Learn

Rails 5.2

Accelerated Web Development with
Ruby on Rails

Stefan Wintermeyer

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

Learn Rails 5.2

Accelerated Web Development
with Ruby on Rails

Stefan Wintermeyer

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

Learn Rails 5.2: Accelerated Web Development with Ruby on Rails

Stefan Wintermeyer
Bochum, Germany

ISBN-13 (pbk): 978-1-4842-3488-4 ISBN-13 (electronic): 978-1-4842-3489-1
https://doi.org/10.1007/978-1-4842-3489-1

Library of Congress Control Number: 2018939414

Copyright © 2018 by Stefan Wintermeyer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484234884. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3489-1
http://www.allitebooks.org

Fiir Oma und Opa.
I dedicate this book to my grandparents.

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUROFccccicemmiimsiniss s xvii
About the Technical REVIEWETccsssusssassssassssnsssansssssssssssssssssassssnssssssssassssasssansssans Xix
o XXi
11T LT 1 Xxiii
Chapter 1: Ruby Introduction..........ccccrrnnssmmnmmsssssnssssssssssssssssssssessssssssessssssssssssssnnnssnss 1
RBUDY 2.5t R e 1
BASICS .vueuerreeresesensesesse s R e Re R e e e e nRn e s 2

g L L0 0 o o S 2

PUES AN PRNT ... e e e e e e e e nnn 2
0] 0] 0= S 3

3 IR = U O OSSO 4

4 RS 4

Ruby IS ODJECt-0riENtedc.eceeerreserreerisesese s nnnnns 5
METNOUS..... e 6
ClASSES ..vuvuerrenerrrseesreserree s e e e e R e e AR e e R e e e 9
BASIC ClASSESciurueerreerrisesrssese s srsse s s sr s e e e 20
R3] (] 10 OSSOSO 20
LT T RS 23
Boolean Values and Nil ... e s ses e sessanes 24

L T 10 =TS 24
NamiNgG CONVENTIONS......ccceviiirieriere i sire s s s a e e s s b e s ae e e ne s 25
SCOPE OF VATADIESciveieirere s e s s nnn 26
METhOUS ONCE AQAINcerereerrertrrerere e sese e sre e s e s s aese s e s sae s ae e s saesaese e e naesaese e e e aesaesee e e e naenaes 28
11 (00 B T T R 29
Getters @and SEHErS.........ccccrrr e ————————————— 29

v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Converting from One 1o the Other: Casting......c.ccvivvvrrrerernnensnereses s se s sessessens 33
Method t0_sS for YOUr OWN CIaSSES........cccvrmrmimnmserernssssssesessssssssse s sssssesesssssssas 34

IS + @ MELNOA? ... s 35
1001 (o] PP 37
SNOMNANG.......ccovceccr e 38
22T O 39

= | O 39
0T 0SSR 39
WHIIE AN UNTL....eeeeee e e 39
BIOCKS @Nd HEIATOrScoveeereereeeserceree e 41
Arrays and HASNES ..o s se e 44
AITAYS .. reeese e sse e e e s e ae e e e e e e e e Re e e e e e e Re e e Re e e e e e e Re e e Re e e e e e nannnas 44
HASNES..... e nr s 46

32 T TS 48
Chapter 2: First Steps with RailSccccuseemmmnsssmmnmmnssssnnmmmsssssnmmsssssnmessssnmssssssns 51
Environment (DEVEIOPMENT).......cccveririrrerierere s s ses e s s e s e s sas e s e sse s ssese s e sseseesessenaesaes 51
SQLITE3 DAtADASE......ccrererrirrrererissseese s e 52
WhY IS T AIL N ENGIISN? ...ttt s st e e e 52
Static Content (HTML and Graphics FileS)........ccorrerrnermrenernnererese e esessenens 52
Create a Rails Project ... st 52
STALIC PAQGES....cciieiirerirr st e e e e nn 55
Creating HTML Dynamically With @rb...........coveirisnnnsreserssesesseses s 57
Programming in @n erb File ... s 60

I 0111 S 64
Passing Instance Variables from a Controller to @ VIeWcoccorvecrnccnenenersscsessenessenenennes 66

o 1 (T 67
THE RIS CONSOIE......ccuererreserreeresesessese e ses e sesse e s e sss e sss e s s e e e sessesessssessesessnssssssssesssnsssnses 4l
2] oSSR 73
What IS @ GENEIAIOI?ccceceiecerinerirese s nr s 73
3 (=10 SOOI SR 75

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

D]][0 TS 76
EDUG. .. ————————————————————— 76
WED CONSOIL.......ecueeeererieiecce e p s a s 76
Other Debugging TOOIS........ccvcrrerererrerserere s s e s sae e e e ssesaesaesesesaesaesassensesaens 79

3 1138 T3 S 79
Don’t RePeat YOUISEITccueeereecererer s s sae s s s s n e s s n 79
(3T (0 (0] 1 oSS 79
Convention Over Configuration..........ccvevererrerierenessersese e s s s s s sse e s e saesaesessessesaens 79

Model View Controller ArCRItECIUNEccocreeeeercrererer e 80
10 80
VIBW .t e a e E R e e e e R e R e e A e e e e e e Re e e e e rnaeneas 80
000110 T TR 80

ADDFEVIALIONS ... e e s e e s ae e e e e e e nne e nen s 81

Chapter 3: ActiVeReCOrd.........cccvusummmmmssssnnnsmssssnsnsmssssnsnssssssnnnsnssssnnnsssssnnnnnsssnnnnnsnsss 83

Creating a Database/MOdEl. ..o 83
The Attributes id, created_at, and updated_atcccoverrninnrennss e 86
Getters and SELLEIS........uc v 87
Possible Data Types in ACtIVERECOIU.........ccvvverirereresere s 87
DECIMAL ...t e nr s 88
Naming Conventions (Country vs. country vS. COUNLHES)......cccriernrensnsenienensensesessssessessens 89
Database CoNfiguration............ccuueevnsenniesmses s 89

AUAING RECOIAS.......cvuerieriiiereresie s s s e sa e e s e s b b se s e ae e e e s e s s ae e e e naenae e 90
(0] (T 1 90
T2 92
LT 10 {0 I RS 93

first, 1aSt, AN @l ... ——————————————— 94

Populating the Database with SEEdS.ID ... 97
It'S All JUSE RUDY COUE ...ttt 98
Generating seeds.rb from EXisting Data..........cccceevverrvieriennnensnieneses s sessessessesessessessens 99

vii

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Searching and Finding With QUETEScccvvcriernesrn s 100
FINO e nan 101
11 T T 102
Order and FBVEISE_OFUENccvureerreerrsesesese s s s e 108
3 N 109
(01010 S 110
0] 1 SRS 110
SBIBCL ... ————————————— 111
first_or_create and first_or_initialize............cocvrninrnnnnnnsnsnsssssese s 112
07 111 =0 3 112
A1) 1< S 112
(101 | T 113
1 0F V(11111 N 113
1011810 01T N 114
1 T 114
SQL EXPLAINcvveveteereseseresesesesesessasssssssssnsnsnsnsnes 114
22 1< L 115
Lo TE T o I W 2= o 115
111110 20 =0 T 115
ACHEIVE MOUEI DMLY ...vceceeecerreereeerenesesseessssesesesesse e ses e s e s e seesesessesessssessssesensesssseness 116
(1010 2 L OSSOSO 118
0T T 118
has_many, @ 1:0 ASSOCIALION........ccccrivrirr e 121
Creating RECOIAScccveecrerereree e 123
ACCESSING RECOIMScveueerreerieerenesessee e sesseses e ses e s e s sss e s e nss e sse e sessssssenens 126
Searching for RECOIUScovcevrerererer s 128
delete and AESIIOY.......ccovererrerrerere s 130
OPLIONS e —————————————— 131
Many-to-Many, an n:n ASSOCIALION........cccucevrerereere e 133
Preparalion........ccocc i e e 133
THE ASSOCIALIONcveeeerecrerreserrese s e s e s e e sre e e s e e nnnnnas 134
The Association Works TranSparentlyccoueevrennenernsssnsessssssesssesessesessse s sesssssssenens 135
Vi1l

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Polymorphic ASSOCIALIONSccerierierrieieririe s e a e s s a e 137
070110 1O 142
Deleting/Destroying @ RECOIUccvuiiernieninenire e 142
(0[S 1 (0SS OSSOSO 143

(0 1=] L O 146

B T2 T (0] TR 147
BT o10] 0T OO SPS S 148
Preparalion........ccceiiciiincr s e 148

DL i1 1T T TR T 0] L TS 149
Passing IN ArgUMENTS........ccoveerererererr s 151
Creating New Records With SCOPESccoeerrrermrenerenerr s 151

L1 1 U0 SO STTTRTR 152
Preparalion........ccoeiiciinncr e 152
THE BASIC Uc.ereeeereeerieseriee s s sr e s e nnenens 152

1T 110 ST 154
01T 156
T30 T 157
104 T=T o2 159
UNIGUENESS «.uveverteeressessessesessessessessssessessesss st s e ssesae s s e ssesaesbsseasesae st e e st e aesaese et e sesbe st e e nnennees 161

13T 11T T 163

23 (1] T 165
(0] 11 - PP 165
General Validation Options.........cccccvvninennnnine e 166
Writing Custom Validations............ccccuviininininnsnn s se s 167
Further DOCUMENTALION. ..ot 169
MiIGratioNScoveeercere e e 169
Which Datahase IS USBA?cccvrerererereernesesese s e ssssesessesensenens 173
Creating INGEXcccveoerecrrrerere s s e ne s e nne e 176
Automatically Added Fields (id, created_at, and updated_at).........cccocrvviriririnninccnnennn, 177
Further DOCUMENTALION. ..o s 178

ix

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

07 [0 o G 178
DEfAUIT VAIUES ... e e 180
Chapter 4: Scaffolding and RESTc.ccccuusmmmsssmmmsssmsmsssnsmsssssssssssssssssssssssssssnnsssas 183
Redirects and FIash MESSAGEScccecrereererererrerereeseresesesseseses e sesese e se s sessesenns 183
220 T =T S 183
FEAIFECE_T0 (DACK ... eeieir i ————————— 186
FIASH MESSAUES.....ccviirerierieirer sttt e e s e 187
Different Types of FIash MESSAQgES......c.ccvierrrrrrieninnnsne s s snes 189
Why Are There Flash Messages at All?..........ovnnnnnnnn e 190
Generating @ SCAffold ... s 190
THE ROULES....eeeeeeereeerenscsese e ee e s s e e e s e nse e see e nensesnnenens 192
THE CONIONET ... se s e re e e e ne s e nnenn s 193
THE VIBWS ...oeeeeeeerrsere s e e se s nse e see e nensssennnnens 199
When Should You Use Scaffolding?c.ccccovnrenrnnmnnnessssss s sessesessssessssesesssssssenens 211
Example for @ Minimal Projectcccovevnnennenernse s sessssessssessnnes 211
0] T 1 P 216
Chapter 5: ROULEScuicemmmmisnnmmmmisssnnnmmssssssnmsssssssnssssssnnssssssssnnssssssnnnsssssnnnsssssnnnnnss 217
HTTP GET Requests for Singular RESOUICESccverererrerierenessessesessssessessessesessessessessssessessens 218
Ty T T W 310 220
T 220
B0 ettt 220
Parameters ———————— 221
CONSEIAINES ...cviviiiccirr s s 225
REAITECES ...t 228
root :t0 = WeICOMEHINUBX.......ccciirirrrrersiri s 229
2T T 0T 229
Selecting Specific Routes with only: 0r 8XCEPL.......cccviverrrriererr e s e sessessessens 230
NESIEU RBSOUICES.coueereeirireisiee s 232
Further Information 0n ROULES ..o 242

X

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 6: Bundler and GEMS........ccccurrrssssnnnesssssssssssssssssssssssssssssssssnsssssssnsssssssnnnnss 243
DUNAIE UPALE ..o e p e nne 247
bundle QULAALEcceeeeece e 248
DUNGIE BXEC....c. e e ne e 249
DINSTUDS ..o 249
o0 =T =T 1 OSSN 250

ACTS_AS_lIST...iiiiricci s ——————— 250
Order YOUT TaSKScocvurmrmismsesisssssssse s s s s 251
Check Done Tasks in YOUr INAEX VIBWcccvveerrnenenenernsessssesessssesesesssssssssssesessssssssssnsanes 253
AUTNENTICATION ...eecee e r s e as 254
AULNOMIZALION ... e e e 254
SIMPIE FOIM ...t p e ne e nr s 255
Further Information on BundIer.............cccoviinnns s 255

Chapter 7: FOrMSuuuieemmmiissssnnmmsmssssnmmsssssssssssssssssssssssssssssssnssssssssnnssssssnnnsssssnnnnnss 257

The Data-Input WOrKFIOWccoeriinini s 257
Request the people#new FOrm..........cciicncn e 257
Push the Data to the SEIVEN ... 260
Present the New Data...........ccovirinrninneere s 261

GENEIIC FOIMS.....eeieceeeeeecr e e s e e e e e Re e e e e 262

FOrMTAGHEIPET ... e 262

AEINALIVES ...vveerree e ne e e e e e e e e e e nRe e nra s 263

Chapter 8: Cookies and SeSSIONScccuusseenrrsssssnnsmsssssnsssssssssnsssssssnnnssssssnnssssssnnnnss 265

0101 P 265
Permanent COOKIEScorrrmniririssssi s 268
SIONEA COOKIEScceruereireirere e r s s e s e e a e e s b e e e e e aesae e e e naennens 269

R 2L 0] TP 271
BreadCrumbs Vid SESSIONSccvreriinmsisirisssssse s 271
L2 RS-][0 0 O 274
Saving Sessions in the DATADASEc..ccvvrveriererenseriese e sessesnens 276

xi

TABLE OF CONTENTS

Chapter 9: TeStScciuuiummnmmsssnnnmsssssnnnmsssssnsnesssssnnssssssnnnnssssssnnnssssssnnnessssnnnsssssnnnnnss 279
Example for a User in @ Web SHOP ... 280
FUNCLIONAI TESTS......ceieiereecriscsere s s 284

0T L] T 288
FIXEUIES . e e e e e e R e p e e e r s 290
SEALIC FIXTUIES ..o e 291
FIXTUIES WIth €D ...t 291
INTEQration TESIS......ccoveecrecrr s e 292
FAUIS STALS ..v.veereerrseser e e e 293
MOFE ON TESHING ..cveveerreeriee s e e e ne s 294
Chapter 10: ACtiVe JODcceerrriiiimissssnmssnnnmmmsmmssssssssssssssssssssssssssssssssssssssnnssnssnness 295
Create @ NEW JOD........ccoir s 295
Set the Time for FUtUre EXECULION.ccoviiccrcnerirn s 297
Configure the Job Server Back ENd ... ses e s 297
Chapter 11: Action Mailer.........ccccuunmmmmmmmmmmmmmmmsssssssnmmmessssssssssss s 299
Configuring the E-mail SEIVE........c.ccovierresrrerrre e 305
Sending via Local SENdMailccoverriernnenmresers e 305
Sending via DIreCt SMTP ... 306
CUSTOM X-HBAUETcveerieerirrcsere s nr s e 306
ALACHMENTS ... ——————————————— 307
Inline AHACKMENTS.......o i ———————— 308
Further INfOrmation...........covn s 309
Chapter 12: Internationalization..........ccucmrrnssennnnnnsssnnmnnssnnmmssssnss———— 311
L 1 OSSPSR 312
USing 18N.1iN the VIEW.......ccceeiecrcr s 316
LOCANIZEA VIBWS.......ceeeeeeereecrencresse e sese e se s e s s see e se s sesse e e nessssenns 316

A Rails Application in Only One Language: GErmMaNc.cccovvererenerensesensesesesessssesessssessesessenes 317
PathS iN GEIMAN.......cciicerecrr s e ne e 326
Multilingual Rails APPlICALIONSccccvevirririererirrirre e s sre e nae s 327

xii

TABLE OF CONTENTS

Using I18n.locale for Defining the Default Language........c.ccocvvririnnenninsn s seesenenns 327
Setting [18n.locale via the URL Path PrefiXccvvvvrievnnnienienesensesesessssessessessesessessensens 331
Navigation EXAMPIE.......ccceviririiere i s s s s s r e s s sa e s ne s s 334
Setting I18n.locale via the Accept Language HTTP Header of the BrowsSercccveveevnens 335
Saving 118n.10Cale iN @ SESSIONccvcerererrerrerere s s s e s e saese s e saesaesassensesnens 336
Navigation EXAMPIEcceevrererreriererenserseresessesessessesessessesasssssessessessssessessesssnsssessesssssssessesses 338
Setting [18n.locale via a Domain EXENSIONcccvcvverievnnnienierssensesesessssessessessesessessessens 339
Which Approach IS the BESL?........ccevevrinierernnir s sese s ssssessessessessssessessesssssssessesns 340

Multilingual Scaffold EXAMPIEccccveverreriererrrrerrereseesessesessesessessessessssessessesssssssessessesssssssessens 340
Text BIocks in YAML FOrmMatcocccoiinerernnse s s sessssssnsnens 344
Equipping Views With [T8N.T ... 347
Translating Flash Messages in the CONtroller.........cccvvvvvrrrienenessensenesesessesesessssessesseses 350
THE RBSUH......eeee e 353

FUrther INFOrmation ..o 353

Chapter 13: Asset Pipelineccccuseemmmmssssnnmmssssssnmmssssssnnmssssssnnssssssnnnssssssnnssssssnnnnss 355

APPHCALION. S, .eiererie e ——————————— 356

APPIICALION.CSS ..uvivirrrierrierire e 357

FailS aSSELS:PrECOMPIIE....ccciirriieriere et re e s r e e s e a e e s s aesae e e e naenae e 357

L1 T<T 0] S 359

Coding LINKS 10 @n ASSEL.......ccoiiiernierine s e 359

Coding @ LinK 10 @Nn IMAJEccvcreriririrrene it 359

Coding a Link t0 @ JavaScript File........cccorenrnnrreseresernese e 360

Coding @ LiNK 10 @ CSS Fileccoeeerieerireserese e se e se s se s ses s 360

Defaults in application.htmLerD ... ———————— 360

Chapter 14: Cachingccccusseemnmmssssnnnmmssssssnmmssssssssssssssssssssssssssssssssnsssssssssnsssssssnnss 3OS

The Example ApPliCAtioN.......c.cce i s s 364
MOGEBIS ...t e R e e e R R e e R R e R e e R nnn 364
VIBWS .ttt E R AR e R e e e AR e E e e R nnn 365

xiii

TABLE OF CONTENTS

6 111101 [< TN - SR 367
Normal Speed of the Pages t0 Optimize........cccvvevvverrniene e enes 368

o I S 0 Vo] 1 o OO RS 369
LAST-MOGIfIEAeueueeeerrersrsrirsinssssssr e se e e sr e s 369

] 2 T O 370
The MagiC Of TOUCH.........ooe e e e r e e s 373

3 72 2 O 374

L 1T T (0 LTS3 {010 L]) 374
Cache-Control with Time Limit..........cccoviiiennnnesessssssese s sesssssseses 375
Fragment CaChing.........cccocerrennenene et et e s e 377
Enabling Fragment Caching in Development Mode..........ccccccvevrnvennnennnsennseseseseseserennes 377
Caching the Table of the INAEX VIEW.......ccccecrnvrncnncsrnse e 378
Deleting the Fragment Cache ... s 379
AUt0-eXPiriNg CACNEScocvueceriierirerire e st e s e s ne e 381
RussSian DOl CACNING.....cccvererrererererserersesesserersessesessessessessssessessessssessessesssssssessesasssssessesses 382
(0710 1 L (0] (O 384
Page CaChiNgccoccriiiiircrers e e e e p e e nne 384
Activating Page Caching in Development Mode........c.ccooevrvnrninnsnnnne e ses e 386
Configure YOUr WED SEIVer ... e 386
Caching the Company Index and SROW VIEW..........cccceerernvnnnenninncrnesene e esesseseseenes 386
Deleting Page Caches AutomatiCallyccccoveeerercrenieneniescne s se s seeaes 389
PrenEating.......cccci i —————————————— 391
Further INfOrmation.........c.ccvveeenesnese e e e 391
Chapter 15: Action Cable..........ccccuunnmmmmmmmnmmmmmmmmmssssssmmss s ————————— 393
Hello World Action Cable EXAMPIEccccvvererrrreriererssessesesesessessessesssssssessessessssessessesssssssessens 393
The Rails APPIICALIONcocevieriiecercrer e 393
SEtting UP JAUEBTY.....covieere et 394
Creating @ CRANNEL......c.ccvvieriereresersere s s e s s a s e s sae e e s saesa e e e sne s 395

Xiv

TABLE OF CONTENTS

Chapter 16: CredentialS.....ccccccrrrsssnnnnrmsssnnnmsssssnnnssssssnsssssssssnsssssssnnsssssssnnsssssnnnnnss 399
3T (1 o O 399
Editing CredentialS.........ccciiiiinrn s 400
ACCESSING @ KBY ... s e n e ne e nr s 400
Using the Credentials on the Production Web Server ... 400

Chapter 17: Active StOrage........cccussurmsssnmssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnnssssnnsssns 401
Avatar EXAMPIE ..o e s 401

Appendix A: Ruby on Rails Installation........ccccceveimmmmsmsssssnmnmmmmmmsssssssssmsssmmssnnn. 409
Ruby on Rails 5.2 on Debian 9.3 (StretCh)........vcvrrierninineneses s sessesessesessessessessssessesaens 409
Preparations.........ccieeiinis s e e p e ne 409
Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM.........c.ccoviininininnnsnnnsnsenesesse e 410
Ruby on Rails 5.2 on mac0S 10.13 (High SIerra)........ccueeererernnerensesesnesesesesesseseseses e sesesenns 411
Xcode Installation or UPGradecoveeerrnserenesesssesrssesssesssssessssesssssssssssessssssssssssssssssssssssssennns 412
Installing Ruby 2.5 and Ruby on Rails 5.2 With RVM.........ccccocvrnrininnnninensnssesesesessesenaens 412

Appendix B: Web Server in Production Modeuunmmmmmmmmmmmmmmmsssssssssssmmsssssssssnnnns 415
DEDIAN 9.3..... e ———————————————— 415

3T o I L= 1 (11 416
0T3S 416
LTI T=T 0] [0 SO 416
DAtADASE ... ————————————————— 417
Setting Up @ NeW RailS ProjECEcevvvvveririrrerere s sessere e ses s s sse e sessessessssessessessssesessesaes 418
Production Database Configuration..........ccocvcvverevnsensenserssesseresessssesesse s sessesseseesessessesaes 419
[r2 V1 30| 10 419
railS aSSEtS:PreCOMPIIE ...ccvevueriiree e e e e e ae e 419
PUMA PID ...ttt bbb 420
01T T T AR o) 420
TP Q0T a T 10T 110 421
Loading Updated Versions of the RailS Project..........ccccuevrerirsnnnneninsnsen e ssesses s senaens 422
PEITOIMANCE ..o e 423

TABLE OF CONTENTS

1SS 423
AREINALIVE SEIUPS c.veveeeirere et se e e ae s p e e s ae e e e aennen 423
What EISe There IS 10 DO......cocvvereririne s s s sae s s 423
T 1 o 4 O 424
Multiple Rails Servers on ONne SYSTEMccccvverrerrrrierierierersessesessssessessessesessessessessssessesses 424

The Cloud Platform as @ SErviCe ProVidEr.........cccevevererveriernsensenesessssesessessessssessessesssssssessenes 424

Appendix C: Further Rails Reading Material..........ccccssssmmnmnssssnnnmnssssnsnsssssssnssssssnns 425
INA@X iiiiiiinnnnnnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnesssssssssnnnnnnneessssssssnnnnnnnnnsssssssssnnnnnnnnesssssnnn 427

About the Author

Stefan Wintermeyer is a freelance web developer, trainer,
and consultant. Prior to this position, he was a founder

and managing director at AMOOMA GmbH, cofounder and
managing director at OTRS GmbH, and vice president at
Techspan Enterprise and SuSE Linux AG. He was also a
project manager for Lufthansa Systems.

xvii

About the Technical Reviewer

Fldon Alameda is a web developer who currently resides in the harsh climates of
Kansas. He works as a regional webmaster for the U.S. National Weather Service; prior to
this, he did development for a variety of companies including local startups, advertising
firms, Sprint PCS, and IBM. During the 1990s, he also acquired a nice stack of worthless
stock options by working for dot-com companies.

Xix

Preface

I write for developers who learn best by following short, clean examples. I don’t like

the idea of coding one big application over the course of a book; I much prefer smaller,
stand-alone code. Therefore, you can skip a couple of pages or even complete chapters
without losing context. On the other hand, I'll frequently be asking you to create another
new Rails application.

A word of warning: I'm not going to sprinkle in CSS beauty anywhere.

Don’t let people fool you into believing that Ruby on Rails is easy to learn. It’s not! It’s
one of the best and most effective frameworks to develop web applications, but it takes
time to understand and master. The worst mistake of all is to not learn Ruby before diving
into Ruby on Rails. To avoid this, the book starts with the basics of Ruby. You will not
become a Ruby guru after reading it, but you'll understand the basic ideas, which is most
important.

Newsletter and Updates

I publish a free Ruby on Rails e-mail newsletter that offers news and general information
about Rails. You can subscribe at https://www.wintermeyer-consulting.de/
newsletters/.

Additionally, you can follow me on Twitter at https://twitter.com/wintermeyer.

Consulting and Training

I provide Rails consulting and training anywhere in the world, on-site or remote. If you
are interested, please contact me by e-mail at sw@wintermeyer-consulting.de.

Meetups and Conferences

Please don'’t be shy if you'd like me to speak or offer a training session at your local
meetup or conference; send me an e-mail, and I'll try to make it happen.

xxi

https://www.wintermeyer-consulting.de/newsletters/
https://www.wintermeyer-consulting.de/newsletters/
https://twitter.com/wintermeyer

PREFACE

Feedback

Two things in particular highlight my work as an author: five-star Amazon reviews and
reader feedback offered by e-mail or Twitter. Please reach out and let me know what you
thought of this book.

Have fun with Ruby on Rails!

—Stefan Wintermeyer

xxii

vww allitebooks.conl

http://www.allitebooks.org

Introduction

This book requires basic knowledge of HTML, plus the reader (you, in other words!)
should have a basic understanding of programming. I'm not going to teach you what
variables are. I'm just using them. I work a lot with example code and not so much with
abstract definitions.

o This is a technical book. Therefore, there are parts that are mind-blowingly
boring. But | try to keep them to @ minimum.

Each chapter and most sections work autarkic. You don’t have to read the book in
order, and you can skip chapters if they are not important to you. All code examples
work without any dependencies on earlier chapters. I'm not going to build a gigantic
application to show how cool Rails is. I prefer the approach of small projects to analyze
and discuss specific topics.

xxiii

CHAPTER 1

Ruby Introduction

This chapter is a tightrope walk between oversimplification and a degree of detail that is
unnecessary for a Rails newbie. After all, the objective is not to become a Ruby guru but
to understand Ruby on Rails. I will elaborate on the most important points, and the rest
is then up to you. If you would like to know more about Ruby, I recommend the book
The Ruby Programming Language by David Flanagan and Yukihiro Matsumoto.

“It is easy to program in Ruby, but Ruby is not a simple language.”

—Yukihiro Matsumoto

Ruby 2.5

I'm going to use Ruby 2.5, but for most part of this book you can use older versions too.
Ruby 2.5 is just a bit faster. You can check the installed Ruby version by running the
command ruby -v, as shown here:

$ ruby -v
ruby 2.5.0p0 (2017-12-25 revision 61468) [x86 64-darwinl7]
$

O If your system is running an older version and you want to upgrade it, take
alook at https://rvm.io, which is my preferred way of installing and using
different Ruby versions.

© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_1

https://rvm.io/

CHAPTER 1 RUBY INTRODUCTION

Basics

Ruby is a scripting language. So, it is not compiled and then executed; instead, it is read
by an interpreter and then processed line by line.

Hello World

A simple hello-world.rb program consists of one line of code, as shown in Listing 1-1.

Listing 1-1. hello-world.rb
puts 'Hello World!'

Use your favorite editor to open a new file with the filename hello-world.rb and
insert the previous line into it. You can then execute this Ruby program at the command
line as follows:

$ ruby hello-world.rb
Hello World!
$

O A program line in a Ruby program does not have to end with a semicolon.
The Ruby interpreter is even so intelligent that it recognizes if a program line was
split over two or more lines for the sake of readability. Indenting code is also not
necessary. But it does make it much easier to read for human beings!

puts and print

If you look for examples on Ruby on the Internet, you will find two typical ways of
printing text on the screen.

o puts prints a string, followed by a newline.

e print prints a string (without a newline).

CHAPTER 1

RUBY INTRODUCTION

Listing 1-2 shows an example program (an extension of the program hello-world.rb).

Listing 1-2. hello-world.rb

puts 'Hello World!'
puts

puts 'zzz'

print 'Hello World!'
print

puts 'zzz'

On the screen, you will see this:

$ ruby hello-world.rb
Hello World!

727
Hello World!zzz

Comments

A comment in a Ruby program starts with a # sign and ends with a newline. As an

example, [added a comment to the earlier hello-world.rb program; see Listing 1-3

Listing 1-3. hello-world.rb

puts 'Hello World!'

A comment can also follow a program line, as shown in Listing 1-4.

Listing 1-4. hello-world.rb

puts 'Hello World!'

A # sign within strings in a single quote mark is not treated as the start of a comment,

as shown in Listing 1-5.

CHAPTER 1 RUBY INTRODUCTION

Listing 1-5. hello-world.rb

puts 'Hello World!'
puts '#iHHIHHHHE
puts

puts '1#2#3#4#5#6#"

Help viari

When programming, you do not always have a Ruby handbook available. Fortunately,
the Ruby developers thought of this and provided a built-in help feature in form of the
program ri.

0 Of course, you must have installed the documentation, which is the default.
If you used rvm to install Ruby, you can run rvm docs generate to generate the
documentation.

This is a typical chicken-and-egg situation. How can I explain the Ruby help feature
if you are only just getting started with Ruby? So, I am going to jump ahead a little and
show you how you can search for information on the class String.

$ ri String
[...]
$

Q Many times it is easier and more informative to use Google instead of ri.

irb

irb stands for “Interactive Ruby” and is a kind of sandbox where you can play around
with Ruby at your leisure. You can launch irb by entering irb on the shell and end it by
entering exit.

4

CHAPTER 1 RUBY INTRODUCTION

An example is worth a thousand words.

$ irb

irb(main):001:0> puts 'Hello World!'
Hello World!

=> nil

irb(main):002:0> exit

$

O In future examples, | use IRB.conf[:PROMPT MODE] = :SIMPLE in my
.irbrc config file to generate shorter irb output (without the irb(main):001:0>
part). You can do the same by using irb --simple-prompt.

Ruby Is Object-Oriented

Ruby only knows objects. Everything is an object (sounds almost like Zen). Every object
is an instance of a class. You can find out the class of an object via the method .class.

An object in Ruby is encapsulated and can be reached from the outside only via the
methods of the corresponding object. What does this mean? You cannot change any
property of an object directly from the outside. The corresponding object has to offer a
method with which you can do so.

o Please do not panic if you have no idea what a class or an object is. | won’t
tell anyone, and you can still work with them just fine without worrying too much.
This topic alone could fill whole volumes. Roughly speaking, an object is a
container for something, and a method changes something in that container.

Please go on reading and take a look at the examples. The puzzle will gradually get
clearer.

CHAPTER 1 RUBY INTRODUCTION

Methods

In other programming languages, the terms you would use for Ruby methods would be
functions, procedures, subroutines, and of course methods.

O Here | go with the oversimplification. You cannot compare non-object-
oriented programming languages with object-oriented ones. Plus, there are two
kinds of methods (class methods and instance methods). | do not want to make it
too complicated. So, | simply ignore those “fine” distinctions.

At this point, you probably want to look at a good example, but all I can think of are
silly ones. The problem is the assumption that you are only allowed to use knowledge
that has already been described in this book.

So, let’s assume that you use the code sequence in Listing 1-6 repeatedly (for
whatever reason).

Listing 1-6. hello-worldx3a.rb

puts 'Hello World!'
puts 'Hello World!'
puts 'Hello World!'

So, you want to output the string “Hello World!” three times in separate rows. As
this makes your daily work routine much longer, you are now going to define a method
(with the meaningless name three\ times), with which this can all be done in one go,
as shown in Listing 1-7.

o Names of methods are always written in lowercase.

Listing 1-7. hello-worldx3b.rb

def three times
puts 'Hello World!'
puts 'Hello World!'
puts 'Hello World!'
end

6

CHAPTER 1 RUBY INTRODUCTION

Let’s test this by starting irb and loading the program with the command load './
hello-worldx3b.rb'. After that, you have access to the three times method.

$ irb

>> load './hello-worldx3b.rb'
=> true

>> three times

Hello World!

Hello World!

Hello World!

=> nil

>> exit

When defining a method, you can define required parameters and use them
within the method. This enables you to create a method to which you pass a string as a
parameter, and you can then output it three times, as shown in Listing 1-8.

Listing 1-8. hello-worldx3c.rb

def three times(value)
puts value
puts value
puts value
end
$ irb
>> load './hello-worldx3c.rb'
=> true
>> three times('Hello World!")
Hello World!
Hello World!
Hello World!
=> nil

Incidentally, you can omit the brackets when calling the method.

>> three times 'Hello World!'
Hello World!

Hello World!

Hello World!

=> nil

CHAPTER 1 RUBY INTRODUCTION

Q Ruby gurus and would-be gurus are going to turn up their noses on the

subject of “unnecessary” brackets in your programs and will probably pepper you
with more or less stupid comments of comparisons to Java and other
programming languages.

There is one simple rule in the Ruby community: the fewer brackets, the cooler you are!

But you won’t get a medal for using fewer brackets. Decide for yourself what
makes you happy.

If you do not specify a parameter with the previous method, you will get this error
message: wrong number of arguments (0 for 1).

>> three times
ArgumentError: wrong number of arguments (given 0, expected 1)

from /Users/.../hello-worldx3c.rb:1:in “three_ times'

from (irb):2

from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in “<main>'
>> exit

You can give the variable value a default value, and then you can also call the
method without a parameter, as shown in Listing 1-9.

Listing 1-9. hello-worldx3d.rb

def three times(value = 'blue")
puts value
puts value
puts value

end

$ irb

>> load './hello-worldx3d.rb’
=> true

>> three times('Example")
Example

CHAPTER 1 RUBY INTRODUCTION

Example
Example

=> nil

>> three_times
blue

blue

blue

=> nil

>> exit

Classes

For now you can think of a class as a collection of methods. The name of a class always
starts with an uppercase letter. Let’s assume that the method belongs to the new class
This and_that. It would then be defined as shown in Listing 1-10 in a Ruby program.

Listing 1-10. hello-worldx3e.rb

class This_and_that
def three times
puts 'Hello World!'
puts 'Hello World!'
puts 'Hello World!'
end
end

Let’s play it through in irb.
$ irb
>> load './hello-worldx3e.rb'
=> true

Now you try to call the method three_times.

>> This_and that.three times
NoMethodError: undefined method “three times' for This and that:Class
from (irb):2
from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in “<main>'
>>

CHAPTER 1 RUBY INTRODUCTION

This results in an error message because This_and that is a class and not an
instance. As you are working with instance methods, it works only if you have first
created a new object (a new instance) of the class This_and_that with the class method
new. Let’s name it abc.

>> abc = This_and that.new

=> #<This_and_that:0x007{b01b02dcd0>
>> abc.three_times

Hello World!

Hello World!

Hello World!

=> nil

>> exit

I'will explain the difference between instance and class methods in more detail in
the section “Class Methods and Instance Methods” (another chicken-and-egg problem).

Private Methods

Quite often it makes sense to only call a method within its own class or own instance.
Such methods are referred to as private methods (as opposed to public methods), and
they are listed after the keyword private within a class, as shown in Listing 1-11.

Listing 1-11. pm-example.rb

class Example
def 2
puts 'a’
end

private
def b
puts 'b’
end
end

10

CHAPTER 1 RUBY INTRODUCTION

You run this in irb, first the public and then the private method, which raises an error.

$ irb

>> load './pm-example.rb’

=> true

>> abc = Example.new

=> #<Example:0x007fa530037910>
>> abc.a

=> nil

>> abc.b

NoMethodError: private method “b' called for #<Example:0x007fa530037910>
from (irb):4
from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in “<main>'

>> exit

Method initialize()

If a new instance is created (by calling the method new), the method that is processed
first and automatically is the method initialize. The method is automatically a private
method, even if it not listed explicitly under private, as shown in Listing 1-12.

Listing 1-12. pm-example-a.rb

class Room
def initialize

puts "abc
end

end

Here is an irb test of it:

$ irb

>> load './initialize-example-a.rb'
=> true

>> kitchen = Room.new

abc

=> #<Room:0x007{830704edb8>

>> exit

11

CHAPTER 1 RUBY INTRODUCTION

The instance kitchen is created with Room. new, and the method initializeis
processed automatically.

The method new accepts the parameters specified for the method initialize, as
shown in Listing 1-13.

Listing 1-13. initialize-example-b.rb

class Example
def initialize(value)
puts value
end
end

$ irb

>> load './initialize-example-b.rb'
=> true

>> abc = Example.new('Hello World!")
Hello World!

=> #<Example:0x007fbbob845130>

>> exit

return

puts is nice to demonstrate an example in this book, but normally you need a way to
return the result of something. The return statement can be used for that, as shown in
Listing 1-14.

Listing 1-14. circle-a.rb

def area of a circle(radius)
pi = 3.14
area = pi * radius * radius
return area

end

12

CHAPTER 1 RUBY INTRODUCTION

$ irb

»>> load './circle-a.rb’
=> true

>> area_of a circle(10)
=> 314.0

>> exit

But it wouldn’t be Ruby if you couldn’t do it shorter, right? You can simply skip
return, as shown in Listing 1-15.

Listing 1-15. circle-b.rb

def area of a circle(radius)
pi = 3.14
area = pi * radius * radius
area

end

You can actually even skip the last line because Ruby returns the value of the last
expression as a default, as shown in Listing 1-16.

Listing 1-16. circle-c.rb

def area of a circle(radius)
pi = 3.14
area = pi * radius * radius
end

Obviously you can go one step further with this code, as shown in Listing 1-17.

Listing 1-17. circle-d.rb

def area of a circle(radius)
pi = 3.14
pi * radius * radius

end

return is sometimes useful to make a method easier to read. But you don’t have to
use it if you feel more comfortable with out.

13

CHAPTER 1 RUBY INTRODUCTION

Inheritance

A class can inherit from another class. When defining the class, the parent class must be
added with a less-than (<) sign.

class Example < ParentClass

Rails makes use of this approach frequently (otherwise I would not be bothering you
with it).

In Listing 1-18, you define the class Abc that contains the methods a, b, and c. Then
you define a class Abcd and let it inherit the class Abc and add a new method d. The new
instances examplel and example2 are created with the class method new and show that
example2 has access to the methods a, b, ¢, and d but examplel only to a, b, and c.

Listing 1-18. inheritance-example-a.rb

class Abc
def 2

a
end

def b
Ibl
end

def c
ICI
end

end

class Abcd < Abc
def d
1 d 1
end
end

14

CHAPTER 1 RUBY INTRODUCTION

Runitin irb.

$ irb

>> load './inheritance-example-a.rb'

=> true

>> examplel = Abc.new

=> #<Abc:0x007fac5a845630>

>> example2 = Abcd.new

=> #<Abcd:0x007fac5a836630>

>> example2.d

=> "d"

>> example2.a

=> "a"

>> exampleil.d

NoMethodError: undefined method “d' for #<Abc:0x007fac5a845630>
from (irb):6
from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in ~<main>'

>> examplel.a

=> "a"

>> exit

Q It is important to read the error messages. They tell you what happened and
where to search for the problem. In this example, Ruby says that there is an

undefined method for #<Abc:0x007fac5a845630>. With that information you
know that the class Abc is missing the method that you were trying to use.

Class Methods and Instance Methods

There are two important kinds of methods: class methods and instance methods.

You now already know what a class is. An instance of such a class is created via the
class method new. A class method can only be called in connection with the class (for
example, the method new is a class method). An instance method is a method that works
only with an instance. So, you cannot apply the method new to an instance.

15

CHAPTER 1 RUBY INTRODUCTION

Let’s first try to call an instance method as a class method, as shown in Listing 1-19.

Listing 1-19. pi-a.rb

class Knowledge
def pi
3.14
end
end

Runitin irb.

$ irb
>> load 'pi-a.rb'
=> true
>> Knowledge.pi
NoMethodError: undefined method “pi' for Knowledge:Class
from (irb):2
from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in “<main>'
>>

So, that does not work. Well, then let’s create a new instance of the class and try
again.

>> example = Knowledge.new

=> #<Knowledge:0x007fe620010938>
>> example.pi

=> 3.14

>> exit

Now you just need to find out how to define a class method. Hard-core Rails gurus
would now whisk you away into the depths of the source code and pick out examples
from ActiveRecord. I will spare you this and show an abstract example; see Listing 1-20.

16

CHAPTER 1 RUBY INTRODUCTION

Listing 1-20. pi-b.rb

class Knowledge
def self.pi
3.14
end
end

$ irb

>> load './pi-b.rb’
=> true

>> Knowledge.pi

=> 3.14

Here is the proof to the contrary:

>> example = Knowledge.new
=> #<Knowledge:0x007fa8da045198>
>> example.pi
NoMethodError: undefined method “pi' for #<Knowledge:0x007fa8da045198>
from (irb):4
from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in “<main>'
>> exit

There are different notations for defining class methods. The two most common
ones are self.xyz and class << self.

class Knowledge
def self.pi
3.14
end
end

17

CHAPTER 1 RUBY INTRODUCTION

class Knowledge
class << self
def pi
3.14
end
end
end

The result is always the same.

Of course, you can use the same method name for a class and an instance method.
Obviously that doesn’t make code easier to read. Listing 1-21 shows an example with pi
as a class and an instance method.

Listing 1-21. pi-c.rb
class Knowledge
def pi
3.14

end

def self.pi

3.14159265359
end
end
$ irb
>> load './pi-c.rb’
=> true

>> Knowledge.pi

=> 3.14159265359

>> example = Knowledge.new

=> #<Knowledge:0x00718379846130>
>> example.pi

=> 3.14

>> exit

CHAPTER 1 RUBY INTRODUCTION

List of All Instance Methods

You can read all the defined methods for a class with the method instance_methods. Try
it with the class Knowledge (first you create it once again in irb), as shown in
Listing 1-22.

Listing 1-22. pi-a.rb

class Knowledge
def pi
3.14
end
end

$ irb

>> load './pi-a.rb’

=> true

>> Knowledge.instance_methods

=> [:pi, :instance of?, :kind of?, :is a?, :tap, :public_send,
:remove_instance_variable, :singleton_method, :instance_variable set,
:define_singleton method, :method, :public_method, :extend, :to_enum,
tenum_for, :<=>, :===, :=~, :Iv, :eql?, :respond to?, :freeze,
:inspect, :object id, :send, :display, :to_s, :nil?, :hash, :class,
:singleton class, :clone, :dup, :itself, :taint, :tainted?, :untaint,
:untrust, :untrusted?, :trust, :frozen?, :methods, :singleton_methods,
:protected methods, :private methods, :public_methods,

:instance variable get, :instance variables,

:instance variable defined?, :!, :==, :l=, : send , :equal?,
:instance_eval, :instance exec, : id]
>>

But that is much more than you have defined! Why? It’s because Ruby gives every
new class a basic set of methods by default. If you want to list only the methods that you
have defined, then you can do it like this:

>> Knowledge.instance methods(false)
=> [:pi]
>> exit

19

CHAPTER 1 RUBY INTRODUCTION

Basic Classes

Many predefined classes are available in Ruby. For a newbie, probably the most
important ones handle numbers and strings.

Strings

Let’s experiment a little bit in irb. The method .class tells you which class you are
dealing with.

$ irb

>> "First test"

=> "First test"

>> "First test".class
=> String

That was easy. As you can see, Ruby “automagically” creates an object of the class
String. You can also do this by explicitly calling the method new.

>> String.new("Second test")

=> "Second test"

>> String.new("Second test").class
=> String

If you call String.new or String.new() without a parameter, this also creates an
object of the class String. Butitis an empty String.

>> String.new

>> String.new.class
=> String
>> exit

Single and Double Quotations Marks

Strings can be defined either in single quotes or in double quotes.

There is a special feature for the double quotes: you can integrate expressions with
the construct #{ }. The result is then automatically inserted in the corresponding place in
the string.

20

CHAPTER 1 RUBY INTRODUCTION

To show this, you have to jump ahead and use variables in the example.

$ irb

>> a = "blue"

=> "blue"

>> b = "Color: #{a}"
=> "Color: blue"

>> exit

If the result of the expression is not a string, Ruby tries to apply the method to_s to
convert the value of the object into a string. Let’s try that by integrating an Integer into a
String.

$ irb

>»a=1

=>1

>> b = "A test: #{a}"
=> "A test: 1"

>> a.class

=> Integer

>> b.class

=> String

>> exit

O If | mention single or double quotation marks in the context of strings, | do
not mean typographically correct curly quotation marks (see wikipedia.org/
wiki/Quotation_mark); instead, | mean the ASCII symbols referred to as
apostrophe (') or quotation mark (").

Built-in Methods for String

Most classes already come with a bundle of useful methods. These methods are always
written after the relevant object, separated by a dot.

21

CHAPTER 1 RUBY INTRODUCTION

Here are a few examples for methods of the class String:

$ irb

>>a = "A dog'
=> "A dog"

»> a.class

=> String

>> a.size

=> 5

>> a.downcase
=> "a dog"

>> a.upcase
=> "A DOG"

>> a.reverse
=> "god A"

>> exit

With instance_methods(false), you can get a list of the built-in methods.

$ irb

>> String.instance_methods(false)

=> [:include?, :%, :*, :+, :to _c, :unicode normalize, :unicode normalize!,
:unicode_normalized?, :count, :partition, :unpack, :unpacki, :sum, :next,
:casecmp, :casecmp?, :insert, :bytesize, :match, :match?, :succ!, :+@,
:-@, :index, :rindex, :<=>, :replace, :clear, :upto, :getbyte, :==, :===,
:setbyte, :=~, :scrub, :[], :[]=, :chr, :scrub!, :dump, :byteslice,
:upcase, :next!, :empty?, :eql?, :downcase, :capitalize, :swapcase,
:upcase!, :downcase!, :capitalize!, :swapcase!, :hex, :oct, :split,
:lines, :reverse, :chars, :codepoints, :prepend, :bytes, :concat, :<«,
:freeze, :inspect, :intern, :end with?, :crypt, :1ljust, :reverse!, :chop,
:scan, :gsub, :ord, :start with?, :length, :size, :rstrip, :succ, :center,
:sub, :chomp!, :sub!, :chomp, :rjust, :lstrip!, :gsub!, :chop!, :strip,
:to_str, :to_sym, :rstrip!, :tr, :tr s, :delete, :to_s, :to i, :tr s!,
:delete!, :squeeze!, :each line, :squeeze, :strip!, :each codepoint,
:1strip, :slice!, :rpartition, :each byte, :each char, :to f, :slice,
:ascii only?, :encoding, :force_encoding, :b, :valid encoding?, :tr!,
tencode, :encode!, :hash, :to r]

>> exit

22

CHAPTER 1 RUBY INTRODUCTION

Numbers

Let’s discuss numbers.

Integers

Ruby used to have different types of integers depending on the length of the number.
Since Ruby version 2.4, things are easier; you just deal with Integer.

$ irb

>> 23.class

=> Integer

>> 230000000000000000000.class
=> Integer

>> (23*10000).class

=> Integer

>> exit

Floats

Float is a class for real numbers (“floating-point numbers”). The decimal separator
isa dot.

$ irb

>> a = 20.424
=> 20.424

>> a.class

=> Float

>> exit

Mixed Class Calculations

Adding two integers will result in an integer. Adding an integer and a float will result in a
float.

$ irb
>> a = 10

=> 10
>> b =23

23

CHAPTER 1 RUBY INTRODUCTION

=> 23

>> (a + b).class

=> Integer

>> (a + 3.13).class
=> Float

>> exit

Boolean Values and nil

For Boolean values (true and false) and for nil (no value), there are separate classes.

$ irb

>> true.class
=> TrueClass
>> false.class
=> FalseClass
>> nil.class
=> NilClass

>> exit

nil (no value) is, by the way, the contraction of the Latin word nihil (nothing); or
ifyou look at it in terms of programming history, the term derives from “not in list”
from the legacy of the programming language Lisp (the name is an acronym of “list
processing”).

Variables

Let’s discuss variables.

24

CHAPTER 1 RUBY INTRODUCTION

Naming Conventions

Normal variables are written in lowercase. Please use snake_case. The same goes for
symbols and methods.

$ irb

>> pi = 3.14

=> 3.14

>> exit

Constants

Constants start with an uppercase letter.

A A constant can also be overwritten with a new value since Ruby 2.3 (but
you will get a warning message). So, please do not rely on the constancy of a
constant.

$ irb

>> Pi =3.14
=> 3.14

>> Pi = 123

(irb):2: warning: already initialized constant Pi
(irb):1: warning: previous definition of Pi was here
=> 123

>> puts Pi

123

=> nil

>> exit

You are on the safe side if you are using only ASCII symbols. But with Ruby 2.5 and
the right encoding, you could also use special characters (for example, the German
umlaut) more or less without any problems in a variable name. But if you want to be
polite toward other programmers who probably do not have those characters directly
available on their keyboards, it is better to stick to pure ASCII.

25

CHAPTER 1 RUBY INTRODUCTION

Scope of Variables

Variables have a different scope (or “reach”) within the Ruby application and therefore
also within a Ruby on Rails application.

o You need to keep this scope in mind while programming. Otherwise, you
can end up with odd effects.

Local Variables (aaa or _aaa)

Local variables start with either a lowercase letter or an underscore (_). Their scope

is limited to the current environment (for example, the current method). Listing 1-23
defines two methods that use the same local variable radius. Because they are local, they
don’t interact with each other.

Listing 1-23. variable-a.rb

def area(radius)
3.14 * radius * radius
end

def circumference(radius)
2 * 3.14 * radius
end

$ irb

>> load './variable-a.rb'
=> true

>> area(10)

=> 314.0

>> circumference(1)

=> 6.28

>> exit

26

CHAPTER 1 RUBY INTRODUCTION

Global Variables ($aaa)

A global variable starts with a $ sign and is accessible in the entire program. Listing 1-24
shows an example program.

Listing 1-24. variable-b.rb
$value = 10

def example
$value = 20
end

puts $value

example

puts $value

$ ruby variable-b.rb
10

20

Global variables are used rarely! You wouldn’t harm yourself by forgetting that they
exist right now.

Instance Variables (@aaa)

Instance variables (“attributes,” which is why there’s an @ sign) apply only within a class,
but they apply everywhere in it—they’re mini versions of global variables, so to speak.
Unlike global variables, you will find instance variables all over the place in a Rails
application. Let’s tackle them in form of an example program with the name color.rb,
as shown in Listing 1-25.

Listing 1-25. color.rb
class lWall
def initialize
@color = 'white'
end

27

CHAPTER 1 RUBY INTRODUCTION

def color
@color
end

def paint it(value)
@color = value
end
end

my wall = Wall.new
puts my wall.color

my wall.paint it('red")
puts my_wall.color

If you start this program, you will see the following output:

$ ruby color.rb
white
red

$

In the method initialize, you set the instance variable @color to the value white.
The method paint_it(value) changes this instance variable.

With the method color you can access the value of @color outside of the instance.
This kind of method is called a setter method.

Methods Once Again

To keep the amount of chicken-and-egg problems in this chapter at a manageable level,
you need to go back to the topic of methods and combine what you have learned so far.

28

CHAPTER 1 RUBY INTRODUCTION

Method Chaining

You may not think of it straightaway, but once you have gotten used to working with
Ruby, then it makes perfect sense (and is perfectly logical) to chain different methods.

$ irb

>> a = 'a blue car'
=> "a blue car"

>> a.upcase

=> "A BLUE CAR"

>> a.upcase.reverse
=> "RAC EULB A"

>> exit

Getters and Setters

As instance variables (attributes) exist only within the relevant instance, you always need
to write a “getter” method for exporting such a variable. If you define a class Room that
has the instance variables @doors and @windows (for the number of doors and windows
in the room), then you can create the getter methods doors and windows. Listing 1-26
shows an example program called room. rb.

Listing 1-26. room.rb

class Room
def initialize
@doors =1
@windows = 1
end

def doors
@doors
end

29

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 RUBY INTRODUCTION

def windows
@windows
end
end

kitchen = Room.new

puts "D: #{kitchen.doors}"
puts "W: #{kitchen.windows}"

Here is the output from the execution of the program:

$ ruby room.rb

D: 1
W: 1
$

Because this scenario—wanting to simply return a value in identical form—is so
common, there is already a ready-made getter method for it with the name attr reader,
which you would apply as follows in the program room.rb, as shown in Listing 1-27.

Listing 1-27. room.rb

class Room
def initialize
@doors =1
@windows = 1
end

attr reader :doors, :windows
end

kitchen = Room.new
puts "D: #{kitchen.doors}"
puts "W: #{kitchen.windows}"

attr reader is a method called on the Room class. That is the reason why you use
symbols (e.g., :doors and :windows) instead of variables (e.g., @doors and @windows) as
parameters.

30

CHAPTER 1 RUBY INTRODUCTION

O attr reader is a good example for metaprogramming in Ruby. When
working with Rails, you will frequently come across metaprogramming and be
grateful for how it works “automagically.”

If you want to change the number of doors or windows from the outside, you need a
setter method. It can be implemented as shown in Listing 1-28.

Listing 1-28. room.rb

class Room
def initialize
@doors =1
@windows = 1
end

attr reader :doors, :windows

def doors=(value)
@doors = value
end

def windows=(value)
@windows = value
end
end

kitchen = Room.new
kitchen.windows = 2

puts "D: #{kitchen.doors}"
puts "W: #{kitchen.windows}"

31

CHAPTER 1 RUBY INTRODUCTION
The corresponding output is as follows:

$ **ruby room.rb**

D: 1
W: 2
$

As you can probably imagine, there is also a ready-made and easier way of doing
this. Via the setter method attr writer, you can simplify the code of room.rb as shown
in Listing 1-29.

Listing 1-29. room.rb

class Room
def initialize
@doors =1
@windows = 1
end

attr reader :doors, :windows
attr writer :doors, :windows
end

kitchen = Room.new
kitchen.windows = 2

puts "D: #{kitchen.doors}"
puts "W: #{kitchen.windows}"

And (who would have thought?) there is even a method attr_accessor that
combines getters and setters. The code for room.rb would then look like Listing 1-30.

Listing 1-30. room.rb

class Room
def initialize
@doors =1
@windows = 1
end

32

CHAPTER 1 RUBY INTRODUCTION

attr accessor :doors, :windows
end

kitchen = Room.new
kitchen.windows = 2

puts "D: #{kitchen.doors}"
puts "W: #{kitchen.windows}"

Converting from One to the Other: Casting

There is a whole range of useful instance methods for converting (casting) objects from
one class to another. First, let’s use the method .to_s to convert a Fixnumto a String.

$ irb

>> a =10

=> 10

>> a.class

=> Integer

>> b = a.to_s
=> "10"

>> b.class

=> String

>> exit

O Incidentally, that is exactly what puts does if you use puts to output a
Fixnum or a Float (for nonstrings, it simply implicitly adds the method .to_s
and outputs the result).

33

CHAPTER 1 RUBY INTRODUCTION
Now you use the method .to_i to change a Float to a Fixnum.

irb

> ¢ = 10.0
=> 10.0

>> c.class

=> Float

>>d = c.to i
=> 10

>> d.class

=> Integer

>> exit

Method to_s for Your Own Classes

Integrating a to_s method is often useful. Then you can simply output a corresponding
object via puts (puts automatically outputs an object via the method to_s).
Listing 1-31 shows an example.

Listing 1-31. person-a.rb

class Person
def initialize(first name, last name)
@first name = first name
@last name = last name
end

def to s
"#{@first name} #{@last name}"
end
end

$ irb

>> load './person-a.rb'

=> true

>> sw = Person.new('Stefan', 'Wintermeyer')

=> #<Person:0x007fa95d030558 @first name="Stefan",
@last_name="Wintermeyer">

34

CHAPTER 1 RUBY INTRODUCTION

>> puts sw

Stefan Wintermeyer
=> nil

>> exit

Is + a Method?

Why is there also a plus symbol in the list of methods for String? Let’s find out by
looking it up in ri.

$ ri -T String.+
String.+

(from ruby site)

str + other_str -> new_str

Concatenation---Returns a new String containing other str
concatenated to str.

"Hello from " + self.to_s #=> "Hello from main"
Let’s see what it says for Integer.

$ ri -T Integer.+
Integer.+

(from ruby site)

int + numeric -> numeric_result

Performs addition: the class of the resulting object depends on the class of
numeric and on the magnitude of the result. It may return a Bignum.

35

CHAPTER 1 RUBY INTRODUCTION

Let’s play around with this in irb. You should be able to add the + to an object, just as
any other method, separated by a dot and then add the second number in brackets as a
parameter.

$ irb

>> 10 + 10
=> 20

>> 10+10

=> 20

>> 10.+10
=> 20

>> 10.+(10)
=> 20

>> exit

Aha! The plus symbol is indeed a method, and this method takes the next value as
a parameter. Really, you should put this value in brackets, but thanks to Ruby’s well-
thought-out syntax, this is not necessary.

Can You Overwrite the Method +?

Yes, you can overwrite any method. Logically, this does not make much sense for
methods such as +, unless you want to drive your fellow programmers mad. I am going to
show you a little demo in irb so you will believe me.

The aim is overwriting the method + for Fixnum. You want the result of every addition
to be the number 42. You can write a so-called monkey patch, as shown in Listing 1-32.

Listing 1-32. monkey-patch-a.rb

class Integer
def +(name, *args, &blk)
42
end
end

36

CHAPTER 1 RUBY INTRODUCTION
Now you use the + method before and after that monkey patch.

irb

>> 10 + 10

=> 20

>> load './monkey-patch-a.rb'
=> true

>> 10 + 10

=> 42

>> exit

First you perform a normal addition. Then you redefine the method + for the class
Integer, and after that you do the calculation again. But this time, you get different
results.

if Condition

An abstract if condition looks like this:

if expression
program
end

The program between the expression and end is executed if the result of the
expression is not false and not nil.

O You can also use a then after the expression, as shown here:
if expression then

program
end

37

CHAPTER 1 RUBY INTRODUCTION

The construct for a simple if branch in a Ruby program looks like the following
example program:

a = 10

if a == 10
puts 'a is 10'
end

o The == is used to compare two values. Please don’t mix it up with the single =.

You can test an expression really well in irb.

$ irb

>> a =10
=> 10

>> a == 10
=> true

>> exit

Shorthand

The following code shows a frequently used shorthand notation of an if condition:

a =10

if a == 10
puts 'a is 10'
end

'a is 10' if a == 10

38

CHAPTER 1 RUBY INTRODUCTION

else

You can probably imagine how this works, but for the sake of completeness, here is a
little example:

a =10
if a == 10
puts 'a is 10'
else
puts 'a is not 10'
end
elsif
Again, most programmers will know what this is all about. Here’s an example:
a =10
if a == 10

puts 'a is 10'
elsif a == 20

puts 'a is 20'
end

Loops

There are different ways of implementing loops in Ruby. The iterator variation is used
particularly often in the Rails environment.

while and until

An abstract while loop looks like this:

while expression do
program
end

39

CHAPTER 1 RUBY INTRODUCTION

o The do that follows expression is optional. Often you will also see this:
while expression

program
end

Here is an irb example:
$ irb
>»i=0
=> 0
>> while i < 3 do
?> puts 1
>» 1=1+1
>> end

=> nil
>> exit

You build until loops similarly.

until expression
program
ends

Again, here is the corresponding irb example:
$ irb
>> 1 =05
=> 5
>> until i == 0
>» i=1-1

>> puts i
>> end
4

40

CHAPTER 1 RUBY INTRODUCTION

3
2
1
0
=> nil
>> exit

Blocks and lterators

Block and iterator are some of the favorite words of many Ruby programmers. Now I am
going to show you why.
In the following loop, i is the iterator, and puts i is the block.

5.times { |i| puts i }
You can also express the whole thing in the following syntax:

5.times do |i]
puts 1
end

Iterators

Iterators are just a specific type of method. As you probably know, the word iterate
means to repeat something. For example, the class Integer has the iterator times().
Let’s see what help ri Integer.times offers:

$ ri -T Integer.times
Integer.times

(from ruby site)

int.times {|i| block } -> self
int.times -> an_enumerator

Iterates the given block int times, passing in values from zero to int - 1.

41

CHAPTER 1 RUBY INTRODUCTION
If no block is given, an Enumerator is returned instead.

5.times do |i]
print i, " "

end

#=> 01234

It also gives a nice example that you can try in irb.

