // For in_col

         } // For in_row

      sum += wptr[(d_n_prior_weights[ilayer]-1) * wt_cols];     // Bias

      }

If this is a subsequent hidden layer, rather than the first, the operation is nearly 

identical to what we just saw for the first hidden layer. The only difference is that we now 

reference the prior hidden layer rather than the input image.

   else {

      actptr = d_act[ilayer-1] + (blockIdx.z + case_offset) * d_nhid[ilayer-1];

      n_height = d_height[ilayer-1];    // Size of  the layer feeding this one

      n_width = d_width[ilayer-1];

      n_depth = d_depth[ilayer-1];

      if  (rstop >= n_height)                 // Don’t go outside prior layer’s visual field

         rstop = n_height - 1;

      if  (cstop >= n_width)

         cstop = n_width - 1;

      for (in_row=rstart; in_row<=rstop; in_row++) {

         kwt = (in_row - rbase) * nH;

         kin = in_row*n_width;

         for (in_col=cstart; in_col<=cstop; in_col++) {

            wtsub = (kwt + in_col - cbase) * n_depth;

            insub = (kin+in_col) * n_depth;

            for (in_slice=0; in_slice<d_depth[ilayer-1]; in_slice++) {

               // This is what we are really doing

               // wtsub = ((in_row - rbase) * nH + in_col - cbase) * n_depth + in_slice;

               // insub = (in_row*n_width+in_col)*n_depth+in_slice;
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               sum += actptr[insub] * wptr[wtsub*wt_cols];

               ++wtsub;

               ++insub;

               } // For in_slice

            } // For in_col

         } // For in_row

      sum += wptr[(d_n_prior_weights[ilayer]-1) * wt_cols];       // Bias

      }

Before leaving that section of the code, it is worth noting several vital facts.

•	 There are two global reads, and they happen in the innermost of a set 

of nested loops, so they are critical.

•	 The read of the input value is independent of the thread (idepth), 

which means that it cannot be coalesced. But for the same reason, 

it has the same value for all threads in the warp, so a single fetch 

services all threads with an efficient mass broadcast.

•	 The other global read is the filter weight. This is offset by the thread 

(idepth), so adjacent threads access adjacent memory locations, 

resulting in very good coalescing. Moreover, if slice_start is zero, all 

warps begin at a multiple of 128 bytes (note the multiplication by 

wt_cols, which is a multiple of 32), resulting in perfect coalescing.

Finally, we apply the hyperbolic tangent activation function and store the computed 

activation. Note that ihid varies with idepth so that adjacent threads write to adjacent 

memory locations, resulting in very good coalescing. As a bonus, if the depth of the 

current layer is a multiple of 32, and if slice_start is zero, coalescing will be perfect.

   if  (sum > MAX_EXP)

      sum = 1.0;

   else {

      sum = exp (2.0 * sum);

      sum = (sum - 1.0) / (sum + 1.0);

      }

   n_height = d_height[ilayer];

   n_width = d_width[ilayer];

   n_depth = d_depth[ilayer];
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   actptr = d_act[ilayer];

   ihid = (iheight * n_width + iwidth) * n_depth + idepth;

   actptr[(blockIdx.z+case_offset)*d_nhid[ilayer]+ihid] = sum;

}

�Using Shared Memory to Speed Computation
This section presents a method for significantly speeding computation of activations. 

Be warned that this topic is considerably more complex than the algorithm shown in 

the prior section, and understanding it will be hopeless unless the prior algorithm is 

thoroughly understood.

The underlying basis of the algorithm shown here is that shared memory has 

tremendously faster access than global memory. The algorithm of the prior section 

repeatedly fetches the same global memory, resulting in much redundancy. In truth, 

the penalty is not terribly severe because I took enormous pains to ensure that all 

global memory accesses are as fast as possible by ensuring very good or perfect 

coalescing everywhere. Moreover, computations are structured in such a way that 

mathematical operations effectively hide much of memory fetching stalls. For many or 

most applications, the mathematics pipeline is the dominant limiting factor. Still, clean, 

modern CUDA programming demands that we take advantage of fast shared memory 

whenever feasible.

Figure 3-1.  Block layout for activation with shared memory
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Figure 3-1 illustrates what we will be doing. Imagine a grid in which the vertical 

dimension represents every case in the set we will be processing, and the horizontal 

dimension represents every slice in the layer being computed. The (row, column) 

position in the visual field is irrelevant to this discussion; it is already specified as a 

fixed location. Thus, any spot on the grid in this figure represents the activation of a 

single neuron with a prespecified position in the visual field, and slice according to its 

horizontal location in the figure, and for a case represented by the vertical location on 

the figure.

How would we compute this activation? Imagine that we stack a bunch of these 

figures, overlaid on top of one another. Each layer in this stack (not to be confused with 

layers in the model!) represents a position in the visual field of the prior-layer rectangle 

(which does not concern us now), as well as a slice within the prior rectangle. Two 

key numbers are associated with this position: an activation in the prior layer and the 

corresponding filter weight. And one more layer of this figure will represent the bias 

term.

Thus, to compute the activation of the single neuron under discussion, we look at 

the spire of elements coming up and out of the page, all emanating from a single point 

in Figure 3-1. Cumulate the dot product associated with this spire. There will be n_prior_

weights in this spire.

Notice that Figure 3-1 is subdivided into squares delineated with dotted lines. Each 

such square represents a single launch block. All of these blocks will be computed in 

a single kernel launch. The size (length and width) of these blocks should be as large 

as possible for maximum efficiency, subject to the constraint that the square of this 

length/width must not exceed the hardware limit on the number of threads per block. 

My CONVNET program uses 32 because modern devices have a limit of at least 1,024 

threads per block. The number of global memory fetches is reduced by roughly a factor 

equal to the length/width of the block, which can be substantial.

For the moment, ignore the extra rows and columns outside an integral number of 

blocks. We’ll deal with these later, as a last step.

Before continuing, let’s take a quick look at the launch parameters. The launched 

blocks will be big, 32*32=1024 threads here. The current-layer slices will be divided into 

blocks along the x dimension, and the cases in this batch will be divided along the y 

dimension. The z dimension will specify the (row, column) location in the visible field of 

the current layer.
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   dim3 thread_launch, block_launch;

   nc = istop - istart;          // Number of  cases

   thread_launch.x = BLOCK_SIZE;               // 32 here

   thread_launch.y = BLOCK_SIZE;                // These must be the same

   thread_launch.z = 1;

   block_launch.x = n_slices / BLOCK_SIZE; // Number of  blocks horizontally

   block_launch.y = nc / BLOCK_SIZE;          // And vertically

   block_launch.z = nhid / n_slices;                 // Height times width; visual field size

   device_hidden_activation_LOCAL_CONV_shared

                     <<< block_launch, thread_launch >>> (local_vs_conv, istart, ilayer);

Let’s look at a rough overview of the device algorithm. Each block in the launch will 

completely compute the activations of all neurons/cases in the block shown enclosed in 

dotted lines in Figure 3-1. In addition to being structured in BLOCK_SIZE squares in the 

slice and case dimensions, the “up from the page” direction, which represents prior-

layer activations and filter weights, will also be processed in BLOCK_SIZE chunks. So we 

are actually dealing with cubes. With this in mind, here are the steps that we will soon 

examine in detail:

	 1.	 Do all preliminary calculations. Get pointers to the filter weights 

and the activations that are feeding the current layer, whether 

these be from the input image or from a prior hidden layer. Find 

the bounds of the prior-layer rectangle over which the filter acts.

	 2.	 Get the number of elements that will go into the dot product of 

activations and filter weights. This will be n_prior_weights in the 

interior and less at the borders if padded. Call this n_inner.

	 3.	 inner_blocks = (n_inner + BLOCK_SIZE - 1) / BLOCK_SIZE is the number 

of “inner-loop” blocks that will be needed to sum the dot product 

emanating up and out of the page, each inner-loop block handling 

BLOCK_SIZE terms in the dot product.
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	 4.	 Perform the following computation loop, in which s_slices and 

s_cases are shared memory matrices BLOCK_SIZE square.

sum = 0;

for (inner=0; inner<inner_blocks; inner++) {

      Slice is derived from threadIdx.x

      Inner index is derived from threadIdx.y

      s_slices[threadIdx.y][threadIdx.x] = weight [ inner index, slice ];

      Case is derived from threadIdx.y

      Inner index is derived from threadIdx.x

      s_cases[threadIdx.y][threadIdx.x] = activation [ case, inner index ];

      Wait for all threads to complete the above global fetches.

      for (k=0; k<BLOCK_SIZE; k++)

            sum += s_cases[threadIdx.y][k] * s_slices[k][threadIdx.x];

      Wait for all threads to complete the above summation loop.

      } // End of  ‘inner_blocks’ loop

	 5.	 Apply hyperbolic tangent activation function and save result.

It is absolutely crucial that you understand the algorithm just shown. Without a solid 

understanding of that little algorithm, you won’t have a chance of understanding the code. 

So let’s walk through it. To simplify the discussion, we will assume that BLOCK_SIZE is 32.

We are executing a block of 32*32=1024 threads. The task of this block is to compute 

the activations for a given fixed (z block dimension) position in the current layer’s visual 

field and for a set of 32 depths and 32 cases. Ignore the z dimension, the position of the 

current neuron in the visible field. It has no bearing on the algorithm under discussion, 

and thoughts of it will just confuse things. Remember only that we are computing 1,024 

activations in this block, neurons at 32 slices for each of 32 cases.

The loop shown earlier loops through sets of 32 filter weight/prior-layer activation 

pairs. In other words, the dot product for computing the activation is evaluated in 

chunks of 32 pairs at a time, one such 32-pair set for each pass through the outer loop. 

Thus, the dot product will not be completed until all passes through the outer loop are 

completed. This dot product will be cumulated in sum.
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The first step in the loop is for the 1,024 threads to cooperatively fetch from global 

memory the filter weights for this current-layer slice in the filter. Recall that locally 

connected and convolutional layers have a different set of filter weights for each slice. 

Note that the slice of the weight is derived from the x index of the thread, so we have very 

good or perfect coalescing.

The next step is for the 1,024 threads to cooperatively fetch the other item in each 

pair, the activation of 32 prior-layer neurons for 32 cases. If you trace in the code the 

evolution of the subscript for the activation, you’ll see that it derives from the  

x dimension of the thread, meaning once again that this global fetch is very well or 

perfectly coalesced.

At this point, the block has to pause as necessary to wait for all warps to finish these 

two tasks. Remember that the warp scheduler does not guarantee perfect coordination 

among warps. We must not continue until all of these quantities have been fetched into 

shared memory.

The last step is to sum this inner-loop block’s 32 components of the dot product. 

Each pass through that inner loop has two accesses that would otherwise be global but 

that now can use the shared memory. This lets us get the redundant fetches from fast 

shared memory instead of slow global memory.

When this algorithm is complete for a thread, sum contains the complete dot product 

for a neuron in one of the 32 slices for one of the 32 cases. This is an entry in the layout 

shown in Figure 3-1.

It’s worthwhile to do a quick comparative performance analysis of this algorithm. 

To keep things simple, assume inner_blocks=1, so we are concerned with a single pass 

through the loop. The analysis to come applies regardless of how many passes are 

executed.

Because there are 32*32=1024 threads, the first and second steps each do 1,024 

global memory loads. So at that point we have 2,048 slow loads. Now look at the 

summation loop. The single sum line is executed on 1,024 threads, with two loads each. 

The loop executes 32 times, so we have 64K loads. If we had not staged the values to 

shared memory first, we would be doing 64K slow loads. But because that loop accesses 

fast shared memory, we are burdened with just the 2K slow loads to initialize. We have 

gained by a factor of 32, the block size. Of course, there is a small amount of overhead 

involved, so the speedup is not quite that high, but it can be significant.

And to throw a little more cold water on this shared-memory approach, remember 

that the speedup applies only to global memory accesses. If “slow” global memory 

accesses are well coalesced and good programmers always make sure to do so, then 
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other delays come into play as limiting factors. The math pipeline has finite capacity, 

and many serial operations rely on completion of prior steps, resulting in execution 

dependencies. So in truth, the speedup because of shared memory is often not nearly as 

substantial as might be hoped. Still, it is a worthwhile endeavor.

�Device Code
That brief summary of the algorithm skirted many important issues, but it is the essence 

of the technique. Please don’t go on until you are comfortable with your understanding 

of that outline. When you are ready, take a deep breath. Here we go. The calling 

parameter list and variable declarations are as follows:

__global__ void device_hidden_activation_LOCAL_CONV_shared (

   int local_vs_conv,          // Is this a LOCAL (vs CONV) layer?

   int istart,                        // First case in this batch

   int ilayer                         // Layer to process

   )

{

   int k, iheight, iwidth, idepth, icase, n_height, n_width, n_depth, wt_cols;

   int ihid, inner, n_inner, inner_blocks, prod;

   int rstart, rstop, cstart, cstop, rbase, cbase, in_slice, in_row, in_col, isub, nH;

   float *f_inptr, *wptr;

   double value, sum, *actptr;

In a block, threadIdx.x and threadIdx.y are the location within the BLOCK_SIZE square 

block. The entire matrix of cases (row) by slices (column) is divided into these blocks, 

each of which is a launched block whose location in the entire matrix is given by 

blockIdx.x and blockIdx.y. The sharing logic ignores blockIdx.z, which is just the location in 

the visual field. The next four quantities identify the location within the entire matrix, 

and nH is the horizontal dimension of the filter.

   idepth = blockIdx.x * BLOCK_SIZE + threadIdx.x;    // Slice in current layer

   icase = blockIdx.y * BLOCK_SIZE + threadIdx.y;      // Offset of  case in this batch

   iheight = blockIdx.z / d_width[ilayer];                         // Row in visual field

   iwidth = blockIdx.z % d_width[ilayer];                         // And column

   nH = 2 * d_HalfWidH[ilayer] + 1;                                // Horizontal width of  the filter
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This thread will compute the activation of neuron (iheight, iwidth, idepth) for case 

icase. These four quantities were just computed from the block and thread indices. We 

now get a pointer to the filter weights for this neuron. Note that it is critical that idepth 

be associated with threadIdx.x, for several reasons. Recall that weights are zero padded 

and ordered so that depth changes fastest. Having threads also change with depth 

ensures perfect coalescing of weights. Also, the neuron layout in a layer is (row, column, 

slice). Thus, adjacent threads will have the same position in the visual field and hence 

reference the same input activation, meaning that the hardware can broadcast this single 

loaded value across the entire warp, resulting in extremely efficient activation fetches.

We also need wt_cols, the padded length of rows of the weight matrix. Locally 

connected layers will have nhid weights, followed by padding to bring the length up to 

a multiple of 32 floats (128 bytes). Convolutional layers will have depth weights, again 

padded to 128 bytes. Note in the following code that the multiplication by d_depth[ilayer] 

provides strong motivation for the user to let locally connected layers have a depth that is 

a multiple of 32. This makes the difference between very good versus perfect coalescing 

in locally connected layers. Convolutional layers are always perfectly coalesced.

   if  (local_vs_conv) {                          // Is this a locally connected layer?

      wt_cols = d_nhid_cols[ilayer];      // Padded size of  weight matrix rows

      ihid = (iheight * d_width[ilayer] + iwidth) * d_depth[ilayer] + idepth;

      wptr = d_weights[ilayer] + ihid;

      }

   else {

      wt_cols = d_depth_cols[ilayer]; // Padded size of  weight matrix rows

      wptr = d_weights[ilayer] + idepth;

      }

That took care of finding pointers to the weights, which are one component of the 

dot-product pairs. The activations in the prior layer are the other component. First, we 

get a pointer to the prior-layer activations and the size of this prior layer.

   if  (ilayer == 0) {

      f_inptr = d_predictors + (icase + istart) * d_n_pred;

      n_height = d_img_rows;

      n_width = d_img_cols;

      n_depth = d_img_bands;

      }
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   else {

      actptr = d_act[ilayer-1] + icase * d_nhid[ilayer-1];

      n_height = d_height[ilayer-1];

      n_width = d_width[ilayer-1];

      n_depth = d_depth[ilayer-1];

      }

Now locate the rectangle in the prior layer that corresponds to the neuron being 

computed in the current layer. I’ll repeat the short discussion that appeared earlier in the 

context of serial (non-CUDA) computation.

