
DevOps for Azure
Applications

Deploy Web Applications on Azure
—
Suren Machiraju
Suraj Gaurav

www.allitebooks.com

http://www.allitebooks.org

DevOps for Azure
Applications

Deploy Web Applications
on Azure

Suren Machiraju
Suraj Gaurav

www.allitebooks.com

http://www.allitebooks.org

DevOps for Azure Applications

ISBN-13 (pbk): 978-1-4842-3642-0 ISBN-13 (electronic): 978-1-4842-3643-7
https://doi.org/10.1007/978-1-4842-3643-7

Library of Congress Control Number: 2018944115

Copyright © 2018 by Suren Machiraju, Suraj Gaurav

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-3642-0. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Suren Machiraju
Issaquah,
Washington, USA

Suraj Gaurav
Greater Seattle,
Washington, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3643-7
http://www.allitebooks.org

With a deep sense of gratitude, I dedicate this book to my
brother, Raghu Machiraju, and my sister, Rajasri Kota.

—Surendra Machiraju

I dedicate this book to my mother, Shanti Sinha.

—Suraj Gaurav

www.allitebooks.com

http://www.allitebooks.org

v

About the Authors ��ix

About the Technical Reviewer ���xi

Foreword ���xiii

Introduction ��xv

Table of Contents

Chapter 1: DevOps for Azure ��1

The Need for DevOps ��1

Describing the Functions of DevOps ���2

DevOps Application Deployment Process ���3

Understanding DevOps Tools���6

Summary���9

Chapter 2: Deployment via TeamCity and Octopus Deploy ����������������11

Introduction to Microsoft Public Cloud, Azure ���11

Understanding TeamCity ���12

Basic Concepts of TeamCity ��12

Configuring a Build in TeamCity ��14

Creating a Package ���21

Using Octopus Deploy ���24

Creating a Project ��25

Creating an Environment ���26

Uploading NuGet Package to Octopus Deploy ���28

www.allitebooks.com

http://www.allitebooks.org

vi

Creating Steps for the Deployment Process ��30

Using Variables ��33

Creating and Deploying a Release ���34

Summary���37

Chapter 3: Deployment via VSTS ��39

Understanding VSTS ��39

Features of VSTS ���40

Advantages of VSTS ��41

Creating an Account in VSTS ���42

Creating a Project ��46

Adding Code ��48

Creating a Build ���57

Creating a Release Definition ��65

Adding Artifacts ���68

Creating a Release ��68

Deploying a Release ��69

Viewing the Deployed Release ��70

Summary���71

Chapter 4: Azure Application Deployment ��73

Understanding Magento ��74

Benefits of Using Magento ��74

Disadvantages of Magento ��75

Prerequisites of Running an Azure Application with Magento ����������������������������75

Setting Up Magento ���76

Source Code Integration with Git ��80

Creating a Repository in VSTS ���80

Uploading Code on VSTS Git ��84

Table of ConTenTsTable of ConTenTs

vii

Creating a Release Definition ��87

Pre-Approval Step for Deployment Using VSTS ��96

Automated Continuous Deployments Using VSTS ���99

Testing the Deployment ��102

Testing Continuous Deployment of Release ��103

Testing Manual Deployment of a Release��112

Summary���118

Chapter 5: Final Thoughts ���119

DevOps for Azure ��119

Deployment via TeamCity and Octopus Deploy ���120

Deployment via VSTS ��121

Azure Application Deployment ��121

 Index ���123

Table of ConTenTsTable of ConTenTs

ix

Suren Machiraju developed an innovative

supply chain solution that integrated online

stores with market makers and aggregators,

founding Commercia Corporation in the

late 1990s. Within one year, Microsoft

acquired Commercia Corp, providing

Machiraju with the opportunity to lead

the B2B Interoperability team within the

BizTalk business unit. Over the next six years,

Machiraju’s team delivered five releases of the

BizTalk Server (2000-2006R2). Subsequently, Machiraju led the BizTalk

Rangers, Customer Advisory Group, and in two years, lit up over 20 of the

largest middleware deployments on the .NET stack.

In 2011, Machiraju collaborated to create the Azure Customer Advisory

Team at Microsoft. For five years, Machiraju led efforts in engaging

enterprise customers, startups, and partners for architectural reviews and

deployments of cloud/hybrid cloud .NET and OSS applications on the

Azure platform. The team pioneered solutions for the most challenging

cloud projects and produced dozens of successful deployments.

In 2014, Machiraju accepted appointment as a Technology Business

Partner at the Bill & Melinda Gates Foundation, where he collaborates with

leading NGOs and non-profit partners in devising technical solutions for

some the world’s most challenging social issues.

About the Authors

x

Machiraju holds a Master’s Degree in Mechanical Engineering from

the Birla Institute of Technology and Science in Pilani, India. He is a listed

author of over 20 patents in the business software areas of B2B and Data

Interchange Standards and has published books and authored dozens

of MSDN articles/technical blogs on Azure and .NET. When he’s not

publishing blogs or presenting works to the larger technical community,

he is enjoying time with his family in the beautiful Pacific Northwest and

cheering on the Seahawks each Sunday.

“Please contact me if I can be of assistance in architecting your
cloud-based solution; collaborating in this space is one of my
greatest passions.”

—Suren https://about.me/surenmachiraju

Suraj Gaurav started his career in 2000, at the

height of dot-com era. He worked at a startup

called Asera that was building a revolutionary

platform for building B2B applications.

In 2002, he moved to Seattle to work for

Microsoft. He spent almost 10 years there and

worked on various products, including BizTalk

server, Commerce platform, and Office 365. He

has in-depth experience building enterprise-

scale systems like BizTalk, to Internet-scale

services like Office 365. He also built the

consumption-based billing platform serving as

the commerce engine for Azure.

Gaurav holds a Bachelor’s degree in Computer Science from Indian

Institute of Technology, Kanpur, India. He is listed as an inventor with over

25 patents. When he is not working, he can be found spending time with

his family and enjoying the beautiful outdoor life of the Pacific Northwest.

abouT The auThorsabouT The auThors

https://about.me/surenmachiraju

xi

About the Technical Reviewer

Jennifer Curiak specializes in Dynamics 365 implementations, Agile

coaching, project management, business analysis, quality assurance,

and technical writing. She works to help teams in a variety of industries

become more productive, communicate more effectively, and generally

get stuff done.

A writer at heart, Curiak started her career as a technical writer for

a software company in 2000 and has evolved into designing solutions,

managing QA processes and resources, coaching large and small teams

in Agile development practices, acting as Scrum Master, and working on

Dynamics 365 customizations and implementations. She was the technical

reviewer for the books Administering, Configuring, And Maintaining

Microsoft Dynamics 365 in the Cloud in 2018, and BizTalk – Azure

Applications in 2018. She continues to write in-house technical and end-

user documentation and contributes to other professional publications.

Curiak and her husband Mike live in Western Colorado and spend

most of their free time exploring empty and desolate areas of the west

by mountain bike and packraft. She can be contacted directly at

jcuriak@inotekgroup.com.

xiii

Foreword

Listening to the voice of the customer and continuously evolving software

is the key to success. The DevOps methodology enables this continuous

development; however, the challenge is to navigate the enormous landscape

of tools and processes to make it work. This book, DevOps for Azure

Deployments, is the perfect guide to navigate DevOps. Suraj and Suren

provide easy-to-read cookbook style instructions on using the tools and

ensuring successful deployment of the Azure application.

I appreciate Suren and Suraj sharing their expertise with the broader

community—our business has benefitted from it.

Thank you.

Kevin Bone

CEO

MyCustomerData.com

xv

Introduction

In the world of software development, the need of the hour is short

turnaround on all product development lifecycles, also known as the Agile

methodology. The Agile methodology is based on customer feedback and

supports rapid innovation. Such innovation requires new process and

tools. Welcome to DevOps. This book is your hitchhiker’s guide to DevOps

product development!

 Who Should Read This Book?
This is a technical book that provides immense value to developers and

release engineers. Project managers will find it useful to understand the

workflows related to DevOps.

 What You Will Learn
You will learn what it takes to set up a DevOps environment in order to

support an Azure deployment. That includes the following topics:

• Overview of DevOps for Azure deployments, including

a survey of the available tools.

• Cookbook-style guidance on using the stand-alone

tools Octopus Deploy and TeamCity to manage your

DevOps environment.

xvi

• Cookbook-style guidance on using an integrated

developer platform—Microsoft Visual Studio Team

Services (VSTS).

• Starter code samples for you to kick-start your

environment and processes using the techniques

elaborated in the book.

We appreciate your investment in this book. We would love to hear

from you to improve this and future offerings.

InTroduCTIonInTroduCTIon

1© Suren Machiraju, Suraj Gaurav 2018
S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7_1

CHAPTER 1

DevOps for Azure
DevOps is all about automating the application deployment process.

It addresses the drawbacks associated with manual application deployment.

The application deployment process contains several steps—from writing

code to deploying the created release to the target environment, i.e., Microsoft

Azure Cloud. This chapter discusses the need for DevOps, the DevOps

functions, the application deployment process, and the DevOps tools.

 The Need for DevOps
Traditionally, the software development lifecycle warranted siloed teams

taking on specific tasks, i.e., the development team and the operations team.

The developers were responsible for writing code, checking in source code

into source control, testing code, QA of code, and staging for deployment.

The Operations/Production team was responsible for deploying the code to

servers and thereafter coordinating with customers and providing feedback

to developers. Such siloed efforts were mostly manual processes with a

small degree of siloed application/software deployment work. This manual

process had several drawbacks, some of which are as follows:

• The communication gap between different teams

results in resentment and blame, which in turn delays

fixing errors.

• The entire process took a long time to complete.

2

• The final product did not meet all required criteria.

• Some tools could not be implemented on the

production server for security reasons.

• The communication barriers slowed down

performance and added to inefficiency.

To cope with these drawbacks, a push for automation arose, leading to

the development of DevOps. DevOps is a combination of two terms and

two teams—namely Developers and Operations. As the name indicates,

it integrates the functionality of both of these teams (Developers and

Operations/Production) in the application development and deployment

process.

 Describing the Functions of DevOps
The basic functions of DevOps are as follows:

• Automates the entire process of application

deployment. As a result, the entire process is

straightforward and streamlined.

• Allows multiple developers to check in and check out

code simultaneously in/from the Source repository.

• Provides a Continuous Integration (CI) server that

pools the code from the Source repository and prepares

the build by running and passing the unit tests and

functional tests automatically.

• Automates testing, integration, deployment, and

monitoring tasks.