$ irb

>> 5.times do |i]
?> puts i

>> end

0

1

2

3

4

=> 5

>> exit

There is also a single-line notation for small blocks.

$ irb
>> 5.times { |i| puts i }

0

1

2

3

4

=>5

>> exit

By the way, an iterator does not necessarily have to pass a variable to the block.

$ irb

>> 5.times { puts 'example' }
example

example

42

CHAPTER 1 RUBY INTRODUCTION

example
example
example
=> 5

>> exit

Blocks

A block s the code that is triggered by an iterator. In the block, you have access to the
local variable (or variables) passed by the iterator.

Method upto

In addition to times, there is also the method upto for easily implementing a loop. ri
offers a nice example for this, too.

$ ri -T Integer.upto
Integer.upto

(from ruby site)

int.upto(limit) {|i| block } -> self
int.upto(limit) -> an_enumerator

Iterates the given block, passing in integer values from int up to and
including limit.

If no block is given, an Enumerator is returned instead.
For example:

5.upto(10) { |i| print i, " " }
#=> 567 89 10

43

CHAPTER 1 RUBY INTRODUCTION

Arrays and Hashes

As in many programming languages, arrays and hashes are popular structures in Ruby

for storing data.

Arrays

An array is a list of objects. Let’s play around in irb.

$ irb

>>
=>
>>
=>
>>

a=[1,2,3,4,5]
[1, 2, 3, 4, 5]
a.class

Array

exit

That is simple and easy to understand.
Let’s see if it also works with strings in the array.

$ irb

>>

a = ['Test', 'Banana', 'blue']
["Test", "Banana", "blue"]
a.class

Array

a[1]

"Banana"

a[1].class

String

exit

That also works.
So, all that’s missing now is an array with a mixture of both. Obviously that will work,

too, because the array stores objects, and it does not matter which kind of objects they
are (i.e., String, Integer, Float, ...). But a little test can’t hurt.

$ irb

>>
=>

44

a = [1, 2.2, "House', nil]
[1, 2.2, "House", nil]

CHAPTER 1 RUBY INTRODUCTION

a.class
Array

alo]

1
a[o0].class
Integer
a[1].class
Float
a[2].class
String
a[3].class
NilClass
exit

Arrays can also be created via the method new (like any class). Individual new

elements can then be added at the end of an array via the method <<. Here is the

corresponding example:

$ irb

>>

a = Array.new

[]

a << 'first item’

["first item"]

a << 'second item'

["first item", "second item"]
exit

Iterator each

You can work your way through an array piece by piece via the method each. Here’s an

example:

$ irb

>>
=>
>>
?>
>>

cart = ['eggs', 'butter']
["eggs", "butter"]
cart.each do |item|

puts item
end

45

CHAPTER 1 RUBY INTRODUCTION

eggs
butter
=> ["eggs", "butter"]
>> exit

ri Array.each provides help and an example in case you forget how to use each.

Hashes

A hash is a list of key-value pairs. Here is an example with strings as keys:

$ irb

>> prices = { 'egg' => 0.1, 'butter' => 0.99 }
=> {"egg"=>0.1, "butter"=>0.99}

>> prices['egg']

=> 0.1

>> prices.count

=> 2

>> exit

Of course, hashes can store not just strings as objects in the values but, as with
arrays, also classes that you define yourself (see the section “Arrays”).

Symbols

Symbols are a strange concept and difficult to explain. But they are useful and used
frequently with hashes, among others.
Normally, variables always create new objects.

$ irb

>> a = 'Example 1'
=> "Example 1"

>> a.object_id

=> 70124141350360
>> a = 'Example 2'
=> "Example 2"

>> a.object_id

=> 70124141316700
>> exit

CHAPTER 1 RUBY INTRODUCTION

In both cases, you have the variable a, but object_id is different. You could carry on
in this way indefinitely. Each time, it would generate a different object ID and therefore
a new object. In principle, this is no big deal and entirely logical in terms of object
orientation. But it is also rather a waste of memory space.

A symbol is defined by a colon before the name and cannot store any values itself,
but it always has the same object ID, so it is very well suited to be a key.

$ irb

>> :a.class

=> Symbol

>> :a.object_id
=> 702428

>> exit

Let’s do another little experiment to make the difference clearer. Use a string object
with the content white three times in a row and then the symbol :white three times in
arow. For white, a new object is created each time. For the symbol :white, it’s created
only the first time.

$ irb

>> 'white'.object_id
=> 70342874305700

>> 'white'.object_id
=> 70342874300640

>> 'white'.object_id
=> 70342874271720

>> :white.object_id
=> 1088668

>> :white.object_id
=> 1088668

>> :white.object_id
=> 1088668

>> exit

47

CHAPTER 1 RUBY INTRODUCTION

Using symbols as key for hashes is much more memory efficient.

$ irb

>> colors = { black: '#000000', white: '#FFFFFF' }
=> {:black=>"#000000", :white=>"#FFFFFF"}

>> puts colors[:white]

#FFFFFF

=> nil

>> exit

You will frequently see symbols in Rails. If you want to find out more about symbols,
go to the help page about the class Symbol viari Symbol.

Iterator each

With the method each you can work your way through a Hash step-by-step. Here’s an
example:

$ irb

>> colors = {black: '#000000', white: '#FFFFFF' }
=> {:black=>"#000000", :white=>"#FFFFFF"}

>> colors.each do |key, value|

?> puts "#{key} #{value}"

>> end

black #000000

white #FFFFFF

=> {:black=>"#000000", :white=>"#FFFFFF"}

>> exit

Again, ri Hash.each offers help and an example in case you cannot remember one
day how to use each.

Range

The class Range represents an interval. The starting and ending points of the interval are
defined enclosed in normal brackets and separated by two dots in between them. Here is
an example in which you use a range like an iterator with each:

48

CHAPTER 1 RUBY INTRODUCTION

$ irb

>> (0..3)

=> 0..3

>> (0..3).class

=> Range

>> (0..3).each do |i]
?> puts 1

>> end

0
1
2
3

=> 0..3
>>

Via the method to_a, you can generate an array from a range.

>> (0..3).to_a
=> [0, 1, 2, 3]
>>

A range can be generated from objects of any type. It’s only important that the
objects can be compared via <, >, == and can use the method succ for counting on to the
next value. So, you can also use Range to represent letters.

>> ("a'.."h").to a
=> [Ilall’ "b", "C", Ild", "e", II_FII’ "g", Ilhll]
>>

As alternative notation, you may sometimes come across Range.new(). In this case,
the starting and ending points are not separated by two dots but by a comma. This is
what it looks like:

>> (0..3) == Range.new(0,3)
=> true
>> exit

49

CHAPTER 2

First Steps with Rails

Now that you have painstakingly read your way through the basics of Ruby in Chapter 1,
you can move on to a more exciting topic. In this chapter, you will create your first small
Ruby on Rails project.

Environment (Development)

By default a Rails project offers three environments to work in.
e Development
o Test
e Production

In this chapter, you will be working only with the Development environment. Once
you have gained a better feeling for Rails, you will start using tests, and then you will
need the corresponding environment (where, for example, the test database is populated
when you start a test and then cleared). Later, I will explain the various scenarios to show
how you can roll out your Rails application from the Development environment to the
Production environment.

The Development environment has everything you need for developing, besides an
editor and a web browser. You do not need to install a special web server but can use the
integrated Rails web server. It does not have extremely high performance, but you do not
need that for developing. Later, you can switch to big web servers like Apache or Nginx.
The same applies to the database.

51
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_2

CHAPTER 2 FIRST STEPS WITH RAILS

SQLite3 Database

In terms of the database, the main focus in this chapter is once more not on optimum
performance but on showing you a simple and quick way of getting started. That’s why
Rails uses the SQLite3 database. You already have everything you need installed, and you
don’t need to worry about anything. Later I will explain how you can use other databases
(e.g., PostgreSQL).

Why Is It All in English?

If you are not a native English speaker, you should try to accept and even adopt Rails’
love for the English language. Much of it will then be much easier and more logical. Most
of the code reads just like a normal English sentence. For example, many mechanisms
“automagically” use plural or singular forms of normal English words. If you get used

to naming database fields and tables with English terms (even if you are programming

in a different language), then you can make use of the whole power of this magic. This
mechanism is referred to as Inflector or inflections.

If you are programming in a language other than English, it still makes sense to use
English names for variables, classes, and methods. You can write the comments in your
own language, but if you take part in international projects, you should obviously write
the comments in English as well.

Static Content (HTML and Graphics Files)

Let’s first create a new Rails project.

Create a Rails Project

Before you even get going, please check that you are using Rails 5.2.

$ rails -v
Rails 5.2.0

52

CHAPTER 2 FIRST STEPS WITH RAILS

That’s looking good. If you have an older version of Ruby or Rails installed, please
install the 5.2 version before you read any further. The command gem install rails
installs the current Rails version, and gem install rails --preinstalls the beta of the
next version.

Now you start by creating a new Rails project with the name testproject. Ruby on
Rails is a framework, so you first need to set up the corresponding directory structure
and basic configuration, including several scripts. It’s as easy as pie; just use the
command rails new testproject to create everything you need.

$ rails new testproject
Ccreate
create README.md
create Rakefile
create .ruby-version
create config.ru

[...]

Next, you cd into the new directory and run the first migration to create Active
Storage tables.

$ cd testproject
$ rails db:migrate

O You don’t need to run rails db:migrate, which runs open database
migrations at this time, but it is a good habit to make sure all database migrations
are done.

You can check whether the new Rails application is working by launching the
integrated web server.

Q Depending on the operating system (for example, macOS) and on your

firewall settings, you may see a pop-up window when first starting a Rails
application asking you if the firewall should permit the corresponding connection.

53

CHAPTER 2 FIRST STEPS WITH RAILS

$ rails server

=> Booting Puma

=> Rails 5.2.0 application starting in development

=> Run “rails server -h" for more startup options
Puma starting in single mode...

* Version 3.11.0 (ruby 2.5.0-p0), codename: Love Song
* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://0.0.0.0:3000

Use Ctrl-C to stop

The start of the Rails application is looking good, so go to the URL
http://localhost:3000 in your web browser (see Figure 2-1).

e88 < D s localhost:3000

i‘qshlLS

Yay! You're on Rails!

Rails version: 5.2.0
Ruby version: 2.5.0 (x86_64-darwinl7)

Figure 2-1. Rails

Looks good. Rails works fine.

0 You can stop the web server with the key combination Ctrl+C.

54

CHAPTER 2 FIRST STEPS WITH RAILS

Static Pages

There are certain static pages, images, and JavaScript files that are automatically
delivered by Rails. Remember the following part of the output of the command
rails new testproject?

[...]

create public

create public/404.html

create public/422.html

create public/500.html

create public/apple-touch-icon-precomposed.png
create public/apple-touch-icon.png

create public/favicon.ico

create public/robots.txt

[...]

The directory name public and the files it contains already look very much like
static pages. Let’s create the file public/hello-world.html with the content shown in
Listing 2-1.

Listing 2-1. public/hello-world.html

<html>
<head>

<title>Hello World!</title>
</head>
<body>

<h1>Hello World!</h1>

<p>An example page.</p>
</body>
</html>

Now start the Rails web server with rails server.

$ rails server

=> Booting Puma

=> Rails 5.2.0 application starting in development on http://localhost:3000
=> Run "rails server -h~ for more startup options

55

CHAPTER 2 FIRST STEPS WITH RAILS

Puma starting in single mode...

* Version 3.11.0 (ruby 2.5.0-p0), codename: Love Song
* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://0.0.0.0:3000

Use Ctrl-C to stop

You can take a look at this web page at the URL http://localhost:3000/hello-
world (see Figure 2-2).

® @ Y Hello world! X o

LR

&« C | @® localhost:3000/hello-world X

‘Hello World!

An example page.

Figure 2-2. Hello!

No output in the log means that this page was not handled by the Rails framework.
It was delivered directly from the web server, which is Puma in this case.

O You can of course also use the URL http://localhost:3000/hello-
world.html. But Rails regards HTML and therefore the file ending .html as
standard output format, so you can omit the . html extension here.

56

CHAPTER 2 FIRST STEPS WITH RAILS

Now you know how you can integrate fully static pages in Rails. This is useful for
pages that never change and that you want to work even if Rails is not currently working,
for example because of an update. In a production environment, you would usually put
a classic web server such as Apache or Nginx in front of the Rails server, which is capable
of autonomously delivering static files from the public directory.

Creating HTML Dynamically with erb

The content of an erb file will probably seem familiar to you. It is a mixture of HTML and
Ruby code (erb stands for “embedded Ruby”). erb pages are rendered as views. This is
the first time for you to get in touch with the MVC model. You need a controller to use a
view, and that can be created via the generator rails generate controller. Let’s take a
look at the onboard help of this generator, shown here:

$ rails generate controller
Running via Spring preloader in process 11125
Usage:
rails generate controller NAME [action action] [options]

[...]

Description:
Stubs out a new controller and its views. Pass the controller name, either
CamelCased or under_scored, and a list of views as arguments.

[...]

Example:
‘rails generate controller CreditCards open debit credit close’

CreditCards controller with URLs like /credit cards/debit.
Controller: app/controllers/credit cards controller.rb

Test: test/controllers/credit_cards_controller test.rb
Views: app/views/credit_cards/debit.html.erb [...]
Helper: app/helpers/credit_cards_helper.rb

Nice! You are kindly provided with an example further down:

rails generate controller CreditCard open debit credit close

57

CHAPTER 2 FIRST STEPS WITH RAILS

This doesn’t really fit the bill for this case, but I am feeling brave and suggest that you
simply try rails generate controller Example test.

$ rails generate controller Example test

Running via Spring preloader in process 35388
create app/controllers/example_controller.rb
route get 'example/test’
invoke erb
create app/views/example
create app/views/example/test.html.erb
invoke test unit
create test/controllers/example_controller test.rb
invoke helper
create app/helpers/example_helper.rb
invoke test unit
invoke assets
invoke coffee

create app/assets/javascripts/example.coffee
invoke Scss
create app/assets/stylesheets/example.scss

Phew...that’s a lot of stuff being created. Among others, the file app/views/example/
test.html.erb is created. Let’s take a closer look at it; see Listing 2-2.

Listing 2-2. app/views/example/test.html.erb

<h1>Examplet#ttest</h1>
<p>Find me in app/views/example/test.html.erb</p>

It's HTML, but for it to be a valid HTML page, something is “missing” at the top and
bottom. The missing part can be found in the file app/views/layouts/application.
html.erb. You are going to take a look into it later in the chapter.

Please launch the web server to test it.

$ rails server

Take a look at the web page in the browser at the URL http://localhost:3000/
example/test.

58

CHAPTER 2 FIRST STEPS WITH RAILS
In the log file log/development.log, you will find the following lines:

Started GET "/example/test" for 127.0.0.1 at 2018-01-17 16:59:41 +0100

(0.1ms) SELECT "schema_migrations”."version" FROM "schema migrations”
ORDER BY "schema_migrations"."version" ASC
Processing by ExampleController#test as HTML
Rendering example/test.html.erb within layouts/application
Rendered example/test.html.erb within layouts/application (0.8ms)

Completed 200 OK in 833ms (Views: 823.0ms | ActiveRecord: 0.0ms)

This is an HTTP GET request for the URI /example/test. This was then apparently
rendered as HTML by the controller ExampleController using the method test.

Now you just need to find the controller. It’s a good thing you bought this book. All
controllers are in the directory app/controllers, and there you go, you indeed find the
corresponding file app/controllers/example controller.rb

$ tree app/controllers
app/controllers
— application_controller.rb

F— concerns

L example controller.rb

Please open the file app/controllers/example_controller.rb with your favorite
editor, as shown in Listing 2-3.

Listing 2-3. app/controllers/example_controller.rb

class ExampleController < ApplicationController
def test
end

end

That is very clear. The controller ExampleController is a descendant of the
controller ApplicationController and contains currently just one method with the
name test. This method has no program logic (it's empty).

You will probably ask yourself how Rails knows that for the URL path /example/test
it should process the controller ExampleController and the method test. This is not

59

CHAPTER 2 FIRST STEPS WITH RAILS

determined by some magical logic but by a routing configuration. All routings can be
listed with the command rails routes.

$ rails routes
Prefix Verb URI Pattern Controller#Action
example test GET /example/test(.:format) example#test

These routes are configured in the file config/routes.rb, which has been autofilled
by the controller generator with a route to example/test. The line that is important is the
second one, as shown in Listing 2-4.

Listing 2-4. config/routes.rb

Rails.application.routes.draw do
get 'example/test'’

end

Later in the book you are going to dive more into routes.

o A static file in the directory public always has higher priority than a route
in config/routes.rb! So, if you were to save a static file in public/example/
test, that file would be delivered.

Programming in an erb File

erb pages can contain Ruby code. You can use erb to program and give these pages
dynamic content.
Let’s start with something simple: adding 1 and 1. First try the following code in irb:

$ irb
>» 1+ 1
=> 2
>> exit

60

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 2 FIRST STEPS WITH RAILS

That was easy.

o If you want to output the result of Ruby code in exb, enclose the code
within <%="...%>.

Fill the erb file app/views/example/test.html.erb as shown in Listing 2-5.

Listing 2-5. app/views/example/test.html.erb

<h1>First experiment with erb</h1>
<p>Addition:
<Kh=1+ 1%
</p>
Then use rails server to launch the web server.

$ rails server

Visit that page with the URL http://localhost:3000/example/test, as shown in
Figure 2-3.

® ©® [Testproject x e

L3 C @ localhost:3000/example/test ¥

First experiment with erb

Addition: 2

Figure 2-3. Experimenting with erb

61

CHAPTER 2 FIRST STEPS WITH RAILS

You may ask yourself, how can the result of adding two Integers be displayed as a
String? Let’s first look up in irb if it really is an Integer.

$ irb

>> 1.class

=> Integer

>> (1 + 1).class
=> Integer

Yes, both the number 1 and the result of 1 + 1 is an Integer. What happened?
Rails is intelligent enough to automatically call all objects in a view (that is, the file
test.html.erb) that aren’t already strings via the method .to_s, which always converts
the content of the object to a string. Let’s take a brief trip to irb.

> (1 +1).to_s

=> "2"

>> (1 + 1).to_s.class
=> String

>> exit

You are now going to learn the finer points of erb step-by-step. Don’t worry;, it’s
neither magic nor rocket science.

<% ... %> vS. <%= ... %>

In the .html.erb file, there are two kinds of Ruby code instructions in addition to the
HTML elements.

e <% ... %>:Executes the Ruby code it contains but does not output
anything (unless you explicitly use something like print or puts in
special ways).

o <%= ... %>:Executes the Ruby code it contains and outputs the
result as a String. If it’s not a String, the method to_s will be called.

o The output of <%= ... %> is automatically escaped. So, you don’t need to
worry about “dangerous” HTML.

62

CHAPTER 2 FIRST STEPS WITH RAILS

Let’s use an example to make sure it all makes sense. You use each to iterate through
the range (0..5). Editapp/views/example/test.html.erb as shown in Listing 2-6.

Listing 2-6. app/views/example/test.html.erb

<p>Loop from 0 to 5:

<% (0..5).each do |i| %>
<%= "#{i}, "

<% end %>

</p>

Open this view in the browser (see Figure 2-4).

® ©® [Testproject x e

L3 C ©® localhost:3000/example/test ¥

Loop from0t05:0,1,2,3,4,5,

Figure 2-4. Iterating through a range

Let’s now take a look at the HTML source code in the browser.

<!DOCTYPE html>
<html>
<head>
<title>Testproject</title>

[...]
</head>

<body>

63

CHAPTER 2 FIRST STEPS WITH RAILS

<p>Loop from 0 to 5:

</body>
</html>

Now you understand how Ruby code is used in the view.

Q&A

1. Idon’t understand anything. I can’t cope with the Ruby code. Could
you please explain it again?

Is it possible that you have not completely worked your way through
Chapter 1? Please do take your time with it and have another
thorough look. Otherwise, the rest won’t make any sense here.

2. Ican understand the Ruby code and the HTML output. But I
don’t get why some HTML code was rendered around it if I didn’t
even write that HTML code. Where does it come from, and can I
influence it?

Excellent question! I will get to that in the next section.

Layouts

The erb file in the directory app/views/example/ only forms the core of the later HTML
page. By default, an automatically generated app/views/layouts/application.html.erb
is always rendered around it. Take a closer look at it in Listing 2-7.

64

CHAPTER 2 FIRST STEPS WITH RAILS

Listing 2-7. app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Testproject</title>
<%= csrf_meta_tags %>

<%= stylesheet link tag 'application’, media: 'all', 'data-
turbolinks-track': 'reload' %>
<%= javascript_include tag 'application’, 'data-turbolinks-track':
'reload' %>

</head>

<body>
<%= yield %>
</body>
</html>

The interesting bit is the following line:
<%= yield %>

With <%= yield %>, the view file is included here. The lines with the stylesheets, the
JavaScript, and csrf meta_tags can stay as they are for now. You'll take a look into that
in the asset pipeline in Chapter 13. There’s no need to bother with that right now.

The file app/views/layouts/application.html.erb enables you to determine the
basic layout for the entire Rails application. If you want to enter a <hr> for each page and
above it some header text, then you can do this between <%= yield %> and the <body>
tag, as shown in Listing 2-8.

Listing 2-8. app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Testproject</title>
<%= csrf_meta_tags %>

65

CHAPTER 2 FIRST STEPS WITH RAILS

<%= stylesheet_link tag "application’, media: 'all', ‘'data-

turbolinks-track': 'reload' %>

<%= javascript_include tag 'application’, 'data-turbolinks-track': 'reload"' %
</head>

<body>
<h1>My Header</h1>
<hr>
<%= yield %>
</body>
</html>

You can also create other layouts in the directory app/views/layouts/ and apply
these layouts depending on the relevant situation. But let’s leave it for now. The
important thing is that you understand the basic concept.

Passing Instance Variables from a Controller to a View

One of the cardinal sins in the MVC model is to put too much program logic into the
view. That’s more or less what used to be done frequently in PHP programming. I'm
guilty of having done it myself. But one of the aims of MVC is that any HTML designer
can create a view without having to worry about the programming. Yeah, yeah...if only
it were always that easy. But let’s just play it through in our minds. If I have a value in
the controller that I want to display in the view, then I need a mechanism for this. This
is referred to as an instance variable and always starts with @. If you are not 100 percent
sure which variable has which scope, then please take another quick look at “Scope of
Variables” in Chapter 1.

In the following example, you insert an instance variable for the current time
that you get by Time.now in the controller and then insert it in the view. You're taking
programming intelligence from the view to the controller.

The controller file app/controllers/example_controller.rb looks like Listing 2-9.

66

CHAPTER 2 FIRST STEPS WITH RAILS

Listing 2-9. app/controllers/example_controller.rb

class ExampleController < ApplicationController
def test
@current time = Time.now
end
end

In the view file app/views/example/test.html.erb, you can then access this
instance variable, as shown in Listing 2-10.

Listing 2-10. app/views/example/test.html.erb

<p>
The current time is
<%= @current_time %>
</p>

With the controller and the view, you now have a clear separation of programming
logic and presentation logic. Now you can automatically adjust the time in the controller
in accordance with the user’s time zone, without the designer of the page having to
worry about it. As always, the method to_s is automatically applied in the view.

I am well aware that no one will now jump up from their chair and shout, “Thank you
for enlightening me! From now on, I will only program neatly in accordance with MVC.”
The previous example is just the first small step in the right direction and shows how you
can easily get values from the controller to the view with instance variables.

Partials

Even with small web projects, there are often elements that appear repeatedly, for
example, a footer on the page with contact info or a menu. Rails gives you the option
of encapsulating this HTML code in the form of partials and then integrating it within
aview. A partial is also stored in the directory structure under app/views/. Butits file
name must start with an underscore (_).

As an example, you now add a mini footer to your page in a separate partial. Copy the
content shown in Listing 2-11 into the new file app/views/example/_footer.html.erb.

67

CHAPTER 2 FIRST STEPS WITH RAILS

Listing 2-11. app/views/example/_footer.html.erb

<hr>
<p>

Copyright 2009 - <%= Date.today.year %> the Easter Bunny.
</p>

O Yes, this is not the MVC way of doing it right. Date.today.year should
be defined in the controller. I'm glad that you caught this mistake.

You can edit the file app/views/example/test.html.erb as shown in Listing 2-12
and insert the partial via the command render.

Listing 2-12. app/views/example/test.html.erb

<p>Loop from 0 to 5:

<% (0..5).each do |i| %>
<%= "#{i}, "

<% end %>

</p>

<%= render "footer" %>
So, now you have the following files in the directory app/views/example:

$ tree app/views/example/
app/views/example/

— _footer.html.erb
L— test.html.erb

68

CHAPTER 2 FIRST STEPS WITH RAILS

The new web page now looks like Figure 2-5.

® @ [Testproject x 5]
L3 C ©® localhost:3000/example/test ¥
My Header

Loop from 0t0 5:0,1,2,3,4,5,

Copyright 2009 - 2017 the Easter Bunny.

Figure 2-5. Web page

o The name of a partial in the code is always specified without the preceding
underscore (_) and without the file extensions .erb and . html. But the actual file
must have the underscore at the beginning of the file name and end with the file
extensions .erb and .html.

Partials can also be integrated from other areas of the subdirectory app/views. For
example, you can create a directory app/views/shared for recurring and shared content
and create a file _footer.html.erb in this directory. You would then integrate this file
into the erb code via the following line:

n oo

<%= render "shared/footer" %>

Passing Variables to a Partial

Partials are great in the sense of the Don’t Repeat Yourself (DRY) concept. But what
makes them really useful is the option of passing variables. Let’s stick with the copyright
example. If you want to pass the start year as a value, you can integrate this by adding the
code in Listing 2-13 in the file app/views/example/_footer.html.erb.

69

CHAPTER 2 FIRST STEPS WITH RAILS
Listing 2-13. app/views/example/_footer.html.erb

<hr>
<p>
Copyright <%= start_year %> - <%= Date.today.year %> the Easter Bunny.
</p>

So, let’s change the file app/views/example/test.html.erb as shown in Listing 2-14.

Listing 2-14. app/views/example/test.html.erb

<p>Loop from 0 to 5:

<% (0..5).each do |i| %>
<%= "#{i}, "

<% end %>

</p>

<%= render partial: "footer", locals: {start year: '2000'} %>

If you now go to the URL http://localhost:3000/example/test, you see the 2000.

® ©® [Testproject x e

& C ©® localhost:3000/example/test ¥

My Header

Loop from 0t0 5:0,1,2,3,4,5,

Copyright 2000 - 2017 the Easter Bunny.

70

CHAPTER 2 FIRST STEPS WITH RAILS

Sometimes you need a partial that uses a local variable and need the same partial
but without the local variable somewhere else. You can take care of this in the partial
with an if statement, as shown here:

<hr>
<p>
Copyright
<%= "#{start year} - " if defined? start year %>
<%= Date.today.year %>
the Easter Bunny.
</p>

O defined? can be used to check whether an expression has been defined.

Now you can call this partial with <%= render partial: "footer", locals:
{start_year: '2000'} %>andwith <%= render 'footer' %>.

Further Documentation on Partials

You have really only barely scratched the surface here. Partials are powerful tools.
You can find the official Ruby on Rails documentation on partials at http://guides.
rubyonrails.org/layouts and rendering.html#using-partials.

The Rails Console

The console in Rails is nothing more than an irb session (see the section “irb” in
Chapter 1) built around the Rails environment. The console is useful both for developing
and for administration purposes because the whole Rails environment is represented
and available.

I'll show you how to work with it in this example application:

$ rails new pingpong

[...]
$ cd pingpong

71

http://guides.rubyonrails.org/layouts_and_rendering.html#using-partials
http://guides.rubyonrails.org/layouts_and_rendering.html#using-partials

CHAPTER 2 FIRST STEPS WITH RAILS

$ rails db:migrate

$ rails generate controller Game ping pong
[...]

$

Start the Rails console with the command rails console.

$ rails console
Running via Spring preloader in process 18395
Loading development environment (Rails 5.2.0)
irb(main):001:0>

You can use exit to get back out.

irb(main):001:0> exit

$

As mentioned in Chapter 1, I use the configuration file shown in Listing 2-15 to save
some real estate in the console.

Listing 2-15. ~/irbrc
IRB.conf[:PROMPT MODE] = :SIMPLE

In the console, you have access to all variables that are also available later in the
proper application.

$ rails console

Running via Spring preloader in process 19371
Loading development environment (Rails 5.2.0)
>> Rails.env

=> "development"

>> Rails.root

=> #<Pathname:/Users/stefan/pingpong>

>> exit

$

In Chapter 3, you are going to be working with the console a lot and will soon begin
to appreciate the debugging possibilities it offers.

72

CHAPTER 2 FIRST STEPS WITH RAILS

Q One of my best buddies when developing Rails applications is the Tab key.

Whenever you are looking for a method for a particular problem, re-create it in the

Rails console and then press the Tab key twice to list all the available methods. The
names of the methods are usually self-explanatory.

app

app is useful if you want to analyze things having to do with routing.

$ rails console
Running via Spring preloader in process 19799
Loading development environment (Rails 5.2.0)
>> app.url for(controller: 'game', action: 'ping')
=> "http://www.example.com/game/ping"
>> app.get '/game/ping'
Started GET "/game/ping" for 127.0.0.1 at 2018-01-17 17:14:50 +0100
(0.2ms) SELECT "schema_migrations”."version" FROM "schema migrations”
ORDER BY "schema_migrations"."version" ASC
Processing by GameController#ping as HTML
Rendering game/ping.html.erb within layouts/application
Rendered game/ping.html.erb within layouts/application (54.4ms)

Completed 200 OK in 898ms (Views: 884.8ms | ActiveRecord: 0.0ms)

=> 200
>> exit

What Is a Generator?

You have already used the command rails generate controller. It starts the
generator with the name controller. There are other generators as well. You can use the
command rails generate to display a list of available generators.

$ rails generate
Running via Spring preloader in process 19901
Usage: rails generate GENERATOR [args] [options]

73

CHAPTER 2 FIRST STEPS WITH RAILS

[...]

Rails:
application_record
assets
channel
controller
encrypted file
encryption_key file
generator
helper
integration_test
jbuilder
job
mailer
master_key
migration
model
resource
scaffold
scaffold controller
system test
task

ActiveRecord:
active record:application record

Coffee:
coffee:assets

Js:
js:assets

TestUnit:
test unit:generator
test_unit:plugin

74

CHAPTER 2 FIRST STEPS WITH RAILS

What does a generator do? A generator makes a programmer’s job easier by doing
some of the mindless tasks for you. It creates files and fills them with default code,
depending on the parameters passed. You could do the same manually, without the
generator. So, you do not have to use a generator. It is primarily intended to save you
work and avoid potential errors that can easily arise from mindless repetitive tasks.

Q Someday you might want to create your own generator. Take a look at
http://guides.rubyonrails.org/generators.html to find a description
of how to do that.

Helper

A helper method takes care of recurring tasks in a view. For example, if you want to
display stars (*) for rating a restaurant and not numbers from 1 to 5, you can define the
helper shown in Listing 2-16 in the file app/helpers/application_helper.rb.

Listing 2-16. app/helpers/application_helper.rb
module ApplicationHelper

def render stars(value)
output = "'

if (1..5).include?(value)
value.times { output += "*'}

end

output

end
end

With this helper, you can then apply the following code in a view:

<p>
Rating: <%= render_ stars(5) %>
</p>

75

http://guides.rubyonrails.org/generators.html

CHAPTER 2 FIRST STEPS WITH RAILS
You can also try the helper in the console.

$ rails console

Running via Spring preloader in process 23849
Loading development environment (Rails 5.2.0)
>> helper.render stars(5)

=y "kkkkk!

>> helper.render_stars(3)

N

>> exit

There are lots of predefined helpers in Rails, and you will use some of them in the
next chapters. But you can also define your own custom helpers. Any of the helpers from
the file app/helpers/application_helper.rb can be used in any view. Helpers that
you want to be available only in certain views must be defined for each controller. When
creating a controller, a file for helpers of that controller is automatically created in app/
helpers. This gives you the option of defining helpers only for this controller or for the
views of this controller.

All helpers are in the directory app/helpers/.

Debugging

Rails provides a couple of debug tools to make a developer’s live easier.

debug

In any view you can use the debug helper to render an object with the YAML format within
a <pre> tag. To display the value of @foo, you can use the following line in your view:

<%= debug @foo %>

Web Console

The web-console gem provides a way to render Rails console views. When you browse to
a specific URL, at the end of that page you'll get a console.

76

CHAPTER 2 FIRST STEPS WITH RAILS
Let me show you this by example with this simple Rails application:

$ rails new testapp
[...]
$ cd testapp
$ rails db:migrate
$ rails generate controller page index

Rails 5.2 introduces a strict content security policy (CSP) that has to be configured
to use the web console first. Please take a look at https://developer.mozilla.org/
en-US/docs/Web/HTTP/Headers/Content-Security-Policy to understand the concept
of a CSP. You find your CSP configuration in the file config/initializers/content_
security policy.rb. Please configure it according to your security needs. Listing 2-17
shows a quick-and-dirty hack to display the use of web console. Please do not use this in

production.

Listing 2-17. config/initializers/content_security_policy.rb

Rails.application.config.content security policy do |p]|
p.default src :self, :https
p.font_src :self, :https, :data
p.img src :self, :https, :data
p.object src :none
p.script_src :self, :https
p.style src :self, :https, :unsafe inline

Specify URI for violation reports
p.report_uri "/csp-violation-report-endpoint”
end

In app/controllers/page_controller.rb, you'll add the code shown in Listing 2-18.

Listing 2-18. app/controllers/page_controller.rb

class < ApplicationController
def index
@foo = 'bar'
end
end

77

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

CHAPTER 2 FIRST STEPS WITH RAILS

In the view app/views/page/index.html.erb, you'll add the console command

shown in Listing 2-19.

Listing 2-19. app/views/page/index.html.erb

<h1>Page#index</h1>
<p>Find me in app/views/page/index.html.erb</p>

<% console %>

After starting the Rails application with rails server and browsing to the URL
http://localhost:3000/page/index, you get a web console at the bottom of the page
(see Figure 2-6). In it you have access to the instance variable @foo.

@ @ [Testapp X (2]

& C @ localhost:3000/page/index g

Page#index

Find me in app/views/page/index.html.erb

Figure 2-6. Web console

78

CHAPTER 2 FIRST STEPS WITH RAILS

Other Debugging Tools

There are a couple of other built-in debugging tools that are out of the scope of this
chapter. Please take alook at http://guides.rubyonrails.org/debugging rails_
applications.html to get an overview.

Rails Lingo

Here I'll cover a couple of words that you'll often find in the Ruby on Rails universe.

Don’t Repeat Yourself

Many Rails programmers are big fans of DRY. DRY means purely and simply that you
should try to place repeated programming logic into separate methods.

Refactoring

You'll often hear the word refactoring in the context of DRY. This involves functioning
applications that are further improved. The application in itself remains unchanged in its
interface. But its core is optimized through, among other principles, DRY.

Convention Over Configuration

Convention over configuration (also known as coding by convention; see
http://en.wikipedia.org/wiki/Convention over_ configuration)is animportant
pillar of a Rails application. It states that the programmer does not need to decide

in favor of certain features when starting a project and set these via configuration
parameters. It specifies an underlying basic consensus, and this is set by default. But if
you want to work outside of this conventional basic consensus, then you will need to
change the corresponding parameters.

79

http://guides.rubyonrails.org/debugging_rails_applications.html
http://guides.rubyonrails.org/debugging_rails_applications.html
http://en.wikipedia.org/wiki/Convention_over_configuration

CHAPTER 2 FIRST STEPS WITH RAILS

Model View Controller Architecture

You have already created a simple Rails application, and in the next chapter you will dive
deeply into the topic of ActiveRecord. So, now is a good time to briefly introduce a few
terms that often surface in the world of Rails.

According to Wikipedia (http://en.wikipedia.org/wiki/Model-view-controller),
MVC is a design pattern that separates the representation of information from the user’s
interaction with it.

MVC is a structure for software development. It was agreed that it makes sense to
have one part of the software in one place and another part of the software in another
place. Nothing more, nothing less.

This agreement has the enormous advantage that once you are used to this concept,
you know exactly where you can find or need to integrate a certain functionality in a
Rails project.

Model

Model in this case means data model. By default, Rails applications are an ActiveRecord
data model (see Chapter 3).
All models can be found in the directory app/models/.

View

The view is responsible for the presentation of the application. It takes care of rendering
the web page, an XML file, or a JSON file. A view could also render a PDF or an ASCII
text. It depends entirely on your application.

You will find all the views in the directory app/views/.

Controller

Once a web page call has ended up in a route (see Chapter 5), it goes from there to the
controller. The route specifies a certain method (action) as a target. This method can
then fulfil the desired tasks (such as finding a specific set of data and saving it in an
instance variable) and render the desired view.

All controllers can be found in the directory app/controllers/.

80

http://en.wikipedia.org/wiki/Model–view–controller

CHAPTER 2 FIRST STEPS WITH RAILS

Abbreviations

There are a handful of abbreviations that can make your life as a developer much
easier if you know them. In the rest of this book, I always use the full version of these
commands to make it clearer for beginners, but in practice, you will soon find that the
abbreviations are easier to use.

e rails console

Shorthand notation: rails c
e rails server

Shorthand notation: rails s
e rails generate scaffold

Shorthand notation: rails g scaffold

81

CHAPTER 3

ActiveRecord

ActiveRecord is alevel of abstraction that offers access to a SQL database. ActiveRecord
implements the architectural pattern Active Record.

O This is referred to as object-relational mapping (ORM). | find it rather dry
and boring, but if you have trouble going to sleep tonight, take a look at
http://en.wikipedia.org/wiki/Object _relational mapping.

One of the recipes for the success of Rails is surely the fact that it uses ActiveRecord.
The programming and use “feels Ruby-like,” and it is much less susceptible to errors
than pure SQL. When working with this chapter, it helps if you have some knowledge of
SQL, but this is not required and also not essential for working with ActiveRecord.

o This chapter is only about ActiveRecord. | am not going to integrate any
tests so | can keep the examples as simple as possible.

Creating a Database/Model

Model in this context refers to the data model of Model-View-Controller (MVC).
As a first example, let’s take a list of countries in Europe. First, create a new Rails project.

$ rails new europe

[...]

$ cd europe

83
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_3

http://en.wikipedia.org/wiki/Object_relational_mapping

CHAPTER 3 ACTIVERECORD
Next, let’s take a look at the help page for rails generate model, as shown here:

$ rails generate model

Running via Spring preloader in process 21883

Usage:
rails generate model NAME [field[:type][:index] field[:type][:index]]
[options]

[...]

Description:
Stubs out a new model. Pass the model name, either CamelCased or
under_scored, and an optional list of attribute pairs as arguments.

[...]
Available field types:

Just after the field name you can specify a type like text or boolean.
It will generate the column with the associated SQL type. For instance:

"rails generate model post title:string body:text’

will generate a title column with a varchar type and a body column with
a text type. If no type is specified the string type will be used by
default.

You can use the following types:

integer
primary key
decimal
float
boolean
binary
string
text
date
time
datetime

84

CHAPTER 3 ACTIVERECORD

The usage description rails generate model NAME [field[:type][:index]
field[:type][:index]] [options] tells you that after rails generate model comes
the name of the model and then the table fields. If you do not put : type after a table field
name, it is assumed to be a string.

Let’s create the model called country.

$ rails generate model Country name population:integer
Running via Spring preloader in process 22053

invoke active record

create db/migrate/20170322165321 create countries.rb

create app/models/country.rb

invoke test unit

create test/models/country test.rb

create test/fixtures/countries.yml

The generator has created a database migration file with the name
db/migrate/20170322165321 create_countries.rb. It provides the code shown in
Listing 3-1.

Listing 3-1. db/migrate/20170322165321_create_countries.rb

class CreateCountries < ActiveRecord::Migration[5.1]
def change
create table :countries do |t
t.string :name
t.integer :population

t.timestamps
end
end
end

A migration contains database changes. In this migration, a class called
CreateCountries is defined as a child of ActiveRecord: :Migration. The method change
is used to define a migration and the associated rollback.

85

CHAPTER 3 ACTIVERECORD

With the command rails db:migrate, you can apply the migrations, in other words,
create the corresponding database table.

$ rails db:migrate

== 20170322165321 CreateCountries: migrating ==============================
-- create_table(:countries)

-> 0.0010s

20170322165321 CreateCountries: migrated (0.0011S) =====================

o You will find more details on migrations in the section “Migrations.”

Let’s take a look at the file app/models/country.rb; see Listing 3-2.

Listing 3-2. app/models/country.rb

class Country < ApplicationRecord
end

The class Country is a child of ApplicationRecord that inherits from
ApplicationRecord. In ApplicationRecord you'll find all the ActiveRecord magic.

The Attributes id, cxreated_at, and updated_at

Even if you cannot see it in the migration, you also get the attributes id, created at,
and updated_at by default for each ActiveRecord model. In the Rails console, you can
output the attributes of the class Country by using the class method column_names.

$ rails console

Running via Spring preloader in process 22303

Loading development environment (Rails 5.2.0)

>> Country.column_names

=> ["id", "name", "population", "created at", "updated at"]
>> exit

The attribute created_at stores the time when the record was initially created.
updated_at stores the time of the last update for this record.

idis used as a central identification of the record (primary key). The id value is
automatically incremented by 1 for each new record.

86

CHAPTER 3 ACTIVERECORD

Getters and Setters

To read and write values of a SQL table row, you can use getters and setters based on
ActiveRecord-provided getters and setters. These attr_accessors are automatically
created. The getter of the field updated_at for a given Country with the name germany
would be germany.updated_at.

Possible Data Types in ActiveRecord

ActiveRecord is a layer between Ruby and various relational databases. Unfortunately,
many SQL databases have different perspectives regarding the definition of columns and
their content. But you do not need to worry about this because ActiveRecord solves this
problem transparently for you.

To generate a model, you can use the field types shown in Table 3-1.

Table 3-1. Field Types

Name Description

binary This is a Binary Large Object (BLOB) in the classical sense. Never heard of it?
Then you probably won’t need it. See also http://en.wikipedia.org/wiki/
Binary. large object.

boolean true, false, or nil.

date You can store a date here.

datetime Here you can store a date including a time.

integer This is for storing an integer. See also http://en.wikipedia.org/wiki/

Integer (computer science).
decimal This is for storing a decimal number.

primary_key This is an integer that is automatically incremented by 1 by the database for each
new entry. This field type is often used as key for linking different database tables
or models. See also http://en.wikipedia.org/wiki/Unique_key.

string This is a string, in other words, a sequence of any characters, up to a maximum
of 278 -1 (= 255) characters. See also http://en.wikipedia.org/wiki/
String (computer science).

(continued)

87

http://en.wikipedia.org/wiki/Binary._large_object
http://en.wikipedia.org/wiki/Binary._large_object
http://en.wikipedia.org/wiki/Integer_(computer_science
http://en.wikipedia.org/wiki/Integer_(computer_science
http://en.wikipedia.org/wiki/Unique_key
http://en.wikipedia.org/wiki/String_(computer_science
http://en.wikipedia.org/wiki/String_(computer_science

CHAPTER 3 ACTIVERECORD

Table 3-1. (continued)

Name Description

text This is also a string but is considerably bigger. By default, up to 2216 -1 (= 65535)
characters can be saved here.

time This is for storing a time.

timestamp This is for storing a time with a date, filled in automatically by the database.

Decimal

You can also define a decimal with the model generator. But you need to observe the

special syntax (you have to use ' if you are using the Bash shell).

Here’s an example of creating a price with a decimal:

$ rails generate model product name 'price:decimal{7,2}'

[...]
$

That would generate the migration shown in Listing 3-3.

Listing 3-3. db/migrate/20170322170623_create_products.rb

class CreateProducts < ActiveRecord::Migration[5.1]

def change

create table :products do |t|
t.string :name

t.decimal :price, precision: 7, scale: 2

t.timestamps

end
end
end

In the section “Migrations,” I will provide more information on the individual data

types and discuss the available options.

88

CHAPTER 3 ACTIVERECORD

Naming Conventions (Country vs. country vs. countries)

ActiveRecord automatically uses the English plural forms. So, for the class Country,
it's countries. If you are not sure about a term, you can also work with the class and
method names.

$ rails console

Running via Spring preloader in process 23132
Loading development environment (Rails 5.2.0)
>> Country.name.tableize

=> "countries"

>> Country.name.foreign key

=> "country_id"

>> exit

Database Configuration

Which database is used by default? Let’s take a quick look at the configuration file for the
database (config/database.yml), as shown in Listing 3-4.

Listing 3-4. config/database.yml

SQLite version 3.x
gem install sqlite3
#
Ensure the SQLite 3 gem is defined in your Gemfile
gem 'sqlite3'
#
default: &default
adapter: sqlite3

pool: <%= ENV.fetch("RAILS MAX THREADS") { 5 } %>
timeout: 5000

development:
<<: *default
database: db/development.sqlite3

89

CHAPTER 3 ACTIVERECORD

Warning: The database defined as "test" will be erased and
re-generated from your development database when you run "rake".
Do not set this db to the same as development or production.
test:

<<: *default

database: db/test.sqlite3

production:
<<: *default
database: db/production.sqlite3

As you are working in Development mode, Rails has created a new SQLite3 database
in the file db/development.sqlite3 as aresult of rails db:migrate and will save all
data there.

Fans of command-line clients can use sqlite3 for viewing this database.

$ sqlite3 db/development.sqlite3

SQLite version 3.19.3 2017-06-27 16:48:08

Enter ".help" for usage hints.

sqlite> .tables

ar_internal metadata countries schema_migrations

sqlite> .schema countries

CREATE TABLE "countries" ("id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
"name" varchar, "population" integer, "created at" datetime NOT NULL,
"updated at" datetime NOT NULL);

sqlite> .exit

Adding Records

I will show you how to view records, but to display records, you have to create them first.
So, here is how you can create a new record with ActiveRecord.

create

The most frequently used method for creating a new record is create.
Let’s try creating a country in the console with the command Country.create(name:
"‘Germany', population: 81831000).

90

CHAPTER 3 ACTIVERECORD

$ rails console
Running via Spring preloader in process 23285
Loading development environment (Rails 5.2.0)
>> Country.create(name: 'Germany', population: 81831000)
(0.1ms) begin transaction
SQL (0.4ms) INSERT INTO "countries" ("name", "population", "created at",
"updated at") VALUES (?, ?, ?, ?) [["name", "Germany"],
["population”, 81831000], ["created at", "2017-03-22 17:10:30.859482"],
["updated_at", "2017-03-22 17:10:30.859482"]]
(2.2ms) commit transaction
=> #<Country id: 1, name: "Germany", population: 81831000,
created_at: "2017-03-22 17:10:30", updated_at: "2017-03-22 17:10:30">
>> exit

ActiveRecord saves the new record and outputs the executed SQL command in the
Development environment. But to make absolutely sure it works, let’s take a last look
with the command-line client sqlite3.

$ sqlite3 db/development.sqlite3

SQLite version 3.19.3 2017-06-27 16:48:08

Enter ".help" for usage hints.

sqlite> SELECT * FROM countries;

1|Germany|81831000|2017-03-23 17:10:03.141592|2017-03-22 17:10:03.141592
sqlite> .exit

Syntax

The method create can handle a number of different syntax constructs. If you want
to create a single record, you can do this with or without brackets ({ }) within the
parentheses, as shown here:

o Country.create(name: 'Germany', population: 81831000)

o Country.create({name: 'Germany', population: 81831000})

91

CHAPTER 3 ACTIVERECORD

Similarly, you can describe the attributes differently, as shown here:
o Country.create(:name = 'Germany', :population= 81831000)
o Country.create('name' = 'Germany', 'population’' = 81831000)
o Country.create(name: 'Germany', population: 81831000)

You can also pass an array of hashes to create and use this approach to create several
records at once

Country.create([{name: 'Germany'}, {name: 'France'}])

In addition to create, there is also new. But you have to use the save method to save an
object created with new (which has both advantages and disadvantages).

$ rails console

Running via Spring preloader in process 23679

Loading development environment (Rails 5.2.0)

>> france = Country.new

=> #<Country id: nil, name: nil, population: nil, created at: nil,
updated at: nil>

>> france.name = 'France'

=> "France"

>> france.population = 65447374
=> 65447374

>> france.save
(0.1ms) begin transaction
SQL (0.5ms) INSERT INTO "countries" ("name", "population", "created at",
"updated at") VALUES (?, ?, ?, ?) [["name", "France"],
["population”, 65447374], ["created at", "2017-03-22 17:15:30.001686"],
["updated at", "2017-03-22 17:15:30.001686"]]
(2.1ms) commit transaction
=> true
>> france
=> #<Country id: 2, name: "France", population: 65447374,
created at: "2017-03-22 17:15:30", updated_at: "2017-03-22 17:15:30">

92

CHAPTER 3 ACTIVERECORD

You can also pass parameters for the new record directly to the method new, just as
with create.

>> belgium = Country.new(name: 'Belgium', population: 10839905)
=> #<Country id: nil, name: "Belgium", population: 10839905,
created at: nil, updated at: nil>
>> belgium.save
(0.1ms) begin transaction
SQL (0.5ms) INSERT INTO "countries" ("name", "population",
"created at", "updated at") VALUES (?, ?, ?, ?) [["name", "Belgium"],
["population”, 10839905], ["created at", "2017-03-22 17:16:31.091853"],
["updated at", "2017-03-22 17:16:31.091853"]]
(2.5ms) commit transaction
=> true
>> exit

new_record?

With the method new_record?, you can find out whether a record has already been
saved. If a new object has been created with new and has not yet been saved, then the
result of new_record? is true. After a save, it’s false.

Here’s an example:

$ rails console
Running via Spring preloader in process 23823
Loading development environment (Rails 5.2.0)
>> netherlands = Country.new(name: 'Netherlands"')
=> #<Country id: nil, name: "Netherlands", population: nil,
created at: nil, updated at: nil>
>> netherlands.new_record?
=> true
>> netherlands.save
(0.1ms) begin transaction
SQL (0.5ms) INSERT INTO "countries" ("name", "created at",
"updated at") VALUES (?, ?, ?) [["name", "Netherlands"],

93

CHAPTER 3 ACTIVERECORD

["created at", "2017-03-22 17:17:34.694389"],
["updated at", "2017-03-22 17:17:34.694389"]]
(2.1ms) commit transaction

=> true

>> netherlands.new_record?

=> false

>> exit

Q For already existing records, you can also check for changes with the
method changed? (see the section “changed?”). You can even use netherland.
population changed? to check whether just the attribute popluation was
changed.

first, last, and all

In certain cases, you may need the first record or the last one or perhaps even all records.
Conveniently, there is a ready-made method for each case. Let’s start with the easiest
ones: first and last.

$ rails console
Running via Spring preloader in process 24090
Loading development environment (Rails 5.2.0)
>> Country.first
Country Load (0.2ms) SELECT "countries".* FROM "countries" ORDER BY
"countries"."id" ASC LIMIT ? [["LIMIT", 1]]
=> #<Country id: 1, name: "Germany", population: 81831000, created at:
"2017-03-22 17:10:30", updated at: "2017-03-22 17:10:30">
>> Country.last
Country Load (0.3ms) SELECT "countries".* FROM "countries" ORDER BY
"countries"."id" DESC LIMIT ? [["LIMIT", 1]]
=> #<Country id: 4, name: "Netherlands", population: nil, created at:
"2017-03-22 17:17:34", updated at: "2017-03-22 17:17:34">

94

CHAPTER 3 ACTIVERECORD
Here’s an example all at once with all:

>> Country.all

Country Load (0.2ms) SELECT "countries".* FROM "countries"”
=> #<ActiveRecord: :Relation [#<Country id: 1, name: "Germany",
population: 81831000, created at: "2017-03-22 17:10:30",
updated_at: "2017-03-22 17:10:30">, #<Country id: 2, name: "France”,
population: 65447374, created at: "2017-03-22 17:15:30",
updated_at: "2017-03-22 17:15:30">, #<Country id: 3, name: "Belgium",
population: 10839905, created at: "2017-03-22 17:16:31",
updated_at: "2017-03-22 17:16:31">, #<Country id: 4, name: "Netherlands",
population: nil, created at: "2017-03-22 17:17:34",
updated at: "2017-03-22 17:17:34">]>

But the objects created by first, last, and all are different.

>> Country.first.class
Country Load (0.3ms) SELECT "“countries".* FROM "countries"
ORDER BY "countries"."id" ASC LIMIT ? [["LIMIT", 1]]
=> Country(id: integer, name: string, population: integer,
created at: datetime, updated at: datetime)
>> Country.all.class
=> Country::ActiveRecord Relation

So, Country.first is a Country, which makes sense. But Country.all is something
you haven’t had yet. Let’s use the console to get a better idea of it.

>> puts Country.all.to yaml
Country Load (0.4ms) SELECT "countries".* FROM "countries"
- lruby/object:Country
concise attributes:
- lruby/object:ActiveRecord: :Attribute: :FromDatabase
name: id
value before type cast: 1
- lruby/object:ActiveRecord: :Attribute::FromDatabase
name: name
value before type cast: Germany

95

CHAPTER 3 ACTIVERECORD

- lruby/object:ActiveRecord: :Attribute: :FromDatabase
name: population
value before type cast: 81831000
- lruby/object:ActiveRecord: :Attribute: :FromDatabase
name: created at
value before type cast: '2017-03-22 17:10:30.859482'
- lruby/object:ActiveRecord: :Attribute: :FromDatabase
name: updated at
value before type cast: '2017-03-22 17:10:30.859482'
new_record: false
active record yaml version: 2

[...]

=> nil

By using the to_yaml method, suddenly the database has work to do. The reason for
this behavior is optimization. Let’s assume you want to chain a couple of methods. Then
it might be better for ActiveRecord to wait until the very last second, which it does. It
only requests the data from the SQL database when it has to do it (which is called lazy
loading). Until then, it stores the request in an ActiveRecord: :Relation.

The result of Country.all is actually an Array of Country.

If Country.all returns an array, then you should also be able to use iterators and
each, right? Yes, of course! That is the beauty of it. Here is a little experiment with each:

>> Country.all.each do |country]|
?> puts country.name
>> end
Country Load (0.1ms) SELECT "countries".* FROM "countries"
Germany
France
Belgium
Netherlands
=> [#<Country id: 1, name: "Germany", [...]]

96

CHAPTER 3 ACTIVERECORD

So, can you also use .all.first as an alternative for . first? Yes, but it does not
make much sense. Take a look for yourself.

>> Country.first
Country Load (0.2ms) SELECT “countries".* FROM "countries"
ORDER BY "countries"."id" ASC LIMIT ? [["LIMIT", 1]]
=> #<Country id: 1, name: "Germany", population: 81831000,
created at: "2017-03-22 17:10:30", updated at: "2017-03-22 17:10:30">
>> Country.all.first
Country Load (0.2ms) SELECT “countries".* FROM "countries"
ORDER BY "countries"."id" ASC LIMIT ? [["LIMIT", 1]]
=> #<Country id: 1, name: "Germany", population: 81831000,
created at: "2017-03-22 17:10:30", updated at: "2017-03-22 17:10:30">
>> exit

Country.first and Country.all.first resultin the same SQL query because
ActiveRecord optimizes it.

O ActiveRecord provides not only the first method but also second,
third, fourth, and fifth. It's obvious what they do.

Populating the Database with seeds.rb

With the file db/seeds . rb, the Rails gods have given you a way of feeding default values
easily and quickly to a fresh installation. This is a normal Ruby program within the Rails
environment. You have full access to all classes and methods of your application.

With that, you don’t need to enter everything manually with rails console to create
all the initial records in a new Rails application. You can use the file db/seeds.1b, as
shown in Listing 3-5.

Listing 3-5. db/seeds.rb

Country.create(name: 'Germany', population: 81831000)
Country.create(name: 'France', population: 65447374)
Country.create(name: 'Belgium', population: 10839905)
Country.create(name: 'Netherlands', population: 16680000)

97

CHAPTER 3 ACTIVERECORD

You then populate it with data via rails db:seed.
If you want to delete the existing database, re-create it, and then populate it with the
seeds, you can use rails db:reset. That’s what you do here:

$ rails db:reset

Dropped database 'db/development.sqlite3’

Dropped database 'db/test.sqlite3’

Created database 'db/development.sqlite3’

Created database 'db/test.sqlite3’

-- create table("countries", {:force=>:cascade})
-> 0.0050s

-- create_table("countries", {:force=>:cascade})
-> 0.0032s

I use the file db/seeds. rb at this point because it offers a simple mechanism for
filling an empty database with useful values. In the course of this book, this will make it
easier to set up quick example scenarios.

It’s All Just Ruby Code

db/seeds.rb is a Ruby program. Correspondingly, you can also use the approach shown
in Listing 3-6 as an alternative.

Listing 3-6. db/seeds.rb

country list = [
["Germany", 81831000],
["France", 65447374],
["Belgium", 10839905],
["Netherlands", 16680000]

country list.each do |name, population|
Country.create(name: name, population: population)
end

The result is the same. I am showing you this example to make it clear that you can
program normally within db/seeds . rb.

98

CHAPTER 3 ACTIVERECORD

Generating seeds.xb from Existing Data

Sometimes it can be useful to export the current data pool of a Rails application into
db/seeds.rb. While writing this book, I encountered this problem in almost every
chapter. Unfortunately, there is no standard approach for this. I am showing you what
you can do in this case. There are other, more complex scenarios that can be derived
from my approach.

You can create your own little rake task for that, as shown in Listing 3-7. A rake task is
a Ruby program that is stored in the 1ib/tasks/ directory and that has full access to the
Rails environment.

Listing 3-7. lib/tasks/export.rake

namespace :export do
desc "Prints Country.all in a seeds.rb way."
task :seeds format => :environment do
Country.order(:id).all.each do |country|
bad keys = ['created at', 'updated at', 'id']
serialized = country.serializable_hash.
delete if{|key,value| bad keys.include?(key)}
puts "Country.create(#{serialized})"
end
end
end

Then you can call the corresponding rake task with the command
rails export:seeds format.

$ rails export:seeds format

Country.create({"name"=>"Germany", "population"=>81831000})
Country.create({"name"=>"France", "population"=>65447374})
Country.create({"name"=>"Belgium", "population"=>10839905})
Country.create({"name"=>"Netherlands", "population"=>16680000})

You can either expand this program so that the output is written directly into
db/seeds.rb or simply use the shell.

$ rails export:seeds format > db/seeds.rb

99

CHAPTER 3 ACTIVERECORD

Searching and Finding with Queries

The methods first and all are already quite nice, but usually you want to search for
something more specific with a query.
For describing queries, you create a new Rails project.

$ rails new jukebox
[...]
$ cd jukebox
$ rails generate model Album name release year:integer

[...]

$ rails db:migrate

[...]

For the examples used here, use db/seeds .rb with the content shown in Listing 3-8.

Listing 3-8. db/seeds.rb

Album.create(name: "Sgt. Pepper's Lonely Hearts Club Band", release year: 1967)
Album.create(name: "Pet Sounds", release year: 1966)

Album.create(name: "Revolver", release year: 1966)

Album.create(name: "Highway 61 Revisited", release year: 1965)
Album.create(name: "Rubber Soul", release year: 1965)

Album.create(name: "What's Going On", release year: 1971)
Album.create(name: "Exile on Main St.", release year: 1972)
Album.create(name: "London Calling", release year: 1979)

Album.create(name: "Blonde on Blonde", release year: 1966)
Album.create(name: "The Beatles", release year: 1968)

Then, set up the new database with rails db:reset.

$ rails db:reset

Dropped database 'db/development.sqlite3’

Database 'db/test.sqlite3' does not exist

Created database 'db/development.sqlite3’

Created database 'db/test.sqlite3’

-- create_table("active storage attachments", {:force=>:cascade})
-> 0.0074s

100

CHAPTER 3 ACTIVERECORD

-- create_table("active storage blobs", {:force=>:cascade})
-> 0.0033s
-- create table("albums", {:force=>:cascade})
-> 0.0020s
-- create_table("active storage attachments", {:force=>:cascade})
-> 0.0077s
-- create_table("active storage blobs", {:force=>:cascade})
-> 0.0040s
-- create table("albums", {:force=>:cascade})
-> 0.0021s

find

The simplest case is searching for a record via a primary key (by default, the id field in
the database table). If I know the ID of an object, then I can search for the individual
object or several objects at once via the ID.

$ rails console
Running via Spring preloader in process 26956
Loading development environment (Rails 5.2.0)
>> Album.find(2)
Album Load (0.2ms) SELECT "albums".* FROM "albums"
WHERE "albums"."id" = ? LIMIT ? [["id", 2], ["LIMIT", 1]]
=> #<Album id: 2, name: "Pet Sounds", release year: 1966,
created at: "2017-03-22 18:19:06", updated at: "2017-03-22 18:19:06">
>> Album.find([1,3,7])
Album Load (0.4ms) SELECT "albums".* FROM "albums"
WHERE "albums"."id" IN (1, 3, 7)
=> [#<Album id: 1, name: "Sgt. Pepper's Lonely Hearts Club Band",
release year: 1967, created at: "2017-03-22 18:19:06",
updated at: "2017-03-22 18:19:06">, #<Album id: 3, name: "Revolver”,
release year: 1966, created at: "2017-03-22 18:19:06",
updated at: "2017-03-22 18:19:06">, #<Album id: 7,
name: "Exile on Main St.", release year: 1972,
created at: "2017-03-22 18:19:06", updated at: "2017-03-22 18:19:06">]

101

CHAPTER 3 ACTIVERECORD

If you always want to have an array as the result, you also always have to pass an
array as a parameter.

