DevOps for Azure
Applications

Deploy Web Applications on Azure

Suren Machiraju
Suraj Gaurav

ApPress’

http://www.allitebooks.org

DevOps for Azure
Applications

Deploy Web Applications
on Azure

Suren Machiraju
Suraj Gaurav

Apress’

vww . allitebooks.con

http://www.allitebooks.org

DevOps for Azure Applications

Suren Machiraju Suraj Gaurav

Issaquah, Greater Seattle,

Washington, USA Washington, USA

ISBN-13 (pbk): 978-1-4842-3642-0 ISBN-13 (electronic): 978-1-4842-3643-7

https://doi.org/10.1007/978-1-4842-3643-7
Library of Congress Control Number: 2018944115

Copyright © 2018 by Suren Machiraju, Suraj Gaurav

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Matthew Moodie

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-3642-0. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-3643-7
http://www.allitebooks.org

With a deep sense of gratitude, I dedicate this book to my
brother, Raghu Machiraju, and my sister, Rajasri Kota.

—Surendra Machiraju

I dedicate this book to my mother, Shanti Sinha.

—Suraj Gaurav

vww . allitebooks.con

http://www.allitebooks.org

Table of Contents

About the AUtROrS.....ccciussssmmmmmssssssnmsssssssnmsssssssnssssssssnsssssnsnnsssssnnnnnsssnnns ix
About the Technical REVIEWETccussssmssmsssssnssssssssssnsssssssnnssssssnnnsssssnns xi
FOreWOrdcccussseenmmssssnsnmsssssnsnnsssssnsnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnssssnnnnnss Xiii
INtroductionccccurissnenmmssssnsnmmssssnsnnsssssnnnnssssnnnnsesssnnnnsssssnnnnnnssnnnnnnnssn XV
Chapter 1: DevOps for AZUreouuseeeeennsmnmssssssssssssnsssssssssssssssnssssessssnns 1
The Need fOr DEVOPS ..c..cvvververere et se s s 1
Describing the FUNCtions of DEVOPScccvverernrinsene e sessessesnes 2
DevOps Application Deployment ProCESScvvrerrererererserseressssessesessesessessesses 3
Understanding DeVOPS TOOIS........ccveerrerrererserserersssessesesssssssessessessssessessessesessessesses 6
SUMMANY..c..eitiie st d s s s e e e e e e e ne s 9
Chapter 2: Deployment via TeamCity and Octopus Deployccuu. 11
Introduction to Microsoft Public Cloud, AZUreccceverievverrerreerersersesseesessenns 11
Understanding TEAMGCITYccovrenmrnnnnsennnesers s sens 12
Basic Concepts of TEAMCILYcccvrvrernrenrneserese s 12
Configuring a Build in TeaMUCIityc.coccerrvrrnnenenienernsesesesesese s sesessesesennes 14
Creating @ PACKAQGEc.cuccvrrrererreserinesine s 21
USiNg OCLOPUS DEPIOYevereerrerirererresieseresesseses e ssesse s sses e ssessssesessesaesssessesaens 24
Creating @ ProjECt.......cccvvvririerierr st sa e e 25
Creating an ENVIrONMENTc.ccooevvvriniere s rerese s s s e sessessesne s 26
Uploading NuGet Package to Octopus Deployccccvverrererersensereressensensenns 28

v

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Creating Steps for the Deployment Process.......cccvvvrreriereenenserseressssensessenes 30
USING VariabIeSccererieriie s 33
Creating and Deploying @ REIEASE........cccvvrerrerrererenrenseressesessessessessssensessenes 34
11T 111 T o OO 37
Chapter 3: Deployment via VUSTSccccccmssmmmssnsesssnsmssssssssssnssssnnsnsnas 39
Understanding VSTS........co e 39
FEatures OF VSTS ... 40
Advantages 0f VSTS ... s sessessens 41
Creating an Account in VSTS ... 42
Creating @ Project ... s 46
AddiNg COUEcverieieirerer e s 48
Creating @ BUild ... 57
Creating a Release Definitioncccccvvvevnininnnsnsn e 65
Adding ArtifactSccovcrieriererrr s ——— 68
Creating @ REIEASEccevevcirererr e e 68
Deploying @ RelEase.........cccccvvrerenisinc s s 69
Viewing the Deployed Releasecccccvvererirnsenenesinsesse s ssssessesnens 70
SUMIMANY.....eieeeeeereee e e s e n e re e e e e 71
Chapter 4: Azure Application Deployment..........ccccssemmmmnsssnnnnsssssnnnns 73
Understanding Magento...........ccoveeernnennennnesnnse s ssssesenns 74
Benefits of USiNg Magentoccccvveernrennennnnsesssesssesese e se s 74
Disadvantages of Magento........cccvvrernsesrnenenesesssessssese s sese s sessnnes 75
Prerequisites of Running an Azure Application with Magento...........cceevveviernene 75
Setting Up Magento........cccevvvreerennnirsene s sss s s s e s e sessessesne s 76
Source Code Integration With Git...........cccvreriennrninrnn s 80
Creating a Repository in VSTS........cccvvrirnnnrniene s sessessessesessessessees 80
Uploading Code on VSTS Git........ccocvvrveriernnennenienesessessese s sessessessesessessessees 84

TABLE OF CONTENTS

Creating a Release Definition........ccccvvevererierierinnensensessessssessesessssessessessessssessessens 87
Pre-Approval Step for Deployment Using VSTScccovvrecrnvcnnneneneserensenenne 96
Automated Continuous Deployments Using VSTS........cccovnvninninnniennsensenens 99
Testing the DeploymeNtccvreeresrerr e 102
Testing Continuous Deployment of Releaseccoveveererernenerenerennenenns 103
Testing Manual Deployment of a Release............cocveverererenernscnesesesensenenns 112
SUMMANY....ctirierieesrrese e e e e sn e e e e 118
Chapter 5: Final Thoughts..........cciuusummmmssnmmsssnnmsssssmsssssssssssssssnsssssnnssss 119
DV 0 o T (0] A 1 RS 119
Deployment via TeamCity and Octopus Deploy......c.cceevververiererersersereseesensensees 120
Deployment Via VSTS ...ttt 121
Azure Application Deployment ... 121
INA@X..ueeeiiienisssnnssssnnnssssns s sssssn s s ssn s s sssnnssssnnnsssnnanssnnnnssnnsnssnnnnssnnnnnnns 123

vii

About the Authors

Suren Machiraju developed an innovative
supply chain solution that integrated online
stores with market makers and aggregators,
founding Commercia Corporation in the

late 1990s. Within one year, Microsoft
acquired Commercia Corp, providing
Machiraju with the opportunity to lead

the B2B Interoperability team within the
BizTalk business unit. Over the next six years,

Machiraju’s team delivered five releases of the
BizTalk Server (2000-2006R2). Subsequently, Machiraju led the BizTalk
Rangers, Customer Advisory Group, and in two years, lit up over 20 of the
largest middleware deployments on the .NET stack.

In 2011, Machiraju collaborated to create the Azure Customer Advisory
Team at Microsoft. For five years, Machiraju led efforts in engaging
enterprise customers, startups, and partners for architectural reviews and
deployments of cloud/hybrid cloud .NET and OSS applications on the
Azure platform. The team pioneered solutions for the most challenging
cloud projects and produced dozens of successful deployments.

In 2014, Machiraju accepted appointment as a Technology Business
Partner at the Bill & Melinda Gates Foundation, where he collaborates with
leading NGOs and non-profit partners in devising technical solutions for
some the world’s most challenging social issues.

ix

ABOUT THE AUTHORS

Machiraju holds a Master’s Degree in Mechanical Engineering from
the Birla Institute of Technology and Science in Pilani, India. He is a listed
author of over 20 patents in the business software areas of B2B and Data
Interchange Standards and has published books and authored dozens
of MSDN articles/technical blogs on Azure and .NET. When he’s not
publishing blogs or presenting works to the larger technical community,
he is enjoying time with his family in the beautiful Pacific Northwest and
cheering on the Seahawks each Sunday.

“Please contact me if I can be of assistance in architecting your
cloud-based solution; collaborating in this space is one of my
greatest passions.”

—Suren https://about.me/surenmachiraju

Suraj Gaurav started his career in 2000, at the
height of dot-com era. He worked at a startup
called Asera that was building a revolutionary
platform for building B2B applications.

In 2002, he moved to Seattle to work for
Microsoft. He spent almost 10 years there and
worked on various products, including BizTalk

server, Commerce platform, and Office 365. He
has in-depth experience building enterprise-
scale systems like BizTalk, to Internet-scale
services like Office 365. He also built the
consumption-based billing platform serving as
the commerce engine for Azure.

Gaurav holds a Bachelor’s degree in Computer Science from Indian
Institute of Technology, Kanpur, India. He is listed as an inventor with over
25 patents. When he is not working, he can be found spending time with
his family and enjoying the beautiful outdoor life of the Pacific Northwest.

https://about.me/surenmachiraju

About the Technical Reviewer

Jennifer Curiak specializes in Dynamics 365 implementations, Agile
coaching, project management, business analysis, quality assurance,
and technical writing. She works to help teams in a variety of industries
become more productive, communicate more effectively, and generally
get stuff done.

A writer at heart, Curiak started her career as a technical writer for
a software company in 2000 and has evolved into designing solutions,
managing QA processes and resources, coaching large and small teams
in Agile development practices, acting as Scrum Master, and working on
Dynamics 365 customizations and implementations. She was the technical
reviewer for the books Administering, Configuring, And Maintaining
Microsoft Dynamics 365 in the Cloud in 2018, and BizTalk - Azure
Applications in 2018. She continues to write in-house technical and end-
user documentation and contributes to other professional publications.

Curiak and her husband Mike live in Western Colorado and spend
most of their free time exploring empty and desolate areas of the west
by mountain bike and packraft. She can be contacted directly at
jcuriak@inotekgroup.com.

Foreword

Listening to the voice of the customer and continuously evolving software
is the key to success. The DevOps methodology enables this continuous
development; however, the challenge is to navigate the enormous landscape
of tools and processes to make it work. This book, DevOps for Azure
Deployments, is the perfect guide to navigate DevOps. Suraj and Suren
provide easy-to-read cookbook style instructions on using the tools and
ensuring successful deployment of the Azure application.

I appreciate Suren and Suraj sharing their expertise with the broader
community—our business has benefitted from it.

Thank you.

Kevin Bone
CEO
MyCustomerData.com

xiii

Introduction

In the world of software development, the need of the hour is short
turnaround on all product development lifecycles, also known as the Agile
methodology. The Agile methodology is based on customer feedback and
supports rapid innovation. Such innovation requires new process and
tools. Welcome to DevOps. This book is your hitchhiker’s guide to DevOps
product development!

Who Should Read This Book?

This is a technical book that provides immense value to developers and
release engineers. Project managers will find it useful to understand the
workflows related to DevOps.

What You Will Learn

You will learn what it takes to set up a DevOps environment in order to
support an Azure deployment. That includes the following topics:

e Overview of DevOps for Azure deployments, including
a survey of the available tools.

e Cookbook-style guidance on using the stand-alone
tools Octopus Deploy and TeamCity to manage your
DevOps environment.

INTRODUCTION

e Cookbook-style guidance on using an integrated
developer platform—Microsoft Visual Studio Team
Services (VSTS).

o Starter code samples for you to kick-start your
environment and processes using the techniques
elaborated in the book.

We appreciate your investment in this book. We would love to hear
from you to improve this and future offerings.

CHAPTER 1

DevOps for Azure

DevOps is all about automating the application deployment process.

It addresses the drawbacks associated with manual application deployment.
The application deployment process contains several steps—from writing
code to deploying the created release to the target environment, i.e., Microsoft
Azure Cloud. This chapter discusses the need for DevOps, the DevOps
functions, the application deployment process, and the DevOps tools.

The Need for DevOps

Traditionally, the software development lifecycle warranted siloed teams
taking on specific tasks, i.e., the development team and the operations team.
The developers were responsible for writing code, checking in source code
into source control, testing code, QA of code, and staging for deployment.
The Operations/Production team was responsible for deploying the code to
servers and thereafter coordinating with customers and providing feedback
to developers. Such siloed efforts were mostly manual processes with a
small degree of siloed application/software deployment work. This manual
process had several drawbacks, some of which are as follows:

e The communication gap between different teams
results in resentment and blame, which in turn delays

fixing errors.
o The entire process took a long time to complete.
© Suren Machiraju, Suraj Gaurav 2018 1

S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7_1

CHAPTER 1 DEVOPS FOR AZURE

o The final product did not meet all required criteria.

¢ Some tools could not be implemented on the
production server for security reasons.

¢ The communication barriers slowed down

performance and added to inefficiency.

To cope with these drawbacks, a push for automation arose, leading to
the development of DevOps. DevOps is a combination of two terms and
two teams—namely Developers and Operations. As the name indicates,
it integrates the functionality of both of these teams (Developers and
Operations/Production) in the application development and deployment

process.

Describing the Functions of DevOps

The basic functions of DevOps are as follows:

o Automates the entire process of application
deployment. As a result, the entire process is
straightforward and streamlined.

o Allows multiple developers to check in and check out
code simultaneously in/from the Source repository.

e Provides a Continuous Integration (CI) server that
pools the code from the Source repository and prepares
the build by running and passing the unit tests and
functional tests automatically.

e Automates testing, integration, deployment, and
monitoring tasks.

o Automates workflows and infrastructure.

CHAPTER 1 DEVOPS FOR AZURE

e Enhances productivity and collaboration through
continuous measurement of application performance.

o Allows for rapid and reliable build, test, and release
operations of the entire software development process.

DevOps Application Deployment Process

The entire application deployment process is shown in Figure 1-1.

Application automated deployment pipeline

Ermq
=
[suging

Deploy

Production

Figure 1-1. The application deployment process

Let’s now review the various steps in the application deployment
process:

1. Developers write code.

2. Codeis checked in to the source control/Source
repository.

CHAPTER 1

3.

DEVOPS FOR AZURE

Code check-in triggers the Continuous Integration
(CI) server for generating the build. Automated
unit testing can be done during the build process.
Code coverage and code analysis can also be
performed during this step. If there are build errors,
unit test failures, or breaches of code coverage

and code analysis rules, a report is generated

and automatically sent back to the developer for
correction.

The successful build is then sent for release. This

is where the release management process comes
into the picture, whereby testing, QA, and staging
operations are performed. Several types of tests are
done, some of which are:

e Module tests

e Sub-system tests
o System tests

e Acceptance tests

In the QA phase, the following types of tests are
performed:

e Regression tests
¢ Functional tests
¢ Performance test

Once the code passes all of the tests, a release
version of the software, also called the “golden
image,” is prepared. If any of the preceding tests fail,
areport about the bug is generated for the team of
developers who checked in the code.

The development team must first fix the bug and

CHAPTER 1

DEVOPS FOR AZURE

check in the code again. The code goes through the

same process of generating the build and release

until the code passes all tests.

Figure 1-2 shows the release management process.

Figure 1-2. Release management process

Delivery team Version control Build & unit d User P
tests acceptance tests tests
i
Check in : H i
D—ﬂ]ﬂ’ i :
!
H Feedback I
- h
it L}
' ' '
Check in \ i
Trigger !
H Feedback Trigger
|- n >
' '
'
' '
1} L}
' '
' Feedback
-
-
' '
- Check in H
Trigger
, Feedback
. n
o L}
'
'
\
'
' ' '
:‘ | Feedback Approval H
-
:_‘ H Feedback
3 T 0
' '
' '
[} L} i
' '
'

'
'
' I
' i
I
I
I
i
I
= Approval
.. .
'
'

6. The last step in the process is deploying the created

release to the target environment—Microsoft Azure

Cloud (https://azure.microsoft.com). Once the

deployment is complete, all changes in the code are

live for users of the target environment in Azure.

https://azure.microsoft.com/

CHAPTER 1 DEVOPS FOR AZURE

Understanding DevOps Tools

There are several DevOps tools available that can help you develop an
effective automated environment. You can also use separate tools for
performing specific operations in DevOps. A list of tools, based on the
broad level functionality, follows. Note that to demonstrate the DevOps
principles, we selected a set of tools to use as an example.

