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Introduction
Deep learning has taken artificial intelligence by storm and has infiltrated 

almost every business application. Because almost all content and 

transactions are now being recorded in a digital format, a vast amount of 

data is available for exploration by machine learning algorithms. However, 

traditional machine learning techniques struggle to explore the intricate 

relationships presented in this so-called Big Data. This is particularly acute 

for unstructured data such as images, voice, and text.

Deep learning algorithms can cope with the challenges in analyzing this 

immense data flow because they have a very high learning capacity. Also, 

deep neural networks require little, if any, feature engineering and can be 

trained from end to end. Another advantage of the deep learning approach is 

that it relies on architectures that require minimal supervision (in other words, 

these architectures learn automatically from data and need little human 

intervention). These architectures are the so-called “unsupervised” of weakly 

supervised learning. Last, but not least, they can be trained as generative 

processes. Instead of mapping inputs to outputs, the algorithms learn how to 

generate both inputs and outputs from pure noise (i.e., generative adversarial 

networks). Imagine generating Van Gogh paintings, cars, or even human faces 

from a combination of a few hundred random numbers.

Google language translation services, Alexa voice recognition, and 

self-driving cars all run on deep learning algorithms. Other emergent 

areas are heavily dependent on deep learning, such as voice synthesis, 

drug discovery, and facial identification and recognition. Even creative 

areas, such as music, painting, and writing, are beginning to be disrupted 

by this technology. In fact, deep learning has the potential to create such a 

profound transformation in the economy that it will probably trigger one 

of the biggest revolutions that humanity has ever seen.



xx

Thanks to the dissemination of free, and powerful, computational 

frameworks and APIs such as Keras and TensorFlow, cheap cloud services 

to run the models, and the easy availability of data, anyone can run deep 

learning models in their home in a matter of hours. This democratization 

helps to explain the explosion of interest in the topic and the many 

breakthroughs being presented in an open format on Arxiv and in 

specialized top conferences like NIPS.

Introduction to Deep Learning Business Applications for Developers 

explores various deep learning algorithms by neatly abstracting the 

math skills. It gives an overview of several topics focused on the business 

applications of deep learning in computer vision, natural language 

processing, reinforcement learning, and unsupervised deep learning. It is 

targeted to mid-level and senior-level professionals as well as entry-level 

professionals with a basic understanding of machine learning. You can 

expect to understand the tangible depth of business applications and view 

use-case examples regarding future developments in each domain.

The book gives a short survey of the state-of-the-art algorithms of the 

whole field of deep learning, but its main purpose is more practical: to 

explain and illustrate some of the important methods of deep learning 

used in several application areas and in particular the impact on business. 

This book is intended for those who want to understand what deep 

learning is and how it can be used to develop business applications, with 

the aim of practical and successful deployment. The book filters out any 

overwhelming statistics and algebra and provides you with methods and 

tips on how to make simple hands-on tools for your business model.

First it introduces the main deep learning architectures and gives a 

short historical background of them. This is followed by examples of deep 

learning that are most advantageous and that have promising futures over 

traditional machine learning algorithms. Along these lines, the book covers 

applications of recommendation systems and natural language processing, 

including recurrent neural networks capable of capturing the richness of 

exhibiting language translation models. The book finishes by looking at 

inTRoduCTioninTRoduCTion
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the applications of deep learning models for financial risk assessment, 

control and robotics, and image recognition. Throughout the text, you will 

read about key companies and startups adopting this technology in their 

products. You will also find useful links and some examples, tricks, and 

insights on how to train deep learning models with some hands-on code 

examples in Keras and Python.

inTRoduCTioninTRoduCTion
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CHAPTER 1

Introduction
This chapter will describe what the book is about, the book’s goals and 

audience, why artificial intelligence (AI) is important, and how the topic 

will be tackled.

Teaching computers to learn from experience and make sense of 

the world is the goal of artificial intelligence. Although people do not 

understand fully how the brain is capable of this remarkable feat, it is 

generally accepted that AI should rely on weakly supervised generation 

of hierarchical abstract concepts of the world. The development of 

algorithms capable of learning with minimal supervision—like babies 

learn to make sense of the world by themselves—seems to be the key to 

creating truly general artificial intelligence (GAI) [GBC16].

Artificial intelligence is a relatively new area of research (it started 

in the 1950s) that has had some successes and many failures. The initial 

enthusiasm, which originated at the time of the first electronic computer, 

soon faded away with the realization that most problems that the brain 

solves in a blink of an eye are in fact very hard to solve by machines. These 

problems include locomotion in uncontrolled environments, language 

translation, and voice and image recognition. Despite many attempts, 

it also became clear that the traditional (rule-based and descriptive) 

approach to solving complex mathematical equations or even proving 

theorems was insufficient to solve the most basic situations that a 2-year- 

old toddler had no difficulty with, such as understanding basic language 

concepts. This fact led to the so-called long AI winter, where many 

www.allitebooks.com
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researchers simply gave up creating machines with human-level cognitive 

capabilities, despite some successes in between, such as the IBM machine 

Deep Blue that become the best chess player in the world or such as the 

application of neural networks for handwritten digit recognition in late 

1980s.

AI is today one of the most exciting research fields with plenty of 

practical applications, including autonomous vehicles, drug discovery, 

robotics, language translation, and games. Challenges that seemed 

insurmountable just a decade ago have been solved—sometimes with 

superhuman accuracy—and are now present in products and ubiquitous 

applications. Examples include voice recognition, navigation systems, 

facial emotion detection, and even art creation, such as music and 

painting. For the first time, AI is leaving the research labs and materializing 

in products that could have emerged from science-fiction movies.

How did this revolution become possible in such a short period of 

time? What changed in recent years that puts us closer to the GAI dream? 

The answer is more a gradual improvement of algorithms and hardware 

than a single breakthrough. But certainly deep neural networks, commonly 

referred to as deep learning (DL), appears at the top of the list [J15].

 1.1 Scope and Motivation
Advances in computational power, big data, and the Internet of Things 

are powering the major transformation in technology and are powering 

productivity across all industries.

Through examples in this book, you will explore concrete situations 

where DL is advantageous with respect to other traditional (shallow) 

machine learning algorithms, such as content-based recommendation 

algorithms and natural language processing. You’ll learn about techniques 

such as Word2vec, skip-thought vectors, and Item2Vec. You will also 

consider recurrent neural networks trained with stacked long short-term 

Chapter 1  IntroduCtIon
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memory (LSTM) units and sequence2sequence models for language 

translation with embeddings.

A key feature of DL algorithms is their capability to learn from large 

amounts of data with minimal supervision, contrary to shallow models 

that normally require less (labeled) data. In this book, you will explore 

some examples, such as video prediction and image segmentation, with 

fully convolutional neural networks (FCNNs) and residual neural networks 

(ResNets) that have achieved top performance in the ImageNet image 

recognition competition. You will explore the business implications of 

these image recognition techniques and some active startups in this very 

active field.

The implications of DL-supported AI in business is tremendous, 

shaking to the foundations many industries. It is perhaps the biggest 

transformative force since the Internet.

This book will present some applications of DL models for financial 

risk assessment (credit risk with deep belief networks and options 

optimizations with variational auto-encoder). You will briefly explore 

applications of DL to control and robotics and learn about the DeepQ 

learning algorithm (which was used to beat humans in the game Go) and 

actor-critic methods for reinforcement learning.

You will also explore a recent and powerful set of algorithms, named 

generative adversarial neural networks (GANs), including the dcGAN, 

the conditional GAN, and the pixel2pixel GAN. These are very efficient 

for tasks such as image translation, image colorization, and image 

completion.

You’ll also learn about some key findings and implications in the 

business of DL and about key companies and startups adopting this 

technology. The book will cover some frameworks for training DL models, 

key methods, and tricks to fine-tune the models.

The book contains hands-on coding examples, in Keras using 

Python 3.6.

Chapter 1  IntroduCtIon
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 1.2 Challenges in the Deep Learning Field
Machine learning, and deep learning in particular, is rapidly expanding 

to almost all business areas. DL is the technology behind well-known 

applications for speech recognition, image processing, and natural 

language processing. But some challenges in deep learning remain.

To start with, deep learning algorithms require large data sets. For 

instance, speech recognition requires data from multiple dialects or 

demographics. Deep neural networks can have millions or even billion of 

parameters, and training can be a time-consuming process—sometimes 

weeks in a well-equipped machine.

Hyperparameter optimization (the size of the network, the 

architecture, the learning rate, etc.) can be a daunting task. DL also 

requires high-performance hardware for training, with a high-performance 

GPU and at least 12Gb of memory.

Finally, neural networks are essentially black boxes and are hard to 

interpret.

 1.3 Target Audience
This book was written for academics, data scientists, data engineers, 

researchers, entrepreneurs, and business developers.

While reading this book, you will learn the following:

• What deep learning is and why it is so powerful

• What major algorithms are available to train DL models

• What the major breakthroughs are in terms of applying DL

• What implementations of DL libraries are available and 

how to run simple examples

• Major areas of the impact of DL in business and 

startups

Chapter 1  IntroduCtIon
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The book introduces the fundamentals while giving some practical 

tips to cover the information needed for a hands-on project related to a 

business application. It also covers the most recent developments in DL 

from a pragmatic perspective. It cuts through the buzz and offers concrete 

examples of how to implement DL in your business application.

 1.4 Plan and Organization
The book is divided into four parts. Part 1 contains the introduction and 

fundamental concepts about deep learning and the most important 

network architectures, from convolutional neural networks (CNNs) to 

LSTM networks.

Part 2 contains the core DL applications, in other words, image 

and video, natural language processing and speech, and reinforcement 

learning and robotics.

Part 3 explores other applications of DL, including recommender 

systems, conversational bots, fraud, and self-driving cars.

Finally, Part 4 covers the business impact of DL technology and new 

research and future opportunities.

The book is divided into 11 chapters. The material in the chapters is 

structured for easy understanding of the DL field. The book also includes 

many illustrations and code examples to clarify the concepts.

Chapter 1  IntroduCtIon
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CHAPTER 2

Deep Learning: 
An Overview
Artificial neural networks are not new; they have been around for about 

50 years and got some practical recognition after the mid-1980s with the 

introduction of a method (backpropagation) that allowed for the training 

of multiple-layer neural networks. However, the true birth of deep learning 

may be traced to the year 2006, when Geoffrey Hinton [GR06] presented 

an algorithm to efficiently train deep neural networks in an unsupervised 

way—in other words, data without labels. They were called deep belief 

networks (DBNs) and consisted of stacked restrictive Boltzmann machines 

(RBMs), with each one placed on the top of another. DBNs differ from 

previous networks since they are generative models capable of learning 

the statistical properties of data being presented without any supervision.

Inspired by the depth structure of the brain, deep learning 

architectures have revolutionized the approach to data analysis. Deep 

learning networks have won a large number of hard machine learning 

contests, from voice recognition [AAB+15] to image classification 

[AIG12] to natural language processing (NLP) [ZCSG16] to time-series 

prediction—sometimes by a large margin. Traditionally, AI has relied on 

heavily handcrafted features. For instance, to get decent results in image 

classification, several preprocessing techniques have to be applied, such 

as filters, edge detection, and so on. The beauty of DL is that most, if not 



10

all, features can be learned automatically from the data—provided that 

enough (sometimes million) training data examples are available. Deep 

models have feature detector units at each layer (level) that gradually 

extract more sophisticated and invariant features from the original raw 

input signals. Lower layers aim to extract simple features that are then 

clumped into higher layers, which in turn detect more complex features. 

In contrast, shallow models (those with two layers such as neural networks 

[NNs] or support vector machine [SVMs]) present very few layers that map 

the original input features into a problem-specific feature space. Figure 2-1  

shows the comparison between Deep Learning and Machine Learning 

(ML) models in terms of performance versus amount of data to build  

the models.

Deep learning

Old algorithms

Amount of data

Pe
rf

or
m

an
ce

Figure 2-1. Deep learning models have a high learning capacity

Perfectly suited to do supervised as well as unsupervised learning 

in structured or unstructured data, deep neural architectures can be 

exponentially more efficient than shallow ones. Since each element of 

the architecture is learned using examples, the number of computational 

elements one can afford is limited only by the number of training 

samples—which can be of the order of billions. Deep models can be 

trained with hundreds of millions of weights and therefore tend to 

Chapter 2  Deep Learning: an Overview
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outperform shallow models such as SVMs. Moreover, theoretical results 

suggest that deep architectures are fundamental to learning the kind of 

complex functions that represent high-level abstractions (e.g., vision, 

language, semantics), characterized by many factors of variation that 

interact in nonlinear ways, making the learning process difficult.

 2.1 From a Long Winter to a Blossoming 
Spring
Today it’s difficult to find any AI-based technology that does not rely 

on deep learning. In fact, the implications of DL in the technological 

applications of AI will be so profound that we may be on the verge of the 

biggest technological revolution of all time.

One of the remarkable features of DL neural networks is their (almost) 

unlimited capacity to accommodate information from large quantities of 

data without overfitting—as long as strong regularizers are applied. DL 

is as much of a science as of an art, and while it’s very common to train 

models with billions of parameters on millions of training examples, that is 

possible only by carefully selecting and fine-tuning the learning machine 

and sophisticated hardware. Figure 2-2 shows the trends in machine 

learning, pattern recognition and deep learning across the last decade/for 

more than one decade.

Chapter 2  Deep Learning: an Overview
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The following are the main characteristics that make a DNN unique:

• High learning capacity: Since DNNs have millions of 

parameters, they don’t saturate easily. The more data 

you have, the more they learn.

• No feature engineering required: Learning can be 

performed from end to end—whether it’s robotic 

control, language translation, or image recognition.

• Abstraction representation: DNNs are capable of 

generating abstract concepts from data.

• High generative capability: DNNs are much more 

than simple discriminative machines. They can 

generate unseen but plausible data based on latent 

representations.

• Knowledge transfer: This is one of the most remarkable 

properties—you can teach a machine in one large 

set of data such as images, music, or biomedical data 

100
machine learning
Search term

deep learning
Search term

pattern recognition
Search term

75

50

25

Average 1 Jan 2004 1 Oct 2008 1 Jul 2013
NoteNNote

Figure 2-2. Evolution of interest in deep learning (source: Google 
Trends)
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and transfer the learning to a similar problem where 

less of different types data is known. One of the most 

remarkable examples is a DNN that captures and 

replicates artistic styles.

• Excellent unsupervised capabilities: As long as you 

have lots of data, DNNs can learn hidden statistical 

representations without any labels required.

• Multimodal learning: DNNs can integrate seamlessly 

disparate sources of high-dimensional data, such as 

text, images, video, and audio, to solve hard problems 

like automatic video caption generation and visual 

questions and answers.

• They are relatively easy to compose and embed domain 

knowledge - or prioris - to handle uncertainty and 

constrain learning.

The following are the less appealing aspects of DNN models1:

• They are hard to interpret. Despite being able to extract 

latent features from the data, DNNs are black boxes that 

learn by associations and co-occurrences. They lack 

the transparency and interpretability of other methods, 

such as decision trees.

• They are only partially able to uncover complex 

causality relations or nested structural relationships, 

common in domains such as biology.

1 Regarding these points, note that this is an active area of research, and many of 
these difficulties are being addressed. Some of them are partially solved, while 
others (such as lack of interpretability) probably never will be.

Chapter 2  Deep Learning: an Overview
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• They can be relatively complex and time-consuming to 

train, with many hyperparameters that require careful 

fine-tuning.

• They are sensitive to initialization and learning rate. It’s 

easy for the networks to be unstable and not converge. 

This is particularly acute for recurrent neural networks 

and generative adversarial networks.

• A loss function has to be provided. Sometimes it is hard 

to find a good one.

• Knowledge may not be accumulated in an incremental 

way. For each new data set, the network has to be 

trained from scratch. This is also called the knowledge 

persistence problem.

• Knowledge transference is possible for certain models 

but not always obvious.

• DNNs can easily memorize the training data, if they 

have a huge capacity.

• Sometimes they can be easily fooled, for instance, 

confidently classifying noisy images.

 2.2 Why Is DL Different?
Machine learning (ML) is a somewhat vague but hardly new area of 

research. In particular, pattern recognition, which is a small subfield of 

AI, can be summarized in one simple sentence: finding patterns in data. 

These patterns can be anything from historical cycles in the stock market 

to distinguishing images of cats from dogs. ML can also be described as the 

art of teaching machines how to make decisions.

Chapter 2  Deep Learning: an Overview
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So, why all the excitement about AI powered by deep learning? As 

mentioned, DL is both quantitative (an improvement of 5 percent in voice 

recognition makes all the difference between a great personal assistant 

and a useless one) and qualitative (how DL models are trained, the subtle 

relations they can extract from high-dimensional data, and how these 

relations can be integrated into a unified perspective). In addition, they 

have had practical success in cracking several hard problems.

As shown in Figure 2-3, let’s consider the classical iris problem: how 

to distinguish three different types of flower species (outputs) based 

on four measurements (inputs), specifically, petal and sepal width and 

length, over a data set of 150 observations. A simple descriptive analysis 

will immediately inform the user about the usefulness of different 

measurements. Even with a basic approach such as Naïve Bayes, you could 

build a simple classifier with good accuracy.

Figure 2-3. Iris image and classification with Naïve Bayes (source: 
predictive modeling, supervised machine learning, and pattern 
classification by Sebastian Raschka)

This method assumes independence of the inputs given a class 

(output) and works remarkably well for lots of problems. However, the 

big catch is that this is a strong assumption that rarely holds. So, if you 

want to go beyond Naïve Bayes, you need to explore all possible relations 

between inputs. But there is a problem. For simplicity, let’s assume you 

have ten possible signal levels for each input. The number of possible 

Chapter 2  Deep Learning: an Overview
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input combinations you need to consider in the training set (number 

of observations) will be 104 = 10000. This is a big number and is much 

bigger than the 150 observations. But the problem gets much worse 

(exponentially worse) as the number of inputs increases. For images, 

you could have 1,000 (or more) pixels per image, so the number of 

combinations will be 101000, which is a number out of reach—the number 

of atoms in the universe is less than 10100!

So, the big challenge of DL is to make tractable very high-dimensional 

problems (such as language, sound, or images) with a limited set of 

data and make generalizations on unseen input regions without using 

brute force to explore all the possible combinations. The trick of DL is to 

transform, or map, a high-dimensional space (discrete or continuous) 

into a continuous low-dimensional one (sometimes called the manifold) 

where you could find a simple solution to your problem. Here solution 

usually means optimizing a function; it could be maximizing the likelihood 

(equivalent of minimizing the classification error in problems like the iris 

problem) or minimizing the mean square error (in regression problems 

such as stock market prediction).

This is easier said than done. Several assumptions and techniques 

have to be used to approximate this hard inference problem. (Inference 

is simply a word to say “obtain the previously mentioned map” or the 

parameters of the model describing the posterior distribution that 

maximizes the likelihood function.) The key (somehow surprising) finding 

was that a simple algorithm called gradient descent, when carefully tuned, 

is powerful enough to guide the deep neural networks toward the solution. 

And one of the beauties of neural networks is that, after being properly 

trained, the mapping between inputs and outputs is smooth, meaning that 

you can transform a discrete problem, such as a language semantic, into 

a continuous or distributed representation. (You’ll learn more about this 

when you read about Word2vec later in the chapter.)

That’s the secret of deep learning. There’s no magic, just some well- 

known numerical algorithms, a powerful computer, and data (lots of it!).

Chapter 2  Deep Learning: an Overview
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 2.2.1 The Age of the Machines
After a long winter, we are now experiencing a blossoming spring in 

artificial intelligence. This fast-moving wave of technology innovations 

powered by AI is impacting business and society at such a velocity that 

it is hard to predict its implications. One thing is sure, though: cognitive 

computing powered by AI will empower (sometimes replace) humans in 

many repetitive and even creative tasks, and society will be profoundly 

transformed. It will impact jobs that had seemed impossible to automate, 

from doctors to legal clerks.

A study by Carl B. Frey and M. Osborne, from 2013, states that 47 

percent of jobs in the United States were at risk of being replaced in the 

near future. Also, in April 2015, the McKinsey Global Institute published 

an essay that states AI is transforming society at a rate that will happen 10 

times faster and at 300 times the scale (or roughly 3,000 times the impact) 

of the Industrial Revolution.

We may try to build a switch-off button or hard-coded rules to prevent 

machines from doing any harm to humans. The problem is that these 

machines learn by themselves and are not hard-coded. Also, even if there 

were a way to build such a “safety exit,” how could someone code ethics 

into a machine? By the way, can we even agree on ethics for ourselves, 

humans?

Our opinion is that because AI is giving machines superhuman 

cognitive capabilities, these fears should not be taken lightly. For now, 

the apocalypse scenario is a mere fantasy, but we will eventually face 

dilemmas where machines are no longer deterministic devices (see 

https://www.youtube.com/watch?v=nDQztSTMnd8).

The only way to incorporate ethics into a machine is the same as in 

humans: through a lengthy and consistent education. The problem is 

that machines are not like humans. For instance, how can you explain the 

notion of “hungry” or “dead” to a nonliving entity?

Chapter 2  Deep Learning: an Overview
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Finally, it’s hard to quantify, but AI will certainly have a huge impact on 

society, to an extent that some, like Elon Musk and Stephen Hawking, fear 

that our own existence is at risk.

 2.2.2 Some Criticism of DL
There has been some criticism of DL as being a brute-force approach. 

We believe that this argument is not valid. While it’s true that to train DL 

algorithms many samples are needed (for image classification, for instance, 

convolutional neural networks may require hundreds of thousands of 

annotated examples), the fact is that image recognition, which people 

take for granted, is in fact complex. Furthermore, DNNs are universal 

computing devices that may be efficient, especially the recurrent ones.

Another criticism is that networks are unable to reuse the accumulated 

knowledge to quickly extend it to other domains (the so-called knowledge 

transfer, compositionability, and zero-shot learning), which is something 

humans do very well. For instance, if you know what a bike is, you almost 

instantaneously understand the concept of motorbike and do not need to 

see millions of examples.

A common issue is that these networks are black boxes and therefore 

impossible for a human to understand their predictions. However, there 

are several ways to mitigate this problem. See, for instance, the recent 

work “PatternNet and PatternLRP: Improving the interpretability of neural 

networks.” Furthermore, zero-shot learning (learning in unseen data) is 

already possible, and knowledge transfer is widely used in biology and art.

These criticisms, while valid, have been addressed in recent 

approaches; see [LST15] and [GBC16].

Chapter 2  Deep Learning: an Overview
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 2.3 Resources
This book will guide you through the most relevant landmarks and 

recent achievements in DNNs from a practical point of view. You’ll also 

explore the business applications and implications of the technology. The 

technicalities will be kept to a minimum so you can focus on the essentials. 

The following are a few good resources that are essential to understand 

this exciting topic.

 2.3.1 Books
These are some good books on the topic:

• A recent book on deep learning from Yoshua Bengio 

et al. [GBC16] is the best and most updated reference 

on DNNs. It has a strong emphasis on the theoretical 

and statistical aspects of deep neural networks.

• Deep Learning with Python by Francois Chollet 

(Manning, 2017) was written by the author of Keras and 

is a must for those willing to get a hands-on experience 

to DL.

• The online book Neural Networks and Deep Learning is 

also a good introductory source for those interested in 

understanding the fundamentals of DL.

• Fundamentals of Deep Learning (O’Reilly, 2017) is 

a book that explains step-by-step the fundamental 

concepts of ANNs and DL.

• Deep Learning with Python (2016) is a hands-on e-book 

using Python libraries (Keras.io and TensorFlow).

• Deep Learning Mastery is an online book with an 

excellent step-by-step tutorial using Keras.
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 2.3.2 Newsletters
Here are some good newsletters:

• jack-clark.net is a good weekly review of deep learning 

and AI.

• Dataelixir.com is a weekly newsletter of curated data 

science news and resources from around the web.

• www.getrevue.co/profile/nathanbenaich from Nathan 

Benaich is a monthly review of artificial intelligence 

news, research, investments, and applications.

• Wildml.com is a good blog maintained by Denny Britz 

for tutorials on DL, and it has a weekly newsletter.

• Data Machina is a weekly newsletter on big data and 

machine learning. 

• The Exponent View at www.getrevue.co/profile/

azeem contains news about AI-based technology and its 

impact on society.

• Datascienceweekly.org is a weekly summary of new 

relevant aspects for machine learning and data science.

• CognitionX is a daily briefing on data science, AI, and 

machine learning.

 2.3.3 Blogs
Here are some relevant blogs:

• The Andrew Karpathy blog is a great source of 

inspiration for those who want to get hands-on 

experience with deep learning tools, from image 

processing to recurrent neural networks.
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• KDnuggets is a good blog covering a diversity of topics 

on ML and AI.

• Data Science Central provides interesting posts on 

the business implications of ML, and it has a daily 

newsletter.

• CreativeAI.net is an excellent blog showcasing works in 

the confluence of AI and art.

• Arxiv.org is the best repository of open publications in 

many areas, including computer science.

• Gitxiv.com is a blog combining publications on Arxiv, 

with the respective code on GitHub.

• Arxiv-sanity.com is a site made by A. Karpathy that 

curates content from Arxiv.

 2.3.4 Online Videos and Courses
Here are some relevant videos and courses:

• Coursera has an excellent online course from the 

grandfather of ANN, G. Hinton (https://www.

coursera.org/learn/neural-networks).

• This is the classic and pioneering course from Stanford 

professor Andrew Ng (https://www.coursera.org/

learn/machine-learning).

• Udacity also has a good course about deep learning by 

Google.

• Re-Work summits are excellent events organized in 

London, New York, S. Francisco, and Shanghai on AI 

and deep learning.

Chapter 2  Deep Learning: an Overview

http://www.kdnuggets.com/
https://www.datasciencecentral.com/
https://www.CreativeAI.net
https://www.Arxiv.org
https://www.Gitxiv.com
https://www.Arxiv-sanity.com
https://www.coursera.org/learn/neural-networks
https://www.coursera.org/learn/neural-networks
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://www.udacity.com/course/deep-learning--ud730
https://www.udacity.com/course/deep-learning--ud730
https://www.re-work.co/events/


22

• Data Science Summit organizes events for intense 

training. Internships are organized within the 

companies that support the initiative.

• General Assembly has some online courses and boot 

camps around the world.

• Science 2 Data Science is an intensive training program 

to prepare data scientists for companies.

• Jason Brownlee has some excellent tutorials and 

e-books to start understanding machine learning 

and deep learning models in Python using the Keras 

framework.

• Videolectures.net has good video content and lectures, 

for example, from ICML 2015 and the Deep Learning 

Summer School of 2016.

• Ian Goodfellow has an excellent tutorial on GANs.

 2.3.5 Podcasts
Here are some podcasts:

• This Week in Machine Learning and AI gives an 

overview of the recent developments and applications 

of AI and always features a guest.

• Talking Machines is a podcast featuring a guest in each 

episode.

• Data Skeptic is a weekly podcast with interviews of 

experienced data scientists.

• Learning Machines is a gentle introduction to Artificial 

Intelligence and Machine Learning (http://www.

learningmachines101.com/).

Chapter 2  Deep Learning: an Overview

http://datascience-summit.com/
https://generalassemb.ly/
http://www.s2ds.org/
http://machinelearningmastery.com/
http://machinelearningmastery.com/
https://www.Videolectures.net
http://on-demand.gputechconf.com/gtc/2017/video/s7502-ian-goodfellow-generative-adversarial-networks.mp4
https://twimlai.com/
http://www.thetalkingmachines.com/
https://dataskeptic.com/
http://www.learningmachines101.com/
http://www.learningmachines101.com/


23

• The O’Reilly Data Show Podcast delves into the 

techniques behind Big Data, Data Science and AI 

https://www.oreilly.com/topics/oreilly-data-

show-podcast.

• The A16Z podcast by Andreessen Horowitz is an 

excellent resource for topics related to data science and 

technology.

 2.3.6 Other Web Resources
Here are some other web resources:

• www.deeplearning.net is the pioneer web site on deep 

learning. It’s still a reference.

• https://github.com/terryum/awesome-deep-

learning-papers is a list of the most cited and 

important papers in several DL domains.

• Image Completion with Deep Learning in TensorFlow 

(http://bamos.github.io/2016/08/09/deep-

completion/) is a good tutorial on DNN for image 

completion.

• https://github.com/kjw0612/awesome-deep-vision 

is a list of resources of DL for computer vision.

• Machine Learning & Deep Learning Tutorials is a 

repository that contains a topic-wise curated list 

of Machine Learning and Deep Learning tutorials, 

articles and other resources (https://github.com/

ujjwalkarn/Machine-Learning-Tutorials).
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• Machine Learning Is Fun by Adam Geitgey is a website 

with an easy introduction to Machine Learning in more 

than 15 languages (https://medium.com/@ageitgey/

machine-learning-is-fun-80ea3ec3c471).

• Approaching (Almost) Any Machine Learning Problem 

by Abhishek Thakur is a realistic overview of most 

machine learning pipelines.

• Kaggle.com promotes several challenging machine 

learning contests with prizes up to $100,000 USD. But 

more than the money, it’s about creating a reputation 

as a true data scientist.

• https://a16z.com/2016/06/10/ai-deep-learning- 

machines/ is a good overview of deep learning 

evolution from Andresseen Horowitz.

• These two AMA (“Ask Me Anything”) at Reddit 

are extremely helpful in understanding the 

history behind ANN, narrated by some of their 

“grandparents,” J. Schmidhuber (https://www.reddit.

com/r/MachineLearning/comments/2xcyrl/i_

am_j%C3%BCrgen_schmidhuber_ama/) and 

Geoffrey Hinton (https://www.reddit.com/r/

MachineLearning/comments/2lmo0l/ama_geoffrey_

hinton/).

 2.3.7 Some Nice Places to Start Playing
Try these for hands-on experience:

• Great tutorials on Tensorflow using Google collaborative 

Jupyter notebooks (no code installation necessary) 

https://www.tensorflow.org/get_started/eager.
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• Awesome TensorFlow has many examples to start 

playing with TensorFlow.

• http://keras.github.com is a Keras repository and 

has several examples to start working with DNNs.

• http://research.baidu.com/warp-ctc/ open sources 

their code, Deep Speech 2, for end-to-end voice 

recognition and translation.

• http://playground.tensorflow.org/ is a TensorFlow 

playground.

• H20.ai is a good API for R users, although the models 

available are quite limited.

• https://aiexperiments.withgoogle.com has 

experiments including playing pictionary against 

Google.

• https://artsexperiments.withgoogle.com has 

several very interesting experiments on art.

• www.creativeai.net is a space to share CreativeAI 

Projects from machine learning, music, writing, art, fashion 

to industrial design and architecture, among others.

 2.3.8 Conferences
The following five conferences are considered to be the most relevant in 

Deep Learning:

• NIPS - considered the most important conference on DL 

with a focus on both theoretical and practical applications.

• ICML - International Conference on Machine Learning, 

one of the most prestigious conference on Machine 

Learning.
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• ICLR - International Conference on Learning 

Representation, a more recent conference focused on 

deep learning.

• KDD - a widely recognised conference on machine 

learning and knowledge discovery.

• IJCNN an IEEE conference that covers a broad range of 

neural network concepts and applications.

 2.3.9 Other Resources
The Deep RL Bootcamp cohosted by OpenAI and UC Berkeley features 

lectures about reinforcement learning basics as well as state-of-the-art 

research.

The Stanford course called Convolutional Neural Networks for Visual 

Recognition is a must, as is the Natural Language Processing with Deep 

Learning course.

Coursera has a deep learning specialization, and the University of 

Montreal offers the Deep Learning and Reinforcement Summer School. 

Also, check out UC Berkeley’s Deep Reinforcement Learning from the 

fall of 2017 and the TensorFlow Dev Summit with presentations on DL 

fundamentals and TensorFlow APIs.

 2.3.10 DL Frameworks
DL can be straightforward and fun, and you can start with the many 

tutorials available online. You can train a model with a few dozen lines 

of code. However, it is rarely the case that a real problem fits exactly into 

a category of the available academic benchmarks. In fact, training DL 

models can be hard and frustrating—depending on the problem you 

want to solve, the preprocessing required, the data available, and your 

willingness to understand the intricacies behind the learning algorithms. 
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It definitely requires a lot of Bayesian statistics, graphical models, 

nonparametric estimation, statistical inference (either deterministic [such 

as variational estimation] or approximations [such as Markov chain Monte 

Carlo]). You don’t need to know them all, but you will encounter these 

concepts in the journey of becoming a specialist.

One of the remarkable things about DL research is that most of the 

work (papers, data, and even code) are open source, either from academia 

or from companies, so anyone can play and learn with it.

Many open source libraries and frameworks are available to work with 

DL. The most common are Caffe, TensorFlow, Keras, Theano, or Torch.  

A brief description follows:

• TensorFlow is a recent project open sourced by Google 

that is becoming popular because of its support for 

several types of architectures, including convolutional 

neural networks, stacked auto-encoders, deep 

belief networks, and recurrent neural networks. In 

TensorFlow, a network is specified as a symbolic graph 

of vector operations, such as matrix add/multiply or 

convolution, and each layer is a composition of those 

operations. TensorFlow uses a high-level scripting 

language that is useful for the fast deployment of 

models. The interface is accessible through Python 

or C++, and it has a useful browser interface for 

debugging, called TensorBoard.

• Keras.io is a great framework that can run on top of 

either Theano or TensorFlow; it’s simple and intuitive 

to use.
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• Torch provides a high-level scripting interface 

(much like Matlab), with excellent performance for 

convolutional neural networks and recurrent neural 

networks. It gives less flexibility if the user wants 

to navigate at a more granular level. Torch runs on 

Lua, which allows for fast executions compared 

with other implementations. The recent Pytorch is a 

Python package that provides high-level features for 

Tensor computation (like Numpy) with strong GPU 

acceleration and deep neural networks built on a tape- 

based autograd system.

• MxNet, from Microsoft, was recently adopted by 

Amazon as its deep learning platform. It was recently 

included as one of the backends in Keras.

• Gluon is an open source deep learning interface 

recently released from Amazon and Microsoft. Gluon 

is a high-level framework for designing and defining 

machine learning models. According to Amazon, 

“Developers who are new to machine learning will 

find this interface more familiar to traditional code, 

since machine learning models can be defined and 

manipulated just like any other data structure.” 

Gluon will initially be available within Apache MXNet 

(Amazon) and soon in CNTK (Microsoft).

• Caffe was one of the first deep learning toolkits, mainly 

used for convolutional neural networks. However, it 

doesn’t support recurrent networks and NLP models. 

Its interface is also not user friendly.
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• Theano is one of the most versatile and powerful 

toolkits for implementing deep learning models and 

is being used in recent research such as attentive 

mechanism and bidirectional recurrent networks. 

Theano uses symbolic graphs and has implementations 

for most state-of-the-art networks, sometimes 

presented as a high-level framework, such as Keras.

io. It has good performance and supports single and 

multiple GPUs. The flip side is that it has a steep 

learning curve and is somewhat hard to debug.

 2.3.11 DL As a Service
All big players (Amazon, IBM, Google, Facebook, Twitter, Baidu, Yahoo, 

and Microsoft) are creating their own DL platforms and open sourcing 

(some of) their core algorithms. We are entering in the age of AI-as-a- 

service. Table 2-1 summarizes the principal services offered by these 

companies.

Table 2-1. Main Machine Learning Platforms

Company Cloud-Based ML Platform DL Technology (Open Source)

amazon amazon Machine Learning DSStne

Baidu Deep Speech 2 paddle

Facebook torchnet, pytorch Fasttext

google neXt Cloud tensorFlow

iBM watson iBM System

Microsoft azur CntK

twitter Cortex
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Figure 2-4 compares the different DL platforms.
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Figure 2-4. Comparison of different Deep Learning frameworks 
(source: www.kdnuggets.com/2017/03/getting-started-deep-
learning.html)

Deep learning is moving to open source and to the cloud. Google, 

Facebook, IBM, Amazon, and Microsoft are trying to establish ecosystems 

around AI services provided in the cloud. Deep learning is a transversal 

technology that will be applied to every industry, so the competition 

is strong, and all players are trying to win through cloud services and 

integrated platforms. Forrester Research recently estimated $10.8 billion 

in cloud revenues for Amazon in 2016, $10.1 billion for Microsoft, and $3.9 

billion for Google.

Probably the scarcest resource for these companies will be talent, which 

may justify a frenetic M&A activity with the “acquire” of deep learning 

startups. Furthermore, talented AI experts are mostly from academia, 

and they demand openness and engagement in active open source 

communities. That’s why acceptance of any platform by the Apache Institute 

is a major source of credibility. That helps explain why Apple is lagging with 

respect to other big players, and its closed culture does not help.
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Hardware is also key. Most DL algorithms demand huge 

computational power, local or on the cloud. Specifically, they require 

graphical processing units (GPUs) as in gaming consoles and field 

programmable gate arrays (FPGAs), which are chips that can be 

configured for special-purpose operations. Most of the statistical inference 

performed by DL involves intractable problems (for instance, evaluating 

complex integrals) that are possible only through approximations that 

are computational expensive. DL may soon become more a hardware 

problem than an algorithm problem. NVIDIA and Intel are launching new 

processors specific to cope with deep learning computational demands.

OpenAI, founded by Elon Musk as a nonprofit organization, is adding 

a new angle to the DL community. Motivated by the fears that society may 

be threatened by AI, OpenAI set up a long-term plan to make AI safe and is 

pushing the technology to be as open source and transparent as possible. 

It is interesting how fast OpenAI is growing its talented team, which may be 

a sign of how real (and serious) the problem is.

Google announced a new open source system in June 2017 to speed 

the process for creating and training machine learning models with 

TensorFlow. The library Tensor2Tensor (T2T) enables the creation of deep 

learning models. T2T can be used to build models for processes such as 

text translation or parsing, as well as image captioning, and allows you 

to speed up the creation and testing of models, thus lowering the barrier 

of entry for users looking to experiment with DL. It utilizes a standard 

interface including data sets, models, optimizers, and different sets of 

hyperparameters, so users can swap versions of these components and test 

them on the fly.

The market for machine learning platforms, according to Forrester, will 

grow at a rate of 15 percent annually through 2021. Figure 2-5 compares 

the major platforms available.
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 2.4 Recent Developments
Here are some recent developments in the field.

 2.4.1 2016
The year of 2016 recorded a tremendous number of breakthroughs in 

DL, either in research, applications, projects, or funding and platforms. 

According to Yann LeCunn, generative adversarial networks are probably 

the most important idea in machine learning in the last decade. Although 
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API connectors enable users to build
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Users can build their own algorithms in any
language through REST API connectors.
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Figure 2-5. Comparison of different DL platforms (source: http://
searchbusinessanalytics.techtarget.com/feature/Machine- 
learning- platforms-comparison-Amazon-Azure-Google-IBM)
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introduced in 2014 by Ian Goodfellow, only recently GANs have started to 

show their potential. Improved techniques for helping training and better 

architecture designs (deep convolutional GANs), introduced recently, 

have fixed some of the previous limitations and opened the doors to new 

applications. GANs work by having a discriminative network (D) playing 

with a generative network (G) that tries to trick the D network with faked 

representations of data. As the game evolves, the G network learns how 

to build examples that are close to the real ones. The nice part is that you 

don’t need to have an explicit loss function to minimize.

 2.4.2 2017
The year of 2017 was characterized by several breakthroughs in deep 

learning. One of the hottest areas was reinforcement learning applied to 

games and robotics. AlphaGo was probably the most notorious case of 

reinforcement learning because it was able to beat the world’s best Go 

player.

AlphaGo Zero took the algorithm a step further by learning to play 

Go without human training data; see the reference paper at https://

arxiv.org/abs/1705.08439. It was so good that it beat the first version 

of AlphaGo. A generalization of this algorithm, called AlphaZero, was 

proposed by Deepmind and was able to master chess and shogi.

Libratus, a system developed by researchers from CMU, managed to 

beat the top poker players in a 20-day, heads-up, no-limit Texas hold ’em 

tournament. Research in reinforcement learning has now shifted to harder 

multiplayer games. DeepMind is working on Starcraft 2 and releasing a 

research environment, and an OpenAI demonstrated initial success in 1v1 

game matches under standard tournament rules with Dota 2 bot. The bot 

learned the game from scratch in complex and messy goals. The idea is to 

compete in a near future with the full 5v5 game.
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Google’s Tacotron 2 text-to-speech system produced good audio 

samples from text, based on WaveNet, an autoregressive model that 

is also deployed in the Google Assistant and has seen massive speed 

improvements in the past year. WaveNet had previously been applied 

to machine translation, resulting in faster training times in recurrent 

architectures.

The effort to use less expensive recurrent architectures is a trend in 

machine translation. In Attention Is All You Need, researchers get rid 

of recurrence and convolutions and use a more sophisticated attention 

mechanism to achieve state-of-the-art results at a fraction of the training 

costs.

Another area of active research is drug discovery. The potential of deep 

learning to effectively search for new molecules in the huge search spaces 

of all possible chemical arrangements is being proved quite successful. 

See, for example, the recent work using generative recurrent networks for 

De Novo Drug Design or the review of applications of deep learning on 

biomedical data [MVPZ16].

Waymo’s self-driving cars had their first real riders in April 2017 and 

later completely took out the human operators. Lyft announced that it is 

building its own autonomous driving hardware and software, and a pilot 

project in Boston is now underway. There are a few novelties from Tesla 

Autopilot, while Apple confirmed that is working on software for  

self- driving cars.

 2.4.3 Evolution Algorithms
In 2017 Evolution Strategies (ES) became a popular alternative to train 

ANNs. The exploration of the search space does not rely on gradients 

and can be effective for reinforcement learning. The advantage is that 

Evolution Strategies (ES) do not need differentiable loss function. In 

addition, evolutionary algorithms can scale linearly to thousands of 

machines for fast parallel training and do not require expensive GPUs.
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Researchers from OpenAI demonstrated that ES can achieve 

performance comparable to standard reinforcement learning algorithms 

such as deep Q-learning. A team from Uber released a blog post that 

makes the case for the potential of genetic algorithms to optimize neural 

networks. With a simple genetic algorithm, Uber was able to teach a 

machine to play complex Atari Games.

 2.4.4 Creativity
Generative models were pervasive in creating, modeling, and improving 

images, music, sketches, and even videos. The NIPS 2017 conference 

inclusively organized a Machine Learning for Creativity and Design 

workshop.

GANs made significant progress in 2017. New models such as 

CycleGAN, DiscoGAN, and StarGAN achieved astonishing results in 

generating images, particularly faces. See, for example, pix2pixHD.

A recent project for Manga colorization claims to be the best available 

automatic colorization tool for Manga.

A generative model to create female Manga characters from noise 

using a GAN is also available. If you want to play with improving image 

quality using GANs, try Letsenhance.io.

The year 2017 was also remarkable for applications of DL in biology. 

For example, there was work on generating and designing DNA with deep 

generative models, which opens the door to create synthetic DNA from 

scratch. Another example is work from Google Research Deep Variant 

where the team showed a great boost in identifying DNA variants in 

genome sequencing.
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CHAPTER 3

Deep Neural Network 
Models
The concept of deep learning originated from artificial neural networks 

research, in which feed-forward neural networks or multilayer perceptrons 

(MLPs) with many hidden layers are often referred as deep neural networks 

(DNNs).

The MLP networks are generally trained by a gradient descent 

algorithm, designated by backpropagation (BP). The idea of BP is simple: 

for each set of input/output, you compare the signal from the last layer 

of the neural network (output layer) with the real output in the data; the 

difference is the error. Since you can compute the signal in the network 

from input to output, you can correct the weights connecting neurons in 

the layers so that the error is reduced in the next iteration. To do so, you 

update the weights by a measure proportional to the error.

For training deep networks, BP alone has several problems, including 

local optima traps in the nonconvex objective function and vanish gradients 

(the output signal decreases exponentially as information is backpropagated 

through layers). To understand how this problem was solved, first you will 

explore some history of artificial neuron networks (ANNs).
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 3.1 A Brief History of Neural Networks
ANNs started with a work by McCullogh and Pitts who showed that sets of 

simple units (artificial neurons) could perform all possible logic operations 

and thus be capable of universal computation. This work was concomitant 

to Von Neumann and Turing who first dealt with statistical aspects of the 

information processing of the brain and how to build a machine capable of 

reproducing them. Frank Rosembalt invented the perceptron machine to 

perform simple pattern classification. However, this new learning machine 

was incapable of solving simple problems, like the logic XOR. In 1969 

Minsky and Papert showed that perceptrons had intrinsic limitations that 

could not be transcended, thus leading to a fading enthusiasm for ANNs.

In 1983 John Hopfield proposed a special type of ANNs (the Hopfield 

networks) and proved that they had powerful pattern completion and 

memory properties.

The backpropagation algorithm was first described by Linnainmaa, S.  

(1970) as the representation of the cumulative rounding error of an 

algorithm (as a Taylor expansion of the local rounding errors), without 

reference to neural networks. In 1985, Rumelhart, McClelland, and Hinton 

rediscovered this powerful learning rule that allowed them to train ANNs 

with several hidden units, thus surpassing the Minsk criticism.

Table 3-1 presents an overview of the evolution of neural networks.

Chapter 3  Deep Neural Network MoDels



39

Table 3-1. Some Milestones in Neural Networks

Year Contributor Contribution

1949 Donald hebb hebbian learning rule

1958 Frank rosenblatt Introduced the first perceptron

1965 Ivakhnenko and lapa Introduces the predecessor of Mlp, the 

group method data handling (GMDh)

1970 seppo linnainmaa proposed the backpropagation algorithm

1980 teuvo kohonen self-organizing map

kunihiko Fukushima published the neocognitron, the 

precessor of CNNs

1982 John hopfield hopfield recurrent networks

1985 hinton and sejnowski Boltzmann machine

1986 rulmelhart and hinton popularized the backpropagation to  

train Mlp

1990 Yann leCun Introduced leNet, demonstrating the 

possibility of deep neural networks in 

practice

1991 sepp hochreiter explored the problems of vanishing and 

exploding gradients in the Bp algorithm

1997 schuster and paliwal Bidirectional recurrent neural network

hochreiter and schmidhuber lstM; solved the problem of vanishing 

gradient in recurrent neural networks

2006 Geoffrey hinton Deep belief networks; introduced layer-

wise pretraining and opened current 

deep learning era

2009 salakhutdinov and hinton Deep Boltzmann machines

(continued)
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Year Contributor Contribution

2012 Geoffrey hinton Dropout, an efficient way of training 

neural networks

2013 kingma and welling Introduced variational auto-encoder 

(Vae), which may bridge the fields of 

deep learning and Bayesian probabilistic 

graphic models

2014 Bahdanau et al. Introduced attention models

Ian J. Goodfellow Introduced generative adversarial 

network

2015 srivastava and schmidhuber Introduced the highway networks

he et al. Introduced residual block and residual 

network, which are currently the state of 

the art for vision problems

2016 wang et al. Introduced select-additive network, 

which may bridge the field of deep 

learning and the field of causal inference

2017 Mnih et al. Introduced rl DNN, Q-learning, and a3C

Table 3-1. (continued)

 3.1.1 The Multilayer Perceptron
The multilayer perceptron was proposed to solve problems that were 

not linearly separable. In other words, you cannot separate categories 

with a set of straight lines. Figure 3-1 shows an example of a multilayered 

perceptron.
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An ANN consists of a set of inputs, connected to a set of hidden unities 

through weights, w. The hidden unities are connected to the output 

through weights, v. Initially, all the weights and the bias term are set to 

random numbers. The activity in the network is propagated forward via 

weights from the input layer to the hidden layer where some function 

of the net activation is calculated. Normally the transfer functions are 

sigmoid, tanh, or, more recently, rectified linear unities (ReLU). Then the 

activity is propagated via more weights to the output neurons.

Two sets of weights must be updated, namely, those between the 

hidden and output layers and those between the input and hidden layers. 

The error because of the first set of weights is calculable by the least mean 

square rule. To propagate backward that part of the error because of the 

errors in the second set of weights (W), the backpropagation algorithm 

is often used. This simply states the errors should be proportional to the 

weight contribution. The algorithm has two main parameters: learning 

rate and momentum (to avoid traps in local minima). Also, the number 

of unities in the hidden layer is an important input (more hidden unities 

will increase the computational power, but it could also compromise the 

generalization capabilities).

Figure 3-1. The MLP, with inputs, a hidden layer, and outputs. 
Training consists of finding the best weights, W and v, and bias.
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The choice of the network parameters is normally performed by k-fold 

cross validation, fixing k–1 parts of the training data for training and the 

remaining for testing and then swapping these segments.

The stochastic gradient descent (SGD) algorithm is a technique used to 

accelerate the training of a neural network. Contrary to gradient descent, 

where the optimization is performed through all training samples, in SGD 

only a subset of the training sample is used. SGD is faster in convergence 

since it uses only a fraction of the training samples at each epoch.

 3.2 What Are Deep Neural Networks?
It has long been known that ANNs with more hidden layers (deeper) 

could have a higher computational power and be better suited to solve 

classification or regression problems [AV03, YAP13, BLPL06]. The 

challenge was how to train them, in other words, learn the weights or 

connections that link a layer of neurons to the others. The backpropagation 

algorithm worked fine for ANNs with a single hidden layer, but it strives 

to generalize for deeper architectures because of the so-called vanish 

gradient problem. In other words, the correction signal from the output 

dissipates as it travels to lower layers.