>> Album.find(5).class

Album Load (0.2ms) SELECT "albums".* FROM "albums"

WHERE "albums"."id" = ? LIMIT ? [["id", 5], ["LIMIT", 1]]
=> Album(id: integer, name: string, release year: integer,
created at: datetime, updated at: datetime)
>> Album.find([5]).class

Album Load (0.1ms) SELECT "albums".* FROM "albums"

WHERE "albums"."id" = ? LIMIT ? [["id", 5], ["LIMIT", 1]]
=> Array
>> exit

A The method find generates an exception if the ID you are searching for
does not have a record in the database.

where

With the method where, you can search for specific values in the database. Let’s search
for all albums from the year 1966.

$ rails console

Running via Spring preloader in process 27119
Loading development environment (Rails 5.2.0)
>> Album.where(release year: 1966)

Album Load (0.2ms) SELECT "albums".* FROM "albums"

WHERE "albums"."release year" = ? [["release year", 1966]]
=> #<ActiveRecord: :Relation [#<Album id: 2, name: "Pet Sounds",
release year: 1966, created at: "2017-03-22 18:19:06",
updated at: "2017-03-22 18:19:06">, #<Album id: 3,
name: "Revolver", release year: 1966,
created at: "2017-03-22 18:19:06", updated at: "2017-03-22 18:19:06">,
#<Album id: 9, name: "Blonde on Blonde", release year: 1966,

102

CHAPTER 3 ACTIVERECORD

created at: "2017-03-22 18:19:06", updated at: "2017-03-22 18:19:06">]>
>> Album.where(release year: 1966).count

(0.3ms) SELECT COUNT(*) FROM "albums"

WHERE "albums"."release year" = ? [["release year", 1966]]
=> 3

You can also use where to search for ranges.

>> Album.where(release year: 1960..1966).count
(0.3ms) SELECT COUNT(*) FROM "albums"
WHERE ("albums"."release year" BETWEEN ? AND ?)
[["release year", 1960], ["release year", 1966]]
=>5

In addition, you can specify several search factors simultaneously, separated by
commas.

>> Album.where(release year: 1960..1966, id: 1..5).count
(0.4ms) SELECT COUNT(*) FROM "albums"
WHERE ("albums"."release year"™ BETWEEN ? AND ?)
AND ("albums"."id" BETWEEN ? AND ?) [["release year", 1960],
["release year", 1966], ["id", 1], ["id", 5]]
=> 4

Or you can specify an array of parameters.

>> Album.where(release year: [1966, 1968]).count
(0.2ms) SELECT COUNT(*) FROM "albums"
WHERE "albums"."release year" IN (1966, 1968)
=>4

The result of where is always an array, even if it contains only one hit or if no hit is
returned (which will result in an empty array). If you are looking for the first hit, you
need to combine the method where with the method first.

>> Album.where(release year: [1966, 1968]).first
Album Load (0.4ms) SELECT "albums".* FROM "albums"
WHERE "albums"."release year" IN (1966, 1968)
ORDER BY "albums"."id" ASC LIMIT ? [["LIMIT", 1]]

103

CHAPTER 3 ACTIVERECORD

=> #<Album id: 2, name: "Pet Sounds", release year: 1966,
created at: "2017-03-22 18:19:06", updated at: "2017-03-22 18:19:06">
>> exit

not

The method not provides a way to search for the exact opposite of a where query. Here’s
an example:

$ rails console
Running via Spring preloader in process 27349
Loading development environment (Rails 5.2.0)
>> Album.where.not(release year: 1968).count
(0.2ms) SELECT COUNT(*) FROM "albums"
WHERE ("albums"."release year" != ?) [["release year", 1968]]
=> 9
>> exit

or

The method or provides a way to combine queries with a logical or. Here’s an example:

$ rails console

Running via Spring preloader in process 27449

Loading development environment (Rails 5.2.0)

>> Album.where(release year: 1967).or(Album.where(name: 'The Beatles')).count
(0.2ms) SELECT COUNT(*) FROM "albums"
WHERE ("albums"."release year"™ = ? OR "albums"."name" = ?)
[["release year", 1967], ["name", "The Beatles"]]

=> 2

>> exit

SQL Queries with where

Sometimes there is no other way, and you just have to define and execute your own SQL
query. In ActiveRecord, there are two different ways of doing this. One sanitizes each
query before executing it, and the other passes the query on to the SQL database one to

104

CHAPTER 3 ACTIVERECORD

one as it is. Normally, you should always use the sanitized version because otherwise
you can easily fall victim to an SQL injection attack (see http://en.wikipedia.org/
wiki/Sql_injection).

O If you do not know much about SQL, you can safely skip this section. The
SQL commands used here are not explained further.

Sanitized Queries

In this variant, all dynamic search parts are replaced with a question mark as a
placeholder and only listed as parameters after the SQL string.

In the following example, you are searching for all albums whose name contains the
string "on":

$ rails console
Running via Spring preloader in process 27553
Loading development environment (Rails 5.2.0)
>> Album.where('name like ?', '%on%').count
(0.1ms) SELECT COUNT(*) FROM "albums" WHERE (name like '%on%")
=>5

Now you're searching for the number of albums that were published from 1965
onward.

>> Album.where('release year > ?', 1964).count
(0.2ms) SELECT COUNT(*) FROM "albums" WHERE (release year > 1964)
=> 10

Here are the number of albums that are more recent than 1970 and whose name
contains the string "on":

>> Album.where('name like ? AND release year > ?', '%on%', 1970).count
(0.4ms) SELECT COUNT(*) FROM "albums" WHERE (name like '%on%'
AND release _year > 1970)

:)3

105

http://en.wikipedia.org/wiki/Sql_injection
http://en.wikipedia.org/wiki/Sql_injection

CHAPTER 3 ACTIVERECORD

If the variable search_string contains the desired string, you can search for it as
follows:

>> search_string = 'ing'
=> "ing"
>> Album.where('name like ?', "%#{search string}%").count
(0.2ms) SELECT COUNT(*) FROM "albums" WHERE (name like '%ing%")
=> 2

>> exit

Dangerous SQL Queries

If you really know what you are doing, you can of course also define the SQL query
completely and forego the sanitizing of the query.
Let’s count all albums whose name contains the string "on".

$ rails console
Running via Spring preloader in process 27699
Loading development environment (Rails 5.2.0)
>> Album.where("name like '%on%'").count
(0.2ms) SELECT COUNT(*) FROM "albums" WHERE (name like '%on%")
=> 5
>> exit

Please use this variation only if you know exactly what you are doing and after you
have familiarized yourself with the topic SQL injections (see http://en.wikipedia.org/
wiki/Sql_injection).

Lazy Loading

Lazy loading is a mechanism that carries out a database query only if the program flow
cannot be realized without the result of this query. Until then, the query is saved as
ActiveRecord: :Relation.

O Incidentally, the opposite of lazy loading is referred to as eager loading.

106

http://en.wikipedia.org/wiki/Sql_injection
http://en.wikipedia.org/wiki/Sql_injection

CHAPTER 3 ACTIVERECORD

Does it make sense in principle but you aren’t sure what the point of it all is? Then
let’s cobble together a query where you nest several methods. In the following example, a
is defined more and more closely, and only at the end (when calling the method all) the
database query would really be executed in a production system. With the ActiveRecord
methods to_sql, you can display the current SQL query.

$ rails console

Running via Spring preloader in process 27764

Loading development environment (Rails 5.2.0)

>> a = Album.where(release year: 1965..1968)
Album Load (0.2ms) SELECT "albums".* FROM "albums" WHERE
("albums"."release year" BETWEEN 1965 AND 1968)

=> #i<ActiveRecord: :Relation [#<Album id: 1, [...]]>

>> a.class

=> Album: :ActiveRecord Relation

>> a = a.order(:release_year)
Album Load (0.3ms) SELECT "albums".* FROM "albums" WHERE
("albums"."release year" BETWEEN 1965 AND 1968) ORDER BY
"albums"."release year" ASC

=> #<ActiveRecord: :Relation [#<Album id: 4, [...]]>

>> a = a.limit(3)
Album Load (0.4ms) SELECT "albums".* FROM "albums" WHERE
("albums"."release year" BETWEEN 1965 AND 1968) ORDER BY
"albums"."release year" ASC LIMIT 3

=> #<ActiveRecord: :Relation [#<Album id: 4, [...]]>

>> exit

The console can be a bit tricky about this. It tries to help the developer by actually
showing the result, but in a nonconsole environment, this would only happen the last time.

Automatic Optimization

One of the great advantages of lazy loading is the automatic optimization of the SQL
query through ActiveRecord.

Let’s take the sum of all the release years of the albums that came out in the 1970s.
Then you sort the albums alphabetically and calculate the sum.

107

CHAPTER 3 ACTIVERECORD

$ rails console

Running via Spring preloader in process 27764

Loading development environment (Rails 5.2.0)

>> Album.where(release year: 1970..1979).sum(:release year)
(1.5ms) SELECT SUM("albums"."release year") FROM "albums" WHERE
("albums"."release year" BETWEEN 1970 AND 1979)

=> 5922

>> Album.where(release year: 1970..1979).order(:name).sum(:release year)
(0.3ms) SELECT SUM("albums"."release year") FROM "albums" WHERE
("albums"."release year" BETWEEN 1970 AND 1979)

=> 5922

>> exit

Logically, the result is the same for both queries. But the interesting thing is that
ActiveRecord uses the same SQL code for both queries. It has detected that order is
completely irrelevant for sum and therefore took it out altogether.

O If you are asking yourself why the first query took 1.5ms and the second
0.3ms, ActiveRecord cached the results of the first SQL request.

order and reverse_order

To sort a database query, you can use the method order.
Here’s an example of all albums from the 1960s, sorted by name:

$ rails console

Running via Spring preloader in process 27764

Loading development environment (Rails 5.2.0)

>> Album.where(release year: 1960..1969).order(:name)
Album Load (0.2ms) SELECT "albums".* FROM "albums" WHERE
("albums"."release year" BETWEEN 1960 AND 1969) ORDER BY "albums"."name"
ASC

=> #<ActiveRecord: :Relation [#<Album id: 9, name: "Blonde on Blonde" [...]]>

108

CHAPTER 3 ACTIVERECORD

With the method reverse_order, you can reverse an order previously defined via
order.

>> Album.where(release year: 1960..1969).order(:name).reverse order
Album Load (0.3ms) SELECT "albums".* FROM "albums" WHERE
("albums"."release year" BETWEEN 1960 AND 1969) ORDER BY "albums"."name"
DESC

=> #<ActiveRecord: :Relation [#<Album id: 10, name: "The Beatles" [...]]>

limit

The result of any search can be limited to a certain range via the method 1imit.
Here are the first five albums from the 1960s:

>> Album.where(release year: 1960..1969).1imit(5)
Album Load (0.3ms) SELECT "albums".* FROM "albums" WHERE
("albums"."release year" BETWEEN 1960 AND 1969) LIMIT 5

=> #<ActiveRecord: :Relation [#<Album id: 1, [...]]>

Here are all albums sorted by name and then the first five of those:

>> Album.order(:name).limit(5)
Album Load (0.4ms) SELECT "albums".* FROM "albums" ORDER BY
"albums"."name" ASC LIMIT 5

=> #<ActiveRecord: :Relation [#<Album id: 9, name: "Blonde [...]]>

offset

With the method offset, you can define the starting position of the method limit.
First, you return the first two records and then the first two records with an offset of 5.

>> Album.limit(2)
Album Load (1.0ms) SELECT "albums".* FROM "albums" LIMIT 2
=> #<ActiveRecord: :Relation [#<Album id: 1, [...]>, #<Album id: 2, [...]]>
>> Album.limit(2).offset(5)
Album Load (0.3ms) SELECT "albums".* FROM "albums" LIMIT 2 OFFSET 5
=> #i<ActiveRecord: :Relation [#<Album id: 6, [...]>, #<Album id: 7, [...]>]>

109

CHAPTER 3 ACTIVERECORD

group

With the method group, you can return the result of a query in grouped form.
Let’s return all albums, grouped by their release_year.

$ rails console
Running via Spring preloader in process 27764
Loading development environment (Rails 5.2.0)
>> Album.group(:release_year)
Album Load (0.3ms) SELECT "albums".* FROM "albums" GROUP BY
"albums"."release year"
=> #<ActiveRecord: :Relation [#<Album id: 5, name: "Rubber Soul",
release year: 1965, created at: “2015-12-16 17:45:34”, updated at: “2015-
12-16 17:45:34”>, #<Album id: 9, name: “Blonde on Blonde”, release year:
1966, created at:”2015-12-16 17:45:34”, updated at: “2015-12-16 17:45:34”>,
#<Album id: 1,name: “Sgt. Pepper’s Lonely Hearts Club Band”, release_ year:
1967, created at:”2015-12-16 17:45:34”, updated at: “2015-12-16 17:45:34”>,
#<Album id: 10,name: “The Beatles”, release year: 1968, created at: “2015-
12-16 17:45:34”,updated_at: “2015-12-16 17:45:34”>, #<Album id: 6, name:
“What’s Going On”,release_year: 1971, created at: “2015-12-16 17:45:34”,
updated at: “2015-12-16 17:45:34”>, #<Album id: 7, name: “Exile on Main
St.”, release year: 1972,created at: “2015-12-16 17:45:34”, updated at:
“2015-12-16 17:45:34”>, #<Albumid: 8, name: “London Calling”, release_
year: 1979, created at: “2015-12-16 17:45:34”, updated at: “2015-12-16
17:45:34”>]>>> exit

pluck

Normally, ActiveRecord pulls all table columns from the database and leaves it up to
programmers to later pick out the components they are interested in. But when you have
alarge amount of data, it can be useful and, above all, much quicker to define a specific
database field directly for the query. You can do this via the method pluck.

110

CHAPTER 3 ACTIVERECORD

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> Album.where(release year: 1960..1969).pluck(:name)
(0.2ms) SELECT "albums"."name" FROM "albums"
WHERE ("albums"."release year" BETWEEN ? AND ?)
[["release year", 1960], ["release year", 1969]]
=> ["Sgt. Pepper's Lonely Hearts Club Band", "Pet Sounds", "Revolver",
"Highway 61 Revisited", "Rubber Soul", "Blonde on Blonde", "The Beatles"]

As aresult, pluck returns an array. You can pluck more than one field too.

>> Album.where(release year: 1960..1969).pluck(:name, :release year)
(0.3ms) SELECT "albums"."name", "albums"."release year"
FROM "albums" WHERE ("albums"."release year" BETWEEN ? AND ?)
[["release year", 1960], ["release year", 1969]]

=> [["Sgt. Pepper's Lonely Hearts Club Band", 1967],

["Pet Sounds", 1966], ["Revolver", 1966], ["Highway 61 Revisited", 1965],

["Rubber Soul", 1965], ["Blonde on Blonde", 1966], ["The Beatles", 1968]]

select

select works like pluck but returns an ActiveRecord: :Relation.

>> Album.where(release year: 1960..1969).select(:name)
Album Load (0.2ms) SELECT "albums"."name" FROM "albums"
WHERE ("albums"."release year" BETWEEN 1960 AND 1969)

=> #<ActiveRecord: :Relation [#<Album id: nil,

name: "Sgt. Pepper's Lonely Hearts Club Band">,

#<Album id: nil, name: "Pet Sounds">,

#<Album id: nil, name: "Revolver"s,

#<Album id: nil, name: "Highway 61 Revisited">,

#<Album id: nil, name: "Rubber Soul">,

#<Album id: nil, name: "Blonde on Blonde">,

#<Album id: nil, name: "The Beatles">]>

111

CHAPTER 3 ACTIVERECORD

first_or create and first_or _initialize

The methods first or createand first or initialize are ways to search for a
specific entry in your database or create one if the entry doesn’t exist already. Both have
to be chained to a where search.

>> Album.where(name: 'Test')
Album Load (0.2ms) SELECT "albums".* FROM "albums"
WHERE "albums"."name" = ? [["name", "Test"]]
=> #<ActiveRecord: :Relation []>
>> test = Album.where(name: 'Test').first or create
Album Load (0.3ms) SELECT "albums".* FROM "albums"
WHERE "albums"."name" = ? ORDER BY "albums"."id" ASC LIMIT 1
[["name", "Test"]]
(0.1ms) begin transaction
SQL (0.4ms) INSERT INTO "albums" ("name", "created at", "updated at")
VALUES (?, ?, ?) [["name", "Test"],
["created at", "2015-12-16 18:34:35.775645"],
["updated at", "2015-12-16 18:34:35.775645"]]
(9.2ms) commit transaction
=> #<Album id: 11, name: "Test", release year: nil,
created at: "2015-12-16 18:34:35", updated at: "2015-12-16 18:34:35">

Calculations

Here are some examples of calculations.

average

With the method average, you can calculate the average of the values in a particular
column of the table. The data material is of course not really suited to this. But as an
example, let’s calculate the average release year of all albums and then do the same for
albums from the 1960s.

112

CHAPTER 3 ACTIVERECORD

>> Album.average(:release year)
(0.3ms) SELECT AVG("albums"."release year") FROM "albums"

=> #<BigDecimal:7fd76fd027a0, '0.19685E4",18(36)>

>> Album.average(:release year).to_ s
(0.2ms) SELECT AVG("albums"."release year") FROM "albums"

=> "1968.5"

>> Album.where(:release_year => 1960..1969).average(:release year)
(0.1ms) SELECT AVG("albums"."release year") FROM "albums" WHERE
("albums"."release year" BETWEEN 1960 AND 1969)

=> #<BigDecimal:7{d76fc908d0, '0.1966142857 14286E4',27(36)>

>> Album.where(:release year => 1960..1969).average(:release year).to_ s
(0.3ms) SELECT AVG("albums"."release year") FROM "albums" WHERE
("albums"."release year" BETWEEN 1960 AND 1969)

=> "1966.14285714286"

count

The name says it all: the method count counts the number of records.

>>

=>

First, you return the number of all albums in the database and then the number of
albums from the 1960s.

Album.count
(0.1ms) SELECT COUNT(*) FROM "albums"
11

maximum

With the method maximum, you can output the item with the highest value within a query.

>>

=>

Let’s look for the highest release year.

Album.maximum(:release_year)
(0.2ms) SELECT MAX("albums"."release year") FROM "albums"
1979

113

CHAPTER3 ACTIVERECORD
minimum

With the method minimum, you can output the item with the lowest value within a query.
Let’s find the lowest release year.

>> Album.minimum(:release year)
(0.2ms) SELECT MIN("albums"."release year") FROM "albums"
=> 1965

sum

With the method sum, you can calculate the sum of all items in a specific column of the
database query.
Let’s find the sum of all release years.

>> Album.sum(:release_year)
(0.2ms) SELECT SUM("albums"."release year") FROM "albums"
=> 19685

SQL EXPLAIN

Most SQL databases can provide detailed information on a SQL query with the
command EXPLAIN. This does not make much sense for your mini application, but if you
are working with a large database one day, then EXPLAIN is a good debugging method,
for example to find out where to place an index. SQL EXPLAIN can be called with the
method explain (it will be displayed in prettier form if you add puts).

>> Album.where(release year: 1960..1969)
Album Load (0.2ms) SELECT "albums".* FROM "albums" WHERE
("albums"."release year" BETWEEN 1960 AND 1969)

=> #i<ActiveRecord: :Relation [#<Album id: 1, [...]>]>

>> Album.where(release year: 1960..1969).explain
Album Load (0.3ms) SELECT "albums".* FROM "albums" WHERE
("albums"."release year" BETWEEN 1960 AND 1969)

=> EXPLAIN for: SELECT "albums".* FROM "albums" WHERE (“"albums"."release year"

BETWEEN 1960 AND 1969)

0|0|0|SCAN TABLE albums

114

CHAPTER 3 ACTIVERECORD

Batches

ActiveRecord stores the results of a query in memory, with very large tables and results
that can become a performance issue. To address this, you can use the find_each
method that splits up the query into batches with the default size of 1,000 (can be
configured with the :batch_size option). The example Album table is too small to show
the effect, but the method would be used like this:

>> Album.where(release year: 1960..1969).find each do |album|

?> puts album.name.upcase

>> end
Album Load (0.2ms) SELECT "albums".* FROM "albums" WHERE
("albums"."release year" BETWEEN 1960 AND 1969) ORDER BY "albums"."id" ASC
LIMIT 1000

SGT. PEPPER'S LONELY HEARTS CLUB BAND

PET SOUNDS

REVOLVER

HIGHWAY 61 REVISITED

RUBBER SOUL

BLONDE ON BLONDE

THE BEATLES

=> nil

Editing a Record

Adding and searching data is quite nice, but often you want to edit a record. To show
how that’s done, I use the album database covered in the section “Searching and Finding
with Queries.”

Simple Editing

You can edit record with the following steps:
1. Find the record and create a corresponding instance.
2. Change the attribute.

3. Save the record via the ActiveRecord method’s save method.

115

CHAPTER 3 ACTIVERECORD
Here you are searching for the album The Beatles and changing its name to A Test:

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> beatles album = Album.where(name: 'The Beatles').first
Album Load (0.2ms) SELECT "albums".* FROM "albums"
WHERE "albums"."name" = ? ORDER BY "albums"."id" ASC LIMIT 1
[["name", "The Beatles"]]
=> #<Album id: 10, name: "The Beatles", release year: 1968,
created at: "2015-12-16 17:45:34", updated at: "2015-12-16 17:45:34">
>> beatles_album.name
=> "The Beatles"
>> beatles_album.name = 'A Test'
=> "A Test"
>> beatles album.save
(0.1ms) begin transaction
SQL (0.6ms) UPDATE "albums" SET "name" = ?, "updated at" = ?
WHERE "albums"."id" = ? [["name", "A Test"],
["updated at", "2015-12-16 18:46:03.851575"], ["id", 10]]
(9.2ms) commit transaction
=> true
>> exit

Active Model Dirty

ActiveModel: :Dirty provides simple mechanisms to track the changes of an
ActiveRecord model.

changed?

If you are not sure whether a record has been changed or saved yet, you can check via
the method changed?.

>> beatles album = Album.where(id: 10).first
Album Load (0.4ms) SELECT "albums".* FROM "albums" WHERE "albums"."id" = ?
ORDER BY "albums"."id" ASC LIMIT 1 [["id", 10]]

116

CHAPTER 3 ACTIVERECORD

=> #<Album id: 10, name: "A Test", release year: 1968, created at:

"2015-12-16

17:45:34", updated at: "2015-12-16 18:46:03">

>> beatles_album.changed?

=> false

>> beatles_album.name = 'The Beatles'

=> "The Beatles"

>> beatles_album.changed?

=> true

>> beatles album.save
(0.1ms) begin transaction SQL (0.6ms) UPDATE "albums" SET "name" = ?,
"updated at" = ? WHERE "albums"."id" = ? [["name", "The Beatles"],
["updated at", "2015-12-16 18:47:26.794527"], ["id", 10]] (9.2ms) commit
transaction

=> true

>> beatles album.changed?

=> false

_changed?
An attribute name followed by _changed? tracks changes to a specific attribute.

>> beatles album = Album.where(id: 10).first
Album Load (0.5ms) SELECT "albums".* FROM "albums" WHERE "albums"."id"
= ? ORDER BY "albums"."id" ASC LIMIT ? [["id", 10], ["LIMIT", 1]]
=> #<Album id: 10, name: "The Beatles", release year: 1968, created at:
"2016-01-21 10:15:51", updated at: "2016-01-21 10:15:51">
>> beatles_album.release year changed?
=> false
>> beatles_album.release year = 1900
=> 1900
>> beatles album.release year changed?
=> true

117

CHAPTER 3 ACTIVERECORD

update

With the method update, you can change several attributes of an object in one go and
then immediately save them automatically.
Let’s use this method within the example from the section “Simple Editing.”

>> first_album = Album.first
Album Load (0.1ms) SELECT "albums".* FROM "albums" ORDER BY
"albums"."id" ASC LIMIT ? [["LIMIT", 1]]
=> #<Album id: 1, name: "Sgt. Pepper's Lonely Hearts Club Band", release_
year: 1967, created at: "2016-01-21 10:15:51", updated at: "2016-01-21
10:15:51">
>> first_album.changed?
=> false
>> first album.update(name: 'Another Test')
(0.1ms) begin transaction
SQL (0.4ms) UPDATE "albums" SET "name" = ?, "updated at" = ? WHERE
"albums"."id" = ? [["name", "Another Test"], ["updated at", 2016-01-21
12:11:27 UTC], ["id", 1]]
(0.9ms) commit transaction
=> true
>> first_album.changed?
=> false
>> first_album
=> #<Album id: 1, name: "Another Test", release year: 1967, created at:
"2016-01-21 10:15:51", updated at: "2016-01-21 12:11:27">

Locking

There are many ways to lock a database. By default, Rails uses the optimistic locking

of records. To activate locking, a model needs to have an attribute with the name
lock_version, which has to be an integer. To show how it works, I'll create a new Rails
project with a Product model. Then I'll try to change the price of the first Product on two
different instances. The second change will raise an ActiveRecord: : StaleObjectError.

118

CHAPTER 3 ACTIVERECORD

Here’s an example setup:

$ rails new shop
[...]
$ cd shop
$ rails generate model Product name 'price:decimal{8,2}'
lock_version:integer
[...]
$ rails db:migrate
[...]
$

Here’s an example of raising an ActiveRecord: : StaleObjectError:

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> Product.create(name: 'Orange', price: 0.5)
(0.1ms) begin transaction SQL (0.7ms) INSERT INTO "products" (“"name",
"price", "created at", "updated at", "lock version")
VALUES (?, ?, ?, 2, ?) [["name", "Orange"], ["price", 0.5],
["created at", "2015-12-16 19:02:17.338531"],
["updated at", "2015-12-16 19:02:17.338531"],
["lock version", 0]]
(1.0ms) commit transaction
=> #<Product id: 1, name: "Orange", price:
#<BigDecimal:7feb59231198, '0.5E0"',9(27)>, lock version: 0, created at:
"2015-12-16 19:02:17", updated at: "2015-12-16 19:02:17">
>> a = Product.first
Product Load (0.4ms) SELECT “products".* FROM "products" ORDER BY
"products"."id" ASC LIMIT 1
=> #<Product id: 1, name: "Orange", price:
#<BigDecimal:7feb5918a870, '0.5E0"',9(27)>, lock version: 0, created at:
"2015-12-16 19:02:17", updated at: "2015-12-16 19:02:17">
>> b = Product.first
Product Load (0.3ms) SELECT “products".* FROM "products" ORDER BY
"products”."id" ASC LIMIT 1 => #<Product id: 1, name: "Orange", price:

119

CHAPTER 3 ACTIVERECORD

#<BigDecimal:7feb59172d60, '0.5E0',9(27)>, lock version: 0, created at:
"2015-12-16 19:02:17", updated at: "2015-12-16 19:02:17">
>> a.price = 0.6
=> 0.6
>> a.save
(0.1ms) begin transaction
SQL (0.4ms) UPDATE "products" SET "price" = 0.6, "updated at" =
'2015-12-16 19:02:59.514736°, “lock version” = 1 WHERE “products”.”id” = ? AND
"products”."lock version" = ? [["id", 1], ["lock version", 0]]
(9.1ms) commit transaction
=> true
>> b.price = 0.7
=> 0.7
>> b.save
(0.1ms) begin transaction
SQL (0.3ms) UPDATE "products" SET "price" = 0.7, "updated at" =
'2015-12-16 19:03:08.408511°, “lock version” = 1 WHERE “products”.”id” = ? AND
"products"."lock version" = ? [["id", 1], ["lock version", 0]]
(0.1ms) rollback transaction
ActiveRecord::StaleObjectError: Attempted to update a stale object: Product
[...]

>> exit

You have to deal with the conflict by rescuing the exception and then fix the conflict
depending on your business logic.

o Please make sure to add a lock _version hidden field in your forms
when using this mechanism with a WebGUI.

120

CHAPTER 3 ACTIVERECORD

has_many, a 1:n Association

To explain has_many, let’s create a food store application. Create a Category model and a
Product model. A Product belongs to a Category. It’s a 1:n association (called a one-to-
many association).

O Associations are also sometimes referred to as relations or relationships.

First, you create a Rails application.

$ rails new food store

[...]

$ cd food store
Now you create the model for the categories.

$ rails generate model Category name

[...]
$

Finally, you create the database table for the Product. In this, you need an
assignment field to the category table. This foreign key is always set by default as the
name of the referenced object (here: category) with an attached _id. You could run
the command rails generate model product name price:integer category
id:integer, but there is a better way of doing it, shown here:

$ rails generate model product name price:integer category:references
Running via Spring preloader in process 35988

invoke active record

create db/migrate/20170323074157_create_products.rb

create app/models/product.rb

invoke test unit

create test/models/product_test.rb

create test/fixtures/products.yml

Why is it better? It creates a different kind of migration that includes a foreign key
optimization, as shown in Listing 3-9.

121

CHAPTER 3 ACTIVERECORD

Listing 3-9. db/migrate/20170323074157_create_products.rb

class CreateProducts < ActiveRecord::Migration[5.1]
def change
create table :products do |t
t.string :name
t.integer :price
t.references :category, foreign key: true

t.timestamps
end
end
end

Then execute rails db:migrate so that the database tables are actually created.
$ rails db:migrate
Let’s take a look at this on the console:

$ rails console

Running via Spring preloader in process 36245

Loading development environment (Rails 5.2.0)

>> Category.column_names

=> ["id", "name", "created at", "updated at"]

>> Product.column_names

=> ["id", "name", "price", "category id", "created at", "updated at"]
>> exit

The two database tables are set up and can be used with ActiveRecord. And because
you used category:references, it automatically inserted the belongs to relationship
into the Product model, as shown in Listing 3-10.

Listing 3-10. app/models/product.rb

class Product < ApplicationRecord
belongs_to :category
end

122

CHAPTER 3 ACTIVERECORD

But you have to add the has_many part manually in the Category model, as shown in
Listing 3-11.

Listing 3-11. app/models/category.rb

class Category < ApplicationRecord
has_many :products
end

That’s all you need to do to tell ActiveRecord about the 1:n relation. These two
simple definitions form the basis for a good deal of ActiveRecord magic. It will generate
a bunch of cool new methods for you to link both models.

Creating Records

In this example, you want to save a record for the product Apple, which belongs to the
category Fruits. Fire up your console and follow my lead.

create

First create a new category for the fruits.

$ rails console
Running via Spring preloader in process 37142
Loading development environment (Rails 5.2.0)
>> fruits = Category.create(name: "Fruits")
(0.1ms) begin transaction
SQL (0.5ms) INSERT INTO "categories"
("name", "created at", "updated at") VALUES (?, ?, ?)
[["name", "Fruits"], ["created at", "2017-03-23 07:55:13.482884"],
["updated at", "2017-03-23 07:55:13.482884"]]
(2.3ms) commit transaction
=> #<Category id: 1, name: "Fruits"”,
created _at: "2017-03-23 07:55:13",
updated_at: "2017-03-23 07:55:13">

123

CHAPTER 3 ACTIVERECORD

Because the Category model has a has_many :products definition, it provides a
products method, which you can use to get all the products of a given category.

>> fruits.products
Product Load (0.2ms) SELECT "products".* FROM "products" WHERE

"products"."category id" = ? [["category id", 1]]
=> #<ActiveRecord: :Associations::CollectionProxy []>

But it gets even better. You can chain the create method after fruits.products to
actually create a new product, which has the correct category id.

>> apple = fruits.products.create(name: "Apple", price: 1)
(0.1ms) begin transaction
SQL (0.4ms) INSERT INTO "products"
("name", "price", "category id", "created at", "updated at")
VALUES (?, ?, 2, 2, ?) [["name", "Apple"], ["price", 1],
["category id", 1], ["created at", "2017-03-23 08:00:39.595699"],
["updated_at", "2017-03-23 08:00:39.595699"]]
(3.4ms) commit transaction
=> #<Product id: 1, name: "Apple", price: 1, category id: 1,
created at: "2017-03-23 08:00:39", updated at: "2017-03-23 08:00:39">

Of course, this can be done manually too.

>> pineapple = Product.create(name: "Pineapple", price: 2, category id: 1)
(0.1ms) begin transaction
Category Load (0.3ms) SELECT "categories".* FROM "categories"
WHERE "categories"."id" = ? LIMIT ? [["id", 1], ["LIMIT", 1]]
SQL (0.4ms) INSERT INTO "products"
("name", "price", "category id", "created at", "updated at")
VALUES (?, ?, ?, ?, ?) [["name", "Pineapple"], ["price", 2],
["category id", 1], ["created at", "2017-03-23 08:04:16.382548"],
["updated at", "2017-03-23 08:04:16.382548"]]
(2.5ms) commit transaction
=> #<Product id: 2, name: "Pineapple", price: 2, category id: 1,
created at: "2017-03-23 08:04:16", updated at: "2017-03-23 08:04:16">

124

CHAPTER 3 ACTIVERECORD

If you don’t want to chain create after fruits.products, you can create a new
Product and fill in the category id like this:

>> orange = Product.create(name: "Orange", price: 1, category: fruits)
(0.1ms) begin transaction
SQL (1.3ms) INSERT INTO "products”
("name", "price", "category id", "created at", "updated at")
VALUES (?, ?, ?, ?, ?) [["name", "Orange"], ["price", 1],
["category id", 1], ["created at", "2017-03-23 08:15:37.575534"],
["updated_at", "2017-03-23 08:15:37.575534"]]
(2.4ms) commit transaction
=> #<Product id: 3, name: "Orange", price: 1, category id: 1,
created at: "2017-03-23 08:15:37", updated at: "2017-03-23 08:15:37">

I think the chained version is the best, but who am I to judge?
Now you have three products that belong to fruits.

>> fruits.products.count

(0.2ms) SELECT COUNT(*) FROM "products"

WHERE "products"."category id" = ? [["category id", 1]]
=> 3
>> exit

build

The method build resembles create. But the record is not saved. This happens only
after a save.

$ rails console
Running via Spring preloader in process 40092
Loading development environment (Rails 5.2.0)
>> fruits = Category.where(name: "Fruits").first
Category Load (0.1ms) SELECT "categories".* FROM "categories"
WHERE "categories"."name" = ? ORDER BY "categories"."id" ASC LIMIT ?
[["name", "Fruits"], ["LIMIT", 1]]
=> #<Category id: 1, name: "Fruits", created at: "2017-03-23 07:55:13",
updated_at: "2017-03-23 07:55:13">
>> cherry = fruits.products.build(name: "Cherry", price: 1)

125

CHAPTER 3 ACTIVERECORD

=> #<Product id: nil, name: "Cherry", price: 1, category id: 1,
created at: nil, updated at: nil>
>> cherry.save
(0.1ms) begin transaction
SQL (1.9ms) INSERT INTO "products” ("name", "price", "category id",
"created at", "updated at") VALUES (?, ?, ?, ?, ?) [["name", "Cherry"],
["price", 1], ["category id", 1],
["created at", "2017-03-23 08:22:48.044002"],
["updated_at", "2017-03-23 08:22:48.044002"]]
(2.6ms) commit transaction
=> true
>> exit

A When using create and build, you of course have to observe logical
dependencies or there will be an error. For example, you cannot chain two build
methods. Here’s an example:

>> Category.build(name: "Vegetable").products.build(name: "Potato")
NoMethodError: undefined method “build' for #
<Class :0x007f8d7c72c020>

from (irb):3

Accessing Records

To access records, first you need example data. Please populate the file db/seeds.rb with
the content shown in Listing 3-12.

Listing 3-12. db/seeds.rb

fruits = Category.create(name: "Fruits")
vegetables = Category.create(name: "Vegetables")
jams = Category.create(name: "Jams")

fruits.products.create(name: "Apple", price: 1)
fruits.products.create(name: "Banana", price: 2)

126

CHAPTER 3 ACTIVERECORD

fruits.products.create(name: "Pineapple", price: 3)
fruits.products.create(name: "Raspberry”, price: 1)
fruits.products.create(name: "Strawberry", price: 1)

vegetables.products.create(name: "Potato", price: 2)
vegetables.products.create(name: "Carrot", price: 1)
vegetables.products.create(name: "Broccoli", price: 2)
vegetables.products.create(name: "Cauliflower", price: 1)

jams.products.create(name: "Strawberry", price: 1)
jams.products.create(name: "Raspberry", price: 1)

Now drop the database and refill it with db/seeds . rb.
$ rails db:reset
You already know how to access the products of a given category.

$ rails console
Running via Spring preloader in process 45107
Loading development environment (Rails 5.2.0)
>> Category.first.products.count

Category Load (0.1ms) SELECT "categories".* FROM "categories"

ORDER BY "categories"."id" ASC LIMIT ? [["LIMIT", 1]]

(0.1ms) SELECT COUNT(*) FROM "products"

WHERE "products"."category id" = ? [["category id", 1]]

=> 5

You can access the records simply via the plural form of the n model. Hm, do you
think it also works the other way around? Let’s try the singular of the 1 model.

>> Product.first.category
Product Load (0.3ms) SELECT "“products".* FROM "products"
ORDER BY "products"."id" ASC LIMIT ? [["LIMIT", 1]]
Category Load (0.2ms) SELECT "categories".* FROM "categories”
WHERE "categories"."id" = ? LIMIT ? [["id", 1], ["LIMIT", 1]]
=> #<Category id: 1, name: "Fruits", created at: "2017-03-23 14:23:16",
updated at: "2017-03-23 14:23:16">
>> exit

127

CHAPTER 3 ACTIVERECORD

Bingo! Accessing the associated Category class is also easy. And as it’s only a single
record (belongs_to), the singular form is used in this case.

O If there is no product for a category, the result will be an empty array. If no
category is associated with an product, then ActiveRecord outputs the value
nil as Category.

Searching for Records

To search for records, first you check how many products are in the database.

$ rails console
Running via Spring preloader in process 45328
Loading development environment (Rails 5.2.0)
>> Product.count

(0.1ms) SELECT COUNT(*) FROM "products"
=> 11

And you check how many categories there are.

>> Category.count
(0.1ms) SELECT COUNT(*) FROM "categories"
:}3

joins method

To find all categories that have at least one product with the name Strawberry, you use a
joins method.

>> Category.joins(:products).where(:products => {name: "Strawberry"})
Category Load (0.2ms) SELECT "categories".* FROM "categories”
INNER JOIN "products" ON "products"."category id" = "categories"."id"
WHERE "products"."name" = ? [["name", "Strawberry"]]

=> #<ActiveRecord: :Relation [#<Category id: 1, name: "Fruits”,

created at: "2017-03-23 14:33:14", updated at: "2017-03-23 14:33:14">,

128

CHAPTER 3 ACTIVERECORD

#<Category id: 3, name: "Jams", created at: "2017-03-23 14:33:14",
updated at: "2017-03-23 14:33:14">]>
>>

The database contains two categories with a product Strawberry. In the SQL, you
can see that the method joins executes an INNER JOIN.

Of course, you can also do it the other way around. You could search for the products
with the category Jams.

>> Product.joins(:category).where(:categories => {name: "Jams"})
Product Load (0.4ms) SELECT "products".* FROM "products"

INNER JOIN "categories" ON "categories"."id" = "products"."category id"
WHERE "categories"."name" = ? [["name", "Jams"]]
=> #<ActiveRecord: :Relation [#<Product id: 10, name: "Strawberry",
price: 1, category id: 3, created at: "2017-03-23 14:33:15",
updated at: "2017-03-23 14:33:15">, #<Product id: 11, name: "Raspberry”,
price: 1, category id: 3, created at: "2017-03-23 14:33:15",
updated at: "2017-03-23 14:33:15">]>

includes

includes is similar to the method joins (see the section “joins”). Again, you can use it
to search within a 1:n association. Let’s repeat the searches you just did with includes
instead of joins.

>> Category.includes(:products).where(:products => {name: "Strawberry"})
SQL (0.4ms) SELECT "categories"."id" AS t0 ro, "categories"."name"
AS to r1, "categories"."created at" AS t0_r2, "categories"."updated at"
AS to_r3, "products"."id" AS t1_r0, "products"."name" AS t1 r1,
"products”."price" AS t1 r2, "products"."category id" AS ti1 r3,
"products”."created at" AS ti1 r4, "products"."updated at" AS t1 15
FROM "categories" LEFT OUTER JOIN "products" ON

"products”."category id" = "categories"."id" WHERE
"products”."name" = ? [["name", "Strawberry"]]
=> #<ActiveRecord: :Relation [#<Category id: 1, name: "Fruits”,

created at: "2017-03-23 14:33:14", updated at: "2017-03-23 14:33:14">,

129

CHAPTER 3 ACTIVERECORD

#<Category id: 3, name: "Jams", created at: "2017-03-23 14:33:14",
updated at: "2017-03-23 14:33:14">]>
>> exit

In the console output, you can see that the SQL code is different from the joins query.
joins only reads in the Category records; includes reads the associated Product
records.

joins vs. includes

Why would you want to use includes at all? Well, if you already know before the query
that you will later need all the product data, then it makes sense to use includes,
because then you need only one database query. That is a lot faster than starting a
separate query for each one.

In that case, would it not be better to always work with includes? No, it depends on
the specific case. When you are using includes, a lot more data is transported initially.
This has to be cached and processed by ActiveRecord, which takes longer and requires
more resources.

delete and destroy

With the methods destroy, destroy all, delete, and delete_all, you can delete
records, as described in the section called “Deleting/Destroying a Record.” In the context
of has_many, this means you can delete the Product records associated with a Category
in one go.

$ rails console
Running via Spring preloader in process 46835
Loading development environment (Rails 5.2.0)
>> Category.first.products.destroy all
Category Load (0.3ms) SELECT "categories".* FROM "categories"
ORDER BY "categories"."id" ASC LIMIT ? [["LIMIT", 1]]
Product Load (0.2ms) SELECT "products".* FROM "products”
WHERE "products"."category id" = ? [["category id", 1]]
(0.1ms) begin transaction

130

CHAPTER 3 ACTIVERECORD

SQL (0.4ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 1]]
SQL (0.1ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 2]]
SQL (0.1ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 3]]
SQL (0.1ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 4]]
SQL (0.1ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 5]]

(2.8ms) commit transaction
=> [#<Product id: 1, name: "Apple", price: 1, category id: 1,
created at: "2017-03-23 14:33:15", updated at: "2017-03-23 14:33:15">,
#<Product id: 2, name: "Banana", price: 2, category id: 1,
created at: "2017-03-23 14:33:15", updated at: "2017-03-23 14:33:15">,
#<Product id: 3, name: "Pineapple", price: 3, category id: 1,
created at: "2017-03-23 14:33:15", updated at: "2017-03-23 14:33:15">,
#<Product id: 4, name: "Raspberry", price: 1, category id: 1,
created at: "2017-03-23 14:33:15", updated at: "2017-03-23 14:33:15">,
#<Product id: 5, name: "Strawberry", price: 1, category id: 1,
created at: "2017-03-23 14:33:15", updated at: "2017-03-23 14:33:15">]
>> Category.first.products.count
Category Load (0.2ms) SELECT "categories".* FROM "categories"
ORDER BY "categories"."id" ASC LIMIT ? [["LIMIT", 1]]
(0.3ms) SELECT COUNT(*) FROM "products"
WHERE "products"."category id" = ? [["category id", 1]]
=> 0
>> exit

Options

I can’t comment on all possible options at this point. But I'd like to show you the most
often used ones. For all others, please refer to the Ruby on Rails documentation that you
can find on the Internet at http://rails.rubyonrails.org/classes/ActiveRecord/
Associations/ClassMethods.html.

belongs_to

The most important option for belongs_to is this:

touch: true

131

http://rails.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html
http://rails.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html

CHAPTER 3 ACTIVERECORD

It automatically sets the field updated_at of the entry in the table Category to the
current time when a Product is edited. In app/models/product.rb, it would look like
Listing 3-13.

Listing 3-13. app/models/product.rb

class Product < ApplicationRecord
belongs to :category, touch: true
end

has_many
The most important option for has_many is as follows:
dependent: :destroy

If a category is removed, then it usually makes sense to also automatically remove all
products dependent on this category. This can be done via :dependent = :destroy in
app/models/category.rb, as shown in Listing 3-14.

Listing 3-14. app/models/category.rb

class Category < ApplicationRecord
has_many :products, dependent: :destroy
end

In the following example, you destroy the last category in the database table. All
products of this category are also automatically destroyed.

$ rails console
Running via Spring preloader in process 47105
Loading development environment (Rails 5.2.0)
>> Product.count
(0.1ms) SELECT COUNT(*) FROM “products"
=> 6
>> Category.last.destroy
Category Load (0.1ms) SELECT "categories".* FROM "categories"
ORDER BY "categories"."id" DESC LIMIT ? [["LIMIT", 1]]
(0.1ms) begin transaction

132

CHAPTER 3 ACTIVERECORD

Product Load (0.2ms) SELECT "products".* FROM "products"
WHERE "products”."category id" = ? [["category id", 3]]
SQL (0.6ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 10]]
SQL (0.1ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 11]]
SOL (0.1ms) DELETE FROM "categories" WHERE "categories"."id" = ? [["id", 3]]
(4.7ms) commit transaction
=> #<Category id: 3, name: "Jams", created at: "2017-03-23 14:33:14",
updated at: "2017-03-23 15:02:08">
>> Product.count
(0.2ms) SELECT COUNT(*) FROM "products"
=> 4
>> exit

o Please always remember the difference between the methods destroy
(see the section “destroy”) and delete (see the section “delete”). This association
works only with the method destroy.

Many-to-Many, an n:n Association

Up to now, you have always associated a database table directly with another table. For
many-to-many, you will associate two tables via a third table. As an example for this kind
of relation, let’s use an order in an online shop. In this type of shop system, a Product
can appear in several orders (Order), and at the same time an order can contain several
products. This is referred to as many-to-many. Let’s re-create this scenario with code.

Preparation

Create the shop application.

$ rails new online_shop

[...]

$ cd online_shop

133

CHAPTER 3 ACTIVERECORD
Here’s a model for the products:

$ rails generate model product name 'price:decimal{7,2}'
Here’s a model for an order:

$ rails generate model order delivery address
Here’s a model for individual items of an order:

$ rails generate model line_item order:references \
product:references quantity:integer

Then, create the database.
$ rails db:migrate

Finally, set up some example data, as shown in Listing 3-15.

Listing 3-15. db/seeds.rb

Product.create(name: 'Milk', price: 0.45)
Product.create(name: 'Butter', price: 0.75)
Product.create(name: 'Flour', price: 0.45)
Product.create(name: 'Eggs', price: 1.45)

$ rails db:seed

The Association

An order (Order) consists of one or several items (LineItem). This LineItem consists
of the order_id, a product_id, and the number of items ordered (quantity). The
individual product is defined in the product database (Product).

Associating the models happens as always in the directory app/models. First,
Listing 3-16 shows the file app/models/order.rb.

Listing 3-16. app/models/order.rb

class Order < ApplicationRecord

has many :line items

has_many :products, through: :line items
end

134

CHAPTER 3 ACTIVERECORD

Then Listing 3-17 shows the counterpart in the file app/models/product.rb.

Listing 3-17. app/models/product.rb

class Product < ApplicationRecord

has many :line items

has_many :orders, through: :line_items
end

The file app/models/line_item.rb has been filled by the generator, as shown in
Listing 3-18.

Listing 3-18. app/models/line_item.rb

class LineItem < ApplicationRecord
belongs to :order
belongs to :product

end

The Association Works Transparently

As you implement the associations via has_many, most things will already be familiar to
you from the section “has_many, a 1:n Association.” I am going to show a few examples.
First create a new Order object.

$ rails console

Running via Spring preloader in process 48290

Loading development environment (Rails 5.2.0)

>> order = Order.new(delivery address: '123 Acme Street')
=> #<Order id: nil, delivery address: "123 Acme Street"”,
created_at: nil, updated at: nil>

Logically, this new order does not yet contain any products.

>> order.products.count
=>0

135

CHAPTER 3 ACTIVERECORD

Usually, there are several ways of adding products to the order. The simplest way is
that the products are integrated as an array, and you can simply insert them as elements
of an array.

>> order.products << Product.first
Product Load (0.5ms) SELECT "products".* FROM "products”
ORDER BY "products"."id" ASC LIMIT ? [["LIMIT", 1]]

=> #<ActiveRecord: :Associations::CollectionProxy

[#<Product id: 1, name: "Milk", price: 0.45eo0,

created at: "2017-03-23 15:14:22",

updated _at: "2017-03-23 15:14:22">]>

But if the customer wants to buy three times the milk, you need to enter it in the
LineItem (in the linking element) table. ActiveRecord already built an object for you.

>> order.line_items

=> #<ActiveRecord: :Associations::CollectionProxy

[#<LineItem id: nil, order id: nil, product id: 1, quantity: nil,
created at: nil, updated at: nil>]»>

And you have access to it. So, you can change the quantity like so:

>> order.line_items.first.quantity = 3
:)3

But neither the order nor any other object has been saved in the database yet. You
have to call the save method to do this.

>> order.save
(0.1ms) begin transaction
SQL (0.6ms) INSERT INTO "orders" ("delivery address", "created at",
"updated at") VALUES (?, ?, ?) [["delivery address", "123 Acme Street"],
["created at", "2017-03-23 15:22:48.536239"],
["updated at", "2017-03-23 15:22:48.536239"]]
SQL (0.2ms) INSERT INTO "line items" ("order id", "product id",
"quantity", "created at", "updated at") VALUES (?, ?, ?, ?, ?)
[["order id", 2], ["product id", 1], ["quantity", 3],

136

CHAPTER 3 ACTIVERECORD

["created at", "2017-03-23 15:22:48.539047"],
["updated at", "2017-03-23 15:22:48.539047"]]
(2.1ms) commit transaction

=> true

Alternatively, you can also buy butter twice directly by adding a LineItem.

>> order.line items.create(product: Product.second, quantity: 2)
Product Load (0.2ms) SELECT "products".* FROM "products”
ORDER BY "products”."id" ASC LIMIT ? OFFSET ? [["LIMIT", 1],
["OFFSET", 1]]

(0.1ms) begin transaction
SQL (2.1ms) INSERT INTO "line items" ("order id", "product id",
"quantity", "created at", "updated at") VALUES (?, ?, ?, ?, ?)
[["order id", 2], ["product id", 2], ["quantity", 2],

["created at", "2017-03-23 15:25:32.991756"],

["updated at", "2017-03-23 15:25:32.991756"]]

(2.2ms) commit transaction

=> #<Llineltem id: 3, order id: 2, product id: 2, quantity: 2,

created at: "2017-03-23 15:25:32", updated at: "2017-03-23 15:25:32">

All searches and queries (including via joins and includes) work for you as a Rails
programmer the same as without the has_many. ActiveRecord takes care of the details.

Polymorphic Associations

The word polymorphic probably makes you tense up. What can it mean? Here is what
the web site http://api.rubyonrails.org/classes/ActiveRecord/Associations/
ClassMethods.html tells us: “Polymorphic associations on models are not restricted on
what types of models they can be associated with.” Well, there you go—as clear as mud!
I will show you an example in which you create a Car model and a Bike model. To
describe a car or bike, you use a Tag model. A car and a bike can have any number of tags.
Here’s the application:

$ rails new bike car_ example

[...]

$ cd bike car_example

137

http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html
http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html

CHAPTER 3 ACTIVERECORD
Here are the three required models:

$ rails generate model Car name
[...]

$ rails generate model Bike name
[...]

$ rails generate model Tag name taggable:references{polymorphic}
[...]

$ rails db:migrate

[...]

Car and Bike are clear. For Tag you use the migration shortcut taggable:refer
ences{polymorphic} to generate the fields taggable type and taggable id to give
ActiveRecord an opportunity to save the assignment for the polymorphic association.
You have to enter it accordingly in the model.

The model generator already filled the app/models/tag.rb file with the
configuration for the polymorphic association, as shown in Listing 3-19.

Listing 3-19. app/models/tag.rb

class Tag < ApplicationRecord
belongs to :taggable, polymorphic: true
end

For the other models, you have to add the polymorphic association manually, as
shown in Listing 3-20 and Listing 3-21.

Listing 3-20. app/models/car.rb

class Caxr < ApplicationRecord
has many :tags, as: :taggable
end

Listing 3-21. app/models/bike.rb

class Bike < ApplicationRecord
has many :tags, as: :taggable
end

138

CHAPTER 3 ACTIVERECORD

For Car and Bike you use an additional :as: :taggable when defining has_many.
For Tag, you use belongs_to :taggable, polymorphic: true toindicate the
polymorphic association to ActiveRecord.

Q The suffix able in the name taggable is commonly used in Rails, but not
obligatory. For creating the association you not only need the ID of the entry but
also need to know which model it actually is. So, the term taggable type makes
sense.

Let’s go into the console and create a car and a bike.

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> beetle = Car.create(name: 'Beetle’)
(0.1ms) begin transaction
SQL (0.8ms) INSERT INTO "cars" ("name", "created at", "updated at") VALUES
(2, 72,) [["name", "Beetle"], ["created at", "2015-12-17
13:39:54.793336"], ["updated at", "2015-12-17 13:39:54.793336"]]
(0.8ms) commit transaction
=> #<Car id: 1, name: "Beetle", created at: "2015-12-17 13:39:54", updated at:
"2015-12-17 13:39:54">
>> mountainbike = Bike.create(name: 'Mountainbike")
(0.1ms) begin transaction
SQL (0.3ms) INSERT INTO "bikes" ("name", "created at", "updated at") VALUES
(?, 2, ?) [["name", "Mountainbike"], ["created at", "2015-12-17
13:39:55.896512"], ["updated at", "2015-12-17 13:39:55.896512"]]
(9.0ms) commit transaction
=> #<Bike id: 1, name: "Mountainbike", created at: "2015-12-17 13:39:55",
updated_at: "2015-12-17 13:39:55">

139

CHAPTER 3 ACTIVERECORD
Now you define for each a tag with the color of the corresponding object.

>> beetle.tags.create(name: 'blue")
(0.1ms) begin transaction
SOL (1.0ms) INSERT INTO "tags" ("name", "taggable id", "taggable type",
"created at", "updated at") VALUES (?, ?, ?, ?, ?) [["name", "blue"],
["taggable id", 1], ["taggable type", "Car"], ["created at", "2015-12-17
13:41:04.984444"], ["updated at", "2015-12-17 13:41:04.984444"]]
(0.9ms) commit transaction
=> #<Tag id: 1, name: "blue", taggable id: 1, taggable type: "Car",
created at: "2015-12-17 13:41:04", updated_at: "2015-12-17 13:41:04">
>> mountainbike.tags.create(name: 'black')
(0.1ms) begin transaction
SQL (0.7ms) INSERT INTO "tags" ("name", "taggable id", "taggable type",
"created at", "updated at") VALUES (?, ?, ?, ?, ?) [["name", "black"],
["taggable id", 1], ["taggable type", "Bike"], ["created at", "2015-12-17
13:41:17.315318"], ["updated at", "2015-12-17 13:41:17.315318"]]
(8.2ms) commit transaction
=> #<Tag id: 2, name: "black", taggable id: 1, taggable type: "Bike",
created at: "2015-12-17 13:41:17", updated at: "2015-12-17 13:41:17">

For the beetle, you add another Tag.

>> beetle.tags.create(name: 'Automatic')
(0.1ms) begin transaction
SQL (0.4ms) INSERT INTO "tags" ("name", "taggable id", "taggable type",
"created at", "updated at") VALUES (?, ?, ?, 2, ?) [["name", "Automatic"],
["taggable id", 1], ["taggable type", "Car"], ["created at", "2015-12-17
13:41:51.042746"], ["updated at", "2015-12-17 13:41:51.042746"]]
(9.2ms) commit transaction
=> #<Tag id: 3, name: "Automatic", taggable id: 1, taggable type: "Car",
created at: "2015-12-17 13:41:51", updated at: "2015-12-17 13:41:51">

140

CHAPTER 3 ACTIVERECORD

Let’s take a look at all the Tag items.

>> Tag.all

Tag Load (0.3ms) SELECT "tags".* FROM "tags"
=> #<ActiveRecord: :Relation [#<Tag id: 1, name: "blue", taggable id: 1,
taggable type: "Car", created at: "2015-12-17 13:41:04", updated at:
"2015-12-17 13:41:04">, #<Tag id: 2, name: "black", taggable id: 1,
taggable type: "Bike", created at: "2015-12-17 13:41:17", updated at:
"2015-12-17 13:41:17">, #<Tag id: 3, name: "Automatic", taggable id: 1,
taggable type: "Car", created at: "2015-12-17 13:41:51", updated at:
"2015-12-17 13:41:51">]>

Here are all the tags of the beetle.

>> beetle.tags
Tag Load (0.3ms) SELECT "tags".* FROM "tags" WHERE "tags"."taggable id" = ?
AND "tags"."taggable type" = ? [["taggable id", 1], ["taggable type",
"Car"]]
=> #<ActiveRecord: :Associations::CollectionProxy [#<Tag id: 1, name: "blue",
taggable id: 1, taggable type: "Car", created at: "2015-12-17 13:41:04",
updated at: "2015-12-17 13:41:04">, #<Tag id: 3, name: "Automatic",
taggable id: 1, taggable type: "Car", created at: "2015-12-17 13:41:51",
updated at: "2015-12-17 13:41:51">]>

Of course, you can also check which object the last Tag belongs to.

>> Tag.last.taggable
Tag Load (0.3ms) SELECT "tags".* FROM "tags" ORDER BY "tags"."id" DESC
LIMIT 1
Car Load (0.4ms) SELECT “cars".* FROM "cars" WHERE "cars"."id" = ? LIMIT 1
[["id", 1]]
=> #<Car id: 1, name: "Beetle", created at: "2015-12-17 13:39:54", updated at:
"2015-12-17 13:39:54">
>> exit

Polymorphic associations are always useful if you want to normalize the database
structure. In this example, you could also have defined models called CarTag and
BikeTag, but as Tag is the same for both, a polymorphic association makes more sense
in this case.

141

CHAPTER 3 ACTIVERECORD

Options

Polymorphic associations can be configured with the same options as a normal has_many

association.

Deleting/Destroying a Record

To remove a database record, you can use the methods destroy and delete. It’s quite easy
to confuse these two terms, but they are different, and after a while you get used to them.
As an example, = use the following Rails application:

$ rails new bookshelf

[...]
$ cd bookshelf
$ rails generate model book title

[...]

$ rails generate model author book:references first name last name

[...]

$ rails db:migrate

[...]
$

Listing 3-22 and Listing 3-23 show the models.

Listing 3-22. app/models/book.rb

class Book < ApplicationRecord
has_many :authors, dependent: :destroy
end

Listing 3-23. app/models/author.rb

class Author < ApplicationRecord
belongs_to :book
end

142

CHAPTER 3 ACTIVERECORD

destroy

With destroy you can remove a record, and any existing dependencies are also taken
into account (see, for example, :dependent = :destroy). Simply put, to be on the safe
side, it’s better to use destroy because then the Rails system does more for you.

Let’s create a record and then destroy it again.

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> book = Book.create(title: 'Homo faber")
(0.1ms) begin transaction
SQL (0.7ms) INSERT INTO "books" ("title", "created at", "updated at")
VALUES (?, ?, ?) [["title", "Homo faber"], ["created at", "2015-12-17
13:49:58.092997"], ["updated at", "2015-12-17 13:49:58.092997"]]
(9.0ms) commit transaction
=> #<Book id: 1, title: "Homo faber", created at: "2015-12-17 13:49:58",
updated at: "2015-12-17 13:49:58">
>> Book.count
(0.3ms) SELECT COUNT(*) FROM "books"
=>1
>> book.destroy
(0.1ms) begin transaction
Author Load (0.1ms) SELECT "authors".* FROM "authors" WHERE
"authors"."book id" = ? [["book id", 1]]
SOL (0.3ms) DELETE FROM "books" WHERE "books"."id" = ? [["id", 1]]
(9.0ms) commit transaction
=> #<Book id: 1, title: "Homo faber", created at: "2015-12-17 13:49:58",
updated at: "2015-12-17 13:49:58">
>> Book.count
(0.5ms) SELECT COUNT(*) FROM "books"
=>0

143

CHAPTER 3 ACTIVERECORD

Asyou are using the option dependent: :destroy in the Book model, you can also
automatically remove all the authors.

