
Learn

Rails 5.2
Accelerated Web Development with
Ruby on Rails
—
Stefan Wintermeyer

www.allitebooks.com

http://www.allitebooks.org

Learn Rails 5.2
Accelerated Web Development

with Ruby on Rails

Stefan Wintermeyer

www.allitebooks.com

http://www.allitebooks.org

Learn Rails 5.2: Accelerated Web Development with Ruby on Rails

ISBN-13 (pbk): 978-1-4842-3488-4 ISBN-13 (electronic): 978-1-4842-3489-1
https://doi.org/10.1007/978-1-4842-3489-1

Library of Congress Control Number: 2018939414

Copyright © 2018 by Stefan Wintermeyer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484234884. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Stefan Wintermeyer
Bochum, Germany

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3489-1
http://www.allitebooks.org

Für Oma und Opa.

I dedicate this book to my grandparents.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���xvii

About the Technical Reviewer ��xix

Preface ���xxi

Introduction ��xxiii

Table of Contents

Chapter 1: Ruby Introduction �� 1

Ruby 2.5 .. 1

Basics ... 2

Hello World .. 2

puts and print .. 2

Comments ... 3

Help via ri .. 4

irb .. 4

Ruby Is Object-Oriented .. 5

Methods ... 6

Classes .. 9

Basic Classes .. 20

Strings ... 20

Numbers .. 23

Boolean Values and nil .. 24

Variables ... 24

Naming Conventions.. 25

Scope of Variables ... 26

Methods Once Again ... 28

Method Chaining ... 29

Getters and Setters .. 29

www.allitebooks.com

http://www.allitebooks.org

vi

Converting from One to the Other: Casting .. 33

Method to_s for Your Own Classes .. 34

Is + a Method? .. 35

if Condition .. 37

Shorthand .. 38

else .. 39

elsif .. 39

Loops .. 39

while and until ... 39

Blocks and Iterators .. 41

Arrays and Hashes .. 44

Arrays .. 44

Hashes ... 46

Range .. 48

Chapter 2: First Steps with Rails �� 51

Environment (Development) .. 51

SQLite3 Database .. 52

Why Is It All in English? ... 52

Static Content (HTML and Graphics Files) ... 52

Create a Rails Project .. 52

Static Pages ... 55

Creating HTML Dynamically with erb .. 57

Programming in an erb File ... 60

Layouts .. 64

Passing Instance Variables from a Controller to a View .. 66

Partials .. 67

The Rails Console .. 71

app... 73

What Is a Generator? .. 73

Helper.. 75

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

Debugging ... 76

debug... 76

Web Console .. 76

Other Debugging Tools... 79

Rails Lingo .. 79

Don’t Repeat Yourself .. 79

Refactoring .. 79

Convention Over Configuration .. 79

Model View Controller Architecture .. 80

Model ... 80

View ... 80

Controller ... 80

Abbreviations .. 81

Chapter 3: ActiveRecord ��� 83

Creating a Database/Model ... 83

The Attributes id, created_at, and updated_at .. 86

Getters and Setters .. 87

Possible Data Types in ActiveRecord ... 87

Decimal ... 88

Naming Conventions (Country vs. country vs. countries) .. 89

Database Configuration ... 89

Adding Records ... 90

create .. 90

new .. 92

new_record? ... 93

first, last, and all ... 94

Populating the Database with seeds.rb .. 97

It’s All Just Ruby Code ... 98

Generating seeds.rb from Existing Data .. 99

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

viii

Searching and Finding with Queries ... 100

find .. 101

where .. 102

order and reverse_order .. 108

limit ... 109

group ... 110

pluck .. 110

select ... 111

first_or_create and first_or_initialize .. 112

Calculations .. 112

average .. 112

count.. 113

maximum ... 113

minimum ... 114

sum .. 114

SQL EXPLAIN ... 114

Batches ... 115

Editing a Record .. 115

Simple Editing ... 115

Active Model Dirty ... 116

update ... 118

Locking .. 118

has_many, a 1:n Association ... 121

Creating Records ... 123

Accessing Records .. 126

Searching for Records ... 128

delete and destroy ... 130

Options .. 131

Many-to-Many, an n:n Association .. 133

Preparation .. 133

The Association ... 134

The Association Works Transparently .. 135

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

ix

Polymorphic Associations ... 137

Options .. 142

Deleting/Destroying a Record ... 142

destroy ... 143

delete ... 146

Transactions .. 147

Scopes .. 148

Preparation .. 148

Defining a Scope ... 149

Passing In Arguments .. 151

Creating New Records with Scopes .. 151

Validation .. 152

Preparation .. 152

The Basic Idea ... 152

valid? ... 154

presence .. 156

length .. 157

numericality ... 159

uniqueness .. 161

inclusion .. 163

exclusion ... 165

format .. 165

General Validation Options ... 166

Writing Custom Validations .. 167

Further Documentation .. 169

Migrations ... 169

Which Database Is Used? .. 173

Creating Index ... 176

Automatically Added Fields (id, created_at, and updated_at) ... 177

Further Documentation .. 178

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

x

Callbacks... 178

Default Values ... 180

Chapter 4: Scaffolding and REST �� 183

Redirects and Flash Messages ... 183

Redirects ... 183

redirect_to :back ... 186

Flash Messages ... 187

Different Types of Flash Messages .. 189

Why Are There Flash Messages at All? .. 190

Generating a Scaffold ... 190

The Routes ... 192

The Controller .. 193

The Views .. 199

When Should You Use Scaffolding? .. 211

Example for a Minimal Project .. 211

Conclusion ... 216

Chapter 5: Routes ��� 217

HTTP GET Requests for Singular Resources ... 218

Naming a Route ... 220

as ... 220

to ... 220

Parameters .. 221

Constraints .. 225

Redirects ... 228

root :to ⇒ welcome#index .. 229

resources .. 229

Selecting Specific Routes with only: or except: ... 230

Nested Resources .. 232

Further Information on Routes .. 242

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

xi

Chapter 6: Bundler and Gems ��� 243

bundle update ... 247

bundle outdated .. 248

bundle exec ... 249

binstubs .. 249

Popular Gems .. 250

acts_as_list ... 250

Order Your Tasks .. 251

Check Done Tasks in Your Index View ... 253

Authentication ... 254

Authorization ... 254

Simple Form .. 255

Further Information on Bundler ... 255

Chapter 7: Forms �� 257

The Data-Input Workflow .. 257

Request the people#new Form.. 257

Push the Data to the Server .. 260

Present the New Data .. 261

Generic Forms ... 262

FormTagHelper .. 262

Alternatives ... 263

Chapter 8: Cookies and Sessions ��� 265

Cookies ... 265

Permanent Cookies ... 268

Signed Cookies .. 269

Sessions .. 271

Breadcrumbs via Sessions .. 271

reset_session .. 274

Saving Sessions in the Database .. 276

Table of ConTenTs

xii

Chapter 9: Tests �� 279

Example for a User in a Web Shop .. 280

Functional Tests ... 284

Unit Tests ... 288

Fixtures ... 290

Static Fixtures ... 291

Fixtures with erb ... 291

Integration Tests .. 292

rails stats .. 293

More on Testing .. 294

Chapter 10: Active Job ��� 295

Create a New Job .. 295

Set the Time for Future Execution... 297

Configure the Job Server Back End .. 297

Chapter 11: Action Mailer ��� 299

Configuring the E-mail Server ... 305

Sending via Local Sendmail .. 305

Sending via Direct SMTP ... 306

Custom X-Header .. 306

Attachments .. 307

Inline Attachments ... 308

Further Information ... 309

Chapter 12: Internationalization ��� 311

I18n.t ... 312

Using I18n.t in the View ... 316

Localized Views ... 316

A Rails Application in Only One Language: German .. 317

Paths in German.. 326

Multilingual Rails Applications .. 327

Table of ConTenTs

xiii

Using I18n.locale for Defining the Default Language .. 327

Setting I18n.locale via the URL Path Prefix ... 331

Navigation Example ... 334

Setting I18n.locale via the Accept Language HTTP Header of the Browser 335

Saving I18n.locale in a Session ... 336

Navigation Example ... 338

Setting I18n.locale via a Domain Extension .. 339

Which Approach Is the Best? ... 340

Multilingual Scaffold Example .. 340

Text Blocks in YAML Format .. 344

Equipping Views with I18n.t .. 347

Translating Flash Messages in the Controller .. 350

The Result .. 353

Further Information ... 353

Chapter 13: Asset Pipeline ��� 355

application.js ... 356

application.css .. 357

rails assets:precompile ... 357

The Fingerprint .. 359

Coding Links to an Asset ... 359

Coding a Link to an Image .. 359

Coding a Link to a JavaScript File ... 360

Coding a Link to a CSS File ... 360

Defaults in application.html.erb .. 360

Chapter 14: Caching ��� 363

The Example Application ... 364

Models ... 364

Views ... 365

Table of ConTenTs

xiv

Example Data .. 367

Normal Speed of the Pages to Optimize .. 368

HTTP Caching .. 369

Last-Modified .. 369

etag ... 370

The Magic of touch .. 373

stale? ... 374

Using Proxies (public) .. 374

Cache-Control with Time Limit .. 375

Fragment Caching ... 377

Enabling Fragment Caching in Development Mode ... 377

Caching the Table of the Index View .. 378

Deleting the Fragment Cache .. 379

Auto-expiring Caches .. 381

Russian Doll Caching ... 382

Cache Store ... 384

Page Caching .. 384

Activating Page Caching in Development Mode .. 386

Configure Your Web Server .. 386

Caching the Company Index and Show View ... 386

Deleting Page Caches Automatically ... 389

Preheating ... 391

Further Information ... 391

Chapter 15: Action Cable �� 393

Hello World Action Cable Example .. 393

The Rails Application ... 393

Setting Up jQuery... 394

Creating a Channel .. 395

Table of ConTenTs

xv

Chapter 16: Credentials �� 399

Setup ... 399

Editing Credentials .. 400

Accessing a Key .. 400

Using the Credentials on the Production Web Server ... 400

Chapter 17: Active Storage ��� 401

Avatar Example ... 401

 Appendix A: Ruby on Rails Installation ��� 409

 Ruby on Rails 5.2 on Debian 9.3 (Stretch)... 409

 Preparations .. 409

 Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM ... 410

 Ruby on Rails 5.2 on macOS 10.13 (High Sierra) .. 411

 Xcode Installation or Upgrade ... 412

 Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM ... 412

 Appendix B: Web Server in Production Mode ��� 415

 Debian 9.3 ... 415

 Build the System ... 416

 Nginx ... 416

 User Deployer .. 416

 Database ... 417

 Setting Up a New Rails Project ... 418

 Production Database Configuration ... 419

 rails db:migrate ... 419

 rails assets:precompile ... 419

 Puma PID ... 420

 Puma init Script ... 420

 Nginx Configuration ... 421

 Loading Updated Versions of the Rails Project .. 422

 Performance .. 423

Table of ConTenTs

xvi

 Misc .. 423

 Alternative Setups ... 423

 What Else There Is to Do .. 423

 404 and Co. ... 424

 Multiple Rails Servers on One System .. 424

 The Cloud Platform as a Service Provider ... 424

 Appendix C: Further Rails Reading Material ��� 425

 Index ��� 427

Table of ConTenTs

xvii

About the Author

Stefan Wintermeyer is a freelance web developer, trainer,

and consultant. Prior to this position, he was a founder

and managing director at AMOOMA GmbH, cofounder and

managing director at OTRS GmbH, and vice president at

Techspan Enterprise and SuSE Linux AG. He was also a

project manager for Lufthansa Systems.

xix

About the Technical Reviewer

Eldon Alameda is a web developer who currently resides in the harsh climates of

Kansas. He works as a regional webmaster for the U.S. National Weather Service; prior to

this, he did development for a variety of companies including local startups, advertising

firms, Sprint PCS, and IBM. During the 1990s, he also acquired a nice stack of worthless

stock options by working for dot-com companies.

xxi

Preface

I write for developers who learn best by following short, clean examples. I don’t like

the idea of coding one big application over the course of a book; I much prefer smaller,

stand-alone code. Therefore, you can skip a couple of pages or even complete chapters

without losing context. On the other hand, I’ll frequently be asking you to create another

new Rails application.

A word of warning: I’m not going to sprinkle in CSS beauty anywhere.

Don’t let people fool you into believing that Ruby on Rails is easy to learn. It’s not! It’s

one of the best and most effective frameworks to develop web applications, but it takes

time to understand and master. The worst mistake of all is to not learn Ruby before diving

into Ruby on Rails. To avoid this, the book starts with the basics of Ruby. You will not

become a Ruby guru after reading it, but you’ll understand the basic ideas, which is most

important.

 Newsletter and Updates
I publish a free Ruby on Rails e-mail newsletter that offers news and general information

about Rails. You can subscribe at https://www.wintermeyer-consulting.de/

newsletters/.

Additionally, you can follow me on Twitter at https://twitter.com/wintermeyer.

 Consulting and Training
I provide Rails consulting and training anywhere in the world, on-site or remote. If you

are interested, please contact me by e-mail at sw@wintermeyer-consulting.de.

 Meetups and Conferences
Please don’t be shy if you’d like me to speak or offer a training session at your local

meetup or conference; send me an e-mail, and I’ll try to make it happen.

https://www.wintermeyer-consulting.de/newsletters/
https://www.wintermeyer-consulting.de/newsletters/
https://twitter.com/wintermeyer

xxii

 Feedback
Two things in particular highlight my work as an author: five-star Amazon reviews and

reader feedback offered by e-mail or Twitter. Please reach out and let me know what you

thought of this book.

Have fun with Ruby on Rails!

—Stefan Wintermeyer

PrefaCe

www.allitebooks.com

http://www.allitebooks.org

xxiii

Introduction

This book requires basic knowledge of HTML, plus the reader (you, in other words!)

should have a basic understanding of programming. I’m not going to teach you what

variables are. I’m just using them. I work a lot with example code and not so much with

abstract definitions.

 This is a technical book. Therefore, there are parts that are mind-blowingly

boring. but I try to keep them to a minimum.

Each chapter and most sections work autarkic. You don’t have to read the book in

order, and you can skip chapters if they are not important to you. All code examples

work without any dependencies on earlier chapters. I’m not going to build a gigantic

application to show how cool Rails is. I prefer the approach of small projects to analyze

and discuss specific topics.

1
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_1

CHAPTER 1

Ruby Introduction
This chapter is a tightrope walk between oversimplification and a degree of detail that is

unnecessary for a Rails newbie. After all, the objective is not to become a Ruby guru but

to understand Ruby on Rails. I will elaborate on the most important points, and the rest

is then up to you. If you would like to know more about Ruby, I recommend the book

The Ruby Programming Language by David Flanagan and Yukihiro Matsumoto.

“It is easy to program in Ruby, but Ruby is not a simple language.”

—Yukihiro Matsumoto

 Ruby 2.5
I’m going to use Ruby 2.5, but for most part of this book you can use older versions too.

Ruby 2.5 is just a bit faster. You can check the installed Ruby version by running the

command ruby -v, as shown here:

$ ruby -v

ruby 2.5.0p0 (2017-12-25 revision 61468) [x86_64-darwin17]

$

 If your system is running an older version and you want to upgrade it, take
a look at https://rvm.io, which is my preferred way of installing and using
different Ruby versions.

https://rvm.io/

2

 Basics
Ruby is a scripting language. So, it is not compiled and then executed; instead, it is read

by an interpreter and then processed line by line.

 Hello World
A simple hello-world.rb program consists of one line of code, as shown in Listing 1-1.

Listing 1-1. hello-world.rb

puts 'Hello World!'

Use your favorite editor to open a new file with the filename hello-world.rb and

insert the previous line into it. You can then execute this Ruby program at the command

line as follows:

$ ruby hello-world.rb

Hello World!

$

 A program line in a Ruby program does not have to end with a semicolon.
The Ruby interpreter is even so intelligent that it recognizes if a program line was
split over two or more lines for the sake of readability. Indenting code is also not
necessary. But it does make it much easier to read for human beings!

 puts and print
If you look for examples on Ruby on the Internet, you will find two typical ways of

printing text on the screen.

• puts prints a string, followed by a newline.

• print prints a string (without a newline).

ChApTeR 1 RuBy InTRoduCTIon

3

Listing 1-2 shows an example program (an extension of the program hello-world.rb).

Listing 1-2. hello-world.rb

puts 'Hello World!'

puts

puts 'zzz'

print 'Hello World!'

print

puts 'zzz'

On the screen, you will see this:

$ ruby hello-world.rb

Hello World!

zzz

Hello World!zzz

 Comments
A comment in a Ruby program starts with a # sign and ends with a newline. As an

example, I added a comment to the earlier hello-world.rb program; see Listing 1-3.

Listing 1-3. hello-world.rb

Program for displaying "Hello World!"

by Stefan Wintermeyer

puts 'Hello World!'

A comment can also follow a program line, as shown in Listing 1-4.

Listing 1-4. hello-world.rb

puts 'Hello World!' # Example comment

A # sign within strings in a single quote mark is not treated as the start of a comment,

as shown in Listing 1-5.

ChApTeR 1 RuBy InTRoduCTIon

4

Listing 1-5. hello-world.rb

Example program

by Stefan Wintermeyer

puts 'Hello World!'

puts '############'

puts

puts '1#2#3#4#5#6#' # Comment on this

 Help via ri
When programming, you do not always have a Ruby handbook available. Fortunately,

the Ruby developers thought of this and provided a built-in help feature in form of the

program ri.

 of course, you must have installed the documentation, which is the default.
If you used rvm to install Ruby, you can run rvm docs generate to generate the
documentation.

This is a typical chicken-and-egg situation. How can I explain the Ruby help feature

if you are only just getting started with Ruby? So, I am going to jump ahead a little and

show you how you can search for information on the class String.

$ ri String

 [...]

$

 Many times it is easier and more informative to use Google instead of ri.

 irb
irb stands for “Interactive Ruby” and is a kind of sandbox where you can play around

with Ruby at your leisure. You can launch irb by entering irb on the shell and end it by

entering exit.

ChApTeR 1 RuBy InTRoduCTIon

5

An example is worth a thousand words.

$ irb

irb(main):001:0> puts 'Hello World!'

Hello World!

=> nil

irb(main):002:0> exit

$

 In future examples, I use IRB.conf[:PROMPT_MODE] = :SIMPLE in my
.irbrc config file to generate shorter irb output (without the irb(main):001:0>
part). you can do the same by using irb --simple- prompt.

 Ruby Is Object-Oriented
Ruby only knows objects. Everything is an object (sounds almost like Zen). Every object

is an instance of a class. You can find out the class of an object via the method .class.

An object in Ruby is encapsulated and can be reached from the outside only via the

methods of the corresponding object. What does this mean? You cannot change any

property of an object directly from the outside. The corresponding object has to offer a

method with which you can do so.

 please do not panic if you have no idea what a class or an object is. I won’t
tell anyone, and you can still work with them just fine without worrying too much.
This topic alone could fill whole volumes. Roughly speaking, an object is a
container for something, and a method changes something in that container.

please go on reading and take a look at the examples. The puzzle will gradually get
clearer.

ChApTeR 1 RuBy InTRoduCTIon

6

 Methods
In other programming languages, the terms you would use for Ruby methods would be

functions, procedures, subroutines, and of course methods.

 here I go with the oversimplification. you cannot compare non-object-
oriented programming languages with object-oriented ones. plus, there are two
kinds of methods (class methods and instance methods). I do not want to make it
too complicated. So, I simply ignore those “fine” distinctions.

At this point, you probably want to look at a good example, but all I can think of are

silly ones. The problem is the assumption that you are only allowed to use knowledge

that has already been described in this book.

So, let’s assume that you use the code sequence in Listing 1-6 repeatedly (for

whatever reason).

Listing 1-6. hello-worldx3a.rb

puts 'Hello World!'

puts 'Hello World!'

puts 'Hello World!'

So , you want to output the string “Hello World!” three times in separate rows. As

this makes your daily work routine much longer, you are now going to define a method

(with the meaningless name three_times), with which this can all be done in one go,

as shown in Listing 1-7.

 names of methods are always written in lowercase.

Listing 1-7. hello-worldx3b.rb

def three_times

 puts 'Hello World!'

 puts 'Hello World!'

 puts 'Hello World!'

end

ChApTeR 1 RuBy InTRoduCTIon

7

Let’s test this by starting irb and loading the program with the command load './

hello-worldx3b.rb'. After that, you have access to the three_times method.

$ irb
>> load './hello-worldx3b.rb'
=> true
>> three_times
Hello World!
Hello World!
Hello World!
=> nil
>> exit

When defining a method, you can define required parameters and use them

within the method. This enables you to create a method to which you pass a string as a

parameter, and you can then output it three times, as shown in Listing 1-8.

Listing 1-8. hello-worldx3c.rb

def three_times(value)
 puts value
 puts value
 puts value
end
$ irb
>> load './hello-worldx3c.rb'
=> true
>> three_times('Hello World!')
Hello World!
Hello World!
Hello World!
=> nil

Incidentally, you can omit the brackets when calling the method.

>> three_times 'Hello World!'
Hello World!
Hello World!
Hello World!

=> nil

ChApTeR 1 RuBy InTRoduCTIon

8

 Ruby gurus and would-be gurus are going to turn up their noses on the

subject of “unnecessary” brackets in your programs and will probably pepper you
with more or less stupid comments of comparisons to Java and other
programming languages.

There is one simple rule in the Ruby community: the fewer brackets, the cooler you are!

But you won’t get a medal for using fewer brackets. decide for yourself what
makes you happy.

If you do not specify a parameter with the previous method, you will get this error

message: wrong number of arguments (0 for 1).

>> three_times

ArgumentError: wrong number of arguments (given 0, expected 1)

 from /Users/.../hello-worldx3c.rb:1:in `three_times'

 from (irb):2

 from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in `<main>'

>> exit

You can give the variable value a default value, and then you can also call the

method without a parameter, as shown in Listing 1-9.

Listing 1-9. hello-worldx3d.rb

def three_times(value = 'blue')

 puts value

 puts value

 puts value

end

$ irb

>> load './hello-worldx3d.rb'

=> true

>> three_times('Example')

Example

ChApTeR 1 RuBy InTRoduCTIon

9

Example

Example

=> nil

>> three_times

blue

blue

blue

=> nil

>> exit

 Classes
For now you can think of a class as a collection of methods. The name of a class always

starts with an uppercase letter. Let’s assume that the method belongs to the new class

This_and_that. It would then be defined as shown in Listing 1-10 in a Ruby program.

Listing 1-10. hello-worldx3e.rb

class This_and_that

 def three_times

 puts 'Hello World!'

 puts 'Hello World!'

 puts 'Hello World!'

 end

end

Let’s play it through in irb.

$ irb

>> load './hello-worldx3e.rb'

=> true

Now you try to call the method three_times.

>> This_and_that.three_times

NoMethodError: undefined method `three_times' for This_and_that:Class

 from (irb):2

 from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in `<main>'

>>

ChApTeR 1 RuBy InTRoduCTIon

10

This results in an error message because This_and_that is a class and not an

instance. As you are working with instance methods, it works only if you have first

created a new object (a new instance) of the class This_and_that with the class method

new. Let’s name it abc.

>> abc = This_and_that.new

=> #<This_and_that:0x007fb01b02dcd0>

>> abc.three_times

Hello World!

Hello World!

Hello World!

=> nil

>> exit

I will explain the difference between instance and class methods in more detail in

the section “Class Methods and Instance Methods” (another chicken-and-egg problem).

 Private Methods

Quite often it makes sense to only call a method within its own class or own instance.

Such methods are referred to as private methods (as opposed to public methods), and

they are listed after the keyword private within a class, as shown in Listing 1-11.

Listing 1-11. pm-example.rb

class Example

 def a

 puts 'a'

 end

 private

 def b

 puts 'b'

 end

end

ChApTeR 1 RuBy InTRoduCTIon

11

You run this in irb, first the public and then the private method, which raises an error.

$ irb

>> load './pm-example.rb'

=> true

>> abc = Example.new

=> #<Example:0x007fa530037910>

>> abc.a

a

=> nil

>> abc.b

NoMethodError: private method `b' called for #<Example:0x007fa530037910>

 from (irb):4

 from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in `<main>'

>> exit

 Method initialize()

If a new instance is created (by calling the method new), the method that is processed

first and automatically is the method initialize. The method is automatically a private

method, even if it not listed explicitly under private, as shown in Listing 1-12.

Listing 1-12. pm-example-a.rb

class Room

 def initialize

 puts 'abc'

 end

end

Here is an irb test of it:

$ irb

>> load './initialize-example-a.rb'

=> true

>> kitchen = Room.new

abc

=> #<Room:0x007f830704edb8>

>> exit

ChApTeR 1 RuBy InTRoduCTIon

12

The instance kitchen is created with Room.new, and the method initialize is

processed automatically.

The method new accepts the parameters specified for the method initialize, as

shown in Listing 1-13.

Listing 1-13. initialize-example-b.rb

class Example

 def initialize(value)

 puts value

 end

end

$ irb

>> load './initialize-example-b.rb'

=> true

>> abc = Example.new('Hello World!')

Hello World!

=> #<Example:0x007fbb0b845f30>

>> exit

 return

puts is nice to demonstrate an example in this book, but normally you need a way to

return the result of something. The return statement can be used for that, as shown in

Listing 1-14.

Listing 1-14. circle-a.rb

def area_of_a_circle(radius)

 pi = 3.14

 area = pi * radius * radius

 return area

end

ChApTeR 1 RuBy InTRoduCTIon

13

$ irb

>> load './circle-a.rb'

=> true

>> area_of_a_circle(10)

=> 314.0

>> exit

But it wouldn’t be Ruby if you couldn’t do it shorter, right? You can simply skip

return, as shown in Listing 1-15.

Listing 1-15. circle-b.rb

def area_of_a_circle(radius)

 pi = 3.14

 area = pi * radius * radius

 area

end

You can actually even skip the last line because Ruby returns the value of the last

expression as a default, as shown in Listing 1-16.

Listing 1-16. circle-c.rb

def area_of_a_circle(radius)

 pi = 3.14

 area = pi * radius * radius

end

Obviously you can go one step further with this code, as shown in Listing 1-17.

Listing 1-17. circle-d.rb

def area_of_a_circle(radius)

 pi = 3.14

 pi * radius * radius

end

return is sometimes useful to make a method easier to read. But you don’t have to

use it if you feel more comfortable with out.

ChApTeR 1 RuBy InTRoduCTIon

14

 Inheritance

A class can inherit from another class. When defining the class, the parent class must be

added with a less-than (<) sign.

class Example < ParentClass

Rails makes use of this approach frequently (otherwise I would not be bothering you

with it).

In Listing 1-18, you define the class Abc that contains the methods a, b, and c. Then

you define a class Abcd and let it inherit the class Abc and add a new method d. The new

instances example1 and example2 are created with the class method new and show that

example2 has access to the methods a, b, c, and d but example1 only to a, b, and c.

Listing 1-18. inheritance-example-a.rb

class Abc

 def a

 'a'

 end

 def b

 'b'

 end

 def c

 'c'

 end

end

class Abcd < Abc

 def d

 'd'

 end

end

ChApTeR 1 RuBy InTRoduCTIon

15

Run it in irb.

$ irb

>> load './inheritance-example-a.rb'

=> true

>> example1 = Abc.new

=> #<Abc:0x007fac5a845630>

>> example2 = Abcd.new

=> #<Abcd:0x007fac5a836630>

>> example2.d

=> "d"

>> example2.a

=> "a"

>> example1.d

NoMethodError: undefined method `d' for #<Abc:0x007fac5a845630>

 from (irb):6

 from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in `<main>'

>> example1.a

=> "a"

>> exit

 It is important to read the error messages. They tell you what happened and
where to search for the problem. In this example, Ruby says that there is an
undefined method for #<Abc:0x007fac5a845630>. With that information you
know that the class Abc is missing the method that you were trying to use.

 Class Methods and Instance Methods

There are two important kinds of methods: class methods and instance methods.

You now already know what a class is. An instance of such a class is created via the

class method new. A class method can only be called in connection with the class (for

example, the method new is a class method). An instance method is a method that works

only with an instance. So, you cannot apply the method new to an instance.

