
www.allitebooks.com

http://www.allitebooks.org

FRONT-END DEVELOPMENT WITH ASP.NET
CORE, ANGULAR, AND BOOTSTRAP

FOREWORD . xxv

INTRODUCTION. xxvii

CHAPTER 1	 What’s New in ASP.NET Core MVC . 1

CHAPTER 2	 The Front-End Developer Toolset. 37

CHAPTER 3	 Angular in a Nutshell. 59

CHAPTER 4	 Bootstrap in a Nutshell . 97

CHAPTER 5	 Managing Dependencies with NuGet and Bower. 129

CHAPTER 6	 Building Your Application with Gulp and webpack 145

CHAPTER 7	 Deploying ASP.NET Core . 167

CHAPTER 8	 Developing Outside of Windows . 189

CHAPTER 9	 Putting It All Together. 207

INDEX. 239

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Front-end Development
with ASP.NET Core, Angular,

and Bootstrap

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Front-end Development
with ASP.NET Core, Angular,

and Bootstrap

Simone Chiaretta

Front-end Development with ASP.NET Core, Angular, and Bootstrap

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-18131-6
ISBN: 978-1-119-24396-0 (ebk)
ISBN: 978-1-119-18140-8 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018930062

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
www.wiley.com

For Signe, for the support over the project

ABOUT THE AUTHOR

SIMONE CHIARETTA  (Brussels, Belgium) is a web architect and developer who enjoys sharing his
development experiences and more than 20 years’ worth of knowledge on web development with
ASP.NET and other web technologies. He has been a Microsoft MVP for ASP.NET for eight years,
has authored several books about ASP.NET MVC (Beginning ASP.NET MVC 1.0 and What’s
New in ASP.NET MVC 2?, both published by Wrox, and OWIN Succinctly and ASP.NET Core
Succinctly, published by Syncfusion), and has contributed to online developer portals (like Simple
Talk). Simone also co-founded the Italian ALT.NET usergroup ugialt.NET and is the co-organizer
of many conferences in Milan, including the widely appreciated Web.NET European Conference
in 2012.

You can read Simone’s thoughts and development tips on his blog: http://codeclimber.net.nz.

When not writing code and blog posts and taking part in the worldwide .NET community, Simone
likes to play with Arduino, drones, and underwater robots, and he is training to complete his
first Ironman in 2018. He is one of the many expats living and working in the capital of Europe,
Brussels, where he is leading the team that develops the public web site of the Council of the
European Union, one of the ruling bodies of the European Union.

http://codeclimber.net.nz

ABOUT THE TECHNICAL EDITOR

UGO LATTANZI  is a Microsoft-certified ASP.NET MVP who specializes in enterprise application
development with a focus on web applications, service-oriented applications, and environments
where scalability is a top priority. He is highly skilled in technologies such as ASP.NET MVC,
NodeJS, Azure, and more. He is currently the Chief Software Architect for Technogym, and he for-
merly has served as a technical manager for MTV and has been a consultant for some of the largest
companies in Italy. He also has enjoyed an active role in the tech community, serving as a technical
writer, editor, and speaker for numerous conferences, book publishers, newspapers, webcasts, and
forums. He’s also the co-owner of the Web.NET European Conference located in Milan.

PROJECT EDITOR
Kelly Talbot

TECHNICAL EDITOR
Ugo Lattanzi

PRODUCTION EDITOR
Barath Kumar Rajasekaran

COPY EDITOR
Kelly Talbot

PRODUCTION MANAGER
Katie Wisor

MANAGER OF CONTENT ENABLEMENT
AND OPERATIONS
Pete Gaughan

MARKETING MANAGER
Christie Hilbrich

BUSINESS MANAGER
Amy Knies

EXECUTIVE EDITOR
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Bell

INDEXER
Nancy Guenther

COVER DESIGNER
Wiley

COVER IMAGE
© DigitalVision/Getty Images, Inc.

CREDITS

ACKNOWLEDGMENTS

I WANT TO START BY THANKING MY GIRLFRIEND SIGNE,  for her support and for putting up with
the many hours that this project took from my free time. This book would have not been possible
without her support and blessing.

Then I would like to thank the editorial group at Wiley/Wrox. To Jim Minatel for helping draft the
original idea behind the book and getting started with the project, and to Kelly Talbot, who without
any shadow of a doubt did an amazing job with the copyediting of the manuscript and improving
the language and readability of the book, and who kept pushing me and motivating me during the
various rewrites that this book needed due to fundamental changes in the technologies covered.

And also a great thank you to Ugo Lattanzi, the technical editor, who helped catch some technical
flaws and overall helped a lot with the quality of the book.

Besides the people directly involved in the writing of the book, I also want to thank the ASP.NET
team, first for creating such a great framework, and also for helping me out in the early stages to
understand where the framework was going. In particular I want to thank Bertrand Le Roy, Scott
Hunter, and Scott Hanselman for providing me with up-to-date details about the upcoming releases.

A special thanks goes to Mads Kristensen for writing the preface and for always helping me out with
questions about integration of front-end features into Visual Studio 2017.

I also want to thank Jason Imison for his help in better understanding the role of OmniSharp inside
VS Code and to Juri Strumpflohner, for helping me out with some Angular-related matters.

Finally, I also have to thank my coworkers and manager Gunter for their support and review of the
manuscript.

CONTENTS

FOREWORD	 xxv

INTRODUCTION	 xxvii

Chapter 1: WHAT’S NEW IN ASP.NET CORE MVC	 1

Getting the Names Right	 1
ASP.NET Core	 2
.NET Core	 2
Visual Studio Code	 2
Visual Studio 2017	 2
Versions Covered in this Book	 2

A Brief History of the Microsoft .NET Web Stack	 3
ASP.NET Web Forms	 3
ASP.NET MVC	 4
ASP.NET Web API	 4
OWIN and Katana	 5
The Emergence of ASP.NET Core and .NET Core	 5

.NET Core	 5
Getting Started with .NET Core	 6
The dotnet Command Line	 6

Introducing ASP.NET Core	 7
Overview of the New ASP.NET Core Web Application Project	 7
OWIN	 10

OWIN Layers	 11
OWIN Communication Interface	 11
A Better Look at Middleware	 12

Anatomy of an ASP.NET Core Application	 12
Host Builder Console Application	 13
ASP.NET Core Startup Class	 14

New Fundamental Features of ASP.NET Core	 15
Environments	 15
Dependency Injection	 17

What Is Dependency Injection?	 17
Using Dependency Injection in ASP.NET Core	 18

Logging	 19
Logger Instantiation	 19
Writing Log Messages	 19

xviii

CONTENTS

Additional Logging Configuration	 19
Configuration	 21

Setting Up the Configuration Sources	 21
Reading Values from Configuration	 22
Using Strongly-Typed Configuration	 22

An Overview of Some ASP.NET Core Middleware	 25
Diagnostics	 25
Serving Static Files	 26
Application Frameworks	 27

ASP.NET Core MVC	 27
Using the MVC Framework inside ASP.NET Core	 27
Using Dependency Injection in Controllers	 28
View Components	 30
Tag Helpers	 32

Using Tag Helpers from ASP.NET Core	 32
Writing Custom Tag Helpers	 34
View Components as Tag Helpers	 35

Web API	 35
Summary	 36

Chapter 2: THE FRONT-END DEVELOPER TOOLSET	 37

Additional Languages You Have to Know	 38
Node.js	 38
JSON	 39
Sass and Less	 40
The Future of JavaScript	 42
TypeScript	 42

JavaScript Frameworks	 43
Angular	 43
Knockout	 46
React	 47
jQuery	 49

CSS Frameworks	 49
Bootstrap	 50
Primer CSS	 51
Material Design Lite	 52
Semantic UI	 52

Package Managers	 53
NuGet	 53
Bower	 54

xix

CONTENTS

NPM	 55
The Folder Structure	 56

Task Runners	 56
Summary	 57

Chapter 3: ANGULAR IN A NUTSHELL	 59

Angular Concepts	 60
The Language of Angular	 61
Setting Up an Angular Project	 62

Using an Online Editor	 62
Starting from the Quickstart Seed	 63
Using the Angular-CLI Tool	 63

The Structure of an Angular App	 64
Application Entry Point	 64
Root Module	 64
Root Component	 66
Main HTML Page	 67

Data Binding	 68
Interpolation	 68
One-Way Binding	 69
Event binding	 69
Two-Way Binding	 70

Directives	 70
Services and Dependecy Injection	 71
Multiple Components	 73
Input and Output Properties	 75
Talking to the Back End	 78

Using the Http Module	 79
Consuming the RxJS Observable	 80

Subscribing to the Observable	 80
Using the async Pipe	 80
Using Promises	 81

Using Angular with ASP.NET MVC	 83
Combining Angular and ASP.NET Core Projects	 84

Keeping Angular and ASP.NET Core as Two Separate projects	 85
Combining Angular and ASP.NET Core into One Project Using the

Angular CLI	 86
Using JavaScriptServices	 89
Deciding Which Integration Method to Use	 91

xx

CONTENTS

Visual Studio 2017 Support for Angular	 92
Code Snippets	 92
IntelliSense in TypeScript Files	 93
IntelliSense in HTML Files	 94

Summary	 95

Chapter 4: BOOTSTRAP IN A NUTSHELL	 97

Introduction to Bootstrap	 98
Installing Bootstrap	 98
The Main Features	 100

Bootstrap Styles	 100
Grid System	 100
Typography	 104
Tables	 105
Forms	 106
Buttons	 107

Components	 107
Glyphicons	 107
Dropdown	 108
Input Groups	 109
Navigation	 110

Navigation Bar	 111
Pagination	 113
Breadcrumbs	 114
Tabs and Pills	 115

Other Components	 116
JavaScript	 116

Tabbed Content	 117
Activating Tab Navigation with JavaScript	 117
Activating Tab Navigation with Data Attributes	 118

Modal Dialog	 118
Tooltips and Popovers	 120

Customizing Bootstrap with Less	 122
Customizing via the Website	 122
Customizing with Less	 123

Bootstrap Support in Visual Studio 2017
and ASP.NET Core	 124

Bootstrap Snippet Pack	 126
Glyphfriend	 126
Tag Helpers for ASP.NET Core	 127

Summary	 128

xxi

CONTENTS

Chapter 5: MANAGING DEPENDENCIES WITH NUGET
AND BOWER	 129

General Concepts	 130
NuGet	 130

Getting Packages via NuGet	 131
Using the Package Manager GUI	 131
Using the Package Manager Console	 132
Manually Editing the .csproj Project File	 133
What Happens Once You Install a Package	 135

Publishing Your Own Packages	 135
Adding Metadata for the Package	 135
Creating the Package	 136
Publishing to the Nuget.org Gallery	 137

NPM (Node.js Package Manager)	 137
Installing NPM	 137
NPM Usage	 138

Using the NPM Command Line	 138
Using NPM within Visual Studio	 139

Where Packages Are Installed	 139
Bower	 139

Installing Bower	 140
Getting Packages with Bower	 140

Using the Bower Command Line	 140
Using the Bower Package Manager GUI in Visual Studio	 141
Editing the bower.json File	 141

Where Packages Are Installed	 142
Creating Your Own Packages	 142

Summary	 143

Chapter 6: BUILDING YOUR APPLICATION WITH GULP AND
WEBPACK	 145

What Front-End Build Systems Are For	 146
A Deeper Look at Gulp	 146

Getting Started with Gulp	 147
The Gulpfile.js File	 147

gulp.task()	 147
gulp.watch()	 148
gulp.src()	 148
gulp.dest()	 148

A Typical Gulp Build File	 148

xxii

CONTENTS

More Gulp Recipes	 150
Naming Output Files from a Package Name	 150
Generating Source maps	 151
Checking JavaScript Using JSHint	 151
Executing Tasks When Files Change	 153
Managing Bower Dependencies	 153
Replacing References Directly in the HTML Files	 154

Introduction to webpack	 156
webpack’s Main Concepts	 156
Using webpack	 156

Bundling JavaScript	 156
Bundling Stylesheets	 158
Minifying and Adding Sourcemaps	 159

More Things webpack Can Do	 160
Visual Studio 2017 and Build Systems	 160

The Bundler and Minifier Extension	 160
The Task Runner Explorer	 164
IntelliSense for Gulp	 164

Summary	 165

Chapter 7: DEPLOYING ASP.NET CORE	 167

The New Hosting Model of ASP.NET Core	 167
Installing on Internet Information Services
On Premise	 168

Making Sure All Is Well	 169
Installing AspNetCoreModule	 171
Publishing Applications via the Command Line	 171
Creating the Website	 172
Publishing the Applications via Visual Studio	 173

Deploying on Azure	 174
Deploying to Azure from Visual Studio with Web Deploy	 174
Continuous Deployment to Azure with Git	 179

Configuring the Azure Web App	 179
Configuring the Local Repository	 180

Deploying to Docker Containers	 183
Installing the Docker Support	 183
Publishing a Docker Image	 186

Summary	 187

xxiii

CONTENTS

Chapter 8: DEVELOPING OUTSIDE OF WINDOWS	 189

Installing .NET Core on macOS	 190
Building the First ASP.NET Core App on macOS	 191

Using dotnet Command-Line Interface	 191
Using Yeoman	 195

Visual Studio Code	 196
Setting It Up	 197
Development Features in Visual Studio Code	 197

IntelliSense	 197
Refactoring	 198
Errors and Suggestions	 198
Debugging	 199
Version Control	 200
Tasks	 202
Other Features	 203

OmniSharp	 203
Other IDEs	 204

Using Command-Line Tools	 204
Summary	 205

Chapter 9: PUTTING IT ALL TOGETHER	 207

Building a Triathlon Race Results Web Site	 207
Building the Back-Office Site	 208

Setting Up Entity Framework 	 211
The Object Model	 211
The EF Core Context	 213
Migrations	 214

Building CRUD Screens	 216
The Controller	 217
The View	 218

Building the Registration Page	 219
Showing Real-Time Results	 223

Creating the Angular Client-Side Application	 223
Building the Web APIs	 228

Connecting with IoT Devices	 232
Deploying	 235
Summary	 237

INDEX	 239

FOREWORD

The web becomes an increasingly capable platform with each new browser release. Tomorrow’s
new features become available to early adopters while yesterday’s stabilize for mass adoption. This
ever-growing toolbox of HTML, CSS, and JavaScript capabilities seems to be accelerating and
shows no signs of slowing down. In fact, it’s growing so fast that specialized tooling is required to
take advantage of these new features—tooling such as WebPack and Gulp.

The amount of knowledge required to build modern browser applications is illustrated by the new
job title “front-end engineer”—a term that didn’t exist just a few years ago.

In addition to the advances in the web platform, the server-side technologies powering the web are
evolving as well. To provide the best experience for both end-users and web developers, the server-
side platform must be ultra-fast, secure, cross-platform, and cloud scalable, and it must have great
tooling.

Most web applications consist of client-side code running in the browser and server-side code run-
ning on one or more servers. To be a proficient web developer, it is necessary to know enough of
both client and server technologies, and that is a big challenge. Because how much is enough, and
how much time should we devote to continuously learning?

One way to make it easier for ourselves is to choose the right set of frameworks and tools to
build our applications upon. Frameworks are useful because they usually wrap complex platform
features into easy-to-use components, so web developers can focus on writing their applications’
logic instead of all the plumbing needed to work with the browser or server platforms.

Choosing the right frameworks is important. The options are many, but there are a few that have
shown to be particularly well-suited for building modern web applications. ASP.NET Core as the
application framework for the server and Angular for the client is a great combination. Bootstrap
makes sure the app looks good in all browsers and on all types of devices.

Simone has done a great job showing how these frameworks complement each other and how tool-
ing provides a solid development experience. In the fast-moving world of web development, it is
good that we have books like this to give us a pragmatic approach to building web applications
using the latest and greatest in both client and server technologies.

Mads Kristensen

INTRODUCTION

There was a time when “backend” and “front-end” developers were doing pretty different work.
Backend developers were writing code to render web pages, using some server-side language; front-
end developers were programming some interactivity using JavaScript and making the web pages
look beautiful with CSS.

A few years ago, with the arrival of SPAs (Single Page Applications), JavaScript was not only used to
add “some” interactivity, but was used to build the application itself. The skill-set of the so-called
backend developers had to expand to include all the tools that were typical of front-developers, such
as specific JavaScript frameworks and some basic understanding of CSS.

The goal of this book is to explain the tools in “front-end” developers’ toolbox and how to use them
effectively in combination with ASP.NET Core MVC.

WHY WEB DEVELOPMENT REQUIRES POLYGLOT DEVELOPERS

In everyday life, a polyglot is a person who knows and is able to use several languages. They are not
necessarily bilingual (or multi-lingual), but they can use their second or third or fourth language
with a good level of proficiency.

With that definition in mind, what is a polyglot developer? It’s a developer who knows more than
one (programming) language or framework and uses them within the scope of the same application.

From the beginning of IT industry, applications were mainly written in one language. I person-
ally started with C, then moved to Visual Basic, landed on Cold Fusion, used JavaScript at its early
stages (both on the client and the server), did a bit of Java, and finally landed on the .NET platform,
but only one at a time.

It was the time of the big enterprise frameworks, when vendors tried to squeeze into their lan-
guage or platforms all the possible features that an application might need. You probably remem-
ber when Microsoft tried to shield web developers from the actual languages of the web, HTML
and JavaScript, introducing ASP.NET WebForms and the ASP.NET Ajax Framework. And if you
look back at your personal experience in the IT industry, you’ll probably find many other similar
examples.

But lately a new trend has appeared, which has gone in the opposite direction. The IT industry
understands that maybe some languages are more suitable than others for specific tasks, and instead
of trying to force everything on top of one single language, applications are being written in multiple
languages. We are entering the era of the polyglot developer.

Now that we share the same definition of a polyglot developer, let’s see what the benefits of being
one are.

xxviii

INTRODUCTION

The Right Tool for the Job
The first and probably most important benefit of being a polyglot is being able to choose the right
tool for the job without having to compromise because your language or framework of choice
doesn’t support a given feature.

For example, by using the Microsoft AJAX Framework, you are limited by the functionalities it
provides, while by directly using JavaScript you have all the flexibility provided by the language.

And I’m confident you will agree with me that as a web developer you have to know HTML, but
nevertheless using the design surface of Visual Studio, you can build web applications just by drag-
ging elements from the toolbox. Obviously, you do not have the same level of control as when craft-
ing your HTML code directly.

So, to a certain degree, every web developer is already a polyglot developer.

The integration of SASS into Visual Studio 2015 is another example. A few years ago the Ruby com-
munity came up with the idea of a preprocessor for CSS styles. Instead of creating a .NET version of
SASS, Microsoft decided to integrate the original version into its IDE, and SASS was the right tool
for preprocessing CSS styles.

Cross Pollination
A second benefit of knowing multiple languages or frameworks is that you can take inspiration from
what vendors and open-source communities are doing in other languages, and when you cannot just
use it, you can adapt it or make a version specific to your own.

A very good example of this is ASP.NET MVC. About 10 years ago, the popular language of the
moment was Ruby, thanks to its simple web framework, Ruby on Rails, built on top of the Model
View Controller pattern. The .NET developer community took inspiration from it and started build-
ing .NET web frameworks also based on the MVC pattern. This led to Microsoft building the
ASP.NET MVC framework that is one of the main topics of this book.

Growing Your Comfort Zone
Using several languages and frameworks brings an additional, if not technical, benefit: It forces you
to step out of your existing comfort zone, making you more adaptable and breaking the potential
boredom of always following the same routine. Not surprisingly, many developers are hesitant to
experiment with new things and prefer the comfort of using the tools, frameworks, and language
they know best, even if doing so gives them less flexibility and control. But if you are reading this
book, you are probably not one of them. So, through the rest of the book, prepare to learn new
languages and frameworks that originated outside of the Microsoft .NET space. In the beginning,
you’ll be stepping out of your comfort zone. By the time you are done, you’ll find that your comfort
zone has become even larger and more rewarding.

xxix

INTRODUCTION

WHO THIS BOOK IS FOR

The audience of this book is web developers who have knowledge of ASP.NET MVC, either with the
latest version or with previous versions of the framework, and who want to start using the tools and
frameworks that are popular in the front-end development world. Additionally, this book can serve
as a guide for developers who are already adopting some of the front-end tools and frameworks but
want to make a more efficient use of them via the integrations that have been introduced with Visual
Studio 2017.

WHAT THIS BOOK COVERS

This book is about front-end development with ASP.NET Core MVC. Together with giving an
overview of the latest framework from Microsoft, it also covers some of the most popular frond-end
frameworks and tools, like Angular, Bootstrap, Nuget, Bower, webpack, Gulp, and Azure.

In addition to the frameworks, the book shows the new front-end development-oriented features of
Visual Studio 2017 but also how to develop an ASP.NET Core MVC application without it, using
instead standard developers’ text-editors like Visual Studio Code on Mac OS X.

This is not a beginners’ book, so I assume that you know the basics of HTML, JavaScript, and CSS,
that you know C# or VB.NET (keep in mind that all samples will be in C#), and that you have
already worked with ASP.NET MVC and WebAPI.

HOW THIS BOOK IS STRUCTURED

If you still haven’t decided whether this it the right book for you, in this section I’m briefly going to
explain how the book is structured and the content of each chapter.

➤➤ Chapter 1, “What’s New in ASP.NET Core MVC”: The first chapter covers all the new
features and the new approach to development brought to the table with ASP.NET Core
and ASP.NET Core MVC and in general with .NET 2017. This chapter can be used as a
refresher for those who already know the latest version of ASP.NET MVC or as a concise
introduction for those who haven’t seen it yet.

➤➤ Chapter 2, “The Front-End Developer Toolset”: This chapter starts to explore the world of
front-end developers, introducing the categories of tools they use and describing the top
players in each category of tools and frameworks.

➤➤ Chapter 3, “Angular in a Nutshell”: The third chapter introduces Angular, the JavaScript
framework from Google, explaining its main concepts and the new Angular tools that came
with Visual Studio 2017.

xxx

INTRODUCTION

➤➤ Chapter 4, “Bootstrap in a Nutshell”: The fourth chapter introduces the CSS framework
from Twitter, Bootstrap, and shows how to use it to build responsive websites. The chapter
also talks about Less, a CSS pre-processing language, and its integration with Visual Studio
2017.

➤➤ Chapter 5, “Managing Dependencies with NuGet and Bower”: Managing all those compo-
nents, both front-end and server-side, can be very painful, but luckily there are a few com-
ponent managers that make it very easy. You can use NuGet to manage .NET server-side
dependencies and Bower to handle them on the client-side. The fifth chapter explains how to
use them, alone and in combination with Visual Studio 2017, and also how to package your
libraries for sharing within your company or with the rest of the world.

➤➤ Chapter 6, “Building Your Application with Gulp and webpack”: The sixth chapter is about
Gulp and webpack, two build systems that can be programmed with JavaScript. Their inte-
gration with Visual Studio 2017 is also explained in this chapter, together with some com-
mon recipes used in ASP.NET development.

➤➤ Chapter 7, “Deploying ASP.NET Core”: Once the application is ready, it’s time for the
deployment. This chapter uses Azure to show how to implement a continuous deployment
flow that integrates testing, build, and deployment.

➤➤ Chapter 8, “Developing Outside of Windows”: One of the main features of the .NET Core
stack is that it can also run on Linux and Mac. Microsoft built a cross-platform IDE, but
there are other options too. In this chapter you’ll see how to do all your ASP.NET develop-
ment on a Mac.

➤➤ Chapter 9, “Putting It All Together”: The last chapter of the book puts together all the
concepts and goes through all the steps required to build a modern, responsive website, with
integration with third-party services and authentication via oAuth.

WHAT YOU NEED TO USE THIS BOOK

The book has lot of samples, so the best way to experience it is to try them yourself on your com-
puter. In order to do so, you’ll need either Windows 7, 8, or 10 and you’ll need Visual Studio 2017
Community edition.

ASP.NET Core MVC can also be developed on any text editor on Windows, Mac OS X, or Linux.
Microsoft also developed a cross-platform text editor called Visual Studio Code. You will also need
it in order to follow along in Chapter 8 about developing outside of Windows. You can use any of
the other compatible text editors, but the commands used and screenshots will be different from the
ones used with Visual Studio Code.

The source code for the samples is available for download from the Wrox website at
www.wiley.com/go/frontenddevelopmentasp.netmvc6.

www.wiley.com/go/frontenddevelopmentasp.netmvc6

xxxi

INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

WARNING  Warnings hold important, not-to-be-forgotten information that is
directly relevant to the surrounding text.

NOTE  Notes indicates notes, tips, hints, tricks, or asides to the current
discussion.

As for styles in the text:

➤➤ We highlight new terms and important words when we introduce them.

➤➤ We show keyboard strokes like this: Ctrl+A.

➤➤ We show file names, URLs, and code within the text like so: persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code files that accompany the book. All the source code used in this
book is available for download at www.wrox.com. Specifically for this book, the code download is
on the Download Code tab at:

www.wiley.com/go/frontenddevelopmentasp.netmvc6

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978-1-119-
18131-6) to find the code. And a complete list of code downloads for all current Wrox books is
available at www.wrox.com/dynamic/books/download.aspx.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform. Once you download the code, just decompress it with an appropriate
compression tool.

www.wrox.com
www.wiley.com/go/frontenddevelopmentasp.netmvc6
www.wrox.com
www.wrox.com/dynamic/books/download.aspx
www.wrox.com

xxxii

INTRODUCTION

NOTE  Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-119-18131-6.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wiley.com/go/frontenddevelopmentasp
.netmvc6 And click the Errata link. On this page you can view all errata that has been submitted
for this book and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

www.wiley.com/go/frontenddevelopmentasp.netmvc6
www.wiley.com/go/frontenddevelopmentasp.netmvc6
www.wrox.com/contact/techsupport.shtml
www.wrox.com/contact/techsupport.shtml

Front-end Development
with ASP.NET Core, Angular,

and Bootstrap

What’s New in ASP.NET Core
MVC

WHAT’S IN THIS CHAPTER?

➤➤ History of the .NET web stack

➤➤ Explanation of all the pieces of this new .NET Core puzzle

➤➤ Introduction to the ASP.NET Core and the new concepts it brings

➤➤ Some of the new notable features of ASP.NET Core MVC

The year 2016 is a historical milestone for Microsoft’s .NET web stack, as it is the year in
which Microsoft released .NET Core, a complete open-source and cross-platform frame-
work for building applications and services. It includes ASP.NET Core and a reworked MVC
framework.

This first chapter is a brief introduction to ASP.NET Core. It can be used either as a refresher
if you already have experience with this new framework or as a teaser and summary if you
haven’t seen anything yet.

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com Search for the
book’s ISBN (978-1-119-18131-6), and you will find the code in the chapter 1 download and
individually named according to the names throughout the chapter.

GETTING THE NAMES RIGHT

Before delving into the new framework, it is important to get all the names and version num-
bers right, as for the untrained eye it can otherwise seem just a big mess.

1

www.wrox.com
http://WROX.COM

2  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

ASP.NET Core
ASP.NET Core was released in 2016. It is a full rewrite of ASP.NET, completely open-source,
cross-platform, and developed without the burden of backward compatibility. Notable features are
a new execution environment, a new project and dependency management system, and a new web
framework called ASP.NET Core MVC that unifies the programming model of both ASP.NET
MVC and WebAPI. The rest of this chapter is mainly focused on all the features of ASP.NET Core.

.NET Core
ASP.NET Core can run on the standard .NET framework (from version 4.5 onward), but in order
to be cross-platform it needed the CLR to be cross-platform as well. That’s why .NET Core was
released. .NET Core is a small, cloud-optimized, and modular implementation of .NET, consist-
ing of the CoreCLR runtime and .NET Core libraries. The peculiarity is that this runtime is made
of many components that can be installed separately depending on the necessary features, can be
updated individually, and are bin-deployable so that different applications can run on different ver-
sions without affecting each other. And, of course, it can run on OSX and Linux.

.NET Core also provides a command-line interface (referred to as .NET CLI) that is used by both
tools and end users to interact with the .NET Core SDK.

Visual Studio Code
Visual Studio Code is the cross-platform text editor developed by Microsoft for building ASP.NET
Core applications (and many other frameworks and languages) without the full-fledged Visual
Studio. It can also be used on OSX and Linux.

Visual Studio 2017
Visual Studio 2017 introduces a completely renewed installation procedure based on “workloads” to
better tailor it to users’ needs. One of these workloads, the ASP.NET one, includes integration with
the most popular front-end tools and frameworks. This book covers them further in the upcoming
chapters.

Versions Covered in this Book
I hope that now the version and naming madness is a bit clearer. This book covers Visual Studio
2017, ASP.NET Core (and ASP.NET Core MVC), and .NET Core, but it will not cover anything
that is related to the full framework. At the end of the book, Visual Studio Code is also covered.

Figure 1-1 shows how all these components relate to each other.

A Brief History of the Microsoft .NET Web Stack  ❘  3

FIGURE 1-1:  Diagram of the new .NET stack

A BRIEF HISTORY OF THE MICROSOFT .NET WEB STACK

Before diving into the new features of ASP.NET Core and ASP.NET Core MVC, I think it is impor-
tant to look back at the evolution of the .NET web stack and the reasons why we arrived at ASP
.NET Core and .NET Core.

ASP.NET Web Forms
In 2001, Microsoft released the .NET framework and its first web framework: ASP.NET Web
Forms. It was developed for two types of users:

➤➤ Developers who had experience with classic ASP and were already building dynamic web
sites mixing HTML and server-side code in Jscript. They were also used to interacting with
the underlying HTTP connection and web server via abstractions provided by the core
objects.

➤➤ Developers who were coming from the traditional WinForm application development. They
didn’t know anything about HTML or the web and were used to building applications by
dragging UI components on a design surface.

4  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

Web Forms were designed to cater to both types of developers. Web Forms provided the abstractions
to deal with HTTP and web server objects and introduced the concept of server-side events to hide
the stateless nature of the web, using the ViewState. The result was a very successful, feature-rich
web framework with a very approachable programming model.

It had its limitations though:

➤➤ All the core web abstractions were delivered within the System.Web library, and all the other
web features depended on it.

➤➤ Because it was based on a design-time programming model, ASP.NET, the .NET framework
and also Visual Studio were intimately tied. For this reason, ASP.NET had to follow the
release cycle of the other products, meaning that years passed between major releases.

➤➤ ASP.NET only worked with Microsoft’s web server, Internet Information Services (IIS).

➤➤ Unit testing was almost impossible and only achievable using libraries that changed the way
Web Forms worked.

ASP.NET MVC
For a few years these limitations didn’t cause any problems, but with other frameworks and lan-
guages pushing the evolution of web development, Microsoft started to struggle to follow their
faster pace. They were all very small and focused components assembled and updated as needed,
while ASP.NET was a huge monolithic framework that was difficult to update.

The problem was not only a matter of release cycles. The development style also was chang-
ing. Hiding and abstracting away the complexities of HTTP and HTML markup helped a lot of
WinForm developers to become web developers, but after more than five years of experience, devel-
opers wanted more control, especially over the markup rendered on pages.

In order to solve these two problems, in 2008 the ASP.NET team developed the ASP.NET MVC
framework, based on the Model-View-Controller design pattern, which was also used by many of
the popular frameworks at the time. This pattern allowed a cleaner and better separation of busi-
ness and presentation logic, and, by removing the server-side UI components, it gave complete con-
trol of the HTML markup to developers. Furthermore, instead of being included inside the .NET
framework, it was released out of band, making faster and more frequent releases possible.

Although the ASP.NET MVC framework solved most of the problems of Web Forms, it still
depended on IIS and the web abstracting library System.Web. This means that it was still not pos-
sible to have a web framework that was totally independent from the larger .NET framework.

ASP.NET Web API
Fast-forward a few years, and new paradigm for building web applications started to become wide-
spread. These were the so-called single page applications (SPAs). Basically, instead of interconnected,
server-generated, data-driven pages, applications were becoming mostly static pages where data was
displayed interacting with the server via Ajax calls to web services or Web APIs. Also, many services
started releasing APIs for mobile apps or third-party apps to interact with their data.

Another web framework was released to adapt better to these new scenarios: ASP.NET Web API.
The ASP.NET team also took this opportunity to build an even more modular component model,

.NET Core  ❘  5

finally ditching System.Web and creating a web framework that could live its own life indepen-
dently from the rest of ASP.NET and the larger .NET framework. A big role was also played by the
introduction of NuGet, Microsoft’s package distribution system, making it possible to deliver all
these components to developers in a managed and sustainable way. One additional advantage of the
break-up from System.Web was the capability to not depend on IIS anymore and to run inside cus-
tom hosts and possibly other web servers.

OWIN and Katana
ASP.NET MVC and ASP.NET Web API solved all the shortcomings of the original ASP.NET, but,
as often happens, they created new ones. With the availability of lightweight hosts and the prolifera-
tion of modular frameworks, there was the real risk that application developers would need separate
processes to handle all the aspects of modern applications.

In order to respond to this risk even before it became a real problem, a group of developers, tak-
ing inspiration from Rack for Ruby and partially from Node.js, came out with a specification to
standardize the way frameworks and other additional components can be managed from a central
hosting process. This specification is called OWIN, which stands for Open Web Interface for .NET.
OWIN defines the interface that components, be they full-fledged frameworks or just small filters,
have to implement in order to be instantiated and called by the hosting process.

Based on this specification, in 2014 Microsoft released Katana, an OWIN-compliant host and
server, and implemented lots of connectors to allow developers to use most of its web frameworks
inside Katana.

But some problems persisted. First of all, ASP.NET MVC was still tied to System.Web, so it could
not run inside Katana. Also, because all the frameworks were developed at different points in time,
they had different programming models. For example, both ASP.NET MVC and Web API supported
dependency injection, but differently from each other. This meant that developers using both frame-
works in the same application had to configure dependency injection twice, in two different ways.

The Emergence of ASP.NET Core and .NET Core
The ASP.NET team realized that there was only one way to solve all the remaining problems and at
the same time make web development on .NET possible outside of Visual Studio and on other plat-
forms. They re-wrote ASP.NET from the ground up and created a new cross-platform .NET runtime
that later came to be .NET Core.

.NET CORE

Now that it is probably more clear why ASP.NET Core came to be, it is time to take a better look at
.NET Core, the new entry point of this whole new stack. .NET Core is a cross-platform and open-
source implementation of the .NET Standard Library, and it is made of a few components:

➤➤ The .NET Runtime, also known as CoreCLR, which implements the basic functionalities
such as JIT Compilation, the base .NET types, garbage collection, and low-level classes

➤➤ CoreFX, which contains all the APIs defined in the .NET Standard Library, such as
Collections, IO, Xml, async, and so on

6  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

➤➤ Tools and language compilers that allow developers to build apps

➤➤ The dotnet application host, which is used to launch .NET Core applications and the devel-
opment tools

DEFINITION  The .NET Standard Library is a formal specification of all the
.NET APIs that can be used in all .NET runtimes. It basically enhances the CLR
specifications (ECMA 335) by also defining all the APIs from the Base Class
Library (BCL) that must be implemented by all .NET runtimes. The goal of
such a standard is to allow the same application or library to run on different
runtimes (from the standard framework to Xamarin and Universal Windows
Platform).

Getting Started with .NET Core
Installing .NET Core on Windows is pretty trivial, as it gets installed by selecting the .NET Core
workload when installing Visual Studio 2017. And creating a .NET Core application is just like
creating any other application with Visual Studio. Chapter 8 shows how to install .NET Core and
develop applications without Visual Studio, also on a Mac, but it is important to understand how
.NET Core applications are built because it will it make easier later to do the same without Visual
Studio or even on another operating system.

The dotnet Command Line
The most important tool that comes with .NET Core is the dotnet host, which is used to launch
.NET Core console applications, including the development tools, via the new .NET command-line
interface (CLI). This CLI centralizes all the interactions with the framework and acts as the base
layer that all other IDEs, like Visual Studio, use to build applications.

In order to try it out, just open the command prompt, create a new folder, move into this folder, and
type dotnet new console. This command creates the skeleton of a new .NET Core console appli-
cation (Listing 1-1), made of a Program.cs code file and the .csproj project definition file, named
as the folder in which the command was launched.

LISTING 1-1:  Sample Program.cs file

using System;

namespace ConsoleApplication
{
 public class Program
 {
 public static void Main(string[] args)

Introducing ASP.NET Core  ❘  7

 {
 Console.WriteLine("Hello World!");
 }
 }
}

The new command can be executed using other arguments to specify the type of project to build:
console (the one we used before), web, mvc, webapi, classlib, xunit (for unit testing), and some
others that are discussed further in Chapter 8. This is also the structure of all commands of the
.NET CLI: dotnet followed by the command name, followed by its arguments.

.NET Core is a modular system, and, unlike the standard .NET framework, these modules have to
be included on a one to one basis. These dependencies are defined in the .csproj project file and
must be downloaded using another command of the .NET Core CLI: restore. Executing dotnet
restore from the command prompt downloads all the dependencies needed by the application. This
is needed if you add or remove dependencies while developing, but it’s not strictly needed immedi-
ately after creating a new application because the new command runs it automatically for you.

Now that all the pieces are ready, the application can be executed by simply typing the command
dotnet run. This first builds the application and then invokes it via the dotnet application host.

In fact, this could be done manually as well, first by explicitly using the build command and then
by launching the result of the build (which is a DLL with the same name of the folder where the
application has been created) using the application host: dotnet bin\Debug\netcoreapp2.0\
consoleapplication.dll (consoleapplication is the name of the folder).

In addition to building and running apps, the dotnet command can also deploy them and create
packages for sharing libraries. It can do even more thanks to its extensibility model. These topics are
discussed further in Chapter 8.

INTRODUCING ASP.NET CORE

Now that you are armed with a bit of knowledge of .NET Core tooling, you can safely transition to
Visual Studio and explore ASP.NET Core.

Overview of the New ASP.NET Core Web Application Project
As with previous version of the framework, you create a new ASP.NET Core application using the
command menu File ➪ New ➪ Project and then choosing ASP.NET Core Web Application from
the .NET Core group of projects.

Here you have several additional options, as shown in Figure 1-2:

➤➤ Console App: This creates a console application like the one in Listing 1-1.

➤➤ Class Library: This is a .NET Core library that can be reused in other projects.

➤➤ Unit Test Project: This is a test project running on the Microsoft MSTest framework.

➤➤ xUnit Test Project: This is another test project, but built using the xUnit OSS test framework.

8  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

FIGURE 1-2:  New Project Window

At this point you get the familiar template selection window (Figure 1-3), which by default gives you
three options:

➤➤ Empty creates an ASP.NET Core project with the bare minimum to get you started.

➤➤ Web API creates an ASP.NET Core project that contains the dependencies and the skeleton
on which to build a REST web application.

➤➤ Web Application creates a web application built with Razor pages, which is a simpler devel-
opment paradigm that isn’t covered in this book.

➤➤ Web Application (Model-View-Controller) creates the full-blown project with everything you
might need in a web application.

➤➤ Angular, React.js, and React.js and Redux are project templates used to create single-page
applications using these frameworks.

In addition to the authentication type, you can also choose with which version of ASP.NET Core
to build the application (ASP.NET Core 1.0, 1.1, or 2.0) and whether to enable support for Docker
(this last option is covered in Chapter 7).

For this initial overview, you will select the Web Application (Model-View-Controller) template and
proceed through all the pieces of the puzzle.

Introducing ASP.NET Core  ❘  9

Figure 1-4 shows the all the files and folders added to the project, and you can see that there are
already a lot of changes compared to the traditional ASP.NET project. Apart from the Controllers
and Views folders, all the rest is different.

FIGURE 1-3:  Web Application templates

Starting from the top, the first new element is the Connected Services node, which contains the list
of extensions that connect to a third party remote service.

The next element is a node called Dependencies. This contains all the dependencies the application
has, which can be .NET packages (via NuGet), Bower, as shown in Figure 1-4, or NPM if you appli-
cation needs it.

A reference to Bower appears also later in the tree with the file bower.json, which contains the
actual configuration of all the dependencies. These dependencies, once downloaded, will be stored
in the lib folder inside the new wwwroot folder.

The next element is the wwwroot folder, which is even represented with a different “globe” icon.
This is where all the static files of the application, CSS styles, images and JavaScript files, will be.

These files in the root of the project are also new additions:

➤➤ appsettings.json is the new location for storing application settings instead of storing
them in the appsetting element in the web.config.

➤➤ bower.json is the configuration file for Bower dependencies.

➤➤ bundleconfig.json defines the configuration for bundling and minifying JavaScript and
CSS files.

10  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

➤➤ Program.cs is where the web application starts. As mentioned earlier, the .NET Core
app host can only start console applications, so web projects also need an instance of
Program.cs.

➤➤ Startup.cs is the main entry point for ASP.NET Core web applications. It is used to
configure how the application behaves. Thus the Global.asax file, which was used for this
purpose before, has disappeared.

➤➤ web.config disappeared as it’s not needed any more.

FIGURE 1-4:  The elements of the new ASP.NET Core Web Application	

Of the many changes introduced in the new project template, some are on the .NET side, like the
Startup.cs, and others are in the broader web development sphere, like the introduction of Bower,
the capability to include dependencies to NPM, minification, bundling, and the new approach to
publishing applications.

Chapter 5 covers Bower and NPM in more detail, while Chapter 6 describes automated builds and
publishing. The rest of this chapter is about all the changes introduced to the .NET side of things,
starting with the Startup.cs file.

OWIN
In order to understand the new ASP.NET Core execution model and why there is this new Startup
.cs file, you have to look at OWIN (Open Web Interface for .NET), the application model by which

Introducing ASP.NET Core  ❘  11

ASP.NET Core is inspired. OWIN defines a standard way for application components to interact
with each other. The specification is very simple as it basically defines only two elements: the layers
of which an application is composed and how these elements communicate.

OWIN Layers
The layers are shown in Figure 1-5. They consist of the following:

➤➤ Host: The host is responsible for starting up the server and managing the process. In ASP
.NET Core this role is implemented by the dotnet host application or by IIS directly.

➤➤ Server: This is the actual web server, the one that receives HTTP requests and sends back the
responses. In ASP.NET Core there are a few implementations available. These include IIS,
IIS Express, and Kestrel or WebListener when the application is run within the dotnet host in
self-hosting scenarios.

➤➤ Middleware: Middleware is composed of pass-through components that handle all requests
before delivering them to the final application. These components make up the execution
pipeline of an ASP.NET Core application and can implement anything from simple logging
to authentication to a full-blown web framework like ASP.NET MVC.

➤➤ Application: This layer is the code specific to the final application, typically built on top of
one of the middleware components, like a web framework.

Application

Middleware

Server

Host

FIGURE 1-5:  OWIN Layers

OWIN Communication Interface
In OWIN, all the components that are part of the pipeline communicate with each other by passing
a dictionary that contains all information about the request and server state. If you want to make
sure all middleware components are compatible, they must implement a delegate function called
AppFunc (or application delegate):

using AppFunc = Func<
 IDictionary<string, object>, // Environment
 Task>; // Done

12  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

This code basically says that a middleware component must have a method that receives the
Environment dictionary and returns a Task with the async operation to be executed.

NOTE  The signature of AppFunc is the one defined by the OWIN specifica-
tions. While working inside ASP.NET Core, it’s rarely used as the .NET Core
API provides an easier way to create and register middleware components in the
pipeline.

A Better Look at Middleware
Even if not strictly standardized in the specification yet, OWIN also recommends a way to set up the
application and register middleware components in the pipeline by using a builder function. Once
registered, middleware components are executed one after the other until the last produces the result
of the operation. At this point, middleware is executed in the opposite order until the response is
sent back to the user.