¢ Build automation tools: These tools automate the
process of creating a software build, compiling source
code, and packaging the code. Some build automation
tools are:

o Apache Ant (https://ant.apache.org/
bindownload.cgi)

e Apache Maven (https://maven.apache.org/
download.cgi)

o Boot (http://boot-clj.com/)
o Gradle (https://gradle.org/)
e Grunt (https://gruntjs.com/)

e MSBuild (https://www.microsoft.com/en-in/
download/details.aspx?id=48159)

o Waf (https://waf.io/)

o Continuous Integration tools: These tools create
builds and run tests automatically when the code
changes are checked in to the central repository. Some
CI tools are:

e Bamboo (https://www.atlassian.com/software/
bamboo/download)

o Buildbot (https://buildbot.net/)

https://ant.apache.org/bindownload.cgi
https://ant.apache.org/bindownload.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
http://boot-clj.com/
https://gradle.org/
https://gruntjs.com/
https://www.microsoft.com/en-in/download/details.aspx?id=48159
https://www.microsoft.com/en-in/download/details.aspx?id=48159
https://waf.io/
https://www.atlassian.com/software/bamboo/download
https://www.atlassian.com/software/bamboo/download
https://buildbot.net/

CHAPTER 1 DEVOPS FOR AZURE

e Hudson (http://hudson-ci.org/)

o TeamCity (https://www.jetbrains.com/
teamcity/download/). We focus on this tool in this
book.

Testing tools: These tools automate the testing process.
These tools help organizations achieve configuration
and delivery management needs in a specified time
frame. Some commonly used testing tools are:

o Selenium (http://www.seleniumhq.org/)
o Watir (http://watir.com/)
o Wapt (https://www.loadtestingtool.com/)

e Apache JMeter (http://jmeter.apache.org/
download jmeter.cgi)

e QTest (https://www.qasymphony.com/qtest-
trial-qgascom/)

Version control system: This is a configuration
management system that takes care of all the changes
made to documents, codes, files, etc. Some commonly

used version control systems are:
e Subversion (https://subversion.apache.org/)

e Team Foundation Server (TFS) (https://www.
visualstudio.com/tfs/). We focus on this tool in
this book.

o GIT (https://git-scm.com/)
o Mercurial (https://www.mercurial-scm.org/)

o Perforce (https://www.perforce.com/)

http://hudson-ci.org/
https://www.jetbrains.com/teamcity/download/
https://www.jetbrains.com/teamcity/download/
http://www.seleniumhq.org/
http://watir.com/
https://www.loadtestingtool.com/
http://jmeter.apache.org/download_jmeter.cgi
http://jmeter.apache.org/download_jmeter.cgi
https://www.qasymphony.com/qtest-trial-qascom/
https://www.qasymphony.com/qtest-trial-qascom/
https://subversion.apache.org/
https://www.visualstudio.com/tfs/
https://www.visualstudio.com/tfs/
https://git-scm.com/
https://www.mercurial-scm.org/
https://www.perforce.com/

CHAPTER 1

DEVOPS FOR AZURE

Code review tools: These tools help organizations

improve the quality of their code. Some code review

tools are:

Crucible (https://www.atlassian.com/software/
crucible)

Gerrit (https://www.gerritcodereview.com/)
GitHub (https://github.com/)

Bitbucket Server (https://www.atlassian.com/
software/bitbucket/server)

Continuous Delivery/release management tools:

These tools automate the process of building and

testing code changes for release to production. Some of

these tools are:

XL Release (https://xebialabs.com/products/
x1-release/)

ElectricFlow (http://electric-cloud.com/
products/electricflow/)

Serena Release (https://www.microfocus.com/
serena/)

Octopus Deploy (https://octopus.com/
downloads). We focus on this tool in this book.

All-in-one platforms: These tools combine the

functionalities of previously listed tools. Some all-in-

one platforms are:

ProductionMap (http://www.productionmap.
com/)

Jenkins (https://jenkins.io/)

https://www.atlassian.com/software/crucible
https://www.atlassian.com/software/crucible
https://www.gerritcodereview.com/
https://github.com/
https://www.atlassian.com/software/bitbucket/server
https://www.atlassian.com/software/bitbucket/server
https://xebialabs.com/products/xl-release/
https://xebialabs.com/products/xl-release/
http://electric-cloud.com/products/electricflow/
http://electric-cloud.com/products/electricflow/
https://www.microfocus.com/serena/
https://www.microfocus.com/serena/
https://octopus.com/downloads
https://octopus.com/downloads
http://www.productionmap.com/
http://www.productionmap.com/
https://jenkins.io/

CHAPTER 1 DEVOPS FOR AZURE

¢ Microsoft Visual Studio Team Services (VSTS)
(https://www.visualstudio.com/team-
services/). We focus on this tool in this book.

e AWS CodePipeline (https://aws.amazon.com/
codepipeline/getting-started/)

With a basic understanding of the fundamentals, you're ready to move
forward and dive deeper into the specifics. We start by discussing stand-
alone tools, and thereafter discuss an all-in-one integrated platform.

Summary

This chapter discussed the importance of DevOps over the manual
process of application deployment. DevOps integrates the functionality of
both teams (Developers and Operations/Production) in the application
development and deployment process. This chapter provided information
about the basic functions of DevOps. The entire process of application
deployment was discussed. Toward the end of the chapter, a list of DevOps
tools was provided.

https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
https://aws.amazon.com/codepipeline/getting-started/
https://aws.amazon.com/codepipeline/getting-started/

CHAPTER 2

Deployment via
TeamCity and
Octopus Deploy

As discussed in the previous chapter, application deployment in DevOps
requires a Continuous Integration (CI) tool and Continuous Delivery
(CD) tool/release management software to automate the entire process.
Currently, there are several tools available in the market. This chapter
discusses three best-of-breed tools—TeamCity as a CI tool, Octopus
Deploy as a release management tool, and CD software to deploy the
package on the Azure web application. Since different vendors deliver
these best-of-breed tools, there is some complexity involved in integrating
them into a single solution.

Introduction to Microsoft Public Cloud, Azure

Before we delve into the DevOps tools, let’s recap the deployment
environment. As a reminder, we are focusing on Microsoft Azure. However,
be assured that information from this chapter can be applied to other
public cloud solutions.

© Suren Machiraju, Suraj Gaurav 2018 11
S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7_2

CHAPTER 2

DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Azure has the capability to host applications. These applications can

be further integrated with other applications and services on the Azure

platform rather easily. Azure’s integration features provide customers

with enhanced business agility and efficiency. They help users deploy the

source code to multiple Azure websites.

Understanding TeamCity

TeamCity is a CI server for developers and is powered by JetBrains.

It provides several relevant features:

Supports different platforms/tools/languages
Automates the build and deployment processes
Enhances quality and standards across teams
Works as an artifact and NuGet repository

Provides a reporting and statistics feature

Definition According to Martin Fowler, “Continuous Integration is

a software development practice in which developers commit code
changes into a shared repository several times a day. Each commit is
followed by an automated build to ensure that new changes integrate
well into the existing code base and to detect problems early.”

Basic Concepts of TeamCity

Here are the basic concepts of TeamCity:

12

Project: Refers to a set of build configurations.

Build configuration: Refers to a collection of settings
(VCSroots, build steps, and build triggers) that define a
build procedure.

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

VCS root: Refers to a set of version control settings
(source path, username, password, etc.) that allow
TeamCity to interact with a version control system
for managing the modifications and sources for

a build.

Build step: Refers to a task to be executed by the server.
It is represented by a build runner.

Build runner: Integrates different tools, including the
build tool (Ant, Gradle, MSBuild, PowerShell, etc.),

a testing framework (JUnit, NUnit, etc.), and a code
analysis engine. It describes the build workflow.

Build agent: Refers to an application that is responsible
for executing the build process. It helps developers

get faster feedback, as different tests can be run
simultaneously on different platforms supported by the
build agent.

TeamCity server: Refers to the server application,
which manages all build agents, manages the sequence
of builds to build agents, and conveys the results.

Build: Refers to the program/application version.

Build trigger: Refers to a rule that automatically starts
a new build when a specified event occurs.

Build queue: Refers to a sequence of builds that are
triggered and not yet started. These builds are assigned
to the respective agents when they are available.

Build artifact: Refers to the set of files (installers, WAR
files, reports, log files, etc.) generated by the build
process.

13

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Configuring a Build in TeamCity

In this section, we configure arguments for the PowerShell script in
TeamCity. This will enable TeamCity to execute the PowerShell script. For
this scenario, we created a PowerShell script named [string]App.Ps1.

The build configuration uses a step-oriented approach, which is
outlined in the following sections.

Step 1: Creating a Project

To configure a build in TeamCity, first create a project. There are several
options available for this task, as follows:

e Manually
o Pointing to a repository URL
o Pointing to a GitHub.com repository
» Pointing to a Bitbucket Cloud repository
Perform the following steps to create a standard project:

1. Click the Administration link in the top-right corner
of the Administration area.

2. Click the down arrow button beside the Create
Project button. A drop-down list appears.

3. Select the Manually option from the drop-down
list to create a project manually. After you click
the Manual option, the Create New Project page
appears.

4. Enter the desired name of the project in the Name
text box.

5. Enter the desired ID of the project in the Project ID
text box.

14

6.

7.

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Enter the desired description of the project in the
Description text box.

Click the Create button to create the project.

Now, the project has been created.

Step 2: Creating a Build Configuration

Build configurations describe the process by which a project’s sources are

fetched and built. Once the project is created, TeamCity prompts you to

create build configurations. Alternatives to create build configurations are

as follows:

Manually
Pointing to a repository URL
Pointing to a GitHub.com repository

Pointing to a Bitbucket Cloud repository

Perform the following steps to create a build configuration manually:

1.

Click the down arrow button beside the Create Build

Configuration button. A drop-down list appears.

Select the Manual option from the drop-down list to
create the build configuration manually.

Specify the name of the build configuration in the
Name text box.

Specify the build configuration ID in the Build
Configuration ID text box.

Specify the desired description in the Description
text box.

Click the Save button. Figure 2-1 shows the General
Settings page.

15

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

[« I e : TR
TG Projects . MyChanges Agents & Build Queue o . =
Adrinistration > & <Rootproject> > S Crive > Rur
-

General Settings Configuration Steps

" -5 Gonoral Setbings
Busd configuration ID: * - - G

Cwserpuion o csre £etinn

Build number format: 1000

Build counter * E]

Artitact paths. Eat artact paths.

Figure 2-1. General Settings page

Step 3: Configuring the Version Control Settings

In this step, we provide settings related to the VCS root. The VCS root
describes a connection to a version control system, and there are several
settings associated with it. These settings allow VCS to communicate with
TeamCity. They define the way changes are monitored and sources are
specified for a build. Perform the following steps to configure the version
control settings:

1. Select the Version Control Settings tab.

2. Click the Attach VCS Root button. The New VCS
Root page appears.

3. Select the desired type of VCS from the Type of VCS
drop-down list. We selected Subversion.

4. Specify a unique VCS root name in the VCS Root
Name text box.

5. Specify a unique VCS root ID in the VCS Root ID
text box.

16

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

The connection settings appear on the page
depending on the type of VCS selected. In our case,
the SVN Connection Settings section appears.

6. Specify the repository URL in the URL text box.

7. To allow TeamCity to communicate with the Source
repository, specify the username and password in
the Username and Password text boxes, respectively.

8. Click the Test Connection button to test the
connection. This validates that TeamCity
can communicate with the repository. A Test
Connection message box appears with the
Connection Successful message. If the connection
shows failure, check the specified URL and the
credentials.

9. Click the Create button. Figure 2-2 shows the
settings for the New VCS Root page.

e E— -
TG rrowens My Changes Ag Bund Gunee I .
5 R
Tips oI VCS: =
Amached 1y bl st
w0 - - .
VES rost name: ==
-« -
VES rest 0 [=
~ n Sat
L rez oo [- - - |
T I
.........................
D et contly divectony: 10 Qoo corky deec
P— =
Extermats s preat Full suppon foad changes and
o o

Figure 2-2. Settings for the New VCS Root page

17

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Step 4: Configuring the Build Steps

Once the VCS root is created, we can configure the build steps. Perform the

following steps to add a build step:
1. Select the Build Steps tab.

2. Click the Add Build Step button. The Build Step page
appears.

3. Select the PowerShell option from the Runner Type
drop-down list.

Note In this example, we use the PowerShell script file named
[string]App.ps1. This file compiles the source code.

4. Specify the desired step name in the Step Name text
box.

5. Select the desired step execution policy from the
Execute Step drop-down list.

6. Select the File option from the Script drop-down list.

7. Specify the path to the PowerShell script in the
Script File box. This field contains the physical
path mapped to the [string]App.ps1 script,
which is located on the build agent, as shown in
Figure 2-3.

18

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

« . T z |12 *8© & # pQ =
G Projects - MyChanges Agents Build Queus & [[e—— -
—
Build Step + Add bukd Slep » Configuration Steps
Runner type: Powershed

General Sottegs

Step name: Powershel

Execute step: o all previcus sleps fnshed suctesshully (eno et code) = Budd Step: Powershed

Powershell run mode: verson 10 = Buid Fature Conditions

Baness 6 -

Errer outpue: warming -
Depondanc
Working cirectory:
Bukd P
Serpt Fie -
Seript file: ¢ ..o Contros [N ot Appwetiazy = B Aavek Reguiements

Figure 2-3. Creating a build step

8. Specify the PowerShell script execution mode in the
Script Execution Mode option.

9. Enter script arguments in the Script Arguments
section. We entered five arguments that will be
passed to the [string]App.ps1 script during
execution by TeamCity.

ARGUMENTS PASSED TO THE POWERSHELL SCRIPT

All arguments should be explained in terms of their relative paths. Descriptions
of all the arguments passed to the PowerShell script follow:

° . . \Workflow: Allows the PowerShell script to access the
contents of the WorkfLlow folder.

° ..\Central:Allows the PowerShell script to access the
contents of the Central folder.

° .. \Server: Allows the PowerShell script to access the contents
of the Server folder.

19

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

. Nuget . exe: Allows the PowerShell script to load the Nuget.
exe file, which is located on the build agent.

° v. Targetfolder: Specifies the path of a folder on the build
agent where the compiled code is placed.

10. Click the Save button, as shown in Figure 2-4.

$EpL executon mode! Execule P SCnpt wan “-File” argument Pause Pause ihs contguraton

Cogy Copy I conbguraton

?
S¢rpt anguments: Exparsd
A0 31 reRted Cata
=

Sy ad8a 8 oy oo
Options: ¥ Ad HoProfie argument o d S

Adainonsl command line
parameters

Figure 2-4. Saving the build step

A successful build is created in TeamCity, which is executable through
the PowerShell script [string]App.ps1, as shown in Figure 2-5.