ChApTeR 1 RuBy InTRoduCTIon

16

Let’s first try to call an instance method as a class method, as shown in Listing 1-19.

Listing 1-19. pi-a.rb

class Knowledge

 def pi

 3.14

 end

end

Run it in irb.

$ irb

>> load 'pi-a.rb'

=> true

>> Knowledge.pi

NoMethodError: undefined method `pi' for Knowledge:Class

 from (irb):2

 from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in `<main>'

>>

So, that does not work. Well, then let’s create a new instance of the class and try

again.

>> example = Knowledge.new

=> #<Knowledge:0x007fe620010938>

>> example.pi

=> 3.14

>> exit

Now you just need to find out how to define a class method. Hard-core Rails gurus

would now whisk you away into the depths of the source code and pick out examples

from ActiveRecord. I will spare you this and show an abstract example; see Listing 1-20.

ChApTeR 1 RuBy InTRoduCTIon

17

Listing 1-20. pi-b.rb

class Knowledge

 def self.pi

 3.14

 end

end

$ irb

>> load './pi-b.rb'

=> true

>> Knowledge.pi

=> 3.14

>>

Here is the proof to the contrary:

>> example = Knowledge.new

=> #<Knowledge:0x007fa8da045198>

>> example.pi

NoMethodError: undefined method `pi' for #<Knowledge:0x007fa8da045198>

 from (irb):4

 from /Users/stefan/.rvm/rubies/ruby-2.5.0/bin/irb:11:in `<main>'

>> exit

There are different notations for defining class methods. The two most common

ones are self.xyz and class << self.

Variant 1

with self.xyz

#

class Knowledge

 def self.pi

 3.14

 end

end

ChApTeR 1 RuBy InTRoduCTIon

18

Variant 2

with class << self

#

class Knowledge

 class << self

 def pi

 3.14

 end

 end

end

The result is always the same.

Of course, you can use the same method name for a class and an instance method.

Obviously that doesn’t make code easier to read. Listing 1-21 shows an example with pi

as a class and an instance method.

Listing 1-21. pi-c.rb

class Knowledge

 def pi

 3.14

 end

 def self.pi

 3.14159265359

 end

end

$ irb

>> load './pi-c.rb'

=> true

>> Knowledge.pi

=> 3.14159265359

>> example = Knowledge.new

=> #<Knowledge:0x007f8379846f30>

>> example.pi

=> 3.14

>> exit

ChApTeR 1 RuBy InTRoduCTIon

19

 List of All Instance Methods

You can read all the defined methods for a class with the method instance_methods. Try

it with the class Knowledge (first you create it once again in irb), as shown in

Listing 1-22.

Listing 1-22. pi-a.rb

class Knowledge

 def pi

 3.14

 end

end

$ irb

>> load './pi-a.rb'

=> true

>> Knowledge.instance_methods

=> [:pi, :instance_of?, :kind_of?, :is_a?, :tap, :public_send,

:remove_instance_variable, :singleton_method, :instance_variable_set,

:define_singleton_method, :method, :public_method, :extend, :to_enum,

:enum_for, :<=>, :===, :=~, :!~, :eql?, :respond_to?, :freeze,

:inspect, :object_id, :send, :display, :to_s, :nil?, :hash, :class,

:singleton_class, :clone, :dup, :itself, :taint, :tainted?, :untaint,

:untrust, :untrusted?, :trust, :frozen?, :methods, :singleton_methods,

:protected_methods, :private_methods, :public_methods,

:instance_variable_get, :instance_variables,

:instance_variable_defined?, :!, :==, :!=, :__send__, :equal?,

:instance_eval, :instance_exec, :__id__]

>>

But that is much more than you have defined! Why? It’s because Ruby gives every

new class a basic set of methods by default. If you want to list only the methods that you

have defined, then you can do it like this:

>> Knowledge.instance_methods(false)

=> [:pi]

>> exit

ChApTeR 1 RuBy InTRoduCTIon

20

 Basic Classes
Many predefined classes are available in Ruby. For a newbie, probably the most

important ones handle numbers and strings.

 Strings
Let’s experiment a little bit in irb. The method .class tells you which class you are

dealing with.

$ irb

>> "First test"

=> "First test"

>> "First test".class

=> String

That was easy. As you can see, Ruby “automagically” creates an object of the class

String. You can also do this by explicitly calling the method new.

>> String.new("Second test")

=> "Second test"

>> String.new("Second test").class

=> String

If you call String.new or String.new() without a parameter, this also creates an

object of the class String. But it is an empty String.

>> String.new

=> ""

>> String.new.class

=> String

>> exit

 Single and Double Quotations Marks

Strings can be defined either in single quotes or in double quotes.

There is a special feature for the double quotes: you can integrate expressions with

the construct #{}. The result is then automatically inserted in the corresponding place in

the string.

ChApTeR 1 RuBy InTRoduCTIon

21

To show this, you have to jump ahead and use variables in the example.

$ irb

>> a = "blue"

=> "blue"

>> b = "Color: #{a}"

=> "Color: blue"

>> exit

If the result of the expression is not a string, Ruby tries to apply the method to_s to

convert the value of the object into a string. Let’s try that by integrating an Integer into a

String.

$ irb

>> a = 1

=> 1

>> b = "A test: #{a}"

=> "A test: 1"

>> a.class

=> Integer

>> b.class

=> String

>> exit

 If I mention single or double quotation marks in the context of strings, I do
not mean typographically correct curly quotation marks (see wikipedia.org/
wiki/Quotation_mark); instead, I mean the ASCII symbols referred to as
apostrophe (') or quotation mark (").

 Built-in Methods for String

Most classes already come with a bundle of useful methods. These methods are always

written after the relevant object, separated by a dot.

ChApTeR 1 RuBy InTRoduCTIon

22

Here are a few examples for methods of the class String:

$ irb

>> a = 'A dog'

=> "A dog"

>> a.class

=> String

>> a.size

=> 5

>> a.downcase

=> "a dog"

>> a.upcase

=> "A DOG"

>> a.reverse

=> "god A"

>> exit

With instance_methods(false), you can get a list of the built-in methods.

$ irb

>> String.instance_methods(false)

=> [:include?, :%, :*, :+, :to_c, :unicode_normalize, :unicode_normalize!,

:unicode_normalized?, :count, :partition, :unpack, :unpack1, :sum, :next,

:casecmp, :casecmp?, :insert, :bytesize, :match, :match?, :succ!, :+@,

:-@, :index, :rindex, :<=>, :replace, :clear, :upto, :getbyte, :==, :===,

:setbyte, :=~, :scrub, :[], :[]=, :chr, :scrub!, :dump, :byteslice,

:upcase, :next!, :empty?, :eql?, :downcase, :capitalize, :swapcase,

:upcase!, :downcase!, :capitalize!, :swapcase!, :hex, :oct, :split,

:lines, :reverse, :chars, :codepoints, :prepend, :bytes, :concat, :<<,

:freeze, :inspect, :intern, :end_with?, :crypt, :ljust, :reverse!, :chop,

:scan, :gsub, :ord, :start_with?, :length, :size, :rstrip, :succ, :center,

:sub, :chomp!, :sub!, :chomp, :rjust, :lstrip!, :gsub!, :chop!, :strip,

:to_str, :to_sym, :rstrip!, :tr, :tr_s, :delete, :to_s, :to_i, :tr_s!,

:delete!, :squeeze!, :each_line, :squeeze, :strip!, :each_codepoint,

:lstrip, :slice!, :rpartition, :each_byte, :each_char, :to_f, :slice,

:ascii_only?, :encoding, :force_encoding, :b, :valid_encoding?, :tr!,

:encode, :encode!, :hash, :to_r]

>> exit

ChApTeR 1 RuBy InTRoduCTIon

23

 Numbers
Let’s discuss numbers.

 Integers

Ruby used to have different types of integers depending on the length of the number.

Since Ruby version 2.4, things are easier; you just deal with Integer.

$ irb

>> 23.class

=> Integer

>> 230000000000000000000.class

=> Integer

>> (23*10000).class

=> Integer

>> exit

 Floats

Float is a class for real numbers (“floating-point numbers”). The decimal separator

is a dot.

$ irb

>> a = 20.424

=> 20.424

>> a.class

=> Float

>> exit

 Mixed Class Calculations

Adding two integers will result in an integer. Adding an integer and a float will result in a

float.

$ irb

>> a = 10

=> 10

>> b = 23

ChApTeR 1 RuBy InTRoduCTIon

24

=> 23

>> (a + b).class

=> Integer

>> (a + 3.13).class

=> Float

>> exit

 Boolean Values and nil
For Boolean values (true and false) and for nil (no value), there are separate classes.

$ irb

>> true.class

=> TrueClass

>> false.class

=> FalseClass

>> nil.class

=> NilClass

>> exit

nil (no value) is, by the way, the contraction of the Latin word nihil (nothing); or

if you look at it in terms of programming history, the term derives from “not in list”

from the legacy of the programming language Lisp (the name is an acronym of “list

processing”).

 Variables
Let’s discuss variables.

ChApTeR 1 RuBy InTRoduCTIon

25

 Naming Conventions
Normal variables are written in lowercase. Please use snake_case. The same goes for

symbols and methods.

$ irb

>> pi = 3.14

=> 3.14

>> exit

 Constants

Constants start with an uppercase letter.

 A constant can also be overwritten with a new value since Ruby 2.3 (but
you will get a warning message). So, please do not rely on the constancy of a
constant.

$ irb

>> Pi = 3.14

=> 3.14

>> Pi = 123

(irb):2: warning: already initialized constant Pi

(irb):1: warning: previous definition of Pi was here

=> 123

>> puts Pi

123

=> nil

>> exit

You are on the safe side if you are using only ASCII symbols. But with Ruby 2.5 and

the right encoding, you could also use special characters (for example, the German

umlaut) more or less without any problems in a variable name. But if you want to be

polite toward other programmers who probably do not have those characters directly

available on their keyboards, it is better to stick to pure ASCII.

ChApTeR 1 RuBy InTRoduCTIon

26

 Scope of Variables
Variables have a different scope (or “reach”) within the Ruby application and therefore

also within a Ruby on Rails application.

 you need to keep this scope in mind while programming. otherwise, you
can end up with odd effects.

 Local Variables (aaa or _aaa)

Local variables start with either a lowercase letter or an underscore (_). Their scope

is limited to the current environment (for example, the current method). Listing 1-23

defines two methods that use the same local variable radius. Because they are local, they

don’t interact with each other.

Listing 1-23. variable-a.rb

def area(radius)

 3.14 * radius * radius

end

def circumference(radius)

 2 * 3.14 * radius

end

$ irb

>> load './variable-a.rb'

=> true

>> area(10)

=> 314.0

>> circumference(1)

=> 6.28

>> exit

ChApTeR 1 RuBy InTRoduCTIon

27

 Global Variables ($aaa)

A global variable starts with a $ sign and is accessible in the entire program. Listing 1-24

shows an example program.

Listing 1-24. variable-b.rb

$value = 10

def example

 $value = 20

end

puts $value

example

puts $value

$ ruby variable-b.rb

10

20

Global variables are used rarely! You wouldn’t harm yourself by forgetting that they

exist right now.

 Instance Variables (@aaa)

Instance variables (“attributes,” which is why there’s an @ sign) apply only within a class,

but they apply everywhere in it—they’re mini versions of global variables, so to speak.

Unlike global variables, you will find instance variables all over the place in a Rails

application. Let’s tackle them in form of an example program with the name color.rb,

as shown in Listing 1-25.

Listing 1-25. color.rb

class Wall

 def initialize

 @color = 'white'

 end

ChApTeR 1 RuBy InTRoduCTIon

28

 def color

 @color

 end

 def paint_it(value)

 @color = value

 end

end

my_wall = Wall.new

puts my_wall.color

my_wall.paint_it('red')

puts my_wall.color

If you start this program, you will see the following output:

$ ruby color.rb

white

red

$

In the method initialize, you set the instance variable @color to the value white.

The method paint_it(value) changes this instance variable.

With the method color you can access the value of @color outside of the instance.

This kind of method is called a setter method.

 Methods Once Again
To keep the amount of chicken-and-egg problems in this chapter at a manageable level,

you need to go back to the topic of methods and combine what you have learned so far.

ChApTeR 1 RuBy InTRoduCTIon

29

 Method Chaining
You may not think of it straightaway, but once you have gotten used to working with

Ruby, then it makes perfect sense (and is perfectly logical) to chain different methods.

$ irb

>> a = 'a blue car'

=> "a blue car"

>> a.upcase

=> "A BLUE CAR"

>> a.upcase.reverse

=> "RAC EULB A"

>> exit

 Getters and Setters
As instance variables (attributes) exist only within the relevant instance, you always need

to write a “getter” method for exporting such a variable. If you define a class Room that

has the instance variables @doors and @windows (for the number of doors and windows

in the room), then you can create the getter methods doors and windows. Listing 1-26

shows an example program called room.rb.

Listing 1-26. room.rb

class Room

 def initialize

 @doors = 1

 @windows = 1

 end

 def doors

 @doors

 end

ChApTeR 1 RuBy InTRoduCTIon

www.allitebooks.com

http://www.allitebooks.org

30

 def windows

 @windows

 end

end

kitchen = Room.new

puts "D: #{kitchen.doors}"

puts "W: #{kitchen.windows}"

Here is the output from the execution of the program:

$ ruby room.rb

D: 1

W: 1

$

Because this scenario—wanting to simply return a value in identical form—is so

common, there is already a ready-made getter method for it with the name attr_reader,

which you would apply as follows in the program room.rb, as shown in Listing 1-27.

Listing 1-27. room.rb

class Room

 def initialize

 @doors = 1

 @windows = 1

 end

 attr_reader :doors, :windows

end

kitchen = Room.new

puts "D: #{kitchen.doors}"

puts "W: #{kitchen.windows}"

attr_reader is a method called on the Room class. That is the reason why you use

symbols (e.g., :doors and :windows) instead of variables (e.g., @doors and @windows) as

parameters.

ChApTeR 1 RuBy InTRoduCTIon

31

 attr_reader is a good example for metaprogramming in Ruby. When
working with Rails, you will frequently come across metaprogramming and be
grateful for how it works “automagically.”

If you want to change the number of doors or windows from the outside, you need a

setter method. It can be implemented as shown in Listing 1-28.

Listing 1-28. room.rb

class Room

 def initialize

 @doors = 1

 @windows = 1

 end

 attr_reader :doors, :windows

 def doors=(value)

 @doors = value

 end

 def windows=(value)

 @windows = value

 end

end

kitchen = Room.new

kitchen.windows = 2

puts "D: #{kitchen.doors}"

puts "W: #{kitchen.windows}"

ChApTeR 1 RuBy InTRoduCTIon

32

The corresponding output is as follows:

$ **ruby room.rb**

D: 1

W: 2

$

As you can probably imagine, there is also a ready-made and easier way of doing

this. Via the setter method attr_writer, you can simplify the code of room.rb as shown

in Listing 1-29.

Listing 1-29. room.rb

class Room

 def initialize

 @doors = 1

 @windows = 1

 end

 attr_reader :doors, :windows

 attr_writer :doors, :windows

end

kitchen = Room.new

kitchen.windows = 2

puts "D: #{kitchen.doors}"

puts "W: #{kitchen.windows}"

And (who would have thought?) there is even a method attr_accessor that

combines getters and setters. The code for room.rb would then look like Listing 1-30.

Listing 1-30. room.rb

class Room

 def initialize

 @doors = 1

 @windows = 1

 end

ChApTeR 1 RuBy InTRoduCTIon

33

 attr_accessor :doors, :windows

end

kitchen = Room.new

kitchen.windows = 2

puts "D: #{kitchen.doors}"

puts "W: #{kitchen.windows}"

 Converting from One to the Other: Casting
There is a whole range of useful instance methods for converting (casting) objects from

one class to another. First, let’s use the method .to_s to convert a Fixnum to a String.

$ irb

>> a = 10

=> 10

>> a.class

=> Integer

>> b = a.to_s

=> "10"

>> b.class

=> String

>> exit

 Incidentally, that is exactly what puts does if you use puts to output a
Fixnum or a Float (for nonstrings, it simply implicitly adds the method .to_s
and outputs the result).

ChApTeR 1 RuBy InTRoduCTIon

34

Now you use the method .to_i to change a Float to a Fixnum.

irb

>> c = 10.0

=> 10.0

>> c.class

=> Float

>> d = c.to_i

=> 10

>> d.class

=> Integer

>> exit

 Method to_s for Your Own Classes
Integrating a to_s method is often useful. Then you can simply output a corresponding

object via puts (puts automatically outputs an object via the method to_s).

Listing 1-31 shows an example.

Listing 1-31. person-a.rb

class Person

 def initialize(first_name, last_name)

 @first_name = first_name

 @last_name = last_name

 end

 def to_s

 "#{@first_name} #{@last_name}"

 end

end

$ irb

>> load './person-a.rb'

=> true

>> sw = Person.new('Stefan', 'Wintermeyer')

=> #<Person:0x007fa95d030558 @first_name="Stefan",

@last_name="Wintermeyer">

ChApTeR 1 RuBy InTRoduCTIon

35

>> puts sw

Stefan Wintermeyer

=> nil

>> exit

 Is + a Method?
Why is there also a plus symbol in the list of methods for String? Let’s find out by

looking it up in ri.

$ ri -T String.+

String.+

(from ruby site)

 str + other_str -> new_str

Concatenation---Returns a new String containing other_str

concatenated to str.

 "Hello from " + self.to_s #=> "Hello from main"

Let’s see what it says for Integer.

$ ri -T Integer.+

Integer.+

(from ruby site)

 int + numeric -> numeric_result

Performs addition: the class of the resulting object depends on the class of

numeric and on the magnitude of the result. It may return a Bignum.

ChApTeR 1 RuBy InTRoduCTIon

36

Let’s play around with this in irb. You should be able to add the + to an object, just as

any other method, separated by a dot and then add the second number in brackets as a

parameter.

$ irb

>> 10 + 10

=> 20

>> 10+10

=> 20

>> 10.+10

=> 20

>> 10.+(10)

=> 20

>> exit

Aha! The plus symbol is indeed a method, and this method takes the next value as

a parameter. Really, you should put this value in brackets, but thanks to Ruby’s well-

thought- out syntax, this is not necessary.

 Can You Overwrite the Method +?

Yes, you can overwrite any method. Logically, this does not make much sense for

methods such as +, unless you want to drive your fellow programmers mad. I am going to

show you a little demo in irb so you will believe me.

The aim is overwriting the method + for Fixnum. You want the result of every addition

to be the number 42. You can write a so-called monkey patch, as shown in Listing 1-32.

Listing 1-32. monkey-patch-a.rb

class Integer

 def +(name, *args, &blk)

 42

 end

end

ChApTeR 1 RuBy InTRoduCTIon

37

Now you use the + method before and after that monkey patch.

irb

>> 10 + 10

=> 20

>> load './monkey-patch-a.rb'

=> true

>> 10 + 10

=> 42

>> exit

First you perform a normal addition. Then you redefine the method + for the class

Integer, and after that you do the calculation again. But this time, you get different

results.

 if Condition
An abstract if condition looks like this:

if expression

 program

end

The program between the expression and end is executed if the result of the

expression is not false and not nil.

 you can also use a then after the expression, as shown here:
if expression then

 program

end

ChApTeR 1 RuBy InTRoduCTIon

38

The construct for a simple if branch in a Ruby program looks like the following

example program:

a = 10

if a == 10

 puts 'a is 10'

end

 The == is used to compare two values. please don’t mix it up with the single =.

You can test an expression really well in irb.

$ irb

>> a = 10

=> 10

>> a == 10

=> true

>> exit

$

 Shorthand
The following code shows a frequently used shorthand notation of an if condition:

a = 10

long version

#

if a == 10

 puts 'a is 10'

end

short version

#

puts 'a is 10' if a == 10

ChApTeR 1 RuBy InTRoduCTIon

39

 else
You can probably imagine how this works, but for the sake of completeness, here is a

little example:

a = 10

if a == 10

 puts 'a is 10'

else

 puts 'a is not 10'

end

 elsif
Again, most programmers will know what this is all about. Here’s an example:

a = 10

if a == 10

 puts 'a is 10'

elsif a == 20

 puts 'a is 20'

end

 Loops
There are different ways of implementing loops in Ruby. The iterator variation is used

particularly often in the Rails environment.

 while and until
An abstract while loop looks like this:

while expression do

 program

end

ChApTeR 1 RuBy InTRoduCTIon

40

 The do that follows expression is optional. often you will also see this:
while expression

 program

end

Here is an irb example:

$ irb

>> i = 0

=> 0

>> while i < 3 do

?> puts i

>> i = i + 1

>> end

0

1

2

=> nil

>> exit

You build until loops similarly.

until expression

 program

ends

Again, here is the corresponding irb example:

$ irb

>> i = 5

=> 5

>> until i == 0

>> i = i - 1

>> puts i

>> end

4

ChApTeR 1 RuBy InTRoduCTIon

41

3

2

1

0

=> nil

>> exit

 Blocks and Iterators
Block and iterator are some of the favorite words of many Ruby programmers. Now I am

going to show you why.

In the following loop, i is the iterator, and puts i is the block.

5.times { |i| puts i }

You can also express the whole thing in the following syntax:

5.times do |i|

 puts i

end

 Iterators

Iterators are just a specific type of method. As you probably know, the word iterate

means to repeat something. For example, the class Integer has the iterator times().

Let’s see what help ri Integer.times offers:

$ ri -T Integer.times

Integer.times

(from ruby site)

 int.times {|i| block } -> self

 int.times -> an_enumerator

Iterates the given block int times, passing in values from zero to int - 1.

ChApTeR 1 RuBy InTRoduCTIon

42

If no block is given, an Enumerator is returned instead.

 5.times do |i|

 print i, " "

 end

 #=> 0 1 2 3 4

It also gives a nice example that you can try in irb.

$ irb

>> 5.times do |i|

?> puts i

>> end

0

1

2

3

4

=> 5

>> exit

There is also a single-line notation for small blocks.

$ irb

>> 5.times { |i| puts i }

0

1

2

3

4

=> 5

>> exit

By the way, an iterator does not necessarily have to pass a variable to the block.

$ irb

>> 5.times { puts 'example' }

example

example

ChApTeR 1 RuBy InTRoduCTIon

43

example

example

example

=> 5

>> exit

 Blocks

A block is the code that is triggered by an iterator. In the block, you have access to the

local variable (or variables) passed by the iterator.

 Method upto

In addition to times, there is also the method upto for easily implementing a loop. ri

offers a nice example for this, too.

$ ri -T Integer.upto

Integer.upto

(from ruby site)

 int.upto(limit) {|i| block } -> self

 int.upto(limit) -> an_enumerator

Iterates the given block, passing in integer values from int up to and

including limit.

If no block is given, an Enumerator is returned instead.

For example:

 5.upto(10) { |i| print i, " " }

 #=> 5 6 7 8 9 10

ChApTeR 1 RuBy InTRoduCTIon

44

 Arrays and Hashes
As in many programming languages, arrays and hashes are popular structures in Ruby

for storing data.

 Arrays
An array is a list of objects. Let’s play around in irb.

$ irb

>> a = [1,2,3,4,5]

=> [1, 2, 3, 4, 5]

>> a.class

=> Array

>> exit

That is simple and easy to understand.

Let’s see if it also works with strings in the array.

$ irb

>> a = ['Test', 'Banana', 'blue']

=> ["Test", "Banana", "blue"]

>> a.class

=> Array

>> a[1]

=> "Banana"

>> a[1].class

=> String

>> exit

That also works.

So, all that’s missing now is an array with a mixture of both. Obviously that will work,

too, because the array stores objects, and it does not matter which kind of objects they

are (i.e., String, Integer, Float, …). But a little test can’t hurt.

$ irb

>> a = [1, 2.2, 'House', nil]

=> [1, 2.2, "House", nil]

ChApTeR 1 RuBy InTRoduCTIon

45

>> a.class

=> Array

>> a[0]

=> 1

>> a[0].class

=> Integer

>> a[1].class

=> Float

>> a[2].class

=> String

>> a[3].class

=> NilClass

>> exit

Arrays can also be created via the method new (like any class). Individual new

elements can then be added at the end of an array via the method <<. Here is the

corresponding example:

$ irb

>> a = Array.new

=> []

>> a << 'first item'

=> ["first item"]

>> a << 'second item'

=> ["first item", "second item"]

>> exit

 Iterator each

You can work your way through an array piece by piece via the method each. Here’s an

example:

$ irb

>> cart = ['eggs', 'butter']

=> ["eggs", "butter"]

>> cart.each do |item|

?> puts item

>> end

ChApTeR 1 RuBy InTRoduCTIon

46

eggs

butter

=> ["eggs", "butter"]

>> exit

ri Array.each provides help and an example in case you forget how to use each.

 Hashes
A hash is a list of key-value pairs. Here is an example with strings as keys:

$ irb

>> prices = { 'egg' => 0.1, 'butter' => 0.99 }

=> {"egg"=>0.1, "butter"=>0.99}

>> prices['egg']

=> 0.1

>> prices.count

=> 2

>> exit

Of course, hashes can store not just strings as objects in the values but, as with

arrays, also classes that you define yourself (see the section “Arrays”).

 Symbols

Symbols are a strange concept and difficult to explain. But they are useful and used

frequently with hashes, among others.

Normally, variables always create new objects.

$ irb

>> a = 'Example 1'

=> "Example 1"

>> a.object_id

=> 70124141350360

>> a = 'Example 2'

=> "Example 2"

>> a.object_id

=> 70124141316700

>> exit

ChApTeR 1 RuBy InTRoduCTIon

47

In both cases, you have the variable a, but object_id is different. You could carry on

in this way indefinitely. Each time, it would generate a different object ID and therefore

a new object. In principle, this is no big deal and entirely logical in terms of object

orientation. But it is also rather a waste of memory space.

A symbol is defined by a colon before the name and cannot store any values itself,

but it always has the same object ID, so it is very well suited to be a key.

$ irb

>> :a.class

=> Symbol

>> :a.object_id

=> 702428

>> exit

Let’s do another little experiment to make the difference clearer. Use a string object

with the content white three times in a row and then the symbol :white three times in

a row. For white, a new object is created each time. For the symbol :white, it’s created

only the first time.

$ irb

>> 'white'.object_id

=> 70342874305700

>> 'white'.object_id

=> 70342874300640

>> 'white'.object_id

=> 70342874271720

>> :white.object_id

=> 1088668

>> :white.object_id

=> 1088668

>> :white.object_id

=> 1088668

>> exit

ChApTeR 1 RuBy InTRoduCTIon

48

Using symbols as key for hashes is much more memory efficient.

$ irb

>> colors = { black: '#000000', white: '#FFFFFF' }

=> {:black=>"#000000", :white=>"#FFFFFF"}

>> puts colors[:white]

#FFFFFF

=> nil

>> exit

You will frequently see symbols in Rails. If you want to find out more about symbols,

go to the help page about the class Symbol via ri Symbol.

 Iterator each

With the method each you can work your way through a Hash step-by-step. Here’s an

example:

$ irb

>> colors = {black: '#000000', white: '#FFFFFF' }

=> {:black=>"#000000", :white=>"#FFFFFF"}

>> colors.each do |key, value|

?> puts "#{key} #{value}"

>> end

black #000000

white #FFFFFF

=> {:black=>"#000000", :white=>"#FFFFFF"}

>> exit

Again, ri Hash.each offers help and an example in case you cannot remember one

day how to use each.

 Range
The class Range represents an interval. The starting and ending points of the interval are

defined enclosed in normal brackets and separated by two dots in between them. Here is

an example in which you use a range like an iterator with each:

ChApTeR 1 RuBy InTRoduCTIon

49

$ irb

>> (0..3)

=> 0..3

>> (0..3).class

=> Range

>> (0..3).each do |i|

?> puts i

>> end

0

1

2

3

=> 0..3

>>

Via the method to_a, you can generate an array from a range.

>> (0..3).to_a

=> [0, 1, 2, 3]

>>

A range can be generated from objects of any type. It’s only important that the

objects can be compared via <, >, == and can use the method succ for counting on to the

next value. So, you can also use Range to represent letters.