>> Book.create(title: 'Homo faber').authors.create(first name: 'Max’',
last _name: 'Frisch')
(0.1ms) begin transaction
SQL (0.4ms) INSERT INTO "books" ("title", "created at", "updated at")
VALUES (?, ?, ?) [["title", "Homo faber"], ["created at", "2015-12-17
13:50:43.062148"], ["updated at", "2015-12-17 13:50:43.062148"]]
(9.1ms) commit transaction
(0.1ms) begin transaction
SQL (0.3ms) INSERT INTO "authors" ("first name", "last name", "book id",
"created at", "updated at") VALUES (?, ?, ?, ?, ?) [["first name", "Max"],
["last _name", "Frisch"], ["book id", 2], ["created at", "2015-12-17
13:50:43.083211"], ["updated at", "2015-12-17 13:50:43.083211"]]
(0.9ms) commit transaction
=> #<Author id: 1, book id: 2, first name: "Max", last name: "Frisch",
created at: "2015-12-17 13:50:43", updated at: "2015-12-17 13:50:43">
>> Author.count
(0.2ms) SELECT COUNT(*) FROM "authors"
=>1
>> Book.first.destroy
Book Load (0.3ms) SELECT "books".* FROM "books" ORDER BY "books"."id" ASC
LIMIT 1
(0.1ms) begin transaction
Author Load (0.1ms) SELECT "authors".* FROM "authors" WHERE
"authors"."book id" = ? [["book id", 2]]
SQL (0.3ms) DELETE FROM "authors" WHERE "authors"."id" = ? [["id", 1]]
SOL (0.1ms) DELETE FROM "books" WHERE "books"."id" = ? [["id", 2]]
(9.1ms) commit transaction
=> #<Book id: 2, title: "Homo faber", created at: "2015-12-17 13:50:43",
updated at: "2015-12-17 13:50:43">
>> Author.count
(0.2ms) SELECT COUNT(*) FROM "authors"
=> 0

144

CHAPTER 3 ACTIVERECORD

When removing records, please always consider the difference between the content
of the database table and the value of the currently removed object. The instance is
frozen after removing the database field. So, it is no longer in the database but still
present in the program, yet it can no longer be modified there. It is read-only. To check,
you can use the method frozen?.

>> book = Book.create(title: 'Homo faber"')
(0.2ms) begin transaction
SQL (0.5ms) INSERT INTO "books" ("title", "created at", "updated at")
VALUES (?, ?, ?) [["title", "Homo faber"], ["created at", "2015-12-17
13:51:41.460050"], ["updated at", "2015-12-17 13:51:41.460050"]]
(8.9ms) commit transaction
=> #<Book id: 3, title: "Homo faber", created at: "2015-12-17 13:51:41",
updated at: "2015-12-17 13:51:41">
>> book.destroy
(0.1ms) begin transaction
Author Load (0.2ms) SELECT "authors".* FROM "authors" WHERE
"authors"."book id" = ? [["book id", 3]]
SOL (0.5ms) DELETE FROM "books" WHERE "books"."id" = ? [["id", 3]]
(9.2ms) commit transaction
=> #<Book id: 3, title: "Homo faber", created at: "2015-12-17 13:51:41",
updated at: "2015-12-17 13:51:41">
>> Book.count
(0.2ms) SELECT COUNT(*) FROM "books"
=>0
>> book
=> #<Book id: 3, title: "Homo faber", created at: "2015-12-17 13:51:41",
updated_at: "2015-12-17 13:51:41">
>> book.frozen?
=> true

The record has been removed from the database, but the object with all its data is
still present in the running Ruby program. So, could you then revive the entire record?
The answer is yes, but it will then be a new record.

145

CHAPTER 3 ACTIVERECORD

>> Book.create(title: book.title)
(0.1ms) begin transaction
SQL (0.3ms) INSERT INTO "books" ("title", "created at", "updated at")
VALUES (?, ?, ?) [["title", "Homo faber"], ["created at", "2015-12-17
13:52:51.438501"], ["updated at", "2015-12-17 13:52:51.438501"]]
(8.7ms) commit transaction
=> #<Book id: 4, title: "Homo faber", created at: "2015-12-17 13:52:51",
updated at: "2015-12-17 13:52:51">
>> exit

delete

With delete you can remove a record directly from the database. Any dependencies to
other records in the model are not taken into account. The method delete deletes only
that one row in the database and nothing else.

Let’s create a book with one author and then remove the book with delete.

$ rails db:reset
[...]
$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> Book.create(title: 'Homo faber').authors.create(first name: 'Max’',
last_name: 'Frisch')
(0.5ms) begin transaction
[...]
(0.8ms) commit transaction
=> #<Author id: 1, book id: 1, first name: "Max", last name: "Frisch",
created at: "2015-12-17 13:54:46", updated at: "2015-12-17 13:54:46">
>> Author.count
(0.2ms) SELECT COUNT(*) FROM "authors"
=>1
>> Book.last.delete
Book Load (0.2ms) SELECT "books".* FROM "books" ORDER BY "books"."id"
DESC LIMIT 1
SOL (1.5ms) DELETE FROM "books" WHERE "books"."id" = ? [["id", 1]]

146

CHAPTER 3 ACTIVERECORD

=> #<Book id: 1, title: "Homo faber", created at: "2015-12-17 13:54:46",
updated at: "2015-12-17 13:54:46">
>> Author.count
(0.2ms) SELECT COUNT(*) FROM "authors"
=>1
>> Book.count
(0.2ms) SELECT COUNT(*) FROM "books"
=> 0
>> exit

The record of the book Homo faber is deleted, but the author is still in the database.

As with destroy, an object also gets frozen when you use delete (see the section
“destroy”). The record is already removed from the database, but the object itself is still
there.

Transactions

In the world of databases, the term transaction refers to a block of SQL statements that
must be executed together and without interruption. If an error should occur within the
transaction, the database is reset to the state before the start of the transaction.

Now and again, there are areas of application where you need to carry out a database
transaction. The classic example is transferring money from one account to another.
That makes sense only if both actions (debiting one account and crediting the recipient’s
account) are executed.

A transaction follows this pattern:

ApplicationRecord.transaction do

Book.create(:title => 'A")

Book.create(:title =» 'B")

Book.create(:title => 'C').authors.create(:last name => 'Z")
end

Transactions are a complex topic. If you want to find out more, you can consult the
ri help on the shell viari ActiveRecord::Transactions::ClassMethods.

147

CHAPTER 3 ACTIVERECORD

o The methods save and destroy are automatically executed within the
transaction wrapper. That way, Rails ensures that no undefined state can arise for
these two methods.

A Transactions are not natively supported by all databases. In that case, the
code will still work, but you no longer have the security of the transaction.

Scopes

When programming Rails applications, it is sometimes clearer and simpler to define
frequent searches as separate methods. In Rails speak, these are referred to as
NamedScope. These NamedScopes can be chained, just like other methods.

Preparation

Let’s build a little online shop.

$ rails new shop
[...]
$ cd shop
$ rails generate model product name 'price:decimal{7,2}"' \
weight:integer in_stock:boolean expiration_date:date
[...]
$ rails db:migrate
[...]
$

Please populate the file db/seeds . rb with the content shown in Listing 3-24.

Listing 3-24. db/seeds.rb

Product.create(name: 'Milk (1 liter)', weight: 1000, in stock: true, price:
0.45, expiration date: Date.today + 14.days)

Product.create(name: 'Butter (250 g)', weight: 250, in stock: true, price:
0.75, expiration date: Date.today + 14.days)

148

CHAPTER 3 ACTIVERECORD

Product.create(name: 'Flour (1 kg)', weight: 1000, in stock: false, price:

0.45, expiration date: Date.today + 100.days)

Product.create(name: 'Jelly Babies (6 x 300 g)', weight: 1500, in stock: true,
price: 4.96, expiration date: Date.today + 1.year)

Product.create(name: 'Super-Duper Cake Mix', in stock: true, price: 11.12,

expiration date: Date.today + 1.year)

Product.create(name: 'Eggs (12)', in stock: true, price: 2, expiration date:
Date.today + 7.days)

Product.create(name: 'Peanuts (8 x 200 g bag)', in stock: false, weight: 1600,
price: 17.49, expiration date: Date.today + 1.year)

Now populate it with db/seeds . rb.

$ rails db:seed

[...]
$

Defining a Scope

If you want to count products that are in stock in your online shop, then you can use the
following query each time:

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> Product.where(in stock: true).count
(0.1ms) SELECT COUNT(*) FROM "products" WHERE "products"."in stock" = 't'
=> 5
>> exit

But you could also define a NamedScope called available in app/models/product.rb,
as shown in Listing 3-25.

Listing 3-25. app/models/product.rb

class Product < ApplicationRecord
scope :available, -> { where(in stock: true) }
end

149

CHAPTER 3 ACTIVERECORD
And then use it like so:

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> Product.available.count
(0.1ms) SELECT COUNT(*) FROM "products" WHERE "products"."in stock" = 't'
=> 5
>> exit

Let’s define a second NamedScope for this example in app/models/product.rb, as
shown in Listing 3-26.

Listing 3-26. app/models/product.rb

class Product < ApplicationRecord
scope :available, -> { where(in stock: true) }
scope :cheap, -> { where(price: 0..1) }

end

Now you can chain both named scopes to output all cheap products that are in stock.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Product.cheap.count
(0.3ms) SELECT COUNT(*) FROM "products" WHERE ("products"."price"
BETWEEN 0 AND 1)

=>3

>> Product.cheap.available.count
(0.3ms) SELECT COUNT(*) FROM "products" WHERE ("products"."price"
BETWEEN 0 AND 1) AND "products"."in stock" = 't'

=> 2

>> exit

150

CHAPTER 3 ACTIVERECORD

Passing In Arguments

If you need a NamedScope that can also process parameters, then that is no problem
either. The following example outputs products that are cheaper than the specified
value. The file app/models/product.rb looks like Listing 3-27.

Listing 3-27. app/models/product.rb

class Product < ApplicationRecord
scope :cheaper than, ->(price) { where("price < ?", price) }
end

Now you can count all products that cost less than 50 cent.

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> Product.cheaper than(0.5).count
(0.2ms) SELECT COUNT(*) FROM "products" WHERE (price < 0.5)
=> 2
>> exit

Creating New Records with Scopes

Let’s use app/models/product.rb, as shown in Listing 3-28.

Listing 3-28. app/models/product.rb

class Product < ApplicationRecord
scope :available, -> { where(in stock: true) }
end

With this NamedScope, not only can you find all products that are in stock, but you
can also create new products that contain the value true in the field in_stock.

$ rails console

Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> product = Product.available.build

151

CHAPTER 3 ACTIVERECORD

=> #<Product id: nil, name: nil, price: nil, weight: nil, in stock: true,
expiration date: nil, created at: nil, updated at: nil>

>> product.in_stock

=> true

>> exit

This works with the method build (see the section “build”) and create (see the
section “create”).

Validation

Nonvalid records are frequently a source of errors in programs. With validates, Rails
offers a quick and easy way of validating them. That way you can be sure that only
meaningful records will find their way into your database.

Preparation

Let’s create a new application for this chapter.

$ rails new shop
[...]
$ cd shop
$ rails generate model product name 'price:decimal{7,2}"' \
weight:integer in_stock:boolean expiration_date:date
[...]
$ rails db:migrate
[...]
$

The Basic Idea

For each model, there is a matching model file in the directory app/models/. In this Ruby
code, you can define database dependencies as well as implement all validations. The
advantage is that every programmer knows where to find it.

Without any validation, you can create an empty record in a model without a
problem.

152

CHAPTER 3 ACTIVERECORD

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> product = Product.create

[...]

=> #<Product id: 1, name: nil, price: nil, weight: nil,

in_stock: nil, expiration_date: nil, created at: "2016-01-21 13:18:31",
updated at: "2016-01-21 13:18:31">

>> exit

But in practice, this record with no content doesn’t make any sense. A Product needs
to have a name and a price. That’s why you can define validations in ActiveRecord. Then
you can ensure as a programmer that only records that are valid for you are saved in your
database.

To make the mechanism easier to understand, I am going to jump ahead a bit and
use the presence helper. Please fill your app/models/product.rb file with the content
shown in Listing 3-29.

Listing 3-29. app/models/product.rb

class Product < ApplicationRecord
validates :name,
presence: true

validates :price,
presence: true
end

Now you try again to create an empty record in the console.

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> product = Product.create
(0.1ms) begin transaction
(0.1ms) rollback transaction
=> #<Product id: nil, name: nil, price: nil, weight: nil, in stock: nil,
expiration _date: nil, created at: nil, updated at: nil>

153

CHAPTER 3 ACTIVERECORD

Watch out for the rollback transaction partand the missing id of the Product
object! Rails began the transaction of creating a new record, but for some reason it
couldn’t do it. So, it had to roll back the transaction. The validation method intervened
before the record was saved. So, validating happens before saving.

Can you access the errors? Yes, via the method errors or with errors.messages, you
can look at the errors that occurred.

>> product.errors

=> #<ActiveModel: :Errors:0x007ff515a71680 @base=#<Product id: nil, name: nil,
price: nil, weight: nil, in_stock: nil, expiration date: nil, created at: nil,
updated_at: nil>, @messages={:name=>["can't be blank"], :price=>["can't be
blank"]}>

>> product.errors.messages

=> {:name=>["can't be blank"], :price=>["can't be blank"]}

This error message was defined for an English-speaking human user.
Only once you assign a value to the attributes name and price can you save the object.

>> product.name = 'Milk (1 liter)'
=> "Milk (1 liter)"
>> product.price = 0.45
=> 0.45
>> product.save
(0.1ms) begin transaction
SQL (0.5ms) INSERT INTO "products" ("name", "price", "created at",
"updated at") VALUES (?, ?, ?, ?) [["name", "Milk (1 liter)"], ["price",
0.45], ["created at", "2015-12-17 17:59:09.293831"], ["updated at",
"2015-12-17 17:59:09.293831"]]
(9.0ms) commit transaction
=> true

valid?

The method valid? indicates in Boolean form if an object is valid. So, you can check the
validity already before you save.

154

CHAPTER 3 ACTIVERECORD

>> product = Product.new

=> #<Product id: nil, name: nil, price: nil, weight: nil, in stock: nil,
expiration date: nil, created at: nil, updated at: nil>

>> product.valid?

=> false

save(validate: false)

As so often in life, you can find a way around everything. If you pass the parameter
:validate = false to the method save, the data of Validation is saved.

>> product = Product.new
=> #<Product id: nil, name: nil, price: nil, weight: nil, in stock: nil,
expiration date: nil, created at: nil, updated at: nil>
>> product.valid?
=> false
>> product.save
(0.1ms) begin transaction
(0.1ms) rollback transaction
=> false
>> product.save(validate: false)
(0.1ms) begin transaction
SQL (0.5ms) INSERT INTO "products" (“"created at", "updated at") VALUES (?,
?) [["created at", "2015-12-17 18:01:46.173590"], ["updated at",
"2015-12-17 18:01:46.173590"]]
(9.1ms) commit transaction
=> true
>> exit

A | assume that you understand the problems involved here. Please use this
option only if there is a really good reason to do so.

155

CHAPTER 3 ACTIVERECORD

presence

In your model product, there are a few fields that must be filled in every time. You can
achieve this via presence, as shown in Listing 3-30.

O Please excuse the duplication. I'm aware that | just used the very same
code to give you an idea of what validation does.

Listing 3-30. app/models/product.rb

class Product < ApplicationRecord
validates :name,
presence: true

validates :price,
presence: true
end

Ifyou try to create an empty user record with this, you get lots of validation errors.

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> product = Product.create
(0.1ms) begin transaction
(0.1ms) rollback transaction
=> #<Product id: nil, name: nil, price: nil, weight: nil, in stock: nil,
expiration_date: nil, created at: nil, updated at: nil>
>> product.errors.messages
=> {:name=>["can't be blank"], :price=>["can't be blank"]}

Only once you have entered all the data can the record be saved.

>> product.name = 'Milk (1 liter)'
=> "Milk (1 liter)"

>> product.price = 0.45

=> 0.45

156

CHAPTER 3 ACTIVERECORD

>> product.save
(0.1ms) begin transaction
SQL (0.6ms) INSERT INTO "products" ("name", "price", "created at",
"updated at") VALUES (?, ?, ?, ?) [["name", "Milk (1 liter)"], ["price",
0.45], ["created at", "2015-12-17 18:04:26.587946"], ["updated at",
"2015-12-17 18:04:26.587946"]]
(9.2ms) commit transaction
=> true
>> exit

length

With length you can limit the length of a specific attribute. It’s easiest to explain using
an example. Let’s limit the maximum length of the name to 20 and the minimum to 2, as
shown in Listing 3-31.

Listing 3-31. app/models/product.rb

class Product < ApplicationRecord
validates :name,
presence: true,
length: { in: 2..20 }

validates :price,
:presence => true
end

If you now try to save a product with a name that consists of one letter, you get an

€Irror message.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> product = Product.create(:name => 'M', :price => 0.45)
(0.1ms) begin transaction
(0.1ms) rollback transaction

157

CHAPTER 3 ACTIVERECORD

=> #<Product id: nil, name: "M", price:

#<BigDecimal:7{{735513400, '0.45E0',9(27)>, weight: nil, in stock: nil,
expiration date: nil, created at: nil, updated at: nil>

>> product.errors.messages

=> {:name=>["is too short (minimum is 2 characters)"]}

Options

length can be called with the following options.
minimum sets the minimum length of an attribute. Here’s an example:

validates :name,
presence: true,
length: { minimum: 2 }

too_short defines the error message of :minimum. The defaultis "is too short
(min is %d characters)". Here's an example:

validates :name,
presence: true,
length: { minimum: 5 ,
too short: "must have at least %{count} characters"}

maximum is the maximum length of an attribute. Here’s an example:

validates :name,
presence: true,
length: { maximum: 20 }

too_long defines the error message of :maximum. The default "is too long
(maximum is %d characters)".Here’s an example:

validates :name,
presence: true,
length: { maximum: 20 ,
too_long: "must have at most %{count} characters" }

158

CHAPTER 3 ACTIVERECORD
is is exactly the specified number of characters long. Here’s an example:

validates :name,
presence: true,
length: { is: 8 }

:inor :within defines a length interval. The first number specifies the minimum
number of the range, and the second specifies the maximum. Here’s an example:

validates :name,
presence: true,
length: { in: 2..20 }

You can use tokenizer to define how the attribute should be split for counting. The
default is lambda{ |value| value.split(//) } (individual characters are counted).
Here is an example (for counting words):

validates :content,
presence: true,
length: { in: 2..20 },
tokenizer: lambda {|str| str.scan(/\w+/)}

numericality

With numericality you can check whether an attribute is a number. It’s easier to explain
if you see an example, as shown in Listing 3-32.

Listing 3-32. app/models/product.rb

class Product < ApplicationRecord
validates :name,
presence: true,
length: { in: 2..20 }

validates :price,
presence: true

validates :weight,
numericality: true
end

159

CHAPTER 3 ACTIVERECORD

If you now use a weight that consists of letters or contains letters instead of numbers,
you will get an error message.

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> product = Product.create(name: 'Milk (1 liter)',
price: 0.45, weight: 'abc')
(0.1ms) begin transaction
(0.1ms) rollback transaction
=> #<Product id: nQil, name: "Milk (1 liter)",
price: #<BigDecimal:7fcalec9oed8, '0.45E0',9(27)>, weight: 0,
in_stock: nil, expiration_date: nil, created at: nil, updated at: nil>
>> product.errors.messages
=> {:weight=>["is not a number"]}
>> exit

Q You can use numericality to define the content as a number even if an
attribute is saved as a string in the database.

Options

numericality can be called with the following options.
The only_integer attribute can contain only an integer. The default is false. Here’s
an example:

validates :weight,
numericality: { only integer: true }

For greater_than, the number saved in the attribute must be greater than the
specified value. Here’s an example:

validates :weight,
numericality: { greater than: 100 }

160

CHAPTER 3 ACTIVERECORD

For greater_than_or _equal to, the number saved in the attribute must be greater
than or equal to the specified value. Here’s an example:

validates :weight,
numericality: { greater than or equal to: 100 }

equal_to defines a specific value that the attribute must have. Here’s an example:

validates :weight,
numericality: { equal to: 100 }

For less_than, the number saved in the attribute must be less than the specified
value. Here’s an example:

validates :weight,
numericality: { less than: 100 }

For less_than or equal to, the number saved in the attribute must be less than or
equal to the specified value. Here’s an example:

validates :weight,
numericality: { less than or equal to: 100 }

odd is the number saved in the attribute and must be an odd number. Here’s an
example:

validates :weight,
numericality: { odd: true }

even is the number saved in the attribute and must be an even number. Here’s an
example:

validates :weight,
numericality: { even: true }

unigqueness

With uniqueness you can define that the value of this attribute must be unique in the
database. If you want a product in the database to have a unique name that appears
nowhere else, then you can use the validation shown in Listing 3-33.

161

CHAPTER 3 ACTIVERECORD

Listing 3-33. app/models/product.rb

class Product < ApplicationRecord
validates :name,
presence: true,
uniqueness: true
end

If you now try to create a new Product with a name that already exists, then you get an
error message.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Product.last
Product Load (0.2ms) SELECT "products".* FROM "products”
ORDER BY "products"."id" DESC LIMIT 1

=> #<Product id: 4, name: "Milk (1 liter)", price:

#<BigDecimal:7fdccb1960b8, '0.45E0',9(27)>, weight: nil,

in_stock: nil, expiration_date: nil,

created at: "2015-12-17 18:04:26",

updated at: "2015-12-17 18:04:26">

>> product = Product.create(name: 'Milk (1 liter)')

(0.1ms) begin transaction
Product Exists (0.2ms) SELECT 1 AS one FROM "products”
WHERE "products"."name" = 'Milk (1 liter)' LIMIT 1
(0.1ms) rollback transaction

=> #<Product id: nil, name: "Milk (1 liter)", price: nil,

weight: nil, in stock: nil, expiration date: nil,

created at: nil, updated at: nil>

>> product.errors.messages

=> {:name=>["has already been taken"]}

>> exit

162

CHAPTER 3 ACTIVERECORD

A The validation via uniqueness is no absolute guarantee that the attribute
is unique in the database. A race condition could occur (see http://
en.wikipedia.org/wiki/Race_condition).A detailed discussion of this
effect would go beyond the scope of this book aimed at beginners (this
phenomenon is extremely rare).

Options

uniqueness can be called with the following options.

scope defines a scope for the uniqueness. If you had a differently structured phone
number database (with just one field for the phone number), then you could use this
option to specify that a phone number must be saved only once per user. Here is what it
would look like:

validates :name,
presence: true,
uniqueness: { scope: :user id }

case_sensitive checks for uniqueness of uppercase and lowercase as well. The
default is false. Here’s an example:

validates :name,
presence: true,
uniqueness: { case sensitive: true }

inclusion

With inclusion you can define from which values the content of this attribute can be
created. For this example, you can demonstrate it using the attribute in_stock, as shown
in Listing 3-34.

163

http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/Race_condition

CHAPTER 3 ACTIVERECORD

Listing 3-34. app/models/product.rb

class Product < ApplicationRecord
validates :name,
presence: true

validates :in stock,
inclusion: { im: [true, false] }
end

In your data model, a Product must be either true or false for in_stock (there
must not be a nil). If you enter a different value than true or false, a validation error is
returned.

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> product = Product.create(name: 'Milk low-fat (1 liter)')
(0.1ms) begin transaction
(0.1ms) rollback transaction
=> #<Product id: nil, name: "Milk low-fat (1 liter)", price: nil, weight: nil,
in_stock: nil, expiration_date: nil, created at: nil, updated_at: nil>
>> product.errors.messages
=> {:in_stock=>["is not included in the 1ist"]}
>> exit

Options

inclusion can be called with the message option.
message is for outputting custom error messages. The defaultis "is not included
in the list". Here's an example:

validates :in stock,
inclusion: { in: [true, false],
message: 'this one is not allowed' }

164

CHAPTER 3 ACTIVERECORD

exclusion

exclusionis the inversion of inclusion. You can define from which values the content
of this attribute must not be created, as shown in Listing 3-35.

Listing 3-35. app/models/product.rb

class Product < ApplicationRecord
validates :name,
presence: true

validates :in stock,
exclusion: { in: [nil] }
end

Options

exclusion can be called with the message option.
message is for outputting custom error messages. Here’s an example:

validates :in stock,
inclusion: { in: [nil],
message: 'this one is not allowed' }

format

With format you can define via a regular expression (see http://en.wikipedia.org/
wiki/Regular_expression)how the content of an attribute can be structured.

With format you can, for example, carry out a simple validation of the syntax of an
e-mail address.

validates :email,
format: { with: /\A(["@\s]+)@((?:[-a-20-9]+\.)+[a-z]{2,})\Z/i }

165

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

CHAPTER 3 ACTIVERECORD

A It should be obvious that the e-mail address validation shown here is not
complete. It is just meant to be an example. You can only use it to check the
syntactic correctness of an e-mail address.

Options

validates format_of can be called with the following options:
:message is for outputting a custom error message. The defaultis "is invalid".

Here’s an example:

validates :email,
format: { with: /\A([*@\s]+)@((?:[-a-20-9]+\.)+[a-z]{2,})\Z/1,
message: 'is not a valid email address' }

General Validation Options

There are some options that can be used for all validations.

allow_nil
This allows the value nil. Here’s an example:

validates :email,
format: { with: N\A([*@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i },
allow nil: true

allow_blank

This is the same as allow_nil, but additionally with an empty string. Here’s an example:

validates :email,
format: { with: /\A(["@\s]+)@((?:[-a-20-9]+\.)+[a-z]{2,})\Z/i },
allow blank: true

166

CHAPTER 3 ACTIVERECORD

on

With on, a validation can be limited to the events create, update, and safe. In the
following example, the validation takes effect only when the record is initially created
(during the create).

validates :email,
format: { with: N\A([*@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i },
on: :create

if and unless

if and unless call the specified method and execute the validation only if the result of
the method is true.

validates :name,
presence: true,
if: :today is monday?

def today is monday?
Date.today.monday?
end

:proc calls a Proc object. The functionality of a Proc object is beyond the scope of
this book. Here is an example of how to use it without describing the magic behind it:

validates :name,
presence: true,
if: Proc.new { |a| a.email == 'test@test.com' }

O If you want to dive more into Proc, you’ll find documentation about it at
https://ruby-doc.org/core-2.5.0/Proc.html.

Writing Custom Validations

Now and then, you will want to do a validation where you need some custom program
logic. For such cases, you can define custom validations.

167

https://ruby-doc.org/core-2.5.0/Proc.html

CHAPTER 3 ACTIVERECORD

Defining Validations with Your Own Methods

Let’s assume you are a big-shot hotel mogul and need a reservation system.

$ rails new my_hotel
[...]
$ cd my_hotel
$ rails generate model reservation \
start_date:date end date:date room type
[...]
$ rails db:migrate
[...]
$

Then you specify in app/models/reservation.rb that the attributes start_date and
end_date must be present every time, plus you use the method reservation dates must_
make_sense to make sure that start_date is before end_date, as shown in Listing 3-36.

Listing 3-36. app/models/reservation.rb

class Reservation < ApplicationRecord
validates :start date,
presence: true

validates :end date,
presence: true

validate :reservation_dates must_make sense

private
def reservation dates must_make sense
if end_date <= start_date
errors.add(:start date, 'has to be before the end date')
end
end
end

With errors.add, you can add error messages for individual attributes. With errors.
add_to_base, you can add error messages for the whole object.

168

CHAPTER 3 ACTIVERECORD

Let’s test the validation in the console by introducing Date.today + 1.day.It does
exactly what you'd expect it to do.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> reservation = Reservation.new(start date: Date.today, end date:
Date.today)

=> #<Reservation id: nil, start date: "2015-12-17", end date: "2015-12-17",
room type: nil, created at: nil, updated at: nil>

>> reservation.valid?

=> false

>> reservation.errors.messages

=> {:start date=>["has to be before the end date"]}

>> reservation.end date = Date.today + 1.day

=> Sat, 18 Apr 2015

>> reservation.valid?

=> true

>> reservation.save

[...]

=> true

>> exit

Further Documentation

The topic of validations is described well in the official Rails documentation at
http://guides.rubyonrails.org/active record validations.html.

Migrations

SQL database tables are generated in Rails with migrations, and they can also be
changed with migrations. If you create a model with rails generate model, a
corresponding migration file is automatically created in the directory db/migrate/. I will
explain this principle by using the example of a shop application. Let’s create one first.

169

http://guides.rubyonrails.org/active_record_validations.html

CHAPTER 3 ACTIVERECORD

$ rails new shop

[...]
$ cd shop

Then generate a Product model.

$ rails generate model product name 'price:decimal{7,2}"' \
weight:integer in_stock:boolean expiration_date:date

invoke active record

create db/migrate/20151217184823 create products.rb

create app/models/product.rb

invoke test unit

create test/models/product_test.rb

create test/fixtures/products.yml

The migrations file db/migrate/20151217184823 create_products.rb was created.
Let’s take a closer look at it; see Listing 3-37.

Listing 3-37. db/migrate/20151217184823_create_products.rb

class CreateProducts < ActiveRecord::Migration[5.1]
def change
create table :products do |t|
t.string :name
t.decimal :price, precision: 7, scale: 2
t.integer :weight
t.boolean :in stock
t.date :expiration date

~+

.timestamps null: false
end
end
end

The method change creates and deletes the database table in the case of a rollback.
The migration files have embedded the current time in the file name and are processed
in chronological order during a migration (in other words, when you call rails
db:migrate).

170

CHAPTER 3 ACTIVERECORD

$ rails db:migrate
== 20151217184823 CreateProducts: migrating ===============================
-- create table(:products)
-> 0.0015s
= 20151217184823 CreateProducts: migrated (0.0016s) ======================

“A |l

Only those migrations that have not been executed yet are processed. If you call
rails db:migrate again, nothing happens because the corresponding migration has
already been executed.

$ rails db:migrate

$

But if you manually delete the database with rm and then call rails db:migrate
again, the migration is repeated.

$ rm db/development.sqlite3
$ rails db:migrate
== 20151217184823 CreateProducts: migrating ===============================
-- create table(:products)
-> 0.0017s
= 20151217184823 CreateProducts: migrated (0.0018s) ======================

- |l

After a while you will realize that you want to save not just the weight for some
products but also the height. So, you need another database field. There is an easy-to-
remember syntax for this: rails generate migration add*.

$ rails generate migration addHeightToProduct height:integer
invoke active record
create db/migrate/20151217185307_add_height to product.rb

In the migration file called db/migrate/20151217185307_add_height to_product.rb,
you once again find a change method, as shown in Listing 3-38.

171

CHAPTER 3 ACTIVERECORD

Listing 3-38. db/migrate/20151217185307_add_height_to_product.rb

class AddHeightToProduct < ActiveRecord::Migration
def change
add_column :products, :height, :integer
end
end
With rails db:migrate, you can start in the new migration.

$ rails db:migrate
== 20151217185307 AddHeightToProduct: migrating ===========================
-- add_column(:products, :height, :integer)
-> 0.0086s
= 20151217185307 AddHeightToProduct: migrated (0.0089s) ==================

R ||

In the console you can look at the new field. It was added after the field updated_at.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Product.column_names

=> ["id", "name", "price", "weight", "in stock", "expiration date",
"created at", "updated at", "height"]

>> exit

What if you want to look at the previous state of things? No problem. You can easily
go back to the previous version with rails db:rollback.

$ rails db:rollback
== 20151217185307 AddHeightToProduct: reverting ===========================
-- remove_column(:products, :height, :integer)
-> 0.0076s
= 20151217185307 AddHeightToProduct: reverted (0.0192s) ==================

172

CHAPTER 3 ACTIVERECORD

Each migration has its own version number. You can find out the version number of
the current status viarails db:version.

$ rails db:version
Current version: 20151217184823
$

o Please note that all version numbers and timestamps apply only to the
example printed here. If you re-create the example, you will of course get a
different timestamp for your own example.

You will find the corresponding version in the directory db/migrate.

$ 1s db/migrate/
20151217184823 create products.rb
20151217185307_add_height to product.rb
$

You can go to a specific migration via rails db:migrate VERSION=and add the
appropriate version number after the equal sign. The number zero represents the
version zero, in other words, the start.

Let’s try it.

$ rails db:migrate VERSION=0
== 20151217184823 CreateProducts: reverting ===========z=====z=z====z=z====z=z====
-- drop_table(:products)
-> 0.0007s
= 20151217184823 CreateProducts: reverted (0.0032s) ======================

The table was deleted with all the data. You are back to square one.

Which Database Is Used?

The database table is created through the migration. As you can see, the table names
automatically get the plural of the model’s name (Person versus people). But in which
database are the tables created? This is defined in the configuration file config/
database.yml, as shown in Listing 3-39.

173

CHAPTER 3 ACTIVERECORD

Listing 3-39. config/database.yml

SQLite version 3.x
gem install sqlite3
#
Ensure the SQLite 3 gem is defined in your Gemfile
gem 'sqlite3’
#
default: &default
adapter: sqlite3

pool: 5
timeout: 5000

development:
<<: *default
database: db/development.sqlite3

Warning: The database defined as "test" will be erased and
re-generated from your development database when you run "rake".
Do not set this db to the same as development or production.
test:

<<: *default

database: db/test.sqlite3

production:
<<: *default
database: db/production.sqlite3

Three different databases are defined there in YAML format (see www.yaml.org/
or http://en.wikipedia.org/wiki/YAML). For us, only the development database is
relevant for now (the first item). By default, Rails uses SQLite3 there. SQLite3 may not

be the correct choice for the analysis of the weather data collected worldwide, but for a

quick and straightforward development of Rails applications, you will quickly learn to

appreciate it. In the Production environment, you can later still switch to “big” databases

such as MySQL or PostgreSQL.

174

http://www.yaml.org/
http://en.wikipedia.org/wiki/YAML

CHAPTER 3 ACTIVERECORD

To satisfy your curiosity, let’s take a quick look at the database with the command-
line tool sqlite3

$ sqlite3 db/development.sqlite3

SQLite version 3.8.5 2014-08-15 22:37:57
Enter ".help" for usage hints.

sqlite> .tables

schema_migrations

sqlite> .quit

$

There’s nothing in it. Of course there’s not; you have not yet run the migration.

$ rails db:migrate

== 20151217184823 CreateProducts: migrating ===============================
-- create table(:products)

-> 0.0019s

20151217184823 CreateProducts: migrated (0.0020s) ======================

20151217185307 AddHeightToProduct: migrating ===========================
-- add_column(:products, :height, :integer)

-> 0.0007s
== 20151217185307 AddHeightToProduct: migrated (0.0008s) ==================

$ sqlite3 db/development.sqlite3

SQLite version 3.8.5 2014-08-15 22:37:57

Enter ".help" for usage hints.

sqlite> .tables

products schema_migrations

sqlite> .schema products

CREATE TABLE "products" ("id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
"name" varchar, "price" decimal(7,2), "weight" integer, "in_stock" boolean,
"expiration date" date, "created at" datetime NOT NULL, "updated at" datetime
NOT NULL, "height" integer);

sqlite> .quit

The table schema_migrations is used for the versioning of the migrations. This table
is created during the first migration carried out by Rails, if it does not yet exist.

175

CHAPTER 3 ACTIVERECORD

Creating Index

I assume that you know what a database index is. If not, you will find a brief introduction
athttp://en.wikipedia.org/wiki/Database_index. In brief, you can use it to quickly
search for a specific table column.

In your production database, you should index the field name in the products table.
You create a new migration for that purpose.

$ rails generate migration create_index
invoke active record
create db/migrate/20151217190442 create_index.rb

In the file db/migrate/20121120142002_create_index.rb, you create the index
with add_index in the method self.up, and in the method self.down you delete it with
remove_index, as shown in Listing 3-40.

Listing 3-40. db/migrate/20121120142002_create_index.rb

class CreatelIndex < ActiveRecord::Migration
def up
add_index :products, :name
end

def down
remove_index :products, :name
end
end

With rails db:migrate, you create the index.

$ rails db:migrate
== (reateIndex: migrating ==
-- add_index(:products, :name)

-> 0.0010s
== (reateIndex: migrated (0.0011s) =======================================
$

176

http://en.wikipedia.org/wiki/Database_index

CHAPTER 3 ACTIVERECORD

Of course, you don’t have to use the up and down methods. You can use change too.
The migration for the new index would look like this:

class CreateIndex < ActiveRecord::Migration[5.1]
def change
add_index :products, :name
end
end

Q You can also create an index directly when you generate the model. In this
case (an index for the attribute name), the command would look like this:

$ rails generate model product name:string:index
$ cat db/migrate/20151217191435 create products.rb
class CreateProducts < ActiveRecord::Migration
def change
create table :products do |t|
t.string :name

t.timestamps null: false
end
add_index :products, :name
end
end

Automatically Added Fields (id, created_at,
and updated_at)

Rails kindly adds the following fields automatically in the default migration:

o id:integer: Thisis the unique ID of the record. The field is
automatically incremented by the database. For all SQL fans, this is
equivalent to NOT NULL AUTO_INCREMENT.

177

CHAPTER 3 ACTIVERECORD

created at:datetime: The field is filled automatically by
ActiveRecord when arecord is created.

updated at:datetime: The field is automatically updated to the
current time whenever the record is edited.

So, you don’t have to enter these fields yourself when generating the model.

At first you may ask yourself, “Is that really necessary? Does it make sense?" But after

a while you will learn to appreciate these automatic fields. Omitting them would usually

be false economy.

Further Documentation

The following web pages provide excellent further information on the topic of migration:

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html

http://api.rubyonrails.org/classes/ActiveRecord/
ConnectionAdapters/TableDefinition.html

http://railscasts.com/episodes/107-migrations-in-rails-2-1
(a bit dated but still good if you are trying to understand the basics)

www.dizzy.co.uk/ruby on_rails/cheatsheets/rails-migrations

Callbacks

Callbacks are defined programming hooks in the life of an ActiveRecord object. You

can find a list of all callbacks at http://api.rubyonrails.org/classes/ActiveRecord/

Callbacks.html. Here are the most frequently used callbacks:

178

before validation: Executed before the validation
after validation: Executed after the validation
before save: Executed before each save

before create: Executed before the first save
after save: Executed after every save

after create: Executed after the first save

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://api.rubyonrails.org/classes/ActiveRecord/ConnectionAdapters/TableDefinition.html
http://api.rubyonrails.org/classes/ActiveRecord/ConnectionAdapters/TableDefinition.html
http://railscasts.com/episodes/107-migrations-in-rails-2-1
http://www.dizzy.co.uk/ruby_on_rails/cheatsheets/rails-migrations
http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html
http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html

CHAPTER 3 ACTIVERECORD

A callback is always executed in the model. Let’s assume you always want to save an
e-mail address in a User model in lowercase but also give the user of the web interface
the option to enter uppercase letters. You could use a before_save callback to convert
the attribute email to lowercase via the method downcase.

Here’s the Rails application:

$ rails new shop
[...]
$ cd shop
$ rails generate model user email login

[...]

$ rails db:migrate

[...]

Listing 3-41 shows what the model app/models/user.rb would look like. The
interesting stuff is the before_save part.

Listing 3-41. app/models/user.rb

class User < ApplicationRecord
validates :login,
presence: true

validates :email,
presence: true,
format: { :with => /A\A([*@\s]+)@((?:[-a-20-9]+\.)+[a-z]{2,})\Z/i }

before save :downcase email
private

def downcase email
self.email = self.email.downcase
end
end

179

CHAPTER 3 ACTIVERECORD
Let’s see in the console if it really works as you want it to work.

$ rails console
Running via Spring preloader in process 27927
Loading development environment (Rails 5.2.0)
>> User.create(login: 'smith', email: 'SMITH@example.com')
(0.1ms) begin transaction
SQL (0.5ms) INSERT INTO "users" ("login", "email", "created at",
"updated at") VALUES (?, ?, ?, ?) [["login", "smith"], ["email",
"smith@example.com"], ["created at", "2015-12-17 19:22:20.928994"],
["updated at", "2015-12-17 19:22:20.928994"]]
(9.0ms) commit transaction
=> #cUser id: 1, email: "smith@example.com", login: "smith", created at:
"2015-12-17 19:22:20", updated at: "2015-12-17 19:22:20">
>> exit

Even though the e-mail address was entered partly with capital letters, ActiveRecord
has converted all letters automatically to lowercase via the before save callback.

In the section “Default Values” you will find an example of defining a default value
for a new object via an after_initialize callback.

Default Values

If you need specific default values for an ActiveRecord object, you can easily
implement this with the after_initialize callback. This method is called by
ActiveRecord when a new object is created. Let’s assume you have a model Order
and the minimum order quantity is always 1, so you can enter 1 directly as the default
value when creating a new record.

Let’s set up a quick example, shown here:

$ rails new shop

[...]
$ cd shop
$ rails generate model order product_id:integer quantity:integer

[...]

$ rails db:migrate

[...]

180

CHAPTER 3 ACTIVERECORD

You write an after initialize callback into the file app/models/order.rb, as
shown in Listing 3-42.

Listing 3-42. app/models/order.rb

class Order < ApplicationRecord
after initialize :set defaults

private
def set defaults
self.quantity ||= 1
end
end

| |= 1sets the value to 1 ifitisn’t set already.
Then now you check in the console whether a new order object automatically
contains the quantity 1.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> order = Order.new

=> #<Order id: nil, product id: nil, quantity: 1, created at: nil,
updated at: nil>

>> order.quantity

=>1

>> exit

That’s working fine!

181

CHAPTER 4

Scaffolding and REST

Scaffolding means simply that a basic scaffold for an application is created with a
generator. This scaffold not only contains the model but also a simple web GUI (views)
and of course a controller. The programming paradigm used for this is Representational
State Transfer (REST).

You can find a definition of REST at wikipedia.org/wiki/Representational
state_transfer. My short and a bit oversimplified version is this: the inventor Roy
Fielding described in 2000 how you can access data with a simple set of rules within
the concept of CRUD and the specification of the Hypertext Transfer Protocol (HTTP).
CRUD is the abbreviation for Create (SQL: INSERT), Read (SQL: SELECT), Update (SQL:
UPDATE), and Delete (SQL: DELETE). This created URLs that are easy to read for humans
and have a certain logic. In this chapter, you will see examples showing the individual
paths for the different CRUD functions.

I think the greatest frustration with Rails arises regularly from the fact that many
beginners use scaffolding to get quick results without having the proper basic knowledge
of Ruby and without knowing what ActiveRecord is. They don’t know what to do next.
Fortunately, you have worked your way through Chapters 1-3, so you will be able to
understand and use scaffolding straightaway.

Redirects and Flash Messages

Scaffolding uses redirects and flash messages. So, you have to make a little detour first to
understand scaffolding.

Redirects

The name says it all, really. Redirects are commands that you can use within the
controller to skip (i.e., redirect) to other web pages.

183
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_4

https://wikipedia.org/wiki/Representational_state_transfer
https://wikipedia.org/wiki/Representational_state_transfer

CHAPTER 4 SCAFFOLDING AND REST

O A redirect returns to the browser the response 302 Moved with the new
target. So, each redirect does a round-trip to the browser and back.

Let’s create a new Rails project for a suitable example.

$ rails new redirect example
[...]

$ cd redirect example

$ rails db:migrate

Before you can redirect, you need a controller with at least two different methods.
Here is a ping-pong example:

$ rails generate controller Game ping pong
Running via Spring preloader in process 51759
create app/controllers/game_controller.rb
route get 'game/pong’
route get 'game/ping’
invoke erb
Create app/views/game
create app/views/game/ping.html.erb
create app/views/game/pong.html.erb
invoke test unit
create test/controllers/game_controller test.rb
invoke helper
create app/helpers/game_helper.rb
invoke test unit
invoke assets
invoke coffee

create app/assets/javascripts/game.coffee
invoke Scss
create app/assets/stylesheets/game.scss

184

CHAPTER 4 SCAFFOLDING AND REST

The controller app/controllers/game _controller.rb has the content shown in
Listing 4-1.

Listing 4-1. app/controllers/game_controller.rb

class GameController < ApplicationController
def ping
end

def pong
end
end

Now for the redirect: how can you set it up so you get immediately redirected to the
method pong when you go to http://localhost:3000/game/ping? Easy, you say—you
just change the route in config/routes.rb. And you are right. So, you don’t necessarily
need a redirect. But if you want to process something else in the method ping before
redirecting, then this is only possible by using a redirect_to in the controller
app/controllers/game_controller.rb, as shown in Listing 4-2.

Listing 4-2. app/controllers/game_controller.rb

class GameController < ApplicationController
def ping
logger.info '+++ Example +++'
redirect_to game pong path
end

def pong
end
end

But what is game_pong_path? Let’s take a look at the routes generated for this Rails
application:

$ rails routes

Prefix Verb URI Pattern Controller#Action
game_ping GET /game/ping(.:format) game#ping
game_pong GET /game/pong(.:format) game#pong

185

CHAPTER 4 SCAFFOLDING AND REST

O As you can see, the route to the action ping of the controller
GameController now gets the name game_ping (see the beginning of the line).
You could also write the redirect like this:

redirect to :action => 'pong'

I'will explain the details and the individual options of the redirect later in the context
of each specific case. For now, you just need to know that you can redirect not just to
another method but also to another controller or an entirely different web page.

When you try to go to http://localhost:3000/game/ping, you are automatically
redirected to http://localhost:3000/game/pong, and in the log output you see this:

Started GET "/game/ping" fer 127.0.0.1 at 2015-04-15 17:50:04 +0200
Processing by GameController#ping as HTML

+++ Example +++

Redirected to http://localhost:3000/game/pong

Completed 302 Found in 14ms (ActiveRecord: 0.0ms)

Started GET "/game/pong" for 127.0.0.1 at 2015-04-15 17:50:04 +0200
Processing by GameController#pong as HTML

Rendered game/pong.html.erb within layouts/application (2.1ms)
Completed 200 OK in 2128ms (Views: 2127.4ms | ActiveRecord: 0.0ms)

redirect_to :back

If you want to redirect the user of your web application to the page the user was just on,
you can use redirect to :back. This is useful in a scenario where your user first has to
log in to get access to a specific page.

186

CHAPTER 4 SCAFFOLDING AND REST

Flash Messages

In my eyes, the term flash messages is somewhat misleading. Almost anyone would
associate the term flash with more or less colorful web pages that were implemented
with the Adobe Shockwave Flash plug-in. But in Ruby on Rails, flash messages are
something completely different. They are messages that are displayed on the new page
after a redirect, for example (see the section “Redirects”).

Flash messages are good friends with redirects. The two often work together in a
team to give the user feedback on an action just carried out. A typical example of a flash
message is the system feedback when a user has logged in. Often the user is redirected
back to the original page and gets the message “You are now logged in.”

As an example, here again is the ping-pong scenario from the section “Redirects”:

$ rails new pingpong
[...]
$ cd pingpong
$ rails db:migrate
$ rails generate controller Game ping pong

[...]

You fill app/controllers/game_controller.rb with the content shown in Listing 4-3.

Listing 4-3. app/controllers/game_controller.rb

class GameController < ApplicationController
def ping
redirect_to game_pong path, notice: 'Ping-Pong!’
end

def pong
end
end

187

CHAPTER 4 SCAFFOLDING AND REST

Now you start the Rails web server with rails server and use the browser to go
to http://localhost:3000/game/ping. You are redirected from ping to pong. But the
flash message “Ping-Pong!” is nowhere to be seen. You first need to expand app/views/
layouts/application.html.erb, as shown in Listing 4-4.

Listing 4-4. app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title>RedirectExample</title>
<%= csrf_meta_tags %>

<%= stylesheet link_tag "application', media: 'all', 'data-
turbolinks-track': 'reload' %>
<%= javascript_include tag 'application', 'data-turbolinks-track':
'reload’ %>

</head>

<body>
<% flash.each do |name, message| %>
<p><i><%= "#{name}: #{message}" %></i></p>
<% end %>
<%= yield %>
</body>
</html>

Now you see the flash message at the top of the page when you go to
http://localhost:3000/game/ping in the browser, as shown in Figure 4-1.

188

CHAPTER 4 SCAFFOLDING AND REST

® © ® [Ypingpong X

€ - C [) localhost:3000/game/pong

notice: Ping-Pong!

Game#pong

Find me in app/views/game/pong.html.crb

Figure 4-1. Flash message

If you go to http://localhost:3000/game/pong, you still see the normal Pong page.
But if you go to http://localhost:3000/game/ping, you are redirected to the Pong
page, and then the flash message is displayed at the top.

Q If you do not see a flash message that you were expecting, first check in the
view to see whether the flash message is output there.

Different Types of Flash Messages

Flash messages are “automagically” passed to the view in a hash. By default, there are
three different types: error, warning, and notice. You can also invent your own category

and then get it in the view later.
You can set a flash message by writing the hash directly too, as shown here:

flash[:notice] = 'Ping-Pong!’

Please take a look at the official documentation at http://guides.rubyonrails.
org/action_controller overview.html#the-flash for more information.

189

http://guides.rubyonrails.org/action_controller_overview.html#the-flash
http://guides.rubyonrails.org/action_controller_overview.html#the-flash

CHAPTER 4 SCAFFOLDING AND REST

Why Are There Flash Messages at All?

You may wonder why there are flash messages in the first place. Couldn’t you just build
them yourself if you need them? Yes, indeed. But flash messages have the advantage that
they offer a defined approach that is the same for any programmer. So, you don’t need to
start from scratch every single time you need one.

Generating a Scaffold

Let’s first use scaffolding to create a list of products for an online shop. First, you need to
create a new Rails application.

$ rails new scaffold-shop
[...]

$ cd scaffold-shop

$ rails db:migrate

Let’s look at the scaffolding options.

$ rails generate scaffold

Usage:
rails generate scaffold NAME [field[:type][:index] field[:type][:index]]
[options]

[...]

Examples:
"rails generate scaffold post”
"rails generate scaffold post title body:text published:boolean”
“rails generate scaffold purchase amount:decimal tracking id:integer:uniq
“rails generate scaffold user email:uniq password:digest’

I'll keep it short: for the current state of knowledge, you can use rails generate
scaffoldjustlike rails generate model. Let’s create the scaffold for the products.

$ rails generate scaffold product name 'price:decimal{7,2}'
Running via Spring preloader in process 38321

190

invoke
create
create
invoke
create
create
invoke

route
invoke
create
invoke
create
create
create
create
create
create
invoke
create
create
invoke
create
invoke
invoke
create
create
create
invoke
invoke
create
invoke
create
invoke
create

CHAPTER 4 SCAFFOLDING AND REST

active record
db/migrate/20180118065756_create products.rb
app/models/product.rb
test_unit
test/models/product_test.rb
test/fixtures/products.yml
resource _route
resources :products
scaffold controller
app/controllers/products_controller.rb
erb
app/views/products
app/views/products/index.html.erb
app/views/products/edit.html.erb
app/views/products/show.html.erb
app/views/products/new.html.erb
app/views/products/ form.html.erb
test unit
test/controllers/products_controller test.rb
test/system/products_test.rb
helper
app/helpers/products_helper.rb
test unit
jbuilder
app/views/products/index.json.jbuilder
app/views/products/show. json.jbuilder
app/views/products/_product.json.jbuilder
assets
coffee
app/assets/javascripts/products.coffee
SCss
app/assets/stylesheets/products.scss
scss
app/assets/stylesheets/scaffolds.scss

191

CHAPTER 4 SCAFFOLDING AND REST

Asyou can see, rails generate scaffold has already created the model. So, you
can directly call rails db:migrate.

$ rails db:migrate
== 20180118065756 CreateProducts: migrating ===============================
-- create_table(:products)
-> 0.0014s
== 20180118065756 CreateProducts: migrated (0.0015s)

Let’s create the first six products in db/seeds.rb.

Product.create(name: 'Apple', price: 1)
Product.create(name: 'Orange', price: 1)
Product.create(name: 'Pineapple’, price: 2.4)
Product.create(name: 'Marble cake', price: 3)

Populate with the example data.

$ rails db:seed

The Routes

rails generate scaffold has created a route (more on this later in Chapter 5), a
controller, and several views for you.

You could also have done all of this manually. Scaffolding is merely an automatism
that does the work for you for some basic things. This is assuming that you always want
to view, create, and delete records.

Without diving too deeply into the topic of routes, let’s just take a quick look at the
available routes for the example. You need to run rails routes.

$ rails routes

Prefix Verb URI Pattern Controller#Action
products GET /products(.:format) products#index
POST /products(.:format) products#create
new_product GET /products/new(. :format) products#new
edit_product GET /products/:id/edit(.:format) products#edit
product GET /products/:id(.:format) products#show

192

CHAPTER 4 SCAFFOLDING AND REST

PATCH /products/:id(.:format) products#update
PUT /products/:id(.:format) products#update
DELETE /products/:id(.:format) productsi#fdestroy

These are all the routes and consequently URLs available in this Rails application. All
routes invoke actions (in other words, methods) in the ProductsController.

The Controller

Now it’s about time you had a look at the file app/controllers/products_controller.rb.
The scaffolding automatically creates the methods index, show, new, create, update, and
destroy. These methods or actions are called by the routes.

Listing 4-5 shows the content of app/controllers/products_controller.rb.

Listing 4-5. app/controllers/products_controller.rb

class ProductsController < ApplicationController
before_action :set product, only: [:show, :edit, :update, :destroy]

def index
@products = Product.all
end

def show
end

def new
@product = Product.new
end

def edit
end

193

CHAPTER 4 SCAFFOLDING AND REST

POST /products
POST /products.json
def create
@product = Product.new(product_params)

respond_to do |format]|
if @product.save
format.html { redirect to @product, notice: 'Product was
successfully created.' }
format.json { render :show, status: :created, location: @product }
else
format.html { render :new }
format.json { render json: @product.errors, status: :unprocessable
entity }
end
end
end

PATCH/PUT /products/1
PATCH/PUT /products/1.json
def update
respond_to do |format]|
if @product.update(product params)
format.html { redirect to @product, notice: 'Product was
successfully updated.' }
format.json { render :show, status: :ok, location: @product }
else
format.html { render :edit }
format.json { render json: @product.errors, status: :unprocessable
entity }
end
end
end

DELETE /products/1
DELETE /products/1.json
def destroy

194

CHAPTER 4 SCAFFOLDING AND REST

@product.destroy
respond_to do |format]|
format.html { redirect to products url, notice: 'Product was
successfully destroyed.' }
format.json { head :no content }
end
end

private
def set product

@product = Product.find(params[:id])
end

def product params
params.require(:product).permit(:name, :price)
end
end

Let’s take a moment and go through this controller.

set_product

An action called before_action calls a private method to set an instance variable called
@product for the actions :show, :edit, :update, and :destroy. That DRYs it up nicely.

before_action :set product, only: [:show, :edit, :update, :destroy]

private

def set product
@product = Product.find(params[:id])
end

[...]

195

CHAPTER 4 SCAFFOLDING AND REST

index

The index method sets the instance variable @products. It contains the result of
Product.all.

def index
@products = Product.all
end

show

The show method doesn’t do anything. set_product before action already set the
instance variable @product. So, there is not more to do.

def show
end

new

The new method creates a new instance of Product and saves it in the instance variable @
product.

def new
@product = Product.new
end

edit

The edit method doesn’t do anything. The action called set_product before action
already set the instance variable @product. So, there is nothing more to do.

def edit
end

196

CHAPTER 4 SCAFFOLDING AND REST

create

The create method uses Product.new to create a new instance of Product and store it in
@product. The private method product_params is used to filter the trusted parameters
with a white list. When @product is successfully saved, a redirect to the show action is
initiated for HTML requests. If a validation error occurs, the new action will be rendered.

def create
@product = Product.new(product params)

respond_to do |format]|
if @product.save
format.html { redirect to @product, notice: 'Product was successfully
created.’' }
format.json { render :show, status: :created, location: @product }
else
format.html { render :new }
format.json { render json: @product.errors, status: :unprocessable
entity }
end
end
end

[...]

def product params
params.require(:product).permit(:name, :price)
end

197

CHAPTER 4 SCAFFOLDING AND REST

update

The update method tries to update @product with product_params. The private method
product_params is used to filter the trusted parameters with a white list. When @product
is successfully updated, a redirect to the show action is initiated for HTML requests. If a
validation error occurs, the edit action will be rendered.

def update
respond_to do |format]|
if @product.update(product params)
format.html { redirect to @product, notice: 'Product was successfully
updated.’ }
format.json { render :show, status: :ok, location: @product }
else
format.html { render :edit }
format.json { render json: @product.errors, status: :unprocessable
entity }
end
end
end

[...]

def product params
params.require(:product).permit(:name, :price)
end

198

CHAPTER 4 SCAFFOLDING AND REST

destroy

The destroy method destroys @product and redirects an HTML request to the index
action.

def destroy
@product.destroy
respond_to do |format]
format.html { redirect to products url, notice: 'Product was
successfully destroyed.' }
format.json { head :no content }
end
end

The Views

Now you start the Rails web server.

$ rails server

=> Booting Puma

=> Rails 5.2.0 application starting in development on http://localhost:3000
=> Run "rails server -h for more startup options

Puma starting in single mode...

* Version 3.11.0 (ruby 2.5.0-p0), codename: Love Song

Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://0.0.0.0:3000

Use Ctrl-C to stop

*

199

CHAPTER 4 SCAFFOLDING AND REST

A little drum roll, please, for dramatic suspense...launch the web browser and go to
the URL http://localhost:3000/products. You can see the list of products as a simple
web page, as shown in Figure 4-2.

® @ [scaffoldShop X e

& C' @ localhost:3000/products vr

Products

Name Price
Apple 1.0 Show Edit Destroy
Destroy
Destroy

(=R
=

Orange 1.0 Show

m
(=%
~

Pineapple 2.4 Show

m
(=%
~

Marble cake 3.0 Show Destroy

New Product

Figure 4-2. Products index

200

CHAPTER 4 SCAFFOLDING AND REST

If you now click the link New Product, you will see an input form for a new record, as

shown in Figure 4-3.

® @ [scaffoldShop X e

& C' @ localhost:3000/products/new Y
New Product
Name
Price

Create Product

Back

Figure 4-3. New product form

Use your browser’s Back button to go back and click the Show link in the first line.

You will then see the page shown in Figure 4-4.

® @ [scaffoldShop X e

& C' @ localhost:3000/products/1 Y

Name: Apple
Price: 1.0

Edit | Back

Figure 4-4. Showing a product
201

CHAPTER 4 SCAFFOLDING AND REST

If you now click Edit, you will see the editing view for this record, as shown in

Figure 4-5.
® ® [scaffoldShop X e
& C' @ localhost:3000/products/1/edit w

Editing Product

Name
Apple

Price
1.0

Update Product

Show | Back

Figure 4-5. Editing a product

If you click Destroy on the index page, you can delete a record after confirming the
message that pops up. Isn’t that cool? Within less than ten minutes, you have written
a web application that allows you to create, read/retrieve, update, and delete/destroy
records. That is the scaffolding magic. You can save a lot of time.

Where Are the Views?

You can probably guess where the views are, but let’s take a look at the directory
app/views/products anyway.

$ tree app/views/products/
app/views/products/

F— _form.html.erb

F— product.json.jbuilder
— edit.html.erb

— index.html.erb

— index.json.jbuilder

202

CHAPTER 4 SCAFFOLDING AND REST

— new.html.erb
— show.html.erb
L— show.json.jbuilder

There are two different file extensions. The html.exrb file is for HTML requests, and
the json. jbuilder file is for JSON requests.

For index, edit, new, and show, the corresponding views are located there. As new
and edit both require a form for editing the data, this is stored in the partial form.
html.erb in accordance with the principle of DRY and is integrated into new.html.erb
and edit.html.erb with a <%= render 'form' %>.

Let’s open the file app/views/products/index.html.erb, as shown in Listing 4-6.

Listing 4-6. app/views/products/index.html.erb

<p id="notice"><%= notice %></p>
<h1>Products</h1>

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th colspan="3"></th>
</tr>
</thead>

<tbody>
<% @products.each do |product| %>

<tr>
<td><%= product.name %></td>
<td><%= product.price %></td>
<td><%= link_to 'Show', product %></td>
<td><%= link to 'Edit', edit product_path(product) %></td>
<td><%= link to 'Destroy', product, method: :delete, data: {
confirm: 'Are you sure?' } %></td>

</tr>

203

CHAPTER 4 SCAFFOLDING AND REST

<% end %>
</tbody>
</table>

<%= link_to 'New Product', new_product_path %>

You are now an old hand when it comes to ERB, so you'll be able to read and
understand the code without any problems.

link_to

In the views generated by the scaffold generator, you first came across the helper
link_to. This creates <a hre ...>links. You can of course also enter a link manually
viain erb, but for links within a Rails project, 1ink_to is more practical
because you can use the names of the routes as a target. The code becomes much easier
to read. In the previous example, there are the following routes:

$ rails routes

Prefix Verb URI Pattern Controller#Action
products GET /products(.:format) products#index
POST /products(.:format) products#create
new_product GET /products/new(. :format) products#new
edit_product GET /products/:id/edit(.:format) products#edit
product GET /products/:id(.:format) products#show
PATCH /products/:id(.:format) products#update
PUT /products/:id(.:format) products#update
DELETE /products/:id(.:format) products#destroy

The first part of this route is the name of the route. With a new call, this is new_product.
Alink to new_product looks like the following in the erb code (you can see it at the end of
the file app/views/products/index.html.erb):

<%= link to 'New Product', new product path %>

In the HTML code of the generated page (http://localhost:3000/products), you
can see the result.