• Automates workflows and infrastructure.

Chapter 1 DevOps fOr azure

3

• Enhances productivity and collaboration through

continuous measurement of application performance.

• Allows for rapid and reliable build, test, and release

operations of the entire software development process.

 DevOps Application Deployment Process
The entire application deployment process is shown in Figure 1-1.

Figure 1-1. The application deployment process

Let’s now review the various steps in the application deployment

process:

 1. Developers write code.

 2. Code is checked in to the source control/Source

repository.

Chapter 1 DevOps fOr azure

4

 3. Code check-in triggers the Continuous Integration

(CI) server for generating the build. Automated

unit testing can be done during the build process.

Code coverage and code analysis can also be

performed during this step. If there are build errors,

unit test failures, or breaches of code coverage

and code analysis rules, a report is generated

and automatically sent back to the developer for

correction.

 4. The successful build is then sent for release. This

is where the release management process comes

into the picture, whereby testing, QA, and staging

operations are performed. Several types of tests are

done, some of which are:

• Module tests

• Sub-system tests

• System tests

• Acceptance tests

 5. In the QA phase, the following types of tests are

performed:

• Regression tests

• Functional tests

• Performance test

Once the code passes all of the tests, a release

version of the software, also called the “golden

image,” is prepared. If any of the preceding tests fail,

a report about the bug is generated for the team of

developers who checked in the code.

Chapter 1 DevOps fOr azure

5

The development team must first fix the bug and

check in the code again. The code goes through the

same process of generating the build and release

until the code passes all tests.

Figure 1-2 shows the release management process.

 6. The last step in the process is deploying the created

release to the target environment—Microsoft Azure

Cloud (https://azure.microsoft.com). Once the

deployment is complete, all changes in the code are

live for users of the target environment in Azure.

Figure 1-2. Release management process

Chapter 1 DevOps fOr azure

https://azure.microsoft.com/

6

 Understanding DevOps Tools
There are several DevOps tools available that can help you develop an

effective automated environment. You can also use separate tools for

performing specific operations in DevOps. A list of tools, based on the

broad level functionality, follows. Note that to demonstrate the DevOps

principles, we selected a set of tools to use as an example.

• Build automation tools: These tools automate the

process of creating a software build, compiling source

code, and packaging the code. Some build automation

tools are:

• Apache Ant (https://ant.apache.org/

bindownload.cgi)

• Apache Maven (https://maven.apache.org/

download.cgi)

• Boot (http://boot-clj.com/)

• Gradle (https://gradle.org/)

• Grunt (https://gruntjs.com/)

• MSBuild (https://www.microsoft.com/en-in/

download/details.aspx?id=48159)

• Waf (https://waf.io/)

• Continuous Integration tools: These tools create

builds and run tests automatically when the code

changes are checked in to the central repository. Some

CI tools are:

• Bamboo (https://www.atlassian.com/software/

bamboo/download)

• Buildbot (https://buildbot.net/)

Chapter 1 DevOps fOr azure

https://ant.apache.org/bindownload.cgi
https://ant.apache.org/bindownload.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
http://boot-clj.com/
https://gradle.org/
https://gruntjs.com/
https://www.microsoft.com/en-in/download/details.aspx?id=48159
https://www.microsoft.com/en-in/download/details.aspx?id=48159
https://waf.io/
https://www.atlassian.com/software/bamboo/download
https://www.atlassian.com/software/bamboo/download
https://buildbot.net/

7

• Hudson (http://hudson-ci.org/)

• TeamCity (https://www.jetbrains.com/

teamcity/download/). We focus on this tool in this

book.

• Testing tools: These tools automate the testing process.

These tools help organizations achieve configuration

and delivery management needs in a specified time

frame. Some commonly used testing tools are:

• Selenium (http://www.seleniumhq.org/)

• Watir (http://watir.com/)

• Wapt (https://www.loadtestingtool.com/)

• Apache JMeter (http://jmeter.apache.org/

download_jmeter.cgi)

• QTest (https://www.qasymphony.com/qtest-

trial- qascom/)

• Version control system: This is a configuration

management system that takes care of all the changes

made to documents, codes, files, etc. Some commonly

used version control systems are:

• Subversion (https://subversion.apache.org/)

• Team Foundation Server (TFS) (https://www.

visualstudio.com/tfs/). We focus on this tool in

this book.

• GIT (https://git-scm.com/)

• Mercurial (https://www.mercurial-scm.org/)

• Perforce (https://www.perforce.com/)

Chapter 1 DevOps fOr azure

http://hudson-ci.org/
https://www.jetbrains.com/teamcity/download/
https://www.jetbrains.com/teamcity/download/
http://www.seleniumhq.org/
http://watir.com/
https://www.loadtestingtool.com/
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
https://www.qasymphony.com/qtest-trial-qascom/
https://www.qasymphony.com/qtest-trial-qascom/
https://subversion.apache.org/
https://www.visualstudio.com/tfs/
https://www.visualstudio.com/tfs/
https://git-scm.com/
https://www.mercurial-scm.org/
https://www.perforce.com/

8

• Code review tools: These tools help organizations

improve the quality of their code. Some code review

tools are:

• Crucible (https://www.atlassian.com/software/

crucible)

• Gerrit (https://www.gerritcodereview.com/)

• GitHub (https://github.com/)

• Bitbucket Server (https://www.atlassian.com/

software/bitbucket/server)

• Continuous Delivery/release management tools:
These tools automate the process of building and

testing code changes for release to production. Some of

these tools are:

• XL Release (https://xebialabs.com/products/

xl- release/)

• ElectricFlow (http://electric-cloud.com/

products/electricflow/)

• Serena Release (https://www.microfocus.com/

serena/)

• Octopus Deploy (https://octopus.com/

downloads). We focus on this tool in this book.

• All-in-one platforms: These tools combine the

functionalities of previously listed tools. Some all-in-

one platforms are:

• ProductionMap (http://www.productionmap.

com/)

• Jenkins (https://jenkins.io/)

Chapter 1 DevOps fOr azure

https://www.atlassian.com/software/crucible
https://www.atlassian.com/software/crucible
https://www.gerritcodereview.com/
https://github.com/
https://www.atlassian.com/software/bitbucket/server
https://www.atlassian.com/software/bitbucket/server
https://xebialabs.com/products/xl-release/
https://xebialabs.com/products/xl-release/
http://electric-cloud.com/products/electricflow/
http://electric-cloud.com/products/electricflow/
https://www.microfocus.com/serena/
https://www.microfocus.com/serena/
https://octopus.com/downloads
https://octopus.com/downloads
http://www.productionmap.com/
http://www.productionmap.com/
https://jenkins.io/

9

• Microsoft Visual Studio Team Services (VSTS)

(https://www.visualstudio.com/team-

services/). We focus on this tool in this book.

• AWS CodePipeline (https://aws.amazon.com/

codepipeline/getting-started/)

With a basic understanding of the fundamentals, you’re ready to move

forward and dive deeper into the specifics. We start by discussing stand-

alone tools, and thereafter discuss an all-in-one integrated platform.

 Summary
This chapter discussed the importance of DevOps over the manual

process of application deployment. DevOps integrates the functionality of

both teams (Developers and Operations/Production) in the application

development and deployment process. This chapter provided information

about the basic functions of DevOps. The entire process of application

deployment was discussed. Toward the end of the chapter, a list of DevOps

tools was provided.

Chapter 1 DevOps fOr azure

https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://aws.amazon.com/codepipeline/getting-started/
https://aws.amazon.com/codepipeline/getting-started/

11© Suren Machiraju, Suraj Gaurav 2018
S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7_2

CHAPTER 2

Deployment via
TeamCity and
Octopus Deploy
As discussed in the previous chapter, application deployment in DevOps

requires a Continuous Integration (CI) tool and Continuous Delivery

(CD) tool/release management software to automate the entire process.

Currently, there are several tools available in the market. This chapter

discusses three best-of-breed tools—TeamCity as a CI tool, Octopus

Deploy as a release management tool, and CD software to deploy the

package on the Azure web application. Since different vendors deliver

these best-of-breed tools, there is some complexity involved in integrating

them into a single solution.

 Introduction to Microsoft Public Cloud, Azure
Before we delve into the DevOps tools, let’s recap the deployment

environment. As a reminder, we are focusing on Microsoft Azure. However,

be assured that information from this chapter can be applied to other

public cloud solutions.

12

Azure has the capability to host applications. These applications can

be further integrated with other applications and services on the Azure

platform rather easily. Azure’s integration features provide customers

with enhanced business agility and efficiency. They help users deploy the

source code to multiple Azure websites.

 Understanding TeamCity
TeamCity is a CI server for developers and is powered by JetBrains.

It provides several relevant features:

• Supports different platforms/tools/languages

• Automates the build and deployment processes

• Enhances quality and standards across teams

• Works as an artifact and NuGet repository

• Provides a reporting and statistics feature

Definition According to Martin Fowler, “Continuous Integration is
a software development practice in which developers commit code
changes into a shared repository several times a day. Each commit is
followed by an automated build to ensure that new changes integrate
well into the existing code base and to detect problems early.”

 Basic Concepts of TeamCity
Here are the basic concepts of TeamCity:

• Project: Refers to a set of build configurations.

• Build configuration: Refers to a collection of settings

(VCS roots, build steps, and build triggers) that define a

build procedure.

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

13

• VCS root: Refers to a set of version control settings

(source path, username, password, etc.) that allow

TeamCity to interact with a version control system

for managing the modifications and sources for

a build.

• Build step: Refers to a task to be executed by the server.

It is represented by a build runner.

• Build runner: Integrates different tools, including the

build tool (Ant, Gradle, MSBuild, PowerShell, etc.),

a testing framework (JUnit, NUnit, etc.), and a code

analysis engine. It describes the build workflow.

• Build agent: Refers to an application that is responsible

for executing the build process. It helps developers

get faster feedback, as different tests can be run

simultaneously on different platforms supported by the

build agent.

• TeamCity server: Refers to the server application,

which manages all build agents, manages the sequence

of builds to build agents, and conveys the results.

• Build: Refers to the program/application version.

• Build trigger: Refers to a rule that automatically starts

a new build when a specified event occurs.

• Build queue: Refers to a sequence of builds that are

triggered and not yet started. These builds are assigned

to the respective agents when they are available.

• Build artifact: Refers to the set of files (installers, WAR

files, reports, log files, etc.) generated by the build

process.