>> ('a'..'h').to_a

=> ["a", "b", "c", "d", "e", "f", "g", "h"]

>>

As alternative notation, you may sometimes come across Range.new(). In this case,

the starting and ending points are not separated by two dots but by a comma. This is

what it looks like:

>> (0..3) == Range.new(0,3)

=> true

>> exit

ChApTeR 1 RuBy InTRoduCTIon

51
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_2

CHAPTER 2

First Steps with Rails
Now that you have painstakingly read your way through the basics of Ruby in Chapter 1,

you can move on to a more exciting topic. In this chapter, you will create your first small

Ruby on Rails project.

 Environment (Development)
By default a Rails project offers three environments to work in.

• Development

• Test

• Production

In this chapter, you will be working only with the Development environment. Once

you have gained a better feeling for Rails, you will start using tests, and then you will

need the corresponding environment (where, for example, the test database is populated

when you start a test and then cleared). Later, I will explain the various scenarios to show

how you can roll out your Rails application from the Development environment to the

Production environment.

The Development environment has everything you need for developing, besides an

editor and a web browser. You do not need to install a special web server but can use the

integrated Rails web server. It does not have extremely high performance, but you do not

need that for developing. Later, you can switch to big web servers like Apache or Nginx.

The same applies to the database.

52

 SQLite3 Database
In terms of the database, the main focus in this chapter is once more not on optimum

performance but on showing you a simple and quick way of getting started. That’s why

Rails uses the SQLite3 database. You already have everything you need installed, and you

don’t need to worry about anything. Later I will explain how you can use other databases

(e.g., PostgreSQL).

 Why Is It All in English?
If you are not a native English speaker, you should try to accept and even adopt Rails’

love for the English language. Much of it will then be much easier and more logical. Most

of the code reads just like a normal English sentence. For example, many mechanisms

“automagically” use plural or singular forms of normal English words. If you get used

to naming database fields and tables with English terms (even if you are programming

in a different language), then you can make use of the whole power of this magic. This

mechanism is referred to as Inflector or inflections.

If you are programming in a language other than English, it still makes sense to use

English names for variables, classes, and methods. You can write the comments in your

own language, but if you take part in international projects, you should obviously write

the comments in English as well.

 Static Content (HTML and Graphics Files)
Let’s first create a new Rails project.

 Create a Rails Project
Before you even get going, please check that you are using Rails 5.2.

$ rails -v

Rails 5.2.0

Chapter 2 First steps with rails

53

That’s looking good. If you have an older version of Ruby or Rails installed, please

install the 5.2 version before you read any further. The command gem install rails

installs the current Rails version, and gem install rails --pre installs the beta of the

next version.

Now you start by creating a new Rails project with the name testproject. Ruby on

Rails is a framework, so you first need to set up the corresponding directory structure

and basic configuration, including several scripts. It’s as easy as pie; just use the

command rails new testproject to create everything you need.

$ rails new testproject

 create

 create README.md

 create Rakefile

 create .ruby-version

 create config.ru

 [...]

Next, you cd into the new directory and run the first migration to create Active

Storage tables.

$ cd testproject

$ rails db:migrate

 You don’t need to run rails db:migrate, which runs open database
migrations at this time, but it is a good habit to make sure all database migrations
are done.

You can check whether the new Rails application is working by launching the

integrated web server.

 Depending on the operating system (for example, macOs) and on your

firewall settings, you may see a pop-up window when first starting a rails
application asking you if the firewall should permit the corresponding connection.

Chapter 2 First steps with rails

54

$ rails server

=> Booting Puma

=> Rails 5.2.0 application starting in development

=> Run `rails server -h` for more startup options

Puma starting in single mode...

* Version 3.11.0 (ruby 2.5.0-p0), codename: Love Song

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://0.0.0.0:3000

Use Ctrl-C to stop

The start of the Rails application is looking good, so go to the URL

http://localhost:3000 in your web browser (see Figure 2-1).

Figure 2-1. Rails

Looks good. Rails works fine.

 You can stop the web server with the key combination Ctrl+C.

Chapter 2 First steps with rails

55

 Static Pages
There are certain static pages, images, and JavaScript files that are automatically

delivered by Rails. Remember the following part of the output of the command

rails new testproject?

[...]

create public

create public/404.html

create public/422.html

create public/500.html

create public/apple-touch-icon-precomposed.png

create public/apple-touch-icon.png

create public/favicon.ico

create public/robots.txt

[...]

The directory name public and the files it contains already look very much like

static pages. Let’s create the file public/hello-world.html with the content shown in

Listing 2-1.

Listing 2-1. public/hello-world.html

<html>

<head>

 <title>Hello World!</title>

</head>

<body>

 <h1>Hello World!</h1>

 <p>An example page.</p>

</body>

</html>

Now start the Rails web server with rails server.

$ rails server

=> Booting Puma

=> Rails 5.2.0 application starting in development on http://localhost:3000

=> Run `rails server -h` for more startup options

Chapter 2 First steps with rails

56

Puma starting in single mode...

* Version 3.11.0 (ruby 2.5.0-p0), codename: Love Song

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://0.0.0.0:3000

Use Ctrl-C to stop

You can take a look at this web page at the URL http://localhost:3000/hello-

world (see Figure 2-2).

Figure 2-2. Hello!

No output in the log means that this page was not handled by the Rails framework.

It was delivered directly from the web server, which is Puma in this case.

 You can of course also use the Url http://localhost:3000/hello-
world.html. But rails regards htMl and therefore the file ending .html as
standard output format, so you can omit the .html extension here.

Chapter 2 First steps with rails

57

Now you know how you can integrate fully static pages in Rails. This is useful for

pages that never change and that you want to work even if Rails is not currently working,

for example because of an update. In a production environment, you would usually put

a classic web server such as Apache or Nginx in front of the Rails server, which is capable

of autonomously delivering static files from the public directory.

 Creating HTML Dynamically with erb
The content of an erb file will probably seem familiar to you. It is a mixture of HTML and

Ruby code (erb stands for “embedded Ruby”). erb pages are rendered as views. This is

the first time for you to get in touch with the MVC model. You need a controller to use a

view, and that can be created via the generator rails generate controller. Let’s take a

look at the onboard help of this generator, shown here:

$ rails generate controller

Running via Spring preloader in process 11125

Usage:

 rails generate controller NAME [action action] [options]

[...]

Description:

 Stubs out a new controller and its views. Pass the controller name, either

 CamelCased or under_scored, and a list of views as arguments.

[...]

Example:

 `rails generate controller CreditCards open debit credit close`

 CreditCards controller with URLs like /credit_cards/debit.

 Controller: app/controllers/credit_cards_controller.rb

 Test: test/controllers/credit_cards_controller_test.rb

 Views: app/views/credit_cards/debit.html.erb [...]

 Helper: app/helpers/credit_cards_helper.rb

Nice! You are kindly provided with an example further down:

rails generate controller CreditCard open debit credit close

Chapter 2 First steps with rails

58

This doesn’t really fit the bill for this case, but I am feeling brave and suggest that you

simply try rails generate controller Example test.

$ rails generate controller Example test

Running via Spring preloader in process 35388

 create app/controllers/example_controller.rb

 route get 'example/test'

 invoke erb

 create app/views/example

 create app/views/example/test.html.erb

 invoke test_unit

 create test/controllers/example_controller_test.rb

 invoke helper

 create app/helpers/example_helper.rb

 invoke test_unit

 invoke assets

 invoke coffee

 create app/assets/javascripts/example.coffee

 invoke scss

 create app/assets/stylesheets/example.scss

Phew...that’s a lot of stuff being created. Among others, the file app/views/example/

test.html.erb is created. Let’s take a closer look at it; see Listing 2-2.

Listing 2-2. app/views/example/test.html.erb

<h1>Example#test</h1>

<p>Find me in app/views/example/test.html.erb</p>

It’s HTML, but for it to be a valid HTML page, something is “missing” at the top and

bottom. The missing part can be found in the file app/views/layouts/application.

html.erb. You are going to take a look into it later in the chapter.

Please launch the web server to test it.

$ rails server

Take a look at the web page in the browser at the URL http://localhost:3000/

example/test.

Chapter 2 First steps with rails

59

In the log file log/development.log, you will find the following lines:

Started GET "/example/test" for 127.0.0.1 at 2018-01-17 16:59:41 +0100

 (0.1ms) SELECT "schema_migrations"."version" FROM "schema_migrations"

ORDER BY "schema_migrations"."version" ASC

Processing by ExampleController#test as HTML

 Rendering example/test.html.erb within layouts/application

 Rendered example/test.html.erb within layouts/application (0.8ms)

Completed 200 OK in 833ms (Views: 823.0ms | ActiveRecord: 0.0ms)

This is an HTTP GET request for the URI /example/test. This was then apparently

rendered as HTML by the controller ExampleController using the method test.

Now you just need to find the controller. It’s a good thing you bought this book. All

controllers are in the directory app/controllers, and there you go, you indeed find the

corresponding file app/controllers/example_controller.rb.

$ tree app/controllers

app/controllers

├── application_controller.rb
├── concerns
└── example_controller.rb

Please open the file app/controllers/example_controller.rb with your favorite

editor, as shown in Listing 2-3.

Listing 2-3. app/controllers/example_controller.rb

class ExampleController < ApplicationController

 def test

 end

end

That is very clear. The controller ExampleController is a descendant of the

controller ApplicationController and contains currently just one method with the

name test. This method has no program logic (it’s empty).

You will probably ask yourself how Rails knows that for the URL path /example/test

it should process the controller ExampleController and the method test. This is not

Chapter 2 First steps with rails

60

determined by some magical logic but by a routing configuration. All routings can be

listed with the command rails routes.

$ rails routes

 Prefix Verb URI Pattern Controller#Action

example_test GET /example/test(.:format) example#test

These routes are configured in the file config/routes.rb, which has been autofilled

by the controller generator with a route to example/test. The line that is important is the

second one, as shown in Listing 2-4.

Listing 2-4. config/routes.rb

Rails.application.routes.draw do

 get 'example/test'

 # For details on the DSL available within this file, see

 # http://guides.rubyonrails.org/routing.html

end

Later in the book you are going to dive more into routes.

 a static file in the directory public always has higher priority than a route
in config/routes.rb! so, if you were to save a static file in public/example/
test, that file would be delivered.

 Programming in an erb File
erb pages can contain Ruby code. You can use erb to program and give these pages

dynamic content.

Let’s start with something simple: adding 1 and 1. First try the following code in irb:

$ irb

>> 1 + 1

=> 2

>> exit

Chapter 2 First steps with rails

www.allitebooks.com

http://www.allitebooks.org

61

That was easy.

 if you want to output the result of ruby code in erb, enclose the code
within <%= ... %>.

Fill the erb file app/views/example/test.html.erb as shown in Listing 2-5.

Listing 2-5. app/views/example/test.html.erb

<h1>First experiment with erb</h1>

<p>Addition:

 <%= 1 + 1 %>

</p>

Then use rails server to launch the web server.

$ rails server

Visit that page with the URL http://localhost:3000/example/test, as shown in

Figure 2-3.

Figure 2-3. Experimenting with erb

Chapter 2 First steps with rails

62

You may ask yourself, how can the result of adding two Integers be displayed as a

String? Let’s first look up in irb if it really is an Integer.

$ irb

>> 1.class

=> Integer

>> (1 + 1).class

=> Integer

Yes, both the number 1 and the result of 1 + 1 is an Integer. What happened?

Rails is intelligent enough to automatically call all objects in a view (that is, the file

test.html.erb) that aren’t already strings via the method .to_s, which always converts

the content of the object to a string. Let’s take a brief trip to irb.

>> (1 + 1).to_s

=> "2"

>> (1 + 1).to_s.class

=> String

>> exit

You are now going to learn the finer points of erb step-by-step. Don’t worry, it’s

neither magic nor rocket science.

 <% ... %> vs. <%= ... %>

In the .html.erb file, there are two kinds of Ruby code instructions in addition to the

HTML elements.

• <% ... %>: Executes the Ruby code it contains but does not output

anything (unless you explicitly use something like print or puts in

special ways).

• <%= ... %>: Executes the Ruby code it contains and outputs the

result as a String. If it’s not a String, the method to_s will be called.

 the output of <%= ... %> is automatically escaped. so, you don’t need to
worry about “dangerous” htMl.

Chapter 2 First steps with rails

63

Let’s use an example to make sure it all makes sense. You use each to iterate through

the range (0..5). Edit app/views/example/test.html.erb as shown in Listing 2-6.

Listing 2-6. app/views/example/test.html.erb

<p>Loop from 0 to 5:

<% (0..5).each do |i| %>

 <%= "#{i}, " %>

<% end %>

</p>

Open this view in the browser (see Figure 2-4).

Figure 2-4. Iterating through a range

Let’s now take a look at the HTML source code in the browser.

<!DOCTYPE html>

<html>

 <head>

 <title>Testproject</title>

[...]

 </head>

 <body>

Chapter 2 First steps with rails

64

 <p>Loop from 0 to 5:

 0,

 1,

 2,

 3,

 4,

 5,

</p>

 </body>

</html>

Now you understand how Ruby code is used in the view.

 Q & A

 1. I don’t understand anything. I can’t cope with the Ruby code. Could

you please explain it again?

Is it possible that you have not completely worked your way through

Chapter 1? Please do take your time with it and have another

thorough look. Otherwise, the rest won’t make any sense here.

 2. I can understand the Ruby code and the HTML output. But I

don’t get why some HTML code was rendered around it if I didn’t

even write that HTML code. Where does it come from, and can I

influence it?

Excellent question! I will get to that in the next section.

 Layouts
The erb file in the directory app/views/example/ only forms the core of the later HTML

page. By default, an automatically generated app/views/layouts/application.html.erb

is always rendered around it. Take a closer look at it in Listing 2-7.

Chapter 2 First steps with rails

65

Listing 2-7. app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

 <head>

 <title>Testproject</title>

 <%= csrf_meta_tags %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-

turbolinks- track': 'reload' %>

 <%= javascript_include_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <%= yield %>

 </body>

</html>

The interesting bit is the following line:

<%= yield %>

With <%= yield %>, the view file is included here. The lines with the stylesheets, the

JavaScript, and csrf_meta_tags can stay as they are for now. You’ll take a look into that

in the asset pipeline in Chapter 13. There’s no need to bother with that right now.

The file app/views/layouts/application.html.erb enables you to determine the

basic layout for the entire Rails application. If you want to enter a <hr> for each page and

above it some header text, then you can do this between <%= yield %> and the <body>

tag, as shown in Listing 2-8.

Listing 2-8. app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

 <head>

 <title>Testproject</title>

 <%= csrf_meta_tags %>

Chapter 2 First steps with rails

66

 <%= stylesheet_link_tag 'application', media: 'all', 'data-

turbolinks- track': 'reload' %>

 <%= javascript_include_tag 'application', 'data-turbolinks-track': 'reload' %>

 </head>

 <body>

 <h1>My Header</h1>

 <hr>

 <%= yield %>

 </body>

</html>

You can also create other layouts in the directory app/views/layouts/ and apply

these layouts depending on the relevant situation. But let’s leave it for now. The

important thing is that you understand the basic concept.

 Passing Instance Variables from a Controller to a View
One of the cardinal sins in the MVC model is to put too much program logic into the

view. That’s more or less what used to be done frequently in PHP programming. I’m

guilty of having done it myself. But one of the aims of MVC is that any HTML designer

can create a view without having to worry about the programming. Yeah, yeah...if only

it were always that easy. But let’s just play it through in our minds. If I have a value in

the controller that I want to display in the view, then I need a mechanism for this. This

is referred to as an instance variable and always starts with @. If you are not 100 percent

sure which variable has which scope, then please take another quick look at “Scope of

Variables” in Chapter 1.

In the following example, you insert an instance variable for the current time

that you get by Time.now in the controller and then insert it in the view. You’re taking

programming intelligence from the view to the controller.

The controller file app/controllers/example_controller.rb looks like Listing 2-9.

Chapter 2 First steps with rails

67

Listing 2-9. app/controllers/example_controller.rb

class ExampleController < ApplicationController

 def test

 @current_time = Time.now

 end

end

In the view file app/views/example/test.html.erb, you can then access this

instance variable, as shown in Listing 2-10.

Listing 2-10. app/views/example/test.html.erb

<p>

The current time is

<%= @current_time %>

</p>

With the controller and the view, you now have a clear separation of programming

logic and presentation logic. Now you can automatically adjust the time in the controller

in accordance with the user’s time zone, without the designer of the page having to

worry about it. As always, the method to_s is automatically applied in the view.

I am well aware that no one will now jump up from their chair and shout, “Thank you

for enlightening me! From now on, I will only program neatly in accordance with MVC.”

The previous example is just the first small step in the right direction and shows how you

can easily get values from the controller to the view with instance variables.

 Partials
Even with small web projects, there are often elements that appear repeatedly, for

example, a footer on the page with contact info or a menu. Rails gives you the option

of encapsulating this HTML code in the form of partials and then integrating it within

a view. A partial is also stored in the directory structure under app/views/. But its file

name must start with an underscore (_).

As an example, you now add a mini footer to your page in a separate partial. Copy the

content shown in Listing 2-11 into the new file app/views/example/_footer.html.erb.

Chapter 2 First steps with rails

68

Listing 2-11. app/views/example/_footer.html.erb

<hr>

<p>

 Copyright 2009 - <%= Date.today.year %> the Easter Bunny.

</p>

 Yes, this is not the MVC way of doing it right. Date.today.year should
be defined in the controller. i’m glad that you caught this mistake.

You can edit the file app/views/example/test.html.erb as shown in Listing 2-12

and insert the partial via the command render.

Listing 2-12. app/views/example/test.html.erb

<p>Loop from 0 to 5:

<% (0..5).each do |i| %>

 <%= "#{i}, " %>

<% end %>

</p>

<%= render "footer" %>

So, now you have the following files in the directory app/views/example:

$ tree app/views/example/

app/views/example/

├── _footer.html.erb
└── test.html.erb

Chapter 2 First steps with rails

69

The new web page now looks like Figure 2-5.

Figure 2-5. Web page

 the name of a partial in the code is always specified without the preceding
underscore (_) and without the file extensions .erb and .html. But the actual file
must have the underscore at the beginning of the file name and end with the file
extensions .erb and .html.

Partials can also be integrated from other areas of the subdirectory app/views. For

example, you can create a directory app/views/shared for recurring and shared content

and create a file _footer.html.erb in this directory. You would then integrate this file

into the erb code via the following line:

<%= render "shared/footer" %>

 Passing Variables to a Partial

Partials are great in the sense of the Don’t Repeat Yourself (DRY) concept. But what

makes them really useful is the option of passing variables. Let’s stick with the copyright

example. If you want to pass the start year as a value, you can integrate this by adding the

code in Listing 2-13 in the file app/views/example/_footer.html.erb.

Chapter 2 First steps with rails

70

Listing 2-13. app/views/example/_footer.html.erb

<hr>

<p>

Copyright <%= start_year %> - <%= Date.today.year %> the Easter Bunny.

</p>

So, let’s change the file app/views/example/test.html.erb as shown in Listing 2-14.

Listing 2-14. app/views/example/test.html.erb

<p>Loop from 0 to 5:

<% (0..5).each do |i| %>

 <%= "#{i}, " %>

<% end %>

</p>

<%= render partial: "footer", locals: {start_year: '2000'} %>

If you now go to the URL http://localhost:3000/example/test, you see the 2000.

Chapter 2 First steps with rails

71

Sometimes you need a partial that uses a local variable and need the same partial

but without the local variable somewhere else. You can take care of this in the partial

with an if statement, as shown here:

<hr>

<p>

 Copyright

 <%= "#{start_year} - " if defined? start_year %>

 <%= Date.today.year %>

 the Easter Bunny.

</p>

 defined? can be used to check whether an expression has been defined.

Now you can call this partial with <%= render partial: "footer", locals:

{start_year: '2000'} %> and with <%= render 'footer' %>.

 Further Documentation on Partials

You have really only barely scratched the surface here. Partials are powerful tools.

You can find the official Ruby on Rails documentation on partials at http://guides.

rubyonrails.org/layouts_and_rendering.html#using-partials.

 The Rails Console
The console in Rails is nothing more than an irb session (see the section “irb” in

Chapter 1) built around the Rails environment. The console is useful both for developing

and for administration purposes because the whole Rails environment is represented

and available.

I’ll show you how to work with it in this example application:

$ rails new pingpong

 [...]

$ cd pingpong

Chapter 2 First steps with rails

http://guides.rubyonrails.org/layouts_and_rendering.html#using-partials
http://guides.rubyonrails.org/layouts_and_rendering.html#using-partials

72

$ rails db:migrate

$ rails generate controller Game ping pong

 [...]

$

Start the Rails console with the command rails console.

$ rails console

Running via Spring preloader in process 18395

Loading development environment (Rails 5.2.0)

irb(main):001:0>

You can use exit to get back out.

irb(main):001:0> exit

$

As mentioned in Chapter 1, I use the configuration file shown in Listing 2-15 to save

some real estate in the console.

Listing 2-15. ~/irbrc

IRB.conf[:PROMPT_MODE] = :SIMPLE

In the console, you have access to all variables that are also available later in the

proper application.

$ rails console

Running via Spring preloader in process 19371

Loading development environment (Rails 5.2.0)

>> Rails.env

=> "development"

>> Rails.root

=> #<Pathname:/Users/stefan/pingpong>

>> exit

$

In Chapter 3, you are going to be working with the console a lot and will soon begin

to appreciate the debugging possibilities it offers.

Chapter 2 First steps with rails

73

 One of my best buddies when developing rails applications is the tab key.
whenever you are looking for a method for a particular problem, re-create it in the
rails console and then press the tab key twice to list all the available methods. the
names of the methods are usually self-explanatory.

 app
app is useful if you want to analyze things having to do with routing.

$ rails console

Running via Spring preloader in process 19799

Loading development environment (Rails 5.2.0)

>> app.url_for(controller: 'game', action: 'ping')

=> "http://www.example.com/game/ping"

>> app.get '/game/ping'

Started GET "/game/ping" for 127.0.0.1 at 2018-01-17 17:14:50 +0100

 (0.2ms) SELECT "schema_migrations"."version" FROM "schema_migrations"

ORDER BY "schema_migrations"."version" ASC

Processing by GameController#ping as HTML

 Rendering game/ping.html.erb within layouts/application

 Rendered game/ping.html.erb within layouts/application (54.4ms)

Completed 200 OK in 898ms (Views: 884.8ms | ActiveRecord: 0.0ms)

=> 200

>> exit

 What Is a Generator?
You have already used the command rails generate controller. It starts the

generator with the name controller. There are other generators as well. You can use the

command rails generate to display a list of available generators.

$ rails generate

Running via Spring preloader in process 19901

Usage: rails generate GENERATOR [args] [options]

Chapter 2 First steps with rails

74

[...]

Rails:

 application_record

 assets

 channel

 controller

 encrypted_file

 encryption_key_file

 generator

 helper

 integration_test

 jbuilder

 job

 mailer

 master_key

 migration

 model

 resource

 scaffold

 scaffold_controller

 system_test

 task

ActiveRecord:

 active_record:application_record

Coffee:

 coffee:assets

Js:

 js:assets

TestUnit:

 test_unit:generator

 test_unit:plugin

Chapter 2 First steps with rails

75

What does a generator do? A generator makes a programmer’s job easier by doing

some of the mindless tasks for you. It creates files and fills them with default code,

depending on the parameters passed. You could do the same manually, without the

generator. So, you do not have to use a generator. It is primarily intended to save you

work and avoid potential errors that can easily arise from mindless repetitive tasks.

 someday you might want to create your own generator. take a look at
http://guides.rubyonrails.org/generators.html to find a description
of how to do that.

 Helper
A helper method takes care of recurring tasks in a view. For example, if you want to

display stars (*) for rating a restaurant and not numbers from 1 to 5, you can define the

helper shown in Listing 2-16 in the file app/helpers/application_helper.rb.

Listing 2-16. app/helpers/application_helper.rb

module ApplicationHelper

 def render_stars(value)

 output = ''

 if (1..5).include?(value)

 value.times { output += '*'}

 end

 output

 end

end

With this helper, you can then apply the following code in a view:

<p>

 Rating: <%= render_stars(5) %>

</p>

Chapter 2 First steps with rails

http://guides.rubyonrails.org/generators.html

76

You can also try the helper in the console.

$ rails console

Running via Spring preloader in process 23849

Loading development environment (Rails 5.2.0)

>> helper.render_stars(5)

=> "*****"

>> helper.render_stars(3)

=> "***"

>> exit

There are lots of predefined helpers in Rails, and you will use some of them in the

next chapters. But you can also define your own custom helpers. Any of the helpers from

the file app/helpers/application_helper.rb can be used in any view. Helpers that

you want to be available only in certain views must be defined for each controller. When

creating a controller, a file for helpers of that controller is automatically created in app/

helpers. This gives you the option of defining helpers only for this controller or for the

views of this controller.

All helpers are in the directory app/helpers/.

 Debugging
Rails provides a couple of debug tools to make a developer’s live easier.

 debug
In any view you can use the debug helper to render an object with the YAML format within

a <pre> tag. To display the value of @foo, you can use the following line in your view:

<%= debug @foo %>

 Web Console
The web-console gem provides a way to render Rails console views. When you browse to

a specific URL, at the end of that page you’ll get a console.

Chapter 2 First steps with rails

77

Let me show you this by example with this simple Rails application:

$ rails new testapp

 [...]

$ cd testapp

$ rails db:migrate

$ rails generate controller page index

Rails 5.2 introduces a strict content security policy (CSP) that has to be configured

to use the web console first. Please take a look at https://developer.mozilla.org/

en-US/docs/Web/HTTP/Headers/Content-Security-Policy to understand the concept

of a CSP. You find your CSP configuration in the file config/initializers/content_

security_policy.rb. Please configure it according to your security needs. Listing 2-17

shows a quick-and-dirty hack to display the use of web console. Please do not use this in

production.

Listing 2-17. config/initializers/content_security_policy.rb

Rails.application.config.content_security_policy do |p|

 # p.default_src :self, :https

 p.font_src :self, :https, :data

 p.img_src :self, :https, :data

 p.object_src :none

 # p.script_src :self, :https

 p.style_src :self, :https, :unsafe_inline

 # Specify URI for violation reports

 # p.report_uri "/csp-violation-report-endpoint"

end

In app/controllers/page_controller.rb, you’ll add the code shown in Listing 2- 18.

Listing 2-18. app/controllers/page_controller.rb

class PageController < ApplicationController

 def index

 @foo = 'bar'

 end

end

Chapter 2 First steps with rails

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

78

In the view app/views/page/index.html.erb, you’ll add the console command

shown in Listing 2-19.

Listing 2-19. app/views/page/index.html.erb

<h1>Page#index</h1>

<p>Find me in app/views/page/index.html.erb</p>

<% console %>

After starting the Rails application with rails server and browsing to the URL

http://localhost:3000/page/index, you get a web console at the bottom of the page

(see Figure 2-6). In it you have access to the instance variable @foo.

Figure 2-6. Web console

Chapter 2 First steps with rails

79

 Other Debugging Tools
There are a couple of other built-in debugging tools that are out of the scope of this

chapter. Please take a look at http://guides.rubyonrails.org/debugging_rails_

applications.html to get an overview.

 Rails Lingo
Here I’ll cover a couple of words that you’ll often find in the Ruby on Rails universe.

 Don’t Repeat Yourself
Many Rails programmers are big fans of DRY. DRY means purely and simply that you

should try to place repeated programming logic into separate methods.

 Refactoring
You’ll often hear the word refactoring in the context of DRY. This involves functioning

applications that are further improved. The application in itself remains unchanged in its

interface. But its core is optimized through, among other principles, DRY.

 Convention Over Configuration
Convention over configuration (also known as coding by convention; see

http://en.wikipedia.org/wiki/Convention_over_configuration) is an important

pillar of a Rails application. It states that the programmer does not need to decide

in favor of certain features when starting a project and set these via configuration

parameters. It specifies an underlying basic consensus, and this is set by default. But if

you want to work outside of this conventional basic consensus, then you will need to

change the corresponding parameters.