Computation of the activation of the current neuron is based on a rectangle in the 

prior layer whose position is determined by the position (iheight, iwidth) of the current 

neuron in the visual field of this layer. In both the vertical and horizontal directions, 

the center of the first filter (first row or column of the current layer) is at the location 

HalfWidth-Pad in the prior layer, and the first row/column of this first rectangle is at -Pad, 

which will be in the zero-padding area if padding is done. If this is not clear, please draw 

yourself a little one-dimensional picture.

This tells us how to compute the inclusive starting and stopping rows and columns 

of the rectangle in the prior layer, which contributes to the activation of the neuron in 

the current layer. We start at -Pad, advance by Stride as the current layer advances, and 

end at twice the HalfWidth. We need the start/stop values so we know if we are in a 

zero-padded edge, and we need the base values so we can locate our position in the filter 

rectangle.

   rbase = rstart = d_strideV[ilayer] * iheight - d_padV[ilayer];

   rstop = rstart + 2 * d_HalfWidV[ilayer];

   cbase = cstart = d_strideH[ilayer] * iwidth - d_padH[ilayer];

   cstop = cstart + 2 * d_HalfWidH[ilayer];

   if  (rstart < 0)

      rstart = 0;

   if  (cstart < 0)

      cstart = 0;

   if  (rstop >= n_height)

      rstop = n_height - 1;

   if  (cstop >= n_width)

      cstop = n_width - 1;
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Everything is ready for gathering the two components of the dot product and saving 

them in fast shared memory. Turn back to page 90 and quickly review the general 

outline of this algorithm. We now perform step 3 and show the beginning of step 4. The 

rectangle over which the summation is taking place may include zero padding outside 

an edge of the prior layer, so we need to take this into account when we compute the 

number of components in the dot product.

We let prod be the number of elements in each row of this rectangle and then multiply 

this by the number of rows and add 1 (the bias term) to get n_inner, the total number of 

terms in the dot product that we will sum. This will be divided into inner_blocks blocks, 

which must include a possible incomplete block at the end.

   prod = (cstop-cstart+1) * n_depth;     // Each prior-layer row has this many elements

   n_inner = (rstop-rstart+1) * prod + 1; // This many terms in inner sum (+1 is for bias)

   inner_blocks = (n_inner + BLOCK_SIZE - 1) / BLOCK_SIZE;

   sum = 0.0;

   for (inner=0; inner<inner_blocks; inner++) {

      __shared__ double s_cases[BLOCK_SIZE][BLOCK_SIZE];

      __shared__ float s_slices[BLOCK_SIZE][BLOCK_SIZE];

The serial version of this algorithm was relatively simple because it just summed 

over the triple-nested loop of rows, columns, and slices. The parallel version is a 

lot more complicated because each term in the sum is handled independently by 

a different thread. So for each term we must locate it in the prior-layer weight and 

activation volumes. That’s fussy. We’ll begin with the weights, showing the code first 

and explaining later.

      isub = inner * BLOCK_SIZE + threadIdx.y;    // Ordinal position in dot product loop

      if  (isub >= n_inner)                     // Outside inner block

         value = 0.0;                              // The last block is likely incomplete

      else if  (isub == n_inner-1)          // Bias

         value = wptr[(d_n_prior_weights[ilayer]-1) * wt_cols]; // Bias is last weight

      else {

         in_row = isub / prod;

         k = isub - in_row * prod;

         in_col = k / n_depth;

         in_slice = k % n_depth;
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         in_row += rstart;

         in_col += cstart;

         isub = ((in_row - rbase) * nH + in_col - cbase) * n_depth + in_slice;

         value = wptr[isub*wt_cols];

         }

      s_slices[threadIdx.y][threadIdx.x] = value;

We computed prod as the number of elements in each row of the dot product being 

summed. Divide the ordinal position by this to get the relative row in the rectangle, 

and remove this component from the position. Divide by the depth to get the relative 

column, and the remainder is the slice. Add the starting positions of the rectangle to get 

the actual positions in the prior-layer visual field.

If our rectangle extends over an edge into zero-padded territory, the coordinates 

of the rectangle in the context of the terms of the dot product summation will not 

correspond to those in the visual field, so to get the relative position in the filter rectangle 

we subtract the base to get the subscript in the filter weight set. We could save one 

operation in the row and one in the column by saving start minus base outside the loop, 

but I wrote it this way for clarity. Some readers may want to fix this.

Gathering the prior-layer activations is similar to what we just did for the weights. 

Here is the code, and I’ll mention only the few significant differences:

      isub = inner * BLOCK_SIZE + threadIdx.x;    // Ordinal position in dot product loop

      if  (isub >= n_inner)                     // Outside inner block

         value = 0.0;                              // Last block is likely incomplete

      else if  (isub == n_inner-1)          // Bias

         value = 1.0;

      else {

         in_row = isub / prod;

         k = isub - in_row * prod;

         in_col = k / n_depth;

         in_slice = k % n_depth;

         in_row += rstart;

         in_col += cstart;

         isub = (in_row*n_width+in_col)*n_depth+in_slice;

         if  (ilayer == 0)

            value = f_inptr[isub];
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         else

            value = actptr[isub];

         }

      s_cases[threadIdx.y][threadIdx.x] = value;

We compute the ordinal position of this term in the dot-product loop. For the 

weights, this was based on threadIdx.y, and for the activations it is based on threadIdx.x. 

The last block will be incomplete except in the unusual situation of the length of the 

dot product being an exact multiple of BLOCK_SIZE. If we are past the end of the dot 

product, the term is zero. And the last actual weight in the dot product is the bias, which 

by definition always has an activation of one.

We compute the position of this term in the prior layer’s visual field exactly as we did 

for the weight. But because this is an actual prior-layer neuron, and not a filter weight 

that may be hanging over the edge into zero padding, we do not have to subtract the base 

position. Then just get the value, using the input image if this is the first hidden layer and 

using the prior hidden layer’s activation if not.

All that’s left to do is wait for the weight and activation loads to finish in all 

warps, sum the BLOCK_SIZE terms in this section of the dot product, wait for this 

computation to finish in all warps, apply the hyperbolic tangent activation function, 

and save the result.

      __syncthreads ();          // Wait for all shared memory loads to finish

      for (k=0; k<BLOCK_SIZE; k++)             // Sum these components

         sum += s_cases[threadIdx.y][k] * s_slices[k][threadIdx.x];

      __syncthreads ();         // Wait for the summation to finish in all warps

      } // For inner

   if  (sum > MAX_EXP)      // Activation function

      sum = 1.0;

   else {

      sum = exp (2.0 * sum);

      sum = (sum - 1.0) / (sum + 1.0);

      }

   n_width = d_width[ilayer];

   n_depth = d_depth[ilayer];
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   actptr = d_act[ilayer];                   // Its activations are here

   ihid = (iheight * n_width + iwidth) * n_depth + idepth;    // Ordered (height, width, depth)

   actptr[icase*d_nhid[ilayer]+ihid] = sum;

}

There is one thing to note about storing the computed activation. Because depth 

changes fastest in the activation vector and idepth varies with threadIdx.x, at worst this store 

will be very well coalesced. If BLOCK_SIZE, n_depth, and d_nhid[ilayer] are all multiples of 

16 (activations are double, not float), the stores will be perfectly coalesced. This, again, is 

strong motivation for the user to choose such values in the architecture.

�Launch Code
At the start of this discussion, we saw a short code fragment illustrating how the 

shared-memory version of activation is performed in the host code. It’s actually more 

complicated, largely because we cannot count on the dimensions of Figure 3-1 being 

an exact integer multiple of BLOCK_SIZE. We now discuss the launch code. It begins 

as shown here. In case we don’t have enough slices or batch cases, use the non-shared-

memory version that we saw on page 81.

int cuda_hidden_activation_LOCAL_CONV_shared (

   int local_vs_conv,         // Is this a LOCAL (vs CONV) layer?

   int istart,                        // First case in this batch

   int istop,                        // One past last case

   int nhid,                         // Number of  hidden neurons in this layer

   int n_slices,                   // Depth of  this layer

   int ilayer                        // Layer to process

   )

{

   int nc, warpsize, threads_per_block;

   dim3 thread_launch, block_launch;

   cudaError_t error_id;

/*

   If  possible (it normally would be), handle as much as possible with the more efficient

   shared-memory method.

   But if  not, just use the non-shared method.

*/
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   nc = istop - istart;

   if  (n_slices < BLOCK_SIZE || nc < BLOCK_SIZE)

      return cuda_hidden_activation_LOCAL_CONV (

                                                local_vs_conv, istart, istop, nhid, n_slices, ilayer);

The launch code for handling the complete set of blocks that fits within the entire set 

of slices and cases is simple.

   thread_launch.x = BLOCK_SIZE;

   thread_launch.y = BLOCK_SIZE;

   thread_launch.z = 1;

   block_launch.x = n_slices / BLOCK_SIZE;

   block_launch.y = nc / BLOCK_SIZE;

   block_launch.z = nhid / n_slices;      // Height times width; visual field size

   device_hidden_activation_LOCAL_CONV_shared

                     <<< block_launch, thread_launch >>> (local_vs_conv, istart, ilayer);

   cudaDeviceSynchronize();

Now we deal with the slight complication of the slices and cases possibly exceeding a 

multiple of BLOCK_SIZE. This excess is illustrated in Figure 3-1. We use the non-shared-

memory version presented on page 81 to clean up the extraneous slices and cases. First, 

we handle the entire right (slices) overhang, top to bottom.

   if  (n_slices % BLOCK_SIZE) {                                  // Is there any overhang?

      threads_per_block = n_slices % BLOCK_SIZE;    // This much overhang

      block_launch.x = 1;

      block_launch.y = nhid / n_slices;   // Height times width; visual field size

      block_launch.z = nc;                                               // All cases, top to bottom

      device_hidden_activation_LOCAL_CONV

               <<< block_launch, threads_per_block >>>

               (local_vs_conv, istart, 0,

               n_slices / BLOCK_SIZE * BLOCK_SIZE, n_slices % BLOCK_SIZE, ilayer);

      cudaDeviceSynchronize();
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Then we clean up the bottom (cases) overhang. Because when we did the slices a 

moment ago and we went all the way to the bottom, we only do the rectangle directly 

below the blocks.

   if  (nc % BLOCK_SIZE) {                              // Is there any overhang?

      warpsize = deviceProp.warpSize;              // Threads per warp, likely 32 forever

      threads_per_block = (n_slices / BLOCK_SIZE * BLOCK_SIZE + warpsize - 1) /

                                  warpsize * warpsize;       // Slices covered by blocks

      if  (threads_per_block > 4 * warpsize)

         threads_per_block = 4 * warpsize;

      block_launch.x = (n_slices / BLOCK_SIZE * BLOCK_SIZE + threads_per_block - 1) /

                                  threads_per_block;

      block_launch.y = nhid / n_slices;            // Height times width; visual field size

      block_launch.z = nc % BLOCK_SIZE;

      device_hidden_activation_LOCAL_CONV

               <<< block_launch, threads_per_block >>>

               (local_vs_conv, istart, nc / BLOCK_SIZE * BLOCK_SIZE, 0, n_slices /

               BLOCK_SIZE * BLOCK_SIZE, ilayer);

      cudaDeviceSynchronize();

   return 0;

}

�Activating a Pooled Layer
Activating a pooled layer is much easier than what we’ve seen in the past two sections, 

for two reasons. First, there are no optimizable weights to load from global memory; the 

mapping function is fixed. Second, zero padding is not used, meaning that we don’t have 

to deal with complex logic for handling edges. We begin with the launch code.

int cuda_hidden_activation_POOLED (

   int avg_vs_max,           // Is this a POOLAVG (vs POOLMAX) layer?

   int istart,                        // First case in this batch

   int istop,                         // One past last case

   int nhid,                         // Number of  hidden neurons in this layer
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   int n_slices,                  // Depth of  this layer

   int ilayer                         // Layer to process

   )

{

   int warpsize, threads_per_block;

   dim3 block_launch;

   cudaError_t error_id;

   warpsize = deviceProp.warpSize;       // Threads per warp, likely 32 well into the future

   threads_per_block = (n_slices + warpsize - 1) / warpsize * warpsize;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize;

   block_launch.x = (n_slices + threads_per_block - 1) / threads_per_block;

   block_launch.y = nhid / n_slices; // Height times width; visual field size

   block_launch.z = istop - istart;

   device_hidden_activation_POOLED <<< block_launch, threads_per_block >>>

                       (avg_vs_max, istart, istop, ilayer);

   cudaDeviceSynchronize();

   return 0;

}

We see in the launch code that the thread determines the slice computed in the 

current layer. The position in the current layer’s visual field is encoded into the y block 

coordinate as we’ve done before, and the case is in the block z coordinate. Here is the 

device code:

__global__ void device_hidden_activation_POOLED (

   int avg_vs_max,             // Is this a POOLAVG (vs POOLMAX) layer?

   int istart,                          // First case in this batch

   int ilayer                          // Layer to process

   )

{

   int icase, iheight, iwidth, idepth, n_width, n_depth, ihid;

   int rstart, rstop, cstart, cstop, in_row, in_col, *poolmax_id_ptr;

   float *f_inptr;

   double x, *actptr, value;
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   idepth = blockIdx.x * blockDim.x + threadIdx.x;

   if  (idepth >= d_depth[ilayer])

      return;

   n_width = d_width[ilayer];

   n_depth = d_depth[ilayer];

   iheight = blockIdx.y / n_width;      // Decode position in visual field

   iwidth = blockIdx.y % n_width;

   ihid = (iheight * n_width + iwidth) * n_depth + idepth; // Ordinal position in layer

We are about to compute the activation of the neuron at coordinates (iheight, iwidth, 

idepth) and ordinal position ihid in this layer. Note that it is critical that idepth be associated 

with the thread. This ensures that adjacent threads reference the same input, which allows 

efficient memory use. Why? When the thread advances, the position in the current layer’s 

visual field does not change, and hence the rectangle referenced in the prior layer does not 

move. When an input for the first thread in a warp is loaded from global memory, this load 

is broadcast to the entire warp, saving all those other global loads.

   icase = blockIdx.z;

We compute the position in the prior layer of the rectangle, which determines the 

activation of the neuron in the current layer. This is simple because we don’t have to 

worry about edge effects from padding.

   rstart = d_strideV[ilayer] * iheight;

   rstop = rstart + d_PoolWidV[ilayer] - 1;

   cstart = d_strideH[ilayer] * iwidth;

   cstop = cstart + d_PoolWidH[ilayer] - 1;

As was the situation for earlier activation in the general case, we have to duplicate 

the same code for the first hidden layer (fed by the input) versus a subsequent hidden 

layer (fed by prior activations). This is because the input uses a float pointer, and 

activations use a double pointer. Deciding in the inner loop would be too slow.

   if  (ilayer == 0) {                // First hidden layer, so fed by input image

      f_inptr = d_predictors + (icase + istart) * d_n_pred;
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      if  (avg_vs_max) {

         value = 0.0;              // Will sum for average here

         for (in_row=rstart; in_row<=rstop; in_row++) { // Sum the rectangle

            for (in_col=cstart; in_col<=cstop; in_col++)

               value += f_inptr[(in_row*d_img_cols+in_col)*d_img_bands+idepth];

            } // For in_row

         value /= d_PoolWidV[ilayer] * d_PoolWidH[ilayer];

         }

      else {

         poolmax_id_ptr = &d_poolmax_id[ilayer][ihid] + icase * d_nhid[ilayer];

         value = -1.e60;               // Will keep track of  max here

         for (in_row=rstart; in_row<=rstop; in_row++) {     // Check rectangle for max

            for (in_col=cstart; in_col<=cstop; in_col++) {

               x = f_inptr[(in_row*d_img_cols+in_col)*d_img_bands+idepth];

               if  (x > value) {

                  value = x;

                  *poolmax_id_ptr = in_row * d_img_cols + in_col;    // Save id of  max

                  }

               } // For in_col

            } // For in_row

         } // POOLMAX

      } // If  first hidden layer

As we did in the serial code on page 37, for max pooling we save the ID of the 

neuron in the prior layer, which was the rectangle max. This will prove handy when we 

backpropagate deltas from the pooling layer. Here is the rest of the device code, which 

essentially duplicates the previous code. In the last line, when we save the computed 

activation, note that ihid varies with idepth, which in turn varies with threadIdx.x. As a result, 

we are guaranteed at least very good coalescing, and sometimes perfect.

   else {

      actptr = d_act[ilayer-1] + icase * d_nhid[ilayer-1]; // Activation vector of  prior layer

      n_width = d_width[ilayer-1];       // Size of  prior layer

      n_depth = d_depth[ilayer-1];

      if  (avg_vs_max) {

         value = 0.0;
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         for (in_row=rstart; in_row<=rstop; in_row++) {

            for (in_col=cstart; in_col<=cstop; in_col++)

               value += actptr[(in_row*n_width+in_col)*n_depth+idepth];

            } // For in_row

         value /= d_PoolWidV[ilayer] * d_PoolWidH[ilayer];

         }

      else {

         poolmax_id_ptr = &d_poolmax_id[ilayer][ihid] + icase * d_nhid[ilayer];

         value = -1.e60;

         for (in_row=rstart; in_row<=rstop; in_row++) {

            for (in_col=cstart; in_col<=cstop; in_col++) {

               x = actptr[(in_row*n_width+in_col)*n_depth+idepth];

               if  (x > value) {

                  value = x;

                  *poolmax_id_ptr = in_row * d_width[ilayer-1] + in_col; // Save id of  max

                  }

               } // For in_col

            } // For in_row

         } // POOLMAX

      }

   actptr = d_act[ilayer];

   actptr[icase*d_nhid[ilayer]+ihid] = value;

}

�SoftMax and Log Likelihood by Reduction
The output activation routines compute only the logit of each output neuron. We must 

call a separate routine to do the SoftMax conversion. Then, we use a fancy reduction-

based algorithm to compute the log likelihood function for the entire training set. 