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

14

 Configuring a Build in TeamCity
In this section, we configure arguments for the PowerShell script in

TeamCity. This will enable TeamCity to execute the PowerShell script. For

this scenario, we created a PowerShell script named [string]App.Ps1.

The build configuration uses a step-oriented approach, which is

outlined in the following sections.

 Step 1: Creating a Project

To configure a build in TeamCity, first create a project. There are several

options available for this task, as follows:

• Manually

• Pointing to a repository URL

• Pointing to a GitHub.com repository

• Pointing to a Bitbucket Cloud repository

Perform the following steps to create a standard project:

 1. Click the Administration link in the top-right corner

of the Administration area.

 2. Click the down arrow button beside the Create

Project button. A drop- down list appears.

 3. Select the Manually option from the drop-down

list to create a project manually. After you click

the Manual option, the Create New Project page

appears.

 4. Enter the desired name of the project in the Name

text box.

 5. Enter the desired ID of the project in the Project ID

text box.

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

15

 6. Enter the desired description of the project in the

Description text box.

 7. Click the Create button to create the project.

Now, the project has been created.

 Step 2: Creating a Build Configuration

Build configurations describe the process by which a project’s sources are

fetched and built. Once the project is created, TeamCity prompts you to

create build configurations. Alternatives to create build configurations are

as follows:

• Manually

• Pointing to a repository URL

• Pointing to a GitHub.com repository

• Pointing to a Bitbucket Cloud repository

Perform the following steps to create a build configuration manually:

 1. Click the down arrow button beside the Create Build

Configuration button. A drop-down list appears.

 2. Select the Manual option from the drop-down list to

create the build configuration manually.

 3. Specify the name of the build configuration in the

Name text box.

 4. Specify the build configuration ID in the Build

Configuration ID text box.

 5. Specify the desired description in the Description

text box.

 6. Click the Save button. Figure 2-1 shows the General

Settings page.

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

16

 Step 3: Configuring the Version Control Settings

In this step, we provide settings related to the VCS root. The VCS root

describes a connection to a version control system, and there are several

settings associated with it. These settings allow VCS to communicate with

TeamCity. They define the way changes are monitored and sources are

specified for a build. Perform the following steps to configure the version

control settings:

 1. Select the Version Control Settings tab.

 2. Click the Attach VCS Root button. The New VCS

Root page appears.

 3. Select the desired type of VCS from the Type of VCS

drop-down list. We selected Subversion.

 4. Specify a unique VCS root name in the VCS Root

Name text box.

 5. Specify a unique VCS root ID in the VCS Root ID

text box.

Figure 2-1. General Settings page

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

17

The connection settings appear on the page

depending on the type of VCS selected. In our case,

the SVN Connection Settings section appears.

 6. Specify the repository URL in the URL text box.

 7. To allow TeamCity to communicate with the Source

repository, specify the username and password in

the Username and Password text boxes, respectively.

 8. Click the Test Connection button to test the

connection. This validates that TeamCity

can communicate with the repository. A Test

Connection message box appears with the

Connection Successful message. If the connection

shows failure, check the specified URL and the

credentials.

 9. Click the Create button. Figure 2-2 shows the

settings for the New VCS Root page.

Figure 2-2. Settings for the New VCS Root page

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

18

 Step 4: Configuring the Build Steps

Once the VCS root is created, we can configure the build steps. Perform the

following steps to add a build step:

 1. Select the Build Steps tab.

 2. Click the Add Build Step button. The Build Step page

appears.

 3. Select the PowerShell option from the Runner Type

drop-down list.

Note In this example, we use the powershell script file named
[string]App.ps1. this file compiles the source code.

 4. Specify the desired step name in the Step Name text

box.

 5. Select the desired step execution policy from the

Execute Step drop- down list.

 6. Select the File option from the Script drop-down list.

 7. Specify the path to the PowerShell script in the

Script File box. This field contains the physical

path mapped to the [string]App.ps1 script,

which is located on the build agent, as shown in

Figure 2-3.

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

19

 8. Specify the PowerShell script execution mode in the

Script Execution Mode option.

 9. Enter script arguments in the Script Arguments

section. We entered five arguments that will be

passed to the [string]App.ps1 script during

execution by TeamCity.

ARGUMENTS PASSED TO THE POWERSHELL SCRIPT

All arguments should be explained in terms of their relative paths. Descriptions

of all the arguments passed to the powershell script follow:

• ..\Workflow: Allows the powershell script to access the

contents of the Workflow folder.

• ..\Central: Allows the powershell script to access the

contents of the Central folder.

• ..\Server: Allows the powershell script to access the contents

of the Server folder.

Figure 2-3. Creating a build step

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

20

• Nuget.exe: Allows the powershell script to load the Nuget.

exe file, which is located on the build agent.

• v. Targetfolder: specifies the path of a folder on the build

agent where the compiled code is placed.

 10. Click the Save button, as shown in Figure 2-4.

A successful build is created in TeamCity, which is executable through

the PowerShell script [string]App.ps1, as shown in Figure 2-5.

Figure 2-4. Saving the build step

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

21

 Creating a Package
Once TeamCity creates a successful build, changes may need to be made

to the PowerShell script ([string]App.ps1). For example, we may need

to make changes to NugetExePath to accept a new argument, as shown in

Figure 2-6.

Figure 2-5. Successful build message

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

22

The changes made to the PowerShell script create a package in the

target folder.

Figure 2-7 shows the created NuGet package.

Figure 2-6. Making changes to NugetExePath

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

23

Copy this NuGet package from the build agent to where it will be

imported into the Octopus server for deployment purposes, as shown in

Figure 2-8.

Figure 2-7. The NuGet package

Figure 2-8. NuGet package ready for deployment

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

24

 Using Octopus Deploy
Octopus Deploy is a deployment server (or release management software)

that automates the deployment of different applications into different

environments. It makes this process effortless.

Octopus Deploy automates the deployment of:

• ASP.NET web applications

• Java applications

• Database updates

• NodeJS applications

• Custom scripts

Octopus Deploy supports the following environments:

• Development

• Test

• Production

Octopus Deploy provides a consistent deployment process to support

the deployment needs of team members; an Octopus user can define a

process for deploying the software. The Octopus user can specify different

environments for different applications and can set privileges for different

team members to deploy to different environments. For example, a team

member can be authorized to deploy to a test environment while also

being restricted to the production deployment.

Note the latest MsI of octopus Deploy can be downloaded at
https://octopus.com/downloads.

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

https://octopus.com/downloads

25

 Creating a Project
Octopus Deploy allows users to create projects. In Octopus Deploy,

a project is a set of deliverable components, including websites and

database scripts. A project is created within Octopus Deploy to manage

multiple software projects across different environments. For instance, if

there are six developers working on the same business project, we need to

create a single project in Octopus Deploy.

Perform the following steps to create a project:

 1. Navigate to the Projects area.

 2. Click the Add Project button. The Create Project

page opens.

 3. Specify a relevant name for the project in the Name

text box.

 4. Specify a relevant description for the project in the

Description text area.

 5. Select the desired option from the Project Group

drop-down list.

 6. Select the desired lifecycle from the Lifecycle drop-

down list.

 7. Click the Save button, as shown in Figure 2-9.

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

26

Note A lifecycle is used to replicate deployments between
environments automatically.

 Creating an Environment
An environment is a group of machines to which the software is deployed

simultaneously. Common environments in the Octopus Deploy are Test,

Acceptance, Staging, and Production. In other words, an environment

can be defined as a group of deployment targets (Windows servers,

Linux servers, Microsoft Azure, etc.). For the current scenario, we are

creating two environments so that we can deploy to two websites. Each

environment represents a single tenant.

Figure 2-9. Steps to create a project

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

27

Perform the following steps to create an environment:

 1. Navigate to the Environments area.

 2. Click the Add Environment button to add an

environment. The Environment Settings page opens.

 3. Enter a relevant name for the environment in the

Name text box. In this case, we entered Test1.

 4. Enter a relevant description of the environment in

the Description text box.

 5. Click the Save button, as shown in Figure 2-10.

Figure 2-10. Steps to create an environment

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

28

Similarly, create another environment with the name Test2, as shown

in Figure 2-11.

 Uploading NuGet Package to Octopus Deploy
We can now upload the NuGet package, which we created earlier using the

PowerShell script in TeamCity, on Octopus Deploy.

Perform the following steps to upload the NuGet package:

 1. Navigate to Library, then Packages, in the Octopus

Deploy interface.

 2. Click the Upload Package button, as shown in

Figure 2-12.

Figure 2-11. Steps to create another environment

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

29

The Upload a NuGet Package page appears.

 3. Click the Browse button beside the NUPKG File

option. The Choose File to Upload dialog box

appears.

 4. Navigate to the package’s location. As discussed

earlier, we copied the package to the Package

Source folder.

 5. Select the package.

 6. Click the Open button, as shown in Figure 2-13.

Figure 2-12. Clicking the Upload Package button

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

30

The name of the selected package file with its

complete path appears in the NUPKG File box.

 7. Click the Upload button.

After clicking the Upload button, the package file starts uploading.

 Creating Steps for the Deployment Process
As discussed earlier, Octopus Deploy allows users to define the

deployment process for their project easily. Users can add steps to the

deployment process using templates, including built-in step templates,

custom step templates, and community contributed step templates.

Users can also select the Add Step button to display a list of templates

and then select the desired step. The built-in steps can be used to handle

common deployment scenarios.

Figure 2-13. Uploading a NuGet package

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

31

In the current scenario, we created the following two steps for the

deployment process:

• NugetDeploy: This step deploys a NuGet package to

one or more machines, which are running the Tentacle

deployment agent.

• Web Deploy-Publish Website (MSDeploy): This

step is created to deploy the NuGet package to Azure

websites by running a PowerShell script across

machines.

Perform the following steps to add the NugetDeploy step:

 1. Select the Process tab.

 2. Click the Add Step button. The Choose Step Type

pop-up appears with a list of built-in step templates.

 3. Select the desired built-in step template. In this case,

we selected the Deploy a NuGet Package option. The

Step Details page appears.

 4. Enter a name for step in the Step Name text box. In

this case, we entered NugetDeploy.

 5. Specify the target machines in the Machine Roles

text box. In this case, we selected WebRole.

 6. Select the desired package feed from the NuGet

Feed drop-down list.

 7. Click the Add button. Figure 2-14 shows the details

of the NugetDeploy step.

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

32

In Figure 2-14, we see that the NuGet Package ID field contains the

name of the NuGet package that was uploaded earlier.

Similarly, we can add a step using the custom step template with the

name Web Deploy-Publish Website (MSDeploy), as shown in Figure 2- 15.