Chapter 2 First steps with rails

http://guides.rubyonrails.org/debugging_rails_applications.html
http://guides.rubyonrails.org/debugging_rails_applications.html
http://en.wikipedia.org/wiki/Convention_over_configuration

80

 Model View Controller Architecture
You have already created a simple Rails application, and in the next chapter you will dive

deeply into the topic of ActiveRecord. So, now is a good time to briefly introduce a few

terms that often surface in the world of Rails.

According to Wikipedia (http://en.wikipedia.org/wiki/Model–view–controller),

MVC is a design pattern that separates the representation of information from the user’s

interaction with it.

MVC is a structure for software development. It was agreed that it makes sense to

have one part of the software in one place and another part of the software in another

place. Nothing more, nothing less.

This agreement has the enormous advantage that once you are used to this concept,

you know exactly where you can find or need to integrate a certain functionality in a

Rails project.

 Model
Model in this case means data model. By default, Rails applications are an ActiveRecord

data model (see Chapter 3).

All models can be found in the directory app/models/.

 View
The view is responsible for the presentation of the application. It takes care of rendering

the web page, an XML file, or a JSON file. A view could also render a PDF or an ASCII

text. It depends entirely on your application.

You will find all the views in the directory app/views/.

 Controller
Once a web page call has ended up in a route (see Chapter 5), it goes from there to the

controller. The route specifies a certain method (action) as a target. This method can

then fulfil the desired tasks (such as finding a specific set of data and saving it in an

instance variable) and render the desired view.

All controllers can be found in the directory app/controllers/.

Chapter 2 First steps with rails

http://en.wikipedia.org/wiki/Model–view–controller

81

 Abbreviations
There are a handful of abbreviations that can make your life as a developer much

easier if you know them. In the rest of this book, I always use the full version of these

commands to make it clearer for beginners, but in practice, you will soon find that the

abbreviations are easier to use.

• rails console

Shorthand notation: rails c

• rails server

Shorthand notation: rails s

• rails generate scaffold

Shorthand notation: rails g scaffold

Chapter 2 First steps with rails

83
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_3

CHAPTER 3

ActiveRecord
ActiveRecord is a level of abstraction that offers access to a SQL database. ActiveRecord

implements the architectural pattern Active Record.

 This is referred to as object-relational mapping (ORM). I find it rather dry
and boring, but if you have trouble going to sleep tonight, take a look at
http://en.wikipedia.org/wiki/Object_relational_mapping.

One of the recipes for the success of Rails is surely the fact that it uses ActiveRecord.

The programming and use “feels Ruby-like,” and it is much less susceptible to errors

than pure SQL. When working with this chapter, it helps if you have some knowledge of

SQL, but this is not required and also not essential for working with ActiveRecord.

 This chapter is only about ActiveRecord. I am not going to integrate any
tests so I can keep the examples as simple as possible.

 Creating a Database/Model
Model in this context refers to the data model of Model-View-Controller (MVC).

As a first example, let’s take a list of countries in Europe. First, create a new Rails project.

$ rails new europe

 [...]

$ cd europe

http://en.wikipedia.org/wiki/Object_relational_mapping

84

Next, let’s take a look at the help page for rails generate model, as shown here:

$ rails generate model

Running via Spring preloader in process 21883

Usage:

 rails generate model NAME [field[:type][:index] field[:type][:index]]

[options]

[...]

Description:

 Stubs out a new model. Pass the model name, either CamelCased or

 under_scored, and an optional list of attribute pairs as arguments.

[...]

Available field types:

 Just after the field name you can specify a type like text or boolean.

 It will generate the column with the associated SQL type. For instance:

 `rails generate model post title:string body:text`

 will generate a title column with a varchar type and a body column with

a text type. If no type is specified the string type will be used by

default.

 You can use the following types:

 integer

 primary_key

 decimal

 float

 boolean

 binary

 string

 text

 date

 time

 datetime

[...]

ChapTeR 3 aCTIveReCORd

85

The usage description rails generate model NAME [field[:type][:index]

field[:type][:index]] [options] tells you that after rails generate model comes

the name of the model and then the table fields. If you do not put :type after a table field

name, it is assumed to be a string.

Let’s create the model called country.

$ rails generate model Country name population:integer

Running via Spring preloader in process 22053

 invoke active_record

 create db/migrate/20170322165321_create_countries.rb

 create app/models/country.rb

 invoke test_unit

 create test/models/country_test.rb

 create test/fixtures/countries.yml

The generator has created a database migration file with the name

db/migrate/20170322165321_create_countries.rb. It provides the code shown in

Listing 3-1.

Listing 3-1. db/migrate/20170322165321_create_countries.rb

class CreateCountries < ActiveRecord::Migration[5.1]

 def change

 create_table :countries do |t|

 t.string :name

 t.integer :population

 t.timestamps

 end

 end

end

A migration contains database changes. In this migration, a class called

CreateCountries is defined as a child of ActiveRecord::Migration. The method change

is used to define a migration and the associated rollback.

ChapTeR 3 aCTIveReCORd

86

With the command rails db:migrate, you can apply the migrations, in other words,

create the corresponding database table.

$ rails db:migrate

== 20170322165321 CreateCountries: migrating ==============================

-- create_table(:countries)

 -> 0.0010s

== 20170322165321 CreateCountries: migrated (0.0011s) =====================

 You will find more details on migrations in the section “Migrations.”

Let’s take a look at the file app/models/country.rb; see Listing 3-2.

Listing 3-2. app/models/country.rb

class Country < ApplicationRecord

end

The class Country is a child of ApplicationRecord that inherits from

ApplicationRecord. In ApplicationRecord you’ll find all the ActiveRecord magic.

 The Attributes id, created_at, and updated_at
Even if you cannot see it in the migration, you also get the attributes id, created_at,

and updated_at by default for each ActiveRecord model. In the Rails console, you can

output the attributes of the class Country by using the class method column_names.

$ rails console

Running via Spring preloader in process 22303

Loading development environment (Rails 5.2.0)

>> Country.column_names

=> ["id", "name", "population", "created_at", "updated_at"]

>> exit

The attribute created_at stores the time when the record was initially created.

updated_at stores the time of the last update for this record.

id is used as a central identification of the record (primary key). The id value is

automatically incremented by 1 for each new record.

ChapTeR 3 aCTIveReCORd

87

 Getters and Setters
To read and write values of a SQL table row, you can use getters and setters based on

ActiveRecord-provided getters and setters. These attr_accessors are automatically

created. The getter of the field updated_at for a given Country with the name germany

would be germany.updated_at.

 Possible Data Types in ActiveRecord
ActiveRecord is a layer between Ruby and various relational databases. Unfortunately,

many SQL databases have different perspectives regarding the definition of columns and

their content. But you do not need to worry about this because ActiveRecord solves this

problem transparently for you.

To generate a model, you can use the field types shown in Table 3-1.

Table 3-1. Field Types

Name Description

binary This is a Binary Large Object (BLOB) in the classical sense. Never heard of it?

Then you probably won’t need it. See also http://en.wikipedia.org/wiki/

Binary._large_object.

boolean true, false, or nil.

date You can store a date here.

datetime here you can store a date including a time.

integer This is for storing an integer. See also http://en.wikipedia.org/wiki/

Integer_(computer_science).

decimal This is for storing a decimal number.

primary_key This is an integer that is automatically incremented by 1 by the database for each

new entry. This field type is often used as key for linking different database tables

or models. See also http://en.wikipedia.org/wiki/Unique_key.

string This is a string, in other words, a sequence of any characters, up to a maximum

of 2^8 -1 (= 255) characters. See also http://en.wikipedia.org/wiki/

String_(computer_science).

(continued)

ChapTeR 3 aCTIveReCORd

http://en.wikipedia.org/wiki/Binary._large_object
http://en.wikipedia.org/wiki/Binary._large_object
http://en.wikipedia.org/wiki/Integer_(computer_science
http://en.wikipedia.org/wiki/Integer_(computer_science
http://en.wikipedia.org/wiki/Unique_key
http://en.wikipedia.org/wiki/String_(computer_science
http://en.wikipedia.org/wiki/String_(computer_science

88

 Decimal
You can also define a decimal with the model generator. But you need to observe the

special syntax (you have to use ' if you are using the Bash shell).

Here’s an example of creating a price with a decimal:

$ rails generate model product name 'price:decimal{7,2}'

 [...]

$

That would generate the migration shown in Listing 3-3.

Listing 3-3. db/migrate/20170322170623_create_products.rb

class CreateProducts < ActiveRecord::Migration[5.1]

 def change

 create_table :products do |t|

 t.string :name

 t.decimal :price, precision: 7, scale: 2

 t.timestamps

 end

 end

end

In the section “Migrations,” I will provide more information on the individual data

types and discuss the available options.

Name Description

text This is also a string but is considerably bigger. By default, up to 2^16 -1 (= 65535)

characters can be saved here.

time This is for storing a time.

timestamp This is for storing a time with a date, filled in automatically by the database.

Table 3-1. (continued)

ChapTeR 3 aCTIveReCORd

89

 Naming Conventions (Country vs. country vs. countries)
ActiveRecord automatically uses the English plural forms. So, for the class Country,

it’s countries. If you are not sure about a term, you can also work with the class and

method names.

$ rails console

Running via Spring preloader in process 23132

Loading development environment (Rails 5.2.0)

>> Country.name.tableize

=> "countries"

>> Country.name.foreign_key

=> "country_id"

>> exit

 Database Configuration
Which database is used by default? Let’s take a quick look at the configuration file for the

database (config/database.yml), as shown in Listing 3-4.

Listing 3-4. config/database.yml

SQLite version 3.x

gem install sqlite3

#

Ensure the SQLite 3 gem is defined in your Gemfile

gem 'sqlite3'

#

default: &default

 adapter: sqlite3

 pool: <%= ENV.fetch("RAILS_MAX_THREADS") { 5 } %>

 timeout: 5000

development:

 <<: *default

 database: db/development.sqlite3

ChapTeR 3 aCTIveReCORd

90

Warning: The database defined as "test" will be erased and

re-generated from your development database when you run "rake".

Do not set this db to the same as development or production.

test:

 <<: *default

 database: db/test.sqlite3

production:

 <<: *default

 database: db/production.sqlite3

As you are working in Development mode, Rails has created a new SQLite3 database

in the file db/development.sqlite3 as a result of rails db:migrate and will save all

data there.

Fans of command-line clients can use sqlite3 for viewing this database.

$ sqlite3 db/development.sqlite3

SQLite version 3.19.3 2017-06-27 16:48:08

Enter ".help" for usage hints.

sqlite> .tables

ar_internal_metadata countries schema_migrations

sqlite> .schema countries

CREATE TABLE "countries" ("id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,

"name" varchar, "population" integer, "created_at" datetime NOT NULL,

"updated_at" datetime NOT NULL);

sqlite> .exit

 Adding Records
I will show you how to view records, but to display records, you have to create them first.

So, here is how you can create a new record with ActiveRecord.

 create
The most frequently used method for creating a new record is create.

Let’s try creating a country in the console with the command Country.create(name:

'Germany', population: 81831000).

ChapTeR 3 aCTIveReCORd

91

$ rails console

Running via Spring preloader in process 23285

Loading development environment (Rails 5.2.0)

>> Country.create(name: 'Germany', population: 81831000)

 (0.1ms) begin transaction

 SQL (0.4ms) INSERT INTO "countries" ("name", "population", "created_at",

 "updated_at") VALUES (?, ?, ?, ?) [["name", "Germany"],

 ["population", 81831000], ["created_at", "2017-03-22 17:10:30.859482"],

 ["updated_at", "2017-03-22 17:10:30.859482"]]

 (2.2ms) commit transaction

=> #<Country id: 1, name: "Germany", population: 81831000,

created_at: "2017-03-22 17:10:30", updated_at: "2017-03-22 17:10:30">

>> exit

ActiveRecord saves the new record and outputs the executed SQL command in the

Development environment. But to make absolutely sure it works, let’s take a last look

with the command-line client sqlite3.

$ sqlite3 db/development.sqlite3

SQLite version 3.19.3 2017-06-27 16:48:08

Enter ".help" for usage hints.

sqlite> SELECT * FROM countries;

1|Germany|81831000|2017-03-23 17:10:03.141592|2017-03-22 17:10:03.141592

sqlite> .exit

 Syntax

The method create can handle a number of different syntax constructs. If you want

to create a single record, you can do this with or without brackets ({}) within the

parentheses, as shown here:

• Country.create(name: 'Germany', population: 81831000)

• Country.create({name: 'Germany', population: 81831000})

ChapTeR 3 aCTIveReCORd

92

Similarly, you can describe the attributes differently, as shown here:

• Country.create(:name ⇒ 'Germany', :population ⇒ 81831000)

• Country.create('name' ⇒ 'Germany', 'population' ⇒ 81831000)

• Country.create(name: 'Germany', population: 81831000)

You can also pass an array of hashes to create and use this approach to create several

records at once.

Country.create([{name: 'Germany'}, {name: 'France'}])

 new
In addition to create, there is also new. But you have to use the save method to save an

object created with new (which has both advantages and disadvantages).

$ rails console

Running via Spring preloader in process 23679

Loading development environment (Rails 5.2.0)

>> france = Country.new

=> #<Country id: nil, name: nil, population: nil, created_at: nil,

updated_at: nil>

>> france.name = 'France'

=> "France"

>> france.population = 65447374

=> 65447374

>> france.save

 (0.1ms) begin transaction

 SQL (0.5ms) INSERT INTO "countries" ("name", "population", "created_at",

 "updated_at") VALUES (?, ?, ?, ?) [["name", "France"],

 ["population", 65447374], ["created_at", "2017-03-22 17:15:30.001686"],

 ["updated_at", "2017-03-22 17:15:30.001686"]]

 (2.1ms) commit transaction

=> true

>> france

=> #<Country id: 2, name: "France", population: 65447374,

created_at: "2017-03-22 17:15:30", updated_at: "2017-03-22 17:15:30">

ChapTeR 3 aCTIveReCORd

93

You can also pass parameters for the new record directly to the method new, just as

with create.

>> belgium = Country.new(name: 'Belgium', population: 10839905)

=> #<Country id: nil, name: "Belgium", population: 10839905,

created_at: nil, updated_at: nil>

>> belgium.save

 (0.1ms) begin transaction

 SQL (0.5ms) INSERT INTO "countries" ("name", "population",

 "created_at", "updated_at") VALUES (?, ?, ?, ?) [["name", "Belgium"],

 ["population", 10839905], ["created_at", "2017-03-22 17:16:31.091853"],

 ["updated_at", "2017-03-22 17:16:31.091853"]]

 (2.5ms) commit transaction

=> true

>> exit

 new_record?
With the method new_record?, you can find out whether a record has already been

saved. If a new object has been created with new and has not yet been saved, then the

result of new_record? is true. After a save, it’s false.

Here’s an example:

$ rails console

Running via Spring preloader in process 23823

Loading development environment (Rails 5.2.0)

>> netherlands = Country.new(name: 'Netherlands')

=> #<Country id: nil, name: "Netherlands", population: nil,

created_at: nil, updated_at: nil>

>> netherlands.new_record?

=> true

>> netherlands.save

 (0.1ms) begin transaction

 SQL (0.5ms) INSERT INTO "countries" ("name", "created_at",

 "updated_at") VALUES (?, ?, ?) [["name", "Netherlands"],

ChapTeR 3 aCTIveReCORd

94

 ["created_at", "2017-03-22 17:17:34.694389"],

 ["updated_at", "2017-03-22 17:17:34.694389"]]

 (2.1ms) commit transaction

=> true

>> netherlands.new_record?

=> false

>> exit

 For already existing records, you can also check for changes with the
method changed? (see the section “changed?”). You can even use netherland.
population_changed? to check whether just the attribute popluation was
changed.

 first, last, and all
In certain cases, you may need the first record or the last one or perhaps even all records.

Conveniently, there is a ready-made method for each case. Let’s start with the easiest

ones: first and last.

$ rails console

Running via Spring preloader in process 24090

Loading development environment (Rails 5.2.0)

>> Country.first

 Country Load (0.2ms) SELECT "countries".* FROM "countries" ORDER BY

 "countries"."id" ASC LIMIT ? [["LIMIT", 1]]

=> #<Country id: 1, name: "Germany", population: 81831000, created_at:

"2017-03-22 17:10:30", updated_at: "2017-03-22 17:10:30">

>> Country.last

 Country Load (0.3ms) SELECT "countries".* FROM "countries" ORDER BY

 "countries"."id" DESC LIMIT ? [["LIMIT", 1]]

=> #<Country id: 4, name: "Netherlands", population: nil, created_at:

"2017-03-22 17:17:34", updated_at: "2017-03-22 17:17:34">

ChapTeR 3 aCTIveReCORd

95

Here’s an example all at once with all:

>> Country.all

 Country Load (0.2ms) SELECT "countries".* FROM "countries"

=> #<ActiveRecord::Relation [#<Country id: 1, name: "Germany",

population: 81831000, created_at: "2017-03-22 17:10:30",

updated_at: "2017-03-22 17:10:30">, #<Country id: 2, name: "France",

population: 65447374, created_at: "2017-03-22 17:15:30",

updated_at: "2017-03-22 17:15:30">, #<Country id: 3, name: "Belgium",

population: 10839905, created_at: "2017-03-22 17:16:31",

updated_at: "2017-03-22 17:16:31">, #<Country id: 4, name: "Netherlands",

population: nil, created_at: "2017-03-22 17:17:34",

updated_at: "2017-03-22 17:17:34">]>

But the objects created by first, last, and all are different.

>> Country.first.class

 Country Load (0.3ms) SELECT "countries".* FROM "countries"

 ORDER BY "countries"."id" ASC LIMIT ? [["LIMIT", 1]]

=> Country(id: integer, name: string, population: integer,

created_at: datetime, updated_at: datetime)

>> Country.all.class

=> Country::ActiveRecord_Relation

So, Country.first is a Country, which makes sense. But Country.all is something

you haven’t had yet. Let’s use the console to get a better idea of it.

>> puts Country.all.to_yaml

 Country Load (0.4ms) SELECT "countries".* FROM "countries"

- !ruby/object:Country

 concise_attributes:

 - !ruby/object:ActiveRecord::Attribute::FromDatabase

 name: id

 value_before_type_cast: 1

 - !ruby/object:ActiveRecord::Attribute::FromDatabase

 name: name

 value_before_type_cast: Germany

ChapTeR 3 aCTIveReCORd

96

 - !ruby/object:ActiveRecord::Attribute::FromDatabase

 name: population

 value_before_type_cast: 81831000

 - !ruby/object:ActiveRecord::Attribute::FromDatabase

 name: created_at

 value_before_type_cast: '2017-03-22 17:10:30.859482'

 - !ruby/object:ActiveRecord::Attribute::FromDatabase

 name: updated_at

 value_before_type_cast: '2017-03-22 17:10:30.859482'

 new_record: false

 active_record_yaml_version: 2

[...]

=> nil

By using the to_yaml method, suddenly the database has work to do. The reason for

this behavior is optimization. Let’s assume you want to chain a couple of methods. Then

it might be better for ActiveRecord to wait until the very last second, which it does. It

only requests the data from the SQL database when it has to do it (which is called lazy

loading). Until then, it stores the request in an ActiveRecord::Relation.

The result of Country.all is actually an Array of Country.

If Country.all returns an array, then you should also be able to use iterators and

each, right? Yes, of course! That is the beauty of it. Here is a little experiment with each:

>> Country.all.each do |country|

?> puts country.name

>> end

 Country Load (0.1ms) SELECT "countries".* FROM "countries"

Germany

France

Belgium

Netherlands

=> [#<Country id: 1, name: "Germany", [...]]

ChapTeR 3 aCTIveReCORd

97

So, can you also use .all.first as an alternative for .first? Yes, but it does not

make much sense. Take a look for yourself.

>> Country.first

 Country Load (0.2ms) SELECT "countries".* FROM "countries"

 ORDER BY "countries"."id" ASC LIMIT ? [["LIMIT", 1]]

=> #<Country id: 1, name: "Germany", population: 81831000,

created_at: "2017-03-22 17:10:30", updated_at: "2017-03-22 17:10:30">

>> Country.all.first

 Country Load (0.2ms) SELECT "countries".* FROM "countries"

 ORDER BY "countries"."id" ASC LIMIT ? [["LIMIT", 1]]

=> #<Country id: 1, name: "Germany", population: 81831000,

created_at: "2017-03-22 17:10:30", updated_at: "2017-03-22 17:10:30">

>> exit

Country.first and Country.all.first result in the same SQL query because

ActiveRecord optimizes it.

 ActiveRecord provides not only the first method but also second,
third, fourth, and fifth. It’s obvious what they do.

 Populating the Database with seeds.rb
With the file db/seeds.rb, the Rails gods have given you a way of feeding default values

easily and quickly to a fresh installation. This is a normal Ruby program within the Rails

environment. You have full access to all classes and methods of your application.

With that, you don’t need to enter everything manually with rails console to create

all the initial records in a new Rails application. You can use the file db/seeds.rb, as

shown in Listing 3-5.

Listing 3-5. db/seeds.rb

Country.create(name: 'Germany', population: 81831000)

Country.create(name: 'France', population: 65447374)

Country.create(name: 'Belgium', population: 10839905)

Country.create(name: 'Netherlands', population: 16680000)

ChapTeR 3 aCTIveReCORd

98

You then populate it with data via rails db:seed.

If you want to delete the existing database, re-create it, and then populate it with the

seeds, you can use rails db:reset. That’s what you do here:

$ rails db:reset

Dropped database 'db/development.sqlite3'

Dropped database 'db/test.sqlite3'

Created database 'db/development.sqlite3'

Created database 'db/test.sqlite3'

-- create_table("countries", {:force=>:cascade})

 -> 0.0050s

-- create_table("countries", {:force=>:cascade})

 -> 0.0032s

I use the file db/seeds.rb at this point because it offers a simple mechanism for

filling an empty database with useful values. In the course of this book, this will make it

easier to set up quick example scenarios.

 It’s All Just Ruby Code
db/seeds.rb is a Ruby program. Correspondingly, you can also use the approach shown

in Listing 3-6 as an alternative.

Listing 3-6. db/seeds.rb

country_list = [

 ["Germany", 81831000],

 ["France", 65447374],

 ["Belgium", 10839905],

 ["Netherlands", 16680000]

]

country_list.each do |name, population|

 Country.create(name: name, population: population)

end

The result is the same. I am showing you this example to make it clear that you can

program normally within db/seeds.rb.

ChapTeR 3 aCTIveReCORd

99

 Generating seeds.rb from Existing Data
Sometimes it can be useful to export the current data pool of a Rails application into

db/seeds.rb. While writing this book, I encountered this problem in almost every

chapter. Unfortunately, there is no standard approach for this. I am showing you what

you can do in this case. There are other, more complex scenarios that can be derived

from my approach.

You can create your own little rake task for that, as shown in Listing 3-7. A rake task is

a Ruby program that is stored in the lib/tasks/ directory and that has full access to the

Rails environment.

Listing 3-7. lib/tasks/export.rake

namespace :export do

 desc "Prints Country.all in a seeds.rb way."

 task :seeds_format => :environment do

 Country.order(:id).all.each do |country|

 bad_keys = ['created_at', 'updated_at', 'id']

 serialized = country.serializable_hash.

 delete_if{|key,value| bad_keys.include?(key)}

 puts "Country.create(#{serialized})"

 end

 end

end

Then you can call the corresponding rake task with the command

rails export:seeds_format.

$ rails export:seeds_format

Country.create({"name"=>"Germany", "population"=>81831000})

Country.create({"name"=>"France", "population"=>65447374})

Country.create({"name"=>"Belgium", "population"=>10839905})

Country.create({"name"=>"Netherlands", "population"=>16680000})

You can either expand this program so that the output is written directly into

db/seeds.rb or simply use the shell.

$ rails export:seeds_format > db/seeds.rb

ChapTeR 3 aCTIveReCORd

100

 Searching and Finding with Queries
The methods first and all are already quite nice, but usually you want to search for

something more specific with a query.

For describing queries, you create a new Rails project.

$ rails new jukebox

 [...]

$ cd jukebox

$ rails generate model Album name release_year:integer

 [...]

$ rails db:migrate

 [...]

For the examples used here, use db/seeds.rb with the content shown in Listing 3-8.

Listing 3-8. db/seeds.rb

Album.create(name: "Sgt. Pepper's Lonely Hearts Club Band", release_year: 1967)

Album.create(name: "Pet Sounds", release_year: 1966)

Album.create(name: "Revolver", release_year: 1966)

Album.create(name: "Highway 61 Revisited", release_year: 1965)

Album.create(name: "Rubber Soul", release_year: 1965)

Album.create(name: "What's Going On", release_year: 1971)

Album.create(name: "Exile on Main St.", release_year: 1972)

Album.create(name: "London Calling", release_year: 1979)

Album.create(name: "Blonde on Blonde", release_year: 1966)

Album.create(name: "The Beatles", release_year: 1968)

Then, set up the new database with rails db:reset.

$ rails db:reset

Dropped database 'db/development.sqlite3'

Database 'db/test.sqlite3' does not exist

Created database 'db/development.sqlite3'

Created database 'db/test.sqlite3'

-- create_table("active_storage_attachments", {:force=>:cascade})

 -> 0.0074s

ChapTeR 3 aCTIveReCORd

101

-- create_table("active_storage_blobs", {:force=>:cascade})

 -> 0.0033s

-- create_table("albums", {:force=>:cascade})

 -> 0.0020s

-- create_table("active_storage_attachments", {:force=>:cascade})

 -> 0.0077s

-- create_table("active_storage_blobs", {:force=>:cascade})

 -> 0.0040s

-- create_table("albums", {:force=>:cascade})

 -> 0.0021s

 find
The simplest case is searching for a record via a primary key (by default, the id field in

the database table). If I know the ID of an object, then I can search for the individual

object or several objects at once via the ID.

$ rails console

Running via Spring preloader in process 26956

Loading development environment (Rails 5.2.0)

>> Album.find(2)

 Album Load (0.2ms) SELECT "albums".* FROM "albums"

 WHERE "albums"."id" = ? LIMIT ? [["id", 2], ["LIMIT", 1]]

=> #<Album id: 2, name: "Pet Sounds", release_year: 1966,

created_at: "2017-03-22 18:19:06", updated_at: "2017-03-22 18:19:06">

>> Album.find([1,3,7])

 Album Load (0.4ms) SELECT "albums".* FROM "albums"

 WHERE "albums"."id" IN (1, 3, 7)

=> [#<Album id: 1, name: "Sgt. Pepper's Lonely Hearts Club Band",

release_year: 1967, created_at: "2017-03-22 18:19:06",

updated_at: "2017-03-22 18:19:06">, #<Album id: 3, name: "Revolver",

release_year: 1966, created_at: "2017-03-22 18:19:06",

updated_at: "2017-03-22 18:19:06">, #<Album id: 7,

name: "Exile on Main St.", release_year: 1972,

created_at: "2017-03-22 18:19:06", updated_at: "2017-03-22 18:19:06">]

ChapTeR 3 aCTIveReCORd

102

If you always want to have an array as the result, you also always have to pass an

array as a parameter.

>> Album.find(5).class

 Album Load (0.2ms) SELECT "albums".* FROM "albums"

 WHERE "albums"."id" = ? LIMIT ? [["id", 5], ["LIMIT", 1]]

=> Album(id: integer, name: string, release_year: integer,

created_at: datetime, updated_at: datetime)

>> Album.find([5]).class

 Album Load (0.1ms) SELECT "albums".* FROM "albums"

 WHERE "albums"."id" = ? LIMIT ? [["id", 5], ["LIMIT", 1]]

=> Array

>> exit

 The method find generates an exception if the Id you are searching for
does not have a record in the database.

 where
With the method where, you can search for specific values in the database. Let’s search

for all albums from the year 1966.