20

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

« LB | : B
TG Projects My Changes Agents & Build Queue © I Ml Q
_ e —PS_ S Deploy > Hide Successiul Configurations. [Edd Progect Settings
Overview Changelog Slatstcs Cuont Problems Investgations Muted problems
- A
#1000 © Success N ; moments ago (4

Figure 2-5. Successful build message

Creating a Package

Once TeamCity creates a successful build, changes may need to be made
to the PowerShell script ([string]App.ps1). For example, we may need
to make changes to NugetExePath to accept a new argument, as shown in
Figure 2-6.

21

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

karam{
[String] §WorkflowFolder,
[String]§CentralFolder,
[Sctring] §ServerFolder,
i[SuringlsﬂugBthePath,
[String] §TargetFolder
[switch]Soverwrite

function ZipFiles($zipfilename, $sourcedir)
=k
Add-Type -Assembly System.IO.Compression.FileSystem
ScompressionlLevel = [System.IO.Compression.CompressionlLevel]::Optimal
[System.IO.Compression.ZipFile]: :CreateFromDirectory(§sourcedir,

$zipfilename, $compressionlLevel, $false)
=}

SWorkflowFolder = Resclve-Path $SWorkflowFolder
§CentralFclder = Resolve-Path §CentralFolder
SServerFolder = Resolve-Pacth $ServerFolder

Write-Hoat "Processing zipping o

S$TargetFolder
$BuildFileName = Join-Fath "C:\

es
emp SAPP" 'Build.zip

o

=
F
F

ZipFiles $BuildFileName "C:\Tamp S

Copy-Item §BuildFileName $TargetFolder -force

if (§NugetExePath -ne "")
=

Set-Location §TargetPublishPath
Sarq1=" peg"”
Sarg2="pack"

&5NugetExePath Sargl
&5NugetExePath Sarg?2

i

Wrice-Host "Processing completed and

files placed at: " §TargetFolder

Figure 2-6. Making changes to NugetExePath

The changes made to the PowerShell script create a package in the
target folder.

Figure 2-7 shows the created NuGet package.

22

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Crgarioe = Gpen e fokder ~Ae
i ams D maifnt Troe £ |

I Dedace L & para ORI bt
8 Dorioa oo Ghbaasirins BOEMISIG el
B et Plces om EOADENG el
L CohamnertntTrpe N
":':':_‘_. J ControyrwLATES L
& e o CLOEMISIN Mefoide
il bt EOEMSHD e
H v L s WOMENT et
i remrec BOEMET et
. Cernter NS et

o etk £ o —— CLOLMISONLY WOP Wb Service s

= ooaon OIS0 M Doosmert (0]

oot Dod RSO AT Serve 2 e

[Erp— BRSNS i

0 coages IS0 M Corfgustoniie T

O Stel e i OIS WP e Sarves T

o kS o

"

COEMISONA ALY Sorve Pam [

e RO INE0MG 3 Configuraton Fie 1]

LR LIS 0 Confguncne t1]

Do E"’:-’:-‘f-"“""'" t 94 Cortiprontie "

ot sy e nifend O O4-OTS 0 H 4.0 e e

| OIS0 Ve Sl Srong L}

Fuachag9. 1 0.0.rph) Gate mactfnd. 3608 2014 2044 Bt rastect: 09.06-2015 3054
[Son LTI

Figure 2-7. The NuGet package

Copy this NuGet package from the build agent to where it will be
imported into the Octopus server for deployment purposes, as shown in
Figure 2-8.

&-' — Package Source. I:IE-O

® ThaPC » Local Disk (C3 » Packagn Sovntn v & [Gawch Packages e »

& Favarne
I Cekiop Puchage | 00supty
8 Comrionet

3 Bacamt piaces

1 Thes PC
I Desbtop
- ——
8 Cowmrioea
B Manc
E Buonwn
B Vedens
B tocntan o0y
& DVD Deve D) 0555 XEFREV_EN-US DV

TN

Figure 2-8. NuGet package ready for deployment

23

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Using Octopus Deploy

Octopus Deploy is a deployment server (or release management software)
that automates the deployment of different applications into different
environments. It makes this process effortless.

Octopus Deploy automates the deployment of:

e ASP.NET web applications
e Java applications
o Database updates
¢ Node]JS applications
o Custom scripts
Octopus Deploy supports the following environments:
e Development
o Test
e Production

Octopus Deploy provides a consistent deployment process to support
the deployment needs of team members; an Octopus user can define a
process for deploying the software. The Octopus user can specify different
environments for different applications and can set privileges for different
team members to deploy to different environments. For example, a team
member can be authorized to deploy to a test environment while also
being restricted to the production deployment.

Note The latest MSI of Octopus Deploy can be downloaded at
https://octopus.com/downloads.

24

https://octopus.com/downloads

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Creating a Project

Octopus Deploy allows users to create projects. In Octopus Deploy,
a project is a set of deliverable components, including websites and
database scripts. A project is created within Octopus Deploy to manage
multiple software projects across different environments. For instance, if
there are six developers working on the same business project, we need to
create a single project in Octopus Deploy.

Perform the following steps to create a project:

1. Navigate to the Projects area.

2. Click the Add Project button. The Create Project
page opens.

3. Specify a relevant name for the project in the Name
text box.

4. Specify a relevant description for the project in the
Description text area.

5. Select the desired option from the Project Group
drop-down list.

6. Select the desired lifecycle from the Lifecycle drop-
down list.

7. Click the Save button, as shown in Figure 2-9.

25

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Projects b Create

Create a project L
P [
Cewrgton B 1 IS IS &
[—
i oy v
Ufecycke Detaukt Lifecyche v
Any emvironmant

Figure 2-9. Steps to create a project

Note A lifecycle is used to replicate deployments between
environments automatically.

Creating an Environment

An environment is a group of machines to which the software is deployed
simultaneously. Common environments in the Octopus Deploy are Test,
Acceptance, Staging, and Production. In other words, an environment
can be defined as a group of deployment targets (Windows servers,

Linux servers, Microsoft Azure, etc.). For the current scenario, we are
creating two environments so that we can deploy to two websites. Each

environment represents a single tenant.

26

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Perform the following steps to create an environment:
1. Navigate to the Environments area.

2. Click the Add Environment button to add an

environment. The Environment Settings page opens.

3. Enter arelevant name for the environment in the
Name text box. In this case, we entered Test1.

4. Enter arelevant description of the environment in
the Description text box.

5. Click the Save button, as shown in Figure 2-10.

I
Emvironment settings @
e Wl
Deingion B J i &
I i
Vit gded tadwre mode
ﬂ P

Figure 2-10. Steps to create an environment

27

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Similarly, create another environment with the name Test2, as shown
in Figure 2-11.

| lEee

Environment settings @
Hame .1.-«.‘
Coagton B 1 | SIS &
[T—
guided 1 st by e
e,

Figure 2-11. Steps to create another environment

Uploading NuGet Package to Octopus Deploy

We can now upload the NuGet package, which we created earlier using the
PowerShell script in TeamCity, on Octopus Deploy.
Perform the following steps to upload the NuGet package:

1. Navigate to Library, then Packages, in the Octopus
Deploy interface.

2. Click the Upload Package button, as shown in
Figure 2-12.

28

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

« [T TT— ooe, <[

Library » Packages

Packages

Repository status L7
........ et
The page shows packages tiored i the Octopun Servers budt n package reposton. Une the Upload package button sbove or Total packages stored.]
push packeges using & MeGet cheet 13 a3d them here:
Ubecyehes
Filg syrcheonization status. idbe
L el o h T L eerymm——s—
i Induxing statas .
S20p templates
Repository retention
........ i

Nulet packages stored in the repcsitory will be retained

hange -

Figure 2-12. Clicking the Upload Package button

The Upload a NuGet Package page appears.

3. Click the Browse button beside the NUPKG File
option. The Choose File to Upload dialog box
appears.

4. Navigate to the package’s location. As discussed
earlier, we copied the package to the Package
Source folder.

5. Select the package.

6. Click the Open button, as shown in Figure 2-13.

29

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

Library » Packages 3
Quparace Fiew foldes -
e Upload a NuGet package R Rosirhos o
Pachiged Q0maky
e I Browie..
Rarpilace this version i it awists
B Losimen T
Pl . DD Drive DI
[Ay —
Fie mama: Puckage) 08nushy w| [AFde &0
Ogan Canced
_om -

| = - s . = T
LR e |2 BWD ™ s

Figure 2-13. Uploading a NuGet package

The name of the selected package file with its
complete path appears in the NUPKG File box.

7. Click the Upload button.

After clicking the Upload button, the package file starts uploading.

Creating Steps for the Deployment Process

As discussed earlier, Octopus Deploy allows users to define the
deployment process for their project easily. Users can add steps to the
deployment process using templates, including built-in step templates,
custom step templates, and community contributed step templates.

Users can also select the Add Step button to display a list of templates
and then select the desired step. The built-in steps can be used to handle
common deployment scenarios.

30

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

In the current scenario, we created the following two steps for the
deployment process:

¢ NugetDeploy: This step deploys a NuGet package to
one or more machines, which are running the Tentacle

deployment agent.

e Web Deploy-Publish Website (MSDeploy): This
step is created to deploy the NuGet package to Azure
websites by running a PowerShell script across
machines.

Perform the following steps to add the NugetDeploy step:
1. Select the Process tab.

2. Click the Add Step button. The Choose Step Type
pop-up appears with a list of built-in step templates.

3. Select the desired built-in step template. In this case,
we selected the Deploy a NuGet Package option. The
Step Details page appears.

4. Enter a name for step in the Step Name text box. In
this case, we entered NugetDeploy.

5. Specify the target machines in the Machine Roles
text box. In this case, we selected WebRole.

6. Select the desired package feed from the NuGet
Feed drop-down list.

7. Click the Add button. Figure 2-14 shows the details
of the NugetDeploy step.

31

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

AP R s tecmoivsstiposectimeugindspiogmantii © = & | R soegedepiey - Gcropus e % ||

G-ﬁlm_;olbeplcymem Process ¥ NugetDeploy m

Overven o
Step details @
Procens
Seprame NugetDeploy
Variabiey
Targess
Releanes
Machane roses Webdol
Settings
e Confegang 2 solbng depleyment
Package
Mudetfeed Octopus Server fbudt-on) s
HuGet package D Package [-]

Cuctopun Deploy 28351033 s Dorumentaton Halp & Sopport Y

Figure 2-14. The NugetDeploy step

In Figure 2-14, we see that the NuGet Package ID field contains the
name of the NuGet package that was uploaded earlier.

Similarly, we can add a step using the custom step template with the
name Web Deploy-Publish Website (MSDeploy), asshown in Figure 2-15.

LR & opiochating oliprasctstnmigrt dploymarntly 2 = G | B s Dugioy - Pubich Wi % .

Step details @

Sieprame Wb Deploy - Publih Webute (MSDeplay)
Maching roles | @ Webole

Wb Deploy - Publich Webste (MSDeploy)

Pubiish Ul #{Azawiblshi]

Welnite Mame #iATuseWebsite] P
Ustrmame SlksareUsertiamel
Pasword #{AnarePasrwond] [

Package Step Mame NugetDeploy =

o

Figure 2-15. Adding a step

32

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

We can look at the created steps by selecting the Process tab of the
created project, as shown in Figure 2-16.

boand Emveonments Propect jbrary Tk
ugetDeployment » process m

Deployment process Lifecycle @

|||||

Automatic Release Creation

Crease a reieass when 3 package i puthed £ the Bt
et repattony

Script modules

1 Documertston el & Suppert

Figure 2-16. Displaying the created steps

Using Variables

Variables are required for eliminating the need for hard-coding the
configuration values to support different environments easily. They are
required while deploying packages to Azure websites. As a NuGet package
is shared between two sites, we used the OctopusBypassDeploymentMutex
variable to avoid resource locking of the NuGet package, as shown in
Figure 2-17.

33

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

o = Jhboard Evronments Propcss ™ ay Tk et T Conbguratio
L g -NIJ{J'(’:Ul’j.‘l(J:,'Irl(‘n': Variables m

Variables L]

Hame Value Scope

LEL UL BE S5 BL S SL S YK, |

Figure 2-17. The OctopusBypassDeploymentMutex variable

Creating and Deploying a Release

A release contains all details of the project and package so that it can be
deployed to different environments as per requirements. Perform the
following steps to create a release:

1. Navigate to the Overview page, which displays all
details of the project.

2. Click the Create Release button. The Create page
appears.

3. Enter the desired release version in the Version text
box.

4. Select the desired package from the Package column.

5. Enter the desired release notes in the Release Notes
text area.

6. Click the Save button. Figure 2-18 shows the process
of creating a release.

34

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

getdeghomantis £ = G R Croste rebvase for Wiiaget = | *
*_I
[d WSNugetDe : e a Vou harve umsaved changes
a WSNugetDeployment ' Releases » Create
Create release L]
000
: ackiags
Release:
F Package Lat pecif
9 Packsg Q
otes
B! G &

Figure 2-18. Creating a release

Note In the current scenario, we are creating a release to deploy
the NuGet package to multiple Azure websites.

A release is created with the specified version. The
Deploy page opens. Here, we can select the desired
environment to which we want to deploy the created
release. We can also click the Change button to
change the environment.

7. Click the Deploy Now button to deploy the created
release, as shown in Figure 2-19.

35

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

(I ——) [Yp——

:.ﬂugewepluyment Releases * 1000) Deploy

v

Deploy release @

Frocess

" = Jlen .
— e Sl
Change

o

Cctopen Dupley 2831090

Downicads Documntston Help B Suppert

Figure 2-19. Deploying a release

The release is deployed successfully to both Azure websites, as shown
in Figure 2-20.

E:-NugelDeploymem Releases | 1.0.0.0

Release 1.0.0.0

Deployments
FProcess .
e Testt
Doy 2
Ve e
- Block Deployment o
Lifecycle: Default Lifecycle n .5 2005 304
Settings
@ Any environment
] Artifacts
]
Releate
£ this resease History
Packages

3 NugewDeploy: Package version 1.0.0 tmntessgs ten Geployed [lasetoepiyment retease 1200 tof et

2rintes o test Deoovedcecocoiciment ooease 1000 ol e
Dewrdcads Docancrtston Help & Support

Octopus Deplery 1630930

Figure 2-20. Deployment result

36

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

We can now navigate to the Azure portal where we see that two
Azure websites have been created for multiple deployments of the NuGet
package, as shown in Figure 2-21.

Figure 2-21. Displaying the created websites on Azure

Summary

In this chapter, we discussed the CI tool called TeamCity and the release
management software or CD tool called Octopus Deploy. TeamCity
builds the source code using MSBuild. Initially, we configured TeamCity
by creating a new project and providing the SVN path to fetch the latest
code onto the build agent. We then configured the source code and set
parameters for the PowerShell script file. The target path settings were
modified to create a NuGet package. This package was copied from the
build agent to a location where Octopus Deploy could pick it up.

In Octopus Deploy, we created a project and two environments to
test multiple deployment scenarios. Then, we uploaded the package. We
also created two steps—NugetDeploy and Web Deploy-Publish Website
(MSDeploy). The former was created to deploy the uploaded NuGet

37

CHAPTER 2 DEPLOYMENT VIA TEAMCITY AND OCTOPUS DEPLOY

package onto a Tentacle machine while the latter was created to deploy
the contents of the NuGet package from the Tentacle machine to the Azure
websites.

We also configured variables and credentials for both environments.
Lastly, we created a release for the project, which could be deployed to
different environments. The release allowed us to deploy the contents of
NuGet package onto Azure websites in parallel. In the end, we executed
the release and found that the content of the NuGet package was deployed
successfully.