Figure 2-14. The NugetDeploy step

Figure 2-15. Adding a step

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

33

We can look at the created steps by selecting the Process tab of the

created project, as shown in Figure 2-16.

 Using Variables
Variables are required for eliminating the need for hard-coding the

configuration values to support different environments easily. They are

required while deploying packages to Azure websites. As a NuGet package

is shared between two sites, we used the OctopusBypassDeploymentMutex

variable to avoid resource locking of the NuGet package, as shown in

Figure 2-17.

Figure 2-16. Displaying the created steps

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

34

 Creating and Deploying a Release
A release contains all details of the project and package so that it can be

deployed to different environments as per requirements. Perform the

following steps to create a release:

 1. Navigate to the Overview page, which displays all

details of the project.

 2. Click the Create Release button. The Create page

appears.

 3. Enter the desired release version in the Version text

box.

 4. Select the desired package from the Package column.

 5. Enter the desired release notes in the Release Notes

text area.

 6. Click the Save button. Figure 2-18 shows the process

of creating a release.

Figure 2-17. The OctopusBypassDeploymentMutex variable

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

35

Note In the current scenario, we are creating a release to deploy
the nuGet package to multiple Azure websites.

A release is created with the specified version. The

Deploy page opens. Here, we can select the desired

environment to which we want to deploy the created

release. We can also click the Change button to

change the environment.

 7. Click the Deploy Now button to deploy the created

release, as shown in Figure 2-19.

Figure 2-18. Creating a release

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

36

The release is deployed successfully to both Azure websites, as shown

in Figure 2-20.

Figure 2-19. Deploying a release

Figure 2-20. Deployment result

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

37

We can now navigate to the Azure portal where we see that two

Azure websites have been created for multiple deployments of the NuGet

package, as shown in Figure 2-21.

 Summary
In this chapter, we discussed the CI tool called TeamCity and the release

management software or CD tool called Octopus Deploy. TeamCity

builds the source code using MSBuild. Initially, we configured TeamCity

by creating a new project and providing the SVN path to fetch the latest

code onto the build agent. We then configured the source code and set

parameters for the PowerShell script file. The target path settings were

modified to create a NuGet package. This package was copied from the

build agent to a location where Octopus Deploy could pick it up.

In Octopus Deploy, we created a project and two environments to

test multiple deployment scenarios. Then, we uploaded the package. We

also created two steps—NugetDeploy and Web Deploy-Publish Website

(MSDeploy). The former was created to deploy the uploaded NuGet

Figure 2-21. Displaying the created websites on Azure

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

38

package onto a Tentacle machine while the latter was created to deploy

the contents of the NuGet package from the Tentacle machine to the Azure

websites.

We also configured variables and credentials for both environments.

Lastly, we created a release for the project, which could be deployed to

different environments. The release allowed us to deploy the contents of

NuGet package onto Azure websites in parallel. In the end, we executed

the release and found that the content of the NuGet package was deployed

successfully.

ChAptEr 2 DEployMEnt vIA tEAMCIty AnD oCtopus DEploy

39© Suren Machiraju, Suraj Gaurav 2018
S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7_3

CHAPTER 3

Deployment via VSTS
In the last chapter, we discussed the process of deploying applications to

Azure using best-of-breed and stand-alone DevOps tools: TeamCity as a

CI tool, and Octopus Deploy as a CD tool. The challenge with the example

solution is that there are separate tools used to deploy applications. In this

chapter, we review a DevOps platform, an all-encompassing end-to-end

solution called Microsoft Visual Studio Team Services (VSTS);

see www.visualstudio.com/team-services/.

VSTS is a collaborative solution that takes care of the entire

software deployment lifecycle, from creating packages to deploying the

application. One of its major strengths is its tight integration with Azure.

This chapter steps through the entire process of application deployment

to Azure using VSTS.

 Understanding VSTS
Visual Studio Team Services (VSTS) is an Application Lifecycle

Management (ALM) system that manages the entire process of the

software development lifecycle. In earlier versions, it was known as

Visual Studio Online (VSO).

http://www.visualstudio.com/team-services/

40

 Features of VSTS
Some of the features of VSTS are as follows:

• Provides integrated software development.

• Supports source control systems, including Git and

Team Foundation Version Control (TFVC).

• Supports several features that can be used to track

product features, bugs, and other issues.

• Supports several Agile methods for planning purposes.

• Automates the build, test, and release processes for

rapid release of the software.

• Supports usage across massively scaled-out teams

consisting of thousands of members.

• Provides a reliable and scalable service that is available

24 hours a day, seven days a week, and is backed by a

99.9% Service License Agreement (SLA).

• Allows users to customize elements such as source

control, work tracking, build and release, and test, etc.,

according to business requirements.

• Allows users to add more functionality to Visual Studio

Marketplace, service hooks, REST APIs, and

Visual Studio SDKs.

Chapter 3 Deployment via vStS

41

 Advantages of VSTS
VSTS is a Microsoft product introduced to upgrade Team Foundation

Server (TFS). Therefore, it is also known as a cloud version of TFS. Some of

the advantages of VSTS are as follows:

• Free for up to five users.

• Operations and maintenance costs are lower than TFS,

as it is a cloud-based solution, while TFS is an on-

premise solution.

• Encourages more stakeholders to get involved as

they can log on to the platform from anywhere and at

any time.

• Allows developers to write and commit code from

anywhere.

• Enables effortless inter-team communication, as it

supports the Git source control system, which provides

the cross-platform facility.

• Ideal platform for organizations to develop a modern

DevOps environment.

Chapter 3 Deployment via vStS

42

 Creating an Account in VSTS
One of the primary tasks while using VSTS is creating an account to host

the project. Perform the following steps to create an account in VSTS:

 1. Navigate to the link https://www.visualstudio.

com/team-services/.

 2. Click the Get Started for Free button, as shown in

Figure 3-1.

Figure 3-1. Launching Visual Studio Team Services

Chapter 3 Deployment via vStS

https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/

43

Note you can use your microsoft credentials to sign in to
visual Studio team Services.

Figure 3-2. Sign in page – user name

The Sign Into Your Account page appears.

 3. Enter the desired Microsoft email address in the

Email or Phone text box.

 4. Click the Next button, as shown in Figure 3-2.

Chapter 3 Deployment via vStS

44

 5. Enter the required password in the Password field.

 6. Click the Sign In button, as shown in Figure 3-3.

The Account Creation page appears.

 7. Enter the desired name of the account in the text

box beside the Host My Projects At The label. This

enables you to specify a host location (US, India, etc.)

for the projects.

Figure 3-3. Sign in with a Microsoft account password

Chapter 3 Deployment via vStS

45

 8. Select the desired radio button below the Manage

Code Using The option. This specifies the repository

for Git to manage the code.

 9. Click the Continue button, as shown in Figure 3-4.

Figure 3-4. Account for hosting project

Chapter 3 Deployment via vStS

46

After you click the Continue button, the process of creating an account

begins, as shown in Figure 3-5.

The account is created with the specified name.

 Creating a Project
After we create an account in VSTS, the first page, Create New Project,

asks users to create a new project. Perform the following steps to create a

project:

 1. Enter the desired name for the project in the Project

Name text box.

 2. Enter the desired description for the project in the

Description text area.

Figure 3-5. Process of creating an account

Chapter 3 Deployment via vStS

47

 3. Select the desired version control from the Version

Control drop-down list. In this case, we selected Git.

 4. Select the desired work item process from the

Work Item Process drop- down list. In this case, we

selected Agile.

 5. Click the Create button to create the project, as

shown in Figure 3-6.

The project is created with the specific settings and opens with the

Project Overview page, as shown in Figure 3-7.

Figure 3-6. Steps to create a project

Chapter 3 Deployment via vStS

48

 Adding Code
Once we are done with the process of creating a project, the Project

Overview page appears, which displays information about the created

project. Here, we need to add code to the project. We have different

options to add code, as follows:

• Clone to your computer

• Push an existing repository from the command line

• Import a repository

Perform the following steps to add code to the project:

 1. Select the Code tab.

 2. Click the Clone in Visual Studio button, as shown in

Figure 3-8.

Figure 3-7. The Project Overview page

Chapter 3 Deployment via vStS

49

A message box appears requesting confirmation.

 3. Click the Open Microsoft Visua…ndler Selector

button to open Visual Studio, as shown in

Figure 3-9.

Figure 3-8. Adding code in Visual Studio

Figure 3-9. Launching Microsoft Visual Studio Selector

The Microsoft Visual Studio window opens with

the Visual Studio Team Services dialog box. In this

dialog box, we see the remote and local paths.

Chapter 3 Deployment via vStS

50

 4. Click the Connect button to connect Visual Studio

with Visual Studio Team Services, as shown in

Figure 3-10.

After we click Connect, the cloning and connection processes are

complete.

 Adding a New Solution

Here, we need to add a new solution, which can be done by performing the

following steps:

 1. Click the New link under the Solutions section in

the Team Explorer panel. The New Project window

appears.

 2. Select the desired option from the left pane. In this

case, we selected Web. The related templates appear

in the middle pane based on the selection.

Figure 3-10. Connecting Visual Studio to Visual Studio Team
Services

Chapter 3 Deployment via vStS

51

 3. Select the desired template in the middle pane. In

this case, we selected ASP.NET Web Application

(.NET Framework).

 4. Enter the desired name for the selected template in

the Name text box. In this case, we entered WebApp.

 5. Specify the desired location for the template in the

Location text box.

 6. Select the Create Directory for Solution checkbox.

 7. Select the Create New Git Repository checkbox.

 8. Click the OK button, as shown in Figure 3-11.

Figure 3-11. Creating a new project

The New ASP.NET Web Application – WebApp

window appears.

Chapter 3 Deployment via vStS

52

 9. Select the MVC option to create the MVC

application.

 10. Click the OK button, as shown in Figure 3-12.

The Microsoft Visual Studio progress bar appears displaying the status

of the project. Once complete, the project is created and added to the

Solutions section.

Figure 3-12. The New ASP.NET Web Application – WebApp
window

Chapter 3 Deployment via vStS

53

 Committing Changes

Once the required changes are made, we can commit them. Perform the

following steps to commit the changes:

 1. Click the Changes button under the Project section

in the Team Explorer panel, as shown in Figure 3-13.

Figure 3-13. Steps to commit changes

Chapter 3 Deployment via vStS

54

The changes made to the project are displayed in

the Changes section.

 2. Enter the desired commit message in the Enter a

Commit Message text box.