SoftMax conversion is almost trivial, so we will gloss over it with just a token presentation 

of the code and a very few words of explanation. And log likelihood by reduction is 

covered in great depth in Volume 1 of this series. Because this topic is quite complex, 

there is no point in wasting paper by reproducing that long discussion. As with SoftMax, 

this section will do just a token presentation of the subject, trusting that confused 

readers will consult Volume 1 for clarification.
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The launch code for SoftMax conversion is as follows, and the device code follows:

int cuda_softmax (

   int istart,    // First case in this batch

   int istop      // One past last case

   )

{

   int n, warpsize, blocks_per_grid, threads_per_block;

   cudaError_t error_id;

   warpsize = deviceProp.warpSize;    // Threads per warp, likely 32 well into the future

   n = istop - istart;    // Number of  cases

   threads_per_block = (n + warpsize - 1) / warpsize * warpsize;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize;

   blocks_per_grid = (n + threads_per_block - 1) / threads_per_block;

   device_softmax <<< blocks_per_grid, threads_per_block >>> (istart, istop);

   cudaDeviceSynchronize();

   return 0;

}

This is a simple one-dimensional launch. We pass the starting and stopping cases 

as parameters because output activations are stored for all training cases, not just those 

in the subset being processed. Thus, we need the starting case to properly offset the 

computation, and we need the stopping case so we know how many to do.

Note that the nVidia development system allows several types of exponentiation, 

which have trade-offs in speed and accuracy. However, speed is not a consideration here 

because this routine takes up an extremely small fraction of total computation time.

__global__ void device_softmax (

   int istart,       // First case in this batch

   int istop         // One past last case

   )

{

   int icase, iout;

   double *outptr, sum;
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   icase = blockIdx.x * blockDim.x + threadIdx.x;

   if  (icase >= istop - istart)

      return;

   outptr = d_output + (icase + istart) * d_n_classes;     // Output vector for this case

   sum = 0.0;

   for (iout=0; iout<d_n_classes; iout++) {

      if  (outptr[iout] < MAX_EXP)                      // Do not allow disastrous overflow

         outptr[iout] = exp (outptr[iout]);

      else

         outptr[iout] = exp (MAX_EXP);

      sum += outptr[iout];

      }

   for (iout=0; iout<d_n_classes; iout++)

      outptr[iout] /= sum;

}

Here is the launch code for log likelihood computation. The number of threads, 

REDUC_THREADS, must be a power of two. The number of blocks given here, REDUC_

BLOCKS, is a maximum. The actual number at runtime may be less. Note that reduc_fdata 

is a float array REDUC_BLOCKS long, allocated during initialization.

#define REDUC_THREADS 256

#define REDUC_BLOCKS 64

int cuda_ll (

   int n,            // Number of  values; n_cases

   double *ll     // Computed log likelihood returned here

   )

{

   int i, blocks_per_grid;

   double sum;

   cudaError_t error_id;
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   blocks_per_grid = (n + REDUC_THREADS - 1) / REDUC_THREADS;

   if  (blocks_per_grid > REDUC_BLOCKS)

      blocks_per_grid = REDUC_BLOCKS;

   device_ll <<< blocks_per_grid, REDUC_THREADS >>> ();

   cudaDeviceSynchronize();

   error_id = cudaMemcpy (reduc_fdata, h_ll_out, blocks_per_grid * sizeof(float),

                                           cudaMemcpyDeviceToHost);

   sum = 0.0;

   for (i=0; i<blocks_per_grid; i++)

      sum += reduc_fdata[i];

   *ll = sum;

   return 0;

}

The device code will be completely cryptic to most readers who are not familiar with 

the technique of parallel reduction. I’ll briefly discuss it here, but if this explanation is 

not enough, readers should see Volume 1 of this series for a long, detailed, step-by-step 

explanation.

Reduction happens in three distinct steps. In the first step, the threads cooperatively 

sum the individual case log likelihoods in big jumps spanning threads per block times 

number of blocks, as the total number of cases will usually exceed this product. The 

partial sum for each thread is stored in fast shared memory. The second step crunches 

these partial sums pairwise, halving their number with each pass through the loop. The 

third step is performed in the launch code shown earlier; it does the final summation.

__global__ void device_ll ()

{

   __shared__ double partial_ll[REDUC_THREADS];

   int i, n, n_classes, index;

   double sum_ll;

   index = threadIdx.x;

   n = d_ncases;

   n_classes = d_n_classes;
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   sum_ll = 0.0;

   for (i=blockIdx.x*blockDim.x+index; i<n; i+=blockDim.x*gridDim.x)

      sum_ll -= log (d_output[i*n_classes+d_class[i]] + 1.e-30);

   partial_ll[index] = sum_ll;

   __syncthreads();

   for (i=blockDim.x>>1; i; i>>=1) {

      if  (index < i)

         partial_ll[index] += partial_ll[index+i];

      __syncthreads();

      }

   if  (index == 0)

      d_ll_out[blockIdx.x] = partial_ll[0];

}

�Computing Delta for the Output Layer
The routine for computing the output delta vector and placing it in this_delta is almost too 

trivial to list in the book, but here it is for reference. The launch code is first, followed by 

the device code.

int cuda_output_delta (

   int istart,    // First case in this batch

   int istop,     // One past last case

   int ntarg     // Number of  targets (outputs, classes)

   )

{

   int warpsize, threads_per_block;

   dim3 block_launch;

   cudaError_t error_id;

   warpsize = deviceProp.warpSize;     // Threads per warp, likely 32 well into the future

   threads_per_block = (ntarg + warpsize - 1) / warpsize * warpsize;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize;
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   block_launch.x = (ntarg + threads_per_block - 1) / threads_per_block;

   block_launch.y = istop - istart;

   block_launch.z = 1;

   device_output_delta <<< block_launch, threads_per_block >>> (istart);

   cudaDeviceSynchronize();

   return 0;

}

In the previous code, you see that the threads are used for the output neurons. In any 

other case this would be silly because in most applications there are not enough classes to 

fill even one warp! But it’s the simplest approach, and efficiency is unimportant because 

this routine takes up an almost unmeasurably small fraction of the total run time.

The device code is nothing more than a straightforward implementation of  

Equation 1-12. The following things should be noted:

•	 During initialization, the d_class vector was computed. This is the 

integer (zero origin) class ID of every case in the training set. This 

code does not appear in the book, but it can be found in the file 

MOD_CUDA.cu.

•	 The d_output vector contains outputs for every case in the training set. 

Thus, its index must be offset by istart, the first case in the batch being 

processed.

•	 Like most other device-memory storage, d_this_delta contains delta for 

only those cases in the batch being processed. Thus, its index is not 

offset by istart.

•	 Both d_output and d_this_delta are ordered with the output neuron 

(which, for any fully connected layer, is the depth) changing fastest. 

Therefore, memory accesses for both are very well coalesced.

__global__ void device_output_delta (

   int istart       // First case in this batch

   )

{

   int icase, iout;

   double target;

Chapter 3  CUDA Code



111

   iout = blockIdx.x * blockDim.x + threadIdx.x;

   if  (iout >= d_n_classes)

      return;

   icase = blockIdx.y;

   target = (iout == d_class[istart+icase]) ? 1.0 : 0.0;

   d_this_delta[icase*d_n_classes+iout] =

                                           target - d_output [ (istart + icase) * d_n_classes + iout ];

}

�Backpropagating from a Fully Connected Layer
This section presents code for backpropagating delta from a fully connected layer to a 

prior layer of any type. It has a simple two-dimensional launch. Each case has its own 

block or set of blocks. The thread in a block is associated with the hidden neuron in the 

receiving layer, the layer prior to the fully connected layer whose delta already exists. In 

the code to follow, layer ilayer is receiving the backpropagated delta, and ilayer+1 is the 

fully connected layer. Here is the launch code:

int cuda_backprop_delta_FC (

   int nc,                    // Number of  cases in batch

   int ilayer,               // Hidden layer being processed

   int nhid_this          // Number of  hidden neurons in this layer

   )

{

   int warpsize, threads_per_block;

   dim3 block_launch;

   cudaError_t error_id;

   warpsize = deviceProp.warpSize;     // Threads per warp, likely 32 well into the future

   threads_per_block = (nhid_this + warpsize - 1) / warpsize * warpsize;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize;

   block_launch.x = (nhid_this + threads_per_block - 1) / threads_per_block;

   block_launch.y = nc;

   block_launch.z = 1;
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   device_backprop_delta_FC <<< block_launch, threads_per_block >>> (ilayer);

   cudaDeviceSynchronize ();

   return 0;

}

Here is the device code. Comments will be interspersed.

__global__ void device_backprop_delta_FC (

   int ilayer      // Feed is from ilayer to ilayer+1, so ilayer+1 is fully connected

   )

{

   int j, icase, ihid, nhid, n_next;

   float *next_weights;

   double *delta_ptr, *prior_delta_ptr, this_act, delta;

   ihid = blockIdx.x * blockDim.x + threadIdx.x;

   nhid = d_nhid[ilayer];       // Neurons in this hidden layer

   if  (ihid >= nhid)

      return;

   icase = blockIdx.y;

We now get the number of neurons in the next layer, and a pointer to the weight 

vector connecting the current layer to the next layer. Recall that to achieve perfect 

coalescing for the often-used weights, they are zero padded to multiples of 128 bytes. 

This is why we multiply by d_nhid_cols and d_n_classes_cols, which are the padded 

sizes. This topic is discussed on page 72. Unfortunately, this destroys coalescing in this 

particular routine. Fortunately, this routine generally requires only a tiny fraction of total 

application time, so speed is not important. Moreover, the heavy double-precision math 

does an excellent job of hiding access times. So it’s no problem at all.

   if  (ilayer == d_n_layers-1) {           // Next layer is the output layer?

      n_next = d_n_classes;

      next_weights = d_weights[ilayer+1] + ihid * d_n_classes_cols;

      }
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   else {                                            // Next layer is another hidden layer

      n_next = d_nhid[ilayer+1];

      next_weights = d_weights[ilayer+1] + ihid * d_nhid_cols[ilayer+1];

      }

At this time, d_this_delta is delta for the next layer, already computed. We now 

compute d_prior_delta. These arrays are not zero padded because their accesses are well 

coalesced and not very speed critical.

   delta_ptr = d_this_delta + icase * n_next;                // This already exists

   prior_delta_ptr = d_prior_delta + icase * nhid;         // This is being computed now

The next few lines are a direct implementation of Equation 1-19. The loop is the 

summation part of this equation. Then, for layers that have a nonlinear activation 

function, we complete the equation by multiplying by the derivative of the activation 

function. This derivative was given by Equation 1-15.

   delta = 0.0;

   for (j=0; j<n_next; j++)

      delta += delta_ptr[j] * next_weights[j];

   if  (d_layer_type[ilayer] == TYPE_FC ||

       d_layer_type[ilayer] == TYPE_LOCAL ||

        d_layer_type[ilayer] == TYPE_CONV) {

      this_act = d_act[ilayer][icase*nhid+ihid];

      delta *= 1.0 - this_act * this_act;            // Derivative; Equation 1-15 on Page 20

      }

   prior_delta_ptr[ihid] = delta;                      // Save it for doing the next layer back

}

�Backpropagating from Convolutional  
and Local Layers
When we presented code for backpropagation from convolutional and locally connected 

layers back on page 53, we reversed the summation of Equation 1-19, as this was the 

most efficient way of handling the operation in serial code. But in parallel CUDA code, it 

is more efficient to perform the summation directly because each thread handles a single 

neuron in the current layer.
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Here is the simple launch code. Recall that we are computing delta for layer ilayer, 

using existing deltas from layer ilayer+1, which is convolutional or locally connected.

int cuda_backprop_delta_nonpooled (

   int nc,              // Number of  cases in batch

   int ilayer,          // Hidden layer being processed, based on ilayer+1

   int nhid_this    // Number of  hidden neurons in this layer

   )

{

   int warpsize, threads_per_block;

   dim3 block_launch;

   cudaError_t error_id;

   warpsize = deviceProp.warpSize;       // Threads per warp, likely 32 well into the future

   threads_per_block = (nhid_this + warpsize - 1) / warpsize * warpsize;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize;

   block_launch.x = (nhid_this + threads_per_block - 1) / threads_per_block;

   block_launch.y = nc;

   block_launch.z = 1;

   device_backprop_delta_nonpooled <<< block_launch, threads_per_block >>> (ilayer);

   cudaDeviceSynchronize();

   return 0;

}

The device code is a straightforward implementation of Equation 1-19. But it does 

have some complexity that is due to reversing the mapping from a layer to the next. It’s 

easy to take a neuron in a given layer and determine the neurons in the prior layer that 

are in the activation rectangle; we’ve done it several times already. But it’s not so easy 

to take a neuron in a given layer and figure out which neurons in the next layer are fed 

by it. Most of the device code for this routine is devoted to this task. Here is the calling 

parameter list and the beginning of the routine:

__global__ void device_backprop_delta_nonpooled (

   int ilayer // Feed is from ilayer to ilayer+1, so ilayer+1 is LOCAL or CONV

   )
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{

   int k, icase, ihid, next_row, next_col, next_slice, this_row, this_col, this_slice;

   int nH, k_next, wt_cols, rstart, cstart, prod, ltype;

   int strideH, strideV, padH, padV, height, width, depth;

   int next_rstart, next_rstop, next_cstart, next_cstop;

   float *weights, *wtptr;

   double *this_delta_ptr, *prior_delta_ptr, this_act, sum;

   ihid = blockIdx.x * blockDim.x + threadIdx.x;

   if  (ihid >= d_nhid[ilayer])

      return;

This first block of code gets the (row, column, slice) coordinates of neuron ihid. This is 

the neuron whose delta we are about to compute. Then we get the case and compute the 

horizontal width of the filter that connects this layer to the next.

   prod = d_width[ilayer] * d_depth[ilayer];

   this_row = ihid / prod;

   k = ihid - this_row * prod;

   this_col = k / d_depth[ilayer];

   this_slice = k % d_depth[ilayer];

   icase = blockIdx.y;

   nH = 2 * d_HalfWidH[ilayer+1] + 1; // Horizontal filter size

We now get pointers to the next layer’s delta, which is known, and this layer’s delta, 

which we will compute here. It’s efficient to gather into registers architectural details that 

will be referenced often later.

   this_delta_ptr = d_this_delta + icase * d_nhid[ilayer+1];

   prior_delta_ptr = d_prior_delta + icase * d_nhid[ilayer];

   ltype = d_layer_type[ilayer+1];

   strideV = d_strideV[ilayer+1];

   strideH = d_strideH[ilayer+1];

   padV = d_padV[ilayer+1];

   padH = d_padH[ilayer+1];

   height = d_height[ilayer+1];

   width = d_width[ilayer+1];

   depth = d_depth[ilayer+1];
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The next few lines of code are the crux of reversing the mapping direction. Please 

understand the two comments that precede the code. We can do this in integer 

arithmetic. If necessary, review the section that starts on page 31 to understand that 

when we look back to the prior layer, the activation rectangle begins at the current 

coordinate, times the stride, minus the pad, and ends at twice the half-width later 

(inclusive). We (carefully!) reverse this direction, especially noting that if the division for 

the start was inexact, we must bypass the fractional part.

