
Introducing
ZFS on Linux

Understand the Basics of Storage
with ZFS
—
Damian Wojsław

www.allitebooks.com

http://www.allitebooks.org

Introducing ZFS on
Linux

Understand the Basics of
Storage with ZFS

Damian Wojsław

www.allitebooks.com

http://www.allitebooks.org

Introducing ZFS on Linux: Understand the Basics of Storage with ZFS

ISBN-13 (pbk): 978-1-4842-3305-4 ISBN-13 (electronic): 978-1-4842-3306-1
https://doi.org/10.1007/978-1-4842-3306-1

Library of Congress Control Number: 2017960448

Copyright © 2017 by Damian Wojsław

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Sander van Vugt
Coordinating Editor: Nancy Chen
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484233054.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Damian Wojsław
ul. Duńska 27i/8, Szczecin, 71-795 Zachodniopomorskie, Poland

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3306-1
http://www.allitebooks.org

To my Wife Ada and my Kids - Iga and Mikołaj

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: ZFS Overview ��1

What Is ZFS? ���2

COW Principles Explained ���2

ZFS Advantages ��4

Simplified Administration ��5

Proven Stability ���5

Data Integrity ���5

Scalability ��5

ZFS Limitations ���5

80% or More Principle ���6

Limited Redundancy Type Changes ���6

Key Terminology ��6

Storage Pool ��6

vdev ���7

File System ��7

Snapshots ��7

Clones ��8

Dataset ��8

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

www.allitebooks.com

http://www.allitebooks.org

vi

Volume ���8

Resilvering ���9

Pool Layout Explained ���9

Common Tuning Options ���13

ashift ���14

smartctl ���16

Deduplication ��17

Compression ���18

ZFS Pool State ���20

ZFS Version ���23

Chapter 2: Hardware ���29

Don’t Rush���29

Considerations ��29

How Much Data? ���30

How Many Concurrent Clients? ���30

How Critical Is the Data? ���30

What Types of Data? ��30

What Kind of Scope? ���31

Hardware Purchase Guidelines ���32

Same Vendor, Different Batch ��32

Buy a Few Pieces for Spares ���32

Scope Power Supply Properly ���32

Consider Performance, Plan for RAM ��33

Plan for SSDs (At Least Three) ���33

Consider SATA ���34

Do Not Buy Hardware and Soft RAID Controllers ���34

Networking Cards at Least 1 GB of Speed ���35

Plan for Redundancy ���35

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

Data Security ��35

CIA ���36

Types of Workload ���38

Other Components To Pay Attention To ���39

Hardware Checklist ���39

Chapter 3: Installation ��41

System Packages ��41

Virtual Machine ��41

Ubuntu Server��42

CentOS ���45

System Tools ���46

ZED ��47

Chapter 4: Setup ���51

General Considerations ���51

Creating a Mirrored Pool ���52

Creating a RAIDZ Pool ���54

Creating a RAIDZ2 Pool ���57

Forcing Operations ��58

Chapter 5: Advanced Setup ��59

ZIL Device��61

L2ARC Device (Cache) ���64

Quotas and Reservations ��66

Snapshots and Clones���71

ZFS ACLs ���73

DAC Model���74

ACLs Explained ���78

Replacing Drive ���80

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

viii

Chapter 6: Sharing ��83

Sharing Protocols ��83

NFS: Linux Server ��84

Installing Packages on Ubuntu ��85

Installing Packages on CentOS ��87

SAMBA ��88

Other Sharing Protocols ��89

Chapter 7: Space Accounting ���95

Using New Commands ��95

Output Terminology ���96

What’s Consuming My Pool Space? ��97

Diagnosing the Problem ��97

More Advanced Examples ���101

 Index ���105

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Damian Wojsław, a long-time illumos and ZFS enthusiast, has worked

with ZFS storage from a few hundred gigabytes up to hundreds of terabytes

capacity. For several years, he was a Field Engineer at Nexenta Systems,

Inc., a Software Defined Storage company, and he installed and supported

a large number of the company’s customers. He has been an active

member of OpenSolaris and later on illumos communities, with special

interest in ZFS, and later OpenZFS. He started working professionally

with Linux in 1999 and since then uses Linux and Unix exclusively on his

servers and desktops.

His professional curriculum vitae is hosted on his LinkedIn profile.1

1 https://pl.linkedin.com/in/damian-wojsław-559722a0

www.allitebooks.com

https://pl.linkedin.com/in/damian-wojs%C3%85%E2%80%9Aaw-559722a0
http://www.allitebooks.org

xi

About the Technical Reviewer

Sander van Vugt is an independent trainer and consultant living in the

Netherlands and working throughout the European Union. He specializes

in Linux and Novell systems, and he has worked with both for more than

10 years. Besides being a trainer, he is also an author, having written more

than 20 books and hundreds of technical articles. He is a Master Certified

Novell Instructor (MCNI) and holds LPIC-1 and -2 certificates, as well as

all important Novell certificates.

www.allitebooks.com

http://www.allitebooks.org

xiii

Acknowledgments

The book wouldn’t be possible without endless crowd of people that

taught me how to learn, how to look for answers and about ZFS. In

particular I would like to thank Lech Karol Pawłaszek for showing me

how to be transparent and kind to customers, Darryl Clark, Pete Turner,

Michael Green, Daniel Borek, Michał Bielicki and all other Nexenta people

for helping me while I struggled, Darek Ankowski for introducing me to

ZFS, Leszek Krupiński and all of old apcoh - you all know what for. Greatest

thanks to Louise Corrigan and all Apress editorial staff for making me

finish this book.

xv

Introduction

 Why Linux?
I started my Linux journey in 1997, when my brother and I got our

hands on a Slackware CD. We were thrilled and, at the same time,

mystified. It was our first contact with a Unix-like operating system. The

only command-line we knew at that point was DOS. Everything—from

commands to mountpoints to paths—was different and mysterious. Back

then, it was really a hobbyist OS. Now Linux is a major player in the server

land. Almost everything out there, on the Internet, runs on Linux. Web

servers, mail servers, cloud solutions, you name it—you can be almost sure

Linux is underneath.

Its popularity makes Linux the perfect platform for learning ZFS. I

assume that most of my readers are Linux admins, thus I will deal only

with ZFS itself as a novelty.

1© Damian Wojsław 2017
D. Wojsław, Introducing ZFS on Linux, https://doi.org/10.1007/978-1-4842-3306-1_1

CHAPTER 1

ZFS Overview
To work with ZFS, it’s important to understand the basics of the technical

side and implementation. I have seen lots of failures that have stemmed

from the fact that people were trying to administer or even troubleshoot

ZFS file systems without really understanding what they were doing and

why. ZFS goes to great lengths to protect your data, but nothing in the

world is user proof. If you try really hard, you will break it. That’s why it’s a

good idea to get started with the basics.

Note On most Linux distributions, ZFS is not available by default.
For up-to-date information about the implementation of ZFS on
Linux, including the current state and roadmap, visit the project’s
home page: http://zfsonlinux.org/. Since Ubuntu Xenial
Xerus, the 16.04 LTS Ubuntu release, Canonical has made ZFS a
regular, supported file system. While you can’t yet use it during the
installation phase, at least not easily, it is readily available for use and
is a default file system for LXD (a next-generation system container
manager).

In this chapter, we look at what ZFS is and cover some of the key

terminology.

http://zfsonlinux.org/

2

 What Is ZFS?
ZFS is a copy-on-write (COW) file system that merges a file system, logical

volume manager, and software RAID. Working with a COW file system

means that, with each change to the block of data, the data is written to a

completely new location on the disk. Either the write occurs entirely, or

it is not recorded as done. This helps to keep your file system clean and

undamaged in the case of a power failure. Merging the logical volume

manager and file system together with software RAID means that you can

easily create a storage volume that has your desired settings and contains a

ready-to-use file system.

Note ZFS’s great features are no replacement for backups.
Snapshots, clones, mirroring, etc., will only protect your data as
long as enough of the storage is available. Even having those nifty
abilities at your command, you should still do backups and test them
regularly.

 COW Principles Explained
The Copy On Write (COW) design warrants a quick explanation, as it is a

core concept that enables some essential ZFS features. Figure 1-1 shows

a graphical representation of a possible pool; four disks comprise two

vdevs (two disks in each vdev). vdev is a virtual device built on top of disks,

partitions, files or LUNs. Within the pool, on top of vdevs, is a file system.

Data is automatically balanced across all vdevs, across all disks.

ChapTEr 1 ZFS OvErviEW

3

Figure 1-2 presents a single block of freshly written data.

When the block is later modified, it is not being rewritten. Instead, ZFS

writes it anew in a new place on disk, as shown in Figure 1-3. The old block

is still on the disk, but ready for reuse, if free space is needed.

Let’s assume that before the data has been modified, the system

operator creates a snapshot. The DATA 1 SNAP block is being marked as

belonging to the file system snapshot. When the data is modified and

Figure 1-1. Graphical representation of a possible pool

Figure 1-2. Single data block

Figure 1-3. Rewritten data block

ChapTEr 1 ZFS OvErviEW

4

written in new place, the old block location is recorded in a snapshot

vnodes table. Whenever a file system needs to be restored to the snapshot

time (when rolling back or mounting a snapshot), the data is reconstructed

from vnodes in the current file system, unless the data block is also

recorded in the snapshot table (DATA 1 SNAP) as shown in Figure 1-4.

Deduplication is an entirely separate scenario. The blocks of data

are being compared to what’s already present in the file system and if

duplicates are found, only a new entry is added to the deduplication table.

The actual data is not written to the pool. See Figure 1-5.

 ZFS Advantages
There are many storage solutions out in the wild for both large enterprises

and SoHo environments. It is outside the scope of this guide to cover them

in detail, but we can look at the main pros and cons of ZFS.

Figure 1-4. Snapshotted data block

Figure 1-5. Deduplicated data block

ChapTEr 1 ZFS OvErviEW

5

 Simplified Administration
Thanks to merging volume management, RAID, and file system all in one,

there are only two commands you need use to create volumes, redundancy

levels, file systems, compression, mountpoints, etc. It also simplifies

monitoring, since there are two or even three less layers to be looked out for.

 Proven Stability
ZFS has been publicly released since 2005 and countless storage solutions

have been deployed based on it. I’ve seen hundreds of large ZFS storages

in big enterprises and I’m confident the number is hundreds if not

thousands more. I’ve also seen small, SoHo ZFS arrays. Both worlds have

witnessed great stability and scalability, thanks to ZFS.

 Data Integrity
ZFS was designed with data integrity in mind. It comes with data integrity

checks, metadata checksumming, data failure detection (and, in the case

of redundant setup, possibly fixing it), and automatic replacement of failed

devices.

 Scalability
ZFS scales well, with the ability to add new devices, control cache,

and more.

 ZFS Limitations
As with every file system, ZFS also has its share of weaker points that you

need to keep in mind to successfully operate the storage.

ChapTEr 1 ZFS OvErviEW

6

 80% or More Principle
As with most file systems, ZFS suffers terrible performance penalty when

filled up to 80% or more of its capacity. It is a common problem with file

systems. Remember, when your pool starts filling to 80% of capacity, you

need to look at either expanding the pool or migrating to a bigger setup.

You cannot shrink the pool, so you cannot remove drives or vdevs from

it once they have been added.

 Limited Redundancy Type Changes
Except for turning a single disk pool into a mirrored pool, you cannot

change redundancy type. Once you decide on a redundancy type, your

only way of changing it is to destroy the pool and create a new one,

recovering data from backups or another location.

 Key Terminology
Some key terms that you’ll encounter are listed in the following sections.

 Storage Pool
The storage pool is a combined capacity of disk drives. A pool can have one

or more file systems. File systems created within the pool see all the pool’s

capacity and can grow up to the available space for the whole pool. Any

one file system can take all the available space, making it impossible for

other file systems in the same pool to grow and contain new data. One of

the ways to deal with this is to use space reservations and quotas.

ChapTEr 1 ZFS OvErviEW

7

 vdev
vdev is a virtual device that can consist of one or more physical drives. vdev

can be a pool or be a part of a larger pool. vdev can have a redundancy

level of mirror, triple mirror, RAIDZ, RAIDZ-2, or RAIDZ-3. Even higher

levels of mirror redundancy are possible, but are impractical and costly.

 File System
A file system is created in the boundaries of a pool. A ZFS file system can

only belong to one pool, but a pool can contain more than one ZFS file

system. ZFS file systems can have reservations (minimum guaranteed

capacity), quotas, compression, and many other properties. File systems

can be nested, meaning you can create one file system in another. Unless

you specify otherwise, file systems will be automatically mounted within

their parent. The uppermost ZFS file system is named the same as the pool

and automatically mounted under the root directory, unless specified

otherwise.

 Snapshots
Snapshots are point-in-time snaps of the file system’s state. Thanks to COW

semantics, they are extremely cheap in terms of disk space. Creating a

snapshot means recording file system vnodes and keeping track of them.

Once the data on that inode is updated (written to new place—remember,

it is COW), the old block of data is retained. You can access the old data

view by using said snapshot, and only use as much space as has been

changed between the snapshot time and the current time.

ChapTEr 1 ZFS OvErviEW

8

 Clones
Snapshots are read-only. If you want to mount a snapshot and make

changes to it, you’ll need a read-write snapshot, or clone. Clones have

many uses, one of greatest being boot environment clones. With an

operating system capable of booting off ZFS (illumos distributions,

FreeBSD), you can create a clone of your operating system and then run

operations in a current file system or in a clone, to perhaps upgrade the

system or install a tricky video driver. You can boot back to your original

working environment if you need to, and it only takes as much disk space

as the changes that were introduced.

 Dataset
A dataset is a ZFS pool, file system, snapshot, volume, and clone. It is the

layer of ZFS where data can be stored and retrieved.

 Volume
A volume is a file system that emulates the block device. It cannot be used

as a typical ZFS file system. For all intents and purposes, it behaves like a

disk device. One of its uses is to export it through iSCSI or FCoE protocols,

to be mounted as LUNs on a remote server and then used as disks.

ChapTEr 1 ZFS OvErviEW

www.allitebooks.com

http://www.allitebooks.org

9

Note personally, volumes are my least favorite use of ZFS. Many of
the features i like most about ZFS have limited or no use for volumes.
if you use volumes and snapshot them, you cannot easily mount
them locally for file retrieval, as you would when using a simple ZFS
file system.

 Resilvering
Resilvering is the process of rebuilding redundant groups after disk

replacement. There are many reasons you may want to replace a disk—

perhaps the drive becomes faulted, or you decide to swap the disk for any

other reason—once the new drive is added to the pool, ZFS will start to

restore data to it. This is a very obvious advantage of ZFS over traditional

RAIDs. Only data is being resilvered, not whole disks.

Note resilvering is a low-priority operating system process. On a
very busy storage system, it will take more time.

 Pool Layout Explained
Pool Layout is the way that disks are grouped into vdevs and vdevs are

grouped together into the ZFS pool.

Assume that we have a pool consisting of six disks, all of them in

RAIDZ-2 configuration (rough equivalent of RAID-6). Four disks contain

data and two contain parity data. Resiliency of the pool allows for losing up

to two disks. Any number above that will irreversibly destroy the file system

and result in the need for backups.

ChapTEr 1 ZFS OvErviEW

10

Figure 1-6 presents the pool. While it is technically possible to create

a new vdev of fewer or larger number of disks, with different sizes, it will

almost surely result in performance issues.

Figure 1-6. Single vdev RAIDZ-2 pool

ChapTEr 1 ZFS OvErviEW

11

And remember—you cannot remove disks from a pool once the vdevs

are added. If you suddenly add a new vdev, say, four disks RAIDZ, as in

Figure 1-7, you compromise pool integrity by introducing a vdev with

lower resiliency. You will also introduce performance issues.

Figure 1-7. Wrongly enhanced pool

ChapTEr 1 ZFS OvErviEW

12

The one exception of “cannot change the redundancy level” rule is

single disk to mirrored and mirrored to even more mirrored. You can

attach a disk to a single disk vdev, and that will result in a mirrored vdev

(see Figure 1-8). You can also attach a disk to a two-way mirror, creating a

triple-mirror (see Figure 1-9).