 3. Click the Commit All button, as shown in

Figure 3-14.

Figure 3-14. Steps to commit changes

Chapter 3 Deployment via vStS

55

A commit is created locally.

 4. Click the Sync link to share the changes with the

server, as shown in Figure 3-15.

Figure 3-15. Sharing the changes with the server

The Synchronization page appears in the Team

Explorer panel.

 5. Click the Push link under the Outgoing Commits

section, as shown in Figure 3-16.

Chapter 3 Deployment via vStS

56

The synchronization is successful, as shown in Figure 3-17.

Figure 3-16. The Push link enables synchronization

Figure 3-17. Successful synchronization

Chapter 3 Deployment via vStS

57

At this point, the code is added to the server.

Next, verify the repository in VSTS. For this, navigate to the Code

section of the project created earlier. A folder with the same name as that

of the project created in Visual Studio appears, as shown in Figure 3-18.

 Creating a Build
Once the source control repository is available, we can set up (or create)

a build. Perform the following steps to create a build:

 1. Hover the mouse over the Build and Release tab.

A list of options appears.

 2. Click the Builds option, as shown in Figure 3-19.

Figure 3-18. The repository

Chapter 3 Deployment via vStS

58

The My Definitions page appears.

 3. Click the New button to create a new build

definition, as shown in Figure 3-20.

The Select Build Definition Template page appears.

 4. Select the desired template from the Select a

Template list.

 5. Click the Apply button, as shown in Figure 3-21.

Figure 3-19. The Builds option

Figure 3-20. Creating a new build definition

Chapter 3 Deployment via vStS

59

The Sample Project-ASP.NET page appears.

 6. Enter the desired name for the template in the

Name text box.

 7. Select the desired option from the Azure Queue

drop-down list.

 8. Specify the desired parameters under the

Parameters section.

 9. Click the Save & Queue button. A drop-down list

appears.

 10. Select the Save option from the drop-down list, as

shown in Figure 3- 22.

Figure 3-21. Selecting a template

Chapter 3 Deployment via vStS

60

The Save Build Definition dialog box appears.

 11. Select the desired folder in which to save the build

definition. In this case, we selected the parent folder.

 12. Enter the desired comment in the Comment text area.

 13. Click the Save button to save the build definition, as

shown in Figure 3- 23.

Figure 3-22. Tasks tab of the Sample Project-ASP.NET page

Figure 3-23. The Save Build Definition dialog box

Chapter 3 Deployment via vStS

61

 14. Select the Variables tab to view the associated

variables, as shown in Figure 3-24.

 15. Select the Triggers tab to set the triggers. The related

options appear in the right pane.

 16. Select the Enable Continuous Integration checkbox

to enable continuous integration.

 17. Select the Batch Changes While a Build Is in

Progress checkbox to accept the batch changes

during the build.

 18. Specify branch filters under the Branch Filters

section, as shown in Figure 3-25.

Figure 3-24. The Variables tab

Chapter 3 Deployment via vStS

62

 19. Select the Options tab. The related settings appear.

 20. Specify the desired general build definition setting

under the Build Properties section.

 21. Specify the desired build job authorization and

timeout settings under the Build Job section.

 22. Click the Save & Queue button. A drop-down list

appears.

 23. Select the Save & Queue option to save and queue

the settings, as shown in Figure 3-26.

Figure 3-25. Setting triggers

Chapter 3 Deployment via vStS

63

The Save Build Definition and Queue dialog box

appear.

 24. View the settings and make the changes as per the

requirements, as shown in Figure 3-27.

Figure 3-26. Save and queue the build

Figure 3-27. The Save Build Definition and Queue dialog box

Chapter 3 Deployment via vStS

64

 25. Click the Save button to create a build.

A build with a build number is queued.

 26. Click the build number, as shown in Figure 3-28.

Figure 3-28. Clicking the build number

A successful build is created, as shown in Figure 3-29.

Figure 3-29. Creation of a successful build

Chapter 3 Deployment via vStS

65

View the build summary by clicking the build number, as shown in

Figure 3-30.

 Creating a Release Definition
A release definition describes an application’s end-to-end release process

so that it can be deployed to different environments. Perform the following

steps to create a release definition:

 1. Select the Releases tab.

 2. Click the New Definition button. The Select a

Template dialog box appears.

 3. Select the desired template for the release from the

Select a Template dialog box.

 4. Click the Apply button, as shown in Figure 3-31.

Figure 3-30. Build summary

Chapter 3 Deployment via vStS

66

The Environment dialog box appears.

 5. Type the desired name for the environment in the

Environment Name text box.

 6. Click the Close icon in the Environment dialog box

to close it.

 7. Select the Tasks tab. A drop-down list appears.

 8. Select the environment that was created earlier.

 9. Select the Azure subscription from the Azure

Subscription drop-down list.

Note We need to have a resource group on azure to deploy our
application.

 10. Select the type of app from the App Type drop-down list.

 11. Select the app service name from the App Service

Name drop-down list.

Figure 3-31. Selecting a template

Chapter 3 Deployment via vStS

67

 12. Click the Save button to save all the settings, as

shown in Figure 3-32.

Figure 3-32. Setting the task’s properties

The Save dialog box appears.

 13. Select the desired folder from the Folder drop-down list.

 14. Specify the desired comment in the Comment

text box.

 15. Click the OK button, as shown in Figure 3-33.

The release definition is created.

Figure 3-33. The Save dialog box

Chapter 3 Deployment via vStS

68

 Adding Artifacts
An artifact is the actual deployable component of an application. In VSTS,

the artifacts produced by artifact sources (or stored in artifact repositories)

can be deployed. We need to link the correct artifact sources to the release

definition at the time of creating a release definition. Perform the following

steps to add artifacts:

 1. Click the Add button in the Artifacts section. The

Add Artifact dialog box appears.

 2. Select the source type under the Source Type section.

 3. Select the desired project type from the Project

drop-down list.

 4. Select the build definition that was created earlier

from the Source (Build Definition) drop-down list.

 5. Select the default version from the Default version

drop-down list.

 6. Click the Close icon to close the dialog box.

The created artifact is added.

 Creating a Release
A release manages all the artifacts that are defined during release

definition. It is a complete package that contains a snapshot of

environments, task steps, variables, and release policies used to perform

all operations in the release definition. Perform the following steps to

create a release:

 1. Click the Release button. A drop-down list appears.

 2. Click the Create Release option. The Create New

Release dialog box appears.

Chapter 3 Deployment via vStS

69

 3. Select the environment from the Environments for

Trigger Change from Automated to Manual drop-

down list.

 4. Enter the desired release description in the

Description text box.

 5. Click the Create button, as shown in Figure 3-34.

Figure 3-34. The Create New Release dialog box

A release is created.

 Deploying a Release
Once the release is created successfully, we can deploy it to the resource

group created on Azure. Perform the following steps to deploy the release:

 1. Select the Release tab. The created release is shown.

 2. Click the ellipsis icon. A context menu appears.

 3. Select the Open option from the context menu. The

Summary page of the selected release appears.

Chapter 3 Deployment via vStS

70

 4. Click the Deploy button. A drop-down list appears.

 5. Select the desired option from the drop-down list.

The Deploy Release to Environment dialog box

appears.

 6. Click the Deploy button to deploy the release.

The release is deployed successfully, as shown in Figure 3-35.

Figure 3-35. Deploying a release

 Viewing the Deployed Release
Once the release is deployed to Azure, we can view it in a web browser.

Perform the following steps to view the release:

 1. Open the Azure portal.

 2. Click the Resource Groups option in the left pane.

A list of resource groups appears in the right pane.

 3. Click the resource group that we linked to the

environment. The selected resource group opens

with the described settings.

Chapter 3 Deployment via vStS

71

 4. Click the item that we created in the resource group.

In this case, we created an app service. The selected

app service opens.

 5. Click the Browse button to view the service in the

web browser.

A web browser window opens with the deployment result, as shown in

Figure 3-36.

Figure 3-36. Window showing the deployed release

 Summary
VSTS is a comprehensive CI-CD solution, which means that it manages

the entire software development lifecycle. Its support of different source

control systems, work items, and Agile methods makes it a perfect choice

for organizations. The functionality of automating the build, test, and

release processes speeds up the software release process. VSTS is a cloud-

based environment, which makes it available 24 hours a day, seven days a

week without the overhead of managing the DevOps software deployment.

Chapter 3 Deployment via vStS

73© Suren Machiraju, Suraj Gaurav 2018
S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7_4

CHAPTER 4

Azure Application
Deployment
In the preceding chapters, we discussed DevOps fundamentals and the

use of best-of-breed stand-alone DevOps Software, and we reviewed the

integrated DevOps platform. The next logical step is to put it all together

and manage the software development lifecycle of an Azure application.

Of course, you can further enhance this solution to suit your website or

enterprise software. The key here is DevOps.

This chapter discusses a real Azure application deployment using

VSTS. We have a virtual machine on Azure that has e-commerce software

(Magento) installed on it. We will use VSTS to deploy changes to the code

automatically and view the effects on the Azure application. The solution

also includes a GitHub repository to store and version source code

and a shell script for installing the Azure virtual machine and Magento

application.

We make changes in the VSTS Git repository, committed changes, and

deployed the release. The release is then deployed to view the changes. In

this scenario, we make changes to the HTML/CSS files of the source code

to change the color of the menus from blue to orange and deploy a release.

Figure 4-1 depicts an overview of this scenario.

74

 Understanding Magento
Magento is an open source e-commerce platform. It allows developers

to easily create a shopping cart for their online stores. It also allows

developers to have better control over the content, appearance, and

functionality of their online stores. It provides features such as search

engine optimization and support for catalog-management tools.

Magento is extremely simple to use and can be used by individuals

who are not experienced developers. The availability of a number of

themes and plug-ins makes it effective in enhancing the customers’

experience. Considerable support is available through its large volunteer

community.

 Benefits of Using Magento
There are several benefits of using Magento. Some of them are as follows:

• Easy installation.

• Provides several layouts and plug-ins that can be used

to add more functionality to the e-commerce solution.

Figure 4-1. Scenario overview

Chapter 4 azure appliCation Deployment

75

• Supports many payment gateways.

• It is an open source technology, which means that it

can be modified based on user requirements.

 Disadvantages of Magento
The following disadvantages/limitations are associated with Magento:

• A more complex system compared to Drupal.

• Requires complex programming to add custom

functionality.

• Requires experienced developers to enable it to

integrate with other systems.