   // this >= next * stride - pad IMPLIES next <= (this + pad) / stride

   // this <= next * stride - pad + 2 * hw IMPLIES next >= (this + pad - 2 * hw) / stride

   next_rstop = this_row + padV;

   k = next_rstart = next_rstop - 2 * d_HalfWidV[ilayer+1];

   next_rstop /= strideV;

   next_rstart /= strideV;

   if  (k >= 0 && k % strideV)             // If  the division above was inexact

      ++next_rstart;                            // We must move past fractional part

   if  (next_rstop >= height)               // Stay inside the visual field

      next_rstop = height - 1;

   if  (next_rstart < 0)

      next_rstart = 0;

   next_cstop = this_col + padH;

   k = next_cstart = next_cstop - 2 * d_HalfWidH[ilayer+1];

   next_cstop /= strideH;

   next_cstart /= strideH;

   if  (k >= 0 && k % strideH)

      ++next_cstart;

   if  (next_cstop >= width)

      next_cstop = width - 1;

   if  (next_cstart < 0)

      next_cstart = 0;

Chapter 3  CUDA Code



117

Get a pointer to the weights that connect this layer to the next layer. We need to know 

the length of these padded weight vectors. A convolutional layer has the same weight 

set for every neuron in the visual field of a given slice, so weights change only with the 

slice. But a locally connected layer has a different weight set for every neuron in the layer. 

Then we zero the sum that will cumulate delta.

   weights = d_weights[ilayer+1];

   if  (ltype == TYPE_CONV)

      wt_cols = d_depth_cols[ilayer+1];

   else

      wt_cols = d_nhid_cols[ilayer+1];

   sum = 0.0;

Thanks to reversing the order of rectangle definition, which we did earlier, we know 

the exact limits of the rectangle in the next layer to which the current neuron connects. 

Thus, we can limit our summation to this rectangle. We do need the starting coordinates 

of the rectangle in the current layer so that we can compute the position of the current 

neuron in the filter. We’ve seen this simple formula many times before!

   for (next_row=next_rstart; next_row<=next_rstop; next_row++) {

      for (next_col=next_cstart; next_col<=next_cstop; next_col++) {

         // Center of  first filter is at HalfWidth-Pad; filter begins at -Pad.

         rstart = strideV * next_row - padV;

         cstart = strideH * next_col - padH;

         // This is what we would be testing if  we didn’t compute the exact limits above

         // rstop = rstart + 2 * d_HalfWidV[ilayer+1];

         // cstop = cstart + 2 * d_HalfWidH[ilayer+1];

         // if  (this_row>=rstart && this_row<=rstop && this_col>=cstart && this_col<=cstop){

         for (next_slice=0; next_slice<depth; next_slice++) {

As a point of interest, those last few commented-out lines show what we would 

be doing if we had not reversed the rectangle direction to get exact limits. It would be 

significantly more work.

Here is the last bit of cryptic computation. We compute k_next as the ordinal position 

of the neuron in the next layer that we are handling in this triply-nested loop. This 

identifies the starting weight for locally connected layers. But because convolutional 
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layers share the same weight set for all neurons in a given slice, its weight set is 

determined by the slice alone. Note that efficiency could be slightly improved, at the 

cost of slightly less clarity, if we move some aspects of these computations earlier in the 

nested loops to avoid repetition. Confident readers may want to do so.

We compute k as the location in the filter of the weight that connects neuron ihid in 

the current layer to neuron k_next in the next layer. The product of this weight times the 

delta of that next-layer neuron is a single term in the summation of Equation 1-19.

         k_next = (next_row * width + next_col) * depth + next_slice;

         if  (ltype == TYPE_CONV)

            wtptr = weights + next_slice;

         else

            wtptr = weights + k_next;

         k = ((this_row - rstart) * nH + this_col - cstart) * d_depth[ilayer] + this_slice;

         sum += this_delta_ptr[k_next] * wtptr[k*wt_cols];

         } // For next_col

      } // For next_row

   } // For next_slice

We are almost finished. The last step is to complete that equation by multiplying the 

sum by the derivative of the activation of the current neuron. Note that when we save the 

computed delta, the subscript is based on threadIdx.x, so the save is well coalesced.

   if  (d_layer_type[ilayer] == TYPE_FC ||

        d_layer_type[ilayer] == TYPE_LOCAL ||

        d_layer_type[ilayer] == TYPE_CONV) {

      this_act = d_act[ilayer][icase*d_nhid[ilayer]+ihid];

      sum *= 1.0 - this_act * this_act;     // Derivative

      }

   prior_delta_ptr[ihid] = sum;

}

Astute readers will observe that accesses to the weight vector are very poorly 

coalesced. This is the price paid for perfect coalescing when the activation is computed. 

It’s a great trade-off because in virtually all applications, the time spent computing 

activations is tremendously greater than the time spent backpropagating delta, often 

several orders of magnitude greater. So this inefficient weight access here is of no 

practical consequence.
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�Backpropagating from a Pooling Layer
The algorithm for backpropagating from a pooling layer is similar to that shown in the 

prior section. Thus, we will gloss over most explanations and focus on the few differences. 

Here is the simple launch code, which is virtually identical to that of the prior section:

int cuda_backprop_delta_pooled (

   int nc,                 // Number of  cases in batch

   int ilayer,             // Hidden layer being processed

   int nhid_this        // Number of  hidden neurons in this layer

   )

{

   int warpsize, threads_per_block;

   dim3 block_launch;

   cudaError_t error_id;

   warpsize = deviceProp.warpSize;     // Threads per warp, likely 32 well into the future

   threads_per_block = (nhid_this + warpsize - 1) / warpsize * warpsize;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize;

   block_launch.x = (nhid_this + threads_per_block - 1) / threads_per_block;

   block_launch.y = nc;

   block_launch.z = 1;

   device_backprop_delta_pooled <<< block_launch, threads_per_block >>> (ilayer);

   cudaDeviceSynchronize();

   return 0;

}

The device code is so similar at first to that in the prior section that we will list 

everything up to the point of difference here, without explanation. See the prior section 

as needed.

__global__ void device_backprop_delta_pooled (

   int ilayer // Feed is from ilayer to ilayer+1, so ilayer+1 is POOLAVG or POOLMAX

   )

{
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   int k, icase, ihid, next_row, next_col, this_row, this_col, this_slice;

   int k_next, prod, this_cols, *poolmax_id_ptr;

   int next_rstart, next_rstop, next_cstart, next_cstop;

   double *this_delta_ptr, *prior_delta_ptr, sum, this_act;

   ihid = blockIdx.x * blockDim.x + threadIdx.x;

   if  (ihid >= d_nhid[ilayer])

      return;

   prod = d_width[ilayer] * d_depth[ilayer]; // Get the 3D coordinates of  this neuron

   this_row = ihid / prod;

   k = ihid - this_row * prod;

   this_col = k / d_depth[ilayer];

   this_slice = k % d_depth[ilayer];

   icase = blockIdx.y;

   this_delta_ptr = d_this_delta + icase * d_nhid[ilayer+1];       // Coming from next layer

   prior_delta_ptr = d_prior_delta + icase * d_nhid[ilayer];        // Will compute this

   // this >= next * stride IMPLIES next <= this / stride

   // this <= next * stride + pw - 1 IMPLIES next >= (this - pw + 1) / stride

   // We can safely do this in integer arithmetic

   next_rstop = this_row;

   k = next_rstart = next_rstop - d_PoolWidV[ilayer+1] + 1;

   next_rstop /= d_strideV[ilayer+1];

   next_rstart /= d_strideV[ilayer+1];

   if  (k >= 0 && k % d_strideV[ilayer+1])

      ++next_rstart;

   if  (next_rstop >= d_height[ilayer+1])

      next_rstop = d_height[ilayer+1] - 1;

   if  (next_rstart < 0)

      next_rstart = 0;

   next_cstop = this_col;

   k = next_cstart = next_cstop - d_PoolWidH[ilayer+1] + 1;

   next_cstop /= d_strideH[ilayer+1];

   next_cstart /= d_strideH[ilayer+1];
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   if  (k >= 0 && k % d_strideH[ilayer+1])

      ++next_cstart;

   if  (next_cstop >= d_width[ilayer+1])

      next_cstop = d_width[ilayer+1] - 1;

   if  (next_cstart < 0)

      next_cstart = 0;

   sum = 0.0;

Here is where this routine differs from the prior routine. We handle average pooling 

first. We don’t have to worry about weights because the weights are fixed, not trainable. 

If this is kept in mind, we see that the algorithm is practically identical to that seen in the 

prior section. Just remember that a pooling layer maps slice by slice from the prior layer.

   if  (d_layer_type[ilayer+1] == TYPE_POOLAVG) {

      for (next_row=next_rstart; next_row<=next_rstop; next_row++) {

         for (next_col=next_cstart; next_col<=next_cstop; next_col++) {

            k_next = (next_row*d_width[ilayer+1] + next_col)*d_depth[ilayer+1] + this_slice;

            sum += this_delta_ptr[k_next];

            } // For next_col

         } // For next_row

      sum /= d_PoolWidH[ilayer+1] * d_PoolWidV[ilayer+1];

      } // POOLAVG

The other possibility is that this is max pooling. This is slightly more complex 

because exactly one of the “weights,” that which corresponds to the maximum activation 

in the prior-layer rectangle, is 1.0, and all other weights are zero. Recall that when we 

computed the activations (page 101) we saved in d_poolmax_id the position in the visual 

field of the winning prior-layer neuron. Now we see why this was a good move.

We get a pointer to this saved information. As we did in average pooling, we 

loop through the visual field of the next layer. For each neuron in the set of possible 

connections, we check to see whether the neuron in the current layer is the winner in 

the competition that determined the activation of the neuron in the next layer. If so, the 

“weight” is 1.0. Otherwise, the weight is zero.
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   else if  (d_layer_type[ilayer+1] == TYPE_POOLMAX) {

      poolmax_id_ptr = d_poolmax_id[ilayer+1] + icase * d_nhid[ilayer+1];

      this_cols = d_width[ilayer];

      for (next_row=next_rstart; next_row<=next_rstop; next_row++) {

         for (next_col=next_cstart; next_col<=next_cstop; next_col++) {

            k_next = (next_row*d_width[ilayer+1] + next_col)*d_depth[ilayer+1] + this_slice;

            // Was the current-layer neuron the winner in the MAX competition

            // for the next-layer competition?

            if  (this_row == poolmax_id_ptr[k_next] / this_cols &&

                this_col == poolmax_id_ptr[k_next] % this_cols)

               sum += this_delta_ptr[k_next]; // Weight is 1

            } // For next_col

         } // For next_row

      } // POOLMAX

Finally, we multiply by the derivative of the current layer’s activation function and 

save the result.

   if  (d_layer_type[ilayer] == TYPE_FC || d_layer_type[ilayer] == TYPE_LOCAL ||

d_layer_type[ilayer] == TYPE_CONV) {

      this_act = d_act[ilayer][icase*d_nhid[ilayer]+ihid];

      sum *= 1.0 - this_act * this_act;           // Derivative

      }

   prior_delta_ptr[ihid] = sum;                     // Save it for doing the next layer back

}

�Gradient of a Fully Connected Layer
This and the next few sections deal with computing the gradient. We will hold off on 

presenting the launch code until all layer types are covered. This is because we use a 

single gradient launch routine that selects the correct device code for each layer type.

All of the device routines implement the simple Equation 1-18, which just multiplies 

a neuron’s delta by the activation of a prior- layer neuron to get the partial derivative 

of the performance criterion with respect to the connecting weight. We begin with the 

routine for a fully connected layer, as it is the easiest to understand.
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__global__ void device_hidden_gradient_FC (

   int istart,     // Index of  first case in this batch

   int nc,         // Number of  cases in batch

   int ilayer      // Hidden layer being processed

   )

{

   int iin, ihid, nin, ninp1;

   float *gptr;

   double input;

   iin = blockIdx.x * blockDim.x + threadIdx.x;

   if  (ilayer == 0)

      nin = d_n_pred;          // Number of  inputs to each neuron in this layer

   else

      nin = d_nhid[ilayer-1];

   // icase = blockIdx.z;      // Used directly below

   if  (iin > nin)

      return;

   else if  (iin == nin)           // This is the bias term, which by definition is 1.0

      input = 1.0;

   else if  (ilayer)                 // The prior layer is a hidden layer, so get its activations

      input = d_act[ilayer-1][blockIdx.z*nin+iin];

   else                                // This is the first hidden layer, so its input is the input image

      input = d_predictors[(istart+blockIdx.z)*nin+iin];

   ihid = blockIdx.y;         // Ordinal number of  this hidden neuron

   ninp1 = nin + 1;           // We mustn’t forget the bias, so nin+1

   gptr = d_grad[ilayer] + blockIdx.z * d_n_weights; // Gradient of  hidden layer for case

   gptr[ihid*ninp1+iin] = d_this_delta[blockIdx.z*d_nhid[ilayer]+ihid] * input;

}

It’s worth noting that there are four global memory accesses.

•	 When we set input equal to a prior-layer activation, the memory offset 

is tied to threadIdx.x, so the read is very well coalesced.
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•	 When we set input equal to an element of the input image, the 

memory offset is tied to threadIdx.x, so the read is very well coalesced.

•	 When we fetch this neuron’s delta, the memory address is 

independent of the thread, so this single read value is broadcast to 

the entire warp, which is extremely efficient.

•	 When we store the computed value to the gradient vector, the 

memory offset for the store is tied to threadIdx.x, so the write is very 

well coalesced.

�Gradient of a Locally Connected or Convolutional 
Layer
This routine conceptually does the same thing as the routine in the prior section. But 

the big difference is that most connecting weights are zero. Thus, it is incumbent on us 

to make sure to process the activation-times-delta products as efficiently as possible. 

This is especially true in that for most architectures, this routine is the dominant eater 

of compute time. Efficiency is of the utmost importance, especially in regard to global 

memory reads, which are prolific.

Here is the beginning of the device code. The calling parameters should all be self-

explanatory, with one possible exception. This routine allows processing slices of the 

current layer in subsets; it does not demand that every neuron be processed at once. 

We will see later that it is sometimes necessary to break up computation into multiple 

launches, each launch processing one or more slices. The depth_offset parameter tells us 

where to begin processing (0 is the first slice), and n_depths tells us how many slices to 

process in this launch.

__global__ void device_hidden_gradient_LOCAL_CONV (

   int local_vs_conv,             // Is this a LOCAL (vs CONV) layer?

   int nfilt,                              // Filter size, (2*hwV+1) * (2*hwH+1) * depth of  input

                                            // This does not include the +1 for the bias term

   int istart,                            // Index of  first case in this batch

   int depth_offset,               // Start processing layers at this depth

   int n_depths,                     // Number of  slices to be processed

   int ilayer                            // Hidden layer being processed

   )
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{

   int k, iin, ifilt, ihid_offset, ihid_actual, prod;

   int in_row, in_col, in_slice, in_rows, in_cols, in_slices;

   int this_row, this_col, ifiltV, ifiltH;

   float *gptr;

   double input, delta;

   ifilt = blockIdx.x * blockDim.x + threadIdx.x; // <= filter size

   if  (ifilt > nfilt)

      return;

We see in the previous code that threads correspond to weights in the prior-layer 

rectangle that, when dotted with the corresponding prior-layer activations, form the 

activation of the current neuron. If hwV and hwH are the filter half-widths, there are a 

total of (2*hwV+1) * (2*hwH+1) * depth of prior layer such weights, plus one more weight 

for the bias term, feeding each neuron in the current layer. The launcher supplies this 

product, not including the +1 for the bias, in the nfilt parameter. Our first act is to get the 

dimensions of the volume feeding this layer.

   if  (ilayer == 0) {

      in_rows = d_img_rows;

      in_cols = d_img_cols;

      in_slices = d_img_bands;

      }

   else {

      in_rows = d_height[ilayer-1];

      in_cols = d_width[ilayer-1];

      in_slices = d_depth[ilayer-1];

      }

The next few lines of code are a bit tricky. Recall that we may be starting gradient 

computation at some slice past the first. We get the offset from the first neuron in the 

first slice being processed to the neuron being processed in blockIdx.y. As we’ll see in the 

launch code later, the maximum value of this quantity is guaranteed to be a multiple of 

the visual field size of the current layer, minus one. Thus, a launch will always process 

exactly n_depths times the visual field size neurons. No launch will ever process just part 

of the visual field.
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   ihid_offset = blockIdx.y;                                             // Offset into this launch set

   prod = d_width[ilayer] * d_height[ilayer];                   // Size of  visual field, a slice

   k = ihid_offset % n_depths + depth_offset;              // Actual starting slice

   ihid_actual = ihid_offset / n_depths * d_depth[ilayer] + k;

The code shown previously is necessary because we will be working with two 

different versions of ihid, the neuron in the current layer. We have ihid_offset, the offset 

into the subset of slices being processed in this launch, and we also have ihid_actual, the 

ordinal position in the entire layer. These four lines compute the actual starting slice, k, 

as the remainder from dividing the offset by the number of depths in this launch and 

then adding the offset to the first slice. Remember that neurons are ordered with depth 

changing fastest. Then we divide the offset by the number of depths to get the visual field 

position, multiply by the layer’s depth to get the start of slices in this visual field position, 

and add the actual starting slice.