In 2006, Hinton et al. [GR06] proposed an unsupervised learning 

algorithm using a method called contrastive divergence (CD), which 

was successful in training deep generative models known as deep belief 

networks (DBNs) [HOT06]. A CD is a layer-by-layer learning algorithm as 

illustrated in Figure 3-2. It is normally used for unsupervised tasks but can 

be fine-tuned to perform supervised learning by attaching a softmax layer 

to the top layer.
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There are many DL approaches and architectures, but most of the 

DNNs can be classified into five major categories.

• Networks for unsupervised learning, designed to 

capture high-order correlation of data by capturing 

jointly statistical distributions with the associated 

classes when available. The Bayes rule can later be used 

to create a discriminative learning machine.

• Networks for supervised learning, designed to provide 

maximal discriminative power in classification 

problems and trained only with labeled data. All the 

outputs should be tagged.

• Hybrid or semisupervised networks, where the 

objective is to classify data using the outputs of a 

generative (unsupervised) model. Normally, data 

is used to pretrain the network weights to speed up 

the learning process prior to the supervision stage. 

Figure 3-2 shows that knowing the structure of the 

unlabeled data x, or in statistical terms the distribution 

P(x), can be more efficient than a pure supervised 

learning in labeled data.

Figure 3-2. Contrastive divergence (CD) simulated as an MCMC 
process with k steps. CD–1 stops in stage 1 and ignores further 
iterations, as the input x is nicely reconstructed as x1.

Chapter 3  Deep Neural Network MoDels



44

• Reinforcement learning, where the agent interacts and 

changes the environment and receives feedback only 

after a set of actions is completed. This type of learning 

is normally used in the field of robotics and games.

• Generative neural networks, where deep generative 

models are a powerful approach to unsupervised and 

semisupervised learning and the goal is to discover the 

hidden structure within data without relying on labels. 

Since they are generative, such models can form a 

rich imagery of the world in which they are used. This 

imagination can be harnessed to explore variations 

in data, to reason about the structure and behavior of 

the world, and, ultimately, to make decisions. A great 

advantage of these models is that there is no need to 

supplement an external loss function because they 

learn the structure of the data autonomously.

Despite all the hype around deep learning, traditional models still 

play an important role in solving machine learning problems, especially 

when the amount of data is not very large and the input features are 

relatively “clean.” Also, if the number of variables is large compared with 

the number of training examples, support vector machines (SVMs) or 

ensemble methods such as random forest or extreme gradient boosting 

trees (XGBoost) may be simpler, faster, and better options.

The most popular types of DNN architectures are stacked denoising 

auto-encoders (SdAEs), deep belief networks, convolutional neural 

networks (CNNs), and recurrent neural networks (RNNs). Many advances 

in machine vision were achieved using CNNs, making this DNN type the 

standard for image processing. However, there are many flavors of DNNs 

that are applicable to the various business applications, depending on 

the architecture, connectivity, initialization, training method, and loss 

functions being used.
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Figure 3-3 summarizes these popular DNN architectures. The 

following sections offer some guideline for the terminology used and the 

most popular types of deep neural networks.

 3.3 Boltzmann Machines
The Boltzmann machine [AHS85] is a stochastic version of the Hopfield 

network [Mac03, SA08] with hidden unities; it received its name from the 

Boltzmann distribution.

Figure 3-3. Four of the most popular classes of deep learning 
architectures in data analysis. A. A CNN has several levels of 
convolutional and subsampling layers optionally followed by fully 
connected layers with deep architecture. B. The stacked auto-encoder 
consisting of multiple sparse auto-encoders. C. A DBN is trained layer- 
wise by freezing previous layer weights and feeding the output to the 
next layer. D. The RBM architecture includes one visible layer and one 
layer of hidden units.
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The energy function of the Boltzmann machine is defined in a similar 

way to the Hopfield network, except that visible units, v, and hidden units, 

h, have distinct labels.
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Here, v refers to visible units, h refers to hidden units, b is the bias, and 

wij are the weights between units i and j.

Given this energy function, the probability of a joint configuration over 

both the visible unit and the hidden unit is as follows:
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The probability of visible/hidden units is determined by 

marginalization of this joint probability. For example, by marginalizing out 

hidden units, you can get the probability distribution of visible units.
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This can now be utilized to sample visible units.

When a Boltzmann machine is fully trained and has reached the so-

called thermal equilibrium, the probabilities distribution, p(v, h), remains 

constant since the distribution of energy itself a constant. However, the 

probability for each visible, or hidden, unit may vary, and its energy may 

not be at its minimum.

A Boltzmann machine is trained by obtaining the parameters that 

maximize the likelihood of the observed data. Gradient descent on the 

logarithm of the likelihood function is the usual objective function.
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The algorithm runs as described. First, you calculate the log likelihood 

function of visible units.
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Now you take the derivative of log likelihood function as a function of 

w and simplify it.
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Here,   denotes expectation. The gradient is composed of two parts. 

The first part is the expected gradient of the energy function with respect to 

the conditional distribution p h v|( ) . The second is the expected gradient 

of the energy function with respect to the joint distribution over all states.

Computing these expectations is in general an intractable problem as 

it involves summing over a huge number of possible states/configurations. 

The general approach for solving this problem is to use Markov chain 

Monte Carlo (MCMC) to approximate these quantities.
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Here, < × > denotes expectation.

Equation 3.7 is the difference between the expectation value of the 

product of states while the data is fed into visible states and the expectation 

of the product of states while no data is fed. The first term is calculated by 

taking the average value of the energy function gradient when the visible 

and hidden units are being driven by observed data samples.
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The first term is easy to calculate, but the second one is harder as it 

involves running a set of Markov chains over all possible states until they 

reach the current model’s equilibrium distribution, finally taking the 

average energy function gradient. This complexity led to the invention of 

the restricted Boltzmann machine.

 3.3.1 Restricted Boltzmann Machines
The restricted Boltzmann machine (RBM) was invented by Smolensky 

[Smo86]. It is a Boltzmann machine with no connections either between 

visible units or between hidden units.

Figure 3-4 shows how the restricted Boltzmann machine is achieved 

based on the Boltzmann machine. The connections between hidden units, 

as well as the connections between visible units, are removed, and the 

model becomes a bipartite graph. With this restriction introduced, the 

energy function of the RBM is much simpler.
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 Contrastive Divergence

The RBM can still be trained in the same way as a Boltzmann machine 

is trained. Since the energy function of the RBM is much simpler, the 

sampling method used to infer the second term in Equation 3.7 becomes 

easier. Despite this relative simplicity, this learning procedure still requires 

a large amount of sampling steps to approximate the model distribution.

To emphasize the difficulties of such a sampling mechanism, as well as 

to simplify the follow-up introduction, you can rewrite Equation 3.7 with a 

different set of notations, as follows:
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Here you use p0 to denote data distribution and p¥  to denote model 

distribution. The other notations remain unchanged. Therefore, the 

difficulty of the mentioned methods to learn the parameters is that they 

Figure 3-4. Illustration of restricted Boltzmann machine. With 
the restriction that there are no connections between hidden units 
(h Jj =1�  nodes) and no connections between visible units (v Ii =1�  
nodes), the Boltzmann machine turns into a restricted Boltzmann 
machine. The model now is a bipartite graph.
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require potentially “infinitely” many sampling steps to approximate the 

model distribution.

Hinton was able to [Hin02] overcome this issue with the introduction 

of a method named contrastive divergence. Empirically, he found that 

one does not have to perform “infinite” sampling steps to converge to 

the model distribution; a finite k number of steps of sampling is enough. 

Therefore, Equation 3.9 is effectively rewritten like this:

¶ ( )
¶

= - < > + < >
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s s s si j p i j pk
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Hinton et al. [Hin02] proved that using k =1  is sufficient for the 

learning algorithm to converge. This is the so-called CD1 algorithm.

 3.3.2 Deep Belief Nets
Deep belief networks were introduced by [GR06], which showed that RBMs 

can be stacked layer-wise and trained in a greedy manner.

Figure 3-5 shows the structure of a three-layer deep belief network. 

Contrary to the stacking RBM, a DBN only allows bidirectional 

connections (top-down and bottom-up) at the top layer. All the remaining 

lower layers have only unidirectional connections. You can consider 

a DBN to be a multistage generative model where each neuron is a 

stochastic cell.
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Therefore, the model only needs to sample for the thermal equilibrium 

at the upper layer and then retrospectively pass the information to the 

visible states.

DBNs are trained using a two-step process: a layer-wise pretraining 

and a parameter fine-tuning.

Layer-wised pretraining consists of training one layer at a time. After 

the first layer is trained, you freeze the connections and add a new layer 

on top of the first one. The second layer is trained in the same way as the 

initial one, and the process continues with as many layers as needed. This 

pretraining can be seen as an effective weights initialization [BLPL06, 

EBC+10, RG09].

Fine-tuning is performed to further optimize the network using one of 

two different fine-tuning strategies.

Figure 3-5. Illustration of deep belief networks. The bottom 
layers (all layers except the top one) do not have the bidirectional 
connections, but only connections from the top down.
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• Fine-tuning for a generative model: Fine-tuning for a 

generative model is achieved with a contrastive version 

of wake-sleep algorithm [HDFN95], a process inspired 

by neuroscience. In the wake phase, the information 

flows from the bottom to upper layer to adjust down- 

up weights in order to create a representation in the 

upper layer. In the sleep phase, the inverse occurs; the 

information is propagated downward to adjust the top- 

bottom connections.

• Fine-tuning for a discriminative model: For this case, 

fine-tuning a DBN is simply done by applying standard 

backpropagation to a pretrained network using the 

labels of the data on the higher layer.

 Apart from providing good initialization of the network, 

the DBN also has other important properties. First, all 

data can be used, even unlabeled data sets. Second, it 

can be seen as a probabilistic generative model, which 

is useful within the Bayesian framework. Third, the 

over-fitting problem can be effectively alleviated by 

the pretraining step and other strong regularizers, like 

dropout.

 A DBN, however, suffers from the following problems:

• Inference in DBNs is a problem because of the 

“explaining away” effect.

• A DBN can only use greedy retraining and no joint 

optimization over all layers.

• Approximate inference is feed-forward; there is no 

bottom-up and top-down information flow.
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 3.3.3 Deep Boltzmann Machines
The deep Boltzmann machine was introduced by [RG09]. Figure 3-6 shows 

a three-layer deep Boltzmann machine. The distinction between DBM 

and DBN from the previous section is that DBM information flows on 

bidirectional connections in the bottom layers.

The energy function is defined as an extension of the energy function 

of an RBM (Equation 3.8), as shown in the following for a DBM with N 

hidden layers:
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Because of the similarity of energy functions, you can also train a DBM 

using contrastive divergence (CD1).

Figure 3-6. Illustration of deep Boltzmann machine (DBM). The 
deep Boltzmann machine is more like stacking RBMs together. 
Connections between every two layers are bidirectional (source: www.
cs.toronto.edu/~rsalakhu/DBM.jpg).
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DBN and DBM do have some similarities because both of them are 

deep neural networks inspired by the restricted Boltzmann machine. But 

the bidirectional structure of the DBM provides the ability to learn more 

complex patterns in data.

 3.4 Convolutional Neural Networks
A CNN is composed of several blocks with different types of stacked layers. 

Each block consists of a convolutional layer and a pooling layer, normally 

the max pooling [SMB10]. These modules are often stacked up with one 

on top of another, or with a softmax logistic layer on top of it, to form a 

deep model. CNNs use several tricks that make them well suited for image 

processing, such as weight sharing, adaptive filters, and pooling. Pooling 

takes subsamples of the convolutional layer to feed the next layer, acting as 

a powerful regularizer. Weight sharing and pooling schemes (most usually 

a max pooling) allow the CNN to generate conservation properties like 

translation invariance. CNNs are highly effective and have been commonly 

used in computer vision and image recognition [AIG12].

CNNs operate on what should be considered a signal stream rather than 

a feature vector. That is, fully connected neural nets consist of activation 

units bound to all inputs of the feature vector. Every unit has a weight 

specific to each feature in the input. Convolutional layers, on the other 

hand, utilize weight sharing by sliding a small (trainable) filter of weights 

across the input vector (or the 2D input map, as CNNs are often used on 

images) and convolving each overlaid region of input with the filter.

CNNs with max pooling are powerful enough to mimic low-level 

stages of a primate’s visual cortex and have biologically plausible feature 

detectors, such as Gabor filters [CHY+14]. However, once trained, the 

CNN acts as a simple feed-forward machine with frozen weights. Recently 

Stollenga et al. proposed an iterative version of CNNs with post-processing 

behavior, called deep attention selective networks (dasNet) [SMGS15]. 
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This architecture is capable of modeling selective attention in CNNs by 

allowing each layer to influence all other layers on successive passes 

over an image through special connections (both bottom-up and top-

down) that modulate the activity of the convolutional filters. The weights 

of these special connections implement a control policy that is learned 

through reinforcement learning after the CNN has been trained in the 

usual way via supervised learning. Given an input image, the attentional 

policy can enhance or suppress features over multiple passes to improve 

the classification of difficult cases not captured by the initially supervised 

training. The dasNet architecture allows to inspect automatically the 

internal CNN filters preventing manual checking.

 3.5 Deep Auto-encoders
An auto-encoder is a DNN having as output the input data itself. If they are 

trained with some added noise, these architectures can act as generative 

models and are called denoising auto-encoders. An auto-encoder can be 

trained with a greedy layer-wise mode, much like the DBNs, to form a deep 

model [VLBM08].

Auto-encoders can be stacked to form a deep network by forwarding 

the outputs of the auto-encoder in the layer below as input to the layer 

above. The unsupervised pretraining is done one layer at a time, and each 

layer is trained to minimize errors in reconstructing of its input. After 

being pretrained, the network can be fine-tuned by adding a softmax 

layer and applying supervised backpropagation, as if they were multilayer 

perceptrons.

A stacked denoising auto-encoder (SdAE) is a stochastic version of AE 

obtained by adding noise to the input in order to prevent learning of the 

identity map. They you try to encode the input while undoing the effect of 

a corruption capturing the statistical dependencies in the inputs.
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 3.6 Recurrent Neural Networks
Traditional ML methods, like support vector machines, logistic regression, 

and feed-forward networks, have proved useful without explicitly 

modeling time in the temporal process by projecting time as space. This 

assumption, however, is incapable of modeling long-range dependencies 

and has limited usability in complex temporal patterns. Recurrent neutral 

networks are a rich family of models differentiable from end to end, 

thus amenable to gradient-based training, later regularized via standard 

techniques, such as dropout or noise injection. Recurrence is key to 

solving hard problems, like language, as it seems to be present in most 

brain mechanisms. Figure 3-7 gives a chart illustration of several types of 

neural networks including the recurrent networks.
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Figure 3-7. Different types of networks architectures (source:  
http://www.asimovinstitute.org/neural-network-zoo/)
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The first structures of RNNs were introduced by Jordan [Jor90] as feed- 

forward networks with a single hidden layer extended with special units. 

Output node values are fed to the special units, which then feed these 

values to the hidden nodes at the following time step. If the output values 

are actions, the special units allow the network to remember actions taken 

at previous time steps. Additionally, the special units in a Jordan network 

are self-connected.

The architecture introduced by Elman [Elm90] is simpler. Associated with 

each unit in the hidden layer is a context unit. Each such unit takes as input 

the state of the corresponding hidden node at the previous time step, along 

an edge of fixed weight. This value then feeds back into the same hidden node 

j along a standard edge. This architecture is equivalent to a simple RNN in 

which each hidden node has a single self-connected recurrent edge. The idea 

of fixed-weight recurrent edges that make hidden nodes self-connected is 

fundamental in the subsequent work on LSTM networks [HS97].

RNNs are a class of unsupervised or supervised architectures to learn 

temporal, or sequential, patterns. An RNN can be used to predict the next 

data point in a sequence using the previous data samples. For instance, 

in text, a sliding window over previous words is used to predict the next 

word or set of words in the sentence. RNNs are generally trained with the 

long short-term memory (LSTM) algorithm proposed by Schmidhuber 

et al. [HS97] or gated recurrent units (GRUs). The flip side is that they are 

difficult to train in capturing long-term dependencies because of the well- 

known gradient vanishing or gradient explosion problems and because of 

the great care required in optimizing hyperparameters.

RNN have become recently very popular, especially with the 

introduction of several tricks, such as bidirectional learning (forward and 

backward sequence prediction) and attentive mechanisms that allow the use 

of dynamic size sliding windows, especially useful to build language models. 
Figure 3-8 depicts several RNNs operating over sequences of vectors in 

the input and output. Each rectangle is a vector; from bottom up, the input 
vectors are at bottom, output vectors are at top, and in-between rectangles 

hold the RNN’s state.
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Figure 3-8. Topologies of recurrent networks (source:  
http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

A nice tutorial can be accessed at http://blog.echen.me/2017/05/ 

30/exploring-lstms/?utm_content=buffer1bdf8 about visualizing 

LSTMs. Also, see the video tutorial by Andrej Karpathy on training RNNs 

at https://skillsmatter.com/skillscasts/6611-visualizing-and-

understanding-recurrent-networks.

 3.6.1 RNNs for Reinforcement Learning
Reinforcement learning (RL) works by using delayed reward signals to 

adjust the parameters of the learning machine. The hardest challenges for 

RL are tasks where the state of the environment is only partially observable 

and hidden states have to be considered—the so-called non-Markovian 

tasks or partially observable Markov decision processes. Many real-world 

tasks follow in this category, such as maze navigation tasks. Hidden states, 

however, make the problem more difficult because the agents not only 

learn the mapping from environmental states to actions but also need to 

determine, at each position, which environmental state they are in.

RNNs trained with LSTM are particularly adequate to handle these 

complex tasks, particularly when no a priori model of the environment 

is available. One could build a model online that learns to predict 

observations and rewards, thus learning to infer the environment or 
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decompose it into a set of Markovian subtasks, each of which can be 

solved by a reactive controller mapping observations to actions [WS98]. 

Another model-free approach is to attempt to resolve the hidden state by 

making the chosen action depend not only on the current observation 

but also on some representation of the history of observations and 

actions. The general idea is that the current observation together with this 

representation of the history may yield a Markovian state signal.

If there are long-term dependencies between events, all these methods 

may face difficulties for a maze navigation task where T-junctions look 

identical and the only way to distinguish them is considering previous 

sequence of events. For these cases, there is no straightforward way 

to decompose the task into Markovian subtasks, and the agent must 

remember the relevant information. LSTM units were proposed by 

Schmidhuber to help solve this problem by incorporating a memory state 

and a forgetting term that are learned from data [HS97]; see Figure 3-9.

Figure 3-9. An LSTM cell with forgetting memory gate (source: 
https://arxiv.org/pdf/1506.00019.pdf)
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Reinforcement learning, where an agent learns actions it should take in 

a given environment to maximize a cumulative reward, has seen progress 

by leveraging deep learning for feature representations.

In a recent work at https://arxiv.org/pdf/1604.06778.pdf [DCH+16], 

the authors present a new standardized and challenging test bed for 

evaluating algorithms in the continuous control domain, where data is 

high-dimensional and model-free methods are often used. The framework 

consists of 31 continuous control tasks, ranging from basic to locomotion to 

hierarchical, and will ideally help researchers understand the strengths and 

limitations of their algorithms.

The video presentation at https://www.youtube.com/

watch?v=evq4p1zhS7Q from Pieter Abbeel (from openAI) is a good 

overview of how DL has a new perspective to tackle the problem of 

reinforcement learning in robotics.

 3.6.2 LSTMs
One of the appeals of RNNs is its capability to connect previous 

information to solve the actual task, such as using previous words to 

predict the next word in a sentence.

LSTM networks are a special type of RNN, capable of learning 

long-term dependencies. They were introduced by Hochreiter and 

Schmidhuber in 1997 [HS97] and later refined and are nowadays 

widely popular in problems ranging from language translation to video 

processing.

LSTMs were designed to solve the long-term dependency and the 

vanish and gradient explosion problems. The repeating module in an 

LSTM contains four interacting layers: input, output, cell state, and forget 

gate. LSTM has the ability to remove or add information to the cell state, 

regulated by gates to control the information flow. Gates are composed 

out of a sigmoid or tanh neural neuron and a pointwise multiplication 

operation.
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Each memory cell of LSTM contains a node with a self-connected 

recurrent edge of fixed weight 1, ensuring that the gradient can pass across 

many time steps without vanishing or exploding.

Simple recurrent neural networks have long-term memory (the 

weight that changes slowly during training) and short-term memory as 

activations, which pass from each node to successive nodes. LSTM has an 

intermediate type of storage in the form of a memory cell. A memory cell is 

formed by several elements.

• Input node: This unit is a node that takes activation 

from the input layer at the current time step from 

the hidden layer at the previous time step (t–1). The 

summed weighted input is passed through a tanh 

activation function.

• Input gate: A gate is a sigmoidal unit that takes 

activation from the current data x(t) as well as from 

the hidden layer at the previous time step. However, its 

value is used to multiply (not add) the value of another 

node. If its value is zero, then flow from other nodes is 

disconnected.

• Internal state: This is a self-connected recurrent edge 

with a fixed unit weight. Because this edge spans 

adjacent time steps with constant weight, errors can 

flow across time steps without vanishing or exploding.

• Forget gates: These are critical for the network to 

discharge the contents of the internal state.

• Output gate: The value in the memory cell is the internal 

state multiplied by the value of the output gate. The 

internal state first is transferred through a tanh activation 

function, as this gives the output of each cell the same 

dynamic range as an ordinary tanh hidden unit.
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LSTM are well-suited to classification and prediction evolving time 

series and are in general superior to hidden Markov models and other 

sequence learning methods in numerous applications. However, they are 

computational expensive.

GRUs were introduced by Felix Gers, who originally called them forget 

gates. They combine the forget and input gates into a single “update 

gate.” It also merges the cell state and hidden state and makes some other 

changes. The resulting model is simpler than standard LSTM models and 

has been growing increasingly popular. Greff et al. (2015) did a comparison 

of popular variants, finding that they’re almost indistinguishable.

However, vanilla LSTM consistently outperforms GRUs on NLP and 

machine translation according to this report.

Most of the problems can be solved with stateless LSTM. In stateless 

mode, LSTM will not remember the content of previous batches. If stateful, 

the last state for each sample at index i in a batch will be used as the 

initial state for the sample of index i in the following batch. So, to learn the 

dependencies between sequences, you have to use a stateful LSTM, given 

as a Boolean flag in the LSTM Keras layer.

For a detailed explanation of how LSTM works, see the blog post at 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/, which 

has a step-by-step example using Keras.

As of August 2017, the top five companies (Apple, Google, Microsoft, 

Amazon, and Facebook) are massively adding LSTM into their products, 

for voice, image, or automatic translation.

• Facebook announced in August 2017 that it is using 

LSTM to do a whopping 4.5 billion translations each 

day, or more than 50,000 per second.

• LSTM is also used to improve Apple’s Siri and 

QuickType on nearly 1 billion iPhones.

• LSTM has learned to create answers of Amazon’s Alexa 

based on a generative sequence to sequence model.
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• LSTM-based systems also have learned to control 

robots, analyze images, summarize documents, 

recognize videos and handwriting, run chat bots and 

smart assistants, predict diseases and click rates and 

stock markets, and compose music.

• Baidu and other Asian companies are also massively 

using LSTM, which is now permeating the modern 

world. You are probably using LSTM all the time.  

But other deep learning methods are also heavily used. 

Here is the overview page with numerous references: 

http://people.idsia.ch/~juergen/impact-on-most-

valuable-companies.html.

 3.7 Generative Models
Richard Feynman once said, “What I cannot create, I do not understand.” 

Being able to generate data is far more powerful than simply classifying 

it. We probably underestimate how much implicit information our brains 

incorporate about the world. We know gravity always pushes us down, cars 

don’t fly, objects don’t dissolve into thin air, and so on. However, most of 

this knowledge is completely ignored in our daily lives, and if we want to 

express it as rules, we will struggle because the number of possibilities may 

explode. In addition, most of these rules have exceptions, and, even worse, 

some of these rules will probably contradict each other.

Generative models are one of the most promising approaches toward 

this goal. To train a generative model, you first collect a large amount 

of data in some domain (images, videos, sound) and train a model to 

generate similar data. The neural networks used are forced to discover the 

latent, compressed representation of the data in order to generate it.
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A generative model assumes that you have a set of latent (not 

observed) variables that explains the observed data X. A vector of latent 

variables z, which can be sampled according to some probability density 

function P(z). Then you assume you have a family of functions f (z; θ), 

where θ is a vector of parameters. You want to optimize θ such that f (z; θ) 

produces samples like X with high probability, for every X in the data set, 

when z is sampled from P(z). Formally, you maximize the probability of 

each X in the training set.

P X P X z P z dz( ) = ( ) ( )ò | ;q

Here, P X z| ;q( )  is the distribution of f (z; θ) leading to the so-called 

maximum likelihood.

There are several types of generative models. Deep convolutional 

generative adversarial networks (DCGANs) were invented by Radford et al. 

[RMC15]. In the work, the example takes as input 100 random numbers 

drawn from a uniform distribution (latent variables) and outputs an 

image (in this case, 64×64×3 images on the right, in green). As the code is 

changed incrementally, the generated images do too. This shows that the 

model has learned features to describe how the world looks, rather than 

just memorizing some examples.

You can find a good presentation on generative models from 

Shakir Mohamed from Deepmind at http://shakirm.com/slides/

DLSummerSchool_Aug2016_compress.pdf and also the blog post at 

https://blog.openai.com/generative-models/ from OpenAI.

 3.7.1 Variational Auto-encoders
A variational auto-encoder (VAE) is one of the simplest generative models. 

It is a more advanced version of an auto-encoder [Doe16], with added 

constraints on the encoded representations being learned. It learns a 

latent variable model on variables z for its input data and a function to 
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approximate sampling from latent variables, thus making it a tractable 

problem. Instead of letting the neural network learn an arbitrary function, 

it learns the parameters of a probability distribution modeling the data 

P(x). By sampling points from the latent distribution P(z), the VAE 

generates new input data samples that match the training data.

The parameters of the model are trained via two loss functions: a 

reconstruction loss forcing the decoded samples to match the initial 

inputs (just like a normal auto-encoders) and the KL divergence between 

the learned latent distribution and the prior distribution, acting as a 

regularization term, using the reparametrization trick. This latter term  

can be excluded, although it does help in learning well-formed latent 

spaces and reducing overfitting to the training data. See the tutorial at 

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/ 

and some examples of code applied to the MNIST data set at  

https://blog.keras.io/building-autoencoders-in-keras.html.

In VAEs, the choice of this output distribution is often Gaussian.

 
P X z N X f z I| ; | ,q q s( ) = ( ) *( ); 2

 (3.11)

To solve this equation, you have two problems that VAEs must deal 

with: how do you define what information latent variables represent, and 

how do you compute the intractable integral over z? VAE’s approach to 

the first problem is simply assuming that there is no explicit interpretation 

of the latent variables. The second problem (which arises because of the 

high dimensionality of latent space z) is solved in the VAE framework by 

optimizing, via stochastic gradient descent, an approximate distribution 

Q z X|( )  that predicts which values of z are likely to produce X. VAEs give 

an answer to both.

Unlike sparse auto-encoders, there are generally no tuning parameters, 

and unlike denoising auto-encoders, you can sample directly from P(X) 

(without performing Markov chain Monte Carlo [MCMC]). VAEs assume 
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that there is no simple interpretation of the dimensions of z and instead 

assert that samples of z can be drawn from a simple distribution; in other 

words,  0,I( ) , where I is the identity matrix.

The key idea behind the variational auto-encoder is to attempt to 

sample values of z that are likely to have produced X and compute P(X) just 

from them. Say that z is sampled from an arbitrary distribution with p.d.f. 

Q(z), which is not  0,I( ) . Let’s try to relate E P X zz Q~ |( )  and P(X).

One way to relate E P X zz Q~ |( )  and P(X) begins with the definition of 

Kullback-Leibler divergence (KL divergence or D) between P z X|( )  and Q(z).

  Q z P z X E Q z P z Xz Q( ) ( )éë ùû = ( ) - ( )éë ùû|| | log log |~  (3.12)

You can get both P(X) and P X z|( )  into this equation by applying the 

Bayes rule to P z X|( ) .

 

 Q z P z X E Q z P X z P z

P X

z Q( ) ( )éë ùû = ( ) - ( ) - ( )éë ùû
+ (

|| | log log | log

log

~

))  (3.13)

Here, log P(X) comes out of the expectation because it does not depend 

on z. Negating both sides, rearranging, and contracting part of Ez Q~  into a 

KL-divergence terms yields the following:

 
log || | log | ||~P X Q z P z X E P X z Q z P zz Q( ) - ( ) ( )éë ùû = ( )éë ùû - ( ) ( )éë ù  ûû  (3.14)

Note that X is fixed, and Q can be any distribution. Since you’re 

interested in inferring P(X), it makes sense to construct Q using X, which 

will be written as Q z X|( ) ) so that  Q z P z X( ) ( )éë ùû| |  will be small.

 

log | || | log |

| ||

~P X Q z X P z X E P X z

Q z X P z

z Q( ) - ( ) ( )éë ùû = ( )éë ùû
- ( ) (



 ))éë ùû
 (3.15)
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This equation serves as the basis of the variational auto-encoder. 

Starting with the left side, you are maximizing log P(X) while 

simultaneously minimizing  Q z X P z X| | |( ) ( )éë ùû . P z X|( )  is not 

something you can compute analytically; it describes the values of z that 

are likely to give rise to a sample like X under the model in Figure 3-10. 

However, the second term on the left is pulling Q z x|( )  to match P z X|( ) .  

Assuming you use an arbitrarily high-capacity model for Q z x|( ) , then 

Q z x|( )  will ideally actually match P z X|( ) , in which case this KL-

divergence term will be zero, and you will be directly optimizing log P(X). 

As an added bonus, you have made the intractable P z X|( )  tractable. You 

can just use Q z x|( )  to compute it.

Figure 3-10. Encoder and decoder in a variational auto encoder 
(source: Jaan AltoSaar blog)

Hence, as is standard in stochastic gradient descent, you take 

one sample of z and treat P X z|( )  for that z as an approximation of 

E P X zz Q~ log |( )éë ùû .

The full equation you want to optimize is as follows:

 
E P X Q z X P z X

E E P X z

X D

X D z Q

~

~ ~

log | || |

log |

( ) - ( ) ( )éë ùûéë ùû =

( )éë ùû -



 Q z X P z| ||( ) ( )éë ùûéë ùû
 (3.16)
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You can sample a single value of X and a single value of z from the 

distribution Q z X|( )  and compute the gradient as follows:

 
log | | ||P X z Q z X P z( ) - ( ) ( )éë ùû  (3.17)

You can then average the gradient of this function over arbitrarily 

many samples of X and z, and the result converges to the gradient of 

Equation 3.16.

 3.7.2 Generative Adversarial Networks
Generative networks are trained in an unsupervised way because you 

don’t have any explicit desired targets for the generated data; they should 

appear as real as possible.

One interesting approach to train generative networks in a supervised 

way is a generative adversarial network. GANs were introduced in 2014 by 

Ian Goodfellow et al. [GPAM+14]. They consist of a discriminator network 

(a standard convolutional neural network, in the case of images) that is 

trained to distinguish a real input image from a generated one created 

by a generator (usually also a CNN). These two networks are locked into 

a min-max game: the discriminator is trying to distinguish real images 

from fake images, and the generator is trying to create images that make 

the discriminator believe they are real. In the end, the generator network 

creates images that are indistinguishable from real ones.

The generator (G) tries to capture the model from which the data is 

drawn, thereby generating images from random noise inputs, while the 

discriminator (D) is a conventional CNN that tries to distinguish between 

real data (training data) and data generated by the G, thereby estimating 

the posterior probability, P(Label|Data), where the Label refers to “Fake” 

or “Real.”
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During training, D is presented with a mixture of real images from 

training data and fake images generated by G, and its loss function is to 

correctly separate correct and fake inputs. Both networks will compete 

with opposite goals, and training will evolve until equilibrium is achieved.

GAN training is a two-player game in which the generator minimizes 

the divergence between its generative distribution and the data 

distribution, while the discriminator tries to distinguish the samples 

from the generator’s distribution and the real data samples. You say 

the generator “wins” when the discriminator performs no better than a 

random guess. Training GANs is hard because often the system dynamics 

drift from equilibrium.

The optimization problem of the basic GAN is a min-max problem, 

given by the following equation, where V is the value function, x is the 

observations, and z is the latent variables.

 

G D V D G E D x

E D G z

x P x

x P z

data

z

min max ~

~

log

log

[ ][ ] ( ) = ( )
-

éë ùû +( )

( )

,

1 (( )( )( )é
ë

ù
û

 (3.18)

Recently the Wasserstein distance was introduced to measure the 

divergence between two distributions. The Wasserstein is a more consistent 

metric and has proved to create better convergence. For more information, 

see https://casmls.github.io/general/2017/04/13/gan.html.

Figure 3-11 depicts the cumulative activity of GANs’ papers in the last 

years after their creation.

Figure 3-12 illustrates a model of a GANN in terms of its main block 

components.

Figure 3-13 shows the application of several model GANs to the image 

generation of rooms from noise.
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Cumulative number of named GAN papers by month
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Figure 3-11. Cumulative number of papers referring to GANs 
(source: https://github.com/hindupuravinash/the-gan-zoo)

Figure 3-12. Model of a GANs
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Makhzani et al. introduced the concept of an adversarial auto- 

encoder (AAE). An AE is a probabilistic auto-encoder that uses generative 

adversarial networks to perform variational inference. Matching the 

aggregated posterior to the prior ensures that generating from any part 

of prior space results in meaningful samples. An AAE can be used for 

semisupervised classification, disentangling style and content of images, 

unsupervised clustering, dimensionality reduction, and data visualization.

You can find an updated list of all types of GANs proposed so far at 

https://deephunt.in/the-gan-zoo-79597dc8c347.

GANS can be very efficient for data augmentation and data generation 

when few examples are available for training, thus avoiding the difficulties 

of using deep learning. In a recent experiment (see https://arxiv.org/

abs/1606.03498), the authors used only 50 examples from each of the 10 

digits on the MNIST data set to generate a training data set with a GAN, 

thus achieving an error rate of 1.5 percent, compared with 0.5 percent 

using the original 50,000 examples.

Figure 3-13. Generating rooms from noise with several types of GANs 
(source: https://casmls.github.io/general/2017/04/13/gan.html)
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Text-to-image synthesis is an interesting application of GANs 

(called stack GANs) to generate images of birds and flowers from a text 

description. Check the code in Torch available on GitHub.

Ian Goodfellow has an excellent tutorial on GANs at http://on-

demand.gputechconf.com/gtc/2017/video/s7502-ian-goodfellow-

generative-adversarial-networks.mp4.
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CHAPTER 4

Image Processing
Probably the area where deep learning (DL) has had the biggest impact 

is in image processing. The dream that software can run a simulation of 

the neocortex using an artificial neural network is decades old, leading 

to many disappointments as well as breakthroughs. The human visual 

perceptual system achieves remarkable object recognition performance, 

even in noisy environments or under geometric transformations or 

background variation. For years the computer vision community has 

tried to replicate this astonishing capability with limited success. For an 

extensive review of the evolution of image processing by deep neural 

networks, please see “Deep learning for visual understanding: A review” at 

www.sciencedirect.com/science/article/pii/S0925231215017634.

However, recent advances in DNNs, particularly using convolutional 

neural networks, has led to a revolution in image processing, achieving  

(or even surpassing) human-level performance. Recently, a work by 

Cadieu et al. [CHY+14] demonstrated that DNNs have comparable 

performance to the one found in the inferior temporal (IT) cortex of 

primates in challenging visual object recognition tasks. These authors 

claimed that “whether these DNNs rely on computational mechanisms 

similar to the primate visual system is yet to be determined, but, unlike all 

previous bio-inspired models, that possibility cannot be ruled out merely 

on representational performance grounds.” We have now artificial models 

that can rival human-like brains in complex perceptual activities. Also, 

Eberhardt et al. in “How Deep is the Feature Analysis underlying Rapid 

http://www.sciencedirect.com/science/article/pii/S0925231215017634
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Visual Categorization?” (http://arxiv.org/abs/1606.01167) compared 

the performance of CNNs with humans and showed that CNNs can 

achieve superhuman performance on rapid visual recognition.

The next section will show some applications of deep learning on 

image processing. Figure 4-1 summarizes DNN architectures.

Deep Learning
Methods for image

processing

Convolutional Neural Networks (CNN)

AlexNet

Deep Belief Networks
Deep Boltzmann Machines
Deep Energy Models

Sparse Auto encoders

Contrastive Auto encoders
Variational Auto encoders

LSTM
GRU
Convolutional LSTM
Feedback Networks

Sparse coding SPM
Laplacian Sparse coding
Super vector coding

Denoising Auto encoders

VGG
Inception
ResNet

Restricted Boltzmann Machines (RBM)

Auto-encoders

Recurrent Networks

Sparse Coding

Figure 4-1. A summary of DNN architectures for image processing

 4.1 CNN Models for Image Processing
CNNs were one of the first deep learning models biologically inspired by 

the visual cortex of mammals. LeCun [LBD+89] showed that handcrafted 

feature extraction can be replaced with a neural network–designated CNN. 

CNNs have achieved considerable success in the handwritten digit 

recognition (MNIST) data set, and LeCun in 1995 showed that CNNs were 
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superior to all traditional machine learning approaches, such as logistic 

regression, principal component analysis, or nearest neighbors.

CNNs have seen an explosive adaptation and have replaced traditional 

image processing techniques by becoming the de facto method for all 

computer vision problems. They are also being actively researched and 

applied into other domains such as voice, biomedical data, and even text.

CNNs (also called ConvNets) are a variant of ANNs that take full 

advantage of the spatial nature of the input. Instead of stacking linear 

layers, like regular neural networks, CNNs process the three-color 

channels using spatial filters. They exploit the following concepts:

• Local receptive fields: Unlike MLP, CNNs don’t have 

neurons in one layer connected to all neurons in 

the next layer. CNNs have a set of filters, working on 

localized regions, that make connections in small 

two-dimensional areas of the input image, called the 

local receptive fields. This greatly reduces the number 

of connections necessary in the network and reduces 

the computational complexity. A typical value of the 

receptive1 field is 5×5. The stride is a parameter that 

controls the sliding of the local receptive field over the 

image and is the number of pixels the receptive field 

is moved at a time (normally two or three). Both the 

receptive local field and the stride control the spatial 

size of the output volume.

• Shared weights and biases: CNNs use the same weights 

and biases for each of the hidden neurons. By sharing 

the weights, the network is forced to learn invariant 

features at different regions of the image. Thus, all 

the neurons in the layer detect the same feature 

but at different locations in the image. This makes 

CNNs translation invariance, a key feature for image 
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processing. Once a feature in the image is detected, 

the location of the feature becomes irrelevant. These 

weights defining the feature map are called the kernel 

or filter. To perform image recognition, several feature 

maps are required; the convolutional layer consists of 

several different feature maps (typically tens of feature 

maps are used). Again, sharing weights and biases 

helps to reduce the number of parameters that the 

network needs to learn and reduces the chances of 

overfitting.

• Pooling layers: Pooling layers are a type of layers 

typically used after convolutional layers. They 

summarize the information from the convolution 

layer by performing a statistical aggregate function, 

typically average or max, applied to each feature map 

and by producing a compressed feature map. Forward 

propagation evaluates the activations, and backward 

propagation computes the gradient from the above 

layer and the local gradient to calculate gradients on 

the layer parameters. Overall, CNNs take advantage of 

the regularization nature of the convolution, polling, 

and dropout layers to greatly reduce the number 

of trainable parameters and the risk of overfitting. 

New techniques such as batch normalization reduce 

internal covariance shift and help in smooth learning. 

Finally, using rectified linear unity (ReLU) or leaked 

ReLU activations help speed up the training and avoid 

neuron saturation. The entire CNN network is trainable 

with gradient descent using the backpropagation 

algorithm.
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LeNet5, the first powerful CNN, has features that can be summarized 

as follows: a convolutional neural network with a sequence of convolution 

and pooling layers; convolution to extract spatial invariant features from 

a subsample using the spatial average of maps and a multilayer neural 

network (MLP) as a final classifier (fully connected layers); and a sparse 

connection matrix between layers (weight sharing) to avoid a large 

computational cost and reduce overfitting.

Complete CNNs are formed by stacking multiple convolutional layers 

(each with feature map planes and local receptive fields). Subsampling layers 

are added as regularizers to improve invariance to shift and distortions. As 

early as the 1990s it became evident that deeper networks perform better, 

but at that time we lacked the data and computational resources necessary.

Figure 4-2 represents a learning deconvolution network for Semantic 

Segmentation.

Figure 4-2. Example of a fully convolutional neural network for 
image segmentation (source: https://handong1587.github.io/
deep_learning/2015/10/09/segmentation.html)

 4.2 ImageNet and Beyond
In 2009 the ImageNet data set, comprising more than 15 million high- 

resolution images labeled into more than 22,000 categories, was released. In 

2012, Krizhevsky et al. [AIG12] pioneered the use of graphical processor units 

(GPUs) for a fast implementation of a CNN containing up to 650,000 neurons 

and 60 million parameters (by contrast LeNet5 had 60,000 weights), winning 

with a top-five error rate of only 15.3 percent. This was a far better result 
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than the state-of-the-art methods, which then reached 26.2 percent. Besides 

using a larger data set and bigger networks, these authors used aggressive 

regularization techniques to avoid overfitting, such as data augmentation 

(applying slight distortions in shapes, rotations, and colors) and dropout to 

shrink co-adaptions of neurons. This last technique allows a single neuron to 

learn more robust features without relying on other neighbor neurons.

Pretraining a neural network in a greedy layer-by-layer fashion with 

an unsupervised objective function is another popular technique to avoid 

overfitting, especially for RBMs. The intuition behind this idea is that 

unsupervised training will give a good initialization of weights for the neural 

network based on the actual statistical properties of the data it will be used 

for (e.g., object images, human speech, etc.) instead of random initializations, 

which often get stuck in poor local minima. The network can be fine-tuned 

on a supervised task such as object recognition. Mathematically speaking,  

the CNN transforms the original high dimension of images into a low-

dimensional feature vector representation. In this way, a good CNN model 

can also act as a good feature extractor for images, and the resulting images 

can be used in more complicated tasks. Figure 4-3 shows an CNN for object 

classification (see https://handong1587.github.io/deep_learning/ 

2015/10/09/segmentation.html).

Figure 4-3. Results of a CNN and dense layers used for object 
classification (source: [AIG12])
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In 2012 Google trained a DNN with more than 10 million images 

from YouTube videos. After the training, the neural network was able to 

identify cats and dogs, doubling the accuracy of previous algorithms. The 

remarkable feat was that the algorithm was mostly unsupervised. No human 

labels were provided for the images. The neurons recognized not only cats 

and dogs but also human faces, yellow flowers, and other common objects. 

The algorithm categorized objects in the YouTube images (22,000 categories 

of them) with an accuracy of 16 percent to 70 percent better than previous 

methods. It may not be impressive, but it was a challenge task because 

it contained many similar objects. When the number of categories was 

reduced to 1,000, the accuracy increased to 50 percent.

In 2013 Zeiler proposed a CNN model (https://arxiv.org/

pdf/1311.2901.pdf) that was more comprehensible and easy to calibrate, 

achieving a top performance of 12.4 percent on the ImageNet data set. In 

2014, Google introduced Inception5 (Google LeNet), a deep CNN (with 

20 layers) that won the ImageNet contest with an error rate of only 6.7 

percent. This work showed the importance of using very deep models to 

abstract higher-level features from the images.

In late 2015 a Microsoft team achieved superhuman performance on 

ImageNet with an error rate of only 3.7 percent with a network named 

ResNet (for residual network). The paper “Deep Residual Learning for 

Image Recognition” (https://arxiv.org/abs/1512.03385) achieved 

state-of-the-art results on the MS COCO data set (the code is available 

on GitHub). MS COCO is a well-known data set with two challenges: 

classification (evaluated by error rate) and image caption generation 

(evaluated by a BLEU score).

ResNet is based on a simple idea: feed the output of two successive 

convolutional layers, bypassing the input to the next layers. Bypassing a 

single layer did not provide much improvement, while two layers can be 

seen as a classifier itself. The team was able to train networks of up to 1,000 

layers deep [HZRS15]. Figure 4-4 shows the comparison of human and 

deep nets classification performance in imageNet data set.
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ResNet uses a 7×7 conv layer at the input level followed by a pool of 

two layers, in contrast with more complex formats used by the Google 

team with Inception V3 and V4. See  www.sciencedirect.com/science/

article/pii/S0925231215017634.

In ResNet the input is fed to many modules in parallel, and the 

output of each module is serially connected. ResNet can be thought of as 

an ensemble machine of parallel/serial modules operating in blocks of 

smaller-depth layers (tenths of layers).

Figure 4-5 illustrates the formulation of residual learning which can be 

realized by feedforward neural networks with “shortcut connections”.

ImageNet Error Rate

Using deep learningHuman
performance

30%

25%

20%

15%

10%

5%

0%
2010 Present

Figure 4-4. Evolution of the performance of DNN in Imagenet 
(source: https://www.excella.com/insights/top-3-most-
popular-neural-networks)
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Huang et al. have proposed a variation of ResNet that they call a DN 

with stochastic depth [HSL+16]. The idea was to start with very deep 

networks and, during training, randomly drop a subset of layers and 

bypass them altogether with the identity function for each mini-batch. The 

simplified training speeds the convergence and increases performance. In 

the CIFAR-10 benchmark, the team was able to achieve a state-of-art test 

error of only 4.91 percent.

Shen et al. proposed a technique called weighted residual networks to 

alleviate the problem of training very deep networks and incompatibility 

of ResNet with ReLU [SZ16]. They were able to train networks with more 

than 1,000 layers of depth. Figure 4-6 shows the evolution of depth size in 

the deep networks since 2010 regarding the classification performance in 

ILSVRC challenge data set.
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Figure 4-5. Architecture of a residual network (source: https://
arxiv.org/abs/1512.03385)
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Srivastava et al. [SGS15] proposed a new architecture designed to ease 

gradient-based training of very deep networks, called highway networks 

since they allow unimpeded information flow across several layers on 

“information highways.” The architecture is characterized by the use 

of gating units that learn to regulate the flow of information through a 

network. They showed that highway networks with hundreds of layers can 

be trained directly using SGD.

 4.3 Image Segmentation
Image segmentation is a key component of image processing and 

computer vision. It consists of dividing an image into a number segments, 

or clusters, that share some common features. There are many image 

segmentation algorithms. The most basic is threshold segmentation. 

Threshold segmentation tries to automatically determine the optimal class 

ILSVRC’15
ResNet

ImageNet experiments
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152 layers

19 layers

8 layers 8 layers shallow
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11.7
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25.8
28.2

ILSVRC’14
GoogleNet

ILSVRC’14
VGG

ImageNet Classification top-5 error (%)

ILSVRC’12
AlexNet

ILSVRC’13 ILSVRC’11 ILSVRC’10

22 layers

Figure 4-6. Accuracy versus size versus operations of several CNN 
architectures (source: https://icml.cc/2016/tutorials/icml2016_
tutorial_deep_residual_networks_kaiminghe.pdf)
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threshold according to a certain criterion and use these pixels according to 

the gray level before clustering. Regional growth works by combining the 

pixels with similar properties to form the region; it’s similar to k-means. 

Edge detection segmentation uses different regions of the pixel gray or 

color discontinuity detection area.

All these techniques are rather limited. The last, and most powerful, 

algorithm for image segmentation is based on CNNs. It’s a supervised 

problem where the goal is to assign a label to every pixel in the image and 

treat it as a classification problem. It consists of three parts: taking an input 

image with some objects, presenting the corresponding segmentation 

mask, and training the algorithm to minimize the cross-entropy.

A fully convolutional network (FCN) is the most used architecture for 

image segmentation. A FCN is composed of a convolutional layer without 

any fully connected (dense) layers at the end of the network. As output, 

the corresponding segmentation mask is presented and contains the 

annotation of each pixel in the image. The fully convolutional network 

learns the filters everywhere, including the layers (image segmentation) at 

the end of the network.

An FCN learns representations based on local spatial input. Appending 

a fully connected layer enables the network to capture global information 

and is successful in image segmentation tasks.

A common FCN used for segmentation is the U-network architecture, 

illustrated in Figure 4-7. It consists of a down-funneling path (left side) 

and an expanding path (right side). The left side follows the typical 

architecture of a convolutional network consisting of repeated applications 

of k×k convolutions, each followed by a rectified linear unit (ReLU) and 

a 2×2 max pooling operation with stride 2 for the funneling path. Each 

step doubles the number of feature channels. Every step in the expansive 

path consists of an upsampling of the feature map followed by a 2×2 

convolution that halves the number of feature channels; a concatenation 

with the correspondingly cropped feature map from the left path; and 

two 3×3 convolutions, each followed by a ReLU. The cropping is required 

Chapter 4  Image proCessIng



88

because of the loss of border pixels in every convolution. At the final layer, 

a 1×1 convolution is used to map each n-feature vector to the desired 

number of classes; see https://arxiv.org/abs/1505.04597 for more 

information. The disadvantage of U-networks is that they contain a mix of 

channels.