38

CHAPTER 3

Deployment via VSTS

In the last chapter, we discussed the process of deploying applications to
Azure using best-of-breed and stand-alone DevOps tools: TeamCity as a
CI tool, and Octopus Deploy as a CD tool. The challenge with the example
solution is that there are separate tools used to deploy applications. In this
chapter, we review a DevOps platform, an all-encompassing end-to-end
solution called Microsoft Visual Studio Team Services (VSTS);
see www.visualstudio.com/team-services/.

VSTS is a collaborative solution that takes care of the entire
software deployment lifecycle, from creating packages to deploying the
application. One of its major strengths is its tight integration with Azure.
This chapter steps through the entire process of application deployment
to Azure using VSTS.

Understanding VSTS

Visual Studio Team Services (VSTS) is an Application Lifecycle
Management (ALM) system that manages the entire process of the
software development lifecycle. In earlier versions, it was known as
Visual Studio Online (VSO).

© Suren Machiraju, Suraj Gaurav 2018 39
S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7_3

http://www.visualstudio.com/team-services/

CHAPTER 3 DEPLOYMENT VIAVSTS

Features of VSTS

Some of the features of VSTS are as follows:
o Provides integrated software development.

» Supports source control systems, including Git and
Team Foundation Version Control (TFVC).

o Supports several features that can be used to track
product features, bugs, and other issues.

e Supports several Agile methods for planning purposes.

¢ Automates the build, test, and release processes for
rapid release of the software.

e Supports usage across massively scaled-out teams
consisting of thousands of members.

o Provides areliable and scalable service that is available
24 hours a day, seven days a week, and is backed by a
99.9% Service License Agreement (SLA).

o Allows users to customize elements such as source
control, work tracking, build and release, and test, etc.,

according to business requirements.

o Allows users to add more functionality to Visual Studio
Marketplace, service hooks, REST APIs, and
Visual Studio SDKs.

40

CHAPTER 3 DEPLOYMENT VIAVSTS

Advantages of VSTS

VSTS is a Microsoft product introduced to upgrade Team Foundation

Server (TFS). Therefore, it is also known as a cloud version of TFS. Some of

the advantages of VSTS are as follows:

Free for up to five users.

Operations and maintenance costs are lower than TFS,
as itis a cloud-based solution, while TES is an on-
premise solution.

Encourages more stakeholders to get involved as
they can log on to the platform from anywhere and at
any time.

Allows developers to write and commit code from
anywhere.

Enables effortless inter-team communication, as it
supports the Git source control system, which provides
the cross-platform facility.

Ideal platform for organizations to develop a modern

DevOps environment.

41

CHAPTER 3 DEPLOYMENT VIAVSTS

Creating an Account in VSTS

One of the primary tasks while using VSTS is creating an account to host
the project. Perform the following steps to create an account in VSTS:

1. Navigate to the link https://www.visualstudio.
com/team-services/.

2. Click the Get Started for Free button, as shown in

Figure 3-1.
e - 0o x
B4 Plan, Code Together & ¢ X
< C | @ Secure | httpsy//www.visualstudio.com team-services ¥
B Microsoft Microsoft 365 Azure Office 365 Dynamics 365 saL Windows 10 > O Signin

Visual Studio T

Services
Plan better. code together and ship faster.

Get started for free »

Figure 3-1. Launching Visual Studio Team Services

42

https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/

CHAPTER 3 DEPLOYMENT VIAVSTS

The Sign Into Your Account page appears.

3. Enter the desired Microsoft email address in the
Email or Phone text box.

4. Click the Next button, as shown in Figure 3-2.

<« C | @ Secure | hitps//loginmicrasoftonline.com thon tid=4 s 427 ; -3

o Visual Studio

B® Microsoft

Signin

No account? Create

Figure 3-2. Sign in page - user name

Note You can use your Microsoft credentials to sign in to
Visual Studio Team Services.

43

CHAPTER 3 DEPLOYMENT VIAVSTS

5. Enter the required password in the Password field.

6. Click the Sign In button, as shown in Figure 3-3.

&« C | @ Secure | hitps//login live.com

o Visual Studio

B2 Microsoft

Enter password

Keep me signed in

Figure 3-3. Sign in with a Microsoft account password

The Account Creation page appears.

7. Enter the desired name of the account in the text
box beside the Host My Projects At The label. This
enables you to specify a host location (US, India, etc.)
for the projects.

44

CHAPTER 3 DEPLOYMENT VIAVSTS

8. Select the desired radio button below the Manage
Code Using The option. This specifies the repository
for Git to manage the code.

9. Click the Continue button, as shown in Figure 3-4.

) Account creation | Mic: X

€« C | & Secure | https//app.vsaexvisualstudio.com/profile/account Tacquisit 1=cBd6deTd- 11df-4012-8c3c-Ibcfdbdad 1528 campaign=0 fi~vsoou. 9|

Host my projects at:
Wy e

Manage code using:
* € G
& Team Foundation Version Control

We will hest your projects in India South region.
Billing restrictions apply in this region.

£F Change details

Figure 3-4. Account for hosting project

45

CHAPTER 3 DEPLOYMENT VIAVSTS

After you click the Continue button, the process of creating an account
begins, as shown in Figure 3-5.

tps:// appvsaexvisualstudio.com prof untPacquisitionid=cBd6d fif-4012 befdbdad1528camp i w| i

Host my projects at

m | visualstudio.com

Manage code using:
* ® Ga
& Team Foundation Version Contrel

We will hest your projects in India South region
Billing restrictions apply in this region.

Creating account

® and the

Figure 3-5. Process of creating an account

The account is created with the specified name.

Creating a Project

After we create an account in VSTS, the first page, Create New Project,
asks users to create a new project. Perform the following steps to create a
project:

1. Enter the desired name for the project in the Project
Name text box.

2. Enter the desired description for the projectin the
Description text area.

46

CHAPTER 3 DEPLOYMENT VIAVSTS

3. Select the desired version control from the Version
Control drop-down list. In this case, we selected Git.

4. Select the desired work item process from the
Work Item Process drop-down list. In this case, we
selected Agile.

5. Click the Create button to create the project, as
shown in Figure 3-6.

) Create new project - V

[C | @ Secure | https m“luruuc.o.mm 127_n=new | 2

Projects My favortes

Create new project

Projects contain your source code, work items, automated builds and more.

Work item process

Agile

Figure 3-6. Steps to create a project

The project is created with the specific settings and opens with the
Project Overview page, as shown in Figure 3-7.

47

CHAPTER 3 DEPLOYMENT VIAVSTS

() Project Overview - Visus X

< C | 8 Secure | Mty mx-wﬁnuac.com .
: or

o S
. . | Activity
Get started with your new project!
Code
-~ Clone to your computer
Build & Release
Generate Git credentials Werk

OR B Clone in Visual Studio

~ or push an existing repository from command line

' or import a repository

Figure 3-7. The Project Overview page

Adding Code

Once we are done with the process of creating a project, the Project
Overview page appears, which displays information about the created
project. Here, we need to add code to the project. We have different
options to add code, as follows:

e Clone to your computer
e Push an existing repository from the command line
e Import arepository
Perform the following steps to add code to the project:
1. Select the Code tab.

2. Click the Clone in Visual Studio button, as shown in
Figure 3-8.

48

CHAPTER 3 DEPLOYMENT VIAVSTS

) Files - Visusl Studio Tea- X

Code

Ow-. Fitles Commits Pushes Branches Tags Pull Requests
Sample project is empty. Add some code!

~ Clone to your computer

SSH | hatps m isualstudio.com/_git m I OR 3 Clone in Visual Studio

Generate Git credentials

or push an existing repository from command line

A or import a repository

Figure 3-8. Adding code in Visual Studio

A message box appears requesting confirmation.

3. Click the Open Microsoft Visua...ndler Selector
button to open Visual Studio, as shown in
Figure 3-9.

Open Microsoft Visua..ndler Selector?

Always open these types of links in the associated app

Figure 3-9. Launching Microsoft Visual Studio Selector

The Microsoft Visual Studio window opens with
the Visual Studio Team Services dialog box. In this
dialog box, we see the remote and local paths.

49

CHAPTER 3 DEPLOYMENT VIAVSTS

4. Click the Connect button to connect Visual Studio
with Visual Studio Team Services, as shown in

Figure 3-10.
W) et Page - Marzach Vsl Shue Ya # o Flao x
Fle Edt Weow Peciet Debug Tum Toch Tat A Wiedew Help s
R S b ks |
Lo -
” Home |5
Get Started W <01 Bl party ot cemenaed grampt x®
""':"‘."'"“""‘o Developer News M w
- s Team -
' a) .
2] Visual Studio Team Services
 Project
. qu— - |© o [P e
s e e e - N |Il| e |Tl —

rRecent [Comner - P |g Wosk e |.,:‘ [

Figure 3-10. Connecting Visual Studio to Visual Studio Team
Services

After we click Connect, the cloning and connection processes are
complete.

Adding a New Solution

Here, we need to add a new solution, which can be done by performing the

following steps:

1. Click the New link under the Solutions section in
the Team Explorer panel. The New Project window

appears.

2. Select the desired option from the left pane. In this
case, we selected Web. The related templates appear
in the middle pane based on the selection.

50

CHAPTER 3 DEPLOYMENT VIAVSTS

3. Select the desired template in the middle pane. In
this case, we selected ASP.NET Web Application

(.NET Framework).

4. Enter the desired name for the selected template in

the Name text box. In this case, we entered WebApp.

5. Specify the desired location for the template in the

Location text box.

6. Select the Create Directory for Solution checkbox.

7. Select the Create New Git Repository checkbox.

8. Click the OK button, as shown in Figure 3-11.

Mew Project
b Recent = | NET Framework 461 = Sort by: | Default
4 Installed
@ ASPUNET Core Web Application
4 Visual C#

Windows Universal
Windows Classic Desktop
4 Web
Web Site
-MET Core
NET Standard
Cloud
Extensibility
Test
WCF
b Visual Basic
b Visuad Coe
b Visual F=#
SOL Server
b Bvewa Nata l sba
Mot finding what you are locking for?
Open Visual Studio Installer

@I I ASP.NET Web Application (.NET Framework)

Hame: WebApp
Location: C\Users\DELL\Scurce\Repeos\Sample project
Solution name: WebApp

Figure 3-11. Creating a new project

Visual C=

Visual C=

Search (Ctrl+E)

Type: Visual €=

Project templates for creating ASP.NET
applications. You can create ASP.NET Web
Forms, MVC, or Web AP| spplications and
add many other features in ASP.NET.

Browse..
[¥] Create girectory for solution
[4] Create new Git repositary

e

Cancel

The New ASP.NET Web Application - WebApp

window appears.

51

CHAPTER 3 DEPLOYMENT VIAVSTS

9. Selectthe MVC option to create the MVC

application.

10. Click the OK button, as shown in Figure 3-12.

New ASP.NET Web Application - WebApp

4 4 4 4
& & ru SR, =
Empty Web Forms Web AP Single Page

Application

Azure APl App Azure Mobile
App

Add folders and core references for:
[J WebForms | MVC [Web API
[C] Enable Docker support (Requires Docker for Windows)

[T] Add unit tests
TJest project name: | WebApp.Tests

T X

A project template for creating ASP.NET MVC
applications. ASP.NET MVC allows you to build
applications using the Model-View-Controller
architecture. ASP.NET MVC includes many features that
enable fast, test-driven development for creating
applications that use the latest standards.

Learn more
Change Authentication
Aurthenticat Mo Auth

Figure 3-12. The New ASP.NET Web Application - WebApp

window

The Microsoft Visual Studio progress bar appears displaying the status

of the project. Once complete, the project is created and added to the

Solutions section.

52

CHAPTER 3 DEPLOYMENT VIAVSTS

Committing Changes

Once the required changes are made, we can commit them. Perform the

following steps to commit the changes:

1. Click the Changes button under the Project section
in the Team Explorer panel, as shown in Figure 3-13.

Team Explorer - Home * QX
© O @ ¥ | | SearchWorkltems (Ctrl+) L~
Home | Ssmpleproject I
@ Install 3rd-party Git command prompt tools. x

Help | Den't prompt again
4 Visual Studio Team Services
(- I SampleprOJectr'SampleprOJect

hittps:// (R <2 |studio.com/Sampl...

4 Project

Web Portal | Task Board

|® Changes Iv Branches

||£| Pull Requests | T sync

| g Work Items I L'xi'ﬂ Builds

|ﬁ} Settings
4 Solutions

New... | Open... | Show Folder View

3] WebApp.sin | WebApp

Figure 3-13. Steps to commit changes

53

CHAPTER 3 DEPLOYMENT VIAVSTS

The changes made to the project are displayed in
the Changes section.

2. Enter the desired commit message in the Enter a
Commit Message text box.

3. Click the Commit All button, as shown in
Figure 3-14.

Team Explorer - Changes * QX
(- Q ? o Search Work Items (Ctrl+") P~

Changes m - |2

-~
Branch: master

App changes
Commit All| v Actions »
4 Related Work Items + B

Drag work items here to link them to the commit.

4 Changes (45) + -
4 C-.".Users"-.DELL'-Scurce'-.?.epcs'-.m
4 @] WebApp
4 %l WebApp

4 App_Start
€* BundleConfig.cs [add]
C* FilterConfig.cs [add]
C* RouteConfig.cs [add]
= Content
bootstrap.css [add)
B bootstrap.min.css [add]
B Site.css [add)

Figure 3-14. Steps to commit changes

54

CHAPTER 3 DEPLOYMENT VIAVSTS

A commit is created locally.

4. Click the Sync link to share the changes with the
server, as shown in Figure 3-15.

Team Explorer - Changes * 3 X
o4 ¥ | ¢ | Search Work ltems (Ctrl+) L~
Changes | Sample project oo i'

@ Commit 00bb3ce2 created locally. Sync to share your X
changes with the server,

Branch: master

Enter a commit message <Required>

Actions =

4 Related Work Items +8

Drag work items here to link them to the commit.

4 Changes y wr
There are no unstaged changes in the working directory.

Figure 3-15. Sharing the changes with the server
The Synchronization page appears in the Team
Explorer panel.

5. Click the Push link under the Outgoing Commits
section, as shown in Figure 3-16.

55

CHAPTER 3 DEPLOYMENT VIAVSTS

Team Explorer - Synchronization X
oG ¥ | ¢ Search Work Items (Ctrl+') P~

fw

i{Synchronization | Sample project

Branch: master
Sync | Fetch | Pull | Push | Actions »
4 Incoming Commits

Fetch | Pull

The current branch does not track a remote branch.

4 Qutgoing Commits
Push [View Summary
The current branch does not track a remote branch, Push
your changes to a new branch on the origin remote and set
the upstream branch. Learn more.

Figure 3-16. The Push link enables synchronization

The synchronization is successful, as shown in Figure 3-17.

Team Explorer - Synchronization X
© O @ ¥ |G |SearchWorkltems (Ctrl+) p-

@ Successfully pushed branch master to origin. Createa X
pull request to review your changes.

Branch: master
Sync | Fetch | Pull| Push | Actions «
4 Incoming Commits

Fetch | Pull

There are no incoming commits.

4 Outgoing Commits

Push | View Summary

There are no outgoing commits.

Figure 3-17. Successful synchronization

56

CHAPTER 3 DEPLOYMENT VIAVSTS

At this point, the code is added to the server.

Next, verify the repository in VSTS. For this, navigate to the Code
section of the project created earlier. A folder with the same name as that
of the project created in Visual Studio appears, as shown in Figure 3-18.