An example of a typical application built with middleware might be the one shown in Figure 1-6.
The request arrives, is handled by a logging component, is decompressed, passes through authen-
tication, and finally reaches the web framework (for example ASP.NET MVC), which executes the
application code. At this point the execution steps back, re-executing any post-processing steps in
middleware (for example, recompressing the output or logging the time taken to execute the request)
before being sent out to the user.

LOGGING COMPRESSION AUTH

M

V

C

REQUEST

RESPONSE

FIGURE 1-6:  Execution of middleware

Anatomy of an ASP.NET Core Application
In order to better understand ASP.NET Core and its new approach to web development with .NET,
it is worthwhile to create a new ASP.NET Core project. This time you will use the Empty project
template to focus just on the minimum sets of files needed to start an ASP.NET Core application.

Introducing ASP.NET Core  ❘  13

As shown in Figure 1-7, the project tree in the Solution Explorer is almost empty in comparison to
the Web Application project template of Figure 1-4. The only elements needed are the Program.cs
and Startup.cs code files.

FIGURE 1-7:  Empty project template

Host Builder Console Application
An ASP.NET Core application is basically a console application (Listing 1-2) that creates a web
server in its Main method.

LISTING 1-2:  Program.cs

public class Program
{
 public static void Main(string[] args)
 {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
}

The BuildWebHost method is used to create the web application host using the default configuration
and by specifying which class to use for the startup (UseStartup<Startup>).

14  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

The web host created uses Kestrel as the server, sets it up to integrate with IIS when needed, and
specifies all the default configurations for logging and configuration sources.

ASP.NET Core Startup Class
The configuration of the execution pipeline of an ASP.NET Core application is done via the
Configure method of the Startup class. At its simplest this method needs a parameter of type
IApplicationBuilder to receive an instance of the application builder, which is used to assemble
together all middleware components.

Listing 1-3 shows the code of the Startup class created by the empty project template. It has two
methods, ConfigureServices and the aforementioned Configure. ConfigureServices is covered
later in this chapter, when talking about dependency injection, so you’ll focus on the Configure
method for the moment.

LISTING 1-3:  Startup.cs

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 }

 // This method gets called by the runtime. Use this method to configure the
HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 }
}

The important part of Listing 1-3 is the call to the app.Run method. It tells the application to run
the delegate function specified in the lambda expression. In this case, this web application will
always return the text string “Hello World!”.

The Run method is used to configure terminal middleware, which doesn’t pass the execution to the
next component in the pipeline. In Listing 1-3, a specific middleware component is also added, using
app.UseDeveloperExceptionPage(). As general rule, third-party middleware usually provides
a UseSomething method for facilitating the registration into the pipeline. Another way of adding

New Fundamental Features of ASP.NET Core  ❘  15

custom middleware is by calling the app.Use method, specifying the application delegate function
that should treat the request.

As you might have noticed, in Listing 1-3 the Configure method has an additional parameter:
IHostingEnvironment, which provides information on the hosting environment (including the cur-
rent EnvironmentName). You’ll see more about them in a while.

NEW FUNDAMENTAL FEATURES OF ASP.NET CORE

Together with a whole new startup model, ASP.NET Core also gained some features that previously
needed third-party components or some custom development:

➤➤ Easier handling of multiple environments

➤➤ Built-in dependency injection

➤➤ A built-in logging framework

➤➤ A better configuration infrastructure that is both more powerful and easier to set up and use

Environments
One of the basic features available in ASP.NET Core is the structured approach for accessing infor-
mation about the environment in which the application is running. This deals with understanding
whether the environment is development, staging, or production.

This information is available inside the IHostingEnvironment parameter passed to the Configure
method. The current environment can be identified by simply checking its EnvironmentName
property. For the most common environment names, there are some extension methods that make
the process even easier: IsDevelopment(), IsStaging(), and IsProduction(), and you can use
IsEnvironment(envName) for other more exotic names.

Once you have identified the environment, you can add features to handle different conditions based
on the environment. For example, you can enable detailed errors to only be displayed in develop-
ment and user-friendly messages to only be displayed in production.

If differences between the environments are even more pronounced, ASP.NET Core allows dif-
ferent startup classes or configuration methods per environment. For example, if a class named
StartupDevelopment exists, this class will be used instead of the standard Startup class when
the environment is Development. Likewise, the ConfigureDevelopment() method will be used
instead of Configure().

The environment is specified via the environment variable ASPNETCORE_ENVIRONMENT, which can
be set in many different ways. For example, it can be set via the Windows Control Panel, via batch
scripts (especially in servers), or directly from within Visual Studio in the project properties debug
section (Figure 1-8).

16  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

FIGURE 1-8:  Project settings

Once set via the GUI, this information is stored in the launchSettings.json file, as shown in
Listing 1-4.

LISTING 1-4:  LaunchSettings.json

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:34933/",
 "sslPort": 0
 }
 },
 "profiles": {
 "IIS Express": {

New Fundamental Features of ASP.NET Core  ❘  17

 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "EmptyApp": {
 "commandName": "Project",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 },
 "applicationUrl": "http://localhost:34934"
 }
 }
}

Dependency Injection
In the previous ASP.NET framework, the usage of external dependency injection libraries was left to
the goodwill of developers. ASP.NET Core not only has built-in support for it, but actually requires
its usage in order for applications to work.

What Is Dependency Injection?
Dependency injection (DI) is a pattern used to build loosely coupled systems. Instead of directly
instantiating dependencies or accessing static instances, classes get the objects they need somehow
from the outside. Typically these classes declare which objects they need by specifying them as
parameters of their constructor.

Classes designed following this approach adhere to the Dependency Inversion Principle. It states
that:

A. High-level modules should not depend on low-level modules. Both should
depend on abstractions.

B. Abstractions should not depend on details. Details should depend on
abstractions.

Robert C. “Uncle Bob” Martin

This also means that these classes should not require concrete objects but just their abstractions, in
the form of interfaces.

The problem with systems built in this way is that, at a certain point, the number of objects to create
and to “inject” into classes can become unmanageable. To handle this, you have a factory method
that can take care of creating all these classes and their associated dependencies. Such a class is
called a container. Typically containers work by keeping a list of which concrete class they have to
instantiate for a given interface. Later when they are asked to create the instance of a class, they

18  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

look at all its dependencies and create them based on that list. In this way very complex graphs can
also be created with just one line of code.

In addition to instantiating classes, these containers, called Inversion of Control or Dependency
Injection Containers (IoC/DI containers), can also manage the lifetime of dependencies, which
means that they also know whether they can reuse the same object or they must create another
instance every time.

NOTE  This was a very brief introduction to a very wide and complicated topic.
There are numerous books on the topic, as well as lots of articles available on
the Internet. In particular I suggest the articles from Robert C. “Uncle Bob”
Martin or from Martin Fowler.

Using Dependency Injection in ASP.NET Core
Despite the relative complexity of the concept, using dependency injection in ASP.NET Core is
very easy. The configuration of the container is done inside the ConfigureServices method of
the Startup class. The actual container is the IServiceCollection variable that is passed to the
method as a parameter named services. It is to this collection that all dependencies must be added.

There are two types of dependencies: the ones needed for the framework to work and those needed
by the application to work. The first type of dependencies is usually configured via extension meth-
ods like AddService. For example, you can add the services needed to run ASP.NET MVC by call-
ing services.AddMvc(), or you can add the database context needed by the Entity Framework
using services.AddDbContext<MyDbContext>(...). The second type of dependencies is added by
specifying an interface and one concrete type. The concrete type will be instantiated every time the
container receives a request for the interface.

The syntax for adding the services depends on the kind of lifetime the service needs:

➤➤ Transient services are created every time they are requested and are typically used for
stateless lightweight services. Such services are added using services.AddTransient<IEmail
Sender,EmailSender>().

➤➤ Scoped services are created once per web request and are usually used to hold references
to repositories, data access classes, or any service that keeps some state that is
used for the whole duration of the request. They are registered using services
.AddScoped<IBlogRepository, BlogRepository>().

➤➤ Singleton services are created once, the first time they are requested, and later the same
instance is reused for all following requests. Singletons are usually used to keep the status
of an application throughout all its life. Singletons are registered using services
.AddSingleton<IApplicationCache, ApplicationCache>().

A typical ConfigureServices method for an ASP.NET Core application can look like the following
snippet taken from the default project template when choosing individual user accounts:

New Fundamental Features of ASP.NET Core  ❘  19

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString
 ("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();

 // Add application services.
 services.AddTransient<IEmailSender, AuthMessageSender>();
 services.AddTransient<ISmsSender, AuthMessageSender>();
}

Additionally, a specific instance can be given (and in this case this is what will always be created by
the container). For more complex scenarios a factory method can be configured to help the container
create instances of specific services.

The usage of the dependencies is even easier. In the constructor of the class, controller, or service,
just add a parameter with the type of the dependencies required. A better example is shown later in
this chapter when covering the MVC framework.

Logging
ASP.NET Core comes with an integrated logging library with basic providers that write to console
and to the debug output already configured as part of the setup of the default web host via the
WebHost.CreateDefaultBuilder as seen in Listing 1-2.

Logger Instantiation
The logger is injected directly using dependency injection by specifying a parameter of type
ILogger<T> in the constructor of the controllers or services. The dependency injection frame
work will provide you with a logger whose category is the full type name (for example Wrox
.FrontendDev.MvcSample.HomeController).

Writing Log Messages
Writing messages is easily done with the extension methods provided by the built-in logging library.

_logger.LogInformation("Reached bottom of pipeline for request {path}", context.
Request.Path)
_logger.LogWarning("File not found")
_logger.LogError("Cannot connect to database")

Additional Logging Configuration
The logger is already configured by default with the console and debug providers, but additional
providers and configuration can be specified.

20  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

All additional configuration must be specified in the Program.cs file, when setting up the web host,
using the ConfigureLogging method.

WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging((hostingContext, logging)=>
 {
 //Here goes all configuration
 })
 .Build();

 ASP.NET Core comes with built-in providers to write to the console, the debug window, Trace,
Azure App logging, and the Event Log (only on the standard framework), but if needed third-party
logging providers like NLog or Serilog can be added as well.

For example, to add another provider like the one that writes to the Windows Event Log, logging
.AddEventLog() must be called inside the ConfigureLogging method.

Another important configuration that must be specified is the log level that you want to
write to the log files. This can be done for the whole application using the method logging
.SetMinimumLevel(LogLevel.Warning). In this example, only warnings, errors, or critical errors
will be logged.

Configuration of the logging level can be more granular, taking into account the logger provider and
the category (most of the time the name of the class from which the message originates).

Say for example that you want to send all log messages to the debug provider and in the console
logger you are interested in all the messages from your own code but only in warnings or above
originating from the ASP.NET Core libraries.

This is configured using filters. They can be specified via configuration files, with code, or even with
custom functions.

The easiest approach is using JSON inside the standard appsettings.json
configuration file:{
 "Logging": {
 "IncludeScopes": false,
 "Debug": {
 "LogLevel": {
 "Default": "Information"
 }
 },
 "Console": {
 "LogLevel": {
 "Microsoft.AspNet.Core": "Warning",
 "MyCode": "Information"
 }
 },
 "LogLevel": {
 "Default": "Warning",
 }
 }
}

New Fundamental Features of ASP.NET Core  ❘  21

Something similar can be done by calling the AddFilter method in the ConfigureLogging method
when building the web host:

logging.AddFilter<ConsoleLoggerProvider>("Microsoft.AspNet",LogLevel.Warning);
logging.AddFilter<DebugLoggerProvider>("Default",LogLevel.Information);

Both methods can be used together, and multiple filters can potentially apply to one single log mes-
sage. The logging framework applies the following rules to decide which filter to apply:

	 1.	 First it selects all the filters that apply to the provider and all the ones that are specified with-
out the provider.

	 2.	 Then the categories are evaluated and the most specific is applied. For example Microsoft
.AspNet.Core.Mvc is more specific than Microsoft.AspNet.Core.

	 3.	 Finally, if multiple filters are still left, the one specified as last is taken.

Configuration
If you worked with Configuration Settings in the standard ASP.NET framework, you know that it
could be very complicated to set up, apart from the simple scenarios.

The new configuration framework supports different sources of settings (XML, JSON, INI, envi-
ronment variables, command-line arguments, and in-memory collections). It also automatically
manages different environments and makes it very easy to create strongly-typed configuration
options.

The recommended approach for using the new configuration system is to set it up when building
the web host and then read it within your application, either directly or via the new strongly-typed
option.

Setting Up the Configuration Sources
Because the Configuration class, in its simplest form, is just a key/value collection, the setup pro-
cess consists of adding the sources from which all these key/value pairs must be read from. The
default web host builder already sets it up for you, so you just need to know where the configuration
is read from:

➤➤ The first source of the configuration is the appsettings.json file in the root of the project.

➤➤ Then the configuration is read from a file named appsettings.{env.EnvironmentName}
.json.

➤➤ The configuration can be read from environment variables.

➤➤ Finally, there are also the arguments used when launching the application using the dotnet
run command.

This setup allows the default settings defined in the first appsettings.json file to be overwrit-
ten in another JSON file whose name depends on the current environment and finally by a possible
environment variable set on the server or argument passed to the command-line tool that runs the

22  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

application. For example, paths to folders or database connection strings can be different in differ-
ent environments.

Other configuration sources are the in-memory collection source, typically used as the first source,
to provide default values for settings, and the Users Secrets source, used to store sensitive informa-
tion that you don’t want committed to a source code repository, like password or authorization
tokens.

Reading Values from Configuration
Reading the collection is also easy. Settings are read just by using their key, for example
Configuration["username"]. If the values are from a source that allows trees of settings, like
JSON files, the key is to use a concatenation of all the property names, separated by :, starting from
the root of the hierarchy.

For example, to read the connection string defined in the setting file of Listing 1-5, the following key
should be used: ConnectionStrings:DefaultConnection. Sections of the settings can be accessed
in a similar way, but instead of using the simple dictionary key approach, the GetSection method
must be used. For example, Configuration.GetSection("Logging") gets the whole subsection
related to logging (which can then be passed to the logger providers instead of configuring them by
code).

LISTING 1-5:  Appsettings.json file of the default project template

{
 "ConnectionStrings": {
 "DefaultConnection":
"Server=(localdb)\\mssqllocaldb;Database=aspnet-ConfigSample-c18648e9-6f7a-40e6-
b3f2-12a82e4e92eb;Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

Unfortunately this naive approach works only if you have access directly to the instance of the con-
figuration class (for example, as with the Startup class). There are two options to share the configu-
ration with other components. The first is to create a custom service that centralizes the access to
configuration, as was done with the standard ASP.NET framework. And second, which is the new
and recommended approach, is easier to configure and requires no custom coding. This approach
uses Options.

Using Strongly-Typed Configuration
Creating strongly-typed configuration options doesn’t require much more than creating the actual
classes to hold the settings.

New Fundamental Features of ASP.NET Core  ❘  23

For example, say you want to access the following configuration settings.

"MySimpleConfiguration": "option from json file",
"MyComplexConfiguration": {
 "Username": "simonech",
 "Age": 42,
 "IsMvp": true
}

All you need to do is to create two classes that map the properties in the JSON file one to one, as
shown in Listing 1-6.

LISTING 1-6:  Options’ classes (Configuration\MyOptions.cs)

public class MyOptions
{
 public string MySimpleConfiguration { get; set; }
 public MySubOptions MyComplexConfiguration { get; set;}
}

public class MySubOptions
{
 public string Username { get; set; }
 public int Age { get; set; }
 public bool IsMvp { get; set; }

}

All that is left now is to create the binding between the configuration and the classes. This is done
via the ConfigureService method as shown in following snippet.

public void ConfigureServices(IServiceCollection services)
{
 services.AddOptions();
 services.Configure<MyOptions>(Configuration);
}

The AddOptions method just adds support for injecting options into a controller or service, while
the Configure<TOption> extension method scans the Configuration collection and maps its keys
to the properties of the Options classes. If the collection contains keys that do not map, they are
simply ignored.

If an option class is just interested in the values of a sub-section, for example
MyComplexConfiguration, the Configure<TOption> extension method can be called by specifying
the section to use as the configuration root, similar to what is done when configuring Logging:

services.Configure<MySubOptions>(Configuration.GetSection("MyComplexConfiguration"))

Now options are ready to be injected into any controller or service that requests them, via its
constructor.

24  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

Listing 1-7 shows a controller that accesses the option class MySubOptions by simply adding a
parameter of type IOptions<MySubOptions> to the constructor. Notice that it is not the actual
option class to be injected but an accessor for it, so when using it the Value property needs to be
used.

LISTING 1-7:  HomeController using options

public class HomeController : Controller
{
 private readonly MySubOptions _options;

 public HomeController(IOptions<MySubOptions> optionsAccessor)
 {
 _optionsAccessor = optionsAccessor.Value;
 }

 public IActionResult Index()
 {
 var model = _options;
 return View(model);
 }
}

ALTERNATIVES TO IOptions

Using IOptions is the approach recommended by the ASP.NET Core team because
it opens the door to other scenarios such as automatic reload of the configuration
on change, but some people find this approach a bit too complicated.

Luckily, there are a few other alternatives, one of which is simply passing the con-
figuration to the controllers by registering it directly in the IoC container. Most
of the code is similar to what you use with IOptions with the exception of the
ConfigureServices method and the Controller.

Instead of enabling the Options framework by calling the AddOptions method, you
can directly bind the Configuration object to the strongly-typed class and then
register it inside the IoC container.

var config = new MySubOptions();
Configuration.GetSection("MyComplexConfiguration").Bind(config);
services.AddSingleton(config);

This way the configuration can be used directly by the controller without going
through the IOptions interface.

An Overview of Some ASP.NET Core Middleware  ❘  25

AN OVERVIEW OF SOME ASP.NET CORE MIDDLEWARE

So far the application you built doesn’t do a lot of work. It just always renders a text string. But you
can add more functionality simply by adding some of the middleware that has been released as part
of ASP.NET Core.

Diagnostics
The first additional component you might want to add is available in the package Microsoft
.AspNetCore.Diagnostics. There is no need to manually add the package because in ASP
.NET Core 2.0 all the packages are already included as part of the Microsoft.AspNetCore.All
metapackage.

It contains a few different components that help with handling errors. The first is the developer
exception page, added to the pipeline using UseDeveloperExceptionPage, which is a more power-
ful replacement of the Yellow Page of Death, as it also shows some information on the status of the
request, cookies, and headers (Figure 1-9).

FIGURE 1-9:  Developer Exception Page

26  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

This page is useful while in development, but such detailed information should never be exposed to
the public. The Exception Handler middleware can be used to send users to a different page when
an error happens by specifying the path to which the application has to redirect:

app.UseExceptionHandler("/Error")

If a page doesn’t exist, normally the application should return an HTTP 404 status code and a page
not found warning, but ASP.NET Core won’t do so unless instructed. Luckily, it can be easily done
as you just need to add it to the pipeline using app.UseStatusCodePages().

Serving Static Files
HTML, CSS, JavaScript, and images can be served by an ASP.NET Core application by using func-
tionalities of the Microsoft.AspNetCore.StaticFiles package and by registering the middleware
using app.UseStaticFiles().

This middleware component serves all files under the wwwroot folder as if they were in the root path
of the application. So the /wwwroot/index.html file will be returned when a request for http://
example.com/index.html arrives. Optionally, other paths can be defined for serving folders
outside of wwwroot. The following snippet shows how to create another instance of the StaticFile
middleware that serves all files under MyArchive when requests for the path http://example.com/
archive arrive.

app.UseStaticFiles(new StaticFileOptions()
{
 FileProvider = new PhysicalFileProvider(
 Path.Combine(Directory.GetCurrentDirectory(), @"MyArchive")),
 RequestPath = new PathString("/Archive")
});

If you want to have index.html files served automatically without specifying their name, another
middleware component, UseDefaultFiles, must be added before any UseStaticFiles.

Other components from this package are UseDirectoryBrowser, which allows browsing of files
and folders, and UseFileServer, which adds all the functionality of the three other components
(but for security reasons directory browsing is disabled by default).

WARNING  There are some security considerations. The UseStaticFiles
middleware doesn’t perform any check on authorization rules, so all files stored
under wwwroot are publicly accessible. Also, enabling directory browsing is a
security risk and should not be done in a production site. If either protection of
static assets or directory browsing are needed, it is better to store the files in a
folder not accessible from the web and return the results via a controller action
using ASP.NET Core MVC.

ASP.NET Core MVC  ❘  27

Application Frameworks
The most important middleware components are the ones that completely take over the execution
and host the code of the application. With ASP.NET Core there are two application frameworks
available:

➤➤ MVC is used for building web applications that render HTML and handle user interactions.

➤➤ Web API is used for building RESTful web services that can be consumed by either single-
page applications or by native applications on mobile or IoT devices.

These two frameworks share many concepts, and, unlike with the previous versions, the program-
ming model has been unified so that there is almost no difference between the two.

ASP.NET CORE MVC

It might seem strange that a chapter titled “What’s New in ASP.NET Core MVC” of a book that’s
about frontend development with ASP.NET Core MVC doesn’t mention MVC almost till the end
of the chapter. The reason is that almost all the new features in the updated MVC framework are
related to the move from the standard ASP.NET framework to ASP.NET Core. The new startup
process, the new OWIN-based execution pipeline, the new hosting model, the built-in configuration,
logging, and dependency injection libraries already have been covered.

This last section of the chapter covers the new features that are specific to the MVC framework,
starting from the new way of setting it up inside an ASP.NET Core application and how to define
the routing table. Later it covers how to use dependency injection in controllers and ends with inter-
esting new features related to views: view components and tag helpers.

Using the MVC Framework inside ASP.NET Core
The easiest way to start an MVC project on ASP.NET Core is to create a new project using the Web
Application template. This will set up everything so that you can start right away with writing the
code of the application. Most of the wiring up is done inside the Startup class (Listing 1-8).

LISTING 1-8:  Startup class for the Web Application template

public class Startup
{
 public Startup(IConfigurationRoot configuration)
 {
 Configuration = configuration;
 }

 public IConfigurationRoot Configuration { get; }

28  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

 // This method gets called by the runtime. Use this method to add services to
the container.
 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();
 }

 // This method gets called by the runtime. Use this method to configure the
HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseStaticFiles();

 app.UseMvc(routes =>
 {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
}

In addition to what has already been described in previous sections of this chapter (diagnostics,
error handling, and serving of static files), the default template adds the Mvc middleware to the pipe-
line and the Mvc services to the built-in IoC container.

While adding the Mvc middleware, routing is configured as well. In this case the default route is
specified. It matches the first segment of an URL to the controller name, the second to the action
name, and the third to the argument named id of action method. And if they are not specified, the
request will be handled by the action named Index and by the controller named Home.

It doesn’t differ from the previous ASP.NET MVC framework. It’s just a different way of defining
the routing table. Instead of doing it inside the global.asax file, it is done inside the configuration
of the middleware.

Using Dependency Injection in Controllers
Dependency injection was covered earlier in this chapter, together with how to add custom services
into the built-in container. Now you will take a look at how to use these services inside controllers
and action methods.

ASP.NET Core MVC  ❘  29

One of the many reasons for using an abstraction is to make it easy to test the behavior of the appli-
cation. For example, if an online shop has to display a special message on the first day of spring, you
probably don’t want to wait till March 21st to make sure that application works correctly. So, in this
case, instead of depending directly on the System.DateTime.Today property, it would be wiser to
wrap it inside an external service so that it can later be replaced with a fake implementation that, for
the purpose of testing, always returns March 21st.

This is done by defining the interface, which in this case is very simple, and by implementing it in a
concrete class, as is done in Listing 1-9.

LISTING 1-9:  IDateService interface and its implementations

public interface IDateService
{
 DateTime Today { get; }
}

public class DateService: IDateService
{
 public DateTime Today
 {
 get {
 return DateTime.Today;
 }
 }
}

public class TestDateService : IDateService
{
 public DateTime Today
 {
 get
 {
 return new DateTime(2017, 3, 21);
 }
 }
}

Once the interface and the concrete class are ready, the controller must be modified to allow
injection into its constructor. Listing 1-10 shows how this is done.

LISTING 1-10:  HomeController with constructor injection

public class HomeController : Controller
{
 private readonly IDateService _dateService;

 public HomeController(IDateService dateService)
 {
 _dateService = dateService;
 }

30  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

 public IActionResult Index()
 {
 var today = _dateService.Today;
 if(today.Month==3 && today.Day==21)
 ViewData["Message"] = "Spring has started, enjoy our spring sales!";
 return View();
 }
}

The last piece needed to tie the service and controller together is the registration of the service into
the built-in IoC Container. As previously seen, this is done inside the ConfigureServices method,
using services.AddTransient<IDateService, DateService>().

Another way of using services inside an action method is via the new [FromServices] binding
attribute. This is particularly useful if the service is used only inside one specific method and not
throughout the entire controller. Listing 1-10 could be rewritten using this new attribute as shown
in Listing 1-11.

LISTING 1-11:  HomeController with action method parameter injection

public class HomeController : Controller
{
 public IActionResult Index([FromServices] IDateService dateService)
 {
 var today = dateService.Today;
 if(today.Month==3 && today.Day==21)
 ViewData["Message"] = "Spring has started, enjoy our spring sales!";
 return View();
 }
}

View Components
Now that you have seen the setup procedure and some new features of the controller, you will take
a look at what’s new on the View side, starting with View Components. They are in a way similar to
Partial Views, but they are more powerful and are used in different scenarios.

Partial Views are, as the name suggests, views. They are used to split a complex view into many
smaller and reusable parts. They are executed in the context of the view, so they have access to the
view model, and being just razor files, they cannot have complicated logic.

View Components, on the other hand, do not have access to the view model but just to the argu-
ments that are passed to it. They are reusable components that encapsulate both backend logic and a
razor view. They are therefore made of two parts: the view component class and a razor view. They
are used in the same scenarios as Child Actions, which have been removed from the MVC frame-
work in ASP.NET Core, and are reusable portions of pages that also need some logic that might
involve querying a database or web services, like sidebars, menus, and so on.

ASP.NET Core MVC  ❘  31

The component class inherits from ViewComponent and must implement the method Invoke or
InvokeAsync, which returns IViewComponentResult. By convention view component classes
are located in a ViewComponents folder in the root of the project, and its name must end with
ViewComponent. Listing 1-12 shows a view component class named SideBarViewComponent that
shows a list of links that need to appear in all the pages of the site.

LISTING 1-12:  ViewComponents\SideBarViewComponent.cs file

namespace MvcSample.ViewComponents
{
 public class SideBarViewComponent : ViewComponent
 {
 private readonly ILinkRepository db;
 public SideBarViewComponent(ILinkRepository repository)
 {
 db = repository;
 }

 public IViewComponentResult Invoke (int max = 10)
 {
 var items = db.GetLinks().Take(max);
 return View(items);
 }
 }
}

As shown in the example, the view component class can make use of the dependency injection
framework just like controllers do (in this case it uses a repository class that returns a list of links).

The view rendered by the view component is just like any other view, so it receives the view model
specified in the View method, and it is accessible via the @Model variable. The only detail to remem-
ber is its name. By convention, the view must be Views\Shared\Components\<ComponentName>\
Default.cshtml (so, in this example it should be Views\Shared\Components\SideBar\Default
.cshtml), as shown in Listing 1-13.

LISTING 1-13:  Views\Shared\Components\SideBar\Default.cshtml

@model IEnumerable<MvcSample.Model.Link>

<h2>Blog Roll</h2>

 @foreach (var link in Model)
 {
 @link.Title
 }

32  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

Finally, to include the view component into a view, the @Component.InvokeAsync method must
be called, providing an anonymous class with the parameters for the view component’s Invoke
method.

@await Component.InvokeAsync("SideBar", new { max = 5})

If you used Child Actions from the previous version you will immediately notice the main differ-
ence. The parameters are provided directly by the calling method and are not extrapolated by the
route via model binding. This is because view components are not action methods, but are a whole
new element that doesn’t reuse the standard MVC execution pipeline. An added benefit is that you
cannot expose these components by mistake to the web, like you could do with Child Actions if you
forgot to specify the [ChildOnly] attribute.

Tag Helpers
Tag helpers are a new concept introduced in ASP.NET Core MVC. They are a mash-up of standard
HTML tags and Razor HTML helpers, and they take the best part of both of them. Tag helpers
look like standard HTML tags, so there is no more switching between writing HTML and C# code.
They also have some of the server-side logic of HTML helpers, so, for example, they can read the
value of the view model and conditionally add CSS classes.

Using Tag Helpers from ASP.NET Core
For example, take a look at how to write an input textbox for a form. With HTML helpers you
would write @Html.TextBoxFor(m => m.Email), while using tag helpers the code is <input asp-
for="Email" />.The first case is C# code that returns HTML, while the second case is just HTML
that is enhanced with some special attribute (asp-for in this case).

The advantage becomes more obvious when the HTML tag needs additional attributes (for example
if you want to add a specific class or some data-* or aria-* attributes). With HTML helpers you
would need to provide an anonymous object with all the additional attributes, while with tag help-
ers you write as if you were writing standard static HTML and just add the special attribute.

The differences become apparent by comparing the two syntaxes for a textbox that needs an addi-
tional class and for which you want to disable autocomplete. With HTML helpers it is:

@Html.TextBoxFor(m=>m.Email, new { @class = "form-control", autocomplete="off" })

The same textbox using a tag helper is:

<input asp-for="Email" class="form-control" autocomplete="off" />

Another added value of using tag helpers is the support inside Visual Studio. Tag helpers get
IntelliSense and have a different syntax highlighting.

Figures 1-10 through 1-12 show what happens when you start typing in Visual Studio a tag that
could be a tag helper. In the IntelliSense list, you can identify which tags could be tag helpers
because of the new icon (the @ sign with < > angular brackets). Once you select the tag, IntelliSense
shows all the possible attributes, again identifying the tag helpers with the new icon. Finally, when
the attribute is typed as well, Visual Studio recognizes it as a tag helper; it colorizes it differently
and also provides IntelliSense for the value of the property asp-for.

ASP.NET Core MVC  ❘  33

FIGURE 1-10:  Identifying which tags can be tag helpers

FIGURE 1-11:  Attributes for a tag

FIGURE 1-12:  A well-typed attribute

34  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

ASP.NET Core MVC comes with many tag helpers for rendering forms but also for other tasks, such
as an Image tag helper that can also add a version number to the URL to make sure it is not cached
or an Environment tag helper for conditionally rendering different HTML fragments depending on
which environment it is.

Writing Custom Tag Helpers
In addition to the one available built-in, custom tag helpers can be easily created. They are very use-
ful when you need to output a long and repetitive piece of HTML code that changes very little from
one instance to another.

To see how to build a custom tag helper, let’s make one that automatically creates an email link
by specifying the email address. We’ll create something that converts <email>info@wrox.com</
email> to info@wrox.com.

The tag helper is a class, named <Helper>TagHelper, that inherits from TagHelper and implements
the Process or ProcessAsync methods.

Those two methods have the two following parameters:

➤➤ context contains the information on the current execution context.

➤➤ output contains a model of the original HTML and has to be modified by the tag helper.

Listing 1-14 shows the full code for the tag helper.

LISTING 1-14:  EmailTagHelper.cs

public class EmailTagHelper: TagHelper
{
 public override async Task ProcessAsync(TagHelperContext context,
TagHelperOutput output)
 {
 output.TagName = "a";
 var content = await output.GetChildContentAsync();
 output.Attributes.SetAttribute("href", "mailto:"+content.GetContent());
 }
}

Let’s see what the code does.

The first line replaces the tag name (which in our case is email) with the one needed in the HTML
code. Since we are generating a link, it must be an a tag.

The second line gets the content of the element. This is done using the GetChildContentAsync
method, which also takes care of executing any Razor expression present.

Finally, the href attribute is set to the previously retrieved string.

Before using the newly created tag helper, we must instruct the framework where to look for tag
helpers. This is done in the _ViewImports.cshtml file. See Listing 1-15.

mailto:info@wrox.com
mailto:info@wrox.com
mailto:info@wrox.com

ASP.NET Core MVC  ❘  35

LISTING 1-15:  _ViewImports.cshtml

@using MvcSample
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper "*, MvcSample"

The first line is added by the default project and is needed to be able to use the built-in tag helpers,
while the second instructs the framework to look for new tag helpers in any class of the project.

Finally we can use the tag helper by typing the following:

<email>info@wrox.com</email>

In addition to this sample, Chapter 4 shows the code for a tag helper that renders a Bootstrap
component.

View Components as Tag Helpers
We’ve seen how to add a View Component in a razor view by using the InvokeAsync method. But
starting with ASP.NET Core 1.1, View Components can also be included using the same syntax as
tag helpers (and IntelliSense) by appending the prefix vc.

With this syntax, the View Component of Listings 1-12 and 1-13 can also be instantiated using
<vc:sidebar max="5"></sidebar>, and also gets IntelliSense as shown in Figure 1-13.

FIGURE 1-13:  IntelliSense on View Components

Web API
Unlike previous versions of Web API, with ASP.NET Core, Web API applications reuse all the same
features and configurations of MVC ones.

For example, to write an API that returns the list of links used in the side bar of Listing 1-12, you
just need to create a controller that adheres to the Web API routing conventions and that specifies
the HTTP verbs to which each action responds. See Listing 1-16.

LISTING 1-16:  LinksController.cs

[Route("api/[controller]")]
public class LinksController : Controller
{
 private readonly ILinkRepository db;
 public LinksController(ILinkRepository repository)
 {

mailto:info@wrox.com

36  ❘  CHAPTER 1   What’s New in ASP.NET Core MVC

 db = repository;
 }

 [HttpGet]
 public IEnumerable<Link> Get()
 {
 return db.GetLinks();
 }

 [HttpGet("{id}")]
 public Link Get(int id)
 {
 return db.GetLinks().SingleOrDefault(l=>l.Id==id);
 }
}

This controller will respond to HTTP GET requests to the URL /api/Links by returning the list of
all links in JSON format, and to /api/Links/4 by returning the link whose id is 4. This behavior is
specified by the Route attribute, which configures the name of the API method, and by the HttpGet
method, which specifies which action to execute when the API is called with GET.

SUMMARY

ASP.NET Core introduces a new, more modern framework that encourages writing code of good
quality thanks to the built-in support for dependency injection and the easy-to-use component
model. Together with this better framework, the whole development experience got an overhaul.
New command-line-based developer tools make it possible to develop with a lighter IDE, and the
introduction of elements typical of the front-end development world like Bower, NPM, and Gulp
make the new .NET stack more appealing for developers coming from different backgrounds.

But all these changes also bring new challenges. .NET developers have to evolve and start learning
new technologies and get fluent in other languages. The rest of the book covers in detail all these
new technologies and languages that are now required in order to be a skilled .NET web developer.

The Front-End Developer
Toolset

WHAT’S IN THIS CHAPTER?

➤➤ The types of tools used in front-end development

➤➤ The main actors in each type of tool

After the previous chapter’s brief overview of what comes with the latest server-side frame-
works, ASP.NET Core and ASP.NET Core MVC, this chapter gives you a foundation in
front-end development, showing when you need additional tools to get your work done more
efficiently.

The chapter covers the following categories of tools:

➤➤ JavaScript frameworks: These frameworks help you build complex web interfaces by
bringing to front-end development the best practices that are typical of server-side
systems, like the model-view-controller (MVC) pattern, the model-view-view model
(MVVM), dependency injection (DI), routing, and many others.

➤➤ CSS frameworks: Developers are generally bad at making web apps look good and
consistent. CSS frameworks provide a set of styles and UI components with which you
can build web applications that look as if they were created by professional designers.
CSS frameworks also help address the issue of responsive design that adapts to multiple
resolutions and screen sizes and can also apply complex animations and transitions.

➤➤ Package managers: Systems are becoming more and more a mix and match of different
components, many of which depend on other components. Managing all these depen-
dencies and correct versions would be a nightmare if it wasn’t for package managers.

2

38  ❘  CHAPTER 2   The Front-End Developer Toolset

➤➤ Build systems: If you are coming from a pure .NET background, you probably have used
some build systems already, like NAnt or MSBuild. The front-end development world came
out with their own build systems, which are made specifically for managing the build of
front-end systems.

➤➤ Languages: These extend beyond C# or VB.NET. Most of the tools from the previous catego-
ries are built and must be used with JavaScript or other domain-specific languages (DSL).

This chapter provides an overview of the most popular tools for each of the aforementioned categories,
starting with the most fundamental of them, namely the additional languages you need to know.

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com Search for the book’s
ISBN (978-1-119-18131-6), and you will find the code in the chapter 2 download and individually
named according to the names throughout the chapter.

ADDITIONAL LANGUAGES YOU HAVE TO KNOW

C#, standard client-side JavaScript, and CSS are not the only languages needed for developing
web applications the “front-end developer” way. Many of the tools described in this book rely on
another version of JavaScript, Node.JS, and other domain-specific languages like Sass/Less and
JSON.

Node.js
Node.js isn’t actually a language. Node.js is more of a platform for building very fast and scalable
network applications. It’s built on top of Chrome V8 JavaScript runtime (the same JavaScript engine
used inside Google Chrome).

Node.js is an asynchronous event-based framework with non-blocking input/output (I/O), which
basically means that applications don’t consume CPU cycles when they are waiting for I/O opera-
tions (reading from or writing to a data stream, be it a file on a disk, an HTTP connection, standard
output, or anything else that “streams” data) or waiting for any other event to happen.

If you have never seen it, Listing 2-1 is the standard “Hello World” example for Node.js. It loads the
http module, it creates the server object by specifying the function that should be executed when a
response comes in, and it starts listening for an HTTP connection on port 8080.

LISTING 2-1:  Node.js Hello World sample

var http = require('http');

var server = http.createServer(function (req, res) {

www.wrox.com
http://WROX.COM

Additional Languages You Have to Know  ❘  39

 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello ASP.NET Core developers!\n');
});

server.listen(8080);

console.log('Server running at http://127.0.0.1:8080/');

But I/O is not just related to HTTP. I/O also deals with reading and writing files from disk or
memory streams, so Node.js also has been popular for building command-line tools and utilities.
The reason I’m mentioning it in an ASP.NET web development book is because the most popular
build tools in the “front-end world” are developed with Node.js.

Another reason to use Node.js is because this framework comes with a very useful tool, the Node
Package Manager (NPM), that is introduced later in this chapter and covered in more detail in
Chapter 5, “Managing Dependencies with NuGet and Bower”.

JSON
Strictly speaking, JSON (JavaScript Object Notation) is not a language, but rather a data-
interchange format meant to be easily parsed and generated by machine while being easy to read
and write for humans. As the name implies, it’s essentially the serialization of a JavaScript object.
As Listing 2-2 shows, it’s an object whose properties are a series of key-value pairs, where the key is
always a string, and the value can be either a string/number/Boolean value, another object (enclosed
within curly brackets), or an array of values (in square brackets).

LISTING 2-2:  JSON data

{
 "name":"Simone Chiaretta",
 "age": 42,
 "address": {
 "city":"Brussels",
 "country":"Belgium"
 },
 "hobbies": [
 "triathlon",
 "web development",
 "jigsaw puzzles"
],
 "employed": true
}

Parsing a JSON text with the JavaScript eval function will put the data structure that is serialized
in the file directly into memory. However, that’s not recommended as the eval function executes
everything, so there can be security issues. JavaScript has a native parsing function, JSON
.parse(jsonText), that after validating the text excludes the malicious and possibly security-
threatening code, and returns just the “sanitized” data structure.

40  ❘  CHAPTER 2   The Front-End Developer Toolset

The opposite operation, writing a JSON text from a JavaScript object, is also natively supported
with the function JSON.stringify(myObject).

Given the native support in JavaScript for parsing and writing JSON strings, this format is also used
to send data back and forth between clients and servers in single page applications over Ajax calls.

Over time, thanks to the easy human readability, JSON has also started being used as a format for
configuration files. In ASP.NET Core projects, the preferred format for configuration files is JSON.
In addition to this, all the package managers’ configuration files are in JSON format too.

Sass and Less
If you have used CSS you might have noticed that at first it seems like an easy syntax to work with,
but if not carefully organized it becomes a maintenance nightmare. If you want to change the color
of something, you might have to change it in many different class definitions. Also, to specify the
size of boxes, usually you have to do some math to get the right padding, margin, and border size.

To overcome these problems, more than five years ago the Ruby community developed two meta-
languages that would then compile to standard CSS: Sass (which stands for Syntactically Awesome
Stylesheets) and Less. By adopting this approach they could introduce such concepts as variables,
functions, mixins, and nesting and still get a standard CSS file. Sass and Less both started as Ruby
tools, but later compilers in other languages were written, so now they can be integrated in any
development workflow and IDE, including Visual Studio.

Now you will look at how some of the basic features are implemented in both languages and how
they translate to CSS.

First, consider the basic principle of each language, variables.

In Sass variables are identified by the prefix $:

$dark-blue: #3bbfce;
#header {
 color: $dark-blue;
}
h2 {
 color: $dark-blue;
}

Less uses @ as the prefix:

@dark-blue: #3bbfce;

#header {
 color: @dark-blue;
}
h2 {
 color: @dark-blue;
}

Additional Languages You Have to Know  ❘  41

And they both compile to the following CSS:

#header {
 color: #3bbfce;
}
h2 {
 color: #3bbfce;
}

Another basic feature is mixins, which basically are more CSS properties that can be included in
many classes’ definitions. They can also accept parameters.

In Sass the concept of inclusion is very obvious in the syntax. The mixin is defined by the keywork
@mixin and is used with the keyword @include:

@mixin menu-border($width: 1px) {
 border-top: dotted $width black;
 border-bottom: solid $width*2 black;
}

#menu {
 @include menu-border
}

#side-menu {
 @include menu-border(2px)
}

On the other hand, Less doesn’t introduce any new syntax but just repurposes the standard class
syntax of CSS, basically allowing classes to be part of other classes:

.menu-border(@width: 1px) {
 border-top: dotted @width black;
 border-bottom: solid @width*2 black;
}

#menu {
 .menu-border
}

#side-menu {
 .menu-border(2px)
}

Both syntaxes compile to the following lines of code:

#menu {
 border-top: dotted 1px black;
 border-bottom: solid 2px black;
}

#side-menu {
 border-top: dotted 2px black;
 border-bottom: solid 4px black;
}

42  ❘  CHAPTER 2   The Front-End Developer Toolset

Sass is bit more explicit in the syntax, while Less reuses the standard CSS as much as possible, but at
the end of the day they are pretty similar, so the choice of which one to use is up to you.

I encourage you to read about the other features on their respective websites and experiment with
them to determine which one you like better. But the choice probably boils down to which CSS
framework you want to use. Out of the four covered in this chapter, two use Sass (Primer CSS and
Material Design Lite) and two use Less (Bootstrap CSS and Semantic UI).

The Future of JavaScript
JavaScript is based on an evolving standard, ECMAScript, which in 2015 reached version 6, often
referred to as ES6. This version brings new interesting features, for example, classes (with construc-
tors, getter, setter, and inheritance), modules and a modules loader, the “arrow” syntax (the lambda
expressions of C#), and standard data structures like Map, Set, and many others.

Even though the major browsers are implementing ES6 features in their latest versions, older ver-
sions do not support them, so it probably will take a while before ES6 can be used in web develop-
ment. But just as Sass and Less overcame some of the limitations of CSS, there are meta-languages
that implement part of these new specifications. One of them is TypeScript.

TypeScript
While waiting for the various JavaScript engines to catch up with ES6 features, Microsoft released
TypeScript. It introduces support for classes, modules, and arrow syntax as proposed by ES6 and
also other concepts that are currently not available in JavaScript, such as strong typing, interfaces,
generics, and more.