Figure 4-7. Example of a U-network for image segmentation (source: 
http://juliandewit.github.io/kaggle-ndsb/)

Dilated convolutions use an additional parameter compared to 

convolutional layers: the dilation rate. This defines a spacing between 

the values in a kernel. A 3×3 kernel with a dilation rate of 2 will have the 

same field of view as a 5×5 kernel, while using only nine parameters. This 

delivers a wider receptive field at the same computational cost. Dilated 

convolutions are common for real-time segmentation because they have 

less computational cost. It’s the natural choice for a wider receptive field 

without using multiple convolutions or larger kernels.
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 4.4 Image Captioning
The symbol grounding problem, or how to incorporate meaning into 

a symbol, is very old. The argument put forward by John Searle on the 

famous Chinese room argument is basically this: “How can humans 

relate internal symbols to the external objects they refer to?” For Searle, 

“meaning” cannot be reduced to a finite set of rule-based computation, 

and the way the brain relates words to images, for instance, can’t be 

replicated by a computer. However, recent work on image and video 

automated text capturing combining CNNs and RNNs, has challenged 

this skepticism and helped to solve this puzzle. Figure 4-8 shows the 

comparison of performance of plain nets and ResNets in CIFAR-10 data set.

Figure 4-8. Performance on CIFAR-10 (source: https://arxiv.org/
pdf/1512.03385.pdf)

Recurrent neural networks (RNNs) have been recently used to 

successfully generate sentences to describe images [KFF17] using a 

training set with pairs of images and corresponding captions. Vinyals et al. 

[VTBE14] introduced the idea of encoding an image with a convolutional 

neural network and then applying LSTM to decode it and generate text. 

Mao et al. [MXY+14] independently developed a similar RNN image 

captioning network and achieved, at the time, state-of-the-art results on 

the Pascal, Flickr30K, and COCO data sets.

Karpathy and Fei-Fei [KFF17] used a convolutional network to encode 

images together with a bidirectional network attention mechanism and 
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standard RNN to decode the captions, using Word2vec embeddings as 

word representations. They considered both full-image captioning and 

a model that captures correspondences between image regions and text 

snippets. Many more resources on neural networks for image caption can 

be accessed at https://github.com/tylin/coco-caption. Figure 4-9 shows 

the most informative accuracies versus amount of operations required for a 

single forward pass of networks submitted to the ImageNet challenge (from 

the AlexNet on the far left, to the best performing Inception-v4).
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Figure 4-9. Size and accuracy of different neural network 
architectures (source: https://arxiv.org/abs/1605.07678)

 4.5 Visual Q&A (VQA)
Querying an image for content is a challenging task that requires semantic 

knowledge capable of binding words with images.

H. Gao et al. [GMZ+15] used a model combining a language model 

with a CNN that learns representations of image embeddings to create a 

visual question and answering machine. The machine learns to answer 
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freestyle questions about the content of an image. The model is trained 

by minimizing a loss function on the correct answer given on a training 

set. To lower the risk of overfitting, the authors introduced weight sharing 

of the word embedding layer between the LSTMs in the first and third 

components. The model was trained with about 158,000 images and 

316,000 questions and answers in Chinese, through a mechanical Turk 

approach. The model achieved considerable performance given the 

complexity of the task. Figure 4-10 shows the results of the description 

of an image generated by deep neural networks which first identify the 

elements of the image prior to come up with a relation between them.

Figure 4-10. Caption generated by multimodal ANN. Green (left) 
shows good captions, and red (right) shows failure cases (source: 
https://cs.stanford.edu/people/karpathy/cvpr2015.pdf).

AgraWal et al. [AAL+15] also approached the free-form, open-ended 

visual Q&A (VQA) problem and created a data set containing about 

250,000 images; 760,000 questions; and 10 million answers. It’s available at 
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www.visualqa.org. The best model, called LSTM-Q (also a combination of 

CNNs and LSTMs), was able to achieve remarkable accuracy in many types 

of questions, like “What is it?” and “How many?” and “What animal?” and 

“Who?” Sometimes it was very close to human performance, like in the 

“Is there?” question, there was 86.4 percent accuracy for the algorithms 

versus 96.4 percent accuracy for humans. Figure 4-11 shows a model 

combining a language model with a CNN that learns representations of 

images embeddings to create a visual question and answering machine. 

The weight matrix in the word embedding layers of the two LSTMs (one for 

the question and one for the answer).

What

Embedding

LSTM

Fusing

Softmax
CNN

Intermediate

is the cat doing ? <BOA>
Shared

Shared

Sitting

Sitting on the umbrella<EOA>

on the umbrella

Figure 4-11. Multimodal learning model, combining an RNN 
trained with LSTM for text and an CNN for pictures (source: 
https://arxiv.org/pdf/1505.05612.pdf)

Noh et al. [NSH15] trained a convolutional neural network using a 

dynamic parameter layer whose weights are determined adaptively based on 

questions and used a separate parameter prediction network consisting of a 

gated recurrent unit (GRU) with the question as input and a fully connected 

layer generating a set of candidate weights as its output. They also used a 

hashing technique to reduce the complexity and regularize the network 

claiming state-of-the-art performance on all available public benchmarks. 

Figure 4-12 illustrates a novel end-to-end sequence-to-sequence model to 

generate captions for videos.
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Several models have been proposed for sequence-to-sequence 

processing, combining text, image, and video. See https://vsubhashini.

github.io/s2vt.html for an example. All these approaches work using 

a encoder-decoder model with CNN+LSTM or a GRU to create a join 

embedding and generate legends and captions from videos.

Cadene et al. recently released a GitHub repository (https://github.

com/Cadene/vqa.pytorch) with an implementation of a VQA (with the 

code in Pytorch). The authors of the project Multimodal Tucker Fusion for 

VQA (MUTAN) claim state-of-the-art results on the VQA-1 data set.

A collaboration between researchers at the University of Montreal, 

University of Lille, and DeepMind produced an interesting result in 

binding language with images. They proposed a technique called 

MOdulated RESnet (MORES) to train vision and language models so that 

the word representations are tightly integrated and trained alongside 

visual representations (https://arxiv.org/pdf/1707.00683.pdf). There 

is increased evidence from the neuroscience community that words 

set visual priors that alter how visual information is processed from the 

beginning. More precisely, it is observed that P1 signals, which are related 

to low-level visual features, are modulated while hearing specific words. 

The language cue that people hear ahead of an image activates visual 

predictions and speeds up the image recognition process. This approach is 

Figure 4-12. Sequence-to-sequence model for video description 
(source: https://vsubhashini.github.io/s2vt.html)
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a general fusing mechanism that can be applied to other multimodal tasks. 

They tested their system on GuessWhat, a game in which two AI systems 

are presented with a rich visual scene; one of the agents is an oracle and is 

focused on a particular object in an image, while the other agent’s job is to 

ask the oracle a series of yes/no questions until it finds the correct entity. 

They found that MORES increased scores of the oracle against baseline 

algorithm implementations.

 4.6 Video Analysis
Video has become one of the most common sources of visual information. 

The amount of video data available on the Internet is tantalizing; it would 

take more than 82 years to watch all the videos uploaded to YouTube in a 

single day. Automatic tools for analyzing and understanding video content 

are thus essential. DL impact on video analysis can be categorized into the 

following tasks:

• Object detection and recognition

• Highlight detection

• Action recognition and event detection

• Segmentation and tracking

• Classification and captioning

• Motion detection and classification

• Scene understanding

• Event detection and recognition (motions, gestures)

• People analysis (face identification, posture analysis, 

etc.)

• Object tracking and segmentation behavior recognition 

and crowd analysis
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DNNs have made a tremendous impact on video processing, which is a 

complex problem characterized by spatiotemporal high-dimensional data. 

Neural network supervised learning of representations from sequence 

data has many advantages, but capturing the discriminative behavior of 

sequence data is a challenging problem.

In [DHG+14], Donahue et al. investigated a CNN model with RNNs 

and proposed a recurrent convolutional architecture for end-to-end 

large-scale visual challenging tasks, such as activity recognition, image 

captioning, and video description. This model departed from fixed visual 

representations and was able to learn compositional representations 

in space and time. The model is a fully differentiable RNN, capable of 

learning long-term dependencies. This is appealing since it can map 

variable-length videos to natural language text. The model is fully trained 

with backpropagation. The authors show that this model can achieve 

good results for discriminative or generative text generation tasks. They 

evaluated the model on the TACoS multilevel data set containing 44,762 

video/sentence pairs obtaining a BLEU score of 28.8.

Fernando et al. [FG16] recently used a method to jointly learn 

discriminative dynamic representations from video using CNNs to 

classify video scenes. They proposed a temporal encoding method for a 

convolutional neural network video sequence classification task using 

a pooling layer on top of CNN architecture in end-to-end learning. 

They were able to improve performance over a traditional rank-pooling 

approach by 21 percent on the UCFsports data set and 9.6 mAP on 

the Hollywood2 data set. The model parameters could be updated in 

milliseconds, allowing to process up to 50 frames per second.

In [VXD+14], the authors also combined a CNN and LSTM for jointly 

learn the embedding of video and text to generate automatic annotation 

of videos. Because of a lack of data sets, the authors relied on photo 

annotation data and used knowledge transfer techniques. They achieved 

good accuracy in the subject, verb, and object (SVO) metrics but still far 

from a human level, probably because of the lack of training data.
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Zhu et al. [ZKZ+15] developed an algorithm to align book stories with 

their respective movies. The aim was to create rich narratives for visual 

content, beyond mere captions. To achieve this, they aligned movies and 

books using a neural network to embed sentences from a corpus of books 

and a video-text neural embedding for computing similarities between 

movie clips and sentences in the book. The method, described as a 

context-aware CNN, was applied to the MovieBook data set, consisting of 

11 books and respective movies, while the word embedding was trained 

in 11,038 books using an LSTM-based encoder for text and a CNN for 

video. The results were qualitatively interesting and proved that DL is able 

to explore new ground in understanding complex problems, something 

unthinkable just a few years ago.

However, all these CNN-RNN/LSTM-based models have a large 

number of parameters to capture sequence information. Therefore, 

these methods are extremely data intensive and require large quantities 

of training labeled examples. Obtaining labeling data for videos is more 

costly than for static images, and some techniques to expand or generate 

labeling may be required (generative models like Cycle GAN could be an 

option).

The most straightforward CNN-based method for encoding video 

sequence data is to apply temporal max pooling or temporal average 

pooling over the video frames. However, these methods do not capture any 

valuable time-varying information of the video sequences. For instance, an 

arbitrary reshuffling of the frames would produce a similar representation 

using a pooling scheme.

Recently there has been considerable interest in convolutional LSTM 

for video prediction. Lotter used convolutional LSTM for unsupervised 

video prediction (predictions of the next video frames); the code (in 

Keras) and results are available on GitHub. See Prednet (https://

coxlab.github.io/prednet/). The results are encouraging since it’s a 

fully unsupervised model. The idea is to consider the convolutions as a 

dynamic process and then trained as a sequence-to-sequence model, 
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like any temporal process. The only drawback is the computational time 

(as the LSTMs are very computationally intensive layers). However, it 

still compares favorably with video pixel networks (https://arxiv.org/

pdf/1610.00527v1.pdf), which claim higher accuracy but at a higher 

computational cost. These types of networks are actively being investigated 

for self-driving cars, as event anticipation is key to increasing response 

time and making these systems more predictive and less reactive.

Video usage is increasing exponentially; the United Kingdom alone 

has more than 4 million CCTVs, and users upload more than 300 hours 

of video to YouTube every minute. Analyzing videos is a computationally 

intensive task because of querying, detecting unusual events, or sifting 

through long videos. State-of-the-art methods for object detection run 

at 10 to 80 frames per second on a state-of-the-art GPU. This is fine for 

one video, but it is untenable for real deployments at scale; to put this 

computational overhead in context, it would cost more than $5 billion USD 

in hardware alone to analyze all the CCTVs in the United Kingdom in real 

time.

A team from Stanford proposed a method called NoScope, which is 

able to process video feeds thousands of times faster compared to current 

methods. The key insight is that video is highly redundant, containing 

a large amount of temporal locality (i.e., similarity in time) and spatial 

locality (i.e., similarity in appearance in a scene). They achieved a speedup 

in querying of up to 100 times; see the implementation details at  

https://arxiv.org/pdf/1703.02529.pdf.

A recent Kaggle (https://www.kaggle.com/c/youtube8m) competition 

challenged the contenders to build an algorithm to classify 8 million 

YouTube videos (450,000 hours) in 4,716 classes. One approach, which 

got third place, is described in the paper “Temporal Modeling Approaches 

for Large-scale Youtube-8M Video Understanding” (https://arxiv.

org/pdf/1707.04555.pdf). They used bidirectional-attentive LSTM 

encoding (for video and audio) implemented on the PaddlePalddle Baidu 

framework.
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Automatic video summarization (AVS) is key in helping human 

users compactly represent videos without losing important information. 

Recent work has focused on supervised learning techniques. Video 

summarization is a structured prediction problem: the input to the 

summarization algorithm is a sequence of video frames, and the output 

would be a binary vector indicating whether a frame is being selected 

or not. For video summarization, the inter-dependency is complex and 

highly inhomogeneous since humans rely on a high-level semantic 

understanding of the video content—often after viewing the whole 

sequence—to decide whether a frame should be kept in the summary. 

In many cases, visually similar frames do not have to be temporally 

close. Zhang et al. [ZCSG16] proposed a method for supervised video 

summarization that automatically selects key frames or key subshots 

using an LSTM recurrent neural network to model the variable-range 

dependencies. They achieved state-of-the-art results on two benchmark 

video data sets (SumMe and TVSum) with an F-score of 41.8 and 58.7, 

respectively. They also introduced a technique to circumvent the existence 

of some annotated data for training by exploiting the existence of auxiliary 

annotated video data sets, even if they contain different visual styles and 

contents.

There are many techniques for semantic video retrieval. See for 

example, http://ieeexplore.ieee.org/abstract/document/7947017/.

 4.7 GANs and Generative Models
As mentioned earlier, generative adversarial networks (GANs) have 

revolutionized the field of neural networks for image processing. The 

work [vdOKV+16] uses the PixelCNN architecture to explore the idea of 

conditional image generation using a new image density model. The 

generative model can be conditioned on any vector including labels 

and tags. The authors conditioned the model on class labels from the 
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ImageNet data set and were capable of producing diverse, realistic scenes 

representing objects, landscapes, animals, and structures. If the model is 

conditioned on an embedding vector (that can be extracted from a trained 

CNN), from a unique input image of a face, it can generate a diversity of 

new portraits of the same person with different facial expressions, lighting 

conditions, and poses. See Figure 4-13.

Figure 4-13. PixelCNN generating images interpolated between left 
and right. Notice the smoothness of the transitions (source: https://
arxiv.org/pdf/1606.05328.pdf).

In “Learning Deep Feature Representations with Domain 

Guided Dropout for Person Re-identification” (https://arxiv.org/

pdf/1604.07528v1.pdf), the authors trained a neural network with data 

sets from multiple domains to make the extracted features as generic as 

possible. The authors developed a multidomain learning pipeline for the 

task of identifying people who move between different CCTV cameras. 

Domain-biased neurons, in the CNNs, become domain specific. The 

domain-guided dropout assigns each neuron a specific dropout rate for 

each domain according to its effectiveness on that domain, resulting in 

considerable improvements.

In [MZMG15], they show how to deal with human-subjective 

judgments in image tagging, namely, not using a consistent vocabulary 

and missing a significant amount of the information present in an image. 

They used an algorithm to decouple the human reporting bias from the 

correct visually grounded labels using a network for the presence of an 
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object and another for relevance. For instance, an image with a bunch of 

bananas can be (correctly) annotated as yellow but missing the content. 

They provided evidence of significant improvements over traditional 

algorithms for both image classification and image captioning, doubling 

the performance of existing methods in some cases.

As shown in http://robots.stanford.edu/cs221/2016/restricted/

projects/rak248/final.pdf, the team introduced an interesting concept 

of graphlets to encode the semantic meaning of images. These graphlets 

can be used to encode the semantic meaning of sentences, allowing a 

semantic comparison between images and sentences, which is relevant for 

image retrieval.

Christhoher Hess has a blog post at https://affinelayer.com/pix2pix 

on image-to-image translation using TensorFlow. The code is available 

on the GitHub page. It implements the idea of Isolda et al. on pix2pix 

networks, which used the GAN framework to translate images from one 

domain to another, say, night to day, black-and-white to color pictures,  

or sketches to objects. There is also an online demo at  

https://affinelayer.com/pixsrv/.

Recently a team from Nvidia proposed (https://github.com/

NVIDIA/pix2pixHD) an enhanced version of a conditional GAN (based 

on the Pix2pix framework) capable of generating images with very high 

quality. They used a set of innovations such as incorporating object 

instance segmentation information to enable object manipulations such 

as removing/adding objects and changing the object category. This is 

a method to generate diverse results from a given input. See also the 

video where they applied these techniques to generate photorealistic 

human faces, available on YouTube (https://www.youtube.com/

watch?v=XOxxPcy5Gr4). Figure 4-14 despicts high-resolution image 

synthesis with conditional GANs.
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Pix2pix is a great tool; however, for many tasks, paired training data 

will not be available. Zhu et al. proposed recently a new technique for 

knowledge transfer in images. In their paper “Unpaired Image-to-Image 

Translation using Cycle-Consistent Adversarial Networks” (https://

arxiv.org/abs/1703.10593), they named the technique CycleGAN. It’s 

an image-to-image translation where the goal is to learn the mapping 

between an input image and another output image (from a distinct 

domain) using a training set of aligned image pairs. The method allows 

you to translate an image from a source domain X to a target domain Y in 

the absence of the correspondent pair. The mapping G:X→Y is learned 

such that the distribution of images from G(X) should be indistinguishable 

from the distribution Y itself. Because this mapping is underconstrained, 

it is furthered coupled with an inverse mapping F:Y→X, thus introducing 

a cycle consistency loss to push F(G(X))≈X (and vice versa). They used 

this for style transfer, photo enhancement, object transfiguration, season 

transfer, and more. The code at https://github.com/junyanz/CycleGAN 

is available in Pytorch; there is also a nice video showing a horse converted 

into a zebra.

Figure 4-14. Example of high-resolution Pix2pix from Nvidia team. 
Left: the segmentation map; right: one possible high quality generated 
image (source: https://github.com/NVIDIA/pix2pixHD).
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 4.8 Other Applications
In [CCB15], Cho et al. used an attention-based encoder–decoder 

(combining CNN and RNNs) to describe multimedia content. The novelty 

was in the extensive usage of the attentive mechanism, particularly 

in the conditional language model based on an RNN. They applied 

the model to machine translation, image caption generation, video 

description generation, and speech recognition. The authors claimed the 

importance of the attention mechanism in unsupervised learning of the 

mapping between any arbitrary streams of data (voice and video, text and 

image, etc.). They proved that attention models can efficiently infer the 

alignments without using explicitly any domain knowledge, making it an 

interesting template for neuroscience.

Kemelmacher-Shlizerman et al. recently created a big data set, 

called MegaFace, for facial image identification; see “The MegaFace 

Benchmark: 1 Million Faces for Recognition at Scale” (https://arxiv.

org/abs/1512.00596). It includes 1 million photos that capture more 

than 690,000 different individuals. They evaluated the performance of 

algorithms with increasing numbers of “distractors” (going from 10 to 1 

million) in the gallery set. They tested on identification and verification 

with respect to pose and a person’s age and compared them as a function 

of training data size (the number of photos and the number of people). 

They reached an accuracy from 99 percent (for hundreds of distractors) 

to about 80 percent with 1 million distractors. The MegaFace data set, 

baseline code, and evaluation scripts have been publicly released for 

further experimentations.

Lipreading consists of guessing the words and sounds from the images 

of a muted speaker video. S. Petridis et al. presented (https://arxiv.org/

pdf/1709.00443.pdf) an end-to-end multiview lipreading system based 

on bidirectional long-short memory (BLSTM) networks. It claims to be the 

first model that simultaneously learns to extract features directly from the 

pixels and performs visual speech classification from multiple views, while 
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achieving state-of-the-art performance. The model consists of multiple 

identical streams, one for each view, which extract features directly from 

different poses of mouth images. The temporal dynamics in each stream/

view are modeled by a BLSTM, and the fusion of multiple streams/views 

takes place via another BLSTM. The best three-view model results in a 10.5 

percent absolute improvement over the current multiview state-of-the-art 

performance on the OuluVS2 data set, without using external databases for 

training, achieving a maximum classification accuracy of 96.9 percent.

Recognizing the authenticity of facial emotions is hard because 

discriminative facial responses are short and subtle. These authors 

proposed SASE-FE, a data set of videos containing genuine and deceptive 

facial expressions of emotions for automatic recognition. They show that 

the problem of recognizing deceptive facial expressions can be solved 

using a spatiotemporal representation of the data that aggregates features 

along fiducial trajectories in the latent feature space.

Gregor et al. introduced Deep Recurrent Attentive Writer (DRAW) 

(see https://arxiv.org/abs/1502.04623), which is a neural network 

architecture for image generation. DRAW networks combine a novel 

spatial attention mechanism that mimics the foveation of the human eye, 

with a sequential variational auto-encoding framework that allows for the 

iterative construction of complex images. The system had very good results 

on generating MNIST examples and on the Street View House Numbers 

database. The images cannot be distinguished from real data.

 4.8.1 Satellite Images
Satellite image classification is a complex problem involving remote 

sensing, computer vision, and machine learning. The problem is 

challenging because of the high variability of the data. Basu et al. 

[SSS+15] proposed a method based on deep belief networks and careful 

preprocessing of satellite images, achieving 97.95 percent accuracy on two 

public data sets. One data set consists of 500,000 image patches covering 
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four broad land cover classes: barren land, trees, grassland and other; 

400,000 patches were chosen for training with the remaining 100,000 for 

testing.

Serrah proposed a method [GLO+16] using CNNs for the semantic 

labeling of high-resolution remote-sensing data. They used full-resolution 

labeling with no downsampling (or pooling layers), thus removing the 

need for a deconvolution stage or interpolation. They also pretrained 

the CNNs on remote-sensing data in a hybrid network context, getting 

better results than a network trained from scratch. They applied the 

method to the problem of labeling high-resolution aerial imagery, where 

fine boundary details are very important, thus achieving state-of-the-art 

accuracy on the ISPRS Vaihingen and Potsdam benchmark data sets.

The work “Learning to Match Aerial Images with Deep Attentive 

Architectures” (http://vision.cornell.edu/se3/wp-content/

uploads/2016/04/1204.pdf) is an effort to bridge the gap between neural 

networks and traditional image-matching techniques based on local 

correspondence. The authors propose a framework, trainable from end 

to end, using two neural network architectures to address this problem 

of ultrawide baseline image matching, which is common in satellite 

and aerial images. They fine-tune a pretrained AlexNet over aerial data 

with a Siamese architecture for feature extraction and a binary classifier, 

achieving state-of-the-art accuracy in ultrawide baseline matching 

reaching almost human-level performance.

Maggiori et al. devised an iterative enhancement process inspired from 

partial differential equations, expressed as a recurrent neural network 

satellite image annotation and localization, thus improving the quality 

of satellite image classification maps; see http://ieeexplore.ieee.

org/abstract/document/7938635/. This addresses the problem in CNN 

architectures; they are good at recognizing but poor at localizing objects 

precisely.
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 4.9 News and Companies
The following are news and companies to pay attention to:

• Cargometrics (www.cargometrics.com/) is a startup 

that uses VHF radio tracking as well as satellite image 

processing through deep learning algorithms to analyze 

maritime traffic data to help predict commodity 

prices. It tracks the movement of 120,000 ships across 

the world. The work is being used by hedge funds to 

identify pricing and securities opportunities.

• Terrapattern (www.terrapattern.com/) uses DL to 

perform similarity-based searches for unlabeled 

satellite photos. It provides an open-ended interface 

for visual query by example. The user clicks in a spot on 

Terrapattern’s map, and it will find other locations that 

look similar.

• Vicarious (https://www.vicarious.com/) is a startup 

that works on image processing and is developing 

deep learning algorithms for vision, language, and 

motor control. It is mainly focused on visual perception 

problems, such as recognition, segmentation, and 

scene parsing. Vicarious claims that its system 

requires orders of magnitude less training data than 

traditional machine learning technique in deploying 

generative probabilistic models. Inspired by biology, it 

claims to have designed algorithms with imagination 

capabilities.

• Affectiva (https://www.affectiva.com/) uses 

computer vision algorithms to capture and identify 

emotion reactions to visual stimulus.
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• Descartes Labs (https://www.descarteslabs.com/)  

is teaching computers how to see the world and 

how it changes over time based on deep learning 

and advanced remote-sensing algorithms. Their 

first application is to use massive amounts of 

satellite imagery, across both visible and nonvisible 

spectrums, to gain a better understanding of global 

crop production. Skymind analyzes media, image, 

and sound to locate and quantify patterns that impact 

businesses.

• MetaMind (https://einstein.ai/), acquired by 

Salesforce, is building an AI platform for natural 

language processing, image understanding, and 

knowledge base analytics. The company offers products 

for medical imaging, food recognition, and custom 

solutions.

• Magic Poney (acquired by Twitter) has developed 

technology to improve low-resolution images to  

high- resolution ones. By upscaling from low resolution 

to high resolution at the end of the network, it was able 

to achieve a 10x speed and performance compared to 

the state-of-the-art CNN approaches, making it possible 

to run super-resolution HD videos in real time on a  

single GPU.

• The project at http://sustain.stanford.edu/

predicting-poverty from Stanford University is able 

to predict poverty combining satellite data. It is a 

remarkable example of how machine learning and big 

data can replace expensive surveys. It correlates night 

illumination obtained from high-resolution satellites 
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to estimate the expenditure and asset wealth in some 

African countries. Convolutional neural networks were 

trained to identify image features that can explain up 

to 75 percent of the variation in local-level economic 

outcomes.

• A team from Stanford University devised an interesting 

approach to estimate a set of census data indicators 

just by analyzing images from Google Street View and 

classifying the brands and models of the cars parked 

in the streets; see “Using Deep Learning and Google 

Street View to Estimate the Demographic Makeup of 

the US” at http://ai.stanford.edu/tgebru/papers/

pnas.pdf. This could save $1 billion USD by the 

American Community Survey (ACS) that is a labor- 

intensive door-to-door study that measures statistics 

relating to race, gender, education, occupation, 

unemployment, etc. The method determines 

socioeconomic trends from 50 million images of street 

scenes, gathered in 200 American cities by Google 

Street View cars. They were able to accurately estimate 

income, race, education, and voting patterns, with 

single-precinct resolution. For instance, if the number 

of sedans encountered during a 15-minute drive 

through a city is higher than the number of pickup 

trucks, the city is likely to vote for a Democrat during 

the next presidential election (88 percent chance); 

otherwise, it is likely to vote Republican (82 percent).

• In “Context Encoders: Feature Learning by Inpainting” 

(https://arxiv.org/abs/1604.07379), the authors 

present an unsupervised visual feature learning 

algorithm driven by context-based pixel prediction. 
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By analogy with auto-encoders, the context encoder 

is a convolutional neural network trained to generate 

the contents of an arbitrary image region conditioned 

by its surroundings. It used an adversarial loss, 

producing much sharper results because it can better 

handle multiple modes in the output. The context 

encoder learns a representation that captures not just 

appearance but also the semantics of visual structures. 

The code, in Torch, is available at https://github.

com/pathak22/context-encoder.

• The startup Twentybn (https://www.twentybn.com/) 

wants to teach machines common sense about the 

world. It relies on DL architectures for video analysis. 

It has published the Something-Something (object 

interactions) and Jester (hand gestures) data sets, 

which represent the primitive actions that humans 

make in the real world from which you can learn 

common sense. Check out the presentation at  

 https://www.youtube.com/watch?v=hMcSvEa45Qo.

 4.10 Third-Party Tools and APIs
There are numerous API services that offer image recognition in the cloud 

that can be easily integrated with an existing app to build out a specific 

feature or an entire business. They can be used to detect landmarks, 

specific locations, or sceneries, or they can be used to filter out offensive 

profile images uploaded by users.

Google Cloud Vision offers several image detection services, from 

facial and optical character recognition (text) to landmark and explicit 

content detection.
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Microsoft Cognitive Services offers a collection of visual image 

recognition APIs, including emotion, celebrities, and face detection.

Clarifai and Alchemy offer computer vision APIs that help companies 

organize their content, filter out unsafe user-generated images and videos, 

and make purchasing recommendations based on viewed or taken photos.

A recent project from Google makes available pretrained models 

(on the COCO data set) for object detection in images; see the blog post 

at https://research.googleblog.com/2017/06/supercharge-your- 

computer-vision-models.html and the code at https://github.com/

tensorflow/models/tree/master/object_detection in TensorFlow. 

The user can install the code on a local machine or in the cloud. Several 

models are available, including the following:

• Single Shot Multibox Detector (SSD) with MobileNets

• SSD with Inception v2

• Region-Based Fully Convolutional Networks (R-FCN) 

with ResNets 101

• Faster RCNN with ResNets 101

• Faster RCNN with Inception ResNets v2
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CHAPTER 5

Natural Language 
Processing 
and Speech
Deep learning (DL) has had a tremendous impact on natural language 

processing (NLP). After image and audio, probably this is the area where 

DL has unleashed the most transformative forces. For example, almost all 

projects related to NLP at Stanford University, one of the most respected 

institutions working on this area, involve DL research.

Language understanding is one of the oldest, and probably hardest, 

problems in AI since it’s very high dimensional (any language can easily 

contain hundreds of thousands of words), since the data is very skewed 

(because of zip law distribution), since the data obeys grammar rules with 

subtle structure (a single word like in a negation or even punctuation can 

change meaning), since the meaning of words is intertwined in many 

layers of implicit assumptions in culture, and finally since text does not 

have an obvious spatial-temporal structure like images do (words that 

come together may not be related to the same concept like with pixels in 

images).
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However, as the large corpus of data is becoming available on the 

Internet, DL is a natural option for solving the numerous problems related 

to understanding human language. Here is a list of some major problems 

associated with NLP:

• Parsing

• Part of speech tagging

• Translation

• Text summarization

• Name entity recognition (NER)

• Sentiment analysis

• Question and answer (conversational)

• Topic modeling

• Disambiguation

DL helps improve the accuracy in many of these hard NLP problems, 

especially in parsing, which is part of speech and translation. However, 

even with the accuracy improvement, some of these remain a challenge, 

and the technology is not ready to be fully productized, like in unrestricted 

conversations.

When trained on vast amounts of data, language DL models compactly 

extract knowledge encoded in the training data. Trained on movie subtitles, 

language models are able to generate basic answers to questions about 

object colors or facts. Recent sequence-to-sequence models with conditional 

language models are able to solve complex tasks such as machine translation.

Despite that simpler models, such as n-grams, use only a short history 

of previous words to predict the next word, they are still a key component 

to modeling language. Indeed, most recent work on large-scale language 

models has shown that RNNs work very well in combination with n-grams, 

as they may have strengths that complement each other.
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 5.1 Parsing
Parsing consists of decomposing a sentence into its components (nouns, 

verbs, adverbs, etc.) and building the syntactic relation between them, 

called the parsing tree. It is a complex problem because of the ambiguity in 

possible decompositions (see Figure 5-1) describing two possible ways to 

parse a sentence.

Alice
NOUN VERB ADP ADP PRONDET NOUN NOUN NOUN VERB ADP ADP PRONDET NOUN NOUN

drove down the street in her car Alice drove down the street in her car

ROOT
ROOT

PREP

PREP PREP PREP

POBJ POBJ
POBJ

POSS

POBJ

POSSNSUBJ NSUBJDET DET

Figure 5-1. Two possible parsings of a sentence

For instance, the sentence “Alice drove down the street in her car” 

has at least two possible dependency parses. The first corresponds to 

the (correct) interpretation where Alice is driving in her car; the second 

corresponds to the (absurd but possible) interpretation where the street 

is located in her car. The ambiguity arises because the preposition in can 

modify either drove or street. The way humans disambiguate these options 

is through common sense; we know that streets cannot be located in cars. 

For machines incorporating this world, information is very challenging.

Google recently launched SyntaxNet to solve the hard parsing problem. 

(The code is based on TensorFlow and available on GitHub at https://

github.com/tensorflow/models/tree/master/research/syntaxnet.) A 

20- to 30-word sentence can have thousands of syntactic structures. Google 

used a globally normalized transition-based neural network model that 

achieves state-of-the-art part-of speech tagging, dependency parsing, and 

sentence compression. The model is a simple feed-forward neural network 

that operates on a task-specific transition system yet achieves comparable 

or better accuracies than recurrent models.
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With SyntaxNet, a sentence is processed by a feed-forward neural 

network and outputs a distribution of possible syntactical dependencies 

called hypotheses. Using a heuristic search algorithm (beam search), 

SyntaxNet runs multiple hypotheses as each word is processed and discards 

only unlikely hypotheses when other, more highly ranked hypotheses occur. 

The key insight is based on a novel proof of the label bias problem. The 

SyntaxNet English language parser Parsey McParseface  (https://research.

googleblog.com/2016/05/announcing-syntaxnet- worlds-most.html) 

is considered the best parser, surpassing, in some cases, human-level 

accuracy. Recently the service was expanded to cover about 40 languages.

 5.2 Distributed Representations
One of the core problems in NLP is related to the high-dimensionality of 

data, which leads to a huge search space and inference of grammatical 

rules. Hinton [Hin02] was one of the first to propose the idea that words 

could be represented via distributed (dense) representations. This idea 

was first developed in the context of statistical language modeling by 

Bengio [BLPL06]. The advantage of distributed representations is that 

semantics can easily be accessible, and knowledge can be transferred from 

different domains and even different languages.

Learning of a distributed (vectorized) representation for each word 

is called word embedding. Word2vec is the most popular approach to 

creating a distributed representation of words. It’s a publicly available 

library providing an efficient implementation of skip-gram vector 

representations for words. The model and implementation are based on 

the work of Mikolov [MLS13]. Word2vec works by taking every word on 

a large corpora as input and the other words that surround it, within a 

defined window, as outputs. Then we feed a neural network trained as 

a classifier (see Figure 5-2). After training, it will predict the probability 

for each word to actually appear in the window around the focus word. 
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In addition to the implementation, the authors also provide vector 

representations of words and phrases learned by training this model on 

the Google News data set (about 100 billion words). Vectors can be up to 

1,000-dimensional containing 3 million words and phrases. An interesting 

feature of these vector representations is that they capture linear 

regularities in the language. For example, the result of the vectorized word 

equation “Madrid” - “Spain” + “France” is “Paris.”

After the bag of words (BOW) with the TFIDF trick, Word2vec is probably 

the most used method for NLP problems. It’s relatively easy to implement 

and useful in understanding hidden relations in words. There is a good, 

and well-documented, Python implementation of Word2vec called 

Figure 5-2. Left: Representation of a Siamese network behind the 
Word2vec model. The hidden nodes h1,...,hN contain the vectorized 
representation of the word. Right: The schematic representation 
of word2vec using a skip-gram (word W(t) is used to predict 
context words W(t – 2) ... W(t + 2). Here a context window of 
K = 5 is considered (source: https://stackoverflow.com/
questions/30835737/word2vec- data-setup).
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Gensim  (https://radimrehurek.com/gensim/models/word2vec.html). 

Word2vec can be used with pretrained vectors or trained to learn the 

embeddings from scratch given a large training corpus, normally millions 

of documents.

Quoc Le et al. [LM14] proposed a method to encode full paragraphs 

using a similar technique to Word2vec; it’s called Paragraph Vector. Each 

paragraph is mapped to a vector, and each word is mapped to a another 

vector. The paragraph vector and word vectors are then averaged, or 

concatenated, to predict the next word given a specific context. This acts 

as a memory unit that recalls the missing part from a given context (or, in 

other words, the paragraph topic). The context vectors are of fixed length, 

and they are sampled from a sliding window over the text paragraph. The 

paragraph vector is shared across all contexts generated from the same 

paragraph, but they do not share any context with other paragraphs.

Kiros et al. [KZS+15] introduced the idea of skip-through vectors using 

unsupervised learning to encode sentences. The model used a recurrent 

network (RNN) to reconstruct neighboring sentences of a given passage. 

Sentences that share semantic and syntactic properties are mapped into 

related vector representations. They tested the model in several tasks such 

as semantic similarity, image-sentence ranking, paraphrase detection, 

question-type classification, benchmark sentiment, and subjectivity data 

sets. The end result was an encoder that can produce robust highly generic 

sentence representations.

 5.3 Knowledge Representation and Graphs
Reasoning about entities and their relations is a key problem in artificial 

intelligence. Often such problems are formulated as reasoning over 

graph-structured representations of knowledge. Most previous works 

on knowledge representation and reasoning rely on a typical pipeline 

consisting of named entity recognition (NER), entity resolution and  
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co- reference, relationship extraction, and knowledge graph inference. This 

process can be effective but can also lead to a problem of compounding of 

the error from each component subsystem. For a recent survey on graph 

embeddings methods see https://arxiv.org/pdf/1709.07604.pdf.

In a graph, entities (the nodes of the graph) are connected by relations 

(edges), and entities can have types, denoted by its relations (e.g., Socrates 

is a philosopher).

With the advent of linked data, it was proposed to interlink different 

data sets in the Semantic Web. The term knowledge graph was coined by 

Google in 2012, referring to its use of semantic knowledge in web search, 

and is recently also used to refer to other web knowledge bases such as 

DBpedia.

The knowledge graph (KG) is an elegant and powerful representation 

of structured information composed by entities (nodes) and their relations 

(edges). A recommendation system can be seen as a direct bipartite 

graph where users belong to one set of nodes and movies to the other set. 

Rankings can be considered as an edge (so, a weighed graph), but other 

types of edges can be included, like a representation of the text the user 

used in the movie review or the tags the user assigned to the movie.

Although a typical KG may contain millions of entities and billions of 

relational facts (edges), it is usually incomplete (sparse) (see Figure 5-3).  

Knowledge graph completion is a task designed to fill this graph by 

predicting relations between the nodes using the supervised signal from 

existing known connections. The goal is to find new relational facts, or 

triples.
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This task can be seen as a supplement to relation extraction from plain 

text. Knowledge graph completion is similar to link prediction in social 

network analysis, but it more challenging for the following reasons: nodes 

in knowledge graphs are entities with different types and attributes, and 

edges in KG are relations of different types (not just on-off connections). The 

quality of the algorithm for KG is evaluated by measuring whether there is a 

relation between two nodes or not and the specific type of relation.

DBpedia and Freebase are examples of extensive and well-known KG 

databases. Freebase contains about 3 billion facts (edges) relating about 

50 million nodes (entities). Most companies that crawl and categorize the 

Web have products based on KGs, including Wolfram Alpha, Google, and 

Baidu.

Knowledge graph embedding into a continuous vector space is a 

technique inspired by neural networks that has proved very useful. Several 
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github.com/aaasen/kapok) 

Chapter 5  Natural laNguage proCessiNg aNd speeCh

https://github.com/aaasen/kapok
https://github.com/aaasen/kapok


119

methods exist; TransE [BUGD+13, GBWB13] and TransH [WZFC14] are 

simple and effective methods. TransE, inspired by the work of Mikolov 

[BUGD+13], learns vector embeddings for both entities and relationships. 

The basic idea behind TransE is that the relationship between two entities 

corresponds to a translation between the embeddings of entities, that is, 

when (h,r,t) holds (see Figure 5-4). Since TransE has issues when modeling 

1-to-N, N-to- 1, and N-to-N relations, TransH was proposed to enable an 

entity with different representations when involved in various relations. 

Both TransE and TransH assume embeddings of entities and relations 

being in the same space.

head (h)

relation (r)

tail (t)

Figure 5-4. Idea behind TransE model (head, relation, tail)

Neural tensor networks (NTNs), proposed by R. Socher, are more 

expressive because they represent the entities and relations as tensors but 

are more computational intensive and do not show much improvement in 

performance over simpler methods.

Normally there are three ways to compare the methods: entity 

prediction, relation type prediction, and triple prediction. The first two are 

evaluated based on a ranking scale and the top N performance (normally 

N= 1 and N=10). The last one is a classification problem based on how well 

the model performs, distinguishing real relations as opposed to random ones.
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KG completion has several applications, namely, in personal assistants 

such as Cortana and Google Now. These techniques can help answer 

natural language questions like “What author wrote the book A that was 

natural from X?” Google has recently launched an API to query its KG 

(https://developers.google.com/knowledge-graph). With the closure 

of Freebase in December 2014, the Knowledge Graph API allows users to 

find entities that reside in the Google Knowledge Graph, using standard 

schemas types. The results are returned in JSON format.

A recent work by H. Wuang et al. [WWY15] used a method called RCNET 

that was able to beat humans with complex text related to understanding 

questions from IQ tests. They tested on several types of problems.

Analogy: Isotherm is to temperature as isobar is to?

 1. atmosphere

 2. wind

 3. pressure

 4. latitude

 5. current

Analogy II: Identify two words (one from each set of brackets) that 

form a connection when paired with the words in capitals.

 1. CHAPTER (book, verse, read)

 2. ACT (stage, audience, play)

Classification: Which is the odd one out?

 1. calm

 2. quite

 3. relaxed

 4. serene

 5. unruffled
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Synonym: Which word is closest to irrational?

 1. intransigent

 2. irredeemable

 3. unsafe

 4. lost

 5. nonsensical

Antonym: Which word is most opposite to musical?

 1. discordant

 2. loud

 3. lyrical

 4. verbal

 5. euphonious

These are challenging tasks because of the multiple definitions of 

words and the complex relations among them. To tackle these challenges, 

the authors used a framework to improve word embedding by jointly 

considering the multisense nature of words and the relational information 

among words (see Figure 5-5).
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The variational graph auto-encoder (VGAE) (https://arxiv.org/

pdf/1611.07308.pdf) is a framework for unsupervised learning and 

link prediction on KG based on the variational auto-encoder (VAE). The 

authors used latent variables to learn interpretable representations for 

undirected graphs. Using a graph convolutional network (GCN) encoder 

and an inner product decoder, they achieved competitive results on link 

prediction in citation networks, compared with the spectral clustering of 

the DeepWalk model. This model can naturally incorporate node features, 

which improves predictive performance. The TensorFlow implementation 

is available at https://github.com/tkipf/gae.

Recently Bansal et al. proposed an end-to-end approach for the task 

of question answering that directly models the entities and relations in 

the text as memory slots. They didn’t rely on any external KG but rather 

considered that all the information is contained within the text, meaning 

the memory-based neural network models for language comprehension 

[SsWF15]. Munkhdalai et al. proposed RelNet, which extends memory- 

augmented neural networks with a relational memory to reason about 

Loss of relation (wk, r, wt)

softmax

wk-N wk-1
wk+1

wk+N

wk

....

.... ....

....

softmax softmax softmax

Embedding of r Embedding of wt

Embedding of wk

Figure 5-5. RCNET for IQ test (source: [WWY15])
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relationships between multiple entities present within the text reasoning 

with memory-augmented neural networks (http://arxiv.org/

abs/1610.06454). It’s an end-to-end method that reads and writes to both 

memory slots and edges. The memory slots correspond to entities, and the 

edges correspond to relationships between entities, each represented as a 

vector. The only supervision signal comes from answering questions about 

the text.

 5.4 Natural Language Translation
Natural language translation is a hard problem that has been defeating 

a satisfactory solution since the eve of AI in the 1950s. Traditional 

DNNs have some limitations for dealing with this problem, such as 

the requirement that the inputs and targets should be encoded with 

vectors of fixed dimensionality. For sequences of arbitrary length, this is 

a serious limitation. Furthermore, while some tasks, such as document 

classification, can be performed successfully with a bag-of-words 

representation that ignores word order, the order of words is essential in 

translation. The sentences “Scientist killed by raging virus” and “Virus 

killed by raging scientist” have identical bag-of-words representations.

The quality of translation is measured by BLEU; it is the geometric mean 

of the n-gram precisions for all values of n between 1 and some upper limit, 

typically 4. Because precision can be made high by offering excessively short 

translations, the BLEU score also includes a brevity penalty [Wes16].

Unlike the traditional statistical machine translation, DNNs typically 

use a single neural network to jointly represent the distributions of both 

languages and maximize a translation score. Most models use a scheme of 

encoder–decoder to encode a source sentence into a fixed-length vector 

from which a decoder generates the respective translation.

RNNs with LSTM unities are a natural choice to process the input 

sequence and compress it into a large fixed-dimensional vector. This 
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vector is later used by another LSTM to extract the output sequence. The 

second LSTM is essentially a recurrent neural network language model 

except that it is conditioned on the input sequence. The LSTM’s ability to 

successfully learn on data with long-range temporal dependencies makes 

it a natural choice for this task because of the possible occurrence of large 

time lags between the inputs and their corresponding outputs.

Sutskever et al. [SVL14] used RNNs with long short-term memory 

(LSTM) units to achieve state-of-the-art back in 2014 performance of the 

conventional phrase-based machine translation system on an English-

to-French translation task. The network consisted of an encoding model 

(first LSTM) and a decoding model (second LSTM). They used stochastic 

gradient descent without momentum, halving the learning rate twice per 

epoch, after the first five epochs. The approach achieves a BLEU score of 

34.81, outperforming the best previous neural network NLP systems and 

matching the best published results for non-neural network approaches, 

including systems that have explicitly programmed domain expertise. 

When their system is used to rerank candidate translations from another 

system, it achieved a BLEU score of 36.5.

The implementation involved eight GPUS, and training took ten 

days to complete. One GPU was assigned to each layer of the LSTM, 

and an additional four GPUs were used simply to calculate softmax. 

The implementation was coded in C++, and each hidden layer of the 

LSTM contained 1,000 nodes. The input vocabulary contained 160,000 

words, and the output vocabulary contained 80,000 words. Weights were 

initialized uniformly randomly in the range between –0.08 and 0.08.

Bahdanau et al. [BCB14] used a variable-length encoding mechanism 

and auto-encoders to achieve a translation performance comparable to 

the existing state-of-the-art phrase-based system on the task of  English- 

to- French translation (Figure 5-6). (Preplexity is the weighted geometric 

average of the inverses of the probabilities.)

e p x
xp x( )å ( )log
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Recently the Google team published a detailed document explaining 

its new Google machine translation algorithm put into production in 

November 2016. It relies on the traditional encoder-decoder architecture 

using bidirectionally stacked LSTMs with attention mechanisms and 

working at the character level. It is implemented in TensorFlow, and the 

team claims it almost matches human performance in translation from 

several languages, like English to French or Spanish or Chinese even 

for very long sentences. The only shortcoming is that it can translate 

only single sentences, being thus incapable of contextualizing the full 

document. See the original paper called “Google’s Neural Machine 

Translation System: Bridging the Gap between Human and Machine 

Translation” (https://arxiv.org/pdf/1609.08144.pdf).

In September 2017 Google proposed Transformer (https://research.

googleblog.com/2017/08/transformer-novel-neural-network.

html?m=1), a novel recurrent network architecture that outperforms both 
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Figure 5-6. BLEU score accuracy for translation using sequence to 
sequence as a function of the sentence length. Note the stability of 
model for long sentences (source: [BCB14]).
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conventional recurrent and convolutional models on academic English 

to German and English to French translation benchmarks. Transformer 

requires less computation to train and is better suited to machine learning 

hardware, speeding up training by up to an order of magnitude. See 

Figure 5-7 and Figure 5-8, which benchmark models against humans.

English French Translation Quality

GNMT (RNN)
38

39

40

41

42 BLEU

ConvS2S (CNN) Transformer

Figure 5-7. BLEU score accuracy for translation using transformer 
architecture (source: https://research.googleblog.com/2017/08/
transformer-novel-neural-network.html?m=1)
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 5.5 Other Applications
The explosion of social networking sites, blogs, and review sites provide 

a plenitude of information of a scale unthinkable just a few years ago. 

Millions of people express opinions on everything from movies and 

books to photos and political parties. In the past, this feedback was 

pretty much ignored, but now companies have realized the importance 

of these opinions and reviews in product development, customer 

care, and customer engagement. Sentiment analysis (SA) is the task of 

understanding and classifying this information into easy-to-read insights. 

The most basic scenario is the classification into positive or negative. SA 

normally involves name entity recognition and type of sentiment (positive, 

negative, or neutral) and is usually represented as a graph.

However, sentiments are seldom explicitly positive or negative but 

rather a mix of opinions about various features. Consider the review  

“I like XXX multimedia features, but the battery life sucks.” The sentiment 
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Figure 5-8. Translation quality of Google language translation 
using sequence-to-sequence model (source: https://research.
googleblog.com/2016/09/a-neural-network-for-machine.html)

Chapter 5  Natural laNguage proCessiNg aNd speeCh

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html


128

regarding the multimedia features is positive, whereas the sentiment 

regarding battery life is negative. The association between specific 

features and opinions can be captured by the short-range and long-range 

dependencies between the words. Clustering is used on the graph to 

retrieve only those opinion expressions that are most closely related to the 

target feature (user-specified feature), and the rest are pruned.