<%= link_to 'New Product', new_product_path %>
204

CHAPTER 4 SCAFFOLDING AND REST

With link_toyou can also link to resources within a RESTful resource. Again, you
can find examples for this in app/views/products/index.html.erb. In the table, a show
link, an edit link, and a destroy link are rendered for each product.

<tbody>
<% @products.each do |product| %>
<tr>
<td><%= product.name %></td>
<td><%= product.price %></td>
<td><%= link _to 'Show', product %></td>
<td><%= link_to 'Edit', edit_product_path(product) %></td>
<td><%= link to 'Destroy', product, method: :delete, data: { confirm:
'Are you sure?' } %></td>
</tr>
<% end %>
</tbody>

From the resource and the selected route, Rails automatically determines the
required URL and the required HTTP verb (in other words, whether it is a POST, GET,
PUT, or DELETE). For index and show calls, you need to observe the difference between
singular and plural. 1ink_to 'Show', product links to a single record, and 1ink_to
"Show', products_path links to the index view.

Whether the name of the route is used with or without the suffix pathin link to
depends on whether Rails can “derive” the route from the other specified information.
If only one object is specified (in this example, the variable product), then Rails
automatically assumes that it is a show route.

Here are some examples:

ERD Code Explanation
link _to 'Show', Product.first Link to the first product
link_to 'New Product', new_product_path Link to the web interface where a

new product can be created

link to 'Edit', edit_product_path(Product.first) Link tothe form where the first
product can be edited

link_to 'Destroy', Product.first, method: :delete Link to deleting the first product

205

CHAPTER 4 SCAFFOLDING AND REST

form_for

In the partial used by new and edit, called app/views/products/_form.html.erb, you
will find the code shown in Listing 4-7 for the product form.

Listing 4-7. app/views/products/_form.html.erb

<%= form with(model: product, local: true) do |f| %>
<% if product.errors.any? %>
<div id="error_explanation">
<h2><%= pluralize(product.errors.count, "error") %> prohibited this
product from being saved:</h2>

<% product.errors.full messages.each do |message| %>
<%= message %></1i>
<% end %>

</div>
<% end %>

<div class="field">

<%= f.label :name %>

<%= f.text field :name %>
</div>

<div class="field"»

<%= f.label :price %>

<%= f.text _field :price %>
</div>

<div class="actions">
<%= f.submit %>
</div>
<% end %>

206

CHAPTER 4 SCAFFOLDING AND REST

In a block, the helper form_for takes care of creating the HTML form via which
the user can enter the data for the record or edit it. If you delete a complete <div
class="field"> element here, this can no longer be used for input in the web interface.
I am not going to comment on all possible form field variations at this point. The most
frequently used ones will appear in examples later and be explained then (if they are not
self-explanatory).

O You can find an overview of all form helpers at http://guides.
rubyonrails.org/form_helpers.html.

When using validations in the model, any validation errors that occur are displayed
in the following code at the head of the form:

<% if product.errors.any? %>
<div id="error explanation">
<h2><%= pluralize(product.errors.count, "error") %> prohibited this
product from being saved:</h2>

<% product.errors.full messages.each do |message| %>
<%= message %></1i>
<% end %>

</div>
<% end %>

Let’s add a small validation to the app/models/product.rb model, as shown in
Listing 4-8.

Listing 4-8. app/models/product.rb

class Product < ApplicationRecord
validates :name,
presence: true
end

207

http://guides.rubyonrails.org/form_helpers.html
http://guides.rubyonrails.org/form_helpers.html

CHAPTER 4 SCAFFOLDING AND REST

Whenever somebody wants to save a product that doesn’t have a name, Rails will
show the flash error in Figure 4-6.

® @ [y scaffoldShop x (3]

& C @ localhost:3000/products vr

New Product

1 error prohibited this product from being saved:

= Name can't be blank

-

Price

Create Product

Back

Figure 4-6. Products error flash

Access via JSON

By default, Rails’ scaffolding generates not just access via HTML for human users but
also a direct interface for machines. The same methods index, show, new, create,
update, and destroy can be called via this interface, but in a format that is easier to read
for machines. As an example, you will see the index action via which all data can be read
in one go. With the same idea, data can be removed (destroy) or edited (update).

JSON (see http://wikipedia.org/wiki/Json) seems to be the new cool kid. So, let’s
use JSON.

If you do not require machine-readable access to data, you can remove the lines
shown in Listing 4-9 from the file Gemfile (followed by the command bundle).

208

http://wikipedia.org/wiki/Json

CHAPTER 4 SCAFFOLDING AND REST

Listing 4-9. Gemfile

gem 'jbuilder', '~ 2.5'

Of course, you can delete the format. json lines manually too. But please don’t forget
to delete the JSON view files too.

JSON As Default

Right at the beginning of app/controllers/products_controller.rb you will find the
entry for the index action, as shown in Listing 4-10.

Listing 4-10. app/controllers/products_controller.rb

def index
@products = Product.all
end

The code is straightforward. In the instance variable @products, all the products are
saved. The view app/views/products/index.json. jbuilder contains the code shown
in Listing 4-11 to render the JSON.

Listing 4-11. app/views/products/index.json.jbuilder
json.array! @products, partial: 'products/product', as: :product
It renders the partial named _product.json.jbuilder, as shown in Listing 4-12.

Listing 4-12. app/views/products/_product.json.jbuilder

json.extract! product, :id, :name, :price, :created at, :updated at
json.url product url(product, format: :json)

209

CHAPTER

4 SCAFFOLDING AND REST

You can use your browser to fetch the JSON output. Just open

http://localhost:3000/products.json and view the result. I installed a JSON view
extension in my Chrome browser to get a nicer format, as shown in Figure 4-7.

[[D localhost:3000/products.json %

& C @ localhost:3000/products.json
[{"id":1, "name" :"Apple","price":"1.0", "created_at":"2017-03-
23T16:34:47.7982", "updated_at":"2017-03-
23T16:34:47.7982Z" ,"url": "http://localhost:3000/products/1.json"},
{"id":2,"name":"Orange", "price":"1.0", "created_at":"2017-03-
23T16:34:47.801z","updated_at":"2017-03-
23T16:34:47,8012","url":"http://localhost:3000/products/2.json"},
{"id":3,"name": "Pineapple","price":"2.4","created_at":"2017-03-
23T16:34:47.8042", "updated_at":"2017-03-
23T16:34:47.8042","url": "http://localhost:3000/products/3.json"},
{"id":4,"name":"Marble cake","price":"3.0","created at":"2017-03-
23T16:34:47.8072","updated_at":"2017-03-
23T16:34:47.8072","url":"http://localhost:3000/products/4.json"}]
Figure 4-7. Products index JSON

If you do not want the JSON output, you need to delete the json. jbuilder files.

JSON

Ifyou ever need a JSON and XML interface in a Rails application, you just need to specify
both variants in the controller in the block respond_to. Listing 4-13 shows an example

and XML Together

with app/controllers/products_controller.rb in the index action.

Listing 4-13. app/controllers/products_controller.rb

def index
@products = product.all

respond_to do |format]
format.html
format.json { render json: @products }

210

CHAPTER 4 SCAFFOLDING AND REST

format.xml { render xml: @products }
end
end

When Should You Use Scaffolding?

You should never use scaffolding just for the sake of it. There are Rails developers who
never use scaffolding and always build everything manually. I find scaffolding quite
useful for quickly getting into a new project. But it is always just the beginning.

Example for a Minimal Project

Let’s assume you need a web page quickly with which you can list products and
represent them individually. But you do not require an editing or deleting function. In
that case, a large part of the code created via scaffolding would be useless and have to be
deleted. Let’s try it as follows:

$ rails new read-only-shop

[...]
$ cd read-only-shop
$ rails generate scaffold product name 'price:decimal{7,2}'

[...]

$ rails db:migrate

[...]

Now create db/seeds.rb with some demo products, as shown in Listing 4-14.

Listing 4-14. db/seeds.rb

Product.create(name: 'Apple', price: 1)

Product.create(name: 'Orange', price: 1)

Product.create(name: 'Pineapple’, price: 2.4)

Product.create(name: 'Marble cake', price: 3)
Populate it with this data:

$ rails db:seed

211

CHAPTER 4 SCAFFOLDING AND REST

Because you need only index and show, you should delete the views that not
required.

$ rm app/views/products/_form.html.erb
$ rm app/views/products/new.html.erb
$ rm app/views/products/edit.html.erb

The json.jbuilder views are not needed either.
$ rm app/views/products/*.json.jbuilder

The file app/controllers/products_controller.rb can be simplified with an
editor. It should look like Listing 4-15.

Listing 4-15. app/controllers/products_controller.rb

class < ApplicationController
before action :set product, only: [:show]

def index
@products = Product.all
end

def show
end

private
def set product
@product = Product.find(params[:id])

end
end

You only need the routes for index and show. Please open the file config/routes.rb
and edit it as shown in Listing 4-16.

212

CHAPTER 4 SCAFFOLDING AND REST

Listing 4-16. config/routes.rb

Rails.application.routes.draw do
resources :products, only: [:index, :show]
end

Arails routes command shows you that really only index and show are routed now.

$ rails routes

Prefix Verb URI Pattern Controller#Action
products GET /products(.:format) products#index
product GET /products/:id(.:format) products#show

If you now start the server with rails server and go to the URL
http://localhost:3000/products, you get an error message, as shown in Figure 4-8.

® © ® [y action Controller: Exception ¢ X (=)
& C @ localhost:3000/products w| i
NoMethodError in Products#index
Showing /L nfy-sh Avil D hitml.erb where line #20 raised:

undefined method “edit product path® for #<#<Class:0x007£98eblefl4B>:0x007£90ea6620d0>
Did you mean? edit_polyrmorphic_path

Extracted source (around line #20):

<td><¥= product.price ¥></td>
<td><t= link to °"Show', product &></td>
<td=<d= link to "Edit’, edit product path{product) %></td>
<td><i= link_to 'Destroy’, product, method: :delete, data: { confirm: 'Are you sure?’) #></td>
</tr>
<i end B>

Rails.root: /Users/stefan/tmp/boock/read-only-shop

Application Trace | Framework Trace | Full Trace
e I

aeuirious findex.html.exbil5iin "~ ape views products index Diml erb §534496912710881303 70147378203280"

Request
Parameters:
Hone

Toggle session dump

Figure 4-8. Products error message

213

CHAPTER 4 SCAFFOLDING AND REST
The same message will be displayed in the log.

$ rails server

=> Booting Puma

=> Rails 5.2.0 application starting in development on http://localhost:3000
=> Run “rails server -h for more startup options

Puma starting in single mode...

* Version 3.11.0 (ruby 2.5.0-p0), codename: Love Song

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://0.0.0.0:3000

Use Ctrl-C to stop

Started GET "/products" fer 127.0.0.1 at 2017-03-23 17:47:43 +0100

(0.2ms) SELECT "schema_migrations"."version" FROM "schema migrations”
ORDER BY "schema_migrations"."version" ASC
Processing by ProductsController#index as HTML
Rendering products/index.html.erb within layouts/application
Product Load (0.2ms) SELECT "products".* FROM "products”
Rendered products/index.html.erb within layouts/application (126.3ms)

Completed 500 Internal Server Error in 149ms (ActiveRecord: 0.7ms)

ActionView: :Template::Error (undefined method “edit product path' for
#<#<Class:0x007198eb1e8148>:0x007f98ea6620d0>
Did you mean? edit polymorphic_path):

17: <td><%= product.name %></td>

18: <td><%= product.price %></td>

19: <td><%= link_to 'Show', product %></td>

20: <td><%= link to 'Edit', edit product_path(product) %></td>

21: <td><%= link_to 'Destroy', product, method: :delete, data:
{ confirm: 'Are you sure?' } %></td>

22: </tr>

23: <% end %>

app/views/products/index.html.erb:20:in “block in _app views products_
index_html_erb 4554496912710881403_70147378203280"
app/views/products/index.html.erb:15:in ~ app_views products index html erb
_ 4554496912710881403_70147378203280"

214

CHAPTER 4 SCAFFOLDING AND REST

The error message states that you call the undefined method edit_product_pathin
the view app/views/products/index.html.erb. Because you route only index and show
now, there are no more edit, destroy, or new methods anymore. So, you need to adapt
the file app/views/products/index.html.erb in the editor as shown in Listing 4-17.

Listing 4-17. app/views/products/index.html.erb
<h1>Products</h1>

<table>
<thead>
<tr>
<th>Name</th>
<th>Price</th>
<th></th>
</tr>
</thead>

<tbody>
<% @products.each do |product| %>
<tr>
<td><%= product.name %></td>
<td><%= product.price %></td>
<td><%= link to 'Show', product %></td>
</tr>
<% end %>
</tbody>
</table>

While you are at it, you can also edit app/views/products/show.html.erb
accordingly; see Listing 4-18.

Listing 4-18. app/views/products/show.html.erb

<p>
Name:
<%= @product.name %>
</p>

215

CHAPTER 4 SCAFFOLDING AND REST

<p>
Price:
<%= @product.price %>
</p>

<%= link _to 'Back', products path %>

Now the application is finished. Start the Rails server with rails server and open
the URL http://localhost:3000/products in the browser, as shown in Figure 4-9.

[® [ReadOnlyShop X e

& C @ localhost:3000/products w

Products

Name Price

Apple 1.0 Show

Orange 1.0 Show
Pineapple 2.4 Show
Marble cake 3.0 Show

Figure 4-9. Read-only products index

o In this example, | am not commenting on the required changes in the tests,
as this is not an exercise for test-driven development (TDD) but is meant to
demonstrate a way of working with scaffolding. TDD developers will quickly be
able to adapt the tests.

Conclusion

Try working with scaffolds one time and without them the next. Then you will soon get a
feel for whether they fit into your workflow. I find that scaffolding makes my work much
easier for standard applications.

216

CHAPTER 5

Routes

In Chapters 2 and 4, you learned about routes. The configuration in config/routes.rb
defines what happens in the Rails application when a user of a Rails application fetches
a URL. A route can be static or dynamic and pass any dynamic values with variables to
the controller. If several routes apply to the same URL, the one that is listed at the top of
config/routes.rb wins.

Q If you do not have much time, you can skip this chapter for now and come
back to it later if you have any specific questions.

Let’s first build a test Rails application so you can experiment.

$ rails new shop
[...]

$ cd shop

$ rails db:migrate

With rails routes, you can display the routes of a project. Let’s try it straightaway in
the freshly created project.

$ rails routes
You don't have any routes defined!

Please add some routes in config/routes.rb.

For more information about routes, see the Rails guide:
http://guides.rubyonrails.org/routing.html.

217
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_5

CHAPTER5 ROUTES

That’s what I call a good error message. It’s a new Rails project, so there are no
routes yet.

HTTP GET Requests for Singular Resources

As you might know, the HTTP protocol uses different so-called verbs to access content
on the web server (e.g., GET to request a page or POST to send a form to the server). First
let’s take a look at GET requests.

Create a controller with three pages.

$ rails generate controller Home index ping pong
create app/controllers/home_controller.rb
route get "home/pong"
route get "home/ping"
route get "home/index"

[...]
Now rails routes lists a route for these three pages.

$ rails routes

Prefix Verb URI Pattern Controller#Action
home_index GET /home/index(.:format) home#index
home_ping GET /home/ping(.:format) home#ping
home_pong GET /home/pong(.:format) home#pong

218

CHAPTERS5 ROUTES

The pages can be accessed at the following URLSs after starting the Rails server with
rails server:

o http://localhost:3000/home/index for home_index GET /home/
index(.:format) home#index

o http://localhost:3000/home/ping for home_ping GET /home/
ping(.:format) homet#ping (see Figure 5-1)

e http://localhost:3000/home/pong for home pong GET /home/
pong(.:format) home#pong

® ©® /N shop X ©

& C' | @ localhost:3000/home/ping v

Home#ping

Find me in app/views/home/ping.html.erb

Figure 5-1. Home ping

With the output home#index, Rails tells you that the route home/index goes into the
controller home and there to the action/method index. These routes are defined in
the config/routes.rbfile. rails generate controller Home index ping ponghas
automatically inserted the lines there shown in Listing 5-1.

Listing 5-1. config/routes.rb

get "home/index"
get "home/ping"
get "home/pong"

219

CHAPTER5 ROUTES

Naming a Route

A route should always have an internal name that doesn’t change. In the section “HTTP
Get Requests for Singular Resources,” there is the following route:

home_pong GET /home/pong(.:format) home

This route has the automatically created name home_pong. Generally, you should
always try to work with the name of the route within a Rails application. For example,
you would point 1ink_to to home_pong and not to /home/pong. This has the big
advantage that you can later edit (in the best case, optimize) the routing for visitors
externally and do not need to make any changes internally in the application. Of course,
you need to enter the old names with :as in that case.

as

If you want to define the name of a route yourself, you can do so with as. For example,
the following line:

get "home/pong", as: 'different name'
results in the route shown here:

different name GET /home/pong(.:format) home

to

With to, you can define another destination for a route. For example, the following line:
get "home/applepie”, to: "homet#tping"

results in the route shown here:

home_applepie GET /home/applepie(.:format) home

220

CHAPTERS5 ROUTES

Parameters

The routing engine does not just assign fixed routes; it also passes parameters that are
part of the URL. A typical example would be date specifications (e.g., http://example.
com/2010/12/ for all December postings).

To demonstrate this, let’s create a mini blog application.

$ rails new blog

[...]
$ cd blog
$ rails generate scaffold post subject content published on:date

[...]

$ rails db:migrate

[...]

Put some example data in db/seeds.rb, as shown in Listing 5-2.

Listing 5-2. db/seeds.rb

Post.create(subject: 'A test', published on: '01.10.2011")
Post.create(subject: 'Another test', published on: '01.10.2011")
Post.create(subject: 'And yet one more test', published on: '02.10.2011")
Post.create(subject: 'Last test', published on: '01.11.2011")
Post.create(subject: 'Very final test', published on: '01.11.2012")

With rails db:seed, you populate the database with this data:

$ rails db:seed

221

http://example.com/2010/12/
http://example.com/2010/12/

CHAPTER5 ROUTES

If you now start the Rails server with rails server and go to the page
http://localhost:3000/posts in the browser, you will see the screen in Figure 5-2.

®O® /N siog X ()
< C' @ localhost:3000/posts 7
Posts
Subject Content Published on
A test 2011-10-01 Show Edit Destroy
Another test 2011-10-01 Show Edit Destroy
And yet one more test 2011-10-02 Show Edit Destroy
Last test 2011-11-01 Show Edit Destroy
Very final test 2012-11-01 Show Edit Destroy
New Post

Figure 5-2. Posts index

For this kind of blog, it would of course be useful if you could render all entries for the
year 2010 with the URL http://localhost:3000/2010/ and all entries for October 1, 2010,
with http://localhost:3000/2010/10/01. You can do this by using optional parameters.
Enter the configuration shown in Listing 5-3 in config/routes.rb.

Listing 5-3. config/routes.rb

Blog::Application.routes.draw do
resources :posts

get ':year(/:month(/:day))', to: 'posts#index’
end

222

CHAPTERS5 ROUTES

The round brackets represent optional parameters. In this case, you have to specify
the year but not necessarily the month or day. rails routes shows the new route at the
last line, as shown here:

$ rails routes

Prefix Verb URI Pattern Controller#Action
posts GET /posts(.:format) posts#index
POST /posts(.:format) posts#create
new_post GET /posts/new(.:format) posts#new
edit post GET /posts/:id/edit(.:format) posts#edit
post GET /posts/:id(.:format) posts#show
PATCH /posts/:id(.:format) posts#update
PUT /posts/:id(.:format) posts#update
DELETE /posts/:id(.:format) posts#destroy

GET /:year(/:month(/:day))(.:format) posts#index

If you do not change anything else, you still get the same result when calling
http://localhost:3000/2011/ and http://localhost:3000/2011/10/01 as you did
with http://localhost:3000/posts. But take a look at the output of rails server for
the request http://localhost:3000/2011, as shown here:

Started GET "/2011/" for 127.0.0.1 at 2017-03-24 11:18:52 +0100

(0.5ms) SELECT "schema_migrations"."version" FROM "schema migrations"
ORDER BY "schema_migrations"."version" ASC
Processing by PostsController#index as HTML
Parameters: {"year"=>"2011"}
Rendering posts/index.html.erb within layouts/application
Post Load (0.5ms) SELECT "posts".* FROM "posts”
Rendered posts/index.html.erb within layouts/application (14.7ms)

Completed 200 OK in 122ms (Views: 99.1ms | ActiveRecord: 1.0ms)

The route has been recognized, and "year" = "2011" has been assigned to
the hash params (written misleadingly as Parameters in the output). Going to the URL
http://localhost:3000/2010/12/24 results in the following output, as expected:

Started GET "/2010/12/24" foxr 127.0.0.1 at 2017-03-24 11:19:38 +0100
Processing by PostsController#index as HTML
Parameters: {"year"=>"2010", "month"=>"12", "day"=>"24"}

223

CHAPTER5 ROUTES

Rendering posts/index.html.erb within layouts/application

Post Load (0.2ms) SELECT "posts".* FROM "posts”

Rendered posts/index.html.erb within layouts/application (2.9ms)
Completed 200 OK in 14ms (Views: 11.4ms | ActiveRecord: 0.2ms)

In the case of the URL http://localhost:3000/2010/12/24, the following values
have been saved in the hash params: "year"="2010", "month"="12", and "day"="24".
In the controller, you can access params|] to access the values defined in the
URL. You simply need to adapt the index method in app/controllers/posts_
controller.rb to output the posts entered for the corresponding date, month, or year, as

shown in Listing 5-4.

Listing 5-4. app/controllers/posts_controller.rb

def index

if Date.valid date? params[:year].to i, params[:month].to i,
params[:day].to i
start date = Date.parse("#{params[:day]}.#{params[:month]}.#{params
[:year]}")
end _date = start date

elsif Date.valid date? params[:year].to i, params[:month].to i, 1
start date = Date.parse("1.#{params[:month]}.#{params[:year]}")
end _date = start date.end of month

elsif params[:year] && Date.valid date?(params[:year].to i, 1, 1)
start date = Date.parse("1.1.#{params[:year]}")
end date = start date.end of year

end

if start date && end date
@posts = Post.where(published on: start date..end date)
else

224

CHAPTERS5 ROUTES

@posts = Post.all
end
end

If you now go to http://localhost:3000/2011/10/01, you can see all posts for
October 1, 2011, as shown in Figure 5-3.

®O® /N slog X e
< C @ localhost:3000/2011/10/01 ¥
Posts
Subject Content Published on
A test 2011-10-01 Show Edit Destroy
Another test 2011-10-01 Show Edit Destroy
New Post

Figure 5-3. Posts for October 1, 2011

Constraints

In the section “Parameters,” I showed you how you can read out parameters from the URL
and pass them to the controller. The entry defined in config/routes.rb is shown here:

get ':year(/:month(/:day))', to: 'posts#index’

Unfortunately, this has one important disadvantage: it does not verify the individual
elements. For example, the URL http://localhost:3000/just/an/example will be
matched as usual and then of course results in an error, as shown in Figure 5-4.

225

CHAPTER5 ROUTES

® ® [Action Controller: Exception ¢ X _ 9

&« C @ localhost:3000/just/an/example Yo | @

ArgumentError in PostsController#index

invalid date

Extracted source (around line #19):

Check if the URL requests a year

elsif params|:year] && Date.valid_date? (params|:year].to_i, 1, 1)
start_date = Date.parse("l.l.#{params[:year]}")
end_date = start_date.end of_year

21 end

Figure 5-4. Invalid date

In the log output in log/development.log, you can see the following entry:

Started GET "/just/an/example" for 127.0.0.1 at 2017-03-24 13:18:21 +0100
Processing by PostsController#index as HTML

Parameters: {"year"=>"just", "month"=>"an", "day"=>"example"}
Completed 500 Internal Server Error in 2ms (ActiveRecord: 0.0ms)

ArgumentError (invalid date):

app/controllers/posts_controller.rb:19:in “parse’
app/controllers/posts_controller.rb:19:in “index'

Obviously, Date.parse("example.an.just") does not work. A date is made up of
numbers, not letters.

Constraints can define the content of the URL more precisely via regular expressions.
In the case of the example blog, the config/routes.rb file with constraints would look
like Listing 5-5.

226

CHAPTERS5 ROUTES

Listing 5-5. config/routes.rb

Blog::Application.routes.draw do
resources :posts

get ':year(/:month(/:day))', to: 'posts#index’,
constraints: { year: /\d{4}/, month: /\d{2}/, day: /\d{2}/ }
end

A Please note that you cannot use regex anchors such as * in regular
expressions in a constraint.

If you go to the URL again with this configuration, Rails gives you an error message,
“No route matches,” as shown in Figure 5-5.

® @ [Action Controller: Exception ¢ x S

<« C @ localhost:3000/just/anfexample) * gl I

Routing Error

No route matches [GET] "/just/an/example”
Rails.root: /Users/stefan/tmp/book/blog

Application Trace | Framework Trace | Full Trace

Routes

Routes match in priority from top to bottom
Helper HTTP Verb Path Controller#Action

Path fm Path Match

Figure 5-5. No route error

227

CHAPTER5 ROUTES

Redirects

The current application answers the request in the format YYYY/MM/DD (four digits for
the year, two digits for the month, and two digits for the day). That is OK for machines,
but maybe a human would request a single-digit month (like January) and a single-digit
day without adding the extra 0 to make it two digits. You can fix that with a couple of
redirect rules that catch these URLs and redirect them to the correct ones. See Listing 5-6.

Listing 5-6. config/routes.rb

Blog::Application.routes.draw do
resources :posts

get ':year/:month/:day', to: redirect("/%{year}/0%{month}/0%{day}"),
constraints: { year: /\d{4}/, month: /\d{1}/, day: /\d{1}/ }

get ':year/:month/:day', to: redirect("/%{year}/0%{month}/%{day}"),
constraints: { year: /\d{4}/, month: /\d{1}/, day: /\d{2}/ }

get ':year/:month/:day', to: redirect("/%{year}/%{month}/0%{day}"),
constraints: { year: /\d{4}/, month: /\d{2}/, day: /\d{1}/ }

get ':year/:month', to: redirect("/%{year}/0%{month}"),

constraints: { year: /\d{4}/, month: /\d{1}/ }

get ':year(/:month(/:day))', to: 'posts#index’,
constraints: { year: /\d{4}/, month: /\d{2}/, day: /\d{2}/ }
end

With this set of redirect rules, you can ensure that a user of the page can also enter
single-digit days and months and still end up in the right place or be redirected to the

correct format.

O Redirects in config/routes.rb are by default HTTP redirects with the
code 301 (“Moved Permanently”). So, even search engines will benefit from this.

228

CHAPTERS5 ROUTES

root :to = welcome#index

Rails provides a shortcut for the / (root) route. Assuming you want to render the index
view of the posts controller, you have to use the configuration shown in Listing 5-7.

Listing 5-7. config/routes.rb

Blog::Application.routes.draw do
resources :posts

root :to => posts
end

If you don’t want to show any of the resource pages, you can create a new controller
(e.g., Page) with an index view.

$ rails new controller Page index
Then you can use the following configuration to present it as your index (root) page.

Blog: :Application.routes.draw do
resources :posts

get 'page/index’
root :to => page#index
end

resources

resources provides routes for a RESTful resource. Let’s try it with the mini blog
application, shown here:

$ rails new blog

[...]
$ cd blog
$ rails generate scaffold post subject content published on:date

[...]

$ rails db:migrate

[...]

229

CHAPTER5 ROUTES

The scaffold generator automatically creates a resources route in config/routes.
rb, as shown in Listing 5-8.

Listing 5-8. config/routes.rb

Blog: :Application.routes.draw do
resources :posts
end

O New routes are always added at the beginning of config/routes.rb
with rails generate scripts.

The resulting routes are shown here:

$ rails routes

Prefix Verb URI Pattern Controller#Action
posts GET /posts(.:format) posts#index
POST /posts(.:format) postst#create
new_post GET /posts/new(.:format) posts#new
edit post GET /posts/:id/edit(.:format) posts#edit
post GET /posts/:id(.:format) posts#show
PATCH /posts/:id(.:format) postst#update
PUT /posts/:id(.:format) posts#update
DELETE /posts/:id(.:format) posts#destroy

You have already encountered these RESTful routes in Chapter 4. They are required
for displaying and editing records.

Selecting Specific Routes with only: or except:

If you want to use only specific routes from the finished set of RESTful routes, you can
limit them with :only or :except.

230

CHAPTERS5 ROUTES

config/routes.rb, as shown in Listing 5-9, defines only the routes for index and show.

Listing 5-9. config/routes.rb

Blog::Application.routes.draw do
resources :posts, only: [:index, :show]
end

With rails routes you can check the result, as shown here:

$ rails routes
Prefix Verb URI Pattern Controller#Action
posts GET /posts(.:format) posts#index

post GET /posts/:id(.:format) posts#show

except works exactly the other way around, as shown in Listing 5-10.

Listing 5-10. config/routes.rb

Blog::Application.routes.draw do
resources :posts, except: [:index, :show]
end

Now all routes except for index and show are possible, as shown here:

$ rails routes

Prefix Verb URI Pattern Controller#Action
posts POST /posts(.:format) postst#create
new_post GET /posts/new(.:format) posts#new
edit post GET /posts/:id/edit(.:format) posts#edit
post PATCH /posts/:id(.:format) posts#update
PUT /posts/:id(.:format) posts#update
DELETE /posts/:id(.:format) posts#destroy

A When using only and except, please make sure you also adapt the views
generated by the scaffold generator. For example, there is a link on the index page
to the new view with <%= link to 'New Post', new post path %>, but
this view no longer exists in the previous example.

231

CHAPTER5 ROUTES

Nested Resources

Nested resources refer to routes of resources that work with an association. These can
be addressed precisely via routes. Let’s create a blog with Post and a second resource
Comment.

$ rails new nested-blog

[...]
$ cd nested-blog

[...]
$ rails generate scaffold post subject body:text

[...]

$ rails generate scaffold comment post:references content

[...]

$ rails db:migrate

[...]

Now you associate the two resources. In the file app/models/post.rb, you add a
has_many, as shown in Listing 5-11.

Listing 5-11. app/models/post.rb

class Post < ApplicationRecord
has_many :comments
end

The file app/models/comment.rb has its counterpart, belongs_to, as shown in
Listing 5-12.

Listing 5-12. app/models/comment.rb

class Comment < ApplicationRecord
belongs_to :post
end

232

CHAPTER 5

The routes generated by the scaffold generator look like this:

$ rails routes
Prefix Verb URI Pattern
comments GET /comments (. :format)
POST /comments(.:format)
new_comment GET /comments/new(. : format)
edit comment GET /comments/:id/edit(.:format)
comment GET /comments/:id(.:format)
PATCH /comments/:id(.:format)
PUT /comments/:id(.:format)
DELETE /comments/:id(.:format)
posts POST /posts(.:format)
new_post GET /posts/new(.:format)
edit _post GET /posts/:id/edit(.:format)
post PATCH /posts/:id(.:format)
PUT /posts/:id(.:format)
DELETE /posts/:id(.:format)

Controller#Action
comments#index
comments#create
comments#new
comments#edit
comments#show
comments#update
comments#update
commentsi#tdestroy
posts#create
posts#new
posts#edit
posts#update
posts#update
posts#destroy

ROUTES

So, you can get the first post with /posts/1 and all the comments with /comments. By

using nesting, you can get all the comments with a post_id of 1 via /posts/1/comments.

To achieve this, you need to change config/routes.rb, as shown in Listing 5-13.

Listing 5-13. config/routes.rb

Blog: :Application.routes.draw do
resources :posts do
resources :comments
end
end

233

CHAPTER5 ROUTES

This gives you the desired routes, as shown here:

$ rails routes
Prefix
post_comments

new_post_comment
edit post comment

post_comment

posts

new_post
edit post
post

Verb
GET

POST

GET

GET

GET

PATCH

PUT

DELETE

GET

POST

GET

GET

GET

PATCH

PUT
DELETE

URI Pattern
/posts/:post_id/
comments (. :format)
/posts/:post_id/
comments(.:format)
/posts/:post_id/
comments/new(. : format)
/posts/:post_id/comments/
:id/edit(.:format)
/posts/:post_id/
comments/:id(.:format)
/posts/:post_id/
comments/:id(.:format)
/posts/:post_id/
comments/:id(.:format)
/posts/:post_id/
comments/:id(.:format)
/posts(.:format)
/posts(.:format)
/posts/new(.:format)
/posts/:id/edit(.:format)
/posts/:id(.:format)
/posts/:id(.:format)
/posts/:id(.:format)
/posts/:id(.:format)

Controllert#tAction
comments#index

comments#create
comments#new
comments#edit
comments#show
comments#update
comments#update
comments#destroy
posts#index
posts#create
posts#new
poststedit
posts#show
posts#update

posts#update
posts#destroy

But you still need to make some changes in the file app/controllers/comments_
controller.rb. This ensures that only the Comments of the specified Post can be

displayed or changed, as shown in Listing 5-14.

234

CHAPTER5 ROUTES
Listing 5-14. app/controllers/comments_controller.rb

class CommentsController < ApplicationController
before action :set post
before action :set comment, only: [:show, :edit, :update, :destroy]

def index
@comments = @post.comments
end

def show
end

def new
@comment = @post.comments.build
end

def edit
end

def create
@comment = @post.comments.build(comment params)

respond_to do |format]|
if @comment.save
format.html { redirect to post_comment_path(@post, @comment),
notice: 'Comment was successfully created.' }
format.json { render :show, status: :created, location: @comment }
else
format.html { render :new }
format.json { render json: @comment.errors, status: :unprocessable
entity }
end
end
end

235

CHAPTER5 ROUTES

def update
respond_to do |format]
if @comment.update(comment params)
format.html { redirect to post comments path(@post, @comment),
notice: 'Comment was successfully updated.' }
format.json { render :show, status: :ok, location: @comment }
else
format.html { render :edit }
format.json { render json: @comment.errors, status: :unprocessable
entity }
end
end
end

def destroy
@comment.destroy
respond_to do |format]|
format.html { redirect to post comments url(@post), notice: 'Comment
was successfully destroyed.' }
format.json { head :no content }
end
end

private
def set post
@post = Post.find(params[:post id])
end

def set comment
@comment = @post.comments.find(params[:id])
end

def comment params
params.require(:comment).permit(:content)
end
end

Unfortunately, this is only half the story because the views still link to the old routes.
So, you need to adapt each view in accordance with the nested route.
236

CHAPTERS5 ROUTES

Please note that you need to change the form with call to form with(model:
[post, comment], local: true).Butyoudon’t need the post id field anymore
because that information is already in the URL. See Listing 5-15, Listing 5-16,
Listing 5-17, Listing 5-18, and Listing 5-19.

Listing 5-15. app/views/comments/_form.html.erb

<%= form with(model: [post, comment], local: true) do |f| %>
<% if comment.errors.any? %>
<div id="error explanation">
<h2><%= pluralize(comment.errors.count, "error") %> prohibited this
comment from being saved:</h2>

<% comment.errors.full messages.each do |message| %>

<%= message 7%>
<% end %>

</div>
<% end %>

<div class="field">

<%= f.label :content %>

<%= f.text field :content %>
</div>

<div class="actions">
<%= f.submit %>
</div>
<% end %>

Listing 5-16. app/views/comments/edit.html.erb

<h1>Editing Comment</h1>

<%= render 'form', comment: @comment, post: @post %>

<%= link to 'Show', post comment path(@post, @comment) %> |
<%= link to 'Back', post_comments path(@post) %>

237

CHAPTER5 ROUTES

Listing 5-17. app/views/comments/index.html.erb
<p id="notice"><%= notice %></p>
<h1>Comments</h1>

<table>
<thead>
<tr>
<th>Post</th>
<th>Content</th>
<th colspan="3"></th>
</tr>
</thead>

<tbody>
<% @comments.each do |comment| %>
<tr>
<td><%= comment.post %></td>
<td><%= comment.content %></td>
<td><%= link_to 'Show', post_comment path(@post, comment) %></td>
<td><%= link to 'Edit', edit post comment path(@post, comment) %></td>
<td><%= link to 'Destroy', post comment url(@post, comment),
method: :delete, data: { confirm: 'Are you sure?' } %></td>
</tr>
<% end %>
</tbody>
</table>

<%= link_to 'New Comment', new_post_comment_path(@post) %>

238

CHAPTER 5
Listing 5-18. app/views/comments/new.html.erb
<h1>New Comment</h1>
<%= render 'form', comment: @comment, post: @post %>

<%= link to 'Back', post comments path(@post) %>

Listing 5-19. app/views/comments/show.html.erb
<p id="notice"><%= notice %></p>

<p>
Post:
<%= @comment.post %>
</p>

<p>
Content:
<%= @comment.content %>
</p>

<%= link _to 'Edit', edit_post_comment path(@post,@comment) %> |
<%= link to 'Back', post_comments path(@post) %>

Please go ahead and experiment with the URLs listed under rails routes.

ROUTES

You can now generate a new post with /posts/new and a new comment for this post with

/posts/:post_id/comments/new.

If you want to see all comments of the first post, you can access that with the URL

http://localhost:3000/posts/1/comments. It would look like Figure 5-6

239

CHAPTER5 ROUTES

® @ [NestedBlog X
& C' @ localhost:3000/posts/1/comments
Comments
Post Content
#<Post:0x007fed8b000430> test2 Show Edit Destroy
#<Post:0x007fed8b000430> test3 Show Edit Destroy
#<Post:0x007fed8b000430> test7 Show Edit Destroy

New Comment

Figure 5-6. Listing comments

Shallow Nesting

Sometimes it is a better option to use shallow nesting. For this example, the
config/routes.rb file would contain the routes shown in Listing 5-20.

Listing 5-20. config/routes.rb

Blog::Application.routes.draw do
resources :posts do
resources :comments, only: [:index, :new, :create]
end

resources :comments, except: [:index, :new, :create]
end

240

CHAPTERS5 ROUTES

That would lead to the less messy rails routes output, as shown here:

$ rails routes
Prefix
post_comments

new_post_comment
posts

new_post
edit post
post

edit comment
comment

Verb
GET
POST
GET
GET
POST
GET
GET
GET
PATCH
PUT
DELETE
GET
GET
PATCH
PUT

URI Pattern

/posts/:post_id/comments(.:format)
/posts/:post_id/comments(.:format)
/posts/:post_id/comments/new(.:format)

/posts(.:format)
/posts(.:format)

/posts/new(.:format)
/posts/:id/edit(.:format)
/posts/:id(.:format)
/posts/:id(.:format)
/posts/:id(.:format)
/posts/:id(.:format)
/comments/:id/edit(.:format)
/comments/:id(.:format)
/comments/:id(.:format)
/comments/:id(.:format)
DELETE /comments/:id(.:format)

Controller#Action
comments#index
comments#create
comments#new
posts#index
posts#create
posts#new
posts#edit
posts#show
posts#update
posts#update
posts#destroy
comments#edit
comments#show
comments#update
commentsf#update
commentsi#destroy

Shallow nesting tries to combine the best of two worlds, and because it is often used,

there is a shortcut. You can use the config/routes.rb shown in Listing 5-21 to achieve it.

Listing 5-21. config/routes.rb

Blog::Application.routes.draw do

resources :posts do
resources :comments, shallow: true

end
end

241

CHAPTER5 ROUTES

O Generally, you should never nest more deeply than one level, and nested
resources should feel natural. After a while, you will get a feel for this. In my
opinion, the most important point about RESTful routes is that they should feel
logical. If you phone a fellow Rails programmer and say, “I've got a resource post
and a resource comment here,” then both parties should immediately be clear on
how you address these resources via REST and how you can nest them.

Further Information on Routes

The topic of routes is far more complex than I can address here. For example,

you can also involve other HTTP methods/verbs. The official routing documentation at
http://guides.rubyonrails.org/routing.html will give you a lot of information and
examples for these features and edge cases.

242

http://guides.rubyonrails.org/routing.html

CHAPTER 6

Bundler and Gems

Gems are how you do package management in the world of Ruby.

Q If you do not have much time, you can skip this chapter for now and come
back to it later if you have any specific questions.

If a Ruby developer wants to offer a specific feature or a certain program or collection
of programs to other Ruby developers, the developer can create a package. Those
packages are called gems. They can then be installed with the command gem install.

Q Take a look at https://www.ruby-toolbox.com to get an overview of
the existing gems.

Rails itself is a gem, and every Rails project uses a lot of different gems. You as a
developer can even add other gems. The program bundle helps the developer to install
all these gems in the right version and to take the dependencies into account.

The file Gemfile generated by rails new indicates which gems are to be installed by
Bundler, as shown in Listing 6-1.

Listing 6-1. Gemfile

source 'https://rubygems.org'
git source(:github) { |repo| "https://github.com/#{repo}.git" }

ruby '2.5.0'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails’

243
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_6

https://www.ruby-toolbox.com/

CHAPTER6 BUNDLER AND GEMS

gem 'rails', '~> 5.2.0'

Use sqlite3 as the database for Active Record
gem 'sqlite3’

Use Puma as the app server

gem 'puma’, '~> 3.11'

Use SCSS for stylesheets

gem 'sass-rails', '~> 5.0'

Use Uglifier as compressor for JavaScript assets
gem 'uglifier', '>= 1.3.0'

See https://github.com/rails/execjs#readme for more supported runtimes
gem 'mini racer', platforms: :ruby

Use CoffeeScript for .coffee assets and views

gem 'coffee-rails', '~> 4.2'

Turbolinks makes navigating your web application faster. Read more:
https://github.com/turbolinks/turbolinks

gem 'turbolinks', '~> 5'

Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder
gem 'jbuilder', '~> 2.5’

Use Redis adapter to run Action Cable in production

gem 'redis', '~> 4.0'

Use ActiveModel has_secure_password

gem 'bcrypt', '~> 3.1.7'

Use ActiveStorage variant
gem 'mini magick', '~> 4.8'

Use Capistrano for deployment
gem 'capistrano-rails', group: :development

Reduces boot times through caching; required in config/boot.zrb
gem 'bootsnap', '>= 1.1.0', require: false

group :development, :test do
Call 'byebug' anywhere in the code to stop execution and get a debugger
console
gem 'byebug', platforms: [:mri, :mingw, :x64 mingw]
Adds support for Capybara system testing and selenium driver

244

CHAPTER6 BUNDLER AND GEMS

gem 'capybara', '~> 2.15'
gem 'selenium-webdriver'
Easy installation and use of chromedriver to run system tests with Chrome
gem 'chromedriver-helper'
end

group :development do
Access an interactive console on exception pages or by calling
‘console' anywhere in the code.
gem 'web-console', '>= 3.3.0'
gem 'listen', '>= 3.0.5", '< 3.2'
Spring speeds up development by keeping your application running in the
background. Read more: https://github.com/rails/spring
gem 'spring'
gem 'spring-watcher-listen', '~> 2.0.0'
end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64 mingw, :jruby]

The format used is easy to explain: the word gem is followed by the name of the gem
and then, if required, a specification of the version of the gem.

For example, the line gem 'rails', '5.2.0' means “install the gem with the name
rails in the version 5.2.0.”

With ~> before the version number, you can determine that the newest version after
this version number should be installed. As a result, the last digit is incremented, so for
example gem 'rails', '~> 4.0.0' would correspondingly install Rails 4.0.1 but not 4.1
(for the latter, you would need to specify gem 'rails', '~> 4.1").

O You have the option of installing certain gems only in certain environments.
To do so, you need to enclose the corresponding lines in a group :name do loop.

245

CHAPTER6 BUNDLER AND GEMS

Besides the file Gemfile, there is also the file Gemfile.lock, and the exact versions of
the installed gems are listed there. For the previous example, it looks like Listing 6-2.

Listing 6-2. Gemfile.lock

GEM
remote: https://rubygems.org/
specs:

actioncable (5.2.0)
actionpack (= 5.2.0)
nio4r (~> 2.0)
websocket-driver (~> 0.6.1)

actionmailer (5.2.0)
actionpack (= 5.2.0)
actionview (= 5.2.0)
activejob (= 5.2.0)
mail (~> 2.5, >= 2.5.4)
rails-dom-testing (~> 2.0)

actionpack (5.2.0)
actionview (= 5.2.0)
activesupport (= 5.2.0)
rack (~> 2.0)
rack-test (>= 0.6.3)
rails-dom-testing (~> 2.0)
rails-html-sanitizer (~> 1.0, »>= 1.0.2)

[...]

The advantage of Gemfile.lock is that it makes it possible for several
developers to work on the same Rails project independently from one another and
to still be sure that they are all working with the same gem versions. If a file version is
locked in Gemfile.lock, this version is used by Bundler. This is also useful for deploying
the Rails project later on a web server.

o Edit only Gemfile and never Gemfile.lock.

246

CHAPTER6 BUNDLER AND GEMS

Thanks to this mechanism, you can use and develop several Rails projects with
different gem version numbers in parallel.

bundle update

With bundle update, you can update gems to new versions. For example, here is a Rails
project with the Rails version 4.2.1:

$ rails -v
Rails 4.2.1
$

In the file Gemfile, this version is listed, as shown in Listing 6-3.

Listing 6-3. Gemfile
source 'https://rubygems.org’

Bundle edge Rails instead: gem 'rails', github: 'rails/rails’
gem 'rails', '4.2.1'
[...]

It’s also listed in Gemfile. lock.

$ grep 'rails' Gemfile.lock
[...]

rails (= 4.2.1)

[...]
$

Assume you are working with Rails 4.2.0 and you want to update it to Rails 4.2.4. You
have to change the Gemfile from what’s shown in Listing 6-4 to what’s shown in Listing 6-5.

Listing 6-4. Gemfile
[...]

gem 'rails', '4.2.0'

[...]

247

CHAPTER 6 BUNDLER AND GEMS
Listing 6-5. Gemfile
[...]

gem 'rails', '4.2.4'

[...]

After this change, you can use bundle update rails to install the new Rails version
(Bundler automatically takes the required dependencies into account).

$ bundle update rails
[...]

$ rails -v

Rails 4.2.4

$

o After every gem update, you should first run rake test to make sure that
a new gem version does not add any unwanted side effects.

bundle outdated

If you want to know which of the gems used by your Rails project are now available in a
new version, you can do this via the command bundle outdated. Here’s an example:

$ bundle outdated

The dependency tzinfo-data (>= 0) will be unused by any of the platforms
Bundler is installing foxr. Bundler is installing for ruby but the
dependency is only for x86-mingw32, x86-mswin32, x64-mingw32, java. To add
those platforms to the bundle, run “bundle lock --add-platform x86-mingw32
x86-mswin32 x64-mingw32 java .

Fetching gem metadata from https://rubygems.org/.........

Fetching gem metadata from https://rubygems.org/.

Resolving dependencies....

Outdated gems included in the bundle:
* archive-zip (newest 0.10.0, installed 0.7.0)
* websocket-driver (newest 0.7.0, installed 0.6.5)

248

CHAPTER6 BUNDLER AND GEMS

To update them, you'll have to change the version numbers in Gemfile and run a
bundle update command.

bundle exec

bundle exec is required whenever a program such as rake is used in a Rails project and
is present in a different version than the rest of the system. The resulting error message is
always easy to implement.

You have already activated rake 0.10, but your Gemfile requires rake 0.9.2.2.
Using bundle exec may solve this.

In this case, it helps to invoke the command with a preceding bundle exec
command, as shown here:

$ bundle exec rake db:migrate

binstubs

In some environments, using bundle exec is too complicated. In that case, you can
install programs with the correct version via bundle install --binstubs inthe
directory bin.

$ bundle install --binstubs

Using rake 12.3.0

Using concurrent-ruby 1.0.5

Using i18n 0.9.1

[...]

Using turbolinks 5.1.0

Using uglifier 4.1.3

Using web-console 3.5.1

Bundle complete! 18 Cemfile dependencies, 76 gems now installed.

Use “bundle info [gemname] to see where a bundled gem is installed.

249

CHAPTER 6 BUNDLER AND GEMS
Afterward, you can always use these programs. Here’s an example:

$ bin/rake db:migrate
== (reateUsers: migrating ==
-- create table(:users)
-> 0.0018s
== (reateUsers: migrated (0.0019s) =======================================

Popular Gems

At https://www.ruby-toolbox.comyou'll find most of the available gems. The main
problem with gems is that many times you have no idea how active the community is
that developed a gem. It’s a major headache to upgrade a Rails application that uses
neglected gems. So, you can check out the gem’s home page and GitHub repository
before installing a gem.

I'll show you a couple of gems that are essential for many developers. But please do
your due diligence first before you include a gem!

acts_as_list

Let’s create a to-do list application that displays a couple of to-dos that can be edited by the
user. You just need one scaffold for this. Let’s call the model task. Here is the basic setup:

$ rails new to-do-list

[...]
$ cd to-do-list
$ rails generate scaffold task name completed:boolean

[...]

$ rails db:migrate

[...]

$ rails server

250

https://www.ruby-toolbox.com/

CHAPTER6 BUNDLER AND GEMS

O Naming is always important within a Rails project. I've seen many
examples of a to-do list application where the Task model has a field called task.
Don’t do that. If you have an instance variable called @task, it is cleaner to have a
@task.name than a @task.task, which is just confusing.

Order Your Tasks

A common idea for any to-do list is the feature to order the tasks. For that you'll need to
have some sort of position field in your model. Because this is such a common problem,
there is a nice gem ready to go for this. It’s called acts_as_list. To use it, you have to
add the line shown in Listing 6-6 to the Gemfile and run the bundler.

Listing 6-6. Gemfile
[...]

gem 'acts_as list'
[...]
$ bundle

To use it, you have to add a position field to the task model.

$ rails generate migration AddPositionToTask position:integer

[...]

$ rails db:migrate

Ifyou already have a full database table of tasks, you will want to change the
migration to something like this, which sets the position field:

class AddPositionToTask < ActiveRecord::Migration[5.2]
def change
add_column :tasks, :position, :integer
Task.order(:updated at).each.with_index(1) do |task, index|
task.update_column :position, index
end
end
end

251

CHAPTER6 BUNDLER AND GEMS

The last change is a change to the task model to make it use acts_as_list, as shown
in Listing 6-7.

Listing 6-7. app/models/task.rb

class Task < ApplicationRecord
acts_as_list
end

For any new entry of the tasks table, acts_as list will set the position field
automatically. But that is not all. You can use these methods to move the position of a
task and reorder the list:

o task.move lower

o task.move higher

o task.move to bottom

o task.move to top
You also have access to these useful methods:

o task.first?

o task.last?

o task.in list?

o task.not in list?

o task.higher item

o task.higher items

o task.lower item

o task.lower items

It’s not rocket science, but it’s so much easier to use an existing gem than to reinvent
the wheel.

Don't forget to change the index action in your tasks_controller.rb file to display
the tasks in the right order, as shown in Listing 6-8.

252

CHAPTER6 BUNDLER AND GEMS

Listing 6-8. app/controllers/tasks_controller.rb

[...]

def index
@tasks = Task.order(:position)
end

[...]

Check Done Tasks in Your Index View

Wouldn't it be nice to have a way of checking done tasks in the /tasks index view instead
of having to use the edit view every time? This could be done with a link to a yet to be
created check action in app/controllers/tasks controller.rb. But there is a cleaner,
more RESTful way: you can use the update action from a little form in each table row.
Listing 6-9 shows the example code snippet for app/views/tasks/index.html.erb

Listing 6-9. app/views/tasks/index.html.erb

[...]
<% @tasks.each do |task| %>
<tr>
<td><%= task.description %></td>
<td><%= task.completed %></td>
<td>
<% unless task.completed %>
<%= form with(model: task, local: true) do |form| %>
<%= form.hidden field :completed, value: true %>
<div class="actions">
<%= form.submit 'Check!', :name => 'check' %>
</div>
<% end %>
<% end %>
</td>

253

CHAPTER6 BUNDLER AND GEMS

<td><%= 1link _to 'Show', task %></td>
<td><%= link to 'Edit', edit_task path(task) %></td>
<td><%= 1link to 'Destroy', task, method: :delete, data: { confirm: 'Are
you sure?' } %></td>
</tr>
<% end %>

[...]

Find more information and the complete documentation aboutacts_as_list at
https://github.com/swanandp/acts_as_list.

Authentication

Most Rails applications need some kind of authentication system. The old RailsCast episode
athttp://railscasts.com/episodes/250-authentication-from-scratch-revised
shows how to do that by yourself. It is not that complicated, but it is also nice to do
authentication with a ready-to-go gem that not only handles passwords but also sends
one-time password e-mails and does the Facebook and Twitter magic. This saves you a
lot of time that you can instead invest in your application.

Take alook at https://www.ruby-toolbox.com/categories/rails_authentication,
which sorts the most popular authentication gems. I've used a couple of them, but I don’t
have a clear favorite.

If you have the time, try two to three for yourself. If you don’t have the time, go with
devise by Plataformatec (https://github.com/plataformatec/devise).

Authorization

Authentication is only half the battle. You need to have a system to limit access to special
parts of your Rails application to specific users or user groups. In other words, you need
an authorization system. Again, you can create such a system by yourself; it is not rocket
science. But if you are in a hurry, go to https://www.ruby-toolbox.com/categories/
rails authorization to find alist of available gems for this.

However, do not use the outdated cancan by the Rails legend Ryan Bates (the
inventor of http://railscasts.com). It is an orphan. Use cancancan, which is an
up-to-date fork. You'll find it at https://github.com/cancancommunity/cancancan.

254

https://github.com/swanandp/acts_as_list
http://railscasts.com/episodes/250-authentication-from-scratch-revised
https://www.ruby-toolbox.com/categories/rails_authentication
https://github.com/plataformatec/devise
https://www.ruby-toolbox.com/categories/rails_authorization
https://www.ruby-toolbox.com/categories/rails_authorization
http://railscasts.com/
https://github.com/cancancommunity/cancancan

CHAPTER6 BUNDLER AND GEMS

Simple Form

Many Rails developers use the simple_formgem (https://github.com/plataformatec/
simple_form) to make their lives easier. It helps you create forms in an easier way than
the default scaffolds. Please see for yourself. I found this topic a double-edged sword.

I try to stay as vanilla as possible, but I see the attractiveness of simple form.

Further Information on Bundler

The topic of Bundler is far more complex than can be described here. If you want to find
out more about Bundler, please visit the following web sites:

o http://gembundler.com/

o http://railscasts.com/episodes/201-bundler-revised

255

https://github.com/plataformatec/simple_form
https://github.com/plataformatec/simple_form
http://gembundler.com/
http://railscasts.com/episodes/201-bundler-revised

CHAPTER 7

Forms

In this chapter, I'll talk about forms.

The Data-Input Workflow

To understand forms, you need take a look at the data workflow. Understanding it better
will help you to understand how forms work.
Here is an example application:

$ rails new testapp

[...]
$ cd testapp
$ rails generate scaffold Person first name last_name

[...]

$ rails db:migrate

[...]

$ rails server

[...]

Usually you will create forms by using the scaffold. Let’s go through the flow the data.

Request the people#new Form

When you request the http://localhost:3000/people/new URL, the router answers
with the following route:

new_person GET /people/new(. :format) people#tnew
The controller app/controllers/people controller.rb runs the code shown in

Listing 7-1.

257
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_7

CHAPTER7 FORMS

Listing 7-1. app/controllers/people_controller.rb

def new
@person = Person.new
end

So, a new instance of Person is created and stored in the instance variable @person.
Rails takes @person and starts processing the view file app/views/people/new.html.erb,
as shown in Listing 7-2.

Listing 7-2. app/views/people/new.html.erb
<h1>New Person</h1>

<%= render 'form', person: @person %>

<%= link_to 'Back', people path %>

render 'form' renders the file app/views/people/ form.html.erb and sets the local
variable person to the content of @person, as shown in Listing 7-3.

Listing 7-3. app/views/people/_form.html.erb

<%= form with(model: person, local: true) do |form| %>
<% if person.errors.any? %>
<div id="error explanation">
<h2><%= pluralize(person.errors.count, "error") %> prohibited this
person from being saved:</h2>

<% person.errors.full messages.each do |message| %>
<%= message %></1i>
<% end %>

</div>
<% end %>

<div class="field">
<%= form.label :first name %>

258

CHAPTER7 FORMS

<%= form.text field :first name %>
</div>

<div class="field">

<%= form.label :last name %>

<%= form.text field :last name %>
</div>

<div class="actions">

<%= form.submit %>
</div>
<% end %>

Next, form_with(model: person, local: true) embeds the two text fields
:first name and :last _name instances plus a submit button.
Here is the resulting HTML.:

[...]

<foxrm action="/people" accept-charset="UTF-8" method="post">
<input name="utf8" type="hidden" value="✓" />
<input type="hidden" name="authenticity token" value="1St...hbIg==" />

<div class="field">
<label for="person first name">First name</label>
<input type="text" name="person[first name]" />
</div>

<div class="field">
<label for="person last name">Last name</label>
<input type="text" name="person[last name]" />
</div>

<div class="actions">
<input type="submit" name="commit" value="Create Person"
data-disable-with="Create Person" />
</div>
</form>

[...]
This form uses the post method to upload the data to the server.

259

CHAPTER7 FORMS

Push the Data to the Server

Go ahead and enter Stefan in the first name field and Wintermeyer in the last_name
field and click the Submit button. The browser uses the post method to upload the data
to the URL /people. The log shows the following

Started POST "/people" for 127.0.0.1 at 2018-01-18 12:56:46 +0100
Processing by PeopleController#fcreate as HTML
Parameters: {"utf8"=>"v/", "authenticity token"=>"OwS2r9...",
"person"=>{"first name"=>"Stefan", "last name"=>"Wintermeyer"},
"commit"=>"Create Person"}
(0.1ms) begin transaction
Person Create (0.6ms) INSERT INTO "people" ("first name", "last name",
"created at", "updated at") VALUES (?, ?, ?, ?) [["first name", "Stefan"],
["last _name", "Wintermeyer"], ["created at", "2018-01-18 11:56:46.889256"],
["updated at", "2018-01-18 11:56:46.889256"]]
(0.9ms) commit transaction
Redirected to http://localhost:3000/people/1
Completed 302 Found in 9ms (ActiveRecord: 1.6ms)

What happened in Rails? The router answers the request with this route:
POST /people(.:format) peoplefcreate

The controller app/controllers/people controller.rb runs the code shown in
Listing 7-4.
Listing 7-4. app/controllers/people_controller.rb

def create
@person = Person.new(person_params)

respond to do |format]|
if @person.save
format.html { redirect to @person, notice: 'Person was successfully
created.' }
format.json { render :show, status: :created, location: @person }

260

CHAPTER7 FORMS

else
format.html { render :new }
format.json { render json: @person.errors, status: :unprocessable
entity }
end
end
end

[...]

def person params
params.require(:person).permit(:first name, :last name)
end

A new instance variable called @person is created. It represents a new Person
instance that was created with the parameters that were sent from the browser to the
Rails application. The parameters are checked in the person_params method, which is
a whitelist. That is done so the user does not inject parameters that you don’t want to be
injected.

Once @person is saved, a redirect to @person is triggered, which is
http://localhost:3000/people/1in this example.

Present the New Data

The redirect to http://localhost:3000/people/1 is traceable in the log file, as shown here:

Started GET "/people/1" for 127.0.0.1 at 2018-01-18 12:56:46 +0100
Processing by PeopleController#show as HTML
Parameters: {"id"=>"1"}
Person Load (0.2ms) SELECT "people".* FROM "people"
WHERE "people"."id" = ? LIMIT ? [["id", 1], ["LIMIT", 1]]
Rendering people/show.html.erb within layouts/application
Rendered people/show.html.erb within layouts/application (0.9ms)
Completed 200 OK in 27ms (Views: 20.8ms | ActiveRecord: 0.2ms)

261

CHAPTER7 FORMS
The router answers this request with the following:
person GET /people/:id(.:format) peoplettshow

This gets handled by the show method in app/controllers/people controller.rb.

Generic Forms

A form doesn’t have to be hardwired to an ActiveRecord object. You can use the
form_tag helper to create a form by yourself. Here is an example of http://guides.
rubyonrails.org/form_helpers.html (which is the official Rails guide about forms) to
show how to create a search form that is not connected to a model:

<%= form with(url: '/search') do |f| %>
<%= f.label(:q, "Search for:") %>
<%= f.text field(:q, id: :q) %>
<%= f.submit("Search") %>

<% end %>

It results in this HTML code:

<form accept-charset="UTF-8" action="/search" method="get">
<label for="q">Search for:</label>
<input id="q" name="q" type="text" />
<input name="commit" type="submit" value="Search" />

</foxrm>

To handle this, you'd have to create a new route in config/routes.rb and write a
method in a controller to handle it.

FormTagHelper

There is not just a helper for text fields. Take a look at the official API documentation for
all FormTagHelpers at http://api.rubyonrails.org/classes/ActionView/Helpers/
FormTagHelper.html to get an overview. Because you use scaffold to create a form, there
is no need to memorize them. It is just important to know where to look in case you need
something else.