But this is not a Microsoft version of JavaScript. Similar to Sass and Less, which compile to stan-
dard CSS, TypeScript compiles to standard JavaScript. It also performs static analysis and reports
on possible misuses and type errors.

As previously mentioned, one of the features of TypeScript is strong typing. In reality strong typing
is just type annotations that are checked at compile time:

function add(x: number, y: number): number {
 return x+y;
}

var sum = add(2,3);
var wrongSun = add("hello","world");

The first call to the function add is correct. It compiles correctly and when executed it returns the
right value.

The second call, on the other hand, is wrong. Although it executes correctly, it won’t pass the com-
pilation because the static analysis understands that “hello” is not a number and is not what the
function add is expecting.

Listing 2-3 shows how a class with constructor, public methods, private fields, and accessors is
defined in TypeScript.

JavaScript Frameworks  ❘  43

LISTING 2-3:  A TypeScript Class

class Greeter {
 public greeting: string;
 private _name: string;

 constructor(message: string) {
 this.greeting = message;
 }

 greet() {
 return this.greeting + ", " + this._name+"!";
 }

 get name(): string {
 return this._name;
 }

 set name(newName: string) {
 this._name = newName;
 }
}

let greeter = new Greeter("Hello");
greeter.name="World";

alert(greeter.greet()); //Says "Hello, World!"

Here I’ve shown just a few features, but I encourage you to dive more deeply into TypeScript, as it’s
the way you’ll be writing JavaScript applications in Angular, which becomes much more productive
with TypeScript.

JAVASCRIPT FRAMEWORKS

As you would never develop a server-side application by manually handling HTTP requests and
responses, you should also not build client-side interactions by directly manipulating the DOM and
managing the state of the application in simple JavaScript classes. For this purpose JavaScript appli-
cation frameworks, such as Angular, React, or others, should be used.

If you have been in this industry for a few years, you might have noticed how quickly JavaScript
frameworks rise and fall, some faster than others. The next few sections provide a brief overview of
the ones that are popular at the moment and, given their corporate backing and relatively long exis-
tence, might be here to stay for still some time.

Angular
The Angular framework is currently maintained by Google together with a community of individual
and corporate developers. Angular is a client-side framework built around the idea of extending
HTML with new elements called web components that add additional behaviors. Components can

44  ❘  CHAPTER 2   The Front-End Developer Toolset

be either HTML attributes or elements. They have associated templates that render a component’s
data by using expressions written inside double curly-braces ({{ }}). Listing 2-4 showcases the
main components of a basic Angular application using two-way binding. Notice that the application
is divided into various files.

LISTING 2-4:  Simple Angular application

INDEX.HTML: THE MAIN HTML FILE

<!doctype html>
<html>
<head>
 <meta charset="utf-8">
 <title>Hello Angular</title>
 <base href="/">
</head>
<body>
 <app-root>Loading...</app-root>
</body>
</html>

MAIN.TS: APPLICATION STARTUP FILE

import './polyfills.ts';

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { enableProdMode } from '@angular/core';
import { AppModule } from './app/app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

APP.MODULE.TS: APP MODULE DEFINITION FILE

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';

import { AppComponent } from './app.component';

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule
],
 providers: [],
 bootstrap: [AppComponent]

JavaScript Frameworks  ❘  45

})
export class AppModule { }

APP.COMPONENT.TS: APP COMPONENT APPLICATION FILE

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {

 public firstName: string = "Simone";
 public lastName: string = "Chiaretta";

 fullName() {
 return `${this.firstName} ${this.lastName}`;
 }

}

APP.COMPONENT.HTML: APP COMPONENT TEMPLATE FILE

<form>
 <div>
 <label for="firstName">First name:</label>
 <input name="firstName" [(ngModel)]="firstName">
 </div>
 <div>
 <label for="lastName">Last name:</label>
 <input name="lastName" [(ngModel)]="lastName">
 </div>
</form>

<hr/>
<h1>Hello {{ fullName() }}!</h1>

It all starts with the app-root element, which defines the root component from which the boot-
strapping of the application will start, defined in the main.ts file. You can then see, split into three
files, the app component:

➤➤ app.module.ts, which, among other things, defines all the components in the application.

➤➤ app.component.ts, which defines the actual component (which html element, which tem-
plate, which style) and its behvior.

➤➤ app.component.html is the template that contains the HTML markup rendered by the
component.

Another important directive is [(ngModel)], which binds the form element to properties of the
model of the component.

As you have probably noticed, the JavaScript code of the Angular application is written with
TypeScript.

46  ❘  CHAPTER 2   The Front-End Developer Toolset

There is much more to Angular than just these basic features. There is dependency-injection, tem-
plating, routing, modules, testing, and the possibility to define custom directives. The next chapter
covers all of these features in detail.

Knockout
Knockout is a JavaScript framework that is particularly popular in the Microsoft developer’s world.
Originally developed by Microsoft developer Steve Sanderson, this framework implements the
model-view-view model pattern. In a certain sense its syntax is pretty similar to Angular, even if
it has fewer features and requires a bit more of work to define which properties support two-way
databinding and which do not. It also supports templating in order to reuse the same code snippets
across the application.

Listing 2-5 shows the same “Hello World” form from the previous section written with Knockout.

LISTING 2-5:  Sample application with Knockout

<!doctype html>
<html>
 <head>
 <title>Hello Knockout!</title>
 <script src="knockout-min.js"></script>
 </head>
 <body>
 <div>
 <p>First name: <input data-bind="value: firstName" /></p>
 <p>Last name: <input data-bind="value: lastName" /></p>
 <hr>
 <h1>Hello !</h1>
 </div>
 </body>

 <script>
 function ViewModel() {
 this.firstName = ko.observable("Simone");
 this.lastName = ko.observable("Chiaretta");

 this.fullName = ko.computed(function() {
 return this.firstName() + " " + this.lastName();
 }, this);
 }

 ko.applyBindings(new ViewModel());
 </script>

</html>

The main component in this simple application is in the ViewModel function, which defines the
properties of the view model with the functions ko.observable and ko.computed. The first
instructs the framework that a given property has to be “observed” and should be considered by the

JavaScript Frameworks  ❘  47

two-way binding mechanism. The second function defines a property that depends on other proper-
ties and that is updated whenever they change.

The properties are then bound to the UI with the data-bind attribute:

➤➤ The value binding is used in the form’s elements. This associates the value of the element
with a property in the view model.

➤➤ The text binding is used whenever you want to display the text value of a property of
expressions.

The glue between the HTML template and the view model is the last line of code in the sample:
ko.applyBindings(new ViewModel());.

Knockout has a less steep learning curve than Angular, but it also has limited functionality and its
development has recently slowed down. For this reason it won’t be covered in more detail in this
book. Nevertheless, if you need to build a simpler application and don’t require the power (and
complexity) of Angular, I recommend that you have a look at the official website and follow the live
tutorial.

React
One more JavaScript framework worth mentioning is React. React is developed and maintained by
Facebook, and it’s a JavaScript library for building user interfaces without aiming at also taking care
about the rest of the application. React is based on the concept of self-contained components that
render the HTML needed and that can optionally manage their own internal state. See Listing 2-6
for a simple React application. Notice that the code is split in multiple files.

LISTING 2-6:  Simple Hello World app with React

INDEX.HTML: THE MAIN HTML FILE

<!doctype html>
<html lang="en">
 <head>
 <title>Hello React!</title>
 </head>
 <body>
 <div id="greet"></div>
 </body>
</html>

INDEX.JS: THE APPLICATION STARTUP FILE

import React from 'react';
import ReactDOM from 'react-dom';
import Greeter from './Greeter';

ReactDOM.render(

48  ❘  CHAPTER 2   The Front-End Developer Toolset

 <Greeter firstName="Simone" />,
 document.getElementById('greet')
);

GREETER.JS: THE FILE WITH THE COMPONENT

import React, { Component } from 'react';

class Greeter extends React.Component {
 constructor(props) {
 super(props);
 this.state = {firstName: props.firstName, lastName: props.lastName};

 this.handleFirstNameChange = this.handleFirstNameChange.bind(this);
 this.handleLastNameChange = this.handleLastNameChange.bind(this);
 }

 handleFirstNameChange(event) {
 this.setState({firstName: event.target.value});
 }

 handleLastNameChange(event) {
 this.setState({lastName: event.target.value});
 }

 render() {
 return (
 <div>
 <form>
 <div>
 <label>
 First name:
 <input type="text" value={this.state.firstName} onChange={this.
handleFirstNameChange} />
 </label>
 </div>
 <div>
 <label>
 Last name:
 <input type="text" value={this.state.lastName} onChange={this.
handleLastNameChange} />
 </label>
 </div>
 </form>
 <hr/>
 <h1>Hello {this.state.firstName} {this.state.lastName}!</h1>
 </div>
);
 }
}

export default Greeter;

As you can see from the example in Listing 2-6, the code is more convoluted than in Knockout but a
bit more similar to Angular. It requires, even for small forms like this one, the code to be converted

CSS Frameworks  ❘  49

into a component. Even with the help of the “strange” mixed JavaScript/XML syntax called JSX
(the one used for the render method) that is used to simplify the outputting of HTML elements,
React still performs direct DOM manipulation (actually virtual DOM).

React has this syntax because it was designed to handle the dynamic content load of Facebook
where data input is a minor part of the interaction and hundreds of elements are dynamically added
to pages. In order to do it in the fastest possible way, it had to directly manipulate the DOM, with-
out going through template parsing and two-way binding. If you don’t have such a scenario but just
a standard data-bound REST application, Angular is probably a better fit.

NOTE  In Listing 2-6 you can see a “strange” syntax at the beginning of the two
JavaScript files: import * from *. This is an ES6 feature that is used to define
and import modules. In using the React build tools, this syntax is converted to
“standard” JavaScript using the Babel transpiler.

jQuery
One last notable mention goes to jQuery, probably the most well-known and most used JavaScript
library. jQuery is a library that simplifies the selection of HTML elements, DOM manipulation,
event handling, animations, and Ajax calls. It does this using an API that abstracts the implementa-
tion differences across various browsers. It was first introduced in 2006, when it was common prac-
tice to write the same features multiple times to address the differences between browsers.

jQuery is not a full application framework like Angular, Knockout, and React, but it is just a utility
library that helps build interactive interfaces in HTML. For this reason this book doesn’t contain a
more detailed coverage of jQuery.

NOTE  A very concise and effective way to explain the difference between a
framework and a library is this: “A framework calls your code, while your code
calls a library.”

CSS FRAMEWORKS

Front-end developers and designers hate reinventing the wheel for each project they work on. For
this reason, until a few years ago, web designers had their own small home-grown set of CSS classes
and HTML snippets that they reused in all their works. In 2010 the development team working on
Twitter decided to release their home-grown CSS library for public use. Later other companies and
teams did the same, but only very few of them rivaled Bootstrap.

50  ❘  CHAPTER 2   The Front-End Developer Toolset

The next sections, after giving an introduction to Bootstrap, also cover GitHub’s CSS framework,
Primer, the still relatively new but promising Material Design Lite, developed by Google, and
Semantic UI, a framework with a more component-oriented approach to CSS.

Bootstrap
The most popular CSS framework is the one originally released as Twitter Blueprint. It was called
that because it was developed to bring consistency across the various sites developed at Twitter.
Later it was renamed to Bootstrap when it was released as an open-source project in the summer of
2011. It then came to be the most popular library on GitHub, with more than 100,000 stars.

Bootstrap contains a set of CSS- and HTML-based templates for styling forms, elements, buttons,
navigation, typography, and a range of other UI components. It also comes with optional JavaScript
plugins to add interactivity to components.

Bootstrap is mobile-first, based on a responsive 12-columns grid system for the layout of the com-
ponents on the screen. As example here is the code for a grid that automatically adapts to the screen
size of the device.

<div class="row">
 <div class="col-xs-12 col-sm-6 col-md-8">.col-xs-12 .col-sm-6 .col-md-8</div>
 <div class="col-xs-6 col-md-4">.col-xs-6 .col-md-4</div>
</div>

This example of a responsive grid displays differently in different sizes:

➤➤ On a normal desktop the two cells will appear one next to the other, the first using eight col-
umns, the second using four. (Grid behavior for normal sized screens is defined by the classes
that start with col-md-.)

➤➤ On a smartphone (or XS screen, identified by the class’s prefix col-xs-), the first cell will
occupy the full width, while the second will go on a new
line and use half width.

➤➤ On a tablet (small screens, identified with col-sm-), the
first cell will use only six columns, and the second inherits
the smaller size definition, so the two cells will occupy half
width each.

If you are wondering how the components look, just look at
Twitter. The look and feel of an application fully developed with
Bootstrap is just like the famous social network. See Figures 2-1
and 2-2.

FIGURE 2-2:  Navigation bar

FIGURE 2-1:  Drop down menu
with Bootstrap

CSS Frameworks  ❘  51

Apart from standard navigation and menus, one interesting component is called “Jumbotron,”
shown in Figure 2-3. It’s meant to be used as the main headline to catch the visitor’s attention.

FIGURE 2-3:  Jumbotron

Of course you can change the style and build your own theme with the colors of your brand. This
can be done by changing some variables in the Bootstrap files and then recompiling the CSS file or
by using the Customize Bootstrap download page on the official website.

This was just a brief introduction to this powerful CSS framework, but Chapter 4 goes into more
detail.

Bootstrap is not the only CSS framework, as many others have been released (and many have disap-
peared), especially grid systems. There are three other CSS frameworks that are particularly worth
mentioning, the first of which is GitHub’s Primer CSS.

Primer CSS
GitHub released its internal design guidelines as an open-source
project known as Primer CSS. This framework is not as fully
featured as Bootstrap. For example, despite having a grid system,
it is not responsive. But if you like the approach of GitHub to
UI design, this framework is easy to use and nicely done. It also
includes the famous octicons. See Figure 2-4.

An interesting component is called “blankslate,” which should be
used when a content area has no content to show. See Figure 2-5.

FIGURE 2-5:  Blankslate component

FIGURE 2-4:  Navigation with
Primer CSS

52  ❘  CHAPTER 2   The Front-End Developer Toolset

Since style is pretty much a personal choice, if you are not a big fan of the Twitter or GitHub styles,
you might like Google’s Material Design Lite.

Material Design Lite
Material Design Lite (MDL) is a CSS framework created by Google to bring the Material Design
philosophy to the web. Unlike the Bootstrap and Primer CSS frameworks, Material Design Lite
is a combination of CSS and JavaScript where elements’ style and classes from the framework are
enhanced at runtime by the JavaScript library, which adds additional behaviors to the components.
As you can see from the samples of components shown in Figures 2-6 and 2-7, this design is very
similar to the look and feel of Android apps.

FIGURE 2-6:  Navigation with MDL

The official website also provides some templates of websites built
with Material Design Lite that can be used as a starting point.

Semantic UI
One last CSS framework worth mentioning is Semantic UI. As the name implies, it gives to CSS
classes names that are easier to understand than those of the other frameworks. For example, to
style a button with the primary color, you use <button class="ui primary button">.

Semantic UI has its own responsive layout as well, which is designed around a 16-column grid:

<div class="ui grid">
 <div class="four wide column"></div>
 <div class="four wide column"></div>
 <div class="four wide column"></div>
 <div class="four wide column"></div>
 <div class="two wide column"></div>
 <div class="eight wide column"></div>
 <div class="six wide column"></div>
</div>

This natural language naming is just the tip of the more profound and almost philosophical rea-
soning that led to the creation of Semantic UI, whose goal is to lower the technical barriers that lie
between the concepts of programming and their correlating concepts in human meaning.

FIGURE 2-7:  Buttons with MDL

Package Managers  ❘  53

Sematic UI comes with a default theme, but additional themes that give the look and feel of
Bootstrap, Primer CSS, and Material Design are available.

This book doesn’t cover Semantic UI more than what is in this small introduction, but if you
are intrigued by its approach, I recommend you have a look at their learning site: http://
learnsemantic.com/

PACKAGE MANAGERS

With the many components, libraries, and tools needed for developing modern web applications
with ASP.NET Core MVC, something is needed to keep everything neatly organized, automating
installations and updates and keeping all dependencies in check. This is where package managers
come in handy. They download components and tools from official repositories, manage all depen-
dencies, and make it easy to set up a local copy of a project’s development environment just by
checking it out from the source repository.

This book covers the following package managers:

➤➤ NuGet, for managing .NET libraries and components

➤➤ Bower, for JavaScript and CSS frameworks

➤➤ NPM, for tools and server-side JavaScript libraries

Bower is specifically made for client-side dependencies, but NuGet and NPM can be used for a bit of
everything, which is the way they are used in the course of this book.

NuGet
NuGet is the default package manager in .NET and has been integrated into Visual Studio for sev-
eral versions. With ASP.NET Core, all the references of a project are saved as PackageReference
in the project definition (.csproj) file, as shown in Listing 2-7. Everything, even references to core
libraries of the Base Class Library (all grouped inside the Microsoft.AspNet.Core.All metapackage),
is retrieved via NuGet packages.

LISTING 2-7:  WebApplication.csproj

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="Newtonsoft.Json" Version="10.0.3" />
 </ItemGroup>
 <ItemGroup>
 <DotNetCliToolReference
Include="Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0" />
 </ItemGroup>
</Project>

http://learnsemantic.com/
http://learnsemantic.com/

54  ❘  CHAPTER 2   The Front-End Developer Toolset

Apart from manually adding them to the .csproj file, as with the previous version, packages can be
installed either via the newly redesigned Package Manager UI (shown in Figure 2-8) or via the pack-
age manager console:

PM> Install-Package Newtonsoft.Json

FIGURE 2-8:  Package Manager interface in Visual Studio 2017

If you used NuGet in previous versions of ASP.NET, there is a big conceptual difference to take
into consideration when using ASP.NET Core. With ASP.NET Core, only server-side dependencies
should be referenced and retrieved via NuGet. For client-side dependencies Microsoft decided to rely
on another very popular package manager—Bower, which was designed for this purpose.

Bower
Bower is a very simple tool to use. Just as with NuGet, what is needed is to specify in a JSON file
called bower.json the packages that are referenced in a project, as shown in Listing 2-8.

LISTING 2-8:  Bower.json

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "3.3.6",
 "jquery": "2.2.0",
 "jquery-validation": "1.14.0",

Package Managers  ❘  55

 "jquery-validation-unobtrusive": "3.2.6",
 "jquery-file-upload":"https://github.com/blueimp/jQuery-File-Upload/"
 }
}

As you might have noticed in Listing 2-8, the packages can be specified with many notations:

➤➤ The most common is just to use the package name registered on Bower.io. When referenced
this way, Bower will download the whole git repository that was specified when the package
was registered.

➤➤ Another option is to specify directly the git or svn repository from which to download the
package.

➤➤ Finally, also a standard URL can be used. In this case the package will be downloaded from
the URL where it is stored (and extracted if the file is an archive).

When you type bower install on the console, all the packages are directly downloaded from
their location and saved in a folder named bower_components. And here Bower stops. How to use
them is up to you. You can directly reference the files from their download location, or, as is recom-
mended to keep things tidy, you can copy the needed files (remember that Bower could download
the whole git repository) inside your application’s folder structure.

NPM
Node Package Manager (NPM) was originally developed to manage Node.js server-side packages,
but it later also became popular for distributing command-line tools developed with Node.js. As
with the other package managers, NPM downloads the packages that are specified in a manifest file
called package.json and installs them in a sub-folder of your project called node_modules.

Normally packages should be specified in a dependencies node, but in the context of an ASP.NET
Core project, NPM will be mainly used to install the task runner and its plugins, so in this case they
are inside the devDependencies node, as shown in Listing 2-9.

LISTING 2-9:  package.json

{
 "name": "app",
 "version": "1.0.0",
 "private": true,
 "devDependencies": {
 "del": "^2.2.2",
 "gulp": "^3.9.1",
 "gulp-concat": "^2.6.1",
 "gulp-cssmin": "^0.1.7",
 "gulp-htmlmin": "^3.0.0",
 "gulp-uglify": "^2.0.0",
 "merge-stream": "^1.0.1"
 }
}

56  ❘  CHAPTER 2   The Front-End Developer Toolset

The Folder Structure
To wrap up this section about package managers I want to show
how all these references and manifest files look in the Solution
Explorer window and on the file system. Essentially each project
could have three types of dependencies, which are defined in their
respective manifest files:.csproj for NuGet server-side references,
bower.json for Bower client-side components, and package.json
for the build tools. Figure 2-9 demonstrates where the Solution
Explorer shows all the dependencies in the project’s tree.

On the underlying file system, the packages are stored in various subfolders: wwwroot/libs for
Bower components (Visual Studio stores them in a location different from the default one) and
node_modules for NPM packages. See Figure 2.10.

TASK RUNNERS

Task runners automate the final step of your development workflow: the build and release of the
application. This is nothing new in the world of server-side development. You’ve probably been
automating your builds with MSBuild scripts or NAnt tasks for years, but the concept of task run-
ners is pretty new in the front-end world.

At this moment you might be wondering why you should embrace these “new kids on the block.”
This is a very legitimate question. The main reason is that the task runners made for front-end use
are completely server-side language-agnostic. Therefore, they can be used by anyone and thus they
have a much larger community, which translates into many more ready-to-use tasks. However, not
all your experience is lost. As explained in Chapter 1, the project definition of an ASP.NET Core
project is still done with MSBuild, so it can still be used for building applications.

FIGURE 2-10:  Dependencies’ folders on the file system

FIGURE 2-9:  Dependencies as
shown in Solution Explorer

Summary  ❘  57

NOTE  Recently, a part of the front-end development community, mostly using
Linux-based machines or Macs, has stopped using task runners entirely and is
using a feature of npm called npm scripts. These are just a way to call commands
of the operating system, Node.js apps built on purpose to build their app or the
development tools that come together with the framework they are using, like
one that come with Angular or React.

The main actor in this category is Gulp. Gulp is code-based and it relies on super-small intercon-
nected plugins instead of stand-alone tasks executed one after the other. If that sounds a bit unclear,
Listing 2-10 should help clarify things.

LISTING 2-10:  Sample of Gulp configuration file

var gulp = require('gulp');
var jshint = require('gulp-jshint');
var concat = require('gulp-concat');
var minifyCss = require('gulp-minify-css');

gulp.task('default', function(done){
 gulp.src('src/**/*.js')
 .pipe(jshint())
 .pipe(concat('bundle.js'))
 .pipe(gulp.dest('dist '))
 .on('end', done);
});

gulp.watch('src/**/*.js', ['default']);

It’s just code. The task begins by stating which source files it has to process, with gulp.src().
Following that, the operations are plugged one into the other with the pipe(...) function, and
finally the resulting file is saved with gulp.dest().

This was a very brief introduction to Gulp, which is described in more detail in Chapter 6.

SUMMARY

Modern web development on the Microsoft technlogcy stack is not just C# and ASP.NET anymore.
It is achieved with a mix of different tools and frameworks, each built with the best language for
the purpose. This proliferation of additional components adds to the complexity of choosing what
to use. This choice is made more difficult due to the volatility and short life of some of them. The
upcoming chapters go into more detail about the most popular of those options: Angular and
Bootstrap CSS.

Angular in a Nutshell
WHAT’S IN THIS CHAPTER?

➤➤ Understanding the basic concepts of Angular

➤➤ Building an Angular application

➤➤ Using AngularJS with ASP.NET MVC Core v1

➤➤ Discovering Visual Studio 2017 support for Angular

The previous chapter was an introduction to all the frameworks used in front-end develop-
ment, including Angular.

This chapter goes more deeply into Angular, starting with basic concepts and later approach-
ing more advanced topics. The first part of the chapter relies only on pure client-side JavaScript
and can be used with just a simple text editor. The second part of the chapter shows the new
integration available within Visual Studio 2017 and how to integrate Angular in ASP.NET
Core applications.

Before going into the technical details, I want to stress the fact that Angular is not a “silver
bullet.” Angular shines when it comes to building CRUD applications, but it is less optimal
when heavy DOM manipulation or a very complex GUI are needed. Angular was chosen as
the framework for this book because the majority of web applications built with ASP.NET
MVC (or in general with any server-side technology) are mostly about data-bound operations
and less about complex GUIs.

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com Search for the
book’s ISBN (978-1-119-18131-6), and you will find the code in the chapter 3 download and
individually named according to the names throughout the chapter.

3

www.wrox.com
http://WROX.COM

60  ❘  CHAPTER 3   Angular in a Nutshell

ANGULAR CONCEPTS

Angular is a web application framework developed and maintained by Google and the open-source
community. The framework has many features, like two-way data-binding, templating, routing,
components, dependency injection, and so on. Unfortunately, like all frameworks of its breed, it has
a pretty steep learning curve due to the many concepts you have to grasp in order to be fluent in it.
Here is a list of the most important Angular concepts:

➤➤ Modules: Containers that group together blocks of functionalities that belong together, like
components, directives, services, and so on.

➤➤ Components: Define the behavior of a “portion” of the screen.

➤➤ Templates: HTML files that define how the view for a component is rendered.

➤➤ Data binding: The process that connects a component to its template and allows data and
events to flow between them.

➤➤ Directives: Custom attributes that enhance HTML syntax and are used to attach behaviors to
specific elements on the page.

➤➤ Services: Reusable functionalities that are independent from the views.

➤➤ Dependency injection: A way to supply dependencies (services most of the time) to classes
(other services or components).

➤➤ Metadata: Instructs Angular on how to process a class, whether it’s a component, a module,
a directive, which services have to be injected, and so on.

Those terms might sound abstract at the moment, but the upcoming pages will make everything
more clear, as all of these concepts are used to build a sample single-page application.

ANGULAR VS ANGULARJS

Chances are that you have worked with or at least heard of AngularJS 1.x. Despite
the similar name, the Angular covered in this book is a completely new framework,
written from scratch and with a different approach. The “old” AngularJS 1.x is a
Model View Controller (MVC) framework, while Angular is a component-oriented
framework.

If you are familiar with AngularJS, not everything is lost. Many of its concepts are
still relevant, so learning Angular won’t be difficult for you.

Version numbers are different. The new Angular adopts semantic versioning, so
every important new feature or breaking change will have a new major version
number, similar to how Node.js and Chrome are numbered. The first version,
2.0, was released in September 2016. The latest LTS version, released at the end
of March 2017, is 4.0. And the latest stable version is 5.0, released at the end of
October 2017. On the other hand, AngularJS versioning went from 1.0 to 1.6 over
the seven years since its first release.

The Language of Angular  ❘  61

Also the reference website is different. Instead of angularjs.org, the site for
Angular is angular.io. See Figure 3-1.

FIGURE 3-1:  Angular web site

THE LANGUAGE OF ANGULAR

The title of this section might seem strange: If Angular is a JavaScript framework, isn’t it written in
JavaScript? The answer is both yes and no.

The modular and component-oriented approach used by Angular requires language features that
are available only in ES6. The same functionalites can also be implementend in the “standard”
JavaScript supported by most browsers (ECMAScript 5 or ES5) but at the cost of a more complex
and cumbersome code.

To avoid complexity and since transpiling to ES5 would have been needed anyway, the Angular
team decided to use TypeScript as the language of choice. It includes the features of ES6 that are
needed to support the modularity of the framework, but it also adds strong typing (as seen in
Chapter 2).

As a developer you can use any of the three versions of JavaScript (ES5, which is the most
widely supported version of JavaScript, ES6, which is only supported by most recent browser, or

http://angularjs.org

62  ❘  CHAPTER 3   Angular in a Nutshell

TypeScript), each with its advantages and disadvantages. This book follows the recommendation of
the Angular team and uses TypeScript.

SETTING UP AN ANGULAR PROJECT

There are various ways of writing Angular applications, including using an online editor, starting
from the quickstart seed, and using the Angular-CLI tool.

Using an Online Editor
The easiest way to set up an Angular project is to use an online web editing tool like Plunker
(https://plnkr.co). See Figure 3-2. It allows you to write code directly in the browser without the
additional overhead of setting up the transpiling from TypeScript to JavaScript and the various bun-
dling of all the files.

FIGURE 3-2:  Code shown in Plunker

This is obviously good only when doing demos or experimenting and trying to understand how
things work, as you cannot deploy an application from such sites. They also do the transpiling on
the browser, which can become slow when the size of the “demo” is too large.

https://plnkr.co

Setting Up an Angular Project  ❘  63

Starting from the Quickstart Seed
Another solution for setting up an Angular project is to clone onto your machine the quickstart seed
project from the Angular team’s GitHub repository (https://github.com/angular/quickstart).
You simply follow the instructions that come in the README file. The download contains the
package.json file with all the dependencies needed by Angular as well as all scripts needed to build
and run the application. Once the application is started with the npm start command, you can
add and edit files, and the browser will automatically refresh and show the updated result.

Using the Angular-CLI Tool
The last option for setting up an Angular project, and the one that is used in this chapter, is
Angular-CLI, the command-line interface tool. As with the dotnet-cli tool discussed in Chapter 1,
this tool creates a skeleton of an application, similar to the one in the quickstart.

The tool is installed via NPM with the following command:

npm install -g @angular/cli

Once the tool is installed, you can create your first Angular application by typing in a command: ng
new my-app.

This command creates a new folder called my-app, adds some the minium needed files to start an
Angular application, and automatically starts npm install to download all the dependencies.

Once this is complete, move into the my-app folder (cd my-app) and type the command ng serve
--open to launch the application in your default browser (Figure 3-3).

FIGURE 3-3:  The default app produced by the Angular-CLI

https://github.com/angular/quickstart

64  ❘  CHAPTER 3   Angular in a Nutshell

MORE ABOUT THE ANGULAR-CLI TOOL

The Angular command-line interface tool has many other useful features that can
streamline the development of Angular applications. Besides providing the skeleton
of the client-side application, it comes preconfigured with the skeleton for running
unit tests with the Karma runner and for running end-to-end tests using Protractor.
It also provides additional commands for running tests, running code analysis,
building a deployable version of the application, and generating new components,
services, and classes. All these additional features are beyond the scope of this
book, but you can explore more on your own by reading the official documentation
at: https://cli.angular.io.

THE STRUCTURE OF AN ANGULAR APP

With the skeleton of a simple application created via the command-line tools, we can now explore
the basic components and structure of an Angular application (inside the /src folder).

Application Entry Point
The entry point of this and any other Angular application is the main.ts file (Listing 3-1). Its
purpose is to compile the application and to bootstrap its root module (AppModule).

LISTING 3-1:  The application’s entry point (main.ts)

import './polyfills.ts';

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { enableProdMode } from '@angular/core';
import { environment } from './environments/environment' ;
import { AppModule } from './app/app.module';

if (environment.production) {
 enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule);

Root Module
The next file is the inside the app folder and is the one that defines the application’s root module:
app.module.ts.

https://cli.angular.io

The Structure of an Angular App  ❘  65

What is shown in Listing 3-2 is not just valid for the root module, but also represents the structure
of any other Angular module.

LISTING 3-2:  Root module (app/app.module.ts)

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';

import { AppComponent } from './app.component';

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

The file starts by importing (via the import statements) all the JavaScript classes that are ref-
erenced inside this class. In this example there are three Angular modules that are going to be
used by almost any application (BrowserModule, FormsModule, and HttpModule), one decorator
(NgModule) that is going to be used to define the application root module, and finally one compo-
nent (AppComponent).

Then there is the actual module definition, the class AppModule, decorated by the @NgModule deco-
rator, which contains four arrays:

➤➤ The first is the declarations array, which contains all the components belong to this mod-
ule. In there case there is only one, but as the application evolves, more components will be
added.

➤➤ Then the imports array contains all the Angular modules that are going to be used inside
this module. This includes both structural modules and as the application evolves custom fea-
ture modules. In this example the modules to handle interaction with the browser, to handle
HTML forms, and to execute HTTP requests are added.

➤➤ Third is the empty array providers. It is empty because at the moment the application is
not using any service, but once we start creating them, they will need to be defined inside this
array.

➤➤ Finally the last array, bootstrap, contains the components that have to be created during the
application’s bootstrapping process. In our example this is the AppComponent.

66  ❘  CHAPTER 3   Angular in a Nutshell

NOTE  Decorators are a feature of TypeScript that are used to add metadata
to a class. In Angular there many decorators that are used to specify what kind
of Angular element a class represents. Here we have the @NgModule to identify
Angular modules, but there is also @Component to indentify components or
@Injectable to identify services that can be injected via dependency injection
and other modules as well.

Root Component
The final piece of the puzzle is the root component, AppComponent, defined in the app/app
.component.ts file (Listing 3-3).

LISTING 3-3:  Root component (app/app.component.ts)

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'app works!';
}

Defining the root component (or any other component) is just like defining the root module. It’s
done with decorator (this time the @Component) and specifying the selector that will be used in the
HTML file to include the component, the URL of the view for the component (via the templateUrl
property), and the styles specific for this view (with the styleUrls property).

And since a component, unlike a module, has behaviors, the class must do something, in this case
just setting the value of the property title. In this example the view of the component is very sim-
ple and just displays the title property inside an H1 tag (Listing 3-4).

LISTING 3-4:  Root component’s template (app/app.component.html)

<h1>
 {{title}}
</h1>

The Structure of an Angular App  ❘  67

When templates are so simple, to avoid creating HTML files with just one line of code, the
@Component decorator provides an additional property called template where the full markup of
the template can be specified instead of its URL. If both are specified, the inline markup is used:

template: `<h1> {{title}} </h1>`

The inline markup can also be specified over multiple lines as a multi-line string, enclosing it within
backticks (̀). Notice that a backtick (̀), which is not a single quote ('), is a notation introduced in
ECMAScript 2015 (ES6) to allow entering strings over multiple lines in order to keep the HTML
more readable.

TIP  Even if pretty uncommon for normal users, the backtick (`) should be
somewhat familiar to developers as it is the character used in markdown to for-
mat a string as code when writing comments in various online coding forum
like StackOverflow or posting issues on GitHub. On the US keyboard layout, it
is at the top left corner of the keyboard. But in other keyboard layouts, like for
example Italian, this character doesn’t exist and has to be typed using its ASCII
code on the numeric keyboard: AltGr+96.

Main HTML Page
The real entry point of the application, which actually starts its boostrapping process, is the main
index.html page (Listing 3-5).

LISTING 3-5:  Index.html

<!doctype html>
<html>
<head>
 <meta charset="utf-8">
 <title>MyApp</title>
 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
 <app-root>Loading...</app-root>
</body>
</html>

As you can see, the <app-root> tag is the same as specified in the selector property of the root
component. Here is where the bootstrapping process will inject the view rendered by the root com-
ponent. In this example it is simply <h1>app works!</h1>, but, as shown in the rest of the chapter,
it can be much more than that.

68  ❘  CHAPTER 3   Angular in a Nutshell

DATA BINDING

So far the chapter briefly covered four of the eight main concepts of Angular: models, components,
templates, and metadata. Listing 3-5 also showed a very simple example of data binding to render a
property of a component’s model inside the template.

Data Binding is the process that passes data back and forth between components and the view in
rendered in the browser. There are four types of Data Binding in Angular:

➤➤ The first is interpolation, which sends data from the component to the browser, rendering it
as the content of a HTML tag.

➤➤ The second is one-way binding, which still sends data from the component to the browser,
but it assigns the value to an attribute or property of an HTML element.

➤➤ We then have event binding, which sends data from the browser to the component.

➤➤ Finally, we have two-way binding to keep in sync a property of the component with what is
rendered in an input element in the browser.

➤➤ Let’s look at each of them individually.

Interpolation
If all you need to do is render the value of property of the model of a component inside the browser
as the content of an HTML element, the simplest way of binding is called interpolation. This is done
by putting the expression you want to render inside double curly braces {{ ... }}. The content can
be just the name of a component’s property or a JavaScript expression, for example string concat-
enation. Listing 3-6 shows both examples.

LISTING 3-6:  Example of interpolation (app/app.component.html)

<h1>{{title}}</h1>

<p>{{"Hello" + " " + "reader"}}!</p>

WARNING  Despite being technically possible, it is better to avoid using expres-
sions inside templates and only use propery names. To keep a good separation of
concerns, it is the component that has to do any concatenation or any other type
of expression before passing the value to the template.

Data Binding  ❘  69

One-Way Binding
If instead of displaying a propery as the content of an element you need to pass it to an HTML
element’s attribute, you need to use a more explicit syntax for the one-way binding. This is done
by wrapping the attribute name within square brackets [...] and assigning the value using the
property name as if it was a static value.

For example, you can set the value of an input element:

<input type="text" [value]="title" />

But you are not limited to only elements’ attributes. Style properties can also be set:

<h1 [style.color]="color" >This is red</h1>

With this code, if the property color of the component hold the value "red", that heading will be
displayed in red.

Actually, any property of any HTML element can be set via this one-way binding. For example,
instead of using interpolation, we could have set the content of the heading by setting the value of its
innerText property:

<h1 [innerText]="title"></h1>

Event binding
To send data (or raise events) from the template to the component, we adopt a similar approach.
This time we wrap the name of any valid HTML event with parentheses (...) and assign it to
a method of the component. Listing 3-7 shows an example of an event that toggles the color of a
header, shown in a component with an inline template.

LISTING 3-7:  Event binding (app/app.component.ts)

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: `<h1 [style.color]="color">{{title}}</h1>
 <button (click)="setColor()">Change Color</button>`
})
export class AppComponent {
 title = 'app works!';
 color = "";

 setColor(){
 if(this.color==="")
 this.color="red";
 else
 this.color="";
 }
}

70  ❘  CHAPTER 3   Angular in a Nutshell

COMPARING ONE-WAY AND EVENT BINDING WITH ANGULARJS

If you have used AngularJS, you might have noticed that gone are all the ng-*
directives like ng-style, ng-src, and so on. Now it’s enough to wrap the name
in square brackets. The same is true for the events. There is no need to use the
AngularJS ng-click event. You can just use any event inside parentheses. This
means less code for the team to maintain, fewer possible bugs, and greater ease for
developers.

Two-Way Binding
Finally, the most powerful of all bindings, the one that keeps in sync templates and components’
models, is two-way binding. This is done using the new syntax [(ngModel)]. You just need to apply
this directive on the input element you want to bind to, and any changes to the model will automati-
cally reflect on the view, and any changes in the input field will update the property of the compo-
nent. Listing 3-8 shows an example of two-way data binding.

LISTING 3-8:  Two-way binding (app/app.component.ts)

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: `
 <h1>{{title}}</h1>
 <input type="text" [(ngModel)]="title" />
 `
})
export class AppComponent {
 title = 'app works!';
}

This notation looks funny at first, but after a while it makes sense. It is basically an event binding
inside a one-way binding because you get the model from the component, but you also send it back.
This notation is referred to as “football in a box” or “banana in a box” (to help you remember that
parentheses go inside the square brackets).

DIRECTIVES

In Angular there are two types of directives. Structural directives modify the layout of the page
by adding or removing DOM elements. Attribute directives change the appearance of an existing
elements.

Services and Dependecy Injection  ❘  71

NgIf, NgFor, and NgSwitch are the built-in structural directives, while NgModel, NgStyle, and
NgClass are the built-in attribute directives.

Let’s see how to use the NgFor directive to iterate an array of objects:

 <li *ngFor="let item of array">{{item.property}}

Angular replicates the HTML to which the *ngFor directive is applied (in the case of snippet above,
the element) for the items of the array. As soon as new objects are added to the array, the direc-
tive automatically adds a copy of the HTML element to the DOM, and when an object is removed,
the corresponding element is removed from the DOM as well.

Listing 3-9 shows the *ngFor directive applied to show the top five men of the 2016 Ironman World
Championship in Kona, Hawaii. Inside the element, the dot notation is used to access the
properties of the item of the repeater.

LISTING 3-9:  Using the NgFor directive to display an array of objects

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: `
 <h1>Kona Ironman Top 5 men</h1>

 <li *ngFor="let athlete of athletes">{{athlete.name}} ({{athlete.country}}):
{{athlete.time}}

 `
})
export class AppComponent {
athletes = [
 {name:"Jan Frodeno", country: "DEU", time: "08:06:30"},
 {name:"Sebastian Kienle", country: "DEU", time: "08:10:02"},
 {name:"Patrick Lange", country: "DEU", time: "08:11:14"},
 {name:"Ben Hoffman", country: "USA", time: "08:13:00"},
 {name:"Andi Boecherer", country: "DEU", time: "08:13:25"}
];
}

SERVICES AND DEPENDECY INJECTION

There are two more important Angular concepts, and they always go together: services and depen-
dency injection.

In Listing 3-9 the list of athletes was hard-coded in the declaration of the component. It is, however,
not a realistic example (and not even a very good practice). Normally such a list of items is retrieved

72  ❘  CHAPTER 3   Angular in a Nutshell

from an external source like a call to an HTTP service. Before introducing the dependency to this
external resource, let’s first set up an external service that will be responsible for retrieving the list
of athletes and use dependency injection to pass it to the component.

First the service class must be created. There’s nothing special about it. It is just a normal
TypeScript class that contains methods that return the data we need. The only peculiarity is that,
since it has be injected via dependency injection, it must be decorated with the @Injectable()
decorator (Listing 3-10).

LISTING 3-10:  Athlete Service (app/athlete.service.ts)

import { Injectable } from '@angular/core';

@Injectable()
export class AthleteService {
 getAthletes(){
 return [
 {name:"Jan Frodeno", country: "DEU", time: "08:06:30"},
 {name:"Sebastian Kienle", country: "DEU", time: "08:10:02"},
 {name:"Patrick Lange", country: "DEU", time: "08:11:14"},
 {name:"Ben Hoffman", country: "USA", time: "08:13:00"},
 {name:"Andi Boecherer", country: "DEU", time: "08:13:25"}
];
 }
}

The component can be refactored to call the getAthletes method in the service, which is injected
as the constructor’s parameter (Listing 3-11).

LISTING 3-11:  Refactored app component (app/app.component.ts)

import { Component } from '@angular/core';
import { AthleteService } from './athlete.service';

@Component({
 selector: 'app-root',
 templateUrl: 'app.component.html',
 providers: [AthleteService]
})
export class AppComponent {
 athletes: Array<any>;

 constructor(private athleteService: AthleteService){
 this.athletes=athleteService.getAthletes();
 }
}

Multiple Components  ❘  73

Highlighted are the main changes to the component class in order to enable the injection:

➤➤ The constructor declares a parameter of type AthleteService.

➤➤ The decorator has an additional parameter, providers, which contains the list of classes that
can be injected.

➤➤ And obviously the class needs to be imported in order to be used.

If a service needs to be used in more components, it’s recommended to register it in the providers
array of the NgModule.

We have now covered the main concepts of Angular. Before jumping into how to integrate Angular
in an ASP.NET Core application, the upcoming sections show some additional features of Angular
like the hierarchy of components, HTTP and array manipulation, and form validation.

NOTE  If you used AngularJS v1, you might have noticed that building a service
in Angular is incredibly easier than doing it in AngularJS. All the factories, pro-
viders, services, constants, and so on are merged into on type of service, which is
just a plain TypeScript class.

MULTIPLE COMPONENTS

So far we only have worked with the root component of the application, but this is not how things
are typically done in more complex applications. More complex applications usually contain more
nested components that can also contain other components. This splitting of the application into
multiple components results in the need to manage communication between them. This section,
building on top of the application introduced in Listing 3-11, covers all these aspects.

So far there is just one component, the root AppComponent, which does everything. It renders the
title, connects to the service, shows the list, and shows the details of each item. To make it more
modular, a better approach is to use the following components:

➤➤ The AppComponent just renders the application title and then included the
AthleteListComponent

➤➤ The AthleteListComponent connects to the service and shows a list of
AthleteComponents.

➤➤ The AthleteComponent displays the details of the athlete.

Adding files manually is boring and error-prone, so to make the task easier and less repetitive, we
can use the Angular CLI tool.