If this is not clear, imagine a chessboard with checkers stacked up in equal numbers 

on every square. You have a sheet of paper lying partway up the set of stacks. The board 

is the visual field, and the stacks of checkers are the slices. The sheet of paper marks the 

start of the set of slices being processed. Counting starts at the bottom layer at the top-

left corner. It goes up the first stack, then moves on to the bottom of the next stack to the 

right, and so forth. Now work through the code with this image in mind.

Before continuing, we have to take a brief break to discuss the difference between 

gradient computation for convolutional layers versus locally connected layers. The 

former uses the same filter weight set for all neurons in the visual field of a given slice, 

while the latter uses a different weight set for every neuron. That latter situation is just a 

specialized version of a fully connected layer most of whose connection weights are zero, 

and hence computation is similar to what we’ve already seen. But the former situation 

is unusual in that perturbing a single weight will impact activations all across the visual 

field. How do we handle this complexification?

The good news is that the effects of minuscule perturbation are linear, so to compute 

the partial derivative with respect to a given weight, we simply compute the weight’s 

partial derivative for every individual neuron in the visual field, exactly as if this were a 

locally connected layer, and add them.

The bad news is that the vector we use to store the gradient has slots for only 

the common set of weights. If we are going to use the same algorithm for both layer 

types (and this is the most efficient way to do it), then we need to have a work area for 
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temporarily holding the individual gradients across the visual field. We’ll compute them, 

store them in this work area, and then invoke a separate kernel to sum them. Allocation 

of this work area will be discussed later in this chapter. For now, assume that it exists. It is 

called d_convgrad_work, and its length is d_max_convgrad_each per case.

We can continue exploring this device routine now. If this thread is handling the 

bias term, things are simple. Recall that blockIdx.z is the case in this batch, d_n_prior_

weights[ilayer] is the number of weights, and the bias term is the last entry in the weight 

vector. If this is a locally connected layer, we store the derivative (delta, because 

the activation of a bias term is 1) directly into the gradient vector. But if this is a 

convolutional layer, we store delta in the work area just discussed. For perfect coalescing, 

this work area is padded to a multiple of 128 bytes, and this padded length is d_convgrad_

cols[ilayer].

   if  (ifilt == nfilt) { // Bias term

      delta = d_this_delta[blockIdx.z*d_nhid[ilayer]+ihid_actual];

      if  (local_vs_conv) {

         gptr = d_grad[ilayer] + blockIdx.z * d_n_weights;

         gptr[ihid_actual*d_n_prior_weights[ilayer]+d_n_prior_weights[ilayer]-1] = delta;

         }

      else {

         gptr = d_convgrad_work + blockIdx.z * d_max_convgrad_each;

         gptr[ihid_offset*d_convgrad_cols[ilayer]+d_n_prior_weights[ilayer]-1] = delta;

         }

      return;

      }

If we get here, this is not the bias term. Get the location of this kernel within the filter. 

The thread defines ifilt, the ordinal number of the filter weight. Remember that the order 

of weight storage for the filter is (height, width, slice).

   prod = (2 * d_HalfWidH[ilayer] + 1) * in_slices;             // This many elements per row

   ifiltV = ifilt / prod;                             // Vertical position in filter

   k = ifilt - ifiltV * prod;

   ifiltH = k / in_slices;                        // Horizontal position in filter

   in_slice = k % in_slices;                // Input slice to which this filter weight applies
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Get the location of this neuron within the volume of the current layer.

   prod = d_width[ilayer] * d_depth[ilayer];            // Size of  current layer’s visual field

   this_row = ihid_actual / prod;                            // Row of  current neuron

   k = ihid_actual - this_row * prod;

   this_col = k / d_depth[ilayer];                             // Column of  current neuron

//   this_slice = k % d_depth[ilayer];                      // Not needed; here for clarity only

Now that we know the neuron in the current layer, and hence the corresponding 

rectangle in the prior (input) layer, we can get the location of this filter element within 

the input volume. Because of padding, it may be outside an edge, in which case there is 

nothing to do.

We have seen the basic math for locating the prior-layer rectangle several times 

before, but here it is once again in case you’ve forgotten:

•	 The filter center is at Stride * CurrentPos + HalfWidth - Pad.

•	 The upper-left corner is at Stride * CurrentPos - Pad.

   in_row = d_strideV[ilayer] * this_row - d_padV[ilayer] + ifiltV;

   if  (in_row < 0 || in_row >= in_rows)             // Outside top or bottom edge

      return;

   in_col = d_strideH[ilayer] * this_col - d_padH[ilayer] + ifiltH;

   if  (in_col < 0 || in_col >= in_cols)                // Outside left or right edge

      return;

We get a pointer to the place where we will put the computed derivative, exactly as 

we did for the bias term earlier. Also, we fetch delta from global memory. Note that the 

memory address of delta is independent of the thread, so this single value is efficiently 

broadcast to the entire warp with a single load.

   if  (local_vs_conv)

      gptr = d_grad[ilayer] + blockIdx.z * d_n_weights;

   else

      gptr = d_convgrad_work + blockIdx.z * d_max_convgrad_each;

   delta = d_this_delta[blockIdx.z*d_nhid[ilayer]+ihid_actual];
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We’ve got delta, and we know where to put the derivative. Now we fetch the input 

corresponding to this filter weight. Adjacent threads have adjacent memory accesses, 

though not zero padded for alignment. But zero padding would do no good here because 

in the most general case warps will only by chance start properly aligned. So, in the 

worst case, coalescing will be very good. And if in_slices and the prior-layer size are both 

multiples of 16 (activities are double, not float), then coalescing will be perfect.

   iin = (in_row * in_cols + in_col) * in_slices + in_slice;

   if  (ilayer)

      input = d_act[ilayer-1][blockIdx.z*d_nhid[ilayer-1]+iin];

   else

      input = d_predictors[(istart+blockIdx.z)*d_n_pred+iin];

The last step is to store the computed gradient value. Adjacent threads access adjacent 

memory, so at worst, coalescing is very good. There is no zero padding of the gradient 

vector for alignment. Zero padding would help for locally connected layers, because 

ifilt starts at zero. But that would complicate the code a lot, and this is a small fraction of 

instructions. Also, the kernel is generally limited by the math pipeline. And of course if 

n_prior_weights is a multiple of 32, all is good! Finally, d_convgrad_work is padded properly, so 

for convolutional layers (which is mostly what we use!), coalescing is perfect.

   if  (local_vs_conv)

      gptr[ihid_actual*d_n_prior_weights[ilayer]+ifilt] = input * delta;

   else

      gptr[ihid_offset*d_convgrad_cols[ilayer]+ifilt] = input * delta;

}

�Flattening the Convolutional Gradient
We saw that for a convolutional layer, we store the gradient term of each individual 

neuron of a slice’s visual field in a work area. Thus, we must sum them to get the gradient 

for the common filter weight set. Each slice has its own set of filter weights, so this 

summation is done separately for each slice in the current layer. Here is the beginning 

of the device routine for doing this. Just as was the case for computing the gradient, we 

allow here for the launch, processing just a subset of all slices in the current layer. Thus, 

islice_start is the index of the first slice to be processed, and max_depth is the number of 

slices to process in this launch.
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__global__ void device_flatten_gradient (

   int islice_start,                // Index of  first slice in this batch

   int max_depth,               // Max slices in launch, <= slices reserved in convgrad_work

   int ilayer                          // Hidden layer being processed

   )

{

   int k, islice, icase, iprior, irow, icol;

   double sum;

   float *workptr, *gradptr;

   iprior = blockIdx.x * blockDim.x + threadIdx.x;

   if  (iprior >= d_n_prior_weights[ilayer])

      return;

   islice = blockIdx.y;

   icase = blockIdx.z;

We see in the previous code that the thread determines the location in the filter 

rectangle that this thread will handle. The current-layer slice and the case come from the 

block. Get pointers to the gradient vector that will be computed and the work area that is 

to be flattened by summation. Initialize the sum for this thread to zero.

   gradptr = d_grad[ilayer] + icase * d_n_weights;

   workptr = d_convgrad_work + icase * d_max_convgrad_each;

   sum = 0.0;

The final few lines do the summation and save the gradient. We pass through every 

neuron in the visual field of this slice of the current layer. For each neuron, compute k 

as the ordinal position of this neuron in the complete set. This lets us get the previously 

computed gradient value in the work area. Recall that d_convgrad_cols is the length 

of the zero-padded rows of this work area. This causes these fetches to be perfectly 

coalesced. Note that k could be computed with slightly better efficiency by placing initial 

computation outside one or both loops. However, this routine requires an insignificant 

fraction of the total run time, and so clarity is more important. Also note that the store to 

the gradient is, worst case, very well coalesced.

   for (irow=0; irow<d_height[ilayer]; irow++) {

      for (icol=0; icol<d_width[ilayer]; icol++) {
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         k = (irow * d_width[ilayer] + icol) * max_depth + islice; // Neuron at irow, icol, islice

         sum += workptr[k*d_convgrad_cols[ilayer]+iprior];

         }

      }

   gradptr[(islice+islice_start)*d_n_prior_weights[ilayer]+iprior] = sum;

}

�Launch Code for the Gradient
This section presents the code that handles all launches related to computation of the 

gradient. It contains two complications. First, for convolutional layers, we must deal with 

the work area. It is allocated during initialization, and this will not be covered here; the 

complete code can be found in the file MOD_CUDA.cu. However, the code shown here 

should make clear how the allocation is done.

The second complication is that for any architecture other than tiny, we will break up 

the task into several launches. There are two reasons for this breakup. First, the memory 

requirement for the convolutional work area can be large, and its size can be limited by 

processing subsets of the depth. Second, in most applications, gradient computation is 

the primary eater of time. By splitting the task into multiple launches, we can prevent the 

infamous Windows WDDM timeout.

Here is the beginning of this routine:

int cuda_hidden_gradient (

   int max_hid_grad,          // Max hid in a CONV hid grad launch

   int max_mem_grad,       // Maximum CONV working memory (MB) per CUDA launch

   int istart,                         // Index of  first case in this batch

   int nc,                              // Number of  cases in batch

   int ilayer,                         // Hidden layer being processed

   int type,                           // Type of  this layer

   int nhid_this,                   // Number of  hidden neurons in this layer

   int nhid_prior,                  // And in prior layer

   int depth,                        // Depth of  this layer

   int n_prior_weights         // N of  inputs per neuron (including bias) to prior layer

   )
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{

   int i, nhid_launch, ihid_start, warpsize, threads_per_block, field, divisor;

   dim3 block_launch;

   cudaError_t error_id;

   field = nhid_this / depth;                            // Visual field size = height * width

   warpsize = deviceProp.warpSize;              // Threads per warp, likely 32 into the future

The only potentially confusing parameters in the previous calling list are the first two, 

max_hid_grad and max_mem_grad. They can be set by the user. The first is the maximum 

number of hidden neurons that may be processed in a launch. Its maximum value is 

65535, a concession to device hardware limits. Typically, the user would reduce this in 

order to bring launch times under the Windows WDDM timeout limit. The second is 

the maximum number of megabytes of device memory to allocate for a work area for 

computing the convolutional gradient.

If this is a fully connected layer, we just launch the routine that we saw on page 122. 

The +1 for threads includes the bias term in the gradient computation.

   if  (type == TYPE_FC) {

      threads_per_block = (nhid_prior + 1 + warpsize - 1) / warpsize * warpsize;

      if  (threads_per_block > 4 * warpsize)

         threads_per_block = 4 * warpsize;

      block_launch.x = (nhid_prior + 1 + threads_per_block - 1) / threads_per_block;

      block_launch.y = nhid_this;

      block_launch.z = nc;

      device_hidden_gradient_FC <<< block_launch, threads_per_block >>>

                                                           (istart, nc, ilayer);

      cudaDeviceSynchronize();

      }

The next few lines determine how many hidden neurons will be processed in each of 

the likely multiple launches.

   else if  (type == TYPE_LOCAL || type == TYPE_CONV) {

      divisor = 1; // Figure out how much we have to divide depth to meet limits

      if  (type == TYPE_CONV) {        // For user’s scratch memory limitation

         conv_cols = (n_prior_weights + 31) / 32 * 32; // CONV scratch is zero padded

         n_max = 1024 * 1024 * max_mem_grad / (max_batch * conv_cols * sizeof(float));

         }
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      else                                            // LOCAL layer does not use scratch memory

         n_max = MAXPOSNUM;       // Largest positive number = 2147483647

      for (;;) {

         nhid_launch = depth / divisor * field; // We will launch this many hid at a time

         if  (nhid_launch <= max_hid_grad && nhid_launch <= n_max)

            break;

         ++divisor;

         }

      if  (nhid_launch < field)    // Careless user may have set it too small

         nhid_launch = field;      // So ignore it

In the previous code, we determine how many (divisor) roughly equally sized 

launches we need in order to satisfy both of two limits imposed by the user. The user 

specifies a maximum number of megabytes for the convolution gradient work area. 

(This is limited to 2,047.) We multiply this by the number of bytes in a megabyte. A single 

hidden neuron will require max_batch*conv_cols floats, so we divide to get the limit on the 

number of hidden neurons that can be processed.

Our gradient routine demands that complete visible fields be processed, so trial 

values of nhid_launch are always a multiple of the field size. We increase the splitting 

divisor until both user limits are satisfied.

In case a careless user specified a limit so small that at least one visible field cannot 

be processed, we fix the situation.

The initialization code performed this same operation and allocated the scratch 

memory according to the largest memory requirement of any layer.

On the next page we show the first half of the launch loop. This loop performs the 

multiple partial launches, each time processing a multiple of the visible field. The last 

launch will be smaller than the others if (as is common) division into equal size launches 

is not possible.

Before starting the launch loop, we zero the convolution work area. This is because 

the gradient routine will not compute “undefined” entries because of edge padding, but 

the flattening routine will sum everything. Garbage will wreak havoc. If the final pass is a 

different size, this zeroing must be repeated.
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      if  (type == TYPE_CONV) {

         // We must zero the CONV work area because some entries may be undefined

         // This must also be done in the last pass, because a partial launch at the end

         // may have garbage from the prior launch in ‘undefined’ locations.

         for (i=0; i<max_convgrad_work; i++)

            fdata[i] = 0.0;     // The gradient routine may leave some of  these unset

         error_id = cudaMemcpy (h_convgrad_work, fdata,

                              max_convgrad_work * sizeof(float), cudaMemcpyHostToDevice);

         }

      for (ihid_start=0; ihid_start < depth*field; ihid_start+=nhid_launch) { // Launch loop

         threads_per_block = (n_prior_weights + warpsize - 1) / warpsize * warpsize;

         if  (threads_per_block > 4 * warpsize)

            threads_per_block = 4 * warpsize;

         block_launch.x = (n_prior_weights + threads_per_block - 1) / threads_per_block;

         block_launch.y = nhid_launch;

         if  (depth*field - ihid_start < nhid_launch) {          // Last launch may be partial

            block_launch.y = depth*field - ihid_start;         // Size of  partial launch

            if  (type == TYPE_CONV) {                               // Must zero work area again

               for (i=0; i<max_convgrad_work; i++)             // because the layout changed

                  fdata[i] = 0.0;

               error_id = cudaMemcpy (h_convgrad_work, fdata,

                                 max_convgrad_work * sizeof(float), cudaMemcpyHostToDevice);

               }

            } // If  last launch is partial

         block_launch.z = nc;             // Number of  cases

         device_hidden_gradient_LOCAL_CONV

                     <<< block_launch, threads_per_block >>>

                     (type==TYPE_LOCAL ? 1 : 0, n_prior_weights-1, istart,

                     ihid_start/field, block_launch.y/field, ilayer);

         cudaDeviceSynchronize();
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The launch just shown computed the gradient for this set of slices, usually just part of 

the entire depth of the current layer. If this is a convolutional layer, the individual neuron 

gradient terms are in the work area. We now need to flatten this matrix by summing 

across the entire visual field, separately for each layer.

         if  (type == TYPE_CONV) { // Must also flatten gradient?

            threads_per_block = (n_prior_weights + warpsize - 1) / warpsize * warpsize;

            if  (threads_per_block > 4 * warpsize)                // It may be sensible to increase

               threads_per_block = 4 * warpsize;                  // this limit for modern devices

            block_launch.x = (n_prior_weights + threads_per_block - 1) / threads_per_block;

            block_launch.y /= field;                                       // Number of  slices in launch

            block_launch.z = nc;                                           // Number of  cases

            device_flatten_gradient <<< block_launch, threads_per_block >>>

                                                  (ihid_start / field, block_launch.y, ilayer);

            cudaDeviceSynchronize();

            } // CONV so flatten gradient matrix

         } // Launch loop

      } // LOCAL or CONV

   return 0;

}

�Fetching the Gradient
The last piece of important CUDA code is the routine for copying the gradient from the 

device to the host. This happens in two steps. First, a small, simple kernel is launched to 

sum the individual case gradients into a single gradient for the batch being processed. 