(-] O
[| - Visual © %
« C | @ Secure | https mw-sualitud o.com/_git m | f
¢ Dashboards Code Search work ite P o~ -
L1 m Files Commits Pushes Branches Tags Pull Requests & Fork [Clone
¥ master m / Typeto find a file or folder. W Setup build
< = 2
PN m Contents History + Mew T Upload filets) 4 &
WebdApp Name 1 Last change Commits
WebApp 35 minutes age @anbice2 App chargesw

Figure 3-18. The repository

Creating a Build

Once the source control repository is available, we can set up (or create)
a build. Perform the following steps to create a build:

1. Hover the mouse over the Build and Release tab.
Alist of options appears.

2. Click the Builds option, as shown in Figure 3-19.

57

CHAPTER 3 DEPLOYMENT VIAVSTS

Figure 3-19. The Builds option

The My Definitions page appears.

3. Click the New button to create a new build
definition, as shown in Figure 3-20.

Work Buld and Refease Test Wiki L]

o e sy

Figure 3-20. Creating a new build definition

The Select Build Definition Template page appears.

4. Select the desired template from the Select a
Template list.

5. Click the Apply button, as shown in Figure 3-21.

58

CHAPTER 3 DEPLOYMENT VIAVSTS

Select a ternplate

with 3n oy Empty process

?ﬂ NET Deskiop

ASPNET
e 2

B ASPNET Core
h-?.] :’\-\nr\l.: Core {NET Framewark)

(=) Azure Web App

Figure 3-21. Selecting a template

10.

The Sample Project-ASP.NET page appears.

Enter the desired name for the template in the
Name text box.

Select the desired option from the Azure Queue

drop-down list.

Specify the desired parameters under the
Parameters section.

Click the Save & Queue button. A drop-down list
appears.

Select the Save option from the drop-down list, as

shown in Figure 3-22.

59

CHAPTER 3 DEPLOYMENT VIAVSTS

Buikds Relesies Libeary Task Groups Deployment Groups
i SRS B Sor ti e -

Figure 3-22. Tasks tab of the Sample Project-ASP.NET page

The Save Build Definition dialog box appears.

11. Select the desired folder in which to save the build
definition. In this case, we selected the parent folder.

12. Enter the desired comment in the Comment text area.

13. Click the Save button to save the build definition, as
shown in Figure 3-23.

Save build definition

Select folder *
\

Comment

build

Save Cancel

Figure 3-23. The Save Build Definition dialog box

60

CHAPTER 3 DEPLOYMENT VIAVSTS

14. Select the Variables tab to view the associated

variables, as shown in Figure 3-24.

Figure 3-24. The Variables tab

15. Select the Triggers tab to set the triggers. The related
options appear in the right pane.

16. Select the Enable Continuous Integration checkbox

to enable continuous integration.

17. Select the Batch Changes While a Build Is in
Progress checkbox to accept the batch changes
during the build.

18. Specify branch filters under the Branch Filters
section, as shown in Figure 3-25.

61

CHAPTER 3 DEPLOYMENT VIAVSTS

T RRMEENEERE « P &1

ode Work Build and Release Test

Figure 3-25. Setting triggers

62

19.

20.

21.

22.

23.

Select the Options tab. The related settings appear.

Specify the desired general build definition setting
under the Build Properties section.

Specify the desired build job authorization and
timeout settings under the Build Job section.

Click the Save & Queue button. A drop-down list
appears.

Select the Save & Queue option to save and queue
the settings, as shown in Figure 3-26.

CHAPTER 3 DEPLOYMENT VIAVSTS

Buikds Releases wary Task Geoup yyment Groups®
§ R Ry - o
Tasks Variables Tiggers Options Betention Hatory & Save & queus

Figure 3-26. Save and queue the build

The Save Build Definition and Queue dialog box
appear.

24. View the settings and make the changes as per the
requirements, as shown in Figure 3-27.

Save build definition and queue

Hosted

Variables Demands

Figure 3-27. The Save Build Definition and Queue dialog box

63

CHAPTER 3 DEPLOYMENT VIAVSTS

25. Click the Save button to create a build.
A build with a build number is queued.

26. Click the build number, as shown in Figure 3-28.

~ Dashboands Code Work Buildand Refease Test Wiki L

Build properties Build job

Figure 3-28. Clicking the build number

A successful build is created, as shown in Figure 3-29.

~ Dashboards Code Work Buidand Release Test Wiki

KR e A e

Figure 3-29. Creation of a successful build

64

CHAPTER 3 DEPLOYMENT VIAVSTS

View the build summary by clicking the build number, as shown in
Figure 3-30.

Test Results

T U S R T T T T T

Deployments
Ha epapmant taund 20 T

Figure 3-30. Build summary

Creating a Release Definition

A release definition describes an application’s end-to-end release process
so that it can be deployed to different environments. Perform the following
steps to create a release definition:

1. Select the Releases tab.

2. Click the New Definition button. The Select a
Template dialog box appears.

3. Select the desired template for the release from the
Select a Template dialog box.

4. Click the Apply button, as shown in Figure 3-31.

65

CHAPTER 3 DEPLOYMENT VIAVSTS

Select a Template 2 Search
Or start with an g Empty process
Featured

'@' Azure App Service Deployment
=7 Doploy your Web, Mcbis, and Function apps to AZum Web Apply
Agp.
-‘\55 Deploy Node.js App to Azure App Service
b Doy o
= Deploy :

oy your Node s application to Azure Web Apr

i, Deploy PHP App to Azure App Service
@ Dogikry yenn PHP Agpication to Arure Wes Apy

Deplayment
ASPMet core w

A M:lf.f:luud Service Deployment

 Azure Cloud Service

Figure 3-31. Selecting a template

The Environment dialog box appears.

5. Type the desired name for the environment in the
Environment Name text box.

6. Click the Close icon in the Environment dialog box
to close it.

7. Select the Tasks tab. A drop-down list appears.
8. Select the environment that was created earlier.

9. Select the Azure subscription from the Azure
Subscription drop-down list.

Note We need to have a resource group on Azure to deploy our
application.

10. Select the type of app from the App Type drop-down list.

11. Select the app service name from the App Service
Name drop-down list.

66

CHAPTER 3 DEPLOYMENT VIAVSTS

12. Click the Save button to save all the settings, as
shown in Figure 3-32.

Builds Reloases Ubeary Task Groups Deployment Groups®
T New Release Definition B save

Pipeline Tasks Variables Retention Options

vsisdemo101 Ewie s
wpicemert proce wronment name

E_n on n-a Parameters nbink al
Azufe subscription ® ' | Manage =
) Deploy Aure App Senvice m
App type &
App service name * &
— :

Figure 3-32. Setting the task’s properties

The Save dialog box appears.
13. Select the desired folder from the Folder drop-down list.

14. Specify the desired comment in the Comment
text box.

15. Click the OK button, as shown in Figure 3-33.

| b
Save
Folder *
All definiticns
lease
-

Figure 3-33. The Save dialog box

The release definition is created.

67

CHAPTER 3 DEPLOYMENT VIAVSTS

Adding Artifacts

An artifact is the actual deployable component of an application. In VSTS,
the artifacts produced by artifact sources (or stored in artifact repositories)
can be deployed. We need to link the correct artifact sources to the release
definition at the time of creating a release definition. Perform the following
steps to add artifacts:

1. Click the Add button in the Artifacts section. The
Add Artifact dialog box appears.

2. Select the source type under the Source Type section.

3. Select the desired project type from the Project
drop-down list.

4. Select the build definition that was created earlier
from the Source (Build Definition) drop-down list.

5. Select the default version from the Default version
drop-down list.

6. Click the Close icon to close the dialog box.

The created artifact is added.

Creating a Release

A release manages all the artifacts that are defined during release
definition. It is a complete package that contains a snapshot of
environments, task steps, variables, and release policies used to perform
all operations in the release definition. Perform the following steps to
create a release:

1. Click the Release button. A drop-down list appears.

2. Click the Create Release option. The Create New
Release dialog box appears.

68

CHAPTER 3 DEPLOYMENT VIAVSTS

Select the environment from the Environments for
Trigger Change from Automated to Manual drop-
down list.

Enter the desired release description in the
Description text box.

Click the Create button, as shown in Figure 3-34.

Create new release
Mew Release Definition

Pipeline ~
Click on an environment to change its trigger from automated te manual
£ vstsdemot
Environments for trigger change from automated to manual. @
" wstsdemo101
Release description

Figure 3-34. The Create New Release dialog box

A release is created.

Deploying a Release

Once the release is created successfully, we can deploy it to the resource

group created on Azure. Perform the following steps to deploy the release:

1.

2.

Select the Release tab. The created release is shown.
Click the ellipsis ~~~ icon. A context menu appears.

Select the Open option from the context menu. The
Summary page of the selected release appears.

69

CHAPTER 3 DEPLOYMENT VIAVSTS

4. Click the Deploy button. A drop-down list appears.

5. Select the desired option from the drop-down list.
The Deploy Release to Environment dialog box

appears.
6. Click the Deploy button to deploy the release.

The release is deployed successfully, as shown in Figure 3-35.

Work items

Figure 3-35. Deploying a release

Viewing the Deployed Release

Once the release is deployed to Azure, we can view it in a web browser.
Perform the following steps to view the release:

1. Open the Azure portal.

2. Click the Resource Groups option in the left pane.
A list of resource groups appears in the right pane.

3. Click the resource group that we linked to the
environment. The selected resource group opens
with the described settings.

70

CHAPTER 3 DEPLOYMENT VIAVSTS

4. Click the item that we created in the resource group.
In this case, we created an app service. The selected
app service opens.

5. Click the Browse button to view the service in the
web browser.

A web browser window opens with the deployment result, as shown in
Figure 3-36.

B B | HomePage-MyASN X 4 - o x

|

: O & O PR e =L e -
ASP.NET

ASP.NET is a free web framework for building great Web sites and Web
applications using HTML, CS5 and JavaScript.

Leam more »

Getting started

ASP NET MVC gives yo
separation of concerms &

powerful, patterns.basad way to build dynamic wabsites that anables a clean
grves you full control over markup for enjoyable, agile development

Leam maore »

Figure 3-36. Window showing the deployed release

Summary

VSTS is a comprehensive CI-CD solution, which means that it manages
the entire software development lifecycle. Its support of different source
control systems, work items, and Agile methods makes it a perfect choice
for organizations. The functionality of automating the build, test, and
release processes speeds up the software release process. VSTS is a cloud-
based environment, which makes it available 24 hours a day, seven days a
week without the overhead of managing the DevOps software deployment.

71

CHAPTER 4

Azure Application
Deployment

In the preceding chapters, we discussed DevOps fundamentals and the
use of best-of-breed stand-alone DevOps Software, and we reviewed the
integrated DevOps platform. The next logical step is to put it all together
and manage the software development lifecycle of an Azure application.
Of course, you can further enhance this solution to suit your website or
enterprise software. The key here is DevOps.

This chapter discusses a real Azure application deployment using
VSTS. We have a virtual machine on Azure that has e-commerce software
(Magento) installed on it. We will use VSTS to deploy changes to the code
automatically and view the effects on the Azure application. The solution
also includes a GitHub repository to store and version source code
and a shell script for installing the Azure virtual machine and Magento
application.

We make changes in the VSTS Git repository, committed changes, and
deployed the release. The release is then deployed to view the changes. In
this scenario, we make changes to the HTML/CSS files of the source code
to change the color of the menus from blue to orange and deploy a release.
Figure 4-1 depicts an overview of this scenario.

© Suren Machiraju, Suraj Gaurav 2018 73
S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7_4

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

o

V 4 ::"Q\'\Q.
I /, \
% Pre-deployment [Azure Cloud |
Developer ‘6@0 gl h—
%, approval N
‘ \
i » | |
| ‘.'i
! \
>)

Rejected

Figure 4-1. Scenario overview

Understanding Magento

Magento is an open source e-commerce platform. It allows developers
to easily create a shopping cart for their online stores. It also allows
developers to have better control over the content, appearance, and
functionality of their online stores. It provides features such as search
engine optimization and support for catalog-management tools.

Magento is extremely simple to use and can be used by individuals
who are not experienced developers. The availability of a number of
themes and plug-ins makes it effective in enhancing the customers’
experience. Considerable support is available through its large volunteer
community.

Benefits of Using Magento
There are several benefits of using Magento. Some of them are as follows:

o Easyinstallation.

o Provides several layouts and plug-ins that can be used
to add more functionality to the e-commerce solution.

74

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

o Supports many payment gateways.

o [Itis an open source technology, which means that it
can be modified based on user requirements.

Disadvantages of Magento

The following disadvantages/limitations are associated with Magento:
e A more complex system compared to Drupal.

¢ Requires complex programming to add custom
functionality.

e Requires experienced developers to enable it to
integrate with other systems.

Prerequisites of Running an Azure
Application with Magento

There are a few prerequisites needed to run an Azure application with
Magento. A system must have:

e Avirtual machine on Azure running Linux
e Apache server
« MySQL

« PHP

75

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Setting Up Magento

In this scenario, we used an ARM template to set up Magento. This
template contains the source code and shell scripts for setting up a virtual
machine on Azure and installing all the prerequisites and Magento on the
created virtual machine. This template also contains a file that creates a
button. Users utilize that button to navigate to Azure in order to deploy the
virtual machine and launch the Magento application.

Note To use Azure cloud, you need an Azure subscription.

Perform the following steps to set up Magento:

1. Click the Deploy to Azure button to deploy a
Magento package, as shown in Figure 4-2.

[E5 README.md

Deploy Magento On Azure

Deployment of existing magento package

This will install an existing magento package in a VM.t is required to provide the required backup paths for moving the files.
For this go to ExistingPackageDeployment folder and use the ARM template (template. json) provided there

2y peploy to Azure

Deployment of existing magento package having empty content for Ubuntu platform

This will install an existing magento package in a VMt is required to provide the required backup paths for moving the files.
For this go to ExistingPackageDeployment folder and use the ARM template (templateforBlankinstallation.json) provided
there

@y Deploy to Azure

Figure 4-2. Deploying Magento

76

10.

11.

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

After clicking the Deploy to Azure button, you
are redirected to the Azure login page, wherein
you need to specify an email and password to log
in. Once the authorization is done, the Custom
Deployment page appears.

Select the subscription details from the Subscription
drop-down list.

Select the desired radio button beside the Resource
Group option to specify whether to create a new
resource group or use an existing resource group. In
this case, we selected the Create New radio button.

Specify the name of the resource group in the Create
a Resource Group text box.

Select the desired location from the Location drop-
down list.

Specify a domain name in the Domain Name text
box.

Specify the name of the customer in the Customer
ID text box.

Specify the tier of customer subscription in the
Customer Tier text box.

Specify the password for MySQL in the My SQL
Password text box.

Specify the username of the virtual machine server
admin in the VM Admin Username text box.

Specify the password of the virtual machine server
admin in the VM Admin Password text box.

77

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

The values for fields—including Magento File Backup
(backup of Magento files), Magento Media
Backup (backup of media files), Magento Init
Backup (backup of INIT folder content), Magento
Var Backup (backup of VAR folder content),
Magento Default HTaccess (default htaccess file),
Magento DB Backup (backup of Magento DB), and
virtual machine size (size of the required virtual
machine)—are automatically completed through
the ARM template.

12. Click the Purchase button, as shown in Figure 4-3.

Custom deployment

BASICS

Create new Use existing

Figure 4-3. The Custom Deployment page

78

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

It takes a few minutes after clicking the Purchase button to geta
successful deployment. Once the deployment is successful, the virtual
machine starts running. We can view the artifacts by visiting the created
resource group, as shown in Figure 4-4.

teoemns [J Delete resource growp L) Redresh

Figure 4-4. Viewing artifacts

To view the deployment history, click the deployment under the
Deployment History section of the created resource group. Here, we will
get the URL under the INSTALLEDURL text box under the Outputs section.
If we run this URL in any web browser, we get the Magento website, as
shown in Figure 4-5.

ahaust Stowiing & Suspeasion Tran wrb s

Start Here|-:-.2

Figure 4-5. The Magento website

79

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Source Code Integration with Git

A source code repository is a file archive location where source code for
software is placed so that it can be accessed when required. It can be
stored publicly or privately. The source code repository is used to handle
several versions of a project.