Figure 1-8. Single vdev turned into a mirror

ChapTEr 1 ZFS OvErviEW

13

 Common Tuning Options
A lot of tutorials tell you to set two options (one pool level and one file

system level) that are supposed to increase the speed. Unfortunately, most

of them don’t explain what they do and why they should work: ashift=12

and atime=off.

While the truth is, they may offer a significant performance increase,

setting them blindly is a major error. As stated previously, to properly

administer your storage server, you need to understand why you use

options that are offered.

Figure 1-9. Two way mirror into a three-way mirror

ChapTEr 1 ZFS OvErviEW

14

 ashift
The ashift option allows you to set up a physical block layout on disks. As

disk capacities kept growing, at some point keeping the original block size

of 512 bytes became impractical and disk vendors changed it to 4096 bytes.

But for backward compatibility reasons, disks sometimes still advertise

512 block sizes. This can have an adverse effect on pool performance. The

ashift option was introduced in ZFS to allow manual change of block

sizing done by ZFS. Since it’s specified as a binary shift, the value is a

power, thus: 2^12 = 4096. Omitting the ashift option allows ZFS to detect

the value (the disk can lie about it); using value of 9 will set the block size

to 512. The new disk block size is called Advanced Layout (AL).

The ashift option can only be used during pool setup or when adding

a new device to a vdev. Which brings up another issue: if you create a pool

by setting up ashift and later add a disk but don’t set it, your performance

may go awry due to the mismatched ashift parameters. If you know you

used the option or are unsure, always check before adding new devices:

trochej@madchamber:~$ sudo zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

data 2,72T 133G 2,59T - 3% 4% 1.00x ONLINE -

trochej@madchamber:~$ sudo zpool get all data

NAME PROPERTY VALUE SOURCE

data size 2,72T -

data capacity 4% -

data altroot - default

data health ONLINE -

data guid 7057182016879104894 default

data version - default

data bootfs - default

data delegation on default

ChapTEr 1 ZFS OvErviEW

15

data autoreplace off default

data cachefile - default

data failmode wait default

data listsnapshots off default

data autoexpand off default

data dedupditto 0 default

data dedupratio 1.00x -

data free 2,59T -

data allocated 133G -

data readonly off -

data ashift 0 default

data comment - default

data expandsize - -

data freeing 0 default

data fragmentation 3% -

data leaked 0 default

data feature@async_destroy enabled local

data feature@empty_bpobj active local

data feature@lz4_compress active local

data feature@spacemap_histogram active local

data feature@enabled_txg active local

data feature@hole_birth active local

data feature@extensible_dataset enabled local

data feature@embedded_data active local

data feature@bookmarks enabled local

As you may have noticed, I let ZFS auto-detect the value.

ChapTEr 1 ZFS OvErviEW

16

 smartctl
If you are unsure about the AL status for your drives, use the smartctl

command:

[trochej@madtower sohozfs]$ sudo smartctl -a /dev/sda

smartctl 6.4 2015-06-04 r4109 [x86_64-linux-4.4.0] (local build)

Copyright (C) 2002-15, Bruce Allen, Christian Franke,

 www.smartmontools.org

=== START OF INFORMATION SECTION ===

Model Family: Seagate Laptop SSHD

Device Model: ST500LM000-1EJ162

Serial Number: W7622ZRQ

LU WWN Device Id: 5 000c50 07c920424

Firmware Version: DEM9

User Capacity: 500,107,862,016 bytes [500 GB]

Sector Sizes: 512 bytes logical, 4096 bytes physical

Rotation Rate: 5400 rpm

Form Factor: 2.5 inches

Device is: In smartctl database [for details use: -P show]

ATA Version is: ACS-2, ACS-3 T13/2161-D revision 3b

SATA Version is: SATA 3.1, 6.0 Gb/s (current: 6.0 Gb/s)

Local Time is: Fri Feb 12 22:11:18 2016 CET

SMART support is: Available - device has SMART capability.

SMART support is: Enabled

You will notice that my drive has the line:

Sector Sizes: 512 bytes logical, 4096 bytes physical

It tells us that drive has a physical layout of 4096 bytes, but the driver

advertises 512 bytes for backward compatibility.

ChapTEr 1 ZFS OvErviEW

17

 Deduplication
As a rule of thumb, don’t dedupe. Just don’t. If you really need to watch out

for disk space, use other ways of increasing capacity. Several of my past

customers got into very big trouble using deduplication.

ZFS has an interesting option that spurred quite lot of interest when it

was introduced. Turning deduplication on tells ZFS to keep track of data

blocks. Whenever data is written to disks, ZFS will compare it with the

blocks already in the file system and if finds any block identical, it will not

write physical data, but will add some meta-information and thus save lots

and lots of disk space.

While the feature seems great in theory, in practice it turns out to

be rather tricky to use smartly. First of all, deduplication comes at a cost

and it’s a cost in RAM and CPU power. For each data block that is being

deduplicated, your system will add an entry to DDT (deduplication tables)

that exist in your RAM. Ironically, for ideally deduplicating data, the result

of DDT in RAM was that the system ground to a halt by lack of memory

and CPU power for operating system functions.

It is not to say deduplication is without uses. Before you set it though,

you should research how well your data would deduplicate. I can envision

storage for backups that would conserve space by use of deduplication. In

such a case though the size of DDT, free RAM amount and CPU utilization

must be observed to avoid problems.

The catch is, DDT are persistent. You can, at any moment, disable

deduplication, but once deduplicated data stays deduplicated and if you

run into system stability issues due to it, disabling and rebooting won’t

help. On the next pool import (mount), DDT will be loaded into RAM

again. There are two ways to get rid of this data: destroy the pool, create it

anew, and restore the data or disable deduplication, or move data on the

pool so it gets undeduplicated on the next writes. Both options take time,

depending on the size of your data. While deduplication may save disk

space, research it carefully.

ChapTEr 1 ZFS OvErviEW

18

The deduplication ratio is by default displayed using the zpool list

command. A ratio of 1.00 means no deduplication happened:

trochej@madchamber:~$ sudo zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

data 2,72T 133G 2,59T - 3% 4% 1.00x ONLINE -

You can check the deduplication setting by querying your file system’s

deduplication property:

trochej@madchamber:~$ sudo zfs get dedup data/datafs

NAME PROPERTY VALUE SOURCE

data/datafs dedup off default

Deduplication is a setting set per file system.

 Compression
An option that saves disk space and adds speed is compression. There are

several compression algorithms available for use by ZFS. Basically, you can

tell the file system to compress any block of data it will write to disk. With

modern CPUs, you can usually add some speed by writing smaller physical

data. Your processors should be able to cope with packing and unpacking

data on the fly. The exception can be data that compress badly, such as

MP3s, JPGs, or video file. Textual data (application logs, etc.) usually plays

well with this option. For personal use, I always turn it on. The default

compression algorithm for ZFS is lzjb.

ChapTEr 1 ZFS OvErviEW

19

The compression can be set by on a file system basis:

trochej@madchamber:~$ sudo zfs get compression data/datafs

NAME PROPERTY VALUE SOURCE

data/datafs compression on local

trochej@madchamber:~$ sudo zfs set compression=on data/datafs

The compression ratio can be determined by querying a property:

trochej@madchamber:~$ sudo zfs get compressratio data/datafs

NAME PROPERTY VALUE SOURCE

data/datafs compressratio 1.26x

Several compression algorithms are available. Until recently, if

you simply turned compression on, the lzjb algorithm was used. It is

considered a good compromise between performance and compression.

Other compression algorithms available are listed on the zfs man page.

A new algorithm added recently is lz4. It has better performance and a

higher compression ratio than lzjb. It can only be enabled for pools that

have the feature@lz4_compress feature flag property:

trochej@madchamber:~$ sudo zpool get feature@lz4_compress data

NAME PROPERTY VALUE SOURCE

data feature@lz4_compress active local

If the feature is enabled, you can set compression=lz4 for any given

dataset. You can enable it by invoking this command:

trochej@madchamber:~$ sudo zpool set feature@lz4_

compress=enabled data

lz4 has been the default compression algorithm for some time now.

ChapTEr 1 ZFS OvErviEW

20

 ZFS Pool State
If you look again at the listing of my pool:

trochej@madchamber:~$ sudo zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

data 2,72T 133G 2,59T - 3% 4% 1.00x ONLINE -

You will notice a column called HEALTH. This is a status of the ZFS pool.

There are several other indicators that you can see here:

• ONLINE: The pool is healthy (there are no errors

detected) and it is imported (mounted in traditional

file systems jargon) and ready to use. It doesn’t mean

it’s perfectly okay. ZFS will keep a pool marked online

even if some small number of I/O errors or correctable

data errors occur. You should monitor other indicators

as well such as disk health (hdparm, smartctl, and

lsiutil for LSI SAS controllers).

• DEGRADED: Probably only applicable to redundant sets,

where disks in mirror or RAIDZ or RAIDZ-2 pools have

been lost. The pool may have become non-redundant.

Losing more disks may render it corrupt. Bear in

mind that in triple-mirror or RAIDZ-2, losing one disk

doesn’t render a pool non-redundant.

• FAULTED: A disk or a vdev is inaccessible. It means

that ZFS cannot read or write to it. In redundant

configurations, a disk may be FAULTED but its vdev may

be DEGRADED and still accessible. This may happen if in

the mirrored set, one disk is lost. If you lose a top-level

vdev, i.e., both disks in a mirror, your whole pool will be

inaccessible and will become corrupt. Since there is no

ChapTEr 1 ZFS OvErviEW

21

way to restore a file system, your options at this stage

are to recreate the pool with healthy disks and restore

it from backups or seek ZFS data recovery experts. The

latter is usually a costly option.

• OFFLINE: A device has been disabled (taken offline) by

the administrator. Reasons may vary, but it need not

mean the disk is faulty.

• UNAVAIL: The disk or vdev cannot be opened. Effectively

ZFS cannot read or write to it. You may notice it sounds

very similar to FAULTED state. The difference is mainly

that in the FAULTED state, the device has displayed

number of errors before being marked as FAULTED by

ZFS. With UNAVAIL, the system cannot talk to the device;

possibly it went totally dead or the power supply is too

weak to power all of your disks. The last scenario is

something to keep in mind, especially on commodity

hardware. I’ve run into dissapearing disks more than

once, just to figure out that the PSU was too weak.

• REMOVED: If your hardware supports it, when a disk is

physically removed without first removing it from the

pool using the zpool command, it will be marked as

REMOVED.

You can check pool health explicitly using the zpool status and zpool

status -x commands:

trochej@madchamber:~$ sudo zpool status -x

all pools are healthy

trochej@madchamber:~$ sudo zpool status

 pool: data

 state: ONLINE

ChapTEr 1 ZFS OvErviEW

22

 scan: none requested

 config:

 NAME STATE READ WRITE CKSUM

 data ONLINE 0 0 0

 sdb ONLINE 0 0 0

errors: No known data errors

zpool status will print detailed health and configuration of all the pool

devices. When the pool consists of hundreds of disks, it may be troublesome

to fish out a faulty device. To that end, you can use zpool status -x, which

will print only the status of the pools that experienced issues.

trochej@madchamber:~$ sudo zpool status -x

 pool: data

 state: DEGRADED

status: One or more devices has been taken offline by the administrator.

 Sufficient replicas exist for the pool to continue

functioning in a degraded state.

action: Online the device using 'zpool online' or replace the

device with 'zpool replace'.

scrub: resilver completed after 0h0m with 0 errors on Wed Feb

10 15:15:09 2016

config:

 NAME STATE READ WRITE CKSUM

 data ONLINE 0 0 0

 mirror-0 DEGRADED 0 0 0

 sdb ONLINE 0 0 0

 sdc OFFLINE 0 0 0 48K resilvered

errors: No known data errors

ChapTEr 1 ZFS OvErviEW

23

 ZFS Version
ZFS was designed to incrementally introduce new features. As part of that

mechanism, the ZFS versions have been introduced by a single number.

Tracking that number, the system operator can determine if their pool uses

the latest ZFS version, including new features and bug fixes. Upgrades are

done in-place and do not require any downtime.

That philosophy was functioning quite well when ZFS was developed

solely by Sun Microsystems. With the advent of the OpenZFS community—

gathering developers from illumos, Linux, OSX, and FreeBSD worlds—it

soon became obvious that it would be difficult if not impossible to agree

with every on-disk format change across the whole community. Thus, the

version number stayed at the latest that was ever released as open source

from Oracle Corp: 28. From that point, pluggable architecture of “features

flags” was introduced. ZFS implementations are compatible if they

implement the same set of feature flags.

If you look again at the zpool command output for my host:

trochej@madchamber:~$ sudo zpool get all data

NAME PROPERTY VALUE SOURCE

data size 2,72T -

data capacity 4% -

data altroot - default

data health ONLINE -

data guid 7057182016879104894 default

data version - default

data bootfs - default

data delegation on default

data autoreplace off default

data cachefile - default

data failmode wait default

ChapTEr 1 ZFS OvErviEW

24

data listsnapshots off default

data autoexpand off default

data dedupditto 0 default

data dedupratio 1.00x -

data free 2,59T -

data allocated 133G -

data readonly off -

data ashift 0 default

data comment - default

data expandsize - -

data freeing 0 default

data fragmentation 3% -

data leaked 0 default

data feature@async_destroy enabled local

data feature@empty_bpobj active local

data feature@lz4_compress active local

data feature@spacemap_histogram active local

data feature@enabled_txg active local

data feature@hole_birth active local

data feature@extensible_dataset enabled local

data feature@embedded_data active local

data feature@bookmarks enabled local

You will notice that last few properties start with the feature@ string.

That’s the feature flags you need to look for. The find out the all supported

versions and feature flags, run the sudo zfs upgrade -v and sudo zpool

upgrade -v commands, as shown in the following examples:

trochej@madchamber:~$ sudo zfs upgrade -v

ChapTEr 1 ZFS OvErviEW

25

The following file system versions are supported:

VER DESCRIPTION

--- --

 1 Initial ZFS file system version

 2 Enhanced directory entries

 3 Case insensitive and file system user identifier (FUID)

 4 userquota, groupquota properties

 5 System attributes

For more information on a particular version, including supported

releases, see the ZFS Administration Guide.

trochej@madchamber:~$ sudo zpool upgrade -v

This system supports ZFS pool feature flags.

The following features are supported:

FEAT DESCRIPTION

async_destroy (read-only compatible)

 Destroy file systems asynchronously.

empty_bpobj (read-only compatible)

 Snapshots use less space.

lz4_compress

 LZ4 compression algorithm support.

spacemap_histogram (read-only compatible)

 Spacemaps maintain space histograms.

enabled_txg (read-only compatible)

 Record txg at which a feature is enabled

hole_birth

 Retain hole birth txg for more precise zfs send

extensible_dataset

 Enhanced dataset functionality, used by other features.

ChapTEr 1 ZFS OvErviEW

26

embedded_data

 Blocks which compress very well use even less space.

bookmarks (read-only compatible)

 "zfs bookmark" command

The following legacy versions are also supported:

VER DESCRIPTION

--- --

 1 Initial ZFS version

 2 Ditto blocks (replicated metadata)

 3 Hot spares and double parity RAID-Z

 4 zpool history

 5 Compression using the gzip algorithm

 6 bootfs pool property

 7 Separate intent log devices

 8 Delegated administration

 9 refquota and refreservation properties

 10 Cache devices

 11 Improved scrub performance

 12 Snapshot properties

 13 snapused property

 14 passthrough-x aclinherit

 15 user/group space accounting

 16 stmf property support

 17 Triple-parity RAID-Z

 18 Snapshot user holds

 19 Log device removal

 20 Compression using zle (zero-length encoding)

 21 Deduplication

 22 Received properties

 23 Slim ZIL

 24 System attributes

ChapTEr 1 ZFS OvErviEW

27

 25 Improved scrub stats

 26 Improved snapshot deletion performance

 27 Improved snapshot creation performance

 28 Multiple vdev replacements

For more information on a particular version, including

supported releases, see the ZFS Administration Guide.