Natural language reading capabilities, such as being able to answer 

questions given some text, have proven difficult for machines. Hermann 

et al. [HKG+15] introduced a novel differentiable attention mechanism that 

allows neural networks to focus on different parts of input. These authors 

proposed two new corpora of about a million news stories with associated 

queries from the CNN and Daily Mail web sites. Inspired by [SVL14], they 

used an RNN with an attention mechanism to answer open questions 

about text and achieved about 85 percent correct results in the top ten most 

frequent entities in the text. An elegant variant of this idea was successfully 

applied to machine translation by Bahdanau et al. [BCB14].

Zhang et al. [ZCSG16] used character-level temporal convolutional 

networks to abstract text concepts. The trick was to use a special pooling 

module that allows training of a network with more than six layers. They 

applied it to large-scale data sets, including ontology classification, 

sentiment analysis, and text categorization and achieved much higher 

performance than other baselines, even without the knowledge of words, 

phrases, sentences, and any other syntactic or semantic structures with 

regard to a human language, either for English or for Chinese.

Ghosh [GVS+16] used a contextual LSTM (CLSTM), an extension of 

the recurrent neural network LSTM model, which incorporates contextual 

features (e.g., topics) into the model to improve considerably word 

prediction, next-sentence selection, and sentence topic prediction. They 

tested in two corpora: English documents in Wikipedia and a subset 

of English Google News. In the next-sentence selection task, they get a 

relative accuracy improvements of 21 percent over LSTM.
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A recent work (https://arxiv.org/pdf/1704.01444.pdf) from the 

OpenAI team presents an interesting approach to sentiment analysis using 

LSTM. They showed that training LSTM for next-character prediction 

on the Amazon reviews data set is enough to learn complex and useful 

representations of the data. Specifically, they found that using a single 

neuron unit in the network used for sentiment analysis is enough to 

achieve state-of-the-art results on the binary subset of the Stanford 

Sentiment Treebank.

 5.6 Multimodal Learning and Q&A
Computer vision and NLP are becoming increasingly intertwined. 

For example, caption generation is a much harder task than image 

classification or object recognition. The caption should capture the objects 

in the image, but it also must express relations between them or actions. 

A recent work pioneered the automatic generation of open-ended lingual 

descriptions of images [VTBE14]. Vinyals et al. introduce a model based 

from end to end on a neural network consisting of a CNN to process 

images followed by a language-generating RNN. It generates complete 

sentences in natural language from an input image. See Show and Tell:  

A Neural Image Caption Generator [VTBE14]. They achieved BLEU scores 

close to humans on the Flickr and COCO data sets.

Also, recent methods for natural language processing learn the 

semantics of language by grounding it in the visual world. The relation 

between images and words is similar to the hypernym relation between 

words and textual entailment among phrases. You can see captions as 

abstractions of images. The most recent approaches to the hypernym, 

entailment, and image-caption problem involve building distributed 

representations or embeddings, either from words or from images. This is 

a powerful approach where similar entities are mapped to neighbor points 
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in a high-dimensional embedding space. Some metric, usually the cosine, 

is used to compare and retrieve images from text, and vice versa.

Vendrov et al. [VKFU15] proposed a method called order-embeddings 

to take advantage of the partial-order structure of the visual-semantic 

hierarchy by learning a mapping that is not distance-preserving but order- 

preserving between the visual-semantic hierarchy and a partial order over 

the embedding space. They showed that order-embedding provides state- 

of- the-art results for hypernymy prediction and caption-image retrieval 

and also provides very good performance on natural language inference. 

They tested on the Microsoft COCO data set, with more than 120,000 

images, each with at least five human-annotated captions per image. 

They achieved top one/top ten accuracy of 23.3 percent/65.0 percent, 

respectively, in caption retrieval and achieved 18.0 percent/57.6 percent in 

image retrieval.

 5.7 Speech Recognition
Automatic speech recognition (ASR) refers to the problem of translating 

voice into text. It’s an old problem in machine learning that proved to be 

hard to solve by traditional techniques relying on Markov chain processes.

The reference benchmarks for this problem are the data sets 

Switchboard and TIMIT. TIMIT contains broadband recordings of 630 

speakers of eight major dialects of American English, each reading ten 

phonetically rich sentences. The TIMIT corpus includes time-aligned 

orthographic, phonetic, and word transcriptions as well as a 16-bit, 16kHz 

speech waveform file for each utterance.

The first application of deep believe networks (DBNs) to the TIMIT 

data set achieved an accuracy of about 23 percent; see www.cs.toronto.

edu/asamir/papers/NIPS09.pdf. However, the state-of-the-art 

accuracy is 16.5 percent using a DBN with post-regularization on the 
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last layer; see https://www.researchgate.net/profile/Jan_Vanek/

publication/320038040. The accuracy is so high that many mobile 

applications rely purely on voice.

Graves et al. [AG13] pioneered the use of deep bidirectional LSTM 

for this problem, achieving a remarkable 17.7 percent error rate in the 

TIMIT database. They applied an end-to-end approach for discriminative 

sequence transcription with recurrent neural networks. These methods 

do not require any alignments to presegment the acoustic data, as they 

directly optimize the probability of the target sequence conditioned on the 

input sequence and are able to learn an implicit language model from the 

acoustic training data.

A Baidu team recently proposed an ASR model for translating voice 

into text [AOS+16]. The improvement performance of the algorithm is 

due to deep learning replacing feature extraction modules with a single 

neural model. The system, called Deep Speech 2, approaches the accuracy 

of humans in several languages. This system was built on end-to-end 

deep learning using a bidirectional RNN trained in clean and noise 

environments. In English, the speech system was trained on 11,940 hours 

of speech, and in Mandarin it was trained for 9,400 hours. Data synthesis 

was used to augment the data during training. Training a single model 

at these scales requires tens of exaFLOPs that would require three to six 

weeks to execute on a single GPU.

In August 2017 Microsoft introduced a new algorithm that reduced the 

error rate in Switchboard, a standard test for voice transcription accuracy 

widely used in the industry, to 5.1 percent. By comparison, a single 

human transcriptionist has an average error rate of 5.9 percent. It used a 

combination of CNNs and bidirectional LSTM. See https://arxiv.org/

abs/1708.06073.
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However, in terms of the accuracy of personal assistants relying on voice, 

Google has the lead, according to a study from Temple. See Figure 5- 9.
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Figure 5-9. Accuracy of several personal assistants (source: http://
uk.businessinsider.com/siri-vs-google-assistant-cortana-
alexa-knowledge-study-chart-2017-6?r=US%20IR=T) 

Deepmind released WaveNet (https://deepmind.com/blog/wavenet- 

launches- google-assistant/), which is a product for voice synthesis—a 

process usually referred to as speech synthesis or text-to-speech (TTS)—

with remarkable quality. Traditional models rely on concatenative TTS 

where a very large database of short speech fragments are recorded from 

a single speaker and then recombined to form complete utterances. 

WaveNet directly models the raw waveform of the audio signal one sample 

at a time, yielding more natural-sounding speech. WaveNet can model any 

kind of audio, including music.

Chapter 5  Natural laNguage proCessiNg aNd speeCh

http://uk.businessinsider.com/siri-vs-google-assistant-cortana-alexa-knowledge-study-chart-2017-6?r=US IR=T
http://uk.businessinsider.com/siri-vs-google-assistant-cortana-alexa-knowledge-study-chart-2017-6?r=US IR=T
http://uk.businessinsider.com/siri-vs-google-assistant-cortana-alexa-knowledge-study-chart-2017-6?r=US IR=T
https://deepmind.com/blog/wavenet-launches-google-assistant/
https://deepmind.com/blog/wavenet-launches-google-assistant/


133

 5.8 News and Resources
Here are some resources for you:

• The GitHub page at https://github.com/

andrewt3000/DL4NLP contains some good references to 

learn about NLP with deep learning techniques, such 

as distributed representations and conversational bots.

• Facebook’s Language Technology team, which 

forms part of Applied ML, was the subject of a recent 

exposé by Forbes diving into its various initiatives. 

The team recently published their text understanding 

engine, DeepText (https://code.facebook.com/

posts/181565595577955/introducing-deeptext- 

facebook-s-text-understanding-engine/), which 

is able to understand sentiment, intent, and entities 

across more than 20 languages. Facebook has also 

built a new multilingual composer to enable authors of 

posts on Facebook Pages to reach audiences in other 

languages using automatic machine translation.

• A recent blog post (https://research.googleblog.

com/2016/08/text-summarization-with-tensorflow.

html) from the Google team explains in detail a method 

for text summarization using TensorFlow. The authors 

reached state-of-the-art performance, and the code is 

open source.

• Matthew Honnibal maintains a GitHub repository 

(https://github.com/explosion/spaCy/tree/

master/examples/keras_parikh_entailment) of a 

decomposable attention model for natural language 

inference. It is implemented using Keras and spaCy and 
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is designed to compare two documents. The code is 

clean and relies on pretrained glove word embeddings 

and bidirectional GRU with ab attention mechanism. 

The details of the implementation are explained in 

the blog post at https://explosion.ai/blog/deep- 

learning- formula-nlp.

• Spnis raised $13 million to create a voice assistant 

platform to search and buy products as an alternative 

to Google and Amazon. Snips claims the accuracy of its 

natural language technology outpaces Facebook’s Wit.ai,  

Google’s API.ai, and Microsoft’s Luis. The platform 

works in five languages: French, English, Spanish, 

German, and Korean

• The blog post at www.wildml.com/2016/01/attention- 

and- memory-in-deep-learning-and-nlp/ gives a good 

overview of attentive mechanisms on neural networks 

with memory.

• In a recent paper (https://arxiv.org/

abs/1611.01599), the authors propose LipNet as a 

network able to read the lips of humans and guess the 

words they were whispering with an accuracy of 93.4 

percent, compared with an accuracy of 52.3 percent for 

humans.

• Microsoft proposed an algorithm (https://arxiv.org/

abs/1609.03528) for speech recognition, achieving a 

SOTA performance on the Switchboard data set of 5.8 

percent, which is .1 percent lower than humans. The 

authors used a clever architecture based on recurrent 

and convolutional neural networks.
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• The tutorial at https://github.com/tensorflow/

nmt gives readers a full understanding of sequence- 

to- sequence (seq2seq) models and how to build one 

from scratch. It focuses on the task of neural machine 

translation (NMT), which was the first testbed for 

seq2seq models with wild success. The included code 

is lightweight, high-quality, production-ready, and 

incorporated with the latest research ideas.

• One of the pioneers of applying NLP to business was 

Baker & Hostetler (https://www.bakerlaw.com/). The 

AI assistant Ross was the first artificially intelligent 

attorney built on IBM’s cognitive computer Watson. 

It was designed to read and understand language, 

generate hypotheses, and formulate responses 

(along with references and citations) to support the 

conclusions.

• A recent project from Google Tacotron 2 (https://

research.googleblog.com/2017/12/tacotron- 

2- generating-human-like-speech.html) uses a 

combination of DL techniques (including Wavenet and 

LSTMs) to solve the problem of text-to-speech (TTS). 

The generated samples are of excellent quality, and the 

synthetic speech is almost indistinguishable from real 

humans.
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 5.9 Summary and a Speculative Outlook
Despite the progress, understanding language and having an agent 

capable of a meaningful conversation are the hardest problems of GAI 

and probably will not be solved in the present context of DL. The John 

Searle criticism, in his Chinese room argument, has a valid point. Gary 

Marcus’s arguments (www.newyorker.com/contributors/gary-marcus) in 

his New Yorker column are also very pertinent. Maybe we need a different 

paradigm as all DL methods are basically statistical pattern matching. Can, 

for instance, language translation ever be understood as symbol-to-symbol 

pattern matching? Can we ever construct a conversational bot without the 

sense of “self” and understanding of basic human behavior?

Language is not an impossible problem, but probably the reason it 

seems so easy for humans to disambiguate language meaning is because 

we rely on a very large set of explicit and implicit assumptions about the 

world and about ourselves against which we easily extract “meaning.” 

These assumptions could possibly be framed as ML, but we need a new 

type of objective function and to create the sense of persistency and the 

sense of “self” into these algorithms.

To do that, we need a new learning paradigm, not from external data 

sources but where the agent decides what is “external” and “internal.” 

This may require some of the tools we already have, like nonsupervised 

concept understanding, but an important component is needed: social 

interactions. A fully meaningful conversation will only be possible when 

machines evolve into a society of their own and develop some rudimentary 

sense of intersubjectivity; see www.princeton.edu/graziano/ for some 

arguments on this point.
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CHAPTER 6

Reinforcement 
Learning and 
Robotics
Due to the recent achievements of deep learning [GBC16] benefiting from 

big data, powerful computation, and new algorithmic techniques, we have 

been witnessing the renaissance of reinforcement learning, especially the 

combination of reinforcement learning and deep neural networks, the so 

called deep reinforcement learning (deep RL). Deep Q-networks (DQNs) 

have ignited the field of deep RL [MKS+15] by allowing machines to achieve 

superhuman performance in Atari games and the very hard board game of Go.

It has long been known that RL is unstable when the action-value Q function 

was approximated with nonlinear functions, such as neural networks. 

However, DQNs made several contributions to improve the learning’s stability.

• DQNs stabilized the training of the Q-action value 

function approximation using a CNN with replay.

• DQNs used an end-to-end RL approach, taking only 

raw pixels and the game score as inputs.

• DQNs used a flexible network with the same algorithm, 

network architecture, and hyperparameters to play 

different Atari games.
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These are some of the recent advances and architectures for RL:

• Deep Q-networks [MBM+16] helped AlphaGo [SHM+16] 

defeat the world champion of Go.

• Asynchronous methods for deep reinforcement 

learning

• Value iteration networks

• Guided policy search [LFDA16]

• Generative adversarial imitation learning

• Unsupervised reinforcement and auxiliary learning

• Neural architecture design

 6.1 What Is Reinforcement Learning?
Reinforcement learning solves sequential decision-making problems, 

which are problems that require several steps before a reward is received, 

such as video games. RL agents typically interact with the environment 

over time and change it, so they work on a moving background and chase a 

moving target.

At each time step t, the agent is in a state st and selects an action at 

from some action space A, following a policy p a st t|( ) , which is the agent’s 

behavior, in other words, a mapping from state st to actions at. It receives a 

reward, rt, and moves to the next state, st+1 , according to the environment 

dynamics, or model, for a given reward function R(s, a) and state transition 

probability P s s at t t+( )1 | , , respectively.
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A value function is a prediction of the expected, accumulative, 

discounted, future reward, measuring how good each state, or state-action 

pair, is. Here, the action value is the expected return for selecting action a 

in state s and then following policy π:

 Q s a E R s s a at t t
p ,( ) = = =[ ]| ,  (6.1)

An optimal action value function Q* (s, a) is the maximum action value 

achievable by any policy for state s and action a. You can define state value 

Vπ(s) and optimal state value V*(s) similarly. Temporal difference (TD) 

learning is a central idea in RL. It learns the value function V(s) directly 

from experience with a TD error, with bootstrapping, in a model-free, 

online, and fully incremental way. The updated rule is thus as follows:

 
V s V s r s V st t t t t( )¬ ( )+ + ( )- ( )éë ùû+a g 1  (6.2)

Here, α is a learning rate, γ is the discount factor, and r s V st t t+ ( )- ( )+g 1  

is the TD error.

Similarly, Q-learning learns the action-value function with the update 

rule, shown here:

Q s a Q s a r a Q s a Q s at t t t t t t t t, , ,( )¬ ( )+ + ( )- ( )+ + +a g[ max , ]1 1 1  (6.3)

Q-learning is an off-policy control method in contrast with SARSA, 

which stands for state, action, reward, (next) state, (next) action. This is an 

on-policy control method, with the update rule.

 Q s a Q s a r s a Q s at t t t t t t t, , ,( )¬ ( )+ + ( )- ( )+ +a g[ , ]1 1  (6.4)

SARSA refines the policy greedily with respect to action values.
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 6.2 Traditional RL
Reinforcement learning in the traditional control theory can be framed as 

follows: Suppose an agent is situated in a complex mutable environment 

(e.g., a breakout game). At each time step, the environment is in a given 

state (e.g., position of the paddle, direction of the ball, locations of bricks, 

etc.). The agent is able to realize a number of actions in the environment 

and change them (e.g., move the paddle). These actions may result in a 

reward or punishment, and some may transform the environment and lead 

to a new state, where the agent can perform a new set of actions. The rules 

to select those actions are designated by the policy. The environment in 

general is stochastic, meaning that the next state will have a small random 

component (e.g., if you launch a ball, it may go toward a random direction). 

This scenario is characterized by a Markovian decision process (MDP) with 

either observed or unobserved (hidden) states (see Figure 6- 1).

In this scenario, RL is stated as an iterative equation called the Bellman 

equation.

V s F s a V T s a( ) = ( ) + ( )( )max , ,b

Here, s is the state, a is the possible actions, and F is the payoff when 

the agent changes to a new state, T. The agent tries to find a set of actions 

that maximize the payoff over time.

The end goal of reinforcement DL is to create a general-purpose 

framework for representation learning where given an objective, learn a 

representation required to achieve that objective directly from raw inputs 

with minimal domain knowledge. Deep learning RL was been successful in 

playing games (such as Go and video games), exploring worlds (3D worlds 

and labyrinths), controlling physical systems (manipulating objects, 

walking, swimming), and performing user interactions (recommendation 

algorithms, optimization, personalization).
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An RL agent normally includes the following components: policy (agent’s 

behavior function), value function (how good each state and/or action is), 

and model (an agent’s representation of the environment) (see Figure 6- 1). A 

policy, or agent’s behavior, is basically a map from internal states to actions. It 

can be deterministic, as in π(s), or stochastic, as in p a s P a s| |( ) = [ ] .

DNNs can be used to represent all the components such as the value 

function, policy, and model of the world, and the loss function can be 

obtained by stochastic gradient descent.

A value function is a prediction of future reward from action a in state s.  

The Q-value function gives an expected total reward, from state s and 

action a under policy π with a discount factor γ.

Q s a E rt rt rt s a, .( ) = + + + + + +¼[ ]1 2 2 3g g | ,

The discount factor is just a way to propagate delayed rewards over time 

(see Figure 6- 2).

Figure 6-1. Markovian states in a traditional reinforcement learning 
problem

Figure 6-2. Learning: adapting policy
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 6.3 DNN for Reinforcement Learning
Policy gradient algorithms are normally used for RL problems with 

continuous action spaces. These algorithms work by representing the 

policy as a probability distribution, p qq a s P a s| | ;( ) = [ ], that stochastically 

selects a set of actions a in state space s in accordance with vector θ 

representing the parameters of the model. Policy gradient algorithms 

evolve by sampling this policy and adjusting the parameters toward 

maximizing the cumulative reward.

In 2014, Silver introduced the deterministic policy gradient (DPG), 

an algorithm for efficient estimation of policy gradients later extended to 

deep neural networks (http://proceedings.mlr.press/v32/silver14.

pdf). The DPG is formulated as the expected gradient of the action- 

value function (it incorporates both actions and states into a single 

representation). This way the DPG can be more efficiently estimated than 

the usual stochastic policy gradient.

The Guided Policy Search (GPS) was proposed by Levine [LFDA16]. 

GPS transforms policy search into supervised learning with training data 

provided by a trajectory-centric RL. GPS alternates between trajectory-

centric RL and supervised learning and utilizes pre-training to reduce 

the amount of experience data to train visuomotor policies. Good 

performance was achieved on a range of real-world manipulation tasks 

requiring localization, visual tracking, and handling complex contact 

dynamics. The authors claim that “this is the first method that can train 

deep visuomotor policies for complex, high-dimensional manipulation 

skills with direct torque control”.
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 6.3.1 Deterministic Policy Gradient
Silver introduced the DPG algorithm for RL problems with continuous 

action spaces. The deterministic policy gradient is the expected gradient of 

the action-value function, which integrates over the state space; whereas 

in the stochastic case, the policy gradient integrates over both state and 

action spaces. Consequently, the deterministic policy gradient can be 

estimated more efficiently than the stochastic policy gradient.

The authors introduced an off-policy actor-critic algorithm to learn 

a deterministic target policy from an exploratory behavior policy and 

to ensure an unbiased policy gradient with the compatible function 

approximation for deterministic policy gradients. Empirical results 

showed its superior to stochastic policy gradients, in particular in high- 

dimensional tasks, on several problems: a high-dimensional bandit; 

standard benchmark RL tasks of a mountain car and a pendulum and a 

2D puddle world with low-dimensional action spaces; and controlling an 

octopus arm with a high-dimensional action space. The experiments were 

conducted with tile-coding and linear function approximators.

 6.3.2 Deep Deterministic Policy Gradient
Despite the DQN algorithm being able to solve problems with high- 

dimensional observation spaces, it was designed to work with discrete 

and low-dimensional action spaces. However, most control tasks deal with 

continuous high-dimensional spaces. Lillicrap et al. proposed a model- 

free, off-policy actor-critic algorithm using function approximators that 

can learn policies in high-dimensional, continuous action spaces. They 

used batch normalization within an actor-critic approach and relied 

on two previous innovations from DQN: training the network off-policy 

with samples from replays to minimize correlations and training the 

network with a target Q-network to give consistent targets during temporal 

difference backups.
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In “Asynchronous Methods for Deep Reinforcement Learning” 

(https://arxiv.org/abs/1602.01783), the authors proposed an actor- 

critic, model-free, deep deterministic policy gradient (DDPG) algorithm 

in continuous action spaces by extending the DQN algorithm. The actor- 

critic avoids the optimization of actions at every time step to obtain a 

greedy policy as in Q-learning, which will make it infeasible in complex 

action spaces with large functions approximators like deep neural 

networks.

The DDPG algorithm learns an actor policy based on experiences from 

an exploration policy by adding noise sampled from a noise process to the 

actor policy. More than 20 simulated physics tasks of varying difficulty in 

the MuJoCo environment were solved with the same learning algorithm, 

network architecture, and hyperparameters. The DDPG algorithm can 

solve problems with 20 times fewer steps of experience than DQN, although 

it still needs a large number of training episodes to find solutions, as in 

most model-free RL methods. It is end to end, with raw pixels as input.

 6.3.3 Deep Q-learning
Deep Q-learning is a model-free reinforcement learning algorithm used 

to train deep neural networks on control tasks such as playing Atari 

games. Q-learning algorithms are a little different from the policy-based 

algorithms.

Unlike policy gradient methods, which attempt to learn functions that 

directly map an observation to an action, Q-learning attempts to learn 

the value of being in a given state, s, and taking a specific action, a, there. 

It combines actions and states into a single representation. While both 

approaches guide the agent toward efficient rewards, the process of how 

they get to the best set of actions differ (see Figure 6-3).
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In Q-learning, a deep network is trained to approximate the optimal 

action-value function Q(s, a), which is the expected long-term cumulative 

reward of taking action a in state s and then optimally selecting future 

actions. This can be quite a complex map, but as long as you provide 

enough training data, the network will learn it.

Remember that model-free reinforcement learning algorithms 

directly learn a control policy without explicitly building a model of the 

environment (reward and state transition distributions), while model- based 

algorithms learn a model of the environment and use it to select actions by 

planning.

Q(s, a) represents the best possible score at the end of the game or set 

of tasks from a state s. Q refers to the “quality” of a certain action in a given 

state.

The main idea in Q-learning is that you can iteratively approximate 

the Q-function using the Bellman equation. In the simplest case, the 

Q-function is implemented as a table, with states as rows and actions as 

columns. Figure 6-4 shows the pseudocode for DQN.

Q(s,a) Q(s,a)

Neural Network f

State StateAction

Figure 6-3. Deep Q-learning algorithm
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Figure 6-4. Deep Q-network, adapted from https://arxiv.org/
pdf/1701.07274.pdf

DeepMind used the Q-learning approach in a data set of 30 million 

position-move pairs from Go games played by people and, then improving 

this neural network with reinforcement learning, played against itself. It 

added Monte Carlo tree search (MCTS) by using supervised learning data 

to train a second network that is much faster to evaluate, called the rollout 

network. The full policy network is only ever used once to get an initial 

estimate on how good a move is, and then the much faster rollout policy is 

used to choose the many more moves needed to get to an end of the game 

in an MCTS rollout. This makes the move selections in simulation better 

than random but fast enough to have the benefits of MCTS.
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A third trick is that DeepMind trained a neural net to predict what good 

moves are and another neural net to evaluate each Go position. DeepMind 

used the already trained high-quality policy network to generate a data set 

of positions and final outcomes in that game and trained a value network 

that evaluated a position based on the overall probability of winning the 

game from that position. So, the policy net suggests promising moves to 

evaluate, which is then done through a combination of MCTS rollouts 

(using the rollout net) and the value network prediction, which turns out 

to work significantly better than either by itself. AlphaGo ran on 48 CPUs 

and with 8 GPUs, with neural net computations being done in parallel.

To learn more about Deep RL, see https://www.nervanasys.com/

demystifying-deep-reinforcement-learning/, which is an interesting 

tutorial on Q-learning, or see https://medium.com/@awjuliani/simple- 

reinforcement- learning-with-tensorflow-part-0-q-learning-with-

tables- and-neural-networks-d195264329d0 in TensorFlow.

 6.3.4 Actor-Critic Algorithm
The actor-critic algorithm (A3C) was released by Google’s DeepMind group 

in 2016 and made DQN obsolete. It was faster, simpler, more robust, and 

able to achieve much better scores on the standard battery of deep RL tasks. 

On top of all that, it could work in continuous as well as discrete action 

spaces. Given this, it has become the de facto deep RL algorithm for new 

challenging problems with complex state and action spaces. OpenAI just 

released a version of A3C as its “universal starter agent” for working with its 

new (and very diverse) set of universe environments (see Figure 6-5).
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Unlike DQN, where a single agent is represented by a single neural 

network interacting with a single environment, A3C uses multiple agents 

to learn more efficiently. In A3C, there is a global network and multiple 

worker agents that each have their own set of network parameters  

(see Figure 6-6). Each of these agents interacts with its own copy of the 

environment at the same time as the other agents are interacting with their 

environments. The reason this works better than having a single agent 

(beyond the speedup of getting more work done) is that the experience of 

each agent is independent of the experience of the others. In this way, the 

overall experience available for training becomes more diverse.

Figure 6-5. Actor-critic architecture (source: https://medium.
com/emergent-future/simple-reinforcement-learning-with-
tensorflow-part-8-asynchronous-actor-critic-agents-a3c-
c88f72a5e9f2)
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The pseudocode for asynchronous advantage actor-critic for 

each actor-learner thread is presented next. A3C maintains a policy 

of p qa st t| ;( )  and an estimate of the value function V(st; θv), being 

updated with n-step returns in the forward view, after every tmax 

actions or reaching a terminal state, similar to using mini-batches. The 

gradient update can be seen as Ñ ¢( ) ( )q p q q q’ log | ;a s A s at t t t v, ; , , where 

A s a r V s V st t v
i

k
i
t i

k
t k v t v, ; , ; ;q q g g q q( ) = + ( ) - ( )

=

-

+ +å
0

1

 is an estimate of the 

advantage function, with k upbounded by tmax.

Figure 6-6. A3C, each actor-learner thread, based on [MBM+16] 
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Actor-critic combines the benefits of both value-iteration methods 

(Q-learning) and policy-iteration methods (policy gradient). A3C 

estimates both a value function V (s) (how good a certain state is to be in) 

and a policy π(s), which is a set of action probability outputs for each fully 

connected layer at the top of the network. Critically, the agent uses the 

value estimate (the critic) to update the policy (the actor) more efficiently.

The insight of using advantage estimates rather than just discounted 

returns is to allow the agent to determine not just how good its actions were 

but how much better they turned out to be than expected. Intuitively, this 

allows the algorithm to focus on where the network’s predictions were lacking.

Advantage A Q s a V s: = ( )- ( ),

Since you won’t be determining the Q values directly in A3C, you can 

use the discounted returns (R) as an estimate of Q(s,a) to allow you to 

generate an estimate of the advantage.

 6.4 Robotics and Control
Robotics is still probably the most obvious choice for AI applications. 

Reality had always lagged behind the Hollywood fanfare of apocalyptic 

killer robots. DL, however, brought a complete new toolkit set to help solve 

some complex tasks related with robotics, such as locomotion, grasping, 

and object manipulation as well as sensor data processing. This section 

reviews some recent breakthroughs and applications.

One of the most important tasks in robotics is object grasping. Pinto 

and Gupta proposed a method to self-train a robot (Baxter) on the hard 

task of object grasping without relying on human-labeled data sets; see 

“Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 

Robot Hours” (https://arxiv.org/abs/1509.06825). They used the 

robot to autonomously collect a huge data set of 50,000 data points, with 
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more than 700 hours of grasping attempts. This allowed the training of 

a deep convolutional neural network (CNN) for the task of predicting 

grasp locations. The multistage learning approach, where a CNN trained 

in one stage is used to collect positive/negatives examples in subsequent 

stages, achieved an accuracy of 66 percent in new objects and 73 percent 

on already seen objects. The authors claimed that the advantage over a 

geometry-based approach is that CNNs do not ignore the densities and 

mass distribution of the objects.

In a project from University of Maryland, Y. Yang et al. used again the 

robot Baxter to learn manipulation and to conceive action plans from 

watching videos (www.umiacs.umd.edu/yzyang/paper/YouCookMani_

CameraReady.pdf). Two CNN-based recognition modules, as well as a 

language model (with RNN) for action prediction, were used. They used 

a probabilistic manipulation action grammar–based parser (Viterbi) to 

generate commands. The robot learned from watching culinary videos (a 

cooking data set) consisting of unconstrained demonstration videos. The 

system was able to recognize and generate action commands robustly, 

demonstrated by the ability to prepare new recipes from broadly specified 

natural language input.

Recently, Levine et al. [LFDA16] proposed a method for hand-eye 

coordination of robotic object manipulation, requiring minimal planning. 

Humans rely heavily on constant visual feedback for object handling and 

complex coordination. However, incorporating complex sensory inputs 

directly into a feedback controller is challenging. Thus, the authors proposed 

a learning-based approach to hand-eye coordination using end- to- end 

training directly from image pixels. By continuously recomputing the 

most promising motor commands, this method continuously integrates 

sensory cues from the environment, allowing it to adjust the movements to 

maximize the probability of success in a specific task. This means that the 

model does not require the camera to be precisely calibrated with respect 

to the end effector, relying instead on visual cues to determine the spatial 

relationship between the gripper and graspable objects in the scene.
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Berkeley robotics researchers used consumer-grade virtual reality 

devices (Vive VR), an aging WIllow Garage PR2 robot, and custom 

software built for the teleoperator to create a single system to teach robots 

to perform tasks. The system uses a single neural network architecture 

that is able to map raw pixel inputs to actions; see  https://arxiv.org/

abs/1710.04615. For each task, less than 30 minutes of demonstration data 

is sufficient to learn a successful policy, with the same hyperparameter 

settings and neural network architecture used across all tasks. Tasks 

include reaching, grasping, pushing, putting a simple model plane 

together, removing a nail with a hammer, grasping an object and placing it 

somewhere, grasping an object and dropping it in a bowl and then pushing 

the bowl, moving cloth, and picking up and placing for two objects in 

succession. Competitive results were achieved with 90 percent accuracy at 

test time across many of the tasks, though note that picking up and placing 

for two objects achieved 80 percent (because modern AI techniques still 

have trouble with sequences of physical actions) and achieved about 83 

percent on the similar task of picking up an object and dropping it into a 

bowl and then pushing the bowl.

Peng et al. [PBvdP16] used deep neural networks trained with 

reinforcement learning together with physics-based simulations to 

develop, from first principles, a sequential decision problem with states, 

actions, rewards, and a control policy with remarkable results. They were 

able to design control policies that operate directly on high-dimensional 

character state descriptions (83 dimensions) and an environment state 

that consists of a height-field image of the upcoming terrain using 200 

dimensions. They also parameterized the action space into 29 dimensions, 

which allows the control policy to operate at the level of bounds, leaps, 

and steps. The novelty was the introduction of the mixture of actor- 

critic experts (MACE) architecture to enable accelerated learning. 

MACE develops N individual control policies and their associated value 

functions, which each then specialize in particular regimes of the overall 

motion. During final policy execution, the policy associated with the 
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highest-value function is executed, in a fashion analogous to Q-learning 

with discrete actions. The results are interesting; see the video at https://

www.youtube.com/watch?v=HqV9H2Qk-DM and the paper at  www.cs.ubc.

ca/van/papers/2016-TOG-deepRL.

Recently, DeepMind developed an algorithm (https://arxiv.org/

abs/1707.02286) to train agents (human-like and spider-like) to learn 

how to walk, run, and jump in challenging virtual landscapes. It used a 

rich environment to promote the learning of complex behavior where 

the agents were immersed. DeepMind used a variant of policy gradient 

reinforcement learning, called proximal policy optimization, to teach the 

agents to run, jump, crouch, and turn without using any explicit reward- 

based guidance. You can learn more at https://deepmind.com/blog/

producing-flexible-behaviours-simulated-environments/.

 6.5 Self-Driving Cars
Deep learning plays a considerable role in self-driving car technology by 

analyzing a disparate set of signals, with video being the most challenging. 

Following the recent success of the Google driverless car, almost all car 

makers are considering this option in future versions of their cars. Some 

models under test are Toyota Prius, Audi TT, and Lexus RX450h. Tesla S3 

will probably be the first production-ready car with self-driving capabilities 

included by default. All of these models rely on deep learning technology 

for object recognition, planning, routing, and object avoidance.

Google has developed its own custom vehicle, assembled by Roush 

Enterprises. It relies on a 64-beam laser detector that allows the vehicle 

to generate a detailed 3D map of its environment. The algorithm uses 

these maps and combines them with high-resolution maps of the world, 

producing a sufficiently detailed model for self-navigation. Google has test-

driven its fleet of vehicles, in autonomous mode, on a total of more than 1.5 

million miles. Google’s vehicles have shown to be sufficiently capable to 

drive in heavy traffic in cities as well as on challenging off-road terrain.
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Baidu’s is investing heavily in self-driving cars and using the Apollo 

software is planning to release a fully self-driving bus in 2018. Samsung is 

also testing self-driving cars in South Korea and GM and Cruise announce 

in 2017 the first mass-production self-driving car. Other companies, like 

Otto, are focused in software for self-driving trucks. The core technology 

is based on DL algorithms. Baidu and Google are pushing toward 

governmental regulation of self-driven cars, claiming they require only 

minor changes in actual infrastructure. The goal of Baidu is to run a shuttle 

service in Chinese cities by 2018; another startup, NuTonomy, is planning 

its own shuttle service in Singapore.

Drive.ai is also working to bring DL to autonomous car technology. 

Rather than programming a car, Drive.ai will allow the algorithms to learn 

on their own, though it hasn’t disclosed how far along the company is with 

the technology.

However, autonomous driving requires intuitive psychology. The self- 

driving car needs to have some commonsense understanding or be able 

to infer pedestrian behavior and beliefs (do they think it is safe to cross the 

street? Are they paying attention?) as well as desires (where do they want to 

go? Are they in a rush?). Similarly, other drivers on the road have similarly 

complex mental states underlying their behavior (do they want to change 

lanes or pass another car?). This type of psychological reasoning, along 

with other types of model-based causal and physical reasoning, are likely 

to be especially valuable in challenging and novel driving circumstances 

for which there is little relevant training data. The recent incident with a 

Tesla Model S car driving in autopilot mode, leading to the death of the 

driver, raised some concerns regarding the safety and reliability of the 

technology. Despite Tesla’s claims that it tested the self-driving technology 

on more than 100 million miles, it seems clear that some rough edges still 

need to be polished (such as how to drive the vehicle in unlikely events, 

like a car driving the wrong way on a highway or with a drunk driver).

The University of California in Berkeley launched the DeepDrive 

platform (https://deepdrive.berkeley.edu/). The so-called BDD Industry 
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Consortium investigates state-of-the-art technologies in computer vision 

and machine learning for automotive applications. It’s a multidisciplinary 

center hosted at the University of California in Berkeley and led by Professor 

Trevor Darrell. The center works on the development of new and emerging 

technologies with real-world applications in the automotive industry.

 6.6 Conversational Bots (Chatbots)
Chatbots, also called conversational agents or dialog systems, are 

algorithms designed to have human-level conversation capabilities. 

Several companies are using this technology, either as personal assistants 

or as conversational algorithms for language understanding. The goal of 

bots is to achieve a level of natural conversations indistinguishable from 

human, thus capable of passing the Turing test. There are two types of bots: 

retrieval-based bots use a repository of predefined responses and some 

heuristics to pick an appropriate response based on the input and context, 

and generative models generate automatic responses from past experience 

and context. Most of the latter rely on deep learning technology.

Generative models can be quite sophisticated and learn from creating 

latent representations of data. They are flexible but require a large corpus 

of text (training data). Sequence-to-sequence learning methods like 

[SVL14] have great potential, but most production systems are still based 

on hard rules for dialogue retrieval. Short text conversations are easier 

to optimize, especially in closed domain knowledge where the space of 

possible inputs and outputs is somewhat limited to a specific context.

Vinyals et al. used the sequence-to-sequence framework to create a 

conversational model able to predict the next sentence given previous 

sentences in a conversation [VTBE14]. It was designed from end to end, 

requiring a few crafted features. They trained it on a large conversational 

data set, and it was competent enough to deliver good advice using an 

IT help-desk data set while showing commonsense reasoning in a movie 

conversational data set. However, the bot fails to be consistent in the 

conversations (see Figure 6-7).

Chapter 6  reinforCement Learning and robotiCs



156

Serban et al. [SSB+15] recently proposed an end-to-end dialogue system 

using a generative hierarchical neural network model. The authors proposed 

a hierarchical recurrent auto-encoder and applied it to a data set (named 

MovieTriples) containing reviews and comments on about 500 movies; 

from each movie about 200,000 triples were extracted. Triples U1, U2, U3 

are dialogues of three turns between two interlocutors, A and B, for which 

A emits a first utterance, U1; B responds with U2; and A responds with a last 

utterance, U3. They showed that the model can outperform n-gram models 

in modeling utterances and speech acts, achieving a perplexity of around 26,  

about half of that achieved by n-gram methods. The authors found two 

crucial ingredients for improving performance: the use of a large external 

monologue corpus to initialize the word embeddings, and the use of a large 

related, but nondialogue, corpus in order to pretrain the recurrent net.

Yao et al. [YZP15] proposed a model called Attention with Intention. 

Their model consists of three recurrent neural networks: the encoder, 

which is a word-level model representing sentences; the intention 

network, which is a recurrent network that models the dynamics of the 

intention process; and the decoder network, which is a recurrent network 

Human: what is the purpose of life?
Machine: to serve the greater good.
Human: what is the purpose of living?
Machine: to live forever.
Human: what is the purpose of existence?
Machine: to find out what happens when we get
to the planet earth.
Human: where are you now?
Machine:  i’m in the middle of nowhere.
Human: what is the purpose of dying?
Machine: to have a life.
Human: what is the purpose of being intelligent?
Machine: to find out what it is.
Human: what is the purpose of emotions?
Machine: i dont’t know.

Figure 6-7. Conversational excerpt from Google Cleverbot  
(source: Google Research)
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that produces the responses given the input. It is a language model that is 

dependent on the intention and has an attention mechanism. The model 

was trained from end to end without labeling data using 10,000 dialogues 

involving around 100,000 turns from a help-desk call center. Using an 

embedded dimension of 200, the authors achieved a perplexity of 22.1.

Generative models are powerful, but grammatical mistakes can be 

costly, so companies still rely on old retrieval technologies. However, 

as companies get more data, generative models will become the norm 

but probably with some human supervision to prevent them from 

“inappropriate behavior,” like what happened to the Microsoft Twitter 

chatbot, Tay (https://en.wikipedia.org/wiki/Tay_(bot)).

Most big companies are using, testing, or considering the 

implementation of chatbots in their services and operations. Using its 

experience with its personal assistant Cortana, Microsoft has recently 

opened a development framework for chatbot implementation and also 

released Luis.ai, an API for language understanding.

Facebook acquired Wit.ai, a company that works on voice recognition 

technology. Apple is improving Siri and Google Cleverbot. IBM offers a 

simple API to embed its powerful knowledge inference machine, Watson, 

into a conversational bot.

Most of these services can be easily incorporated into conversational 

services such as Twitter, Whatsapp, Skype, WeChat, Telegraf, or Slack. For 

instance, Slack allows simple or complex conversation automating based 

on hard or soft rules. It integrates with Howdy to automate repetitive tasks. 

Howdy asks the questions, collects the responses, and delivers a report. 

Chatfuel.com is a platform for a chat’s implementation.
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There are already many conversational bots using RNN and deep 

learning technology. For instance, Medwhat is a medical advisor that 

explores large data sets of biomedical data to answer health-related 

questions and create personal recommendations. Conversational bots 

are also a more natural way to search because of the iterative process of 

refining information; see, for instance, www.intellogo.com, which uses 

DL for contextual search. Some good resources and news on chatbots are 

available at chatbotsmagazine.com.

The major challenge in chatbots is context incorporation, especially in 

long dialogue and in problems related to identity persistence.

Here is a short list of chatbot applications:

• Quartz: News chatbot

• Operator: Buying assistant

• First Opinion: Doctor chatbot

• Luka: Restaurant recommendations in San Francisco

• Lark: Fitness coach

• Hyper: Flights and hotels

• Pana: Flights, hotels, recommendations

• Fin: General meetings

• Penny: Personal finance coach

• Mezi: Shopping assistant

• Evia: Insurance assistant

• Suto: Expert product recommendations

• HelloShopper: Gift ideas

• Ava: Expert finder

• X.ai: Personal assistant

• Alice: Artificial intelligence partner
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Recently Facebook introduced ParlAI (https://code.facebook.

com/posts/266433647155520/parlai-a-new-software-platform-for-

dialog-research/). The ParlAI platform combines different advances in 

AI to make conversational bots more efficient.

The framework offers researchers with a simpler way to build 

conversational AI systems and make it easier for developers to build 

chatbots that aren’t so easily stumped by an unexpected question. The 

long-term hope is that ParlAI will help advance the state of the art in 

natural language research by reducing the amount of work required to 

develop and benchmark different approaches. It comes with 20 different 

natural language data sets built in, including Q&A examples from Stanford, 

Microsoft, and Facebook, and it provides compatibility with popular 

machine learning libraries.

Created by a team of Stanford psychologists and AI experts, Woebot 

uses brief daily chat conversations, mood tracking, curated videos, and 

word games to help people manage mental health. After spending the 

last year building a beta and collecting clinical data, Woebot Labs just 

launched the full commercial product—a cheeky, personalized chatbot 

that checks on you once a day for the price of $39 a month.

 6.7 News Chatbots
Retail banks and FinTech startups are now exploring the use of chatbots 

for digital experiences for checking bank account balances, finding nearby 

ATMs, making payments, and even advising how to spend your money 

more wisely.

Zendesk launched a chatbot to automate answers to customer 

queries, after other competitors, like Slack, started to automate some 

conversations.

Chapter 6  reinforCement Learning and robotiCs

https://code.facebook.com/posts/266433647155520/parlai-a-new-software-platform-for-dialog-research/
https://code.facebook.com/posts/266433647155520/parlai-a-new-software-platform-for-dialog-research/
https://code.facebook.com/posts/266433647155520/parlai-a-new-software-platform-for-dialog-research/


160

Deep Learning for Chatbots (www.wildml.com/2016/04/deep- 

learning-for-chatbots-part-1-introduction/) offers an excellent 

tutorial on how to build bots from scratch using data from an Ubuntu forum.

Several banks, such as Toshka Bank and Royal Bank of Scotland, have 

introduced conversational bots for customer service and are expected to 

become fully personal assistants able to deliver a full range of banking 

capabilities [AV18].

Stratumn, in collaboration with Deloitte and Lemonway, used 

LenderBot to manage micro-insurance. It will enable custom insurance 

through social media. Digibank has chatbots as an integral part of the 

banking experience and claims to have the most integrated solution. DBS 

Bank is using chatbots for customers to manage their money and make 

payments in Facebook and WhatsApp. Olivia AI uses a conversational 

agent to manage accounts and transactions and offer money-saving 

insight, while LunarWay, an incumbent Danish bank, has launched its own 

chatbot.

Finally, a recent product named Fin (https://www.fin.com) claims 

to be able to replace an executive assistant. It is also a hybrid human- 

powered chatbot like M, and it costs $120 a month for two hours. Most 

conversational assistants only “understand” and execute basic commands, 

such as “Play some music on Spotify” or “Start a timer for 20 minutes.” 

But Fin claims that its conversation bot can understand complex voice 

commands. Fin can buy products, find cars to rent, and create Google 

documents with a list of choices, prices, and availabilities. It can even book 

meetings and buy items on eBay.

A new chabot by Phocuswright was proposed to help the travel 

industry. Rather than going into an online travel agency and doing a search 

and seeing a list of 150 hotels, you enter in your profile what you’re looking 

for, and a chatbot serves up a curated list of three to four in a messaging 

interface. Other companies building chabots for the travel industry include 

Pana and Mezi.
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In the United States, a bot called AskMyUncleSam (http://

askmyunclesam.com/) helps tax payers fill out forms by answering 

questions about possible tax deductions; you can see it as a FAQ database 

acting like a real person that users can chat with.

Digit, a San Francisco startup, focuses on helping customers save 

money by using its algorithms to analyze your income and spending habits 

and finding small amounts of money it can set aside for you.

Researchers from the Montreal Institute of Learning Algorithms 

(MILA) have published a research paper outlining MILABOT, their entry 

into Amazon’s Alexa competition on conversational agents (https://

arxiv.org/abs/1709.02349). They had to face open-ended conversational 

interactions of people with unbounded interests. MILABOT was a 

semifinalist and managed to score reasonably highly in terms of user 

satisfaction while carrying on some of the longest conversations of the 

competition. It relies on an ensembled strategy binded by reinforcement 

learning to decide how to select between different models to improve 

conversations.

 6.8 Applications
Boston Dynamics developed Atlas, designed to operate outdoors 

and inside buildings. It is specialized for mobile manipulation and is 

electrically powered and hydraulically actuated. It uses sensors in its body 

and legs to balance and stereo sensors in its head to avoid obstacles, assess 

the terrain, help with navigation, and manipulate objects.

BIG-I is a humanoid designed by Tin Lun Lam and is a service robot 

developed to aid homeowners in the performance of a wide variety of 

household tasks. It can track the location of various household appliances 

and transport items from one point to the next by employing its claw-like 

mechanical hands.
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China unveiled its first-ever robot security guard, AnBot, which 

is an intelligent patrolling machine with advanced emergency alert–

based navigation and environment-monitoring capabilities. The AnBot, 

according to its developers, can be highly useful for detecting biochemical 

and explosive-related threats.

Breakthroughs in low-cost autonomous navigation and positioning as 

well as intelligent video surveillance have contributed to the development 

of the robot, which, apart from other functions, is also capable of 

responding during emergencies.

Kuri is a home robot capable of recognizing pets and seeing and 

streaming in HD. Mayfield Robotics’ Kuri (https://www.heykuri.com/) 

can recognize faces and family members, your friends, and pets. Kuri has 

a 1080p HD camera and virtual eyes that can stream live in top quality, as 

well as capture still images and video.

South Korean has about 400 robots per 10,000 workers employed in 

manufacturing industries. Germany has nearly 300 robots, and the United 

States has just above 150. An Oxford University research study published 

a few years ago projected that nearly 50 percent of the labor market in the 

United States remains at risk of being mechanized. It projected that nearly 

700 different human-performed jobs could be completely automated in a 

matter of a few years.

 6.9 Outlook and Future Perspectives
Deep learning’s ability to automate manual processes and boost 

productivity will have a profound impact on the robotics industry. Despite 

their widespread use in manufacturing, robots are expensive and difficult 

to program. For most businesses, robots are not useful yet. In 2015, global 

unit sales of industrial robots were only 250,000, roughly tenfold the 
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number of mainframe computers at their peak. By comparison, in 2016 

server and PC unit sales totaled 10 million and 300 million, respectively. 

Clearly, robotics is at a nascent stage, calling for dramatic improvements in 

both cost and ease of use before proliferating.

Cost improvements are well underway. ARK estimates that the cost 

of industrial robots, which currently is roughly $100,000, will fall by half 

over the next ten years. Concurrently, a new breed of robots designed 

for cooperative use with humans will cost on the order of $30,000. Retail 

assistant robots like SoftBank’s Pepper cost about $10,000 when service 

fees are included. Leveraging components from the consumer electronics 

industry such as cameras, processors, and sensors should drive costs 

closer to those consumer products.

The more difficult obstacle to overcome is ease of use. Industrial robots 

are not designed from a user-centric point of view. They require precise 

programming using industrial control systems in which each task must 

be broken down into a series of movements in six dimensions. New tasks 

must be programmed explicitly; the robot has no ability to learn from 

experience and generalize to new tasks.

These limitations have restricted the market for robots to those 

industrial applications where tasks are predictable and well defined. Deep 

learning can transform robots into learning machines. Instead of precise 

programming, robots learn from a combination of data and experience, 

allowing them to take on a wide variety of tasks. For example, a warehouse 

robot capable of picking any item from a shelf and placing it into a 

box would be highly desirable for many businesses. Yet, until recently, 

developers haven’t been able to program a robot to recognize and grasp 

objects that come in an infinite variety of shapes and sizes.
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 6.10 News About Self-Driving Cars
Here is some news to keep up with:

• Tesla announced recently that its fleet of autopilot 

hardware-equipped vehicles has collectively driven 

780 million miles, of which 100 million had autopilot 

engaged. Tesla is now capturing more miles worth of 

data (camera, GPS, radar, and ultrasound) in a day than 

Google’s program logged since its inception in 2009!