VSTS supports two types of source code repositories, as follows:

o TFES-based repositories
e Git-based repositories

In this section, we are going to create a Git-based repository to store
the source code.

Creating a Repository in VSTS

Perform the following steps to create a Git-based repository in VSTS:
1. Navigate to https://www.visualstudio.com/.
2. Click the Sign In button. The Sign In page appears.
3. Enter the email address in the Email or Phone text box.
4. Click the Next button.
5. Enter the password in the Password text box.
6. Click the Sign In button.

The window displays the available accounts and
repositories.

7. Click the Create New Account button, as shown in
Figure 4-6.

80

https://www.visualstudio.com/

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

&

Visual Studio Team Services Accounts m

Team Prjects Actian

Edit prafile

Visual Studio Dev Essentials

Figure 4-6. Creating a new account

10.

11.

12.

13.

When you click the Create New Account button, a
new window appears where you need to enter the
account-related details.

Enter the name of the subdomain in the Host My
Projects At text box.

Select the Git radio button to manage code
using Git.

Enter the name of the project in the Project Name
text box.

Select the framework from the Organize Work Using
the drop-down list.

Select the hosting location from the Host Your
Projects In The drop-down list.

Click the Continue button, as shown in Figure 4-7.

81

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Host my projects at

- visualstudio.com

Manage code using:
* & Git

£ Team Foundation Version Control

Project name:

magentodemo

Organize work using:

Agile

Host your projects in:

Central US

Figure 4-7. Hosting the project

The project-creation process starts. Once the process completes, the
project is created.

If you already have a VSTS account, you can create a repository by
performing the following steps:

1. Open the VSTS account.

2. Click the New Team Project option, as shown in
Figure 4-8.

82

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Visual Studio Team Services Accounts
Teamn Projects Actions
o v

Edit profile

L4

]

Visual Studio Dev Essentials

you need to build and deploy your app

Figure 4-8. Clicking the New Team Project option

The Create New Project page appears.

3. Enter the desired name of the project in the Project
Name text box.

4. Enter the desired description in the Description
text box.

5. Select the Git option from the Version Control drop-
down list to create a Git repository.

6. Select the Agile option from the Work Item Process
drop-down list.

7. Click the Create button, as shown in Figure 4-9.

83

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Create new project

Figure 4-9. Creating a project

The project is created successfully.

Uploading Code on VSTS Git

Once the repository is created successfully, we need to upload or add code
to the repository. We used Visual Studio IDE to upload the source code.

Perform the following steps to upload a code file to the VSTS Git-based
repository:

1. Hover the mouse over the Code button. A list of
options appears.

2. Select the repository we created earlier, as shown in
Figure 4-10.

84

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

C @ Secure | hitps isualstudio.com
l:j magentodemo W Dashboards Work Build and Release [Wiki
€ magentodemo
magentodemo
. C ts

Deploying Magento on Azure Sl

Pushes
Add tags

Branches
Tags X

Pull Requests

1% New pull request

L - N e torie: .
anag repositones tegranon

Improve code quality by detecting breaking changes as socn as they happen.

Set up Build

Leamn maone about continuous integration

Figure 4-10. Selecting the repository
The files associated with the selected repository
appear.

3. Click the Upload File(s) button to upload a new file,
as shown in Figure 4-11.

© magienocems Fies Commts Puther Brncher Tage Pul Request ‘ ch Clooe

P oraster v mageetcdems [

Contents Hissory + New - Fllpicad bl + o

2 change Commis

O sinxsgiite 252018 BT Upcated styles Dev?

shell

varficg

O sandbemzp

Figure 4-11. Clicking the Upload File(s) button

85

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

The Commit dialog box appears.

Click the Browse button to search for the file to be
uploaded.

The Open dialog box appears.

Navigate to the folder where the file to be uploaded
is stored.

Select the file.

Click the Open button. The selected file appears in
the Commit dialog box.

Enter the desired comment in the Comment
text area.

Click the Commit button to commit the changes, as
shown in Figure 4-12.

Drag and drop files here or click browse to select a

file Browse...

[+] styles.css |
139.1 KB remove

Comment

Added style

Branch name

master

Work items to link

Figure 4-12. Uploading a file

86

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Creating a Release Definition

Once the file is uploaded to the repository, we need to create a release
definition in VSTS. A release definition describes the application’s
overall release process. This application must be deployed in different
environments.

Perform the following steps to create a release definition in VSTS:

1. Navigate to the project we created earlier.

2. Hover the mouse over the Build and Release button.
A list of options appears.

3. Click the Releases option, as shown in Figure 4-13.

J magentodemo v Dashboards Code Work Build and Release Test Wiki

© magentodemo v Files Commits Pushes Branches Tac Builds

|Releases I
i master w magentodemo / Type to find a file or folder.

Library
Contents History Task Groups
€ magentodemo
= Jarie Deployment Groups* Commits
wWwWw Vs 1/25/2018 a185a68f
www 22 hours ago b1454%a1

Figure 4-13. Clicking the Releases option

4. Click the + button. A drop-down list appears.

5. Click the Create Release Definition option, as shown
in Figure 4-14.

87

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

J magentodemo Dashboards Code Work Build and Release

Builds Releasesl Library Task Groups Deployment Groups*

<

o8 . All release definitions
Overview Releases Deleted

O

Search Create release definition | jo

Rel |mport release definition

All release definitions wee a V.3 Title

Figure 4-14. Click the Create Release Definition option

The Select a Template dialog box appears.

6. Click the Empty Process link, as shown in
Figure 4-15.

(=] magentodemo v Dashboards Code Work Build and Release Test Wiki

- Select a Template |—|

T New Release Definition Or start with an [is Empty process |

Featured

.@ Azure App Service Deployment
Deploy your Web, Mcbile, and Function apps to Azure Web
@ Deploy Node js App to Azure App Service
Deplery yout b

wr Mode 3 application to Azure Web Agp

Artifacts Add Environments | -+ Add

Environment 1 . @ Deploy PHP App to Azure App Service

ioni R Deploy your PHP Application to Azure Web App
115 Website and SQL Database Deployment

Deployr Met A3ANet core web
Datsbace

applications

a Azure Cloud

Deploy an Azure Cloud Service

Deployment

Figure 4-15. The Select a Template dialog box

88

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

7. Click the Add Artifact button under the Artifacts
section.

The Add Artifact dialog box appears.
8. Select the Git option under the Source Type section.

9. Select the desired project from the Project
drop-down list.

10. Select the desired Source repository from the Source
(Repository) drop-down list.

11. Select the default branch from the Default Branch
drop-down list.

12. Select the default version from the Default Version
drop-down list, as shown in Figure 4-16.

=1 magerdoderns ~ Dashboards Code Work Budd and Release Test Wiki

B
4
o)
R

Figure 4-16. Selecting the source type

89

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

13. Specify the desired source alias in the Source Alias
text box.

14. Click the Add button, as shown in Figure 4-17.

magentodemo % Dashboards Code Work Build and Release Test Wiki
ilds Releases Library Task Groups Deployment Groups®
o — Preject® @
#* New Release Definition magentodemo
Pipeline Tasks Varisbles Retention Options History

Source (repository) * (D

magentodemao

Artifacts | 4 Add Environments | < Add Default branch* (@

master

Default version® O

& it b
Add artifact Latest from default branch

© b Environment 1

[checkout submodutes @
[checkout files from LFs @

Shallow fetch depth (@

Source alias (O

magentodemo

o

Figure 4-17. Adding an artifact

The created artifact is added.

15. Edit the release definition name, as shown in
Figure 4-18.

90

CJ magentodemo

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Dashboards Code Work Build and Release Test Wiki

All definitions »

Artifacts | - Add
magentodemo

® Schedule
not set

Builds Releases Library Task Groups Deployment Groups*

T ﬂvlagento DevOps Release Definition | &

Pipeline Tasks Variables

Retention Options History

Environments | - Add

% Environment 1
) 2
8 | 1phase Otask

Figure 4-18. Editing the release definition name

16. Click the Environment 1 button under the

Environments section. The Environment dialog box

appears.

17. Replace the Environment 1 text in the Environment

Name text box with the desired text to specify a

unique name for the environment.

18. Click the Close button to close the Environment

dialog box.

19. Select the Tasks tab. A list of related tasks appears in

the left pane, and the description of the selected task

appears in the right pane, as shown in Figure 4-19.

91

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

fJ magentodemo W Dashboards Code Work Build and Release Test Wiki

Builds Releases Library Task Groups Deployment Groups*

All definitions > % Magento DevOps Release Definition

Pipeline Tasks Variables Retention Options History

Production Update

2 Environment name
Deployment process

| Production Update |

Agent phase +

B Runonagent

Figure 4-19. Selecting the Tasks tab

20. Select the Agent Phase option in the left pane. Many
options related to the selection appear in the right
pane, as shown in Figure 4-20.

CJ magentodemo ~ Dashboards Code Work Build and Release Test Wiki

Builds Releases Library Task Groups Deployment Groups®

All definitions > % Magento DevOps Release Definition

Pipeline Tasks Variables Retention Options History

Production Update
Deployment process Agent phase ®

Agent phase
B Run on agent

Display name *
Agent phase

Agent selection ~

Agent queue @ | Manage 12
Magento Pool |

Demands @

Name

Figure 4-20. Options related to the agent phase

92

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

In Figure 4-20, the agent appearing in the Agent
Queue text box is deployed by the ARM template.

Note A phase groups the tasks created under it. It defines the
runtime target environment to execute the created tasks. On an
agent, the tasks are executed by an agent phase in a queue.

21. Click the + icon beside the Agent Phase option to
add a new task to the agent. The Add Tasks pane
appears on the right side with a list of available
tasks.

22. Select the Shell Script option from the list to add a
shell script task. The Add button becomes active.

23. Click the Add button to add the selected task, as
shown in Figure 4-21.

ﬁ Sheell Script
by M =

B Powershel on Taget Macines

Figure 4-21. Adding a task

93

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

The selected task is added to the agent.

24. Select the added task in the left pane. The settings
associated with the selected task appear in the right
pane.

25. Select the desired version of the selected shell script
from the Version drop-down list.

26. Specify the desired display name for the selected
task in the Display Name text box.

27. Select the Inline radio button under the Type
section to add an inline script.

28. Add the following inline script to remotely copy files
from a source location to the destination location in
the Script text area:

sudo rsync -ar "$(System.DefaultWorkingDirectory)/magentodemo/
www/skin" /var/www/magento/2016080806

Note In this script, the source location is:

$(System.DefaultWorkingDirectory)/magentodemo/
www/skin

The destination location is

/var/www/magento/2016080806

29. Click the Save button to save the release definition,

as shown in Figure 4-22.

94

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Bulds Relesses Libeary Tak Groups Daployssent Groups®
All definivons > 7 Magento DevOps Release Definition B Save
Piptline Taks - Vorisbls Retention Optices History
P z .
Praduction Upduts Bash (Preview) ©
[Mm e
Agent phase +
W R on agent
Deiphay name
Shell Seript to copy requ... o e
e R 8 Shedd Script. 0 copy requained files
Trot €
Fide Pt || () Intine
Seript
[wenrn» *S{5yitees DefaultWorlongDirectany)/magentodama ik far ey magenta 2016030805

Figure 4-22. Adding a script to the task
As we click the Save button, the Save dialog
box appears.

30. Select the desired folder from the Folder
drop-down list.

31. Enter the desired comment in the Comment
text box.

32. Click the OK button, as shown in Figure 4-23.

Save
Folder *

All definitions

Comment

Figure 4-23. Saving the release definition

95

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Pre-Approval Step for Deployment
Using VSTS

Once the release definition is created, we can set approvals for the release
within the release definition. Once the approvals have been set, the
deployment stops at the stage where it requires approval from the assigned
approver. The release is not deployed until the approver grants the
approval. There are two types of approvals, as explained:

o Pre-approval: This type of approval is required before
starting the deployment process.

o Post-approval: This type of approval is required once
the deployment is complete. It is used when deploying
to multiple environments like Test, Staging, and
Production.

Perform the following steps to add the pre-approval step for
deployment:

1. Open the release definition.

2. Click the Pre-Deployment Conditions icon, as
shown in Figure 4-24.

96

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

‘:l magentodemo v Dashboards Code Work Build and Release Test

Builds Releases Library Task Groups Deployment Groups*

All definitions > % Magento DevOps Release Definition

Pipeline Tasks Variables Retention Options History

Artifacts | -+ Add Environments | - Add -

Pre-deployment conditions

. |
® o LProduction Update
magentodemo | 2 |11 phase 1task |

411 D

not set

Figure 4-24. Clicking the Pre-Deployment Conditions icon
The Pre-Deployment Conditions dialog box
appears.
3. Enable the Pre-Deployment Approvals option.

4. Locate and select the desired approver from the

Approvers search box.

Note We can add single or multiple approvers both for pre-
deployment and post-deployment settings. An approver can be

an individual user or a group of users. When a group is set as an
approver, the deployment can be approved by only one of the users in
the group.

97

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

5. Specify the timeout settings for the approval in the
Timeout section. If the approval is not approved within
the specified timeout period, the deployment is rejected.

6. Select the desired checkbox under the Approval
Policies section. The following checkboxes are
available under the Approval Policies section:

o The user requesting a release or deployment
should not approve: When this checkbox is selected,
the user who is requesting (initiated or created) the
release cannot approve it. To approve or reject our
own deployments, this checkbox needs to be cleared.

o Skip approval if the same approver approved the
previous environment: This policy states that the
approval is skipped if the previous environment is
approved by the same approver set for the current
environment. If there are multiple approvers, the
approval becomes pending for them.

7. Click the Save button, as shown in Figure 4-25.

Buids brary Task Groups Deploymant Groups®

All definmons » F Magento DevOps Release Definition r_»z a-J

Pipeline Tasks Varables Rewrtizn Optiers History

Pre-deployment conditions
Froducsion Updste
Artifacts | <= Add Environments | <= add

b Tiiggers
Ot the trgper

Figure 4-25. Pre-deployment conditions dialog box

98

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

The pre-approval deployment has been configured, as shown in
Figure 4-26.

CJ magentodemo ~ Dashboards Code Work Build and Release Test = Wiki

Builds Releazes Library Task Groups Deployment Groups*®

All definitions > % Magento DevOps Release Definition

Pipeline Tasks Variables Retention Options History
Artifacts | -+ Add Environments | - Add
¢ b Production Update a
magentodemo R | 1phase 1 task <

@

Figure 4-26. Successful pre-approval deployment

Automated Continuous Deployments
Using VSTS

A release definition can be configured such that a new release is
automatically created when new artifacts are available, or when the latest
code is checked in. Such continuous deployment can be automated
through VSTS.

Perform the following steps to configure continuous deployment:

1. Click the Continuous Deployment Trigger icon
under the Artifacts section, as shown in Figure 4-27.

99

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

I':J magentodemo w Dashboards Code Work Build and Release

Builds Releases Library Task Groups Deployment Groups®

All definitions > ' Magento DevOps Release Definition

Pipeline Tasks Variables Retention Options History

Artifacts | + Add Environments | -+ Add

Continuous deployment trigger

® J & Production Update

magentodemo R 1phase 1task

R

~ | Schedule
()] ehedy
not set

Figure 4-27. Clicking the Continuous Deployment Trigger icon

The Continuous Deployment Trigger dialog box
appears.