262

http://guides.rubyonrails.org/form_helpers.html
http://guides.rubyonrails.org/form_helpers.html
http://api.rubyonrails.org/classes/ActionView/Helpers/FormTagHelper.html
http://api.rubyonrails.org/classes/ActionView/Helpers/FormTagHelper.html

CHAPTER7 FORMS

Alternatives

Many Rails developers use the Simple Form gem as an alternative to the standard way
of defining forms. It is worth a try because you can really save time and some trouble.
Simple Form is available as a gem at https://github.com/plataformatec/simple form.

263

https://github.com/plataformatec/simple_form

CHAPTER 8

Cookies and Sessions

In this chapter, I'll talk about cookies and sessions.

Cookies

With a cookie, you can store information on the web browser’s system in the form of
strings as key-value pairs that the web server has previously sent to this browser. The
information is later sent from the browser to the server in the HTTP header. A cookie
(if configured accordingly) is not deleted from the browser system by restarting the
browser or by restarting the system. Of course, the browser’s human user can manually
delete the cookie.

o A browser does not have to accept cookies, and it does not have to save
them either. But we live in a world where almost every page uses cookies. So, most
users will have the cookie functionality enabled. For more information on cookies,
please visit Wikipedia at http://en.wikipedia.org/wiki/Http_cookie.

A cookie has a limited size (the maximum is 4KB). You should remember that the
information in the saved cookies is sent from the browser to the server. So, you should
use cookies to store only small amounts of data (for example, a customer ID) to avoid the
protocol overhead from becoming too big.

Rails provides a hash with the name cookies[] that you can use transparently. Rails
automatically takes care of the technological details in the background.

265
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_8

http://en.wikipedia.org/wiki/Http_cookie

CHAPTER 8 COOKIES AND SESSIONS

To demonstrate how cookies work, I will show how to build a Rails application that
places a cookie on a page, reads it out on another page, and displays the content. The
cookie is deleted on a third page.

$ rails new cookie jar
[...]
$ cd cookie jar
$ rails db:migrate
$ rails generate controller home set cookies show cookies delete cookies

[...]

Populate the controller file app/controllers/home_controller.rb, as shown in
Listing 8-1.

Listing 8-1. app/controllers/home_controller.rb

class HomeController < ApplicationController
def set cookies

cookies[:user name] = "Smith"
cookies[:customer number] = "1234567890"
end

def show cookies

@user name = cookies[:user name]
@customer number = cookies|[:customer number]
end

def delete cookies
cookies.delete :user name
cookies.delete :customer number
end
end

Listing 8-2 shows the view file app/views/home/show_cookies.html.erb.

266

CHAPTER 8 COOKIES AND SESSIONS

Listing 8-2. app/views/home/show_cookies.html.erb

<table>
<tr>
<td>User Name:</td>
<td><%= @user_name %></td>
</tr>
<tr>
<td>Customer Number:</td>
<td><%= @customer number %></td>
</tr>
</table>

Start the Rails server with rails server and go to the URL http://localhost:3000/
home/show_cookies in your browser. You will not see any values, as shown in Figure 8-1.

® ® [cookieJar x (2]
& C @ localhost:3000/home/show_cookies v
User Name:

Customer Number:

Figure 8-1. Cookies empty

267

CHAPTER 8 COOKIES AND SESSIONS

Now go to the URL http://localhost:3000/home/set_cookies and then back to
http://localhost:3000/home/show_cookies. Now you will see the values that you have
setin the method set_cookies, as shown in Figure 8-2.

® ® [cookieJar x (2]
& - C @ localhost:3000/home/show_cookies v
User Name: Smith

Customer Number: 1234567890

Figure 8-2. Cookies set

By requesting the page http://localhost:3000/home/delete cookies, you can
delete the cookies.

The cookies you have placed in this way stay alive in the browser until you close the
browser completely.

Permanent Cookies

Cookies are usually set to give the application a way of recognizing users when they
visit again later. Between these visits to the web site, much time can go by, and the
user may well close the browser in the meantime. To store cookies for longer than
the current browser session, you can use the method permanent. You can expand the
previous example by adding the method shown in Listing 8-3 in app/controllers/
home_controller.rb.

268

CHAPTER 8 COOKIES AND SESSIONS

Listing 8-3. app/controllers/home_controller.rb

class HomeControllexr < ApplicationController

def set cookies
"Smith"
"1234567890"

cookies.permanent[:user name]
cookies.permanent[:customer number]

end

def show cookies
@user name = cookies[:user name]
@customer number = cookies[:customer number]
end

def delete cookies
cookies.delete :user name
cookies.delete :customer number
end
end

o permanent here does not really mean permanent. You cannot set a cookie
permanently. When you set a cookie, it always needs a valid until stamp that
the browser can use to automatically delete old cookies. With the method
permanent, this value is set to today’s date in 20 years.

Signed Cookies

With normally placed cookies, you have no option on the application side to find out
whether the user of the application has changed the cookie. This can quickly lead to
security problems because changing the content of a cookie in the browser is no great
mystery. The solution is to sign the cookies with a key that is known only to you. This key
is automatically created via a random generator with each rails new command and is
located in the file config/secrets.yml, as shown in Listing 8-4.

269

CHAPTER 8 COOKIES AND SESSIONS

Listing 8-4. config/secrets.yml

development:
secret_key base: f4c3[...]095b

test:
secret _key base: déef[...]052a

Do not keep production secrets in the repository,
instead read values from the environment.
production:

secret _key base: <%= ENV["SECRET_KEY_BASE"] %>

As mentioned in the comment before the production keyj, it is not a good idea to
store the production key in the source code of your project. It’s better to store it as an
environment variable and let the Rails project read it from there.

To sign cookies, you can use the method signed, which you use for writing and
reading the cookie. You can expand the previous example by adding the method shown
in Listing 8-5 in app/controllers/home_controller.rb

Listing 8-5. app/controllers/home_controller.rb

class HomeController < ApplicationController
def set cookies
cookies.permanent.signed[:user name] = "Smith"

cookies.permanent.signed[:customer number] = "1234567890"

end

def show cookies
@user name
@customer number = cookies.signed[:customer number]

cookies.signed[:user name]

end

def delete cookies
cookies.delete :user name
cookies.delete :customer number
end
end

270

CHAPTER 8 COOKIES AND SESSIONS

The content of the cookie is now encrypted every time you set the cookie. The user
can read the name of the cookie, but not the value.

Sessions

As HTTP is a stateless protocol, you will encounter special problems when developing
applications. An individual web page has no connection to the next web page, and they
do not even know about one another. But since a user wants to register only once on a
web site, not over and over again on each individual page, this can pose a problem. The
solution is called a session, and Rails offers sessions to the programmer transparently as
with the session[] hash. Rails automatically creates a new session for each new visitor
of the web page. This session is saved by default as a cookie, so it is subject to the 4KB
limit. You can also store the sessions in the database (see the section “Saving Sessions in
the Database”). An independent and unique session ID is created automatically, and the
cookie is deleted by default when the web browser is closed.

The beauty of a Rails session is that you can save not only strings there as with
cookies, but any object, hashes, and arrays as well. So, you can, for example, use it to

conveniently implement a shopping cart in an online shop.

Breadcrumbs via Sessions

As an example, let’s create an application with a controller and three views. When a view
is visited, the previously visited views are displayed in a little list.
Here is the basic application:

$ rails new breadcrumbs
[...]
$ cd breadcrumbs
$ rails db:migrate
$ rails generate controller Home ping pong index

[...]

First you create a method with which you can save the last three URLs in the session
and set an instance variable called @breadcrumbs to be able to neatly retrieve the
values in the view. To that end, you set up a before_action in app/controllers/home_
controller.rb, as shown in Listing 8-6.

271

CHAPTER 8 COOKIES AND SESSIONS
Listing 8-6. app/controllers/home_controller.rb

class HomeController < ApplicationController
before action :set breadcrumbs

def ping
end

def pong
end

def index
end

private
def set breadcrumbs
if session[:breadcrumbs]
@breadcrumbs = session[:breadcrumbs]
else
@breadcrumbs = Array.new
end

@breadcrumbs.push(request.url)
if @breadcrumbs.count > 4
@breadcrumbs.shift

end

session[:breadcrumbs] = @breadcrumbs
end
end

Now you use app/views/layouts/application.html.erb to display the last entries
at the top of each page, as shown in Listing 8-7.

272

CHAPTER 8 COOKIES AND SESSIONS

Listing 8-7. app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Breadcrumbs</title>
<%= csrf_meta_tags %>

<%= stylesheet link tag 'application’, media: 'all', 'data-
turbolinks-track': 'reload' %>
<%= javascript_include tag 'application’, 'data-turbolinks-track':
'reload' %>

</head>

<body>
<% if @breadcrumbs && @breadcrumbs.any? %>
<h3>Surf History</h3>

<% @breadcrumbs[0..2].each do |breadcrumb| %>
<%= link_to breadcrumb, breadcrumb %></1i>
<% end %>

<% end %>

<%= yield %>
</body>
</html>

Start the Rails server with rails server and go to http://localhost:3000/home/ping,
http://localhost:3000/home/pong, or http://localhost:3000/home/index; at the top
you will always see the last three pages that you have visited. Of course, this works only on
the second page because you do not yet have a history on the first page you visit.

273

CHAPTER 8 COOKIES AND SESSIONS

reset_session

Occasionally, there are situations where you want to reset a session (in other words,

delete the current session and start a new, fresh session). For example, if you log out

of a web application, the session will be reset. This is easily done, and you can quickly

integrate it into your breadcrumb application.

O With the switch -s, the generator doesn’t overwrite existing files. In this
example, that would be the home controller.rb file.

$ rails generate controller Home reset -s
Running via Spring preloader in process 49668

skip
route
invoke
exist
Create
invoke
skip
invoke
identical
invoke
invoke
invoke
identical
invoke
identical

app/controllers/home_controller.rb
get 'home/reset’
erb
app/views/home
app/views/home/reset.html.erb
test unit
test/controllers/home_controller test.rb
helper
app/helpers/home_helper.rb
test unit
assets
coffee
app/assets/javascripts/home.coffee
css
app/assets/stylesheets/home.css

The correspondingly expanded controller, named app/controllers/home
controller.rb, looks like Listing 8-8.

274

CHAPTER 8 COOKIES AND SESSIONS

Listing 8-8. app/controllers/home_controller.rb

class HomeControllexr < ApplicationController
before action :set breadcrumbs

def ping
end

def pong
end

def index
end

def reset
reset session
@breadcrumbs = nil
end

private
def set breadcrumbs
if session[:breadcrumbs]

@breadcrumbs = session[:breadcrumbs]
else

@breadcrumbs = Array.new
end

@breadcrumbs.push(request.url)

if @breadcrumbs.count > 4
shift removes the first element
@breadcrumbs.shift

end

session[:breadcrumbs] = @breadcrumbs
end
end

So, you can delete the current session by going to the URL http://localhost:3000/
home/reset.

275

CHAPTER 8 COOKIES AND SESSIONS

o It's important not just to invoke reset session, but you need to also set
the instance variable @breadcrumbs to nil. Otherwise, the old breadcrumbs
would still appear in the view.

Saving Sessions in the Database

Saving the entire session data in a cookie on the user’s browser is not always the best
solution. Among other reasons, the limit of 4KB can pose a problem. But it’s no big obstacle;
you can relocate the storing of the session from the cookie to the database with the gem at
https://github.com/rails/activerecord-session_store. The session ID is of course
still saved in a cookie, but the other session data is stored in the database on the server.

To install the gem, you have to add the line shown in Listing 8-9 at the end of the
file Gemfile.

Listing 8-9. Gemfile
gem 'activerecord-session_store'

After that, run the bundle install command.

$ bundle install
[...]

Next, you have torun rails generate active record:session_migrationand
rails db:migrate to create the needed table in the database.

$ rails generate active record:session_migration
create db/migrate/20150428183919 add_sessions_table.rb
$ rails db:migrate
== 20150428183919 AddSessionsTable: migrating =============================
-- create table(:sessions)

-> 0.0019s

-- add_index(:sessions, :session_id, {:unique=>true})
-> 0.0008s

-- add_index(:sessions, :updated at)
-> 0.0008s

== 20150428183919 AddSessionsTable: migrated (0.0037s) ====================

https://github.com/rails/activerecord-session_store

CHAPTER 8 COOKIES AND SESSIONS

Finally, change the session_store value in the file config/initializers/session_
store.rbto :active record store, as shown in Listing 8-10.

Listing 8-10. config/initializers/session_store.rb

Rails.application.config.session store :active record store, :key =>
' my app_session'

You're finished. Start the server again with rails server and Rails will save all

sessions in the database.

277

CHAPTER 9

Tests

I have been programming for more than 30 years, and most of the time I have managed
quite well without test-driven development (TDD). I am not going to be mad at you if
you decide to just skip this chapter. You can create Rails applications without tests, and
you are not likely to garner any bad karma as a result (at least, I hope not, but you can
never be entirely sure with the whole karma thing).

If you should decide to go for TDD, then I can promise you that it is enlightening. The
basic idea of TDD is that you write a test for each programming function to check that
function. In the pure TDD teaching, this test is written before the actual programming.
Yes, you will have a lot more to do initially. But later, you can run all the tests and see
that the application works exactly as you wanted it to work. The real advantage becomes
apparent only after a few weeks or months when you look at the project again and write
an extension or new variation. Then you can safely change the code and check that it
still works properly by running the tests. This avoids a situation where you find yourself
saying “Oops, that went a bit wrong; I just didn’t think of that particular problem.”

Often, the advantage of TDD is evident when writing a program. Tests can reveal
many careless mistakes that you would otherwise have stumbled across only much later.

This chapter is a brief overview of the topic of test-driven development with Rails.

If you want to find out more, you can dive into the official Rails documentation at
http://guides.rubyonrails.org/testing.html.

O TDD is just like driving a car. The only way to learn it is by doing it.

279
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_9

http://guides.rubyonrails.org/testing.html

CHAPTER9 TESTS

Example for a User in a Web Shop

Let’s start with a user scaffold in an imaginary web shop, as shown here:

$ rails new webshop
[...]

$ cd webshop
$ rails generate scaffold user login name first name last name
birthday:date

[...]

invoke test unit

create test/models/user_test.rb

create test/fixtures/users.yml

[...]

invoke test unit

create test/controllers/users_controller test.rb
create test/system/users_test.rb

invoke helper

create app/helpers/users_helper.rb

invoke test unit

[...]

$ rails db:migrate

[...]

You already know all about scaffolds (if not, please read Chapter 4), so you know
what the application you have just created does. The scaffold created a few tests (they are
easy to recognize because the word test is in the file names).

The complete test suite of a Rails project is processed with the command rails test.
Let’s see what a test produces at this stage of development:

$ rails test
Running via Spring preloader in process 2440
Run options: --seed 62885

280

CHAPTER9 TESTS
Running:

Finished in 1.361143s, 5.1427 runs/s, 6.6121 assertions/s.
7 runs, 9 assertions, 0 failures, 0 errors, 0 skips

The output 7 runs, 9 assertions, 0 failures, 0 errors, 0 skipslooks good.
By default, a test will run through in a standard scaffold.

Let’s edit app/models/user.rb and insert a few validations (if these are not entirely
clear to you, please read the section “Validation” in Chapter X), as shown in Listing 9-1.

Listing 9-1. app/models/user.rb

class User < ApplicationRecord
validates :login_name,
presence: true,
length: { minimum: 10 }

validates :last_name,
presence: true
end

Then execute rails test again, as shown here:

$ rails test
Running via Spring preloader in process 89164
Run options: --seed 40163

Running:
..F
Failure:
UsersControllerTest#test should update user [/.../webshop/test/controllers/

users_controller test.rb:38]:
Expected response to be a <3XX: redirect>, but was a <200: OK>

bin/rails test test/controllers/users _controller test.rb:36

281

CHAPTER9 TESTS

Failure:
UsersControllerTest#test should create user [/.../webshop/test/controllers/
users_controller test.rb:19]:
"User.count" didn't change by 1.
Expected: 3
Actual: 2

bin/rails test test/controllers/users_controller test.rb:18

Finished in 0.262099s, 26.7075 runs/s, 30.5228 assertions/s.
7 runs, 8 assertions, 2 failures, 0 errors, O skips

Boom! This time you have the output 2 failures. The error happens in
UsersControllerTest#test should update user and UsersControllerTest#test
should create_user. The explanation for this is in the validation. The example data
created by the scaffold generator went through in the first rails test test (without
validation). The errors occurred only the second time (with validation).

This example data is created as fixtures tests tests in YAML format in the
directory test/fixtures/. Let’s take a look at the example data for User in the file
test/fixtures/users.yml; see Listing 9-2.

Listing 9-2. test/fixtures/users.yml

one:
login name: MyString
first name: MyString
last_name: MyString
birthday: 2018-01-25

two:
login_name: MyString
first_name: MyString
last name: MyString
birthday: 2018-01-25

282

CHAPTER9 TESTS

There are two example records in Listing 9-2 that do not fulfill the requirements of
the validation. The login_name record should have a length of at least ten. Let’s change
the login_name record in test/fixtures/users.yml accordingly; see Listing 9-3.

Listing 9-3. test/fixtures/users.yml

one:
login_name: MyStringi2
first_name: MyString
last _name: MyString
birthday: 2018-01-25

two:
login_name: MyStringi2
first name: MyString
last_name: MyString
birthday: 2018-01-25

Now, the rails test command completes without any errors again.

$ rails test
Running via Spring preloader in process 89807
Run options: --seed 50152

Running:
Finished in 0.271182s, 25.8129 runs/s, 33.1880 assertions/s.
7 runs, 9 assertions, 0 failures, 0 errors, O skips

Now you know that valid data has to be contained in test/fixtures/users.yml
so that the standard test created via the scaffolding will succeed. But you need nothing
more. The next step is to change test/fixtures/users.yml to the minimum needed
(for example, you do not need a first_name field), as shown in Listing 9-4.

283

CHAPTER9 TESTS

Listing 9-4. test/fixtures/users.yml

one:
login_name: MyStringi2
last name: Mulder

two:
login name: MyStringi2
last_name: Scully

To be on the safe side, let’s run another rails test command after making the
changes (you really can’t do that often enough).

$ rails test
Running via Spring preloader in process 89972
Run options: --seed 40198

Running:
Finished in 0.255256s, 27.4234 runs/s, 35.2587 assertions/s.

7 runs, 9 assertions, 0 failures, 0 errors, O skips

o All fixtures are loaded into the database when a test is started. You need to
keep this in mind for your test, especially if you use uniqueness in your validation.

Functional Tests

Let’s take a closer look at the point where the original errors occurred, as shown here:

Failure:
UsersControllerTest#test should create user
[/.../webshop/test/controllers/users controller test.rb:19]:
"User.count" didn't change by 1.
Expected: 3

Actual: 2

284

CHAPTER9 TESTS

In UsersControllerTest, the user could not be created. The controller tests are
located in the directory test/functional/. Let’s now take a good look at the file
test/controllers/users_controller test.rb, as shown in Listing 9-5.

Listing 9-5. test/controllers/users_controller_test.rb
require 'test helper'

class UsersControllexTest < ActionDispatch::IntegrationTest
setup do
@user = users(:one)
end

test "should get index" do
get users url
assert_response :success
end

test "should get new" do
get new user url
assert_response :success
end

test "should create user" do
assert difference('User.count') do
post users url, params: { user: { birthday: @user.birthday,
first name: @user.first name, last name: @user.last name,
login name: @user.login name } }
end

assert redirected to user url(User.last)
end

test "should show user" do
get user_url(@user)
assert response :success
end

285

CHAPTER9 TESTS

test "should get edit" do
get edit_user url(@user)
assert_response :success
end

test "should update user" do
patch user url(@user), params: { user: { birthday: @user.birthday,
first name: @user.first name, last name: @user.last name,
login name: @user.login name } }
assert redirected to user url(@user)
end

test "should destroy user" do
assert difference('User.count', -1) do
delete user url(@user)
end

assert redirected to users url
end
end

At the beginning, you will find a setup instruction.

setup do
@user = users(:one)
end

These three lines of code mean that for the start of each individual test, an instance
called @user with the data of the item one from the file test/fixtures/users.yml is
created. setup is a predefined callback that—if present—is started by Rails before each
test. The opposite of setup is teardown. A teardown—if present—is called automatically
after each test.

286

CHAPTER9 TESTS

O For every test (in other words, at each run of rails test), a fresh and
therefore empty test database is created automatically. This is a different database
than the one you access by default via rails console (that is, the development
database). The databases are defined in the configuration file config/
database.yml. If you want to do debugging, you can access the test database
with rails console test.

This functional test then tests various web page functions. First, you access the
index page.

test "should get index" do
get users url
assert_response :success
end

The command get users_url accesses the page /users. A response of
assert_response :success means that the page was delivered.
Let’s look more closely at the should create user problem from earlier.

test "should create user" do
assert_difference('User.count') do
post users url, params: { user: { birthday: @user.birthday,
first name: @user.first name, last name: @user.last name,
login name: @user.login_name } }
end

assert redirected to user url(User.last)
end

The block assert_difference('User.count') do ... endexpects a change by the
code contained within it. User. count should result in +1.

The last line, assert_redirected to user path(User.last), checks whether after
the newly created record the redirection to the corresponding view show occurs.

Without describing each individual functional test line by line, it's becoming clear
what these tests do: they execute real queries to the web interface (or actually to the
controllers), and so they can be used for testing the controllers.

287

CHAPTER9 TESTS

Unit Tests

For testing the validations that you have entered in app/models/user.rb, unit tests
are more suitable. Unlike the functional tests, these test only the model, not the
controller’s work.

The unit tests are located in the directory test/models/. But a look into the file
test/models/user test.rb israther sobering, as shown in Listing 9-6.

Listing 9-6. test/models/user_test.rb
require 'test helper'’

class UsexTest < ActiveSupport::TestCase

end

By default, the scaffold only writes a commented-out dummy test.
A unit test always consists of the following structure:

test "an assertion" do
assert something is true
end

The word assert already indicates that you are dealing with an assertion in this
context. If this assertion is true, the test will complete, and all is well. If this assertion is
false, the test fails, and you have an error in the program (you can specify the output of
the error as a string at the end of the assert line).

If you take alook at http://guides.rubyonrails.org/testing.html, you'll see that
there are some other assert variations. Here are a few examples:

o assert(boolean, [msg])

« assert equal(obj1, obj2, [msg])

o assert not_equal(obj1, obj2, [msg])
o assert same(obji, obj2, [msg])

o assert not same(obj1i, obj2, [msg])

288

http://guides.rubyonrails.org/testing.html

CHAPTER9 TESTS

o assert nil(obj, [msg])
o assert not nil(obj, [msg])
o assert match(regexp, string , [msg])
o assert_no match(regexp, string , [msg])
Let’s breathe some life into the first test in test/unit/user test.rb, as shown in

Listing 9-7.

Listing 9-7. test/unit/user_test.rb
require 'test helper’

class UsexTest < ActiveSupport::TestCase
test 'a user with no attributes is not valid' do
user = User.new
assert_not user.save, 'Saved a user with no attributes.'
end
end

This test checks whether a newly created User that does not contain any data is valid
(it shouldn’t be).
You canrun a rails test command for the complete test suite.

$ rails test
Running via Spring preloader in process 91049
Run options: --seed 8014

Running:
Finished in 0.248883s, 32.1436 runs/s, 40.1795 assertions/s.

8 runs, 10 assertions, 0 failures, 0 errors, O skips

289

CHAPTER9 TESTS

Now you integrate two asserts in a test to check whether the two fixture entries in
test/fixtures/users.yml are really valid. The first one is just a shorter version of the
empty user test.

require 'test helper’

class UsexTest < ActiveSupport::TestCase
test 'an empty user is not valid' do
assert !User.new.valid?, 'Saved an empty user.'
end

test "the two fixture users are valid" do
assert User.new(last name: users(:one).last name, login name:
users(:one).login name).valid?, 'First fixture is not valid.'
assert User.new(last name: users(:two).last name, login name:
users(:two).login name).valid?, 'Second fixture is not valid.'
end
end

Then once more there’sarails test command.

$ rails test
Running via Spring preloader in process 91434
Run options: --seed 57493

Running:
Finished in 0.256179s, 35.1317 runs/s, 46.8422 assertions/s.

9 runs, 12 assertions, 0 failures, 0 errors, 0 skips

Fixtures

With fixtures you can generate example data for tests. The default format for this

is YAML. You can find the files for this in the directory test/fixtures/; they are
automatically created with rails generate scaffold. But of course you can also define
your own files. All fixtures are loaded into the test database by default with every test.

290

CHAPTER9 TESTS

You can find examples for alternative formats (e.g., CSV) at http://api.
rubyonrails.org/classes/ActiveRecord/Fixtures.html.

Static Fixtures

The simplest variant for fixtures is static data. The fixture for User used in the section
“Example for a User in a Web Shop” statically should look like Listing 9-8 (please change
the content of the file accordingly).

Listing 9-8. test/fixtures/users.yml

one:
login name: fox.mulder
last name: Mulder

two:
login name: dana.scully
last_name: Scully

You simply write the data in YAML format into the corresponding file.

Fixtures with erb

Static YAML fixtures are sometimes not smart enough to do the job. In these cases, you
can work with erb.

If you want to dynamically enter today’s date 20 years ago for a birthday, then you
can simply do it with erb in test/fixtures/users.yml, as shown in Listing 9-9.

Listing 9-9. test/fixtures/users.yml

one:
login_name: fox.mulder
last name: Mulder
birthday: <%= 20.years.ago.to s(:db) %>

two:
login_name: dana.scully
last name: Scully
birthday: <%= 20.years.ago.to s(:db) %>

291

http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html
http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html

CHAPTER9 TESTS

Integration Tests

Integration tests are tests that work like functional tests, but they can span several
controllers and additionally analyze the content of a generated view. So, you can use
them to re-create complex workflows within a Rails application. As an example, I will
show how to write an integration test that tries to create a new user via the web GUI but
omits the login_name value and consequently gets corresponding flash error messages.
Arails generate scaffold command generates unit and functional tests but not
integration tests. You can do this either manually in the directory test/integration/ or more
comfortably with rails generate integration test. So, let’s create an integration test.

$ rails generate integration_test invalid new_user_ workflow
Running via Spring preloader in process 91538

invoke test unit

create test/integration/invalid new user workflow test.rb

You can now populate the file test/integration/invalid_new_user workflow_
test.rb with the test shown in Listing 9-10.

Listing 9-10. test/integration/invalid_new_user_workflow_test.rb
require 'test helper'’

class InvalidNewUserllorkflowTest < ActionDispatch::IntegrationTest
fixtures :all

test "try to create a new user without a login' do
@user = users(:one)

get '/users/new’
assert_response :success

post users url, params: { user: { last name: @user.last name } }
assert _equal '/users', path
assert_select 'li', "Login name can't be blank"
assert select 'li', "Login name is too short (minimum is 10 characters)"
end
end

292

CHAPTER9 TESTS
Let’s run all the tests.

$ rails test
Running via Spring preloader in process 91837
Run options: --seed 4153

Running:
Finished in 0.277714s, 36.0083 runs/s, 57.6132 assertions/s.
10 runs, 16 assertions, 0 failures, 0 errors, 0 skips

The example clearly shows that you can program without manually using a web
browser to try it. Once you have written a test for the corresponding workflow, you can
rely in the future on the fact that it will run through; in other words, you don’t have to try
it manually in the browser as well.

rails stats

With rails stats, you can get an overview of your Rails project. Here’s an example:

$ rails stats

e ommmm e ommmm e Hommm - mmmm Hmmm - mmmm +
| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
o m e s s Fmmmm - Fmmmm e - 4mmmm - +
Controllers	77	53	2	9	4	3
Helpers	4	4	0	o] o] 0		
Jobs	2	2	1	o	o] 0	
Models	11	10	2	o	o] 0	
Mailers	4	4	1	o] o] 0		
Channels	8	8	2	o	o] 0	
JavaScripts	31	4	0	1	o] 2	
Libraries	0	0	0	o	o] 0	
Controller tests	48	38	1	71 7	3	
Helper tests	0	0	0	o	o] 0	
Model tests	14	12	1	2	2] 4	
Mailer tests	0	0	0	o	o] 0	

CHAPTER9 TESTS

| Integration tests | 17 | 13 | 1| 1| 1] 11 |
| System tests | 9 | 3| 1] o| o] 0 |
R R EEE e Fm-mmm oo Fmmmmm oo R EEEE EEREEE R +----- - m - +
| Total | 225 | 151 | 12 | 20| 1] 5 |
o - et e e e +----- et +

Code LOC: 88 Test LOC: 63 Code to Test Ratio: 1:0.7

In this project, there are a total of 88 lines of code (LOCs) in the controllers, helpers,
and models. There are a total of 63 LOCs for tests. This gives you a test relation of 1:1.0.7.
Logically, this does not say anything about the quality of tests.

More on Testing

This chapter just scratched the surface of the topic of TDD in Rails. Take a look at

http://guides.rubyonrails.org/testing.html for more information. There you will
also find several good examples on this topic.

One cool feature of Ruby on Rails testing is the ability to run the tests in real browsers
(e.g., Chrome) and to take screenshots while doing so.

294

http://guides.rubyonrails.org/testing.html

CHAPTER 10

Active Job

Sometimes a specific piece of code takes a long time to run but doesn’t need to run
right away. An example is sending an e-mail after creating an order at the end of an
online shopping workflow. It can take a long time to send an e-mail, but you don’t want
your user to wait for that to happen within the controller. It makes more sense to use a
queueing mechanism for these tasks.

Active Job provides such a queueing system. You can create jobs that are processed
asynchronously by the active job.

Create a New Job

The quickest way to create a new job is to use the job generator. Let’s create an example
job that waits for ten seconds and then logs an info message, as shown here:

$ rails new shop
[...]

$ cd shop

$ rails db:migrate

$ rails generate job example

Running via Spring preloader in process 5301
invoke test unit
create test/jobs/example_job test.rb
create app/jobs/example job.rb

All jobs are created in the app/jobs directory. Please change the app/jobs/example
job.rb file accordingly, as shown in Listing 10-1.

295
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_10

CHAPTER 10 ACTIVE JOB
Listing 10-1. app/jobs/example_job.rb

class ExampleJob < ApplicationJob
queue _as :default

def perform(*args)
sleep 10
logger.info "Just waited 10 seconds."
end
end

You can test the job in your console with ExampleJob.perform later, which creates it.

$ rails console

Running via Spring preloader in process 98485

Loading development environment (Rails 5.2.0)

>> ExampleJob.perform later

Enqueued ExampleJob (Job ID: 21526c3c-7839-49e7-975e-2a176a07dbc4) to
Async(default)

Performing ExampleJob (Job ID: 21526c3c-7839-49e7-975e-2a176a07dbc4) from
Async(default)

=> #<ExampleJob:0x007fceee71{498 @arguments=[], @job id="21526c3c-7839-49e7-
975e-2a176a07dbc4", @queue_name="default", @priority=nil, @executions=0,
@provider job id="4c814d91-45d1-4c3e-a57a-3bfdo8cic56f">

Now you have to wait ten seconds to see the following output in the console:

Just waited 10 seconds.
Performed ExampleJob (Job ID: bb6e9781-8ffb-4bf2-8dfc-8ac983ed8bf6)
from Async(default) in 10012.97ms

?> exit

O The file log/development.log contains the logging output.

You'll find a more concrete example of using jobs in Chapter 11 where an e-mail
gets sent.

296

CHAPTER 10 ACTIVE JOB

Set the Time for Future Execution

The set method provides two arguments that can be used to set the execution of a job in
the future.

e wait
ExampleJob.set(wait: 1.hour).perform later
e wait until

ExampleJob.set(wait until: Date.tomorrow.noon).perform later

Configure the Job Server Back End

The page http://api.rubyonrails.org/classes/Activelob/QueueAdapters.html
lists all the available back ends. To use one of them, you have to install the needed gem.
Listing 10-2 shows an example of using the popular Sidekig. To use the gem, you have to
add it to the Gemfile and run a bundle install command afterward.

Listing 10-2. Gemfile
[...]

gem 'sidekiq’
$ bundle install

In config/application.rb, you can configure the use of it, as shown in Listing 10-3.

Listing 10-3. config/application.rb
require_relative 'boot’

require 'rails/all’

Bundler.require(*Rails.groups)

297

http://api.rubyonrails.org/classes/ActiveJob/QueueAdapters.html

CHAPTER 10 ACTIVE JOB

module Shop
class Application < Rails::Application
Initialize configuration defaults for originally generated Rails version.
config.load defaults 5.2

Settings in config/environments/* take precedence over those
specified here.

Application configuration should go into files in config/initializers
-- all .rb files in that directory are automatically loaded.

Sidekiq Configuration
config.active job.queue adapter = :sidekiq
end
end

298

CHAPTER 11

Action Mailer

Even if you mainly use Ruby on Rails to generate web pages, it sometimes is useful to be
able to send an e-mail.

So, let’s build an example with minimal user management for a web shop that
automatically sends an e-mail to the user when a new user is created, as shown here:

$ rails new webshop
[...]
$ cd webshop
$ rails generate scaffold User name email

[...]

$ rails db:migrate

[...]

For the user model, create a minimal validation in app/models/user.rb so that you
can be sure that each user has a name and a syntactically correct e-mail address (see
Listing 11-1).

Listing 11-1. app/models/user.rb

class User < ApplicationRecord
validates :name,
presence: true

validates :email,
presence: true,
format: { with: /\A([*@\s]+)@((?:[-a-20-9]+\.)+[a-z]{2,})\Z/i }
end

299
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_11

CHAPTER 11 ACTION MAILER

There is a generator with the name mailer that creates the files required for mailing.
First, take a look at the output of rails generate mailer, without passing any further
arguments, as shown here:

$ rails generate mailer
Running via Spring preloader in process 99958
Usage:
rails generate mailer NAME [method method] [options]

Example:

rails generate mailer Notifications signup forgot password invoice

creates a Notifications mailer class, views, and test:

Mailer: app/mailers/notifications_mailer.rb
Views: app/views/notifications _mailer/signup.text.erb [...]
Test: test/mailers/notifications_mailer test.rb

That is just as expected. Let’s now create the mailer notification, as shown here:

$ rails generate mailer Notification new_account
Running via Spring preloader in process 201
create app/mailers/notification mailer.rb
invoke erb
create app/views/notification mailer
create app/views/notification_mailer/new_account.text.erb
create app/views/notification_mailer/new_account.html.erb
invoke test unit
create test/mailers/notification_mailer test.rb
create test/mailers/previews/notification_mailer preview.rb

In the file app/mailers/notification_mailer.rb you will find the controller for it,
as shown in Listing 11-2.

300

CHAPTER 11 ACTION MAILER
Listing 11-2. app/mailers/notification_mailer.rb

class NotificationMailer < ApplicationMailer

def new account
@greeting = "Hi"

mail to: "to@example.org"
end
end

In it, you change the new_account method to accept a parameter with
new_account(user) and some code to use to send the confirmation e-mail; see Listing 11-3.

Listing 11-3. app/mailers/notification_mailer.rb

class NotificationMailer < ApplicationMailer
def new_account(user)
@user = user
mail(to: user.email, subject: "Account #{user.name} is active")
end
end

Now you can create the view for this method. Actually, you have to breathe life into
two files.

o app/views/notification mailer/new_account.text.erb
o app/views/notification_mailer/new_account.html.erb

If you want to send a non-HTML e-mail, you can delete the file app/views/
notification _mailer/new_account.html.erb. Otherwise, Action Mailer will generate
an e-mail that can be read as a traditional text e-mail (see Listing 11-4) or as a modern
HTML e-mail (see Listing 11-5).

301

CHAPTER 11 ACTION MAILER

Listing 11-4. app/views/notification_mailer/new_account.text.erb
Hello <%= @user.name %>,
your new account is active.

Have a great day!
A Robot

Listing 11-5. app/views/notification_mailer/new_account.html.erb

<p>Hello <%= @user.name %>,</p>
<p>your new account is active.</p>
<p>Have a great day!</br>

A Robot</p>

As you want to send this e-mail after the creation of a User, you still need to add an
after create callback that triggers the delivery, as shown in Listing 11-6.

Listing 11-6. app/models/user.rb

class User < ApplicationRecord
validates :name,
presence: true

validates :email,
presence: true,
format: { with: /\A([*@\s]+)@((?:[-a-20-9]+\.)+[a-z]{2,})\Z/1 }

after create :send welcome email

private
def send welcome_email
NotificationMailer.new account(self).deliver later
end
end

Let’s create a new User in the console.

302

CHAPTER 11 ACTION MAILER

O It'll take @ moment for Action Mailer to send the e-mail. It’s using Active Job
to queue it. Be patient.

$ rails console
Running via Spring preloader in process 1795
Loading development environment (Rails 5.2.0)
>> User.create(name: "Wintermeyer", email: "sw@wintermeyer-consulting.de")
(0.1ms) begin transaction
User Create (0.4ms) INSERT INTO "users" ("name", "email", "created at",
"updated at") VALUES (?, ?, ?, ?) [["name", "Wintermeyer"], ["email",
"sw@wintermeyer-consulting.de"], ["created at", "2018-01-27 16:21:32.093810"],
["updated at", "2018-01-27 16:21:32.093810"]]
Enqueued ActionMailer::DeliveryJob (Job ID: de33ce3d-9671-4957-8b89-
65b8d3000820) to Async(mailers) with arguments: "NotificationMailer",
"new_account", "deliver now", #<GlobalID:0x007ffe488addf8 @uri=#<URI::GID
gid://shop4/User/1>>
(3.2ms) commit transaction
=> #icUser id: 1, name: "Wintermeyer", email: "sw@wintermeyer-consulting.
de", created at: "2018-01-27 16:21:32", updated at: "2018-01-27 16:21:32">
>> User Load (0.3ms) SELECT "users".* FROM "users" WHERE "users"."id" =
? LIMIT 2 [["id", 1], ["LIMIT", 1]]
Performing ActionMailer::DeliveryJob (Job ID: de33ce3d-9671-4957-8b89-
65b8d3000820) from Async(mailers) with arguments: "NotificationMailer",
"new_account", "deliver now", #<GlobalID:0x007ffe45f84120 @uri=#<URI::GID
gid://shop4/User/1>>
Rendering notification _mailer/new_account.html.erb within layouts/mailer
Rendered notification mailer/new_account.html.erb within layouts/mailer (6.7ms)
Rendering notification mailer/new_account.text.erb within layouts/mailer
Rendered notification mailer/new account.text.erb within layouts/mailer (0.4ms)
NotificationMailer#new account: processed outbound mail in 792.9ms
Sent mail to sw@wintermeyer-consulting.de (31.8ms)

303

CHAPTER 11 ACTION MAILER

Date: Sat, 27 Jan 2018 17:21:43 +0100

From: from@example.com

To: sw@wintermeyer-consulting.de

Message-ID: <5abca717456a9 183a3fff24456d442550@sw.mail>
Subject: Account Wintermeyer is active

Mime-Version: 1.0

Content-Type: multipart/alternative;
boundary="--==_mimepart_5a6ca7174371d_183a3fff24456d44254be";
charset=UTF-8

Content-Transfer-Encoding: 7bit

----==_mimepart_5a6ca7174371d_183a3fff24456d44254be
Content-Type: text/plain;

charset=UTF-8
Content-Transfer-Encoding: 7bit

Hello Wintermeyer,
your new account is active.

Have a great day!
A Robot

----==_mimepart_5a6ca7174371d_183a3fff24456d44254be
Content-Type: text/html;

charset=UTF-8
Content-Transfer-Encoding: 7bit

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style>
/* Email styles need to be inline */
</style>
</head>

<body>
<p>Hello Wintermeyer,</p>

304

CHAPTER 11 ACTION MAILER

<p>your new account is active.</p>
<p>Have a great day!</br>
A Robot</p>

</body>
</html>

----==_mimepart_5a6ca7174371d_183a3fff24456d44254be--

Performed ActionMailer::DeliveryJob (Job ID: de33ce3d-9671-4957-8b89-
65b8d3000820) from Async(mailers) in 842.52ms
>> exit

That was straightforward. In development mode, you can see the e-mail in the log. In
production mode, it is sent to the configured SMTP gateway.

0 Take a look at the files app/views/layouts/mailer.html.erb and
app/views/layouts/mailer.text.erb to seta generic envelope (e.g., add CSS)
for your e-mail content. It works like app/views/layouts/application.
html.erb for HTML views.

Configuring the E-mail Server

Rails can use a local sendmail or an external SMTP server to deliver the e-mails.

Sending via Local Sendmail

If you want to send the e-mail in the traditional way via local sendmail, then you need
to insert the lines shown in Listing 11-7 into your configuration file, which is config/
environments/development.rb for your Development environment or config/
environments/production.rb for your Production environment.

Listing 11-7. config/environments/development.rb

config.action _mailer.delivery method = :sendmail
config.action_mailer.perform_deliveries = true
config.action mailer.raise delivery errors = true

305

CHAPTER 11 ACTION MAILER

Sending via Direct SMTP

If you want to send the e-mail directly via an SMTP server (for example, Google Mail),
then you need to insert the lines shown in Listing 11-8 into your configuration file,
which is config/environments/development.rb for your Development environment or
config/environments/production.rb for your Production environment.

Listing 11-8. config/environments/development.rb

config.action mailer.delivery method = :smtp
config.action mailer.smtp settings = {

address: "smtp.gmail.com",
port: 587,

domain: "example.com’,
user_name: '<username>’,
password: "<password>",
authentication: 'plain’,

enable starttls auto: true }

Of course, you need to adapt the values for :domain, :user_name, and :password in
accordance with your configuration.

Custom X-Header

If you feel the urge to integrate an additional X-header, then this is no problem. Listing 11-9
shows an example for expanding the file app/mailers/notification_mailer.rb.

Listing 11-9. app/mailers/notification_mailer.rb

class NotificationMailer < ApplicationMailer
def new account(user)
@user = user
headers["X-Priority"] = "3'
mail(to: user.email, subject: "The account #{user.name} is active.")
end
end

306

CHAPTER 11 ACTION MAILER
This means the sent e-mail looks like this:

Sent mail to sw@wintermeyer-consulting.de (50ms)
Date: Sat, 27 Jan 2018 17:35:21 +0200
From: from@example.com
To: sw@wintermeyer-consulting.de
Message-ID: <4fc63e39e356a_aa083fe366028cd8803c7@MacBook.local.mail>
Subject: The new account Wintermeyer is active.
Mime-Version: 1.0
Content-Type: text/plain;
charset=UTF-8
Content-Transfer-Encoding: 7bit
X-Priority: 3

Hello Wintermeyer,
your new account is active.

Have a great day!
A Robot

Attachments

E-mail attachments can be defined too.
As an example, in app/mailers/notification_mailer.rb you add the Rails image
app/assets/images/rails.png to an e-mail as an attachment, as shown in Listing 11-10.

Listing 11-10. app/mailers/notification_mailer.rb

class NotificationMailer < ApplicationMailer
def new account(user)
@user = user
attachments['rails.png'] =
File.read("#{Rails.root}/app/assets/images/rails.png")
mail(to: user.email, subject: "The account #{user.name} is active.")
end
end

307

CHAPTER 11 ACTION MAILER

Inline Attachments

For inline attachments in HTML e-mails, you need to use the method inline when calling
attachments. In the example, the controller app/mailers/notification_mailer.rb
looks like Listing 11-11.

Listing 11-11. app/mailers/notification_mailer.rb

class NotificationMailer < ApplicationMailer
def new account(user)
@user = user
attachments.inline['rails.png'] =
File.read("#{Rails.root}/app/assets/images/rails.png")
mail(to: user.email, subject: "The account #{user.name} is active.")
end
end

In the HTML e-mail, you can access the hash attachments[] via image tag. In the
example, the app/views/notification _mailer/new_account.html.erb file will look
like Listing 11-12.

Listing 11-12. app/views/notification_mailer/new_account.html.erb

<!DOCTYPE html>
<html>
<head>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
</head>
<body>
<%= image tag attachments['rails.png'].url, :alt => 'Rails Logo' %>
<p>Hello <%= @user.name %>,</p>

<p>your new account is active.</p>
<p><i>Have a great day!</i></p>
<p>A Robot</p>

</body>
</html>

308

CHAPTER 11 ACTION MAILER

Further Information

The Rails online documentation has an extensive entry on Action Mailer at
http://guides.rubyonrails.org/action mailer basics.html.

309

http://guides.rubyonrails.org/action_mailer_basics.html

CHAPTER 12

Internationalization

Ifyou are in the lucky situation of creating web pages in English only, then you can skip
this chapter completely.

But even if you want to create a web page that uses only one language (other than
English), you will need to dive into this chapter. It is not enough to just translate the
views. If you use scaffolding, you will still need to take care of the not yet translated
validation errors.

The class I18n is responsible for everything having to do with translation in the Rails
application. It offers two important methods for this purpose.

o I18n.translate or I18n.t: Takes care of inserting previously defined
text blocks. These can contain variables.

e TI18n.localize or I18n.1: Takes care of adapting time and date
specifications to the local format.

With I18n.1locale, you define the language you want to use in the current call. In the
configuration file config/application.rb, the entry config.i18n.default_locale sets
the default value for I18n.locale. If you do not make any changes there, this value is set
by default to :en for English.

For special cases such as displaying numbers, currencies, and times, special helpers
are available. For example, if you want to create a German web page, you can ensure that
the number 1000.23 can be correctly displayed with a decimal comma as 1.000,23 on the
German page and with a decimal point on an English web page as 1,000.23.

Let’s create an example application that includes the rails-i18n gem by Sven Fuchs
(https://github.com/svenfuchs/i18n). It provides a couple of language files with

translations and format information.

$ rails new shop-ii18n

[...]
$ cd shop-i18n

311
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_12

https://github.com/svenfuchs/i18n

CHAPTER 12 INTERNATIONALIZATION

$ rails db:migrate

$ echo "gem 'rails-i18n'" >> Gemfile

$ bundle
[...]
$

In the console, you can see the different output of a number depending on the
language setting, as shown here

$ rails console

Running via Spring preloader in process 3337
Loading development environment (Rails 5.2.0)

>> price = 1000.23

=> 1000.23

>> helper.number to currency(price, locale: :de)
=> "1.000,23 €"

>> helper.number to currency(price, locale: :en)
=> "$1,000.23"

>> helper.number to currency(price, locale: :fr)
=> "1 000,23 €"

>> exit

118n.t

With I18n.1, you can retrieve previously defined translations. The translations are saved
by default in YAML format in the directory config/locales/.

In config/locales/, you can find an example file called config/locales/en.yml
with the content in Listing 12-1.
Listing 12-1. config/locales/en.yml

en:
hello: "Hello world"

In the Rails console, you can see how I18n.t works, as shown here:

$ rails console
Running via Spring preloader in process 3487

312

CHAPTER 12 INTERNATIONALIZATION

Loading development environment (Rails 5.2.0)
>> I18n.t :hello

=> "Hello world"

>> I18n.locale

=> :en

>> exit

Let’s first create a config/locales/de.yml file with the content shown in Listing 12-2.

Listing 12-2. config/locales/de.yml

de:
hello: "Hallo Welt"

Now you have to tell Rails to load this file by adding those files to config.i18n.1load
pathin config/application.rb, as shown in Listing 12-3.

Listing 12-3. config/application.rb
require relative 'boot’

require 'rails/all’

Bundler.require(*Rails.groups)
module ShopIi8n

class Application < Rails::Application

config.load defaults 5.2

config.i18n.load path +=
Dir[Rails.root.join('my", 'locales', "*.{rb,yml}").to s]
end
end

313

CHAPTER 12 INTERNATIONALIZATION

In the console, you can set the system language using I18n.locale = :de to German.

$ rails console

Running via Spring preloader in process 4009
Loading development environment (Rails 5.2.0)
>> I18n.locale = :de

=> :de

>> I18n.t :hello

=> "Hallo Welt"

I18n.t looks by default for the entry in the language defined in I18n.locale. It does
not matter if you are working with I18n.t or I18n.translate. Nor does it matter if you
are searching for a symbol or a string.

>> I18n.locale = :en

=> :en

>> I18n.t :hello

=> "Hello world"

>> I18n.t 'hello’

=> "Hello world"

>> I18n.translate 'hello’
=> "Hello world"

If a translation does not exist, you get an error message that says translation
missing:. This also applies if a translation is missing in only one language (then all
other languages will work, but for the missing translation you will get the error
message). In that case, you can define a default with default: 'any default value',
as shown here:

>> I18n.t 'asdfasdfasdf’

=> "translation missing: en.asdfasdfasdf"

>> I18n.t 'asdfasdfasdf', default: 'asdfasdfasdf'
=> "asdfasdfasdf"

>> exit

314

CHAPTER 12 INTERNATIONALIZATION

In the YAML structure, you can also specify several levels. Please amend the config/

locale/en.yml file as shown in Listing 12-4.

Listing 12-4. config/locale/en.yml

en:

hello: "Hello world"
example:
test: "A test”
aaa:
bbb:
test: "Another test"

You can display the different levels within the string with dots or with a : scope for

the symbols. You can also mix both options.

$
Ru

rails console
nning via Spring preloader in process 4243

Loading development environment (Rails 5.2.0)

>>
=>
>>

I18n.t 'example.test'’

"A test"

I18n.t 'aaa.bbb.test'

"Another test"

I18n.t :test, scope: [:aaa, :bbb]
"Another test"

I18n.t :test, scope: 'aaa.bbb'
"Another test"

exit

It's up to you which structure you choose to save your translations in the YAML files.

But the structure described in the section “A Rails Application in Only One Language:

German” does make some things easier, and that’s why you are going to use it for this

application as well.

315

CHAPTER 12 INTERNATIONALIZATION

Using 118n.t in the View

In the view, you can use I118n.t as follows:
<%=t :hello-world %>

<%= I18n.t :hello-world %>

<%= I18n.translate :hello-world %>
<%= I18n.t 'hello-world' %>

<%= I18n.t 'aaa.bbb.test' %>

<%= link to I18n.t('views.destroy'), book, confirm:
I18n.t('views.are_you_sure'), method: :delete %>

Localized Views

In Rails, there is a useful option of saving several variations of a view as localized views,
each of which represents a different language. This technique is independent of the
potential use of I18n.t in these views. The file name results from the view name, the
language code (for example, de for German), and html.erb for erb pages. Each of these
is separated by a dot. So, the German variation of the index.html.erb page would get
the file name index.de.html.erb.

Your views directory could then look like this:

|-app

|---views

|----- products

|------- _form.html.erb
|------- _form.de.html.erb
|------- edit.html.erb
[------- edit.de.html.erb
|------- index.html.erb
|------- index.de.html.exrb
[------- new.html.erb
|------- new.de.html.erb
|------- show.html.erb

CHAPTER 12 INTERNATIONALIZATION

The language set with config.i18n.default locale is used automatically if no
language was encoded in the file name. In a new and not yet configured Rails project,
this will be English. You can configure it in the file config/application.rb.

A Rails Application in Only One Language: German

In a Rails application aimed only at German users, it is unfortunately not enough to
just translate all the views into German. The approach is in many respects similar to
a multilingual Rails application (see the section “Multilingual Rails Applications”).
Correspondingly, there will be a certain amount of repetition. I am going to show you the
steps you need to watch out for by using a simple application as an example.

Let’s go through all the changes using the example of a bibliography application, as
shown here:

$ rails new bibliography
[...]

$ cd bibliography

$ rails generate scaffold book title number of pages:integer \
'price:decimal{7,2}"
[...]

$ rails db:migrate
[...]

$ echo "gem 'rails-i18n

$ bundle

$

>> Gemfile

To get examples of validation errors, please insert the validations shown in Listing 12-5
into app/models/book.rb.

317

CHAPTER 12 INTERNATIONALIZATION

Listing 12-5. app/models/book.rb

class Book < ApplicationRecord
validates :title,
presence: true,
uniqueness: true,
length: { within: 2..255 }

validates :price,
presence: true,
numericality: { greater than: o }
end

Please search the configuration file config/application.rb for the value config.
i18n.default_locale and set it to :de for German. In the same context, you then also
insert two directories in the previous line for the translations of the models and the
views. This directory structure is not a technical requirement but makes it easier to keep
track of things if your application becomes big, as shown in Listing 12-6.

Listing 12-6. config/application.rb
require relative 'boot’

require 'rails/all’

Bundler.require(*Rails.groups)

module ShopIi8n
class Application < Rails::Application

config.load defaults 5.2

318

CHAPTER 12 INTERNATIONALIZATION

config.i18n.load path +=

Dir[Rails.root.join('config', 'locales', 'models', "*', "*.yml').to s]
config.i18n.load path +=

Dir[Rails.root.join('config", 'locales’, 'views', "*', '"*.yml").to s]

config.ii8n.default locale = :de
end
end

You then still need to create the corresponding directories.

$ mkdir -p config/locales/models/book
$ mkdir -p config/locales/views/book

Now you need to generate a language configuration file for German or simply
download a ready-made one by Sven Fuchs from his GitHub repository at https://
github.com/svenfuchs/rails-i18n, as shown here:

$ cd config/locales
$ curl -0\
https://raw.githubusercontent.com/svenfuchs/rails-ii8n/master/rails/
locale/de.yml
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 5492 100 5492 0 0 20795 0 —=i-mie= —mleslem —mle-i-- 20803
$

If you know how Bundler works, you can also insert the line gem 'rails-i18n' into
the file Gemfile and then execute bundle install. This gives you all the language files
from the repository.

In the file config/locales/de.yml, you have all the required formats and generic
wordings for German that you need for a normal Rails application (for example, days of
the week, currency symbols, etc.). Take a look at it with your favorite editor to get a first
impression.

319

https://github.com/svenfuchs/rails-i18n
https://github.com/svenfuchs/rails-i18n

CHAPTER 12 INTERNATIONALIZATION

Next, you need to tell Rails that a model book is not called book in German, but buch.
The same applies to all attributes. So, you create the file config/locales/models/book/
de.yml with the structure shown in Listing 12-7. As a side effect, you get the methods
Model.model name.human and Model.human_attribute name(attribute), with which
you can insert the model and attribute names in the view.

Listing 12-7. config/locales/models/book/de.yml

de:
activerecord:
models:
book: 'Buch’
attributes:
book:
title: 'Titel'
number of pages: 'Seitenanzahl’
price: 'Preis’

In the file config/locales/views/book/de.yml, you insert a few values for the
scaffold views, as shown in Listing 12-8.

Listing 12-8. config/locales/views/book/de.yml

de:
views:
show: Anzeigen
edit: Editieren
destroy: Loschen
are_you_sure: Sind Sie sicher?
back: Zurlick
edit: Editieren
book:
index:
title: Biicherliste
new: Neues Buch
edit:
title: Buch editieren

320

CHAPTER 12 INTERNATIONALIZATION

new:
title: Neues Buch

flash _messages:
book was_successfully created: 'Das Buch wurde angelegt.'
book was_successfully updated: 'Das Buch wurde aktualisiert.'

Now, you still need to integrate a “few” changes into the views. You can use the
I18n.t helper, which can also be abbreviated as t in the view. I18n.t reads out the
corresponding item from the YAML file. In the case of a purely monolingual German
application, you could also write the German text directly into the view, but with this
method you can more easily switch to multilingual use if required. See Listing 12-9,
Listing 12-10, Listing 12-11, Listing 12-12, and Listing 12-13.

Listing 12-9. app/views/books/_form.html.erb

<%= form with(model: book, local: true) do |form| %>
<% if book.errors.any? %>
<div id="error explanation">
<h2><%= t 'activerecord.errors.template.header', :model =>
Book.model name.human, :count => @book.errors.count %></h2>

<% book.errors.full messages.each do |message| %>
<%= message %></1i>
<% end %>

</div>
<% end %>

<div class="field">

<%= form.label :title %>

<%= form.text field :title %>
</div>

<div class="field"»

<%= form.label :number of pages %>

<%= form.number field :number of pages %>
</div>

321

CHAPTER 12 INTERNATIONALIZATION

<div class="field">

<%= form.label :price %>

<%= form.text field :price %>
</div>

<div class="actions">

<%= form.submit %>
</div>
<% end %>

Listing 12-10. app/views/books/edit.html.erb
<h1><%= t 'views.book.edit.title' %></h1>
<%= render 'form', book: @book %>

<%= link to I18n.t('views.show'), @book %> |
<%= link_to I18n.t('views.back'), books path %>

Listing 12-11. app/views/books/index.html.erb
<p id="notice"><%= notice %></p>
<h1><%= t 'views.book.index.title' %></h1>

<table>
<thead>
<tr>
<th><%= Book.human_attribute name(:title) %></th>
<th><%= Book.human_attribute name(:number of pages) %></th>
<th><%= Book.human_attribute name(:price) %></th>
<th colspan="3"></th>
</tr>
</thead>

<tbody>
<% @books.each do |book| %>
<tr>
<td><%= book.title %></td>
<td><%= number with_delimiter(book.number of pages) %></td>

322

CHAPTER 12 INTERNATIONALIZATION

<td><%= number_to currency(book.price) %></td>
<td><%= link to I18n.t('views.show'), book %></td>
<td><%= link_to I18n.t('views.edit'), edit _book_path(book) %></td>
<td><%= link to I18n.t('views.destroy'), book, method: :delete,
data: { confirm: I18n.t('views.are you sure') } %></td>
</tr>
<% end %>
</tbody>
</table>

<%= link _to I18n.t('views.book.index.new'), new_book path %>

Listing 12-12. app/views/books/new.html.erb
<h1><%= t 'views.book.new.title' %></h1>
<%= render 'form' %>

<%= link to I18n.t('views.back'), books path %>

Listing 12-13. app/views/books/show.html.erb
<p id="notice"><%= notice %></p>

<p>
<%= Book.human_attribute name(:title) %>:
<%= @book.title %>

</p>

<p>
<%= Book.human_attribute name(:number of pages) %>:
<%= number with_delimiter(@book.number of pages) %>

</p>

<p>
<%= Book.human_attribute name(:price) %>:
<%= number to_currency(@book.price) %>

</p>

323

CHAPTER 12 INTERNATIONALIZATION

<%= link to I18n.t('views.edit'), edit book path(@book) %> |
<%= link to I18n.t('views.back'), books path %>

O In the show and index views, | integrated the helpers number with
delimiter and number to currency so the numbers are represented more
attractively for the user.

Right at the end, you still need to adapt a few flash messages in the controller app/
controllers/books _controller.rb, as shown in Listing 12-14.

Listing 12-14. app/controllers/books_controller.rb

class BooksControllexr < ApplicationController
before action :set book, only: [:show, :edit, :update, :destroy]

def index
@books = Book.all
end

def show
end

def new
@book = Book.new
end

def edit
end

324

CHAPTER 12 INTERNATIONALIZATION

def create
@book = Book.new(book params)

respond_to do |format]
if @book.save
format.html { redirect to @book, notice: I18n.t('views.book.flash_
messages.book was_successfully created') }
format.json { render :show, status: :created, location: @book }
else
format.html { render :new }
format.json { render json: @book.errors, status: :unprocessable_
entity }
end
end
end

PATCH/PUT /books/1
PATCH/PUT /books/1.json
def update
respond_to do |format]|
if @book.update(book params)
format.html { redirect to @book, notice: I18n.t('views.book.flash_
messages.book was_successfully updated') }
format.json { render :show, status: :ok, location: @book }
else
format.html { render :edit }
format.json { render json: @book.errors, status: :unprocessable
entity }
end
end
end

DELETE /books/1

DELETE /books/1.json

def destroy
@book.destroy
respond_to do |format|

325

CHAPTER 12 INTERNATIONALIZATION

format.html { redirect to books url, notice: I18n.t('views.book.
flash _messages.book was successfully destroyed') }
format.json { head :no content }
end
end

private

def set book
@book = Book.find(params[:id])
end

def book params
params.require(:book).permit(:title, :number of pages, :price)
end
end

Now you can use the views generated by the scaffold generator entirely in German.
The structure of the YAML files shown here can of course be adapted to your own
preferences. The texts in the views and the controller are displayed with I18n.t. At this
point, you could of course also integrate the German text directly if the application is
purely in German.

Paths in German

The bibliography is completely in German, but the URLs are still in English. If you want
to make all books available at the URL http://localhost:3000/buecher instead of the
URL http://localhost:3000/books, then you need to add the entry shown in Listing 12-15
to config/routes.rb.

Listing 12-15. config/routes.rb

Bibliography::Application.routes.draw do
resources :books, path: 'buecher', path names:
{ new: 'neu', edit: 'editieren' }
end

326

CHAPTER 12 INTERNATIONALIZATION
As aresult, you then have the following new paths:

$ rails routes
(in /Users/xyz/rails/project-42/bibliography)

Prefix Verb URI Pattern Controller#Action
books GET /buecher (. :format) books#index
POST /buecher(.:format) books#create
new_book GET /buecher/neu(.:format) books#new
edit book GET /buecher/:id/editieren(.:format) bookstedit
book GET /buecher/:id(.:format) books#show
PATCH /buecher/:id(.:format) books#update
PUT /buecher/:id(.:format) books#update
DELETE /buecher/:id(.:format) books#destroy

The brilliant thing with Rails routes is that you do not need to do anything else.
The rest is managed transparently by the routing engine.