• An open source platform to training self-driving 

trucks, Europilot allows you to repurpose the complex 

technically-specific game Eurotruck Simulator as a 

simulation environment for training agents to drive 

via reinforcement learning. Europilot offers a couple 

of extra features to ease training and is testing AI on it, 

including being able to automatically output a Numpy 

array from screen input at training time, and at test 

time creating a visible virtual, onscreen joystick the 

network can use to control the vehicle. You can find the 

code at https://github.com/marshq/europilo.

• Boston Dynamics published an incredible video 

(https://www.youtube.com/watch?v=tf7IEVTDjng) 

of its newest creation, the SpotMini, which is an  all- 

electric robot running for 90 minutes. It can operate 

some tasks autonomously and is capable of climbing 

stairs, picking itself up, and handling sensitive grasping 

tasks.
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 The video at https://www.youtube.com/

watch?v=KdwfoBbEbBE from Moley Robotics shows how 

a robot can cook from a recipe. 

• A recent publication called “Brain4Cars: Car That 

Knows Before You Do via Sensory-Fusion Deep 

Learning Architecture” (https://arxiv.org/

abs/1601.00740) addresses the problem of anticipating 

and evaluating the car driver’s next actions (e.g., 

turning and hitting an unseen bicycle) up to 3.5 

seconds. The method relies on RNNs equipped with 

LSTM unities that learn on video capturing, vehicle 

dynamics, GPS data, and street maps.

• A 1/5 replica of a rally car was equipped with a 

sophisticated control algorithm to run on an off- 

road track at high speeds. The car, called AutoRally, 

has an inertial measurement unit, two front-facing 

cameras, GPS, rotation sensors on each wheel, an Intel 

quad-core i7 processor, Nvidia GPU, and 32GB RAM; 

it requires no other external sensing or computing 

resources. The algorithm is pretrained by a pilot 

driving on the track. Sensor measurements are then 

used to combine both control and planning to enable 

autonomous driving. At every 16 milliseconds it 

evaluates an average of 2,560 different possible future 

trajectories to pick the best.

Chapter 6  reinforCement Learning and robotiCs

https://www.youtube.com/watch?v=KdwfoBbEbBE
https://www.youtube.com/watch?v=KdwfoBbEbBE
https://arxiv.org/abs/1601.00740
https://arxiv.org/abs/1601.00740
https://autorally.github.io/


166

• Starship Technologies (https://www.starship.xyz/ 

starship-technologies-launches-testing-program-self- 

driving-delivery-robots-major-industry-partners)  

launched a largely autonomous fleet of delivery robots,  

mostly food and small items.

• Comma.ai released a data set of highway driving 

containing 7.5 hours of camera images, steering angles, 

and other vehicle data. It uses adversarial generative 

networks with auto-encoders and RNNs to create the 

next plausible scenario of a specific road snapshot so 

that the network predicts the next movements of the 

car, given what the model imagines the road will look 

like a few hundred milliseconds up front.

• Recently Craig Quiter (https://hackerfall.com/

story/integrating-gta-v-into-universe) launched 

a driving simulator environment (DeepDrive) based on 

the Grand Theft Auto (GTA) video game based on  

72 hours of training and using the OpenAI Gymn 

platform. The idea is to be a test bed for training self-

driving cars with reinforcement learning. The network 

controls the steering, throttle, yaw, and speed.

• At http://moralmachine.mit.edu/, researchers 

show that study participants want to be passengers 

in vehicles that protect their riders at all costs while 

preferring that others purchase vehicles controlled 

by utilitarian ethics (i.e., sacrificing its passengers for 

the greater good). Inconsistencies in human ethics 

abound.
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• Baidu launched the platform Apollo (http://apollo.

auto/). Baidu claims to be one of the largest partner 

ecosystems for an autonomous driving platform in 

the world. The Apollo autonomous driving program 

has 50 partners, including FAW Group, one of the 

major Chinese car makers that will work with Baidu on 

commercialization of the technology. Other partners 

include the Chinese auto companies Chery, Changan, 

and Great Wall Motors, as well as Bosch, Continental, 

Nvidia, Microsoft Cloud, Velodyne, TomTom, UCAR, 

and Grab Taxi.

• South Korea launched the K-City (www.businesskorea.

co.kr/english/news/sciencetech/18018-k-city- 

world's-largest-test-bed-self-driving-cars-be-

opened-korea), billed as the world’s largest test bed for 

self-driving cars. The opening of the K-City is to provide 

more assistance for the developers by offering a testing 

ground as large as a city.

• The U.S. House of Representatives passed the 

SELF DRIVE Act (https://www.wired.com/story/

congress-self-driving-car-law-bill/) in August 

2017. The act provides the National Highway Traffic 

Safety Administration (NHTSA) with the power to 

regulate self-driving vehicle design, construction, and 

performance just like it does for regular vehicles. In 

the next 24 months, NHTSA will write the feature set 

and rules that automakers must abide by to prove their 

vehicles are safe. The act also calls out a “privacy plan” 

whereby automakers must describe how they’ll collect, 

use, and store passenger data. NHTSA can authorize 

tens of thousands of licenses to companies that are 

testing self-driving cars, too.
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Recently a paper from OpenAI proposed an approach to train 

reinforcement learning agents through human interaction (https://

arxiv.org/pdf/1706.03741.pdf). This is a major breakthrough as 

traditional reinforcement learning is not easily adapted to learn through 

human types of communication. The authors explored goals defined in 

terms of (nonexpert) human preferences solving complex RL tasks without 

access to the reward function, including Atari games and simulated robot 

locomotion. They were able to train complex novel behaviors in agents 

with about an hour of human time.
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CHAPTER 7

Recommendation 
Algorithms 
and E-commerce
E-commerce and digital marketing are becoming data-intensive areas. 

Deep learning can have a huge impact in these areas since high benefits 

can be achieved with marginal gains in accuracy. For instance, marginal 

improvements in the click-through rate (CTR) prediction or conversion 

ratio (CR) of users interacting with web content, either on PC or on 

mobile devices, may result in millions of dollars of savings in customer 

acquisition. However, this problem is becoming more complex as the user 

journey before product acquisition can be complex, with many contact 

points before purchase. Complex model attribution (the discovery of 

the trajectory of the user before buying a product) is thus necessary to 

correctly allocate the ad budget.

Online user response prediction, click-through rates, and conversions 

are critical for web search, recommender systems, sponsored search, and 

display advertising. In online advertising, for instance, the ability to target 

individual users given their digital journey is essential. These targeting 

techniques rely on the ability to predict the relevancy of an ad, in other 

words, the probability that the user in a certain context will click it and 

later purchase some product or service.
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With a size of $2 trillion USD, e-commerce has a strong incentive to 

rely on more sophisticated recommendation algorithms to improve user 

experience and increase sales by cross-selling or up-selling.

 7.1 Online User Behavior
Predicting user intentionality (the desire to buy a given product or service), 

based on previous interactions within a web site, is critical for e-commerce 

and ad display networks, in particular retargeting. By keeping track of 

the search patterns of the consumers, online merchants can have a deep 

understanding of their behaviors and intentions.

In mobile e-commerce, a rich set of data is available, and potential 

consumers search for product information before making purchasing 

decisions, thus reflecting a consumer’s purchase intentions. Users show 

different search patterns (i.e., time spent per item, search frequency, and 

returning visits).

Clickstream data can be used to quantify search behavior using 

machine learning techniques, mostly focused on purchase records. While 

purchasing indicates a consumer’s final preferences in the same category, 

search is also an essential component to measuring intentionality toward a 

specific category. You can use a probabilistic generative process to model 

user exploratory and purchase history, in which the latent context variable 

is introduced to capture the simultaneous influence from both time 

and location. By identifying the search patterns of consumers, you can 

predict their click decisions in specific contexts and recommend the right 

products.

Modern search engines use machine learning approaches to predict 

user activity within web content. Popular models include logistic 

regression (LR) and boosted decision trees. Neural networks have an 
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advantage over LR because they are able to capture nonlinear relationship 

between the input features and because their “deeper” architecture has 

inherently greater modeling strength. Decision trees—albeit popular 

in this domain—face additional challenges with high-dimensional and 

sparse data. The advantage of probabilistic generative models inspired by 

deep neural networks is that they can mimic the process of a consumer’s 

purchase behavior and capture the latent variables to explain the data.

In my 2016 paper, I proposed (https://arxiv.org/pdf/1511.06247.pdf)  

an algorithm based on auto-encoders to identify the activity patterns of 

certain users that led to buy sessions and then extrapolated as templates 

to predict high probabilities of purchase in related web sites. The data 

used consists of about 1 million sessions containing the click data of users. 

However, only 3 percent of the training data consists of buy sessions, making 

it a very unbalanced dataset. To handle this, I used an under-sampling 

technique (i.e., selecting only a fraction of negative examples).

 7.2 Retargeting
Sponsored search, contextual advertising, and the recently emerged real- 

time bidding (RTB) display advertising all rely on the ability of learned 

models to predict ad click-through rates. The applied CTR estimation 

models today are mostly linear, ranging from logistic regression [E12] 

and Naïve Bayes to logistic regression, taking as inputs a huge number of 

sparse (categorical) features with one-hot encoding. Linear models have 

the advantages of easy implementation and efficient learning but also have 

relatively low performance because of their failure in learning nontrivial 

patterns, namely, interactions between features [LCWJ15].

Nonlinear models, on the other hand, are able to utilize different 

feature combinations and thus could potentially improve estimation 

performance. For example, factorization machines (FMs) map the user 
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and item binary features into a low-dimensional continuous space  

(www.algo.uni-konstanz.de/members/rendle/pdf/Rendle2010FM.pdf).  

In contrast to SVMs, FMs model explicitly the interactions between 

variables using factorized parameters performing well even in problems 

with huge sparsity such as recommender systems.

Gradient boosting trees [M13] are an ensemble technique that 

automatically learn feature combinations while growing each decision/

regression tree. Some of these techniques (such as random forest) have the 

advantage over ANNs that they hardly overfit, even in high-dimensionality 

problems. However, boosting techniques, such as extreme gradient 

boosting (XGBoost), can easily overfit the data, especially if you compare 

with random forest—even with a built-in regularization term.

However powerful, these models cannot make use of all possible 

combinations of different features. In addition, many models require 

manually designed feature engineering—for instance, aggregation of 

interactions by day of the week or month of the year. Another problem of 

the mainstream ad CTR estimation models is that most prediction models 

have shallow structures and have limited expression to describe the 

underlying patterns from complex and large data sets, thus restricting their 

generalization ability.

The difficulty in applying DL to this problem is that most input features 

in CTR estimation are discrete categories that may contain thousands of 

different values: location, device, ad category, and so on. Further, their 

local dependencies are mostly unknown. Deep learning can improve the 

CTR estimation via a learning feature representation.

Zang et al. (http://wnzhang.net/papers/ortb-kdd.pdf) developed 

a bid optimization algorithm for real-time bidding display advertising 

slides; see http://wnzhang.net/slides/ecir16-rtb.pdf. RTB goes 

beyond contextual advertising by motivating the bidding on user data—

not to be confused with a sponsored search (Google AdWords) auction. 

Automation is required from the demand side. Based on some budget, 
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you want to maximize some KPI, such as conversions or sales. The authors 

derived simple bidding functions and came to the conclusion that optimal 

bidding strategies should try to bid more impressions rather than focus on 

a small set of high-valued impressions. Compared to the higher-evaluated 

impressions, the lower-evaluated ones are more cost effective, and the 

chances of winning them are relatively higher.

 7.3 Recommendation Algorithms
Recommendation algorithms are ubiquitous in almost any e-commerce 

web site. A recommender system (RS) is an algorithm that suggest items 

to a user that he may be interested. It uses as input information from past 

preferences of users (transactional data)  over a set of finite items, either 

explicitly (ratings) or implicitly (monitoring users’ behavior, such as songs 

heard, applications downloaded, web sites visited), and information 

about the users or the items themselves. A RS may also use demographics 

(age, nationality, gender), social media (followers, followed, tweets), and 

information from the Internet of Things (GPS locations, RFID, real-time 

health signals).

As output, the RS creates a ranked list of items for each user—which 

may take into consideration a specific context. RS are evaluated not only 

by the accuracy (fraction of items that were accepted by the user) but also 

by novelty (how good the algorithm is in recommending new items to 

new users), dispersity (how diverse the recommendations are toward less 

popular items), and stability (how predictions are maintained over time).

There are essentially three types of recommendation systems.

• Transactional-based collaborative filters (CFs) 

• Content-based CFs

• Hybrid methods
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Content-based methods make use of user profiles or product 

descriptions for recommendations. CF-based methods use the past 

activities or preferences, such as user ratings on items, without using user 

or product content information. Hybrid methods combine content-based 

and CF-based methods.

 7.3.1 Collaborative Filters
Collaborative filtering is a popular recommendation algorithm that uses 

the ratings (or behavior) of other users on items to predict the likelihood 

that a user will buy other products. It assumes that past users’ opinions 

provide enough information to select future preferences of new products. 

If a user agrees with the relevance of some items, then they will likely agree 

about other items.

There are two types of CF: user-to-user and item-to-item. User-to- 

user CF, also known as k-NN CF, is a simple algorithm that evaluates the 

similarity between two users based on the vector-wise similarity between 

their pattern of interactions with the items or products (see Figure 7-1). 

User-to-user CF suffers from scalability problems as the user base grows 

since searching for the neighbors of a user is time-consuming.

Chapter 7  reCommendation algorithms and e-CommerCe



177

Item-to-item CF takes similarities between products and was first 

widely adopted by Amazon. Rather than using similarities between users’ 

rating behavior to predict preferences, item-to-item CF uses similarities 

between the rating patterns of items. This method is more scalable and 

achieves better results than user-to-user CF.

CF algorithms have two important problems: cold start and inner takes 

it all. The first problem is a serious one: if few reviews exist or many new 

users/items are the database (making a very sparse user-to-item matrix), 

the system has difficulty creating recommendations. The second known 

problem relates to the fact that only the top hits are recommended, so 

the system lacks diversity. Deep learning models aim to solve both these 

problems.

Figure 7-1. Recommendation system based on collaborative filter 
algorithm (source: https://tel.archives-ouvertes.fr/tel- 
01585248/document)
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 7.3.2 Deep Learning Approaches to RSs
Algorithms based on collaborative filters use the ratings given to items by 

users as the unique source of information to create a recommendation. 

However, a sparseness of ratings may degrade the performance of  

CF- based methods. The only way to solve this problem is to use auxiliary 

information such as item content. Collaborative topic regression is a 

method that takes this approach and tightly couples the two components; 

see https://arxiv.org/abs/1409.2944. Still, the latent representation 

learned by collaborative topic regression may be ineffective when the 

auxiliary information is sparse.

DL can address this problem by generalizing collaborative topic regression 

in a hierarchical Bayesian way. Deep learning techniques also allow for better 

feature extraction from item characteristics (text, image, video, and audio) 

when compared to traditional techniques. This allows for a more accurate 

modeling of items and potentially the capability of hybrid and content-based 

methods. Another advantage that deep learning methods provide is that 

they allow for different views of the data, allow for standard collaborative 

filtering techniques such as matrix factorization, and often treat user-to-item 

interaction as matrix-structured data, often ignoring the temporal structure 

and order in the data. Deep learning techniques such as convolutions and 

recurrent neural networks allow you to model the temporal structure in this 

data, which leads to significant performance improvements.

Salakhutdinov et al., pioneered the use of DL for recommendation 

systems by proposing an architecture based on a deep belief network 

with latent nodes to represent the hidden features of the data; see www.

machinelearning.org/proceedings/icml2007/papers/407.pdf. These 

authors used a modified version of this architecture to achieve a good 

score in the Netflix movie rating competition.

Recently Hao [WWY15] proposed a method called collaborative deep 

learning (CDL)  that jointly learns deep representations from the content 

of items/users while also considering the rating matrix with significantly 

better results.
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CDL relies on a technique using tightly coupled methods that allow 

two-way interactions between rating matrix and content (see Figure 7-2). 

The rating information guides the learning of features, and conversely the 

extracted features can improve the predictive power of the CF models. 

Tightly coupled methods often outperform loosely coupled ones. This 

approach combines ideas from CF, latent factor, and content analysis 

based on probabilistic topic modeling.

Figure 7-2. Scheme of a possible collaborative deep learning model. 
On the left is the graphical model. The dashed rectangle represents an 
auto-encoder. On the right is the graphical model of the degenerated 
model. The dashed rectangle represents the encoder component of 
SDAE (source: www.wanghao.in/paper/KDD15_CDL.pdf).

For a particular user, CDL can recommend articles from other 

users who liked similar articles. Latent factor models work well for 

recommending known articles but cannot generalize to previously 

unseen articles. To generalize to unseen articles, this algorithm uses 

topic modeling. Topic modeling provides a representation of the articles 

in terms of latent themes discovered from the collection. This extra 

component can recommend articles that have similar content to other 

articles that a user likes, even without using any previous rating. The 

topic representation of articles allows the algorithm to make meaningful 

recommendations about articles before anyone has rated them.

Chapter 7  reCommendation algorithms and e-CommerCe

http://www.wanghao.in/paper/KDD15_CDL.pdf


180

The usefulness of this type of approach lies in the fact that it can create 

a smooth semantic map of similarities between users, products, and 

relations in a semi supervised way. Another great advantage is that it can 

generalize well, thus overcoming the cold-start problem. The problem is 

that it needs to create new nodes each time a new user or product is added 

(or work by proxy).

As a note, care should be taken when using a single measure (namely, 

precision or recall) to evaluate an RS. Dispersity and novelty should 

be considered as they may be as much relevant for the product. Other 

important metrics are how fast the algorithm learns, to solve the unavoidable 

cold-start problem, and how scalable it is, for high-demand applications.

 7.3.3 Item2Vec
In Item2Vec (https://arxiv.org/abs/1603.04259) the authors extended 

Word2vec to item-based product recommendations. This approach works 

well when the number of users outnumber the products in the catalog, like 

in music, or when user-to-item relations aren’t available because users 

browse e-commerce pages anonymously. This method is particularly 

useful in recommending less popular items and does not suffer from the 

cold-start problem of CF. The code in Python is available at https://

github.com/DoosanJung/I2V_project.

In the recent publication “Learning Latent Vector Spaces for Product 

Search” (http://arxiv.org/pdf/1608.07253.pdf), the authors introduce 

a latent vector space model that jointly learns the latent representations of 

words, e-commerce products, and a mapping between the two without the 

need for explicit annotations. The power of the model lies in its capability 

to model directly the relations between products and the words that 

describe them. The authors compared this method to existing latent vector 

space models (LSI, LDA, and Word2vec), claiming higher accuracy thanks 

to better product representations.
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 7.4 Applications of Recommendation 
Algorithms
Some companies that pioneered recommendation systems are still 

relying heavily on them. Most large-scale commercial and social web sites 

have some form of recommendation system, recommending products 

or connections. For example, LinkedIn, the business-oriented social 

networking site, forms recommendations for people users might know, 

jobs you might like, groups you might want to follow, or companies you 

might be interested in. LinkedIn uses Hadoop and Mahout to run CF 

models at scale.

Amazon uses content-based recommendation. When you select an 

item to purchase, Amazon recommends other items that other users 

purchased based on that original item (as a matrix of item-to-likelihood- 

of-next-item purchase). Amazon patented this behavior, called item-to- 

item collaborative filtering.

Hulu, a streaming-video web site, uses a recommendation engine to 

identify content that might be of interest to users. It also uses item-based 

collaborative filtering with Hadoop to scale the processing of massive 

amounts of data.

In 2006, Netflix held a $1 million prize competition to the team that 

could improve its recommendation system, RMSE, by 10 percent. In 2009, 

three teams combined to build an ensemble of 107 recommendation 

algorithms that resulted in a single prediction. This ensemble proved key 

to improve predictive accuracy.

A recent paper from the Alibaba team reported an algorithm 

currently used by the company to predict CTR; see (https://arxiv.org/

pdf/1706.06978.pdf). The model, called a deep interest network (DIN), 

has a main difference from the wide and deep model. Instead, it uses an 

attention mechanism imported from machine translation literature. DIN 

represents users’ diverse interests with an interest distribution and designs 
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an attention-like network structure to locally activate the related interests 

according to the candidate ads. Behaviors with higher relevance to the 

candidate ad get higher attention scores and dominant the prediction. 

They report big gains in using this model with respect to other types of 

neural networks.

Kumar et al. proposed a deep neural model (http://ceur-ws.org/

Vol-1866/paper_85.pdf) using LSTM with attention to recommend 

news content and a fully connected network to learn the mappings for the 

content items to the users. They showed a significant improvement over 

the state-of-the-art results by 4.7 percent (on a hit ratio of 10). The model is 

also effective in handling the user cold-start and item cold-start problems.

 7.5 Future Directions
Some future directions for improving recommendation systems include 

explicit consideration of time effects (the changing tastes of users or 

products), consideration of sequence order (it’s different to recommend 

a phone cover after a phone purchase than a phone after a phone cover 

acquisition), and a richer representation of the products and content. See 

https://www.cs.princeton.edu/chongw/papers/WangBlei2011.pdf for 

some insights about the future direction of RSs.

The poor quality of metadata is a recurring problem in a large 

percentage of real-life situations; for example, values are missing or 

are not assigned systematically. Even if metatags are perfect, such data 

only represents the actual item much more indirectly and in less detail 

than a picture of it. With the help of deep learning, the actual, intrinsic 

properties of the content (images, video, text) could be incorporated into 

recommendations. Using DL, item-to-item relations could be based on 

a much more comprehensive picture of the product and would be less 

reliant on manual tagging and extensive interactional histories.
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A good example of incorporating the content into a recommender 

system is what Spotify was looking into in 2014 to make its song 

recommendations more diverse and to create an improved personalized 

experience for its users. The music-streaming service uses a collaborative 

filtering method in its recommendation systems. But Sander Dieleman, 

a Ph.D. student and intern at Spotify, saw this as its biggest flaw. An 

approach that relies heavily on usage data inevitably under-represents 

hidden gems and lesser known songs of upcoming artists, the holy grails 

of music discovery. Dieleman used a deep learning algorithm that he 

taught on 30-second excerpts from 500,000 songs to analyze the music 

itself. It turned out that successive layers of the network learn progressively 

more complex and invariant features of the songs, as they do for image 

classification problems. In fact, “on the topmost fully-connected layer of 

the network, just before the output layer, the learned filters turned out to 

be very selective for certain subgenres,” such as gospel, Chinese pop, or 

deep-house. In practice, this means that such a system could effectively 

make music recommendations based solely on the similarity of songs 

(an excellent feature for assembling personalized playlists). It’s unclear 

whether Spotify incorporated these findings into its algorithm, but it was 

nevertheless an intriguing experiment.

The cold start is the archenemy of recommendation systems. It can 

affect both users and items. For users, the cold start means when the 

system has limited or no information on a customer’s behavior and 

preferences. The item cold start represents the lack of user interactions 

with the data upon which item-to-item relations can be drawn (there 

is still the metadata, but that won’t often suffice for truly fine-tuned 

recommendations). The item cold start is an obvious domain for the 

aforementioned content-based approach as it makes the system less 

reliant on transactional and interactional data.

However, creating meaningful personalized experiences for new users 

is a much trickier problem that cannot necessarily be solved by simply 

gathering more information on them. It is quite typical, especially in 
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the case of e-commerce sites or online marketplaces with wide product 

portfolios, that customers visit a web site with completely different goals 

over time. First they come to buy a microwave, but the next time they’re 

looking for a mobile phone. In this scenario, the data gathered in their first 

session is not relevant to the second.

An intriguing approach to tackling the user cold-start problem is 

session-based or item-to-session recommendations. This roughly means 

that instead of relying on the whole interactional history of customers, the 

system splits this data into separate sessions. The model capturing the 

users’ interests then builds on session-specific clickstreams. Through this 

approach, it is quite possible that future recommender systems will not 

rely so heavily on elaborate customer profiles built over months or even 

years; rather, they’ll be able to make reasonably relevant recommendations 

after the user has been clicking on the site for a while.

This is an area that is yet rather poorly researched but possibly holds 

tremendous opportunity for enhancing personalized online experiences. 

Gravity R&D’s researchers working on the EU-funded CrowdRec project 

recently co-authored a paper (https://arxiv.org/abs/1706.04148) that 

describes a recurrent neural network approach to providing session-based 

recommendations. This is the first research paper that seeks to employ 

deep learning for session-based recommendations, and their results show 

that their method significantly outperformed currently used state-of-the- art 

algorithms for this task.
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CHAPTER 8

Games and Art
One the most exciting areas of deep learning applications is the creative 

industries and games, either through algorithms to play traditional board 

games or video games or in the creation of virtual game characters or 

immersed reality. The recent success of AlphaGo, which beat the world Go 

champion, ignited the interest in AI bringing superhuman capabilities to 

machines.

 8.1 The Early Steps in Chess
It was 20 years ago that IBM’s Deep Blue beat the world chess champion, 

Gary Kasparov. Since then, chess-playing computers have put to shame 

the best humans. But the techniques used by these algorithms still 

relied heavily on “brute-force” tree` search through all possible move 

combination.

Recent advances in AI made possible the development of self-learning 

programs. One of the pioneering neural network algorithms to play chess 

was Giraffe (https://chessprogramming.wikispaces.com/Giraffe). 

It was taught to play chess by evaluating game positions. It was formed 

by a neural network consisting of four layers that together examine each 

position on the board in three different ways. The first looks at the global 

state of the game, such as the number and type of pieces on each side, 

which side is to move, castling rights, and so on. The second looks at  
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 piece- centric features such as the location of each piece on each side, and 

the final one maps the squares that each piece attacks and defends.

The usual way of training an algorithm to play board games is to 

manually evaluate every position and use this information to teach the 

machine to recognize those that are strong and those that are weak. 

Instead, a bootstrapping technique was used in which Giraffe played 

against itself with the goal of improving its prediction. That works because 

there are fixed reference points that ultimately determine the value of 

a position—whether the game is won, is lost, or is a drawn. In this way, 

the computer learns which positions are strong and which are weak. In 

72 hours of training, Giraffe achieved the level of the best program in the 

world.

 8.2 From Chess to Go
Despite the progress achieved in playing Chess, Go has remained an 

elusive challenge for machines. Go is a simple board game where two 

players take turns placing black or white stones on a board, trying to 

capture the opponent’s stones or surround empty space to make points 

of territory. Despite the simple rules, Go is a game of great complexity 

because there are about 10170 possible board configurations—far exceeding 

the number of atoms in the universe, which is around 10100.

One of the most successful programs was The Many Faces of Go, which 

achieved a 13-kyu performance and had 30,000 lines of code written over a 

decade by David Fotland. But it never achieved the level of a master player.

Monte Carlo (MC) algorithms were introduced into board game 

algorithms in the 2000s by Bruno Bouzy. MC uses sampling to obtain 

an approximation of intractable integrals. Later Rémi Coulom used MC 

evaluation with tree search and coined the term Monte Carlo tree search 

(MCTS); see https://www.remi-coulom.fr/CG2006/CG2006.pdf. His 

program CrazyStone won that year’s KGS computer-Go tournament for 
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the small 9×9 variant of Go, beating other programs such as NeuroGo 

and GNU Go. MCTS uses Monte Carlo rollouts to estimate the value of 

each state in a search tree. As more simulations are executed, the search 

tree grows larger, and the relevant values become more accurate. It’s an 

efficient sampling algorithm to explore large search spaces.

In 2013, DeepMind published a paper that used reinforcement 

learning (trained through LSTM) with deep neural nets using just the input 

of the pixels on the screen (processed by CNNS). It coined the machine a 

deep Q-network, and it learned to play some games like Breakout, Pong, 

and so on. In 2014 DeepMind published another paper called “Teaching 

Deep Convolutional Neural Networks to Play Go” (https://arxiv.

org/abs/1412.3409) that, unlike the previous case, used a neural net to 

produce the probability of a human Go player making each possible move 

from a given position.

AlphaGo used two neural networks: a policy and a value network. 

A fast rollout policy Pπ and supervised learning (SL) policy network pσ 

are trained to predict human expert moves in a data set of positions. A 

reinforcement learning (RL) policy network pρ is initialized to the policy 

network and is then improved by policy gradient learning to maximize the 

outcome (that is, winning more games) against previous versions of the 

policy network. A new data set is generated by playing games with itself, in 

other words, self-play with the RL policy network. Finally, a value network 

vθ is trained by regression to predict the expected outcome (whether the 

current player wins) in positions from the self-play data set.

The details of the AlphaGo algorithm are explained in detail in 

https://storage.googleapis.com/deepmind-media/alphago/

AlphaGoNaturePaper.pdf.
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 8.3 Other Games and News
This section covers other games and news.

 8.3.1 Doom
In 2016 an AI agent developed by Carnegie Mellon University students won 

the classic video game Doom—outperforming both the game’s built-in AI 

agents and human players. See https://arxiv.org/pdf/1609.05521v1.

pdf and some extraordinary videos at https://www.youtube.com/watch?v

=oo0TraGu6QYlist=PLduGZax9wmiHg-XPFSgqGg8PEAV51q1FT.

The 3D game environment is challenging for algorithms since players 

must act based only a partially observed maze. In contrast with Doom, 

Atari and Go give the agents complete information about the game, in 

other words, fully observable environments.

When the machine player is navigating through the game, it employs 

a deep Q-network, a reinforcement learning architecture that DeepMind 

used to master Atari games. When an enemy is in sight, the agent switches 

to a deep recurrent Q-network, which includes a long short-term memory 

(LSTM) module that helps the agent track the enemy’s movements and 

predict where to shoot.

Though the AI agent relies on only visual information to play the game, 

the authors used an API to access the game engine during training. This 

helped the agent learn how to identify enemies and game pieces more quickly. 

Without this aid, they found the agent learned almost nothing in 50 hours of 

simulated gameplay, equivalent to more than 500 hours of computer time.

 8.3.2 Dota
In 2017 an artificial agent by OpenAI won a famous Dota2 (one of the 

world’s most popular video games) tournament, beating a professional 

human player.

Chapter 8  Games and art

https://arxiv.org/pdf/1609.05521v1.pdf
https://arxiv.org/pdf/1609.05521v1.pdf
https://www.youtube.com/watch?v=oo0TraGu6QYlist=PLduGZax9wmiHg-XPFSgqGg8PEAV51q1FT
https://www.youtube.com/watch?v=oo0TraGu6QYlist=PLduGZax9wmiHg-XPFSgqGg8PEAV51q1FT


189

Real-time battle and strategy games like Dota and Starcraft II pose 

major challenges over traditional board games like chess or Go. These 

games require long-term strategic thinking, and—unlike board games—

they keep vital information hidden from players. Algorithms have to 

predict and preempt what the opponent will do; you may call this intuition.

Dota has an extra level of complexity like human players have to 

engage in cooperative action within teams of five, coordinating complex 

strategies. There are hundreds of characters in the game, each with their 

own skills equipped with a number of unique items. The complexity of 

actions is so large that it is virtually impossible to hard-code a program’s 

winning strategy into a Dota agent.

As important as the AI agent result was how it taught itself to play. 

AlphaGo learned how to play games by observing previous games played 

by humans. OpenAI’s agent taught itself everything from scratch.

Even if some agent behavior was preprogrammed, it was able 

to develop complex strategies by itself, like faking its opponents by 

pretending to trigger an attack, only to cancel soon after, leaving the 

human player at a weak position.

Despite the victory of the OpenAI agent, the real challenge will be a 

5v5 match, where agents have to manage not just a duels but also a chaotic 

battlefield with multiple agents and dozens of support units.

 8.3.3 Other Applications
You can find some implementation of neural networks to play several 

video games, like Mario Kart (https://kevinhughes.ca/blog/tensor- 

kart) in TensorFlow and Super Mario (https://www.engadget.

com/2015/06/17/super-mario-world-self-learning-ai/).

In a recent work, a team from Maluuba (Microsoft) proposed 

a technique detailed in “Hybrid Reward Architecture for 

Reinforcement Learning” (https://static1.squarespace.com/

static/58177ecc1b631bded320b56e/t/594050d7bf629a891

ef31605/1497387537190/HRA_Maluuba.pdf). They were able to largely 
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improve the accuracy of QDN or actor-critic methods (AC3), beating 

the best humans in the Pacman Atari game. This technique, designated 

HRA, takes as input a decomposed reward function and learns a separate 

value function for each component of the reward function. Because each 

component depends on only a subset of all features, the overall value 

function is much smoother and can be approximated more easily by a low- 

dimensional representation, enabling more effective learning.

Sudoku is a popular number puzzle that requires you to fill in the 

blanks in a 9×9 grid with digits so that each column, each row, and each 

of the nine 3×3 subgrids contain all of the digits from 1 to 9. In the project 

detailed at https://github.com/Kyubyong/sudoku, Kyubyong used a 

simple convolutional neural network (in TensorFlow) to solve Sudoku 

without any rule-based postprocessing. It achieved an accuracy of 86 

percent.

One of the challenges of deep learning is solving the challenging Raven 

progressive matrices (RPM) test. The RPM is a nonverbal intelligence test 

commonly used to measure general intelligence. An RPM consists of a 

matrix of symbols where the symbols make up a visual geometric pattern 

and where one of the symbols in the matrix is missing. The test taker is given 

access to six to eight possible solution candidates and, based on these and 

the geometric design of the matrix, determines which symbol is missing 

from the matrix. Despite that the test is limited to measuring the test taker’s 

ability to extract information from complex visual geometric structures, its 

high-level correlation to other multidomain intelligence tests has given it a 

position of centrality in the space of psychometric measures [SKM84].

Some promising efforts have been deployed to solve this matrix using 

generative adversarial networks (GANs) using a contextual CNN auto- 

encoder as a generator (initially applied for image inpainting (https://

arxiv.org/abs/1604.07379), but the algorithm struggles in dealing with 

unseen symbols.
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 8.4 Artificial Characters
Microsoft announced a project that enables coders to sculpt and 

develop its technology. AIX is a new software development platform that 

researchers can use to develop agents—AI-powered characters.

Minecraft added a virtual reality assistant using artificial intelligence. 

The platform, named AIX, is a sandbox that allows researchers to develop 

agents that roam Minecraft worlds. The idea is to equip them with the 

capabilities to behave like a regular player, including basic commands, 

such as climbing up a hill, and more complicated requirements such as 

navigating varied terrain, building out landscapes, and just surviving  

in the game.

A team from the University of Tubigen is working on a project to give 

the Super Mario game characters “real life” by allowing them to develop 

their own attitudes in the game environment; see https://www.uni- 

tuebingen.de/en/newsfullview-landingpage/article/super-mario- 

erhaelt-soziale-intelligenz.html.

Serpent.AI (https://github.com/SerpentAI/SerpentAI) is a 

framework to assist developers in the creation of game agents. It helps 

you turn any video game you own into a sandbox environment for 

experimentation.

Unity launched the Unity machine learning agents (https://blogs.

unity3d.com/2017/09/19/introducing-unity-machine-learning-

agents/), which enable the creation of games and simulations using 

the Unity Editor. These serve as environments where intelligent agents 

can be trained using reinforcement learning, neuroevolution, or other 

machine learning methods through a simple-to-use Python API. These 

platforms are not new, and PROWLER.io (https://www.prowler.io/) was 

the pioneer. These types of environments will become important for the 

development of agents capable of learning complex emergent behaviors 

through self-play and simulation.
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 8.5 Applications in Art
If DL has achieved remarkable results in playing games, perhaps the most 

remarkable achievements were in an unusual area: art.

Gatys et al. [GEB15] applied convolutional neural networks to obtain a 

representation of the style of an artist (input image) using the feature space 

originally designed to capture texture information. By including the feature 

correlations of multiple layers, they obtained a stationary, multiscale 

representation of the input image. They proved that the representations 

of content and style in the convolutional neural network are separable. 

Both representations can be independently manipulated to produce 

new, perceptually meaningful images. To demonstrate this finding, they 

generated images that mix the content and style representation from two 

different source images; see Figure 8-1.

Figure 8-1. Artificially generated images using CNNs trained on two 
set of images (source: www.demilked.com/inceptionism-neural- 
network-drawings-art-of-dreamssource). See also a demo online 
at http://ostagram.ru/ or the mobile app Prisma.
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Ulyanov et al. [ULVL16] proposed a technique that, given a single 

example of a texture, ithe CNN is able to generate multiple samples of the 

same texture of arbitrary size and able to transfer artistic style from a given 

image to any other image. The resulting networks are relatively small and 

can generate textures that are fast and of remarkable quality.

CycleGAN (https://arxiv.org/pdf/1703.10593.pdf) is a recent 

approach for image-to-image translation (mapping between an input 

image and an output image) using unaligned images (see Figure 8-2). It 

was able to learn a mapping G : X → Y such that the distribution of images 

from G(X) is indistinguishable from the distribution Y using an adversarial 

loss. Because this mapping is highly under-constrained, it is coupled with 

an inverse mapping F : Y → X and it introduced a cycle consistency loss to 

push F(G(X)) ≈ X (and vice versa). It presents a reliable transformation of 

horses to zebras, and vice versa. The code (in Pytorch) and videos are at 

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

Figure 8-2. Object transfiguration with CycleGAN (source: https://
github.com/junyanz/CycleGAN)
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A Swedish company, Peltarion (http://peltarion.com/), released 

a neural network that can perform sophisticated computer-generated 

choreography by extracting high-level features from raw sensor data. The 

system, called chor-rnn, uses recurrent neural networks for generating 

novel choreographic material in the nuanced choreographic language 

and style of an individual choreographer. It also can create higher- 

level compositional cohesion, rather than just generating sequences of 

movement. The neural network is trained on raw motion capture data, and 

it can generate new dance sequences for a solo dancer. The authors used 

five hours of contemporary dance motion captured using the Microsoft 

Kinect v2 sensor, tracking 25 joints to produce 13.5 million spatiotemporal 

joint positions in 3D. Using this data for training, the authors showed 

that their network can output novel choreographies that demonstrate a 

progressive learning of increasingly complex movements.

In a recent work (https://arxiv.org/pdf/1706.07068.pdf), the 

authors used a generative adversarial network to create synthetic artwork 

that us almost indistinguishable from the one generated by humans. 

Creative adversarial networks (CANs) work like GANs, except the 

discriminator gives two signals back to the generator instead of one: whether 

something qualifies as art and how well it can classify the generator’s sample 

into an exact style. A quantitative evaluation showed that humans thought 

CAN images were generated by a human 53 percent of the time versus 85 

percent for the human-generated abstract expressionist set.

In a blog post (http://karpathy.github.io/2015/05/21/rnn- 

effectiveness/), Andrew Karpathy describes a model based on an RNN 

with LSTM unities that was trained on Shakespeare works. The model was 

able to create prose with remarkable similarities to some famous pieces of 

British authors.

Hitoshi Matsubara used a DL-based algorithm to generate a short story 

(http://mashable.com/2016/03/26/japan-a-i-novel). This story end up 

being short-listed, among 10 others, from 1000 submissions.
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Gene Kogan (http://genekogan.com/) used AI as a creative tool and 

created some interesting effects in https://vimeo.com/180044029.

 8.6 Music
Music can be represented as a time sequence and thus modeled as 

conditional probabilities between musical events. For example, in 

harmonic tracks, some chords are more likely to occur than others given 

the last chords, while the chord progressions often depend on the global 

pattern of the music. In many automatic composition systems, these 

relationships are simplified by assuming that the probability of the current 

state p (n) only depends on the probabilities of the states in the past,  

p (n – k )…p (n – 1). Given a seed sequence, a musical sequence is then 

generated by predicting the following events.

Music composition is considered creative, intuitive, and, therefore, a 

privilege of humans. However, DNNs are bringing new tools to the table 

that are challenging this assumption. Automatic music composition, 

which normally includes tasks such as the composition of melody, chord, 

rhythm, and even lyrics, was traditionally addressed through hidden 

Markov models (HMMs). These models have a memory of 1 (the present 

state completely determines the transition to the next state). However, 

deep LSTM networks can handle arbitrary history to predict future events, 

thus having more complex expressive capabilities than HMM.

Music composed by an AI algorithm is not new as it allows composers 

to experiment more efficiently. The albums 0music and Lamus were 

entirely composed by Melomics, a group founded by Francisco Javier Vico. 

Both use a strategy modeled on biology to learn and evolve more complex 

mechanisms for composing music. These algorithms were written 

explicitly to generate the music.
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Choi et al. https://arxiv.org/pdf/1604.05358v1.pdf used an 

algorithm based on LSTM to learn relationships within text documents that 

represent chord progressions and drum tracks. The code (based on Keras) is 

available on GitHub. The results are remarkably good, especially for drums; 

you can find some examples on SoundCloud.

A recent project called Deep Jazz, deployed by Ji-Sung Kim from 

Princeton University, enables deep learning to generate music. The project 

is basically an RNN trained with LSTM on several hours of jazz music. 

After training for 128 epochs, the algorithm is able to create new music. 

The code is available on GitHub and is based on the Keras and Theano 

libraries. The authors are working to generalize the concept to most music 

styles without having to train a neural network for each. In this work, ML 

was used to teach music students to go beyond the traditional chords.

Another recent project (http://imanmalik.com/cs/2017/06/05/

neural-style.html) used recurrent networks to learn how to play 

instruments (in MIDI format) from reading sheet music. The quality is so 

good that is almost indistinguishable from a human executer.

Sync Project (http://syncproject.co/blog/2017/6/5/making- music- 

with-ai-an-introduction) used a recurrent network called Folk- RNN where 

researchers entered thousands of transcribed examples of Celtic folk music 

into a deep learning system that learned from the MIDI song information to 

create new melodies. The researchers were surprised to find that the system 

could cook up “authentic-sounding” melodies once every five times it tried.

Southern’s album I AM AI was created by Amper (https://www.

ampermusic.com/), which is an artificially intelligent music composer, 

producer, and performer. Users select parameters for what type of music will 

be created—“ambient uplifting cinematic” or “epic driving,” for example. The 

program generates a song in seconds using its machine learning algorithm. 

Humans are then able to manipulate parts of that track, but it’s possible to 

leave all chord structures and instrumentation up to the computer. See this 

example: https://www.youtube.com/watch?v=XUs6CznN8pw.

For a survey of deep learning applications in music, see https://arxiv.

org/pdf/1709.01620.pdf.
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 8.7 Multimodal Learning
Tamara Berg pioneered the application of DL to fashion by exploiting 

the relationship between images, video, and the people viewing those 

images. She explored computer vision and natural language processing to 

understand text-to-image relationships. In one project, given a captioned 

image, the convolutional neural network could determine which words 

(e.g., “woman talking on phone” or “The farther vehicle”) corresponded 

to which part of the image. This tool allows users to edit or synthesize 

realistic imagery using only natural language (e.g., “delete the garbage 

truck from this photo” or “make an image with three boys chasing a shaggy 

dog”). Her web page at www.tamaraberg.com/ has available some data sets. 

She also coordinates the project Exact Street to Shop (http://tamaraberg.

com/street2shop/), which matches a real-world garment item to the 

same item in an online shop. This is an extremely challenging task because 

of visual differences between real photos and online shop photos. The 

authors collected a new data set for this application containing 404,683 

shop photos collected from 25 different online retailers and 20,357 street 

photos, providing a total of 39,479 items. The results are available at 

http://arxiv.org/pdf/1608.03914.pdf.

Ryan Kiros, from the University of Toronto, developed a multimodal 

neural language model for natural language that can be conditioned 

on other modalities. Unlike other approaches to generating image 

descriptions, this model makes no use of templates, structured models, 

or syntactic trees. Instead, it relies on word representations learned from 

millions of words and conditions the model on high-level image features 

learned from deep neural networks.

Lassner et al. in “A Generative Model of People in Clothing” (http://

files.is.tue.mpg.de/classner/gp) proposed a model capable of 

generating images of people in clothing in a full-body setting. The authors 

learn generative models from a large image database, dealing with high 

variance in human pose, shape, and appearance. The authors split the 
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generating process in two parts: semantic segmentation of the body and 

clothing and then a conditional model on the resulting segments that 

creates realistic images.

Researchers from MIT’s Computer Science and Artificial Intelligence 

Laboratory (CSAIL) have demonstrated an algorithm that has effectively 

learned how to predict sound. When shown a silent video clip of an object 

being hit, the algorithm can produce a sound for the hit that is realistic 

enough to fool human viewers. This “Turing test for sound” represents 

much more than just a clever computer trick. Researchers envision future 

versions of similar algorithms being used to automatically produce sound 

effects for movies and TV shows, as well as to help robots better understand 

objects’ properties. See more information at http://news.mit.edu/2016/

artificial-intelligence-produces-realistic-sounds- 0613.

They trained a sound-producing algorithm with 1,000 videos of 46,000 

sounds that represent various objects being hit, scraped, and prodded with 

a drumstick. These videos were submitted to a CNN that deconstructed 

the sounds and analyzed their pitch and loudness. The algorithm looked at 

the sound properties of each frame of that video and matched them to the 

most similar sounds in the database.

In a recent work, Zhou et al. proposed a method of generating sound 

given visual input and generating raw waveform samples given input video 

frames; see “Visual to Sound: Generating Natural Sound for Videos in the 

Wild” (https://arxiv.org/abs/1712.01393).

 8.8 Other Applications
Here are some other applications:

• Google AI Experiments (https://aiexperiments.

withgoogle.com/) has several cool experiments to play, 

from a Pictionary game to music generation to image 

autocompletion.
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• Alex Champandard (https://github.com/alexjc) 

used CNNs to generate textures with a technique he 

called random neural networks, capable of generating 

high-quality images based on pure noise and some 

pretraining.

• Mario Klingemann (http://mario-klingemann.

tumblr.com/) is an active researcher who is into 

applying generative neural networks to image and art.

• A work (https://arxiv.org/pdf/1604.00449.pdf) 

by Choy et al. uses a combination of CNNs to transfer 

knowledge from two objects to create new object 

representations based on a template set; see Figure 8-3.

• Liao et al. propose a technique (https://arxiv.org/

pdf/1705.01088.pdf) for visual attribute transfer 

across images with different appearances but similar 

perceptually semantic structures. They call the 

technique deep image analogy where a coarse-to-fine 

strategy is used to compute the nearest-neighbor field 

for generating the results. They applied it to style/

texture transfer, color/style swap, sketch/painting to 

photo, and time lapse.

Figure 8-3. 3D Style transfer (source: https://people.cs.umass.edu/
kalo/papers/ShapeSynthesis_Analogies/2014_st_preprint.pdf)
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• A conference on applications of AI in creative 

industries (http://events.nucl.ai/) is held 

annually.

• The blog post at www.subsubroutine.com/sub- 

subroutine/2016/11/12/painting-like-van-gogh-

with- convolutional-neural-networks has a tutorial 

on how to implement style transfer with TensorFlow.

• Recently the script of an entire movie, Sunspring, was 

produced by a recurrent neural network feed from the 

scripts of hundreds of sci-fi novels. There are some 

nonsensical conversations, but most of it is plausible 

and entertaining - video available at https://www.

youtube.com/watch?v=LY7x2Ihqjmc.

• The blog post at http://iq.intel.com/getting- 

creative- ai-and-machine-learning/ contains some 

projects regarding artistic machine learning.

• Google dreaming (https://research.googleblog.

com/2015/06/inceptionism-going-deeper-into-

neural.html) machines use CNNs to create fantasies. 

DeepDream is a computer vision program that uses 

a convolutional neural network to find and enhance 

patterns in images via algorithmic pareidolia, thus 

creating a dream-like hallucinogenic appearance in the 

deliberately over-processed images. There is a demo 

online at https://deepdreamgenerator.com/.

• The blog creativeai.net is an excellent showcase of 

recent AI projects related to art.
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• Google Brain’s creative AI project Magenta is dedicated 

to the creation of music and art through machine 

learning. It has released its first music track, which 

shows the potential of ANN to generate creative music.

• A researcher at Goldsmiths in London trained a 

variational auto-encoder deep learning model on all 

frames from the Blade Runner movie and then asked 

the network to reconstruct the video in its original 

sequence as well as other videos the network wasn’t 

trained on. The pictures are not very sharp but still 

identifiable; you can imagine it as a compression 

algorithm with a compression rate of 1:1000.

• Researchers at NYU trained a recurrent neural network 

on scripts from movies including Ghostbusters, 

Interstellar, and The Fifth Element, and asked the 

network to generate a novel screenplay. The result is a 

set of somewhat plausible expression.

• In http://arxiv.org/abs/1606.03073, the authors 

used deep neural networks to invert face sketches 

and synthesize photorealistic face images. They first 

constructed a semisimulated data set containing a 

large number of computer-generated face sketches 

with different styles and corresponding face images by 

expanding existing unconstrained face data sets.
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• Matthias Bethge’s research group demonstrated 

(https://arxiv.org/abs/1604.08610) that 

convolutional neural networks can be used to learn 

representations of artistic styles from one painting and 

apply them to photographs. They showed that style 

can be learned from a single image and transferred to 

an entire video sequence. Two improvements were 

made. To ensure that style consistency extends over 

longer video sequences when certain regions might 

be temporarily occluded, the authors used long-term 

motion estimates. In addition, a multipass algorithm 

processed the video several times and alternated in the 

forward and backward directions to remove artifacts at 

image boundaries; see the videos at https://vimeo.

com/167126162 and https://vimeo.com/175540110.