If you type ng generate component AthleteList in the command prompt inside the application
folder, the tool will create a new folder, and inside it will add the new component with the name

74  ❘  CHAPTER 3   Angular in a Nutshell

athlete-list.component.ts (and all the other files needed for the component). It will also update
the root module, AppModule, including the newly created component in the list of declarations of
components used by the module.

So now we can start moving the logic that retrieves and displays the list of athletes from the root
component to the AthleteListComponent.

Listing 3-12 and Listing 3-13 show the new code for the two components that needed to be
changed, the AthleteListComponent and the root component. For brevity, the markup is presented
inline instead of being in separate files.

LISTING 3-12:  AthleteListComponent (app/athlete-list/athlete-list.component.ts)

import { Component } from '@angular/core';
import { AthleteService } from '../athlete.service';

@Component({
 selector: 'app-athlete-list',
 template: `

 <li *ngFor="let athlete of athletes">{{athlete.name}}
({{athlete.country}}): {{athlete.time}}

 `,
})
export class AthleteListComponent {

 athletes: Array<any>;

 constructor(private athleteService: AthleteService){
 this.athletes=athleteService.getAthletes();
 }

}

Listing 3-12 contains exactly the same code that was previously in the root component but with a
different selector, now app-athlete-list. This is the “tag” that is used by the root component to
reference the AthleteListComponent.

LISTING 3-13:  Root component (app/app.component.ts)

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: `<h1>Kona Ironman Top 5 men</h1>
 <app-athlete-list>Loading athlete list...</app-athlete-list>`
})
export class AppComponent {
}

Input and Output Properties  ❘  75

The code is now simpler, and the root component has no actual code but just references the newly
created controller in its template. At this point the application behaves the same, but each compo-
nent serves its own task, achieving a better separation of concerns. But we can bring it a level fur-
ther and have the markup and logic display the details of an athlete in their own component.

As before, create a new component, called AthleteComponent, with the Angular CLI tool.

Previously, the Angular CLI tool created the component in its own folder, with separate files for
styles, views, and tests. This is the best practice suggested by the official style guide, but in smaller
apps like this example, we can instead put all markup and styles inline and leave the file in the root
folder. To do so with Angular CLI tool, you have to specify a few parameters when creating the
component:

ng g component Athlete --flat=true --inline-template=true --inline-style=true
--spec=false

Now, instead of rendering the name and country of the athletes in the list, the
AthleteListComponent just references the new AthleteComponent using its selector app-athlete,
as seen here:

<li *ngFor="let athlete of athletes"><app-athlete></app-athlete>

But there is a problem here. How do you pass to the child component which athlete to display?

INPUT AND OUTPUT PROPERTIES

To solve the problem of passing athletes to the child component, the component must declare an
input property. This is done using the directive @Input inside the component that exposes the prop-
erty. It can be set in the view like any other HTML property, using one-way binding:

<app-athlete [athlete]="athlete"></app-athlete>

As implemented in Listing 3-10 and Listing 3-11, the list of athletes is a list of anonymous objects
(like any standard JavaScript). It works, but it’s not taking advantage of the strongly typed nature of
TypeScript.

So, a “model” class can be created, either manually or again with the CLI tools, to hold the data
(Listing 3-14).

LISTING 3-14:  Athlete.ts (app/athlete.ts)

export class Athlete {
 name: string;
 country: string;
 time: string;
}

After this, the AthleteComponent looks like Listing 3-15.

76  ❘  CHAPTER 3   Angular in a Nutshell

LISTING 3-15:  AthleteComponent (app/athlete.component.ts)

import { Component, Input } from '@angular/core';
import { Athlete } from './Athlete';

@Component({
 selector: 'app-athlete',
 template: `{{athlete.name}} ({{athlete.country}}): {{athlete.time}}`
})
export class AthleteComponent {
 @Input() athlete: Athlete;
 constructor() { }
}

Notice the usage of @Input to define the name and type of the property exposed outside of the
component.

Also the AthleteListComponent has changed, as shown in Listing 3-16.

LISTING 3-16:  AthleteListComponent (app/athlete-list.component.ts)

import { Component } from '@angular/core';
import { AthleteService } from './athlete.service';
import { Athlete } from "./athlete";

@Component({
 selector: 'app-athlete-list',
 template: `

 <li *ngFor="let athlete of athletes">
 <app-athlete [athlete]="athlete">
 </app-athlete>

 `,
})
export class AthleteListComponent {
 athletes: Array<Athlete>;
 constructor(private athleteService: AthleteService){
 this.athletes=athleteService.getAthletes();
 }
}

If there is an @Input directive, there must be also an @Output one. It is used to expose events that
can be raised from within the component.

Let’s use an @Output directive to show how to inform the root component that somone clicked on
an athlete, so that it can display a more detailed view on his race.

Input and Output Properties  ❘  77

For this to happen, the AthleteListComponent must bind to the click event on the athlete, and it
must raise the custom event inside the handler for the click. Listing 3-17 highlights the new lines of
code added for this purpose.

LISTING 3-17:  AthleteListComponent (app/athlete-list.component.ts)

import { Component, Output, EventEmitter } from '@angular/core';
import { AthleteService } from './athlete.service';
import { Athlete } from "./athlete";

@Component({
 selector: 'app-athlete-list',
 template: `

 <li *ngFor="let athlete of athletes">
 <app-athlete (click)="select(athlete)" [athlete]="athlete">
 </app-athlete>

 `,
})
export class AthleteListComponent {
 athletes: Array<Athlete>;
 @Output() selected = new EventEmitter<Athlete>();

 constructor(private athleteService: AthleteService){
 this.athletes=athleteService.getAthletes();
 }

 select(selectedAthlete: Athlete){
 this.selected.emit(selectedAthlete);
 }
}

Now the parent component, the root AppComponent, listens to the selected event and handles it as
any other event. Listing 3-18 shows the changes.

LISTING 3-18:  AppComponent (app/app.component.ts)

import { Component } from '@angular/core';
import { Athlete } from "app/Athlete";

@Component({
 selector: 'app-root',
 template: `<h1>Kona Ironman Top 5 men</h1>
 <app-athlete-list (selected)=showDetails($event)>Loading athlete
list...</app-athlete-list>
 You selected: {{selectedAthlete}}`
})

78  ❘  CHAPTER 3   Angular in a Nutshell

export class AppComponent {
 selectedAthlete: string;

 constructor (){
 this.selectedAthlete="none";
 }

 showDetails(selectedAthlete: Athlete) {
 this.selectedAthlete=selectedAthlete.name;
 }
}

The parameter of the event, which contains the athlete being selected, is referenced by the $event
variable.

The name of the athlete is then displayed at the bottom of the screen (Figure 3-4).

FIGURE 3-4:  List of athletes and the selected athlete

TALKING TO THE BACK END

All the main concepts have been explained, and you have also seen how to better structure the
application using multiple components. But the data is still coming from hardcoded values and not
from a real REST API from a server. This last section before moving to the integration with ASP
.NET Core and Visual Studio 2017 shows how to connect to a remote source of information using
the Http module and the Reactive Extensions (RxJS).

By using nested components and services, the logic that is now getting the list of athletes is all in
the AthleteService class. That is the only class that needs to be changed in order to retrieve data
from a JSON end-point, which could be either a static .json file or a web service that returns data in
JSON format. In this section we are using the .json file (Listing 3-19), but later in the chapter we’ll
use a web API done with ASP.NET Core MVC.

Talking to the Back End  ❘  79

LISTING 3-19:  Athletes.json file

{
 "data": [
 {"name":"Jan Frodeno", "country": "DEU", "time": "08:06:30"},
 {"name":"Sebastian Kienle", "country": "DEU", "time": "08:10:02"},
 {"name":"Patrick Lange", "country": "DEU", "time": "08:11:14"},
 {"name":"Ben Hoffman", "country": "USA", "time": "08:13:00"},
 {"name":"Andi Boecherer", "country": "DEU", "time": "08:13:25"}
]
}

In order to use the Http module, our app has to be instructed on where to find it. This is done by
importing the HttpModule in the imports property inside the @NgModule annotation on the root
AppModule. The one generated by the Angular CLI tools (Listing 3-2) is already configured, but if
you created your app manually, you have to include it.

Using the Http Module
Inside the service class now we can use the Http module to retrieve the data available in the JSON
file. Listing 3-20 shows the complete code for the athlete service.

LISTING 3-20:  AthleteService using http (app/athlete.service.ts)

import { Injectable } from '@angular/core';
import { Athlete } from './Athlete';
import { Http, Response } from "@angular/http";
import 'rxjs/add/operator/map';

@Injectable()
export class AthleteService {
 constructor(private http: Http){}

 getAthletes(){
 return this.http.get('api/athletes.json')
 .map((r: Response)=><Athlete[]>r.json().data);
 }
}

The core of the functionality is the http.get method, which connects over HTTP to the specified
URL and returns an RxJS Observable object. It then uses the map function of the Observable to
modify the data before sending it back to the component. In this case it returns the data property of
the JSON file and casts it to an array of Athlete.

For this to work first the Http module needs to be injected using the constructor, as it is done
for any other modules or services. For the application to compile correctly, the objects Http and

80  ❘  CHAPTER 3   Angular in a Nutshell

Response as well as the map method must be imported. This last act of importing is necessary
because the Reactive Extensions for JavaScript is a big library, so it is better to import only the parts
of it that are actually used.

Consuming the RxJS Observable
Before running the sample, another change is needed. With the hardcoded values, the method in
the service was directly returning the array of items. With the Http module, the method returns an
RxJS Observable that cannot be directly used with *ngFor.

There are few options for consuming the observable, which are subscribing to the Observable,
using the async pipe, or using promises.

Subscribing to the Observable
The first option for consuming the Observable is subscribing to it.

export class AthleteListComponent {
 athletes: Array<Athlete>;
 constructor(private athleteService: AthleteService){ }

 getAthletes() {
 this.athleteService.getAthletes()
 .subscribe(
 athletes => this.athletes = athletes
);
 }

 ngOnInit(){this.getAthletes();}
}

Instead of just setting the property athletes with the return value of the service’s method, now the
code is using the subscribe method and is registering a function that assigns to the component’s
property the array coming from the service. Also notice that the call to this method doesn’t happen
in the constructor any more, but inside a method called ngOnInit, which is called when the compo-
nent gets initialized.

Using the async Pipe
Another option for consuming the Observable is using the async pipe. It is a short-hand version of
the subscribe process done in the previous section. With this notation we can assign the Observable
that comes from the service directly to the property of the component. Inside the *ngFor we use
the async pipe to instruct Angular that that property it is iterating over is coming asynchronously.
Listing 3-21 shows the code for the component modified to use the async pipe.

LISTING 3-21:  Updated AthleteListComponent using async pipe

import { Component, Output, EventEmitter, OnInit } from '@angular/core';
import { AthleteService } from './athlete.service';
import { Athlete } from "./athlete";
import { Observable } from "rxjs/Observable";

Talking to the Back End  ❘  81

@Component({
 selector: 'app-athlete-list',
 template: `

 <li *ngFor="let athlete of athletes | async">
 <app-athlete (click)="select(athlete)" [athlete]="athlete">
 </app-athlete>

 `,
})
export class AthleteListComponent implements OnInit {
 athletes: Observable<Athlete[]>;
 @Output() selected = new EventEmitter<Athlete>();
 constructor(private athleteService: AthleteService){ }

 getAthletes() {
 this.athletes = this.athleteService.getAthletes();
 }

 ngOnInit(){this.getAthletes();}

 select(selectedAthlete: Athlete){
 this.selected.emit(selectedAthlete);
 }
}

Notice that from being an array of Athlete now the athletes property is an Observable of an
array of athletes.

NOTE  The term “pipe” is used because it is indentified with the | character, and
also because it is a function that processes the bound property before displaying
it on the screen. If you know AngularJS 1, a pipe is just another name for filters.
async is one of the pipes available, but there are others like date to render a
Date object as a string, or uppercase/lowercase to convert a string all upper-
case or lowercase, and other examples exist as well. You can also easily build
custom pipes if you need them.

Using Promises
If you are used to promises, as was done in AngularJS 1, you still can do so. But since Angular
uses Observable by default, you have to convert it to a promise using the toPromise method of
Observable and return it to the component.

 getAthletes(){
 return this.http.get('api/athletes.json')
 .map((r: Response)=><Athlete[]>r.json().data)
 .toPromise();
 }

82  ❘  CHAPTER 3   Angular in a Nutshell

Then the promise can be handled using the then() function as was done with AngularJS 1.
Listing 3-22 shows this approach.

LISTING 3-22:  Component handling promise

import { Component, Output, EventEmitter, OnInit } from '@angular/core';
import { AthleteService } from './athlete.service';
import { Athlete } from "./athlete";
import { Observable } from "rxjs/Observable";

@Component({
 selector: 'app-athlete-list',
 template: `

 <li *ngFor="let athlete of athletes">
 <app-athlete (click)="select(athlete)" [athlete]="athlete">
 </app-athlete>

 `,
})
export class AthleteListComponent implements OnInit {
 athletes: Athlete[];
 @Output() selected = new EventEmitter<Athlete>();
 constructor(private athleteService: AthleteService){ }

 getAthletes() {
 this.athleteService.getAthletes()
 .then(list => this.athletes=list);
 }

 ngOnInit(){this.getAthletes();}

 select(selectedAthlete: Athlete){
 this.selected.emit(selectedAthlete);
 }
}

Since the async pipe works with both Observable and promises, you could also use it instead of
handling the promise in code.

At the end of the day, you have four options for consuming the Observable:

➤➤ Using Observable and subscribing to changes with code

➤➤ Using Observable and using the async pipe

➤➤ Using promises and handling it in code

➤➤ Using promises with the async pipe

Using Angular with ASP.NET MVC  ❘  83

REACTIVE EXTENSIONS FOR JAVASCRIPT (RXJS)

The Reactive Extensions is a set of libraries for asynchronous and event-based
programming based on the Observable pattern. This project is developed by
Microsoft and is available not only for JavaScript but also for many other lan-
guages like .NET, Java, Node, Swift, and many more.

Typically, asynchronous programming is implemented using callbacks, func-
tions, or promises. Those are good for simple scenarios, but when the complexity
increases, as with cancellation or synchronization and even error handling, work-
ing with them becomes error-prone. Using the Observable object together with all
its methods makes all these scenarios easier to deal with.

RxJS is not developed by the Angular team, but it is used extensively throughout
the framework.

You can learn more about RxJS at the website http://reactivex.io/.

There is much more to Angular than what this chapter covers. There are pipes to format the value
of a property directly in the views, there are routes to allow easier navigation between the views and
components of the application, and there is a module for simplifying the writing of forms and vali-
dating. There is so much that a book twice this size would not be enough to cover them all.

USING ANGULAR WITH ASP.NET MVC

Using Angular with ASP.NET Core and ASP.NET MVC Core is not any more complicated than
what was necessary to connect to the static JSON file. Changing the URL to an ASP.NET MVC
Core Web API is all that is needed on the client side. Building the server-side part of the service is
also easy. You just create a controller that returns the list of items you need to show in the Angular
component.

Listing 3-23 shows a very simple API that responds to the URL /api/athletes and returns a list of
objects with names and times. In a real-world scenario, that data would probably come from a data-
base or some other storage. Chapter 9 shows a complete sample that uses the database.

LISTING 3-23:  Athlete controller

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using API.Models;
using Newtonsoft.Json;

namespace API.Controllers
{

http://reactivex.io/

84  ❘  CHAPTER 3   Angular in a Nutshell

 [Route("api/[controller]")]
 public class AthletesController : Controller
 {
 // GET: api/values
 [HttpGet]
 public AthletesViewModel Get()
 {
 return new AthletesViewModel(new[] {
 new Athlete("Jan Frodeno", "DEU", "08:06:30"),
 new Athlete("Sebastian Kienle", "DEU", "08:10:02"),
 new Athlete("Patrick Lange", "DEU", "08:11:14"),
 new Athlete("Ben Hoffman", "USA", "08:13:00"),
 new Athlete("Andi Boecherer", "DEU", "08:13:25")
 });
 }
 }

 public class AthletesViewModel
 {
 public AthletesViewModel(IEnumerable<Athlete> items)
 {
 Items = items;
 }
 [JsonProperty(PropertyName = "data")]
 public IEnumerable<Athlete> Items { get; set; }
 }

 public class Athlete
 {
 public Athlete(string name, string country, string time)
 {
 Name = name;
 Country = country;
 Time = time;
 }
 public string Name { get; set; }
 public string Country { get; set; }
 public string Time { get; set; }
 }

}

Names of .NET properties are converted to JavaScript properties using camelCase by default (so
Name will become the JavaScript property name), but if needed this name can be changed using the
JsonProperty attribute specifying the PropertyName.

Combining Angular and ASP.NET Core Projects
The complicated part is integrating Angular and ASP.NET Core together during the development
process.

Using Angular with ASP.NET MVC  ❘  85

There are three possible approaches:

➤➤ Do not integrate them. Have the Angular project built with the Angular CLI tool in its own
folder, and keep an ASP.NET Core project with just the API services. The glue between the
two is just the URLs.

➤➤ Put them both inside one project, maintaining the Angular part using the Angular CLI and
building the artifacts inside the wwwroot of the ASP.NET Core project.

➤➤ Use a new feature of ASP.NET Core called JavaScriptServices, which makes it possible to
build the entire project without using the Angular CLI.

Let’s briefly explore the three options in more detail.

HOW AN ANGULAR APPLICATION IS BUILT FOR THE BROWSER USING
WEBPACK

To understand why it is not possible to just drop a JavaScript library in an ASP
.NET Core project and have everything working, you have to understand how an
Angular project is built.

As you might have noticed, Angular is a very modular framework. Each different
piece of the application, both your own and from the framework, is in a separate
file or module and imported as needed. Styles are spread among numerous files,
potentially one per component. All these files have to be bundled together to avoid
sending hundreds of files to the browser. In addition to this, Angular applica-
tions are built using TypeScript, which needs to be converted into standard ES5
JavaScript to be consumed by browsers.

Discovering the dependencies and relationships between the various pieces, trans-
piling JavaScript to TypeScript, bundling JavaScript and CSS, and finally including
the correct references in HTML files are all steps that are needed before anyone can
run an Angular application. As you can imagine, it’s a pretty daunting task.

It could have been done with a generic front-end build tool like Gulp, but the
Angular team decided to use a build tool focused only on module bundling, called
WebPack, which takes care of everything. And the Angular CLI tools use it to run
the Angular project during development and to build the artifacts needed when
publishing the application.

Keeping Angular and ASP.NET Core as Two Separate projects
The first and easiest of the integration solutions is to not integrate. On one side we have a simple
ASP.NET Core Web API application that returns the list of athletes (as in Listing 3-23) and on the
other side we have the same Angular application used throughout the chapter. Just launch both at

86  ❘  CHAPTER 3   Angular in a Nutshell

the same time, the first from Visual Studio and the second using the ng serve command of the
Angular CLI tools.

The only difference is in the service class for Listing 3-20, where the URL used in the http.get
method needs to be changed to http.get('http://localhost:57663/api/athletes') (with
whichever port number Visual Studio starts the project with).

There is a problem, though. Here, one application running on a domain (the Angular app running
on localhost:4200) is trying to access the API from another domain (localhost:57663). This vio-
lates the same-origin policy implemented by browsers to block scripts that access resources hosted
on different origins (URLs with different domains, sub-domains, ports, or schemas).

The first solution is to configure a proxy in the Angular development server configuration
(Listing 3-24). This way the scripts talk to the same origin, which then proxies the request to the
real API.

LISTING 3-24:  Proxy configuration (proxy.config.json)

{
 "/api/*": {
 "target": "http://localhost:57663",
 "secure": false
 }
}

Now, the URL used by the service must be on the same domain, so change it to http.get('/api/
athletes').

Finally, restart the angular development server specifying the configuration:

ng serve --proxy-config proxy.config.json

This is fine for development, but it is not enough as a permanent solution, which needs to configure
the ASP.NET Core application to allow cross-origin resource sharing (CORS) requests. First, refer-
ence the Microsoft.AspNetCore.Cors package to your project. Then the policies need to be config-
ured in the Configure method of the Startup class.

app.UseCors(builder => {
 builder.WithOrigins("http://localhost:4200");
});

To try it out, restart the Angular development server without the proxy configuration.

Combining Angular and ASP.NET Core into One Project Using the Angular CLI
The previous solution is the one that requires less setup and completely separates the two projects.
It is probably the best solution if the front end is pure Angular and is decoupled from the back end.
However, if the application is a mix of server-side rendering and Angular code, the two parts need
to be in the same project.

The general concept behind this approach is to create both projects inside the same folder, one with
Visual Studio and the other with the Anguar CLI tools. Then you configure the CLI tools to put the
build artifacts in the wwwroot folder of the ASP.NET Core project.

Using Angular with ASP.NET MVC  ❘  87

First create a standard ASP.NET Core MVC application and add a Web API service (the one from
Listing 3-23).

Then create an Angular project using the CLI tools and copy it over inside the same folder so
that the package.json of the Angular project is on the same folder as the project’s .csproj file.
Figure 3-5 shows what the project tree should look like after copying the project.

FIGURE 3-5:  Angular and ASP.NET Core in one project

The next step is to modify the angular-cli.json file so that the build output goes into the
wwwroot folder instead of the the default dist folder. Because the build process empties the content
of the output folder, you also need to make sure the output goes in a subfolder to avoid deleting all
the files that already exist within the folder.

...
 "apps": [
 {
 "root": "src",
 "outDir": "wwwroot/js",

88  ❘  CHAPTER 3   Angular in a Nutshell

 "assets": [
 "assets",
 "favicon.ico"
],
...

Then run the ng build command, and the Angular CLI will create a publishable version of the
scripts inside the wwwroot/js folder.

The final step is to insert the <app-root> tag where the Angular application needs to appear (for
example in the Home/Index.cshtml view) and to reference the files generated in the _Layout
.cshtml file as shown below:

<script type="text/javascript" src="~/js/inline.bundle.js"></script>
<script type="text/javascript" src="~/js/styles.bundle.js"></script>
<script type="text/javascript" src="~/js/vendor.bundle.js"></script>
<script type="text/javascript" src="~/js/main.bundle.js"></script>

Figure 3-6 shows the homepage of the default ASP.NET Core template with the addition of the
Angular application that displays the list coming from the Web API.

FIGURE 3-6:  Mixed server-side and Angular rendering

To make development easier, the Angular CLI can be configured to run the build whenever a
file changes, bringing back the fast feedback process you might be accustomed to from using the
Angular development server: ng build --watch. The browser won’t refresh automatically, but at
least the scripts are recreated every time a file changes.

Using Angular with ASP.NET MVC  ❘  89

The setup of this solution for combining Angular and ASP.NET Core is a bit cumbersome, but it
needs to be done only at the beginning of a project. If you want a faster and less manual start and
an even deeper integration, there is a third option: using JavaScriptServices.

Using JavaScriptServices
This last option makes use of JavaScriptServices, a library released by Microsoft in ASP.NET Core
v2. This library aims at simplifying the development of single-page applications with ASP.NET
Core. Besides providing an easier setup of the project, it adds features like server-side rendering of
Angular applications and integrates the WebPack build process, decoupling from the Angular CLI.
All this is possible thanks to a lower-level library that allows execution of any Node.js application
inside ASP.NET Core. It also provides support not only for Angular but also for React.

A project using JavaScriptServices can be created directly within Visual Studio 2017 by selecting
the Angular project template (Figure 3-7) or by using the dotnet new command using the angular
template.

FIGURE 3-7:  Angular project template in Visual Studio 2017

The resulting project is more of a sample than a template, but it provides a good starting point for
single-page applications with ASP.NET Core.

Adding the sample app we used so far requires a bit of tweaking.

Let’s start by copying all the components, including the root app component, into the ClientApp/
app/components/athletes folder. You need to change the name of the root app component to

90  ❘  CHAPTER 3   Angular in a Nutshell

athletes-app.component.ts since this app already has a root app component. Figure 3-8 shows
what is inside the ClientApp folder.

FIGURE 3-8:  Content of the ClientApp folder

For the application to use them, they must be referenced from the application root module located at
ClientApp/app/app.module.shared.ts (Listing 3-25).

LISTING 3-25:  App root module

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { RouterModule } from '@angular/router';

import { AppComponent } from './components/app/app.component';
import { NavMenuComponent } from './components/navmenu/navmenu.component';
import { HomeComponent } from './components/home/home.component';
import { FetchDataComponent } from './components/fetchdata/fetchdata.component';
import { CounterComponent } from './components/counter/counter.component';

import { AthletesAppComponent } from './components/athletes/athletes-
app.component';
import { AthleteService } from './components/athletes/athlete.service';
import { AthleteListComponent } from './components/athletes/athlete-list.
component';
import { AthleteComponent } from './components/athletes/athlete.component';

Using Angular with ASP.NET MVC  ❘  91

@NgModule({
 declarations: [
 AppComponent,
 NavMenuComponent,
 CounterComponent,
 FetchDataComponent,
 AthletesAppComponent,
 AthleteListComponent,
 AthleteComponent,
 HomeComponent
],
 providers: [AthleteService],
 imports: [
 CommonModule,
 HttpModule,
 FormsModule,
 RouterModule.forRoot([
 { path: '', redirectTo: 'home', pathMatch: 'full' },
 { path: 'home', component: HomeComponent },
 { path: 'counter', component: CounterComponent },
 { path: 'fetch-data', component: FetchDataComponent },
 { path: 'athletes', component: AthletesAppComponent },
 { path: '**', redirectTo: 'home' }
])
]
})
export class AppModuleShared {
}

Apart from the import statements, the declarations, and providers arrays configured with the
new components and services, there is something new: the configuration of the route. Routes are
used in Angular to map URLs to specific components and to make navigating between components
easier. Thanks to these routes, users can also bookmark or navigate directly to a part of the applica-
tion as if it were a server-side rendered page.

Deciding Which Integration Method to Use
We’ve seen three possible ways of integrating an Angular project inside a ASP.NET Core applica-
tion. Keeping Angular and ASP.NET Core as two separate projects is the best approach if you
have a clear separation between the front end and the API, and it is also the one that allows you to
develop clearly with the Angular tools. Combining Angular and ASP.NET Core into one project
using the Angular CLI is a good solution for managing the whole application from inside one Visual
Studio project and still uses the Angular tools for development, but this approach require a bit more
manual work. Using JavaScriptServices is probably the best way if you need to combine traditional
ASP.NET development together with SPA. It also provides most of the features needed by complex
applications like server-side pre-rendering and hot swap of components for easier development. But
this is a very dynamic and opinionated world and new solutions come out every day.

92  ❘  CHAPTER 3   Angular in a Nutshell

VISUAL STUDIO 2017 SUPPORT FOR ANGULAR

Until now you have written a lot of code. What if I told you that you can save a good number of
keystrokes by using the native integration of Angular in Visual Studio? Visual Studio 2017 has three
features that help with writing Angular applications:

➤➤ Code snippets to help writing Angular elements

➤➤ IntelliSense in TypeScript files

➤➤ IntelliSense in HTML files

Next you will have a look at each of these in more detail.

Code Snippets
Visual Studio comes with native support for TypeScript, so to create any new TypeScript file, includ-
ing any Angular-related file, you can use Add New Item and select the TypeScript file, as shown in
Figure 3-9.

FIGURE 3-9:  Add New Item dialog

Visual Studio 2017 Support for Angular  ❘  93

Once you have created an empty TypeScript file, you can use the Angular snippets to create the skel-
eton for components, modules, services, and other Angular elements.

For example, the ng2component snippet expands to the following code:

import { Component } from 'angular/core';

@Component({
 selector: 'my-component',
 template: 'Hello my name is {{name}}.'
})
export class ExampleComponent {
 constructor() {
 this.name = 'Sam';
 }
}

Snippets also expand to other recurring blocks of code, such as connecting to HTTP (ng2httpget)

return this.http.get('url')
 .map((response: Response) => response.json());

or subscribing to Observable (ng2subscribe).

this.service.function
 .subscribe(arg => this.property = arg);

WARNING  Angular2 snippet packs are not part of the default Visual
Studio installation, but need to be download separately from the Visual
Studio Extension Gallery: https://marketplace.visualstudio.com/
items?itemName=MadsKristensen.Angular2SnippetPack

IntelliSense in TypeScript Files
Visual Studio 2017 also provides complete (and relevant) IntelliSense for Angular by retrieving
the documentation directly from TypeScript’s typings (the documentation for TypeScript files) for
Angular.

Figure 3-10 shows the autocompletion list that appears when typing inside the @Component annota-
tion. Notice that the list only contains the methods that are exposed by the module class and that a
full explanation of the function is provided.

https://marketplace.visualstudio.com/items?itemName=MadsKristensen.Angular2SnippetPack
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.Angular2SnippetPack

94  ❘  CHAPTER 3   Angular in a Nutshell

FIGURE 3-10:  IntelliSense autocompletion

When you are about to enter the parameters, the usual Parameter Info tooltip appears, as shown in
Figure 3-11.

FIGURE 3-11:  Parameter info

IntelliSense in HTML Files
The power of Angular lies in its declarative approach, achieved with directives applied to HTML
elements. Visual Studio 2017 with the snippet pack installed also helps in this context. Together
with the standard HTML attributes, Visual Studio’s IntelliSense also provides autocompletion for
all the Angular structural directives. First it shows the ng2- indicator, then it expands to the list of
Angular directives, as shown in Figure 3-12, and then it expands to the full format of the directive.

FIGURE 3-12:  Angular autocompletion in HTML

Summary  ❘  95

SUMMARY

Angular can be used independently from any specific server-side technology, but the features
introduced with the latest versions of Visual Studio and ASP.NET Core make it a perfect match
for doing front-end development on the Microsoft.NET platform. Angular is a very powerful
JavaScript framework with a lot of concepts. This chapter was just an introduction, but I hope
you got the main points so you can start your journey into more advanced topics and experiment-
ing on your own.

Bootstrap in a Nutshell
WHAT’S IN THIS CHAPTER?

➤➤ Introduction to Bootstrap

➤➤ Building responsive sites with Bootstrap

➤➤ Customizing Bootstrap with Less

➤➤ Features of Visual Studio 2017 that make developing with
Bootstrap easier

Now that you have seen how to add client-side behavior to a web application, this chapter
shows you how to make it look beautiful, by introducing Bootstrap.

Until a few years ago, putting the style on a website was a necessary evil for developers. CSS
is not exactly a programming language, and it was not designed with maintainability in mind.
Styling a website was a nightmare for web designers, who were using it every day and had to
repeat their work with every new project. This led to the creation of hundreds of micro-
libraries with the purpose of reducing repetition (or copy-paste operations) in the basic and
standard CSS definitions.

Luckily, one company, Twitter, decided to publish their internal “blueprint” as an open-source
project known as Bootstrap. This quickly became the most popular CSS “library” available,
because of its default styles and components, its modularity, and the ease with which it can be
customized via the CSS pre-processing language Less (and recently also with Sass). Bootstrap
is responsive by default, which means that sites and web apps built with it adapt automatically
to the screen size of the device, be it a TV screen, desktop, laptop, tablet, or smartphone. This
framework has good support in Visual Studio 2017, which makes working with it faster and
more enjoyable.

This chapter starts by introducing Bootstrap, discusses some of its features, and later expands
on how to use it with ASP.NET Core and Visual Studio 2017.

4

98  ❘  CHAPTER 4   Bootstrap in a Nutshell

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com Search for the book’s
ISBN (978-1-119-18131-6), and you will find the code in the chapter 4 download and individually
named according to the names throughout the chapter.

INTRODUCTION TO BOOTSTRAP

Bootstrap is a very simple framework to work with. You just install it (via Bower, by downloading
it, or by simply referencing it from the CDN), add the styles to your page, and everything “magi-
cally” gets a more professional and over-all polished style.

Installing Bootstrap
Three files (with a fourth optional file) have to be referenced for all the features of Bootstrap to
work:

➤➤ The Bootstrap CSS file is <link href="bootstrap/css/bootstrap.min.css"
rel="stylesheet">.

➤➤ The optional Bootstrap theme <link href="bootstrap/css/bootstrap-theme.min.css"
rel="stylesheet"> adds some nice colors to the page.

➤➤ The Bootstrap JavaScript library is <script src="bootstrap/js/bootstrap.min.js"></
script>.

JQuery is also necessary since Bootstrap is based on it.

If you need to support older versions of IE (before IE9), the shim libraries html5shiv and Respond.js
must be added. Listing 4-1 shows the basic template as suggested in the official documentation.

LISTING 4-1:  Basic Template

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <!-- The above 3 meta tags *must* come first in the head; any other head
content must come *after* these tags -->
 <title>Basic template</title>

 <!-- Bootstrap -->
 <link href="css/bootstrap.min.css" rel="stylesheet">
 <link href="css/bootstrap-theme.min.css" rel="stylesheet">

www.wrox.com
http://WROX.COM

Introduction to Bootstrap  ❘  99

 <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media
queries -->
 <!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></
script>
 <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
 <![endif]-->
 </head>
 <body>

 <h1>Hello, world!</h1>

 <!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.
js"></script>
 <!-- Include all compiled plugins (below), or include individual files as
needed -->
 <script src="js/bootstrap.min.js"></script>
 </body>
</html>

Figure 4-1 shows how the only text there, a simple “Hello, World!” statement, looks compared to an
un-styled page. Notice the different font and margins.

FIGURE 4-1:  Styled and un-styled version of the same page

Figure 4-1 shows an example of the core CSS styles of Bootstrap for typography, which is covered
more in detail in the next pages.

NOTE  This chapter uses Bootstrap version 3.3. Bootstrap version 4 has long
been in development and at the time of this writing is still in its beta version.
When it is released, it is expected that the biggest changes will be a switch from
Less to Sass, the rewriting of all JavaScript plugins, and the removal of nonre-
sponsive layouts.

https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js

100  ❘  CHAPTER 4   Bootstrap in a Nutshell

The Main Features
Bootstrap is basically made of three different types of features:

➤➤ Core CSS classes: These style classes enhance the style of elements, either automatically or by
applying a simple CSS class.

➤➤ Components: These implement more complex UI elements, such as navigation bars, drop-
down menus, input groups, progress bars, and so on.

➤➤ JavaScript plugins: These bring the various components to life.

The following sections will examine these features in more detail.

BOOTSTRAP STYLES

The first core feature that Bootstrap offers is a set of CSS classes that enhance the look of the site
and make it responsive.

These styles can be broadly grouped into these categories:

➤➤ Grid System

➤➤ Typography

➤➤ Tables

➤➤ Forms

➤➤ Buttons

Grid System
A basic feature of any CSS framework, the grid system allows you to create a page layout based on a
series of rows and columns. On top of the basic behavior, Bootstrap provides a 12-column fluid grid
layout that adapts to the size of the screen.

A few instructions need to be kept in mind when making a layout with the Bootstrap grid system:

➤➤ The whole grid must be inside an HTML element marked with .container.

➤➤ This container includes rows, defined as <div class="row">...</div>.

➤➤ Rows include columns. The width of each column is defined by specifying the number of grid
cells it spans using the class .col-sm-*, replacing * with the actual number. For example,
4 .col-sm-3 (4 × 3 is 12) would be used to make four equally sized columns.

Listing 4-2 shows these basic rules in action. There are four rows, with different columns per row
(12 × 1, 8 + 4, 4 × 3, and 6 × 2). The class applied is .col-sm-*, which defines the behavior from
“small devices” (a screen size bigger than 768px) and up. Figure 4-2 shows how the grid appears on

Bootstrap Styles  ❘  101

a normal width, and when the window of the browser goes below 768px, you can see that all col-
umns are stacked one below the other.

FIGURE 4-2:  Grid shown in desktop and smartphone mode

LISTING 4-2:  Basic Grid

<!DOCTYPE html>
<html lang="en">
...
<body>
 <div class="container">
 <div class="row">
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 <div class="col-sm-1">.col-sm-1</div>
 </div>
 <div class="row">
 <div class="col-sm-8">.col-sm-8</div>
 <div class="col-sm-4">.col-sm-4</div>
 </div>
 <div class="row">
 <div class="col-sm-4">.col-sm-4</div>
 <div class="col-sm-4">.col-sm-4</div>
 <div class="col-sm-4">.col-sm-4</div>

102  ❘  CHAPTER 4   Bootstrap in a Nutshell

 </div>
 <div class="row">
 <div class="col-sm-6">.col-sm-6</div>
 <div class="col-sm-6">.col-sm-6</div>
 </div>
 </div>
 ...
 </body>
</html>

To understand this better, you will next explore how the responsive grid works.

Bootstrap defines four classes of devices, and for each of them there is a different CSS class prefix:

➤➤ Extra small devices, like smartphones, with a screen size smaller than 768px (.col-xs-)

➤➤ Small devices, like tablets, with a screen size bigger than 768px but smaller than 992px
(.col-sm-)

➤➤ Medium devices, like normal laptops, with a screen size bigger than 992px but smaller than
1200px (.col-md-)

➤➤ Large devices, like desktops, with a screen size bigger than 1200px (.col-lg-)

In Listing 4-2 the size of columns was specified with class .col-sm-*, which means that everything
smaller than 768px would get the default vertical stacked layout, as shown in Figure 4-2. To get
the cells stacked for both smartphones and tablets but to be horizontal on desktops, the class
.col-md-* should be used.

But more complicated layouts can be achieved by combining different classes. For example, if you do
not want the smartphone version to stack horizontally but you want two columns per row, you can
define this behavior by using col-xs-6 col-sm-1.

On the other hand, if you want the same layout in all device sizes, you just need to apply the class
for the smallest size, and all bigger sizes will inherit it. For example, if you always want two col-
umns per row, no matter the size, just apply col-xs-6. Listing 4-3 shows an example of these
approaches.

LISTING 4-3:  A More Complex Layout

<!DOCTYPE html>
<html lang="en">
...
<body>
 <div class="row">
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>

Bootstrap Styles  ❘  103

 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 <div class="col-xs-6 col-sm-1">.col-sm-1</div>
 </div>
 <div class="row">
 <div class="col-xs-6 col-sm-8">.col-sm-8</div>
 <div class="col-xs-6 col-sm-4">.col-sm-4</div>
 </div>
 <div class="row">
 <div class="col-xs-6 col-sm-4">.col-sm-4</div>
 <div class="col-xs-6 col-sm-4">.col-sm-4</div>
 <div class="col-xs-6 col-sm-4">.col-sm-4</div>
 </div>
 <div class="row">
 <div class="col-xs-6">.col-sm-6</div>
 <div class="col-xs-6">.col-sm-6</div>
 </div>
 ...
 </body>
</html>

The grid system supports other interesting features. For example, you can specify an offset if there is
the need to add a margin to a row, you can nest columns inside rows, and you can change the order
in which columns are displayed.

This last feature is very important if the order in which columns appear in the horizontal layout
is different from the order in the vertically stacked layout. The right sidebar is an example of this.
Columns are stacked in the same order in which they appear in code, so normally a right sidebar
would go below the content on the bottom of the page, which is not what you want. Bootstrap pro-
vides the classes .col-*-push-* and .col-*-pull-* to change this behavior. When applied to a
column, they respectively push it to the right or pull it to the left.

Listing 4-4 shows the scenario of a right sidebar that goes on top of the content in the smartphone
view. Notice that the columns are arranged in the desired order for the vertically stacked view, and
the classes change their behavior for tablets and larger device sizes.

LISTING 4-4:  Column Reordering

<!DOCTYPE html>
<html lang="en">
...
<body>
 <div class="row">
 <div class="col-sm-4 col-sm-push-8">Sidebar</div>
 <div class="col-sm-8 col-sm-pull-4">Content</div>
 </div>
 ...
 </body>
</html>

104  ❘  CHAPTER 4   Bootstrap in a Nutshell

Other useful classes, still related to responsive design even if not specifically to the grid system, are
the ones that hide elements based on screen size. They are:

➤➤ .visible-xs-* shows an element only in a specific device size (a smartphone in this case).
In this case * is not the number of columns but how the visibility has to be applied (block,
inline, inline-block).

➤➤ .hidden-xs hides an element for the specific device size.

Another possibility is to hide an element when a page is printed:

➤➤ .visible-print-* shows the element only when printing.

➤➤ .hidden-print hides the element during printing.

Typography
As shown at the beginning of the chapter in Figure 4-1, just by adding the Bootstrap library, the H1
started looking more modern. This enhancement works not just for headers but also for all the other
standard HTML elements. There is no need to use any special syntax, just the standard HTML tags.

For example, the blockquote element is rendered as in Figure 4-3. The code used to achieve it is
shown in Listing 4-5.

FIGURE 4-3:  Blockquote

LISTING 4-5: BLOCKQUOTE

<!DOCTYPE html>
<html lang="en">
...
<body>

 <blockquote>
 <p>So, to a certain degree, every web developer is already a polyglot
developer.</p>

Bootstrap Styles  ❘  105

 <footer>Simone Chiaretta in <cite title="Front-end development with ASP.NET
Core, Angular, and Bootstrap">Front-end development with ASP.NET Core, Angular, and
Bootstrap</cite></footer>
 </blockquote>
 ...
 </body>
</html>

Code listings also get a style boost with the Bootstrap library. Figure 4-4 shows what happens when
the <code> and <pre> elements are used.

FIGURE 4-4:  Code formatting

Tables
Unlike the other HTML elements, which get the Bootstrap styles without any class required, tables
need a class to be specified. This is because applying styles to all tables will cause problems when
they are used in many UI components such as calendars or date pickers.

All that is needed to apply the Bootstrap styles is adding the .table class to the <table> element.
This will render a standard table with horizontal dividers between rows. There are also a few
additional classes for different styles of tables:

➤➤ .table-striped adds a gray background to alternate rows.

➤➤ .table-bordered adds a border to the table itself and all cells.

➤➤ .table-hover adds a roll-over to rows.

➤➤ .table-condensed reduces the padding between rows, making the visualization a bit more
compact.

In addition to these table-related classes, there are also row- and cell-specific classes to indicate
whether the row represents information (.info), a warning (.warning), a danger (.danger), or the
success of an operation (.success).

Finally, by wrapping a table in <div class="table-responsive">, a horizontal scrollbar will
appear with screen sizes smaller than 768px.

106  ❘  CHAPTER 4   Bootstrap in a Nutshell

Forms
Another area where Bootstrap brings a lot of enhancement is forms and form fields. Similar to
tables, forms require a class to be specified. Every field of the form must have a .form-control
class and must be enclosed, together with its label and optional help, into an element with the class
.form-group. These classes put fields at 100% width, apply optimal spacing, and show labels and
help text in an appropriate style, as is shown in Figure 4-5. (Listing 4-6 is the code used to render
that login form.)

FIGURE 4-5:  Login form

LISTING 4-6:  Code for Login Form

<!DOCTYPE html>
<html lang="en">
...
<body>
 <form>
 <div class="form-group">
 <label for="email">Email address</label>
 <input type="email" class="form-control" id="email" placeholder="Email">
 <p class="help-block">The username is your email address</p>
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password"
 placeholder="Password">
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
 </form>
 ...
 </body>
</html>

Components  ❘  107

Two classes exist to change the layout of forms: .form-inline puts all fields on the same line, and
.form-horizontal puts the label and field on the same line and each form group on a different row.
When you use a second class, the form layout uses the grid layout described at the beginning of the
chapter, so the number of columns used by the label and input box can be specified using the same
class names.

Fields can also be styled according to their state or validation result. When you apply the disabled
boolean attribute to disable an input element, this element will be also grayed out. To achieve the
same visual effect without actually disabling the input element, apply the readonly attribute.

To show the validation result for a field, apply the validation-related classes to the form-group ele-
ment. These classes are .has-success to indicate the validation is okay, .has-error to indicate a
validation error, and .has-warning for something in between.