Multilingual Rails Applications

The approach for multilingual Rails applications is similar to the monolingual,
all-German Rails application described in the section “A Rails Application in Only

One Language: German.” However, you need to define YAML language files for all the
required languages and tell the Rails application which language it should currently use.
You do this via I18n.locale.

Using I18n.locale for Defining the Default Language

Of course, a Rails application has to know in which language a web page should be
represented. I118n.locale saves the current language and can be read by the application.
I am going to show you this with a mini web shop example, as shown here:

$ rails new i18n-webshop

[...]
$ cd 118n-webshop

$ echo "gem 'rails-i18n'" >> Gemfile
$ bundle
$

327

CHAPTER 12 INTERNATIONALIZATION
This web shop gets a home page, as shown here:

$ rails generate controller Page index

[...]
$

You still need to enter it as a root page in config/routes.rb, as shown in Listing 12-16.

Listing 12-16. config/routes.rb

Rails.application.routes.draw do
get 'page/index'
root 'pagettindex’

end

Now populate the app/views/page/index.html.erb with the example shown in
Listing 12-17.
Listing 12-17. app/views/page/index.html.erb

<h1>Example Webshop</h1>
<p>Welcome to this webshop.</p>

<p>
I18n.locale:
<%= I18n.locale %>

</p>

If you start the Rails server with rails server and go to http://localhost:3000/ in
the browser, then you see the web page shown in Figure 12-1.

328

CHAPTER 12 INTERNATIONALIZATION

® @ [1nsnwebshop X e

< C @ localhost:3000 T

Example Webshop

Welcome to this webshop.

I18n.locale: en

Figure 12-1. 118n index page

As you can see, the default is set to en for English. Stop the Rails server with
Ctrl+C and change the setting for the default language to German in the file config/
application.zrb, as shown in Listing 12-18.

Listing 12-18. config/application.rb
[...]

config.ii8n.default locale = :de

[...]

If you then start the Rails server and again go to http://localhost:3000/ in the web
browser, you will see the web page shown in Figure 12-2.

329

CHAPTER 12 INTERNATIONALIZATION

® @ [1nsnwebshop X e

< C @ localhost:3000 T

Example Webshop

Welcome to this webshop.

I18n.locale: de

Figure 12-2. [118n index page default locale de

The web page has not changed, but as output of <%= I18n.locale %> younow get de
for German (Deutsch), not en for English as before.

Please stop the Rails server with Ctrl+C and change the setting for the default
language to en for English in the file config/application.rb, as shown in Listing 12-19.

Listing 12-19. config/application.rb
[...]

config.i18n.default locale = :en

[...]

You now know how to set the default for I18n.locale in the entire application, but
that gets only half the job done. A user wants to be able to choose a language. There
are various ways of achieving this. To make things clearer, you need a second page that
displays German text.

Please create the file app/views/page/index.de.html.erb with the content shown
in Listing 12-20.

Listing 12-20. app/views/page/index.de.html.erb

<h1>Beispiel Webshop</h1>
<p>Willkommen in diesem Webshop.</p>

330

CHAPTER 12 INTERNATIONALIZATION

<p>
I18n.locale:
<%= I18n.locale %>

</p>

Setting 118n.locale via the URL Path Prefix

The more stylish way of setting the language is to add it as a prefix to the URL. This
enables search engines to manage different language versions better. You want
http://localhost:3000/de to display the German version of your home page and
http://localhost:3000/en to display the English version. The first step is to adapt
config/routes.rb, as shown in Listing 12-21.

Listing 12-21. config/routes.rb

Rails.application.routes.draw do
scope ':locale’, locale: /en|de/ do
get 'page/index’
get '/', to: 'page#index'
end

root 'page#index’
end

Next, you need to set a before_actionin app/controllers/application_
controller.rb. This filter sets the parameter locale set by the route as I18n.locale, as
shown in Listing 12-22.

Listing 12-22. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
before action :set locale

private
def set locale
I18n.locale = params[:locale] || I18n.default locale
end
end

331

CHAPTER 12 INTERNATIONALIZATION

Now you have to allow the new locales to be loaded. Add the line in Listing 12-23 to
your config/application.rb file.

Listing 12-23. config/application.rb
[...]

config.i18n.available locales = [:en, :de]

[...]

To test it, start Rails with rails server and go to the URL http://localhost:3000/de,
as shown in Figure 12-3.

® ® [118nWebshop X ()

<« C | ® localhost:3000/de ¥

Beispiel Webshop

Willkommen in diesem Webshop.

I18n.locale: de

Figure 12-3. [18nrootde

Of course, you can also go to http://localhost:3000/de/page/index, as shown in
Figure 12-4.

332

CHAPTER 12 INTERNATIONALIZATION

® @ [118nWebshop x (2]

& C | @ localhost:3000/de/page/index v

Beispiel Webshop

Willkommen in diesem Webshop.

I18n.locale: de

Figure 12-4. 118n de page index

If you go to http://localhost:3000/en and http://localhost:3000/en/page/
index, you get the English version of each page.

But now you have a problem: by using the prefix, you initially get to a page with the
correct language, but what if you want to link from that page to another page in your
Rails project? Then you would need to manually insert the prefix into the link. Who
wants that? Obviously, there is a clever solution for this problem. You can set global
default parameters for URL generation by defining a method called default url
options in the controller.

So, you just need to add this method in app/controllers/application_
controller.rb, as shown in Listing 12-24.

Listing 12-24. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
before action :set locale

def default_url options
{ locale: I18n.locale }
end

private
def set locale
I18n.locale = params[:locale] || I18n.default locale
end
end
333

CHAPTER 12 INTERNATIONALIZATION

As aresult, all links created with 1ink_to and url for (on which 1link tois
based) are automatically expanded by the parameter locale. You do not need to do
anything else. All links generated via the scaffold generator are automatically changed

accordingly.

Navigation Example

To give the user the option of switching easily between the different language versions,

it makes sense to offer two links at the top of the web page. You don’t want the current
language to be displayed as the active link. This can be achieved as shown in Listing 12-25
for all views in the file app/views/layouts/application.html.erb.

Listing 12-25. app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title>I18nhebshop</title>
<%= csrf_meta_tags %>

<%= stylesheet link tag "application’, media: 'all', ‘'data-
turbolinks-track': 'reload' %>
<%= javascript_include tag 'application', 'data-turbolinks-track':
'reload' %>

</head>

<body>
<p>
<%= link_to_unless I18n.locale == :en, "English", locale: :en %>

<%= link_to_unless I18n.locale == :de, "Deutsch", locale: :de %>
</p>

<%= yield %>
</body>
</html>

The navigation is then displayed at the top of the page, as shown in Figure 12-5.

334

CHAPTER 12 INTERNATIONALIZATION
® ® [118nWebshop x 5]
& C | @ localhost:3000 ¥

English | Deutsch

Example Webshop

Welcome to this webshop.

I18n.locale: en

Figure 12-5. 118n URL prefix

Setting I18n.locale via the Accept Language HTTP Header
of the Browser

When a user goes to your web page for the first time, you ideally want to immediately
display the web page in the correct language for that user. To do this, you can read out
the accept language field in the HTTP header. In every web browser, the user can set the
preferred language (see www.w3.0rg/International/questions/qa-lang-priorities).
The browser automatically informs the web server and consequently Ruby on Rails of
this value.

Please edit app/controllers/application_controller.rb as shown in Listing 12-26

Listing 12-26. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
before action :set locale

private
def extract locale from accept language header
http_accept _language =
request.env['"HTTP_ACCEPT LANGUAGE'].scan(/*[a-z]{2}/).first
if ['de', 'en'].include? http accept language
http_accept_language
else

335

http://www.w3.org/International/questions/qa-lang-priorities

CHAPTER 12 INTERNATIONALIZATION

en
end
end

def set locale
I18n.locale = extract locale from accept language header ||
I18n.default locale
end
end

Do not forget to clean the settings from the section “Setting I18n.locale via the URL
Path Prefix” out of config/routes.rb, as shown in Listing 12-27.

Listing 12-27. config/routes.rb

Rails.application.routes.draw do
get "page/index"
root 'page#index’

end

Now you always get the output in the language defined in the web browser. Please
note that request.env["HTTP_ACCEPT_LANGUAGE'].scan(/*[a-z]{2}/).first does
not catch all cases. For example, you should make sure that you support the specified
language in your Rails application in the first place. There are some ready-made gems
that can easily do this job for you. Take a look at https://www.ruby-toolbox.com/
categories/i18n#http_accept_language to find them.

Saving I18n.locale in a Session

Often you want to save the value of I18n.1locale in a session.
To set the value, let’s create a controller in the web shop as an example, namely, the
controller SetLanguage with the two actions english and german, as shown here:

$ rails generate controller Setlanguage english german

[...]
$

In the file app/controllers/set_language controller.rb, you populate the two
actions as shown in Listing 12-28.

336

https://www.ruby-toolbox.com/categories/i18n#http_accept_language
https://www.ruby-toolbox.com/categories/i18n#http_accept_language

CHAPTER 12 INTERNATIONALIZATION

Listing 12-28. app/controllers/set_language_controller.rb

class SetlLanguageController < ApplicationController
def english
I18n.locale = :en
set_session and redirect
end

def german
I18n.locale = :de
set_session and redirect
end

private
def set session and redirect
session[:locale] = I18n.locale
end
end

Finally, you also want to adapt the set_locale methods in the file app/controllers/
application_controller.rb, as shown in Listing 12-29.

Listing 12-29. app/controllers/application_controller.rb

class ApplicationControllexr < ActionController::Base
before action :set locale

private
def set locale
I18n.locale = session[:locale] || I18n.default locale
session[:locale] = I18n.locale
end
end

After starting Rails with rails server, you can now set the language to German
by going to the URL http://localhost:3000/set_language/german and to English by
going to http://localhost:3000/set language/english.

337

CHAPTER 12 INTERNATIONALIZATION

Navigation Example

To give the user the option of switching easily between the different language versions,

it makes sense to offer two links at the top of the web page. You don’t want the current
language to be displayed as the active link. This can be achieved as shown in Listing 12-30
for all views in the file app/views/layouts/application.html.erb

Listing 12-30. app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title>I18nhebshop</title>
<%= csrf_meta_tags %>

<%= stylesheet link tag 'application’, media: 'all', ‘'data-
turbolinks-track': 'reload' %>
<%= javascript include tag 'application', 'data-turbolinks-track':
'reload’ %>

</head>

<body>

<p>
<%= link _to unless I18n.locale == :en, "English", set language_
english_path %>
|
<%= link _to unless I18n.locale == :de, "Deutsch", set language_
german_path %>

</p>

<%= yield %>
</body>
</html>

The navigation is then displayed at the top of the page.

338

CHAPTER 12 INTERNATIONALIZATION

Setting I18n.locale via a Domain Extension

If you have several domains with the extensions typical for the corresponding languages,
you can of course also use these extensions to set the language. For example, if a user
visits the page www.example. com, the user would see the English version; if the user goes
to http://www.example.de, then the German version would be displayed.

To achieve this, you would need to go into app/controllers/application_
controller.rb and insert a before_action that analyzes the accessed domain and sets
I18n.locale, as shown in Listing 12-31.

Listing 12-31. app/controllers/application_controller.rb

class ApplicationControllexr < ActionController::Base
before action :set locale

private
def set locale
case request.host.split('.").last

when 'de'
I18n.locale = :de
when 'com'
I18n.locale = :en
else
I18n.locale = I18n.default locale
end
end
end

Q To test this functionality, you can add the following items on your Linux or
macOS development system in the file /etc/hosts:

localhost www.example.com
localhost www.example.de

Then you can go to the URLS www.example.com: 3000 and www.example.de:3000
to see the corresponding language versions.

339

CHAPTER 12 INTERNATIONALIZATION

Which Approach Is the Best?

I believe that a combination of the approaches described earlier will lead to the best
result. When I first visit a web page, I am happy if I find that the accept language HTTP
header of my browser is read and implemented correctly. But it is also nice to be able to
change the language later in the user configuration (in particular, for badly translated
pages, English language is often better). Ultimately it has to be said that a page that is easy
to represent is worth a lot for a search engine, and this also goes for the languages. Rails
gives you the option of easily using all variations and even enables you to combine them.

Multilingual Scaffold Example

As an example, let’s use a mini web shop in which you translate a product scaffold. The
aim is to make the application available in German and English.
Here’s the Rails application:

$ rails new i18n-webshop
[...]

$ cd i18n-webshop

$ rails generate scaffold Product name description 'price:decimal{7,2}'
[...]

$ rails db:migrate
[...]

$ echo "gem 'rails-i18n

$ bundle

$

>> Gemfile

You define the product model in app/models/product.rb, as shown in Listing 12-32.

Listing 12-32. app/models/product.rb

class Product < ApplicationRecord
validates :name,
presence: true,
uniqueness: true,
length: { within: 2..255 }

340

CHAPTER 12 INTERNATIONALIZATION

validates :price,
presence: true,
numericality: { greater than: o }
end

When selecting the language for the user, you use the URL prefix variation
described in the section “Setting I18n.locale via the URL Path Prefix.” You use the
app/controllers/application_controller.rb file shown in Listing 12-33.

Listing 12-33. app/controllers/application_controller.rb

class ApplicationControllexr < ActionController::Base
before action :set locale

def default url options
{ locale: I18n.locale }
end

private
def set locale
I18n.locale = params[:locale] || I18n.default locale
end
end

Listing 12-34 shows the config/routes.rb file.

Listing 12-34. config/routes.rb

Rails.application.routes.draw do
scope ':locale', locale: /en|de/ do
resources :products
get '/', to: 'products#index'
end

root 'products#index'
end

To allow the new locales to be loaded, add the line shown in Listing 12-35 to your
config/application.rb file.

341

CHAPTER 12 INTERNATIONALIZATION

Listing 12-35. config/application.rb
[...]

config.i18n.available locales = [:en, :de]

[...]

Then you insert the links for the navigation in the app/views/layouts/application.
html.erb file, as shown in Listing 12-36.

Listing 12-36. app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title>I18nhebshop</title>
<%= csrf_meta_tags %>

<%= stylesheet link tag "application’, media: 'all', ‘'data-
turbolinks-track': 'reload' %>
<%= javascript_include tag 'application’, 'data-turbolinks-track':
‘reload' %>
</head>

<body>
<p>
<%= link_to unless I18n.locale == :en, "English", locale: :en %>

|
<%= link _to unless I18n.locale == :de, "Deutsch", locale: :de %>
</p>
<%= yield %>
</body>
</html>

Start the Rails server with rails server.

$ rails server

[...]

If you go to http://localhost:3000, you see the normal English page, as shown in
Figure 12-6.

342

CHAPTER 12 INTERNATIONALIZATION

® @ [118nWebshop x (2]
< C @ localhost:3000 T

English | Deutsch

Products

Name Description Price

New Product

Figure 12-6. 118n basic version
Ifyou click the option German, the URL and the language navigation links change, as

shown in Figure 12-7.

® @ [118nWebshop x (2]

< C @ localhost:3000/de/products ¢

English | Deutsch

Products

Name Description Price

New Product

Figure 12-7. 118n basic version de

You still need to find a way to translate the individual elements of this page
appropriately and as generically as possible.

343

CHAPTER 12 INTERNATIONALIZATION

Text Blocks in YAML Format

You need to define the individual text blocks for I18n.t. The corresponding directories
still have to be created first.

$ mkdir -p config/locales/models/product
$ mkdir -p config/locales/views/product

$

To make sure that the YAML files created are indeed read in automatically, you need
to insert the lines shown in Listing 12-37 in the file config/application.rb.

Listing 12-37. config/application.rb
[...]

config.i18n.load path += Dir[Rails.root.join('config', 'locales', 'models’,
PRt "oyml').to s]

config.i18n.load path += Dir[Rails.root.join('config', 'locales', 'views',
VRt "Foyml').to s]

config.i18n.available locales = [:en, :de]

[...]

German

Please create the file config/locales/models/product/de.yml with the content shown
in Listing 12-38.

Listing 12-38. config/locales/models/product/de.yml

de:
activerecord:
models:
product: 'Produkt'
attributes:
product:
name: 'Name'
description: 'Beschreibung'
price: 'Preis’
344

CHAPTER 12 INTERNATIONALIZATION

In the file config/locales/views/product/de.yml, you insert a few values for the
scaffold views, as shown in Listing 12-39.

Listing 12-39. config/locales/views/product/de.yml

de:
views:
show: Anzeigen
edit: Editieren
destroy: Loschen
are_you_sure: Sind Sie sicher?
back: Zurilick
edit: Editieren
product:
index:
title: Liste aller Produkte
new_product: Neues Produkt
edit:
title: Produkt editieren
new:
title: Neues Produkt
flash_messages:
product was successfully created: 'Das Produkt wurde angelegt.'
product_was_successfully updated: 'Das Produkt wurde aktualisiert.'
product_was_successfully destroyed: 'Das Produkt wurde geldscht.'

Finally, you can copy a ready-made default translation by Sven Fuchs from his
GitHub repository at https://github.com/svenfuchs/rails-i18n.

$ cd config/locales/
$ curl -0 https://raw.githubusercontent.com/svenfuchs/rails-ii18n/master/
rails/locale/de.yml
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 5027 100 5027 O 0 15756 0 --i--t-- --i--1-- --1--1-- 15758
$

345

https://github.com/svenfuchs/rails-i18n

CHAPTER 12 INTERNATIONALIZATION

O If you know how Bundler works, you can also insert the line gem 'rails-i18n'
into the file Gemfile and then execute bundle install. This gives you all
language files from the repository.

The file config/locales/de.yml contains all the required formats and generic
phrases for German that you need for a normal Rails application (for example, days of
the week, currency symbols, etc.). Use your favorite editor to take a look at the file.

English

As most things are already present in the system for English, you just need to insert a
few values for the scaffold views in the file config/locales/views/product/en.yml, as
shown in Listing 12-40.

Listing 12-40. config/locales/views/product/en.yml

en:
views:

show: Show

edit: Edit

destroy: Delete
are_you_sure: Are you sure?
back: Back
edit: Edit
product:
index:
title: List of all products
new_product: New product
edit:
title: Edit Product
new:
title: New product
flash_messages:
product was successfully created: 'Product was created.'
product was_successfully updated: 'Product was updated.'

346

CHAPTER 12 INTERNATIONALIZATION

Equipping Views with 118n.t

Please edit the listed view files as specified.

_form.html.erb

In the file app/views/products/_form.html.erb, you need to change the display of the
validation errors in the top section to I18n.t. The names of form errors are automatically
read in from activerecord.attributes.product, as shown in Listing 12-41.

Listing 12-41. app/views/products/_form.html.erb

<%= form with(model: product, local: true) do |f| %>
<% if product.errors.any? %>
<div id="error_ explanation">
<h2><%= t 'activerecord.errors.template.header', model:
Product.model_name.human, count: @product.errors.count %></h2>

<% product.errors.full messages.each do |message| %>
<%= message %></1i>
<% end %>

</div>
<% end %>

<div class="field">

<%= f.label :name %>

<%= f.text_field :name %>
</div>

<div class="field">

<%= f.label :description %>

<%= f.text field :description %>
</div>

<div class="field"»

<%= f.label :price %>

<%= f.text _field :price %>
</div>

347

CHAPTER 12 INTERNATIONALIZATION

<div class="actions">
<%= f.submit %>
</div>
<% end %>

edit.html.erb

In the file app/views/products/edit.html.erb, you need to integrate the heading and
the links at the bottom of the page with I18n.t, as shown in Listing 12-42.

Listing 12-42. app/views/products/edit.html.erb
<h1><%= t 'views.product.edit.title' %></h1>
<%= render 'form', product: @product %>

<%= link to I18n.t('views.show'), @product %> |
<%= link to I18n.t('views.back'), products path %>

index.html.erb

In the file app/views/products/index.html.erb, you need to change practically every
line. In the table header I use human_attribute name(), but you could also do it directly
with I18n.t. The price of the product is specified with the helper number _to_currency.
In areal application, you would have to specify a defined currency at this point as well,
as shown in Listing 12-43.

Listing 12-43. app/views/products/index.html.erb
<p id="notice"><%= notice %></p>
<h1><%= t 'views.product.index.title' %></h1>

<table>
<thead>
<tr>
<th><%= Product.human_attribute name(:name) %></th>
<th><%= Product.human_attribute name(:description) %></th>
<th><%= Product.human_attribute name(:price) %></th>

348

CHAPTER 12 INTERNATIONALIZATION

<th colspan="3"></th>
</tr>
</thead>

<tbody>
<% @products.each do |product| %>
<tr>
<td><%= product.name %></td>
<td><%= product.description %></td>
<td><%= product.price %></td>
<td><%= link to I18n.t('views.show'), product %></td>
<td><%= link to I18n.t('views.edit'), edit product path(product)
%></td>
<td><%= link to I18n.t('views.destroy'), product,
method: :delete, data: { confirm: I18n.t('views.are you sure') }
%></td>
</tr>
<% end %>
</tbody>
</table>

<%= link to I18n.t('views.product.index.new_product'), new product path %>

new.html.erb

In the app/views/products/new.html.erb file, you need to adapt the heading and the
link, as shown in Listing 12-44.

Listing 12-44. app/views/products/new.html.erb
<h1><%= t 'views.product.new.title' %></h1>
<%= render 'form', product: @product %>

<%= link to I18n.t('views.back'), products path %>

349

CHAPTER 12 INTERNATIONALIZATION

show.html.erb

In the app/views/products/show.html.erb file, you again use human_attribute

name () for the attributes. Plus, the links need to be translated with 118n.t. As with the
index view, you again use number_to_currency() to show the price in formatted form, as
shown in Listing 12-45.

Listing 12-45. app/views/products/show.html.erb
<p id="notice"><%= notice %></p>

<p>
<%= Product.human_attribute name(:name) %>:
<%= @product.name %>

</p>

<p>
<%= Product.human_attribute name(:description) %>:
<%= @product.description %>

</p>

<p>
<%= Product.human_attribute name(:price) %>:
<%= @product.price %>

</p>

<%= link_to I18n.t('views.edit'), edit product_path(@product) %> |
<%= link to I18n.t('views.back'), products path %>

Translating Flash Messages in the Controller

Finally, you need to translate the two flash messages in app/controllers/products_
controller.rb for creating (create) and updating (update) records, again via I18n.t, as
shown in Listing 12-46.

350

CHAPTER 12 INTERNATIONALIZATION
Listing 12-46. app/controllers/products_controller.rb

class ProductsController < ApplicationController
before_action :set product, only: [:show, :edit, :update, :destroy]

GET /products
GET /products.json
def index
@products = Product.all
end

GET /products/1

GET /products/1.json
def show

end

GET /products/new
def new

@product = Product.new
end

GET /products/1/edit
def edit
end

POST /products
POST /products.json
def create
@product = Product.new(product_params)

respond_to do |format]

if @product.save
format.html { redirect to @product, notice:
I18n.t('views.product.flash messages.product was successfully
created') }
format.json { render :show, status: :created, location: @product }

else
format.html { render :new }

351

CHAPTER 12 INTERNATIONALIZATION

format.json { render json: @product.errors, status: :unprocessable
entity }
end
end
end

PATCH/PUT /products/1
PATCH/PUT /products/1.json
def update
respond_to do |format]
if @product.update(product params)
format.html { redirect to @product, notice:
I18n.t('views.product.flash messages.product was_successfully
updated') }
format.json { render :show, status: :ok, location: @product }
else
format.html { render :edit }
format.json { render json: @product.errors, status: :unprocessable
entity }
end
end
end

DELETE /products/1
DELETE /products/1.json
def destroy
@product.destroy
respond_to do |format]
format.html { redirect to products url, notice:
I18n.t('views.product.flash messages.product was_ successfully
destroyed') }
format.json { head :no content }
end
end

352

CHAPTER 12 INTERNATIONALIZATION
private
def set product

@product = Product.find(params[:id])
end

def product params
params.require(:product).permit(:name, :description, :price)
end
end

The Result

Now you can use the scaffold products both in German and in English. You can switch
the language via the link at the top of the page.

Further Information

You can find the best source of information on this topic in the Rails documentation at
http://guides.rubyonrails.org/i18n.html. This also shows how you can operate
other back ends for defining the translations.

353

http://guides.rubyonrails.org/i18n.html

CHAPTER 13

Asset Pipeline

The asset pipeline offers Rails developers the opportunity to deliver CSS, JavaScript,

and image files to the browser more optimally. Depending on the type of file, this can be
through compression or a file name fingerprint. Different CSS files are combined into one
big file. The fingerprinting enables the browser and any proxy in between to optimally
cache the data so the browser can load these files more quickly on subsequent visits.

O When running your web server on HTTP/2, it might be a good idea to break
up this flow into smaller chunks to optimize HTTP caching. But that depends on the
specifics of your web application.

Within the asset pipeline, you can program CSS, Sass, JavaScript, and CoffeeScript
extensively and clearly to let them be delivered later as automatically compressed CSS
and JavaScript files.

As an example, you will use once more a web shop with a product scaffold, as shown
here:

$ rails new webshop
[...]
$ cd webshop
$ rails generate scaffold product name 'price:decimal{7,2}'

[...]

$ rails db:migrate

[...]

355
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_13

CHAPTER 13 ASSET PIPELINE
In the directory app/assets, you will then find the following files:

app/assets/

— config

| L— manifest.js
— images

— javascripts

| b— application.js
| |F— cable.js

| — channels
|

L— products.coffee
L— stylesheets

— application.css

— products.scss
L scaffolds.scss

The files app/assets/javascripts/application.js and app/assets/stylesheets/
application.css are referred to as manifest files. They automatically include the other
files in the relevant directory.

application.js

The file app/assets/javascripts/application. js has the content, as shown in
Listing 13-1.

Listing 13-1. app/assets/javascripts/application.js

/7 [o..]

//

//= require rails-ujs

//= require dctivestorage
//= require turbolinks
//= require tree .

This file and all subfiles (which are integrated via required tree) are merged
into one file, and the asset pipeline optimizes it. The not yet optimized version can be
downloaded in the Development environment with this URL: http://localhost:3000/
assets/application.js.

356

CHAPTER 13 ASSET PIPELINE

application.css

The file app/assets/stylesheets/application.css has the content shown in Listing 13-2.

Listing 13-2. app/assets/stylesheets/application.css

/*
*[oo.]
*
*= require tree .
*= require self
*/

With the command require tree ., all files in this directory are automatically
integrated.

You can download the not yet optimized CSS at the URL http://localhost:3000/
assets/application.css.

rails assets:precompile

When using the asset pipeline, you need to remember that you have to precompile the
assets before starting the Rails server in the Production environment. This happens via
the command rails assets:precompile with a prefixed RAILS_ENV=production value
for the Production environment.

$ RAILS_ENV=production bin/rails assets:precompile
Yarn executable was not detected in the system.
Download Yarn at https://yarnpkg.com/en/docs/install

I, [2018-01-27T17:56:51.650389 #8573] INFO -- : Writing /.../public/
assets/application-9eca361cfc054d474ebb4c8c6b16465dd4cd42664fe474b8d9a52573
cle2d2e3.js

I, [2018-01-27T17:56:51.656011 #8573] INFO -- : Writing /.../public/
assets/application-9eca361cfc054d474ebb4c8c6b16465dd4cd42664fe474b8d9a52573
cle2d2e3.js.gz

I, [2018-01-27T17:56:51.700670 #8573] INFO -- : Writing /.../public/

assets/application-35729bfbaf99671119234595ed222f7ab14859f304ab0acc5451afb3
87f637fa.css

357

CHAPTER 13 ASSET PIPELINE

I, [2018-01-27T17:56:51.700920 #8573] INFO -- : Writing /.../public/
assets/application-35729bfbaf99671119234595ed222f7ab14859f304ab0acc5451afb3
87f637fa.css.gz

If you forget to do this, you will find the following error message in the log:
ActionView: :Template::Error (application.css isn't precompiled)

The files created by rails assets:precompile appear in the directory public/
assets.

public/assets/

— application-35729bfbaf9967f119234595ed222f7ab14859f304aboacc5451ah38
7f637fa.css

— application-35729bfbaf9967f119234595ed222f7ab14859f304aboacc5451afb387
f637fa.css.gz

— application-443bf66d6410ac6de6fdo2a73fd8279e83ae0baee64d3832cc67a0909
€8329d9.css

— application-443bf66d6410ac6de6fdo2a73fd8279e83ae0baee64d3832cc67a0909e
8329d9.css.gz

— application-9eca361cfc054d474ebbac8c6b16465ddacd42664fe474b8d9a52573¢
1e2d2e3.7js

— application-9eca361cfc054d474ebbac8c6b16465ddacd42664fe474b8d9a52573c1
e2d2e3.js.gz

— application-b59f735b008e94c6f72a3b7c43cf31aea2ab324386b7a378482d17887
e683a61.js

L— application-b59f735b008e94c6f72a3b7c43cf31aea2ab324386b7a378482d17887e
683a61.js.gz

Go ahead and use your favorite editor to take a look at the created .css and . js files.
You will find minimized and optimized code. If the web server supports it, the zipped
.gz files are delivered directly, which speeds things up a bit more.

The difference in file size is enormous. The file application. js created in the
Development environment has a file size of 80 KB. The file js.gz created by rails
assets:precompile is only 20 KB. Users of cell phones in particular will be grateful for
the smaller file sizes.

358

CHAPTER 13 ASSET PIPELINE

The speed advantage incidentally lies not just in the file size but also in the fact that
only one file is downloaded, not several. The HTTP/1.1 overhead for loading multiple
files is time-consuming. Things are changing with HTTP/2, but that is beyond the scope
of this book.

O jQuery used to be an essential part of the JavaScript and Ruby on Rails
world. Since Rails version 5.1, jQuery is no longer needed. Most people still use it,
but you don’t have to.

The Fingerprint

The fingerprint in the file name consists of a hash sum generated from the content of the
relevant file. This fingerprint ensures optimal caching and prevents an old cache from
being used if any changes are made to the content. It’s a simple but effective method.

Coding Links to an Asset

All files under the directory app/assets are delivered in normal form by the Rails
server. For example, you can go to the URL http://localhost:3000/assets/rails.
png to view the Rails logo saved under app/assets/images/rails.pngand can go to
http://localhost:3000/assets/application.js to view the content of app/assets/
javascripts/application.js. The Rails image rails.png is delivered 1:1, and the file
application.jsis first created by the asset pipeline.

But you should never enter these files as hardwired in a view. To make the most of
the asset pipeline, you must use the helpers described here.

Coding a Link to an Image

You want to save all images in the directory app/assets/images/. The asset pipeline will
search for them there. To actually use them in your erb code, you can use the image_tag
helper. Assuming you have a file called app/assets/images/rails.png, you can re-
create an element with this code:

<%= image tag "rails.png", alt: "Rails Logo" %>

359

CHAPTER 13 ASSET PIPELINE
In Development mode, the following HTML code results from this:

In Production mode, you get an HTML code that points to a precompiled file with a
fingerprint, as shown here:

Coding a Link to a JavaScript File

You can use the helper javascript_include_tag to retrieve a JavaScript file compiled
by the asset pipeline. This is what it would look like in the view for the file app/assets/
javascripts/application.js

<%= javascript_include_tag "application" %>

Normally you don’t have to care about this because the default app/views/layouts/
application.html.erb takes care of it.

Coding a Link to a CSS File

A stylesheet compiled by the asset pipeline can be retrieved via the helper stylesheet
link_tag. In the view, it would look like this for the file app/assets/stylesheets/
application.css

<%= stylesheet link tag "application" %>

Normally you don’t have to care about this because the default app/views/layouts/
application.html.erb takes care of it.

Defaults in application.html.erb

Incidentally, the file app/views/layouts/application.html.erb that the scaffold
generator creates by default already contains the coding links for these JavaScript and
stylesheet files, as shown in Listing 13-3.

360

CHAPTER 13 ASSET PIPELINE

Listing 13-3. app/views/layouts/application.html.erb

<!DOCTYPE html>
<html>
<head>
<title>Webshop</title>
<%= csrf_meta_tags %>

<%= stylesheet link tag 'application’, media: 'all', 'data-
turbolinks-track': 'reload' %>
<%= javascript_include tag 'application’, 'data-turbolinks-track':
'reload' %>

</head>

<body>
<%= yield %>
</body>
</html>

361

CHAPTER 14

Caching

With the caching of web applications, most people tend to wait to implement it until

they encounter performance problems. First the admin usually looks at the database

and adds an index here and there. If that does not help, the admin then takes a look

at the views and adds fragment caching. But this is not the best approach for working

with caches. The aim of this chapter is to help you understand how key-based cache

expiration works. You can then use this approach to plan new applications already on the

database structure level in such a way that you can cache optimally during development.

There are two main arguments for using caching.

The application becomes faster for the user. A faster web page results
in happier users, which results in a better conversion rate.

You need less hardware for the web server because you require less
CPU and RAM resources for processing the queries.

If these two arguments are irrelevant for you, then there’s no need to read this chapter.

I will cover three caching methods.

HTTP caching: This is the sledgehammer among the caching
methods and the ultimate performance weapon. In particular, web
pages that are intended for mobile devices should try to make the
most of HTTP caching. If you use a combination of key-based cache
expiration and HTTP caching, you save a huge amount of processing
time on the server and also bandwidth.

Page caching: This is the screwdriver among the caching methods.
You can get a lot of performance out of the system, but it is not as
good as HTTP caching.

Fragment caching: This is the tweezers among the caching methods,
so to speak. But do not underestimate it!

363

© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_14

CHAPTER 14 CACHING

Q The aim is to optimally combine all three methods.

The Example Application

You will use a simple phone book with a company model and an employees model.
Create the new Rails app, as shown here:

$ rails new phone_book

[...]
$ cd phone_book
$ rails generate scaffold company name

[...]
$ rails generate scaffold employee company:references \
last_name first name phone_number

[...]

$ rails db:migrate

[...]

Models

Listing 14-1 and Listing 14-2 show the setup for the two models.

Listing 14-1. app/models/company.rb

class Company < ApplicationRecord
validates :name,
presence: true,
uniqueness: true

has_many :employees, dependent: :destroy
def to s
name

end
end

364

Listing 14-2. app/models/employee.rb

class Employee < ApplicationRecord
belongs to :company, touch: true

validates :first name,
presence: true

validates :last name,
presence: true

validates :company,
presence: true

def to s
"#{first name} #{last name}"
end
end

Views

CHAPTER 14 CACHING

Go ahead and change the two company views, shown in Listing 14-3 and Listing 14-4, to

list the number of employees in the index view and all the employees in the show view.

Listing 14-3. app/views/companies/index.html.erb

[...]
<table>
<thead>
<tr>
<th>Name</th>
<th>Number of employees</th>
<th colspan="3"></th>
</tr>
</thead>

<tbody>
<% @companies.each do |company| %>

365

CHAPTER 14 CACHING

<tr>
<td><%= company.name %></td>
<td><%= company.employees.count %></td>
[...]
</tr>
<% end %>
</tbody>
</table>

[...]

Listing 14-4. app/views/companies/show.html.erb
<p id="notice"><%= notice %></p>

<p>
Name:
<%= @company.name %>
</p>

<% if @company.employees.any? %>
<h1>Employees</h1>

<table>
<thead>
<tr>
<th>Last name</th>
<th>First name</th>
<th>Phone number</th>
</tr>
</thead>

<tbody>
<% @company.employees.each do |employee| %>
<tr>
<td><%= employee.last _name %></td>
<td><%= employee.first name %></td>
<td><%= employee.phone _number %></td>
</tr>
<% end %>
366

CHAPTER 14 CACHING

</tbody>
</table>
<% end %>

<%= link_to 'Edit', edit_company path(@company) %> |
<%= link _to 'Back', companies path %>

Example Data

To easily populate the database, you can use the Faker gem (see http://faker.
rubyforge.org/). With Faker, you can generate random names and phone numbers.
Please add the line shown in Listing 14-5 in the Gemfile.

Listing 14-5. Gemfile
[...]

gem 'faker'
[...]

Then start bundle, as shown here:
$ bundle

With db/seeds.rb, you can create 30 companies with a random number of
employees in each case, as shown in Listing 14-6.

Listing 14-6. db/seeds.rb

30.times do
company = Company.new(:name => Faker::Company.name)
if company.save
SecureRandom.random number (100).times do
company.employees.create(

first name: Faker::Name.first name,
last _name: Faker::Name.last name,
phone_number: Faker::PhoneNumber.phone number
)
end
end
end

367

http://faker.rubyforge.org/
http://faker.rubyforge.org/

CHAPTER 14 CACHING

You can populate it viarails db:seed.
$ rails db:seed

You can start the application with rails server and retrieve the example data with
a web browser by going to the URL http://localhost:3000/companies or http://
localhost:3000/companies/1.

Normal Speed of the Pages to Optimize

In this chapter, you will optimize the example web pages. Start the Rails application in
development mode with rails server. (The relevant time values, of course, depend on
the hardware you are using.)

$ rails server

To access the web pages, use the command-line tool curl (http://curl.haxx.se/).
Of course, you can also access the web pages with other web browsers. You can look at
the time shown in the Rails log for creating the page. In reality, you need to add the time
it takes for the page to be delivered to the web browser.

List of All Companies (Index View)

At the URL http://localhost:3000/companies, the user can see a list of all the saved
companies with the relevant number of employees.
Generating the page takes 89ms on my machine.

Completed 200 OK in 89ms (Views: 79.0ms | ActiveRecord: 9.6ms)

Detailed View of a Single Company (Show View)

At the URL http://localhost:3000/companies/1, the user can see the details of the first
company with all the employees.
Generating the page takes 51ms on my machine.

Completed 200 OK in 51ms (Views: 48.9ms | ActiveRecord: 0.9ms)

368

http://curl.haxx.se/

CHAPTER 14 CACHING

HTTP Caching

HTTP caching attempts to reuse already loaded web pages or files. For example, if you
visit a web page such as www.nytimes.comor www.wired.com several times a day to read
the latest news, then certain elements of that page (for example, the logo at the top of the
page) will not be loaded again from the server on your second visit. Your browser already
has these files in the local cache, which saves the loading time and bandwidth.

Within the Rails framework, your aim is to answer the question “Has a page
changed?” in the controller. Normally, most of the time is spent on rendering the page in
the view. I'd like to repeat that: most of the time is spent on rendering the page in the view!

Last-Modified

The web browser knows when it has downloaded a resource (e.g., a web page) and

then placed it into its cache. On a second request, it can pass this information to the

web server in an If-Modified-Since: header. The web server can then compare this
information to the corresponding file and either deliver a newer version or return an
HTTP 304 Not Modified code as response. In the case of a 304, the web browser delivers
the locally cached version. Now you are going to say, “That’s all very well for images, but
it won’t help me at all for dynamically generated web pages such as the index view of the
companies.” However, you are underestimating the power of Rails.

o Please modify the times used in the examples in accordance with your own
circumstances.

Go ahead and edit the show method in the controller file app/controllers/
companies_controller.rb, as shown in Listing 14-7.

Listing 14-7. app/controllers/companies_controller.rb

def show
fresh when last modified: @company.updated at
end

369

http://www.nytimes.com/
http://www.wired.com/

CHAPTER 14 CACHING

After restarting the Rails application, take a look at the HTTP header of http://
localhost:3000/companies/1, as shown here

$ curl -I http://localhost:3000/companies/1
HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff
Last-Modified: Sat, 27 Jan 2018 18:38:05 GMT
[...]

The Last-Modified entry in the HTTP header was generated by fresh_when in the
controller. If you later go to the same web page and specify this time as well, then you do
not get the web page back; you get a 304 Not Modified message, as shown here:

$ curl -I http://localhost:3000/companies/1 --header 'If-Modified-Since:
Sat, 27 Jan 2018 18:38:05 GMT'
HTTP/1.1 304 Not Modified

[...]

In the Rails log, you will find this:

Started HEAD "/companies/1" for 127.0.0.1 at 2018-01-27 18:24:21 +0100
Processing by CompaniesController#show as */*
Parameters: {"id"=>"1"}
Company Load (0.1ms) SELECT "companies".* FROM "companies" WHERE
"companies"."id" = ? LIMIT ? [["id", 1], ["LIMIT", 1]]
Completed 304 Not Modified in 2ms (ActiveRecord: 0.1ms)

It took Rails 2ms on my machine to answer this request, compared to the 51ms of the
standard variation. This is much faster! So, you have used fewer resources on the server
and saved a massive amount of bandwidth. The user will be able to see the page much
more quickly.

etag

Sometimes the update_at field of a particular object is not meaningful on its own. For
example, if you have a web page where users can log in and this page then generates web

370

CHAPTER 14 CACHING

page contents based on a role model, it can happen that user A as the admin is able to
see an Edit link that is not displayed to user B as a normal user. In such a scenario, the
Last-Modified header explained earlier does not help. Actually, it would do harm.

In these cases, you can use the etag header. The etag is generated by the web server
and delivered when the web page is first visited. If the user visits the same URL again, the
browser can then check whether the corresponding web page has changed by sending
an If-None-Match: query to the web server.

Please edit the index and show methods in the controller file app/controllers/
companies_controller.rb, as shown in Listing 14-8.

Listing 14-8. app/controllers/companies_controller.rb

def index
@companies = Company.all
fresh_when etag: @companies
end

def show
fresh when etag: @company
end

A special Rails feature comes into play for the etag: Rails automatically sets a new
CSREF token for each new visitor of the web site. This prevents cross-site request forgery
attacks (see http://wikipedia.org/wiki/Cross_site request forgery). Butitalso
means that each new user of a web page gets a new etag for the same page. To ensure
that the same users also get identical CSRF tokens, these are stored in a cookie by the
web browser and consequently sent back to the web server every time the web page is
visited. You have to tell curl that you want to save all cookies in a file and transmit these
cookies later if a request is received.

For saving, you use the -c cookies.txt parameter.

$ curl -I http://localhost:3000/companies -c cookies.txt
HTTP/1.1 200 OK
X-Frame-Options: SAMEORIGIN

371

http://wikipedia.org/wiki/Cross_site_request_forgery

CHAPTER 14 CACHING

X-XSS-Protection: 1; mode=block

X-Content-Type-Options: nosniff

ETag: W/"53830a75ef520df8ad8e1894cf1e5003"
[...]

With the parameter -b cookies.txt, curl sends these cookies to the web server
when a request arrives. Now you get the same etag for two subsequent requests.

$ curl -I http://localhost:3000/companies -b cookies.txt
HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block

X-Content-Type-Options: nosniff

ETag: W/"53830a75ef520df8ad8e1894cf1e5003"

[...]

$ curl -I http://localhost:3000/companies -b cookies.txt
HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN

X-Xss-Protection: 1; mode=block

X-Content-Type-Options: nosniff

ETag: W/"53830a75ef520df8ad8e1894cf1e5003"

[...]

You now use this etag to find out in the request with If-None-Match if the version
you have cached is still up-to-date.

$ curl -I http://localhost:3000/companies -b cookies.txt --header 'If-None-
Match: W/"53830a75ef520df8ad8e1894cf1e5003""

HTTP/1.1 304 Not Modified

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block

X-Content-Type-Options: nosniff

ETag: W/"53830a75ef520df8ad8e1894cf1e5003"

[...]

You get a 304 Not Modified inresponse. Let’s look at the Rails log.

Started HEAD "/companies" for 127.0.0.1 at 2018-01-27 18:36:25 +0100

372

CHAPTER 14 CACHING

Processing by CompaniesController#index as */*
(0.2ms) SELECT COUNT(*) AS "size", MAX("companies"."updated at") AS
timestamp FROM "companies™

Completed 304 Not Modified in 24ms (ActiveRecord: 0.2ms)

Rails took only 24ms on my machine to process the request. Plus, you have saved
bandwidth again. The user will be happy with the speedy web application.

O Find more generic information about etag headers at
https://en.wikipedia.org/wiki/HTTP_ETag.

current_user and Other Potential Parameters

As the basis for generating an etag, you can pass not just an object but also an array
of objects. This way, you can solve the problem with the logged-in user who might get
different content than a non-logged-in user. Let’s assume that a logged-in user is output
with the method current_user.

You have to add etag { current user.try :id }inapp/controllers/
application_controller.rb to make sure that all etags in the application include the
current_user.id value, which is nil if nobody is logged in, as shown in Listing 14-9.

Listing 14-9. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base
etag { current user.try :id }
end

You can chain other objects in this array too and use this approach to define when a
page has not changed.

The Magic of touch

What happens if an employee is edited or deleted? Then the show view and potentially
the index view would have to change as well. That is the reason for the following line in
the employee model:

belongs to :company, touch: true

373

https://en.wikipedia.org/wiki/HTTP_ETag

CHAPTER 14 CACHING

Every time an object of the class Employee is saved in edited form and if touch: true
is used, ActiveRecord updates the superordinate Company element in the database. The
updated_at field is set to the current time. In other words, it is “touched.”

This approach ensures that the correct content is delivered.

stale?

Up to now, I was assuming that only HTML pages are being delivered. So, I showed how
to use fresh_when and then do without the respond_to do |format| block. But HTTP
caching is not limited to HTML pages. What if you want to render JSON, for example, as
well and want to deliver it via HTTP caching? You need to use the method stale?. Using
stale? resembles using the method fresh_when. Here’s an example:

def show
if stale? @company
respond _to do |format]|
format.html
format.json { render json: @company }
end
end
end

Using Proxies (public)

I have also been assuming you were using a cache on the web browser. But on the
Internet, there are many proxies that are often closer to the user and can therefore be
useful for caching in the case of nonpersonalized pages. If the example is a publicly
accessible phone book, then you can activate the free services of the proxies with the
parameter public: truein fresh when or with stale?.

Here’s an example:

def show
fresh_when @company, public: true
end

374

CHAPTER 14 CACHING
You can go to the web page and get the output, as shown here:

$ curl -I http://localhost:3000/companies/1
HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff

ETag: W/"f37a06dbe0eelb4a2aee85c1c326b737"
Last-Modified: Sat, 27 Jan 2018 17:16:53 GMT
Content-Type: text/html; charset=utf-8
Cache-Control: public

[...]

The header Cache-Control: public tells all proxies that they can also cache this
web page.

A Using proxies always has to be done with great caution. On the one hand,
they are brilliantly suited for delivering your own web page quickly to more users,
but on the other hand, you have to be absolutely sure that no personalized pages
are cached on public proxies. For example, CSRF tags and flash messages should
never end up in a public proxy. For CSRF tags, it is a good idea to make the output
of csrf meta tag in the default app/views/layouts/application.html.
erb layout dependent on the question of whether the page may be cached publicly,
as shown here:

<%= csrf _meta_tag unless response.cache control[:public] %>

Cache-Control with Time Limit

When using etag and Last-Modified, you can assume that the web browser definitely
checks once more with the web server if the cached version of a web page is still current.
This is a very safe approach.

375

CHAPTER 14 CACHING

But you can take the optimization one step further by predicting the future: if you
am already sure when delivering the web page that this web page is not going to change
in the next two minutes, hours, or days, then you can tell the web browser this directly.
It then does not need to check back again within this specified period of time. This
overhead savings has advantages, especially with mobile web browsers with relatively
high latency. Plus, you save server load on the web server.

In the output of the HTTP header, you may already have noticed the corresponding
line in the etag and Last-Modified examples, shown here:

Cache-Control: max-age=0, private, must-revalidate

The item must-revalidate tells the web browser that it should definitely check
back with the web server to see whether a web page has changed in the meantime. The
second parameter, private, means that only the web browser is allowed to cache this
page. Any proxies on the way are not permitted to cache this page.

If you decide for the phone book that the web page is going to stay unchanged for
at least two minutes, then you can expand the code example by adding the method
expires_in. The controller app/controllers/companies.rb will then contain the
following code for the method show:

def show

expires_in 2.minutes

fresh when @company, public: true
end

Now you get a different cache control information in response to a request.

$ curl -I http://localhost:3000/companies/1
HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff

Date: Sat, 27 Jan 2018 17:58:56 GMT

ETag: W/"f37a06dbe0eelbda2aee85c1c326b737"
Last-Modified: Sat, 27 Jan 2018 17:16:53 GMT

376

CHAPTER 14 CACHING

Content-Type: text/html; charset=utf-8
Cache-Control: max-age=120, public

[...]

The two minutes are specified in seconds (max-age=120), and you no longer need
must-revalidate. So, in the next 120 seconds, the web browser does not need to check
back with the web server to see whether the content of this page has changed.

O This mechanism is also used by the asset pipeline. Assets created there in
the Production environment can be identified clearly by the checksum in the file
name and can be cached for a long time both in the web browser and in public
proxies. That’s why you have the following section in the Nginx configuration file:

location "~ /assets/ {
gzip static on;
expires max;
add_header Cache-Control public;

}

Fragment Caching

With fragment caching, you can cache individual parts of a view. You can safely use it in

combination with HTTP caching and page caching. The advantages, once again, are a

reduction of server load and faster web page generation, which means increased usability.
Please create a new example application (see “The Example Application”).

Enabling Fragment Caching in Development Mode

Fragment caching is by default disabled in the Development environment. You can
activate it with the command rails dev:cache, which touches the file tmp/caching-
dev.txt.

$ rails dev:cache
Development mode is now being cached.

377

CHAPTER 14 CACHING

To deactivate caching, run the same command again (this will delete the file
tmp/caching-dev.txt).

$ rails dev:cache
Development mode is no longer being cached.

O In production mode, fragment caching is enabled by default.

Caching the Table of the Index View

On the page http://localhost:3000/companies, a computationally intensive table with
all the companies is rendered. You can cache this table as a whole. To do so, you need to
enclose the table in a <% cache('name_of cache') do %> ... <% end %> block.

<% cache('name_of cache') do %>

[...]

<% end %>

Please edit the file app/views/companies/index.html.erb as shown in Listing 14-10.

Listing 14-10. app/views/companies/index.html.erb
<h1>Companies</h1>

<% cache('table_of all companies') do %>
<table>
<thead>
<tr>
<th>Name</th>
<th>Number of employees</th>
<th colspan="3"></th>
</tr>
</thead>

<tbody>
<% @companies.each do |company| %>
<tr>

378

CHAPTER 14 CACHING

<td><%= company.name %></td>
<td><%= company.employees.count %></td>
<td><%= link_to 'Show', company %></td>
<td><%= link to 'Edit', edit_company path(company) %></td>
<td><%= link to 'Destroy', company, method: :delete, data: { confirm:
'Are you sure?' } %></td>
</tr>
<% end %>
</tbody>
</table>
<% end %>

<%= link _to 'New Company', new_company path %>

Then you can start the Rails server with rails server and go to the URL http://
localhost:3000/companies.

The first time, a page that has a fragment cache is a little bit slower because the cache
has to be written. The second time it is a lot of faster.

Deleting the Fragment Cache

With the method expire_fragment, you can clear specific fragment caches. Basically,
you can build this idea into the model in the same way as shown in the section “Deleting
Page Caches Automatically.”

The model file app/models/company.rb will look like Listing 14-11.

Listing 14-11. app/models/company.rb

class Company < ActiveRecord::Base
validates :name,
presence: true,
uniqueness: true

has_many :employees, dependent: :destroy

after create :expire cache
after_update :expire cache
before destroy :expire cache

379

CHAPTER 14 CACHING

def to s
name
end

def expire cache
ActionController::Base.new.expire fragment('table of all companies")
end
end

Because the number of employees also has an effect on this table, you also have to
expand the file app/models/employees.rb accordingly, as shown in Listing 14-12.

Listing 14-12. app/models/employees.rb

class Employee < ActiveRecord::Base
belongs_to :company, touch: true

validates :first name,
presence: true

validates :last_name,
presence: true

validates :company,
presence: true

after create :expire cache
after update :expire cache
before_destroy :expire cache

def to s
"#{first name} #{last name}"
end

def expire cache
ActionController::Base.new.expire fragment('table of all companies")
end
end

380

CHAPTER 14 CACHING

Deleting specific fragment caches often involves a lot of effort in terms of
programming. First, you often miss things; second, in big projects it’s not easy to keep
track of all the different cache names. Often it is easier to automatically create names via
the method cache_key. These then expire automatically in the cache.

Auto-expiring Caches

Managing fragment caching is rather complex with the naming convention used in the
section “Caching the Table of the Index View.” On the one hand, you can be sure that the
cache does not have any superfluous ballast if you have programmed neatly, but on the
other, it does not really matter. A cache is structured in such a way that it deletes old and
no longer required elements on its own. If you use a mechanism that gives a fragment
cache a unique name, as in the asset pipeline, then you do not need to go to the trouble
of deleting fragment caches.

Rails has you covered. And it is pretty easy to do.

Let’s edit the index view in the file app/views/companies/index.html.erb, as
shown in Listing 14-13.

Listing 14-13. app/views/companies/index.html.erb
<h1>Companies</h1>

<% cache(@companies) do %>
<table>
<thead>
<tr>
<th>Name</th>
<th>Number of employees</th>
<th colspan="3"></th>
</tr>
</thead>

<tbody>
<% @companies.each do |company| %>
<tr>
<td><%= company.name %></td>
<td><%= company.employees.count %></td>

381

CHAPTER 14 CACHING

<td><%= link_to 'Show', company %></td>
<td><%= link to 'Edit', edit_company path(company) %></td>
<td><%= 1link to 'Destroy’, company, method: :delete, data: { confirm:
'Are you sure?' } %></td>
</tr>
<% end %>
</tbody>
</table>
<% end %>

<%= link_to 'New Company', new_company path %>

You ask Rails to generate a cache key for @companies and use it. If you want to see
the name of that cache key in your log, you have to add config.action_controller.
enable_fragment_cache _logging = truein the file config/environments/
development.rb.

o There is no general answer to the question of how much detail you should
use fragment caching. Do some experimenting with it and then look in the log to
see how long things take.

Russian Doll Caching

In the previous example, you created one fragment cache for the whole table of
companies. If one company within that table changes, the whole table has to be re-
rendered. Depending on the kind of data, that might take a lot of time.

The idea of Russian doll caching is that you cache not only the whole table but each
row of the table too. So, when one row changes, just this row has to be rendered; all other
rows can be fetched from the cache. When done well, this can save a lot of resources.

Please take a look at the updated example, as shown in Listing 14-14.

382

CHAPTER 14 CACHING

Listing 14-14. app/views/companies/index.html.erb
<h1>Companies</h1>

<% cache(@companies) do %>
<table>
<thead>
<tr>
<th>Name</th>
<th>Number of employees</th>
<th colspan="3"></th>
</tr>
</thead>

<tbody>
<% @companies.each do |company| %>
<% cache(company) do %>
<tr>
<td><%= company.name %></td>
<td><%= company.employees.count %></td>
<td><%= link _to 'Show', company 7%></td>
<td><%= link to 'Edit', edit_company path(company) %></td>
<td><%= link to 'Destroy', company, method: :delete, data: {
confirm: 'Are you sure?’ } %></td>
</tr>
<% end %>
<% end %>
</tbody>
</table>
<% end %>

<%= link_to 'New Company', new_company path %>

383

CHAPTER 14 CACHING

Change the Code in the View Results in an Expired Cache

Rails tracks an MD5 sum of the view you use. So if you change the file (e.g., app/views/
companies/index.html.erb), the MD5 changes, and all the old caches will expire.

Cache Store

The cache store manages the stored fragment caches. If not configured otherwise, this
is the Rails MemoryStore. This cache store is good for developing but less suitable for a
production system because it acts independently for each Ruby on Rails process. So, if
you have several Ruby on Rails processes running in parallel in the production system,
each process holds its own MemoryStore.

MemCacheStore

Most production systems use memcached (http://memcached.org/) as a cache store. To
enable memcached as a cache store in your production system, you need to add the line
shown in Listing 14-15 in the file config/environments/production.rb.

Listing 14-15. config/environments/production.rb
config.cache store = :mem cache store

The combination of appropriately used auto-expiring caches and memcached is an
excellent recipe for a successful web page.

Other Cache Stores

In the official Rails documentation you will find a list of other cache stores; see http://
guides.rubyonrails.org/caching with_rails.html#cache-stores.

Page Caching

Page caching was removed from the core of Rails 4.0, but it is still available as a gem, and
itis powerful.

384

http://memcached.org/
http://guides.rubyonrails.org/caching_with_rails.html#cache-stores
http://guides.rubyonrails.org/caching_with_rails.html#cache-stores

CHAPTER 14 CACHING

o To do page caching, you need a bit of knowledge to configure your web
server (e.g., Nginx or Apache). Page caching is not for the faint-hearted.

With page caching, it’s all about placing a complete HTML page (in other words,
the render result of a view) into a subdirectory of the public directory and having it
delivered directly from there by the web server (for example, Nginx) whenever the web
page is visited next. Additionally, you can also save a compressed .gz version of the
HTML page there. A production web server will automatically deliver files under public
itself and can also be configured so that any .gz files present are delivered directly.

In complex views, that may take 500ms or even more for rendering; the amount of
time you save is of course considerable. As a web page operator, you once more save
valuable server resources and can service more visitors with the same hardware. The
web page user profits from a faster delivery of the web page.

A When programming your Rails application, please ensure that you also
update this page or delete it! You will find a description of how to do this in the
section “Deleting the Page Caches Automatically.” Otherwise, you will end up with
an outdated cache later.

Please also ensure that page caching rejects all URL parameters by default. For
example, if you try to go to http://localhost:3000/companies?search=abc,
this automatically becomes http://localhost:3000/companies. But that can
easily be fixed with different route logic.

Please install a fresh example application (see the section “The Example
Application”) and add the gem with the following line in Gemfile:

gem 'actionpack-page caching'
Now install it with the command bundle install.

$ bundle install
[...]

Lastly, you have to tell Rails where to store the cache files. Please add the line shown
in Listing 14-16 in your config/application.rb file.
385

CHAPTER 14 CACHING

Listing 14-16. config/application.rb

config.action_controller.page cache directory =
"#{Rails.root.to s}/public/deploy"

Activating Page Caching in Development Mode

First you need to go to the file config/environments/development.rb and set the item
config.action_controller.perform caching to true, as shown in Listing 14-17.

Listing 14-17. config/environments/development.rb
config.action_controller.perform_caching = true

Otherwise, you cannot try page caching in development mode. In production mode,
page caching is enabled by default.

Configure Your Web Server

Now you have to tell your web server (e.g., Nginx or Apache) that it should check the
/public/deploy directory first before hitting the Rails application. You have to configure
it so that it will deliver a . gz file if one is available.

There is no one perfect way of doing it. You have to find the best way of doing it in

your environment on your own.

Q As a quick and dirty hack for development, you can set page cache
directory to public. Then your development system will deliver the cached page.

config.action controller.page cache directory = "#{Rails.root.to s}/public"”

Caching the Company Index and Show View

Enabling page caching happens in the controller. If you want to cache the show view for
Company, you need to go to the controller app/controllers/companies_controller.rb
and enter the command caches_page :show at the top, as shown in Listing 14-18.

386

CHAPTER 14 CACHING

Listing 14-18. app/controllers/companies_controller.rb

class CompaniesController < ApplicationController
caches_page :show

[...]
Before starting the application, the public directory looks like this:

public/

F— 404.html

F— 422.html

— 500.html

— apple-touch-icon-precomposed.png
— apple-touch-icon.png

— favicon.ico

L— robots.txt

After starting the application with rails server and going to the URLs http://
localhost:3000/companies and http://localhost:3000/companies/1 via a web
browser, it looks like this:

public

— 404.html

F— 422.html

— 500.html

|— apple-touch-icon-precomposed.png
— apple-touch-icon.png
— deploy

| L— companies

| L— 1.html

— favicon.ico

L— robots.txt

The file public/deploy/companies/1.html has been created by page caching.
From now on, the web server will only deliver the cached versions when these pages
are accessed.

387

CHAPTER 14 CACHING

gz Versions

If you use page caching, you should also cache directly zipped . gz files. You can do
this via the option :gzip = true or use a specific compression parameter as a symbol
instead of true (for example, :best_compression).

The controller app/controllers/companies_controller.rb will look like
Listing 14-19 at the beginning.

Listing 14-19. app/controllers/companies_controller.rb

class CompaniesController < ApplicationController
caches_page :show, gzip: true

[...]

This automatically saves a compressed version and an uncompressed version of
each page cache.

public

— 404.html

F— 422.html

F— 500.html

— apple-touch-icon-precomposed.png
— apple-touch-icon.png
— deploy

| L— companies

| F— 1.html

| L— 1.html.gz
— favicon.ico

L— robots.txt

The File Extension .html

Rails saves the page accessed at http://localhost:3000/companies under the file
name companies.html. So, the upstream web server will find and deliver this file if

you go to http://localhost:3000/companies.html, but notif you try to go to
http://localhost:3000/companies because the extension .html at the end of the URL
is missing.

388

CHAPTER 14 CACHING

If you are using the Nginx server, the easiest way to do this is to adapt the try files
instruction in the Nginx configuration file as follows:

try files $uri/index.html $uri $uri.html @unicorn;

Nginx then checks if a file with the extension . html of the currently accessed URL exists.

Deleting Page Caches Automatically

As soon as the data used in the view changes, the saved cache files have to be deleted.
Otherwise, the cache would no longer be up-to-date.