• Political Speech Generation (https://arxiv.org/

abs/1601.03313) is using a language model for 

grammar and a topic model for textual consistency 

trained on U.S. congressional floor debate transcripts; 

the author was able to automatically generate speeches 

with either a supportive or opposing opinion on a 

particular topic.

• Deep Completion (http://bamos.github.

io/2016/08/09/deep-completion/) has a good tutorial 

on adversarial neural networks for image completion.

• There are several machine learning online courses for 

artists; the most popular is from the New York University 

(https://www.kadenze.com/courses/machine-

learning-for-musicians-and-artists/info).
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• Check out https://arxiv.org/pdf/1705.01908.pdf, 

which is about generating cartoons from descriptions, 

or sketches, using generative neural networks.

• The authors of https://arxiv.org/pdf/1705.05823.

pdf applied a method to speed rendering of high- 

resolution (HR) images from low-resolution (LR) ones. 

This is a crucial process for high-definition television 

streaming and medical and satellite imaging (which is 

usually bandwidth and computationally expensive). 

The algorithm produces files 2.5× smaller than JPEG 

and JPEG 2000, 2× smaller than WebP, and 1.7× smaller 

than BPG. The codec is designed to be lightweight; 

it can encode or decode the Kodak data set in about 

10ms per image on a GPU. The architecture is an auto- 

encoder featuring pyramidal analysis, an adaptive 

coding module, and regularization of the expected 

code length. They also supplemented their approach 

with adversarial training specialized toward use in 

a compression setting. This enables you to produce 

visually pleasing reconstructions for very low bit rates.

• Pix2code (https://uizard.io/research#pix2code) 

is a new tool from startup UIzard that creates a system 

that lets a computer look at a screenshot of a web page 

and generate the underlying code that would produce 

that page. The approach can generate code for the iOS 

and Android operating systems with an accuracy of 

77 percent. In other words, it gets the underlying code 

right four times out of five.
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• Microsoft updated its smart camera app for iOS device, 

Microsoft Pix (https://www.microsoft.com/en-us/

research/product/microsoftpix/), with new features 

that overlay artistic filters on top of user photos. It uses 

DL to browse large data sets of classic paintings to learn 

features of a given style of painting. The results are 

interesting and fun to play with, especially for sharing 

on social media. The Microsoft Pix team has also 

planned to feature social shares from the app with tags 

of #PixStyling on its Instagram profile.

• Amazon’s Lab126 demonstrated (https://www.

technologyreview.com/s/608668/amazon-has- 

developed-an-ai-fashion-designer/) it could 

use GANs to generate novel fashion items that are 

consistent with a certain target style to provide 

inspiration for future fashion designers.

• DeepMind and Blizzard released the StarCraft II 

Learning Environment (SC2LE), as shown at https://

deepmind.com/blog/deepmind-and-blizzard- 

open-starcraft-ii-ai-research-environment/, 

to accelerate AI research focused on reinforcement 

learning and multi-agent systems. It includes a Blizzard 

ML API to hook into the game (environment, state, 

actions, traces), up to a half-million anonymized game 

replays, a Python-based RL environment, and a few 

simple RL-based mini-games to allow performance 

benchmarking. The game is particularly interesting 

because it requires long-term planning and multi- 

agent collaboration with potentially different subgoals.
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• Unity launched Unity machine learning agents 

(https://blogs.unity3d.com/2017/09/19/

introducing-unity-machine-learning-agents/), 

which enable the creation of games and simulations 

using the Unity Editor. These serve as environments 

where intelligent agents can be trained using 

reinforcement learning, neuroevolution, or other 

machine learning methods through a simple-to-use 

Python API.
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CHAPTER 9

Other Applications
The range of deep learning applications goes well beyond the ones 

mentioned in previous chapters. This chapter will give an overview of 

other applications relevant for business. DL is already incorporated into 

many services and products, including customer service, finance, legal, 

sales, quality, pricing, and production.

At the same time, cloud computing and storage, the proliferation of the 

myriad of data sensors driving the Internet of Things (IoT), the quantified 

self, and the pervasive use of mobile devices are all unleashing disruptive 

forces from the technological and economical sides. Machine learning 

will allow extreme context and personalization, making it possible to treat 

each customer and each problem as unique. It will also be key to solving 

the complex problems companies face in optimizing operations and 

forecasting, which is the ideal scenario for machine learning to proliferate.

Machine learning will make everything programmatic, from 

advertising to customer experience, and will allow companies to build 

better applications that interact with things people create such as pictures, 

speech, text, and other messy things. This permits companies to create 

products that interact naturally with humans.

Three components are required to build machine learning products: 

training data (supervised or unsupervised), software/hardware, and 

talent. As software is commercialized and hardware is easily available 

on-premise, the critical components are talent and data, as well as the 

processes to use them in the organization.
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 9.1 Anomaly Detection and Fraud
An anomaly, or outlier, is a data point that is significantly different from 

the remaining data distribution and is unlikely to be part of it. Anomaly 

detection is applied in network intrusion detection, credit card fraud 

detection, sensor network fault detection, medical diagnosis, and 

numerous other fields [CBK09].

The models to deal with anomaly detection can be classified into three 

categories.

• Pure classification models (prediction of the likelihood 

of a fraud event based on past events)

• Novelty detection (detection of abnormal patterns)

• Network analysis (identification of coordinated 

unusual events that individually look legitimate)

Traditional methods of data analysis have long been used to detect 

fraud, namely, through knowledge discovery in databases (KDD), data 

mining, machine learning, and statistics. Simple evaluation of first-order 

statistics, such as averages, quantiles, performance metrics, or probability 

distributions, is normally used as the first line of detection. Time-series 

analysis, unsupervised clustering such as k-means, and classification 

of patterns and associations among groups of data as well as matching 

algorithms to detect anomalies in transactional behavior of users 

constitute make up the second line of defense.

A typical approach in anomaly detection is the reconstruction error 

of a data point, which is the error between the original data point and its 

reconstruction; this is used as an anomaly score. Principal component 

analysis (PCA) is a common method used for this approach where the 

distance between the first observation and the reconstruction from the 

first n PCA eigenvectors can be used as a measure of how anomalous the 

observation is.
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However, most of these traditional approaches lack flexibility to 

adapt to a changing environment - as in the case of fraud detection. DNN 

methods have the ability to learn suspicious patterns in a supervised or 

unsupervised way.

In supervised learning, normally a subsample of data is taken and 

manually classified as either fraudulent or nonfraudulent. This is required 

to make the classifier less biased as the majority of events are normal or 

nonfraudulent—typically more than 99 percent and sometimes 99.99 

percent. There are three types of unsupervised techniques.

• Density-based methods: In this method, you fit a 

density model, like mixture of Gaussians, and identify 

anomalies by locating points that do not fit in the 

distribution (see Figure 9-1).

Figure 9-1. Anomaly detection with density estimation (source: 
https://www.slideshare.net/agramfort/anomalynovelty- 
detection- with-scikitlearn)
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• Kernel methods: You smooth the data from a kernel and 

identify the points that are outside the smoothing.  

A typical approach is OneClassSVM.

• Clustering: This is like nearest neighbors. A point is an 

outlier when it is too far from any cluster.

All these types of detection are only able to detect frauds similar to 

those that have occurred previously and have been classified by a human. 

Detecting a novel type of fraud may require the use of an unsupervised 

machine learning algorithm.

Deep learning is well suited to dealing with these unbalanced data sets 

(the overwhelming majority of transactions are nonfraudulent) since you 

can pretrain the network with all (unlabeled) data. A softmax supervised 

layer can be applied to the last layer but using a balanced data set.

Generative adversarial networks can also be used for anomaly 

detection and one-shot learning as they require weakly supervision. 

For instance, Mishra et al. used a simple but powerful technique based 

on a conditional variational auto-encoder  (https://arxiv.org/

pdf/1709.00663.pdf). A variational auto-encoder is a graphical model to 

learn the distribution of the hidden latent representations z in respect to 

that of the data x. A conditional variational auto-encoder maximizes the 

variational lower bound of the conditional likelihood p(x|c), which helps to 

generate samples having the desired properties (encoded by the category 

c). The reconstruction error can then be assigned to each category, and 

new categories can be generated by one-shot learning.

Stacked auto-encoders (SAEs) can be used for hierarchical dimension 

reduction, thus obtaining abstract and more representative features from 

data. An approach based on deep neural networks to model anomaly 

detection was proposed by [ZCLZ16]; they called it a deep structured 

energy-based model (DSEBM) , where the energy function is the output 

of a deterministic deep neural network with structure. The model 

handles static, sequential, and spatial data. The novelty is that the model 
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architecture adapts to the data structure thus matching, or outperforming, 

other competing methods.

Schreyer et al. proposed a method of detecting anomalies using deep 

auto-encoder networks (https://arxiv.org/pdf/1709.05254.pdf). 

The trained networks’ reconstruction error regularized by the individual 

attribute probabilities is interpreted as a highly adaptive anomaly 

assessment. This results in a substantial increase in the detection precision 

of anomalies compared with a strong baseline.

 9.1.1 Fraud Prevention
Fraud represents one of the biggest losses for banks and insurers, 

accounting for up to $1.7 billion in annual losses in the United States. Fraud 

is vast, complex, and a very hard problem that deals with the ever-changing 

and more sophisticate schemes that are targeting these organizations.

Most current approaches to detect fraud are largely static and rely on 

patterns derived from a subset of historical transactions. Banks basically 

look at transactional data to validate whether a given transaction is valid 

based on a set of hard rules, heuristics learned from past events, and 

machine learning methods to detect how likely a specific transaction is to 

be illegitimate. For credit card payments, these models typically can  

uplift fraud ratios from 1:10000 to 1:100. However, first-time fraud, which 

has no known signature, is almost always missed. Coordinated (network) 

types of fraud are also hard to spot, as each transaction looks legitimate. 

In insurance, the problem is even harder because more intermediaries are 

involved and more elaborated fraudulent options exist.

Profiling (also known as behavior description) attempts to characterize 

the typical behavior of an individual, group, or population. For instance, 

“What is the typical cell phone usage of a customer segment?” This 

question may not be easy to answer as it might require a complex 

description of night and weekend calls, international usage, roaming 

charges, text minutes, and so on. Behavior can apply to an entire segment 
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or be at the level of small groups or even individuals. Profiling is often 

used to establish behavioral norms for anomaly detection such as 

monitoring for intrusions or fraud. For example, if the purchases a person 

typically makes on a credit card are known, you can determine whether 

a new charge on the card fits that profile or not and create a score alarm. 

However, the number of false positives is usually high.

Another technique that deals with fraud and security is link prediction. 

It attempts to predict connections between nodes (objects of people) 

in a graph by suggesting a link on these nodes and possibly estimating 

the strength of the link. Link prediction is common in social networking 

systems. For example, for recommending movies to customers, you can 

think of a graph between customers and the movies they’ve watched or 

rated. Within the (bi-partied) graph, the algorithms find relations that do 

not exist between customers and movies but that are likely.

A recent work from Shaabani et al. (http://arxiv.org/

abs/1508.03965) showed that graph analysis was effective in predicting 

violent criminal gang activity in Chicago by identifying and putting 

on preventive observance undetected individuals strongly related to 

offenders.

An et al. used a variational auto-encoder (VAE) for an anomaly 

detection method using the reconstruction probability from the VAE 

(http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf). This 

reconstruction probability takes into account subtler correlations in the 

data, making it a better anomaly score than the reconstruction error, which 

is normally used by the AE and PCA. Since VAEs are generative models, they 

allow you to understand the characteristics that are behind the anomaly.
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 9.1.2 Fraud in Online Reviews
Fraud is also becoming common in online reviews. Fake reviews are 

perpetrated by businesses writing them or purchasing reviewers to 

write them to raise the popularity of their products or downgrade the 

competition. It is crucial for e-commerce to identify and remove these 

reviews to maintain customers’ trust. Fake reviews can account for as 

much as 80 percent of total reviews. Various features can be used for fraud 

detection such as ratings, reviews, timestamps, and correlations. The 

problem can be characterized as this: given a set of users and products and 

timestamped ratings, compute a suspiciousness score for each user. Most 

algorithms use a temporal approach to detecting ratings fraud by catching 

products that receive a large number of positive or negative reviews in a 

short time, detected through the sudden increase in fraudulent reviews 

to bias the popularity or defame their competitors. Another approach is 

based on analyzing the rating distributions to find users who rate products 

very differently from other users.

This problem can be framed in a Bayesian approach, which is a natural 

choice to establish a good trade-off between users with extreme rating 

distributions versus users with a larger number of ratings. This gives a 

natural answer to this question: “Is a user with 20 ratings and an average 

rating of 5 more suspicious than a user with 100 ratings and an average 

rating of 4.8?” For a recent application of application to fake content 

detection see https://arxiv.org/pdf/1703.06959.pdf.

Fake reviews become even harder to detect as a recent work 

showed that neural networks can generate artificial reviews 

almost indistinguishable from humans; see https://arxiv.org/

pdf/1708.08151.pdf. In this work, the authors used character-level 

LSTM and an encoder-decoder architecture to generate fake reviews 

of restaurants that few humans could identify as fake. Here are some 
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examples of the fake reviews (notice that there is some style consistency; 

the review was written pretending to be a teenage user):

• “I love this place. I have been going here for years, and 

it is a great place to hang out with friends and family. 

I love the food and service. I have never had a bad 

experience when I am there.”

• “I had the grilled veggie burger with fries!!!! Ohhhh and 

taste. Omgggg! Very flavorful! It was so delicious that I 

didn’t spell it!!”

• “My family and I are huge fans of this place. The staff 

is super nice, and the food is great. The chicken is very 

good and the garlic sauce is perfect. Ice cream topped 

with fruit is delicious too. Highly recommended!”

 9.2 Security and Prevention
As information is being digitalized, companies are becoming more 

vulnerable to various types of attacks. Cybersecurity are intrusion 

detection are critical. Intrusion detection can also be helpful beyond 

detecting cyber-attacks in noticing abnormal system behavior to detect 

accidents or undesired conditions.

In 2016, Kaspersky recorded more than 69 million malicious code 

attacks and 261 million unique URLs were recognized as malicious by 

web antivirus components. Malicious code analysis and detection is a key 

problem in intrusion detection technology. The detection of malicious 

code is currently divided into two approaches: host- based and network-

based. Machine learning can be effective in detecting malicious code 

through learning the characteristics of intrusive code in contrast with 

normal code. Long et al. [LCWJ15] reviewed a variety of feature extraction 

methods and machine learning methods in a variety of malicious code 
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detection applications, including Naïve Bayes, decision trees, artificial 

neural networks, support vector machine, and so on. Although these 

methods achieved some success, feature extraction is not appropriate 

because the detection rate and the detection accuracy are not high and 

because the algorithms are complex.

Deep learning techniques have proved to be superior than 

shallow learning models (like SVMs) - see for instance https://pdfs.

semanticscholar.org/45ba/f042f5184d856b04040f14dd8e04aa7c11f6.

pdf. Models based on LSTM units have the capacity to model complex 

temporal dependencies. For a review on the applications of LSTM to 

detect credit card fraud, see http://thirdworld.nl/credit-card-

transactions-fraud-detection-and-machine-learning-modelling-

time-with-lstm-recurrent-neural- networks.

In https://www.technologyreview.com/s/601955/machine- 

visions- achilles-heel-revealed-by-google-brain-researchers/, 

Kurakin et al. showed that adversarial examples (input data that is almost 

indistinguishable from real data) can easily fool image classifiers. Previous 

studies assumed direct access to the ML classifier, such that adversarial 

examples were fine-grained per-pixel modifications fed directly to the 

model. This work instead showed that adversarial examples created to fool 

a pretrained ImageNet Inception network were also misclassified when the 

images were perceived through a cell phone camera.

In http://homepages.inf.ed.ac.uk/csutton/publications/

leet08sbayes.pdf, the authors explored the use of machine learning to 

subvert spam filters.

Deep Instinct learns the characteristics common to all malware and 

self-updates. Deep Instinct uses convolutional neural networks (CNNs) 

trained against a labeled set of data—image pixels with a set of subject- matter 

metadata in the case of the online sites and binary executables in the case 

of Deep Instinct. It applies the same technique to executables.
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In https://people.csail.mit.edu/kalyan/AI2_Paper.pdf, 

researchers from MIT and the machine learning startup PatternEx 

demonstrated an artificial intelligence platform called AI2 that predicts 

cyber-attacks better than existing systems by continuously incorporating 

input from human experts. AI2 can detect 85 percent of attacks, 

approximately three times better than previous benchmarks, while also 

reducing the number of false positives by a factor of 5.

 9.3 Forecasting
Several machine learning algorithms were developed for forecasting, such 

as multilayer perceptrons, Bayesian neural networks, K-nearest neighbor 

regression, support vector regression, and Gaussian processes. Deep 

architectures allow the emergence of complex models that can go beyond 

traditional statistical approaches like autoregressive integrated moving 

average (ARIMA).

Energy Forecasting is an essential problem because excess demand 

can cause disruptions while excess supply is wasted. In an industry 

worth more than $1 trillion annually in the United States, every marginal 

improvement can have a huge impact. Energy loads are interesting for ML 

because of the availability of large data sets. Using data from the Kaggle 

competition called Global Energy Forecasting Competition in 2012, Busseti 

et al. used a DL algorithm for energy demand forecasting to predict energy 

loads across different network grid areas, using only time and temperature 

data. The data included hourly demand for four-and-a-half years from 

20 different geographic regions and similar hourly temperature readings 

from 11 zones. Because of the huge data set, they were able to implement 

complex nonlinear models without overfitting. They used a recurrent 

neural network, achieving an RMSE of 530kWh/h and 99.6 percent 

correlation to the test data, which was almost half the error rate of a feed-

forward neural network. They also used a kernelized local regression in the 

input data, based on the squared exponential distance to centroids.
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For a comparison of several deep learning algorithms, as well as some 

traditional ones, for energy forecasting, see https://www.jesuslago.com/

wp-content/uploads/forecastingPrices.pdf.

Kelly et al. used a model (https://arxiv.org/pdf/1507.06594.pdf) for 

an energy disaggregation appliance in electricity consumption from a single 

meter measuring the home’s electricity demand. They used three deep neural 

network architectures to energy disaggregation: a form of recurrent networks 

with LSTM, denoising auto-encoders, and a network as a regression in time.

See https://arxiv.org/pdf/1703.00785.pdf for an overview of 

current approaches of deep learning for load disaggregation and energy 

forecasting.

Weather forecasting is a complex problem using many measurements 

from previous conditions in the format of a space-time mesh. Current 

prediction models are based on huge grid-based finite-element method 

calculations. Large sets of fluid dynamics in differential equations are 

solved iteratively, and the results are used as initial conditions for the 

next step. This is computationally extremely expensive, and the predictive 

accuracy is limited as errors multiply for each predictive time step. Xi et al. 

used a combination of 3D convolutional neural networks with neural 

networks with STM cells to build accurate forecasting models, using up to 

100 million parameters, trainable from end to end. The weather prediction, 

up to two days ahead, can take less than 0.1 seconds on a laptop, achieving 

a better accuracy than models that need several hours of computations on 

a supercomputer; see http://arxiv.org/pdf/1506.04214v2.pdf.

Epelbaum et al. (https://hal.archives-ouvertes.fr/hal- 

01598905/document) applied some deep learning network architectures 

to forecast the traffic patterns in Paris. These algorithms were designed to 

handle historic speeds of car data to predict road traffic data.

The real-time simulation of fluid and smoke is a hard problem in 

computer graphics, where state-of-the-art approaches require large 

compute resources, making real-time applications often impractical. 

Tompson et al. proposed a data-driven approach based on neural 
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networks to obtain both fast and highly realistic simulations; see their 

work and some videos at http://cims.nyu.edu/schlacht/CNNFluids.

htm. They used convolutional networks from a training set of simulations 

using a semisupervised learning method to minimize long-term velocity 

divergence. The results are impressive.

Uber uses recurrent neural networks (https://eng.uber.com/neural- 

networks/) to predict demand for its services and cut operating costs. The 

model uses an LSTM RNN and is based in TensorFlow and Keras. The 

company trained a model using five years of data from numerous U.S. cities. 

The resulting RNN has good predictive abilities when tested across a corpus 

of data consisting of trips taken across multiple U.S. cities over the course of 

seven days before, during, and after major holidays like Christmas, though 

it can predict some spikes because of their rarity. This system is significantly 

better at dealing with spiky holiday days, and it slightly improves the 

accuracy on other days such as MLK Day and Independence Day.

 9.3.1 Trading and Hedge Funds
The investment management industry is following closely recent advances 

in AI. Established asset managers and hedge funds such as BlackRock, 

Bridgewater, and Schroders are investing in this technology to build 

investment platforms that possibly outperform humans. No matter how 

futuristic this goal may look, recent achievements in AI are pushing the 

limits of what is considered possible.

Neural networks are a research area long abandoned by quantitative 

fund managers because of the nontransparent—and often poor—

investment decisions experimented with in the past. However, things have 

changed drastically in recent years. Deep learning is proving capable of 

solving the hardest puzzles that humans struggle with and of devising 

complex strategies to win the game of Go or poker. DL neural networks 

may be the first machines called intuitive.
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For hedge funds, these superhuman cognitive capabilities could 

represent a clear advantage in extracting insights from the intricacies of the 

financial markets. AHL, the quantitative arm of the hedge fund manager 

the Man Group, is among those now exploring whether deep learning can 

be applied to investing. Euclidean, a New York money manager, is also 

exploring its possibilities.

Neural networks and deep learning make up just one area of the 

multifaceted AI world. But it’s one thing to beat a game with clear rules 

and fully observable states. Markets are more complex to understand. 

Many of the new AI-focused hedge funds will probably fail, but the feeling 

that the investment industry is on the cusp of a radical transformation is 

inescapable.

Sirignano (https://arxiv.org/pdf/1601.01987v7.pdf) used a spatial 

neural network to model the joint distribution of the best bid and ask 

price at the time of the next state change. The model also considers the 

joint distribution of the best bid and ask prices after variations to predict 

changes in limit-order books. He used a neural network with 4 layers and 

250 neurons per hidden layer, while the spatial neural network had 50 

unities. Dropout was used to prevent overfitting. The model was trained 

on more than 489 stocks from 2014 to 2015 using 50TB of data described 

by 200 features: the price and size of the limit-order book across the first 50 

nonzero bids and ask levels. He could predict the order book one second 

ahead and also the time of the next bid/ask change, claiming a reduction 

of the error rate by 10 percent compared with logistic regression.

Fehrer and Feuerriegel [FF15] used a recursive auto-encoder to predict 

German stock returns based on text from financial news headlines. They 

used an English ad hoc news announcement data set (8,359 headlines) 

for the German market covering news from 2004 to 2011. They reached 

an accuracy of 56 percent, which was a considerable improvement over 

random forest (which has a 53 percent accuracy).
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Xiong et al. predicted (https://arxiv.org/pdf/1512.04916.pdf) 

the daily volatility of the S&P 500, as estimated from open, high, low, and 

close prices. They used a single LSTM hidden layer consisting of one LSTM 

block. For inputs they used daily S&P 500 returns and volatilities. They 

also included 25 domestic Google trends, covering sectors and major areas 

of the economy. They used the Adam method with 32 samples per batch 

and used the mean absolute percent error (MAPE) as the objective loss 

function. They set the maximum lag of LSTM to include ten successive 

observations. As a result, their LSTM method outperformed the GARCH, 

Ridge, and LASSO techniques.

In 2016, Heaton et al. attempted (https://arxiv.org/

abs/1605.07230) to create a portfolio that would outperform the 

biotech index IBB. They had the goal of tracking the index with a few 

stocks and low validation error. They also tried to beat the index by 

being anticorrelated during periods of large drawdowns. They didn’t 

directly model the covariance matrix; rather, it was trained in the deep 

architecture fitting procedure, which allows for nonlinearities. They 

used auto- encoding with regularization and ReLUs. Their auto-encoder 

has one hidden layer with five neurons. For training they used weekly 

return data for the component stocks of IBB from 2012 to 2016. They 

auto-encoded all stocks in the index and evaluated the difference 

between each stock and its auto-encoded version. They kept the ten 

most “communal” stocks that were the most similar to the auto-encoded 

versions. They also kept a varying number of other stocks, where the 

number was chosen with cross-validation. For results, they showed the 

tracking error as a function of the number stocks included in the portfolio 

but didn’t seem to compare against traditional methods. They also 

replaced index drawdowns with positive returns and found portfolios that 

track this modified index.
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 9.4 Medicine and Biomedical
Deep learning is already having a strong impact in the healthcare industry 

because of the increase in capacity and accuracy of learning algorithms 

and because of the wide availability of large sets of healthcare data, made 

possible through the digitalization of (structured and unstructured) 

medical records, as well as personal genetic data and other personalized 

data originating from mobile devices.

However, the application of ML technology for medicine has a long 

history of failures. Among other things, a particularly tricky aspect is the 

variability between individuals, which causes more simplistic machine 

learning algorithms to miss the patterns and give wrong answers, which 

is something particularly sensitive in an area with low tolerance for 

error.

However, as Dave Channin correctly stated, a big obstacle in applying 

ML to medicine is to have a reliable source of “truth” to train the machines. 

What is the real interpretation of a given image? What is the cause behind 

a set of uncommon symptoms? If it is a rare disease, statistics will not help, 

and these symptoms may easily fool the machine to flag more common 

cases. Crowdsourcing symptoms can be a solution, but it’s trickier as it 

requires specialized information to make a wise decision. The problem 

is even more complex because of the variability of equipment and 

conditions of the diagnostics. Finally, there is the issue dealing with heavy 

regulatory entities that demand interpretability. DNNs are black boxes, 

so it is hopeless to ask a machine for explanations after reaching a certain 

conclusion. To our comfort, consensus among human experts on complex 

situations is also rare.
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 9.4.1 Image Processing Medical Images
Having achieved human-level performance on object identification and 

facial recognition, deep learning has a great potential in applications in 

medical imaging processing, an area where subjective interpretation is 

common and context is key to disambiguate several possible explanations.

Some companies are applying DL to recognize cancer in medical 

images such as X-rays, and many automated image recognition tools 

are already used in hospitals. Diagnoses based on the processing of 

medical images are, however, just a tiny fraction of the potential of DL in 

the medical sector. There are several challenges however, like the lack of 

training images, the lack of comprehensive annotation, skewed distribution 

toward rare diseases, and nonstandardized annotation metrics.

More information about biomedical image data sets is available at 

https://medium.com/the-mission/up-to-speed-on-deep-learning-in- 

medical- imaging-7ff1e91f6d71.

Deep learning algorithms are today more precise than humans in 

Alzheimer disease detection, bone fracture detection, and breast cancer 

diagnostics, as shown in Figure 9-1.

These are some startups working on deep learning for medical imaging:

• Enlitic uses systems on medical images and other 

patient records to help doctors diagnose and treat 

complex diseases. It raised $10 million in October 2015.

• Lumiata uses an extensive databases of medical records 

to populate a knowledge graph of medical history. It 

recently raised $10 million.

• Synapsify builds applications that semantically read 

and learn from written content similar to humans for 

accelerated discovery.
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• The Google DeepMind research project with the 

Moorfields Eye Hospital in London is working toward 

the early detection of macular degeneration. This work 

involves analyzing optical coherence tomography scans 

of the retina.

• Massachusetts General Hospital in Boston launched 

its Clinical Data Science Center to create a hub focused 

on using AI technologies to diagnose and treat disease. 

A number of startups have set out to tackle this 

problem, but this is a heavyweight healthcare provider 

making this announcement, with Nvidia as a founding 

technology partner.

• DL is helping the blind and visually impaired to “see.” 

A recent project from Microsoft presented a new vision 

project named Seeing AI (https://www.youtube.com/

watch?v=R2mC-NUAmMk), which uses computer vision 

and NLP to describe a person’s surroundings, read text, 

answer questions, and identify emotions on people’s 

faces. Baidu has a similar product called DuLight. 

Facebook is already making its content available to the 

blind and visual impaired.

• ML is also making it possible for paraplegics to regain 

some control and mobility based on a technology 

that reads brain activity and connects directly to the 

muscles, surpassing the damaged nerves’ circuitry 

(https://www.physiology.org/doi/pdf/10.1152/

physrev.00027.2016).

• iCarbonX has a near-term goal of predicting the onset 

of diseases from genomic, medical, and lifestyle data.

Chapter 9  Other appliCatiOns

https://www.youtube.com/watch?v=R2mC-NUAmMk
https://www.youtube.com/watch?v=R2mC-NUAmMk
https://www.physiology.org/doi/pdf/10.1152/physrev.00027.2016
https://www.physiology.org/doi/pdf/10.1152/physrev.00027.2016


224

• Veritas Genetics, a company providing direct-to-

consumer whole-genome sequencing and targeted 

screening for prenatal testing and breast cancer, made 

a move into AI by acquiring Curoverse, a bioinformatics 

company. Together, they are working on improving 

disease risk scoring and causality in genetics and diseases.

• Other companies in the field include BayLabs, Imagia, 

MD.ai, AvalonAI, Behold.ai, and Kheiron Medical.

DL can be applied to analyze not only images but also text (medical 

records), millions of research and medical studies on drug effectiveness 

and drug interaction, and even genetics to create tailored hypotheses and 

accurate diagnostic and personalized treatment. Watson for Medical is 

the most well-known technology, but there are many startups working in 

this area. See, for example, http://www.sciencedirect.com/science/

article/pii/S1532046417300710.

Some companies, like Apixio, analyze text by mining medical records 

and apply that to helping insurance providers classify which of their 

patients have which diseases. That classification process, normally done 

manually by humans, involves matching written diagnoses with a set of 

medical numerical codes.

A pathologist’s report is critical in assessing and devising a procedure 

to treat cancer. One of the inputs is the patient’s biological tissue sample, 

made of several slides at a resolution up to 30,000×30,000 pixels that goes 

up to a cell-level resolution, μm. This is a complex and time-consuming 

task that requires years of training.

However, there can be substantial variability in the identification of 

tissue with cancer cells by different pathologists for the same patient, 

leading to misdiagnoses. Agreement in diagnosis for some forms of breast 

cancer can be as low as 50 percent and similarly low for prostate cancer.
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The Camelyon 2017 Challenge is an international competition 

designed to assess the quality of algorithms in the localization of breast 

cancer that has spread (metastasized) to lymph nodes adjacent to the 

breast. In the latest version of this competition, deep learning algorithms 

achieved a precision level surpassing humans; see https://camelyon17.

grand-challenge.org/results/. The detailed explanation is presented in 

https://arxiv.org/pdf/1606.05718.pdf. The authors obtained an area 

under the receiver operating curve (AUC) of 0.97 for the task of whole slide 

image classification and a score of 0.89 for the tumor localization task. A 

pathologist independently reviewed the same images, obtaining a whole 

slide image classification AUC of 0.96 and a tumor localization score of 0.73. 

These results demonstrate the power of using deep learning to produce 

significant improvements in the accuracy of pathological diagnoses. 

Figure 9-2 summarizes the impact of deep learning in medical image 

processing. 

Figure 9-2. Impact of DL in medical image (source: ARK report)

 9.4.2 Omics
In genomics, proteomics or metabolomics genetic information 

(transcriptome and proteome) data is composed of a set of raw sequences, 

usually DNA or RNA. This data has become affordable to obtain because 

of the next-generation sequencing technology. In addition, protein 
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contact maps, which present distances of amino acid pairs in their three-

dimensional structure, and microarray gene expression data are easily 

available.

One of the most researched problems is secondary protein structure 

prediction or contact map of a protein. DNNs have been widely applied in 

protein structure prediction research. Chen et al. [CLN+16] applied MLP to 

microarray and RNA-to-sequence expression data to infer expressions of up 

to 21,000 target genes from only 1,000 landmark genes. Asgari et al. [AM15] 

adopted the skip-gram model (used on Word2vec) and showed that it 

could effectively learn a distributed representation of biological sequences 

with general use for many “omics” applications, including protein family 

classification.

Gene expression regulation (including splice junctions or RNA 

binding proteins) and protein classification are also actively investigated. 

CNNs can be trained to simultaneously predict closely related factors. 

One-dimensional CNNs have also been used with biological sequence 

data. Alipanahi et al. proposed CNN-based approaches for transcription 

factor binding site prediction and 164 cell-specific DNA accessibility 

multitask prediction, respectively, for disease-associated genetic variant 

identification. Zhou et al. [ZT15] proposed a CNN-based algorithmic 

framework (DeepSEA) to learn transcription factor binding and  

disease-associated genetic variants based on the predictions.

Sønderby et al. [SSN+15] applied bidirectional RNNs with LSTM 

hidden units and a one-dimensional convolution layer to learn 

representations from amino acid sequences and classify the subcellular 

locations of proteins. Lee et al. [LBP+16] applied RNNs to microRNA 

identification and target prediction and obtained state-of-the-art results.

Transcriptomics analysis exploits variation in the abundance of 

various types of transcripts (messenger RNA, long non-coding RNA, 

microRNA, etc.) to gather a range of functional information, from splicing 
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code to biomarkers of various diseases. Transcriptomics data is often 

obtained from different types of platforms (various microarray platforms, 

sequencing platforms, etc.) that differ by the gene set measured and the 

method of signal detection. Many factors contribute to the variability 

of gene expression data. Thus, normalization is needed even for single- 

platform analysis. Cross-platform analysis requires normalization 

techniques, which can be a major challenge. DNNs are particularly well 

suited for cross-platform analysis because of their high generalization 

ability. They are also well equipped to handle some of the other major 

issues with gene expression data, such as the size of the data sets and the 

need for dimension reduction and selectivity/invariance.

While in surgery only 36 percent of the tasks performed could be 

replaced by AI in the next years, for radiologists this number could be as 

high as 66 percent - source ARK-Invest.

Machine learning techniques can be used to spot different types of 

anomalies, like breast cancer, skin cancer, and eye disease, from medical 

images. A team from Stanford University, led by Andrew Ng, has shown 

(https://www.technologyreview.com/s/608234/the-machines-are- 

getting-ready-to-play-doctor/) that an ML model can identify heart 

arrhythmias from an electrocardiogram (ECG) better than an expert. 

The team trained a DL algorithm to identify different types of irregular 

heartbeats in ECG data. Some irregularities can lead to serious health 

complications, including sudden cardiac death, but the signal can be 

difficult to detect, so patients are often asked to wear an ECG sensor for 

several weeks. Even then it can be difficult for a doctor to distinguish 

between irregularities that may be benign and ones that could require 

treatment. They collected 30,000 30-second clips from patients with 

different forms of arrhythmia. To assess the accuracy of their algorithm, 

the team compared its performance to that of five different cardiologists 

on 300 undiagnosed clips. A panel of three expert cardiologists provide a 

ground-truth judgment.
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 9.4.3 Drug Discovery
Recent advances in machine learning have made significant contributions 

to drug discovery. Deep neural networks in particular have provided 

significant boosts in predictive power when inferring the properties and 

activities of small molecule compounds. Mamoshina et al. (https://

www.ncbi.nlm.nih.gov/pubmed/28029644) used generative adversarial 

auto-encoders (AAE) for generating novel molecular fingerprints for drug 

discovery. They used a seven-layer AAE architecture with the latent middle 

layer serving as a discriminator. As an input and output, the AAE used a 

vector of binary fingerprints and concentration of the molecule. In the 

latent layer, they also introduced a neuron responsible for growth inhibition 

percentage, which when negative indicated the reduction in the number of 

tumor cells after the treatment. They trained the AAE with NCI-60 cell line 

assay data for 6,252 compounds profiled on an MCF-7 cell line. The output 

of the AAE was used to screen 72 million compounds in PubChem and 

select candidate molecules with potential anticancer properties.

Computer Assisted Drug Design (CADD) has a huge potential but 

also some challenges, either on structure-based drug design (protein 3D 

structures with drugs bound) or on ligand-based drug design (chemistry 

and quantitative structure-activity relationships [QSAR]). Over the 

past few decades, many approved drugs have resulted from significant 

CADD efforts in identifying and screening small molecules with specific 

biological activity.

However, biology is an extremely complex system, and CADD is only 

one of many steps to overcome the challenges of drug discovery. We 

may be still far from a world where computers discover drugs, test them 

virtually in a cloud of robotic assays, and get them to patients with a few 

clicks of a mouse. In silico, platforms for CADD can easily overfit and 

often fail to deliver on actual prospective projects. Instead of “software 

eats biotech,” the reality of drug discovery today is that biology consumes 
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everything. The primary failure mode for new drug candidates stems from 

a simple fact: human biology is massively complicated. Drug candidates 

that interfere with the wrong targets or systems can lead to bad outcomes 

(“off-target” toxicity). They can interfere with the right targets but with 

the wrong effects (“on-target” or mechanism-based toxicity). They are 

most often promiscuous and interact with lots of things, some known and 

many unknown. Beyond their target pharmacology, drugs interact with 

the human body in countless ways, rendering them ineffective or worse 

(absorption, distribution, metabolism, and excretion being four important 

ones). And, of critical importance, the biology might just not work at 

ameliorating a specific disease, improving mortality, or elevating quality of 

life. The wrong target is often picked to interrogate, which is a major cause 

of attrition in Phase 2 and beyond. Even more challenging, variation among 

patients (and, even more so, species!) in how biology manifests also leads to 

added complexity, both good (insightful) and bad (unfortunate). In fairness, 

even when drugs are approved, we don’t know everything about them.

Several companies are using the computational capabilities of DNN 

and biomedical data available to speed up drug discovery in sillico. 

Discovery for a single drug can take decades and hundreds of millions 

of dollars, with a high rate of failure. Machine learning can speed up the 

process and rapidly discover new drugs in a fraction of the time and cost. 

There are many companies working in this area, like Recursion (https://

www.recursionpharma.com/), Benevolent AI (http://benevolent.ai/), 

and Atomwise (www.atomwise.com/), including the big pharmaceuticals.

Deep Genomics (https://www.deepgenomics.com/), a company led 

by Brendan Frey, was able to train a neural network to decipher the code 

behind the noncoding regions of RNA. Basically, it considered longer 

sequences of nucleotics to train a deep network.
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 9.5 Other Applications
The following sections highlight some other applications.

 9.5.1 User Experience
Deep learning is becoming the core technology to make possible a truly 

natural and frictionless user interaction with machines. Voice recognition 

is already at human-level accuracy, allowing voice, rather than the 

keyword, to be a natural way to interact with smartphones and other smart 

devices. This is already a reality in products like the personal assistant 

Amazon Echo or Google Home. These devices are designed for full voice 

interaction and answer questions in natural language. They also can be 

integrated with other home devices, creating better energy management 

and security systems.

DL will help reshape user experiences through interaction and 

personalization to blur the separation between humans and machines. 

Interfaces can be simplified, abstracted, or even completely hidden from 

the user. The traditional thinking of UX programmers (how to create 

scrolling pages, buttons, taps, and clicks) is based on an old paradigm. DL 

inputs allow a very natural interaction and personalization; see https://

techcrunch.com/2016/08/15/using-artificial-intelligence-to-

create- invisible-ui/.

Devices need to know more about us for invisible UI to become a 

reality. Contextual awareness today is somewhat limited. For example, 

when asking for directions via Google Maps, the system knows your 

location and will return a different result if you are in New York versus 

California.

But even with all the sensors and data, the machine needs to know 

more about us and what is going on in our world in order to create the 

experiences we really need. One solution is to combine the power of 

multiple devices/sensors to gather more information. But this usually 
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narrows down and limits the user base—which is not an easy thing to sell 

to a client.

 9.5.2 Big Data
The exponential growth of data, 80 percent of which is unstructured (such 

as social media, e-mail records, call logs, customer service, competitor, 

and partner pricing), allows companies to enhance prediction and explore 

hidden patterns. DL is particularly useful for dealing with unlabeled data 

because it makes extensive use of unsupervised methods.

Multimodal learning will allow people, for the first time, to combine 

text, voice, image, and even videos in a joint knowledge representation; 

this is a technology already implemented in image search. This will permit 

advanced queries such as “Show me something related to this image but in 

brighter colors or a slimmer shape” or even “Show me a movie that has a 

scene where a blond girl is kissing at sunset near the Eiffel Tower” or even 

“Show me the scene where there is loud noise from the street traffic.”

Despite all the buzz around chatbots, they definitely will change the 

way users interact with content. A conversation is more natural than 

a query since it can contextualize the question through an iterative 

process. Also, it can be personalized for each customer, it can know more 

information about the customers, and, perhaps most important, it’s a more 

natural interaction.

Google has recently launched an automatic reply option for Gmail 

accounts that will send replies based on three responses suggested 

by Google’s AI; it works only for some messages. You also can use the 

suggested responses as starting points, editing or adding text as you like. 

Smart Reply is based on a DNN to predict whether an e-mail is one for 

which someone might write a brief reply.
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 9.6 The Future
Algorithms are evolving toward less traditional and unexpected tasks that 

we have reserved for humans. Examples include playing poker, dealing 

with negotiations, and even forging relationships. Training is evolving from 

being strictly supervised to a more high-level, weakly supervised and even 

unsupervised model. An example is teaching robots to execute complex 

tasks just by showing some examples. An example in reinforcement 

learning is where you feed the rules of the game and the algorithm 

discovers strategies by playing against itself.

An area where you can expect important improvements, unthinkable 

a few years ago, is negotiation. Most chatbots can already perform short 

conversations and do simple tasks such as booking a restaurant or a hair 

dresser with voice assistants. However, building machines that can have 

meaningful conversations with humans is probably beyond reach in the 

near future because it requires an understanding of the conversation and 

knowledge of the world.

The Facebook Artificial Intelligence Research (FAIR) team has 

published a paper (https://arxiv.org/abs/1706.05125) introducing 

dialogue agents with the ability to negotiate. The researchers have shown 

that it’s possible for dialogue agents with differing goals to engage in start- 

to- finish negotiations with other bots or people while arriving at common 

decisions. The remarkable thing is that these bots can arrive at differing 

goals, solve conflicts, and then negotiate to come to a compromise.

Each agent is provided with its own value function that represents 

how much it cares about each type of item. As in life, neither agent knows 

the other agent’s value function and must infer it from the dialogue. FAIR 

researchers created many such negotiation scenarios, always ensuring that 

it was impossible for both agents to get the best deal simultaneously.
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Negotiation is simultaneously a linguistic problem and a reasoning 

problem, in which an intent must be formulated and then verbally 

realized. Such dialogues contain both cooperative and adversarial 

elements, requiring agents to understand and formulate long-term plans 

and generate utterances to achieve their goals.

Specifically, FAIR has developed a novel technique where an agent 

simulates a future conversation by rolling out a dialogue model to the 

end of the conversation so that an utterance with the maximum expected 

future reward can be chosen.
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CHAPTER 10

Business Impact 
of DL Technology

“I was a skeptic [about deep learning] for a long time, but the 
progress now is real. The results are real. It works.”

—Marc Andreessen, American entrepreneur

The falling costs of computation and the ease of accessing cloud- managed 

clusters have democratized AI in a way we’ve never seen before. In 

the past, building a computer cluster to train a deep neural network 

was prohibitively expensive. You also needed someone with a PhD in 

mathematics to understand the academic research papers on subjects 

such as recurrent neural networks. Today, it’s possible to run a cluster 

overnight to experiment with new algorithms for a few hundred dollars a 

month with a competent GPU-equipped PC.

AI has emerged from the labs and entered firmly into the business 

world with a tremendous impact on the automation of processes and 

services. For instance, an AI-powered CRM system could feed leads 

to sales reps in real time using algorithms designed to maximize the 

likelihood of a sale, based on breaking information about the customer, 

their company, and the sales rep.



238

Companies are pressed to build their own AI capabilities and teams 

and not rely on third-party consultants for this critical competency. AI 

cannot be seen as a one-shot process but rather a vital component in the 

strategy of business.

DL will affect profoundly every sector, including the automobile 

industry, robotics, drones, biotechnology, finance, or agriculture. According 

to ARK Invest’s research, companies founded on deep learning will unlock 

trillions of dollars in productivity gains and add $17 trillion in market 

capitalization to global equities during the next two decades; see https://

ark-invest.com/research/artificial-intelligence-revolution.

Here are some of the major predictions from https://ark-invest.

com/research/artificial-intelligence-revolution:

• $17 trillion in market capitalization creation from deep 

learning companies by 2036

• $6 trillion in revenue from autonomous on-demand 

transportation by 2027

• $6 billion in revenue for deep learning processors in the 

data center by 2022, growing more than tenfold over 5 

years

• $16 billion addressable market for diagnostic radiology

• $100 to $170 billion in savings and profit from improved 

credit scoring

• $12 trillion in real GDP growth in the US from 

automation by 2035

Processor performance has improved roughly five orders of magnitude 

since Intel’s original Pentium processor. But the performance of deep 

learning programs also depends on the amount of data used for training. 

Thanks to the Internet’s size and scale, deep learning has thrived with 

access to very large data sets at a minimal cost. While the 1990 LeCun 
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handwriting reader used approximately 10,000 samples collected from 

the U.S. Postal Service, the 2009 ImageNet data set contains more than 

10 million examples of high-resolution photographs. Also, Baidu’s 

DeepSpeech is trained upon more than 10,000 hours of audio data 

compared to a few hundred hours in legacy data sets.

Neural nets themselves have become larger and more sophisticated, 

as measured by their number of free “parameters.” Networks with a billion 

parameters are common nowadays. Larger networks allow for a more 

expressive capability to capture relations in the data. Today’s deep learning 

networks have roughly ten million parameters, or four orders of magnitude 

more than LeCun’s original handwriting reader (see Figure 10-1).

 10.1 Deep Learning Opportunity
Deep learning–powered AI is already transforming most industries.  

AI will fundamentally change and automate numerous functions within 

companies, from pricing, budget allocation, fraud detection, and security 

to marketing optimization. But for an organization to take full advantage 

of AI, it needs to be fully integrated across all different departments and 

functions; this will enable organizations to truly become customer-centric.

Figure 10-1. Evolution of computational power and artificial neural 
networks
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Deep learning is well suited for data-intensive activities such as 

advertising and click-through information. Most of the data will be 

collected by mobile phones, and a myriad of devices will deliver real-time 

georeferenced information. Multimodal learning will allow companies to 

integrate text, images, video, and sound with a unified representation.

The implications of DL technology applied to certain areas, like 

self-driving cars, are obvious, and its consequences could revolutionize 

transportation systems and car ownership. In other areas, the impact may 

not seem so obvious and immediate; however, as DL technology progress, 

many more industries will also be at risk of being disrupted. Some will be 

enumerated.

 10.2 Computer Vision
Deep learning algorithms are a key tool for automating and accelerating 

the analysis of large data sets generated by a proliferation of data generated 

by sensors, including images.

Although the basic algorithms are the same, the way the information 

is used varies. Computer vision has wide applications in the following 

industries: automotive, sports and entertainment, consumer and mobile, 

robotics and machine vision, medical, and security and surveillance. Tractica 

estimates the potential market for these segments combined to be $35 billion.

However, few companies have the expertise and computing 

infrastructure to train and deploy machine vision products. Computer 

vision-as-a-service is now available through APIs from many industry 

players, such as Microsoft and Google. These services allow companies to 

offload image processing to the cloud for a fee per image. Services include 

classification, optical character recognition, facial detection, and logo 

detection. Compared to manual image reading by a service like Amazon’s 

crowdsourced Mechanical Turk, these cloud-based APIs are roughly an 

order of magnitude cheaper.
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 10.3 AI Assistants
Probably the largest, and most immediate, impact of the GAIs supported 

by DNNs will not be in robotics but rather in customer service. Services 

such as sending a specific e-mail, a mobile push, or a customer pass for a 

specific shop or event could be automated in a near future and advanced 

analytics tools would even automate some support decisions processes. 

Contact centers deal with very mundane interactions that soon will be 

serviced through automated messaging such as chatbots and personal 

assistants. AI can help suggest how to deliver a conversation, user interests, 

and products. It can even use the data for secondary proposes, such as risk 

assessment based on previous interactions.

AI assistants are computer programs capable of human-level speech 

and comprehension. Algorithms that can converse with humans, 

understand needs, and help with tasks would be a boon to the quality 

of life and to global productivity. Until recently, such breakthroughs 

were confined to the realm of science fiction. But AI assistants became 

mainstream when Apple launched Siri in October 2011. Google followed in 

2012, and Microsoft Cortana and Amazon Echo came next in 2014. Today, 

many other companies are racing to build AI assistants and chatbots that 

some believe will be larger than the app economy.