Both commands print information on a maximum level of ZFS pool

and file system versions and list the available feature flags .

You can check the current version of your pool and file systems using

the zpool upgrade and zfs upgrade commands:

trochej@madchamber:~$ sudo zpool upgrade

This system supports ZFS pool feature flags.

All pools are formatted using feature flags.

Every feature flags pool has all supported features enabled.

trochej@madchamber:~$ sudo zfs upgrade

This system is currently running ZFS file system version 5.

All file systems are formatted with the current version.

Linux is a dominant operating system in the server area. ZFS is a very

good file system for storage in most scenarios. Compared to traditional

RAID and volume management solutions, it brings several advantages—

simplicity of use, data healing capabilities, improved ability to migrate

between operating systems, and many more. ZFS deals with virtual devices

(vdevs). Virtual device can be either mapped directly to physical disk or to a

grouping of other vdevs. A group of vdevs that serve as space for file systems

is called a ZFS pool. The file systems within them are called file systems. ZFS

file systems can be nested. Administrating the pool is done by the zpool

command. Administration of file systems is done by the zfs command.

ChapTEr 1 ZFS OvErviEW

29© Damian Wojsław 2017
D. Wojsław, Introducing ZFS on Linux, https://doi.org/10.1007/978-1-4842-3306-1_2

CHAPTER 2

Hardware
Before you buy hardware for your storage, there are a few things to

consider. How much disk space will you need? How many client

connections (sessions) will your storage serve? Which protocol will you

use? What kind of data do you plan to serve?

 Don’t Rush
The first piece of advice that you always should keep in mind: don’t rush it.

You are about to invest your money and time. While you can later modify

the storage according to your needs, some changes will require that you

recreate the ZFS pool, which means all data on it will be lost. If you buy the

wrong disks (e.g., they are too small), you will need to add more and may

run out of free slots or power.

 Considerations
There are a few questions you should ask yourself before starting to

scope the storage. Answers that you give here will play a key role in later

deployment.

30

 How Much Data?
The amount of data you expect to store will determine the number and

size of disks you need to buy. It will also affect other factors, such as server

size. To scope your space needs you would need to assess how much data

you currently have and how quickly it grows. Consider how long you are

going to run the storage you are building. It may be that you plan to

replace it completely in three years and thus don’t have to be very careful.

It may be you don’t know when new storage will be implemented and

thus need to add some margin. Look at your organisation growth plans.

Are you going to double number of office personnell within three years?

Are they all going to produce data? That would mean three years from

now data will grow at least three times as quick as currently.

 How Many Concurrent Clients?
The number of concurrent client connections determines the amount of RAM

that you’ll need. You could buy SSD disks to serve as level 2 cache for your

storage and resign from using SATA disk at all, if you were considering them.

Even if you are going to store hundreds of terabytes, but only a few client

machines will ever utilize it and not very intensively, you may be able to get by

with a low amount of memory. This will also determine the kind of network

interface in your server and the kind of switch it should be attached to.

 How Critical Is the Data?
How critical is your data? If it’s mission-critical, look at certified and

probably more costly hardware, known to perform well and for a longer

time. The importance of your data will also tell you which redundancy

level you should use, which influences the final cost. My personal

experience from various data centers suggests that SATA disks are failing

much faster than SAS.

Chapter 2 hardware

31

 What Types of Data?
The kind of data you will serve may affect the architecture of your storage

pool. Streaming video files for a considerable number of clients or

servicing virtual machines and data files will most probably mean you

need to use mirrors, which directly influence the final capacity of your

array and final cost.

 What Kind of Scope?
First, create an upper bounds for what will be considered SoHo storage in

this guide:

• Given your current disk sizes, up to 12 slots in a single

node, and up to 30 TB of raw capacity.

• Either internal SAS or SATA drives.

• One or two slots for eventual SSDs for speeding up

reads.

• Possibly a mirrored ZIL device to speed up and

concatenate writes to disks. A system drive, possibly

mirrored, although currently setting up Linux system

on ZFS is not trivial and booting from ZFS is not

recommended.

• Up to 128 GB of RAM, possibly 64.

• A 64-bit CPU with four or more cores. While running

ZFS on 32-bit systems is possible, it certainly is not

recommended.

If you intend to use external disk enclosures (JBODS) connected

through SAS or FibreChannel, this book is probably not intended for you.

It is possible to set up and administer such storage manually and many

Chapter 2 hardware

32

people have done so, but it may involve additional steps not covered in

the guide. If you want to run tens or hundreds of disks, do yourself a favor

and consider FreeNAS or even commercial solutions with paid support.

Keeping track of system performance, memory usage, disks, controllers,

and cable health is probably best managed by specialized products.

 Hardware Purchase Guidelines
Hardware is usually a long-term investment. Try to remember the

following points.

 Same Vendor, Different Batch
When buying disks, a common practice is to make sure you buy each disk

from the same vendor and model, to keep geometry and firmware the

same, but from different batches, so you minimize the risk of several disks

dying at the same time. I suppose that for a small-time buyer (a few up to

20 disks), the simplest way to achieve it is to buy disks from different shops.

Might be cumbersome, but storage operators have seen disk batches

failing at the same time many times in their lives.

 Buy a Few Pieces for Spares
Storage system lifetime is usually counted in years and is often longer than

a disk model, especially if you decide to use consumer-grade SATA disks.

When one of them fails in a few years, you may be surprised by the fact that

you cannot buy this model any more. Introducing a different one in a pool

is always a performance risk. If that happens, don’t despair. ZFS lets you

exchange all disks in a pool. This trick has been used in the past to increase

the size of the pool when it became insufficient. Be aware that replacing all

disks in a 10-disk pool can take weeks on a filled and busy system.

Chapter 2 hardware

33

 Scope Power Supply Properly
If your power unit is unstable or insufficient, you may encounter

mysterious failures (disks disappearing, disk connection dropping, or

random I/O errors to the pool) or may not be able to use your disks at all.

 Consider Performance, Plan for RAM
Performance-wise, the more disks the better. The smaller disks, the better.

ZFS threads writes and reads among vdevs. The more vdevs, the more

read/write threads. Plan for much RAM. ZFS needs at least 2 GB of RAM to

work sensibly, but for any real-life use, don’t go below 8 GB. For a storage

system for SoHo, I recommend looking at 64 GB or more. ZFS caches data

very aggressively, so it will try to use as much RAM as possible. It will,

however, yield when the system demands RAM for normal operations

(such as new programs being run). So the more it can fit in your memory,

the better.

 Plan for SSDs (At Least Three)
You don’t need to buy them upfront. ZFS is a hybrid storage file system,

which means that it can use SSD disks for the level 2 cache. It’s gonna be

much slower than you RAM, but it’s cheaper and still much faster than

your platter disks. For a fraction of the RAM price, you can get a 512 GB

SSD drive, which should allow for another speed improvement. That’s one

SSD. Two SSDs would be for an external ZFS Intent Log. The file system

doesn’t flush all the data all the time to physical storage. It ties writes in

transactions and flushes several at the same time, to minimize file system

fragmentation and real I/O to disks.

If you give ZFS external devices for ZIL, it can speed things up by

grouping even more data before flushing it down. This additional pool

device should be mirrored, because it’s where you can lose your data.

Chapter 2 hardware

34

In case of power failure, data on external ZIL must be persistent. There

are battery backed-up DRAM devices that emulate small SSD disks, i.e.,

ZeusRAM. They come in 8 and 16 GB sizes, which is enough for ZIL. They

are fast as memory, but they are costly. You can think of mirroring your

L2ARC too (the level 2 cache), but losing this device won’t endanger

your data.

 Consider SATA
While the SAS standard is sure to get better performance and life

expectancy from your disks, for SoHo solutions SATA is enough, especially

if you consider that there are enterprise-class SATA disks. The price

difference for such deployment shouldn’t be very high. If you’re unsure,

choose SAS if your budget allows.

 Do Not Buy Hardware and Soft RAID Controllers
While in the past, RAID cards were necessary to offload both CPU units

and RAM, both of those resources are now abundant and cheap. You CPU

and your RAM will be more than enough for the workload and RAID cards

take away one important capability of ZFS. ZFS ensures data safety by

talking directly to the disk: getting reliable information on when data is

flushed to physical disks and what block sizes are being used.

RAID controllers mediate in between and can make their own

“optimizations” to the I/O, which may lower ZFS reliability. The other

thing is, RAID controllers are incompatible between various vendors

and even the same card but different firmware revision may be unable to

access your RAID set. This means that in case of controller failure, you lose

the whole setup and need to restore data from a backup. Soft RAIDs are

even worse, in that they need special software (often limited to only one

operating system) to actually work.

Chapter 2 hardware

35

ZFS is superior in all of these areas. Not only can it use all processing

power and all RAM you can give it to speed up your I/O, but the disks

in the pool can also be migrated between all software platforms that

implement the same OpenZFS version. Also, the exact sequence of disks in

disk slots is not important, as the pool remembers its configuration based

on disk device names (i.e., /dev/sdb) as well as by the disk GUID given

them by ZFS during pool creation.

 Networking Cards at Least 1 GB of Speed
Remember that this server networking card’s bandwidth will be spread

among all the machines that will simultaneously utilize the storage. It is

quite sensible to consider 10 GB, but you also need to consider your other

networking gear—switches, cabling, etc. Remember that the network plays

a role in performance analysis and quite a large amount of performance

issues are caused not by the storage itself, but by the networking layer.

For serious work in an office I would suggest going no lower than 10GB

network cards. 1GB are acceptable in a very small environment where

storage won’t be used extensively. Anything less will quickly become

inconvenient at best.

 Plan for Redundancy
Always. This means that for high-speed read pools, you need to consider

mirrored storage, effectively halving total capacity of the disks you buy.

RAIDZ setup means your capacity will be lowered by one disk per each

vdev you create. For RAIDZ-2, it will be two disks.

Chapter 2 hardware

36

 Data Security
You are going to use ZFS storage to keep data and serve it to various

people in your company. Be it two, ten, or fifty people, always put some

thought into planning the layout. Various directories that will store data

that vary by kind, sensitivity, and compressibility will pay off in the future.

Well-designed directory structure will simplify both organizational

things, like access control and the technical side, like enabled or disabled

compression, time options, etc.

ZFS file systems behave like directories. It is quite common to create

a separate ZFS file system per the user home directory, for example, so

that they can have fine-grained backup policies, ACLs, and compression

mechanisms.

You need to consider your company size, number of employees

accessing the storage, growth perspectives, data sensitivity, etc. Whatever

you do, however, don’t skip this point. I’ve seen quite a few companies that

overlooked the moment they needed to switch from an infrastructure that

freely evolves into something that is engineered.

 CIA
There are many data security methodologies and one of them, I believe

the most classic, uses the acronym CIA to explain aspects of data security.

This stands for Confidentiality, Integrity, and Availability. While it focuses

rather on the InfoSec side of things, it’s a pretty good view of storage

administration also. The next sections introduce these concepts from the

point of view of the storage administrator.

Chapter 2 hardware

37

 Confidentiality

Data must be available only to people who are entrusted with it. No

one who is not explicitly allowed to view data should be able to access

it. This side of security is covered by many infrastructural tools, from

policies and NDAs that people allowed to view data should read and sign,

through network access separation (VPNs, VLANs, access control through

credentials). There are also aspects directly related to storage itself: Access

Control Lists (ACLs), sharing through secure protocols and in secure

networks, working with storage firewalls, etc.

 Integrity

It must be guaranteed that the data is genuine and was not changed by

people who are not entrusted. Also, the change should not be introduced

by software or hardware, intentionally or not, if it’s not supposed to.

Through the whole data lifecycle, only people with sufficient privileges

should be allowed to modify the data. Unintentional data integrity

breaches may be a disk failure that breaks data blocks. While with text data

it is usually easily spotted, with other data, like sound or video, it’s harder

because there can be subtle differences from the original state. As with all

aspects of security, it’s also only partially administered by storage. The data

integrity is covered by ACLs, but also by ZFS checksumming data blocks

to detect corruption. If your setup uses any redundancy, ZFS can, to great

extent, fix those for you using the redundant set.

 Availability

The data should be available at all times it is required and guaranteed.

This is probably one of most obvious aspects of storage. Any time you

expect your data should be up, the data should be up. Typically, storage

redundancy comes into play here (mirror, RAIDZ, and RAIDZ-2), but

Chapter 2 hardware

38

so do network cards trunking, switch stacking, and the redundancy of

any credentials checking solution you are using (Active Directory server,

primary and secondary, for example).

 Types of Workload
The workload you are going to run on the storage will play a major role in

how you should plan the pool layout.

If you are going to mostly host databases and they are going to be the

dominating consumers of the space, L2ARC SSD device may not provide

you with special performance gains. Databases are very good at caching

their own data and if it so happens that the data fits into the database

server RAM, ARC will not have much to do. On the other hand, if the data

in your database change often and needs to be reread from disks, you are

going to have high miss ratio anyway and, again, the L2ARC device will not

fulfill its purpose.

The snapshotting data is also going to be tricky. Databases need lots

more than a snapshot of the file system to be able to work on the data.

This is why they come with their own dump commands—because the full

working backup usually contains more than what lives in the database

files. Hosting a database would usually mean you run the engine on

the same host as your ZFS. Again, the database will use the RAM more

efficiently than the file system itself. Consider though, if you will serve data

from the same server for other purposes, such as CIFS or NFS share. In that

case, the database and file system cache may compete for RAM. While this

shouldn’t affect the system stability, it may adversely affect performance.

If you host documents and pictures for office workers, files like

procedures, and technical documentations, a L2ARC device is something

to seriously consider. Snapshotting is then a reliable way of capturing data

at certain points in time. If your data is not being accessed 24 hours a day

and you can have just a few seconds of off-time, a snapshot can reliably

Chapter 2 hardware

39

host your data at a specified point of time. It usually takes about a second

to create. You can later mount this snapshot—remember it is read-only—

and transfer it to a backup location, not worrying about data integrity.

Above all, don’t rush it. You can always add L2ARC later on to your

pool, if performance tests prove to be unsatisfactory.

 Other Components To Pay Attention To
It is important to pay attention to other infrastructure elements. The

network is of special interest. In a small company of a few persons, a

small switch with the workstation refit as a storage server might perform

without any issue, but once the number of data consumers starts to grow,

this kind of network may soon become a bottleneck. Switches may not be

the only limiting factor. Network cards in your storage server may prove

to be another one. Also, if you serve your data over VPNs from a remote

location, it may turn out that the interlink is too slow. Quite often on a

storage performance analysis case, we were able to point to networking

infrastructure as the faulty element.

 Hardware Checklist
Don’t rush. Before buying your hardware, sit down with a piece of paper

or with your laptop and make a list. Think about how much space you

will need and how this need may grow in several years. Think about your

budget. How much you can spend? Count the number of machines you

will be connecting to the storage and describe the kind of traffic that will be

served. Lots of small files? Big, several gigabyte-sized files? Plan some tests

and assume you’ll need a few days to make them.

Chapter 2 hardware

www.allitebooks.com

http://www.allitebooks.org

41© Damian Wojsław 2017
D. Wojsław, Introducing ZFS on Linux, https://doi.org/10.1007/978-1-4842-3306-1_3

CHAPTER 3

Installation
This chapter goes through the basic installation of ZFS modules in your

Linux distribution of choice. Ubuntu allows for quick install and setup, so

we are going to use it as an example.

 System Packages
Before going any further, you need to install some packages from the

standard distribution repositories.

 Virtual Machine
Before buying the hardware and running tests on bare metal, you may

want to install and test ZFS within a virtual machine. It is a good idea and

I encourage you to do so. You may, in a very simple and efficient way, get

used to administering ZFS pools. You may also check which distribution

works better for you. There are no requirements to the virtualization

engine. You can use VirtualBox, VMware, KVM, Xen, or any other VM you

feel comfortable with. Keep in mind that the tool you use should be able to

provide your guest machine with virtual disks to play with. While you can

create a pool on the files created within the VM, I don’t recommend that

way of testing it.