<div class="form-group has-success">
 <label for="email">Email address</label>
 <input type="email" class="form-control" id="email" placeholder="Email">
 <p class="help-block">The username is your email address</p>
</div>

Buttons
Bootstrap also provides classes to style buttons, just by applying .btn to the <button> element.

You can use classes in combination with .btn to change the semantics of buttons. You can use
.btn-primary to identify the main button on the form, .btn-success to identify a positive
action, or .btn-danger for actions leading to dangerous outcomes (such as unrecoverable delete
operations).

There also exist modifiers for making buttons bigger or smaller.You can use .btn-lg, .btn-sm,
.btn-xs, or .btn-block to make the button take over all the width of the parent element.

To see all the classes available in Bootstrap, see the official documentation on the Bootstrap website.

COMPONENTS

The second level of features provided by Bootstrap is Components. They are made of HTML snip-
pets that are enhanced by Bootstrap’s own JavaScript plugins. There are 21 components available in
Bootstrap, from small features like glyphs, badges, and alerts to bigger UI controls like navigation
bars, dropdowns, pagination, and input fields. It’s impossible to cover them all in this short intro-
ductory chapter, so the next pages just cover a few of them. I suggest you to read the official docu-
mentation to see how they work.

Glyphicons
Bootstrap includes more than 250 Halfling Glyphicons for free. Glyphs are lightweight icons imple-
mented via web fonts and CSS classes. To use them in your page, you have to add a element
with the relevant glyph class. The only important rule to remember is that CSS classes for glyphs
have to be used on their own element without any other class applied and without nested elements.

108  ❘  CHAPTER 4   Bootstrap in a Nutshell

Listing 4-7 shows the code needed to create the confirm button of Figure 4-6, which basically is a
glyph inside a button together with a caption.

LISTING 4-7:  Confirm Button

<!DOCTYPE html>
<html lang="en">
...
<body>

 <button type="button" class="btn btn-success btn-lg">
 Confirm
 </button>
 ...
 </body>
</html>

FIGURE 4-6:  Confirm Button

Dropdown
One of the most important UI components is the drop-down menu. In Bootstrap a dropdown has a
slightly different connotation, though. It is not meant to be used to select a value, like in the HTML
select element, but more like a menu with items.

A dropdown is made of two parts. The first is the trigger, which, when clicked, will open the menu.
The second is the with the items of the menu. These two elements have to be put inside an ele-
ment with the .dropdown class. Listing 4-8 shows an example of a dropdown menu.

LISTING 4-8:  Dropdown Menu

<!DOCTYPE html>
<html lang="en">
...
<body>

Components  ❘  109

 <div class="dropdown">
 <button class="btn btn-default dropdown-toggle" type="button"
 data-toggle="dropdown">
 User Profile

 </button>
 <ul class="dropdown-menu" aria-labelledby="dropdownMenu1">
 <li class="dropdown-header">Settings
 Update password
 Update profile
 <li class="disabled">Payment information
 <li role="separator" class="divider">
 Logout

 </div>
 ...
 </body>
</html>

Listing 4-8 also shows other optional elements for the dropdown:

➤➤ A header, specified with the .dropdown-header class

➤➤ A disabled link, applying the class .disabled

➤➤ A divider to separate links, using the .divider class

Figure 4-7 shows the menu with all the optional elements.

FIGURE 4-7:  User Profile dropdown menu

Input Groups
The most important concern of every developer should be to make it easier for the users of web apps
to enter data. The input group is a component that helps with that by extending the standard input
field and adding text, symbols, or buttons before and after the field itself.

110  ❘  CHAPTER 4   Bootstrap in a Nutshell

An input group is defined by a container element marked with the class .input-group. This class
includes a element with the class .input-group-addon if the add-on is text or .input-
group-btn if it’s a button, and the actual input field, with the class .form-control.

Only one add-on per side is allowed.

Listing 4-9 shows all the various options. Notice that the button can also be used as a trigger for a
dropdown menu (shown in Figure 4-8).

LISTING 4-9:  Various Samples of Input Groups

<!DOCTYPE html>
<html lang="en">
...
<body>
 <div class="input-group">
 http://twitter.com/
 <input type="text" class="form-control" placeholder="Twitter Handle">
 </div>

 <div class="input-group">
 <input type="text" class="form-control" placeholder="Email">
 @example.com
 </div>

 <div class="input-group">
 <input type="text" class="form-control" placeholder="Search for...">

 <button type="button" class="btn btn-default dropdown-toggle"
 data-toggle="dropdown">Search
 </button>
 <ul class="dropdown-menu dropdown-menu-right">
 Races
 Athletes
 News

 </div>
 ...
 </body>
</html>

Navigation
Well-designed navigation can mark the difference between a successful UI and an unusable site.
Bootstrap provides components for various type of navigation UIs. They all share the same approach
as they are all wrapped inside a <nav> element, and the elements of the navigation are all items of an
HTML list.

Components  ❘  111

FIGURE 4-8:  Various samples of input groups

Navigation Bar
Probably the most well known Bootstrap component, easily recognizable from Twitter’s UI a few
years ago, is the navigation bar. This component acts as a responsive container for all the other ele-
ments and components that can be used in an application’s main navigation bar.

The container for navbar is marked with the .navbar class. It includes the bar header, which is a
<div> element with the class .navbar-header that can be either an image or simply the name of
the app. All elements of the bar are simply items inside a <ul class="nav navbar-nav"> list
element, and each of them can contain a normal link or a nested list if a submenu (achieved with a
dropdown menu) is needed. Figure 4-9 shows a complete bar that also includes a form element.

FIGURE 4-9:  Example of navbar

112  ❘  CHAPTER 4   Bootstrap in a Nutshell

One interesting feature is the fact that the navbar can be configured to collapse into a vertical
mobile menu when the screen is smaller than 768px. (See Figure 4-10.) To enable this feature, a but-
ton for opening and closing the bar must be put into the header area of the bar, and the list that con-
tains the items must be put inside a collapsible element.

FIGURE 4-10:  Responsive navbar, both open and collapsed

Listing 4-10 shows all the basic features of the navbar, including how to mark an element as active.

LISTING 4-10:  Responsive navbar

<!DOCTYPE html>
<html lang="en">
...
<body>
 <nav class="navbar navbar-default">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#example-navbar-collapse-1" aria-expanded="false">

 </button>
 MyApp
 </div>

 <div class="collapse navbar-collapse" id="example-navbar-collapse-1">
 <ul class="nav navbar-nav">
 <li class="active">Messages
 Feed

Components  ❘  113

 <form class="navbar-form navbar-left" role="search">
 <div class="form-group">
 <input type="text" class="form-control" placeholder="Search">
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
 </form>
 <ul class="nav navbar-nav navbar-right">
 <li class="dropdown">

 User Profile

 <ul class="dropdown-menu" aria-labelledby="dropdownMenu1">
 <li class="dropdown-header">Settings
 Update password
 Update profile
 <li class="disabled">Payment information
 <li role="separator" class="divider">
 Logout

 </div>
 </div>
 </nav>
 ...
 </body>
</html>

The navbar has many other options, which can be found by reading the official Bootstrap documen-
tation on their website.

Pagination
The pagination component is used to move through the pages of a listing. In this case the list ele-
ment needs to have the .pagination class. All the pages of the control are normal list items that can
be disabled by applying the .disabled class or marked as active with the .active class.

Listing 4-11 shows the code for the pagination control, and Figure 4-11 shows how it appears.

LISTING 4-11:  Pagination Control

<!DOCTYPE html>
<html lang="en">
...
<body>
 <nav>
 <ul class="pagination">
 <li class="disabled">«
 <li class="active">1
 2
 3

114  ❘  CHAPTER 4   Bootstrap in a Nutshell

 4
 5
 »

 </nav>
 ...
 </body>
</html>

FIGURE 4-11:  Pagination control

Breadcrumbs
Breadcrumbs help users to find their way in hierarchical content structures as shown in Figure 4-12.
Compared to the navbar this element is pretty easy, as it doesn’t require anything more than an
ordered list with the class .breadcrumb, as shown in Listing 4-12.

FIGURE 4-12:  Breadcrumb

LISTING 4-12:  Breadcrumb

<!DOCTYPE html>
<html lang="en">
...

Components  ❘  115

<body>
 <ol class="breadcrumb">
 Home
 Profile
 <li class="active">Connections

 ...
 </body>
</html>

Tabs and Pills
Another type of navigation is in-page navigation. In-page navigation is usually implemented with
tabs or pills. Listing 4-13 shows how tabs are implemented.

LISTING 4-13:  Tabbed Navigation

<!DOCTYPE html>
<html lang="en">
...
<body>
 <ul class="nav nav-tabs">
 <li role="presentation" class="active">Home
 <li role="presentation">Profile
 <li role="presentation">Messages

 ...
 </body>
</html>

To create pills navigation, just replace the class with .nav-pills. Figure 4-13 shows the two differ-
ent in-page navigation options.

FIGURE 4-13:  Tabs and Pills navigation

As shown later in this chapter, these two types of navigation can be enhanced using the Bootstrap
JavaScript library to automatically switch panes when clicking on the items.

116  ❘  CHAPTER 4   Bootstrap in a Nutshell

Other Components
You can also use Bootstrap to create other components, including labels, badges, and alerts.
Listing 4-14 shows some code that you can use to render these other basic Bootstrap components,
which are shown in Figure 4-14.

LISTING 4-14:  Labels, Badges, and Alerts

<!DOCTYPE html>
<html lang="en">
...
<body>

 <!-- Label -->
 <p>Your password is about to expire Warning</
span></p>
 <!-- Badage -->
 <p>Messages 4</p>
 <!-- Alert -->
 <div class="alert alert-danger" role="alert">Your order couldn't be processed
due to an error in our system.</div>

 ...
 </body>
</html>

FIGURE 4-14:  Labels, Badges, and Alerts

JAVASCRIPT

The final level of enhancement brought by Bootstrap is its JavaScript plugins library. Some of the
plugins are automatically used to bring some of the components, like the dropdown menu or tabbed
navigation, to life. Others are pure JavaScript APIs that can be used autonomously.

JavaScript  ❘  117

This chapter does not cover the JavaScript plugins library in detail and mainly focuses on some sim-
ple usages of the API, because the usage of JavaScript plugins library in Bootstrap is quite advanced
and is beyond the scope of this book.

Tabbed Content
Tabbed navigation was explained earlier in this chapter. With the help of the Toggable Tabs plugin,
the navigation can open and close the various panes. This can be achieved in two different ways: via
JavaScript or just by the usage of markup and data attributes.

Activating Tab Navigation with JavaScript
After setting up the tab navigation as in Listing 4-13, the panes must be created. They are just sim-
ple <div> elements that specify role="tabpanel".

<div class="tab-content">
 <div role="tabpanel" class="tab-pane active" id="home">Home</div>
 <div role="tabpanel" class="tab-pane" id="profile">Profile</div>
 <div role="tabpanel" class="tab-pane" id="messages">Messages</div>
</div>

Notice that the IDs of the panes match the anchors in the links used in the navigation. This is very
important because the JavaScript function that is used to open a pane, .tab('show'), relies on the
href in the links and the id in the panes to be the same. This method has to be called as the click
event of the link, like $('#myTabs a[href="#profile"]').tab('show'), to enable the tab feature
on the profile link.

A better approach would be to enable the tab feature on all links using a simple JQuery selector.
Listing 4-15 shows the complete code for tabs activated via jQuery.

LISTING 4-15:  Tabbed Navigation with JavaScript

<!DOCTYPE html>
<html lang="en">
...
 <body>

 <ul id="myTabs" class="nav nav-tabs">
 <li role="presentation" class="active">Home
 <li role="presentation">Profile
 <li role="presentation">Messages

 <div class="tab-content">
 <div role="tabpanel" class="tab-pane active" id="home">Homediv>
 <div role="tabpanel" class="tab-pane" id="profile">Profilediv>
 <div role="tabpanel" class="tab-pane" id="messages">Messages</div>
 </div>

118  ❘  CHAPTER 4   Bootstrap in a Nutshell

 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.
js"></script>
 <script src="js/bootstrap.min.js"></script>

 <script type="text/javascript">
 $('#myTabs a').click(function (e) {
 e.preventDefault()
 $(this).tab('show')
 });
 </script>

 </body>
</html>

Activating Tab Navigation with Data Attributes
Activating via data attributes in the markup is even easier. All that is needed is to add data-
toggle="tab" in the navigation as shown in Listing 4-16.

LISTING 4-16:  Using Data Attributes for Tab Navigation

<!DOCTYPE html>
<html lang="en">
...
<body>
 <ul id="myTabs" class="nav nav-tabs">
 <li role="presentation" class="active"><a href="#home"
 data-toggle="tab">Home
 <li role="presentation"><a href="#profile"
 data-toggle="tab">Profile
 <li role="presentation"><a href="#messages"
 data-toggle="tab">Messages

 <div class="tab-content">
 <div role="tabpanel" class="tab-pane active" id="home">Home</div>
 <div role="tabpanel" class="tab-pane" id="profile">Profile</div>
 <div role="tabpanel" class="tab-pane" id="messages">Messages</div>
 </div>
 ...
</body>
</html>

Modal Dialog
Another commonly used UI control is the modal dialog. The functionality of the Bootstrap plugin is
pretty basic: It displays and closes the modal dialog. On the other hand, the HTML code needed for
the modal dialog itself is a bit verbose, but once you understand it, it is pretty logical.

https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js

JavaScript  ❘  119

It starts with an external <div> element with the class .modal, which represents the overlay that
goes over the whole page. Inside there is another <div> element marked with the class .modal-dia-
log. This is the actual modal dialog, which contains three separate areas:

➤➤ The modal header, defined by <div class="modal-header">, contains the title of the dia-
log and the close button.

➤➤ The actual content of the dialog is contained inside <div class=modal-body">.

➤➤ The footer, inside <div class=modal-footer">, is where the action buttons of the dialog
are supposed to be.

Listing 4-17 shows the complete code that is used to render the dialog of Figure 4-15.

LISTING 4-17:  Modal Dialog

<!DOCTYPE html>
<html lang="en">
...
<body>
 <!-- Button trigger modal -->
 <button type="button" class="btn btn-primary btn-lg"
 data-toggle="modal" data-target="#myModal">
 Launch logout modal
 </button>

 <!-- Modal -->
 <div class="modal fade" id="myModal" tabindex="-1" role="dialog">
 <div class="modal-dialog" role="document">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close"
 data-dismiss="modal">×</button>
 <h4 class="modal-title" id="myModalLabel">Logout</h4>
 </div>
 <div class="modal-body">
 You are about to log out from the system. Do you want to proceed?
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-default"
 data-dismiss="modal">Cancel</button>
 <button type="button" class="btn btn-primary">Logout</button>
 </div>
 </div>
 </div>
 </div>
 ...
</body>
</html>

120  ❘  CHAPTER 4   Bootstrap in a Nutshell

FIGURE 4-15:  Modal dialog

Opening the module is very easy. As with most of the other Bootstrap plugins, it can be done
with markup or with code. In order to do it with markup, as shown in Listing 4-17, just set data-
toggle="modal" on the element that should open the dialog and data-target="#myModal" to
indicate which modal to open.

<button type="button" class="btn btn-primary btn-lg" data-toggle="modal" data-
target="#myModal">Launch logout modal</button>

The method $('myModal').modal('show') can be used to open the modal in JavaScript.

Tooltips and Popovers
Other core plugins that do not require much work to implement are tooltips and popovers. (See
Figure 4-16.) They basically are the same thing, bubbles of text appearing next to an element, with
a couple of small but significant differences. Tooltips appear when you hover over the element, while
popovers appear when click on it. Popovers also have a title, which tooltips lack.

FIGURE 4-16:  Tooltip and popover

JavaScript  ❘  121

Both tooltips and popovers can be configured either with JavaScript or via markup similarly to the
other plugins.

To create them via markup, just set data-toggle="tooltip" or data-toggle="popover" on the ele-
ment. You can also optionally set the position of the tooltip with data-placement="left". The text
of the tooltip and title of the popover are then specified with the title attribute, and the content of
the popover is specified via the data-content attribute. For performance reasons, unlike the other
plugins that were automatically enabled, tooltips and popovers have to be manually opted-in via the
JavaScript methods $().tooltip() and $().popover(). Code for both components is shown in
Listings 4-18 and 4-19.

LISTING 4-18:  Tooltip

<!DOCTYPE html>
<html lang="en">
...
<body>
 <button id="saveBtn" type="button" class="btn btn-default"
 data-toggle="tooltip"
 data-placement="right"
 title="Click to save">Save</button>
 ...
 <script type="text/javascript">
 $('#saveBtn').tooltip();
 </script>
 ...
</body>
</html>

LISTING 4-19:  Popover

<!DOCTYPE html>
<html lang="en">
...
<body>
 <button id="payBtn" type="button" class="btn btn-default"
 data-toggle="popover"
 data-placement="right"
 title="Pay your order"
 data-content="The payment operation can take between 30 and 60 seconds.
Be patient!">Pay!</button>
 ...
 <script type="text/javascript">
 $('#payBtn').popover();
 </script>
 ...
</body>
</html>

122  ❘  CHAPTER 4   Bootstrap in a Nutshell

CUSTOMIZING BOOTSTRAP WITH LESS

Bootstrap is built with Less, one of the CSS pre-processing languages. A benefit is that it can be eas-
ily customized for a better fit of the look and feel of your application without the need to override
everything in all your CSS files. This can be done in two different ways: via the Bootstrap website or
by downloading the source code and manually updating the Less or Sass files.

Customizing via the Website
The Bootstrap official website provides a customization page that allows developers to change the
default styles of the framework. (See Figure 4-17.) In addition to this, it also offers the possibility to
select which styles, components, and plugins to include in the compiled file. Use this last option if
you want to reduce the size of the files that will be downloaded from your website.

FIGURE 4-17:  Bootstrap customizer

The customization page is accessible at the URL http://getbootstrap.com/customize/.

http://getbootstrap.com/customize/

Customizing Bootstrap with Less  ❘  123

From there you can scroll down to find the variables you need or you can select the area of the
framework you want to customize from the menu on the right. If, for example, you want the green
of the “success” style for buttons, bars, and labels to be a different tone of green, you can change the
@brand-success variable.

When all the customization is done, scroll down to the bottom of the page and click on the Compile
and Download button. This will generate a zip file with your specific version of Bootstrap. It will
also save your specific configuration as gist on GitHub and inside a config.json file inside the
zip file just downloaded. You can see a snippet of this file in Listing 4-20. Notice that at the end it
includes the URL to open the customization tool directly with this specific configuration.

LISTING 4-20:  Config.json File

{
 "vars": {
 "@gray-base": "#000",
 ...
 "@brand-primary": "darken(#428bca, 6.5%)",
 "@brand-success": "#00FF00",
 "@brand-info": "#5bc0de",
 "@brand-warning": "#f0ad4e",
 "@brand-danger": "#d9534f",
 ...
 },
 "css": [
 "print.less",
 "type.less",
 "code.less",
 ...
],
 "js": [
 "alert.js",
 "button.js",
 ...
],
 "customizerUrl": "http://getbootstrap.com/customize/?id=b21b62d56781c2e2ea87"
}

This tool is very useful if you need to do a quick adjustment to the styles and you do not use Less (or
Sass) already in your development workflow. But if a more iterative approach is needed and you are
using already Less, it’s probably better to modify the variables directly.

Customizing with LESS
In order to directly edit the Less variables, you need to download the source code of Bootstrap. The
folder with the actual code of the CSS styles is called less. It contains one Less file per CSS area
and component, and also one file called variables.less. This is the file that needs to be modified
to change the styles of any component in Bootstrap. Listing 4-21 shows the beginning of the file,
with the variable @brand-success that was changed with the online customization tool.

124  ❘  CHAPTER 4   Bootstrap in a Nutshell

LISTING 4-21:  Beginning of variables.less File

/
// Variables
// --

//== Colors
//
//## Gray and brand colors for use across Bootstrap.

@gray-base: #000;
@gray-darker: lighten(@gray-base, 13.5%); // #222
@gray-dark: lighten(@gray-base, 20%); // #333
@gray: lighten(@gray-base, 33.5%); // #555
@gray-light: lighten(@gray-base, 46.7%); // #777
@gray-lighter: lighten(@gray-base, 93.5%); // #eee

@brand-primary: darken(#428bca, 6.5%); // #337ab7
@brand-success: #5cb85c;
@brand-info: #5bc0de;
@brand-warning: #f0ad4e;
@brand-danger: #d9534f;
...

Once all the changes have been made, Grunt will take care of compiling the Less code into the final
CSS files. Chapter 6 explains more in detail how to use Grunt to run these build tasks, but if it is
already set up, just type grunt dist and the updated CSS files will be generated.

BOOTSTRAP SUPPORT IN VISUAL STUDIO 2017
AND ASP.NET CORE

As you might have noticed, Bootstrap uses a lot of CSS classes and snippets of HTML code for all
its styles and components. Without good autocomplete functionality and a good snippet library,
developers would have to rely on memory and documentation.

Visual Studio helps by providing a CSS autocomplete feature that shows all the classes available in
Bootstrap and identifies them with a B icon, as shown in Figure 4-18.

Visual Studio 2017 also includes a good snippet library in which developers can save their most used
snippets. Snippets in Visual Studio are very powerful because they clearly mark which parts are
fixed and which parts (typically just names or IDs) can be changed.

Visual Studio doesn’t come with a list of Bootstrap snippets, but it can understand if a project is
using Bootstrap and provides possible third-party extensions that can help with it, as shown in
Figure 4-19. Visual Studio suggests installing the following two extensions:

➤➤ Bootstrap Snippet Pack

➤➤ Glyphfriend

Bootstrap Support in Visual Studio 2017 and ASP.NET Core   ❘  125

FIGURE 4-18:  Bootstrap autocomplete

FIGURE 4-19:  Suggested third-party extensions

126  ❘  CHAPTER 4   Bootstrap in a Nutshell

Bootstrap Snippet Pack
As the name implies, this is a collection of 30+ snippets that
can be added to an HTML page by simply dragging them from
the Visual Studio toolbox (see Figure 4-20).

Most Bootstrap components are made of long pieces of HTML,
most of which has to be copied as it is, and only few strings
need to be updated. Development becomes very easy as the
strings that can be modified are clearly marked and you can
cycle through them with the Tab key.

For example, in the snippet for the modal dialog (Listing 4-17),
the only strings needing customization are the ID, the title, the
content, and the text of the two buttons. As you can see in
Figure 4-21, these strings are highlighted for easy identification.

Glyphfriend
This extension helps with choosing from the glyphicons avail-
able in Bootstrap by showing their preview in the autocomplete
dropdown (see Figure 4-22).

This extension is not limited to Bootstrap. It supports all
the other Font Awesome icons, as well as Ionic, Foundation,
IcoMoon, and GitHub’s Octicons. It even supports Emoji when
using Visual Studio as a markdown editor.

FIGURE 4-21:  Modal dialog snippet

FIGURE 4-20:  Bootstrap Snippet
Pack Toolbox

Bootstrap Support in Visual Studio 2017 and ASP.NET Core   ❘  127

FIGURE 4-22:  Glyphicons in the autocomplete dropdown

Tag Helpers for ASP.NET Core
Another possible approach to make it easier to write Bootstrap components is ASP.NET Core tag
helpers. Tag helpers are custom tags that can render arbitrary HTML markup at runtime.

Unfortunately, there is no library that provides tag helpers for all the Bootstrap components,
but there is a community-driven tag helper project that includes helpers for Alert, ProgressBar,
and Modal Dialog components. This library can be downloaded from NuGet under the name
TagHelperSamples.Bootstrap. Regarding the Modal Dialog, using the tag helper provided by this
library, the verbose HTML snippet becomes the few lines shown in Listing 4-22.

LISTING 4-22:  Modal Dialog with the Tag Helper (Views\Home\Index.cshtml)

<button type="button" class="btn btn-primary" bs-toggle-modal="simpleModal">
 Launch modal
</button>
<modal id="simpleModal" title="Modal Title">
 <modal-body>
 <h4>Something happened</h4>
 <p>Something happened</p>
 </modal-body>
</modal>

128  ❘  CHAPTER 4   Bootstrap in a Nutshell

A bs-toggle-modal attribute is added to the dialog trigger, specifying the name of the modal to
open. And then, obviously, the modal dialog has to be defined, using the <modal> tag. As shown
in Listing 4-22, the actual content of the dialog goes inside the <modal-dialog> tag. Optionally, a
<modal-footer> can be used to specify additional buttons for the dialog.

If you need helpers for other Bootstrap components, you can always write them yourself. As seen
in Chapter 1, writing a tag helper is not particularly difficult, especially if you are doing it only for
your specific needs and not with the intent of covering all the possible scenarios needed when releas-
ing the code for the community.

As an example of how easy it is to build a simple tag helper for Bootstrap, Listing 4-23 shows a sim-
plified version of the Alert tag helper that is part of the aforementioned Bootstrap tag helper library.

LISTING 4-23:  Simplified Alert Tag Helper (TagHelpers\AlertSimpleTagHelper.cs)

using System.Threading.Tasks;
using Microsoft.AspNet.Razor.TagHelpers;

namespace AlertTagHelper.TagHelpers
{
 [HtmlTargetElement("alert")]
 public class AlertSimpleTagHelper : TagHelper
 {
 [HtmlAttributeName("type")]
 public string AlertType { get; set; }
 public override void Process(TagHelperContext context, TagHelperOutput
output)
 {
 output.TagName = "div";
 var cssClass = "alert alert-"+AlertType;
 output.Attributes.Add("class", cssClass);
 output.Attributes.Add("role", "alert");
 }
 }
}

This helper is used with the tag <alert type="danger">Something Went Wrong!</alert>, which
is much more concise than writing the snippet needed for the Bootstrap component of Listing 4-14.

SUMMARY

Bootstrap CSS makes it extremely easy, even for non-designers, to build a compelling UI by mak-
ing use of all the best practices both in UX and in responsive design. To make Bootstrap fit visually
better with your application, several themes are available via the community, and for very specific
cases, all the aspects of Bootstrap can be easily customized with Less. And even though sometimes
it is a little verbose, Visual Studio provides some facilities to make working with it easier, and if you
prefer abstracting the client-side snippets behind some server-side code, the tag helpers of ASP.NET
Core allows you to define your own server-side tags.

Managing Dependencies with
NuGet and Bower

WHAT’S IN THIS CHAPTER?

➤➤ Introduction to package managers

➤➤ Usage instructions for NuGet, Bower, NPM

➤➤ How to redistribute your components

➤➤ Visual Studio 2017 support for package managers

The previous chapters showed that modern software development, both front-end and server-
side, is based on small and very focused components that can be composed as needed.

Unfortunately, while it is good to avoid the monolithic frameworks of the past, this new
approach introduces a problem: how do you manage all these components? Components usu-
ally depend on other components, which depend on yet other components, which depend...
well, you got the idea. To make things more difficult, there might be a component, let’s call it
A, that depends on component B, but also another component, C, that also depends on B, but
a different version of it. And on top of this, all components must be kept up-to-date. Finally, in
some cases, to correctly install a component, additional operations might be needed, like com-
piling some native library or changing some configuration files.

Fortunately, all these tasks are automated by specific tools that are called package managers.
In the context of front-end development with ASP.NET Core MVC, there are three package
managers you need to know:

➤➤ NuGet, for managing .NET libraries

➤➤ Bower, for managing client-side (JavaScript and CSS) libraries

➤➤ NPM, for managing the installation of tools used during the development

5

130  ❘  CHAPTER 5   Managing Dependencies with NuGet and Bower

The rest of this chapter will show how to use these three package managers and also how to publish
components as packages. But before looking at the specifics of each of them, you need to look at
some concepts that apply to all package managers.

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com Search for the book’s
ISBN (978-1-119-18131-6), and you will find the code in the chapter 5 download and individually
named according to the names throughout the chapter.

GENERAL CONCEPTS

All package managers, apart from the obvious differences given by the different technologies or lan-
guages they target, are practically identical. Here are their common concepts:

➤➤ They all rely on a public registry that contains all published packages. The registry might also
store the actual package or just provide the URL where the package can be downloaded.

➤➤ Packages are downloaded and stored in a local folder (usually within the current user folder)
that acts as a local cache. This way when a project needs a package that has been already
downloaded, it’s directly copied from the cache instead of being downloaded again (provid-
ing that it is the latest version). This saves bandwidth and time (especially if packages are
restored every time a project is built). It also allows some kind of offline development experi-
ence that would be otherwise impossible.

➤➤ Projects declare which third-party libraries they depend on. This is usually done by specifying
in a JSON file the names of the packages and their versions.

➤➤ Package managers take care of downloading not only the projects’ dependencies but also the
libraries they depend on, descending the entire tree of packages.

With these basic general concepts in mind, it is time to look at the .NET package manager, called
NuGet.

NUGET

NuGet is the package manager for .NET libraries. It has been available inside Visual Studio since
2010. With Visual Studio 2017 and ASP.NET Core, things changed a bit. Whereas before it was
used to manage everything, now with the introduction of Bower, its scope has been limited to .NET
libraries only.

NOTE  Technically, you can still make client-side packages, but the package
explorer will understand and will send the user to look for the same package on
Bower, as seen in Figure 5-1.

www.wrox.com
http://WROX.COM

NuGet  ❘  131

FIGURE 5-1:  How the NuGet Package Manager shows client-side only packages

It might have lost the support for client-side packages, but it gained an important new feature
as with the introduction of .NET Core, NuGet became the delivery method also for all system
libraries.

SHORT HISTORY OF NUGET

I clearly remember how NuGet was born, because I was there at the ALT.NET
Seattle Conference in 2008. A panel lead by Scott Hanselman discussed how to
encourage .NET developers to use open-source by making it easier to discover,
download, and install libraries.

People were talking about reusing the ruby-gem infrastructure to deliver libraries,
but eventually it was agreed on to build something similar that was closer to the
.NET toolset. A few open-source projects started on that day. One of them, initially
called NuPack, became what is known as NuGet.

Getting Packages via NuGet
NuGet packages can be installed in many ways. The choice of which installation to use depends on
the context in which the package manager will be used and on personal preferences.

Using the Package Manager GUI
The first option for getting packages is to use the Package Manager GUI. It is accessible within
Visual Studio either from the main menu ➪ Tools ➪ NuGet Package Manager or by right-clicking
on the Dependencies node of the solution’s tree in the Solution Explorer window. Both options are
shown in Figure 5-2.

From the GUI (shown in Figure 5-3), you can search for packages and install them into your current
project, optionally choosing which version to install.

132  ❘  CHAPTER 5   Managing Dependencies with NuGet and Bower

FIGURE 5-2:  How to open the NuGet Package Manager

FIGURE 5-3:  NuGet Package Manager GUI

Using the Package Manager Console
If you are more into command-line tools, the second option for getting packages, still within
Visual Studio, is to use the Package Manager Console, usually already available among the bottom
windows in Visual Studio. If the window is not there, it can be opened via the TOOLS ➪ NuGet
Package Manager menu.

NuGet  ❘  133

There you can use some commands to look for and install packages into the project.

➤➤ Use Find-Package -Id Json to look for packages. The output of this command is shown in
Figure 5-4.

➤➤ Use Install-Package Newtonsoft.Json to install a new package.

➤➤ Use Get-Package to list all installed packages.

➤➤ Use Uninstall-Package Newtonsoft.Json to uninstall an installed package.

FIGURE 5-4:  NuGet Package Manager Console

Manually Editing the .csproj Project File
The last available option is to edit directly the .csproj project file.

The new .csproj project file format that has been introduced for .NET Core projects contains
many different sections, but the one you are currently interested in is the <ItemGroup> section
that contains <PackageReference> elements, which is used to specify which packages and which
versions the project depends on. Listing 5-1 shows the .csproj project file of a sample ASP.NET
Core project from version 2.0. As mentioned in Chapter 1, it only contains the reference to the
Microsoft.AspNetCore.All meta-package.

LISTING 5-1:  Sample ASP.NET Core project configuration file

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 </ItemGroup>

134  ❘  CHAPTER 5   Managing Dependencies with NuGet and Bower

 <ItemGroup>
 <DotNetCliToolReference Include="Microsoft.VisualStudio.Web.CodeGeneration.
Tools" Version="2.0.0" />
 </ItemGroup>

</Project>

If you don’t know the name of packages or their version, Visual Studio 2017 shows an autocomplete
menu, providing a search feature also in this context. Autocomplete is available both for the package
name and for the version number, as shown in Figure 5-5.

FIGURE 5-5:  IntelliSense in action inside the .csproj project file.

Also, if you don’t know exactly which version number or you want to be open to future patches, you
can specify the version using the floating version range notation, for example 8.0.*.

NuGet  ❘  135

PACKAGE REFERENCES’ AUTOCOMPLETE

The autocomplete of package references might not be in Visual Studio 2017 at
the time of publishing, but this feature is available in the Visual Studio extension
Project File Tools, which can be downloaded from https://marketplace
.visualstudio.com/items?itemName=ms-madsk.ProjectFileTools.

What Happens Once You Install a Package
A big difference from the previous version of NuGet is that the installation of a package only means
adding a new entry in the .csproj project file. Also, when the Package Manager GUI or Console is
used, nothing is downloaded. They also just write the package ID and version inside the file.

As soon as the .csproj file changes, Visual Studio launches the .NET Core CLI specifying the
restore command (Figure 5-6). It is this cross-platform tool that connects to the nuget.org
server, downloads the packages, and saves them inside the user folder (C:\Users\user\.nuget\
packages\). Unlike previous versions, packages are not also saved inside a folder in the current
project, but are directly referenced from the user folder.

FIGURE 5-6:  Restore notification

Publishing Your Own Packages
Eventually you might find yourself needing to publish a NuGet package, either because you want to
make something you developed available to the .NET community or because you want to share your
library in a way that is easy for co-workers in your organization to reuse.

In order to create a package, you need the dotnet command line tool, which is installed as part of
the .NET Core SDK.

Adding Metadata for the Package
For building a NuGet package you need to specify some metadata: author details, package name
and version, various URLs for the project, and a list of the dependencies needed by the package. The
metadata is added directly in the .csproj file, as you can see in Listing 5-2.

LISTING 5-2:  webapplication.csproj metadata

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 <PackageId>Wrox.Book</PackageId>
 <PackageVersion>1.0.0</PackageVersion>

https://marketplace.visualstudio.com/items?itemName=ms-madsk.ProjectFileTools
https://marketplace.visualstudio.com/items?itemName=ms-madsk.ProjectFileTools
http://nuget.org

136  ❘  CHAPTER 5   Managing Dependencies with NuGet and Bower

 <Authors>Simone Chiaretta</Authors>
 <Description>Show the title of the book</Description>
 <PackageReleaseNotes>First release</PackageReleaseNotes>
 <Copyright>Copyright 2017 (c) Wrox</Copyright>
 <PackageTags>book title wrox</PackageTags>
 <PackageProjectUrl>http://example.com/Wrox.Book/</PackageProjectUrl>
 <PackageIconUrl>http://example.com/Wrox.Book/32x32icon.png</PackageIconUrl>
 <PackageLicenseUrl>http://example.com/Wrox.Book/mylicense.html</
PackageLicenseUrl>
 </PropertyGroup>

</Project>

Creating the Package
With all the metadata set, you just need to go to the root folder of your project (where the .csproj
file is) and type dotnet pack –c Release This command will gather all the dependencies and the
metadata from the .csproj file, copy them to the NuSpec file (the NuGet definition file), build
the project for all supported frameworks, and package everything into a NuGet package file, saved
in the bin/Release (or bin/Debug).

If you then open the package just created using the NuGet Package Explorer, you can see all the
properties and files that are included in the package (Figure 5-7).

FIGURE 5-7:  NuGet Package Explorer

NPM (Node.js Package Manager)  ❘  137

Publishing to the Nuget.org Gallery
If you want to publish your package to an internal repository, you can just copy the file to the folder
(or follow your own procedures), but if you want the package to be available for anyone in the .NET
community, you have to publish on the official repository, the NuGet.org gallery. In order to do so,
you need to do two things:

➤➤ Download the NuGet command line utility (which you can also download from the Package
Manager Console with Install-Package NuGet.CommandLine).

➤➤ Create an account on the NuGet.org gallery (http://nuget.org/).

Once you have done both of these things, you need to register the API key that will be used to link
your package with your account:

nuget setApiKey Your-API-Key

and then publish the package:

nuget push YourPackage.nupkg

NPM (NODE.JS PACKAGE MANAGER)

NPM is the Node.js Package Manager. In the context of front-end development with ASP.NET
Core, NPM is used mainly to install development tools and utilities.

Installing NPM
If you are using Visual Studio 2017, you might already have NPM installed on your machine.
(There was an option to install Node.js tools in VS2017 setup.) To check whether it is installed, type
npm -v at the command prompt. If it shows a version number (such as 4.1.1), you have NPM and
you can skip to the next section. Otherwise, keep on reading.

The best approach is to install NPM via the Node.js installer. Node.js recently changed their version
number and release policy, and now they provide two channels:

➤➤ The LTS (long-term support) version is supported in production environments, gets a major
release every year, and has an additional year and half of maintenance.

➤➤ The stable version is the latest stable version, without support for production, but it is
released more frequently (a major release every six months).

For the purpose of this book, the latest LTS is sufficient.

Once Node.js is installed, make sure you have the latest version of NPM by upgrading it with npm
install npm -g.

http://nuget.org/
http://nuget.org
http://nuget.org

138  ❘  CHAPTER 5   Managing Dependencies with NuGet and Bower

NPM Usage
You can install NPM packages in two ways. Either you use the command-line tool directly or, if
within Visual Studio, you can edit the package.json file and the installation will happen automati-
cally, just like it does for NuGet packages.

Using the NPM Command Line
The NPM command line is the main access to all the features of NPM. The most important
commands are:

➤➤ npm install restores the packages specified in the package.json file.

➤➤ npm install <package-name> installs the package specified in the command.

➤➤ npm init helps you create an initial package.json file with some default values.

➤➤ npm update updates your dependencies to the latest versions.

The install command has a few switches that you should know. The first is -g, which is used to
install the package as global package. This is mostly for command-line tools built with Node.js, like
NPM itself or Bower.

Two other switches, --save (also -S) and --save-dev (also -D), will save the installed package in
the package.json file so that you don’t have to update it manually. The first saves the package as
an application dependency, while the latter saves it as a development dependency. In the context of
ASP.NET Core projects, NPM is used only for tools, not for the actual application itself, so only the
--save-dev switch will be used.

Listing 5.3 shows an example of package.json that comes with the default ASP.NET Core appli-
cation when you add NPM (for example when enabling Gulp support). As you can see, only the
devDependencies section contains packages. In this instance they are the task runner gulp and
some of its tasks.

LISTING 5-3:  Package.json

{
 "name": "app",
 "version": "1.0.0",
 "private": true,
 "devDependencies": {
 "del": "^2.2.2",
 "gulp": "^3.9.1",
 "gulp-concat": "^2.6.1",
 "gulp-cssmin": "^0.1.7",
 "gulp-htmlmin": "^3.0.0",
 "gulp-uglify": "^2.0.0",
 "merge-stream": "^1.0.1"
 }
}

Bower  ❘  139

Using NPM within Visual Studio
There is no Package Manager GUI like there was for NuGet, but Visual Studio still has pretty good
support for NPM.

You can edit the package.json file directly within Visual Studio, and, as with NuGet, you have
autocomplete for both package names and version numbers. As you can see in Figure 5-8, there is
also a more detailed tooltip that appears when you hover with the mouse on the package name. You
can also perform some basic operations via the bulb menu.

FIGURE 5-8:  IntelliSense extensions for package.json

As soon as the file is saved, Visual Studio launches the npm
install command explained in the previous section, and
packages are installed. Another nice touch is the dependen-
cies tree in Solution Explorer, which shows the packages
together with their dependencies (see Figure 5-9).

Where Packages Are Installed
Unlike NuGet, where packages are installed in the current
user’s folder and referenced via their name in the .csproj
project file, NPM packages are installed directly in a sub-
folder of the project, called node_modules. A copy of the
files is also saved in a local cache under the user’s folder
where global packages also are installed.

BOWER

With NuGet you can add server-side dependencies, NPM is for tools, and Bower is for adding client-
side libraries. But apart from this obvious difference, it works more or less the same way as the other
two package managers.

FIGURE 5-9:  Packages tree

140  ❘  CHAPTER 5   Managing Dependencies with NuGet and Bower

THE FATE OF BOWER

Visual Studio templates come with client side references with Bower, so this chap-
ter explains how to use it. But the maintainers of the project have posted a note on
their GitHub repository that suggests to use Yarn (which is a third-party npm cli-
ent) and WebPack (which was mentioned in Chapter 3 and is covered more in detail
in Chapter 6) for new projects.

Installing Bower
The first step is to install Bower (if you haven’t installed it already with Visual Studio or if you are
using it within Visual Studio Code or any other IDE). This is done via NPM by using npm install
bower -g.

In order to use Bower, git must be installed as well. This is one significant difference between Bower
and the other systems. While still having a central repository at http://bower.io/search/ for list-
ing packages names, it is not used to store the packages, which are retrieved directly from GitHub
or any other git endpoint. So, for that reason, it needs git to get the actual packages.

Getting Packages with Bower
Bower packages can be installed in a few different ways, similar to NuGet and NPM. You can
get them with the command-line tool, which is its native interface and has the most complete fea-
ture set. If you are using Bower within Visual Studio, you can install packages with the Package
Manager or by directly editing the dependencies configuration file, which is called bower.json.

Using the Bower Command Line
The command-line tool for Bower is the standard and most flexible way to interact with Bower.
It allows you not only to install, update, and remove packages, but also to register packages on
the central repository. You can also perform any kind of package management operation using
just a local cache without going on the network, which is a feature that saved me a few times
when on a plane.

The commands are basically the same as with NPM:

➤➤ bower install installs all the packages defined in the bower.json file.

➤➤ bower install <package> installs the specified package. In this case a package can be a
registered package, an URL, or a git (or svn) endpoint.

➤➤ bower update updates the installed packages.

➤➤ bower uninstall <package> uninstalls the specified package.

➤➤ bower init creates a new bower.json file.

Also with Bower, as with NPM, you can save yourself some time and automatically add a package
to the bower.json file by specifying the --save flag.

http://bower.io/search/

Bower  ❘  141

Using the Bower Package Manager GUI in Visual Studio
If you are using Visual Studio, you can search for packages and install them directly by using
the package manager. This is exactly the same as with NuGet, just listing Bower packages
(see Figure 5-10). This window can be opened by right-clicking on the project root in the Solution
Explorer and selecting the “Manage Bower packages” menu item.

FIGURE 5-10:  Bower package manager

Editing the bower.json File
As with the other package managers, manually editing and saving the definition file will trigger the
automatic installation. In this case Visual Studio will launch the bower install command.

Also with Bower, IntelliSense will help autocomplete package names and versions.

The bower.json format is similar to NPM’s package.json, as you can see in the default ASP.NET
Core project configuration file shown in Listing 5-4.

LISTING 5-4:  Bower.json

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "3.3.6",

142  ❘  CHAPTER 5   Managing Dependencies with NuGet and Bower

 "jquery": "2.2.0",
 "jquery-validation": "1.14.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
}

Where Packages Are Installed
Knowing exactly where NuGet and NPM packages were located was not that important because
they were automatically found by tools. However, knowing where Bower packages are located is
more important because they are usually JavaScript or CSS files that have to be manually included
or linked in the web application.

Normally, packages are installed in a sub-folder called bower_components, but given the way ASP
.NET Core apps behave, the default location of Bower packages installed from within an ASP.NET
Core project is wwwroot/lib. Since the root of an ASP.NET Core app is the wwwroot folder, all pack-
ages are available inside the libs folder. For example, the bootstrap package will be linked using
the reference:

<link href="lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />.