2. Enable the Continuous Deployment Trigger option.

3. Click the Save button, as shown in Figure 4-28.

Work Build and Release
Builds Releases Library TaskGroups Deployment Groups®
All definitions > ¥ Magento DevOps Release Definition & save I . = Vi
Pipeline Tasks Variables Retention Options History
Continuous deployment trigger
Artifacts | -+ Add Environments | -+ Add Gt magentademo
Q Enabled
(&) " e & Git Push is done to the selected repa
¢ & Production Update a Branch filters @
mageriodemo B 1 phase, 1 task
= No Filters exost
+ Add
®
. t sel

Figure 4-28. The Continuous Deployment Trigger dialog box

100

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

The continuous deployment trigger is enabled, as shown in
Figure 4-29.

‘:J magentodemo ~ Dashboards Code Work Build and Release Test Wiki
Builds Releases Library Task Groups Deployment Groups®*
All definitions > ¥ Magento DevOps Release Definition
Pipeline Tasks Variables Retention Options History
Artifacts | + Add Environments | + Add
(%)

0 b Production Update a

magentodemo R 1phase, 1task

e dle

ol e

Figure 4-29. Successful continuous deployment

There are three options for triggering deployment, which are:

e Manual: This option creates a new release manually by
selecting the Release icon in a release definition. This
option does not create a release automatically when
there is a new build of source artifacts available.

o Continuous deployment: This option creates a new release
automatically when new build artifacts are available. This
option allows us to specify the artifact sources linked to the
release definition to trigger a new release.

¢ Scheduled: This option creates a new release
automatically based on the specified schedule. Select
the days of the week and the time of day to define a
schedule for automatically creating a new release.

101

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Testing the Deployment

We can test the deployment through VSTS. We have a Magento website
running on a virtual machine on Azure portal. We have the entire code
for the website in VSTS Git. If we make any changes to the available
code, a release pipeline will run, a release will be created automatically
or manually (depending on the deployment option we chose, i.e.,
Continuous Deployment or Manual), and the changes will be reflected
on the Magento website.

Note For the current testing scenario, we are making changes to
the background color of the menus, i.e., from blue to orange.

Before deployment, the background color of the menus in the Magento
website is blue, as shown in Figure 4-30.

Start Here|::-.2

Figure 4-30. Existing Magento website

102

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Testing Continuous Deployment of Release

Perform the following steps to deploy the release automatically:
1. Login to the VSTS account.

2. Hover the mouse over the Code tab. A list of options
appears.

3. Select the Files option from the list.

4. Navigate to the styles.css file. The content of the
selected file appears in the right pane under the
Contents tab selected by default.

5. Click the Edit button, as shown in Figure 4-31.

Figure 4-31. Navigating to the style.css file

6. Setthe value of the background-color property
under the cssmenu class to orange, as shown in
Figure 4-32.

103

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Dashboards Code Work Build and R

4 magentodemo »~ Filez Commits Pushes Branches Tags Pull Requests

P master magentodemo / www / skin / frontend / default / fetchauto_theme / <5 / styles.css ™

Contents Highlight changes
€ magentodemo hie 2
5/78 line-neight: 1;

I Vs 5779
5780
N 5781
5782
app i
5784 }
e jo 5785 .cssmenuiafter, .csssenu > uliafter {
5785 content: ".%;
B shell 5787 display: block;
s788 clear: both;
B skin 5789 visibil
5790 1
B adminhtml/default 591 neignt: B
5792 }
e frontend 5793 .cssmenu Shead-mobile {
5794 display: none
W base/default 5795 }
5796 .cssmenu
B default 5797 [T EatRgroand-IRagET urll .. inages) navigat 1oABAr . ong- 130/ I
5798 3 ve peaT=y
Be aat01_theme 5739 height: 28px;
5600 nosition: ralative:

B ahgO1_the... 5801 [:u.krwn:vcch': arange;
H

5802

B b9mO01_the.. 5803 .cssmenu > ul > 1 {
5504 float: left

B bap01_the.. | 5895 }

5806 .cssmenu > ul > 1i > a {

Figure 4-32. Setting the value of the background-color property

7.

104

Click the Commit button. The Commit dialog box
appears.

Enter the desired commit comment in the Comment
text box.

Click the Commit button to commit the changes, as
shown in Figure 4-33.

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Commit

Commant

Fémea background color to orange I

Eranch name

master

Work items 1o fink

Search work fems by 10 or tite

Figure 4-33. Committing changes

The code changes are committed successfully, as
shown in Figure 4-34.

f:] magentod Work Build and Release
© magentodemo ~ Files Commits Pushes Branches Tags Pull Requests
¥ master magentodemo / www / skin / frontend / default / fetchauto_theme / css / styles.css
<
€ magentodemo | @ Committed § d4697f4: Updated backg color to orange | — Create a pull request
I vs Contents History Compare Blame
B www 1y
2 | * Magento
™ app 211 jin
4 | ™ NOTICE OF LICENSE
M js 231 B
& = This source file is subject to the Academic Free License (AFL 3.8)
B shell 7 = that is bundled with this package in the file LICENSE_AFL.txt.
& = It is also available through the world-wide-web at this URL:
B skin 9 | * hitp:/lgeensoyece.org/licenses/a€]-3.9.0n0
18 | = If you did not receive & copy of the license and are unable to

Figure 4-34. Successful commit

Since we have correctly configured our process for
continuous deployment, the release pipeline will
start once the code is committed.

105

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

10. Open the release definition created earlier. In this
case, we created the release definition named
Magento DevOps Release Definition. Here, we can
see that a new release named Release-3 is created,

as shown in Figure 4-35.

Buics Refeases Ubrary Tack Groups Deployment Groups®
T <f
D R 1 e A1

Redcase Defmitions

Al rriease Sefintons & 8 Tide an v 3

Magentc DevOps Felease Def I T elesed - CETEAIGE mase just now

iw«'orx«w Felease Defind o F T Relete: . CleHead 100 mage 20 heurs ago

F o Remaset cam S3Talga (Gl maw e 20 hours ago

Figure 4-35. Opening the release definition

11. Click the Release-3 release to view its details. The
Summary page of the selected release appears, as
shown in Figure 4-36.

magentodemo v Dashboards Code Work Build and Release

Builds Releases Library Task Groups Deployment Groups®

U

Summary | Envirenments Artifacts Varables General Commitn Workitems Tests Logs Hister
Search p o

Release Definitions O C =] Abdndon [=) Send Email

Al release definitions [ﬂ pre-deployment appraval is perding for Production Update’ environment. '

Magento DevOps Release Def

Magento DevOps Release Definition === Details Work items
Triggered by Repositary: MicrosoftVisunlStudia Services ReleaseMansgement Ser. &7 No associated work items found
Continuous deployment requested for minutes sgo Tags

€ magentodemo [4EITHA (G| ¥ master

Environments

Issues

No ispues reported in this release

Figure 4-36. The Summary page of the selected release

106

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

In Figure 4-36, we can see that the deployment
status under the Environments section states that
the release is not deployed yet. We require a pre-
deployment approval from the approver before the
actual deployment of the release. In this case, the
approver received an email to review the release and
approve or reject it.

12. Click the View Approval button, as shown in
Figure 4-37.

Qutlook Mail

L @MNewlv @ Delete B Achive kink|v Sweep Movetov Categories ¥ e - B) Trythebeta

Inbox FiH

—
Deployment of[Release-3 th Magento DevOps Release

Definition/Prodlction Update is pending on your approval

ent requested fo

sdicOnline @mi r -
)
Upgrade to Premium .
VisualStudiaOnline@mi

Figure 4-37. Viewing email for approval

The approver is redirected to the Summary page of
the release created earlier.

13. Click the Approve or Reject link, as shown in
Figure 4-38.

107

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Dashboards Code Work Busld and Release
Builds Releases Library Task Groups Deployment Groups™
O I
P o [pummary | Enveonments Atfects Varisbles General Commits ests Logs
¢ = Send Email
Release Definitions V] i Abandon = Email
Al release definitions A pre-geployment approval is pending for ‘Production Update” mvir:mr{mi;;pr:vc or Regect |
Magentc DevOps Release Def
Magentc DevOps Release De. Details Work items
Triggered by Repository: Microsoft Services.Reh ServerPlu. & Nz associsted wark tems found,
Continuous deployment requested for agledev10l 10 minutes ago Tags
© magentodemo / S4E0THA (Git) BF master
Add.
Environments b
Actizas Triggersd Completed Tests
- @ 10 minutes 390 No tests
Issues
No issues reported in this release

Figure 4-38. Clicking the Approve or Reject link

The Pre-Deployment Approval Pending dialog box
appears.

14. Enter arelevant message in the text box.

15. Click the Approve button to approve the release, as

shown in Figure 4-39.

Builds Releases Library Task Groups Deployment Groups*
U o+ Magento DevOps Release Definition / Release-3
o Sunsma ik W
Release Dot (4] =] tbandon 21 Send Bma

&l release definitions

A pre-deployment approval is pending for ‘Production Update’ environment. Approve o Reject I

Pre-deployment approval pending
on Rewstige

[appraving the reilease. |
|

Magentc DevOps Felease Def
Magentc DevOps Release De Detais
Trggered by Repostony: Murosolt VauaStsda Servces ReieaseManagemen
Continuus deployment requested for 10 mirutes age
) magentodems [AMATHE (5§ easter
Defr this deployment to
(UTC) Cocrclinated Univen

£30PM
Enwironments

Trapgeet

10 memtes 830

Issues

Mg istuee reported in this releace.

Figure 4-39. The Pre-Deployment Approval Pending dialog box

108

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Once the approver clicks the Approve button,
the deployment starts. Its status can be seen

in the Deployment Status option under the
Environments section of the Summary page, as
shown in Figure 4-40.

magentodemo Dashboards Code Work Build and Release Test Wiki

Builds Releases Library Task Groups Deployment Groups®

) - Magento DevOps Release Definition / Release-3
gl Summary Ervwonments Artifacts Variables General Commits Workitems Tests Llogs History
Release Definitions L y = Abandon [Send Email
All release definitions
Details Work items
Magento DevOps Release Def
Magento DevOps Release De Triggered by Repasitory: Microsoft VisualStudio Services ReleaseManagement ServecPlu. &7 No associated w
Continuous deployment requested for 14 minutes ago Tags

€ magentodemo / d4697HA (Git) B master

Environments

Environm... Actions

niggered

Productic.. 14 minutes ago

Issues

No issues reported in this release.

Figure 4-40. Status of deployment

16. Select the Logs tab to monitor the deployment, as
shown in Figure 4-41.

109

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Dashboards Code Work Build and Release Test Wiki

Library Task Groups Deployment Groups®

I g o . a5
o Logs
] @ a A Abandon ¥ Downicod sliogseszip = Send Emas
Al release definitions St Actics Ag
Magento DevOps Rulease De! ~ [liProduction Update
Magento DevOps Release De.. & Pre-cegloyment approval =

~ (@ Agent phase
& Initialize b 28

@ Dowrload Artifacts

9, Shell Seript to copy required files

Figure 4-41. Logs of running tasks

Once all the tasks have completed, the deployment
is completed successfully, as shown in Figure 4-42.

‘:J magentodemo ~ Dashboards Code Work Build and Release (== Wiki
Builds Releases Library Task Groups Deployment Groups™®
< -
O 4 DevOps Release Definitior
r = Summary Environments Artifacts Variables General Commits Wo
Search release definrtions. p d
n L) i = <+ Dow:
Release Definitions O 1 Deploy izt Abandon ¥ Dowr
All release definitions Step Action Agent ql
Magento DevOps Release Def « BEProduction Update 1 2]
= F 2 29
Magento DevOps Release De... @ Pre-deployment approval Q 3 20f
4 2e]
v @ Agent phase 8 5 204
6 28]
@ Initialize Job 8 7 20
8
@ Download Artifacts a8 9
1e
@ Shell Script to copy required files 5 11
12
@ Post-deployment approval jo 13

Figure 4-42. Tasks completion status

110

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

17. Select the Summary tab to view the summary of the
created release.

The Summary page displays the value of the
Deployment Status option under the Environments

section as SUCCEEDED, as shown in Figure 4-43.

Builds Releases Library Task Groups Deployment Groups™

+
Surmmar b
g ¥
Release Defi - Deloy Aand
All release definitions
Details Work items

Magerto DevOps Release Def

Microseft VisualStudio Sernces. ReleasehManagement SarverPlu... & No associated work itemns found,

Magerito DevOps Release De...
uested for 19 minutes age Tags

€ magentodemo / G4EITHA (Git) B master

Environments

Figure 4-43. The deployment status

Once the deployment is successful, we can refresh
the home page of the Magento website. Once the
page refreshes, we can see that the background
color of the menus has changed from blue to
orange, which means that the VSTS deployment was
successful, as shown in Figure 4-44.

111

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Contact Us | Fietum Policy | Shipomg Folcy My Accound | My Wshist| Login WP 0 temis 59

et - =4

Start Herel=:..2 ver + wme v hiosm + | Submacet

Figure 4-44. Successful deployment through VSTS

Testing Manual Deployment of a Release

Even though the automated release was successful, we should still test the
manual deployment in case the continuous deployment is not configured
correctly, or in case we want to deploy the older version of the code.
Perform the following steps to deploy the release manually:

1. Login to the VSTS account.

2. Open the applicable release definition, as shown in
Figure 4-45.

r:J magentodemo v Dashboards Code Work Build and Release Test Wiki

Builds Releases Library Task Groups Deployment Groups*
<
O o+~ Magento DevOps Release Definition | Edit
5 > m Jeol Overview Releases Deleted
Search release definitions
” I
Release Definitions O + Release ~
All release definitions & & Title Eivirenasants
Magento DevOps Release Def F Release-2 .-
[Magento DevOps Release Definition J F Release-1

Figure 4-45. Opening the release definition

112

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

3. Click the Release button. A drop-down list appears.

4. Click the Create Release option, as shown in
Figure 4-46.

magentodemo ~ Dashboards Code Work Build and Release Test Wiki

Builds Releases Library Task Groups Deployment Groups*

<

U +- Magento DevOps Release Definition | Edit
Searct 5 f o Cverview Releases Deleted
earch release definitions
Release Definitions () + Release >

All release definitions a I(Ineale Ralease I Environments

Magento DevOps Release Def

Create a new release

II

Magento DevOps Release Definition

Figure 4-46. Creating a new release

The Create New Release for Magento DevOps
Release Definition dialog box appears.

5. Enter the desired description for the release in the
Release Description text box.

6. Select the b14549al (Updated Background
Color To ‘Light Blue’) option from the Version
drop-down list to set the background color of
the menus to light blue.

113

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

7. Click the Create button to create a new release, as
shown in Figure 4-47.

=
Create new release for Magento DevOps Release Definition

Release Description Deploying older version styles..

Artifacts
Source Alias Version (O
magentodemo (Git) d4697ff4 (Updated background color to orange) el |

d4697ff4 (Updated background color to orange)
01c2fead (Updated styles.css)

Automated deployments 937a202a (Changed menu background color to orange)

Environments to which deployments will be trig;F‘MM’g‘!‘l (Updated background color to ‘light blue') J
deployment to an environment. mecf [Updated s{yﬁes.css]

Environment a185268f (Updated styles)

4915676d (Added Magento files)

Production Update

Create Cancel

Figure 4-47. The Create New Release for Magento DevOps Release
Definition dialog box

The release pipeline starts, and the manual
deployment icon displays for the created release in
the Environments column, as shown in Figure 4-48.