Voice interaction is already common in many devices and accounts for 

more than 20 percent of searches in Google. This is only possible because 

of the DL technology for voice recognition that is very accurate even in 

noisy environments (we have reached human-level accuracy) and that can 

capture (and adapt to) the voice nuances of each user. The extra accuracy 

gained by DL in voice recognition, which now reaches more than 96 

percent, may seem only a small increment, but it makes all the difference 

from a user interface point of view; a single mistake may be enough to 

break a smooth and frictionless interaction.
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Research firm Tractica estimates that the use of consumer AI assistants 

worldwide will grow 25 percent per year on average, from 390 million users 

in 2015 to 1.8 billion by the end of 2021. Users of enterprise AI assistants 

are expected to rise at a 33 percent annualized rate, from 155 million to  

843 million, during the same time period, as shown in Figure 10-2.  

AI assistants generally fall into two camps: voice based and text based. 

Voice- based interfaces like Siri, Google Now, Cortana, and Alexa/Echo 

have seen solid adoption and usage. Text-based AI assistants are nascent 

and have yet to achieve mainstream adoption.

As the smartphone market has matured, developers and investors 

have intensified their search for the next big platform. Messaging bots—AI 

assistants that operate primarily through text—could be the answer. Some 

of the reasons for the focus on messaging bots are the success of some 

companies such as WeChat in China (users can buy items and pay bills 

within the conversational app), the growth in users of and time spent in 

messaging apps, and the deep learning–related improvements in natural 

language processing.

Like AI, messaging bots can be narrow or general. Narrow messaging 

bots perform very specific tasks, such as replying to an e-mail, while in 

theory general messaging bots can perform any task, much like a personal 

assistant.

Figure 10-2. Users of AI assistants (source: Tractica)
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Narrow messaging bots already have been deployed successfully in 

real applications. The AI assistant Amy by x.ai, for example, can schedule 

meetings for individuals who do not have access to each other’s calendars. 

Amy reads the host’s calendar and suggests open time slots by writing and 

sending an e-mail to those invited. Upon receiving a reply, she can read 

and understand the e-mail, schedule a meeting, or suggest new time slots 

in response to conflicts. Google’s Smart Reply can also read an e-mail and 

propose three responses. According to Google, more than 10 percent of its 

Inbox app’s e-mail responses are sent via Smart Reply.

A natural home for messaging bots is inside messaging apps. In 2016, 

Microsoft, Facebook, and Kik all launched chatbot platforms for their 

respective messaging apps. As of July 2017, more than 11,000 bots have 

launched on Messenger and more than 20,000 on Kik. These bots have 

a range of functions, from ordering flowers to checking the weather and 

from recommending books to serving as a personal trainer.

 10.4 Legal
As NLP capabilities increase, it’s natural to expect a huge impact on 

lawyers, by automating tasks such as complex searches, automating 

semantic queries, or even drafting from scratch complete arguments based 

on evidence. At the same time, as machines get clever, the concepts of 

intentionality and ownership will become blurred. Questions like “Who 

should be made accountable for an accident with a self-driving car?” may 

be hard to answer: the car owner, the manufacturer, or the car itself?

There are, however, some limitations with the current approach to 

teach these machines.

• Learning algorithms are slow and require large 

amounts of data (normally millions of data points are 

required to properly train a model).
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• Understanding legal text is still a challenge, and a vast 

space for errors and omissions exists.

• Models are not easily interpretable.

Nevertheless, some companies are thriving. DoNotPay is a startup 

that automates the process of parking ticket appeals. It has successfully 

contested 160,000 parking tickets with a 64 percent success rate. The 

conversational bot is able to assist with more than 1,000 different legal 

issues in all 50 U.S. states and across the United Kingdom. Users just 

type the problem into the search bar, and links to relevant help pop 

up that are specific to their location. After navigating through different 

options, a chatbot asks questions and puts together a letter or other legal 

documentation. The bots can help write letters or fill out forms for issues 

such as maternity leave requests, landlord disputes, insurance claims, and 

harassment. The company has saved around $9.3 million in fines.

 10.5 Radiology and Medical Imagery
Deep learning is making rapid advances in diagnostic radiology. The ARK 

report estimates that the total global addressable market for computer- 

aided diagnostics software could be worth $16 billion. From revenues of 

$1 billion today, the growth in medical software companies and imaging 

device manufacturers could average 20 percent to 35 percent per year as 

deep learning enhances their productivity and creates new products and 

services during the next 10 to 15 years.

Diagnostic radiology is essential to modern healthcare; yet the visual 

interpretation of medical images is a laborious and error-prone process. 

Historically the average diagnosis error rate among radiologists is around 

30 percent, according to https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC1955762/. Because of rudimentary technology, lung cancer nodules are 

routinely missed, especially at earlier stages of development, and 8 percent 
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to 10 percent of bone fractures are missed or misdiagnosed. Initially, 

radiologists miss roughly two-thirds of breast cancers in mammograms 

that are visible in retrospective reviews.

Intelligent software powered by deep learning has the potential to 

change the status quo. Early results are promising: the latest deep learning 

systems already outperform radiologists and existing algorithms in a 

variety of diagnostic tasks.

Early diagnosis is key to successful treatment. Each year more than 

2 million people worldwide die from lung and breast cancers according 

to Cancer Research UK. If 10 percent of later-stage cases could be caught 

at stage 1 with Computer Aided Design (CAD), ARK estimates it would 

save 150,000 life years. Valuing human life at $50,000 per year, 51 breast 

or lung diagnoses at stage 1 would equate to $7.6 billion of life value 

saved. Impacting a wide range of radiology problems from bone fractures 

to Alzheimer’s disease, the value of deep learning would be orders of 

magnitude greater.

The U.S. National Institutes of Health has released a huge data set of 

chest X-rays consisting of 100,000 pictures from more than 30,000 patients 

(https://www.nih.gov/news-events/news-releases/nih-clinical- 

center-provides-one-largest-publicly-available-chest-x-ray- 

datasets-scientific-community). A large CT scan data set is expected in 

a few months.

ARK estimates the market size for CAD software could reach $16 

billion. The estimate is based on 34,000 radiologists in the United States 

reviewing 20,000 cases per year. Given that radiologists pay up to $2 per 

case for the existing Picture Archiving and Communication System (PACS), 

a better-than-human diagnostic system could be priced at $10 per case. 

Assuming full adoption, the U.S. market alone would be worth $6.8 billion.

GlaxoSmithKline is investing $43 million into AI-powered drug 

development through Exscientia, a company working on AI-driven drug 

discovery. The aim is to discover novel and selective small molecules for 

up to ten disease-related targets across multiple therapeutic areas.
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 10.6 Self-Driving Cars
Considering that 94 percent of car accidents originate from human 

error and that, on average, a driver in Europe spends six hours a week in 

traffic jams, it’s not difficult to accept that one of the most transformative 

applications of deep learning is self-driving cars. By some estimates, self- 

driving cars can reduce the traffic in cities by as much as 90 percent and 

increase free space, presently devoted to parking, by as much.

Without deep learning, fully autonomous vehicles would be 

unconceivable. Navigating a vehicle through streets, weather conditions, 

and unpredictable traffic is an open-ended problem that learning 

algorithms such as deep learning can solve. ARK believes that deep 

learning is a fundamental requirement for level 4 or higher autonomous 

driving (level 5 corresponds to fully autonomous vehicles).

Deep learning solves two key problems facing autonomous driving: 

sensing and path planning. Neural nets allow a computer to segment the 

world into drivable and nondrivable paths, detect obstacles, interpret 

road signs, and respond to traffic lights. Additionally, with reinforcement 

learning, neural nets can learn how to change lanes, use roundabouts, and 

navigate around complex traffic conditions.

While self-driving systems have yet to reach the level required for 

autonomous driving, the observed rate of progress from Google and others 

suggests that self-driving technology will be available by the end of this decade.

Fully deployed, self-driving technology will reduce the cost of transport 

and bring to life mobility-as-a-service (MaaS). Based on ARK’s research, 

by 2020 not only will most cars have autonomous driving capabilities but 

the cost of travel will fall to $0.35 per mile, roughly one-tenth the cost of 

human-driven taxis. As a result, transportation will transition primarily 

to an on-demand model, introducing a flood of new consumers to the 

point-to-point mobility market. The number of autonomous miles driven 

will rise dramatically from de minimis to 18 trillion per year by 2027. At 

$0.35 per mile, the market for autonomous on-demand transport will 

approximate a $6 trillion market in ten years.
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 10.7 Data Centers
The growth of deep learning as a new and demanding workload means 

that hyperscale data centers will need to invest aggressively in deep 

learning accelerators whether they are GPUs, FPGAs, or ASICs. ARK 

estimates that deep learning accelerator revenue will grow 70 percent 

annually from $400 million in 2016 to $6 billion by 2022. At that time, 

according to the research, roughly half of the accelerator revenue will be 

for training and the other half for inference.

Training currently makes up the majority of revenue since accelerators 

are a must-have for efficient training. In contrast, inference can be run on 

standard servers. Training models should grow to a $3 billion business 

thanks to continued investment by hyperscale vendors, the increased 

availability of GPU-based servers in the cloud, and the adoption of deep 

learning by non-Internet industries, particularly automotive companies 

where the technology will be key for autonomous vehicles.

As deep learning–based services become ubiquitous in web and 

mobile applications, inference demand should grow and drive demand 

for accelerators. Microsoft’s deployment of FPGAs and Google’s rollout 

of TPUs in their respective data centers suggest that this trend already is 

underway. We expect hyperscale Internet companies to drive the majority 

of this investment, with on-premise enterprise deployments trailing by 

roughly two years.

 10.8 Building a Competitive Advantage 
with DL
DL is associated either with startups or with big companies like Google, 

Amazon, or Baidu. However, traditional business can also profit from 

this transformative technology that is fast leveraging the competitive 

landscape.

Chapter 10  Business impaCt of DL teChnoLogy



248

From a business perspective, it’s important to have a solid grounding 

in the fundamentals of data science and the algorithms behind deep 

learning to grasp its far-reaching strategic implications within an 

organization and not just go with the hype. The implications of having a 

data-centric business culture are not only useful for a specific problem 

but are unfolding a set of forces that will lead to the application of similar 

methodologies in different departments.

The customer-centric view requires the collection of vast amounts 

of data and the capabilities to learn robustly on unstructured data. DL 

provides the tools for such an approach that could provide substantial 

uplift, for instance for targeting the right customers, over traditional 

marketing campaigns.

These ideas diffused to the online advertising industry and online 

advertising to incorporate the data of online social connections. 

Companies consider how they can obtain a competitive advantage from 

their data and their data science capabilities. Data is a strategic asset, but 

you need to think carefully as to how data and data science can provide 

value in the context of your business strategy and also whether it would do 

the same in the context of your competitors’ strategies.

Sometimes is not the data nor the algorithms that create the 

strategic value but how the extracted insights are implemented 

in improving products, customer service, and, most important, 

reorganizing business processes to transform the business. The 

effectiveness of a predictive model may depend critically on the 

problem engineering, the attributes created, the combining of 

different models, and so on. Even if algorithms are published, many 

implementation details may be critical for getting a solution that works 

in the lab to work in production.
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Success may also depend on intangible assets such as a company 

culture—a culture that embraces business experimentation is completely 

different from one that doesn’t. The criteria of success is not the accuracy 

of the model that data scientists design; it’s the value created from what the 

business implements.

 10.9 Talent
Data science is only possible with a talented team of data scientists—

something hard to find, especially in DL. Anyone can call himself or herself 

a data scientist, and unfortunately, few companies notice. There has to be 

at least one top data scientist to truly evaluate the quality of prospective 

hires—as good data scientists like to work with other top data scientists.

Good data science managers also must possess a set of other abilities 

that are rare in a single individual.

• They need to truly understand and appreciate the 

needs of the business. What’s more, they should be 

able to anticipate the needs of the business so that they 

can interact with their counterparts in other functional 

areas to develop ideas for new data science products 

and services.

• They need to be able to communicate well with and be 

respected by both “techies” and “suits”; often this means 

translating data science jargon (which this book has 

tried to minimize) into business jargon, and vice versa.
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• They need to coordinate technically complex 

activities, such as the integration of multiple models or 

procedures with business constraints and costs. They 

often need to understand the technical architectures 

of the business, such as the data systems or production 

software systems, to ensure that the solutions the team 

produces are actually useful in practice.

• They need to be able to anticipate outcomes of data 

science projects. Data science is similar to R&D, so they 

just give guidance on investments. There is only one 

reliable predictor of the success of a research project, 

and it is highly predictive: the prior success of the 

investigator.

• They need to do all this within the culture of a 

particular firm.

Finally, the data science capability may be difficult or expensive for 

a competitor to duplicate because they can hire data scientists and data 

science managers better. The two most important factors in getting the 

most from its data assets are that the firm’s management must think data 

analytically and the firm’s management must create a culture where data 

science, and data scientists, will thrive.

There is a huge difference between the effectiveness of a great data 

scientist and an average data scientist and between a great data science 

team and an individually great data scientist.

However, just because the market is difficult does not mean all is lost. 

Many data scientists want to have more individual influence than they 

would have at a corporate behemoth. Many want more responsibility (and 

the concomitant experience) with the broader process of producing a data 

science solution. Some have visions of becoming chief scientist for a firm 

and understand that the path to chief scientist may be better paved with 

projects in smaller and more varied firms. Some have visions of becoming 
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entrepreneurs and understand that being an early data scientist for a 

startup can give them invaluable experience. And some simply will enjoy 

the thrill of taking part in a fast-growing venture: working in a company 

growing at 20 percent or 50 percent a year is much different from working 

in a company growing at 5 percent or 10 percent a year (or not growing at 

all). In all these cases, the firms that have an advantage in hiring are those 

that create an environment for nurturing data science and data scientists. 

If you do not have a critical mass of data scientists, be creative. Encourage 

your data scientists to become part of local data science technical 

communities and global data science academic communities.

 10.10 It’s Not Only About Accuracy
Joshua Bloom, cofounder of Wise.io, raises a pertinent point on his 

blog post with “How we should optimise the value chain for building AI 

systems” (www.wise.io/tech/towards_cost- optimized_artificial_

intelligence). Most AI research focuses on optimizing accuracy as the 

Holy Grail. Other points should be considered like time and cost to deliver 

a production-ready solution. In his words, “What we optimize for depends 

on the altitude from which we look down upon the problem. At all levels 

we are concerned about different things.” Check out https://www.

youtube.com/watch?v=i-1UmCYyzi4.

He considers three levels of importance when accessing the usability 

of algorithm.

• Algorithm/model: Learning rate, convexity, error 

bounds/guarantees, scaling

• Software/hardware: Accuracy/performance on real 

data, memory usage during train time, memory usage 

during prediction time, disk usage requirements, CPU 

needs, time to learn, time to predict
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• Project: Staffing requirements (data scientists, software 

engineers, dev ops), time to implement a proof-of- 

concept/write a paper, marginal added resource costs, 

reliability/stability of the model in production, model 

management/maintainability, experimentability

• Organization: Opportunity cost, interaction of results 

with other lines of business in a company, marketing 

value of project, P/L of the project effort, long-term 

benefits of having done the project (e.g., from a hiring 

perspective), personnel cost to support

• Consumer: Direct value, usability, explainability, 

actionability of the results

• Society: Implications of results (e.g., residual benefits to 

GDP, welfare of people) 

The famous case to illustrate this point is the Netflix $1 million 

competition, where the winning solution was not implemented because 

of small incremental gains while requiring computational costs and 

complexity.

 10.11 Risks
AI does not come without some risks. An interesting blog post (https://

techcrunch.com/2016/09/16/hard-questions-about-bot-ethics/) on 

Techcrunch addresses some questions and hypotheses that the risks of 

inequality and exclusion in society are greatly accelerated by technology as 

we fully enter the information revolution.

Cathy O’Neil has an interesting blog where she argues on the side effects 

of having a society run by algorithms. She also published an interesting book 

called Weapons of Math Destruction [O’N03] where she mentions several 

biases, side effects, and serious problems if too many important decisions 

are put in the hands of “obscure” algorithms that no one really understands.
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 10.12 When Personal Assistants Become 
Better Than Us
Virtual assistants will play a crucial role in the future, helping from the 

most mundane tasks such as ordering pizza to the most delicate, such 

as health or even treatment advice. They will also be monitoring most of 

our lives and tracking almost all our activity, online and offline. Virtual 

assistants will play a crucial role in managing different devices and using 

the data collected to help users make wise decisions. Virtual assistants will 

become more autonomous and understand context so as to understand 

that “I’m cold” means it has to turn up the thermostat.

Assistants may even help us date. Alexa already works with dating 

site eHarmony to search possible matches with shared interests. In the 

future, she might make the first move on our behalf and start the initial 

conversation with … the personal assistant of your potential mate.

But what happens when personal digital assistants become smarter 

than we are and know more about us than our nearest and dearest?

Current digital assistants are mostly reactive. They wait until you ask 

them to do something, rather than anticipating user needs. In the future, 

they will be much more sophisticated. In the near future your car may 

be able to read your expression and recognize that you are sad and play 

adequate music or set a drive mode adequate to your sentiment. They will 

become far more autonomous and adapted to the user specificity too.

The same way we treat our pets as family members, digital assistances 

will probably acquire a “living-like” status and become part of us. We 

readily treat things like humans once they are capable of understanding us 

and communicating through voice.

But for a personal digital assistant to be able to help with such personal 

issues, it needs to be given a lot of personal information. The privacy and 

security risks are very large. Can the police use Alexa as a murder witness? 

Big Brother isn’t watching you, but Alexa might be....
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Assistants will soon respond not just to commands but to 

conversations. If you think Facebook stores a lot of information about you, 

imagine what a virtual assistant may know about you. It might know more 

about you than your most intimate friend, including where you’ve been, 

what you did, who you were with, what you talked about, and how you got 

there.
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CHAPTER 11

New Research 
and Future Directions
There are several areas where deep learning is very active and 

breakthroughs are emerging almost every week. Reinforcement learning 

with its applications in robotics and simulated agents is clearly one 

of the most active areas. Image, video, and voice recognition are still 

active areas. NLP is improving dramatically, but maybe human-level 

performance in the near future is beyond reach, as it is probably one of 

the hardest areas. (For some criticism on deep learning applied to NLP, 

see https://medium.com/@yoav.goldberg/an-adversarial-review-of-

adversarial-generation-of-natural-language-409ac3378bd7.)

Many supervised tasks in natural language processing, speech 

recognition, and automatic video analysis may soon become trivial 

through large RNNs. In the near future, both supervised learning RNNs 

and reinforcement learning will be greatly scaled up. Current large ANNs 

have on the order of a billion connections; soon that will be a trillion, at 

the same price. By comparison, human brains have a trillions of—much 

slower—connections.

Progress in machine learning has been driven, to a large degree, by 

the benefits of training on massive data sets with millions of human- 

labeled examples. But that approach is infeasible in the long range, and 

it’s far from how humans learn. More progress in unsupervised learning is 

required, like the work being developed on generative networks. 
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 11.1 Research
Despite image, voice, robotics, and video processing being still very 

important areas of research using extensively CNNs and LSTM, these are 

some of the areas where DL is active:

• Reinforcement learning, or weakly supervised learning

• Attention mechanisms

• One-shot learning and knowledge transfer

• Multimodal learning

• Generative adversarial networks (GANs)

In a recent research work (https://arxiv.org/abs/1707.02968) 

from Google, the authors showed that the size of training data matters 

considerably. They used a data set of 300 million images classified into 

18,291 categories and trained several DL architectures: AlexNet, VGG, 

ResNet 50, ResNet 101, and Inception-ResNet v2. They proved that even 

simpler architectures gain considerable accuracy by using more training 

data. You can find more information at https://research.googleblog.

com/2017/07/revisiting-unreasonable-effectiveness.html.

These are the other conclusions:

• A large data set helps in representation learning and is 

used for pretraining models.

• Performance increases linearly with orders of 

magnitude of training data. Even at 300 million images, 

no saturation was observed.
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• Capacity is crucial. Large and deep networks are 

necessary to accommodate the complexities in the data. 

For ResNet-50, the gain on the COCO object detection 

benchmark is much smaller (1.87 percent) compared to 

(3 percent) when using ResNet-152 (see Figure 11-1).

Figure 11-1. Importance of data size in training DL models  
(source: https://research.googleblog.com/2017/07/revisiting- 
unreasonable- effectiveness.html)

 11.1.1 Attention
Attention mechanisms are key for text, image annotation, and video 

processing because they allow you to process inputs of variable 

(potentially unlimited) size by learning masks on where the input 

layer should focus. Attention mechanisms are mainly used for text or 

for combinations of text and images (like visual V&A), with CNNs and 

LSTM. The paper “Attention Is All You Need” (https://arxiv.org/

abs/1706.03762) describes how the authors replaced an RNN with 

Chapter 11  New researCh aNd Future direCtioNs

https://research.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
https://research.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


258

a mechanism (the Transformer) entirely on attention to draw global 

dependencies between input and output. They reduced the number 

of discrete ingredients that go into the network, swapping out typical 

recurrent and convolutional mapping layers with ones that use attention 

instead. “The authors stated that we plan to extend the Transformer to 

problems involving input and output modalities other than text and to 

investigate local, restricted attention mechanisms to efficiently handle 

large inputs and outputs such as images, audio and video. Making 

generation less sequential is another research goal of ours.”

For a simple example of how to implement an attentive mechanism 

in a CNN using Keras, see  www.danvatterott.com/blog/2016/09/20/

attention- in- a-convolutional-neural-net/.

 11.1.2 Multimodal Learning
Multimodal learning, which is the ability to learn from multiple sources 

(text, image, video, etc.), is an active area of research and will remain so in 

the future.

Being able to aggregate structured and unstructured information 

in a unified distributed representation results in a powerful framework 

and puts us a step closer to solving the symbol grounding problem. For 

instance, according to [ARDK16], given only triples (question, world, 

answer) as training data, the model learned to assemble neural networks 

from an inventory of neural models and simultaneously learned weights 

for these modules so that they could be composed into novel structures. 

They extended a compositional question-answering approach to complex, 

continuous world representations like images. In other words, they 

replaced a fixed network topology with a dynamic one, thus adapting the 

computation performed for each problem, using more complex networks 

for harder questions, which is very efficient for small data sets.
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The work of Quoc Le et al. (https://arxiv.org/abs/1511.04834) 

with gradient descent has also lots of disruptive potential as it allow the 

neural network to learn to create new programs. This approach represents 

a paradigm shift in the way we conceive computer programming, from a 

discrete discrete/symbolic approach to a fully differentiable continuous 

alternative.

A recent paper (http://people.csail.mit.edu/yusuf/see-hear- 

read/paper.pdf) from MIT combining sound, image, and text has an 

interesting approach and generates impressive results in classifying 

objects and entities using cross-modal data.

Google has published a paper called “One Model To Learn Them All” 

(https://arxiv.org/pdf/1706.05137.pdf) where it uses a single model 

for a number of disparate data sources spanning multiple domains. The 

model is trained concurrently on ImageNet, translation tasks, image 

captioning, speech recognition, and English parsing. The model contains 

convolutional layers, attention mechanisms, and sparsely gated layers. 

The authors observed that tasks with less data benefit largely from joint 

training with other tasks, while performance on large tasks degrades only 

slightly. This work definitely puts us closer to a general algorithm capable 

of solving any task.

 11.1.3 One-Shot Learning
One-shot learning, or zero-shot learning, is also an exciting area of 

research. In a recent work from DeepMind (https://arxiv.org/

abs/1605.06065), the team tried to capture the human ability to encounter 

a new concept (with one or few examples) and generalize to create new 

versions of the concept. The core solution was a method to describe the 

probabilistic process by which an observed data point (e.g., a handwritten 

“8”) can be generated. The authors used a deep neural network to specify 

this probabilistic process and showed that their models were able to 

generate written characters and faces from a few observations.
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One-shot learning is a particularly complex task for a machine, while a 

trivial one for a human. The problem relies in the fact that DL models typically 

rely on gradient-based optimization to tune weights for each neuron in the 

network, which requires lots of data and iterative passes through the net.

In the paper “One shot learning with memory-augmented neural 

networks” (https://arxiv.org/abs/1605.06065), Google DeepMind 

developed a network able to learn a new behavior by drawing valid 

inferences from small amounts of data. The authors used a two-tiered 

learning (metalearning) approach and showed that neural networks with 

memory are capable of metalearning applied to the Omniglot classification 

task (1,600 classes with only a few examples per class). The network 

performs better than the state-of-the-art ones and can even outperform 

humans. It does this by slowly learning a useful representation of raw data 

and then uses external memory to rapidly bind new information.

Learning the large number of parameters in CNN requires very  

large training data sets. Several authors, like Timothy Hospedales  

(www.eecs.qmul.ac.uk/tmh/), have dedicated extensive research efforts 

to techniques called zero-shot learning. In a recent work (https://arxiv.

org/abs/1603.06470), the authors used CNNs for face recognition using 

a human face synthesis method that swaps the facial components of 

different face images to generate new faces. They achieved state-of-the- 

art face recognition performance on the data sets Linear Faces in the Wild 

(LFW) and CASIA NIR-VIS2.0. In the future, you will apply this technique 

to more applications of face analysis.

In the paper “One Shot Imitation Learning” (https://arxiv.org/

pdf/1703.07326.pdf), the authors proposed a new method for imitation 

learning, learning from a very few demonstrations and being able to 

generalize to new situations in the same context. Their metalearning 

framework uses a neural network that takes as input one demonstration 

and the current state and outputs an action with the goal that the resulting 

sequence of states and actions matches as closely as possible with the 

second demonstration; see http://bit.ly/one-shot-imitation.
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In a recent work (https://arxiv.org/pdf/1611.03199.pdf) from a 

group at Stanford, the authors explored a set of techniques to extend the 

applicability of DL when large amounts of training data are not available. 

They demonstrate how one-shot learning can be used to significantly 

lower the amounts of data required to make meaningful predictions in 

drug discovery applications. They used an architecture named residual 

LSTM embedding that, when combined with graph convolutional neural 

networks, significantly improves the ability to learn meaningful distance 

metrics over small molecules. Their models are open source in a library 

called DeepChem (http://deepchem.io/).

 11.1.4 Reinforcement Learning and Reasoning
Most active reinforcement learning research is related to an agent’s 

learning environment with a shared model or to interacting and learning 

from one another in the same environment, such as learning to navigate 

3D environments like mazes or city streets for autonomous driving. Inverse 

reinforcement is learning the goal of a task (e.g., learning to drive or 

endowing nonplayer video game characters with human-like behaviors) 

from observed behaviors.

In the recent work “Hierarchical Deep Reinforcement Learning: 

Integrating Temporal Abstraction and Intrinsic Motivation DeepMind” 

(http://arxiv.org/pdf/1604.06057.pdf), the authors used curiosity 

to drive agents to achieve some success in the challenging Atari game 

Montezuma Revenge.

Model-free learning methods beyond Q-learning are also very active 

and are described at https://github.com/karpathy/paper-notes/blob/

master/vin.md.

A recent work (https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5299026/) showed that encoding models using CNNs and RNNs 

could be used for predicting brain activity in response to sensory stimuli, 

thus modeling how sensory information is represented in the brain. 
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They investigate the plausibility of recurrent neural networks models to 

“represent internal memories and for nonlinear processing of arbitrary 

feature sequences to predict feature-evoked response sequences as 

measured by functional magnetic resonance imaging,” finding that they 

vastly outperform ridge regression models.

The video at https://www.youtube.com/watch?v=eKaYnXQUb2g from 

Sergey Levine is an excellent resource to understand the theory and 

improvements in control theory made possible by DL and summarizes 

some recent results.

One of the drawbacks of DNNs is their difficulty in explicitly extracting 

a hierarchical structure, as in graphical Bayesian models. ANNs make 

sophisticated predictions from unstructured data, like images and text, 

but with little interpretable structure. Structured models for image 

understanding that are sufficiently expressive to capture the complexity of 

data and amenable to tractable inference are difficult.

A recent work by Hinton shows how to overcome these difficulties by 

combining structured with unstructured learning, going beyond other 

unstructured deep generative methods, like VAEs, that cannot be easily 

interpretable [EHW+16]. Structured generative methods have largely been 

incompatible with deep learning, and therefore inference has been hard 

and slow (e.g., via MCMC). Hinton used a mix of structured probabilistic 

models and deep networks for scene interpretation via learned, amortized 

inference. The model imposes structure on its representation through 

appropriate partly or fully specified generative models, rather than 

supervision from labels; see www.cs.toronto.edu/%20hinton/absps/

AttendInferRepeat.pdf. The proposed framework crucially allows for 

reasoning about the complexity of a given scene (the dimensionality of its 

latent space).
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Relational reasoning is a central component of GAI but has proven 

very hard to solve by an ANN. Recently Google proposed a project to deal 

with the hard problem of relational reasoning. Its work (https://arxiv.

org/abs/1706.01427) proposes an interesting solution. Google tested a 

model on three tasks: visual question answering (VQA) on a data set called 

CLEVR, achieving state-of-the-art (superhuman) performance; text-based 

question answering using the bAbI suite of tasks; and complex reasoning 

about dynamic physical systems. Google proved that convolutional 

networks do not have a general capacity to solve relational questions but 

can gain this capacity when augmented with relational networks.

In two recent papers (https://deepmind.com/blog/agents- 

imagine- and-plan/), DeepMind described a new family of approaches 

for imagination-based planning. It also introduced architectures that 

provide new ways for agents to learn and construct plans to maximize the 

efficiency of a task. These architectures are efficient, robust to complex, 

and imperfect models, and they can adopt flexible strategies for exploiting 

their imagination. The agents they introduce benefit from an “imagination 

encoder,” a neural network that learns to extract any information useful 

for the agent’s future decisions but ignores that which is not relevant. 

DeepMind tested the proposed architectures on multiple tasks, including 

the puzzle game sokoban and a spaceship navigation game.

 11.1.5 Generative Neural Networks
Although not new, generative neural networks (GNNs) are becoming an 

active area of research. Deep generative models are a powerful approach 

to unsupervised and semisupervised learning where the goal is to discover 

the hidden structure within data without relying on external labels.

Generative models have applications in probability density estimation, 

image denoising and inpainting, data compression, scene understanding, 

representation learning, 3D scene construction, semisupervised 

classification, and hierarchical control.
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There are three main types of generative models: fully observed 

models, latent variable models, and transformation models. Each one has 

a specific inference mechanism. These algorithms include autoregressive 

distribution estimators, variational auto-encoders, and generative 

adversarial networks. Examples of deep generative models using latent 

variables include deep belief networks, variational auto-encoders, and 

memoryless and amortized inference.

Generative models have, in principle, a richer explanatory capability 

than discriminative models.

• They are able to represent latent (hidden) structures in 

the data as well as its invariants, for instance, the concept 

of light intensity, rotation, bright, or layout in 3D objects.

• They can image the world as “it could be” rather than as 

“it is presented.”

• They have the capability to express more than simple 

associations between inputs and outputs.

• They can detect surprising, but plausible, events in the 

data.

Generative models can be used for imputation, for instance, image 

in-painting (occlusion, patch removal), 3D generation, one-shot learning, 

and representation learning (for control).

All generative networks share the idea of using latent variables to 

represent the observed data, and they will continue to be very relevant in 

near future.

 11.1.6 Generative Adversarial Neural Networks
Generative adversarial neural networks (GANs) is an active area of 

research. See the repository at https://github.com/nashory/gans- 

awesome- applications for a list of interesting applications of GANs.
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GANs are particularly useful for style transfers and for use as 

generative models. Another advantage is that they can estimate the 

probability density by avoiding computation of the normalization factor in 

the partition function.

With GANs it’s possible to do the following:

• Simulate training data

• Handle missing data (image inpainting, 

semisupervised learning)

• Accommodate multiple correct answers for a single 

input

• Generate realistic images

• Do simulation by prediction

• Solve hard inference problems

• Learn useful embeddings

• Control the latent space to represent interpolation 

(pose, age, etc.)

The drawback of these models is that they are unstable and hard to 

train. OpenAI published a detailed blog post with some tricks on how to 

solve some of the problems of training GANs and make them more stable 

for image generation. The authors presented new architectural features 

and training procedures for GANs, including semisupervised learning 

and the generation of human-realistic images. They trained the models 

with other goals rather than assigning a high likelihood to test data or 

learning well without labeled data. They achieved state-of-the-art results 

in semisupervised classification on MNIST, CIFAR-10, and SVHN. The 

model generated MNIST samples that humans cannot distinguish from 

real data and generated CIFAR-10 samples that yield a human error rate of 

21.3 percent.
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Creative-oriented applications like Photoshop potentially could allow 

artists to conjure up photos based only on high-level descriptions. For 

example, the artist could ask the application to draw a bedroom with 

modern furniture, large windows, afternoon sunlight, and two kids. A 

generative network, having been trained on a large corpus of bedroom 

photos and interior decoration magazines, would be able to create such 

a picture in seconds. After reviewing the first render, the artist then could 

ask for larger windows, a different color of paint on the walls, and so 

on. Because neural networks understand images at different layers of 

abstraction, at the object level, they have the ability to make these changes 

and enable a complete workflow.

Hyland et al. proposed a GAN for generating real-valued medical time- 

series generation with recurrent conditional GANs (https://arxiv.org/

pdf/1706.02633.pdf). This is an interesting approach as medical data is 

hard to get access to because of regulatory issues.

The GAN approach is powerful because it is applicable to models for 

which evaluating the likelihood or the gradient are intractable; all that 

is required is a generative process that, given a random seed, generates 

a sample data object. In particular, the GAN approach avoids the 

computationally costly step of inference that is required in, for example, 

the expectation maximization algorithm. A recent work from Arakaki and 

Barello Capturing (https://arxiv.org/pdf/1707.04582.pdf) used GANs 

to fit the parameters of the response of selectivity of networks of biological 

neurons, thus avoiding building an explicit inference model with a 

predefined likelihood and prioris.

 11.1.7 Knowledge Transfer and Learning How 
to Learn
Learning from a few examples and being able to generalize quickly is 

one of the most notorious features of human intelligence. Any artificial 

intelligence agent should be able to learn and adapt quickly from only a 
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few examples and should continue to adapt as more becomes available. 

This kind of fast and flexible learning is challenging since the agent must 

integrate its prior experience with a small amount of new information, 

while avoiding overfitting to the new data. Furthermore, the form of prior 

experience and new data will depend on the task. As such, for the greatest 

applicability, the mechanism for learning to learn (or metalearning) 

should be general to the task and the form of computation required to 

complete the task.

Finn et al. proposed a very efficient algorithm for metalearning 

capable of rapidly adapting to new tasks from a previous trained network 

(https://arxiv.org/pdf/1703.03400.pdf). For example, a robot trained 

to walk can be quickly retrained to run.

Some promising new algorithms like the one proposed by Lake, 

Salakhutdinov, and Tenenbaum [LST15] will help a problematic side 

of DNNs, namely, their difficulty to learn from a few examples and to 

transfer knowledge so that they can incorporate new knowledge based on 

just a couple of observations. The authors called it a Bayesian program 

learning (BPL) framework, and it works by generating a unique program 

for every class using latent concepts. The software was capable not only 

of mimicking the way children acquire the ability to read and write but, 

rather, the way adults, who already know how, learn to recognize and then 

re-create handwritten characters.

Long et al. [LCWJ15] also proposed an interesting architecture to deal 

with knowledge transfer, called a deep adaptation network (DAN), that 

generalizes CNNs to the domain adaptation scenario by enhancing feature 

transferability in the task-specific layers of the deep neural network by 

explicitly reducing the domain discrepancy. The hidden representations 

of all the task-specific layers are embedded to a reproducing kernel Hilbert 

space where the mean embeddings of different domain distributions can 

be explicitly matched. They achieved state-of-the-art results in KT from 

images of different sources.
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Esmali et al. [EHW+16] recently put forward a scheme to capture the 

hierarchical structure images through a variational inference in latent 

spaces. They treated inference as an iterative process, implemented as a 

recurrent neural network that attends to one object at a time, and learned 

to use an appropriate number of inference steps for each image. This 

allows for capturing a scalable visual representation by taking advantage 

of iterativity and also is scalable by implementing a recurrent inference 

network, thus capturing the dependencies between latent variables in the 

posterior, for instance accounting for the fact that parts of the scene have 

already been explained.

 11.2 When Not to Use Deep Learning
Sometimes deep learning can be more of a hindrance than an asset. DL 

contains flexible models, with a multitude of architecture and node types, 

optimizers, and regularization strategies. Depending on the application, 

the model might have convolutional layers. (How wide and deep should be 

the layers? What are the sizes of the filters, and how many are there? Is the 

pooling operation max or average?). Or it might have a recurrent structure. 

(Is it unidirection or bidirectional? Is it LSTM or GRU?) It might be deep or 

with just a few hidden layers. (How many units does it have?) It might use 

rectifying linear units or other activation functions. It might or might not 

have dropout. (In what layers? With what fraction?). The weights should 

probably be regularized (l1, l2 or something else). What loss function 

should be applied?

This is only a partial list; there are many other details that may 

affect the performance of the network (regularization, transfer 

functions, loss functions, optimizers) and lots of hyperparameters to 

tweak and architectures to explore. Google recently boasted that its 

AutoML pipeline can automatically find the best architecture, which is 

impressive, but it still requires more than 800 GPUs churning full-time 
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for weeks, something out of reach for almost anyone else. The point is 

that training deep nets carries a big cost, in both computational and 

debugging time. Such expense doesn’t make sense for lots of day-to-day 

prediction problems and the ROI of tweaking a deep net to them.

Even when there’s plenty of budget and commitment, there’s no 

reason not to try alternative methods first even as a baseline. You might be 

pleasantly surprised that a SVM or XGBoost is really all you need.

 11.3 News
This section highlights some news in the field of AI and important 

developments.

• A recent blog post (https://blog.openai.com/deep- 

reinforcement- learning-from-human-preferences/) 

from OpenAI presents a learning algorithm that uses 

small amounts of human feedback to navigate in 

complex RL environments. The algorithm needed 900 

bits of feedback from a human evaluator to learn to 

backflip—a seemingly simple task that is easy to judge 

but challenging to specify.

• See the blog post at https://medium.com/@

pavelkordik/recent-developments-in-artificial-

intelligence- b64286daa06b for a nice tutorial on 

recent developments in DL.

• Super-resolution image processing is a new research 

area. Ledig et al. presented a technique (https://

arxiv.org/abs/1609.04802) based on GAN, called the 

super-resolution (SRGAN), for achieving photorealistic 

natural images for 4x upscaling factors.
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• Still in image super-resolution, Dahl et al. presented 

(https://arxiv.org/abs/1702.00783) a pixel- recursive 

super-resolution model that synthesizes realistic details 

into images while enhancing their resolution. Using a 

PixelCNN architecture, the model was able to represent 

a multimodal conditional distribution by modeling the 

statistical dependencies among the high-resolution 

image pixels, conditioned on low-resolution input.

• There are several recent techniques for image 

inpainting, which means filling a segment occulted 

from the image. See, for instance, “Image Inpainting 

with Perceptual and Contextual Losses using a DCGAN: 

Deep Convolutional Generative Adversarial Network” 

(http://arxiv.org/pdf/1607.07539v1.pdf).

• As mentioned, DL machines are essentially black boxes. 

The recent work “Why should I trust you” (https://

arxiv.org/abs/1602.04938) is a very interesting 

paper in making DL machines more explainable 

and transparent in terms of features learned from 

the data. See also www.myaooo.com/wp-content/

uploads/2017/08/understanding- hidden- memories-

camera.pdf on how to make LSTM interpretable.

• Deep learning has also been applied to event spatial- 

temporal data [DDT+16]; see also https://www.mpi-

sws.org/manuelgr/pubs/rmtpp.pdf. Based on the 

observed sequence of events, the authors could predict 

future events. Accurately estimating when a clinical 

event might occur can effectively facilitate patient- 

specific care and prevention to reduce the potential 

future risks. See also this work on spatial temporal 

predictions: https://arxiv.org/pdf/1706.06279.pdf.
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 11.4 Ethics and Implications of AI in Society
As computer algorithms become more complex and machines start 

making more complex and high-impact decisions—eventually life or death 

ones—some serious ethical questions will inevitably arise. Who should 

be accountable for these decisions if, for instance, a medical treatment 

proposed by the algorithm goes wrong or a self-driving car crashes into a 

group of pedestrians to save the driver?

The big problem is that the complexity of the software often means 

that it is impossible to work out exactly why an AI system does what it 

does. The recent experiment with the Microsoft Twitter bot, named Tay, 

demonstrated how well-intentioned technology can be twisted through 

interactions with humans. Tay was engineered to learn from interactions 

with Twitter users. In China, where the experiment was first launched, the 

bot was successful. But in the United States, the bot become sexist, racist, 

and xenophobe (https://www.theverge.com/2016/3/24/11297050/

tay-microsoft-chatbot-racist). Exploring the bot’s naïve “behavior” 

of pleasing the users, they soon exploited this weakness to intentionally 

persuade the bot of things like the deniable of the holocaust. This 

experiment puts in perspective the importance of socialization and the 

difficulty in incorporating ethics in robots.

A new Google research group was recently created to study how people 

interact with AI, called the People + AI Research Initiative (PAIR). The goal 

of the group is to make it easier for people to interact with AI systems and 

to ensure these systems do not display bias or are obtuse to the point of 

being unhelpful. PAIR will bring together AI researchers and engineers; 

domain experts such as designers, doctors, and farmers; and everyday 

users. You can find more information about the group at https://www.

blog.google/topics/machine-learning/pair-people-ai-research-

initiative/.
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DeepMind created the DeepMind Ethics & Society (https://

deepmind.com/applied/deepmind-ethics-society/) to address the 

implications of AI in society. On its blog it stated, “Technology is not value 

neutral, and technologists must take responsibility for the ethical and 

social impact of their work. In a field as complex as AI this is easier said 

than done, which is why we are committed to deep research into ethical 

and social questions, the inclusion of many voices, and ongoing critical 

reflection.”

Here are some other noteworthy resources:

• China is using image and voice recognition technology 

to replace cards to retrieve money from ATMs; 

see www.scmp.com/news/china/money-wealth/

article/1813322/china-develops-cash-machines-

facial- recognition-feature-curb.

• The piece at www.wired.co.uk/article/creating- 

transparent- ai-algorithms-machine-learning 

explores the notion of algorithmic accountability and if 

algorithms could ever be made free from human bias.

• Nick Bostrom published a working paper entitled 

“Strategic Implications of Openness in AI 

Development” (www.nickbostrom.com/papers/

openness.pdf) with some considerations on the 

importance of keeping AI open source.

• The authors of a high-profile study on the social 

dilemma of autonomous vehicles have released 

Moral Machines (http://moralmachine.mit.edu/). 

The platform will crowdsource human opinions on 

how machines should make decisions when faced 

with moral dilemmas as well as scenarios of moral 

consequence. The experiment asks some tough 

questions. Give it a try!
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• The recent book Weapons of Math Destruction (https://

www.amazon.co.uk/Weapons-Math- Destruction-

Increases-Inequality/dp/0553418815) points to 

some very important issues on the flip side of machine 

learning and AI. See also a book raising some concerns 

on the implications of AI in society: Our Final Invention.

• Concerning algorithm bias, Kate Crawford launched 

the initiative Artificial Intelligence Now (https://

artificialintelligencenow.com/), a research initiative 

working across disciplines to understand the social 

and economic implications of artificial intelligence. 

Algorithms that may conceal hidden biases are 

already routinely used to make vital financial and legal 

decisions. Most of these algorithms are proprietary 

and do not lend themselves to interpretation. They 

may decide, for instance, who gets a job interview, who 

gets granted parole (https://www.technologyreview.

com/s/603763/how-to-upgrade-judges-with- machine-

learning/), and who gets a loan.

• With the availability of more sophisticated neural 

networks that are able to generate very realistic 

content, text, image, or even videos (see, for example, 

the fake videos at https://www.youtube.com/

watch?v=9Yq67CjDqvw%20list=PLTlqgr7kVS33DF- 

R5E9MsyVon9h_zCYgc%20index=3), detecting fake 

content is becoming very hard. For instance, 

researchers from the University of Chicago have 

trained a neural network to generate convincing fake 

restaurant reviews. Some authors claim that fake news 

played a decisive factor in 2016 U.S. elections.
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• Social media news is a double-edged sword. On the 

one hand, it is low cost, offers easy access, and offers 

a rapid dissemination of information. On the other 

hand, it can spread “fake news,” or low-quality news 

with intentionally false information. The extensive 

spread of fake news has the potential for extremely 

negative impacts on individuals and society. In a recent 

publication (https://arxiv.org/abs/1708.01967), 

the authors review methods for fake news detection on 

social media.

One major implication of AI is the fact that it will make it ever harder 

to separate real content from generated (fake). In a recent work (http://

grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf), 

a team from the University of Washington developed an algorithm capable 

of generating a realistic video of a person. They applied a recurrent neural 

network trained on hours of Barack Obama weekly address footage. Then, 

they used this network to generate realistic videos with fake content 

with impressive quality, which was very hard for humans to distinguish. 

Unlike prior work, they didn’t require the subject to be scanned or a 

speech database to contain videos of many people saying predetermined 

sentences. Everything was learned from existing footage. See  

https://www.youtube.com/watch?v=MVBe6_o4cMI.

 11.5 Privacy and Public Policy in AI
As neural networks reach human-level accuracy in image processing, 

serious implications will be raised in terms of privacy. For instance, the 

moment it’s possible to identify individuals from omnipresent videos 

cameras, allowing governments or companies to track everyone on the 

streets, we may be closer to an Orwellian dystopia than we ever imagined.
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The IBA Global Employment Institute, which offers HR guidance for 

global companies, released a report (https://drive.google.com/drive/

folders/0Bxx383wVJ39Pb1p1eGhERTBGVDQ) on the impact of AI on legal, 

economic, and business issues, such as changes in the future labor market, 

company structures, working time, remuneration, working environment, 

forms of employment, and labor relations.

An independent report (https://www.gov.uk/government/

publications/growing-the-artificial-intelligence-industry- in-

the-uk/recommendations-of-the-review) on AI in the United Kingdom 

was published in September 2017 to advise the government. The report 

recommends facilitating data sharing via established data trusts, using 

public funding for data creation and sharing, and creating 300 new master’s 

degree and 200 PhD degree programs for ML (growing to 1,600 PhDs by 

2025), among other initiatives. It states that research and commercialization 

are huge opportunities for the UK technology industry. AI could increase 

the annual growth rate of the GVA in 2035 from 2.5 percent to 3.9 percent. 

Satya Nadella, Microsoft CEO, outlines three key tenets of his vision 

for developing AI: augment human abilities and experiences instead of 

replacing us; work to earn a user’s trust by solving privacy, transparency, 

and security; and technology should be inclusive and respectful of all 

users. However, others such as Elon Musk, Tesla CEO, raise questions 

about the need to regulate AI with the risk of being out of control.

Miles Brundage has published an exhaustive document called “A 

Guide to Working in AI Policy and Strategy” (https://80000hours.org/

articles/ai-policy-guide/). He states, “We need answers to AI policy 

and strategy questions urgently because i) implementing solutions could 

take a long time, ii) some questions are better addressed while AI is less 

advanced and fewer views/interests on the topic are locked-in and iii) we 

don’t know when particular AI capabilities will be developed, and can’t 

rule out the possibility of surprisingly sudden advances.”
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 11.6 Startups and VC Investment
DL represents a huge opportunity for startups and investors. In 

a recent review by the Economist (www.economist.com/news/

special-report/21700761-after-many-false-starts-artificial-

intelligence-has-taken-will-it-cause-mass), Nathan Benaich 

stated, “In 2015 a record $8.5 billion was spent on AI companies, nearly 

four times as much as in 2010, according to Quid, a data-analysis 

company. The number of investment rounds in AI companies in 2015 

was 16% up on the year before, when for the technology sector as a 

whole it declined by 3%.”

Funding for artificial intelligence startups continues its upward trend 

in 2017, with investment hitting new highs; see https://techcrunch.

com/2017/07/11/inside-the-q2-2017-global-venture-capital- 

ecosystem/ (see Figure 11-2). Venture, corporate, and seed investors have 

put an estimated $3.6 billion into AI and machine learning companies in 

the first half of 2017, according to CrunchBase data. That’s more than they 

invested in all of 2016, marking the largest recorded sum ever put into the 

space in a comparable period.

Chapter 11  New researCh aNd Future direCtioNs

http://www.economist.com/news/special-report/21700761-after-many-false-starts-artificial-intelligence-has-taken-will-it-cause-mass
http://www.economist.com/news/special-report/21700761-after-many-false-starts-artificial-intelligence-has-taken-will-it-cause-mass
http://www.economist.com/news/special-report/21700761-after-many-false-starts-artificial-intelligence-has-taken-will-it-cause-mass
https://techcrunch.com/2017/07/11/inside-the-q2-2017-global-venture-capital-ecosystem/
https://techcrunch.com/2017/07/11/inside-the-q2-2017-global-venture-capital-ecosystem/
https://techcrunch.com/2017/07/11/inside-the-q2-2017-global-venture-capital-ecosystem/


277

According to a CrunchBase report, equity deals to startups in artificial 

intelligence—including companies applying AI solutions to verticals such 

as healthcare, advertising, and finance as well as those developing general- 

purpose AI technology—increased nearly sixfold, from roughly 70 in 2011 

to nearly 400 in 2015 (see Figure 11-3).