This might not be the best approach as Bower packages are downloaded with the git repository,
including documentation, samples, and sometimes build files (like Less or Sass scripts). You might
not want to put all these files in production when you deploy your site. In this case you might want
to delete the .bowerrc file (where the download location of packages is defined) so that packages
are again downloaded to bower_components. You can later move only the files you need to the
wwwroot/lib folder, either manually or via a build process.

Creating Your Own Packages
When it comes to sharing your JavaScript or CSS libraries, there is not much that needs to be done.
Actually nothing has to be done (as long as there is already a bower.json file) if you just want to
share your library within your company or even with the world without registering in the repository.

If you want to register the package for the public repository, something more is needed:

➤➤ Some other metadata is recommended. You can use description, moduleType to specify
how the library interacts with the application, main to list the entry points of the library (the
ones that have to be included in the HTML file), and ignore to list the folders and files from
the git repository that do not have to be copied when installing the package.

➤➤ The package must be stored in a git repository and must be publicly accessible.

➤➤ Versions have to be tagged with git tags, named complying to the semver (Semantic
Versioning) schema (for example, v1.0.0-beta).

Once these preconditions are met, the package can be registered on the official repository by calling
the following command:

bower register <package-name> <git-endpoint>

Summary  ❘  143

SUMMARY

Going away from the monolithic framework approach to the small, focused libraries approach
required solving the problem of finding, installing, and managing dependencies. Package managers
solved this pretty effectively.

In this chapter you learned about three types of packages used in ASP.NET Core applications:
NuGet for .NET libraries, NPM for development tools, and Bower for client-side dependencies.

Apart from NuGet, the other two are not “native” to the Microsoft ecosystem. They are integrated
into Visual Studio, which makes it easy for developers who are not used to command-line tools to
use them as well.

Finally, you also learned how easy it is to share your libraries with either the developers’ community
or just within your organization.

Building Your Application with
Gulp and webpack

WHAT’S IN THIS CHAPTER?

➤➤ The role of build automation systems

➤➤ Introduction to webpack

➤➤ A more in depth overview of Gulp

➤➤ How Visual Studio 2017 integrates with Gulp and build systems

Build systems have been around in the world of server-side software development for many
years, starting from make files used for compiling C/C++ code or simple batch files used in the
'80s and '90s and evolving into task-based systems with the arrival of Java’s Ant in early 2000.
And from Ant, NAnt and later MSBuild came to life and brought task-based build automation
systems to .NET.

Until recently, front-end development did not require as many build steps as server-side
developments, but with the increasing complexity of JavaScript-based applications, front-end-
specific build systems started to appear.

This chapter covers Gulp and webpack, two of many build automation systems for front-end
development. It also covers the features of Visual Studio 2017 that make working with them
easier and more integrated into the IDE.

Before seeing these tools in practice, you will have a look at the typical operations that are
performed in the context of front-end builds.

6

146  ❘  CHAPTER 6   Building Your Application with Gulp and webpack

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com Search for the book’s
ISBN (978-1-119-18131-6), and you will find the code in the chapter 6 download and individually
named according to the names throughout the chapter.

WHAT FRONT-END BUILD SYSTEMS ARE FOR

In the context of server-side compiled languages, build systems are used to compile code into
binaries, to run tests, to compute metrics, and to perform transformations of configuration files
from development to a production setup. Other typical operations include moving files around and
creating release files.

Front-end build systems are also used for more or less the same reasons as server-side build
systems because even front-end development requires “compiling” code files into “binaries” (for
example Less or Sass to CSS or TypeScript to JavaScript) or running JavaScript test suites or metrics
(JSLint for example). However, front-end development also requires some tasks that are specific to
JavaScript and CSS development and that are used during the development phase and not just during
the final release. One such task is automatically including references to Bower files. Another example
is minification and concatenation of JavaScript and CSS files to reduce the size and number of files
downloaded by the client.

The rest of the chapter explains how to perform some of the most common tasks. It will show how to:

➤➤ Automatically include references to Bower packages

➤➤ Compile Sass files to CSS

➤➤ Compile TypeScript to JavaScript

➤➤ Combine and minify JavaScript and CSS files

➤➤ Run JSLint to detect JavaScript problems

➤➤ Perform tasks and automatically reload the browser when changes are detected in a file

The tool used to show how to perform these tasks is Gulp, since it is the tool the .NET community
is mostly leaning toward. Later in the chapter there is also a quick introduction to webpack, which
was already briefly mentioned in Chapter 3 since it is used by the Angular Command Line tool and
is gaining a lot of traction in the front-end development community.

A DEEPER LOOK AT GULP

The first JavaScript task runner was Grunt, but despite its relatively large user base, its adoption is
constantly dropping in favor of Gulp, which has been developed to overcome the problems of Grunt.
The approach is very different. It is code-based instead of being configuration-based. Steps of the
build process are connected together using Node.js streams, where the output of one step streams
into the input of the following. That is why it is called “the streaming build system.”

www.wrox.com
http://WROX.COM

A Deeper Look at Gulp  ❘  147

Getting Started with Gulp
Gulp must be installed via NPM. First install the command-line tool:

npm install --global gulp-cli

Then, within the project’s folder, also install the gulp package itself, again from NPM:

npm install gulp --save-dev

The Gulpfile.js File
As already mentioned, build automation with Gulp is done with code instead of by configuring a
series of tasks. For this reason gulpfile.js looks like a standard Node.js code file.

A gulpfile.js file starts with the initialization of the gulp library itself and of all the plugins and
modules that will be used in the build script. This is done by using the Node.js require() function.

var gulp = require("gulp"),
 del = require("del"),
 concat = require("gulp-concat"),
 cssmin = require("gulp-cssmin"),
 uglify = require("gulp-uglify");

Once all the external libraries are loaded, the build process can be developed using Gulp’s APIs.
There are just four top-level methods in the Gulp APIs. Two are used to define entry points for
tasks, and two are for representing input files and the output folder.

gulp.task()
The task method defines a gulp task. Its parameters are:

➤➤ name, which is the name of the task

➤➤ deps, an optional array of the other tasks on which the task being defined depends on (and
that have to be completed before the task can run)

➤➤ fn, the function to be executed

An example of a call to this method is:

gulp.task("dist", ["build"], function(){
 //do something after the build task has run
});

The task named default will be executed if you launch the gulp process without specifying any
task.

gulp.task("default",["dist","build"])

An important point to mention is that all tasks are executed for maximum concurrency, which
means that all tasks are launched at the same time in parallel. If you want tasks to be executed in a
specific order, in addition to specifying the dependencies with the parameter deps, the task’s func-
tion must have a “hint” that tells the system when it is done with its job. This can be achieved by
accepting a callback function, by returning a stream object, or by returning a promise.

148  ❘  CHAPTER 6   Building Your Application with Gulp and webpack

gulp.watch()
The watch method is used to run a task or a function when the specified files change. Its
parameters are:

➤➤ glob: Either a string or an array of strings representing the files to watch, using the typical
wildcards normally used in command-line tools (such as scripts/*.js)

➤➤ opts: Options used to configure the watch process, for example interval to specify how
frequently to check for changes or debounceDelay to delay the execution if there are many
changes in rapid succession

➤➤ tasks: The array of tasks to be executed

➤➤ cb: The callback function to be executed

The two parameters tasks and cb cannot be specified together. Hence, there are two variation of
the watch method. There is one that specifies tasks to run:

gulp.watch("js/*.js",["jshint"])

And there is a version that executes a function:

gulp.watch('js/*.js', function(event) {
 console.log('File ' + event.path + ' was ' + event.type);
});

gulp.src()
This method usually is the starting point of each task. It returns a stream of files (hence the name of
“streaming build system”) that can be piped into the various plugins that make up the task. If you
want the task to be a dependency for another task, this is the stream that has to be returned by the
task’s function.

return gulp.src("js/*.js")
 .concat(...)
 .pipe(uglify())
 .pipe(gulp.dest("lib"));

gulp.dest()
This method is used as a function inside a pipe method. It takes the stream and will write the files
to the specified folder.

.pipe(gulp.dest("lib"));

A Typical Gulp Build File
Now you will see how to put all this information into practice by implementing a typical build file.
There are several steps in doing this, but the core aspects include the following:

	 1.	 JavaScript files are checked for possible errors.

	 2.	 JavaScript and CSS files are concatenated into a single file.

	 3.	 The concatenated JavaScript file is then minified.

A Deeper Look at Gulp  ❘  149

As an example take the file structure shown in Figure 6-1.

FIGURE 6-1:  Project’s file structure

First, the plugins need to be installed, as always with npm install ... --save-dev:

➤➤ gulp-concat is used to concatenate multiple files into one.

➤➤ gulp-uglify is used to minify the JavaScript files.

➤➤ gulp-cssmin is used to minify the CSS files.

➤➤ del is a standard deep deletion npm package.

In the build process, first you are going to delete the old artifacts and then do all the rest.

gulp.task("clean", function() {
 return del("lib/*");
});

The next step is the concatenation and minification of scripts and CSS files.

Scripts are treated using the following task:

gulp.task("minjs", ["clean"], function(){
 return gulp.src("src/scripts/*.js")
 .pipe(concat("all.min.js"))
 .pipe(uglify())
 .pipe(gulp.dest("lib"));
});

The JavaScript files are read in memory and concatenated into an all.min.js file (still in memory).
This file is what was minified and finally saved to the lib folder.

You do the same for the minification of the CSS files by just replacing uglify with cssmin (gulp has
a separate plugin for this).

gulp.task("mincss", ["clean"], function(){
 return gulp.src("src/css/*.css")
 .pipe(concat("styles.css"))
 .pipe(cssmin())
 .pipe(gulp.dest("lib"));
});

150  ❘  CHAPTER 6   Building Your Application with Gulp and webpack

The gulpfile.js file, complete with all the require statements and the definition of the default
task, is shown in Listing 6-1.

LISTING 6-1:  Gulpfile.js

var gulp = require('gulp'),
 del = require('del'),
 concat = require('gulp-concat'),
 cssmin = require('gulp-cssmin'),
 uglify = require('gulp-uglify');

gulp.task("clean", function() {
 return del("lib/*");
});

gulp.task("minjs", ["clean"], function(){
 return gulp.src("src/scripts/*.js")
 .pipe(concat("all.min.js"))
 .pipe(uglify())
 .pipe(gulp.dest("lib"));
});

gulp.task("mincss", ["clean"], function(){
 return gulp.src("src/css/*.css")
 .pipe(concat("styles.css"))
 .pipe(cssmin())
 .pipe(gulp.dest("lib"));
});

gulp.task("default", ["mincss","minjs"]);

More Gulp Recipes
There is much more that can be done with Gulp than just minifying and combining files. Gulp
plugins’ repository counts more than 2800 plugins. On top of that, Gulp is just a standard Node.js
file, so any npm package can be used.

The following sections discuss some recipes for other common tasks.

Naming Output Files from a Package Name
The content of the package.json file can be read and its values reused with Gulp. Because it is a
JSON object, it can be read and loaded in memory with the require method:

var pkg = require('./package.json')

Then the concatenated script file can be named after it:

pkg.name+"-"+pkg.version+".min.js"

A Deeper Look at Gulp  ❘  151

The JavaScript minification task now looks like this:

var pkg = require('./package.json');

gulp.task("minjs", ["clean","lint"], function(){
 return gulp.src("src/scripts/*.js")
 .pipe(concat(pkg.name+"-"+pkg.version+".min.js"))
 .pipe(uglify())
 .pipe(gulp.dest("lib"));
});

Generating Source maps
Minification reduces the size of scripts, but it makes it impossible to debug code. One solution to
this is to create source maps that can be used by JavaScript debugging tools to map the minified
source to the original code.

In order to generate source maps with Gulp, you need to install the gulp-sourcemaps plugin. The
simplest way of using the plugin is to call the init() method before any processing starts, read
the original files, and finally call the write() method to write the maps on disk.

return gulp.src("src/scripts/*.js")
 .pipe(sourcemaps.init())
 .pipe(concat(pkg.name+"-"+pkg.version+".min.js"))
 .pipe(uglify())
 .pipe(sourcemaps.write())
 .pipe(gulp.dest("lib"));

By calling the write() method without parameters, the source map is saved embedded into the
destination file, but by passing a path relative to the destination, like sourcemaps.write('.'), a
separate file will be saved with the same filename as the destination, plus the .map extension.

NOTE  The plugins used between init and write must support gulp-
sourcemaps, like the ones used in the samples in this book: uglify, concat,
and cssmin.

Checking JavaScript Using JSHint
Running JSHint can also be done with Gulp by using the gulp-jshint plugin. It is easy to use. First
you execute the jshint() method, and then pipe the result into the jshint.reporter('REPORTER-
NAME') method to print the result of the analysis on the console.

There are many reporters in the wild and all the JSHint reporters should also work within this
plugin. The most popular, used in the context of gulp-jshint, is the default that comes with
the plugin, default, and optional jshint-stylish. Figure 6-2 shows how the output of the two
reporters compare. Default is on top and the stylish on the bottom.

152  ❘  CHAPTER 6   Building Your Application with Gulp and webpack

FIGURE 6-2:  Default and stylish reporters compared

In addition, if you do not want the task to go on even if there are warnings or errors, the fail
reporter can be used to stop the execution of the build process. The following snippet shows a task
that runs JSHint, prints the report, and fails if some errors happen.

gulp.task("lint", function() {
 return gulp.src("src/scripts/*.js")
 .pipe(jshint())
 .pipe(jshint.reporter('jshint-stylish'))
 .pipe(jshint.reporter('fail'));
});

This stops the execution of all the tasks that depend on the lint task, as shown in Figure 6-3.

A Deeper Look at Gulp  ❘  153

FIGURE 6-3:  Execution stopped after JSHint failed

Executing Tasks When Files Change
Gulp has a watch method that triggers the execution of tasks when files change. For example, if you
want to run JSHint every time a JavaScript file changes, you can create a new task and within that
task call the watch method.

gulp.task('watch', function() {
 gulp.watch('src/scripts/*.js', ['lint']);
});

Then launch Gulp specifying the watch task: gulp watch. As soon as a JavaScript file is saved in the
scripts folder, the JSHint check will start.

Managing Bower Dependencies
Bower installs all the dependencies in a subfolder of the project, named bower_components. As seen
in Chapter 5, the easy way to include these dependencies in an HTML file is to directly reference
the components inside the Bower’s folder. This might be okay in development, but it is not a good
approach for deploying the application because a Bower package is basically its git repository, so it
includes a lot of files you do not want in the production environment.

A better approach is to copy to a different folder only the files needed to run the application. This
can be done manually, or it can be automated with Gulp.

To make this easier, there is a Gulp plugin called main-bower-files that goes through all the
dependencies defined in bower.json and for each of them takes the main files defined by the devel-
oper of the package. These files are the ones needed to use the library. Its usage is straightforward:
Just call the plugin to define the source files for the task and then pipe them to the destination folder.
Listing 6-2 copies the components to the folder dist/libs.

154  ❘  CHAPTER 6   Building Your Application with Gulp and webpack

LISTING 6-2:  Managing Bower components with Gulp

var gulp = require('gulp');
var mainBowerFiles = require('main-bower-files');

gulp.task("default", function(){
 return gulp.src(mainBowerFiles())
 .pipe(gulp.dest("dist/lib"));
 });

WARNING  Not all Bower packages define the main files correctly. Bootstrap,
for example, includes a .less file as main but not the CSS file or the fonts. In
such cases you can override the file returned by mainBowerFiles, either in your
bower.json file or directly in the gulp task.

gulp.task("default", function(){
 return gulp.src(mainBowerFiles({
 overrides: {
 bootstrap: {
 main: [
 './dist/js/bootstrap.js',
 './dist/css/*.min.css',
 './dist/fonts/*.*'
]
 }
 }
 }))
 .pipe(gulp.dest("dist/lib"));
});

Replacing References Directly in the HTML Files
Earlier in the chapter you saw how to concatenate and minify JavaScript and CSS files. Wouldn’t
it be nice if you could also update the reference inside the HTML files? This is possible thanks to a
very powerful plugin called gulp-inject.

It takes a list of references and inserts them into HTML files in an area delimited by special com-
ments. While adding the new references, it deletes whatever was between these comments. This way,
the development version of the HTML file references the individual JavaScript and CSS files, while the
production version generated with the Gulp task references the combined and minified version.

Now you will take a look at how this is done. First, the HTML file must contain the scripts sur-
rounded by the comments.

<!-- inject:js -->
 <script src="/scripts/athletesFactory.js"></script>
 <script src="/scripts/averageFactory.js"></script>
 <script src="/scripts/raceController.js"></script>
<!-- endinject -->

A Deeper Look at Gulp  ❘  155

Then the minification happens inside the gulp task as shown in Listing 6-3.

LISTING 6-3:  Replacing script references via Gulp

var gulp = require('gulp'),
 concat = require('gulp-concat'),
 inject = require('gulp-inject'),
 cssmin = require('gulp-cssmin'),
 uglify = require('gulp-uglify');

var pkg = require('./package.json');
var fileName = pkg.name+"-"+pkg.version+".min.js";

gulp.task("minjs", function(){
 return gulp.src("./src/scripts/*.js")
 .pipe(concat(fileName))
 .pipe(uglify())
 .pipe(gulp.dest("./dist/lib"));
});

gulp.task("mincss", function(){
 return gulp.src("./src/css/*.css")
 .pipe(concat("styles.css"))
 .pipe(cssmin())
 .pipe(gulp.dest("./dist/lib"));
});

gulp.task("inject",["minjs","mincss"], function(){
 return gulp.src("./src/index.html")
 .pipe(inject(gulp.src(["./dist/lib/*.js","./dist/lib/*.css"]),
 {ignorePath: 'dist'}))
 .pipe(gulp.dest("./dist"));
});

gulp.task("default", ["inject"]);

In Listing 6-3 you can see how the gulp-inject plugin works. It receives the HTML file stream
as input via piping, and it outputs the version modified with the references to the files specified as
parameters.

After the task has run, the references in the HTML file will change to the minified script and styles
that were copied to the dist folder.

<!-- inject:css -->
<link rel="stylesheet" href="/lib/styles.css">
<!-- endinject -->

<!-- inject:js -->
<script src="/lib/gulp-inject-sample-0.0.1.min.js"></script>
<!-- endinject -->

156  ❘  CHAPTER 6   Building Your Application with Gulp and webpack

INTRODUCTION TO WEBPACK

Webpack is module bundler that loads all the dependencies of a JavaScript application and bundles
them to optimize the loading time in the browser. Although it is not strictly speaking a task runner,
webpack can be used to accomplish most of the tasks performed by Gulp, like minification, bun-
dling, and linting. Let’s see how this works.

webpack’s Main Concepts
Webpack has a bit steeper learning curve compared to Gulp, so before seeing some examples, let’s
have a look at the main concepts: entry, output, loaders, and plugins. It all starts with the entry
point of the application, which is where webpack starts to follow the dependencies tree from. The
end of the process is the output, which is where webpack will save the bundle once it has completed
its job. Between the entry and the output, all the processing happens, which is done by loaders and
plugins.

Webpack is a JavaScript module bundler, which means that it discovers JavaScript modules and their
dependencies and bundles them. However, webpack can also treat .css files, sass files, TypeScript
files, and even images and .html files. Loaders are used to “convert” any kind of file in a module
treatable by webpack. Plugins do not work on the individual source files but are used to perform
general operations on the final output of the bundling.

The configuration of webpack is stored in a webpack.config.js file.

Let’s now see how to use webpack to perform the same operations done with Gulp in Listing 6-1.

Using webpack
The first step is obviously installing webpack. This is done with NPM. It could be installed globally
like the other tools, but it is a better practice to install it on a per-project basis to avoid version con-
flicts between different projects on the same machine.

Once you have a new folder and have an empty package.json file in the folder, you can run npm
install webpack --save-dev to install webpack and add it as a development reference for the
project.

Bundling JavaScript
Next is creating the webpack.config.js file with the minimum configuration, which specifies the
entry file and the output file for the bundle. The configuration file in Listing 6-4 instructs webpack
to start discovering dependencies from the file ./src/index.js and store the bundled version in a
file bundle.js. For the automatic discovery to work, it is not enough to have just a bunch of files in
the same folder. They have to reference each other using the ECMAScript 5 export/import of mod-
ules. Listing 6-5 shows how the two files used in this example are linked together.

Introduction to webpack  ❘  157

LISTING 6-4:  Simple webpack configuration file (webpack.config.js)

var path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 filename: 'bundle.js',
 path: path.resolve(__dirname, 'dist')
 }
}

LISTING 6-5:  JavaScript files used in the sample

INDEX.JS

import {greet} from './greeting.js';

 function component() {
 var element = document.createElement('div');

 element.innerHTML = greet("readers");
 element.classList.add('hello');

 return element;
 }
 document.body.appendChild(component());

GREET.JS

export function greet(who) {
 return "Hello " + who;
}

Notice the use of import to import the dependency and export to export the function for other files
to use. Now just running webpack without any additional configuration will bundle the two files
together into one file.

To run webpack, since it’s just installed locally in the project, there are two options. The first is to
use its relative path ./node_modules/.bin/webpack. This is where all the executables are stored
when installed via npm. The other option is to use an npm script. To do so, just add a script element
to the package.json file and later just type npm run build to execute webpack. The following snip-
pet shows what needs to be added.

"scripts": {
 "build": "webpack"
},

158  ❘  CHAPTER 6   Building Your Application with Gulp and webpack

Bundling Stylesheets
In order to add stylesheets to the bundle, you must trick webpack into thinking the .css file is
another module and installing and configuring the right module loader. The first part is done by
importing the .css file as if it was another javascript module:

import './style.css';

Then the style and CSS loaders must be installed via npm and configured inside the webpack
.config.js file.

This is the command to install the two modules:

npm install style-loader css-loader --save-dev

Listing 6-6 shows the configuration file after the CSS loader has been added.

LISTING 6-6:  webpack.config.js with css loader

var path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 filename: 'bundle.js',
 path: path.resolve(__dirname, 'dist')
 },
 module: {
 rules: [
 {
 test: /\.css$/,
 use: [
 'style-loader',
 'css-loader'
]
 }
]
 }
}

Listing 6-6 shows how loaders are added within a module property. Each different module loader
needs a test to specify when the loader must be used and a list of loaders to use. The test could be a
RegEx with the extension of the files or a more complex function.

Once webpack is run, the style will be bundled together with the JavaScript files and injected into
the header section of the HTML file at runtime. If you want the style to be referenced in the HTML
file from its own file, you need to use the ExtractTextWebpackPlugin. Listing 6-7 shows what the
configuration file looks like with this plugin.

Introduction to webpack  ❘  159

LISTING 6-7:  webpack.config.js using the extract-text-webpack-plugin

var path = require('path');
const ExtractTextPlugin = require("extract-text-webpack-plugin");

module.exports = {
 entry: './src/index.js',
 output: {
 filename: 'bundle.js',
 path: path.resolve(__dirname, 'dist')
 },
 module: {
 rules: [
 {
 test: /\.css$/,
 use: ExtractTextPlugin.extract({
 fallback: "style-loader",
 use: "css-loader"
 })
 }
]
 },
 plugins: [
 new ExtractTextPlugin("styles.css")
]
};

With this change, now the CSS files get bundled into just one file instead of being injected into the
header section of the HTML file.

Minifying and Adding Sourcemaps
After having bundled the files, you still need to minify them. This is done using another plugin,
called UglifyJsPlugin. To use this plugin, it’s enough to add it to the list of plugins (after having
imported it into the configuration file).

new webpack.optimize.UglifyJsPlugin()

In order to have sourcemaps for both JavaScript and .css files, another parameter, called devtool,
must be specified in the configuration. This can have many different values based on the type of
sourcemap needed (inline or in a separate file) and its accuracy. Listing 6-8 shows the configuration
file after minification with sourcemaps has been added.

LISTING 6-8:  webpack.config.js with minification and sourcemaps

var path = require('path');
const webpack = require('webpack');
const ExtractTextPlugin = require("extract-text-webpack-plugin");

160  ❘  CHAPTER 6   Building Your Application with Gulp and webpack

module.exports = {
 entry: './src/index.js',
 output: {
 filename: 'bundle.js',
 path: path.resolve(__dirname, 'dist')
 },
 devtool: "source-map",
 module: {
 rules: [
 {
 test: /\.css$/,
 use: ExtractTextPlugin.extract({
 fallback: "style-loader",
 use: "css-loader"
 })
 }
]
 },
 plugins: [
 new ExtractTextPlugin("styles.css"),
 new webpack.optimize.UglifyJsPlugin({sourceMap:true})
]
};

More Things webpack Can Do
Although webpack is a module bundler, thanks to the different loader it is not limited to bundling
JavaScript files. It can treat styles (also sass and less), script files that require some transpiling (like
TypeScript, CoffeScript, or ECMAScript2015), images, fonts, and many types of files. Additionally,
it can run JSHint while loading JavaScript file. Via plugins it can also automatically add script and
style tags into the HTML file (using the HtmlWebpackPlugin), minify the bundle as seen earlier,
compress files, and do much more.

However, it is a module bundler, so it doesn’t have the flexibility of a general purpose task runner
like Gulp, and it requires that applications are written in a modular way, which is not always done,
especially when not using the latest JavaScript frameworks.

But if you use Angular via the CLI, you get webpack compilation and bundling automatically with-
out doing anything.

VISUAL STUDIO 2017 AND BUILD SYSTEMS

Now that you know about Gulp, it is important to understand how it is integrated into Visual
Studio 2017.

The Bundler and Minifier Extension
Microsoft realized that developers use task runners mostly for minifying and bundling files, so the ASP
.NET Core project template doesn’t include a gulpfile.js file. Instead it includes the bundleconfig
.json file, which contains the configuration for a new feature of Visual Studio 2017: the Bundler and

Visual Studio 2017 and Build Systems  ❘  161

Minifier. The Bundler and Minifier simplifies the process of managing CSS and JavaScript files by pro-
viding menu items for creating bundles during development in Visual Studio.

Minification of a file can simply be configured by right-clicking on the file in the Project Explorer
and selecting Bundler & Minifier ➪ Minify File, and bundles can be created by selecting multiple
files and selecting Bundler & Minifier ➪ Bundle and Minify File (see Figure 6-4).

FIGURE 6-4:  The Bundler and Minifier menu items

These commands from the menu just update the bundleconfig.json file. Listing 6-9 shows an
example of bundling configuration.

LISTING 6-9:  An example of bundleconfig.json file

[
 {
 "outputFileName": "wwwroot/css/site.min.css",
 "inputFiles": [
 "wwwroot/css/site.css"
]
 },
 {
 "outputFileName": "wwwroot/js/site.min.js",
 "inputFiles": [
 "wwwroot/js/site.js"
] ,
 "minify": {
 "enabled": true
 }
 },
 {
 "outputFileName": "wwwroot/js/bundle.js",
 "inputFiles": [
 "wwwroot/js/site2.js",
 "wwwroot/js/site.js"
],
 "sourceMap": true
 }
]

162  ❘  CHAPTER 6   Building Your Application with Gulp and webpack

The file contains a list of bundles, each one defined by the output file name, a list of input files, and
optional additional configuration settings, like enabling source maps.

This new feature doesn’t preclude the usage of Gulp. If the front-end build process becomes more
than just bundling files, a gulpfile that uses the bundleconfig.json file can be created from the
menu (Figure 6-5), and it can then be expanded to include other tasks. This way the configuration of
the bundles can still be done via menu items, making it easier to manage, even when using Gulp.

FIGURE 6-5:  Convert to Gulp

Listing 6-10 shows the gulpfile.js file created by the Bundler & Minifier extension.

LISTING 6-10:  Gulpfile.js generated by the Bundler & Minifier extension

"use strict";

var gulp = require("gulp"),
 concat = require("gulp-concat"),
 cssmin = require("gulp-cssmin"),
 htmlmin = require("gulp-htmlmin"),
 uglify = require("gulp-uglify"),
 merge = require("merge-stream"),
 del = require("del"),
 bundleconfig = require("./bundleconfig.json");

var regex = {
 css: /\.css$/,
 html: /\.(html|htm)$/,
 js: /\.js$/
};

gulp.task("min", ["min:js", "min:css", "min:html"]);

gulp.task("min:js", function () {

Visual Studio 2017 and Build Systems  ❘  163

 var tasks = getBundles(regex.js).map(function (bundle) {
 return gulp.src(bundle.inputFiles, { base: "." })
 .pipe(concat(bundle.outputFileName))
 .pipe(uglify())
 .pipe(gulp.dest("."));
 });
 return merge(tasks);
});

gulp.task("min:css", function () {
 var tasks = getBundles(regex.css).map(function (bundle) {
 return gulp.src(bundle.inputFiles, { base: "." })
 .pipe(concat(bundle.outputFileName))
 .pipe(cssmin())
 .pipe(gulp.dest("."));
 });
 return merge(tasks);
});

gulp.task("min:html", function () {
 var tasks = getBundles(regex.html).map(function (bundle) {
 return gulp.src(bundle.inputFiles, { base: "." })
 .pipe(concat(bundle.outputFileName))
 .pipe(htmlmin({ collapseWhitespace: true, minifyCSS: true, minifyJS:
true }))
 .pipe(gulp.dest("."));
 });
 return merge(tasks);
});

gulp.task("clean", function () {
 var files = bundleconfig.map(function (bundle) {
 return bundle.outputFileName;
 });

 return del(files);
});

gulp.task("watch", function () {
 getBundles(regex.js).forEach(function (bundle) {
 gulp.watch(bundle.inputFiles, ["min:js"]);
 });

 getBundles(regex.css).forEach(function (bundle) {
 gulp.watch(bundle.inputFiles, ["min:css"]);
 });

 getBundles(regex.html).forEach(function (bundle) {
 gulp.watch(bundle.inputFiles, ["min:html"]);
 });
});

function getBundles(regexPattern) {
 return bundleconfig.filter(function (bundle) {
 return regexPattern.test(bundle.outputFileName);
 });
}

164  ❘  CHAPTER 6   Building Your Application with Gulp and webpack

The Task Runner Explorer
Tasks, both from the bundler and minifier and for Gulp, can also be run manually via the Task
Runner Explorer. This window can be opened by right-clicking on the gulpfile.js file from the
Project Explorer (see Figure 6-6) or from the View ➪ Other Windows ➪ Task Runner Explorer
menu item.

FIGURE 6-6:  Opening the Task Runner Explorer

The Task Runner Explorer shows all the tasks available inside the gulpfile.js file and all the file
bundles specified in the bundleconfig.json file. It also allows you to specify which tasks to run
when some operation runs in Visual Studio. A task can be configured to run:

➤➤ When the project is opened

➤➤ When the Clean operation is invoked

➤➤ Before the build of the project starts

➤➤ After the build of the project completes

Figure 6-7 depicts the Task Runner Explorer showing the tasks in the tree on the left, the bindings
of tasks and VS operations on the right, and the dropdown menu to configure those bindings.

IntelliSense for Gulp
Finally, since gulp files are just JavaScript files, the standard JavaScript IntelliSense triggers auto-
complete and shows information about gulp and gulp’s plugin methods, as shown on Figure 6-8.

Summary  ❘  165

FIGURE 6-7:  The Task Runner Explorer in action

FIGURE 6-8:  IntelliSense for Gulp

SUMMARY

Even though build automation tools have existed for more than 40 years, they were just recently
brought to the world of front-end development. Eventually, .NET web development, while still using
MSBuild, also started adopting these front-end build systems like Gulp.

Grunt was the first tool to appear, but recently Gulp, thanks to its more code-based approach, is
getting more traction, and Microsoft has chosen it as the default build tool supported inside Visual
Studio and ASP.NET Core projects.

In this chapter you learned how to prepare your front-end artifacts for release. The next chapter
explains how to leverage those tasks to deploy projects to your servers, either on premise or on the
cloud, and on demand or in continuous deployment fashion.

Deploying ASP.NET Core
WHAT’S IN THIS CHAPTER?

➤➤ The new hosting model of ASP.NET Core

➤➤ How to deploy on-premise

➤➤ How to use Azure

➤➤ Continuous deployment with git and Azure

➤➤ How to deploy to Docker Containers

After having learned how to build front-end applications with ASP.NET Core MVC, Angular,
Bootstrap, and Gulp, it is finally time to show the application to other people. In order to do
this, you need to deploy applications.

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com Search for the
book’s ISBN (978-1-119-18131-6), and you will find the code in the chapter 7 download and
individually named according to the names throughout the chapter.

THE NEW HOSTING MODEL OF ASP.NET CORE

Before exploring the deployment of ASP.NET Core applications, it is important to understand
how they are hosted inside servers.

In classic ASP.NET, applications are DLLs that are hosted inside the IIS Application Pool (also
known as Worker Process, w3wp.exe). They are instantiated from IIS’s runtime manager.
When requests come in, they are sent to the HttpRuntime of the right site, which lives inside
an AppPool. In short, they are basically modules controlled by IIS itself.

7

www.wrox.com
http://WROX.COM

168  ❘  CHAPTER 7   Deploying ASP.NET Core

In ASP.NET Core, it is totally different. Console applications run their own web server using
Kestrel. Each application already hosts itself and can directly respond to requests over HTTP, so you
might be wondering why you need IIS in first place. The reason is that Kestrel is a web server that
has been optimized for performance, but it lacks all the management features that IIS has. So it is
okay to run applications directly on Kestrel for development, but you need IIS for exposing them to
the outside world.

In this case IIS basically acts as a reverse proxy, receiving the requests and forwarding them to the
ASP.NET Core application self-hosted on a Kestrel web server. Then it waits for the execution pipe-
line to complete its processing and sends back the HTTP output to the originator of the request.

This is accomplished by AspNetCoreModule, which calls the dotnet run command to fire up the
application the first time it is requested. The AspNetCoreModule makes sure the application stays
loaded should it crash, and the module keeps the mapping of the HTTP port on which the applica-
tion is running. This module is configured via the web.config file in the root of the application.
Listing 7-1 shows a sample of the configuration.

LISTING 7-1:  web.config that configures the AspNetCoreModule

<configuration>
 <system.webServer>
 <handlers>
 <add name="aspNetCore" path="*" verb="*"
 modules="AspNetCoreModule"
 resourceType="Unspecified"/>
 </handlers>
 <aspNetCore
 processPath="dotnet"
 arguments=".\PublishingSample.dll"
 stdoutLogEnabled="false"
 stdoutLogFile=".\logs\stdout"/>
 </system.webServer>
</configuration>

The important configuration attributes are processPath, which contains the path to the execut-
able that will listen to HTTP requests, and arguments, with the arguments to pass to the process.
In standard ASP.NET Core applications, processPath is dotnet and arguments is the path to the
DLL with the actual application.

INSTALLING ON INTERNET INFORMATION SERVICES
ON PREMISE

Now that you understand the background theory, it’s important to see how to install the application
on IIS.

Installing on Internet Information Services On Premise   ❘  169

Making Sure All Is Well
Normally, applications are installed on a server, but if you do not have access to one, you can fol-
low the steps of this book on your local development machine. Before starting, make sure IIS is
installed. If you know it is already installed, you can skip this part and go straight to the “Installing
AspNetCoreModule” section.

The first step is to check whether IIS is installed. Type http://localhost in a browser: If you get the
welcome page of Figure 7-1, all is good. Otherwise, if you get a server not found error, it means the
local website is not running, either because IIS is not installed or it is stopped.

FIGURE 7-1:  Welcome page from IIS 10

Now try to turn it on. For that, open IIS Manager. Select All Apps ➪ Windows Administrative
tools), open the Default Web Site, and press the Start button under Manage website, as shown in the
Actions bar on the right side of Figure 7-2.

170  ❘  CHAPTER 7   Deploying ASP.NET Core

FIGURE 7-2:  IIS Manager

If you do not have the IIS Manager, it means that Internet Information Services has not been
installed on your machine. In order to install it, open the Windows Features window (accessible
from Control Panel ➪ Programs ➪ Turn Windows features on or off) and check both World Wide
Web Services and IIS Management Console, as in Figure 7-3, and then click OK.

FIGURE 7-3:  Windows Features

Installing on Internet Information Services On Premise   ❘  171

Installing AspNetCoreModule
The glue between IIS and ASP.NET Core is provided by AspNetCoreModule. This module is
installed as part of the .NET Core Windows Server Hosting bundle that also installs the .NET Core
Runtime and .NET Core Library, providing a very convenient way to enable .NET Core hosting on
web servers. AspNetCoreModule is also installed as part of the .NET Core SDK, so if you are run-
ning the SDK on your development machine, you should already have the module.

Either way, you should now be able to see the AspNetCoreModule in the list of modules in the IIS
Manager (Figure 7-4).

FIGURE 7-4:  IIS Modules with AspNetCoreModule highlighted

Publishing Applications via the Command Line
With the setup of the infrastructure finalized (which luckily has to be done only once), it is time to
publish the application.

The simple way of deploying is by using the dotnet publish command. By default this command
publishes the application into the ./bin/[configuration]/[framework]/publish folder, using
the framework that has been specified as TargetFramework and building it in Debug mode.

This publishing operation builds the application in the same way as the dotnet build command,
but it also copies all the dependencies and references into a self-contained folder that can easily be
copied to the destination IIS folder (Figure 7-5). In addition to these, the publish command also
runs all the MSBuild targets specified in the project file and can, for example, run the bundling and
minification of scripts and styles.

172  ❘  CHAPTER 7   Deploying ASP.NET Core

It also creates a web.config file (or to update the file if it already existed) in the root folder so that it
contains the right values similar to what is shown in Listing 7-1.

FIGURE 7-5:  The self-contained folder with application code and all dependencies

The default folder is hidden inside the structure. You probably want to publish in Release mode. The
publish command is usually issued by specifying all the options:

dotnet publish
 --framework netcoreapp1.1
 --output "c:\temp\PublishSample"
 --configuration Release

Creating the Website
The last step obviously is the creation of the web site (or web
application) inside IIS. The procedure is very simple and is
done just as with any other IIS website, with just one small
peculiarity. Since IIS will only act as a proxy without executing
any .NET code, an application pool must be configured to not
instantiate a .NET runtime. This is done by selecting the No
Managed Code option (Figure 7-6).

FIGURE 7-6:  Creating AppPool with
No Managed Code

Installing on Internet Information Services On Premise   ❘  173

Once this is done, a website (or a virtual application) can be created by specifying this newly created
AspNetCore application pool and the folder where the application has been published (Figure 7-7).

FIGURE 7-7:  Creating a new virtual application in IIS

Now browse to http://localhost/PublishSample and enjoy the ASP.NET Core application
served via IIS.

Publishing the Applications via Visual Studio
Publishing with dotnet publish doesn’t deploy the application remotely, and it also doesn’t sup-
port incremental updates. Therefore, a better option when developing within Visual Studio is to use
the Publish dialog, accessible both from the Solution Explorer contextual menu and from the new
overview screen introduced with Visual Studio 2017.

Typically, when deploying to a remote server, your system admin will have provided a publish pro-
file. When you import it, Visual Studio will create a PowerShell script based on the information
coming from the Publish dialog. This will call a PowerShell module, which will perform the actual
WebDeploy operation.

If you do not have a publishing profile provided by the system admin, you can also create a custom
publish profile, by configuring the connection parameters to your server. For testing on a remote
IIS that has been configured as shown in this chapter (and on which Web Deploy has been correctly
configured), Figure 7-8 contains the parameters to specify.

174  ❘  CHAPTER 7   Deploying ASP.NET Core

FIGURE 7-8:  IIS publishing profile

DEPLOYING ON AZURE

Instead of deploying on-premise, another option is to deploy applications on the cloud. This miti-
gates a lot of the server configuration nightmare seen in the previous section and provides a more
integrated experience into Visual Studio when using Azure. Other cloud hosting solutions are gener-
ally provisioning virtual machines, so deploying there is similar to doing it on a remote IIS that you
manage yourself.

On Azure, two approaches are possible. The first involves using the Publish dialog and Web Deploy,
while the second, used more in continuous deployment scenarios, uses git and builds the application
directly on Azure using Kudu.

Deploying to Azure from Visual Studio with Web Deploy
Deploying on Azure from Visual Studio is not much different from the procedure for IIS on-
premises, especially if all resources are already created on Azure. In this case just download the
publishing profile from the Azure portal (Figure 7-9) and then import it from the Publish dialog.

The differences appear when new resources are needed. In this case there is no need to go in
the Azure portal because everything can be done directly from the Publish Dialog by selecting

Deploying on Azure  ❘  175

Microsoft Azure App Service as the publishing target (see Figure 7-10). In this screen, you can also
choose to connect to an existing App Service (see Figure 7-11) by selecting Select Existing and click-
ing the Publish button or to create a new one by selecting Create New.

FIGURE 7-9:  Getting a publishing profile from the Azure portal

FIGURE 7-10:  Selecting Microsoft Azure App Service as the publishing target

176  ❘  CHAPTER 7   Deploying ASP.NET Core

FIGURE 7-11:  The App Service dialog

Clicking the Publish button brings the Create App Service dialog (see Figure 7-12). In this screen
you can choose whether to put the new app service into an existing resource group and service plan
or, as it is a best practice when creating a completely new and isolated application, create a new
resource group and service plan.

For this example, call the resource group as the app name, and keep the auto-generated name for
the service plan (make sure you select free as the size, as shown in Figure 7-13 so that you do not get
charged for trying it out). At this point additional services (other app services or SQL databases) can
be added.

Deploying on Azure  ❘  177

FIGURE 7-12:  The Create App Service dialog

FIGURE 7-13:  Configure App Service Plan dialog

178  ❘  CHAPTER 7   Deploying ASP.NET Core

Now click on Create and everything will be created on Azure and the publishing profile will be cre-
ated inside Visual Studio. See Figure 7-14.

FIGURE 7-14:  Publish on Azure Profile

From here on, the process is the same as seen before when using Web Deploy. You can choose
Configuration (Release or Debug), Framework, database options, and you can preview what is going
to be deployed on the server.

The actual publishing via Web Deploy consists on Visual Studio running dotnet publish to create
the file bundle on a temporary folder, followed by Web Deploy moving the files to the server.

The beauty of Web Deploy compared to the other deployment method is the incremental publish. If
files are changed later (for example the About.cshtml file), Web Deploy compares the new file with
what has already been published and just sends the new files. From the Publish screen you can access
the preview window (Figure 7-15) that shows what will happen when the actual deploy happens.

NOTE  The preview also shows the files that are created during the publish pro-
cess, like the updated web.config, the DLLs, the minified style-sheets, and the
various dependency configuration files.

Deploying on Azure  ❘  179

FIGURE 7-15:  Web Deploy Preview

Continuous Deployment to Azure with Git
The other approach to deploy on Azure is via git and the continuous deployment features of
Azure. The main difference of this approach is that instead of building in Visual Studio (or on a
build machine) and later deploying to Azure, only the code is pushed to Azure while all the building
and publishing happens directly on Azure via Kudu.

Configuring the Azure Web App
In order to have continuous deployment happening, the web app has to be configured on the Azure
portal. This can be done by selecting the web app to be configured, finding the Deployment Source
menu item inside Settings, and choosing the source. Here you find many different sources (Figure
7-16), both source control services like Visual Studio Team Services, git (both from GitHub and
local) and Bitbucket, and file sharing services like OneDrive or Dropbox.

180  ❘  CHAPTER 7   Deploying ASP.NET Core

FIGURE 7-16:  Deployment sources

For the sake of this book, it is easier to select Local Git Repository so that the code can be pushed
directly from your machine without creating additional services, but any other source can be config-
ured if necessary. Configuration steps for the other options might be different though.