42

Note Bear in mind that virtual machines are not suitable for
performance testing. Too many factors stand in the way of reliable
results.

 Ubuntu Server
If, for some reason, you are running Ubuntu prior to 15.10, you will need to

add a special PPA repository:

trochej@ubuntuzfs:~$ sudo add-apt-repository ppa:zfs-native/

stable

[sudo] password for trochej:

 The native ZFS filesystem for Linux. Install the ubuntu-zfs

package.

Please join this Launchpad user group if you want to show

support for ZoL:

 https://launchpad.net/~zfs-native-users

Send feedback or requests for help to this email list:

 http://list.zfsonlinux.org/mailman/listinfo/zfs-discuss

Report bugs at:

 https://github.com/zfsonlinux/zfs/issues (for the driver itself)

 https://github.com/zfsonlinux/pkg-zfs/issues (for the packaging)

The ZoL project home page is:

 http://zfsonlinux.org/

ChapTer 3 InsTallaTIon

43

 More info: https://launchpad.net/~zfs-native/+archive/ubuntu/

stable

Press [ENTER] to continue or ctrl-c to cancel adding it

gpg: keyring `/tmp/tmp4_wvpmaf/secring.gpg' created

gpg: keyring `/tmp/tmp4_wvpmaf/pubring.gpg' created

gpg: requesting key F6B0FC61 from hkp server keyserver.ubuntu.com

gpg: /tmp/tmp4_wvpmaf/trustdb.gpg: trustdb created

gpg: key F6B0FC61: public key "Launchpad PPA for Native ZFS for

Linux" imported

gpg: Total number processed: 1

gpg: imported: 1 (RSA: 1)

OK

With Ubuntu 15.10 and later, ZFS support packages are already

included in the standard repository. You will need to install the following

packages:

trochej@ubuntuzfs:~$ sudo apt-get install zfsutils-linux

This will compile the appropriate kernel modules for you. You can later

confirm that they were built and in fact loaded by running lsmod:

trochej@ubuntuzfs:~$ sudo lsmod | grep zfs

zfs 2252800 0

zunicode 331776 1 zfs

zcommon 53248 1 zfs

znvpair 90112 2 zfs,zcommon

spl 102400 3 zfs,zcommon,znvpair

zavl 16384 1 zfs

ChapTer 3 InsTallaTIon

44

You should be now able to create a pool:

trochej@ubuntuzfs:~$ sudo zpool create -f datapool \

 mirror /dev/sdb /dev/sdc \

 mirror /dev/sdd /dev/sde \

 mirror /dev/sdf /dev/sdg

trochej@ubuntuzfs:~$ sudo zpool status

 pool: datapool

 state: ONLINE

 scan: none requested

 config:

 NAME STATE READ WRITE CKSUM

 datapool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

 mirror-2 ONLINE 0 0 0

 sdf ONLINE 0 0 0

 sdg ONLINE 0 0 0

errors: No known data errors

There is another package you will want to install:

trochej@ubuntuzfs:~$ sudo apt-get install zfs-zed

zed is a ZFS Event Daemon. It is a daemon service that will listen to

any ZFS-generated kernel event. It’s explained in more detail in the next

section.

ChapTer 3 InsTallaTIon

45

 CentOS
You will need a system information tool that is not installed by default for

monitoring, troubleshooting, and testing your setup:

[root@localhost ~]# yum install sysstat

Contrary to Ubuntu, CentOS doesn’t have ZFS packages by default in

the repository, neither in its 6.7 nor 7 version. Thus you need to follow the

directions here: http://zfsonlinux.org/epel.html.

The installation for CentOS 7 is exactly the same, except for the

package names:

[root@CentosZFS ~]# yum localinstall --nogpgcheck https://

download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.

noarch.rpm

[root@CentosZFS ~]# yum localinstall --nogpgcheck http://

archive.zfsonlinux.org/epel/zfs-release.el6.noarch.rpm

[root@CentosZFS ~]# yum install -y kernel-devel zfs

After some time, you should be ready to probe and use ZFS modules:

[root@CentosZFS ~]# modprobe zfs

[root@CentosZFS ~]# lsmod | grep zfs

zfs 2735595 0

zcommon 48128 1 zfs

znvpair 80220 2 zfs,zcommon

spl 90378 3 zfs,zcommon,znvpair

zavl 7215 1 zfs

zunicode 323046 1 zfs

ChapTer 3 InsTallaTIon

http://zfsonlinux.org/epel.html

46

You’re now ready to create a pool on your attached disks:

[root@CentosZFS ~]# zpool create -f datapool mirror /dev/sdb /

dev/sdc mirror /dev/sdd /dev/sde

[root@CentosZFS ~]# zpool status

 pool: datapool

 state: ONLINE

 scan: none requested

 config:

 NAME STATE READ WRITE CKSUM

 datapool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

errors: No known data errors

This code installed the aforementioned ZED for you.

 System Tools
You will need some system tools. Get used to them.

• smartctl: The smartmontools package contains two

utility programs (smartctl and smartd) to control and

monitor storage systems. It uses the Self-Monitoring,

Analysis, and Reporting Technology System (SMART)

built into most modern ATA/SATA, SCSI/SAS, and

NVMe disks.

ChapTer 3 InsTallaTIon

47

• lsblk: Tells you what block devices you have. It will

assist you in identifying the drive names you will use

while setting your ZFS pool.

• blkid: Helps you identify drives already used by other

file systems. You may want to use mount and df for that

purpose too.

 ZED
As mentioned, zed is a daemon that will listen to kernel events related to

ZFS. Upon receiving events, it will conduct any action defined in

so- called ZEDLETs—a script or program that will carry on whatever action

it’s supposed to do. ZED is a Linux-specific daemon. In illumos distributions,

FMA is the layer responsible for carrying out corrective actions.

Writing ZEDLETs is a topic beyond this guide, but the daemon is

essential for two important tasks: monitoring and reporting (via mail) pool

health and replacing failed drives with hot spares.

Even though it is a ZFS that is responsible for marking a drive as faulty,

the replacement action needs to be carried out by a separate entity.

For those actions to work, after installing the daemon, open its

configuration file. It’s usually found in /etc/zfs/zed.d/zed.rc:

zed.rc

Absolute path to the debug output file.

ZED_DEBUG_LOG="/tmp/zed.debug.log"

Email address of the zpool administrator.

Email will only be sent if ZED_EMAIL is defined.

ZED_EMAIL="admin@example.net"

Email verbosity.

If set to 0, suppress email if the pool is healthy.

ChapTer 3 InsTallaTIon

48

If set to 1, send email regardless of pool health.

#ZED_EMAIL_VERBOSE=0

Minimum number of seconds between emails sent for a similar event.

#ZED_EMAIL_INTERVAL_SECS="3600"

Default directory for zed lock files.

#ZED_LOCKDIR="/var/lock"

Default directory for zed state files.

#ZED_RUNDIR="/var/run"

The syslog priority (eg, specified as a "facility.level" pair).

ZED_SYSLOG_PRIORITY="daemon.notice"

The syslog tag for marking zed events.

ZED_SYSLOG_TAG="zed"

Replace a device with a hot spare after N I/O errors are detected.

#ZED_SPARE_ON_IO_ERRORS=1

Replace a device with a hot spare after N checksum errors are

detected.

#ZED_SPARE_ON_CHECKSUM_ERRORS=10

Notice ZED_EMAIL, ZED_SPARE_ON_IO_ERRORS, and ZED_SPARE_ON_

CHECKSUM_ERRORS. Uncomment them if you want this functionality.

You can view the kernel messages that zed will listen to by using zpool

events with or without the -v switch. Without the switch, you will receive a

list similar to this one:

trochej@ubuntuzfs:~$ sudo zpool events

TIME CLASS

Feb 15 2016 17:43:08.213103724 resource.fs.zfs.statechange

ChapTer 3 InsTallaTIon

49

Feb 15 2016 17:43:08.221103592 resource.fs.zfs.statechange

Feb 15 2016 17:43:08.221103592 resource.fs.zfs.statechange

Feb 15 2016 17:43:08.661096327 ereport.fs.zfs.config.sync

Feb 15 2016 18:07:39.521832629 ereport.fs.zfs.zpool.destroy

Those should be pretty obvious and, in this case, it’s directly related to

creation, import, and destruction of a pool.

With the -v switch, the output is more verbose:

trochej@ubuntuzfs:~$ sudo zpool events -v

TIME CLASS

Feb 15 2016 17:43:08.213103724 resource.fs.zfs.statechange

 version = 0x0

 class = "resource.fs.zfs.statechange"

 pool_guid = 0xa5c256340cb6bcbc

 pool_context = 0x0

 vdev_guid = 0xba85b9116783d317

 vdev_state = 0x7

 time = 0x56c2001c 0xcb3b46c

 eid = 0xa

Feb 15 2016 17:43:08.213103724 resource.fs.zfs.statechange

 version = 0x0

 class = "resource.fs.zfs.statechange"

 pool_guid = 0xa5c256340cb6bcbc

 pool_context = 0x0

 vdev_guid = 0xbcb660041118eb95

 vdev_state = 0x7

 time = 0x56c2001c 0xcb3b46c

 eid = 0xb

ChapTer 3 InsTallaTIon

51© Damian Wojsław 2017
D. Wojsław, Introducing ZFS on Linux, https://doi.org/10.1007/978-1-4842-3306-1_4

CHAPTER 4

Setup
We’ve already presented various pool layout performance issues, so now

it’s time to consider rules of thumb for the given redundancy types.

Note We won’t be covering striped pools. A striped pool is a pool
consisting of two or more disks that provide no redundancy. While
the total pool capacity equals the combined capacity of all the disks
in the pool, the file system will become corrupted and subject to data
recovery if you lose a single drive. A rule of thumb for storage is:
don’t use striped pools.

 General Considerations
For mirrored pools, a good rule of thumb is to use them only when you

really need an incredible read performance or are paranoid about your

storage. Disks don’t fail that often and a mirrored pool will halve your

total pool capacity. With triple mirrors, your capacity will be the total

disk’s capacity divided by three, and so on. A rule of thumb is to use them

sparingly and with care.

52

For RAIDZ (which is a rough equivalent of RAID-5 and RAID-6), go

rather for RAIDZ-2. It gives you quite good resilience while conserving a

lot of space. There is also another recommendation and from personal

 experience I’d adhere to it: for RAIDZ pools, have 2n+1 disks per vdev.

That’s three, five, seven, etc., but no more than eleven. This is 2n data disks

plus 1 disk for parity data.

With the smallest set of three disks per vdev, you have basically a

capacity of a mirrored set with lower read performance. Consider starting

with five disks per vdev. For RAIDZ-2, the rule is to use 2x+2 disks, which

translates to four, six, eight, etc., and have no more than 12 disks within

a vdev. Given this guide, have a typical target maximum of 20 disks in the

pool (including ZIL and L2ARC). It’s a good idea to have two eight disks

RAIDZ-2 vdevs in the pool, totaling 16 disks of total pool capacity of 12

disks.

 Creating a Mirrored Pool
Since I’ve shown you how to create simple pools in previous chapters,

there is no need to demonstrate this now. I am therefore going to jump

straight to more involved configurations. Bear in mind, however, that with

a single node, the setup options are limited.

As a reminder, we are not going to cover striped pools at all. Your pool

will have absolutely no resiliency in such a setup and you should never

consider hosting data you care for using such a configuration.

Before running any command that may endanger your data, especially

in production, i.e., zpool create or zpool destroy, confirm that the disks

you want to use are those that you intended to be used by ZFS.

We have already covered a simple mirrored pool, so let’s create bigger

one consisting of 10 disks. I am going to follow with zpool status to print

the resulting pool configuration:

ChApter 4 Setup

53

trochej@ubuntuzfs:~$ sudo zpool create -f datapool mirror /dev/

sdb /dev/sdc \

mirror /dev/sdd /dev/sde \

mirror /dev/sdf /dev/sdg \

mirror /dev/sdh /dev/sdi \

mirror /dev/sdj /dev/sdk

trochej@ubuntuzfs:~$ sudo zpool status

 pool: datapool

 state: ONLINE

 scan: none requested

 config:

 NAME STATE READ WRITE CKSUM

 datapool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

 mirror-2 ONLINE 0 0 0

 sdf ONLINE 0 0 0

 sdg ONLINE 0 0 0

 mirror-3 ONLINE 0 0 0

 sdh ONLINE 0 0 0

 sdi ONLINE 0 0 0

 mirror-4 ONLINE 0 0 0

 sdj ONLINE 0 0 0

 sdk ONLINE 0 0 0

errors: No known data errors

ChApter 4 Setup

54

The resulting pool total capacity equals half the capacity of all the disks

in the pool:

trochej@ubuntuzfs:~$ sudo zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP

DEDUP HEALTH ALTROOT

datapool 9.92G 64K 9.92G - 0% 0%

1.00x ONLINE -

The pool is mounted at /datapool and contains a file system called

datapool, as you can see in the following output:

trochej@ubuntuzfs:~$ sudo zfs list

NAME USED AVAIL REFER MOUNTPOINT

datapool 58K 9.77G 19K /datapool

 Creating a RAIDZ Pool
I am reusing the same disks in all the examples. Before creating a new pool

on them, I am going to run zpool destroy on the pool. It does exactly

that: it marks a pool as destroyed and disks as free to be used by other ZFS

setups. When ZFS adds a disk to the pool, it labels it with its own GUID

and some information that allows ZFS to be self-contained. You may move

the pool around, export it from the current server, reinstall the server to

FreeBSD, and import the same pool without a problem. Thus, if you decide

you no longer need the pool and try to reuse disks for other configuration,

zpool will refuse to add it to a new one without using the -f switch.

trochej@ubuntuzfs:~$ sudo zpool destroy datapool

[sudo] password for trochej:

ChApter 4 Setup

55

The virtual machine I am working with has 12 disks for use as storage:

trochej@ubuntuzfs:~$ ls -ahl /dev/sd[a-z]

brw-rw---- 1 root disk 8, 0 Feb 12 21:59 /dev/sda

brw-rw---- 1 root disk 8, 16 Feb 15 17:43 /dev/sdb

brw-rw---- 1 root disk 8, 32 Feb 15 17:43 /dev/sdc

brw-rw---- 1 root disk 8, 48 Feb 15 17:43 /dev/sdd

brw-rw---- 1 root disk 8, 64 Feb 15 17:43 /dev/sde

brw-rw---- 1 root disk 8, 80 Feb 15 17:43 /dev/sdf

brw-rw---- 1 root disk 8, 96 Feb 15 17:43 /dev/sdg

brw-rw---- 1 root disk 8, 112 Feb 15 17:43 /dev/sdh

brw-rw---- 1 root disk 8, 128 Feb 15 17:43 /dev/sdi

brw-rw---- 1 root disk 8, 144 Feb 15 17:43 /dev/sdj

brw-rw---- 1 root disk 8, 160 Feb 15 17:43 /dev/sdk

brw-rw---- 1 root disk 8, 176 Feb 12 21:59 /dev/sdl

brw-rw---- 1 root disk 8, 192 Feb 12 21:59 /dev/sdm

/dev/sda is a system disk, which leaves us with disks from /dev/sdb to

/dev/sdm. It means 12 disks for use as storage. Let’s create a RAIDZ pool

following the previously noted best practice of five disks per vdev:

trochej@ubuntuzfs:~$ sudo zpool create datapool \

 raidz /dev/sdb /dev/sdc \

 /dev/sdd /dev/sde /dev/sdf \

 raidz /dev/sdg /dev/sdh \

 /dev/sdi /dev/sdj /dev/sdk

trochej@ubuntuzfs:~$ sudo zpool status

 pool: datapool

 state: ONLINE

 scan: none requested

 config:

ChApter 4 Setup

56

 NAME STATE READ WRITE CKSUM

 datapool ONLINE 0 0 0

 raidz1-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

 sdf ONLINE 0 0 0

 raidz1-1 ONLINE 0 0 0

 sdg ONLINE 0 0 0

 sdh ONLINE 0 0 0

 sdi ONLINE 0 0 0

 sdj ONLINE 0 0 0

 sdk ONLINE 0 0 0

errors: No known data errors

trochej@ubuntuzfs:~$ sudo zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP

HEALTH ALTROOT

datapool 19.8G 106K 19.7G - 0% 0% 1.00x

ONLINE -

The setup shown here can withstand losing a single disk per each vdev

at once. With two disks unused, you can add so-called hot spares. Hot

spares are idle disks added to a pool for replacement in case any active

disk in the pool fails. The replacement is done automatically by ZFS. The

hot spare mechanism isn’t intelligent, so it can cause resiliency issues if

you care for the physical layout of your pool—spread your pool’s disks in

different JBODs so that you can the lose the whole chassis and still retain

the pool and data.