 Prerequisites of Running an Azure
Application with Magento
There are a few prerequisites needed to run an Azure application with

Magento. A system must have:

• A virtual machine on Azure running Linux

• Apache server

• MySQL

• PHP

Chapter 4 azure appliCation Deployment

76

 Setting Up Magento
In this scenario, we used an ARM template to set up Magento. This

template contains the source code and shell scripts for setting up a virtual

machine on Azure and installing all the prerequisites and Magento on the

created virtual machine. This template also contains a file that creates a

button. Users utilize that button to navigate to Azure in order to deploy the

virtual machine and launch the Magento application.

Note to use azure cloud, you need an azure subscription.

Perform the following steps to set up Magento:

 1. Click the Deploy to Azure button to deploy a

Magento package, as shown in Figure 4-2.

Figure 4-2. Deploying Magento

Chapter 4 azure appliCation Deployment

77

After clicking the Deploy to Azure button, you

are redirected to the Azure login page, wherein

you need to specify an email and password to log

in. Once the authorization is done, the Custom

Deployment page appears.

 2. Select the subscription details from the Subscription

drop-down list.

 3. Select the desired radio button beside the Resource

Group option to specify whether to create a new

resource group or use an existing resource group. In

this case, we selected the Create New radio button.

 4. Specify the name of the resource group in the Create

a Resource Group text box.

 5. Select the desired location from the Location drop-

down list.

 6. Specify a domain name in the Domain Name text

box.

 7. Specify the name of the customer in the Customer

ID text box.

 8. Specify the tier of customer subscription in the

Customer Tier text box.

 9. Specify the password for MySQL in the My SQL

Password text box.

 10. Specify the username of the virtual machine server

admin in the VM Admin Username text box.

 11. Specify the password of the virtual machine server

admin in the VM Admin Password text box.

Chapter 4 azure appliCation Deployment

78

The values for fields—including Magento File Backup

(backup of Magento files), Magento Media

Backup (backup of media files), Magento Init

Backup (backup of INIT folder content), Magento

Var Backup (backup of VAR folder content),

Magento Default HTaccess (default htaccess file),

Magento DB Backup (backup of Magento DB), and

virtual machine size (size of the required virtual

machine)—are automatically completed through

the ARM template.

 12. Click the Purchase button, as shown in Figure 4-3.

Figure 4-3. The Custom Deployment page

Chapter 4 azure appliCation Deployment

79

It takes a few minutes after clicking the Purchase button to get a

successful deployment. Once the deployment is successful, the virtual

machine starts running. We can view the artifacts by visiting the created

resource group, as shown in Figure 4-4.

To view the deployment history, click the deployment under the

Deployment History section of the created resource group. Here, we will

get the URL under the INSTALLEDURL text box under the Outputs section.

If we run this URL in any web browser, we get the Magento website, as

shown in Figure 4-5.

Figure 4-4. Viewing artifacts

Figure 4-5. The Magento website

Chapter 4 azure appliCation Deployment

80

 Source Code Integration with Git
A source code repository is a file archive location where source code for

software is placed so that it can be accessed when required. It can be

stored publicly or privately. The source code repository is used to handle

several versions of a project.

VSTS supports two types of source code repositories, as follows:

• TFS-based repositories

• Git-based repositories

In this section, we are going to create a Git-based repository to store

the source code.

 Creating a Repository in VSTS
Perform the following steps to create a Git-based repository in VSTS:

 1. Navigate to https://www.visualstudio.com/.

 2. Click the Sign In button. The Sign In page appears.

 3. Enter the email address in the Email or Phone text box.

 4. Click the Next button.

 5. Enter the password in the Password text box.

 6. Click the Sign In button.

The window displays the available accounts and

repositories.

 7. Click the Create New Account button, as shown in

Figure 4-6.

Chapter 4 azure appliCation Deployment

https://www.visualstudio.com/

81

When you click the Create New Account button, a

new window appears where you need to enter the

account-related details.

 8. Enter the name of the subdomain in the Host My

Projects At text box.

 9. Select the Git radio button to manage code

using Git.

 10. Enter the name of the project in the Project Name

text box.

 11. Select the framework from the Organize Work Using

the drop-down list.

 12. Select the hosting location from the Host Your

Projects In The drop- down list.

 13. Click the Continue button, as shown in Figure 4-7.

Figure 4-6. Creating a new account

Chapter 4 azure appliCation Deployment

82

The project-creation process starts. Once the process completes, the

project is created.

If you already have a VSTS account, you can create a repository by

performing the following steps:

 1. Open the VSTS account.

 2. Click the New Team Project option, as shown in

Figure 4-8.

Figure 4-7. Hosting the project

Chapter 4 azure appliCation Deployment

83

The Create New Project page appears.

 3. Enter the desired name of the project in the Project

Name text box.

 4. Enter the desired description in the Description

text box.

 5. Select the Git option from the Version Control drop-

down list to create a Git repository.

 6. Select the Agile option from the Work Item Process

drop-down list.

 7. Click the Create button, as shown in Figure 4-9.

Figure 4-8. Clicking the New Team Project option

Chapter 4 azure appliCation Deployment

84

The project is created successfully.

 Uploading Code on VSTS Git
Once the repository is created successfully, we need to upload or add code

to the repository. We used Visual Studio IDE to upload the source code.

Perform the following steps to upload a code file to the VSTS Git-based

repository:

 1. Hover the mouse over the Code button. A list of

options appears.

 2. Select the repository we created earlier, as shown in

Figure 4-10.

Figure 4-9. Creating a project

Chapter 4 azure appliCation Deployment

85

The files associated with the selected repository

appear.

 3. Click the Upload File(s) button to upload a new file,

as shown in Figure 4-11.

Figure 4-10. Selecting the repository

Figure 4-11. Clicking the Upload File(s) button

Chapter 4 azure appliCation Deployment

86

The Commit dialog box appears.

 4. Click the Browse button to search for the file to be

uploaded.

The Open dialog box appears.

 5. Navigate to the folder where the file to be uploaded

is stored.

 6. Select the file.

 7. Click the Open button. The selected file appears in

the Commit dialog box.

 8. Enter the desired comment in the Comment

text area.

 9. Click the Commit button to commit the changes, as

shown in Figure 4- 12.

Figure 4-12. Uploading a file

Chapter 4 azure appliCation Deployment

87

 Creating a Release Definition
Once the file is uploaded to the repository, we need to create a release

definition in VSTS. A release definition describes the application’s

overall release process. This application must be deployed in different

environments.

Perform the following steps to create a release definition in VSTS:

 1. Navigate to the project we created earlier.

 2. Hover the mouse over the Build and Release button.

A list of options appears.

 3. Click the Releases option, as shown in Figure 4-13.

Figure 4-13. Clicking the Releases option

 4. Click the + button. A drop-down list appears.

 5. Click the Create Release Definition option, as shown

in Figure 4-14.

Chapter 4 azure appliCation Deployment

88

The Select a Template dialog box appears.

 6. Click the Empty Process link, as shown in

Figure 4-15.

Figure 4-14. Click the Create Release Definition option

Figure 4-15. The Select a Template dialog box

Chapter 4 azure appliCation Deployment

89

 7. Click the Add Artifact button under the Artifacts

section.

The Add Artifact dialog box appears.

 8. Select the Git option under the Source Type section.

 9. Select the desired project from the Project

drop-down list.

 10. Select the desired Source repository from the Source

(Repository) drop-down list.

 11. Select the default branch from the Default Branch

drop-down list.

 12. Select the default version from the Default Version

drop-down list, as shown in Figure 4-16.

Figure 4-16. Selecting the source type

Chapter 4 azure appliCation Deployment

90

 13. Specify the desired source alias in the Source Alias

text box.

 14. Click the Add button, as shown in Figure 4-17.

Figure 4-17. Adding an artifact

The created artifact is added.

 15. Edit the release definition name, as shown in

Figure 4-18.

Chapter 4 azure appliCation Deployment

91

 16. Click the Environment 1 button under the

Environments section. The Environment dialog box

appears.

 17. Replace the Environment 1 text in the Environment

Name text box with the desired text to specify a

unique name for the environment.

 18. Click the Close button to close the Environment

dialog box.

 19. Select the Tasks tab. A list of related tasks appears in

the left pane, and the description of the selected task

appears in the right pane, as shown in Figure 4-19.

Figure 4-18. Editing the release definition name

Chapter 4 azure appliCation Deployment

92

 20. Select the Agent Phase option in the left pane. Many

options related to the selection appear in the right

pane, as shown in Figure 4-20.

Figure 4-19. Selecting the Tasks tab

Figure 4-20. Options related to the agent phase

Chapter 4 azure appliCation Deployment

93

In Figure 4-20, the agent appearing in the Agent

Queue text box is deployed by the ARM template.

Note a phase groups the tasks created under it. it defines the
runtime target environment to execute the created tasks. on an
agent, the tasks are executed by an agent phase in a queue.

 21. Click the + icon beside the Agent Phase option to

add a new task to the agent. The Add Tasks pane

appears on the right side with a list of available

tasks.

 22. Select the Shell Script option from the list to add a

shell script task. The Add button becomes active.

 23. Click the Add button to add the selected task, as

shown in Figure 4-21.

Figure 4-21. Adding a task

Chapter 4 azure appliCation Deployment

94

The selected task is added to the agent.

 24. Select the added task in the left pane. The settings

associated with the selected task appear in the right

pane.

 25. Select the desired version of the selected shell script

from the Version drop-down list.

 26. Specify the desired display name for the selected

task in the Display Name text box.

 27. Select the Inline radio button under the Type

section to add an inline script.

 28. Add the following inline script to remotely copy files

from a source location to the destination location in

the Script text area:

sudo rsync -ar "$(System.DefaultWorkingDirectory)/magentodemo/

www/skin" /var/www/magento/2016080806

Note in this script, the source location is:

$(System.DefaultWorkingDirectory)/magentodemo/
www/skin

the destination location is:

/var/www/magento/2016080806

 29. Click the Save button to save the release definition,

as shown in Figure 4-22.

Chapter 4 azure appliCation Deployment

95

As we click the Save button, the Save dialog

box appears.

 30. Select the desired folder from the Folder

drop-down list.

 31. Enter the desired comment in the Comment

text box.

 32. Click the OK button, as shown in Figure 4-23.

Figure 4-22. Adding a script to the task

Figure 4-23. Saving the release definition

Chapter 4 azure appliCation Deployment

96

 Pre-Approval Step for Deployment
Using VSTS
Once the release definition is created, we can set approvals for the release

within the release definition. Once the approvals have been set, the

deployment stops at the stage where it requires approval from the assigned

approver. The release is not deployed until the approver grants the

approval. There are two types of approvals, as explained:

• Pre-approval: This type of approval is required before

starting the deployment process.