Now in the overview pane of the web app, you can see the git clone URL (Figure 7-17), which is the
one that needs to be configured as remote to the local git repository that contains the code to be
deployed.

Configuring the Local Repository
Now some code has to be pushed to the Azure repository. There are various way of doing this. One
is cloning the empty repository and creating an application inside it. Another is by creating the
application in Visual Studio and checking the Add to Source Control flag in the project creation dia-
log. In this case the git repository on Azure must be specified as remote for the local repository. This
can be achieved in many ways, but staying within Visual Studio, the remote can be configured from
the Repository Settings in Team Explorer (Figure 7-18).

Deploying on Azure  ❘  181

FIGURE 7-17:  Git clone url in the overview pane

FIGURE 7-18:  Add remote in Visual Studio

182  ❘  CHAPTER 7   Deploying ASP.NET Core

Now the code can be pushed to the remote, either directly from Visual Studio or from the command
line. As part of the push operation, Azure launches the publish command, which restores all NuGet
packages and builds the application using the project file. Every time a commit is pushed to the
repository, the publish process starts, effectively implementing a continuous deployment scenario.

On Azure portal you can see the list of deployments and the log of each one of them. These are
accessible from the same menu item used before to configure the Deployment Source (Figure 7-19).

FIGURE 7-19:  List of deployments

NOTE  If you created the remote within Visual Studio, the remote is not tracked
by the local repository, so the first time you want to push, you have to do it from
the Command Prompt and type:

git push -u azure master

The -u option instructs git to start tracking the remote branch.

Deploying to Docker Containers  ❘  183

In addition to these features, Azure also supports the concept of a deployment slot. It is like a “sub-
web app” that works like a normal web app and can be used as a staging environment on which
deployment can be tested before swapping the slot to the production application.

DEPLOYING TO DOCKER CONTAINERS

Visual Studio 2017 also supports publishing ASP.NET Core applications to Docker containers using
the official aspnetcore Linux image for Docker provided by Microsoft. Visual Studio 2017 even sup-
ports debugging ASP.NET Core applications from within a Docker container, but that is not a fea-
ture installed by default, so a few steps are needed.

Installing the Docker Support
First, you have to install the Docker tools for Visual Studio 2017. This is done by opening the Visual
Studio Installer application, modifying your current installation of Visual Studio, selecting the
.NET Core Cross-Platform Development toolset, and on the right sidebar selecting the Container
Development Tools optional component (Figure 7-20).

FIGURE 7-20:  The .NET Core cross-platform development workload dialog

With the tools installed, you can create a new ASP.NET Core application and select Enable Docker
Support directly from the new application dialog. This dialog, shown in Figure 7-21, also points to
the link for installing Docker for Windows, which is a pre-requisite for running Docker.

This adds a few files to the project, the most important of which is the Dockerfile file. This file
contains the instructions used by the Docker to build the container. Listing 7-2 shows the one used
by Visual Studio 2017.

184  ❘  CHAPTER 7   Deploying ASP.NET Core

FIGURE 7-21:  The Enable Docker Support option in the New Application dialog

LISTING 7-2:  Dockerfile

FROM microsoft/aspnetcore:2.0
ARG source
WORKDIR /app
EXPOSE 80
COPY ${source:-obj/Docker/publish} .
ENTRYPOINT ["dotnet", "DockerSample.dll"]

This file instructs Docker to create a new container starting from the microsoft/aspnetcore offi-
cial image, version 2.0, create a folder called app inside the newly create container, and copy there
the files in the folder specified as argument source or by default all the content of the folder obj/
Docker/publish.

It also makes the container listen to port 80 and defines, with the ENTRYPOINT command, the exe-
cutable that will be run when the container is started. In this example, the dotnet DockerSample
.dll command will be run to start the ASP.NET Core application.

If you now debug the application, it won’t run in IIS Express as usual, but it will run inside the
Docker container created using the Dockerfile of Listing 7-2. This is also clearly visible by the
label on the debug button in the toolbar (Figure 7-22).

Deploying to Docker Containers  ❘  185

FIGURE 7-22:  Debugging with Docker toolbar button

As additional proof that the application is running inside the container, you can replace the About
action in the application template with the following code that shows the operating system on which
the code is running.

public IActionResult About()
{
 ViewData["Message"] = System.Runtime.InteropServices.RuntimeInformation.
OSDescription;
 return View();
}

When running inside Docker, it shows “Linux Moby” (Figure 7-23), which is the distribution used
by Microsoft for the official aspnetcore docker image.

FIGURE 7-23:  The operating system in Docker

If you want to add Docker to an application you have already created, you can do so from the Add
menu in the Solution Explorer (Figure 7-24).

186  ❘  CHAPTER 7   Deploying ASP.NET Core

FIGURE 7-24:  Selecting Docker Support from the Add menu

Publishing a Docker Image
From within Visual Studio 2017, you can also publish a Docker image directly to Azure by using the
usual Publish dialog, selecting Container Registry, and following the same steps shown previously in
the chapter. But what if you just want an image to run on your own Docker server? At the moment,
you have to rely on the command line, both for dotnet and for Docker.

After opening the command prompt on the project’s folder, first publish the application using the
dotnet publish command:

dotnet publish -o obj/Docker/publish

Here you specify the obj/Docker/publish path because it is the default used in the Dockerfile.

Then you run the docker build command to create the image for the container:

docker build -t dockersample .

The -t parameter specifies the name of the image and . is the path to the Dockerfile.

If you now run the docker images command to list all the images in your system (Figure 7-25),
you will see the newly created dockersample, together with the microsoft/aspnetcore, which has
been downloaded from the docker repository in order to built it.

FIGURE 7-25:  List of docker images

Now you can run the image directly using the docker run command:

docker run -t -p 8080:80 dockersample

Summary  ❘  187

The parameter -p tells the docker daemon to redirect the port 80 of the container to the port 8080
in the host. Now you can visit the application by going to the URL http://localhost:8080.

If you want to move the image to another server, you can save it to disk with the docker save com-
mand, copy it to your server, and load it with the docker load command.

SUMMARY

Hosting with ASP.NET Core is different from hosting with classic ASP.NET. Such a model might
seem like a step backward, but in the next chapter you will see that this allows hosting ASP.NET
Core applications on web servers that are different from IIS, even on different operating systems. To
provide for the additional steps needed to deploy ASP.NET Core apps, taking care of all the build
systems used to prepare applications for production and the capability to publish to other operat-
ing systems as well, Microsoft developed a range of better deployment tools. From simple manual
deployment on a local server to continuous deployment via staging environments, the tooling
provided within Visual Studio simplifies operations. But what about deploying to other operating
systems? The next chapter covers how to develop ASP.NET Core applications without the help of
Visual Studio, even when running on MacOS.

Developing Outside of
Windows

WHAT’S IN THIS CHAPTER?

➤➤ How to set up ASP.NET Core on a Mac

➤➤ Visual Studio Core

➤➤ Hosting ASP.NET Core on Mac

➤➤ Using command-line tools

The first seven chapters of the book covered all the aspects of front-end development with
ASP.NET Core, from the basic setup of a project within Visual Studio to the deployment of
the final solution on Azure. But one of the main features for .NET Core, cross-platform sup-
port, has not been shown yet.

This chapter is all about cross-platform functionality. In fact, the procedures and all the sam-
ples used are described using a Mac, but everything can also be applied on a Linux machine or
even a Windows machine that doesn’t have Visual Studio installed.

You’ll start your journey by installing ASP.NET Core on a Mac.

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com Search for the
book’s ISBN (978-1-119-18131-6), and you will find the code in the chapter 8 download and
individually named according to the names throughout the chapter.

8

www.wrox.com
http://WROX.COM

190  ❘  CHAPTER 8   Developing Outside of Windows

INSTALLING .NET CORE ON MACOS

Installing .NET Core on Windows was easy, because it comes with Visual Studio. But on a Mac,
a Linux machine, or even on a Windows machine that doesn’t have Visual Studio, the .NET Core
framework and SDK have to be installed manually.

You can install the official SDK for macOS, downloading it from the dotnet core web site: https://
www.microsoft.com/net/core.

Now to make sure everything is installed properly, you can follow the same procedure shown in
Chapter 1. Basically, from the terminal, move inside a newly created folder and type dotnet new
console. This creates a very basic console application (the same shown in Listing 1-1). Then type
dotnet restore to download all the packages needed (including the main CoreCLR), and finally
run the console application by typing dotnet run.

The result should be similar to the one shown in Figure 8-1.

FIGURE 8-1:  Creating the first console app on macOS

NOTE  On Linux, the installation procedure depends on which distribution
you are running, but it’s pretty similar to the one for macOS. Download the
prerequisites by using the package management tool that comes with the distri-
bution, download the binaries, and unpack them. Detailed instructions on how
to install for each distribution can be found on the Microsoft .NET Core site:
https://www.microsoft.com/net/core. The supported distributions are Red Hat
Enterprise 7, Ubuntu 14 and 16, Mint 17 and 18, Debian 8, Fedora 23 and 24,
CentOS 7.1, Oracle Linux 7.1, and OpenSUSE 13.2 and 42.1, and new ones are
added constantly.

https://www.microsoft.com/net/core
https://www.microsoft.com/net/core
https://www.microsoft.com/net/core

Building the First ASP.NET Core App on macOS  ❘  191

BUILDING THE FIRST ASP.NET CORE APP ON MACOS

Applications can be created either by using the dotnet command-line interface as you’ve done so far
already or by using a more advanced tool like Yeoman.

Using dotnet Command-Line Interface
The easiest way of building an ASP.NET Core app is to use the dotnet new command, by specifying
a new application type with the argument mvc. This creates a website similar to the one created by
the default ASP.NET Core project in Visual Studio.

The restore command is run automatically, so just use the run command, and you’ll have a default
website up and running.

FIGURE 8-2:  Creating a sample web app on macOS

Figure 8-2 shows what you see in the command line, and Figure 8-3 shows the resulting website,
with MVC.

There are project templates available also for other types of projects, like class libraries (classlib),
tests (mstest or xunit), and other types of web projects (web for an empty web project and webapi).
New projects can be added over time. This can be done with updates to the tools or by downloading
templates from the community. To see the list of templates available on your system, you can type
the command dotnet new --show-all (Figure 8-4).

192  ❘  CHAPTER 8   Developing Outside of Windows

FIGURE 8-3:  Sample website running on macOS

The creation of a project can be also controlled using template options. For example, for class
libraries, the version of the framework can be specified with the -f or --framework option (net-
coreapp2.0 or netstandard2.0). The template for the MVC project can be created either with or
without membership (and a ton of other options) and using either the cross-platform SQLite (the
default) or the Windows-only LocalDB. To see the template-specific option, you can type the
command dotnet new <template name> --help. Figure 8-5 shows the options of the MVC
template.

So you can now create an MVC project with membership by typing the command:

dotnet new mvc -au Individual

The project created with the last command is also an example of a full-stack cross-platform proj-
ect as it also includes the membership provider, which persists user data to a database using Entity
Framework Core. Unlike the same kind of project created by Visual Studio, this one uses SQLite
instead of SQL Server, so it can run on both Windows and Mac machines.

Building the First ASP.NET Core App on macOS  ❘  193

FIGURE 8-4:  List of project templates

Before you can successfully run this project, including the part that saves a new login to the data-
base, Entity Framework migrations must be run. This can be done by using the Entity Framework
tools for the dotnet command-line interface.

dotnet ef database update

ENTITY FRAMEWORK MIGRATIONS

When a project is created, it contains no database. In order to create it together
with the all the tables needed, a specific setup procedure must be run. This is
done by running the database migration. This part is explained in more detail in
Chapter 9.

194  ❘  CHAPTER 8   Developing Outside of Windows

With the dotnet command-line interface, you can also add references to both NuGet packages
(for example dotnet add package Newtonsoft.Json) and references to other projects (dotnet
add reference ../lib/lib.csproj). And of course you can also remove them with the remove
command.

FIGURE 8-5:  Options for the MVC project template

Building the First ASP.NET Core App on macOS  ❘  195

Using Yeoman
Being part of the SDK, the dotnet command-line interface is a very convenient way of creating
ASP.NET Core applications, but it doesn’t give much flexibility. To solve this problem, the .NET
community developed some generators for Yeoman. Yeoman is a general-purpose scaffolding and
code generator tool that is widely used in the front-end development community for creating projects
for various frameworks (like Angular) using the best-practice folder setup and tool configuration.

First you have to install the Yeoman scaffolding tool. As with all the tools mentioned throughout
this book, this one is installed with npm.

npm install -g yo

You then need to install the official ASP.NET Core generator, still via npm.

npm install -g generator-aspnet

yo is the command-line tool used to run the generators. To start the tool just type yo in a terminal
window.

NOTE  Although Yeoman doesn’t strictly depend on them, most generated
projects make use of both Bower and Gulp, so if you just jumped to this chapter
skipping the Chapters 5 and 6, you might want to install them as well.

Now you can select which generator to run (if this is your first usage of the tool, you’ll only have the
just installed aspnet). Figure 8-6 shows the generators selection screen of Yeoman.

FIGURE 8-6:  Yeoman generators selection screen

196  ❘  CHAPTER 8   Developing Outside of Windows

Once you select aspnet, you get prompted with another menu, which lists (Figure 8-7) all the types
of ASP.NET Core projects it can generate. (You can launch Yeoman directly to this menu by directly
typing yo aspnet in the terminal.)

FIGURE 8-7:  Yeoman ASP.NET Core generators

Among the available options, you can see Web Application Basic, which refers to the template for an
ASP.NET Core application without membership and authorization. If you select this one, you will
be asked which UI framework to use. (You have the choice between Bootstrap and Semantic UI.)

Finally, choose which name to give to the application and hit Enter.

On the screen, you can follow the progress of the installation. First, folders and files are created, and
then Bower dependencies are retrieved from their repositories. At the end of the process, you can
read on the screen how to build and launch the application.

VISUAL STUDIO CODE

Now that that the project is generated, you need a text editor to write some useful code, possibly
with IntelliSense and with a way to debug it. For this, Microsoft developed Visual Studio Code, an
open-source, text-based, general-purpose IDE.

Visual Studio Code  ❘  197

Setting It Up
Visual Studio Code can be downloaded from https://code.visualstudio.com/. Like many other
text editors, it can be extended with extensions. One of them is the extension that adds support
for C# IntelliSense and debugging of ASP.NET Core applications. In order to install it, open the
Extensions pane and type @recommended. A list of the recommended extensions will be shown, from
which you’ll find the one that brings C# support.

When this extension is installed and enabled, open the folder that contains a web application created
either via the dotnet command-line interface or by using Yeoman. The C# extension now inspects
the file, and it will ask you to add two configuration files that are needed for it to work properly:
launch.json and tasks.json. Then you need to restore the dependencies if you haven’t done so
already. See Figure 8-8.

FIGURE 8-8:  Warning in Visual Studio Code

Those two files are then saved in the .vscode folder, and they contain the configuration for launch-
ing and building the application. The right settings are added automatically, so don’t worry too
much about what’s inside for the moment.

INSTALLING C# SUPPORT FOR VISUAL STUDIO CODE

The first time you open a .NET Core project after installing the extension, all
native debuggers and runtimes will be installed, so it will be a few minutes before
you can start using it. The extension also checks for updates of the debuggers and
runtimes every time it starts, so this download will also happen when there is a
new update. But don’t worry, everything happens behind the scenes.

Development Features in Visual Studio Code
With the proper configuration in place, Visual Studio Code is now a fully-fledged code-based IDE
for building .NET Core applications. Now you will have a look at the main features.

IntelliSense
Thanks to the C# extension, Visual Studio Code can provide IntelliSense, code completion, syntax
highlighting, and contextual help like the standard Visual Studio does. See Figure 8-9.

https://code.visualstudio.com/

198  ❘  CHAPTER 8   Developing Outside of Windows

FIGURE 8-9:  IntelliSense in Visual Studio Code

This is not limited to .NET code, but also applies to JavaScript and Typescript, which are both
natively supported by Visual Studio Code, and to many other languages like CSS, HTML, and Sass
via their own specific extensions.

Refactoring
Some of the refactoring and code navigation features that you are used to in Visual Studio are also
available in Visual Studio Code. You can use features such as Go to Definition, Find All References,
Rename Symbol, Peek Definition (shown in Figure 8-10), and so on.

Errors and Suggestions
Just like its big brother Visual Studio, Visual Studio Code can also put a red underline under lines of
code that have problems. And in some cases, it can also prompt suggestions on how to fix the error
by displaying the light bulb icon. See Figure 8-11.

Visual Studio Code also shows all the problems and errors in the Problem panel, which is activated
by clicking on the status bar with the count of errors. See Figure 8-12.

Visual Studio Code  ❘  199

FIGURE 8-10:  Peek Definition

Debugging
Probably the most important feature is the capability to debug the code you wrote. Visual Studio
Code really shines in this capacity.

Once the two previously mentioned configuration files, tasks.json and launch.json, are in your
folder, debugging.NET applications is as easy as pressing the Run icon in the toolbar and setting a
breakpoint in the code. See Figure 8-13.

200  ❘  CHAPTER 8   Developing Outside of Windows

FIGURE 8-11:  Error highlighting

FIGURE 8-12:  Status Bar with problems count

As with the other features, debugging is also possible for other languages for which extensions have
been installed, such as JavaScript, Typescript, or Node.js.

Version Control
Another interesting feature is the integrated support for version control systems. Visual Studio
Code ships with git client with a simple UI for the most common features such as commit, sync,
pull, and push. It also has a more text-based interface (via the command palette) when more control

Visual Studio Code  ❘  201

is needed. But other version control systems are available for download (as extensions) like Visual
Studio Team Services, Perforce, and Mercurial. See Figure 8-14.

FIGURE 8-13:  Debugging ASP.NET Core application

FIGURE 8-14:  Additional Source Control providers

202  ❘  CHAPTER 8   Developing Outside of Windows

The editor also shows some clues directly inside the text, marking new lines and updated lines with
different colors.

It also has an integrated file comparison tool that can be used both to show the differences between
versions and to compare arbitrary files. See Figure 8-15.

FIGURE 8-15:  Diff window

Tasks
Visual Studio Code has support for task runners, so you can run your Gulp and Grunt tasks directly
from the command palette. You can also run any other kind of command by specifying it in the
tasks.json file, the same that was previously mentioned for setup of the C# extension.

LISTING 8-1:  Tasks.json file

{
 "version": "0.1.0",
 "command": "dotnet",
 "isShellCommand": true,
 "args": [],
 "tasks": [

Visual Studio Code  ❘  203

 {
 "taskName": "build",
 "args": [
 "${workspaceRoot}/web.csproj"
],
 "isBuildCommand": true,
 "problemMatcher": "$msCompile"
 }
]
}

In Listing 8-1 you see the basic structure of the tasks.json file. The command to run is specified
in the command property, and then you can indicate the tasks that are going to use the specified
command. In this case there is only one specified task, that’s taskName is build and that takes the
current .csproj file as argument. This specific example also instructs Visual Studio Code to use the
task as the default build command for the project (isBuildCommand) and specifies that the output
of the task will be scanned by a “problem matcher,” $mscompile, to report errors and problems
inside the editor and the problems panel.

Other Features
Visual Studio Code contains so many interesting features that describing all of them probably would
take over half of the book. Apart from the ones just mentioned, it includes all the features typical to
modern text editors. It has an integrated snippets library with auto-expansion so that you can enter
code faster. It also has the already mentioned command palette from which you can easily access all
the commands provided by the editor and its extensions, even the ones that do not have an explicit
menu item. You can also interact with the terminal window directly within Visual Studio Code
without opening an external application.

And, more importantly, it’s extensible so the support for new languages or features can be easily
added if needed. For example, I wrote this book entirely using Visual Studio Code and its support
for the Markdown language.

To explore in more detail what you can do with Visual Studio Code, I encourage you to visit the
official web site at code.visualstudio.com.

OmniSharp
All these features, as far as their support for .NET Core is concerned, are possible thanks to
OmniSharp. OmniSharp is a set of OSS projects that work together for bringing .NET development
to any text editor.

The base layer is a server that runs Roslyn and analyzes the files of the project that is open inside the
editor.

On top of this there is an API (REST-based over HTTP or over pipes) that allows clients (text
editors via their extensions) to query the code model to get IntelliSense, parameter information, the
references to a variable, or the definition of a method.

http://code.visualstudio.com

204  ❘  CHAPTER 8   Developing Outside of Windows

At the top layer are all the editor-specific extensions that display the information retrieved from the
OmniSharp server in a user-friendly way. The top layer also includes other features that are purely
client-side such as code formatting or snippet expansion. It is also the extensions that interact with
the debugger to provide all the features needed for debugging your code.

OmniSharp extensions have been developed for the most popular text editors on the market. Apart
from Visual Studio Code, there are extensions for Atom, Vim, Sublime, and even Emacs. This
means that you can continue using your favorite text editor and still be able to get all the benefit of a
rich code-editing experience powered by OmniSharp.

Other IDEs
As mentioned previously, OmniSharp enables developing .NET Core applications also with other
text editors, like Atom, Sublime, Vim, and Emacs. But all of these lack the support of the many code
refactoring VS plugins that most developers use, like ReSharper and similar tools.

To close this gap, JetBrains, the company behind ReSharper, has decided to expand its line of IDEs.
It is working on Project Rider, a fully-fledged IDE based on its IntelliJ platform and that includes all
the refactoring features of ReSharper.

It is still a work in progress, but given the popularity of ReSharper among .NET developers and the
popularity of their other tools (especially WebStorm for JavaScript development), Rider has a chance
of becoming a big player in the market of text-based C# IDEs.

Microsoft has also released a “full” version of Visual Studio that runs on the Mac. If you are inter-
ested you can download it at the URL https://www.visualstudio.com/vs/visual-studio-mac/.

USING COMMAND-LINE TOOLS

When reading the previous chapters, you might have quickly passed over the parts that were
explaining how to use the various front-end tools using the command line. Visual Studio has
integrated support for them so you do not have to learn their command-line interface.

When using Visual Studio Core (or your favorite text editor) some of these helping hands might not
be available, so you need to start using the command line more than you are used to.

I recommend that you go back to previous chapters of the book and review the part about the
command-line usage of the various tools. Table 8-1 provides a short “cheat sheet” with the most
common commands you might need.

TABLE 8-1:  Useful command-line tools

COMMAND	 DESCRIPTION

npm install <package> --save Installs dependencies and saves in local project

npm update Restores all dependencies defined

bower install <package> --save Installs dependencies and saves in local project

https://www.visualstudio.com/vs/visual-studio-mac/

Summary  ❘  205

COMMAND	 DESCRIPTION

bower install Restores all packages

gulp <taskname> Runs the Gulp task

dotnet restore Restores .NET Core dependencies

dotnet publish Publishes a .NET Core project

SUMMARY

It was possible to run ASP.NET on non-Windows machines even before the creation of the
CoreCLR, by using Mono, but it was considered more of a toy than something businesses would use
for their production environments. And even then, the IDE was not stable enough to allow develop-
ers to build the applications directly on their Mac. So the fact of being cross-platform was more
about the possibility of running the final software on a Linux box.

With .NET Core and Visual Studio Code, aspects of being cross-platform have also become about
developing without using Visual Studio and Windows.

Visual Studio Code is not just for Mac and Linux users. Visual Studio Code also runs on Windows,
and many developers are now starting to use it as a replacement of the more resource-hungry Visual
Studio. In fact, this chapter could have possibly been named “Developing without Visual Studio.”

All the aspects of front-end development have been individually explored, from the server-side part
of ASP.NET Core to the client-side with JavaScript and CSS, and from the management of third-
party packages and the deployment on the Cloud. It is now time to put everything together and see
how to build a simple, yet complete, modern ASP.NET Core web application.

Putting It All Together
WHAT’S IN THIS CHAPTER?

➤➤ How to use Entity Framework Core

➤➤ Authenticating users with OAuth

➤➤ Taking advantage of Visual Studio scaffolding

Throughout the book, you have learned individually all the various technologies and
languages needed to develop and deploy modern web applications using ASP.NET Core, but
you haven’t yet used them all together to build a complete application.

This chapter covers this gap and shows how to use all the technologies together to build (part
of) a real-life application. In the process it shows some features of ASP.NET Core that were
not covered in previous chapters, like authentication with OAuth (Facebook or Twitter) and
data persistence with Entity Framework Core.

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com. Search for the
book’s ISBN (978-1-119-18131-6), and you will find the code in the chapter 9 download and
individually named according to the names throughout the chapter.

BUILDING A TRIATHLON RACE RESULTS WEB SITE

As you might have guessed from some of the samples in the other chapters, I am into triath-
lons. Despite the very high quality of web applications that help track training, the sites for
race registration and results are mostly stuck 10 years or more in the past, and very few race

9

www.wrox.com
http://WROX.COM

208  ❘  CHAPTER 9   Putting It All Together

tracking sites have some kind of live tracking and comparison of performances among different
races.

The application used as a sample in this chapter is a very simple version of such a web application.

The full site is made of three main sub-sites:

➤➤ The back-office, where administrators can create races, enter results, register athletes, and do
any kind of manual intervention to the data.

➤➤ The public site, where users can enroll in races and the public can track the results of athletes
and see the final standings of a race.

➤➤ A set of APIs that can be called by IoT devices like timing mats or GPS trackers to update the
results or the position of athletes along the race course.

Obviously, the samples available in this chapter are not implementing the full feature set of the proj-
ect but are just used to show the development flow and some examples of usage of the technologies
shown in the book.

If you are interested in the fully functional triathlon race-tracking site, you can get on my GitHub
repository http://github.com/simonech/TriathlonRaceTracking and clone the repository.

BUILDING THE BACK-OFFICE SITE

The back-office site is a traditional web application that does not make use of Angular or other
single-page application frameworks. It uses Bootstrap to make it easy to style the site and uses the
features of ASP.NET Core MVC like tag helpers to simplify the creation of repetitive editing screens.

To build this project you can use the MVC application project template available in the New Project
dialog (Figure 9-1). This sets up a project with all the dependencies needed by an MVC project.

The first step is to build the general layout of the back-office, with a menu to access the various
areas of the site. The project template already installs Bootstrap, so designing a menu bar for the
various functions of the site is an easy task.

The menu will contain the links to the various sections of the back-office: races, athletes, and
results. Listing 9-1 shows the master layout for the back-office, including the navigation bar and all
the script references added by the project template.

LISTING 9-1:  Views/Shared/_Layout.cshtml

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - TriathlonRaceTracking</title>

 <environment include="Development">

http://github.com/simonech/TriathlonRaceTracking

Building the Back-Office Site  ❘  209

 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="~/css/site.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet" href="https://ajax.aspnetcdn.com/ajax/
bootstrap/3.3.7/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-
property="position" asp-fallback-test-value="absolute" />
 <link rel="stylesheet" href="~/css/site.min.css" asp-append-version="true" />
 </environment>
</head>
<body>
 <nav class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse"
data-target=".navbar-collapse">
 Toggle navigation

 </button>
 <a asp-area="" asp-controller="Home" asp-action="Index"
class="navbar-brand">TriathlonRaceTracking
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 <li class="dropdown">
 <a href="#" class="dropdown-toggle" data-
toggle="dropdown">Races
 <ul class="dropdown-menu">
 <a asp-area="" asp-controller="Races" asp-
action="Create">Add Race
 <a asp-area="" asp-controller="Races" asp-
action="Index">List Races

 <li class="dropdown">
 <a href="#" class="dropdown-toggle" data-
toggle="dropdown">Athletes
 <ul class="dropdown-menu">
 <a asp-area="" asp-controller="Athletes" asp-
action="Create">Add Athlete
 <a asp-area="" asp-controller="Athletes" asp-
action="Index">List Athletes

 <a asp-area="" asp-controller="Results" asp-
action="Index">Results
 <a asp-area="" asp-controller="Home" asp-
action="About">About

 </div>

210  ❘  CHAPTER 9   Putting It All Together

 </div>
 </nav>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© 2017 - TriathlonRaceTracking</p>
 </footer>
 </div>

 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
 <script src="~/js/site.js" asp-append-version="true"></script>
 </environment>
 <environment exclude="Development">
 <script src="https://ajax.aspnetcdn.com/ajax/jquery/jquery-2.2.0.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha384-K+ctZQ+LL8q6tP7I94W+qzQsfRV2a+AfHIi9k8z8l9ggpc8X+
Ytst4yBo/hH+8Fk">
 </script>
 <script src="https://ajax.aspnetcdn.com/ajax/bootstrap/3.3.7/bootstrap.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn && window.
jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9m
GCD8wGNIcPD7Txa">
 </script>
 <script src="~/js/site.min.js" asp-append-version="true"></script>
 </environment>

 @RenderSection("Scripts", required: false)
</body>
</html>

The navigation bar, created using Bootstrap, links directly to the various actions inside the control-
lers. It does so with the help of the link tag helper, which generates the link controllers’ actions just
by specifying their name.

<a asp-area="" asp-controller="Athletes" asp-action="New">Add Athlete

Besides the navigation bar, Listing 9-1 shows the usage of many tag helpers like environment,
which is used to render whatever is inside depending on which environment the site runs on, and
link, which adds references to JavaScript or CSS files directly from a CDN or locally in case the
CDN is down.

Building the Back-Office Site  ❘  211

As example, you’ll implement the screens to list, create, and edit a race. A race is made of a certain
number of pieces of textual information and a list of intermediate timing points, each of which
might define a fraction of the race. In order to start with the implementation, first you need to set up
the database.

FIGURE 9-1:  New Project dialog

Setting Up Entity Framework
There are a variety of options when it comes to data persistence. You can you use an ORM like
Entity Framework to connect to a standard SQL database, or you can use a document database. For
this sample the simplest solution is using Entity Framework Core (also known as EF Core).

The Object Model
To use Entity Framework Core, the first step is to define the object model of the application without
worrying about how the underlying database tables will be created. In this simple scenario you are
going to have two classes that have a one-to-many relationship:

➤➤ A Race class, with the main information about a race

➤➤ A TimingPoint class, which specifies where timing mats are located

212  ❘  CHAPTER 9   Putting It All Together

Listings 9-2 and 9-3 show the two classes.

LISTING 9-2:  Models/Race.cs

using System;
using System.Collections.Generic;

namespace TriathlonRaceTracking.Models
{
 public class Race
 {
 public int ID { get; set; }
 public string Name { get; set; }
 public string Location { get; set; }
 public DateTime Date { get; set; }

 public ICollection<TimingPoint> TimingPoints { get; set; }
 }
}

LISTING 9-3:  Models/TimingPoint.cs

namespace TriathlonRaceTracking.Models
{
 public enum TimingType
 {
 Start,
 SwimEnd,
 BikeStart,
 BikeEnd,
 RunStart,
 End,
 Intermediate
 }

 public class TimingPoint
 {
 public int ID { get; set; }
 public int RaceID { get; set; }
 public string Name { get; set; }
 public TimingType Type { get; set; }

 public Race Race { get; set; }
 }
}

Notice how the one-to-many relationship between the race and its timing points is defined by both
adding a TimingPoint list to the Race object and specifying the RaceID and the actual reference
to the Race object in the TimingPoint. A timing point can define either an official start or end of a
fraction (the swim, the bike, the run, or the two transitions), or it can be just a lap in the course or

Building the Back-Office Site  ❘  213

any other intermediate point without any meaning in the context of the results. For simplicity, this is
implemented as an enumeration in the same file.

The EF Core Context
Once the object model is defined, you need to register the two classes in the Entity Framework con-
text object, which acts as single point of entry for operations on data. Listing 9-4 shows the Entity
Framework context for the application.

LISTING 9-4:  Data/TriathlonRaceTrackingContext.cs

using Microsoft.EntityFrameworkCore;

namespace TriathlonRaceTracking.Data
{
 public class TriathlonRaceTrackingContext : DbContext
 {
 public TriathlonRaceTrackingContext (DbContextOptions<TriathlonRaceTracking
Context> options)
 : base(options)
 {
 }

 public DbSet<TriathlonRaceTracking.Models.Race> Race { get; set; }

 public DbSet<TriathlonRaceTracking.Models.TimingPoint> TimingPoint { get;
set; }
 }
}

In addition, the connection string must be specified and passed to the context object inside
ConfigureServices in the Startup class.

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 services.AddDbContext<TriathlonRaceTrackingContext>(
 options =>
 options.UseSqlServer(Configuration.GetConnectionString("TriathlonRace
TrackingContext")));
}

The connection string can be defined in the appsettings.json file (Listing 9-5).

LISTING 9-5:  appsettings.json

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {

214  ❘  CHAPTER 9   Putting It All Together

 "Default": "Warning"
 }
 },
 "ConnectionStrings": {
 "TriathlonRaceTrackingContext": "Server=(localdb)\\mssqllocaldb;Database=Triath
lonRaceTrackingContext-19f1651f-d333-4fe1-9301-e75c84ec0b6e;Trusted_Connection=True
;MultipleActiveResultSets=true"
 }
}

The creation of the context class and the changes in the Startup.cs and appsettings.json files
are done automatically the first time you scaffold a controller from the Add Controller dialog in
Visual Studio 2017.

Migrations
Now you need a database where EF Core can store the data. By default, EF Core populates the
objects of the data model from tables named exactly like the classes, with columns named like the
properties. In addition, it expects the ID to be the primary key and everything that represents a rela-
tionship (for example RaceID of Listing 9-3) to be a foreign key. The easiest way to create the cor-
rect tables and keys based on the default mapping conventions is to use a feature called migrations.
Migrations can be used for the first setup of the database but more importantly later in the develop-
ment when adding more features that require new tables or properties for existing tables.

To create the baseline migration for the two classes Race and TimingPoint, you first need to install
the Microsoft.EntityFrameworkCore.Tools package.

Then you need to run the Add Migration command to generate the code to create the database
schema (it gets stored in the Migrations folder), followed by the Update Database command to run
this code on the database.

These two commands can be run either inside Visual Studio 2017, the Package Manager Console, or
using the dotnet command-line tool.

In the first option type the following:

PM>Add-Migration Initial
PM>Update-Database

If you prefer using the dotnet command line, type these lines in the command prompt:

>dotnet ef migration Initial
>dotnet ef database update

You have just scratched the surface of Entity Framework, a topic that entire books have been written
about it. I hope this little introduction helps with the basics needed for building a simple application.

Another interesting feature is the possibility of “seeding” the database with an initial set of data.
This is going to be very useful in this sample application for setting up the database for the frontend
to work.

Together with adding the initial data, you can also run any pending migration directly in code.
Listing 9-6 shows a simple data seed class that adds a race with its timing points.

Building the Back-Office Site  ❘  215

LISTING 9-6:  Models/InitialData.cs

using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using TriathlonRaceTracking.Data;

namespace TriathlonRaceTracking.Models
{
 public static class InitialData
 {
 public static async Task InitializeAsync(IServiceProvider service)
 {
 using (var serviceScope = service.CreateScope())
 {
 var scopeServiceProvider = serviceScope.ServiceProvider;
 var db = scopeServiceProvider.GetService<TriathlonRaceTrackingCont
ext>();
 db.Database.Migrate();
 await InsertTestData(db);
 }
 }

 private static async Task InsertTestData(TriathlonRaceTrackingContext
context)
 {
 if(context.Races.Any())
 return;
 var race = new Race { Name="Ironman World Championship
2017",Location="Kona, Hawaii",Date=new DateTime(2017,10,14,7,0,0) };

 var timingPoints = new List<TimingPoint>
 {
 new TimingPoint{ Race=race, Name="Start", Type=TimingType.Start},
 new TimingPoint{ Race=race, Name="Stairs", Type=TimingType.
SwimEnd},
 new TimingPoint{ Race=race, Name="T1 Exit", Type=TimingType.
BikeStart},
 new TimingPoint{ Race=race, Name="Turnaround", Type=TimingType.
Intermediate},
 new TimingPoint{ Race=race, Name="T2 Entrance", Type=TimingType.
BikeEnd},
 new TimingPoint{ Race=race, Name="T2 Exit", Type=TimingType.
RunStart},
 new TimingPoint{ Race=race, Name="End", Type=TimingType.End}
 };

 context.Add(race);
 context.AddRange(timingPoints);
 await context.SaveChangesAsync();
 }
 }
}

216  ❘  CHAPTER 9   Putting It All Together

This code does a very basic check to understand whether the initial data has to be added
(if(context.Races.Any())) , but in a real-life application probably something more elaborate
might be needed.

To launch this procedure, just call the InitializeAsync method from the Configure method in the
Startup class.

InitialData.InitializeAsync(app.ApplicationServices).Wait();

Building CRUD Screens
Now that the database has been configured, it’s time to build the controllers and more importantly
the views.

Start by creating RacesController. If you use the Add Controller (Figure 9-2 and Figure 9-3)
wizard of Visual Studio, the scaffolding engine creates the skeleton code for you to extend and
build upon.

FIGURE 9-2:  Add Scaffold… dialog

Building the Back-Office Site  ❘  217

FIGURE 9-3:  Add Controller… dialog

WARNING  In this sample, the model coming from Entity Framework is also
used as a ViewModel sent to the view. This has been done just to avoid making
the code too complex for the sample. In a real production-grade application, you
might want to keep the two models separate and map properties from the data
model to the ViewModel using mapping libraries like Automapper.

The next step is to examine the code (both in the controller and in the views) needed to add a new
race to the database. This operation uses the standard pattern Post-Redirect-Get to avoid duplica-
tion of data in case the user refreshes the page after the form has been submitted:

	 1.	 The Create form is rendered in the browser.

	 2.	 The user enters data and presses the Submit button.

	 3.	 The form is submitted using the POST HTTP method to the controller.

	 4.	 The controller checks if the data is valid and does one of the following:

➤➤ If the data is valid, it redirects the user to the subsequent page, in the sample to the
Index, which is requested with the GET method.

➤➤ If the data is not valid, the controller just renders the edit form again with the valida-
tion errors highlighted.

The Controller
There are two action methods needed for the Create operation. The first simply returns the empty
editing form.

public IActionResult Create()

218  ❘  CHAPTER 9   Putting It All Together

{
 return View();
}

The second method, still called Create, is invoked when the form is submitted with POST.

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Create([Bind("ID,Name,Location,Date")] Race race)
{
 if (ModelState.IsValid)
 {
 _context.Add(race);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 return View(race);
}

The generated code incorporates a lot of the best practices for securing the application. It uses the
ValidateAntiForgeryToken attribute to check the token added by the form tag helper. This is used
to prevent cross-site request forgery (also known as CSRF).

It also uses the Bind attribute in the model binding to avoid overposting. This prevents malicious
users from tampering with the request, adding properties that were not supposed to be edited via
the editing form. This attribute is especially needed when the data model is exposed directly to the
views instead of using a specific ViewModel.

The action method then goes on checking the validity of the request, adds the object to the database,
and finally redirects to the Index action method, which renders the list of races.

The View
The Create view (Listing 9-7) is a bit more interesting than the action method.

LISTING 9-7:  Views/Races/Create.cshtml

@model TriathlonRaceTracking.Models.Race

@{
 ViewData["Title"] = "Create";
}

<h2>Create</h2>

<h4>Race</h4>
<hr />
<div class="row">
 <div class="col-md-4">
 <form asp-action="Create">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="Name" class="control-label"></label>
 <input asp-for="Name" class="form-control" />

Building the Registration Page  ❘  219

 </div>
 <div class="form-group">
 <label asp-for="Location" class="control-label"></label>
 <input asp-for="Location" class="form-control" />

 </div>
 <div class="form-group">
 <label asp-for="Date" class="control-label"></label>
 <input asp-for="Date" class="form-control" />

 </div>
 <div class="form-group">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
 </form>
 </div>
</div>

<div>
 <a asp-action="Index">Back to List
</div>

@section Scripts {
 @{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
}

As seen in Chapter 1, ASP.NET Core MVC introduced the tag helpers to make writing views
easier. This is an example of the form, label, input, and validation helpers in action. Just by adding
the asp-for or asp-validation-for attributes, the standard HTML tags become aware of the
ViewModel and render the values of the properties and, if needed, also the HTML attributes needed
for the Bootstrap-based validation framework.

Bootstrap is also used extensively. Notice the .col-md-4 class name used to instruct the grid to use
just 4 out of the 12 columns to render this form (so using only one-third of the width of the page).

The form is styled using Bootstrap classes using the .form-group to define individual elements of
the form and .form-control to identify the actual input field. Finally, also the button is styled
using the btn btn-default classes from Bootstrap. For more formatting options for forms using
Bootstrap, you can refer back to Chapter 4 and Listing 4-6.

BUILDING THE REGISTRATION PAGE

In the back-office someone has created the race. Now it is time for athletes to register for it. For this
feature, a user will be able to log in using a social media login like Facebook or Twitter, and once
registered they can choose which race to participate in.

You are going to create a new Visual Studio project for this, but you want to keep on using
the same Entity Framework data model, so you need to refactor the solution and move all the
EF-related classes to a separate Class Library project. Once the project is created and all the con-
tent of the Data and Model folders has been moved to the new project, you have to reference the

220  ❘  CHAPTER 9   Putting It All Together

EntityFrameworkCore and EntityFrameworkCore.SqlServer NuGet packages. This was not
needed before because they were part of the mega-package Microsoft.AspNetCore.All used in
the ASP.NET Core MVC project. You will also need to configure the appsettings.json file and
Startup class the same way they were done for the backoffice project.

Adding social media authentication is easy with ASP.NET Core. You start by creating another
project, still as an ASP.NET Core MVC project, and selecting Individual User Accounts as the
Authentication mode. This way the project template will add the database entities, controllers, and
views to collect and store all the information needed to create a private site where users can register
either directly (providing a username and password) or via OAuth providers like Facebook, Twitter,
Google, Microsoft, GitHub, and others.

Adding a social login is just a matter of adding the right NuGet package and configuring the authen-
tication provider in the ConfigureService method in the Startup class. For example, to add a
Facebook login, add the NuGet package Microsoft.AspNetCore.Authentication.Facebook.
Then add the following lines of code in the ConfigureService method:

 services.AddAuthentication().AddFacebook(facebookOptions =>
 {
 facebookOptions.AppId = Configuration["Authentication:Facebook:
AppId"];
 facebookOptions.AppSecret = Configuration["Authentication:Facebook:
AppSecret"];
 });

Now you have to register a new application on the Facebook developer portal in order to get the
AppId and AppSecret needed to authenticate your application with Facebook. Go to the URL
https://developers.facebook.com/apps/ and click on the Add a New App button (Figure 9-4).

FIGURE 9-4:  Facebook developer portal

Then enter the name of your app and your email address (Figure 9-5).

FIGURE 9-5:  Create New App ID

https://developers.facebook.com/apps/

Building the Registration Page  ❘  221

And then select Facebook Login as the product to set up (Figure 9-6).

FIGURE 9-6:  Select the product to set up

Then skip the wizard that pops up and select Settings from the sidebar on the left. Inside this page
enter the absolute URL of the route /signin-facebook. This route has been added by the NuGet
package. Leave all the other settings untouched (Figure 9-7).

FIGURE 9-7:  OAuth Settings page

The last thing is to retrieve the AppId and AppSecrets needed for the application to work. For this
go to the Dashboard inside the developer portal (Figure 9-8).

222  ❘  CHAPTER 9   Putting It All Together

FIGURE 9-8:  The Dashboard

Now you can save them either in the appsettings.json file or using the user secret management.
The second option is better because it stores the configuration outside of the application folder (in
the user’s profile) and avoids the common mistake of storing such sensitive information as the social
login key and secrets in the source repositories. Figure 9-9 shows how to open the user secrets file
from within Visual Studio via the Manage User Secrets context menu item on the project node inside
the Solution Explorer.