$ rails console

Running via Spring preloader in process 27119

Loading development environment (Rails 5.2.0)

>> Album.where(release_year: 1966)

 Album Load (0.2ms) SELECT "albums".* FROM "albums"

 WHERE "albums"."release_year" = ? [["release_year", 1966]]

=> #<ActiveRecord::Relation [#<Album id: 2, name: "Pet Sounds",

release_year: 1966, created_at: "2017-03-22 18:19:06",

updated_at: "2017-03-22 18:19:06">, #<Album id: 3,

name: "Revolver", release_year: 1966,

created_at: "2017-03-22 18:19:06", updated_at: "2017-03-22 18:19:06">,

#<Album id: 9, name: "Blonde on Blonde", release_year: 1966,

ChapTeR 3 aCTIveReCORd

103

created_at: "2017-03-22 18:19:06", updated_at: "2017-03-22 18:19:06">]>

>> Album.where(release_year: 1966).count

 (0.3ms) SELECT COUNT(*) FROM "albums"

 WHERE "albums"."release_year" = ? [["release_year", 1966]]

=> 3

You can also use where to search for ranges.

>> Album.where(release_year: 1960..1966).count

 (0.3ms) SELECT COUNT(*) FROM "albums"

 WHERE ("albums"."release_year" BETWEEN ? AND ?)

 [["release_year", 1960], ["release_year", 1966]]

=> 5

In addition, you can specify several search factors simultaneously, separated by

commas.

>> Album.where(release_year: 1960..1966, id: 1..5).count

 (0.4ms) SELECT COUNT(*) FROM "albums"

 WHERE ("albums"."release_year" BETWEEN ? AND ?)

 AND ("albums"."id" BETWEEN ? AND ?) [["release_year", 1960],

 ["release_year", 1966], ["id", 1], ["id", 5]]

=> 4

Or you can specify an array of parameters.

>> Album.where(release_year: [1966, 1968]).count

 (0.2ms) SELECT COUNT(*) FROM "albums"

 WHERE "albums"."release_year" IN (1966, 1968)

=> 4

The result of where is always an array, even if it contains only one hit or if no hit is

returned (which will result in an empty array). If you are looking for the first hit, you

need to combine the method where with the method first.

>> Album.where(release_year: [1966, 1968]).first

 Album Load (0.4ms) SELECT "albums".* FROM "albums"

 WHERE "albums"."release_year" IN (1966, 1968)

 ORDER BY "albums"."id" ASC LIMIT ? [["LIMIT", 1]]

ChapTeR 3 aCTIveReCORd

104

=> #<Album id: 2, name: "Pet Sounds", release_year: 1966,

created_at: "2017-03-22 18:19:06", updated_at: "2017-03-22 18:19:06">

>> exit

 not

The method not provides a way to search for the exact opposite of a where query. Here’s

an example:

$ rails console

Running via Spring preloader in process 27349

Loading development environment (Rails 5.2.0)

>> Album.where.not(release_year: 1968).count

 (0.2ms) SELECT COUNT(*) FROM "albums"

 WHERE ("albums"."release_year" != ?) [["release_year", 1968]]

=> 9

>> exit

 or

The method or provides a way to combine queries with a logical or. Here’s an example:

$ rails console

Running via Spring preloader in process 27449

Loading development environment (Rails 5.2.0)

>> Album.where(release_year: 1967).or(Album.where(name: 'The Beatles')).count

 (0.2ms) SELECT COUNT(*) FROM "albums"

 WHERE ("albums"."release_year" = ? OR "albums"."name" = ?)

 [["release_year", 1967], ["name", "The Beatles"]]

=> 2

>> exit

 SQL Queries with where

Sometimes there is no other way, and you just have to define and execute your own SQL

query. In ActiveRecord, there are two different ways of doing this. One sanitizes each

query before executing it, and the other passes the query on to the SQL database one to

ChapTeR 3 aCTIveReCORd

105

one as it is. Normally, you should always use the sanitized version because otherwise

you can easily fall victim to an SQL injection attack (see http://en.wikipedia.org/

wiki/Sql_injection).

 If you do not know much about SQL, you can safely skip this section. The
SQL commands used here are not explained further.

Sanitized Queries

In this variant, all dynamic search parts are replaced with a question mark as a

placeholder and only listed as parameters after the SQL string.

In the following example, you are searching for all albums whose name contains the

string "on":

$ rails console

Running via Spring preloader in process 27553

Loading development environment (Rails 5.2.0)

>> Album.where('name like ?', '%on%').count

 (0.1ms) SELECT COUNT(*) FROM "albums" WHERE (name like '%on%')

=> 5

Now you’re searching for the number of albums that were published from 1965

onward.

>> Album.where('release_year > ?', 1964).count

 (0.2ms) SELECT COUNT(*) FROM "albums" WHERE (release_year > 1964)

=> 10

Here are the number of albums that are more recent than 1970 and whose name

contains the string "on":

>> Album.where('name like ? AND release_year > ?', '%on%', 1970).count

 (0.4ms) SELECT COUNT(*) FROM "albums" WHERE (name like '%on%'

 AND release_year > 1970)

=> 3

ChapTeR 3 aCTIveReCORd

http://en.wikipedia.org/wiki/Sql_injection
http://en.wikipedia.org/wiki/Sql_injection

106

If the variable search_string contains the desired string, you can search for it as

follows:

>> search_string = 'ing'

=> "ing"

>> Album.where('name like ?', "%#{search_string}%").count

 (0.2ms) SELECT COUNT(*) FROM "albums" WHERE (name like '%ing%')

=> 2

>> exit

 Dangerous SQL Queries

If you really know what you are doing, you can of course also define the SQL query

completely and forego the sanitizing of the query.

Let’s count all albums whose name contains the string "on".

$ rails console

Running via Spring preloader in process 27699

Loading development environment (Rails 5.2.0)

>> Album.where("name like '%on%'").count

 (0.2ms) SELECT COUNT(*) FROM "albums" WHERE (name like '%on%')

=> 5

>> exit

Please use this variation only if you know exactly what you are doing and after you

have familiarized yourself with the topic SQL injections (see http://en.wikipedia.org/

wiki/Sql_injection).

 Lazy Loading

Lazy loading is a mechanism that carries out a database query only if the program flow

cannot be realized without the result of this query. Until then, the query is saved as

ActiveRecord::Relation.

 Incidentally, the opposite of lazy loading is referred to as eager loading.

ChapTeR 3 aCTIveReCORd

http://en.wikipedia.org/wiki/Sql_injection
http://en.wikipedia.org/wiki/Sql_injection

107

Does it make sense in principle but you aren’t sure what the point of it all is? Then

let’s cobble together a query where you nest several methods. In the following example, a

is defined more and more closely, and only at the end (when calling the method all) the

database query would really be executed in a production system. With the ActiveRecord

methods to_sql, you can display the current SQL query.

$ rails console

Running via Spring preloader in process 27764

Loading development environment (Rails 5.2.0)

>> a = Album.where(release_year: 1965..1968)

 Album Load (0.2ms) SELECT "albums".* FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1965 AND 1968)

=> #<ActiveRecord::Relation [#<Album id: 1, [...]]>

>> a.class

=> Album::ActiveRecord_Relation

>> a = a.order(:release_year)

 Album Load (0.3ms) SELECT "albums".* FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1965 AND 1968) ORDER BY

 "albums"."release_year" ASC

=> #<ActiveRecord::Relation [#<Album id: 4, [...]]>

>> a = a.limit(3)

 Album Load (0.4ms) SELECT "albums".* FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1965 AND 1968) ORDER BY

 "albums"."release_year" ASC LIMIT 3

=> #<ActiveRecord::Relation [#<Album id: 4, [...]]>

>> exit

The console can be a bit tricky about this. It tries to help the developer by actually

showing the result, but in a nonconsole environment, this would only happen the last time.

 Automatic Optimization

One of the great advantages of lazy loading is the automatic optimization of the SQL

query through ActiveRecord.

Let’s take the sum of all the release years of the albums that came out in the 1970s.

Then you sort the albums alphabetically and calculate the sum.

ChapTeR 3 aCTIveReCORd

108

$ rails console

Running via Spring preloader in process 27764

Loading development environment (Rails 5.2.0)

>> Album.where(release_year: 1970..1979).sum(:release_year)

 (1.5ms) SELECT SUM("albums"."release_year") FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1970 AND 1979)

=> 5922

>> Album.where(release_year: 1970..1979).order(:name).sum(:release_year)

 (0.3ms) SELECT SUM("albums"."release_year") FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1970 AND 1979)

=> 5922

>> exit

Logically, the result is the same for both queries. But the interesting thing is that

ActiveRecord uses the same SQL code for both queries. It has detected that order is

completely irrelevant for sum and therefore took it out altogether.

 If you are asking yourself why the first query took 1.5ms and the second
0.3ms, activeRecord cached the results of the first SQL request.

 order and reverse_order
To sort a database query, you can use the method order.

Here’s an example of all albums from the 1960s, sorted by name:

$ rails console

Running via Spring preloader in process 27764

Loading development environment (Rails 5.2.0)

>> Album.where(release_year: 1960..1969).order(:name)

 Album Load (0.2ms) SELECT "albums".* FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1960 AND 1969) ORDER BY "albums"."name"

 ASC

=> #<ActiveRecord::Relation [#<Album id: 9, name: "Blonde on Blonde" [...]]>

ChapTeR 3 aCTIveReCORd

109

With the method reverse_order, you can reverse an order previously defined via

order.

>> Album.where(release_year: 1960..1969).order(:name).reverse_order

 Album Load (0.3ms) SELECT "albums".* FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1960 AND 1969) ORDER BY "albums"."name"

 DESC

=> #<ActiveRecord::Relation [#<Album id: 10, name: "The Beatles" [...]]>

 limit
The result of any search can be limited to a certain range via the method limit.

Here are the first five albums from the 1960s:

>> Album.where(release_year: 1960..1969).limit(5)

 Album Load (0.3ms) SELECT "albums".* FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1960 AND 1969) LIMIT 5

=> #<ActiveRecord::Relation [#<Album id: 1, [...]]>

Here are all albums sorted by name and then the first five of those:

>> Album.order(:name).limit(5)

 Album Load (0.4ms) SELECT "albums".* FROM "albums" ORDER BY

 "albums"."name" ASC LIMIT 5

=> #<ActiveRecord::Relation [#<Album id: 9, name: "Blonde [...]]>

 offset

With the method offset, you can define the starting position of the method limit.

First, you return the first two records and then the first two records with an offset of 5.

>> Album.limit(2)

 Album Load (1.0ms) SELECT "albums".* FROM "albums" LIMIT 2

=> #<ActiveRecord::Relation [#<Album id: 1, [...]>, #<Album id: 2, [...]]>

>> Album.limit(2).offset(5)

 Album Load (0.3ms) SELECT "albums".* FROM "albums" LIMIT 2 OFFSET 5

=> #<ActiveRecord::Relation [#<Album id: 6, [...]>, #<Album id: 7, [...]>]>

ChapTeR 3 aCTIveReCORd

110

 group
With the method group, you can return the result of a query in grouped form.

Let’s return all albums, grouped by their release_year.

$ rails console

Running via Spring preloader in process 27764

Loading development environment (Rails 5.2.0)

>> Album.group(:release_year)

 Album Load (0.3ms) SELECT "albums".* FROM "albums" GROUP BY

"albums"."release_year"

=> #<ActiveRecord::Relation [#<Album id: 5, name: "Rubber Soul",

release_year: 1965, created_at: “2015-12-16 17:45:34”, updated_at: “2015-

12-16 17:45:34”>, #<Album id: 9, name: “Blonde on Blonde”, release_year:

1966, created_at:”2015-12-16 17:45:34”, updated_at: “2015-12-16 17:45:34”>,

#<Album id: 1,name: “Sgt. Pepper’s Lonely Hearts Club Band”, release_year:

1967, created_at:”2015-12-16 17:45:34”, updated_at: “2015-12-16 17:45:34”>,

#<Album id: 10,name: “The Beatles”, release_year: 1968, created_at: “2015-

12-16 17:45:34”,updated_at: “2015-12-16 17:45:34”>, #<Album id: 6, name:

“What’s Going On”,release_year: 1971, created_at: “2015-12-16 17:45:34”,

updated_at: “2015- 12- 16 17:45:34”>, #<Album id: 7, name: “Exile on Main

St.”, release_year: 1972,created_at: “2015-12-16 17:45:34”, updated_at:

“2015-12-16 17:45:34”>, #<Albumid: 8, name: “London Calling”, release_

year: 1979, created_at: “2015-12-16 17:45:34”, updated_at: “2015-12-16

17:45:34”>]>>> exit

 pluck
Normally, ActiveRecord pulls all table columns from the database and leaves it up to

programmers to later pick out the components they are interested in. But when you have

a large amount of data, it can be useful and, above all, much quicker to define a specific

database field directly for the query. You can do this via the method pluck.

ChapTeR 3 aCTIveReCORd

111

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Album.where(release_year: 1960..1969).pluck(:name)

 (0.2ms) SELECT "albums"."name" FROM "albums"

 WHERE ("albums"."release_year" BETWEEN ? AND ?)

 [["release_year", 1960], ["release_year", 1969]]

=> ["Sgt. Pepper's Lonely Hearts Club Band", "Pet Sounds", "Revolver",

"Highway 61 Revisited", "Rubber Soul", "Blonde on Blonde", "The Beatles"]

As a result, pluck returns an array. You can pluck more than one field too.

>> Album.where(release_year: 1960..1969).pluck(:name, :release_year)

 (0.3ms) SELECT "albums"."name", "albums"."release_year"

 FROM "albums" WHERE ("albums"."release_year" BETWEEN ? AND ?)

 [["release_year", 1960], ["release_year", 1969]]

=> [["Sgt. Pepper's Lonely Hearts Club Band", 1967],

["Pet Sounds", 1966], ["Revolver", 1966], ["Highway 61 Revisited", 1965],

["Rubber Soul", 1965], ["Blonde on Blonde", 1966], ["The Beatles", 1968]]

 select
select works like pluck but returns an ActiveRecord::Relation.

>> Album.where(release_year: 1960..1969).select(:name)

 Album Load (0.2ms) SELECT "albums"."name" FROM "albums"

 WHERE ("albums"."release_year" BETWEEN 1960 AND 1969)

=> #<ActiveRecord::Relation [#<Album id: nil,

name: "Sgt. Pepper's Lonely Hearts Club Band">,

#<Album id: nil, name: "Pet Sounds">,

#<Album id: nil, name: "Revolver">,

#<Album id: nil, name: "Highway 61 Revisited">,

#<Album id: nil, name: "Rubber Soul">,

#<Album id: nil, name: "Blonde on Blonde">,

#<Album id: nil, name: "The Beatles">]>

ChapTeR 3 aCTIveReCORd

112

 first_or_create and first_or_initialize
The methods first_or_create and first_or_initialize are ways to search for a

specific entry in your database or create one if the entry doesn’t exist already. Both have

to be chained to a where search.

>> Album.where(name: 'Test')

 Album Load (0.2ms) SELECT "albums".* FROM "albums"

 WHERE "albums"."name" = ? [["name", "Test"]]

=> #<ActiveRecord::Relation []>

>> test = Album.where(name: 'Test').first_or_create

 Album Load (0.3ms) SELECT "albums".* FROM "albums"

 WHERE "albums"."name" = ? ORDER BY "albums"."id" ASC LIMIT 1

 [["name", "Test"]]

 (0.1ms) begin transaction

 SQL (0.4ms) INSERT INTO "albums" ("name", "created_at", "updated_at")

 VALUES (?, ?, ?) [["name", "Test"],

 ["created_at", "2015-12-16 18:34:35.775645"],

 ["updated_at", "2015-12-16 18:34:35.775645"]]

 (9.2ms) commit transaction

=> #<Album id: 11, name: "Test", release_year: nil,

created_at: "2015-12-16 18:34:35", updated_at: "2015-12-16 18:34:35">

 Calculations
Here are some examples of calculations.

 average
With the method average, you can calculate the average of the values in a particular

column of the table. The data material is of course not really suited to this. But as an

example, let’s calculate the average release year of all albums and then do the same for

albums from the 1960s.

ChapTeR 3 aCTIveReCORd

113

>> Album.average(:release_year)

 (0.3ms) SELECT AVG("albums"."release_year") FROM "albums"

=> #<BigDecimal:7fd76fd027a0,'0.19685E4',18(36)>

>> Album.average(:release_year).to_s

 (0.2ms) SELECT AVG("albums"."release_year") FROM "albums"

=> "1968.5"

>> Album.where(:release_year => 1960..1969).average(:release_year)

 (0.1ms) SELECT AVG("albums"."release_year") FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1960 AND 1969)

=> #<BigDecimal:7fd76fc908d0,'0.1966142857 14286E4',27(36)>

>> Album.where(:release_year => 1960..1969).average(:release_year).to_s

 (0.3ms) SELECT AVG("albums"."release_year") FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1960 AND 1969)

=> "1966.14285714286"

 count
The name says it all: the method count counts the number of records.

First, you return the number of all albums in the database and then the number of

albums from the 1960s.

>> Album.count

 (0.1ms) SELECT COUNT(*) FROM "albums"

=> 11

 maximum
With the method maximum, you can output the item with the highest value within a query.

Let’s look for the highest release year.

>> Album.maximum(:release_year)

 (0.2ms) SELECT MAX("albums"."release_year") FROM "albums"

=> 1979

ChapTeR 3 aCTIveReCORd

114

 minimum
With the method minimum, you can output the item with the lowest value within a query.

Let’s find the lowest release year.

>> Album.minimum(:release_year)

 (0.2ms) SELECT MIN("albums"."release_year") FROM "albums"

=> 1965

 sum
With the method sum, you can calculate the sum of all items in a specific column of the

database query.

Let’s find the sum of all release years.

>> Album.sum(:release_year)

 (0.2ms) SELECT SUM("albums"."release_year") FROM "albums"

=> 19685

 SQL EXPLAIN
Most SQL databases can provide detailed information on a SQL query with the

command EXPLAIN. This does not make much sense for your mini application, but if you

are working with a large database one day, then EXPLAIN is a good debugging method,

for example to find out where to place an index. SQL EXPLAIN can be called with the

method explain (it will be displayed in prettier form if you add puts).

>> Album.where(release_year: 1960..1969)

 Album Load (0.2ms) SELECT "albums".* FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1960 AND 1969)

=> #<ActiveRecord::Relation [#<Album id: 1, [...]>]>

>> Album.where(release_year: 1960..1969).explain

 Album Load (0.3ms) SELECT "albums".* FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1960 AND 1969)

=> EXPLAIN for: SELECT "albums".* FROM "albums" WHERE ("albums"."release_year"

BETWEEN 1960 AND 1969)

0|0|0|SCAN TABLE albums

ChapTeR 3 aCTIveReCORd

115

 Batches
ActiveRecord stores the results of a query in memory, with very large tables and results

that can become a performance issue. To address this, you can use the find_each

method that splits up the query into batches with the default size of 1,000 (can be

configured with the :batch_size option). The example Album table is too small to show

the effect, but the method would be used like this:

>> Album.where(release_year: 1960..1969).find_each do |album|

?> puts album.name.upcase

>> end

 Album Load (0.2ms) SELECT "albums".* FROM "albums" WHERE

 ("albums"."release_year" BETWEEN 1960 AND 1969) ORDER BY "albums"."id" ASC

 LIMIT 1000

SGT. PEPPER'S LONELY HEARTS CLUB BAND

PET SOUNDS

REVOLVER

HIGHWAY 61 REVISITED

RUBBER SOUL

BLONDE ON BLONDE

THE BEATLES

=> nil

 Editing a Record
Adding and searching data is quite nice, but often you want to edit a record. To show

how that’s done, I use the album database covered in the section “Searching and Finding

with Queries.”

 Simple Editing
You can edit record with the following steps:

 1. Find the record and create a corresponding instance.

 2. Change the attribute.

 3. Save the record via the ActiveRecord method’s save method.

ChapTeR 3 aCTIveReCORd

116

Here you are searching for the album The Beatles and changing its name to A Test:

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> beatles_album = Album.where(name: 'The Beatles').first

 Album Load (0.2ms) SELECT "albums".* FROM "albums"

 WHERE "albums"."name" = ? ORDER BY "albums"."id" ASC LIMIT 1

 [["name", "The Beatles"]]

=> #<Album id: 10, name: "The Beatles", release_year: 1968,

created_at: "2015-12-16 17:45:34", updated_at: "2015-12-16 17:45:34">

>> beatles_album.name

=> "The Beatles"

>> beatles_album.name = 'A Test'

=> "A Test"

>> beatles_album.save

 (0.1ms) begin transaction

 SQL (0.6ms) UPDATE "albums" SET "name" = ?, "updated_at" = ?

 WHERE "albums"."id" = ? [["name", "A Test"],

 ["updated_at", "2015-12-16 18:46:03.851575"], ["id", 10]]

 (9.2ms) commit transaction

=> true

>> exit

 Active Model Dirty
ActiveModel::Dirty provides simple mechanisms to track the changes of an

ActiveRecord model.

 changed?

If you are not sure whether a record has been changed or saved yet, you can check via

the method changed?.

>> beatles_album = Album.where(id: 10).first

 Album Load (0.4ms) SELECT "albums".* FROM "albums" WHERE "albums"."id" = ?

 ORDER BY "albums"."id" ASC LIMIT 1 [["id", 10]]

ChapTeR 3 aCTIveReCORd

117

=> #<Album id: 10, name: "A Test", release_year: 1968, created_at:

"2015- 12- 16

17:45:34", updated_at: "2015-12-16 18:46:03">

>> beatles_album.changed?

=> false

>> beatles_album.name = 'The Beatles'

=> "The Beatles"

>> beatles_album.changed?

=> true

>> beatles_album.save

 (0.1ms) begin transaction SQL (0.6ms) UPDATE "albums" SET "name" = ?,

 "updated_at" = ? WHERE "albums"."id" = ? [["name", "The Beatles"],

 ["updated_at", "2015-12-16 18:47:26.794527"], ["id", 10]] (9.2ms) commit

 transaction

=> true

>> beatles_album.changed?

=> false

 _changed?

An attribute name followed by _changed? tracks changes to a specific attribute.

>> beatles_album = Album.where(id: 10).first

 Album Load (0.5ms) SELECT "albums".* FROM "albums" WHERE "albums"."id"

= ? ORDER BY "albums"."id" ASC LIMIT ? [["id", 10], ["LIMIT", 1]]

=> #<Album id: 10, name: "The Beatles", release_year: 1968, created_at:

"2016-01-21 10:15:51", updated_at: "2016-01-21 10:15:51">

>> beatles_album.release_year_changed?

=> false

>> beatles_album.release_year = 1900

=> 1900

>> beatles_album.release_year_changed?

=> true

ChapTeR 3 aCTIveReCORd

118

 update
With the method update, you can change several attributes of an object in one go and

then immediately save them automatically.

Let’s use this method within the example from the section “Simple Editing.”

>> first_album = Album.first

 Album Load (0.1ms) SELECT "albums".* FROM "albums" ORDER BY

"albums"."id" ASC LIMIT ? [["LIMIT", 1]]

=> #<Album id: 1, name: "Sgt. Pepper's Lonely Hearts Club Band", release_

year: 1967, created_at: "2016-01-21 10:15:51", updated_at: "2016-01-21

10:15:51">

>> first_album.changed?

=> false

>> first_album.update(name: 'Another Test')

 (0.1ms) begin transaction

 SQL (0.4ms) UPDATE "albums" SET "name" = ?, "updated_at" = ? WHERE

"albums"."id" = ? [["name", "Another Test"], ["updated_at", 2016-01-21

12:11:27 UTC], ["id", 1]]

 (0.9ms) commit transaction

=> true

>> first_album.changed?

=> false

>> first_album

=> #<Album id: 1, name: "Another Test", release_year: 1967, created_at:

"2016-01-21 10:15:51", updated_at: "2016-01-21 12:11:27">

 Locking
There are many ways to lock a database. By default, Rails uses the optimistic locking

of records. To activate locking, a model needs to have an attribute with the name

lock_version, which has to be an integer. To show how it works, I’ll create a new Rails

project with a Product model. Then I’ll try to change the price of the first Product on two

different instances. The second change will raise an ActiveRecord::StaleObjectError.

ChapTeR 3 aCTIveReCORd

119

Here’s an example setup:

$ rails new shop

 [...]

$ cd shop

$ rails generate model Product name 'price:decimal{8,2}'

 lock_version:integer

 [...]

$ rails db:migrate

 [...]

$

Here’s an example of raising an ActiveRecord::StaleObjectError:

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Product.create(name: 'Orange', price: 0.5)

 (0.1ms) begin transaction SQL (0.7ms) INSERT INTO "products" ("name",

 "price", "created_at", "updated_at", "lock_version")

 VALUES (?, ?, ?, ?, ?) [["name", "Orange"], ["price", 0.5],

 ["created_at", "2015-12-16 19:02:17.338531"],

 ["updated_at", "2015-12-16 19:02:17.338531"],

 ["lock_version", 0]]

 (1.0ms) commit transaction

=> #<Product id: 1, name: "Orange", price:

#<BigDecimal:7feb59231198,'0.5E0',9(27)>, lock_version: 0, created_at:

"2015-12-16 19:02:17", updated_at: "2015-12-16 19:02:17">

>> a = Product.first

 Product Load (0.4ms) SELECT "products".* FROM "products" ORDER BY

 "products"."id" ASC LIMIT 1

=> #<Product id: 1, name: "Orange", price:

#<BigDecimal:7feb5918a870,'0.5E0',9(27)>, lock_version: 0, created_at:

"2015-12-16 19:02:17", updated_at: "2015-12-16 19:02:17">

>> b = Product.first

 Product Load (0.3ms) SELECT "products".* FROM "products" ORDER BY

 "products"."id" ASC LIMIT 1 => #<Product id: 1, name: "Orange", price:

ChapTeR 3 aCTIveReCORd

120

 #<BigDecimal:7feb59172d60,'0.5E0',9(27)>, lock_version: 0, created_at:

 "2015-12-16 19:02:17", updated_at: "2015-12-16 19:02:17">

>> a.price = 0.6

=> 0.6

>> a.save

 (0.1ms) begin transaction

 SQL (0.4ms) UPDATE "products" SET "price" = 0.6, "updated_at" =

'2015- 12- 16 19:02:59.514736’, “lock_version” = 1 WHERE “products”.”id” = ? AND

 "products"."lock_version" = ? [["id", 1], ["lock_version", 0]]

 (9.1ms) commit transaction

=> true

>> b.price = 0.7

=> 0.7

>> b.save

 (0.1ms) begin transaction

 SQL (0.3ms) UPDATE "products" SET "price" = 0.7, "updated_at" =

'2015- 12- 16 19:03:08.408511’, “lock_version” = 1 WHERE “products”.”id” = ? AND

 "products"."lock_version" = ? [["id", 1], ["lock_version", 0]]

 (0.1ms) rollback transaction

ActiveRecord::StaleObjectError: Attempted to update a stale object: Product

[...]

>> exit

You have to deal with the conflict by rescuing the exception and then fix the conflict

depending on your business logic.

 please make sure to add a lock_version hidden field in your forms
when using this mechanism with a WebGUI.

ChapTeR 3 aCTIveReCORd

121

 has_many, a 1:n Association
To explain has_many, let’s create a food store application. Create a Category model and a

Product model. A Product belongs to a Category. It’s a 1:n association (called a one-to-

many association).

 associations are also sometimes referred to as relations or relationships.

First, you create a Rails application.

$ rails new food_store

 [...]

$ cd food_store

Now you create the model for the categories.

$ rails generate model Category name

 [...]

$

Finally, you create the database table for the Product. In this, you need an

assignment field to the category table. This foreign key is always set by default as the

name of the referenced object (here: category) with an attached _id. You could run

the command rails generate model product name price:integer category_

id:integer, but there is a better way of doing it, shown here:

$ rails generate model product name price:integer category:references

Running via Spring preloader in process 35988

 invoke active_record

 create db/migrate/20170323074157_create_products.rb

 create app/models/product.rb

 invoke test_unit

 create test/models/product_test.rb

 create test/fixtures/products.yml

Why is it better? It creates a different kind of migration that includes a foreign key

optimization, as shown in Listing 3-9.