• Post-approval: This type of approval is required once

the deployment is complete. It is used when deploying

to multiple environments like Test, Staging, and

Production.

Perform the following steps to add the pre-approval step for

deployment:

 1. Open the release definition.

 2. Click the Pre-Deployment Conditions icon, as

shown in Figure 4-24.

Chapter 4 azure appliCation Deployment

97

The Pre-Deployment Conditions dialog box

appears.

 3. Enable the Pre-Deployment Approvals option.

 4. Locate and select the desired approver from the

Approvers search box.

Note We can add single or multiple approvers both for pre-
deployment and post-deployment settings. an approver can be
an individual user or a group of users. When a group is set as an
approver, the deployment can be approved by only one of the users in
the group.

Figure 4-24. Clicking the Pre-Deployment Conditions icon

Chapter 4 azure appliCation Deployment

98

 5. Specify the timeout settings for the approval in the

Timeout section. If the approval is not approved within

the specified timeout period, the deployment is rejected.

 6. Select the desired checkbox under the Approval

Policies section. The following checkboxes are

available under the Approval Policies section:

• The user requesting a release or deployment
should not approve: When this checkbox is selected,

the user who is requesting (initiated or created) the

release cannot approve it. To approve or reject our

own deployments, this checkbox needs to be cleared.

• Skip approval if the same approver approved the
previous environment: This policy states that the

approval is skipped if the previous environment is

approved by the same approver set for the current

environment. If there are multiple approvers, the

approval becomes pending for them.

 7. Click the Save button, as shown in Figure 4-25.

Figure 4-25. Pre-deployment conditions dialog box

Chapter 4 azure appliCation Deployment

99

The pre-approval deployment has been configured, as shown in

Figure 4-26.

 Automated Continuous Deployments
Using VSTS
A release definition can be configured such that a new release is

automatically created when new artifacts are available, or when the latest

code is checked in. Such continuous deployment can be automated

through VSTS.

Perform the following steps to configure continuous deployment:

 1. Click the Continuous Deployment Trigger icon

under the Artifacts section, as shown in Figure 4-27.

Figure 4-26. Successful pre-approval deployment

Chapter 4 azure appliCation Deployment

100

The Continuous Deployment Trigger dialog box

appears.

 2. Enable the Continuous Deployment Trigger option.

 3. Click the Save button, as shown in Figure 4-28.

Figure 4-27. Clicking the Continuous Deployment Trigger icon

Figure 4-28. The Continuous Deployment Trigger dialog box

Chapter 4 azure appliCation Deployment

101

The continuous deployment trigger is enabled, as shown in

Figure 4- 29.

There are three options for triggering deployment, which are:

• Manual: This option creates a new release manually by

selecting the Release icon in a release definition. This

option does not create a release automatically when

there is a new build of source artifacts available.

• Continuous deployment: This option creates a new release

automatically when new build artifacts are available. This

option allows us to specify the artifact sources linked to the

release definition to trigger a new release.

• Scheduled: This option creates a new release

automatically based on the specified schedule. Select

the days of the week and the time of day to define a

schedule for automatically creating a new release.

Figure 4-29. Successful continuous deployment

Chapter 4 azure appliCation Deployment

102

 Testing the Deployment
We can test the deployment through VSTS. We have a Magento website

running on a virtual machine on Azure portal. We have the entire code

for the website in VSTS Git. If we make any changes to the available

code, a release pipeline will run, a release will be created automatically

or manually (depending on the deployment option we chose, i.e.,

Continuous Deployment or Manual), and the changes will be reflected

on the Magento website.

Note For the current testing scenario, we are making changes to
the background color of the menus, i.e., from blue to orange.

Before deployment, the background color of the menus in the Magento

website is blue, as shown in Figure 4-30.

Figure 4-30. Existing Magento website

Chapter 4 azure appliCation Deployment

103

 Testing Continuous Deployment of Release
Perform the following steps to deploy the release automatically:

 1. Log in to the VSTS account.

 2. Hover the mouse over the Code tab. A list of options

appears.

 3. Select the Files option from the list.

 4. Navigate to the styles.css file. The content of the

selected file appears in the right pane under the

Contents tab selected by default.

 5. Click the Edit button, as shown in Figure 4-31.

Figure 4-31. Navigating to the style.css file

 6. Set the value of the background-color property

under the cssmenu class to orange, as shown in

Figure 4-32.

Chapter 4 azure appliCation Deployment

104

Figure 4-32. Setting the value of the background-color property

 7. Click the Commit button. The Commit dialog box

appears.

 8. Enter the desired commit comment in the Comment

text box.

 9. Click the Commit button to commit the changes, as

shown in Figure 4- 33.

Chapter 4 azure appliCation Deployment

105

The code changes are committed successfully, as

shown in Figure 4-34.

Figure 4-33. Committing changes

Figure 4-34. Successful commit

Since we have correctly configured our process for

continuous deployment, the release pipeline will

start once the code is committed.

Chapter 4 azure appliCation Deployment

106

 11. Click the Release-3 release to view its details. The

Summary page of the selected release appears, as

shown in Figure 4-36.

 10. Open the release definition created earlier. In this

case, we created the release definition named

Magento DevOps Release Definition. Here, we can

see that a new release named Release-3 is created,

as shown in Figure 4-35.

Figure 4-35. Opening the release definition

Figure 4-36. The Summary page of the selected release

Chapter 4 azure appliCation Deployment

107

In Figure 4-36, we can see that the deployment

status under the Environments section states that

the release is not deployed yet. We require a pre-

deployment approval from the approver before the

actual deployment of the release. In this case, the

approver received an email to review the release and

approve or reject it.

 12. Click the View Approval button, as shown in

Figure 4-37.

The approver is redirected to the Summary page of

the release created earlier.

 13. Click the Approve or Reject link, as shown in

Figure 4-38.

Figure 4-37. Viewing email for approval

Chapter 4 azure appliCation Deployment

108

The Pre-Deployment Approval Pending dialog box

appears.

 14. Enter a relevant message in the text box.

 15. Click the Approve button to approve the release, as

shown in Figure 4- 39.

Figure 4-38. Clicking the Approve or Reject link

Figure 4-39. The Pre-Deployment Approval Pending dialog box

Chapter 4 azure appliCation Deployment

109

Once the approver clicks the Approve button,

the deployment starts. Its status can be seen

in the Deployment Status option under the

Environments section of the Summary page, as

shown in Figure 4- 40.

Figure 4-40. Status of deployment

 16. Select the Logs tab to monitor the deployment, as

shown in Figure 4-41.

Chapter 4 azure appliCation Deployment

110

Once all the tasks have completed, the deployment

is completed successfully, as shown in Figure 4-42.

Figure 4-41. Logs of running tasks

Figure 4-42. Tasks completion status

Chapter 4 azure appliCation Deployment

111

 17. Select the Summary tab to view the summary of the

created release.

The Summary page displays the value of the

Deployment Status option under the Environments

section as SUCCEEDED, as shown in Figure 4-43.

Figure 4-43. The deployment status

Once the deployment is successful, we can refresh

the home page of the Magento website. Once the

page refreshes, we can see that the background

color of the menus has changed from blue to

orange, which means that the VSTS deployment was

successful, as shown in Figure 4-44.

Chapter 4 azure appliCation Deployment

112

 Testing Manual Deployment of a Release
Even though the automated release was successful, we should still test the

manual deployment in case the continuous deployment is not configured

correctly, or in case we want to deploy the older version of the code.

Perform the following steps to deploy the release manually:

 1. Log in to the VSTS account.

 2. Open the applicable release definition, as shown in

Figure 4-45.

Figure 4-44. Successful deployment through VSTS

Figure 4-45. Opening the release definition

Chapter 4 azure appliCation Deployment

113

 3. Click the Release button. A drop-down list appears.

 4. Click the Create Release option, as shown in

Figure 4-46.

Figure 4-46. Creating a new release

The Create New Release for Magento DevOps

Release Definition dialog box appears.

 5. Enter the desired description for the release in the

Release Description text box.

 6. Select the b14549a1 (Updated Background

Color To ‘Light Blue’) option from the Version

drop-down list to set the background color of

the menus to light blue.

Chapter 4 azure appliCation Deployment

114

 7. Click the Create button to create a new release, as

shown in Figure 4- 47.

The release pipeline starts, and the manual

deployment icon displays for the created release in

the Environments column, as shown in Figure 4-48.

Figure 4-47. The Create New Release for Magento DevOps Release
Definition dialog box

Chapter 4 azure appliCation Deployment

115

The approver receives an email with a link to

View Deployment, along with additional controls

to approve or reject the deployment. Once the

approvers click the View Deployment button, they

are redirected to the release definition.

 8. Click the Approve or Reject link. The Pre-Deployment

Approval Pending dialog box appears.

 9. Enter the desired comment in the Type Comments

Here text box.

 10. Click the Approve button to approve the release

deployment, as shown in Figure 4-49.

Figure 4-48. Viewing the manual deployment icon

Chapter 4 azure appliCation Deployment

116

Once the approver clicks the Approve button,

the deployment begins, and all tasks complete

successfully, as shown in Figure 4-50.

Figure 4-49. Approving the release deployment

Figure 4-50. Status of successful tasks

Chapter 4 azure appliCation Deployment

117

 11. Select the Summary tab. The Summary page appears,

and we can see that the value of the Deployment Status

option displays as SUCCEEDED, as shown in Figure 4-51.

Figure 4-51. Successful deployment

 12. Refresh the Magento website. The background color

of the website will now be light blue, as shown in

Figure 4-52.

Figure 4-52. Final output

Chapter 4 azure appliCation Deployment

118

With this build, we have successfully used VSTS as a DevOps platform

to manage the software development lifecycle from the first deployment to

subsequent updates.

 Summary
This chapter provided information about Azure application deployment

using VSTS. It outlined a step-by-step approach for setting up Magento

on a virtual machine running on Azure. The chapter also discussed the

process of creating a repository and uploading code to it in detail. You

were also acquainted with the process of creating a release definition and

a release. You also learned about the process of configuring continuous

deployment to create a new release automatically. Finally, we created a test

to view the changes on Azure.

Chapter 4 azure appliCation Deployment

119© Suren Machiraju, Suraj Gaurav 2018
S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7_5

CHAPTER 5

Final Thoughts
This chapter takes a look back at the discussions from the preceding

chapters.