ChApter 4 Setup

57

In a simple single server setup, this problem isn’t significant. You

should be safe adding the spare disk to a pool. I’ll demonstrate this process

in Chapter 5.

 Creating a RAIDZ2 Pool
Let’s now walk through creating a RAIDZ2 pool, which will consist of 12

disks spread evenly between two vdevs:

trochej@ubuntuzfs:~$ sudo zpool create -f datapool \

 raidz2 /dev/sdb /dev/sdc /dev/sdd \

 /dev/sde /dev/sdf /dev/sdg \

 raidz2 /dev/sdh /dev/sdi /dev/sdj \

 /dev/sdk /dev/sdl /dev/sdm

trochej@ubuntuzfs:~$ sudo zpool status

 pool: datapool

 state: ONLINE

 scan: none requested

 config:

 NAME STATE READ WRITE CKSUM

 datapool ONLINE 0 0 0

 raidz2-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

 sdf ONLINE 0 0 0

 sdg ONLINE 0 0 0

 raidz2-1 ONLINE 0 0 0

 sdh ONLINE 0 0 0

ChApter 4 Setup

58

 sdi ONLINE 0 0 0

 sdj ONLINE 0 0 0

 sdk ONLINE 0 0 0

 sdl ONLINE 0 0 0

 sdm ONLINE 0 0 0

errors: No known data errors

trochej@ubuntuzfs:~$ sudo zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP

HEALTH ALTROOT

datapool 23.8G 152K 23.7G - 0% 0% 1.00x

ONLINE -

 Forcing Operations
There are situations where you will want to conduct two operations with

final consequences—such as destroying a pool or forcing an operation on

a pool, i.e., a create operation. You may see lots of this especially in the first

stages, when you are learning the ZFS administration.

The best practice is to destroy a pool before reusing its components,

but there are situations when you may end up with a bunch of healthy

disks that someone else disposed of. They may contain disks previously in

a ZFS pool, but not enough of them to import it and destroy it properly.

For such occasions, there is the -f switch, meaning force.

Train and test
Remember that creating a pool is largely one way road. You can’t remove

drives from it and once you decide on redundancy level, you must add

new disks in the same configuration. Play with zpool and zfs commands

in virtual machines. It’s a low cost way of getting familiar with ZFS. Get

familiar with tools that help you monitor drives: smartctl, ZED, sysstat.

ChApter 4 Setup

59© Damian Wojsław 2017
D. Wojsław, Introducing ZFS on Linux, https://doi.org/10.1007/978-1-4842-3306-1_5

CHAPTER 5

Advanced Setup
As mentioned previously, you can assign a hot spare disk to your pool. If

the ZFS pool loses a disk, the spare will be automatically attached and the

resilvering process will be started.

Let’s consider a mirrored pool consisting of two vdevs and two drives

each. Just for clarity, it will be four hard drives. They will be grouped in

pairs and each pair will mirror the contents internally. If we have drives A,

B, C and D, drives A and B will be one mirrored pair and drives C and D

will be the second mirrored pair:

trochej@ubuntuzfs:~$ sudo zpool status

 pool: datapool

 state: ONLINE

 scan: none requested

 config:

 NAME STATE READ WRITE CKSUM

 datapool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

errors: No known data errors

60

You add a hot spare device by running the zpool add spare

command:

trochej@ubuntuzfs:~$ sudo zpool add datapool -f spare /dev/sdf

Next, confirm the disk has been added by querying the pool’s status:

trochej@ubuntuzfs:~$ sudo zpool status datapool

 pool: datapool

 state: ONLINE

 scan: none requested

 config:

 NAME STATE READ WRITE CKSUM

 datapool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

 spares

 sdf AVAIL

errors: No known data errors

If you want to remove the spare from the pool, use the zpool remove

command:

trochej@ubuntuzfs:~$ sudo zpool remove datapool /dev/sdf

You can use zpool status here too to confirm the change.

You can have a hot spare shared among more than one pool. You could

create a mirrored pool that hosts very important data or data that needs to

be streamed very quickly. You could then create a second pool RAIDZ that

Chapter 5 advanCed Setup

61

needs more space but is not that very critical (still redundant, but can only

lose one disk). You can then have a hot spare assigned with both pools.

The one that has failed will claim the hot spare device and then the device

will not be usable for the second pool until it’s freed.

Note using hot spares comes with one important caveat. If you
plan drives in the pool in a way to minimize hardware failure impact,
the hot spare may not be placed in the best way to let you keep that
quality. this is true especially for shared hot spares. Many real-life
installations that I have seen used spare drives. they were placed in
the chassis in a way to ensure the best hardware fault resiliency in
most cases. When a drive in a pool failed, the system administrator
would get an alert from the monitoring system and then would
replace the drive manually.

 ZIL Device
ZIL stands for ZFS Intent Log. It is the portion of data blocks that

persistently store the write cache. Normally, ZFS will allocate some blocks

from the storage pool itself. However, due to the pool being busy and on a

spinning disk, the performance may not be satisfying.

To better accommodate performance requirements, the ZIL (called

also a SLOG) can be moved to a separate device. That device must be boot

persistent, so that sudden power failure does not mean transaction data

loss. In the case of RAM-based devices, they must be battery- or capacitor-

powered. You can also use an SSD device.

The ZFS Admin Guide suggests that the ZIL be no less than 64 MB

(it is the hard requirement for any device to be used by ZFS) and at most

half of the available RAM. So for 32 GB of RAM, a 16 GB ZIL device should

Chapter 5 advanCed Setup

62

be used. In reality, I have rarely seen anything bigger than 32 GB, and 8

or 16 GB is the most common scenario. The reason is that this is a write

buffer. Writes that would be flushed to the hard drive get grouped in the

ZIL to allow for fewer physical operations and less fragmentation. Once the

threshold is met, those grouped changes are written to the physical drives.

Giving it a fast device, ideally a RAM device, allows for those operations to

be very fast and speed writes considerably. This also allows you to divert

the I/O (writing to ZIL) that would normally utilize pool bandwidth, giving

the pool itself some extra performance.

To add the ZIL device, first confirm that your pool is healthy. It will also

remind you which drives are part of the ZFS pool:

root@xubuntu:~# zpool status

 pool: data

state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 data ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

 mirror-2 ONLINE 0 0 0

 sdf ONLINE 0 0 0

 sdg ONLINE 0 0 0

Chapter 5 advanCed Setup

63

errors: No known data errors

 pool: rpool

state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 rpool ONLINE 0 0 0

 root_crypt ONLINE 0 0 0

errors: No known data errors

Add the /dev/sdh and /dev/sdi drives as mirrored log devices:

root@xubuntu:~# zpool add -f data log mirror /dev/sdh /dev/sdi

While the contents of L2ARC (described in the next section) are not

critical, the ZIL holds information about how your data changes on the

disks. Losing ZIL will not make the ZFS file system corrupted, but it may

cause some changes to be lost. Thus mirroring.

Confirm that the change is in effect by running zpool status:

root@xubuntu:~# zpool status data

 pool: data

state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 data ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

Chapter 5 advanCed Setup

64

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

 mirror-2 ONLINE 0 0 0

 sdf ONLINE 0 0 0

 sdg ONLINE 0 0 0

 logs

 mirror-3 ONLINE 0 0 0

 sdh ONLINE 0 0 0

 sdi ONLINE 0 0 0

errors: No known data errors

Your new log device is mirror-3.

 L2ARC Device (Cache)
ZFS employs a caching technique called Adaptive Replacement Cache. In short

it is based on the Least Recently Used (LRU) algorithm, which keeps track of

access times of each cached page. It then orders them from most recently used

to least recently used. The tail of the list is evicted as the new head is added.

ARC improves this algorithm by tracking pages on two lists—most

recently used and most frequently used. The technical details are not as

important here, but it suffice it to say, efficiency of ARC-based caches is

usually much better over LRU.

ARC always exists in the memory of the operating system when the

pool is imported. As a side note, if you monitor your RAM and see that

most of it is being used, do not panic. There’s this saying, “unused RAM

is wasted RAM”. Your operating system is trying to cram as much in the

memory as possible, to lower the disk operations. As you know, disks are

the slowest parts of the computer, even with the modern SSD drives. What

you should pay attention to is how much of this utilized RAM is cache and

buffers and how much is gone to running processes.

Chapter 5 advanCed Setup

65

With very busy servers, it makes lots of sense to load as much data

from the drives to the memory as possible, as it can speed up operations

considerably.

Reading data from RAM is at least 10 times faster than reading it from

hard drive. What happens, however, if you have limited memory resources

and still want to cache as much as possible?

Put some SSD drives into your server and use them as L2ARC devices.

L2ARCs are level-2 ARCs. Those are pages that would normally get evicted

from cache, because the RAM is too small. But since there’s still a very

high chance of them being requested again, they may be placed in the

intermediate area, on fast SSD drives.

For this reason, placing L2ARCs on mirrored SSDs makes a lot of sense.

To put /dev/sdi as a cache device into your pool, run the following:

root@xubuntu:~# zpool add -f data cache /dev/sdi

Confirm it worked:

root@xubuntu:~# zpool status data

 pool: data

state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 data ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

 mirror-2 ONLINE 0 0 0

 sdf ONLINE 0 0 0

Chapter 5 advanCed Setup

66

 sdg ONLINE 0 0 0

 logs

 sdh ONLINE 0 0 0

 cache

 sdi ONLINE 0 0 0

errors: No known data errors

 Quotas and Reservations
In normal operations, every file system in a pool can take free space freely

up to the full pool’s capacity, until it ends. The only limitation is the other

file systems also taking the space. In that regard, with ZFS you should not

think in the file systems’ capacities, but in the total pool space.

There are, however, situations when you need to emulate the

traditional file system behavior, when they are limited to some space or

guaranteed to have it for their own use.

Let’s consider a traditional file system created on top of a normal disk

partition. If the partition was created as 3 GB, the file system will have no

less and no more than 3 GB for itself. If you mount it as, say, /var/log,

then the logs in your system will have all 3 GB of space for themselves and

no more than that. They will also be separate from other file systems. Thus,

logs filling the /var/log directory will not make your root partition full,

because they live in a separate space.

Not so with ZFS! Consider a root directory mounted on ZFS file system.

Let’s say the pool has 16 GB of space, total. This applies to file systems

for /home, for /var, and for /var/log. After the installation of the system,

suppose you’re left with 11 GB of free space. Each file system can consume

this space. If, for some reason, the logs go wild—maybe some application

switched to debug mode and you forgot about it—they may fill this 11 GB

of space, starving all other file systems. In the worst case, you won’t be able

to log in as root.

Chapter 5 advanCed Setup

67

There are two possible actions that you can take, depending on how

you wish to approach this problem: using quotas and using reservations.

Quotas are like traditional Linux quotas, except they are set against file

systems and not system users. By setting up a quota, you prevent the given

file system from growing beyond the set limit. So if you want /var/log to

never exceed 3 GB, you will set a quota on it.

Reservations, on the other hand, are guarantees given to the file

system. By setting a 3 GB reservation, you guarantee that this given file

system will have at least 3 GB of space and other file systems in the pool

will be prevented from claiming too much space.

To make matters a little bit more complicated, there are two versions

of each: quotas and refquotas, and reservations and refreservations. The

difference is quite important, as my experience taught me.

Quotas and reservations account the storage used by both the file

system and its descendants. It means that this 3 GB of space will be the

limit for the file system and its snapshots and clones. Refquotas, on the

other hand, will only track space used by the file system itself. It opens the

way for interesting scenarios, where you can separately set limits for the

file system and its snapshots. But the quota comes with important twist:

snapshots grow as you change the data. You must pay attention to the

size of your snapshots and the rate at which they grow, or you may hit the

quota before you expect it.

The same flavor distinction comes with reservations and

refreservations. The reservation will guarantee space for file system and

its descendants and the refreservation will only keep this space for the file

system itself. Again, pay attention, as the end result of your settings may

not be what you wished for nor what you expected.

Let’s work through some examples based on a real-life scenario.

The server you are running has pool data. The total capacity of this

pool is 30 TB. This pool will be shared by finances, engineering, and

marketing. There will be also the shared space that people can use to

exchange documents and silly cat pictures.

Chapter 5 advanCed Setup

68

All three departments have given you the size to which their directories

can grow in the future. Finances and marketing said it’s going to be

approximately 5 TB each and engineering said they expect it to grow up to

10 TB. Together, it gives 20 TB, leaving you with 10 TB of free space to do

other things.

Now, 30 TB of space may look like a great number and for most small

organizations, it probably is. On the other hand, engineering data or

raw pictures and videos (in graphic studios, for example) can outgrow it

quickly.

Snapshots are the subject of the next subsection, but let’s just shortly

introduce them here. The snapshot of a file system can be compared to

the still image of file system at a given time—namely at a time of taking

the snapshot. In ZFS, it can be treated like any other file system, except

it’s read-only. It means, looking into this file system you will see files and

directories in state at exactly the moment the zfs snapshot command was

run. No matter what happens with those files after you run this command,

you can always retrieve them in the previous state from the snapshot.

The amount of space a snapshot consumes is equal to the size of

changes introduced to the data. Sounds complicated, so let’s demystify

it. Engineering has a big CAD file size of 5 GB. It’s an imported project

that will be worked on. After it was copied over to the ZFS, a snapshot

was taken just in case. The engineer opened the file and changed a few

things. After saving it, most of the file stays the same, but some places are

different. The size of those differences summed up is 300 MB. And that’s

the size of the snapshot. If someone deleted the file, the snapshot would

grow to 5 GB, because that’s the difference between the actual file system

and the snapshotted moment. The mechanism behind this is explained in

the next section. For now, just acknowledge this as a fact.

This space consumption by snapshots plays important role when

setting up both reservations and quotas. Let’s look back at the engineering

department file system. The department estimated that the amount of data

they will store in the file system will reach 10 TB. But they only estimated

Chapter 5 advanCed Setup

69

“raw” data. Files themselves, not their snapshots. Assume the daily amount

of changes introduced to project files adds up to 5 GB. That is the amount

of space ONE snapshot will take each day, unless it’s destroyed. For

simplicity, assume there’s only going to be one snapshot and it will be held

forever. Within a year this will amount to almost 2 TB of space taken from

the pool! Now assume you create a reservation for the engineering file

system and give them 10 TB. You also add a quota, 11 TB, so that they have

a breathing space, but so that they won’t starve other users. As assumed,

their space consumption starts to near 9 TB in a year and suddenly,

whole 2 TB short of target, they get an out of space error when trying to

write anything. To quickly resolve the situation, they delete some old files

known to be last edited a long time ago and present in several backups.

Apparently, they have freed 3 TB of space, except they keep getting the out

of space error. At some point they can’t even delete files, because of this

error!

This is the the reservation kicking in. The first part of the problem

is that snapshot quietly takes space from the quota as it grows. It is only

evident once you analyze space consumption using the zpool -o space

command (explained elsewhere). But the other part of the problem, the

counterintuitive out of space error when deleting things, comes from

the nature of the snapshot itself. When you remove the files from the file

system, those files are added to the snapshot. The only way to free this

space is to destroy the snapshot using this command:

zfs destroy pool/engineering@snapshot

Now let’s consider other departments. If you put a quota on them

and they edit the files enough, they may soon reach their quotas due to

file system snapshots. Also, most often there is more than one snapshot.