ChapTeR 3 aCTIveReCORd

122

Listing 3-9. db/migrate/20170323074157_create_products.rb

class CreateProducts < ActiveRecord::Migration[5.1]

 def change

 create_table :products do |t|

 t.string :name

 t.integer :price

 t.references :category, foreign_key: true

 t.timestamps

 end

 end

end

Then execute rails db:migrate so that the database tables are actually created.

$ rails db:migrate

Let’s take a look at this on the console:

$ rails console

Running via Spring preloader in process 36245

Loading development environment (Rails 5.2.0)

>> Category.column_names

=> ["id", "name", "created_at", "updated_at"]

>> Product.column_names

=> ["id", "name", "price", "category_id", "created_at", "updated_at"]

>> exit

The two database tables are set up and can be used with ActiveRecord. And because

you used category:references, it automatically inserted the belongs_to relationship

into the Product model, as shown in Listing 3-10.

Listing 3-10. app/models/product.rb

class Product < ApplicationRecord

 belongs_to :category

end

ChapTeR 3 aCTIveReCORd

123

But you have to add the has_many part manually in the Category model, as shown in

Listing 3-11.

Listing 3-11. app/models/category.rb

class Category < ApplicationRecord

 has_many :products

end

That’s all you need to do to tell ActiveRecord about the 1:n relation. These two

simple definitions form the basis for a good deal of ActiveRecord magic. It will generate

a bunch of cool new methods for you to link both models.

 Creating Records
In this example, you want to save a record for the product Apple, which belongs to the

category Fruits. Fire up your console and follow my lead.

 create

First create a new category for the fruits.

$ rails console

Running via Spring preloader in process 37142

Loading development environment (Rails 5.2.0)

>> fruits = Category.create(name: "Fruits")

 (0.1ms) begin transaction

 SQL (0.5ms) INSERT INTO "categories"

 ("name", "created_at", "updated_at") VALUES (?, ?, ?)

 [["name", "Fruits"], ["created_at", "2017-03-23 07:55:13.482884"],

 ["updated_at", "2017-03-23 07:55:13.482884"]]

 (2.3ms) commit transaction

=> #<Category id: 1, name: "Fruits",

created_at: "2017-03-23 07:55:13",

updated_at: "2017-03-23 07:55:13">

ChapTeR 3 aCTIveReCORd

124

Because the Category model has a has_many :products definition, it provides a

products method, which you can use to get all the products of a given category.

>> fruits.products

 Product Load (0.2ms) SELECT "products".* FROM "products" WHERE

"products"."category_id" = ? [["category_id", 1]]

=> #<ActiveRecord::Associations::CollectionProxy []>

But it gets even better. You can chain the create method after fruits.products to

actually create a new product, which has the correct category_id.

>> apple = fruits.products.create(name: "Apple", price: 1)

 (0.1ms) begin transaction

 SQL (0.4ms) INSERT INTO "products"

 ("name", "price", "category_id", "created_at", "updated_at")

 VALUES (?, ?, ?, ?, ?) [["name", "Apple"], ["price", 1],

 ["category_id", 1], ["created_at", "2017-03-23 08:00:39.595699"],

 ["updated_at", "2017-03-23 08:00:39.595699"]]

 (3.4ms) commit transaction

=> #<Product id: 1, name: "Apple", price: 1, category_id: 1,

created_at: "2017-03-23 08:00:39", updated_at: "2017-03-23 08:00:39">

Of course, this can be done manually too.

>> pineapple = Product.create(name: "Pineapple", price: 2, category_id: 1)

 (0.1ms) begin transaction

 Category Load (0.3ms) SELECT "categories".* FROM "categories"

 WHERE "categories"."id" = ? LIMIT ? [["id", 1], ["LIMIT", 1]]

 SQL (0.4ms) INSERT INTO "products"

 ("name", "price", "category_id", "created_at", "updated_at")

 VALUES (?, ?, ?, ?, ?) [["name", "Pineapple"], ["price", 2],

 ["category_id", 1], ["created_at", "2017-03-23 08:04:16.382548"],

 ["updated_at", "2017-03-23 08:04:16.382548"]]

 (2.5ms) commit transaction

=> #<Product id: 2, name: "Pineapple", price: 2, category_id: 1,

created_at: "2017-03-23 08:04:16", updated_at: "2017-03-23 08:04:16">

ChapTeR 3 aCTIveReCORd

125

If you don’t want to chain create after fruits.products, you can create a new

Product and fill in the category_id like this:

>> orange = Product.create(name: "Orange", price: 1, category: fruits)

 (0.1ms) begin transaction

 SQL (1.3ms) INSERT INTO "products"

 ("name", "price", "category_id", "created_at", "updated_at")

 VALUES (?, ?, ?, ?, ?) [["name", "Orange"], ["price", 1],

 ["category_id", 1], ["created_at", "2017-03-23 08:15:37.575534"],

 ["updated_at", "2017-03-23 08:15:37.575534"]]

 (2.4ms) commit transaction

=> #<Product id: 3, name: "Orange", price: 1, category_id: 1,

created_at: "2017-03-23 08:15:37", updated_at: "2017-03-23 08:15:37">

I think the chained version is the best, but who am I to judge?

Now you have three products that belong to fruits.

>> fruits.products.count

 (0.2ms) SELECT COUNT(*) FROM "products"

 WHERE "products"."category_id" = ? [["category_id", 1]]

=> 3

>> exit

 build

The method build resembles create. But the record is not saved. This happens only

after a save.

$ rails console

Running via Spring preloader in process 40092

Loading development environment (Rails 5.2.0)

>> fruits = Category.where(name: "Fruits").first

 Category Load (0.1ms) SELECT "categories".* FROM "categories"

 WHERE "categories"."name" = ? ORDER BY "categories"."id" ASC LIMIT ?

 [["name", "Fruits"], ["LIMIT", 1]]

=> #<Category id: 1, name: "Fruits", created_at: "2017-03-23 07:55:13",

updated_at: "2017-03-23 07:55:13">

>> cherry = fruits.products.build(name: "Cherry", price: 1)

ChapTeR 3 aCTIveReCORd

126

=> #<Product id: nil, name: "Cherry", price: 1, category_id: 1,

created_at: nil, updated_at: nil>

>> cherry.save

 (0.1ms) begin transaction

 SQL (1.9ms) INSERT INTO "products" ("name", "price", "category_id",

 "created_at", "updated_at") VALUES (?, ?, ?, ?, ?) [["name", "Cherry"],

 ["price", 1], ["category_id", 1],

 ["created_at", "2017-03-23 08:22:48.044002"],

 ["updated_at", "2017-03-23 08:22:48.044002"]]

 (2.6ms) commit transaction

=> true

>> exit

 When using create and build, you of course have to observe logical
dependencies or there will be an error. For example, you cannot chain two build
methods. here’s an example:

>> Category.build(name: "Vegetable").products.build(name: "Potato")

NoMethodError: undefined method `build' for #

<Class:0x007f8d7c72c020>

 from (irb):3

 Accessing Records
To access records, first you need example data. Please populate the file db/seeds.rb with

the content shown in Listing 3-12.

Listing 3-12. db/seeds.rb

fruits = Category.create(name: "Fruits")

vegetables = Category.create(name: "Vegetables")

jams = Category.create(name: "Jams")

fruits.products.create(name: "Apple", price: 1)

fruits.products.create(name: "Banana", price: 2)

ChapTeR 3 aCTIveReCORd

127

fruits.products.create(name: "Pineapple", price: 3)

fruits.products.create(name: "Raspberry", price: 1)

fruits.products.create(name: "Strawberry", price: 1)

vegetables.products.create(name: "Potato", price: 2)

vegetables.products.create(name: "Carrot", price: 1)

vegetables.products.create(name: "Broccoli", price: 2)

vegetables.products.create(name: "Cauliflower", price: 1)

jams.products.create(name: "Strawberry", price: 1)

jams.products.create(name: "Raspberry", price: 1)

Now drop the database and refill it with db/seeds.rb.

$ rails db:reset

You already know how to access the products of a given category.

$ rails console

Running via Spring preloader in process 45107

Loading development environment (Rails 5.2.0)

>> Category.first.products.count

 Category Load (0.1ms) SELECT "categories".* FROM "categories"

 ORDER BY "categories"."id" ASC LIMIT ? [["LIMIT", 1]]

 (0.1ms) SELECT COUNT(*) FROM "products"

 WHERE "products"."category_id" = ? [["category_id", 1]]

=> 5

You can access the records simply via the plural form of the n model. Hm, do you

think it also works the other way around? Let’s try the singular of the 1 model.

>> Product.first.category

 Product Load (0.3ms) SELECT "products".* FROM "products"

 ORDER BY "products"."id" ASC LIMIT ? [["LIMIT", 1]]

 Category Load (0.2ms) SELECT "categories".* FROM "categories"

 WHERE "categories"."id" = ? LIMIT ? [["id", 1], ["LIMIT", 1]]

=> #<Category id: 1, name: "Fruits", created_at: "2017-03-23 14:23:16",

updated_at: "2017-03-23 14:23:16">

>> exit

ChapTeR 3 aCTIveReCORd

128

Bingo! Accessing the associated Category class is also easy. And as it’s only a single

record (belongs_to), the singular form is used in this case.

 If there is no product for a category, the result will be an empty array. If no
category is associated with an product, then ActiveRecord outputs the value
nil as Category.

 Searching for Records
To search for records, first you check how many products are in the database.

$ rails console

Running via Spring preloader in process 45328

Loading development environment (Rails 5.2.0)

>> Product.count

 (0.1ms) SELECT COUNT(*) FROM "products"

=> 11

And you check how many categories there are.

>> Category.count

 (0.1ms) SELECT COUNT(*) FROM "categories"

=> 3

 joins method

To find all categories that have at least one product with the name Strawberry, you use a

joins method.

>> Category.joins(:products).where(:products => {name: "Strawberry"})

 Category Load (0.2ms) SELECT "categories".* FROM "categories"

 INNER JOIN "products" ON "products"."category_id" = "categories"."id"

 WHERE "products"."name" = ? [["name", "Strawberry"]]

=> #<ActiveRecord::Relation [#<Category id: 1, name: "Fruits",

created_at: "2017-03-23 14:33:14", updated_at: "2017-03-23 14:33:14">,

ChapTeR 3 aCTIveReCORd

129

#<Category id: 3, name: "Jams", created_at: "2017-03-23 14:33:14",

updated_at: "2017-03-23 14:33:14">]>

>>

The database contains two categories with a product Strawberry. In the SQL, you

can see that the method joins executes an INNER JOIN.

Of course, you can also do it the other way around. You could search for the products

with the category Jams.

>> Product.joins(:category).where(:categories => {name: "Jams"})

 Product Load (0.4ms) SELECT "products".* FROM "products"

 INNER JOIN "categories" ON "categories"."id" = "products"."category_id"

 WHERE "categories"."name" = ? [["name", "Jams"]]

=> #<ActiveRecord::Relation [#<Product id: 10, name: "Strawberry",

price: 1, category_id: 3, created_at: "2017-03-23 14:33:15",

updated_at: "2017-03-23 14:33:15">, #<Product id: 11, name: "Raspberry",

price: 1, category_id: 3, created_at: "2017-03-23 14:33:15",

updated_at: "2017-03-23 14:33:15">]>

 includes

includes is similar to the method joins (see the section “joins”). Again, you can use it

to search within a 1:n association. Let’s repeat the searches you just did with includes

instead of joins.

>> Category.includes(:products).where(:products => {name: "Strawberry"})

 SQL (0.4ms) SELECT "categories"."id" AS t0_r0, "categories"."name"

 AS t0_r1, "categories"."created_at" AS t0_r2, "categories"."updated_at"

 AS t0_r3, "products"."id" AS t1_r0, "products"."name" AS t1_r1,

 "products"."price" AS t1_r2, "products"."category_id" AS t1_r3,

 "products"."created_at" AS t1_r4, "products"."updated_at" AS t1_r5

 FROM "categories" LEFT OUTER JOIN "products" ON

 "products"."category_id" = "categories"."id" WHERE

 "products"."name" = ? [["name", "Strawberry"]]

=> #<ActiveRecord::Relation [#<Category id: 1, name: "Fruits",

created_at: "2017-03-23 14:33:14", updated_at: "2017-03-23 14:33:14">,

ChapTeR 3 aCTIveReCORd

130

#<Category id: 3, name: "Jams", created_at: "2017-03-23 14:33:14",

updated_at: "2017-03-23 14:33:14">]>

>> exit

In the console output, you can see that the SQL code is different from the joins query.

joins only reads in the Category records; includes reads the associated Product

records.

 joins vs. includes

Why would you want to use includes at all? Well, if you already know before the query

that you will later need all the product data, then it makes sense to use includes,

because then you need only one database query. That is a lot faster than starting a

separate query for each one.

In that case, would it not be better to always work with includes? No, it depends on

the specific case. When you are using includes, a lot more data is transported initially.

This has to be cached and processed by ActiveRecord, which takes longer and requires

more resources.

 delete and destroy
With the methods destroy, destroy_all, delete, and delete_all, you can delete

records, as described in the section called “Deleting/Destroying a Record.” In the context

of has_many, this means you can delete the Product records associated with a Category

in one go.

$ rails console

Running via Spring preloader in process 46835

Loading development environment (Rails 5.2.0)

>> Category.first.products.destroy_all

 Category Load (0.3ms) SELECT "categories".* FROM "categories"

 ORDER BY "categories"."id" ASC LIMIT ? [["LIMIT", 1]]

 Product Load (0.2ms) SELECT "products".* FROM "products"

 WHERE "products"."category_id" = ? [["category_id", 1]]

 (0.1ms) begin transaction

ChapTeR 3 aCTIveReCORd

131

 SQL (0.4ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 1]]

 SQL (0.1ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 2]]

 SQL (0.1ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 3]]

 SQL (0.1ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 4]]

 SQL (0.1ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 5]]

 (2.8ms) commit transaction

=> [#<Product id: 1, name: "Apple", price: 1, category_id: 1,

created_at: "2017-03-23 14:33:15", updated_at: "2017-03-23 14:33:15">,

#<Product id: 2, name: "Banana", price: 2, category_id: 1,

created_at: "2017-03-23 14:33:15", updated_at: "2017-03-23 14:33:15">,

#<Product id: 3, name: "Pineapple", price: 3, category_id: 1,

created_at: "2017-03-23 14:33:15", updated_at: "2017-03-23 14:33:15">,

#<Product id: 4, name: "Raspberry", price: 1, category_id: 1,

created_at: "2017-03-23 14:33:15", updated_at: "2017-03-23 14:33:15">,

#<Product id: 5, name: "Strawberry", price: 1, category_id: 1,

created_at: "2017-03-23 14:33:15", updated_at: "2017-03-23 14:33:15">]

>> Category.first.products.count

 Category Load (0.2ms) SELECT "categories".* FROM "categories"

 ORDER BY "categories"."id" ASC LIMIT ? [["LIMIT", 1]]

 (0.3ms) SELECT COUNT(*) FROM "products"

 WHERE "products"."category_id" = ? [["category_id", 1]]

=> 0

>> exit

 Options
I can’t comment on all possible options at this point. But I’d like to show you the most

often used ones. For all others, please refer to the Ruby on Rails documentation that you

can find on the Internet at http://rails.rubyonrails.org/classes/ActiveRecord/

Associations/ClassMethods.html.

 belongs_to

The most important option for belongs_to is this:

touch: true

ChapTeR 3 aCTIveReCORd

http://rails.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html
http://rails.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html

132

It automatically sets the field updated_at of the entry in the table Category to the

current time when a Product is edited. In app/models/product.rb, it would look like

Listing 3-13.

Listing 3-13. app/models/product.rb

class Product < ApplicationRecord

 belongs_to :category, touch: true

end

 has_many

The most important option for has_many is as follows:

dependent: :destroy

If a category is removed, then it usually makes sense to also automatically remove all

products dependent on this category. This can be done via :dependent ⇒ :destroy in

app/models/category.rb, as shown in Listing 3-14.

Listing 3-14. app/models/category.rb

class Category < ApplicationRecord

 has_many :products, dependent: :destroy

end

In the following example, you destroy the last category in the database table. All

products of this category are also automatically destroyed.

$ rails console

Running via Spring preloader in process 47105

Loading development environment (Rails 5.2.0)

>> Product.count

 (0.1ms) SELECT COUNT(*) FROM "products"

=> 6

>> Category.last.destroy

 Category Load (0.1ms) SELECT "categories".* FROM "categories"

 ORDER BY "categories"."id" DESC LIMIT ? [["LIMIT", 1]]

 (0.1ms) begin transaction

ChapTeR 3 aCTIveReCORd

133

 Product Load (0.2ms) SELECT "products".* FROM "products"

 WHERE "products"."category_id" = ? [["category_id", 3]]

 SQL (0.6ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 10]]

 SQL (0.1ms) DELETE FROM "products" WHERE "products"."id" = ? [["id", 11]]

 SQL (0.1ms) DELETE FROM "categories" WHERE "categories"."id" = ? [["id", 3]]

 (4.7ms) commit transaction

=> #<Category id: 3, name: "Jams", created_at: "2017-03-23 14:33:14",

updated_at: "2017-03-23 15:02:08">

>> Product.count

 (0.2ms) SELECT COUNT(*) FROM "products"

=> 4

>> exit

 please always remember the difference between the methods destroy
(see the section “destroy”) and delete (see the section “delete”). This association
works only with the method destroy.

 Many-to-Many, an n:n Association
Up to now, you have always associated a database table directly with another table. For

many-to-many, you will associate two tables via a third table. As an example for this kind

of relation, let’s use an order in an online shop. In this type of shop system, a Product

can appear in several orders (Order), and at the same time an order can contain several

products. This is referred to as many-to-many. Let’s re-create this scenario with code.

 Preparation
Create the shop application.

$ rails new online_shop

 [...]

$ cd online_shop

ChapTeR 3 aCTIveReCORd

134

Here’s a model for the products:

$ rails generate model product name 'price:decimal{7,2}'

Here’s a model for an order:

$ rails generate model order delivery_address

Here’s a model for individual items of an order:

$ rails generate model line_item order:references \

product:references quantity:integer

Then, create the database.

$ rails db:migrate

Finally, set up some example data, as shown in Listing 3-15.

Listing 3-15. db/seeds.rb

Product.create(name: 'Milk', price: 0.45)

Product.create(name: 'Butter', price: 0.75)

Product.create(name: 'Flour', price: 0.45)

Product.create(name: 'Eggs', price: 1.45)

$ rails db:seed

 The Association
An order (Order) consists of one or several items (LineItem). This LineItem consists

of the order_id, a product_id, and the number of items ordered (quantity). The

individual product is defined in the product database (Product).

Associating the models happens as always in the directory app/models. First,

Listing 3-16 shows the file app/models/order.rb.

Listing 3-16. app/models/order.rb

class Order < ApplicationRecord

 has_many :line_items

 has_many :products, through: :line_items

end

ChapTeR 3 aCTIveReCORd

135

Then Listing 3-17 shows the counterpart in the file app/models/product.rb.

Listing 3-17. app/models/product.rb

class Product < ApplicationRecord

 has_many :line_items

 has_many :orders, through: :line_items

end

The file app/models/line_item.rb has been filled by the generator, as shown in

Listing 3-18.

Listing 3-18. app/models/line_item.rb

class LineItem < ApplicationRecord

 belongs_to :order

 belongs_to :product

end

 The Association Works Transparently
As you implement the associations via has_many, most things will already be familiar to

you from the section “has_many, a 1:n Association.” I am going to show a few examples.

First create a new Order object.

$ rails console

Running via Spring preloader in process 48290

Loading development environment (Rails 5.2.0)

>> order = Order.new(delivery_address: '123 Acme Street')

=> #<Order id: nil, delivery_address: "123 Acme Street",

created_at: nil, updated_at: nil>

Logically, this new order does not yet contain any products.

>> order.products.count

=> 0

ChapTeR 3 aCTIveReCORd

136

Usually, there are several ways of adding products to the order. The simplest way is

that the products are integrated as an array, and you can simply insert them as elements

of an array.

>> order.products << Product.first

 Product Load (0.5ms) SELECT "products".* FROM "products"

 ORDER BY "products"."id" ASC LIMIT ? [["LIMIT", 1]]

=> #<ActiveRecord::Associations::CollectionProxy

[#<Product id: 1, name: "Milk", price: 0.45e0,

created_at: "2017-03-23 15:14:22",

updated_at: "2017-03-23 15:14:22">]>

But if the customer wants to buy three times the milk, you need to enter it in the

LineItem (in the linking element) table. ActiveRecord already built an object for you.

>> order.line_items

=> #<ActiveRecord::Associations::CollectionProxy

[#<LineItem id: nil, order_id: nil, product_id: 1, quantity: nil,

created_at: nil, updated_at: nil>]>

And you have access to it. So, you can change the quantity like so:

>> order.line_items.first.quantity = 3

=> 3

But neither the order nor any other object has been saved in the database yet. You

have to call the save method to do this.

>> order.save

 (0.1ms) begin transaction

 SQL (0.6ms) INSERT INTO "orders" ("delivery_address", "created_at",

 "updated_at") VALUES (?, ?, ?) [["delivery_address", "123 Acme Street"],

 ["created_at", "2017-03-23 15:22:48.536239"],

 ["updated_at", "2017-03-23 15:22:48.536239"]]

 SQL (0.2ms) INSERT INTO "line_items" ("order_id", "product_id",

 "quantity", "created_at", "updated_at") VALUES (?, ?, ?, ?, ?)

 [["order_id", 2], ["product_id", 1], ["quantity", 3],

ChapTeR 3 aCTIveReCORd

137

 ["created_at", "2017-03-23 15:22:48.539047"],

 ["updated_at", "2017-03-23 15:22:48.539047"]]

 (2.1ms) commit transaction

=> true

Alternatively, you can also buy butter twice directly by adding a LineItem.

>> order.line_items.create(product: Product.second, quantity: 2)

 Product Load (0.2ms) SELECT "products".* FROM "products"

 ORDER BY "products"."id" ASC LIMIT ? OFFSET ? [["LIMIT", 1],

 ["OFFSET", 1]]

 (0.1ms) begin transaction

 SQL (2.1ms) INSERT INTO "line_items" ("order_id", "product_id",

 "quantity", "created_at", "updated_at") VALUES (?, ?, ?, ?, ?)

 [["order_id", 2], ["product_id", 2], ["quantity", 2],

 ["created_at", "2017-03-23 15:25:32.991756"],

 ["updated_at", "2017-03-23 15:25:32.991756"]]

 (2.2ms) commit transaction

=> #<LineItem id: 3, order_id: 2, product_id: 2, quantity: 2,

created_at: "2017-03-23 15:25:32", updated_at: "2017-03-23 15:25:32">

All searches and queries (including via joins and includes) work for you as a Rails

programmer the same as without the has_many. ActiveRecord takes care of the details.

 Polymorphic Associations
The word polymorphic probably makes you tense up. What can it mean? Here is what

the web site http://api.rubyonrails.org/classes/ActiveRecord/Associations/

ClassMethods.html tells us: “Polymorphic associations on models are not restricted on

what types of models they can be associated with.” Well, there you go—as clear as mud!

I will show you an example in which you create a Car model and a Bike model. To

describe a car or bike, you use a Tag model. A car and a bike can have any number of tags.

Here’s the application:

$ rails new bike_car_example

 [...]

$ cd bike_car_example

ChapTeR 3 aCTIveReCORd

http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html
http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html

138

Here are the three required models:

$ rails generate model Car name

 [...]

$ rails generate model Bike name

 [...]

$ rails generate model Tag name taggable:references{polymorphic}

 [...]

$ rails db:migrate

 [...]

Car and Bike are clear. For Tag you use the migration shortcut taggable:refer

ences{polymorphic} to generate the fields taggable_type and taggable_id to give

ActiveRecord an opportunity to save the assignment for the polymorphic association.

You have to enter it accordingly in the model.

The model generator already filled the app/models/tag.rb file with the

configuration for the polymorphic association, as shown in Listing 3-19.

Listing 3-19. app/models/tag.rb

class Tag < ApplicationRecord

 belongs_to :taggable, polymorphic: true

end

For the other models, you have to add the polymorphic association manually, as

shown in Listing 3-20 and Listing 3-21.

Listing 3-20. app/models/car.rb

class Car < ApplicationRecord

 has_many :tags, as: :taggable

end

Listing 3-21. app/models/bike.rb

class Bike < ApplicationRecord

 has_many :tags, as: :taggable

end

ChapTeR 3 aCTIveReCORd

139

For Car and Bike you use an additional :as: :taggable when defining has_many.

For Tag, you use belongs_to :taggable, polymorphic: true to indicate the

polymorphic association to ActiveRecord.

 The suffix able in the name taggable is commonly used in Rails, but not
obligatory. For creating the association you not only need the Id of the entry but
also need to know which model it actually is. So, the term taggable_type makes
sense.

Let’s go into the console and create a car and a bike.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> beetle = Car.create(name: 'Beetle')

 (0.1ms) begin transaction

 SQL (0.8ms) INSERT INTO "cars" ("name", "created_at", "updated_at") VALUES

 (?, ?, ?) [["name", "Beetle"], ["created_at", "2015-12-17

 13:39:54.793336"], ["updated_at", "2015-12-17 13:39:54.793336"]]

 (0.8ms) commit transaction

=> #<Car id: 1, name: "Beetle", created_at: "2015-12-17 13:39:54", updated_at:

"2015-12-17 13:39:54">

>> mountainbike = Bike.create(name: 'Mountainbike')

 (0.1ms) begin transaction

 SQL (0.3ms) INSERT INTO "bikes" ("name", "created_at", "updated_at") VALUES

 (?, ?, ?) [["name", "Mountainbike"], ["created_at", "2015-12-17

 13:39:55.896512"], ["updated_at", "2015-12-17 13:39:55.896512"]]

 (9.0ms) commit transaction

=> #<Bike id: 1, name: "Mountainbike", created_at: "2015-12-17 13:39:55",

updated_at: "2015-12-17 13:39:55">

ChapTeR 3 aCTIveReCORd

140

Now you define for each a tag with the color of the corresponding object.

>> beetle.tags.create(name: 'blue')

 (0.1ms) begin transaction

 SQL (1.0ms) INSERT INTO "tags" ("name", "taggable_id", "taggable_type",

 "created_at", "updated_at") VALUES (?, ?, ?, ?, ?) [["name", "blue"],

 ["taggable_id", 1], ["taggable_type", "Car"], ["created_at", "2015-12-17

 13:41:04.984444"], ["updated_at", "2015-12-17 13:41:04.984444"]]

 (0.9ms) commit transaction

=> #<Tag id: 1, name: "blue", taggable_id: 1, taggable_type: "Car",

created_at: "2015-12-17 13:41:04", updated_at: "2015-12-17 13:41:04">

>> mountainbike.tags.create(name: 'black')

 (0.1ms) begin transaction

 SQL (0.7ms) INSERT INTO "tags" ("name", "taggable_id", "taggable_type",

 "created_at", "updated_at") VALUES (?, ?, ?, ?, ?) [["name", "black"],

 ["taggable_id", 1], ["taggable_type", "Bike"], ["created_at", "2015-12-17

 13:41:17.315318"], ["updated_at", "2015-12-17 13:41:17.315318"]]

 (8.2ms) commit transaction

=> #<Tag id: 2, name: "black", taggable_id: 1, taggable_type: "Bike",

created_at: "2015-12-17 13:41:17", updated_at: "2015-12-17 13:41:17">

For the beetle, you add another Tag.

>> beetle.tags.create(name: 'Automatic')

 (0.1ms) begin transaction

 SQL (0.4ms) INSERT INTO "tags" ("name", "taggable_id", "taggable_type",

 "created_at", "updated_at") VALUES (?, ?, ?, ?, ?) [["name", "Automatic"],

 ["taggable_id", 1], ["taggable_type", "Car"], ["created_at", "2015-12-17

 13:41:51.042746"], ["updated_at", "2015-12-17 13:41:51.042746"]]

 (9.2ms) commit transaction

=> #<Tag id: 3, name: "Automatic", taggable_id: 1, taggable_type: "Car",

created_at: "2015-12-17 13:41:51", updated_at: "2015-12-17 13:41:51">

ChapTeR 3 aCTIveReCORd

141

Let’s take a look at all the Tag items.