 DevOps for Azure
Chapter 1 presented basic DevOps concepts. Recall that without DevOps,

the manual software deployment process is error-prone, time-consuming,

and inefficient due to a lack of robust process integration and poor team

communication. The manual process also slows down performance.

The DevOps solution replaces the manual process of application

deployment, wherein DevOps automates the entire process of software

development and deployment. DevOps integrates the functionality of both

the Development and Operations/Production teams into the application

deployment process. One of DevOps most important functions is its ability

to automate the process of application deployment, allowing multiple

developers to check in and check out code simultaneously in/from the

Source repository, etc.

In the DevOps application deployment process, developers write code

and check it into the source control/Source repository. The Continuous

Integration (CI) server generates the build. During the build process,

several tasks are performed, including automated unit testing, code

120

coverage, and code analysis. If there is an error, a report is automatically

generated and sent back to the developer for correction in the code. Then,

a release is created for the successful build in which testing, QA, and

staging operations begin. Once a successful release is available, the release

is deployed to the target environment—Microsoft Azure Cloud. The first

chapter also introduced a number of different DevOps tools.

 Deployment via TeamCity and Octopus
Deploy
Chapter 2 outlined how to deploy a package on Azure Web Application

using best-of-breed tools—a Continuous Integration (CI) tool (TeamCity)

and a Continuous Delivery (CD) tool (Octopus Deploy). TeamCity is a

Continuous Integration server for developers powered by JetBrains.

Using TeamCity, we demonstrated how to create a project and specify

the build configuration by providing the SVN (subversion) path to include

the latest code and placing it in the build agent. Our process created a

successful build in TeamCity. Afterward, we configured the source code

and set parameters for the PowerShell script file. The target path settings

were modified to create a NuGet package. This package was placed at a

location accessible by Octopus Deploy.

Octopus Deploy is an automated deployment server that streamlines

and automates the deployment process of different applications into

different environments. This process thus becomes practically effortless.

Using Octopus Deploy, we created a project. Then, we created two

environments and we uploaded the package. We also created two steps

within that package, and we created a release for the project. Last, we

deployed the release, and the deployment resulted in the successful

deployment of the content of the NuGet package on the Azure websites.

Chapter 5 Final thoughts

121

 Deployment via VSTS
Chapter 3 discussed deploying a web application using a completely

integrated DevOps platform called Visual Studio Team Services (VSTS).

VSTS is a collaborative CI-CD solution. This means that VSTS manages

the entire software development lifecycle, from creating packages to

deploying applications. It is a cloud-based environment, which means it’s

available 24 hours a day, seven days a week without any management or

operations overhead.

Using VSTS, we first created an account to host the project, and we

created a project under the account. We then added the source code to the

project and made a few changes to the source code. We then committed

the changes and created a build. Once the build was successful, a release

definition was created. The release definition describes an application’s

end-to-end release process so that it can be deployed to different

environments. After creating the release definition, we added artifacts and

environments to which the application could be deployed. Then, a release

was created. A release is a complete package that contains a snapshot

of environments, task steps, variables, and release policies that are used

to perform all the operations in the release definition. After creating the

release, we deployed it to the resource group created on Azure. The release

was deployed successfully on Azure.

 Azure Application Deployment
Chapter 4 applied what we covered in previous chapters to an Azure

application deployment using VSTS. We created a virtual machine on Azure

and installed an e-commerce application called Magento. We committed

changes to the source code through VSTS and deployed the changes on the

Magento application running on Azure. A release was created and deployed

to view the effects of the changes made to the source code.

Chapter 5 Final thoughts

122

Now that you have completed the step-by-step process, with additional

details provided about the process and tools available, you are well versed

and fully trained to utilize both Continuous Deployment and manual

deployment methods.

Chapter 5 Final thoughts

123© Suren Machiraju, Suraj Gaurav 2018
S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7

Index

A, B
Application Lifecycle Management

(ALM), 39
Azure application deployment,

121–122
approvals, 96
continuous deployments (see

Continuous deployments)
Git-based repository

creating, 80–84
uploading code, 84–86

GitHub repository, 73
Magento (see Magento)
manual deployment

approving, release
deployment, 115–116

Create button, 114
Create Release option, 113
final output, 117
opening, release

definition, 112
status of successful tasks, 116
successful deployment, 117
viewing icon, 114–115

pre-approval step, 96–99
release definition

adding artifact, 90
adding script to task, 94–95

adding task, 93–94
agent phase, 92
Agent Queue text box, 93
Create Release Definition

option, 87
Empty Process link, 88
Environment dialog box, 91
name, editing, 91
saving, 95
Select a Template dialog

box, 88
selecting, source type, 89
Tasks tab, 91–92

scenario overview, 73–74

C
Continuous deployments

Continuous Deployment
Trigger dialog box, 100

Continuous Deployment
Trigger icon, 99

options, triggering
deployment, 101

successful, 101
testing

Approve or Reject
link, 107–108

https://doi.org/10.1007/978-1-4842-3643-7

124

background-color
property, 103–104

committing changes,
104–105

deployment status, 109, 111
logs of running tasks, 110
opening, release

definition, 106
Pre-Deployment Approval

Pending dialog box, 108
steps to deploy, 103
style.css file, 103
successful commit, 105
successful VSTS

deployment, 112
Summary page of selected

release, 106
tasks completion status, 110
viewing email for

approval, 107

D, E, F, G, H, I, J, K, L
DevOps

application deployment
process, 3–5

Azure application
deployment, 121

Continuous Integration (CI)
server, 119

functions, 2–3, 119
manual process, drawbacks, 1–2
release management process, 5

software development and
deployment, 119

software development
lifecycle, 1

TeamCity and Octopus
Deploy, 120

tools
all-in-one platforms, 8
build automation, 6
code review, 8
continuous delivery/release

management, 8
Continuous Integration

(CI), 6
testing, 7
version control system, 7

VSTS, 121

M
Magento

benefits, 74
Custom Deployment page, 78
definition, 74
deploying, 76
disadvantages, 75
resource group, 77
set up, 76
subscription details, 77
viewing artifacts, 79
VM Admin Password text box, 77
VM Admin Username text box, 77
website, 79, 102

Microsoft Azure, 11–12

Continuous deployments (cont.)

Index

125

N
NugetDeploy, 31–32, 37

O, P, Q, R, S
Octopus Deploy, 120

creating project, 25–26
definition, 24
deployment process

displaying of created
steps, 33

NugetDeploy, 31–32
templates, 30
Web Deploy-Publish Website

(MSDeploy), 31–32
environments

applications, 24
creating, 26–28

OctopusBypassDeployment
Mutex variable, 33–34

release
Azure websites, 36–37
creating, 34–35
deploying, 35–36

uploading NuGet
package, 28–30

T, U
TeamCity, 120

concepts, 12–13
configuration

arguments, PowerShell
script, 19

build configurations, 15
build steps, 18–21
creating project, 14–15
general settings page, 16
VCS root page, 16–17

features, 12
NugetExePath, 21–22
NuGet package, 22–23
Octopus Deploy (see Octopus

Deploy)

V
Version control settings

(VCS), 16–17
Visual Studio Online (VSO), 39
Visual Studio Team Services

(VSTS), 121
account creation

hosting project, 44–45
launching, 42
process of creating, 46
Sign in with Microsoft

account password, 44
Sign in with user name, 43
steps, 42

adding code
launching Microsoft Visual

Studio Selector, 49
options, 48
Visual Studio, 48–49
Visual Studio Team

Services, 50
advantages, 41

Index

126

ALM system, 39
artifacts, 68
committing changes

Push link, 55–56
repository, 57
sharing changes with

server, 55
steps to, 53–54
successful

synchronization, 56
creating build

build number, 64
build summary, 65
definition, 58
options, 57–58
Sample Project-ASP.NET

page, 59–60
Save & Queue option, 62–63
Save Build Definition and

Queue dialog box, 60, 63
selecting template, 58–59
setting triggers, 61–62
successful build, 64
Variables tab, 61

creating release, 68–69
deploying release, 69–70

description, 39
features, 40
project creation, 46–47
project overview page, 48
release definition

Azure subscription, 66
Environment dialog box, 66
Save dialog box, 67
selecting template, 65–66
setting task’s properties, 67

Solutions section
ASP.NET Web

Application, 51
creating new project, 51
New ASP.NET Web

Application–WebApp
window, 51–52

New Project window, 50
steps, 50

viewing, deployed
release, 70–71

VSTS, see Visual Studio Team
Services (VSTS)

W, X, Y, Z
Web Deploy-Publish Website

(MSDeploy), 31–32, 37

Visual Studio Team Services
(VSTS) (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Foreword
	Introduction
	Chapter 1: DevOps for Azure
	The Need for DevOps
	Describing the Functions of DevOps
	DevOps Application Deployment Process
	Understanding DevOps Tools
	Summary

	Chapter 2: Deployment via TeamCity and Octopus Deploy
	Introduction to Microsoft Public Cloud, Azure
	Understanding TeamCity
	Basic Concepts of TeamCity
	Configuring a Build in TeamCity
	Step 1: Creating a Project
	Step 2: Creating a Build Configuration
	Step 3: Configuring the Version Control Settings
	Step 4: Configuring the Build Steps

	Creating a Package
	Using Octopus Deploy
	Creating a Project
	Creating an Environment
	Uploading NuGet Package to Octopus Deploy
	Creating Steps for the Deployment Process
	Using Variables
	Creating and Deploying a Release

	Summary

	Chapter 3: Deployment via VSTS
	Understanding VSTS
	Features of VSTS
	Advantages of VSTS
	Creating an Account in VSTS
	Creating a Project
	Adding Code
	Adding a New Solution
	Committing Changes

	Creating a Build
	Creating a Release Definition
	Adding Artifacts
	Creating a Release
	Deploying a Release
	Viewing the Deployed Release

	Summary

	Chapter 4: Azure Application Deployment
	Understanding Magento
	Benefits of Using Magento
	Disadvantages of Magento

	Prerequisites of Running an Azure Application with Magento
	Setting Up Magento

	Source Code Integration with Git
	Creating a Repository in VSTS
	Uploading Code on VSTS Git

	Creating a Release Definition
	Pre-Approval Step for Deployment Using VSTS
	Automated Continuous Deployments Using VSTS
	Testing the Deployment
	Testing Continuous Deployment of Release
	Testing Manual Deployment of a Release

	Summary

	Chapter 5: Final Thoughts
	DevOps for Azure
	Deployment via TeamCity and Octopus Deploy
	Deployment via VSTS
	Azure Application Deployment

	Index