It’s entirely up to the policy maker, but most often there are monthly,

weekly, and daily snapshots. Sometimes there are also hourly snapshots,

depending on how much the data changes during the day.

Chapter 5 advanCed Setup

70

Now come back to the difference between quotas and reservations

and refquotas and refreservations. The first ones track whole usage,

including snapshots. The latter only the file systems. For the engineering

department, you could set up refquota to 11 TB and the quota to, say,

13 TB. This would open space for the snapshot to grow as files were

deleted, allowing for a temporary solution. Nothing beats space utilization

monitoring, though.

Quotas, reservations, refquotas, and refreservations are file system

properties. It means they are set and checked using the zfs set and zfs

get commands.

root@xubuntu:~# zfs list

NAME USED AVAIL REFER MOUNTPOINT

data 179K 2.86G 19K /data

data/engineering 19K 2.86G 19K /data/engineering

To check the current values of quota, refquota, reservation, and

refreservation on the data/engineering file system, run the following:

root@xubuntu:~# zfs get quota,refquota,reservation,refreservation

data/engineering

NAME PROPERTY VALUE SOURCE

data/engineering quota none default

data/engineering refquota none default

data/engineering reservation none default

data/engineering refreservation none default

They are not set by default, as you can see. Since my test pool is much

smaller than the considered scenario, let’s set the reservation to 1 GB and

the quota to 1.5 GB with a bit lower refquota and refreservation:

root@xubuntu:~# zfs set quota=1.5G data/engineering

root@xubuntu:~# zfs set refquota=1G data/engineering

root@xubuntu:~# zfs set reservation=800M data/engineering

Chapter 5 advanCed Setup

71

root@xubuntu:~# zfs get quota,refquota,reservation data/

engineering

NAME PROPERTY VALUE SOURCE

data/engineering quota 1.50G local

data/engineering refquota 1G local

data/engineering reservation 800M local

 Snapshots and Clones
Here we come to discuss snapshots and clones, two powerful features

of ZFS. They were already discussed a bit earlier, so here is the time for

detailed explanation.

As explained, snapshots are a way of “freezing” the file system contents

at a given time. Due to the Copy on Write nature of ZFS, creating snapshots

is fast (takes usually a fraction of a second) and takes very little processing

power. It is thus common to create snapshots as a basis for long-running

jobs that require contents to be static, like for example backup jobs.

Running a backup job from a large file system may archive files at different

times. Running it off a snapshot guarantees that all files will be captured at

the same exact time, even if the backup is running for hours. Additionally,

if backed up files consist of state files of an application that needs to be

shut down for the duration of the backup process, the down time of this

application can be reduced to mere fractions of a second.

One additional property of a snapshot is the ability to roll back the

current file system to the snapshot. It means that the administrator can

rewind all the files to the moment of snapshot creation.

ZFS writes changed blocks in a new location in the pool. Thus it leaves

old blocks untouched unless the pool is filled and the old space needs

to be reclaimed. Due to this, snapshots are automatically mounted into

the .zfs/snapshot subdirectory of a snapped file system. As an example,

Chapter 5 advanCed Setup

www.allitebooks.com

http://www.allitebooks.org

72

for the data/documents ZFS file system, if there is a snapshot data/

documents@initial, the contents of this snapshot can be accessed by

looking into /data/documents/.zfs/snapshot/initial.

Snapshot contents can be accessed either looking into the directory

above or by running a rollback command, which effectively rewinds the

file system to the moment of snapshot creation. The process is very fast. It

only takes as much time as updating some metadata. The administrator

needs to exercise some caution though—once rolled back the file system

can’t be fast forwarded to its current state.

There are situations where a read-only snapshot is not enough and it

might be useful to be able to use it as a normal file system. ZFS has such a

feature and it’s called a clone. A clone is a read-write copy of a snapshot.

Initially, clone and snapshot refer the same set of bytes, thus the clone

does not consume any disk space. When changes are introduced to the

clone’s contents, it starts to take space.

A clone and a snapshot it was created from are related in a parent-child

manner. As long as clone is in use, the snapshot cannot be destroyed.

Why are snapshots useful? They can guard against files corruptions by

faulty software or accidental deletions. They can also provide a means of

looking into the file before some edit. They can be used as a snapshot of

file system prepared to be backed up.

Why are clones useful? One interesting use of clones is to create one

before important updates of an operating system. Long known in the world

of illumos and FreeBSD, boot environments are root file system clones

that can be booted into. This allows for a quick reboot to a known working

operating system after a broken upgrade. They have been also used as

means of cloning containers and virtual machines. The uses are limited by

imagination.

Now, after this introduction, onto the usage itself.

Chapter 5 advanCed Setup

73

 ZFS ACLs
Linux is an operating system from the Unix tradition. The Unix operating

systems are multi-user systems, allowing many users to operate the same

computer. This brought a standard model of file and directory permissions

control. In this model, there are three types of actions and three types of

actors. The actions are read, write, and execute and the actors are owner,

group, and all others. Both can be combined, giving a simple, yet quite

effective way of restricting and granting access to certain directories and

files in Linux. This model is known as discretionary access control (DAC).

DAC allows for flexible control of who can utilize certain system areas

and how. However, the more users and the more complex organizational

structure, the more difficult it is to express them using the DAC model. At

some point, it becomes impossible. Thus, a new way of representing access

control method was invented.

Linux adopted POSIX ACLs. ACL means access control list and is

exactly that: a list of access controlling entries that can create much more

fine-grained policies about who can read, write, or execute a given file and

how they do so.

ZFS on its default operating system—illumos—supports separate sets

of ACLs, conformant with NTFS ACLs. They are set and listed by extended

ls and chmod commands. Unfortunately, those commands are different

from their Linux counterparts and thus on Linux, standard ZFS ACLs are

unsupported. This means that if the system administrator wants to go

beyond the DAC model, they have to utilize POSIX ACLs and standard

commands: setfacl for specifying the list and getfacl for listing it. The

upside is that every other major Linux file system uses those commands,

thus you only need to learn once. The downside is, if you ever have a pool

imported from illumos or FreeBSD, ACLs may go missing.

Chapter 5 advanCed Setup

74

 DAC Model
Before I explain POSIX ACLs, I first need to explain the DAC model using a

simple scenario.

Assume there’s a server that has three users: Alice, John, and Mikey.

Alice is a project manager, John is a programmer, and Mikey works in

accounting. There are three directories on the server that are accessible to

users:

• Code: it’s contains what it says: the source code for the

project that Alice manages and John codes. Company

policy says that both Alice and John should be able to

access the contents of this directory, but only John can

add new files or edit existing ones. Mikey should not

see the contents of this directory.

• Documents: This directory contains typical project

documentation. Architecture analysis, project

overview, milestones, customer signoffs, etc. Company

policy says Mikey and John should be able to read these

files, but not edit them, and Alice should be able to

both read and edit files.

• Accounts: This directory contains financial data: time

accounting from John and Alice, invoices for customers

and from contractors related to the project, budget,

etc. Mikey has full control over these files. Alice should

be able to read them all, but edit only some, and John

should not be able to do either.

Chapter 5 advanCed Setup

75

This, obviously, doesn’t reflect a real-life programming project, but it is

sufficient for our purposes. Traditional DAC model tools that we have are:

• System users and groups

• Directory and file access controls

• Each directory and file has an owner (system user) and

a group (system group that also owns the directory or

the file)

Having those three allows us to do quite a lot regarding management

in this small scenario.

Let’s start by creating ZFS file systems for each of these directories.

Assume the directory is called data. For better data accessibility, the pool

is mirrored.

$ sudo zpool create data mirror /dev/sdb1 /dev/sdc1

Now that we have a pool, we create file systems for the three

directories:

$ sudo zfs create data/Code

$ sudo zfs create data/Documents

$ sudo zfs create data/Accounts

Assume that system users for Alice, John, and Mickey already exist and

their logins are, surprise, alice, john, mickey, accordingly. Additionally,

three groups have been defined: projmgmt for project managers, devel for

developers, and accnt for accounting. Before we set up permissions, let’s

create a table that will exactly describe who should be able to do what.

It’s a good practice when setting up file server structure to prepare such a

matrix. It helps tidy up and visualize things.

Chapter 5 advanCed Setup

76

Access control uses three letters to denote the rights assigned to user

or group:

• r – read

• w – write

• x – execute. This bit set on directory means that the

user or group can see its contents. You actually can’t

execute a directory. To differentiate between execute

and access, x is used for the first and X is used for the

latter.

Table 1-1 quickly makes it obvious that groups have the same rights as the

users that belong to them. It may then seem like overkill to duplicate access

rights for both. At this point in time it certainly is, but we should always plan

for the future. It’s not a lot of work to manage both group and user rights and

each directory needs to have its owning group specified anyway. And, if in the

future, any of those groups gains another user, giving them privileges will be

as easy as adding them to the group to which they should belong.

This doesn’t account for separate users who will run backup daemons

and should at least be able to read all directories to back up their contents

and maybe write, to recreate them if need be. In this example, backups can be

done by snapshotting the directories and using zfs send|zfs recv to store

them on a separate pool, where special daemons can put them on tapes.

Table 1-1. Project Directories, Users, Groups, and Access Rights

User/Group/Directory Alice John Mickey projmgmt devel accnt

Code rX rwX --- rX rwX ---

documents rwX rX rX rwX rX rX

accounts rX --- rwX rX --- rwX

Chapter 5 advanCed Setup

77

For now, the following commands will be sufficient, if we want to apply

just the user and owner’s group rights.

$ sudo chown -R alice:projmgmt data/Documents

$ sudo chown -R john:devel data/Code

$ sudo chown -R mickey:accnt data/Accounts

$ sudo chmod -R =0770 data/Documents

$ sudo chmod -R =0770 data/Code

$ sudo chmod -R =0770 data/Accounts

The =0770 is an octal mode of setting permissions. The equals sign

means we want to set permissions exactly as in the string, the leading zero

is of no interest at this point, and the second, third, and fourth digits are

the permissions for owner, owning group, and all others accordingly. The

permissions set are represented by numbers and their sum: 4 – read, 2 –

write, and 1 – execute. Any sum of those will create a unique number: 5

means read and execute, 6 means read and write, and 7 means all of above.

The octal mode is a very convenient way of setting all bits at once. If we

wanted to use named mode, user, group, or others, we would have to run

this command once for each:

$ sudo chmod -R ug=rwX data/Documents

$ sudo chmod -R o-rwX data/Documents

This command creates the set of permissions reflected in Table 1-2.

Table 1-2. Project Directories, Users, Groups, and Access Rights After

First Commands

User/Group/Directory Alice John Mickey projmgmt devel accnt

Code --- rwX --- --- rwX ---

documents rwX --- --- rwX --- ---

accounts --- --- rwX --- --- rwX

Chapter 5 advanCed Setup

78

Obviously, this is not the set we wanted to achieve. One way to tackle it

is to change the owning group to the one that needs read access:

$ sudo chown -R john:projmgmt data/Code

$ sudo chmod -R =0750 data/Code

This gives Alice access to read the Code directory; however, it doesn’t

solve the problem of another person joining the project management or

accounting group. Let’s assume that Susan joins the PM team and needs to

have the same set of permissions as Alice. With the current model, this is

impossible to achieve. This is where ACLs come in to play.

 ACLs Explained
ZFS doesn’t allow the use of Linux ACLs (or rather POSIX ACLs) out of the

box. It needs to be told to do this. The command to run is:

$ sudo zfs set acltype=posixacl data

This command turns on POSIX ACLs for a given file system. This

property is by default inherited by all the child file systems, so if it’s set on

a root of ZFS, it will be propagated all the way down. You can verify it by

running the zfs get command:

$ sudo zfs get acltype data

NAME PROPERTY VALUE SOURCE

lxd acltype posixacl local

How do ACLs help solve the problem above? It’s simple. They allow

developers to store more than those three DAC entries used previously. It

is possible to have a separate permission set per additional user or group.

There are two tools used to administer ACLs: setfactl and getfacl.

$ setfacl -m g:projmgmt:r /data/Code

$ setfacl -m g:devel:r /data/Documents

Chapter 5 advanCed Setup

79

$ setfacl -m g:accnt:r /data/Documents

$ setfacl -m g:projmgmt:r /data/Accounts

Remember that ACL commands operate on directories, not on ZFS file

systems!

These commands will give additional groups exact rights, as in Table 1- 1,

just as expected. We can confirm that by running getfacl for each

directory, as follows:

$ getfacl /data/Documents

getfacl: Removing leading '/' from absolute path names

file: data/Documents

owner: alice

group: projmgmt

user::rwx

group::rwx

group:devel:r--

group:accnt:r--

mask::r-x

other::r-x

The syntax for setfacl mode is as follows:

setfacl -mode:user|group:permissions directory[/file]

The setfacl command works in two modes: add ACL entry or remove

ACL entry. Use the -m and -x switches accordingly. In the previous

example, the -m switch was used to add an ACL list entry to a specific

group. To remove an entry, you need to run the command with the -x

switch:

$ setfacl -x g:devel /data/Documents

This will remove all ACL entries for the devel group added to the

/data/Documents directory.

Chapter 5 advanCed Setup

80

 Replacing Drive
There are many scenarios in which you may need to replace drives. Most

common is drive failure. Either your monitoring systems warned you

about upcoming drive failure or the drive has failed. Either way you need

to add new drive to the pool and remove old one.

There is another reason for replacing a drive. This is one of methods,

slow and cumbersome, of growing ZFS pool without adding drives - by

replacing old ones, one by one, with larger disks.

Consider first scenario. You pool is reported as healthy in zpool status

output, but you know one of drives is going to fail soon. Assume that in

pool printed below drive to fail is sdb.

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

Assume you have added drive, sdd, to the system. You can either run

zpool replace command:

sudo zpool replace tank sdb sdd

which will attach sdd to sdb forming a mirror for short time and then

remove sdb from the pool. Or you can do it in two steps, first attach sdd to

sdb manually, wait until resilver is complete and then remove sdb yourself:

sudo zpool attach tank sdb sdd

sudo zpool status

 pool: tank

state: ONLINE

Chapter 5 advanCed Setup

81

 scan: resilvered 114K in 0h0m with 0 errors on Tue Nov 7

21:35:58 2017

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 sdd ONLINE 0 0 0

You can see this has effectively turned mirror-0 into three way mirror.

Monitor the resilver process and when it’s done issue:

sudo zpool detach tank sdb

which will remove sdb device from your pool.

In case when the drive has already failed steps are similar as above,

except you will see

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

 mirror-0 DEGRADED 0 0 0

 sdb UNAVAIL 0 0 0

 sdc ONLINE 0 0 0

Follow the steps are previously:

sudo zpool replace tank sdb sdd

This will replace the failed drive with new one.

Chapter 5 advanCed Setup

82

Growing the pool without adding new drives means replacing every

disk in a pool with new one, bigger. Assume you would want to make the

pool tank something bigger than current 2 GB:

sudo zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 1.98G 152K 1.98G - 0% 0% 1.00x ONLINE -

The steps would mean:

 1. Add new drives into the chassis. They have to be the

same geometry and size.

 2. Attach new, bigger drive to the mirror and wait until

it finishes the resilver process.

 3. Remove old drive.

 4. Attach next bigger drive. Wait for resilver, remove.

Instead of attaching and removing you can run replace command.

It will do all the steps above for you:

sudo zpool replace tank sdb sdd

If you have pool built of more than one vdev, you can run replace

command for each vdev. This will speed things a bit.

Chapter 5 advanCed Setup

83© Damian Wojsław 2017
D. Wojsław, Introducing ZFS on Linux, https://doi.org/10.1007/978-1-4842-3306-1_6

CHAPTER 6

Sharing
Once you have your storage set up and configured the way you like, it is

time to start using it. One way is to use the space used by local programs

running on the same server as the ZFS pool. This is particularly useful if

you intend to host applications such as mail, web pages, or applications

(internal or external CRMs, perhaps). On the other hand, you may need to

provide common disk space to client machines, for example, workstations

that will store data on the server or share documents for editing.

Your choice of connection method, known as the sharing protocol, is

dictated by the way you are going to use the space.