>> Tag.all

 Tag Load (0.3ms) SELECT "tags".* FROM "tags"

=> #<ActiveRecord::Relation [#<Tag id: 1, name: "blue", taggable_id: 1,

taggable_type: "Car", created_at: "2015-12-17 13:41:04", updated_at:

"2015-12-17 13:41:04">, #<Tag id: 2, name: "black", taggable_id: 1,

taggable_type: "Bike", created_at: "2015-12-17 13:41:17", updated_at:

"2015-12-17 13:41:17">, #<Tag id: 3, name: "Automatic", taggable_id: 1,

taggable_type: "Car", created_at: "2015-12-17 13:41:51", updated_at:

"2015-12-17 13:41:51">]>

Here are all the tags of the beetle.

>> beetle.tags

 Tag Load (0.3ms) SELECT "tags".* FROM "tags" WHERE "tags"."taggable_id" = ?

 AND "tags"."taggable_type" = ? [["taggable_id", 1], ["taggable_type",

 "Car"]]

=> #<ActiveRecord::Associations::CollectionProxy [#<Tag id: 1, name: "blue",

taggable_id: 1, taggable_type: "Car", created_at: "2015-12-17 13:41:04",

updated_at: "2015-12-17 13:41:04">, #<Tag id: 3, name: "Automatic",

taggable_id: 1, taggable_type: "Car", created_at: "2015-12-17 13:41:51",

updated_at: "2015-12-17 13:41:51">]>

Of course, you can also check which object the last Tag belongs to.

>> Tag.last.taggable

 Tag Load (0.3ms) SELECT "tags".* FROM "tags" ORDER BY "tags"."id" DESC

 LIMIT 1

 Car Load (0.4ms) SELECT "cars".* FROM "cars" WHERE "cars"."id" = ? LIMIT 1

 [["id", 1]]

=> #<Car id: 1, name: "Beetle", created_at: "2015-12-17 13:39:54", updated_at:

"2015-12-17 13:39:54">

>> exit

Polymorphic associations are always useful if you want to normalize the database

structure. In this example, you could also have defined models called CarTag and

BikeTag, but as Tag is the same for both, a polymorphic association makes more sense

in this case.

ChapTeR 3 aCTIveReCORd

142

 Options
Polymorphic associations can be configured with the same options as a normal has_many

association.

 Deleting/Destroying a Record
To remove a database record, you can use the methods destroy and delete. It’s quite easy

to confuse these two terms, but they are different, and after a while you get used to them.

As an example, = use the following Rails application:

$ rails new bookshelf

 [...]

$ cd bookshelf

$ rails generate model book title

 [...]

$ rails generate model author book:references first_name last_name

 [...]

$ rails db:migrate

 [...]

$

Listing 3-22 and Listing 3-23 show the models.

Listing 3-22. app/models/book.rb

class Book < ApplicationRecord

 has_many :authors, dependent: :destroy

end

Listing 3-23. app/models/author.rb

class Author < ApplicationRecord

 belongs_to :book

end

ChapTeR 3 aCTIveReCORd

143

 destroy
With destroy you can remove a record, and any existing dependencies are also taken

into account (see, for example, :dependent ⇒ :destroy). Simply put, to be on the safe

side, it’s better to use destroy because then the Rails system does more for you.

Let’s create a record and then destroy it again.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> book = Book.create(title: 'Homo faber')

 (0.1ms) begin transaction

 SQL (0.7ms) INSERT INTO "books" ("title", "created_at", "updated_at")

 VALUES (?, ?, ?) [["title", "Homo faber"], ["created_at", "2015-12-17

 13:49:58.092997"], ["updated_at", "2015-12-17 13:49:58.092997"]]

 (9.0ms) commit transaction

=> #<Book id: 1, title: "Homo faber", created_at: "2015-12-17 13:49:58",

updated_at: "2015-12-17 13:49:58">

>> Book.count

 (0.3ms) SELECT COUNT(*) FROM "books"

=> 1

>> book.destroy

 (0.1ms) begin transaction

 Author Load (0.1ms) SELECT "authors".* FROM "authors" WHERE

 "authors"."book_id" = ? [["book_id", 1]]

 SQL (0.3ms) DELETE FROM "books" WHERE "books"."id" = ? [["id", 1]]

 (9.0ms) commit transaction

=> #<Book id: 1, title: "Homo faber", created_at: "2015-12-17 13:49:58",

updated_at: "2015-12-17 13:49:58">

>> Book.count

 (0.5ms) SELECT COUNT(*) FROM "books"

=> 0

ChapTeR 3 aCTIveReCORd

144

As you are using the option dependent: :destroy in the Book model, you can also

automatically remove all the authors.

>> Book.create(title: 'Homo faber').authors.create(first_name: 'Max',

 last_name: 'Frisch')

 (0.1ms) begin transaction

 SQL (0.4ms) INSERT INTO "books" ("title", "created_at", "updated_at")

 VALUES (?, ?, ?) [["title", "Homo faber"], ["created_at", "2015-12-17

 13:50:43.062148"], ["updated_at", "2015-12-17 13:50:43.062148"]]

 (9.1ms) commit transaction

 (0.1ms) begin transaction

 SQL (0.3ms) INSERT INTO "authors" ("first_name", "last_name", "book_id",

 "created_at", "updated_at") VALUES (?, ?, ?, ?, ?) [["first_name", "Max"],

 ["last_name", "Frisch"], ["book_id", 2], ["created_at", "2015-12-17

 13:50:43.083211"], ["updated_at", "2015-12-17 13:50:43.083211"]]

 (0.9ms) commit transaction

=> #<Author id: 1, book_id: 2, first_name: "Max", last_name: "Frisch",

created_at: "2015-12-17 13:50:43", updated_at: "2015-12-17 13:50:43">

>> Author.count

 (0.2ms) SELECT COUNT(*) FROM "authors"

=> 1

>> Book.first.destroy

 Book Load (0.3ms) SELECT "books".* FROM "books" ORDER BY "books"."id" ASC

 LIMIT 1

 (0.1ms) begin transaction

 Author Load (0.1ms) SELECT "authors".* FROM "authors" WHERE

 "authors"."book_id" = ? [["book_id", 2]]

 SQL (0.3ms) DELETE FROM "authors" WHERE "authors"."id" = ? [["id", 1]]

 SQL (0.1ms) DELETE FROM "books" WHERE "books"."id" = ? [["id", 2]]

 (9.1ms) commit transaction

=> #<Book id: 2, title: "Homo faber", created_at: "2015-12-17 13:50:43",

updated_at: "2015-12-17 13:50:43">

>> Author.count

 (0.2ms) SELECT COUNT(*) FROM "authors"

=> 0

ChapTeR 3 aCTIveReCORd

145

When removing records, please always consider the difference between the content

of the database table and the value of the currently removed object. The instance is

frozen after removing the database field. So, it is no longer in the database but still

present in the program, yet it can no longer be modified there. It is read-only. To check,

you can use the method frozen?.

>> book = Book.create(title: 'Homo faber')

 (0.2ms) begin transaction

 SQL (0.5ms) INSERT INTO "books" ("title", "created_at", "updated_at")

 VALUES (?, ?, ?) [["title", "Homo faber"], ["created_at", "2015-12-17

 13:51:41.460050"], ["updated_at", "2015-12-17 13:51:41.460050"]]

 (8.9ms) commit transaction

=> #<Book id: 3, title: "Homo faber", created_at: "2015-12-17 13:51:41",

updated_at: "2015-12-17 13:51:41">

>> book.destroy

 (0.1ms) begin transaction

 Author Load (0.2ms) SELECT "authors".* FROM "authors" WHERE

 "authors"."book_id" = ? [["book_id", 3]]

 SQL (0.5ms) DELETE FROM "books" WHERE "books"."id" = ? [["id", 3]]

 (9.2ms) commit transaction

=> #<Book id: 3, title: "Homo faber", created_at: "2015-12-17 13:51:41",

updated_at: "2015-12-17 13:51:41">

>> Book.count

 (0.2ms) SELECT COUNT(*) FROM "books"

=> 0

>> book

=> #<Book id: 3, title: "Homo faber", created_at: "2015-12-17 13:51:41",

updated_at: "2015-12-17 13:51:41">

>> book.frozen?

=> true

The record has been removed from the database, but the object with all its data is

still present in the running Ruby program. So, could you then revive the entire record?

The answer is yes, but it will then be a new record.

ChapTeR 3 aCTIveReCORd

146

>> Book.create(title: book.title)

 (0.1ms) begin transaction

 SQL (0.3ms) INSERT INTO "books" ("title", "created_at", "updated_at")

 VALUES (?, ?, ?) [["title", "Homo faber"], ["created_at", "2015-12-17

 13:52:51.438501"], ["updated_at", "2015-12-17 13:52:51.438501"]]

 (8.7ms) commit transaction

=> #<Book id: 4, title: "Homo faber", created_at: "2015-12-17 13:52:51",

updated_at: "2015-12-17 13:52:51">

>> exit

 delete
With delete you can remove a record directly from the database. Any dependencies to

other records in the model are not taken into account. The method delete deletes only

that one row in the database and nothing else.

Let’s create a book with one author and then remove the book with delete.

$ rails db:reset

 [...]

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Book.create(title: 'Homo faber').authors.create(first_name: 'Max',

 last_name: 'Frisch')

 (0.5ms) begin transaction

 [...]

 (0.8ms) commit transaction

=> #<Author id: 1, book_id: 1, first_name: "Max", last_name: "Frisch",

created_at: "2015-12-17 13:54:46", updated_at: "2015-12-17 13:54:46">

>> Author.count

 (0.2ms) SELECT COUNT(*) FROM "authors"

=> 1

>> Book.last.delete

 Book Load (0.2ms) SELECT "books".* FROM "books" ORDER BY "books"."id"

 DESC LIMIT 1

 SQL (1.5ms) DELETE FROM "books" WHERE "books"."id" = ? [["id", 1]]

ChapTeR 3 aCTIveReCORd

147

=> #<Book id: 1, title: "Homo faber", created_at: "2015-12-17 13:54:46",

updated_at: "2015-12-17 13:54:46">

>> Author.count

 (0.2ms) SELECT COUNT(*) FROM "authors"

=> 1

>> Book.count

 (0.2ms) SELECT COUNT(*) FROM "books"

=> 0

>> exit

The record of the book Homo faber is deleted, but the author is still in the database.

As with destroy, an object also gets frozen when you use delete (see the section

“destroy”). The record is already removed from the database, but the object itself is still

there.

 Transactions
In the world of databases, the term transaction refers to a block of SQL statements that

must be executed together and without interruption. If an error should occur within the

transaction, the database is reset to the state before the start of the transaction.

Now and again, there are areas of application where you need to carry out a database

transaction. The classic example is transferring money from one account to another.

That makes sense only if both actions (debiting one account and crediting the recipient’s

account) are executed.

A transaction follows this pattern:

ApplicationRecord.transaction do

 Book.create(:title => 'A')

 Book.create(:title => 'B')

 Book.create(:title => 'C').authors.create(:last_name => 'Z')

end

Transactions are a complex topic. If you want to find out more, you can consult the

ri help on the shell via ri ActiveRecord::Transactions::ClassMethods.

ChapTeR 3 aCTIveReCORd

148

 The methods save and destroy are automatically executed within the
transaction wrapper. That way, Rails ensures that no undefined state can arise for
these two methods.

 Transactions are not natively supported by all databases. In that case, the
code will still work, but you no longer have the security of the transaction.

 Scopes
When programming Rails applications, it is sometimes clearer and simpler to define

frequent searches as separate methods. In Rails speak, these are referred to as

NamedScope. These NamedScopes can be chained, just like other methods.

 Preparation
Let’s build a little online shop.

$ rails new shop

 [...]

$ cd shop

$ rails generate model product name 'price:decimal{7,2}' \

weight:integer in_stock:boolean expiration_date:date

 [...]

$ rails db:migrate

 [...]

$

Please populate the file db/seeds.rb with the content shown in Listing 3-24.

Listing 3-24. db/seeds.rb

Product.create(name: 'Milk (1 liter)', weight: 1000, in_stock: true, price:

0.45, expiration_date: Date.today + 14.days)

Product.create(name: 'Butter (250 g)', weight: 250, in_stock: true, price:

0.75, expiration_date: Date.today + 14.days)

ChapTeR 3 aCTIveReCORd

149

Product.create(name: 'Flour (1 kg)', weight: 1000, in_stock: false, price:

0.45, expiration_date: Date.today + 100.days)

Product.create(name: 'Jelly Babies (6 x 300 g)', weight: 1500, in_stock: true,

price: 4.96, expiration_date: Date.today + 1.year)

Product.create(name: 'Super-Duper Cake Mix', in_stock: true, price: 11.12,

expiration_date: Date.today + 1.year)

Product.create(name: 'Eggs (12)', in_stock: true, price: 2, expiration_date:

Date.today + 7.days)

Product.create(name: 'Peanuts (8 x 200 g bag)', in_stock: false, weight: 1600,

price: 17.49, expiration_date: Date.today + 1.year)

Now populate it with db/seeds.rb.

$ rails db:seed

 [...]

$

 Defining a Scope
If you want to count products that are in stock in your online shop, then you can use the

following query each time:

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Product.where(in_stock: true).count

 (0.1ms) SELECT COUNT(*) FROM "products" WHERE "products"."in_stock" = 't'

=> 5

>> exit

But you could also define a NamedScope called available in app/models/product.rb,

as shown in Listing 3-25.

Listing 3-25. app/models/product.rb

class Product < ApplicationRecord

 scope :available, -> { where(in_stock: true) }

end

ChapTeR 3 aCTIveReCORd

150

And then use it like so:

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Product.available.count

 (0.1ms) SELECT COUNT(*) FROM "products" WHERE "products"."in_stock" = 't'

=> 5

>> exit

Let’s define a second NamedScope for this example in app/models/product.rb, as

shown in Listing 3-26.

Listing 3-26. app/models/product.rb

class Product < ApplicationRecord

 scope :available, -> { where(in_stock: true) }

 scope :cheap, -> { where(price: 0..1) }

end

Now you can chain both named scopes to output all cheap products that are in stock.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Product.cheap.count

 (0.3ms) SELECT COUNT(*) FROM "products" WHERE ("products"."price"

BETWEEN 0 AND 1)

=> 3

>> Product.cheap.available.count

 (0.3ms) SELECT COUNT(*) FROM "products" WHERE ("products"."price"

BETWEEN 0 AND 1) AND "products"."in_stock" = 't'

=> 2

>> exit

ChapTeR 3 aCTIveReCORd

151

 Passing In Arguments
If you need a NamedScope that can also process parameters, then that is no problem

either. The following example outputs products that are cheaper than the specified

value. The file app/models/product.rb looks like Listing 3-27.

Listing 3-27. app/models/product.rb

class Product < ApplicationRecord

 scope :cheaper_than, ->(price) { where("price < ?", price) }

end

Now you can count all products that cost less than 50 cent.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Product.cheaper_than(0.5).count

 (0.2ms) SELECT COUNT(*) FROM "products" WHERE (price < 0.5)

=> 2

>> exit

 Creating New Records with Scopes
Let’s use app/models/product.rb, as shown in Listing 3-28.

Listing 3-28. app/models/product.rb

class Product < ApplicationRecord

 scope :available, -> { where(in_stock: true) }

end

With this NamedScope, not only can you find all products that are in stock, but you

can also create new products that contain the value true in the field in_stock.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> product = Product.available.build

ChapTeR 3 aCTIveReCORd

152

=> #<Product id: nil, name: nil, price: nil, weight: nil, in_stock: true,

expiration_date: nil, created_at: nil, updated_at: nil>

>> product.in_stock

=> true

>> exit

This works with the method build (see the section “build”) and create (see the

section “create”).

 Validation
Nonvalid records are frequently a source of errors in programs. With validates, Rails

offers a quick and easy way of validating them. That way you can be sure that only

meaningful records will find their way into your database.

 Preparation
Let’s create a new application for this chapter.

$ rails new shop

 [...]

$ cd shop

$ rails generate model product name 'price:decimal{7,2}' \

weight:integer in_stock:boolean expiration_date:date

 [...]

$ rails db:migrate

 [...]

$

 The Basic Idea
For each model, there is a matching model file in the directory app/models/. In this Ruby

code, you can define database dependencies as well as implement all validations. The

advantage is that every programmer knows where to find it.

Without any validation, you can create an empty record in a model without a

problem.

ChapTeR 3 aCTIveReCORd

153

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> product = Product.create

[...]

=> #<Product id: 1, name: nil, price: nil, weight: nil,

in_stock: nil, expiration_date: nil, created_at: "2016-01-21 13:18:31",

updated_at: "2016-01-21 13:18:31">

>> exit

But in practice, this record with no content doesn’t make any sense. A Product needs

to have a name and a price. That’s why you can define validations in ActiveRecord. Then

you can ensure as a programmer that only records that are valid for you are saved in your

database.

To make the mechanism easier to understand, I am going to jump ahead a bit and

use the presence helper. Please fill your app/models/product.rb file with the content

shown in Listing 3-29.

Listing 3-29. app/models/product.rb

class Product < ApplicationRecord

 validates :name,

 presence: true

 validates :price,

 presence: true

end

Now you try again to create an empty record in the console.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> product = Product.create

 (0.1ms) begin transaction

 (0.1ms) rollback transaction

=> #<Product id: nil, name: nil, price: nil, weight: nil, in_stock: nil,

expiration_date: nil, created_at: nil, updated_at: nil>

ChapTeR 3 aCTIveReCORd

154

Watch out for the rollback transaction part and the missing id of the Product

object! Rails began the transaction of creating a new record, but for some reason it

couldn’t do it. So, it had to roll back the transaction. The validation method intervened

before the record was saved. So, validating happens before saving.

Can you access the errors? Yes, via the method errors or with errors.messages, you

can look at the errors that occurred.

>> product.errors

=> #<ActiveModel::Errors:0x007ff515a71680 @base=#<Product id: nil, name: nil,

price: nil, weight: nil, in_stock: nil, expiration_date: nil, created_at: nil,

updated_at: nil>, @messages={:name=>["can't be blank"], :price=>["can't be

blank"]}>

>> product.errors.messages

=> {:name=>["can't be blank"], :price=>["can't be blank"]}

This error message was defined for an English-speaking human user.

Only once you assign a value to the attributes name and price can you save the object.

>> product.name = 'Milk (1 liter)'

=> "Milk (1 liter)"

>> product.price = 0.45

=> 0.45

>> product.save

 (0.1ms) begin transaction

 SQL (0.5ms) INSERT INTO "products" ("name", "price", "created_at",

 "updated_at") VALUES (?, ?, ?, ?) [["name", "Milk (1 liter)"], ["price",

 0.45], ["created_at", "2015-12-17 17:59:09.293831"], ["updated_at",

 "2015-12-17 17:59:09.293831"]]

 (9.0ms) commit transaction

=> true

 valid?
The method valid? indicates in Boolean form if an object is valid. So, you can check the

validity already before you save.

ChapTeR 3 aCTIveReCORd

155

>> product = Product.new

=> #<Product id: nil, name: nil, price: nil, weight: nil, in_stock: nil,

expiration_date: nil, created_at: nil, updated_at: nil>

>> product.valid?

=> false

 save(validate: false)

As so often in life, you can find a way around everything. If you pass the parameter

:validate ⇒ false to the method save, the data of Validation is saved.

>> product = Product.new

=> #<Product id: nil, name: nil, price: nil, weight: nil, in_stock: nil,

expiration_date: nil, created_at: nil, updated_at: nil>

>> product.valid?

=> false

>> product.save

 (0.1ms) begin transaction

 (0.1ms) rollback transaction

=> false

>> product.save(validate: false)

 (0.1ms) begin transaction

 SQL (0.5ms) INSERT INTO "products" ("created_at", "updated_at") VALUES (?,

 ?) [["created_at", "2015-12-17 18:01:46.173590"], ["updated_at",

 "2015-12-17 18:01:46.173590"]]

 (9.1ms) commit transaction

=> true

>> exit

 I assume that you understand the problems involved here. please use this
option only if there is a really good reason to do so.

ChapTeR 3 aCTIveReCORd

156

 presence
In your model product, there are a few fields that must be filled in every time. You can

achieve this via presence, as shown in Listing 3-30.

 please excuse the duplication. I’m aware that I just used the very same
code to give you an idea of what validation does.

Listing 3-30. app/models/product.rb

class Product < ApplicationRecord

 validates :name,

 presence: true

 validates :price,

 presence: true

end

If you try to create an empty user record with this, you get lots of validation errors.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> product = Product.create

 (0.1ms) begin transaction

 (0.1ms) rollback transaction

=> #<Product id: nil, name: nil, price: nil, weight: nil, in_stock: nil,

expiration_date: nil, created_at: nil, updated_at: nil>

>> product.errors.messages

=> {:name=>["can't be blank"], :price=>["can't be blank"]}

Only once you have entered all the data can the record be saved.

>> product.name = 'Milk (1 liter)'

=> "Milk (1 liter)"

>> product.price = 0.45

=> 0.45

ChapTeR 3 aCTIveReCORd

157

>> product.save

 (0.1ms) begin transaction

 SQL (0.6ms) INSERT INTO "products" ("name", "price", "created_at",

 "updated_at") VALUES (?, ?, ?, ?) [["name", "Milk (1 liter)"], ["price",

 0.45], ["created_at", "2015-12-17 18:04:26.587946"], ["updated_at",

 "2015-12-17 18:04:26.587946"]]

 (9.2ms) commit transaction

=> true

>> exit

 length
With length you can limit the length of a specific attribute. It’s easiest to explain using

an example. Let’s limit the maximum length of the name to 20 and the minimum to 2, as

shown in Listing 3-31.

Listing 3-31. app/models/product.rb

class Product < ApplicationRecord

 validates :name,

 presence: true,

 length: { in: 2..20 }

 validates :price,

 :presence => true

end

If you now try to save a product with a name that consists of one letter, you get an

error message.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> product = Product.create(:name => 'M', :price => 0.45)

 (0.1ms) begin transaction

 (0.1ms) rollback transaction

ChapTeR 3 aCTIveReCORd

158

=> #<Product id: nil, name: "M", price:

#<BigDecimal:7ff735513400,'0.45E0',9(27)>, weight: nil, in_stock: nil,

expiration_date: nil, created_at: nil, updated_at: nil>

>> product.errors.messages

=> {:name=>["is too short (minimum is 2 characters)"]}

 Options

length can be called with the following options.

minimum sets the minimum length of an attribute. Here’s an example:

validates :name,

 presence: true,

 length: { minimum: 2 }

too_short defines the error message of :minimum. The default is "is too short

(min is %d characters)". Here's an example:

validates :name,

 presence: true,

 length: { minimum: 5 ,

 too_short: "must have at least %{count} characters"}

maximum is the maximum length of an attribute. Here’s an example:

validates :name,

 presence: true,

 length: { maximum: 20 }

too_long defines the error message of :maximum. The default "is too long

(maximum is %d characters)". Here’s an example:

validates :name,

 presence: true,

 length: { maximum: 20 ,

 too_long: "must have at most %{count} characters" }

ChapTeR 3 aCTIveReCORd

159

is is exactly the specified number of characters long. Here’s an example:

validates :name,

 presence: true,

 length: { is: 8 }

:in or :within defines a length interval. The first number specifies the minimum

number of the range, and the second specifies the maximum. Here’s an example:

validates :name,

 presence: true,

 length: { in: 2..20 }

You can use tokenizer to define how the attribute should be split for counting. The

default is lambda{ |value| value.split(//) } (individual characters are counted).

Here is an example (for counting words):

validates :content,

 presence: true,

 length: { in: 2..20 },

 tokenizer: lambda {|str| str.scan(/\w+/)}

 numericality
With numericality you can check whether an attribute is a number. It’s easier to explain

if you see an example, as shown in Listing 3-32.

Listing 3-32. app/models/product.rb

class Product < ApplicationRecord

 validates :name,

 presence: true,

 length: { in: 2..20 }

 validates :price,

 presence: true

 validates :weight,

 numericality: true

end

ChapTeR 3 aCTIveReCORd

160

If you now use a weight that consists of letters or contains letters instead of numbers,

you will get an error message.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> product = Product.create(name: 'Milk (1 liter)',

 price: 0.45, weight: 'abc')

 (0.1ms) begin transaction

 (0.1ms) rollback transaction

=> #<Product id: nQil, name: "Milk (1 liter)",

price: #<BigDecimal:7fca1ec90ed8,'0.45E0',9(27)>, weight: 0,

in_stock: nil, expiration_date: nil, created_at: nil, updated_at: nil>

>> product.errors.messages

=> {:weight=>["is not a number"]}

>> exit

 You can use numericality to define the content as a number even if an
attribute is saved as a string in the database.

 Options

numericality can be called with the following options.

The only_integer attribute can contain only an integer. The default is false. Here’s

an example:

validates :weight,

 numericality: { only_integer: true }

For greater_than, the number saved in the attribute must be greater than the

specified value. Here’s an example:

validates :weight,

 numericality: { greater_than: 100 }

ChapTeR 3 aCTIveReCORd

161

For greater_than_or_equal_to, the number saved in the attribute must be greater

than or equal to the specified value. Here’s an example:

validates :weight,

 numericality: { greater_than_or_equal_to: 100 }

equal_to defines a specific value that the attribute must have. Here’s an example:

validates :weight,

 numericality: { equal_to: 100 }

For less_than, the number saved in the attribute must be less than the specified

value. Here’s an example:

validates :weight,

 numericality: { less_than: 100 }

For less_than_or_equal_to, the number saved in the attribute must be less than or

equal to the specified value. Here’s an example:

validates :weight,

 numericality: { less_than_or_equal_to: 100 }

odd is the number saved in the attribute and must be an odd number. Here’s an

example:

validates :weight,

 numericality: { odd: true }

even is the number saved in the attribute and must be an even number. Here’s an

example:

validates :weight,

 numericality: { even: true }

 uniqueness
With uniqueness you can define that the value of this attribute must be unique in the

database. If you want a product in the database to have a unique name that appears

nowhere else, then you can use the validation shown in Listing 3-33.

ChapTeR 3 aCTIveReCORd

162

Listing 3-33. app/models/product.rb

class Product < ApplicationRecord

 validates :name,

 presence: true,

 uniqueness: true

end

If you now try to create a new Product with a name that already exists, then you get an

error message.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Product.last

 Product Load (0.2ms) SELECT "products".* FROM "products"

 ORDER BY "products"."id" DESC LIMIT 1

=> #<Product id: 4, name: "Milk (1 liter)", price:

#<BigDecimal:7fdccb1960b8,'0.45E0',9(27)>, weight: nil,

in_stock: nil, expiration_date: nil,

created_at: "2015-12-17 18:04:26",

updated_at: "2015-12-17 18:04:26">

>> product = Product.create(name: 'Milk (1 liter)')

 (0.1ms) begin transaction

 Product Exists (0.2ms) SELECT 1 AS one FROM "products"

 WHERE "products"."name" = 'Milk (1 liter)' LIMIT 1

 (0.1ms) rollback transaction

=> #<Product id: nil, name: "Milk (1 liter)", price: nil,

weight: nil, in_stock: nil, expiration_date: nil,

created_at: nil, updated_at: nil>

>> product.errors.messages

=> {:name=>["has already been taken"]}

>> exit

ChapTeR 3 aCTIveReCORd

163

 The validation via uniqueness is no absolute guarantee that the attribute
is unique in the database. a race condition could occur (see http://
en.wikipedia.org/wiki/Race_condition). a detailed discussion of this
effect would go beyond the scope of this book aimed at beginners (this
phenomenon is extremely rare).

 Options

uniqueness can be called with the following options.

scope defines a scope for the uniqueness. If you had a differently structured phone

number database (with just one field for the phone number), then you could use this

option to specify that a phone number must be saved only once per user. Here is what it

would look like:

validates :name,

 presence: true,

 uniqueness: { scope: :user_id }

case_sensitive checks for uniqueness of uppercase and lowercase as well. The

default is false. Here’s an example:

validates :name,

 presence: true,

 uniqueness: { case_sensitive: true }

 inclusion
With inclusion you can define from which values the content of this attribute can be

created. For this example, you can demonstrate it using the attribute in_stock, as shown

in Listing 3-34.