According to the official Rails documentation, the solution for this problem is
the class ActionController: :Caching: : Sweeper. But this approach, described at
http://guides.rubyonrails.org/caching with rails.html#sweepers, has a big
disadvantage: it is limited to actions that happen within the controller. So, if an action
is triggered via URL by the web browser, the corresponding cache is also changed or
deleted. But if an object is deleted in the console, for example, the sweeper would not
realize this. For that reason, I will show you an approach that does not use a sweeper but
works directly in the model with ActiveRecord callbacks.

In the phone book application, you always need to delete the cache for http://
localhost:3000/companies and http://localhost:3000/companies/company_id
when editing a company. When editing an employee, you also have to delete the
corresponding cache for the relevant employee.

Models

You still need to fix the models so that the corresponding caches are deleted
automatically as soon as an object is created, edited, or deleted, as shown in Listing 14-20
and Listing 14-21.

Listing 14-20. app/models/company.rb

class Company < ActiveRecord::Base
validates :name,
presence: true,
uniqueness: true

has_many :employees, dependent: :destroy

389

http://guides.rubyonrails.org/caching_with_rails.html#sweepers

CHAPTER 14 CACHING

after create :expire cache
after update :expire cache
before destroy :expire cache

def to s
name
end

def expire cache
ActionController::Base.expire page(Rails.application.routes.url
helpers.company path(self))
ActionController::Base.expire page(Rails.application.routes.url
helpers.companies path)

end

end

Listing 14-21. app/models/employee.rb

class Employee < ActiveRecord::Base
belongs to :company, touch: true

validates :first name,
presence: true

validates :last name,
presence: true

validates :company,
presence: true

after create :expire cache
after_update :expire cache
before destroy :expire cache

def to s
"#{first name} #{last name}"
end

390

CHAPTER 14 CACHING

def expire cache
ActionController::Base.expire page(Rails.application.routes.url
helpers.employee path(self))

ActionController::Base.expire page(Rails.application.routes.url
helpers.employees path)
self.company.expire cache

end

end

Preheating

Now that you have read your way through this chapter, here is a final tip: preheat your
cache!

For example, if you have a web application in a company and you know that at 9 a.m.
all employees are going to log in and then access this web application, then it’s a good
idea to let your web server go through all those views a few hours in advance with a cron
job. At night, your server is probably bored anyway.

Check out the behavior patterns of your users. With public web pages, this can be
done, for example, via Google Analytics (www.google.com/analytics/). You will find
that at certain times of the day, there is a lot more traffic going in. If you have a quiet
phase prior to this, you can use it to warm up your cache.

The purpose of preheating is to save server resources and achieve better quality for
the user because the web page is displayed more quickly.

Further Information

The best source of information on this topic is in the Rails documentation at http://
guides.rubyonrails.org/caching with_rails.html. There you can find additional
information (e.g., low-level caching).

391

http://www.google.com/analytics/
http://guides.rubyonrails.org/caching_with_rails.html
http://guides.rubyonrails.org/caching_with_rails.html

CHAPTER 15

Action Cable

Most modern web pages are not just static. They often get updates from the server
without interaction from the user. For example, your Twitter or Gmail browser client will
display new tweets or e-mails without you reloading the page. The server pushes the
information via WebSockets (https://en.wikipedia.org/wiki/WebSocket), and Action
Cable provides the tools you need to use these mechanisms without diving deep into the
technical aspects of WebSockets.

The use of Action Cable always includes JavaScript, and this book is about Ruby and
Ruby on Rails. So, I will only show you a minimal Hello World example of how Action
Cable works to give you an idea of how to proceed.

Hello World Action Cable Example

In the first example, you will push content from the Rails console into a browser that
shows the page#index view.

The Rails Application

Please create the following Rails application:

$ rails new hello-world-action-cable
[...]

$ cd hello-world-action-cable

$ rails db:migrate

$ rails generate controller page index

[...]

Add a root route so that you can access the page at http://localhost:3000, as
shown in Listing 15-1.

393
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_15

https://en.wikipedia.org/wiki/WebSocket

CHAPTER 15 ACTION CABLE

Listing 15-1. config/routes.rb

Rails.application.routes.draw do
get 'page/index'
root 'pagettindex’

end

Listing 15-2 shows the content of the view.

Listing 15-2. app/views/page/index.html.erb
<h1>Action Cable Example</h1>

<div id="messages"></div>

Setting Up jQuery

You will now append HTML to <div id="messages"></div> in the DOM. To do that, you
will use jQuery, which is not installed by default in Rails anymore. There are two ways of
installing jQuery. The old way was to use the command gem 'jquery-rails' followed
by bundle. This still works, but Rails 5.2 has Yarn built-in, which is the new way. If you
haven’t installed Yarn yet, take a look at https://yarnpkg.com/en/docs/install.

If you are using macOS and Homebrew, you can install Yarn via brew install yarn,
as shown here:

brew install yarn
Within Rails 5.2, you can use Yarn now to install jQuery, as shown here:

$ bin/yarn add jquery
yarn add v1.3.2
info No lockfile found.
[1/4] (4 Resolving packages...
[2/4] g¢ Fetching packages...
[3/4] 4 Linking dependencies...
[4/4] . Building fresh packages...
success Saved lockfile.
success Saved 1 new dependency.
— jquery@3.3.1

Done in 0.52s.

394

https://yarnpkg.com/en/docs/install

CHAPTER 15 ACTION CABLE

To load jQuery, you have to add it in the app/assets/javascripts/application.js
file, as shown in Listing 15-3.

Listing 15-3. app/assets/javascripts/application.js

//= require jquery

//= require rails-ujs

//= require activestorage
//= require turbolinks
//= require_tree .

Creating a Channel

Rails provides a handy generator to create a new WebSockets channel that you need
in order to push information to the client. For this example, you will call the channel
WebNotifications, as shown here:

$ rails generate channel WebNotifications
Running via Spring preloader in process 13267
create app/channels/web notifications_channel.rb
identical app/assets/javascripts/cable.js
create app/assets/javascripts/channels/web _notifications.coffee

Whenever somebody requests the page#index view, you want the user to
automatically subscribe to the WebNotificationsChannel channel. You do this by
adding the piece of CoffeeScript that’s shown in Listing 15-4.

Listing 15-4. app/assets/javascripts/page.coffee

App.room = App.cable.subscriptions.create "WebNotificationsChannel",
received: (data) -»
$('#messages').append data['message’]

Lastly, you have to add the code shown in Listing 15-5 to the channel.

Listing 15-5. app/channels/web_notifications_channel.rb

class WebNotificationsChannel < ApplicationCable::Channel
def subscribed
stream_from "web notifications channel”

395

CHAPTER 15 ACTION CABLE
end

def unsubscribed
end
end

You will start a rails server command and arails console command in separate
terminals. You need to use the Redis gem to make this work. This is not the default in the
development setup.

To activate the Redis gem, include the line shown in Listing 15-6 in the Gemfile.

Listing 15-6. Gemfile
gem 'redis', '~> 4.0’

After that change, you have to run bundle once more.
$ bundle

Obviously, you need a running Redis server. If you are running macOS with
Homebrew, you can install Redis with brew install redis and start it with brew
services start redis. Don’tforget to stop it with brew services stop redis after
using it.

Further, you have to configure the use of Redis, as shown in Listing 15-7.

Listing 15-7. config/cable.yml

redis: &redis
adapter: redis
url: redis://localhost:6379/1

production: *redis
development: *redis
test: *redis

To make things a little bit more complicated, you have to configure the Content-
Security-Policy in config/initializers/content_security policy.rb to allow the
use of Action Cable in the development environment by adding p.connect_src :self,
thttps, 'ws://localhost:3000', as shown in Listing 15-8.

396

CHAPTER 15 ACTION CABLE
Listing 15-8. config/initializers/content_security_policy.rb

Rails.application.config.content security policy do |p]|
p.default src :self, :https

p.font src :self, :https, :data

p.img src :self, :https, :data

p.object src :none

p.script src :self, :https

p.style src :self, :https, :unsafe_inline

p.connect_src :self, :https, 'ws://localhost:3000'
end

Q Take a look at https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Content-Security-Policy for more information about
Content-Security-Policy (CSP).

Finally, it’s time to start up your development Rails server in the first terminal.
$ rails server

Load http://localhost:3000 in your web browser. In the log, you'll see this entry:

Started GET "/" for 127.0.0.1 at 2018-01-27 23:30:56 +0100
Processing by PageController#index as HTML
Rendering page/index.html.erb within layouts/application
Rendered page/index.html.erb within layouts/application (1.5ms)
Completed 200 OK in 236ms (Views: 221.8ms | ActiveRecord: 0.0ms)

Finished "/cable/" [WebSocket] for 127.0.0.1 at 2018-01-27 23:30:56 +0100
WebNotificationsChannel stopped streaming from web notifications channel
Started GET "/cable" for 127.0.0.1 at 2018-01-27 23:30:56 +0100

Started GET "/cable/" [WebSocket] for 127.0.0.1 at 2018-01-27 23:30:56 +0100
Successfully upgraded to WebSocket (REQUEST METHOD: GET, HTTP_CONNECTION:
Upgrade, HTTP_UPGRADE: websocket)

WebNotificationsChannel is transmitting the subscription confirmation
WebNotificationsChannel is streaming from web_notifications_channel

397

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

CHAPTER 15 ACTION CABLE

Now start a second terminal and go to the directory where your Rails project is
located. Fire up the console and use ActionCable.server.broadcast to broadcast a
message toweb_notifications_channel.

$ rails console

Running via Spring preloader in process 19706

Loading development environment (Rails 5.2.0)

>> ActionCable.server.broadcast 'web notifications_channel’,
message: '<p>Hello World!</p>'

[ActionCable] Broadcasting to web notifications channel:
{:message=>"<p>Hello World!</p>"}

=>1

Now you can see the update in your browser window, as shown in Figure 15-1.

® @ [HelloworldActionCable X o

< C © localhost:3000 T

Action Cable Example

Hello World!

Figure 15-1. Hello World example in browser

You can add other messages by calling ActionCable.server.broadcast
'web_notifications channel', message: '<p>Hello World!</p>' again.
Congratulations! You have your first working Action Cable application.

Q By using $('#messages').replaceWith data['message']in
app/assets/javascripts/page.coffee, you can replace the HTML content
instead of appending it. See http://api.jquery.com/replacelith/.

398

http://api.jquery.com/replaceWith/

CHAPTER 16

Credentials

Deploying secret API keys or other secret configuration credentials to a production
environment can become quite a hassle. You normally don’t want to commit them
unencrypted to your repository, but you also want to share them with other developers.
Rails 5.1 introduced the concept of secrets, but Rails 5.2 deprecated them and
introduced the concept of credentials.

You still have to store one central encryption key on your server and on all
development systems, but that’s it. All other secrets/credentials are encrypted with that
key and can be stored safely in your code repository.

Credentials are identical in all environments. In other words, there is no difference
between them in the Development and Production environments.

Let’s start with a new Rails application, as shown here:

$ rails new shop
$ cd shop

Setup

In a new Rails 5.2 application, you'll find the master key, which is used to encrypt all
credentials in the file config/master.key. Save this in your team password manager so
that your team can access it.

A If you lose the key, no one, including you, can access any encrypted
credentials.

It is important to keep this key secure. Anyone who has it can decrypt your
credentials, and if you lose it, you cannot decrypt your credentials anymore.

399
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_16

CHAPTER 16 CREDENTIALS

Editing Credentials

The encrypted credentials are stored in config/credentials.yml.enc. But because they
are encrypted, you cannot edit them in that file with an editor. You have to use rails
credentials:edit. If you are using the bash shell and don’t have the environment
variable EDITOR already set, you can edit your credentials with this command:

$ EDITOR=vim rails credentials:edit
Credentials are saved in the YAML format, as shown here:

aws:
access key id: 123
secret access key: 345

Used as the base secret for all MessageVerifiers in Rails, including the
one protecting cookies.

secret _key base: 9846dad34a3168...68d634f

test: foobar

Accessing a Key

You can access a credential with the format AppName: : Application.credentials.name_
of the credential. Here is an example for the previous configuration:

$ rails console

Running via Spring preloader in process 19662
Loading production environment (Rails 5.2.0)
>> Shop::Application.credentials.test

=> "foobar"

>> exit

Using the Credentials on the Production Web Server

To use the credentials in the production web server system, you have to copy the file
config/master.key to that system.

400

CHAPTER 17

Active Storage

Ruby on Rails 5.2 introduced Active Storage, which can be used to attach files
(e.g., avatar images) to objects and store those files on the server or in the cloud.

Not only can Active Storage store files, but it can also convert and resize them. In
this chapter, I will show you how to attach a file to give you the basic idea of how Active
Storage works.

Avatar Example

First, I'm sorry for not coming up with a more original example! Everybody uses avatars to
describe how to attach something, but I will do it too because it is such a common use case.

Let’s create a new phone book application that stores basic user information in the
User model, as shown here:

$ rails new phone_book
[...]
$ cd phone_book
$ rails generate scaffold User first name last name email address
$ rails db:migrate

For this example, you want to add an avatar image to each user. To work with images,
you need to have access to the Imagemagick software (https://www.imagemagick.
org/). Please install it with the package manager of your choice (for macOS Homebrew
users, the command brew install imagemagick will do the trick). On the Rails side, you
have to activate the mini_magick gem. Please open your Gemfile and search for it. You
can activate it by deleting the prefixed #, as shown in Listing 17-1.

401
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_17

https://www.imagemagick.org/
https://www.imagemagick.org/

CHAPTER 17 ACTIVE STORAGE
Listing 17-1. Gemfile
[...]

gem 'mini_magick', '~> 4.8’
[...]
After that, run the command bundle.

$ bundle

To use Active Storage, you have to add a migration with rails active storage:install,
as shown here:

$ rails active storage:install
$ rails db:migrate
== 20180128074248 CreateActiveStorageTables: migrating

-- create_table(:active storage blobs)
-> 0.0020s
-- create table(:active storage attachments)
-> 0.0018s
== 20180128074248 CreateActiveStorageTables: migrated (0.0040s)

This table will take care of all the storage information. You don’t have to change the
user table at all to add an avatar. You can do that in the model, as shown in Listing 17-2.

Listing 17-2. app/models/user.rb

class User < ApplicationRecord
has_one_attached :avatar
end

Now you have access to the avatar method in the User model, which is the key for
working with it. Let’s create a new user in the console and attach an image from the local
file system as an avatar to it.

$ rails console
Loading development environment (Rails 5.2.0)
>> user = User.create(first name: "Stefan", last name: "Wintermeyer")

402

CHAPTER 17 ACTIVE STORAGE

(0.1ms) begin transaction
User Create (1.4ms) INSERT INTO "users" ("first name", "last name",
"created at", "updated at") VALUES (?, ?, ?, ?) [["first name",
"Stefan"], ["last _name", "Wintermeyer"], ["created at", "2018-01-28
09:47:23.769721"], ["updated at", "2018-01-28 09:47:23.769721"]]
(1.5ms) commit transaction
=> #User id: 1, first name: "Stefan", last name: "Wintermeyer", email address:
nil, created at: "2018-01-28 09:47:23", updated at: "2018-01-28 09:47:23">
>> user.avatar.attach(io: File.open("/Users/xyz/Desktop/stefan-wintermeyer.
jpg"), filename: "stefan-wintermeyer.jpg", content type: "image/jpg")
ActiveStorage::Attachment Load (0.5ms) SELECT "active storage
attachments".* FROM "active storage attachments" WHERE "active storage
attachments"."record id" = ? AND "active storage attachments"."record type" = ?
AND "active storage attachments"."name" = ? LIMIT ? [["record id", 1],
["record type", "User"], ["name", "avatar"], ["LIMIT", 1]]
Disk Storage (3.1ms) Uploaded file to key: C8uKHdsuSemKP1iJXDcB5Kcf
(checksum: FW5KA5+afBfLI+HMFEtVFA==)
(0.1ms) begin transaction
ActiveStorage::Blob Create (1.0ms) INSERT INTO "active storage blobs"
("key", "filename", "content type", "byte size", "checksum", "created at")
VALUES (?, ?, ?, ?, ?, ?) [["key", "C8uKHdsuSemKP1iJXDcB5Kcf"],
["filename", "stefan-wintermeyer.jpg"], ["content_type", "image/jpg"],
["byte size", 199263], ["checksum", "FW5KA5+afBfLI+HMFEtVfA=="],
["created at", "2018-01-28 09:48:15.946522"]]
(0.9ms) commit transaction
(0.1ms) begin transaction
ActiveStorage::Attachment Create (0.9ms) INSERT INTO "active storage
attachments” ("name", "record type", "record id", "blob id", "created at")
VALUES (?, ?, 2, 2, ?) [["name", "avatar"], ["record type", "User"],
["record id", 1], ["blob id", 1], ["created at", "2018-01-28 09:48:15.971930"]]
User Update All (0.1ms) UPDATE "users" SET "updated at" = '2018-01-28
09:48:15.974030" WHERE "users"."id" = 2 [["id", 1]]
(1.1ms) commit transaction

403

CHAPTER 17 ACTIVE STORAGE

Enqueued ActiveStorage::AnalyzeJob (Job ID: 9c978cdf-4517-445a-a45b-
11194be8f0e7) to Async(default) with arguments: #<GlobalID:0x007ff7a42fef10
@uri=#<URI::GID gid://phone-book/ActiveStorage::Blob/1>>
ActiveStorage::Blob Load (0.2ms) SELECT "active_storage blobs".* FROM
"active storage blobs" WHERE "active_ storage blobs"."id" = ? LIMIT
? [["id", 1], ["LIMIT", 1]]
=> #<ActiveStorage: :Attachment id: 1, name: "avatar", record type: "User",
record id: 1, blob id: 1, created at: "2018-01-28 09:48:15">
>> Performing ActiveStorage::AnalyzeJob (Job ID: 9c978cdf-4517-
445a-a45b-11194be8f0e7) from Async(default) with arguments:
#<GlobalID:0x007ff7a42c7268 @uri=#<URI::GID gid://phone-book/
ActiveStorage: :Blob/1>>
(0.1ms) begin transaction
ActiveStorage::Blob Update (0.5ms) UPDATE "active storage blobs" SET
"metadata” = ? WHERE "active storage blobs"."id" = ? [["metadata",
"{\"width\":1280,\"height\":1280,\"analyzed\":true}"], ["id", 1]]
(0.9ms) commit transaction
Performed ActiveStorage::AnalyzeJob (Job ID: 9c978cdf-4517-445a-a45b-
11194be8f0e7) from Async(default) in 96.79ms

You can use the avatar.attached? method to check whether a given user object has
an avatar attached.

>> user.avatar.attached?
ActiveStorage: :Attachment Load (0.2ms) SELECT "active storage
attachments".* FROM "active storage attachments" WHERE "active storage
attachments"."record id" = ? AND "active storage attachments"."record type" = ?
AND "active storage attachments"."name" = ? LIMIT ? [["record id", 1],
["record type", "User"], ["name", "avatar"], ["LIMIT", 1]]
ActiveStorage::Blob Load (0.1ms) SELECT "active storage blobs".* FROM
"active storage blobs" WHERE "active storage blobs"."id" = ? LIMIT ?
[["id", 1], ["LIMIT", 1]]

=> true

To see that avatar, you have to update your show view to the code shown in
Listing 17-3.

404

CHAPTER 17

Listing 17-3. app/views/users/show.html.erb
<p id="notice"><%= notice %></p>

<% if @user.avatar.attached? %>
<p>
<%= image tag(url for(@user.avatar)) %>
<p>
<% end %>

<p>
First name:
<%= @user.first_name %>

</p>

<p>
Last name:
<%= @user.last_name %>
</p>
<p>
Email address:
<%= @user.email address %>
</p>
<%= link _to 'Edit', edit user path(@user) %> |
<%= link _to 'Back', users path %>

ACTIVE STORAGE

url for(@user.avatar) will create a URL for the avatar. The image itself is stored in

the database as a blob. Active Storage does all the magic needed to make this possible.

Uploading from the console is nice, but normally you want to have a way to upload

something from within a form. So, let’s update the form to make this happen, as shown

in Listing 17-4.

Listing 17-4. app/views/users/_form.html.erb

<%= form with(model: user, local: true) do |form| %>
<% if user.errors.any? %>
<div id="error explanation">

<h2><%= pluralize(user.errors.count, "error") %> prohibited this user

from being saved:</h2>

405

CHAPTER 17 ACTIVE STORAGE

<% user.errors.full messages.each do |message| %>
<%= message %></1i>
<% end %>

</div>
<% end %>

<div class="field">

<%= form.label :first name %>

<%= form.text field :first name %>
</div>

<div class="field">

<%= form.label :last_name %>

<%= form.text field :last name %>
</div>

<div class="field">

<%= form.label :email address %>

<%= form.text_field :email address %>
</div>

<div class="field">

<%= form.label :avatar %>

<%= form.file field :avatar 7>
</div>

<div class="actions">

<%= form.submit %>
</div>
<% end %>

But that is not enough. You have to add the part where you attach the avatar to the
user object in the create and update methods in the users controller, as shown in
Listing 17-5.

406

CHAPTER 17 ACTIVE STORAGE

Listing 17-5. app/controllers/users_controller.rb

[...]

def create
@user = User.new(user params)
avatar = params[:user][:avatar]

respond_to do |format]|
if @user.save
if avatar
@user.avatar.attach(avatar)
end
format.html { redirect to @user, notice: 'User was successfully
created.' }
format.json { render :show, status: :created, location: @user }
else
format.html { render :new }
format.json { render json: @user.errors, status: :unprocessable entity }
end
end
end

def update
avatar = params[:user][:avatar]

respond _to do |format]|
if @user.update(user params)
if avatar
@user.avatar.attach(avatar)
end
format.html { redirect to @user, notice: 'User was successfully

updated.' }
format.json { render :show, status: :ok, location: @user }
else

format.html { render :edit }

407

CHAPTER 17 ACTIVE STORAGE

format.json { render json: @user.errors, status: :unprocessable
entity }
end
end
end

[...]

Now you can use the web GUI to upload new avatars.

Active Storage can do a lot more. It can resize the images and store them in the cloud
automatically. Please take alook at http://guides.rubyonrails.org/active storage_
overview.html for an overview and the complete documentation.

408

http://guides.rubyonrails.org/active_storage_overview.html
http://guides.rubyonrails.org/active_storage_overview.html

APPENDIX A

Ruby onRails Installation

This chapter describes how to install Ruby on Rails for development systems.

Ruby on Rails 5.2 on Debian 9.3 (Stretch)

There are two main reasons for installing a Ruby on Rails system with Ruby Version
Manager (RVM).
¢ You do not have any root rights on the system, so you have no other
option.

* You want to run several Rails systems that are separated cleanly, and
perhaps also separate Ruby versions. This can be easily done with
RVM.

O You can find detailed information about RVM on the RVM home page at
https://rvm.1io.

This description assumes you have a freshly installed instance of Debian
GNU/Linux 9.3 (Stretch). You will find an ISO image for the installation at www.debian.org.
I recommend the approximately 250MB net installation CD image. For instructions on
how to install Debian GNU/Linux, please go to waw.debian.org/distrib/netinst.

Preparations

If you have root rights on the target system, you can use the following commands to
ensure that you have all the required programs for a successful installation of RVM.

409
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1

https://doi.org/10.1007/978-1-4842-3489-1
https://rvm.io/
http://www.debian.org/
http://www.debian.org/distrib/netinst

APPENDIXA RUBY ON RAILS INSTALLATION

If you do not have root rights, you have to either hope that your admin has already
installed everything you need or send your admin a quick e-mail with the
corresponding lines.

Log in as root, update the package lists, and upgrade the system, as shown here:

root@debian:~# apt-get update

[..]
root@debian:~# apt-get upgrade

Install the packages required for the RVM installation, as shown here:

root@debian:~# apt-get -y install curl gawk g++ \
make libreadline6-dev zlibig-dev libssl-dev \
libyaml-dev 1libsqlite3-dev sqlite3 autoconf \
libgdbm-dev libncurses5-dev libtool bison nodejs \
pkg-config libffi-dev libgmp-dev libgmp-dev git \
dirmngr

Now is a good time to log out as root, as shown here:

root@debian:~# exit
logout
xyz@debian:~$

Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM

Log in with your normal user account (in this case, it’s the user xyz).
RVM, Ruby, and Ruby on Rails can be installed in various ways. I recommend using
the following commands and getting at least one cup of tea or coffee:

xyz@debian:~$ gpg --keyserver hkp://keys.gnupg.net --recv-keys \
409B6B1796(275462A1703113804BB82D39DCOE3 \
7D2BAF1CF37B13E2069D6956105BDOE739499BDB

[...]

xyz@debian:~$ curl -sSL https://get.rvm.io | bash

[...]

410

APPENDIXA RUBY ON RAILS INSTALLATION

To be able to use RVM, you need to run a script first. RVM will tell you which script to
run (its path depends on the username).

xyz@debian:~$ source /home/xyz/.rvm/scripts/rvm

Now you can use RVM to install Ruby 2.5 and after that the current Rails version with
gem, as shown here:

xyz@debian:~$ rvm install 2.5

[...]

xyz@debian:~$ gem install rails

[...]
xyz@debian:~$

Q gem install rails installs the current stable Rails version. You can use

the format gem install rails -v 5.2.0 toinstall a specific version and can
use gem install rails --pre to install the current beta version.

RVM, Ruby 2.6, and Rails 5.2 are now installed. You can check this with the following
commands:

xyz@debian:~$ ruby -v

ruby 2.5.0p0 (2017-12-25 revision 61468) [x86 64-1linux]
xyz@debian:~$ rails -v

Rails 5.2.0

xyz@debian:~$

Ruby on Rails 5.2 on mac0S 10.13 (High Sierra)

macOS 10.13 includes Ruby by default, which is not what you need here. You want
Ruby 2.5 and Rails 5.2. To avoid interfering with the existing Ruby and Rails installation
and therefore the packet management of Mac OS X, you will install Ruby 2.5 and Rails 5.2
with RVM.

With RVM, you can install and run any number of Ruby and Rails versions as a
normal user (without root rights and in your home directory).

411

APPENDIXA RUBY ON RAILS INSTALLATION

O You can find detailed information about RVM on the RVYM home page at
https://rvm.io/.

Xcode Installation or Upgrade

Before you start installing Ruby on Rails, you must install the latest Apple Xcode tools on
your system. The easiest way to do this is via the Mac App Store (search for xcode) or via
the web site at https://developer.apple.com/xcode/.

o Please take care to install all the command-line tools!

Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM

RVM can be installed in various ways. I recommend using the following monster
command (please copy it exactly) that installs the latest RVM, Ruby, and Ruby on Rails in
your home directory:

$ gpg --keyserver hkp://keys.gnupg.net --recv-keys \
409B6B1796C275462A1703113804BB82D39DCOE3 \
7D2BAF1CF37B13E2069D6956105BDOE739499BDB

[...]

$ curl -sSL https://get.rvm.io | bash

[...]

RVM will give you a source command that you can run to set up RVM for your
current shell/terminal. Usually it is just easier to close the current shell and open a new
terminal window. Then everything in the new terminal will be set up properly.

$ rvm install 2.5

[...]

$ gem install rails

[...]
$

412

https://rvm.io/
https://developer.apple.com/xcode/

APPENDIXA RUBY ON RAILS INSTALLATION

Q gem install rails installs the current stable Rails version. You can use
the format gem install rails -v 5.2.0 toinstall a specific version and can
use gem install rails --pre to install the current beta version.

RVM, Ruby 2.5, and Rails 5.2 are now fully installed. You can check this with the
following commands:

$ ruby -v

ruby 2.5.0p0 (2017-12-25 revision 61468) [x86 64-darwinl7]
$ rails -v

Rails 5.2.0

413

APPENDIX B

Web Server in Production
Mode

This chapter walks you through the process of setting up a production server. This
example will run Nginx as a reverse proxy web server and Puma as the Ruby on Rails web
server behind Nginx. This chapter will start with a fresh Debian system and show how
to install all the software you need. The Rails 5.2 project will be run with Ruby 2.5, which
gets installed with RVM and runs for a user named deployer.

The example Rails application you will use is called blog. It will contain a post scaffold.

A If you have never set up an Nginx or Apache web server by yourself on a
Linux system before, you will likely get lost somewhere in this chapter.

Debian 9.3

You will build your production web server on a minimal Debian 9.3 system. To carry out
this installation, you need to have root rights on the web server.

This description assumes that you have a freshly installed Debian GNU with
Linux 8.7 (Jessie). You will find an ISO image for the installation at www.debian.org.
I recommend downloading the approximately 250MB net installation CD image. For
instructions on how to install Debian GNU/Linux, please go to www.debian.org/
distrib/netinst.

Q VMware or any other virtual PC system is a great playground for you to get
a feeling for how this works.

415
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1

https://doi.org/10.1007/978-1-4842-3489-1
http://www.debian.org/
http://www.debian.org/distrib/netinst
http://www.debian.org/distrib/netinst

APPENDIXB WEB SERVER IN PRODUCTION MODE

Build the System

Log in as root, update the package lists, and upgrade the system, as shown here:

root@debian:~# apt-get update

[..]
root@debian:~# apt-get upgrade

Install the packages required for the RVM installation.

root@debian:~# apt-get -y install curl gawk g++ \
make libreadline6-dev zlibig-dev libssl-dev \
libyaml-dev libsqlite3-dev sqlite3 autoconf \
libgdbm-dev libncurses5-dev libtool bison nodejs \
pkg-config libffi-dev libgmp-dev libgmp-dev git \
dirmngr

Nginx
Nginx will be the web server to the outside world.

root@debian:~# apt-get -y install nginx

User Deployer

The Rails project will use RVM in the user space. So, create a new user with the name
deployer, as shown here:

root@debian:~# adduser deployer

Adding user “deployer' ...

Adding new group “deployer' (1001) ...

Adding new user “deployer' (1001) with group “deployer' ...
Creating home directory "/home/deployer’ ...

Copying files from "/etc/skel' ...

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

416

APPENDIXB WEB SERVER IN PRODUCTION MODE

Changing the user information fer deployer
Enter the new value, or press ENTER for the default
Full Name []: Deployer
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n] Y
root@debian:~#

Database

In this setup, you will use PostgreSQL as the production database.

PostgreSQL Installation
You need to install the database software.
root@debian:~# apt-get -y install postgresql postgresql-client libpg-dev

To create a database user named deployer and a database named blog production,
you need to do the following steps:

root@debian:~# su - postgres

postgres@debian:~$ createuser -W --createdb deployer
Password:

postgres@debian:~$ createdb blog production
postgres@debian:~$ exit

logout

root@debian:~#

For this example, you will use a password of 123456. It should be obvious that this is
a bad idea for your application to use on a production system.

Setting Up the Rails Environment for the User Deployer
With su - deployer, you'll become the user deployer

root@debian:~# su - deployer

417

APPENDIXB WEB SERVER IN PRODUCTION MODE

As the user deployer, please carry out the steps for installing Ruby 2.5 and Rails 5.2
via RVM, as shown here:

deployer@debian:~$ gpg --keyserver hkp://keys.gnupg.net --recv-keys \
409B6B1796(275462A1703113804BB82D39DCOE3 \
7D2BAF1CF37B13E2069D6956105BDOE739499BDB

[...]

deployer@debian:~$ curl -sSL https://get.rvm.io | bash
[...]

deployer@debian:~$ source /home/deployer/.rvm/scripts/rvm
deployer@debian:~$ rvm install 2.5 --autolibs=read-only
[...]

deployer@debian:~$ gem install rails

[...]

deployer@debian:~$

Q You need to run gem install rails --pre if Rails 5.2 is still in beta
when you follow these steps.

Setting Up a New Rails Project

To keep this guide as simple as possible, you will create a simple blog in the home
directory of the user deployer, as shown here:

deployer@debian:~$ rails new blog --database=postgresql

[...]

deployer@debian:~$ cd blog

deployer@debian:~/blog$ rails generate scaffold post subject content:text
[...]

deployer@debian:~/blog$

O --database=postgresql takes care of installing the pg gem for using
PostgreSQL. If you already have a Rails application, you need to add the line gem
'pg' to your Gemfile and run a bundle install command afterward.

418

APPENDIXB WEB SERVER IN PRODUCTION MODE

Production Database Configuration

In the file config/database.yml, you need to change the production database user to
deployer, as shown in Listing B-1.

Listing B-1. config/database.yml
[...]

production:
<<: *default
database: blog production
username: deployer
password: <%= ENV['BLOG_DATABASE PASSWORD'] %>

rails db:migrate

You still need to create the production database tables, as shown here:

deployer@debian:~/blog$ rails db:migrate RAILS ENV=production
BLOG_DATABASE_PASSWORD=123456

[...]
deployer@debian:~/blog$

A You probably want to set BLOG_DATABASE PASSWORD as an environment
variable in your .bash_profile file because it is not a good idea to have the
database password in your bash history.

rails assets:precompile

rails assets:precompile ensures that all assets in the asset pipeline are made
available to the Production environment.

deployer@debian:~/blog$ rails assets:precompile

419

APPENDIXB WEB SERVER IN PRODUCTION MODE

Puma PID

Puma needs the tmp/puma directory to store a PID file, as shown here:

deployer@debian:~/blog$ mkdir tmp/puma
deployer@debian:~/blog$ exit

logout

root@debian:~#

Puma init Script

The Puma web server has to be started automatically at every booting process. Plus, it
has to be killed when the server shuts down. That’s been taken care of by an init script.
Please do the following commands as root:

$ cd /etc/init.d

$ wget https://raw.githubusercontent.com/puma/puma/master/tools/jungle/
init.d/puma

$ chmod a+x puma

$ cd /usr/local/bin

$ wget https://raw.githubusercontent.com/puma/puma/master/tools/jungle/
init.d/run-puma

$ chmod a+x run-puma

$ touch /etc/puma.conf

$ chmod 640 /etc/puma.conf

$ update-rc.d -f puma defaults

Now you have to create the configuration for the production instance. It includes the
environment variables BLOG_DATABASE_PASSWORD and SECRET_KEY_BASE, as shown in
Listing B-2.

Q To create a new SECRET_KEY BASE, you should run rails secret in
your Rails project directory.

420

APPENDIXB WEB SERVER IN PRODUCTION MODE
Listing B-2. /etc/puma.conf

/home/deployer/blog,deployer, /home/deployer/blog/config/puma.rb,/home/
deployer/blog/log/production.log,RAILS ENV=production;PORT=3001;BLOG
DATABASE_PASSWORD=123456; SECRET_KEY BASE=AASD. . .ASDF

Q If you don’t want to store the environment variables in /etc/puma. conf,
you can use the bin/rails secrets:setup mechanism.

It's time to start Puma.

$ /etc/init.d/puma start
[ok] Starting puma (via systemctl): puma.service.

$

Now Puma runs and is available at http://localhost:3001. To make it available to
the Internet, you have to set up Nginx.

Nginx Configuration

For the Rails project, add a new configuration file called /etc/nginx/sites-available/
blog.conf with the content shown in Listing B-3.

Listing B-3. /etc/nginx/sites-available/blog.conf

server {
listen 80 default deferred;
server_name example.com;

root /home/deployer/blog/public;

location / {

gzip static on;

try files $uri/index.html $uri @puma;
}

421

APPENDIXB WEB SERVER IN PRODUCTION MODE

location *~ /assets/ {
gzip static on;
expires max;
add_header Cache-Control public;

}

location @puma {
proxy set header X-Forwarded-For $proxy add x forwarded for;
proxy_set header Host $http_host;
proxy redirect off;
proxy_pass http://localhost:3001;

}

error_page 500 502 503 504 /500.html;
client max_body size 4G;
keepalive timeout 10;

You link this configuration file into the /etc/nginx/sites-enabled/ directory to
have it loaded by Nginx. The default file can be deleted. After that, you restart Nginx and
are all set. You can access the Rails application through the IP address of this server.

$ 1n -s /etc/nginx/sites-available/blog.conf /etc/nginx/sites-enabled/
$ rm /etc/nginx/sites-enabled/default

$ /etc/init.d/nginx restart

[ok] Restarting nginx (via systemctl): nginx.service.

$

You're all set. Your new Rails project is online. You can access the posts. You'll have
to configure the root path in config/routes.rb to get a proper root path URL.

Loading Updated Versions of the Rails Project

If you want to activate updates to the Rails project, you need to copy them into
the directory /home/deployer/blog and log in as the user deployer to run rails
assets:precompile (see Chapter 13).

422

APPENDIXB WEB SERVER IN PRODUCTION MODE

deployer@debian:~/blog$ rails assets:precompile

[...]
deployer@debian:~/blog$

If you bring in new migrations, you of course also need to run arails db:migrate
RAILS_ENV=production command, as shown here:

deployer@debian:~/blog$ rails db:migrate RAILS ENV=production

[...]
deployer@debian:~/blog$

Then you need to restart Puma as the user root, as shown here:

root@debian:~# /etc/init.d/puma restart

Performance

If performance is key for your production web server, you will want to use a socket
connection instead of the TCP connection.

Misc

Here are some miscellaneous topics.

Alternative Setups

This method of using RVM, Puma, and Nginx is fast and makes it possible to set up different
Ruby versions on one server. But many admins prefer an easier installation process, which
is promised by Phusion Passenger. Take a look at https://www.phusionpassenger.com for
more information about Passenger. It is a good and reliable solution.

What Else There Is to Do

Please always consider the following points, although you have to decide for yourself
what works for your situation and implement the best practices accordingly:

o Setup automatic and regular backups of the database and the Rails project.

o Setup logrotations of log files.

423

https://www.phusionpassenger.com/

APPENDIXB WEB SERVER IN PRODUCTION MODE

e Setup monitoring for the system load and hard drive space.

o Regularly install Debian security updates as soon as they become
available.

404 and Co.

Finally, please look into the public directory in your Rails project and adapt the HTML
pages saved there to your own requirements. Primarily, this is about the design of the
pages. With the default settings, they are somewhat sparse and do not have any relation
to the rest of your web site. If you decide to update your web page and shut down your
Puma server to do so, Nginx will deliver the web page public/500.html in the meantime.

You will find a list of HTTP error codes at http://en.wikipedia.org/wiki/List_of
HTTP_status_codes.

Multiple Rails Servers on One System

You can run several Rails servers on one system without any problems. You need to

set up a separate Puma for each Rails server. You can then distribute to it from Nginx.
With Nginx you can also define on which IP address a Rails server is accessible from the
outside.

The Cloud Platform as a Service Provider

If you do not have a web server available on the Internet or want to deploy to a Platform
as a Service (PaaS) system right from the start, you should take a look at what the various
providers have to offer. The two U.S. market leaders are currently Heroku (www. heroku.
com/) and Engine Yard (www.engineyard.com/).

Going with PaaS as a platform usually offers fewer options than your own server. But
you have 24/7 support for this platform if something does not work properly.

424

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.heroku.com/
http://www.heroku.com/
http://www.engineyard.com/

APPENDIX C

Further Rails
Reading Material

You made it through the whole book. Congratulations!

Probably you are wondering what other Rails resources are available to read, watch,
or listen. Here is a list of important web sites on the topic of Ruby on Rails:

http://guides.rubyonrails.org: This site has a couple of good official guides.

http://rubyonrails.org/: The project page of Ruby on Rails offers many links
for further documentation. Please note that some parts of the documentation are now
obsolete. Therefore, always check whether what you are reading is related specifically to
Rails 3.2 or to older Rails versions.

http://railscasts.com/: Ryan Bates used to publish a screencast every Monday on
a topic associated with Rails. Unfortunately, he hasn’t published screencasts for some
time now, but the page still has valuable old ones.

https://rubyweekly.com: Peter Cooper’s Ruby Weekly newsletter is popular in the
Ruby community.

https://www.wintermeyer-consulting.de/newsletters/: This is my monthly Ruby
on Rails newsletter.

425
© Stefan Wintermeyer 2018

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1

https://doi.org/10.1007/978-1-4842-3489-1
http://guides.rubyonrails.org/
http://rubyonrails.org/
http://railscasts.com/
https://rubyweekly.com/
https://www.wintermeyer-consulting.de/newsletters/

Index

A

a 1:n association
belongs_to options, 131
Category model, 121, 123
foreign key, 121
fruits category
access records, 126-128
build method, 125-126
create, 123-125
delete and destroy, 130-131
includes method, 129-130
joins method, 129
search for records, 128
has_many options, 132-133
Product model, 121-122
Action Cable, 393
Hello World
creating channel, 395-398
Rails application, 393
setting up jQuery, 394-395
Active Job
create new, 295-296
set method, 297
Sidekiq, 297

ActiveRecord, list of countries (Europe)

create database/model
app/models/country.rb, 86
configuration file, 89-90
created_at, 86
decimal, 88

© Stefan Wintermeyer 2018

field types, 87-88
getters and setters, 87
attributes id, 86
naming conventions, 89
rails db, 86
rails generate model, 84-85
updated_at, 86

first, last, and all, 94-97

records
create, 90
new, 92-93
new_record? method, 93-94
syntax, 91

seeds.rb file
from existing data, 99
rails db:reset, 98
Ruby program, 98

Active Storage, 401

avatar example
console, 402-405
Gemfile, 401-402
migration, 402
resources, 425
User model, 401
users controller, 406, 408

Album

ActiveModel::Dirty
_changed? method, 117
changed? method, 116-117
update method, 118

S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1

427

https://doi.org/10.1007/978-1-4842-3489-1

INDEX

Album (cont.) Authorization system, 254
batches, 115 Auto-expiring caches, 381-382
calculations average method, 112

average method, 112
count method, 113
maximum method, 113

B

minimum method, 114 Bike model, 137-141
sum method, 114 Blog application

edit record comment, 232
locking, 118-120 config/routes.rb file, 240-242
steps, 115 create, 221

SQL EXPLAIN, 114 error message, 226-227

queries index (root) page, 229
automatic optimization, 107-108 :only or :except, 230-231
db/seeds.rb, 100 posts index, 222
find method, 101-102 resources route, 230
first_or_create and first_ single-digit request, 228

or_initialize, 112 year, 223, 225
group method, 110 Book model
lazy loading, 106-107 delete method, 146-147
limit method, 109 destroy, 144
not method, 104 Boolean values and nil, 24
offset method, 109 Breadcrumbs via sessions, 271-273
or method, 104 Bundle
order method, 108 binstubs, 249
pluck method, 110 exec, 249
reverse order method, 109 outdated, 248
sanitize, 105-106 update, 247
select, 111-112
SQL, 104-106 C
where method, 102-103)
Asset pipeline Caching

arguments, 363

Faker gem, 367-368

index view, 368

methods, 363

phone book (see Phone book)
show view, 368

web pages, 368

application.css, 357

application.js, 356

fingerprint (see Fingerprint)

rails assets:precompile, 357-358

web shop, 355-356
Authentication system, 254

428

Callbacks, 178-180
Car model, 137-141
Cloud Platform as a Service provider, 424
Coding by convention, see Convention
over configuration
Console, rails, 71-73
Content security policy (CSP), 77
Convention over configuration, 79
Cookies
controller file, 266
permanent, 268-269
set_cookies, 268
signed, 269-271
sizes, 265
view file, 266-267
count method, 113
Create, Read, Update, and Delete (CRUD),
183
Credentials, 399
accessing a key, 400
editing, 400
on production web server, 400
setup, 399

D

Database
configuration file, 173-174
index, 176-177
run migration, 175
sqlite3 tool, 175
Data-input workflow
log file, 261
people#new Form, 257, 259
to URL/people, 260-261
Debian 8.7 system, 415
build the system, 416
database
PostgreSQL installation, 417

INDEX

Rails environment for user
deployer, 417

Nginx, 416

user deployer, 416-417
Debian system, 415
Debug tools, 76-78
Default values, 180-181
Development environment, 51
Don’t Repeat Yourself (DRY), 79

E
E-mail
after_create callback, 302
attachments, 307-308
create mailer notification, 300
create minimal validation, 299
create new User, 302
HTML, 301
inline attachments, 308-309
generate mailer, 300
new_account method, 301
send confirmation, 301
sending via direct SMTP, 306
sending via local sendmail, 305
X-header, 306-307
erb file
create HTML with
app/controllers directory, 59
rails generate controller, 57-58
routing configuration, 60
instance variable, 66-67
layouts, 64-66
partials
passing variables to, 69, 71
web page, 67, 69
programming in, 60, 62-64
etag, 370-372

SQL EXPLAIN, 114
429

INDEX

F G

Faker gem, 367-368 Gems

find_each method, 115 acts_as_list, 250

find method, 101-102 authentication system, 254

Fingerprint authorization system, 254
defined, 243

application.html.erb, 360

coding links to Gemfile, 243

Gemfile.lock, 246

asset, 359 ind] 953

. index view,
€SS file, 360 order tasks, 251-252
image, 359

simple_form, 255
Generator, 73, 75
group method, 110

JavaScript file, 360
Flash messages
advantage, 190
ping-pong, 187-189

types, 189 H
Foreign key, 121 Helper method, 75-76
Forms, 262 Hotel reservation system, 168-169
Fragment caching HTTP caching

auto-expiring, 381-382 cache-control, 375-377

cache store, 384 current_user, 373

definition, 363 definition, 363
etag, 370-372
last-modified, 369-370
stale?, 374
using proxies, 374-375

HTTP GET Requests for Singular

Resources

constraints, 225-227
controller with three pages, 218-219
index (root) page, 229
naming route, 220

in development
mode, 377

expire_fragment method, 379-381

index view, 378-379

MemCacheStore, 384

Russian doll caching, 382, 384
Fruits category, a 1:n association

access records, 126-128

build method, 125-126

create, 123-125 nested resources, 232
search for records, 128 :only or :except, 230-231
delete and destroy, 130-131 parameters, 221-225
includes method, 129-130 redirects, 228
joins method, 129 resources, 229-230
Functional tests, 284, 287 shallow nesting, 240-242

430

includes method, 129-130
Inflector/inflections, 52
Inline attachments, 308-309
Instance variable, 66-67
Integration tests, 292-293
Interactive Ruby (irb), 4
Internationalization
118n.t, 312-316
localized views, 316-317
Rails application, 317
model Book, 320
directories, 318-319
flash messages in controller, 324-326
model book, 320
multilingual (see Multilingual Rails
applications)
paths, 326
validation errors, 317

J, K

joins method, 129

L

Lazy loading, 96, 106-107
limit method, 109

maximum method, 113
Migration
add fields, 177-178
change method, 170-171
Product model, 170
updated_at, 172
web pages, 178

INDEX

minimum method, 114
Misc
alternative setups, 423
best practices, 423
404 and Co., 424
Rails servers on one system, 424
Model View Controller (MVC), 80
Multilingual Rails applications
I18n.locale
approaches, 340
Rails server, 328-330
root page, 328
saving in session, 336-338
setting via accept language HTTP
header, 335-336
setting via domain extensions, 339
setting via URL path prefix, 331-334
scaffold, 340
equipping views with 118n.t, 347-350
language navigation links, 343
locales, 341
text blocks in YAML format,
344-346
translating flash messages in
controller, 350-353
URL prefix variation, 341

N

NamedScopes
online shop
build, 148-149
cheap products, 151
count products in stock, 149-150
create new products, 151
new_record? method, 93-94
Nginx, 415
not method, 104

431

INDEX

Numbers P, Q
floats, 23

integers, 23
mixed class calculations, 23

Page caching
company index and show view

file extension .html, 388

gz versions, 388
(@) public directory, 387
configure web server, 386
definition, 363
delete models, 389-391
in development mode, 386
HTML page, 385

Object-relational mapping (ORM),
see ActiveRecord

offset method, 109

One-to-many association,
see a 1:n Association

Online shop Phone book
NamedScopes models, 364-365
views, 365

build, 148-149

cheap products, 151

count products in

stock, 149-150

create new products, 151
Scaffolding

access via JSON, 208-211

controller, 193 R

create method, 197

deleting products, 211-212

destroy method, 199

edit method, 196

error message, 213-216

form_for, 206-208

index method, 196

list of products for, 190, 192

new method, 196

routes, 192

set_product, 195

Ping-pong game

flash messages, 187-189

redirects, 184-186
Platform as a Service (PaaS) system, 424
pluck method, 110

Rails
destroying record, 142-143
generate model, 84-85
Rails application, Action Cable, 393-398
Rails application, German users, 317
model Book, 320
directories, 318-319
flash messages in controller, 324-326
model book, 320
multilingual use, 321-323

show method, 196 paths, 326
update method, 198 validation errors, 317
views, 199, 201-204 Rails console, 71-73
order method, 108 Rails project, new
or method, 104 init script, 420-421

432

loading updated version, 422-423
Nginx configuration, 421-422
performance, 423
production database configuration,
419
Puma PID, 420
rails assets
migrate, 419
precompile, 419
Redirects, 183, 185-186
Refactoring, 79
Representational State Transfer (REST),
183
reverse order method, 109
Routes, 217-218
Routing configuration, 60
Ruby
arrays, 44-46
basic classes
Boolean values, 24
numbers, 23
strings, 20-22
comments, 3
converting (casting) objects, 33-34
getters and setters, 29-32
hashes, 46
iterator each, 48
symbols, 46-48
Hello World, 2
help viari, 4
if condition, 37-38
else, 39
elseif, 39
shorthand notation, 38
irb, 4
loops
blocks and iterators, 41-43
method upto, 43

INDEX

while and until, 39-41
+ method, 35-37
method chaining, 29
object-oriented, 5
all instance methods, 19
class and instance methods, 15-18
classes, 9-10
inheritance, 14-15
method initialize(), 11-12
methods, 6-9
private methods, 10-11
return statement, 12, 13
puts and print, 2-3
Range class, 48-49
to_s method, 34, 35
variables (see Variables)
Ruby2.5,1
Ruby on Rails system, 409
on macOS 10.13, 411
preparations, 409-410
with RVM, 410-412
Xcode installation or upgrade, 412
Ruby program, 98
Ruby Programming Language, 1
Ruby Version Manager (RVM), 409
Russian doll caching, 382, 384

S

Scaffolding

definition, 183

flash messages (see Flash messages)

online shop
access via JSON, 208-211
controller, 193
create method, 197
deleting products, 211-212
destroy method, 199

433

INDEX

Scaffolding (cont.)

edit method, 196

error message, 213-216

form_for, 206-208

index method, 196

list of products for, 190, 192

new method, 196

routes, 192

set_product, 195

show method, 196

update method, 198

views, 199, 201-204
redirects (see Redirects)

seeds.rb file

from existing data, 99
rails db:reset, 98
Ruby program, 98

Sessions

breadcrumbs via, 271-273
defined, 271
reset_session, 274-275
save, 276-277

Shop application

association, 134-135
create empty record,
152, 154
error message, 154
exclusion, 165
format, 165-166
inclusion, 163-164
length, 157-159
numericality, 159-161
order object, 135-137
preparation, 133-134
presence, 156-157
save(validate: false), 155
uniqueness, 161, 163

434

valid? method, 154
Sidekiq, 297
Signed cookies, 269-271
SQLite3 database, 52
SQLite3 tool, 175
SQL query, 104-106
Static content
create rails project, 52-54
static pages, 55-57
Strings, 20
built-in-methods, 21-22
single and double quotations marks,
20-21
sum method, 114

T

Tag model, 137-141
Test-driven development (TDD)
fixtures
erb, 291-292
static, 291
integration tests, 292-293
rails stats, 293-294
web shop, user in
create, 280
fixtures_tests, 282-283
test suite, 280-282
unit tests, 288-290
UsersControllerTest, 285
to_yaml method, 95-96
Transactions, 147-148

U

Unit tests, 288-290
update method, 118

INDEX

VvV allow nil, 166
L if and unless, 167
Validation .
Variables

custom, 167, 169

L. naming conventions, constants, 25
new shop application

scope of, 26
create, 152 .
global variables, 27
create empty record, : .
instance variables, 27-28
152,154

local variables, 26
error message, 154

exclusion, 165
format, 165-166 W, X, Y, Z
inclusion, 163-164 Web console, 77-78

length,‘157'—159 Web page, 67, 69
numericality, 159-161 Web shop, user in
presence, 156-157

create, 280
save(validate: false), 155 fixtures tests. 282-283
uniqueness, 161, 163 test suite, 280-282
valid? method, 154 unit tests. 288-290
options UsersControllerTest, 285
allow_blank, 166 where method, 102-103

435

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Introduction
	Chapter 1: Ruby Introduction
	Ruby 2.5
	Basics
	Hello World
	puts and print
	Comments
	Help via ri
	irb

	Ruby Is Object-Oriented
	Methods
	Classes
	Private Methods
	Method initialize()
	return
	Inheritance
	Class Methods and Instance Methods
	List of All Instance Methods

	Basic Classes
	Strings
	Single and Double Quotations Marks
	Built-in Methods for String

	Numbers
	Integers
	Floats
	Mixed Class Calculations

	Boolean Values and nil

	Variables
	Naming Conventions
	Constants

	Scope of Variables
	Local Variables (aaa or _aaa)
	Global Variables ($aaa)
	Instance Variables (@aaa)

	Methods Once Again
	Method Chaining
	Getters and Setters
	Converting from One to the Other: Casting
	Method to_s for Your Own Classes
	Is + a Method?
	Can You Overwrite the Method +?

	if Condition
	Shorthand
	else
	elsif

	Loops
	while and until
	Blocks and Iterators
	Iterators
	Blocks
	Method upto

	Arrays and Hashes
	Arrays
	Iterator each

	Hashes
	Symbols
	Iterator each

	Range

	Chapter 2: First Steps with Rails
	Environment (Development)
	SQLite3 Database
	Why Is It All in English?
	Static Content (HTML and Graphics Files)
	Create a Rails Project
	Static Pages

	Creating HTML Dynamically with erb
	Programming in an erb File
	<% ... %> vs. <%= ... %>
	Q & A

	Layouts
	Passing Instance Variables from a Controller to a View
	Partials
	Passing Variables to a Partial
	Further Documentation on Partials

	The Rails Console
	app

	What Is a Generator?
	Helper
	Debugging
	debug
	Web Console
	Other Debugging Tools

	Rails Lingo
	Don’t Repeat Yourself
	Refactoring
	Convention Over Configuration

	Model View Controller Architecture
	Model
	View
	Controller

	Abbreviations

	Chapter 3: ActiveRecord
	Creating a Database/Model
	The Attributes id, created_at, and updated_at
	Getters and Setters
	Possible Data Types in ActiveRecord
	Decimal
	Naming Conventions (Country vs. country vs. countries)
	Database Configuration

	Adding Records
	create
	Syntax

	new
	new_record?

	first, last, and all
	Populating the Database with seeds.rb
	It’s All Just Ruby Code
	Generating seeds.rb from Existing Data

	Searching and Finding with Queries
	find
	where
	not
	or
	SQL Queries with where
	Sanitized Queries

	Dangerous SQL Queries
	Lazy Loading
	Automatic Optimization

	order and reverse_order
	limit
	offset

	group
	pluck
	select
	first_or_create and first_or_initialize

	Calculations
	average
	count
	maximum
	minimum
	sum

	SQL EXPLAIN
	Batches
	Editing a Record
	Simple Editing
	Active Model Dirty
	changed?
	_changed?

	update
	Locking

	has_many, a 1:n Association
	Creating Records
	create
	build

	Accessing Records
	Searching for Records
	joins method
	includes
	joins vs. includes

	delete and destroy
	Options
	belongs_to
	has_many

	Many-to-Many, an n:n Association
	Preparation
	The Association
	The Association Works Transparently

	Polymorphic Associations
	Options

	Deleting/Destroying a Record
	destroy
	delete

	Transactions
	Scopes
	Preparation
	Defining a Scope
	Passing In Arguments
	Creating New Records with Scopes

	Validation
	Preparation
	The Basic Idea
	valid?
	save(validate: false)

	presence
	length
	Options

	numericality
	Options

	uniqueness
	Options

	inclusion
	Options

	exclusion
	Options

	format
	Options

	General Validation Options
	allow_nil
	allow_blank
	on

	if and unless

	Writing Custom Validations
	Defining Validations with Your Own Methods

	Further Documentation

	Migrations
	Which Database Is Used?
	Creating Index
	Automatically Added Fields (id, created_at, and updated_at)
	Further Documentation

	Callbacks
	Default Values

	Chapter 4: Scaffolding and REST
	Redirects and Flash Messages
	Redirects
	redirect_to:back
	Flash Messages
	Different Types of Flash Messages
	Why Are There Flash Messages at All?

	Generating a Scaffold
	The Routes
	The Controller
	set_product
	index
	show
	new

	edit
	create
	update
	destroy

	The Views
	Where Are the Views?
	link_to
	form_for
	Access via JSON
	JSON As Default
	JSON and XML Together

	When Should You Use Scaffolding?
	Example for a Minimal Project
	Conclusion

	Chapter 5: Routes
	HTTP GET Requests for Singular Resources
	Naming a Route
	as
	to
	Parameters
	Constraints
	Redirects

	root:to ⇒ welcome#index
	resources
	Selecting Specific Routes with only: or except:
	Nested Resources
	Shallow Nesting

	Further Information on Routes

	Chapter 6: Bundler and Gems
	bundle update
	bundle outdated
	bundle exec
	binstubs
	Popular Gems
	acts_as_list
	Order Your Tasks
	Check Done Tasks in Your Index View
	Authentication
	Authorization
	Simple Form

	Further Information on Bundler

	Chapter 7: Forms
	The Data-Input Workflow
	Request the people#new Form
	Push the Data to the Server
	Present the New Data

	Generic Forms
	FormTagHelper
	Alternatives

	Chapter 8: Cookies and Sessions
	Cookies
	Permanent Cookies
	Signed Cookies

	Sessions
	Breadcrumbs via Sessions
	reset_session
	Saving Sessions in the Database

	Chapter 9: Tests
	Example for a User in a Web Shop
	Functional Tests
	Unit Tests

	Fixtures
	Static Fixtures
	Fixtures with erb

	Integration Tests
	rails stats
	More on Testing

	Chapter 10: Active Job
	Create a New Job
	Set the Time for Future Execution
	Configure the Job Server Back End

	Chapter 11: Action Mailer
	Configuring the E-mail Server
	Sending via Local Sendmail
	Sending via Direct SMTP

	Custom X-Header
	Attachments
	Inline Attachments

	Further Information

	Chapter 12: Internationalization
	I18n.t
	Using I18n.t in the View

	Localized Views
	A Rails Application in Only One Language: German
	Paths in German
	Multilingual Rails Applications
	Using I18n.locale for Defining the Default Language
	Setting I18n.locale via the URL Path Prefix
	Navigation Example
	Setting I18n.locale via the Accept Language HTTP Header of the Browser
	Saving I18n.locale in a Session
	Navigation Example
	Setting I18n.locale via a Domain Extension
	Which Approach Is the Best?

	Multilingual Scaffold Example
	Text Blocks in YAML Format
	German
	English

	Equipping Views with I18n.t
	_form.html.erb
	edit.html.erb
	index.html.erb
	new.html.erb
	show.html.erb

	Translating Flash Messages in the Controller
	The Result

	Further Information

	Chapter 13: Asset Pipeline
	application.js
	application.css
	rails assets:precompile
	The Fingerprint
	Coding Links to an Asset
	Coding a Link to an Image
	Coding a Link to a JavaScript File
	Coding a Link to a CSS File
	Defaults in application.html.erb

	Chapter 14: Caching
	The Example Application
	Models
	Views
	Example Data
	Normal Speed of the Pages to Optimize
	List of All Companies (Index View)
	Detailed View of a Single Company (Show View)

	HTTP Caching
	Last-Modified
	etag
	current_user and Other Potential Parameters

	The Magic of touch
	stale?
	Using Proxies (public)
	Cache-Control with Time Limit

	Fragment Caching
	Enabling Fragment Caching in Development Mode
	Caching the Table of the Index View
	Deleting the Fragment Cache
	Auto-expiring Caches
	Russian Doll Caching
	Change the Code in the View Results in an Expired Cache

	Cache Store
	MemCacheStore
	Other Cache Stores

	Page Caching
	Activating Page Caching in Development Mode
	Configure Your Web Server
	Caching the Company Index and Show View
	gz Versions
	The File Extension .html

	Deleting Page Caches Automatically
	Models

	Preheating
	Further Information

	Chapter 15: Action Cable
	Hello World Action Cable Example
	The Rails Application
	Setting Up jQuery
	Creating a Channel

	Chapter 16: Credentials
	Setup
	Editing Credentials
	Accessing a Key
	Using the Credentials on the Production Web Server

	Chapter 17: Active Storage
	Avatar Example

	Appendix A:
Ruby on Rails Installation
	Ruby on Rails 5.2 on Debian 9.3 (Stretch)
	Preparations
	Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM
	Ruby on Rails 5.2 on macOS 10.13 (High Sierra)
	Xcode Installation or Upgrade
	Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM

	Appendix B:
Web Server in Production Mode
	Debian 9.3
	Build the System
	Nginx
	User Deployer
	Database
	PostgreSQL Installation
	Setting Up the Rails Environment for the User Deployer

	Setting Up a New Rails Project
	Production Database Configuration
	rails db:migrate
	rails assets:precompile
	Puma PID
	Puma init Script
	Nginx Configuration
	Loading Updated Versions of the Rails Project
	Performance

	Misc
	Alternative Setups
	What Else There Is to Do
	404 and Co.
	Multiple Rails Servers on One System

	The Cloud Platform as a Service Provider

	Appendix C:
Further Rails Reading Material
	Index