Figure 11-2. Investment in AI from 2014 to mid-2017  
(source: CrunchBase https://techcrunch.com/2017/07/15/vcs- 
determined- to-replace-your-job-keep-ais-funding-surge-
rolling- in-q2/)
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The 65 percent annual growth in funding to startups using artificial 

intelligence in 2014 was driven by four mega-rounds of more than $100 

million raised by Avant, sales startup InsideSales.com, medical diagnostics 

company Butterfly Network, and deep learning startup Sentient Technologies.

Element.ai raised $102 million in series A funding; investors include 

Microsoft, Nvidia, and Intel Capital, all of which have their own AI 

ambitions. The company wants to democratize the access of AI to 

companies through easy-to-deploy solutions.

Google launched recently Gradient Ventures (https://gradient.

google/) to invest in AI startups. Gradient Ventures will invest in 10 to 15 

deals in 2018 and will typically commit $1 million to $8 million in each. 

Portfolio companies will have the opportunity to receive advanced AI 

training and engineering help from Google.

Healthcare is the leading industrial application of deep learning, 

according to CrunchBase Insights, raising $ 1.8 billion across 270 deals 

since 2012. The annual revenue for medical image analysis in healthcare 

alone will increase to $1.5 billion worldwide in 2025 from less than 

$100,000 in 2016, according to market research firm Tractica.

Figure 11-3. Investment in AI-based startups (source: CrunchBase 
Insights)
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 11.7 The Future
Truly foundational technologies—such as the steam engine, electricity, the 

transistor, or the Internet—have a huge impact on the world because they 

enable creation of new industries, products, and processes.

Deep learning is one of the most important foundational technologies 

to emerge since the Internet. In just a few years, it has moved from 

academia to production, powering vision, speech, robotics, healthcare, 

and various services used by billions of people worldwide. According to 

ARK Research, deep learning–based companies could create more than 

$17 trillion in new market capitalization over the next 20 years.

Deep learning, while only five years old as of 2017, is growing at a 

remarkable rate in use cases, startup formation, market adoption, and 

revenues. Despite its progress to date, new capabilities such as memory 

networks and generative networks could make deep learning far more 

powerful, possibly providing a bridge to artificial general intelligence. In 

such a scenario, deep learning could make even the Internet look small.

The impact of AI-driven automation in society will be tremendous as 

it can displace whole sectors of activity. For instance, roughly 4 million 

truck drivers in the United States alone are at risk of seeing their jobs being 

replaced by self-driving trucks.

This applies not only to low-skilled professions but also highly skilled 

ones. General practitioners are also at risk as machines will soon compete 

against pathologists and radiologists. Personal assistants may soon provide 

a more accurate diagnosis than an average family doctor. Even though 

machines cannot yet hold a conversation, current technologies already 

take orders in natural language and might be fully conversational in the 

near future.

With the combination of big data, advanced learning algorithms, and 

fast GPUs and TPUs, the future of deep learning is as bright as you may 

imagine. The implications in society will be huge, and many industries will 

be shackled to the foundation.
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The following are some areas for future research in DL.

Although DL today can outperform doctors at diagnosing bone 

fracture, lung cancer, or skin cancer, these models still fail when 

presented with very atypical data (corner cases) and when integrating 

disparate sources of data, thus giving inaccurate results for unseen cases. 

Also, CNNs are easy targets of adversarial examples, which can make 

them very vulnerable. Further research is necessary to bridge these gaps 

and integrate more data (like genomics) so that these algorithms fulfill 

their potential.

To decode the mechanism of life, genetics research still needs to 

bridge the “genotype-phenotype divide.” Genomic and phenotype 

data abounds. Unfortunately, the state of the art in meaningfully 

connecting this data results in a slow, expensive, and inaccurate process. 

To close the loop, you need systems that can determine intermediate 

phenotypes called molecular phenotypes, which function as stepping 

stones from genotype to disease phenotype. For this, machine learning is 

indispensable.

CNNs have reached human-level accuracy in image recognition tasks, 

segmentation, and object detection. However, despite all the progress, 

ANN remains far inferior to human brains in terms of energy efficiency 

(the brain consumes only 20 watts, while a single Titan-X GPU consumes 

200 watts). Despite efforts from a Google TPU processor dedicated to deep 

learning, more efficient computational hardware is definitely needed.

Attention mechanisms as well as information feedback loops (from 

top down and bottom up) are also a promising avenue. There are some 

interesting ideas inspired by the human visual system, like the CortexNet 

(https://arxiv.org/abs/1706.02735) and the Feedbacknet (http://

feedbacknet.stanford.edu/). These models are not only bottom-up 

feed-forward connections, but also they model the top-down feedback and 

lateral connections that are present in human visual cortex.
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ANNs still struggle to grasp what humans take for granted: common 

sense. We don’t realize how hard is to teach a machine to develop the 

capability to understand simple scenarios that are very easy for humans, 

such as that gravity is always pushing objects down, and therefore water 

flows downhill.

A solution to this problem is simply more data. To circumvent this 

difficulty, a large library for a human-like visual understanding of the 

world was recently created (https://medium.com/twentybn/learning- 

about- the-world-through-video-4db73785ac02). It contains two video 

data sets with 256,591 labeled videos to teach machines visual common 

sense. The first data set allows machines to develop a fine-grained 

understanding of basic actions that occur in the physical world. The 

second data set of dynamic hand gestures enables robust cognition models 

for human-computer interaction.

Recurrent networks are clearly superior to feed-forward models. More 

effective ways to train (including nondifferentiable models) are an important 

path of research. Evolutionary algorithms are a promising avenue.

 11.7.1 Learning with Less Data
DL requires data-intensive algorithms and requires many human 

annotations. An AI algorithm that classifies cats and dogs will not be able 

to identify a rare dog species if not fed with images of that species.

Another major challenge is incremental data. In this example, if 

you are trying to recognize cats and dogs, you might train your AI with a 

number of cat and dog images of different species when you first deploy. 

While new species might be more similar to others, this may require 

complete re-training and re-assessment. Can you make the ANN more 

adaptable to these small changes?
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 11.7.2 Transfer Learning
The learning is transferred from one task to the other within the same 

algorithm in transfer learning. Algorithms trained on one task (the source 

task) with a larger data set can be transferred with or without modification 

as part of an algorithm trying to learn a different task (the target task) on a 

(relatively) smaller data set.

Using parameters of an image classification algorithm as a feature 

extractor in different tasks such as object detection is a simple application 

of transfer learning. In contrast, it can also be used to perform complex 

tasks. The algorithm Google developed to classify diabetic retinopathy 

better than doctors was made using transfer learning.

 11.7.3 Multitask Learning
In multitask learning, multiple learning tasks are solved at the same 

time while exploiting commonalities and differences across domains. 

Sometimes learning two or more tasks together (also called multimodal 

learning) can improve precision.

An important aspect of multitask learning that is seen in real-world 

applications is that when training any task to become bulletproof, you 

need to respect data coming from many domains (also called domain 

adaptation). An example in the cat and dog use cases is an algorithm 

that can recognize images of different sources (say VGA cameras and 

HD cameras or even infrared cameras). In such cases, an auxiliary loss of 

domain classification (where the images came in from) can be added to 

any task, and then the machine learns such that the algorithm keeps getting 

better at the main task (classifying images into cat or dog images) but 

purposely gets worse at the auxiliary task (this is done by backpropagating 
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the reverse error gradient from the domain classification task). The idea 

is that the algorithm learns discriminative features for the main task but 

forgets features that differentiate domains.

 11.7.4 Adversarial Learning
Adversarial learning as a field evolved from the research work of Ian 

Goodfellow. The most popular applications of adversarial learning are the 

generative adversarial networks (GANs) that can be used to generate  

high- quality images; there are other applications, though.

The domain adaptation game can be made better using the GAN 

loss. The auxiliary loss here is a GAN system instead of pure domain 

classification, where a discriminator tries to classify which domain the 

data came from and a generator component tries to fool it by presenting 

random noise as data. This works better than plain domain adaptation 

(which is also more erratic than code).

 11.7.5 Few-Shot Learning
Few-shot learning is a study of techniques that make deep learning 

algorithms (or any machine learning algorithms) learn with fewer 

examples compared to a traditional algorithm. One-shot learning is 

basically learning with one example of a category; inductively, k-shot 

learning means learning with k examples of each category.

Few-shot learning as a field is seeing an influx of papers in all major 

deep learning conferences, and there are now specific data sets to 

benchmark results on, just like MNIST and CIFAR for normal machine 

learning. One-shot learning is seeing a number of applications in certain 

image classification tasks such as feature detection and representation.
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There are multiple methods that are used for few-shot learning, 

including transfer learning, multitask learning, and metalearning as all 

or part of the algorithm. There are other ways such as having clever loss 

function, using dynamic architectures, or using optimization hacks. Zero- 

shot learning uses a class of algorithms that claims to predict answers 

for categories that the algorithm has not even seen; basically they are 

algorithms that can scale with a new type of data.

 11.7.6 Metalearning
Metalearning has become an active area in deep learning recently, most 

commonly using the technique for hyperparameter and neural network 

optimization, finding good network architectures, using few-shot image 

recognition, and using fast reinforcement learning. Refer to the recent 

work at https://deepmind.com/blog/population-based-training- 

neural-networks/ from Google.

This is referred to as full automation for deciding both parameters and 

hyperparameters such as the network architecture. Despite all the hype around 

them, metalearners are still algorithms; in other words, they are pathways to 

scale machine learning with increasingly complex and varied data.

 11.7.7 Neural Reasoning
Neural reasoning is a step above pattern recognition, where algorithms 

are moving beyond the idea of simply identifying and classifying text 

or images. Neural reasoning is solving more generic questions in text 

analytics or visual analytics.

This new set of techniques appeared after the release of Facebook’s 

bAbi data set or the recent CLEVR data set. The techniques that decipher 

relations and not just patterns have immense potential to solve not just 

neural reasoning but also multiple other hard problems including few-shot 

learning problems.
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All the techniques mentioned help solve training with less data in 

some way or the other. While metalearning would provide architectures 

that just mold the data, transfer learning is taking knowledge from some 

other domains to compensate for less data. Few-shot learning is dedicated 

to the problem as a scientific discipline. Adversarial learning can help 

enhance the data sets.

Domain adaptation (a type of multitask learning), adversarial learning, 

and (sometimes) metalearning architectures help solve problems arising 

from data diversity. Metalearning and few-shot learning help solve 

problems of incremental data.

Neural reasoning algorithms have immense potential to solve real- world 

problems when incorporated as metalearners or few-shot learners.
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APPENDIX A

 Training DNN with  
Keras
This appendix will discuss using the Keras framework to train deep 

learning and explore some example applications on image segmentation 

using a fully convolutional network (FCN) and click-rate prediction with a 

wide and deep model (inspired by the TensorFlow implementation).

Despite their massive size, successful deep artificial neural 

networks can exhibit a remarkably small difference between training 

and test performance; see https://blog.acolyer.org/2017/05/11/

understanding-deep-learning-requires-re-thinking-

generalization/. In a blog post (https://beamandrew.github.io/

deeplearning/2017/06/04/deep_learning_works.html), Andrew Beam 

explains why it’s possible to apply very large neural networks even if you 

have small data sets without the risk of overfitting.

 A.1 The Keras Framework
Keras.io is an excellent framework to start deploying a deep learning 

model. The author, Francois Chollet, has created a great library, following 

a minimalist approach and with many hyperparameters and optimizers 

already preconfigured. You can run complex models in less than ten lines 

of code using Theano, TensorFlow, and CNTK backends.
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 A.1.1 Installing Keras in Linux
Keras is pretty straightforward to install. The first step is to install Theano 

or TensorFlow. Installing TensorFlow is easy with Pip. Be careful with 

the version you install, though. If you use a GPU, you have to choose 

a compatible installation that will run Cuda. There are some obvious 

dependencies like Numpy or less obvious ones like hdf5 to compress files. 

See the full instructions for a Linux installation at www.pyimagesearch.

com/2016/11/14/installing-keras-with-tensorflow-backend/.

 A.1.2 Model
Models in Keras are defined as a sequence of layers. A network is a stack of 

layers forming a network topology. The input layer needs to have the same 

dimensions as the input data. This can be specified when creating the first 

layer with the input_dim argument.

Finding the best network architecture (number of layers, size of layers, 

activation functions) is done mostly by trial and error. Generally, you need 

a network large enough to accommodate the complexity of the problem 

but one that is not too complex.

Fully connected layers are defined using the Dense class. You can 

specify the number of neurons in the layer as the first argument.

The network weights should be initialized to a small random number 

generated from a uniform distribution. The initialization method can be 

specified as an int argument. The activation function is also specified as 

an argument. If you are unsure about these initializations, simply use the 

defaults.
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 A.1.3 The Core Layers
A neural network is composed of a set of (mostly sequential) layers that are 

connected with each other. These are the most common layers:

• Input

• Dense

• Convolution1D and convolution2D

• Embedding

• LSTM

A neural network works with tensors. Before you perform computation, 

you need to convert your data (as a Numpy array of a Pandas data frame) 

into a tensor. The input layer is the entry point of a neural network.

The dense layer is the most basic (and common) type of layer. It has 

as arguments the number of unities and the activation function. The 

rectifier linear unit (ReLU) activation function is the most common one. 

The convolution layers (1D or 2D) are mostly used for text and images 

and the required parameters are the number of filters and the kernel size. 

The embedding layer is very useful for text data as they can convert a very 

high dimensional data into a denser representation - they require two 

parameters input_dim and output_dim. The LSTM layer is very useful 

to learn temporal or sequential data - the only required parameter is the 

number of units - careful since these networks with these layers are very 

computational intensive and they overfit easily.

Some other common activation functions are tanh, softmax, and argmax.

The following is a simple example of a Keras model to classify data (the 

response variable is the last column of the file xxx.csv, either 0 or 1). In 

this example, you will train a classifier, minimize the cross entropy over 150 

epochs, and print the predictions. The data is assumed to be normalized.  

As the activation function in the last layer, you are using sigmoid, but 
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normally softmax should be used. It is assumed that input data is contained 

in the initial X_dim columns - parameter that should be provided.

from keras.models import Sequential

from keras.layers import Dense

import numpy as np

# load a dataset

dataset = np.loadtxt("xxx.csv", delimiter=",")

# split into input (X) and output (Y) variables

X = dataset[:,0:X_dim]

Y = dataset[:,X_dim]

# create model

model = Sequential()

model.add(Dense(12, input_dim=X_dim, init='uniform', 

activation='relu'))

model.add(Dense(5, init='uniform', activation='relu'))

model.add(Dense(1, init='uniform', activation='sigmoid'))

# Compile model

model.compile(loss='binary_crossentropy', optimizer='adam',

    metrics=['accuracy'])

# Fit the model

model.fit(X, Y, epochs=150, batch_size=10, verbose=2)

# calculate predictions

predictions = model.predict(X)

# round predictions

rounded = [round(x[0]) for x in predictions]

print(rounded)
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 A.1.4 The Loss Function
Keras comes with the most common loss functions, including these basic 

ones:

• Cross entropy and binary cross entropy for 

classification problems

• Categorical cross entropy

• Mean Square Error (MSE) for regression problems

 Building a personalized loss function is quite straightforward. An 

example is provided in the code of the FCN later in this chapter to weight 

the cross entropy to account for imbalanced categorical data, using the 

binary_crossentropy_2d_w() function. Care should be taken because 

loss functions have to be fully differentiable. For instance, you cannot use 

if, then, else.

 A.1.5 Training and Testing
Normally you specify the metrics of interest by calling the compile method. 

For instance, you can compile this model using the Adam optimizer with 

a learning rate of 0.001, minimizing the binary cross entropy loss and 

displaying the accuracy.

model.compile(Adam(0.001), loss='binary_crossentropy', 

metrics='accuracy')

To display all metrics from training a model, just use this:

history=model.fit(X_train,Y_train,epochs=50)

print(history.history.keys())
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 A.1.6 Callbacks
Keras can register a set of callbacks when training neural networks.

The default callback tracks the training metrics for each epoch, 

including the loss and the accuracy for training and validation data.

An object named history is returned from a call to the fit() function. 

Metrics are stored in the form of a dictionary in the history member of the 

object returned.

The following is an example using a checkpoint to save the weights (in 

the file weights.hdf5) of the best model:

from keras.callbacks import ModelCheckpoint

checkpointbest = ModelCheckpoint(filepath='weights.hdf5', 

verbose=1, save_best_only=True)

model.fit(x_train, y_train, epochs=20, validation_data= 

(x_test, y_test), callbacks=[checkpointbest])

 A.1.7 Compile and Fit
After the model is defined, it can be compiled; only at this point is the 

computational graph effectively generated. Compiling uses the numerical 

libraries from the Keras backend such as Theano or TensorFlow. The 

backend automatically chooses the best way to represent the network for 

training and makes predictions for running on hardware, such as a CPU 

or GPU and single or multiple. You can run models on a CPU, but a GPU is 

advisable if you are dealing with large image data sets because it will speed 

up the training by an order of magnitude.

Compiling requires additional properties for training the network for 

finding the best set of weights connecting the neurons. You must specify 

the loss function to use to evaluate the network, the optimizer used to 

search through different weights for the network, and any optional metrics 

you would like to collect and report during training.
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For classification, you typically use logarithmic loss, which for a binary 

classification problem is defined in Keras as binary_crossentropy. For 

optimization, the gradient descent algorithm adam is commonly used.

model.compile(loss='binary_crossentropy', optimizer='adam', 

metrics ['accuracy'])

Other common optimizers include Adadelta, SGD, and Adagrad.

To train, or fit, the model on data, you call the fit() function on 

the model. The training process will run for a fixed number of iterations 

through the data set called epochs, which is specified through the epochs 

argument. You can also set the number of instances that are evaluated 

before a weight update in the network is performed, called the batch size, 

using the batch_size argument.

 A.2 The Deep and Wide Model
Wide and deep models can be jointly trained using linear models and deep 

neural networks. The wide component consists of a generalized linear 

model, and the cross-product interaction is modeled as a neural network 

with embedding layers (see Figure A-1).

Figure A-1. Wide and deep neural network model

The following code, in Python 2.7, is the Keras implementation of the 

code originally presented in TensorFlow. To run it, you need to download 

the adult data set from http://mlr.cs.umass.edu/ml/machine-learning-

databases/adult/adult.data. It was provided by Javier Zaurin (https://

github.com/jrzaurin/Wide-and-Deep-Keras).
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First you will do the imports and define some functions to be used later.

# to run : python wide_and_deep.py –method method

# example: python wide_and_deep.py –method deep

import numpy as np

import pandas as pd

import argparse

from sklearn.preprocessing import StandardScaler

from copy import copy

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import Adam

from keras.layers import Input, concatenate, Embedding, 

Reshape, Merge, Flatten, merge, Lambda

from keras.layers.normalization import BatchNormalization

from keras.models import Model

from keras.regularizers import l2, l1_l2

def cross_columns(x_cols):

     """simple helper to build the crossed columns in a pandas 

dataframe

    """

    crossed_columns = dict()

    colnames = ['_'.join(x_c) for x_c in x_cols]

    for cname,x_c in zip(colnames,x_cols):

        crossed_columns[cname] = x_c

    return crossed_columns

def val2idx(DF_deep,cols):

    """helper to index categorical columns before embeddings.

    """ DF_deep = pd.concat([df_train, df_test])

    val_types = dict()

    for c in cols:
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        val_types[c] = DF_deep[c].unique()

    val_to_idx = dict()

    for k, v in val_types.iteritems():

         val_to_idx[k] = o: i for i, o in enumerate(val_

types[k])

    for k, v in val_to_idx.iteritems():

        DF_deep[k] = DF_deep[k].apply(lambda x: v[x])

    unique_vals = dict()

    for c in cols:

        unique_vals[c] = DF_deep[c].nunique()

    return DF_deep,unique_vals

def embedding_input(name, n_in, n_out, reg):

    inp = Input(shape=(1,), dtype='int64', name=name)

    return inp, Embedding(n_in, n_out, input_length=1,

        embeddings_regularizer=l2(reg))(inp)

def continous_input(name):

    inp = Input(shape=(1,), dtype='float32', name=name)

    return inp, Reshape((1, 1))(inp)

Then you define the wide model.

def wide():

    target = 'cr'

     wide_cols = ["gender", "xyz_campaign_id", "fb_campaign_id", 

"age", "interest"]

    x_cols = (['gender', 'age'],['age', 'interest'])

    DF_wide = pd.concat([df_train,df_test])
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     # my understanding on how to replicate what layers.crossed_

column does One

     # can read here: https://www.tensorflow.org/tutorials/linear.

    crossed_columns_d = cross_columns(x_cols)

    categorical_columns =

        list(DF_wide.select_dtypes(include=['object']).columns)

    wide_columns = wide_cols + crossed_columns_d.keys()

    for k, v in crossed_columns_d.iteritems():

         DF_wide[k] = DF_wide[v].apply(lambda x: '-'.join(x), 

axis=1)

    DF_wide = DF_wide[wide_columns + [target] + ['IS_TRAIN']]

    dummy_cols = [

        c for c in wide_columns if c in categorical_columns +

            crossed_columns_d.keys()]

     DF_wide = pd.get_dummies(DF_wide, columns=[x for x in 

dummy_cols])

     train = DF_wide[DF_wide.IS_TRAIN == 1].drop('IS_TRAIN', 

axis=1)

     test = DF_wide[DF_wide.IS_TRAIN == 0].drop('IS_TRAIN', axis=1)

    # sanity check: make sure all columns are in the same order

    cols = ['cr'] + [c for c in train.columns if c != 'cr']

    train = train[cols]

    test = test[cols]

    X_train = train.values[:, 1:]

    Y_train = train.values[:, 0]

    X_test = test.values[:, 1:]

    Y_test = test.values[:, 0]
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    # WIDE MODEL

      wide_inp = Input(shape=(X_train.shape[1],), 

dtype='float32', name='wide_inp')

     w = Dense(1, activation="sigmoid", name = "wide_model")

(wide_inp)

    wide = Model(wide_inp, w)

    wide.compile(Adam(0.01), loss='mse', metrics=['accuracy'])

    wide.fit(X_train,Y_train,nb_epoch=10,batch_size=64)

    results = wide.evaluate(X_test,Y_test)

    print " Results with wide model:

Then you define the wide model.

def deep():

    DF_deep = pd.concat([df_train,df_test])

    target = 'cr'

     embedding_cols = ["gender", "xyz_campaign_id",  

"fb_campaign_id", "age", "interest"]

    deep_cols = embedding_cols + ['cpc','cpco','cpcoa']

    DF_deep,unique_vals = val2idx(DF_deep, embedding_cols)

     train = DF_deep[DF_deep.IS_TRAIN == 1].drop('IS_TRAIN', 

axis=1)

    test = DF_deep[DF_deep.IS_TRAIN == 0].drop('IS_TRAIN', axis=1)

    n_factors = 5

    gender, gd = embedding_input('gender_in', unique_vals[

                                 'gender'], n_factors, 1e-3)

     xyz_campaign, xyz = embedding_input('xyz_campaign_id_in', 

unique_vals[

                                         'xyz_campaign_id'], n_

factors, 1e-3)
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     fb_campaign_id, fb = embedding_input('fb_campaign_id_in', 

unique_vals[

                                          'fb_campaign_id'], n_

factors, 1e-3)

    age, ag = embedding_input('age_in', unique_vals[

                                  'age'], n_factors, 1e-3)

    interest, it = embedding_input('interest_in', unique_vals[

                                       'interest'], n_factors, 

1e-3)

    # adding numerical columns to the deep model

    cpco, cp = continous_input('cpco_in')

    cpcoa, cpa = continous_input('cpcoa_in')

    

    X_train = [train[c] for c in deep_cols]

    Y_train = train[target]

    X_test = [test[c] for c in deep_cols]

    Y_test = test[target]

    

    # DEEP MODEL: input same order than in deep_cols:

    d = merge([gd, re, xyz, fb, ag, it], mode='concat')

    d = Flatten()(d)

    # layer to normalise continous columns with the embeddings

    d = BatchNormalization()(d)

    d = Dense(100, activation='relu',

          kernel_regularizer=l1_l2(l1=0.01, l2=0.01))(d)

    d = Dense(50, activation='relu',name='deep_inp')(d)

    d = Dense(1, activation="sigmoid")(d)

     deep = Model([gender, xyz_campaign, fb_campaign_id, age, 

interest,

                cpco, cpcoa], d)
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    deep.compile(Adam(0.001), loss='mse', metrics=['accuracy'])

    deep.fit(X_train,Y_train, batch_size=64, nb_epoch=10)

    results = deep.evaluate(X_test,Y_test)

    print " Results with deep model:

Then you compose the wide and deep model using some cross-tabular 

columns.

def wide_deep():

    target = 'cr'

     wide_cols = ["gender", "xyz_campaign_id", "fb_campaign_id", 

"age", "interest"]

    x_cols = (['gender', 'xyz_campaign'],['age', 'interest'])

    DF_wide = pd.concat([df_train,df_test])

    crossed_columns_d = cross_columns(x_cols)

    categorical_columns =

        list(DF_wide.select_dtypes(include=['object']).columns)

    wide_columns = wide_cols + crossed_columns_d.keys()

    for k, v in crossed_columns_d.iteritems(): DF_wide[k] =

        DF_wide[v].apply(lambda x: '-'.join(x), axis=1)

    DF_wide = DF_wide[wide_columns + [target] + ['IS_TRAIN']]

    dummy_cols = [

        c for c in wide_columns if c in categorical_columns +

            crossed_columns_d.keys()]

     DF_wide = pd.get_dummies(DF_wide, columns=[x for x in 

dummy_cols])
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     train = DF_wide[DF_wide.IS_TRAIN == 1].drop('IS_TRAIN', 

axis=1)

    test = DF_wide[DF_wide.IS_TRAIN == 0].drop('IS_TRAIN', axis=1)

    # sanity check: make sure all columns are in the same order

    cols = ['cr'] + [c for c in train.columns if c != 'cr']

    train = train[cols]

    test = test[cols]

    X_train_wide = train.values[:, 1:]

    Y_train_wide = train.values[:, 0]

    X_test_wide = test.values[:, 1:]

    DF_deep = pd.concat([df_train,df_test])

     embedding_cols = ['gender', 'xyz_campaign','fb_campaign_

id', 'age', 'interest']

    deep_cols = embedding_cols + ['cpco','cpcoa']

    DF_deep,unique_vals = val2idx(DF_deep,embedding_cols)

     train = DF_deep[DF_deep.IS_TRAIN == 1].drop('IS_TRAIN', 

axis=1)

     test = DF_deep[DF_deep.IS_TRAIN == 0].drop('IS_TRAIN', axis=1)

    n_factors = 5

    gender, gd = embedding_input('gender_in', unique_vals[

                                 'gender'], n_factors, 1e-3)

     xyz_campaign, xyz = embedding_input('xyz_campaign_id_in', 

unique_vals[

                                         'xyz_campaign_id'],  

n_factors, 1e-3)

     fb_campaign_id, fb = embedding_input('fb_campaign_id_in', 

unique_vals[

                                          'fb_campaign_id'], n_

factors, 1e-3)
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    age, ag = embedding_input('age_in', unique_vals[

                              'age'], n_factors, 1e-3)

    interest, it = embedding_input('interest_in', unique_vals[

                                   'interest'], n_factors, 1e- 3)

    # adding numerical columns to the deep model

    cpco, cp = continous_input('cpco_in')

    cpcoa, cpa = continous_input('cpcoa_in')

    X_train_deep = [train[c] for c in deep_cols]

    Y_train_deep = train[target]

    X_test_deep = [test[c] for c in deep_cols]

    Y_test_deep = test[target]

    X_tr_wd = [X_train_wide] + X_train_deep

    Y_tr_wd = Y_train_deep # wide or deep is the same here

    X_te_wd = [X_test_wide] + X_test_deep

    Y_te_wd = Y_test_deep # wide or deep is the same here

    #WIDE

     wide_inp = Input(shape=(X_train_wide.shape[1],), 

dtype='float32',

        name='wide_inp')

    #DEEP

     deep_inp = merge([ge, xyz, ag, fb, it, cp, cpa], 

mode='concat')

    deep_inp = Flatten()(deep_inp)

    # layer to normalise continous columns with the embeddings

    deep_inp = BatchNormalization()(deep_inp)

    deep_inp = Dense(100, activation='relu',

              kernel_regularizer=l1_l2(l1=0.01, l2=0.01)) 

(deep_inp)
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     deep_inp = Dense(50, activation='relu',name='deep_inp')

(deep_inp)

    #WIDE + DEEP

    wide_deep_inp = concatenate([wide_inp, deep_inp])

    wide_deep_out = Dense(1, activation='sigmoid',

        name='wide_deep_out')(wide_deep_inp)

     wide_deep = Model(inputs=[wide_inp, gender, age, xyz_

campaign,

                            fb_campaign_id,cpco, cpcoa],

                                outputs=wide_deep_out)

    wide_deep.compile(optimizer=Adam(lr=0.001),loss='mse',

        metrics=['accuracy'])

    wide_deep.fit(X_tr_wd, Y_tr_wd, nb_epoch=50, batch_size=80)

    # wide_deep.optimizer.lr = 0.001

     # wide_deep.fit(X_tr_wd, Y_tr_wd, nb_epoch=5, batch_

size=64)

    results = wide_deep.evaluate(X_te_wd, Y_te_wd)

    print " Results with wide and deep model:

The main module is finally assembled.

if __name__ == '__main__':

    ap = argparse.ArgumentParser()

    ap.add_argument("–method", type=str, default="wide_deep",

        help="fitting method")

    args = vars(ap.parse_args())

    method      = args["method"]

    df_train = pd.read_csv("train.csv")

    df_test = pd.read_csv("test.csv")

    df_train['IS_TRAIN'] = 1

    df_test['IS_TRAIN'] = 0
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    if method == 'wide':

        wide()

    elif method == 'deep':

        deep()

    else:

        wide_deep()

 A.3 An FCN for Image Segmentation
This section will provide the code for image segmentation using a fully 

convolutional network.

You will begin by doing some imports and setting some functions, as 

shown here:

import glob

import os

from PIL import Image

import numpy as np

from keras.layers import Input, Convolution2D, MaxPooling2D, 

UpSampling2D, Dropout

from keras.models import Model

from keras import backend as K

from keras.callbacks import ModelCheckpoint

smooth = 1.

# define a weighted binary cross entropy function

def binary_crossentropy_2d_w(alpha):

    def loss(y_true, y_pred):

        bce = K.binary_crossentropy(y_pred, y_true)

        bce *= 1 + alpha * y_true

        bce /= alpha

        return K.mean(K.batch_flatten(bce), axis=-1)

    return loss
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# define dice score to assess predictions

def dice_coef(y_true, y_pred):

    y_true_f = K.flatten(y_true)

    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)

    return (2. * intersection + smooth) / (K.sum(y_true_f) +

        K.sum(y_pred_f) + smooth)

def dice_coef_loss(y_true, y_pred):

    return 1 - dice_coef(y_true, y_pred)

Then you load the data and the respective masks. The transpose can 

be skipped if you use TensorFlow as the backend (because it assumes 

images are specified as width×height×channels). A low-resolution image is 

640×480×3.

def load_data(dir, boundary=False):

    X = []

    y = []

    # load images

    for f in sorted(glob.glob(dir + '/image??.png')):

        img = np.array(Image.open(f).convert('RGB'))

        X.append(img)

    # load masks

     for i, f in enumerate(sorted(glob.glob(dir + '/image??_

mask.txt'))):

        if boundary:

            a = get_boundary_mask(f)

            y.append(np.expand_dims(a, axis=0))

        else:

            content = open(f).read().split('')[1:-1]

            a = np.array(content, 'i').reshape(X[i].shape[:2])

            a = np.clip(a, 0, 1).astype('uint8')

            y.append(np.expand_dims(a, axis=0))
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    # stack data

    X = np.array(X) / 255.

    y = np.array(y)

    X = np.transpose(X, (0, 3, 1, 2))

    return X, y

Then you define the network used for training. You start with eight 

filters, and each time you do max pooling, it doubles: 16, 32, and so on.

# define the network model

def net_2_outputs(input_shape):

    input_img = Input(input_shape, name='input')

    x = Convolution2D(8, 3, 3, activation='relu',

        border_mode='same')(input_img)

     x =  Convolution2D(8, 3, 3, activation='relu', border_

mode='same')(x)

     x =  Convolution2D(8, 3, 3, subsample=(1, 1), 

activation='relu', border_mode='same')(x)

    x = MaxPooling2D((2, 2), border_mode='same')(x)

     x =  Convolution2D(16, 3, 3, activation='relu', border_

mode='same')(x)

     x =  Convolution2D(16, 3, 3, activation='relu', border_

mode='same')(x)

     x =  Convolution2D(16, 3, 3, subsample=(1, 1), 

activation='relu',

        border_mode='same')(x)

     x = MaxPooling2D((2, 2), border_mode='same')(x)

     x =  Convolution2D(32, 3, 3, activation='relu', border_

mode='same')(x)

     x =  Convolution2D(32, 3, 3, activation='relu', border_

mode='same')(x)

     x =  Convolution2D(32, 3, 3, activation='relu', border_

mode='same')(x)
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    # up

    x = UpSampling2D((2, 2))(x)

     x =  Convolution2D(16, 3, 3, activation='relu', border_

mode='same')(x)

    x = UpSampling2D((2, 2))(x)

     x =  Convolution2D(8, 3, 3, activation='relu', border_

mode='same')(x)

    output = Convolution2D(1, 3, 3, activation='sigmoid',

        border_mode='same', name='output')(x)

    model = Model(input_img, output=[output])

    model.compile(optimizer='adam', loss='output':

         binary_crossentropy_2d_w(5))

return model

Next, you train the model.

def train():

    X, y = load_data(DATA_DIR_TRAIN.replace('c_type', c_type),

        boundary=False) # load the data

    print(X.shape, y.shape) # make sure it's the right shape

    h = X.shape[2]

    w = X.shape[3]

    training_data = ShuffleBatchGenerator(input_data='input': X,

         output_data='output': y, 'output_b': y_b) # generate 

batches for

        training and testing

    training_data_aug = DataAugmentation(training_data,

         inplace_transfo=['mirror', 'transpose']) # apply some data

        augmentation

    net = net_2_outputs((X.shape[1], h, w))

    net.summary()
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    model = net

     model.fit(training_data_aug, 300, 1, callbacks=[ProgressBar

Callback()])

    net.save('model.hdf5' )

    # save predictions to disk

     res = model.predict(training_data, training_data.nb_

elements)

    if not os.path.isdir('res'):

        os.makedirs('res')

    for i, img in enumerate(res[0]):

        Image.fromarray(np.squeeze(img) *

            255).convert('RGB').save('res/

    for i, img in enumerate(res[1]):

        Image.fromarray(np.squeeze(img) *

            255).convert('RGB').save('res/

if __name__ == '__main__':

        train()

 A.3.1 Sequence to Sequence
Sequence-to-sequence models (seq2seq) convert a sequence from one 

domain (e.g., sentences in English) to a sequence in another domain 

(e.g., the same sentences translated to French) or convert from past 

observations to a sequence of future observations (prediction).

When both sequences have the same length, a simple Keras LSTM 

is enough. In the general case of arbitrary lengths where the entire input 

sequence is required, an RNN layer will act as the encoder. It projects 

the input sequence into its own internal state (the context), and another 

RNN layer is trained as the decoder to predict the next elements of the 

target sequence. The encoder uses as the initial state the vectors from 
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the encoder. The decoder learns to generate targets[t+1...] given 

targets[...t], conditioned on the input sequence. The following 

example was created by F. Chollet and is available online at https://blog.

keras.io/a-ten-minute-introduction-to-sequence-to-sequence-

learning- in-keras.html:

from keras.models import Model

from keras.layers import Input, LSTM, Dense

encoder_inputs = Input(shape=(None, num_encoder_tokens))

encoder = LSTM(latent_dim, return_state=True)

encoder_outputs, state_h, state_c = encoder(encoder_inputs)

# We discard 'encoder_outputs' and only keep the states.

encoder_states = [state_h, state_c]

# Set up the decoder, using 'encoder_states' as initial state.

decoder_inputs = Input(shape=(None, num_decoder_tokens))

# We set up our decoder to return full output sequences,

# and to return internal states as well. We don't use the

# return states in the training model, but we will use them in 

inference.

decoder_lstm = LSTM(latent_dim, return_sequences=True, return_

state=True)

decoder_outputs, _, _ = decoder_lstm(decoder_inputs,

                                initial_state=encoder_states)

decoder_dense = Dense(num_decoder_tokens, activation='softmax')

decoder_outputs = decoder_dense(decoder_outputs)

# Define the model that will turn

# 'encoder_input_data' 'decoder_input_data' into 'decoder_

target_data'

model = Model([encoder_inputs, decoder_inputs],  decoder_outputs)

# Run training
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model.compile(optimizer='rmsprop', loss='categorical_

crossentropy')

model.fit([encoder_input_data, decoder_input_data], decoder_

target_data,

        batch_size=batch_size,

        epochs=epochs,

        validation_split=0.2)

encoder_model = Model(encoder_inputs, encoder_states)

decoder_state_input_h = Input(shape=(latent_dim,))

decoder_state_input_c = Input(shape=(latent_dim,))

decoder_states_inputs = [decoder_state_input_h, decoder_state_

input_c]

decoder_outputs, state_h, state_c = decoder_lstm(

    decoder_inputs, initial_state=decoder_states_inputs)

decoder_states = [state_h, state_c]

decoder_outputs = decoder_dense(decoder_outputs)

decoder_model = Model(

    [decoder_inputs] + decoder_states_inputs,

    [decoder_outputs] + decoder_states)

def decode_sequence(input_seq):

    # Encode the input as state vectors.

    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.

    target_seq = np.zeros((1, 1, num_decoder_tokens))

     # Populate the first character of target sequence with the 

start character.

    target_seq[0, 0, target_token_index[']] = 1.

    # Sampling loop for a batch of sequences

    # (to simplify, here we assume a batch of size 1).
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    stop_condition = False

    decoded_sentence = "

    while not stop_condition:

        output_tokens, h, c = decoder_model.predict(

            [target_seq] + states_value)

        # Sample a token

        sampled_token_index = np.argmax(output_tokens[0, -1, :])

         sampled_char = reverse_target_char_index[sampled_token_

index]

        decoded_sentence += sampled_char

        # Exit condition: either hit max length

        # or find stop character.

        if (sampled_char == '' or

            len(decoded_sentence) > max_decoder_seq_length):

            stop_condition = True

        # Update the target sequence (of length 1).

        target_seq = np.zeros((1, 1, num_decoder_tokens))

        target_seq[0, 0, sampled_token_index] = 1.

        # Update states

        states_value = [h, c]

    return decoded_sentence

 A.4 The Backpropagation on a Multilayer 
Perceptron
In this section, we will consider a rather general neural network consisting 

of L layers (of course not counting the input layer). Let’s consider an 

arbitrary layer, say ℓ, which has Nℓ neurons, X1
(ℓ), X2

(ℓ), …, XN


( ) , each with 
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a transfer function, f (ℓ). Notice that the transfer function may be different 

from layer to layer. As in the extended Delta rule, the transfer function 

may be given by any differentiable function but does not need to be linear. 

These neurons receive signals from the neurons in the preceding layer, 

-1 . For example, neuron Xj
(ℓ) receives a signal from Xi

-( )1  with a weight 

factor of wij
(ℓ). Therefore, you have an N

-1  by Nℓ weight matrix, W(ℓ), whose 

elements are given by Wij
(ℓ), for i N= ¼ -1 2 1, , ,



 and j N= ¼1 2, , ,


. Neuron 

Xj
(ℓ) also has a bias given by bj

(ℓ), and its activation is aj
(ℓ).

To simplify the notation, you will use n yj in j
( ) =( ),  to denote the net 

input into neuron Xj
(ℓ). It is given as follows:

n a w b j Nj
i

N

i ij j
   





( )

=

-( ) ( ) ( )= + = ¼
-

å
1

1
1

1 2, , , , .

Thus, the activation of neuron Xj
(ℓ) is as follows:

a f n f a w bj j
i

N

i ij j
      



( ) ( ) ( ) ( )

=

-( ) ( ) ( )= ( ) = +
æ

è
ç

ö

ø
÷

-

å
1

1
1

.

You can consider the zeroth layer as the input layer. If an input vector 

x has N components, then N N0 = , and neurons in the input layer have 

activations a x i Ni i
0

01 2( ) = = ¼, , , , .

Layer L of the network is the output layer. Assuming that the output 

vector y has M components, you must have N ML = . These components 

are given by y a j Mj j
L= = ¼( ) , , , ,1 2 .

For any given input vector, the previous equations can be used to find 

the activation for each neuron for any given set of weights and biases. 

In particular, the network output vector y can be found. The remaining 

question is how to train the network to find a set of weights and biases for 

it to perform a certain task.
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You will now consider training a rather general multilayer perceptron 

for pattern association using the BP algorithm. Training is carried out 

supervised, so you can assume that a set of pattern pairs (or associations), 

as in s tq q q Q( ) ( ) = ¼: , , , ,1 2 , is given. The training vectors s(q) have N 

components, as shown here:

s q q q
N
qs s s( ) ( ) ( ) ( )= ¼é

ë
ù
û1 2 ,

Their targets, t(q), have M components, as shown here:

t q q q
M
qt t t( ) ( ) ( ) ( )= ¼é

ë
ù
û1 2 .

Just like in the Delta rule, the training vectors are presented one at a 

time to the network during training. Suppose in time step t of the training 

process, a training vector s(q) for a particular q is presented as input, x(t), 

to the network. The input signal can be propagated forward through the 

network using the equations in the previous section and the current set of 

weights and biases to obtain the corresponding network output, y(t). The 

weights and biases are then adjusted using the steepest descent algorithm 

to minimize the square of the error for this training vector:

E t t= ( )- ( )y t
2
,

Here, t tt q( ) = ( )  is the corresponding target vector for the chosen 

training vector s(q).

This square error E is a function of all the weights and biases of the 

entire network since y(t) depends on them. You need to find the set of 

updating rules for them based on the steepest descent algorithm.

w t w t
E

w t
ij ij

ij

 



( ) ( )
( )+( ) = ( )- ¶

¶ ( )
1 a
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b t b t
E

b t
j j

j

 



( ) ( )
( )+( ) = ( )- ¶

¶ ( )
1 a ,

Here, a >( )0  is the learning rate.

To compute these partial derivatives, you need to understand how 

E depends on the weights and biases. First, E depends explicitly on the 

network output y(t) (the activations of the last layer, a(L)), which then 

depends on the net input into the L -th layer, n(L). In turn, n(L) is given by 

the activations of the preceding layer and the weights and biases of layer L. 

The explicit relation is as follows (for brevity, the dependence on step t is 

omitted):

E t t f tL L L= - ( ) = - ( ) = ( )- ( )( ) ( ) ( )y t a t n t
2 2 2

= +
æ

è
ç

ö

ø
÷ - ( )( )

=

-( ) ( ) ( )
-

åf a w b tL

i

N

i
L

ij
L

j
L

L

1

1

2
1

t .

 It is then easy to compute the partial derivatives of E with respect to 

the elements of W(L) and b(L) using the chain rule for differentiation.

¶
¶

=
¶
¶

¶
¶( )

=
( )

( )

( )åE

w

E

n

n

wij
L

n

N

n
L

n
L

ij
L

L

1

.

Notice the sum is needed in the previous equation for the correct 

application of the chain rule. You now define the sensitivity vector for a 

general layer ℓ to have components.

s
E

n
n Nn

n







( )
( )=

¶
¶

= ¼1 2, , , .
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This is called the sensitivity of neuron Xn
(ℓ) because it gives the change 

in the output error, E, per unit change in the net input it receives.

For layer L, it is easy to compute the sensitivity vector directly using the 

chain rule to obtain this.

s a t t f n n Nn
L

n
L

n
L

n
L

L
( ) ( ) ( ) ( )= - ( )( ) ( ) = ¼2 1 2 , , , , .

Here, f  denotes the derivative of the transfer function f. You also know 

the following:

¶
¶

=
¶

¶
+

æ

è
ç

ö

ø
÷ =

( )

( ) ( )
=

-( ) ( ) ( )
-

ån

w w
a w bn

L

ij
L

ij
L

m

N

m
L

mn
L

n
L

n

L

1

1
1

d jj i
La -( )1 .

Therefore, you have this:

¶
¶

=( )
-( ) ( )E

w
a s

ij
L i

L
j
L1 .

Similarly, you have this:

¶
¶

=
¶
¶

¶
¶( )

=
( )

( )

( )åE

b

E

n

n

bj
L

n

N

n
L

n
L

j
L

L

1

,

In addition, since you have this:

¶
¶

=
( )

( )
n

b
n
L

j
L njd ,

then you get the following:

¶
¶

=( )
( )E

b
s

j
L j

L .
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For a general layer, ℓ, you can write this:

¶
¶

=
¶
¶

¶
¶

=
¶
¶( )

=
( )

( )

( )
=

( )
( )

å åE

w

E

n

n

w
s

n

wij n

N

n

n

ij n

N

n
n

i
 









 

1 1 jj
( ) .

¶
¶

=
¶
¶

¶
¶

=
¶
¶( )

=
( )

( )

( )
=

( )
( )

(å åE

b

E

n

n

b
s

n

bj n

N

n

n

j n

N

n
n

j
 











 

1 1
)) .

Since you have this:

n a w b j Nn
m

N

m mn n
   





( )

=

-( ) ( ) ( )= + = ¼
-

å
1

1
1

1 2, , , , ,

the you have the following:

¶
¶

=
( )

( )
-( )n

w
an

ij

nj i





d 1

¶
¶

=
( )

( )
n

b
n

j

nj





d ,

and finally the following:

¶
¶

=
¶
¶

=( )
-( ) ( )

( )
( )E

w
a s

E

b
s

ij

i j

j

j


 



1 , .

Therefore, the updating rules for the weights and biases are as follows 

(now you put back the dependency on the step index t):

w t w t a t s tij ij i j
   ( ) ( ) -( ) ( )+( ) = ( )- ( ) ( )1 1a

b t b t s tj j j
  ( ) ( ) ( )+( ) = ( )- ( )1 a ,
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To use these updating rules, you need to be able to compute the 

sensitivity vectors s(ℓ) for  = ¼ -1 2 1, , ,L . From their definition, you have 

this:

s
E

n
j Nj

j







( )
( )=

¶
¶

= ¼1 2, , , ,

You need to know how E depends on nj
(ℓ). The key to computing 

these partial derivatives is to note that nj
(ℓ) in turn depends on ni

-( )1  for 

i N= ¼ -1 2 1, , ,


, because the net input for layer ℓ depends on the activation 

of the previous layer, -1 , which in turn depends on the net input for layer 

-1 . Specifically, you have this for j N= ¼1 2, , ,


:

n a w b f n wj
i

N

i ij j
i

N

i
     

 

( )

=

-( ) ( ) ( )

=

-( ) -( )= + = ( )
- -

å å
1

1

1

1 1
1 1

iij jb
 ( ) ( )+

Therefore, you have the following for the sensitivity of layer -1 :

s
E

n

E

n

n

n
j

j i

N

i

i

j



 







-( )
-( )

=
( )

( )

-( )=
¶

¶
=

¶
¶

¶
¶å1

1
1

1

=
¶

¶
( ) +

æ

è=

( )
-( )

=

-( ) -( ) ( ) ( )å å
-

i

N

i

j m

N

m mi is
n

f n w b
1

1
1

1 1
1 





   

çç
ö

ø
÷

= ( ) = ( )
=

( ) -( ) -( ) ( ) -( ) -( )

=
å å
i

N

i j ji j
i

N

s f n w f n w
1

1 1 1 1

1

� �
� � � � � �� �

jji is
� �( ) ( ).

 Thus, the sensitivity of a neuron in layer -1  depends on the 

sensitivities of all the neurons in layer ℓ. This is a recursion relation for 

the sensitivities of the network since the sensitivities of the last layer L is 

known. To find the activations or the net inputs for any given layer, you 

need to feed the input from the left of the network and proceed forward to 

the layer in question. However, to find the sensitivities for any given layer, 
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you need to start from the last layer and use the recursion relation going 

backward to the given layer. This is why the training algorithm is called 

backpropagation.

To compute the updates for the weights and biases, you need to find 

the activations and sensitivities for all the layers. To obtain the sensitivities, 

you also need � � �f n j
( ) ( )( ) . That means that in general you need to keep track 

of all the nj
(ℓ) as well.

In neural networks trained using the backpropagation algorithm, there 

are two functions often used as the transfer functions. One is the log- 

sigmoid function, shown here:

f x
elogsig x( ) =

+ -

1

1

This is differentiable, and its value goes smoothly and monotonically 

between 0 and 1 for x around 0. The other is the hyperbolic tangent 

sigmoid function, shown here:

f x
e

e
xtansig

x

x( ) = -
+

= ( )
-

-

1

1
2tanh /

This is also differentiable, but its value goes smoothly between -1  and 

1 for x around 0. It is easy to see that the first derivatives of these functions 

are given in terms of the same functions alone.

f x f x f xlogsig logsig logsig( ) = ( ) - ( )éë ùû1

f x f x f xtansig tansig tansig( ) = + ( )éë ùû - ( )éë ùû
1

2
1 1

Since f n aj j
  ( ) ( ) ( )( ) = , in implementing the neural network on a 

computer, there is actually no need to keep track of nj
(ℓ) at all (thus saving 

memory).
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