FIGURE 9-9:  Manage User Secrets menu item

Showing Real-Time Results  ❘  223

Next type the following configuration (obviously putting in your own values instead of the place-
holders) in the secrets.json file:

{
 "Authentication": {
 "Facebook": {
 "AppId": "myappId",
 "AppSecret": "myappsecret"
 }
 }
}

Now launch the project and go to the login page, and you’ll see a new button under the text that
says “Use another system to log in” (Figure 9-10).

FIGURE 9-10:  Login page

At this point, once a user authenticates to your system, you can prompt them with a page to register
for a race.

SHOWING REAL-TIME RESULTS

Unlike the previous two sites, where the interaction with the data was relatively simple, showing
real-time results requires a more complicated UI. For this purpose, you are going to use Angular
coupled with some web APIs to retrieve the data from the database.

Creating the Angular Client-Side Application
For this site, you can use the Angular project template provide by Visual Studio 2017. This sets up a
project using the JavaScript services mentioned at the end of Chapter 3 (Figure 9-11).

224  ❘  CHAPTER 9   Putting It All Together

FIGURE 9-11:  New Project dialog, Angular

The architecture of this application is going to be very simple. The web service sends the list of
athletes with all their timing points to the JavaScript frontend,which will then show them and
allow filters to be applied and statistics to be analyzed. As explained in Chapter 3, the frontend is
implemented with a specific set of Angular components and services. The final result is shown in
Figure 9-12.

As with any non-trivial Angular application, this one is made of a cascade of components.

The root element is the Results component, which is responsible for the general layout of the
page and for handling the interaction between the child components. Listing 9-8 shows both the
TypeScript file and the HTML template file.

LISTING 9-8:  Results Component

TEMPLATE FILE

<h1>Kona Ironman Top 5 men</h1>
<results-list (selected)=showDetails($event)>Loading athlete list...</results-list>
 You selected: <app-athlete-details [athlete]="selectedAthlete">
</app-athlete-details>

TYPESCRIPT FILE

import { Component } from '@angular/core';

Showing Real-Time Results  ❘  225

import { Athlete } from './athlete';

@Component({
 selector: 'results',
 templateUrl: 'results.component.html'
})
export class ResultsComponent {
 selectedAthlete: Athlete;

 showDetails(selectedAthlete: Athlete) {
 this.selectedAthlete = selectedAthlete;
 }
}

FIGURE 9-12:  Results list

This component includes two child components and handles the selected event of the results list in
order to show the details of the results list to the user.

The first child component is results-list, which builds the table that contains the results list, as
shown in Listing 9-9. The table is styled using the table class of Bootstrap to make a bordered table
with highlighting of the line on which the mouse pointer is.

LISTING 9-9:  Results-list.component.html

<table class="table table-bordered table-hover">
 <tr>
 <th>Position</th>
 <th>Name</th>

226  ❘  CHAPTER 9   Putting It All Together

 <th>Nationality</th>
 <th *ngFor="let point of timingPoints">{{point.name}}</th>
 <th>Total</th>
 </tr>
 <tr app-athlete *ngFor="let athlete of athletes | slice:0:5;let i = index">
 (click)="select(athlete)"
 [athlete]="athlete"
 [timingPoints]="timingPoints"
 [position]="i+1">
 </tr>
</table>

The header of the table is also built dynamically, adding one column per each intermediate point.
And obviously, the rows of the table are displayed iterating over the athletes property of the com-
ponent, which contains the list of all athletes participating in the race. Notice the usage of the pipe
slice:0:5 to just show the top five athletes. This last part is the one that requires most of the code.
Listing 9-10 shows the TypeScript class that handles this template.

LISTING 9-10:  Results-list.component.ts

import { Component, Output, EventEmitter, OnInit } from '@angular/core';
import { AthleteService } from './athlete.service';
import { Athlete } from "./athlete";
import { TimingPoint } from "./TimingPoint";
import { Observable } from "rxjs/Observable";

@Component({
 selector: 'results-list',
 templateUrl: 'results-list.component.html'
})
export class ResultsListComponent implements OnInit {
 athletes: Athlete[];
 timingPoints: TimingPoint[];
 @Output() selected = new EventEmitter<Athlete>();
 constructor(private athleteService: AthleteService) { }

 getAthletes() {
 this.athleteService.getAthletes()
 .then(list => {
 for (var i = 0; i < list.length; i++) {
 var athlete = list[i];
 athlete.timingValues = new Map<string, string>();
 for (var j = 0; j < athlete.timings.length; j++) {
 athlete.timingValues.set(athlete.timings[j].code, athlete.
timings[j].time);
 }
 }
 this.athletes = list;
 });
 }

Showing Real-Time Results  ❘  227

 getTimingPoints() {
 this.athleteService.getTimingPoints()
 .then(list => this.timingPoints = list);
 }

 ngOnInit() {
 this.getAthletes();
 this.getTimingPoints();
 }

 select(selectedAthlete: Athlete) {
 this.selected.emit(selectedAthlete);
 }
}

The implementation is very similar to the one shown at the end of Chapter 3. During the ngOnInit
event, the lists of athletes and intermediate timing points are retrieved by calling an external service
(AthleteService), which is the one responsible for the actual HTTP request to the web APIs. In
the method getAthletes, the response coming from the service is processed and a bit elaborated in
order to craft the ViewModel needed to easily render the template.

The final element in the graph of components is the one that renders each row of the results list
table, and it’s shown in Listing 9-11.

LISTING 9-11:  Athlete.Component

TEMPLATE FILE

<td>{{position}}</td>
<td>{{athlete.name}}</td>
<td>{{athlete.country}}</td>
<td *ngFor="let timing of timingPoints">
 {{athlete.timingValues.get(timing.code)}}
</td>
<td>{{athlete.time}}</td>

TYPESCRIPT FILE

import { Component, Input } from '@angular/core';
import { Athlete } from './athlete';
import { TimingPoint } from './timingpoint';

@Component({
 selector: 'tr[app-athlete]',
 templateUrl: 'athlete.component.html'
})
export class AthleteComponent {
 @Input() athlete: Athlete;
 @Input() position: string;
 @Input() timingPoints: TimingPoint[];
 constructor() { }
}

228  ❘  CHAPTER 9   Putting It All Together

Also in this case, the template iterates over the list of intermediate points and displays the timing
for the athlete at that specific point. The highlighted lines are the ones for which the results com-
ing from the server are manipulated, as will be explored in the upcoming “Building the Web APIs”
section.

This component cannot know in which position it is rendered, so, to render the position of the ath-
lete, it has an input parameter called position that is supplied by the parent component.

The final missing piece is the service that actually calls the server. This is pretty simple, as you can
see in Listing 9-12.

LISTING 9-12:  athlete.service.ts

import { Injectable } from '@angular/core';
import { TimingPoint } from './TimingPoint';
import { Athlete } from './athlete';
import { Http, Response } from "@angular/http";
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/toPromise';

@Injectable()
export class AthleteService {
 constructor(private http: Http){}

 getAthletes(){
 return this.http.get('/api/standings')
 .map((r: Response) => <Athlete[]>r.json().data)
 .toPromise();
 }

 getTimingPoints() {
 return this.http.get('/api/timingpoints')
 .map((r: Response) => <TimingPoint[]>r.json())
 .toPromise();
 }
}

All that is left to do is to build the web APIs that return the data to the Angular client-side
application.

Building the Web APIs
Returning the list of results is a very simple operation. Its only complexity is computing the interme-
diate time at the various timing points. For this sample, two APIs are made. The first (Listing 9-13)
sends the list of all registered timing points to the Angular client, so that it can show them in the
header of the results list.

Showing Real-Time Results  ❘  229

LISTING 9-13:  Controllers/TimingPointsController.cs

using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Mvc;
using Frontend.ViewModels;
using Frontend.Services;

namespace Frontend.Controllers
{
 [Produces("application/json")]
 [Route("api/TimingPoints")]
 public class TimingPointsController : Controller
 {
 private readonly ITimingService _service;

 public TimingPointsController(ITimingService service)
 {
 _service = service;
 }
 [HttpGet]
 public IList<TimingPointDefinition> Get()
 {
 var data = _service.GetTimingPoints(1);

 var model = data.Select(tp => new TimingPointDefinition
 {
 Code = tp.Code,
 Name = tp.Name,
 Order = tp.ID
 }).ToList();

 return model;
 }
 }
}

The second web API is used to provide all the athletes that are on the course with a list of all their
intermediate timing points. In this case the controller is very basic as it delegates the complex opera-
tions of calculating intermediate times to a service, the TimingService, injected via DI. Listing 9-14
shows the simple API.

LISTING 9-14:  Controllers/StandingsController.cs

using Frontend.Services;
using Frontend.ViewModels;
using Microsoft.AspNetCore.Mvc;
using System;

230  ❘  CHAPTER 9   Putting It All Together

using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using TriathlonRaceTracking.Data;

namespace Frontend.Controllers
{
 [Route("api/[controller]")]
 public class StandingsController : Controller
 {

 private readonly ITimingService _service;

 public StandingsController(ITimingService service)
 {
 _service = service;
 }

 [HttpGet]
 public AthletesViewModel Get()
 {
 var data = _service.GetStandings(1);

 var model = new AthletesViewModel(data);
 return model;
 }
 }
}

As you can see, not much is going on in Listing 9-14. The actual computation happens in the service
(Listing 9-15).

LISTING 9-15:  Services/TimingService.cs

using Frontend.ViewModels;
using Microsoft.EntityFrameworkCore;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using TriathlonRaceTracking.Data;
using TriathlonRaceTracking.Models;

namespace Frontend.Services
{
 public class TimingService : ITimingService
 {
 private readonly TriathlonRaceTrackingContext _context;
 public TimingService(TriathlonRaceTrackingContext context)
 {
 _context = context;
 }

Showing Real-Time Results  ❘  231

 public IList<AthleteViewModel> GetStandings(int raceId)
 {
 var data = _context.Registrations
 .Include(r => r.Timings)
 .ThenInclude(t => t.TimingPoint)
 .Include(r => r.Athlete)
 .Where(r => r.RaceID == raceId);

 var result = new List<AthleteViewModel>();
 foreach (var position in data)
 {
 var athleteVM = new AthleteViewModel(position.Athlete.FullName,
position.Athlete.Nationality);
 if (position.Timings.Count == 0)
 {
 athleteVM.Time = "DNS";
 }
 else
 {
 var start = position.Timings.Where(t => t.TimingPoint.Type ==
TimingType.Start).Max(t => t.Time);
 var furthestPosition = GetFurthestPosition(position.Timings);
 athleteVM.Time = TimeFromStart(start, furthestPosition).
ToString();
 athleteVM.Timings = position.Timings.Select(t => new
TimingPointViewModel
 {
 Time = TimeFromStart(start, t),
 Order = (int)t.TimingPoint.Type,
 Name = t.TimingPoint.Name
 }).ToList();
 }

 result.Add(athleteVM);
 }

 return result;

 }

 private static TimeSpan TimeFromStart(DateTime start, Timing timingPoint)
 {
 return timingPoint.Time.Subtract(start);
 }

 private Timing GetFurthestPosition(List<Timing> timings)
 {
 Timing furthest = new Timing() { ID = -1 };
 foreach (var timing in timings)
 {
 if (timing.TimingPointID > furthest. TimingPointID)
 furthest = timing;
 }
 return furthest;
 }

232  ❘  CHAPTER 9   Putting It All Together

 public IQueryable<TimingPoint> GetTimingPoints(int raceId)
 {
 return _context.TimingPoints.Where(tp => tp.RaceID == raceId);
 }
 }
}

The GetStandings method first retrieves all the athletes participating in the race, joining them with
all their intermediate timings and as well as their details. Later, it finds the time of each departure
(in many races nowadays the start time is different for everyone) and identifies the difference with
each intermediate timing to get the various splits. Finally, it returns all the data back to the control-
ler so that it can be sent back to the web browser.

CONNECTING WITH IOT DEVICES

Nobody is going to sit in front of a laptop entering data as soon as an athlete passes from a timing
point. This task is left to machines, which can sense when an athlete, who is wearing an RFID chip,
crosses a timing mat. This information needs to be sent to the server so that it can show the real-
time standing of athletes.

Implementing the full solution that tracks athletes is complicated, but you are just going to create
the API that receives the raw data, and you’ll later test it by simulating the calls using a REST client
emulator.

You do this with an API controller that receives the race number of the athlete and some identifiers
for both the race and the timing point, together with the time of the day. Listing 9-16 shows the
code for the API.

LISTING 9-16:  Controllers/TimingsController.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using TriathlonRaceTracking.Data;
using TriathlonRaceTracking.Models;

namespace TriathlonRaceTracking.Controllers
{
 [Produces("application/json")]
 [Route("api/Timings")]
 public class TimingsController : Controller
 {
 private readonly TriathlonRaceTrackingContext _context;

 public TimingsController(TriathlonRaceTrackingContext context)

Connecting with IoT Devices  ❘  233

 {
 _context = context;
 }

 // GET: api/Timings/5
 [HttpGet("{id}")]
 public async Task<IActionResult> GetTiming([FromRoute] int id)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var timing = await _context.Timings.SingleOrDefaultAsync(m => m.ID ==
id);

 if (timing == null)
 {
 return NotFound();
 }

 return Ok(timing);
 }

 // POST: api/Timings
 [HttpPost]
 public async Task<IActionResult> PostTiming([FromBody] TimingPostModel
model)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 var registration = _context.Registrations.SingleOrDefault(r =>
r.BibNumber == model.BibNumber && r.RaceID == model.RaceId);
 var timingPoint = _context.TimingPoints.SingleOrDefault(tp => tp.Code.
Equals(model.TPCode) && tp.RaceID == model.RaceId);

 var timing = new Timing
 {
 RegistrationID=registration.ID,
 TimingPointID=timingPoint.ID,
 Time=model.Time
 };

 _context.Timings.Add(timing);
 await _context.SaveChangesAsync();

 return CreatedAtAction("GetTiming", new { id = timing.ID }, timing);
 }

 }

234  ❘  CHAPTER 9   Putting It All Together

 public class TimingPostModel
 {
 public int BibNumber { get; set; }
 public int RaceId { get; set; }
 public string TPCode { get; set; }
 public DateTime Time { get; set; }
 }
}

There is nothing particularly complicated here, but there a few noteworthy elements. The most
important thing is that the PostTiming method doesn’t use a Timing object as an input parameter
but as a post model. The reason, apart from avoiding possible over-posting, is because the time-
keeping device at a timing point won’t know the IDs used in the database but will most likely have
some other code and will know the race number of the athlete.

Another element is the usage of CreatedAtAction, which will make the REST API return the 201
HTTP code that is typically used when a new object is created by a REST call.

Since you don’t have a time-keeping point to connect to the system, you can test the REST endpoint
using any REST client. I like to use Postman, which is available both as a Google Chrome extension
and as a standalone application.

You can directly specify the request body in JSON and send the request to the server. The request
body must be a JSON representation of the TimingPostModel class, for example:

 {
 "bibNumber": 1,
 "raceId": 1,
 "time": "2017-10-08T20:49:54.730Z",
 "TPCode": "T1S"
 }

Postman has the possibility of executing some scripts (in JavaScript) before the execution of the
request, so you can replace the hard-coded timestamp with a variable that contains the exact
moment in which the request is executed. This makes it easy to test the API without changing
the time parameter each time. To do this, just add the following line of code into the Pre-request
Script tab:

postman.setGlobalVariable('timestampUtcIso8601', (new Date()).toISOString());

Then replace the time parameter with the variable {{timestampUtcIso8601}}. Figure 9-13 shows
the Postman request builder screen ready to add new timing information to the system.

Deploying  ❘  235

FIGURE 9-13:  Postman request builder screen

DEPLOYING

Now that the projects are developed, it is time to publish them to allow triathletes to register online
for races. For this purpose you are going to deploy them on Azure.

Chapter 7 contains a step-by-step procedure for deploying the sites, so here I’ll skip explaining the
steps in detail and just highlight the main points.

236  ❘  CHAPTER 9   Putting It All Together

You’ll start by publishing the back-office site first. When going through the publishing dialogs I
recommend creating a Resource Group specific to these sets of applications. In addition to what is
shown in Figures 7-12 and 7-13, you must also create a DB server (if needed) and a SQL Database.
Figure 9-14 shows the two dialogs that contain the forms to create both the database and the server.

FIGURE 9-14:  Server and database creation dialogs

Once the publishing process is complete, there is still one small detail to change. In the dialog for
the creation of the database, you left DefaultConnection as the name for the connection string.
Now you have to go in the Application settings blade on Azure portal (Figure 9-15) and change it
to the name used by the application, which is TriathlonRaceTrackingContext, as shown in
Listing 9-4.

FIGURE 9-15:  Connection string settings on the Azure portal

Now just browse to the URL of the Azure app service, and Entity Framework Core will automati-
cally create the tables and fill them with the data specified in the InitialData.cs file.

After the back-office, it is time for the Angular-based frontend. Just follow the same procedure as
previously, but choose the now existing Resource Group instead of creating a new one. And do not
create a SQL Database because the application uses the same database as the back-office.

Summary  ❘  237

For this application, the connection string has to be set manually, copying the value of the one set
for the back-office.

For the frontend, the publishing takes a bit more time than the back-office because all NPM pack-
ages have to be installed, and also webpack, being the application in release mode, has to generate a
minified and bundled version of all TypeScript classes used to develop the Angular frontend.

After having deployed the two applications, the Resource Group will contain, as shown in
Figure 9-16, five items:

➤➤ The two web applications

➤➤ The database server and the database

➤➤ The App Service Plan

FIGURE 9-16:  Content of the Resource Group

Now, if you just followed the chapter for testing, remember to delete the resource group to avoid
incurring any unexpected expenses.

SUMMARY

This chapter showed how all the technologies explained in the book can (and must) be used together
to build a complete solution made of a “classic” ASP.NET Core MVC-based back-office, a more
modern single-page application for the frontend, and a REST service.

It also showed how to publish everything on the cloud for it to be accessible by anyone else.

The code in this chapter is just the tip of the iceberg for the application. You can have a
look at the complete example on my GitHub repository http://github.com/simonech/
TriathlonRaceTracking.

I hope you enjoyed reading the book as much as I enjoyed writing it and that you have learned how
to develop ASP.NET Core applications that include a lot of frontend development techniques.

http://github.com/simonech/TriathlonRaceTracking
http://github.com/simonech/TriathlonRaceTracking

239

INDEX

Symbols
@Component decorator, 67
` (backtick), in ECMAScript, 67

A
abstractions, 29

dependencies and, 17
Add Migration command, 214
Add New Item dialog, 92
AddOptions method, 23
Angular

vs. AngularJS, 60
application structure, 64–67
with ASP.NET MVC, 83–92
concepts, 60
data binding in, 68–70
decorators in, 66
directives, 70–71
Http module in, 79–80
input and output properties, 75–78
language of, 61–62
main HTML page, 67
multiple components, 73–75
New Project Dialog for, 224
project setup, 62–64
root component, 66–67
services and dependency injection (DI), 71–73
talking to back end, 78–83
Visual Studio 2017 support, 92–94
website, 61

Angular client-side application, 223–228
Angular framework, 43–46
Angular-CLI Tool, 63–64
angular-cli.json file, 86
app root module, 90–91

App Service dialog, 176
AppFunc function, 11–12
application frameworks, 27
applications, object model for, 211–213
AppModule class, 65
<app-root> tag, 45, 67
app.Run method, 14
appsettings.json file, 9, 213–214, 222
app.Use method, 14
app.UseStatusCodePages() method, 26
ASP.NET Core, 2, 5, 8

application anatomy, 12–15
Bootstrap support from, 124–128
combining Angular projects, 84–89
configuration framework, 21–24
creating project, 8
dependency injection (DI), 17–19
Diagnostics, 25–26
environments, 15–17
first app on macOS, 191–196
hosting model, 167–168
logging, 19–21
MVC application framework, 27–36
serving static files, 26
social media authentication with, 220
Startup class, 14–15
tag helpers for, 32–35, 127–128

ASP.NET Core generators, Yeoman, 196
ASP.NET MVC, 4

Angular with, 83–92
ASP.NET Web API, 4–5
ASP.NET Web Forms, 3–4
ASPNETCORE_ENVIRONMENT environment

variable, 15
AspNetCoreModule, 168

Installing, 171

240

async pipe – controllers

async pipe, 80–81, 82
attribute directives, in Angular, 70–71
Azure

continuous deployment to, with Git, 179–183
deploying applications on, 174–183
publishing Docker image to, 186–187

Azure Web App, 179–180

B
backtick (`), in ECMAScript, 67
Base Class Library (BCL), 6
Blankslate component, 51
blockquote element, 104–105
Bootstrap, 50–51, 97–128, 208, 219

autocomplete, 125
device classes, 102
Glyphfriend extension, 126–127
installing, 98–99
JavaScript, 116–121
Less for customizing, 122–124
main features, 100
Snippet Pack, 126
typography, 104–105
version 3.3 vs. 4, 99
Visual Studio 2017 and ASP.NET Core support,

124–128
bootstrap array, 65
Bootstrap components, 107–116

dropdown, 108–109
Glyphicons, 107–108
input groups, 109–110
labels, badges, alerts, 116
navigation, 110–115

Bootstrap styles, 100–107
buttons, 107
forms, 106–107
grid system, 100–104
tables, 105

Bower, 54–55, 129, 139–142
creating your own packages, 142
getting packages with, 140–142
installing, 140
location for install, 142
managing dependencies, 153–154

bower install <package> --save
command, 204

bower install command, 205
bower.json file, 9

editing, 141–142
breadcrumbs, 114–115
build command, 7
build systems, 38, 145

purpose, 146
and Visual Studio 2017, 160–164

BuildWebHost method, 13
bundleconfig.json file, 9, 160–163
Bundler and Minifier Extension, 160–163
buttons, Bootstrap style for, 107

C
C#, Visual Studio Code suppport for, 197
Child Actions, 32
Chrome V8 JavaScript runtime, 38
cloud, deploying applications on, 174–183
code snippets, in Visual Studio 2017, 92–94
<code> element, 105
columns, order in Bootstrap, 103
command-line interface (CLI), 6–7

Angular-CLI Tool, 63–64
for Bower, 140
dotnet, 191–194, 214
for NPM, 138
publishing applications with, 171–172
tools, 204–205

components:, in Angular, 60
configuration framework, for ASP.NET Core,

21–24
Configure App Service Plan dialog, 177
Configure method
IHostingEnvironment parameter, 15
of Startup class, 14–15

ConfigureLogging method, 20
ConfigureServices method, 18–19, 23
connection string, for database, 236
constructor injection, HomeController with, 30
containers, 17
continuous deployment to Azure with Git, 179
controllers, 217–218

241

Controllers/StandingsController.cs file – Find-Package -Id Json command

dependency injection (DI) in, 28–30
Controllers/StandingsController.cs file,

228–230
Controllers/TimingsController.cs file,

232–234
CoreFX, 5
Create App Service dialog, 176–177
Create method, 217–218
Create New App ID dialog, 220
CreatedAtAction method, 233
cross-platform functionality, 189
CRUD Screens, building, 216–219
.csproj project file, 7

manually editing, 133–134
CSS, 97
CSS frameworks, 37, 49–53

Bootstrap, 50–51
Material Design Lite (MDL), 52
Primer CSS, 51–52
Semantic UI, 52–53

css loader, webpack.config.js file with, 158

D
Dashboard, 222
data attributes, activating tab navigation with, 118
data binding, in Angular, 60, 68–70
database, connection string for, 236
data-bind attribute, 46, 47
debugging, in Visual Studio Code, 198–199, 201
declarations array, 65
decorators, in TypeScript, 66
dependencies, managing Bower, 153–154
Dependencies node, 9
dependency injection (DI), 17–19

in Angular, 60, 71–73
in controllers, 28–30

deploying
applications on cloud, 174–183
websites, 235–237

dest() method for Gulp, 148
Developer Exception Page, 25
devtool parametter, 159–160
Diff window, 201
directives, in Angular, 60, 70–71

docker build command, 186
Docker container

deploying to, 183–187
installing, 183–186

Docker image, publishing to Azure, 186–187
docker images command, 186
donet new command, 191, 192
dotnet application host, command line, 6–7
dotnet command-line interface, 191–194
dotnet new console command, 6
dotnet publish command, 171, 186, 205
dotnet restore command, 7, 190, 205
dotnet run command, 7, 190
dropdown, 108–109

E
ECMAScript, 42
email, tag helpers for, 34–35
Empty project template, 12–15
Entity Framework

core context, 213–214
migrations, 214–216
setup, 211–216

EntityFrameworkCore NuGet packages, 220
EntityFrameworkCore.SqlServer Nuget

package, 220
entry, in Webpack, 156
entry point, for Angular app, 64
environments, 15–17
errors, in Visual Studio Code, 198, 200
eval function (JavaScript), 39
event binding, in Angular, 68, 69–70
Exception Handler middleware, 26
executing tasks when files change, 153
ExtractTextWebpackPlugiin, 158
webpack.config.js file with, 159

F
Facebook developer portal, registering application

on, 220
filters, for logging, 20–21
Find-Package -Id Json command, 133

242

folder structure – Inversion of Control or Dependency Injection Containers

folder structure, package managers and, 56
forms, 106–107

input textbox for, 32–35
[FromServices] binding attribute, 30
front-end builld systems, purpose, 146
front-end development, 145

G
Get-Package command, 133
Git, continuous deployment to Azure with,

179–183
GitHub, Primer CSS, 51–52
global package, NPM as, 138
Glyphfriend extension, 126–127
Glyphicons, 107–108
grid system, in Bootstrap, 100–104
Grunt, 146
Gulp, 57, 146–153

executing tasks when files change, 153
generating source maps, 151
installing, 147
Intellisense for, 164–165
naming output files from package name,

150–151
Task Runner Explorer, 164, 165
typical build file, 148–150

gulp <taskname> command, 205
gulp.dest() method, 148
gulpfile.js file, 147–148, 150, 160–163
gulp-inject plugin, 155
gulp-jshint plugin, 151–152
gulp.src() method, 148
gulp.task() method, 147
gulp.watch() method, 148

H
“Hello World” example

in Knockout, 46–47
for Node.js2, 38–39
with React, 47–48

HomeController
with action method parameter injection, 30
with constructor injection, 29–30

Host Builder Console Application, 13
HTML files

Intellisense in, 94
replacing references directly in, 154–155

HTTP 404 status code, 26
Http module, in Angular, 78, 79–80

I
IDateService interface, 29
IIS Manager, 169–170, 171
imports array, 65
Index.html listing, for Angular app, 67
@Input directive, 76
input groups, in Bootstrap, 109–110
input properties, in Angular, 75–78
input textbox, for form, 32–35
installing

application on Internet Information Server (IIS),
168–174

AspNetCoreModule, 171
Bootstrap, 98–99
Bower, 140
Docker container support, 183–186
Gulp, 147
.NET Core on macOS, 190
NPM (Node Package Manager), 137–138
Visual Studio Code suppport for C#, 197
Webpack, 156

Install-Package Newtonsoft.Json
command, 133

instantiation, of logger, 19
Intellisense, 32–35

for Gulp, 164–165
in HTML files, 94
in TypeScript files, 93–94
in Visual Studio Code, 197–198

Internet Information Server (IIS)
checking for install, 169
creating website, 172–173
installing application on, 168–174
Kestrel. and, 168
publishing profile, 174

interpolation, in Angular, 68
Inversion of Control or Dependency Injection

Containers (IoC/DI containers), 18

243

Invoke method – navigation in Bootstrap

Invoke method, 31
InvokeAsync method, 31, 32
IOptions, alternatives, 24
IOT devices, connecting with, 232–235

J
JavaScript, 42

Bootstrap and, 116–121
bundling, 156–157
checking with JSHint, 151–152
modal dialog, 118–120
tabbed content, 117–118
tooltips and popovers, 120–121

JavaScript frameworks, 37
Angular, 43–46
jQuery, 49
Knockout, 46–47
React, 47–49

JavaScriptServices, 85, 89–91
JetBrains, 204
jQuery, 49, 98
JSHint, checking JavaScript with, 151–152
JSON (JavaScript Object Notation), 39–40
JSX, 49
Jumbotron, 51

K
Karma runner, 64
Katana, 5
Kestrel, 168
Knockout, 46–47

L
languages, 38–43

JavaScript, 42
Node.js, 38–39
SASS (Syntactically Awesome Stylesheets) and

Les, 40–42
TypeScript, 42–43

launchSettings.json file, 16–17
Less, Bootstrap for customizing, 122–124
LinksController.cs, 35–36

Linux, installing .NET Core on, 190
loaders, in Webpack, 156
local cache, 130
Local Git Repository, 180–183
logging, ASP.NET Core, 19–21
login form, 106–107

M
macOS

building first ASP.NET Core app, 191–196
installing .NET Core on, 190
OmniSharp, 203–204
sample website, 192
text editors for, 204
with Yeoman, 195–196

main-bower-files gulp plugin, 153
Material Design Lite (MDL), 52
metadata

adding to package, 135–136
in Angular, 60
decorators to add, 66

Microsoft .NET Web Stack, history, 3–7
middleware, 11, 12

application frameworks, 27
Exception Handler, 26
terminal, 14

migrations, Entity Framework, 214–216
mixins, 41
modal dialog

with JavaScript, 118–120
snippet, 126
with tag helper, 127–128

Models/InitialData.cs file, 215
Model-View-Controller design pattern, 4, 46
module bundler, 156
modules, in Angular, 60
MVC application framework, 27–36
MVC application project template, 208
MVC project template, 194

N
navigation in Bootstrap

breadcrumbs, 114–115
navigation bar, 111–113

244

pagination, 113–114
tabs and pills, 115

.NET Core, 2, 5–7

.NET Runtime (CoreCLR), 5

.NET Standard Library, 6
new command, 6–7
New Project dialog, 208

for Angular, 224
New Project Window, 8
ng build command, 86
ng serve command, 86
NgFor directive, in Angular, 71
Node.js, 38–39
NPM (Node Package Manager), 39, 55, 129,

137–139
command-line interface (CLI), 138
installing, 137–138

npm install <package> --save command,
204

npm scripts, 57, 157
npm update command, 204
NuGet, 5, 52–54, 129, 130–133
NuGet Package Explorer, 136
Nuget.org Gallery, publishing to, 137
NuPack, 131

O
OAuth Settings page, 221
object model, for application, 211–213
octicons, 51
OmniSharp, 203–204
one-way binding, in Angular, 68, 69
online editor, for Angular project setup, 62
operating system in Docker, 185
output, in Webpack, 156
@Output directive, 76–77
output files, naming from package name, 150–151
output properties, in Angular, 75–78
OWIN (Open Web Interface for .NET), 5, 10–12

Communication Interface, 11–12
layers, 11

P
Package Manager Console, 132–133
Package Manager GUI, 131–132
package managers, 37, 52–56, 129

Bower, 54–55. see also Bower
folder structure and, 56
general concepts, 130
NPM (Node Package Manager), 55. see also

NPM (Node Package Manager)
NuGet, 52–54

package.json file, 55, 63, 138
packages

adding metadata, 135–136
autocomplete references, 135
creating, 136
location for install, 139
naming output files from name, 150–151
publishing your own, 135–137
registering for public repository, 142

pagination, in Bootstrap, 113–114
Parameter Info tooltip, 94
Partial Views, 30
pills, in Bootstrap navigation, 115
pipe, 81
plugins, in Webpack, 156
Plunker, 62
popovers, JavaScript for, 120–121
Postman, 233, 235
PostTiming method, 233
PowerShell module, 173
<pre> element, 105
Primer CSS, 51–52
Program.cs file, 9
Project Rider, 204
promises, in Angular, 81–83
properties in Angular, input and output, 75–78
Protractor., 64
providers.array, 65
Publish on Azure Profile, 178
publishing applications

with command line, 171–172
with Visual Studio, 173–174

.NET Core – ﻿Publishing applications

http://nuget.org

245

quickstart seed – tooltips

Q
quickstart seed, for Angular project setup, 63

R
Razor pages, 8
razor view, 30
React, 47–49
Reactive Extensions (RxJS), 78

consuming observable, 80–83
reading values from configuration, 22
real-tme results display, on websites, 223–232
refactoring, in Visual Studio Code, 198
references, replacing directly in HTTML files,

154–155
registration page, for websites, 219–223
require() function, 147
Resource Group, content, 237
REST web application., 8
restore command, 191
Results component, 224–227
results-list component, 224–227
root component, 66–67
root module, for Angular app, 64–66
Roslyn, 204
routing, configuration, 27

S
SASS (Syntactically Awesome Stylesheets) and Les,

40–42
scoped services, 18
security, for static files and directory browsing,

26
Semantic UI, 52–53
services, in Angular, 60, 71–73
Services/TimingService.cs file, 231–232
single page applications (SPAs), 4
singleton services, 18
snippets, in Bootstrap, 126
social media

authentication with ASP.NET Core., 220
login, 219

Solution Explorer, 13
source maps

generating, 151
minifying and adding, 159–160

 element, 107–108
SQL Database, creating, 236
src() method for Gulp, 148
Startup class, Web Application template, 27–28
Startup.cs file, 9
static files, serving, 26
“streaming build system”, 146
strongly-typed configuration, 22–24
structural directives, in Angular, 70–71
styles. see Bootstrap styles
stylesheets, bundlling, 158–159
subscribing to observable, in Angular, 80
suggestions, in Visual Studio Code, 198

T
tabbed content, JavaScript for, 117–118
tables, in Bootstrap, 105
tabs, in Bootstrap navigation, 115
tag helpers, 32–35

for ASP.NET Core, 127–128
custom, 34–35
modal dialog with, 127–128
Simplified Alert, 128

task() method for Gulp, 147
Task Runner Explorer, 164, 165
task runners, 56–57
tasks

executing when files change, 153
in Visual Studio Code, 201–202

templates
in Angular, 60
root component, 66–67

terminal middleware, 14
text editors, for macOS, 204
TimingPostModel class, 233
tooltips, JavaScript for, 120–121

246

transient services – Yeoman

transient services, 18
triathlon race results website, 207–208

back-office suite, 208–219
entity framework, 211–216

trigger, in Bootstrap dropdown, 108
Twitter, 97
Twitter Blueprint, 50
two-way binding, in Angular, 68, 70
TypeScript, 42–43, 61, 85

Intellisense in, 93–94
typography, in Bootstrap, 104–105

U
UglifyJsPlugin., 159–160
Uninstall-Package Newtonsoft.Json

command, 133
Update Database command, 214
UseDefaultFiles component, 26

V
variables.less file, 124
version control, in Visual Studio Code, 200–202
View Components, 30–32

as Tag Helpers, 35
ViewModel function, 46
Views/Shared/_Layout.cshtml file, 208–210
Visual Studio 2017, 2

adding remote, 181–182
Bootstrap support from, 124–128
Bower GUI in, 141–142
and build systems, 160–164
code snippets in, 92–94
deploying to Azure with Web Deploy, 174–179
deploying to Docker container, 183–187
NPM within, 139
Package Manager interface, 54
publishing applications with, 173–174
support for Angular, 92–94

Visual Studio Code, 2, 196–204
development features, 197–203
installing C# support, 197
setup, 197

tasks in, 201–202
version control in, 200–202

Visual Studio Extension Gallery, 93

W
watch() method for Gulp, 148
Web API application framework, 27, 35–36
web APIs, building, 228–232
Web Application (Model-View-Controller),

8
Web Application templates, 8
Startup class, 27–28

Web Deploy, deploying to Azure, 174–179
Web Deploy Preview, 179
WebApplication.csproj listing, 52
webapplication.csproj metadata, 135–136
web.config file, 9, 171
Webpack, 156–160

bundling Javascript, 156–157
bundling stylesheets, 158–159
capabilities, 160
concepts, 156
installing, 156
minifying and adding source maps, 159–160

webpack.config.js file, 156–157
with css loader, 158
with extract-text-webpack-plugin, 159
with minification and sourcemap, 159–160

websites
creating in IIS, 172–173
CRUD Screens, 216–219
deploying, 235–237
real-tme results display, 223–232
registration page, 219–223
triathlon race results, 207–208

wwwroot folder, 9

Y
Yarn, 140
Yeoman

ASP.NET Core generators, 196
macOS with, 195–196

	Cover
	Title Page
	Copyright
	About the Author
	About the Technical Editor
	Credits
	Acknowledgments
	Contents
	Foreword
	Introduction
	Why Web Development Requires Polyglot Developers
	The Right Tool for the Job
	Cross Pollination
	Growing Your Comfort Zone

	Who This Book is for
	What This Book Covers
	How This Book is Structured
	What you Need to use This Book
	Conventions
	Source Code
	Errata

	Chapter 1: What’s New in ASP.NET Core MVC
	Getting the Names Right
	ASP.NET Core
	.NET Core
	Visual Studio Code
	Visual Studio 2017
	Versions Covered in this Book

	A Brief History of the Microsoft .NET Web Stack
	ASP.NET Web Forms
	ASP.NET MVC
	ASP.NET Web API
	OWIN and Katana
	The Emergence of ASP.NET Core and .NET Core

	.NET Core
	Getting Started with .NET Core
	The dotnet Command Line

	Introducing ASP.NET Core
	Overview of the New ASP.NET Core Web Application Project
	Owin
	OWIN Layers
	OWIN Communication Interface
	A Better Look at Middleware

	Anatomy of an ASP.NET Core Application
	Host Builder Console Application
	ASP.NET Core Startup Class

	New Fundamental Features of ASP.NET Core
	Environments
	Dependency Injection
	What Is Dependency Injection?
	Using Dependency Injection in ASP.NET Core

	Logging
	Logger Instantiation
	Writing Log Messages
	Additional Logging Configuration

	Configuration
	Setting Up the Configuration Sources
	Reading Values from Configuration
	Using Strongly-Typed Configuration

	An Overview of Some ASP.NET Core Middleware
	Diagnostics
	Serving Static Files
	Application Frameworks

	ASP.NET Core MVC
	Using the MVC Framework inside ASP.NET Core
	Using Dependency Injection in Controllers
	View Components
	Tag Helpers
	Using Tag Helpers from ASP.NET Core
	Writing Custom Tag Helpers
	View Components as Tag Helpers

	Web API

	Summary

	Chapter 2: The Front-End Developer Toolset
	Additional Languages You Have to Know
	Node.js
	JSON
	Sass and Less
	The Future of JavaScript
	TypeScript

	JavaScript Frameworks
	Angular
	Knockout
	React
	jQuery

	CSS Frameworks
	Bootstrap
	Primer CSS
	Material Design Lite
	Semantic UI

	Package Managers
	NuGet
	Bower
	NPM
	The Folder Structure

	Task Runners
	Summary

	Chapter 3: Angular in a Nutshell
	Angular Concepts
	The Language of Angular
	Setting Up an Angular Project
	Using an Online Editor
	Starting from the Quickstart Seed
	Using the Angular-CLI Tool

	The Structure of an Angular App
	Application Entry Point
	Root Module
	Root Component
	Main HTML Page

	Data Binding
	Interpolation
	One-Way Binding
	Event binding
	Two-Way Binding

	Directives
	Services and Dependecy Injection
	Multiple Components
	Input and Output Properties
	Talking to the Back End
	Using the Http Module
	Consuming the RxJS Observable
	Subscribing to the Observable
	Using the async Pipe
	Using Promises

	Using Angular with ASP.NET MVC
	Combining Angular and ASP.NET Core Projects
	Keeping Angular and ASP.NET Core as Two Separate projects
	Combining Angular and ASP.NET Core into One Project Using the Angular CLI
	Using JavaScriptServices
	Deciding Which Integration Method to Use

	Visual Studio 2017 Support for Angular
	Code Snippets
	IntelliSense in TypeScript Files
	IntelliSense in HTML Files

	Summary

	Chapter 4: Bootstrap in a Nutshell
	Introduction to Bootstrap
	Installing Bootstrap
	The Main Features

	Bootstrap Styles
	Grid System
	Typography
	Tables
	Forms
	Buttons

	Components
	Glyphicons
	Dropdown
	Input Groups
	Navigation
	Navigation Bar
	Pagination
	Breadcrumbs
	Tabs and Pills

	Other Components

	JavaScript
	Tabbed Content
	Activating Tab Navigation with JavaScript
	Activating Tab Navigation with Data Attributes

	Modal Dialog
	Tooltips and Popovers

	Customizing Bootstrap with Less
	Customizing via the Website
	Customizing with LESS

	Bootstrap Support in Visual Studio 2017 and ASP.NET Core
	Bootstrap Snippet Pack
	Glyphfriend
	Tag Helpers for ASP.NET Core

	Summary

	Chapter 5: Managing Dependencies with NuGet and Bower
	General Concepts
	NuGet
	Getting Packages via NuGet
	Using the Package Manager GUI
	Using the Package Manager Console
	Manually Editing the .csproj Project File
	What Happens Once You Install a Package

	Publishing Your Own Packages
	Adding Metadata for the Package
	Creating the Package
	Publishing to the Nuget.org Gallery

	NPM (Node.js Package Manager)
	Installing NPM
	NPM Usage
	Using the NPM Command Line
	Using NPM within Visual Studio

	Where Packages Are Installed

	Bower
	Installing Bower
	Getting Packages with Bower
	Using the Bower Command Line
	Using the Bower Package Manager GUI in Visual Studio
	Editing the bower.json File

	Where Packages Are Installed
	Creating Your Own Packages

	Summary

	Chapter 6: Building Your Application with Gulp and webpack
	What Front-End Build Systems Are For
	A Deeper Look at Gulp
	Getting Started with Gulp
	The Gulpfile.js File
	gulp.task()
	gulp.watch()
	gulp.src()
	gulp.dest()

	A Typical Gulp Build File
	More Gulp Recipes
	Naming Output Files from a Package Name
	Generating Source maps
	Checking JavaScript Using JSHint
	Executing Tasks When Files Change
	Managing Bower Dependencies
	Replacing References Directly in the HTML Files

	Introduction to webpack
	webpack’s Main Concepts
	Using webpack
	Bundling JavaScript
	Bundling Stylesheets
	Minifying and Adding Sourcemaps

	More Things webpack Can Do

	Visual Studio 2017 and Build Systems
	The Bundler and Minifier Extension
	The Task Runner Explorer
	IntelliSense for Gulp

	Summary

	Chapter 7: Deploying ASP.NET Core
	The New Hosting Model of ASP.NET Core
	Installing on Internet Information Services On Premise
	Making Sure All Is Well
	Installing AspNetCoreModule
	Publishing Applications via the Command Line
	Creating the Website
	Publishing the Applications via Visual Studio

	Deploying on Azure
	Deploying to Azure from Visual Studio with Web Deploy
	Continuous Deployment to Azure with Git
	Configuring the Azure Web App
	Configuring the Local Repository

	Deploying to Docker Containers
	Installing the Docker Support
	Publishing a Docker Image

	Summary

	Chapter 8: Developing Outside of Windows
	Installing .NET Core on macOS
	Building the First ASP.NET Core App on macOS
	Using dotnet Command-Line Interface
	Using Yeoman

	Visual Studio Code
	Setting It Up
	Development Features in Visual Studio Code
	IntelliSense
	Refactoring
	Errors and Suggestions
	Debugging
	Version Control
	Tasks
	Other Features

	OmniSharp
	Other IDEs

	Using Command-line Tools
	Summary

	Chapter 9: Putting It All Together
	Building a Triathlon Race Results Web Site
	Building the Back-Office Site
	Setting Up Entity Framework
	The Object Model
	The EF Core Context
	Migrations

	Building CRUD Screens
	The Controller
	The View

	Building the Registration Page
	Showing Real-Time Results
	Creating the Angular Client-Side Application
	Building the Web APIs

	Connecting with IoT Devices
	Deploying
	Summary

	Index
	EULA