114

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

'j magentodemo e Dashboards Code Work Build and Release

Builds Releases Library Task Groups Deployment Groups*

<
B v Magento DevOps Release Definition | Edit
o Cverview Releases Deleted

34

Release Definitions L + Release >

RN 56 MR Release Relsase-d has been created

Magento DevOps Release Def = b

- Environmen
Magento DevOps Releas... P‘“ Helnasera -]
3 Release-3 =
T Release-2
;3 Release-1

Figure 4-48. Viewing the manual deployment icon

The approver receives an email with a link to

View Deployment, along with additional controls
to approve or reject the deployment. Once the
approvers click the View Deployment button, they

are redirected to the release definition.

8. Click the Approve or Reject link. The Pre-Deployment

Approval Pending dialog box appears.

9. Enter the desired comment in the Type Comments

Here text box.

10. Click the Approve button to approve the release

deployment, as shown in Figure 4-49.

115

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

Library Task Groups Deployment Groups®

o Magenta Deyvlps Release Definition / Release-4
= D Summiry Emeocments At Varisbles Genenl Commits Workitems Tests logs Hastory
N - a =
Rebossa Dk] : Abendon =1 Send Ema
All release defnitions & pre-deployment appeoval s pending for Production Update' envirsament

Magenta DevOps Release Daf
Details

Magento DevOps Releas... =
Ceplaying cider verson sofes. &
Marualty created by 2 minutes ago

& magentodemns [B1454801 (Updated background solor ta ight bhut] IG Type comments here.
Dot i deploymentie 1/INZ006 3P
UTE) Coordinated Universl Time

Trggeeed ¢ Asprove Regeet
D 2 minutes ago

Issues

N itnues repomed in this releac,

Figure 4-49. Approving the release deployment

Once the approver clicks the Approve button,
the deployment begins, and all tasks complete

successfully, as shown in Figure 4-50.

f:] magentodemo v Dashboards Code Work Build and Release Test

Builds Releases Library Task Groups Deployment Groups™®

U +- Magento DevOps Release De 1/ Release-4
s " e p Summary Environments Artifacts Vanables General Commits Work items
Sarch reiease defintions.

Release Definitions 9] T Deploy~ 4 Save Abandon 4 Download all log
All release definitions Step Action Agent queue: Mage|
Magento DevOps Release Def ~ S=production Updat 1 2018-91-317T4

RS ees 2 2018-01-317¢
2 -91-

Magento DevOps Releas... == @ Pre-deployment approval jo 3 2018-01-317¢
4 2018-91-31T&
~ @ Agent phase 8 5 2018-91-31T4
6 2018-81-31T&
@ Initialize Job 8 7 2018-91-31T¢

8

@ Download Artifacts i 9

1@

@ shell Script to copy required files 8 11

12

@ Post-deployment approval jol 13

14

Figure 4-50. Status of successful tasks

116

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

11. Select the Summary tab. The Summary page appears,
and we can see that the value of the Deployment Status
option displays as SUCCEEDED, as shown in Figure 4-51.

J magentodemo v Dashboards Code Work Build and Release Test Wiki

Builds Releases Library Task Groups Deployment Groups®

[Magento DevOps Release Definition / R
. alaiian jo) Summary | Environments Artifacts Variables General Commits Workitems Tests
search rele dehnitions

Release Definitions U | T oeplyr H Abandon [Send Email

All release definitions

Details
Magento DevOps Release Def
ing older vers les..
Magento DevOps Releas... == Deplaying older version styles. 7
Manually created by 5 minutes ago

¢ magentodemo fF‘:éS:I.QaI (Updated background color to ‘light blue) (Git) § master

Environments

Environm... Actions Triggered Complete 1s
Productio... 4 minutes ago Just now
Issues

No issues reported in this release,

Figure 4-51. Successful deployment

12. Refresh the Magento website. The background color
of the website will now be light blue, as shown in
Figure 4-52.

Contact Us | Rotum Peacy | Shipng Poicy

My Account | My wiskast | Login W 0 meea) 50

[Magenta

Starf Herelss® ivea | ivae lwoca o[siomor

Figure 4-52. Final output

117

CHAPTER 4 AZURE APPLICATION DEPLOYMENT

With this build, we have successfully used VSTS as a DevOps platform
to manage the software development lifecycle from the first deployment to
subsequent updates.

Summary

This chapter provided information about Azure application deployment
using VSTS. It outlined a step-by-step approach for setting up Magento

on a virtual machine running on Azure. The chapter also discussed the
process of creating a repository and uploading code to it in detail. You
were also acquainted with the process of creating a release definition and
arelease. You also learned about the process of configuring continuous
deployment to create a new release automatically. Finally, we created a test
to view the changes on Azure.

118

CHAPTER 5

Final Thoughts

This chapter takes a look back at the discussions from the preceding
chapters.

DevOps for Azure

Chapter 1 presented basic DevOps concepts. Recall that without DevOps,
the manual software deployment process is error-prone, time-consuming,
and inefficient due to a lack of robust process integration and poor team
communication. The manual process also slows down performance.

The DevOps solution replaces the manual process of application
deployment, wherein DevOps automates the entire process of software
development and deployment. DevOps integrates the functionality of both
the Development and Operations/Production teams into the application
deployment process. One of DevOps most important functions is its ability
to automate the process of application deployment, allowing multiple
developers to check in and check out code simultaneously in/from the
Source repository, etc.

In the DevOps application deployment process, developers write code
and check it into the source control/Source repository. The Continuous
Integration (CI) server generates the build. During the build process,
several tasks are performed, including automated unit testing, code

© Suren Machiraju, Suraj Gaurav 2018 119
S. Machiraju and S. Gaurav, DevOps for Azure Applications,
https://doi.org/10.1007/978-1-4842-3643-7_5

CHAPTER 5 FINAL THOUGHTS

coverage, and code analysis. If there is an error, a report is automatically
generated and sent back to the developer for correction in the code. Then,
arelease is created for the successful build in which testing, QA, and
staging operations begin. Once a successful release is available, the release
is deployed to the target environment—Microsoft Azure Cloud. The first
chapter also introduced a number of different DevOps tools.

Deployment via TeamCity and Octopus
Deploy

Chapter 2 outlined how to deploy a package on Azure Web Application
using best-of-breed tools—a Continuous Integration (CI) tool (TeamCity)
and a Continuous Delivery (CD) tool (Octopus Deploy). TeamCity is a
Continuous Integration server for developers powered by JetBrains.

Using TeamCity, we demonstrated how to create a project and specify
the build configuration by providing the SVN (subversion) path to include
the latest code and placing it in the build agent. Our process created a
successful build in TeamCity. Afterward, we configured the source code
and set parameters for the PowerShell script file. The target path settings
were modified to create a NuGet package. This package was placed at a
location accessible by Octopus Deploy.

Octopus Deploy is an automated deployment server that streamlines
and automates the deployment process of different applications into
different environments. This process thus becomes practically effortless.
Using Octopus Deploy, we created a project. Then, we created two
environments and we uploaded the package. We also created two steps
within that package, and we created a release for the project. Last, we
deployed the release, and the deployment resulted in the successful
deployment of the content of the NuGet package on the Azure websites.

120

CHAPTER5 FINAL THOUGHTS

Deployment via VSTS

Chapter 3 discussed deploying a web application using a completely
integrated DevOps platform called Visual Studio Team Services (VSTS).

VSTS is a collaborative CI-CD solution. This means that VSTS manages
the entire software development lifecycle, from creating packages to
deploying applications. It is a cloud-based environment, which means it’s
available 24 hours a day, seven days a week without any management or
operations overhead.

Using VSTS, we first created an account to host the project, and we
created a project under the account. We then added the source code to the
project and made a few changes to the source code. We then committed
the changes and created a build. Once the build was successful, a release
definition was created. The release definition describes an application’s
end-to-end release process so that it can be deployed to different
environments. After creating the release definition, we added artifacts and
environments to which the application could be deployed. Then, a release
was created. A release is a complete package that contains a snapshot
of environments, task steps, variables, and release policies that are used
to perform all the operations in the release definition. After creating the
release, we deployed it to the resource group created on Azure. The release
was deployed successfully on Azure.

Azure Application Deployment

Chapter 4 applied what we covered in previous chapters to an Azure
application deployment using VSTS. We created a virtual machine on Azure
and installed an e-commerce application called Magento. We committed
changes to the source code through VSTS and deployed the changes on the
Magento application running on Azure. A release was created and deployed
to view the effects of the changes made to the source code.

121

CHAPTER 5 FINAL THOUGHTS

Now that you have completed the step-by-step process, with additional
details provided about the process and tools available, you are well versed
and fully trained to utilize both Continuous Deployment and manual
deployment methods.

122

Index

A, B
Application Lifecycle Management
(ALM), 39
Azure application deployment,
121-122
approvals, 96
continuous deployments (see
Continuous deployments)
Git-based repository
creating, 80-84
uploading code, 84-86
GitHub repository, 73
Magento (see Magento)
manual deployment
approving, release
deployment, 115-116
Create button, 114
Create Release option, 113
final output, 117
opening, release
definition, 112
status of successful tasks, 116
successful deployment, 117
viewingicon, 114-115
pre-approval step, 96-99
release definition
adding artifact, 90
adding script to task, 94-95

© Suren Machiraju, Suraj Gaurav 2018

adding task, 93-94
agent phase, 92
Agent Queue text box, 93

Create Release Definition

option, 87
Empty Process link, 88

Environment dialog box, 91

name, editing, 91
saving, 95
Select a Template dialog
box, 88
selecting, source type, 89
Tasks tab, 91-92
scenario overview, 73-74

Continuous deployments

Continuous Deployment
Trigger dialog box, 100
Continuous Deployment
Trigger icon, 99
options, triggering
deployment, 101
successful, 101
testing
Approve or Reject
link, 107-108

S. Machiraju and S. Gaurav, DevOps for Azure Applications,

https://doi.org/10.1007/978-1-4842-3643-7

123

https://doi.org/10.1007/978-1-4842-3643-7

INDEX

Continuous deployments (cont.)
background-color

property, 103-104
committing changes,
104-105
deployment status, 109, 111
logs of running tasks, 110
opening, release
definition, 106
Pre-Deployment Approval
Pending dialog box, 108
steps to deploy, 103
style.css file, 103
successful commit, 105
successful VSTS
deployment, 112
Summary page of selected
release, 106
tasks completion status, 110
viewing email for
approval, 107

D,E,FGHIJK,L
DevOps
application deployment
process, 3-5
Azure application
deployment, 121
Continuous Integration (CI)
server, 119
functions, 2-3, 119
manual process, drawbacks, 1-2
release management process, 5

124

software development and
deployment, 119
software development
lifecycle, 1
TeamCity and Octopus
Deploy, 120
tools
all-in-one platforms, 8
build automation, 6
code review, 8
continuous delivery/release
management, 8
Continuous Integration
(CD),6
testing, 7
version control system, 7
VSTS, 121

Magento

benefits, 74

Custom Deployment page, 78
definition, 74

deploying, 76

disadvantages, 75

resource group, 77

setup, 76

subscription details, 77
viewing artifacts, 79

VM Admin Password text box, 77
VM Admin Username text box, 77

website, 79, 102

Microsoft Azure, 11-12

NugetDeploy, 31-32, 37

O,PQR,S

Octopus Deploy, 120

creating project, 25-26
definition, 24
deployment process
displaying of created
steps, 33
NugetDeploy, 31-32
templates, 30
Web Deploy-Publish Website
(MSDeploy), 31-32
environments
applications, 24
creating, 26-28
OctopusBypassDeployment
Mutex variable, 33-34
release
Azure websites, 36-37
creating, 34-35
deploying, 35-36
uploading NuGet
package, 28-30

T, U

TeamCity, 120

concepts, 12-13
configuration
arguments, PowerShell
script, 19

INDEX

build configurations, 15
build steps, 18-21
creating project, 14-15
general settings page, 16
VCS root page, 16-17
features, 12
NugetExePath, 21-22
NuGet package, 22-23
Octopus Deploy (see Octopus
Deploy)

\'

Version control settings
(VCS), 16-17
Visual Studio Online (VSO), 39
Visual Studio Team Services
(VSTS), 121
account creation
hosting project, 44-45
launching, 42
process of creating, 46
Sign in with Microsoft
account password, 44
Sign in with user name, 43
steps, 42
adding code
launching Microsoft Visual
Studio Selector, 49
options, 48
Visual Studio, 48-49
Visual Studio Team
Services, 50
advantages, 41

125

INDEX

Visual Studio Team Services
(VSTS) (cont.)
ALM system, 39
artifacts, 68
committing changes
Push link, 55-56
repository, 57
sharing changes with
server, 55
steps to, 53-54
successful
synchronization, 56
creating build
build number, 64
build summary, 65
definition, 58
options, 57-58
Sample Project-ASP.NET
page, 59-60
Save & Queue option, 62-63
Save Build Definition and
Queue dialog box, 60, 63
selecting template, 58-59
setting triggers, 61-62
successful build, 64
Variables tab, 61
creating release, 68-69
deploying release, 69-70

126

description, 39
features, 40
project creation, 46-47
project overview page, 48
release definition
Azure subscription, 66
Environment dialog box, 66
Save dialog box, 67
selecting template, 65-66
setting task’s properties, 67
Solutions section
ASP.NET Web
Application, 51
creating new project, 51
New ASP.NET Web
Application-WebApp
window, 51-52
New Project window, 50
steps, 50
viewing, deployed
release, 70-71
VSTS, see Visual Studio Team
Services (VSTS)

W XYZ
Web Deploy-Publish Website
(MSDeploy), 31-32, 37

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Foreword
	Introduction
	Chapter 1: DevOps for Azure
	The Need for DevOps
	Describing the Functions of DevOps
	DevOps Application Deployment Process
	Understanding DevOps Tools
	Summary

	Chapter 2: Deployment via TeamCity and Octopus Deploy
	Introduction to Microsoft Public Cloud, Azure
	Understanding TeamCity
	Basic Concepts of TeamCity
	Configuring a Build in TeamCity
	Step 1: Creating a Project
	Step 2: Creating a Build Configuration
	Step 3: Configuring the Version Control Settings
	Step 4: Configuring the Build Steps

	Creating a Package
	Using Octopus Deploy
	Creating a Project
	Creating an Environment
	Uploading NuGet Package to Octopus Deploy
	Creating Steps for the Deployment Process
	Using Variables
	Creating and Deploying a Release

	Summary

	Chapter 3: Deployment via VSTS
	Understanding VSTS
	Features of VSTS
	Advantages of VSTS
	Creating an Account in VSTS
	Creating a Project
	Adding Code
	Adding a New Solution
	Committing Changes

	Creating a Build
	Creating a Release Definition
	Adding Artifacts
	Creating a Release
	Deploying a Release
	Viewing the Deployed Release

	Summary

	Chapter 4: Azure Application Deployment
	Understanding Magento
	Benefits of Using Magento
	Disadvantages of Magento

	Prerequisites of Running an Azure Application with Magento
	Setting Up Magento

	Source Code Integration with Git
	Creating a Repository in VSTS
	Uploading Code on VSTS Git

	Creating a Release Definition
	Pre-Approval Step for Deployment Using VSTS
	Automated Continuous Deployments Using VSTS
	Testing the Deployment
	Testing Continuous Deployment of Release
	Testing Manual Deployment of a Release

	Summary

	Chapter 5: Final Thoughts
	DevOps for Azure
	Deployment via TeamCity and Octopus Deploy
	Deployment via VSTS
	Azure Application Deployment

	Index