Then a ridiculously complex routine sums those values into an array in host memory. 

Why ridiculously complex? Because the order of weights in the device gradient is neither 

the order of weights on the device nor the order on the host! (Ha! You failed to notice this 

in the gradient routines, didn’t you?) For the device gradient, the input neuron changes 

fastest, ordered (row, column, slice). The current neuron is also ordered (row, column, 

slice). It’s all about memory coalescing. Most of efficient CUDA programming is, isn’t it?
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But let’s begin with the almost trivial device routine that sums the current batch 

of case gradients. Each thread is dedicated to a single weight. There is no reason to 

use a sophisticated summation algorithm like reduction because this routine takes 

insignificantly small computer time.

__global__ void device_fetch_gradient (

   int nc          // Number of  cases in batch

   )

{

   int index, icase;

   float *gptr;

   double sum;

   index = blockIdx.x * blockDim.x + threadIdx.x;

   if  (index >= d_n_weights)

      return;

   sum = 0.0;

   gptr = d_grad[0] + index;                            // Complete gradient starts at [0]

   for (icase=0; icase<nc; icase++)                // For all cases in this batch

      sum += gptr[icase*d_n_weights];

   *gptr = sum;

}

Here is the routine called by the host. As it processes batches, it cumulates the 

sum of the batch gradients in hostgrad. The calling parameters here should all be self-

explanatory.

int cuda_fetch_gradient (

   int nc,                           // Number of  cases in batch

   int n_weights,               // Number of  weights

   double **hostgrad,       // Gradient sum output here

   int n_classes,               // Number of  outputs

   int n_layers,                 // Hidden layers; does not include output

   int *layer_type,             // Type of  each layer

   int img_rows,               // Size of  input image

   int img_cols,

   int img_bands,
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   int *height,                   // Height of  visible field in each layer

   int *width,                    // Width of  visible field

   int *depth,                   // Number of  slices in each layer

   int *nhid,                      // Number of  hidden neurons in each layer

   int *hwH,                      // Half-width of  filters

   int *hwV

   )

{

   int warpsize, blocks_per_grid, threads_per_block;

   int n, n_prior, ilayer, isub, idepth, iheight, iwidth, ndepth, nheight, nwidth;

   int in_row, in_col, in_slice, in_n_height, in_n_width, in_n_depth;

   double *gptr;

   float *fptr;

   cudaError_t error_id;

   warpsize = deviceProp.warpSize;       // Threads per warp, likely 32 well into the future

   threads_per_block = (n_weights + warpsize - 1) / warpsize * warpsize;

   if  (threads_per_block > 4 * warpsize)

      threads_per_block = 4 * warpsize;

   blocks_per_grid = (n_weights + threads_per_block - 1) / threads_per_block;

   device_fetch_gradient <<< blocks_per_grid, threads_per_block >>> (nc);

   cudaDeviceSynchronize();

   error_id = cudaMemcpy (fdata, grad, n_weights * sizeof(float),

                                           cudaMemcpyDeviceToHost);

That much was straightforward. We now have in fdata the sum of individual case 

gradients for this batch. We will sum them into the host’s gradient vector, but they must 

be reordered.

   fptr = fdata;

   for (ilayer=0; ilayer<=n_layers; ilayer++) {

      gptr = hostgrad[ilayer];

Chapter 3  CUDA Code



138

/*

   Fully connected

*/

      if  (ilayer == n_layers || layer_type[ilayer] == TYPE_FC) {

         if  (ilayer == 0) {

            in_n_height = img_rows;

            in_n_width = img_cols;

            in_n_depth = img_bands;

            }

         else {

            in_n_height = height[ilayer-1];

            in_n_width = width[ilayer-1];

            in_n_depth = depth[ilayer-1];

            }

         n_prior = in_n_height * in_n_width * in_n_depth + 1;

         if  (ilayer == n_layers)

             n = n_classes; // Equals depth in fully connected

         else

            n = nhid[ilayer]; // Equals depth in fully connected

         for (idepth=0; idepth<n; idepth++) {

            for (in_row=0; in_row<in_n_height; in_row++) {

               for (in_col=0; in_col<in_n_width; in_col++) {

                  for (in_slice=0; in_slice<in_n_depth; in_slice++) {

                     // Compute location of  this neuron’s weight vector in host

                     isub = idepth*n_prior + (in_slice*in_n_height + in_row)*in_n_width + in_col;

                     gptr[isub] += *fptr++;

                     } // For in_slice

                  } // For in_col

               } // For in_row

            // Bias

            isub = idepth * n_prior + n_prior - 1;

            gptr[isub] += *fptr++;

            } // For idepth

         }
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/*

   LOCAL

*/

      else if  (layer_type[ilayer] == TYPE_LOCAL) {

         // For LOCAL layers, neuron layout in current layer is (height, width, depth).

         n = nhid[ilayer];

         ndepth = depth[ilayer];

         nheight = height[ilayer];

         nwidth = width[ilayer];

         in_n_height = 2 * hwV[ilayer] + 1;

         in_n_width = 2 * hwH[ilayer] + 1;

         if  (ilayer == 0)

            in_n_depth = img_bands;

         else

            in_n_depth = depth[ilayer-1];

         n_prior = in_n_height * in_n_width * in_n_depth + 1;

         for (iheight=0; iheight<nheight; iheight++) { // nhid = ndepth * nheight * nwidth

            for (iwidth=0; iwidth<nwidth; iwidth++) {

               for (idepth=0; idepth<ndepth; idepth++) { // Note the order on the dev ice

                  for (in_row=0; in_row<in_n_height; in_row++) {

                     for (in_col=0; in_col<in_n_width; in_col++) {

                        for (in_slice=0; in_slice<in_n_depth; in_slice++) {

                           // Compute location of  this neuron’s weight in host

                           // First locate the neuron in the current layer, then update per input

                           isub = (idepth * nheight + iheight) * nwidth + iwidth;

                           isub = isub*n_prior+(in_slice*in_n_height + in_row)*in_n_width+in_col;

                           gptr[isub] += *fptr++;

                           } // For in_slice

                        } // For in_col

                     } // For in_row

                  // Bias

                  isub = (idepth * nheight + iheight) * nwidth + iwidth; // Neuron in this layer

                  isub = isub * n_prior + n_prior - 1;
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                  gptr[isub] += *fptr++;

                  } // For idepth

               } // For iwidth

            } // For iheight

         }

/*

   CONV

*/

      else if  (layer_type[ilayer] == TYPE_CONV) {

         nheight = height[ilayer];

         nwidth = width[ilayer];

         ndepth = depth[ilayer];

         in_n_height = 2 * hwV[ilayer] + 1;

         in_n_width = 2 * hwH[ilayer] + 1;

         if  (ilayer == 0)

            in_n_depth = img_bands;

         else

            in_n_depth = depth[ilayer-1];

         n_prior = in_n_height * in_n_width * in_n_depth + 1;

         for (idepth=0; idepth<ndepth; idepth++) { // Just depth; neurons in slice same wts

            for (in_row=0; in_row<in_n_height; in_row++) {

               for (in_col=0; in_col<in_n_width; in_col++) {

                  for (in_slice=0; in_slice<in_n_depth; in_slice++) {

                     // Compute location of  this neuron’s weight vector in host

                     isub = idepth*n_prior + (in_slice*in_n_height + in_row)*in_n_width + in_col;

                     gptr[isub] += *fptr++;

                     } // For in_slice

                  } // For in_col

               } // For in_row

            //Bias

            isub = idepth * n_prior + n_prior - 1;

            gptr[isub] += *fptr++;
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            } // For idepth

         }

      } // For ilayer

   return 0;

}

�Putting It All Together
We’ve seen most of the individual components of gradient computation. We finish this 

CUDA chapter with the host routine that calls the routines presented to this point. Here 

is its beginning. The caller of this routine can specify via jstart and jstop a range of cases 

in the training set to be processed. This facilitates advanced training/testing algorithms. 

The caller also specifies whether this routine is to compute the gradient in addition to 

the performance criterion.

double Model::model_cuda (int find_grad, int jstart, int jstop)

{

   int i, nc, ilayer, ret_val, ibatch, n_in_batch, n_subsets, max_batch, istart, istop;

   int n_done, n_launches, n_prior, ineuron, ivar;

   double ll, *wptr, *gptr, wt, wpen;

   nc = jstop - jstart;             // Number of  training cases to process

To prevent integer overflow in allocating memory for the gradient, we compute 

the minimum number of subsets (n_subsets) needed to get each subset small enough. 

Here, max_batch is the maximum batch size (number of cases in a batch). The CUDA 

initialization call will allocate max_batch * n_all_weights floats. The unit of execution is a 

single case, so we will compute the gradient requirement of each individual case. Recall 

that the model member variable n_all_weights is the total number of weights for the 

model, and MAXPOSNUM is the maximum positive number. We could do some fancier 

math using unsigned integers, but that’s tricky and fraught with opportunities for error. 

Plus, this limit will not often be hit, and smaller batches are fine anyway.

   max_batch = MAXPOSNUM / (n_all_weights * sizeof(float)); // Memory allocation size

   if  (max_batch > 65535)                               // Grid dimension hardware limitation

      max_batch = 65535;
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   // The user may want to split into more subsets to prevent CUDA timeout

   if  (max_batch > TrainParams.max_batch)

      max_batch = TrainParams.max_batch;

   n_subsets = (nc + max_batch - 1) / max_batch;

The CUDA device must be initialized once. In unusual situations, the actual 

maximum batch size may be a little different from that computed previously (but still 

safe), so now that we know the number of subsets, we recompute the max batch size 

once again, just to be sure. The following little loop is exactly the same form as that 

which will control division of the training set into separately processed subsets. For each 

batch, it computes the number of cases to do in this batch by looking at the number 

left to do and dividing by the number of batches left to do. Then it calls the CUDA 

initialization routine, which allocates memory on the device, initializes local constants, 

and so forth. The complete source code for this routine is in the file MOD_CUDA.cu.

   if  (! cuda_initialized) {

      n_done = 0;         // Must find max batch size for cuda init

      for (ibatch=0; ibatch<n_subsets; ibatch++) {

         n_in_batch = (nc - n_done) / (n_subsets - ibatch);    // Cases left to do / batches left

         if  (ibatch == 0 || n_in_batch > max_batch)

            max_batch = n_in_batch;

         n_done += n_in_batch;

         }

      cuda_init (...);

      cuda_initialized = 1;

      }

There is a global variable called cuda_weights_changed. It is set to one any time the 

model weights are adjusted by the training routine. Then, when this criterion/gradient 

routine is called, it checks this variable and sends the new set of weights to the device if 

the flag is set.

   if  (cuda_weights_changed) {

      ret_val = cuda_weights_to_device (...);

      cuda_weights_changed = 0;

      }
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We will sum the gradient across all batches, so it must be zeroed.

   if  (find_grad) {

      for (i=0; i<n_all_weights; i++)

         gradient[i] = 0.0;

      }

The main batch loop now begins. The user’s starting and stopping cases are in jstart 

and jstop. We break this range into batches with istart and istop.

   istart = jstart;

   n_done = 0;         // Number of  training cases done in this epoch so far

   for (ibatch=0; ibatch<n_subsets; ibatch++) {

      n_in_batch = (nc - n_done) / (n_subsets - ibatch);         // Cases left / batches left

      istop = istart + n_in_batch;                                               // Stop just before this

/*

   Forward pass

*/

      for (ilayer=0; ilayer<n_layers; ilayer++) {          // All hidden; do output separately

         if  (layer_type[ilayer] == TYPE_FC)

            ret_val = cuda_hidden_activation_FC (istart, istop, nhid[ilayer], ilayer);

         else if  (layer_type[ilayer] == TYPE_LOCAL)

            ret_val = cuda_hidden_activation_LOCAL_CONV_shared (1, istart, istop,

                     nhid[ilayer], depth[ilayer], ilayer);

         else if  (layer_type[ilayer] == TYPE_CONV)

            ret_val = cuda_hidden_activation_LOCAL_CONV_shared (0, istart, istop,

                     nhid[ilayer], depth[ilayer], ilayer);

         else if  (layer_type[ilayer] == TYPE_POOLAVG)

            ret_val = cuda_hidden_activation_POOLED (1, istart, istop, nhid[ilayer],

                                                                             depth[ilayer], ilayer);

         else if  (layer_type[ilayer] == TYPE_POOLMAX)

            ret_val = cuda_hidden_activation_POOLED (0, istart, istop, nhid[ilayer],

                                                                             depth[ilayer], ilayer);

         } // For ilayer
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/*

   Output layer going forward, then SoftMax

*/

      if  (n_layers == 0)

         ret_val = cuda_output_activation_no_hidden (istart, istop);

      else

         ret_val = cuda_output_activation (istart, istop);

      ret_val = cuda_softmax (istart, istop);

The previous code loops through all hidden layers (but not the output layer) in 

a forward pass, computing activations layer by layer. Then it computes the output 

activation, using separate routines depending on if there are hidden layers versus direct 

input-to-output connections. Finally, it does the SoftMax conversion of outputs.

If the caller also wants the gradient, we zero the gradient on the device because for 

some (poorly designed) models, some terms may truly be zero but are architecturally 

undefined. Compute the output delta and gradient and then loop backward through all 

hidden layers, backpropagating delta and computing the gradient.

      if  (find_grad) {

         ret_val = cuda_zero_gradient (istop-istart, n_all_weights);

         ret_val = cuda_output_delta (istart, istop, n_classes);

         if  (n_layers == 0)

            ret_val = cuda_output_gradient (istart, istop-istart, n_pred, -1, n_classes);

         else

            ret_val = cuda_output_gradient (istart, istop-istart, nhid[n_layers-1],

                                                                n_layers-1, n_classes);

         for (ilayer=n_layers-1; ilayer>=0; ilayer--) {

            if  (ilayer == n_layers-1 || layer_type[ilayer+1] == TYPE_FC)

               ret_val = cuda_backprop_delta_FC (istop-istart, ilayer, nhid[ilayer]);

            else if  (layer_type[ilayer+1] == TYPE_LOCAL ||

                        layer_type[ilayer+1] == TYPE_CONV)

               ret_val = cuda_backprop_delta_nonpooled (istop-istart, ilayer, nhid[ilayer]);

            else if  (layer_type[ilayer+1] == TYPE_POOLAVG ||

                        layer_type[ilayer+1] == TYPE_POOLMAX)

               ret_val = cuda_backprop_delta_pooled (istop-istart, ilayer, nhid[ilayer]);
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            ret_val = cuda_move_delta (istop-istart, nhid[ilayer]); // Move prior to this

            ret_val = cuda_hidden_gradient (TrainParams.max_hid_grad,

                                   TrainParams.max_mem_grad, istart, istop-istart, ilayer,

                                   layer_type[ilayer], nhid[ilayer], ilayer ? nhid[ilayer-1] : n_pred,

                                   depth[ilayer], n_prior_weights[ilayer], &n_launches);

            } // For all layers, going backwards

After the backward passes are complete, we fetch the gradient, adding it into 

our batch sum, and then loop back for the next batch. When all batches have been 

processed, we sum the log likelihood criterion across all training cases and normalize 

the gradient in the same way we normalize the criterion. The final step before returning 

is to apply the weight penalty, but this code will not be shown here, as it is long and 

identical to what we saw on page 59.

         ret_val = cuda_fetch_gradient (istop-istart, n_all_weights, layer_gradient,

                                        n_classes, n_layers, layer_type,

                                        IMAGE_rows, IMAGE_cols, IMAGE_bands,

                                        height, width, depth, nhid,

                                        HalfWidH, HalfWidV);

         } // If  find_grad

      n_done += n_in_batch;

      istart = istop;                    // Advance to the next batch

      } // For ibatch

   ret_val = cuda_ll (nc, &ll);

   if  (find_grad) {

      for (i=0; i<n_all_weights; i++)

         gradient[i] /= (nc * n_classes);

      }

... Apply weight penalty ...

   return ll / (nc * n_classes) + penalty; // Negative log likelihood

}
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CHAPTER 4

CONVNET Manual
This chapter is a user’s manual for the CONVNET program, available as a free download 

from my web site. The first section lists every menu option, along with a brief description 

of its purpose and the page number on which more details can be found if the short 

description is not sufficient.