 Sharing Protocols
As with any storage array, there are two basic ways you can share the disk

space: as a character device or a block device. The difference is in how

the device is used and relays to the basic two groups of devices in Linux—

character devices and block devices. For our needs, the difference can be

summed this way: a character device will be, in our context, a file system

that can be mounted and used directly to store and retrieve files. A block

device is a pseudo-device, a file system, which can only be used by treating

it as a hard drive itself.

84

Given the DYI small storage array, character devices would be one of

two popular network file system sharing protocols—NFS or CIFS. Block

devices will most likely be the iSCSI protocol. While you may decide to use

FC or FCoE protocols, I am not going to cover them here.

The original ZFS implementation allows for quick sharing through NFS

and CIFS protocols. The commands are tightly bound to ZFS itself and are

represented at a file system or a zvol property. Currently, at the time this

guide is written, the native ZFS share commands don’t work with the Linux

platform or work unreliably. As with ACLs, you need to use Linux native

tools—iSCSAadm, samba, and NFS servers—to provide this functionality.

Note Please be aware that describing complex NFS, Samba, or
iSCSI configurations warrant separate books on their own. Those are
out of the scope of this simple guide. There are a number of books
and a very large number of tutorials for each of them available on the
Internet, in case you need to work on something more complex.

 NFS: Linux Server
NFS is a flexible and proven network storage sharing protocol. It was

conceived by Sun Microsystems in 1984. It is a networked file system for

distributed environments. One quite common use in the Unix world is

to host users’ home directories on the NFS server and automount them

on given machines when the user logs in. Thus the same home is always

available in one, central location (which is easy for backup and restore),

but reachable on any workstation that’s configured to use the NFS server.

NFS is quite common in the Unix and Linux world and is a standard

way of sharing disk space between server and client machines. On the

other hand, if you need to use the disk space from Windows systems, it will

be beneficial to configure a SAMBA server.

ChaPTer 6 SharINg

85

There are two dominant versions of the NFS protocol: version 3 and

version 4. If possible, use version 4, as it is now well supported by major

Linux distributions. Version 4 adds many performance and security

improvements and made strong security mandatory. I present the steps

to install and configure NFSv4. The packages are the same, but some

configurations differ. Before you start using NFS on the server and client

machines, there are some steps you need to take. First, the packages need

to be installed.

 Installing Packages on Ubuntu
To install and configure NFS server on Ubuntu, run the following:

trochej@ubuntu:~$ sudo apt-get install nfs-kernel-server

[sudo] password for trochej:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

 keyutils libnfsidmap2 libpython-stdlib libpython2.7-minimal

libpython2.7-stdlib

 libtirpc1 nfs-common python python-minimal python2.7

python2.7-minimal rpcbind

Suggested packages:

 watchdog python-doc python-tk python2.7-doc binutils binfmt-

support

The following NEW packages will be installed:

 keyutils libnfsidmap2 libpython-stdlib libpython2.7-minimal

libpython2.7-stdlib

 libtirpc1 nfs-common nfs-kernel-server python python-minimal

python2.7

 python2.7-minimal rpcbind

ChaPTer 6 SharINg

86

0 upgraded, 13 newly installed, 0 to remove and 96 not upgraded.

Need to get 4,383 kB of archives.

After this operation, 18.5 MB of additional disk space will be used.

Do you want to continue? [Y/n]

After you press Y and confirm with Enter, the system will print a list

of the packages it installs. Your output may vary from what’s shown here,

depending on what you have already installed. Assume that the pool tank

and file system export exist on the server:

trochej@ubuntu:~$ sudo zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank 80K 1.92G 19K /tank

tank/export 19K 1.92G 19K /tank/export

Edit the /etc/exports file (it is a listing of directories exported via NFS

protocol and various options applied to them) and add this line:

/tank/export 192.168.0.0/24(rw,fsid=0,sync)

This will make the /tank/export file system available to all hosts in the

192.168.0.0 network.

The fsid=0 option tells the NFS server that the directory is a root

for other file systems. The rw option sets the file system to read-write.

Sync tells the server to only confirm the write when the buffer has been

committed to the physical media.

To make this export available over the network, the kernel server needs

to be restarted:

sudo systemctl restart nfs-kernel-server

ChaPTer 6 SharINg

87

The last thing to make sure of is to change permissions on the exported

file system so that the remote server can write to it:

trochej@ubuntu:~$ sudo chmod -R a+rwX /tank/

You can confirm the export by running the exportfs command:

trochej@ubuntu:~$ sudo exportfs

/tank/export 192.168.0.0/24

 Installing NFS Client on Ubuntu

To install and configure NFS client on a Ubuntu machine, run:

sudo apt-get install nfs-common

Then test the mount by running this:

sudo mount -t nfs4 -o proto=tcp,port=2049 192.168.0.9:/ /mnt

This will tell the mount command to mount a remote file system

running on a 192.168.0.9 server in the /mnt directory. Making it persistent

across reboots requires you to add this line to the /etc/fstab file:

192.168.0.9:/ /mnt nfs4 _netdev,auto 0 0

From now on, your ZFS pool is exported and available remotely to the

client machine.

 Installing Packages on CentOS
To achieve the same on CentOS, run the following:

[root@centos ~]# yum install nfs-utils

Change permissions on the directory:

[root@centos ~]# chmod -R a+rwX /tank/export

ChaPTer 6 SharINg

88

Next, add the appropriate entry to /etc/exports:

[root@centos ~]# cat /etc/exports

/tank/export 192.168.0.0/24(rw,fsid=0,sync)

Finally, restart the NFS server:

[root@centos ~]# systemctl restart nfs-server

Mounting it on the client is similar.

[root@centos ~]# yum install nfs-utils

[root@centos ~]# mount -t nfs4 -o proto=tcp,port=2049

192.168.0.9:/ /mnt

As with Ubuntu, to make the mount automatic on every system boot,

add the following line to your /etc/fstab file:

192.168.0.9:/ /mnt nfs4 _netdev,auto 0 0

This setup is very crude. No security has been applied and absolutely

no external user authentication method is in use. Usually, in a production

environment, you will want to use some kind of central user database, such

as LDAP or Active Directory.

 SAMBA
Configuring SAMBA is more complex even for simplest setups. It requires

editing appropriate configuration file. In Ubuntu it is /etc/samba/smb.conf

Below I paste absolutely smallest smb.conf file I could figure:

[global]

 workgroup = WORKGROUP

 server string = %h server (Samba, Ubuntu)

 dns proxy = no

 server role = standalone server

 passdb backend = tdbsam

ChaPTer 6 SharINg

89

[shared]

 comment = Shared ZFS Pool

 path = /tank/

 browseable = yes

 read only = no

 guest ok = yes

 writeable = yes

The configuration above is absolutely unfit in real world. It offers no

way of sensible logging, no security, no password synchronization. Just

anonymous access to exported pool. But it serves a purpose of test.

Mounting this on Linux machine is simple:

sudo mount -t cifs //CIFSSERVER/shared /mnt

Where CIFSSERVER is the IP address or resolvable network name of

the SAMBA server. Note that once users get involved the line above will

have to change.

Mounting this share in Windows machine is as simple as opening

Explorer Window, navigating to CIFSSERVER in the network and opening

the share. Done.

As with NFS, you will most probably want to involve some additional

directory services, kinds of LDAP. You absolutely must not use anonymous

shares in real world. Just don’t.

As with NFS, the material to learn is a book on its own and there is

abundance of sources on the internet.

 Other Sharing Protocols
ZFS allows for even more ways of sharing. Of special interest might be

iSCSI or Fiber Channel. SCSI (Small Computer System Interface) is the

de facto standard for connecting hard drives to the server in enterprise

ChaPTer 6 SharINg

90

setups. Currently, the Serial Attached SCSI (commonly known as SAS) is

the technology to use. While the protocol was designed to connect many

other peripherals to the computer, in the server rooms it’s dominant for

connecting drives.

As noted, ZFS can create file systems that act like directories. You can

create block devices, called ZVOLs. They are treated like normal hard

drives that can be partitioned and formatted. They can also be exported as

physical drives by means of the iSCSI protocol.

iSCSI is an implementation of the SCSI protocol over TCP/IP networks.

It allows you to carry out SCSI commands to storage devices over the

network, as if they were directly attached to the system.

Two important SCSI (and hence iSCSI) terms are initiator and target.

The target is the storage resource; in this scenario, it’s available over the

network. The initiator is the iSCSI client. To utilize the storage initiator, you

must log in to the target and initiate a session. If configured like this, it can

force authentication of client to the server.

Using the iSCSI protocol on Linux platform is pretty easy. First you

need to create ZVOLs and export each of them as a LUN (logical unit).

First, let’s create ZVOLs to be used as virtual drives. Those will be

vol01, vol02, vol03, and vol04 living in the data pool.

sudo zfs create -V 5gb data/vol01

sudo zfs create -V 5gb data/vol02

sudo zfs create -V 5gb data/vol03

sudo zfs create -V 5gb data/vol04

The next step is to create four LUNs that will present ZVOLs to the

client machines:

sudo tgtadm --lld iscsi --op new --mode target --tid 1 -

T iqn.2016.temp:storage.lun01

sudo tgtadm --lld iscsi --op new --mode target --tid 2 -

T iqn.2016.temp:storage.lun02

ChaPTer 6 SharINg

91

sudo tgtadm --lld iscsi --op new --mode target --tid 3 -

T iqn.2016.temp:storage.lun03

sudo tgtadm --lld iscsi --op new --mode target --tid 4 -

T iqn.2016.temp:storage.lun04

Once you’re done, the ZVOLs must be exported as LUNs via the

previously configured targets:

sudo tgtadm --lld iscsi --op new --mode logicalunit --tid 1

--lun 1 -b /dev/zvol/data/vol01

sudo tgtadm --lld iscsi --op new --mode logicalunit --tid 2

--lun 1 -b /dev/zvol/data/vol02

sudo tgtadm --lld iscsi --op new --mode logicalunit --tid 3

--lun 1 -b /dev/zvol/data/vol03

sudo tgtadm --lld iscsi --op new --mode logicalunit --tid 4

--lun 1 -b /dev/zvol/data/vol04

sudo tgtadm --lld iscsi --mode target --op bind --tid 1 -I ALL

sudo tgtadm --lld iscsi --mode target --op bind --tid 2 -I ALL

sudo tgtadm --lld iscsi --mode target --op bind --tid 3 -I ALL

sudo tgtadm --lld iscsi --mode target --op bind --tid 4 -I ALL

sudo tgt-admin --dump | sudo tee /etc/tgt/targets.conf

You can confirm the configuration by running the tgadm command.

The following output has been cut for brevity:

trochej@hypervizor:~$ sudo tgtadm --mode tgt --op show

Target 1: iqn.2016.temp:storage.lun01

 System information:

 Driver: iscsi

 State: ready

 I_T nexus information:

 LUN information:

 LUN: 0

ChaPTer 6 SharINg

92

 Type: controller

 SCSI ID: IET 00010000

 SCSI SN: beaf10

 Size: 0 MB, Block size: 1

 Online: Yes

 Removable media: No

 Prevent removal: No

 Readonly: No

 SWP: No

 Thin-provisioning: No

 Backing store type: null

 Backing store path: None

 Backing store flags:

 LUN: 1

 Type: disk

 SCSI ID: IET 00010001

 SCSI SN: beaf11

 Size: 5369 MB, Block size: 512

 Online: Yes

 Removable media: No

 Prevent removal: No

 Readonly: No

 SWP: No

 Thin-provisioning: No

 Backing store type: rdwr

 Backing store path: /dev/zvol/data/vol01

 Backing store flags:

 Account information:

 ACL information:

 ALL

ChaPTer 6 SharINg

93

Connecting initiators to targets is done by using the iscsiadm

command:

iscsiadm -m discovery -t sendtargets -p 192.168.0.9

192.168.0.9:3260,1 iqn.2016.temp:storage.lun01:target1

This command will print targets configured on the server. To start

using them, the client machine needs to log in and start the session:

iscsiadm -m node -T iqn.2016.temp:storage.lun01:target1 --login

You can confirm the disks appearing in the system by grepping:

root@madtower:/home/trochej# dmesg | grep "Attached SCSI disk"

[...]

 [3772.041014] sd 5:0:0:1: [sdc] Attached SCSI disk

 [3772.041016] sd 4:0:0:1: [sdb] Attached SCSI disk

 [3772.047183] sd 6:0:0:1: [sde] Attached SCSI disk

 [3772.050148] sd 7:0:0:1: [sdd] Attached SCSI disk

[...]

Having four LUNs available in the system, the only step remaining is

to use them as you would use any other physical drive. You can create an

LVM pool on them or even on another ZFS pool:

root@madtower:/home/trochej# zpool create -f datapool mirror /

dev/sdb /dev/sdc mirror /dev/sdd /dev/sde

root@madtower:/home/trochej# zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP

HEALTH ALTROOT

datapool 9.94G 68.5K 9.94G - 0% 0% 1.00x

ONLINE -

rpool 444G 133G 311G - 29% 29% 1.00x

ONLINE -

ChaPTer 6 SharINg

94

root@madtower:/home/trochej# zpool status datapool

 pool: datapool

 state: ONLINE

 scan: none requested

 config:

 NAME STATE READ WRITE CKSUM

 datapool ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 sdb ONLINE 0 0 0

 sdc ONLINE 0 0 0

 mirror-1 ONLINE 0 0 0

 sdd ONLINE 0 0 0

 sde ONLINE 0 0 0

errors: No known data errors

You have a lot of choices when exporting your pool for use by client

machines. I’ve only covered three of them as they seem to be most popular.

ChaPTer 6 SharINg

95© Damian Wojsław 2017
D. Wojsław, Introducing ZFS on Linux, https://doi.org/10.1007/978-1-4842-3306-1_7

CHAPTER 7

Space Accounting
With such a rich feature set, including clones, snapshots, and compression

all relying on file system organization, space monitoring needs to be done

differently from the traditional Linux file systems. The usual *df _-h_* \

command familiar to every Linux server administrator is no longer

sufficient and may even be misleading.

 Using New Commands
With ZFS, you need to learn two new commands and understand their

arguments and output to keep track of your free space—*sudo zpool

list* and *sudo zfs list*. On my home workstation, these commands

produce the following output.

trochej@madchamber:~$ sudo zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP

HEALTH ALTROOT

data 2,72T 147G 2,58T - 3% 5% 1.00x

ONLINE -

trochej@madchamber:~$ sudo zfs list

NAME USED AVAIL REFER MOUNTPOINT

data 147G 2,53T 96K /data

data/datafs 147G 2,53T 147G /mnt/data

96

This list is not complete because it omits snapshots by default.

Remember, snapshots consume space increasingly with time, as data

changes on the snapshotted system. In my experience a common issue

raised by new ZFS storage operators is that they are unable to delete data

due to lack of space. They are usually baffled by the fact that deleting data

won’t increase the available space, and that consumed space in a ZFS list

won’t add up to the total space available in the pool.

 Output Terminology
Let’s look at the columns in the output and learn what they mean to the

operator:

• AVAIL means available. Total available space in the file

system.

• USED means used. Total used space in the file system.

• USEDSNAP means used by snapshots. The disk space used

by snapshots of the dataset. This space is freed once all

snapshots of the dataset are destroyed. Since multiple

snapshots can reference the same blocks, this amount

may not be equal to the sum of all snapshots’ used space.

• USEDDS means used by dataset. The disk space used by

the dataset itself. This disk space is freed if all snapshots

and refreservations of this dataset were destroyed,

thus destroying the dataset itself.

• USEDREFRESERV means used by refreservation. The

disk space used by a refreservation set on the dataset.

This space is freed once refreservation is removed.

• USEDCHILD means used by children. The disk space

used by children of the dataset. This space is freed after

destroying the children of a given dataset.

Chapter 7 SpaCe aCCounting

97

To calculate the USED property by hand, follow this equation: USED =

USEDCHILD + USEDDS + USEDREFRESERV + USEDSNAP.