�Menu Options
First we’ll look at the menu options.

�File Menu
These are the options on the File menu.

Read control file, page 150

A standard text file is read. This file contains architectural 

specifications for the model (this is the only way to define 

architecture) and optionally may contain commands to read or 

create input images or train the model.

Read MNIST image

A standard MNIST-format file is read. The corresponding label file 

must be read after the image file is read. Only one MNIST image/

label pair may be read. Other file reading options are disabled 

after an MNIST image/label pair is read. It is assumed that there 

will be ten classes; this is hard-coded into the program. However, 

the size of the images is not hard-coded. It is read from the file. 

The product of the number of rows times the number of columns 
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cannot exceed 2^16−1=65,535. This unfortunate limitation comes 

from a hardware property of current CUDA devices, which would 

be difficult to work around.

Read MNIST labels

A standard MNIST-format label file is read. It is assumed that 

there are ten classes. The corresponding MNIST image file must 

be read before the label file is read.

Read CIFAR-10 image

A standard CIFAR-10-format file is read. Multiple CIFAR-10 files 

may be read, in which case they are concatenated. This command 

cannot be used if MNIST or series data is already present.

Read series, page 151

A univariate time series is read, and a set of predictors is 

computed based on the values of the series, optionally differenced 

and/or log transformed. Class identities are generated. This 

selection brings up a menu in which parameters relevant to 

reading the series may be entered. These parameters, in the 

context of control files, are discussed starting on page 151.

Make image

An artificial image having random tones is generated to enable 

quick and easy testing of data and model configurations. The user 

specifies the height and width, the number of bands, the number 

of classes, and the number of cases. This command cannot be 

used if a dataset is already present.

Clear all data

All training data is erased, but a trained model (if it exists) is 

retained. The purpose of this command is to allow reading a test 

dataset and evaluating the performance of a trained model on this 

new dataset. A common sequence of operations is Read training 
data, Train, Clear, Read test data, Test.
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Print

The currently selected display window (created under the Display 

menu) is printed. If no window is selected, Print is disabled.

Exit

The program is terminated.

�Test Menu
These are the options on the Test menu.

Use CUDA (Toggle Yes/No)

This option is enabled only if a CUDA-capable device is present 

on the computer. If a check mark appears next to this option, the 

CUDA device will be used for compute-intensive operations. Click 

this option to toggle the check mark on and off.

Training params, page 156

Parameters relevant to training can be set. This selection brings 

up a dialog box in which these parameters may be changed from 

their default values. The nature of these parameters is discussed in 

the context of a control file on page 156.

Train, page 159

The model is trained using the data currently present. It is 

important to understand which phases of training can and cannot 

be interrupted with the Escape key. See page 159 for details.

Test

The trained model is tested with the data currently present. The 

current version of CONVNET does not allow interruption of 

computing the confusion matrix; you’ll just have to sit and wait 

for it to finish. Sorry. It’s on my list, but for some technical reasons 

it’s not a quick-and-easy fix. I hope to post updated versions of the 

program on my web site as improvements occur.
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Print model weights

All model weights are printed to the CONVNET.LOG file. This can 

be gigantic! Even modest models can have so many weights that 

writing them to the CONVNET.LOG file can take several minutes 

and consume megabytes. You’ve been warned.

�Display Menu
These are the options on the Display menu.

Display training images, page 160

A user-selectable set of the images in the current dataset is 

displayed.

Display filter images, page 160

If a trained model exists and the first hidden layer of this model is 

convolutional, this option displays as images the filter weights for 

a user-selectable set of slices.

Display activation images, page 161

If a trained model exists, this option displays as images the 

activations of the visual field of the first hidden layer for a user- 

selectable set of slices and training case.

�Read Control File
Intelligent readers will study this section and learn to perform 

most or all operations via a control file. Every CONVNET 

operation except specifying the model architecture can be done 

with the menu system, which may be the preferable approach if 

one is just idly fooling around. However, in the vast majority of 

cases, it is best for the user to first create a control file using any 

ordinary text editor and completely specify all project details in 

this file. This avoids tedious repetitive entry of parameters via 

the menu system, and it also provides hard documentation of all 

project specifications.
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A control file is an ordinary text file. Each line of this file specifies 

a single aspect of the project. Comments can be inserted by 

starting a line with two forward slashes (//). This also provides a 

convenient mechanism for temporarily deactivating lines in the 

file without deleting them.

�Making and Reading Image Data
This section describes methods for making random test images as well as reading 

popular-format image files.

MAKE IMAGE Rows Columns Bands Classes Cases

This produces a set of training images having random tones. 

The user specifies the height and width, the number of bands, 

the number of classes, and the number of cases. This command 

cannot be used if a dataset is already present.

READ MNIST IMAGE “FileName”

An MNIST image file is read. This command cannot be used if a 

dataset is already present. The corresponding label file must be 

read after the image file is read.

READ MNIST LABELS “FileName”

An MNIST label file is read. This command would normally follow 

a READ MNIST IMAGE command.

READ C10 IMAGE “FileName”

A CIFAR-10 image file is read. This command cannot be used if a 

dataset other than CIFAR-10 is already present. Multiple CIFAR-10 

image files may be read, and their contents will be concatenated.

�Reading a Time Series as Images
This is a powerful technique for converting a time series to a set of images. A moving 

window is passed across a time series. Each placement defines an image. This window 

image is divided into a user-specified number of rows (value of the series) and columns 

(relative time in the window). The path of the series is set to black in the image, and 
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everything else is set to white. Figure 4-1 shows a typical set of images produced from 

prices of OEX, the Standard and Poor’s 100 index, as the window slides along left to right.

The command to read the series and produce the image set is shown below. 

Nothing else need be specified. However, in most cases users will want to change some 

specifications from their defaults. The legal specifications are also shown, with their 

default values indicated. Naturally, all such specifications must appear before the READ 

SERIES command to which they will apply.

The series file must be an ordinary text file. It may contain a header, and it may 

contain multiple columns. If there are multiple columns, then spaces, tabs, and commas 

serve as delimiters. There is one observation per record.

READ SERIES “FileName”

A time series file is read. This command cannot be used if a 

dataset is already present. A moving window is applied to the 

series to produce a set of images.

Figure 4-1.  Series images from OEX
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SERIES COLUMN = Column

The series data can be fetched from any column. This specifies the 

column containing the desired values. The default is 1.

SERIES WINDOW = Width

This is the number of records in each window placement. Hence, 

it is the width of the images. The default is 16.

SERIES RESOLUTION = Resolution

This is the vertical resolution in each window placement. Hence, it 

is the height of the images. The default is 16.

SERIES SHIFT = Shift

This is the number of records that each window placement will 

advance to produce the next image. The default is 1.

SERIES RAWDATA

This, the default, specifies that the values read from the file are 

used as the series data.

SERIES RAWLOG

This specifies that the log of the values read from the file are used 

as the series data.

SERIES DIFFDATA

This specifies that the differences in the values read from the file 

are used as the series data. In other words, each computed series 

value is the current value of the file series minus the prior value.

SERIES DIFFLOG

This is identical to SERIES DIFFDATA except that the difference of 

the logs is used. Equivalently, this is the log of the ratios.

SERIES FRAC FULL = Fraction

This is the fraction (0–1) of training set cases that are forced to 

occupy the full vertical range of the window. Windows are not 

necessarily individually normalized (scaled), as this would distort 
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information content. Normalization is usually relative to the 

entire series. A specification of zero maps the greatest range of the 

series across all windows to the full vertical range of the window, 

meaning that (except for ties) only one window will display the full 

vertical range. In many situations this will result in many or most 

windows having very little variation; they are essentially a flat 

line. A specification of one causes each window to be individually 

normalized, so all windows display the full vertical range. This is 

probably not good, as it fails to distinguish windows having little 

series variation from those having great variation; that’s important 

information, and it’s lost. The default is 0.2. This means that the 

80th percentile (1 minus 0.2) of within-window ranges is the 

variation that maps to the full vertical range for those 80 percent 

of cases. The 20 percent of windows whose series range exceeds 

this quantity are individually normalized to full vertical range. 

A simple way of thinking about this specification is that this is 

the fraction of cases that are individually normalized to the full 

vertical range. In most applications this should be well under 0.5.

SERIES TARGET NO DIFF

This, the default, specifies that the target class is determined by 

the next value in the series past the window. This determination 

will be based on the undifferenced or differenced nature of 

the series. In other words, the target will be determined by the 

difference between the next value outside the window minus 

the last value in the window, if and only if the user specifies that 

the series is differenced. Differencing of the target matches the 

predictors.

SERIES TARGET DIFF

Specify this option if the series is not differenced (RAWDATA or 

RAWLOG) but you want the target determination to be based on 

differences. This would be appropriate, for example, in financial 

market prediction.
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SERIES CLASS ZERO

This, the default, specifies that the class of a case is defined by the 

sign of the target (which may or may not have been differenced, as 

earlier). One class is for targets greater than zero, and the other is 

for targets less than or equal to zero.

SERIES CLASS MEDIAN

This specifies that the class of a case is defined by the value of the 

target relative to the median across the training set. One class is 

for targets greater than the median, and the other is for targets less 

than or equal to the median.

SERIES CLASS THIRDS

This specifies that the class of a case is defined by the value of the 

target relative to the 33rd and 66th percentiles across the training 

set. There are three classes: low, middle, and high.

SERIES NO HEADER

This, the default, specifies that the series file has no header record. 

The data begins with the first record.

SERIES HEADER

This specifies that the series file has a header, so the first record is 

skipped.

�Model Architecture
The architecture of the model must be specified in a control file; there is no menu 

interface for doing so. Layers of the model are given in order from the first hidden layer 

to the last. There are no specifications for the input and output layers. The following 

layer types may be defined:

FULLY CONNECTED LAYER Slices

This creates a fully connected layer consisting of the specified 

number of slices. In architecture reports, it will appear as having 

one row, one column, and a depth equal to the number of slices.
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LOCAL LAYER Slices hwV hwH padV padH strideV strideH

This creates a locally connected layer having the specified number 

of slices, vertical and horizontal half-widths, vertical and horizontal 

padding, and vertical and horizontal stride. The dimensions of the 

visual field of this layer are given by Equation 1-8.

CONVOLUTIONAL LAYER Slices hwV hwH padV padH strideV strideH

This creates a convolutional layer having the specified number of 

slices, vertical and horizontal half-widths, vertical and horizontal 

padding, and vertical and horizontal stride. The dimensions of the 

visual field of this layer are given by Equation 1-8.

POOLED AVERAGE LAYER widthV widthH strideV strideH

This creates an average pooling layer with the specified vertical and 

horizontal widths (not half-widths) and stride. The dimensions of 

the visual field of this layer are given by Equation 1-8. The number 

of slices is equal to the number in the prior layer.

POOLED MAX LAYER widthV widthH strideV strideH

This creates a max pooling layer with the specified vertical and 

horizontal widths (not half-widths) and stride. The dimensions of 

the visual field of this layer are given by Equation 1-8. The number 

of slices is equal to the number in the prior layer.

�Training Parameters
The following parameters relevant to training may be set. Default values are as indicated. 

It may be that a revised CONVNET program may change these defaults from those that 

are printed here. The defaults for the current version of the program can be seen by 

selecting the Test ➤ Training parameters menu option.

MAX BATCH = Number

This is relevant only for CUDA training. Kernel launches are 

divided into subsets of the full training set to prevent the infamous 

Windows WDDM timeout. This parameter limits the maximum 

number of cases in a subset. The default is 100. Lower this number 

to lower the per-launch time for all training steps.
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MAX HID GRAD = Number

This is the maximum number of hidden neurons that will be 

processed per launch during CUDA gradient computation of 

convolutional and locally connected layers. Lowering this number 

can reduce the per-launch time for gradient computation, without 

affecting any other aspect of training. In many situations, it is best 

to leave this be huge and limit the time with the next parameter, 

MAX MEM GRAD. The default is 65535, which is the maximum 

legal value.

MAX MEM GRAD = Number

This is the preferred way to lower the time required for gradient 

computation of convolutional and locally connected layers. 

It does not impact any other operations. This specifies the 

maximum memory in megabytes to dedicate to scratch work for 

convolutional hidden layers. A useful side effect is that limiting 

the memory causes launches to be broken into smaller sets of 

hidden neurons, which reduces the per-launch compute time and 

hence can prevent Windows WDDM timeouts. Lower this number 

to reduce per-launch compute time. You may also want to use a 

smaller number if your CUDA device has limited onboard memory. 

The default is 2047 megabytes, which is the maximum legal value.

To summarize the prior three parameters, Windows limits CUDA 

computation time for a single kernel launch. The limit is generally 

two seconds. If this time is exceeded, the screen will temporarily 

go black, an error message will appear, and the application will be 

severely compromised. If this happens, you must reduce per-kernel 

time. Study the CUDA.LOG file to see where excessive per-launch 

time is occurring. Activation and gradient computation are the 

only serious time eaters. The MAX BATCH parameter impacts all 

operations. The MAX HID GRAD and MAX MEM GRAD parameters 

affect only gradient computation for locally connected and 

convolutional layers. Adjust these three parameters as needed to 

bring per-launch time under the Windows limit. The default values 

apply no limitation, which is good whenever possible, as breaking 

the task into multiple launches introduces significant overhead.
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ANNEAL ITERS = Number

This is the number of simulated annealing iterations used to 

find good starting weights for refinement. The user can interrupt 

annealing by pressing the Escape key, at which point refinement will 

commence with the best weights found so far. The default is 100.

ANNEAL RANGE = Number

This is the approximate range of random values tried at the start of 

simulated annealing. Larger values provide a wider search space 

but are also more likely to produce excessively large initial weights 

that can never be reduced to reasonable values. It’s better to err on 

the side of too small than too large. The default is 0.1.

MAX ITERS = Number

This is the maximum number of conjugate gradient iterations 

used for weight refinement. The default is 1000. It may be good 

to set this to a smaller value if you are processing a collection 

of training operations in a single control file. However, in most 

cases it’s best to make this a very large number and use the next 

parameter, TOL, to end training. Or you can manually interrupt 

training when the criterion graph looks like it has stabilized.

TOL = Number

This is the preferred method for determining convergence of the 

weight refinement algorithm. Roughly speaking, this specifies 

the degree of iteration-to-iteration criterion improvement for 

deciding that convergence is obtained. The default is 0.00005. 

Smaller values will force more extended training. Training ends 

when either MAX ITERS or TOL is hit.

WPEN = Number

This is the weight penalty, which penalizes large weights. A positive 

value will, by definition, degrade the performance criterion of 

the trained model. However, because large weights are often 

associated with overfitting, one may obtain better out-of-sample 

performance. The default is zero. A little weight penalty goes a long 

way, so if you experiment, start out very small, such as 0.001 or so.
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�Operations
As of now, there are three operations that can be performed with CONVNET within a 

control file. These are as follows:

TRAIN

A model is trained using the current dataset. This operation can 

be roughly divided into four phases. In the first phase, simulated 

annealing is used to find good starting weights for subsequent 

refinement. Pressing the Escape key interrupts annealing, and 

refinement will proceed with the best weights found so far.

The second phase is weight refinement using conjugate gradient 

optimization. This, too, can be interrupted with Escape. However, 

in some cases the computer may take considerable time to 

respond, as certain subphases are not interruptible. Be patient.

The third phase is short, a final pass through the data with the 

best weights found. This phase can be interrupted with Escape. 

However, doing so will cause all results to be lost. Be warned.

The fourth phase is computation of the confusion matrix. 

Unfortunately, the current version of CONVNET does not allow 

interruption of this operation. Patience is a virtue.

TEST

This assumes that a dataset and a trained model are present. 

Performance criteria, mainly the confusion matrix, are computed.

CLEAR

All data is erased, but a trained model, if present, is not disturbed. 

The usual purpose of this command is to allow reading of a test set 

after a model has been trained. The usual sequence is as follows:

Read training data

Train

Clear

Read test data

Test
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�Display Options
Several options for displaying useful information as screen images are available. They 

are described in this section.

�Display Training Images
Images from the training set are displayed. This option is enabled only if the images have 

one or three bands. The user enters the following information on a menu:

First to display

This is the ordinal number (1 is the first) of the first training set 

case to display. Images start in the upper-left corner of the screen 

and advance left to right first. If the total number to display 

exceeds the number in the training set, cases will wrap around to 

the first case in the training set.

Rows

This many rows of images will be displayed.

Columns

This many columns of images will be displayed. The total number 

of training cases displayed is Rows times Columns.

�Display Filter Images
If the input image has either one or three bands, a trained model exists, and the first 

hidden layer of this model is convolutional, this option displays filter weights as images. 

The displayed images have the same dimensions and orientation as the filter.

If the input image has one band, the display is black and white, with strongly 

negative weights being black and strongly positive weights being white. Intermediate 

weights are shades of gray.
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If the input image has three bands, the display uses a three-color display, with red, 

green, and blue matching the corresponding colors in the input image. For example, if 

the weights for all three bands are strongly negative, the corresponding image pixel will 

be black. If all three are strongly positive, the pixel will be white. A red pixel means that 

the weight for the red channel of the input image is strongly positive, and the weights for 

the other two channels are strongly negative. Et cetera. The user specifies the following 

parameters:

First slice to display

This is the ordinal number of the first slice to display. Images start 

in the upper-left corner of the screen and advance left to right first. 

If the total number to display exceeds the number of slices, they 

will wrap around to the first slice.

Rows for slices

This many rows of slice images will be displayed.

Columns for slices

This many columns of slice images will be displayed. The total 

number of slices displayed is Rows times Columns.

Scale slices individually

By default, the scale for mapping weights to tone is determined by 

examining all Rows times Columns displayed weights. If this box 

is checked, scaling is applied to each image separately, which may 

over-emphasize low-utility filters.

�Display Activation Images
If a trained model and dataset are present, we can display the activations of the first 

hidden layer (any layer type) as images. The images are black and white, with black 

representing the lowest activation possible, and white the highest.
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The user specifies the following parameters:

First slice to display

This is the ordinal number of the first slice to display. Images start 

in the upper-left corner of the screen and advance left to right first. 

If the total number to display exceeds the number of slices, they 

will wrap around to the first slice.

Rows for slices

This many rows of slice images will be displayed.

Columns for slices

This many columns of slice images will be displayed. The total 

number of slices displayed is Rows times Columns.

Case number

This is the ordinal number of the training case whose activations 

are displayed. It must not exceed the number of training cases.

�Example of Displays
This section provides an example demonstrating the several display options that are 

available.

Figure 4-2 shows an example of the numeral zero taken from the MNIST dataset. A 

model consisting of a single convolutional layer having eight slices is created to train 

using the MNIST dataset. Figure 4-3 shows what the weights for each of these eight slices 

look like early in the training process. Note the great randomness. Figure 4-4 shows the 

same display after training has progressed to convergence. Note how clear response 

patterns have emerged. Finally, Figure 4-5 shows the activation pattern of the eight slices 

when presented with the MNIST zero of Figure 4-2.

It’s worth pursuing this a little further. Look at the weight pattern in the second slice 

(top row, second from left) of Figure 4-4. It’s very bright (high positive weights) near the 

center, and it’s fairly or greatly dark (zero or negative weights) elsewhere. As one would 

expect, the activation pattern for the same slice in Figure 4-5 largely replicates the input 

image, though with some blurring.
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Compare this with the last (bottom-right) slice. This weight set is just the opposite, 

being very dark (negative weights) in the center. We see in the corresponding activation 

display that the pattern is the negative of the input image. Lovely.

Figure 4-2.  MNIST zero
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Figure 4-3.  Weights early in training
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Figure 4-4.  MNIST weights trained to convergence
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�The CONVNET.LOG file
The CONVNET program writes a log file that contains information about all operations. 

To understand this file, the following control file was created. It employs every available 

layer type.

MAKE IMAGE 12 12 1 6 1024

CONVOLUTIONAL LAYER 6 1 1 1 1 1 1

POOLED MAX LAYER 3 3 2 2

LOCAL LAYER 3 1 1 1 1 1 1

POOLED AVERAGE LAYER 3 3 2 2

FULLY CONNECTED LAYER 4

WPEN = 0.001

TRAIN

The log file echoes these lines, which we will skip here. The first important section in 

the log file is its description of the model’s architecture.

Figure 4-5.  MNIST zero activations
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Input has 12 rows, 12 columns, and 1 bands

Model architecture...

Model has 6 layers, including fully connected output

   Layer 1 is convolutional, with 6 slices, each 12 high and 12 wide

      Horz half-width=1, padding=1, stride=1

      Vert half-width=1, padding=1, stride=1

      864 neurons and 10 prior weights per slice gives 60 weights

   Layer 2 is 3 by 3 pooling max, with stride 2 by 2, 5 high, 5 wide, and 6 deep

   Layer 3 is locally connected, with 3 slices, each 5 high and 5 wide

      Horz half-width=1, padding=1, stride=1

      Vert half-width=1, padding=1, stride=1

      75 neurons and 55 prior weights per neuron gives 4125 weights

   Layer 4 is 3 by 3 pooling average, with stride 2 by 2, 2 high, 2 wide, and 3 deep

   Layer 5 is fully connected, with 4 slices, each 1 high and 1 wide

      4 neurons and 13 prior weights per neuron gives 52 weights

   Layer 6 (output) is fully connected, with 6 slices (classes)

      6 neurons and 5 prior weights per neuron gives 30 weights

   4267 Total weights for the entire model

Because the first layer (convolutional) has the padding equal to the half-width and 

no striding, we see that it has the same visual field dimensions as the input layer. If 

necessary, review Equation 1-8. The layer has 12*12*6=864 neurons. The filter size is 

((2*1+1)^2)*1+1=10. (The *1 is the depth of the prior layer, and the +1 is the bias term.) 

All neurons in the visual field share the same weight set, so the total number of weights 

for the layer is the filter size (10) times the number of slices (6).

Equation 1-8 gives the size of the second layer: (12−3+0)/2+1=5.

Layer 3 has the padding equal to the half-width and no striding, so its visual field 

dimensions are the same as the prior layer. The filter size is ((2*1+1)^2)*6+1=55. There is 

a different weight set for each of the 5*5*3=75 neurons in this layer, giving a total of 4125 

weights for this layer.

Equation 1-8 gives the size of the fourth layer: (5−3+0)/2+1=2.

Layer 5 is fed by 2*2*3 neurons in the prior layer. Including the bias term gives 13 

weights per neuron. This layer has 4 neurons, so it has a total of 52 weights. Recall that 

our convention is that fully connected layers have a 1*1 visual field, with a depth equal to 

the number of neurons.
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Layer 6, the output layer, is by definition fully connected. It’s fed by 1*1*4 neurons 

in the prior layer. Including the bias gives 5 weights per neuron. It has a depth of 6, the 

number of classes, so it has 30 weights.

Adding these gives a total of 4,267 weights in the model.

Simulated annealing completes, but I interrupted refinement. The following lines appear:

Simulated annealing for starting weights is complete with mean negative log likelihood = 0.29804

WARNING... User pressed ESCape during optimization

            Results are incomplete and may be seriously incorrect

Optimization is complete with negative log likelihood = 0.09214

The last item printed is a confusion matrix. The row (in groups of three) is the true 

class, and the column is the predicted class. In each set of three rows for a true class, the 

first row is the count, the second row is the percent for that row (true class), and the third 

row is the percent of the entire dataset.

                       1                            2                         3                         4                          5                           6

1                 168                            0                         2                         0                          2                           0

                97.67                       0.00                    1.16                    0.00                     1.16                      0.00

                16.41                       0.00                    0.20                    0.00                     0.20                      0.00

2                     1                        127                       18                         0                          1                         31

                  0.56                     71.35                  10.11                    0.00                     0.56                    17.42

                  0.10                     12.40                    1.76                    0.00                     0.10                      3.03

3                     1                          12                     120                         2                          4                         11

                  0.67                       8.00                  80.00                    1.33                     2.67                      7.33

                  0.10                       1.17                  11.72                    0.20                     0.39                      1.07

4                     8                            0                         1                     124                        48                           1

                  4.40                       0.00                    0.55                  68.13                   26.37                      0.55

                  0.78                       0.00                    0.10                  12.11                     4.69                      0.10

5                     6                            1                         0                       11                      178                           0

                  3.06                       0.51                    0.00                    5.61                   90.82                      0.00

                  0.59                       0.10                    0.00                    1.07                   17.38                      0.00

6                     0                          20                         1                         0                          1                       124

                  0.00                     13.70                    0.68                    0.00                     0.68                    84.93

                  0.00                       1.95                    0.10                    0.00                     0.10                    12.11

Total misclassification = 17.8711 percent
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�Printed Weights
The user has the option of printing weights for the entire model. Be warned that the 

total number of weights can be enormous, in which case the resulting file will also be 

enormous, and it may even require several minutes of run time to do the file writing. 

Here is a partial listing of the weights for the example cited in the prior section. Please 

reconcile this listing with the architecture of this model.

Layer 1 of  6 (Convolutional)  Slice 1 of  6

          3.642629  Input band 1 Neuron 1

         -0.676231  Input band 1 Neuron 2

         -0.085785  Input band 1 Neuron 3

          2.766258  Input band 1 Neuron 4

         -2.646048  Input band 1 Neuron 5

         -0.865142  Input band 1 Neuron 6

          1.900750  Input band 1 Neuron 7

         -2.298438  Input band 1 Neuron 8

          0.924283  Input band 1 Neuron 9

        -----------------------------------

         -3.971506  BIAS

... (Slices 2-5)

Layer 1 of  6 (Convolutional)  Slice 6 of  6

          3.011171  Input band 1 Neuron 1

          0.687377  Input band 1 Neuron 2

          1.019491  Input band 1 Neuron 3

         -0.832090  Input band 1 Neuron 4

          1.724954  Input band 1 Neuron 5

         -1.247742  Input band 1 Neuron 6

          0.444635  Input band 1 Neuron 7

          1.737460  Input band 1 Neuron 8

         -0.542140  Input band 1 Neuron 9

        -----------------------------------

         -2.507262  BIAS

Layer 2 of  6 (Mean pool) 5 rows by 5 cols by 6 slices
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Layer 3 of  6 (Local)Slice 1 of  3 Row 1 of  5 Col 1 of  5

          0.016978  Prior layer slice 1 Neuron 1

         -0.027422  Prior layer slice 1 Neuron 2

         -0.052678  Prior layer slice 1 Neuron 3

          0.036557  Prior layer slice 1 Neuron 4

         -0.755227  Prior layer slice 1 Neuron 5

          0.211502  Prior layer slice 1 Neuron 6

          0.036439  Prior layer slice 1 Neuron 7

         -0.398360  Prior layer slice 1 Neuron 8

          0.737985  Prior layer slice 1 Neuron 9

        -----------------------------------

... Other rows and columns, then slice 2 and part of  3

Layer 3 of  6 (Local)Slice 3 of  3 Row 5 of  5 Col 5 of  5

         -1.035432  Prior layer slice 1 Neuron 1

         -0.357207  Prior layer slice 1 Neuron 2

         -0.021757  Prior layer slice 1 Neuron 3

         -0.033135  Prior layer slice 1 Neuron 4

         -0.107814  Prior layer slice 1 Neuron 5

         -0.000594  Prior layer slice 1 Neuron 6

         -0.051112  Prior layer slice 1 Neuron 7

          0.023901  Prior layer slice 1 Neuron 8

         -0.020555  Prior layer slice 1 Neuron 9

        -----------------------------------

... Slices 2 through 5

          0.679523  Prior layer slice 6 Neuron 1

         -1.053021  Prior layer slice 6 Neuron 2

          0.001994  Prior layer slice 6 Neuron 3

         -0.104741  Prior layer slice 6 Neuron 4

         -0.664431  Prior layer slice 6 Neuron 5

          0.034758  Prior layer slice 6 Neuron 6

          0.016724  Prior layer slice 6 Neuron 7

          0.014839  Prior layer slice 6 Neuron 8

          0.050983  Prior layer slice 6 Neuron 9

        -----------------------------------

         -1.963063 BIAS
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Layer 4 of  6 (Avg pool) 2 rows by 2 cols by 3 slices

Layer 5 of  6 (Full)  Slice (this neuron) 1 of  4

          1.592443  Prior layer slice 1 Neuron 1

          1.161122  Prior layer slice 1 Neuron 2

         -0.162907  Prior layer slice 1 Neuron 3

          0.648188  Prior layer slice 1 Neuron 4

         -1.275991  Prior layer slice 2 Neuron 1

         -3.782788  Prior layer slice 2 Neuron 2

         -2.344005  Prior layer slice 2 Neuron 3

         -2.019643  Prior layer slice 2 Neuron 4

         -0.240221  Prior layer slice 3 Neuron 1

         -0.118739  Prior layer slice 3 Neuron 2

          0.739422  Prior layer slice 3 Neuron 3

          1.031370  Prior layer slice 3 Neuron 4

         -0.878146  BIAS

...

Layer 5 of  6 (Full)  Slice (this neuron) 4 of  4

          0.560776  Prior layer slice 1 Neuron 1

         -0.467746  Prior layer slice 1 Neuron 2

         -1.281872  Prior layer slice 1 Neuron 3

         -0.444215  Prior layer slice 1 Neuron 4

          0.948946  Prior layer slice 2 Neuron 1

          1.805807  Prior layer slice 2 Neuron 2

          1.796881  Prior layer slice 2 Neuron 3

          1.776497  Prior layer slice 2 Neuron 4

          4.415077  Prior layer slice 3 Neuron 1

          2.461983  Prior layer slice 3 Neuron 2

          2.944033  Prior layer slice 3 Neuron 3

          3.762620  Prior layer slice 3 Neuron 4

         -1.695120  BIAS
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Layer 6 of  6 (Full)  Slice (this neuron) 1 of  6

          2.693996  Prior layer slice 1 Neuron 1

         -0.313751  Prior layer slice 2 Neuron 1

         -3.208661  Prior layer slice 3 Neuron 1

         -1.088728  Prior layer slice 4 Neuron 1

          0.714087  BIAS

...

Layer 6 of  6 (Full)  Slice (this neuron) 6 of  6

         -1.245246  Prior layer slice 1 Neuron 1

         -4.326880  Prior layer slice 2 Neuron 1

          1.525335  Prior layer slice 3 Neuron 1

          1.519400  Prior layer slice 4 Neuron 1

         -1.512020  BIAS

�The CUDA.LOG File
CONVNET also writes a file called CUDA.LOG. It is divided into four sections. The first 

section names the CUDA device present and lists its capabilities. The second section 

lists the architectural and training parameters given by the user. The third section shows 

the device memory allocations, along with some supplementary information about 

allocation of convolutional gradient scratch memory. This may be of interest if device 

memory is limited and the user needs to tweak parameters to make optimal use of 

memory.

The last section is the most useful. It shows the total and per-launch device 

time, broken down by layer and by activity in each layer (forward-pass activation, 

backpropagation of delta, and computation of gradient). It also lists several other CUDA-

related activities.

What makes this table important is the per-launch times. Windows imposes a 

limitation on this time. Currently, the default limit is two seconds. It can be changed with 

a registry hack, but you won’t hear about it from me. The key thing is that this per-launch 

time lets the user tweak parameters. If gradient computation is the dominant per-launch 

issue, then the “Max CONV work per launch” parameter can be reduced. If activations 

are also a problem, the “Max batch size” parameter can be reduced.
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