 What’s Consuming My Pool Space?
It is sometimes a bit difficult to understand what consumes your pool

space. I will demonstrate ways to figure it out using some examples, but

nothing beats experience. Create a pool, fill it with data, run snapshots,

and delete and create reservations. All the while, observe *zfs list_ -t

all -o snapshot_* and *zfs list _-t all_* to better understand the

space accounting.

 Diagnosing the Problem
Let’s consider a situation in which you have a 3 TB pool.

sudo zpool create datapool mirror /dev/sdb /dev/sdc

sudo zfs create datapool/data

After successful import of 2 TB of backed up data, you decide to create

a snapshot so that users mistakenly deleting data won’t require you to

rerun the backup restore.

sudo zfs snapshot datapool/data@after-backup-restore

Note that running this snapshot is instantaneous and takes no disk

space initially.

Perhaps, as sometimes can happen, just after you run the snapshot,

a user with very wide access rights accidentally deletes a whole 2 TB of

data. But, the delete job stops short of 1 TB with information, reporting

that it cannot delete more due to the lack of space. How is that possible?

The answer is: the snapshot. Let’s first observe the file system on my

workstation:

Chapter 7 SpaCe aCCounting

98

trochej@madchamber:~$ sudo zfs list

NAME USED AVAIL REFER MOUNTPOINT

data 134G 2,55T 96K /data

data/datafs 134G 2,55T 134G /mnt/data

Now, we create a snapshot there:

trochej@madchamber:~$ sudo zfs snapshot data/datafs@testsnapshot

trochej@madchamber:~$ sudo zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT

data 134G 2,55T 96K /data

data/datafs 134G 2,55T 134G /mnt/data

data/datafs@testsnapshot 0 - 134G -

Now we upload a CentOS 7 GB ISO file to _/mnt/data_:

trochej@madchamber:~$ sudo zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT

data 141G 2,54T 96K /data

data/datafs 141G 2,54T 134G /mnt/data

data/datafs@testsnapshot 7,14G - 134G -

Notice that the snapshot size has increased up to the newly introduced

data. Let’s now delete the whole directory containing the archived ISOs:

trochej@madchamber:~$ sudo zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT

data 141G 2,54T 96K /data

data/datafs 141G 2,54T 109G /mnt/data

data/datafs@testsnapshot 32,0G - 134G -

Chapter 7 SpaCe aCCounting

99

What you will see is that while the REFER size for the data/datafs ZFS

file system has shrunk, the overall USED stays the same and the snapshot

size has increased to 32 GB. For comparison, let’s look at the *df _-h_*

command (I removed the non-ZFS file systems from the output for clarity):

trochej@madchamber:~$ df -h

Filesystem Size Used Avail Use% Mounted on

data 2,6T 128K 2,6T 1% /data

data/datafs 2,7T 109G 2,6T 5% /mnt/data

Let’s now remove some more data from datafs, just to increase the

size of the snapshot:

trochej@madchamber:~$ sudo zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT

data 141G 2,54T 96K /data

data/datafs 141G 2,54T 23,3G /mnt/data

data/datafs@testsnapshot 117G - 134G -

trochej@madchamber:~$ df -h

Filesystem Size Used Avail Use% Mounted on

data 2,6T 128K 2,6T 1% /data

data/datafs 2,6T 24G 2,6T 1% /mnt/data

As you may notice, there is not much to be gleaned from the du

command. It more or less tracks the space usage, but it tells us nothing

about the pattern. The zfs list, on the other hand, tells us quite a lot. By

this output alone, you can see that while your file system used space has

shrunk, the overall used stays the same; it has just moved into another

dataset’s location.

Chapter 7 SpaCe aCCounting

100

The *zfs* command can provide you with an even deeper

understanding of how the space is distributed among your data. And

while it’s not very interesting in the case of the small experiment I’ve been

running so far, I’ll provide you with more complicated examples in just a

moment. First, however, let’s check out another option for *zfs list*:

trochej@madchamber:~$ sudo zfs list -t all -o space

NAME AVAIL USED USEDSNAP USEDDS

USEDREFRESERV USEDCHILD

data 2,54T 141G 0 96K

0 141G

data/datafs 2,54T 141G 117G 23,3G

0 0

data/datafs@testsnapshot - 117G - -

- -

Note a more detailed explanation of -o space follows in the next
section.

It should now be pretty clear where the issue with data deletion came

from. Since the 3 TB pool is capable of keeping more or less the same

amount of data (modulo data compression), introducing the deletion of

2 TB of data on a file system that already holds 2 TB results in pool space

running out, since the pool needs to add data to the snapshot as the user

keeps removing it.

Chapter 7 SpaCe aCCounting

101

 More Advanced Examples
The previous example is pretty simple. Not much is happening on this pool

and not many additional features were used. Let’s create a sample ZFS

pool using file storage (files emulating real block devices) and we will play

with a few scenarios to see how setting up various ZFS properties affects

available space and the zfs -o space output.

The *zfs _-o space_* output is not very informative and interesting

in the previous example, so let’s consider the following configurations:

• A pool named datapool with RAIDZ2 redundancy.

• Five file systems, two of which have regular snapshots

taken each hour and retained for two weeks. Every

Saturday a snapshot is taken, and it is retained for a month.

• Two of the file systems have a quota set.

• One file system has set reservations.

• One zvol is created.

Let’s put this configuration into print:

trochej@ubuntuzfs:~$ sudo zpool list

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP

HEALTH ALTROOT

datapool 23.8G 5.37G 18.4G - 14% 22% 1.00x

ONLINE -

So the pool says that there is more than 18 GB of space free in the pool.

Let’s look closer:

trochej@ubuntuzfs:~$ sudo zfs list

NAME USED AVAIL REFER MOUNTPOINT

datapool 13.2G 2.41G 34.0K /datapool

datapool/first 3.58G 6.83G 3.58G /datapool/first

Chapter 7 SpaCe aCCounting

102

datapool/five 50.0K 2.41G 32.0K /datapool/five

datapool/fourth 50.0K 2.41G 32.0K /datapool/fourth

datapool/second 50.0K 2.41G 32.0K /datapool/second

datapool/third 50.0K 2.41G 32.0K /datapool/third

datapool/vol01 5.16G 7.57G 16.0K -

But not exactly. Shouldn’t the AVAIL number be the same as FREE in the

zpool list output? ZFS file systems can grow up to the pool’s capacity.

Let’s list all datasets:

trochej@ubuntuzfs:~$ sudo zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT

datapool 13.2G 2.41G 34.0K /datapool

datapool/first 3.58G 6.84G 3.58G /datapool/first

datapool/first

@2016-02-17-14:55 18.0K - 32.0K -

datapool/first

@2016-02-17-15:04 0 - 3.58G -

datapool/five 50.0K 2.41G 32.0K /datapool/five

datapool/five

@2016-02-17-14:55 18.0K - 32.0K -

datapool/fourth 50.0K 2.41G 32.0K /datapool/fourth

datapool/fourth

@2016-02-17-14:55 18.0K - 32.0K -

datapool/second 50.0K 2.41G 32.0K /datapool/second

datapool/second

@2016-02-17-14:55 18.0K - 32.0K -

datapool/third 50.0K 2.41G 32.0K /datapool/third

datapool/third

@2016-02-17-14:55 18.0K - 32.0K -

datapool/vol01 5.16G 7.57G 16.0K -

Chapter 7 SpaCe aCCounting

103

Okay. There are snapshots in play, so it might have taken some of the

capacity, but still, why are the numbers different among the datasets? Let’s

first look at the _REFER_ column in the *zfs list* output. It states how

much space the dataset is keeping references to. See that in the output:

datapool/first@2016-02-17-15:04 0 - 3.58G -

The _USED_ column is zero, but _REFER_ is above 3.5 GB. That is typical

of snapshots. Since the creation of the snapshot, no change was introduced

to the file system datapool/first, so the snapshot does not use any space

at the moment. But, it keeps references to 3.5 GB of data that datapool/

first contained at the time of snapshotting. Let’s make it use some space

now by removing a piece of data I copied over to the datapool:

trochej@ubuntuzfs:~$ rm /datapool/first/Fedora-Live-

KDE- x86_64-23-10.iso

This gives us the following output:

trochej@ubuntuzfs:~$ sudo zfs list

NAME USED AVAIL REFER MOUNTPOINT

datapool 14.7G 930M 34.0K /datapool

datapool/first 9.50G 4.91G 741M /datapool/first

So, the file system datapool/first consumes 9.5 GB of space,

but references 741 MB only? Where is the rest of the claimed space

consumption? First, run zfs list -t all to see not only the file systems,

but the snapshots also:

trochej@ubuntuzfs:~$ sudo zfs list -t all

NAME USED AVAIL REFER MOUNTPOINT

datapool 14.7G 930M 34.0K /datapool

datapool/first 9.50G 4.91G 741M /datapool/first

datapool/first@2016-02-17-14:55 18.0K - 32.0K -

datapool/first@2016-02-17-15:04 18.0K - 3.58G -

datapool/first@2016-02-17-15:22 1.20G - 5.50G -

Chapter 7 SpaCe aCCounting

104

datapool/first@2016-02-17-15:27 0 - 741M -

trochej@ubuntuzfs:~$ ls -ahl /datapool/first/

total 741M

drwxr-xr-x 2 trochej trochej 3 Feb 17 15:25 .

drwxr-xr-x 7 trochej trochej 7 Feb 17 14:51 ..

-rw-r----- 1 trochej trochej 741M Feb 17 15:21 FreeBSD-11.

0- CURRENT- amd64-20151130-r291495-disc1.iso

Okay. So the file system holds 741 MB of data, but its snapshots consume

1.20 GB of space. That’s more like it. Still, where’s the rest of the space?

trochej@ubuntuzfs:~$ sudo zfs list -t all -o space

NAME AVAIL USED USEDSNAP

USEDDS USEDREFRESERV USEDCHILD

datapool/first 4.91G 9.50G 4.78G

741M 4G 0

datapool/first@2016-02-17-14:55 - 18.0K -

- - -

datapool/first@2016-02-17-15:04 - 18.0K -

- - -

datapool/first@2016-02-17-15:22 - 1.20G -

- - -

The output is cut out for brevity, but you can see that the datapool/

first file system consumes 4.78 GB in snapshots. 4 GB is used by the

refreservation property set on the file system, giving it 4 GB of free space

at the cost of other file systems.

Make yourself familiar with -o space. It is going to save you lots of

headache later on. While the almost empty non-snapshotted pool may not

be very challenging, with passing time each added snapshot or reservation

may add confusion. zfs list -o space is your friend then, but only if you

befriend it yourself.

Chapter 7 SpaCe aCCounting

105© Damian Wojsław 2017
D. Wojsław, Introducing ZFS on Linux, https://doi.org/10.1007/978-1-4842-3306-1

Index

A, B
Access control list (ACLs)

DAC (see Discretionary access
control (DAC))

execution, 78–79
POSIX, 73

Adaptive Replacement Cache
(ARC), see L2ARC device

C
CentOS, 45–46
CIFS, 84
Clones, 8, 71–72
Confidentiality, Integrity and

Availability (CIA), 36, 38
Copy On Write (COW) file system

deduplicated data block, 4
graphical representation, 3
rewritten data block, 3
single data block, 3
snapshotted data block, 4

D, E
Data security, 36–38
Dataset, 8

Discretionary access
control (DAC)

accounts, 74
code, 74
data, 75
documents, 74
user/group, 76, 78

F, G
File system, 7

H
Hardware

database, 38
data security (see Data security)
networking cards, 35, 39
power unit, 33
RAID controllers, 34
RAM, 33
SATA, 34
SoHo storage, 31
SSDs, 33
storage, 29
types of data, 31
vendor and model, 32

https://doi.org/10.1007/978-1-4842-3306-1

106

I, J, K
Installation, ZFS

CentOS, 45–46
system tools, 46
Ubuntu, 42–44
virtual machine (VM), 41
ZED, 47–49

iSCSI
initiator and target, 90, 93
ZVOLs, 90–91

L
L2ARC device, 64–66

M
Mirrored pool

capacity, 51
configuration, 52–53
hot spare device, 60

N, O
Network file system (NFS)

CentOS, installation, 87
SAMBA, 84
Ubuntu, package installation,

85–87
versions, 85

P
POSIX ACLs, 73, 78

Q
Quotas

data/engineering file
system, 70

Linux, 67
snapshots and clones, 67–69

R
RAIDZ pool, 52, 54–57
Reservations, see Quotas
Resilvering, 9

S, T
Serial Attached SCSI (SAS), 90
Sharing protocols

iSCSI protocol (see iSCSI)
NFS/CIFS (see Network file

system (NFS))
SLOG ZFS Intent Log (ZIL)

SLOG, 61
zpool status, 62–63

Small Computer System Interface
(SCSI), 89–90

Snapshots, 7, 71–72
Space accounting

configurations, 102–104
operators, 96
pool space

configurations, 101
snapshot, 97–98, 100

sudo zfs list, 95
sudo zpool list, 95

Index

107

U
Ubuntu, 42–44

V, W, X, Y
Virtual machine (VM), 41
Volume (file system), 8

Z
ZEDLETs, 47
ZFS

advantages, 4–5
ashift option, 13–15
clones, 8
compression, 18–19
COW, 2–4
dataset, 8

deduplication, 17–18
file system, 7
limitations, 5–6
pool list, 20, 22
resilvering, 9
smartctl, 13, 16
snapshots, 7
storage pool, 6
vdev, 7
version, 23–24, 26–27
volume, 8

ZFS Event Daemon (ZED)
ZEDLETs, 47
zpool events, 47–49

ZFS Intent Log (ZIL)
device, 33, 61–64

ZVOLs, 90–91

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: ZFS Overview
	 What Is ZFS?
	 COW Principles Explained
	 ZFS Advantages
	 Simplified Administration
	 Proven Stability
	 Data Integrity
	 Scalability

	 ZFS Limitations
	 80% or More Principle
	 Limited Redundancy Type Changes

	 Key Terminology
	 Storage Pool
	 vdev
	 File System
	 Snapshots
	 Clones
	 Dataset
	 Volume
	 Resilvering

	 Pool Layout Explained
	 Common Tuning Options
	 ashift
	 smartctl

	 Deduplication
	 Compression
	 ZFS Pool State
	 ZFS Version

	Chapter 2: Hardware
	 Don’t Rush
	 Considerations
	 How Much Data?
	 How Many Concurrent Clients?
	 How Critical Is the Data?
	 What Types of Data?
	 What Kind of Scope?

	 Hardware Purchase Guidelines
	 Same Vendor, Different Batch
	 Buy a Few Pieces for Spares
	 Scope Power Supply Properly
	 Consider Performance, Plan for RAM
	 Plan for SSDs (At Least Three)
	 Consider SATA
	 Do Not Buy Hardware and Soft RAID Controllers
	 Networking Cards at Least 1 GB of Speed
	 Plan for Redundancy

	 Data Security
	 CIA
	 Confidentiality
	 Integrity
	 Availability

	 Types of Workload
	 Other Components To Pay Attention To
	 Hardware Checklist

	Chapter 3: Installation
	 System Packages
	 Virtual Machine
	 Ubuntu Server
	 CentOS

	 System Tools
	 ZED

	Chapter 4: Setup
	 General Considerations
	 Creating a Mirrored Pool
	 Creating a RAIDZ Pool
	 Creating a RAIDZ2 Pool
	 Forcing Operations
	Train and test

	Chapter 5: Advanced Setup
	 ZIL Device
	 L2ARC Device (Cache)
	 Quotas and Reservations
	 Snapshots and Clones
	 ZFS ACLs
	 DAC Model
	 ACLs Explained
	 Replacing Drive

	Chapter 6: Sharing
	 Sharing Protocols
	 NFS: Linux Server
	 Installing Packages on Ubuntu
	 Installing NFS Client on Ubuntu

	 Installing Packages on CentOS

	 SAMBA
	 Other Sharing Protocols

	Chapter 7: Space Accounting
	 Using New Commands
	 Output Terminology

	 What’s Consuming My Pool Space?
	 Diagnosing the Problem
	 More Advanced Examples

	Index