ChapTeR 3 aCTIveReCORd

http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/Race_condition

164

Listing 3-34. app/models/product.rb

class Product < ApplicationRecord

 validates :name,

 presence: true

 validates :in_stock,

 inclusion: { in: [true, false] }

end

In your data model, a Product must be either true or false for in_stock (there

must not be a nil). If you enter a different value than true or false, a validation error is

returned.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> product = Product.create(name: 'Milk low-fat (1 liter)')

 (0.1ms) begin transaction

 (0.1ms) rollback transaction

=> #<Product id: nil, name: "Milk low-fat (1 liter)", price: nil, weight: nil,

in_stock: nil, expiration_date: nil, created_at: nil, updated_at: nil>

>> product.errors.messages

=> {:in_stock=>["is not included in the list"]}

>> exit

 Options

inclusion can be called with the message option.

message is for outputting custom error messages. The default is "is not included

in the list". Here’s an example:

validates :in_stock,

 inclusion: { in: [true, false],

 message: 'this one is not allowed' }

ChapTeR 3 aCTIveReCORd

165

 exclusion
exclusion is the inversion of inclusion. You can define from which values the content

of this attribute must not be created, as shown in Listing 3-35.

Listing 3-35. app/models/product.rb

class Product < ApplicationRecord

 validates :name,

 presence: true

 validates :in_stock,

 exclusion: { in: [nil] }

end

 Options

exclusion can be called with the message option.

message is for outputting custom error messages. Here’s an example:

validates :in_stock,

 inclusion: { in: [nil],

 message: 'this one is not allowed' }

 format
With format you can define via a regular expression (see http://en.wikipedia.org/

wiki/Regular_expression) how the content of an attribute can be structured.

With format you can, for example, carry out a simple validation of the syntax of an

e-mail address.

validates :email,

 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i }

ChapTeR 3 aCTIveReCORd

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

166

 It should be obvious that the e-mail address validation shown here is not
complete. It is just meant to be an example. You can only use it to check the
syntactic correctness of an e-mail address.

 Options

validates_format_of can be called with the following options:

:message is for outputting a custom error message. The default is "is invalid".

Here’s an example:

validates :email,

 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i,

 message: 'is not a valid email address' }

 General Validation Options
There are some options that can be used for all validations.

 allow_nil

This allows the value nil. Here’s an example:

validates :email,

 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i },

 allow_nil: true

 allow_blank

This is the same as allow_nil, but additionally with an empty string. Here’s an example:

validates :email,

 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i },

 allow_blank: true

ChapTeR 3 aCTIveReCORd

167

on

With on, a validation can be limited to the events create, update, and safe. In the

following example, the validation takes effect only when the record is initially created

(during the create).

validates :email,

 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i },

 on: :create

 if and unless

if and unless call the specified method and execute the validation only if the result of

the method is true.

validates :name,

 presence: true,

 if: :today_is_monday?

def today_is_monday?

 Date.today.monday?

end

:proc calls a Proc object. The functionality of a Proc object is beyond the scope of

this book. Here is an example of how to use it without describing the magic behind it:

validates :name,

 presence: true,

 if: Proc.new { |a| a.email == 'test@test.com' }

 If you want to dive more into Proc, you’ll find documentation about it at
https://ruby-doc.org/core-2.5.0/Proc.html.

 Writing Custom Validations
Now and then, you will want to do a validation where you need some custom program

logic. For such cases, you can define custom validations.

ChapTeR 3 aCTIveReCORd

https://ruby-doc.org/core-2.5.0/Proc.html

168

 Defining Validations with Your Own Methods

Let’s assume you are a big-shot hotel mogul and need a reservation system.

$ rails new my_hotel

 [...]

$ cd my_hotel

$ rails generate model reservation \

start_date:date end_date:date room_type

 [...]

$ rails db:migrate

 [...]

$

Then you specify in app/models/reservation.rb that the attributes start_date and

end_date must be present every time, plus you use the method reservation_dates_must_

make_sense to make sure that start_date is before end_date, as shown in Listing 3-36.

Listing 3-36. app/models/reservation.rb

class Reservation < ApplicationRecord

 validates :start_date,

 presence: true

 validates :end_date,

 presence: true

 validate :reservation_dates_must_make_sense

 private

 def reservation_dates_must_make_sense

 if end_date <= start_date

 errors.add(:start_date, 'has to be before the end date')

 end

 end

end

With errors.add, you can add error messages for individual attributes. With errors.

add_to_base, you can add error messages for the whole object.

ChapTeR 3 aCTIveReCORd

169

Let’s test the validation in the console by introducing Date.today + 1.day. It does

exactly what you’d expect it to do.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> reservation = Reservation.new(start_date: Date.today, end_date:

Date.today)

=> #<Reservation id: nil, start_date: "2015-12-17", end_date: "2015-12-17",

room_type: nil, created_at: nil, updated_at: nil>

>> reservation.valid?

=> false

>> reservation.errors.messages

=> {:start_date=>["has to be before the end date"]}

>> reservation.end_date = Date.today + 1.day

=> Sat, 18 Apr 2015

>> reservation.valid?

=> true

>> reservation.save

[...]

=> true

>> exit

 Further Documentation
The topic of validations is described well in the official Rails documentation at

http://guides.rubyonrails.org/active_record_validations.html.

 Migrations
SQL database tables are generated in Rails with migrations, and they can also be

changed with migrations. If you create a model with rails generate model, a

corresponding migration file is automatically created in the directory db/migrate/. I will

explain this principle by using the example of a shop application. Let’s create one first.

ChapTeR 3 aCTIveReCORd

http://guides.rubyonrails.org/active_record_validations.html

170

$ rails new shop

 [...]

$ cd shop

Then generate a Product model.

$ rails generate model product name 'price:decimal{7,2}' \

weight:integer in_stock:boolean expiration_date:date

 invoke active_record

 create db/migrate/20151217184823_create_products.rb

 create app/models/product.rb

 invoke test_unit

 create test/models/product_test.rb

 create test/fixtures/products.yml

$

The migrations file db/migrate/20151217184823_create_products.rb was created.

Let’s take a closer look at it; see Listing 3-37.

Listing 3-37. db/migrate/20151217184823_create_products.rb

class CreateProducts < ActiveRecord::Migration[5.1]

 def change

 create_table :products do |t|

 t.string :name

 t.decimal :price, precision: 7, scale: 2

 t.integer :weight

 t.boolean :in_stock

 t.date :expiration_date

 t.timestamps null: false

 end

 end

end

The method change creates and deletes the database table in the case of a rollback.

The migration files have embedded the current time in the file name and are processed

in chronological order during a migration (in other words, when you call rails

db:migrate).

ChapTeR 3 aCTIveReCORd

171

$ rails db:migrate

== 20151217184823 CreateProducts: migrating ===============================

-- create_table(:products)

 -> 0.0015s

== 20151217184823 CreateProducts: migrated (0.0016s) ======================

$

Only those migrations that have not been executed yet are processed. If you call

rails db:migrate again, nothing happens because the corresponding migration has

already been executed.

$ rails db:migrate

$

But if you manually delete the database with rm and then call rails db:migrate

again, the migration is repeated.

$ rm db/development.sqlite3

$ rails db:migrate

== 20151217184823 CreateProducts: migrating ===============================

-- create_table(:products)

 -> 0.0017s

== 20151217184823 CreateProducts: migrated (0.0018s) ======================

$

After a while you will realize that you want to save not just the weight for some

products but also the height. So, you need another database field. There is an easy-to-

remember syntax for this: rails generate migration add*.

$ rails generate migration addHeightToProduct height:integer

 invoke active_record

 create db/migrate/20151217185307_add_height_to_product.rb

$

In the migration file called db/migrate/20151217185307_add_height_to_product.rb,

you once again find a change method, as shown in Listing 3-38.

ChapTeR 3 aCTIveReCORd

172

Listing 3-38. db/migrate/20151217185307_add_height_to_product.rb

class AddHeightToProduct < ActiveRecord::Migration

 def change

 add_column :products, :height, :integer

 end

end

With rails db:migrate, you can start in the new migration.

$ rails db:migrate

== 20151217185307 AddHeightToProduct: migrating ===========================

-- add_column(:products, :height, :integer)

 -> 0.0086s

== 20151217185307 AddHeightToProduct: migrated (0.0089s) ==================

$

In the console you can look at the new field. It was added after the field updated_at.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> Product.column_names

=> ["id", "name", "price", "weight", "in_stock", "expiration_date",

"created_at", "updated_at", "height"]

>> exit

What if you want to look at the previous state of things? No problem. You can easily

go back to the previous version with rails db:rollback.

$ rails db:rollback

== 20151217185307 AddHeightToProduct: reverting ===========================

-- remove_column(:products, :height, :integer)

 -> 0.0076s

== 20151217185307 AddHeightToProduct: reverted (0.0192s) ==================

$

ChapTeR 3 aCTIveReCORd

173

Each migration has its own version number. You can find out the version number of

the current status via rails db:version.

$ rails db:version

Current version: 20151217184823

$

 please note that all version numbers and timestamps apply only to the
example printed here. If you re-create the example, you will of course get a
different timestamp for your own example.

You will find the corresponding version in the directory db/migrate.

$ ls db/migrate/

20151217184823_create_products.rb

20151217185307_add_height_to_product.rb

$

You can go to a specific migration via rails db:migrate VERSION= and add the

appropriate version number after the equal sign. The number zero represents the

version zero, in other words, the start.

Let’s try it.

$ rails db:migrate VERSION=0

== 20151217184823 CreateProducts: reverting ===============================

-- drop_table(:products)

 -> 0.0007s

== 20151217184823 CreateProducts: reverted (0.0032s) ======================

$

The table was deleted with all the data. You are back to square one.

 Which Database Is Used?
The database table is created through the migration. As you can see, the table names

automatically get the plural of the model’s name (Person versus people). But in which

database are the tables created? This is defined in the configuration file config/

database.yml, as shown in Listing 3-39.

ChapTeR 3 aCTIveReCORd

174

Listing 3-39. config/database.yml

SQLite version 3.x

gem install sqlite3

#

Ensure the SQLite 3 gem is defined in your Gemfile

gem 'sqlite3'

#

default: &default

 adapter: sqlite3

 pool: 5

 timeout: 5000

development:

 <<: *default

 database: db/development.sqlite3

Warning: The database defined as "test" will be erased and

re-generated from your development database when you run "rake".

Do not set this db to the same as development or production.

test:

 <<: *default

 database: db/test.sqlite3

production:

 <<: *default

 database: db/production.sqlite3

Three different databases are defined there in YAML format (see www.yaml.org/

or http://en.wikipedia.org/wiki/YAML). For us, only the development database is

relevant for now (the first item). By default, Rails uses SQLite3 there. SQLite3 may not

be the correct choice for the analysis of the weather data collected worldwide, but for a

quick and straightforward development of Rails applications, you will quickly learn to

appreciate it. In the Production environment, you can later still switch to “big” databases

such as MySQL or PostgreSQL.

ChapTeR 3 aCTIveReCORd

http://www.yaml.org/
http://en.wikipedia.org/wiki/YAML

175

To satisfy your curiosity, let’s take a quick look at the database with the command-

line tool sqlite3:

$ sqlite3 db/development.sqlite3

SQLite version 3.8.5 2014-08-15 22:37:57

Enter ".help" for usage hints.

sqlite> .tables

schema_migrations

sqlite> .quit

$

There’s nothing in it. Of course there’s not; you have not yet run the migration.

$ rails db:migrate

== 20151217184823 CreateProducts: migrating ===============================

-- create_table(:products)

 -> 0.0019s

== 20151217184823 CreateProducts: migrated (0.0020s) ======================

== 20151217185307 AddHeightToProduct: migrating ===========================

-- add_column(:products, :height, :integer)

 -> 0.0007s

== 20151217185307 AddHeightToProduct: migrated (0.0008s) ==================

$ sqlite3 db/development.sqlite3

SQLite version 3.8.5 2014-08-15 22:37:57

Enter ".help" for usage hints.

sqlite> .tables

products schema_migrations

sqlite> .schema products

CREATE TABLE "products" ("id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,

"name" varchar, "price" decimal(7,2), "weight" integer, "in_stock" boolean,

"expiration_date" date, "created_at" datetime NOT NULL, "updated_at" datetime

NOT NULL, "height" integer);

sqlite> .quit

The table schema_migrations is used for the versioning of the migrations. This table

is created during the first migration carried out by Rails, if it does not yet exist.

ChapTeR 3 aCTIveReCORd

176

 Creating Index
I assume that you know what a database index is. If not, you will find a brief introduction

at http://en.wikipedia.org/wiki/Database_index. In brief, you can use it to quickly

search for a specific table column.

In your production database, you should index the field name in the products table.

You create a new migration for that purpose.

$ rails generate migration create_index

 invoke active_record

 create db/migrate/20151217190442_create_index.rb

$

In the file db/migrate/20121120142002_create_index.rb, you create the index

with add_index in the method self.up, and in the method self.down you delete it with

remove_index, as shown in Listing 3-40.

Listing 3-40. db/migrate/20121120142002_create_index.rb

class CreateIndex < ActiveRecord::Migration

 def up

 add_index :products, :name

 end

 def down

 remove_index :products, :name

 end

end

With rails db:migrate, you create the index.

$ rails db:migrate

== CreateIndex: migrating ==

-- add_index(:products, :name)

 -> 0.0010s

== CreateIndex: migrated (0.0011s) =======================================

$

ChapTeR 3 aCTIveReCORd

http://en.wikipedia.org/wiki/Database_index

177

Of course, you don’t have to use the up and down methods. You can use change too.

The migration for the new index would look like this:

class CreateIndex < ActiveRecord::Migration[5.1]

 def change

 add_index :products, :name

 end

end

 You can also create an index directly when you generate the model. In this
case (an index for the attribute name), the command would look like this:

$ rails generate model product name:string:index

$ cat db/migrate/20151217191435_create_products.rb

class CreateProducts < ActiveRecord::Migration

 def change

 create_table :products do |t|

 t.string :name

 t.timestamps null: false

 end

 add_index :products, :name

 end

end

 Automatically Added Fields (id, created_at,
and updated_at)
Rails kindly adds the following fields automatically in the default migration:

• id:integer: This is the unique ID of the record. The field is

automatically incremented by the database. For all SQL fans, this is

equivalent to NOT NULL AUTO_INCREMENT.

ChapTeR 3 aCTIveReCORd

178

• created_at:datetime: The field is filled automatically by

ActiveRecord when a record is created.

• updated_at:datetime: The field is automatically updated to the

current time whenever the record is edited.

So, you don’t have to enter these fields yourself when generating the model.

At first you may ask yourself, “Is that really necessary? Does it make sense?" But after

a while you will learn to appreciate these automatic fields. Omitting them would usually

be false economy.

 Further Documentation
The following web pages provide excellent further information on the topic of migration:

• http://api.rubyonrails.org/classes/ActiveRecord/Migration.html

• http://api.rubyonrails.org/classes/ActiveRecord/

ConnectionAdapters/TableDefinition.html

http://railscasts.com/episodes/107-migrations-in-rails-2-1

(a bit dated but still good if you are trying to understand the basics)

• www.dizzy.co.uk/ruby_on_rails/cheatsheets/rails-migrations

 Callbacks
Callbacks are defined programming hooks in the life of an ActiveRecord object. You

can find a list of all callbacks at http://api.rubyonrails.org/classes/ActiveRecord/

Callbacks.html. Here are the most frequently used callbacks:

• before_validation: Executed before the validation

• after_validation: Executed after the validation

• before_save: Executed before each save

• before_create: Executed before the first save

• after_save: Executed after every save

• after_create: Executed after the first save

ChapTeR 3 aCTIveReCORd

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://api.rubyonrails.org/classes/ActiveRecord/ConnectionAdapters/TableDefinition.html
http://api.rubyonrails.org/classes/ActiveRecord/ConnectionAdapters/TableDefinition.html
http://railscasts.com/episodes/107-migrations-in-rails-2-1
http://www.dizzy.co.uk/ruby_on_rails/cheatsheets/rails-migrations
http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html
http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html

179

A callback is always executed in the model. Let’s assume you always want to save an

e-mail address in a User model in lowercase but also give the user of the web interface

the option to enter uppercase letters. You could use a before_save callback to convert

the attribute email to lowercase via the method downcase.

Here’s the Rails application:

$ rails new shop

 [...]

$ cd shop

$ rails generate model user email login

 [...]

$ rails db:migrate

 [...]

Listing 3-41 shows what the model app/models/user.rb would look like. The

interesting stuff is the before_save part.

Listing 3-41. app/models/user.rb

class User < ApplicationRecord

 validates :login,

 presence: true

 validates :email,

 presence: true,

 format: { :with => /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i }

 before_save :downcase_email

 private

 def downcase_email

 self.email = self.email.downcase

 end

end

ChapTeR 3 aCTIveReCORd

180

Let’s see in the console if it really works as you want it to work.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> User.create(login: 'smith', email: 'SMITH@example.com')

 (0.1ms) begin transaction

 SQL (0.5ms) INSERT INTO "users" ("login", "email", "created_at",

 "updated_at") VALUES (?, ?, ?, ?) [["login", "smith"], ["email",

 "smith@example.com"], ["created_at", "2015-12-17 19:22:20.928994"],

 ["updated_at", "2015-12-17 19:22:20.928994"]]

 (9.0ms) commit transaction

=> #<User id: 1, email: "smith@example.com", login: "smith", created_at:

"2015-12-17 19:22:20", updated_at: "2015-12-17 19:22:20">

>> exit

Even though the e-mail address was entered partly with capital letters, ActiveRecord

has converted all letters automatically to lowercase via the before_save callback.

In the section “Default Values” you will find an example of defining a default value

for a new object via an after_initialize callback.

 Default Values
If you need specific default values for an ActiveRecord object, you can easily

implement this with the after_initialize callback. This method is called by

ActiveRecord when a new object is created. Let’s assume you have a model Order

and the minimum order quantity is always 1, so you can enter 1 directly as the default

value when creating a new record.

Let’s set up a quick example, shown here:

$ rails new shop

 [...]

$ cd shop

$ rails generate model order product_id:integer quantity:integer

 [...]

$ rails db:migrate

 [...]

ChapTeR 3 aCTIveReCORd

181

You write an after_initialize callback into the file app/models/order.rb, as

shown in Listing 3-42.

Listing 3-42. app/models/order.rb

class Order < ApplicationRecord

 after_initialize :set_defaults

 private

 def set_defaults

 self.quantity ||= 1

 end

end

||= 1 sets the value to 1 if it isn’t set already.

Then now you check in the console whether a new order object automatically

contains the quantity 1.

$ rails console

Running via Spring preloader in process 27927

Loading development environment (Rails 5.2.0)

>> order = Order.new

=> #<Order id: nil, product_id: nil, quantity: 1, created_at: nil,

updated_at: nil>

>> order.quantity

=> 1

>> exit

That’s working fine!

ChapTeR 3 aCTIveReCORd

183
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_4

CHAPTER 4

Scaffolding and REST
Scaffolding means simply that a basic scaffold for an application is created with a

generator. This scaffold not only contains the model but also a simple web GUI (views)

and of course a controller. The programming paradigm used for this is Representational

State Transfer (REST).

You can find a definition of REST at wikipedia.org/wiki/Representational_

state_transfer. My short and a bit oversimplified version is this: the inventor Roy

Fielding described in 2000 how you can access data with a simple set of rules within

the concept of CRUD and the specification of the Hypertext Transfer Protocol (HTTP).

CRUD is the abbreviation for Create (SQL: INSERT), Read (SQL: SELECT), Update (SQL:

UPDATE), and Delete (SQL: DELETE). This created URLs that are easy to read for humans

and have a certain logic. In this chapter, you will see examples showing the individual

paths for the different CRUD functions.

I think the greatest frustration with Rails arises regularly from the fact that many

beginners use scaffolding to get quick results without having the proper basic knowledge

of Ruby and without knowing what ActiveRecord is. They don’t know what to do next.

Fortunately, you have worked your way through Chapters 1–3, so you will be able to

understand and use scaffolding straightaway.

 Redirects and Flash Messages
Scaffolding uses redirects and flash messages. So, you have to make a little detour first to

understand scaffolding.

 Redirects
The name says it all, really. Redirects are commands that you can use within the

controller to skip (i.e., redirect) to other web pages.

https://wikipedia.org/wiki/Representational_state_transfer
https://wikipedia.org/wiki/Representational_state_transfer

184

 A redirect returns to the browser the response 302 Moved with the new
target. So, each redirect does a round-trip to the browser and back.

Let’s create a new Rails project for a suitable example.

$ rails new redirect_example

[...]

$ cd redirect_example

$ rails db:migrate

Before you can redirect, you need a controller with at least two different methods.

Here is a ping-pong example:

$ rails generate controller Game ping pong

Running via Spring preloader in process 51759

 create app/controllers/game_controller.rb

 route get 'game/pong'

 route get 'game/ping'

 invoke erb

 create app/views/game

 create app/views/game/ping.html.erb

 create app/views/game/pong.html.erb

 invoke test_unit

 create test/controllers/game_controller_test.rb

 invoke helper

 create app/helpers/game_helper.rb

 invoke test_unit

 invoke assets

 invoke coffee

 create app/assets/javascripts/game.coffee

 invoke scss

 create app/assets/stylesheets/game.scss

ChApter 4 SCAffolding And reSt

185

The controller app/controllers/game_controller.rb has the content shown in

Listing 4-1.

Listing 4-1. app/controllers/game_controller.rb

class GameController < ApplicationController

 def ping

 end

 def pong

 end

end

Now for the redirect: how can you set it up so you get immediately redirected to the

method pong when you go to http://localhost:3000/game/ping? Easy, you say—you

just change the route in config/routes.rb. And you are right. So, you don’t necessarily

need a redirect. But if you want to process something else in the method ping before

redirecting, then this is only possible by using a redirect_to in the controller

app/controllers/game_controller.rb, as shown in Listing 4-2.

Listing 4-2. app/controllers/game_controller.rb

class GameController < ApplicationController

 def ping

 logger.info '+++ Example +++'

 redirect_to game_pong_path

 end

 def pong

 end

end

But what is game_pong_path? Let’s take a look at the routes generated for this Rails

application:

$ rails routes

 Prefix Verb URI Pattern Controller#Action

game_ping GET /game/ping(.:format) game#ping

game_pong GET /game/pong(.:format) game#pong

ChApter 4 SCAffolding And reSt

186

 As you can see, the route to the action ping of the controller
GameController now gets the name game_ping (see the beginning of the line).
You could also write the redirect like this:

redirect_to :action => 'pong'

I will explain the details and the individual options of the redirect later in the context

of each specific case. For now, you just need to know that you can redirect not just to

another method but also to another controller or an entirely different web page.

When you try to go to http://localhost:3000/game/ping, you are automatically

redirected to http://localhost:3000/game/pong, and in the log output you see this:

Started GET "/game/ping" for 127.0.0.1 at 2015-04-15 17:50:04 +0200

Processing by GameController#ping as HTML

+++ Example +++

Redirected to http://localhost:3000/game/pong

Completed 302 Found in 14ms (ActiveRecord: 0.0ms)

Started GET "/game/pong" for 127.0.0.1 at 2015-04-15 17:50:04 +0200

Processing by GameController#pong as HTML

 Rendered game/pong.html.erb within layouts/application (2.1ms)

Completed 200 OK in 2128ms (Views: 2127.4ms | ActiveRecord: 0.0ms)

 redirect_to :back
If you want to redirect the user of your web application to the page the user was just on,

you can use redirect_to :back. This is useful in a scenario where your user first has to

log in to get access to a specific page.

ChApter 4 SCAffolding And reSt

187

 Flash Messages
In my eyes, the term flash messages is somewhat misleading. Almost anyone would

associate the term flash with more or less colorful web pages that were implemented

with the Adobe Shockwave Flash plug-in. But in Ruby on Rails, flash messages are

something completely different. They are messages that are displayed on the new page

after a redirect, for example (see the section “Redirects”).

Flash messages are good friends with redirects. The two often work together in a

team to give the user feedback on an action just carried out. A typical example of a flash

message is the system feedback when a user has logged in. Often the user is redirected

back to the original page and gets the message “You are now logged in.”

As an example, here again is the ping-pong scenario from the section “Redirects”:

$ rails new pingpong

 [...]

$ cd pingpong

$ rails db:migrate

$ rails generate controller Game ping pong

 [...]

You fill app/controllers/game_controller.rb with the content shown in Listing 4-3.

Listing 4-3. app/controllers/game_controller.rb

class GameController < ApplicationController

 def ping

 redirect_to game_pong_path, notice: 'Ping-Pong!'

 end

 def pong

 end

end

ChApter 4 SCAffolding And reSt

188

Now you start the Rails web server with rails server and use the browser to go

to http://localhost:3000/game/ping. You are redirected from ping to pong. But the

flash message “Ping-Pong!” is nowhere to be seen. You first need to expand app/views/

layouts/application.html.erb, as shown in Listing 4-4.

Listing 4-4. app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

 <head>

 <title>RedirectExample</title>

 <%= csrf_meta_tags %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-

turbolinks- track': 'reload' %>

 <%= javascript_include_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <% flash.each do |name, message| %>

 <p><i><%= "#{name}: #{message}" %></i></p>

 <% end %>

 <%= yield %>

 </body>

</html>

Now you see the flash message at the top of the page when you go to

http://localhost:3000/game/ping in the browser, as shown in Figure 4-1.

ChApter 4 SCAffolding And reSt

189

If you go to http://localhost:3000/game/pong, you still see the normal Pong page.

But if you go to http://localhost:3000/game/ping, you are redirected to the Pong

page, and then the flash message is displayed at the top.

 if you do not see a flash message that you were expecting, first check in the

view to see whether the flash message is output there.

 Different Types of Flash Messages
Flash messages are “automagically” passed to the view in a hash. By default, there are

three different types: error, warning, and notice. You can also invent your own category

and then get it in the view later.

You can set a flash message by writing the hash directly too, as shown here:

flash[:notice] = 'Ping-Pong!'

Please take a look at the official documentation at http://guides.rubyonrails.

org/action_controller_overview.html#the-flash for more information.

Figure 4-1. Flash message

ChApter 4 SCAffolding And reSt

http://guides.rubyonrails.org/action_controller_overview.html#the-flash
http://guides.rubyonrails.org/action_controller_overview.html#the-flash

190

 Why Are There Flash Messages at All?
You may wonder why there are flash messages in the first place. Couldn’t you just build

them yourself if you need them? Yes, indeed. But flash messages have the advantage that

they offer a defined approach that is the same for any programmer. So, you don’t need to

start from scratch every single time you need one.

 Generating a Scaffold
Let’s first use scaffolding to create a list of products for an online shop. First, you need to

create a new Rails application.

$ rails new scaffold-shop

 [...]

$ cd scaffold-shop

$ rails db:migrate

Let’s look at the scaffolding options.

$ rails generate scaffold

Usage:

 rails generate scaffold NAME [field[:type][:index] field[:type][:index]]

 [options]

[...]

Examples:

 `rails generate scaffold post`

 `rails generate scaffold post title body:text published:boolean`

 ̀rails generate scaffold purchase amount:decimal tracking_id:integer:uniq`

 `rails generate scaffold user email:uniq password:digest`

I’ll keep it short: for the current state of knowledge, you can use rails generate

scaffold just like rails generate model. Let’s create the scaffold for the products.

$ rails generate scaffold product name 'price:decimal{7,2}'

Running via Spring preloader in process 38321

ChApter 4 SCAffolding And reSt

191

 invoke active_record

 create db/migrate/20180118065756_create_products.rb

 create app/models/product.rb

 invoke test_unit

 create test/models/product_test.rb

 create test/fixtures/products.yml

 invoke resource_route

 route resources :products

 invoke scaffold_controller

 create app/controllers/products_controller.rb

 invoke erb

 create app/views/products

 create app/views/products/index.html.erb

 create app/views/products/edit.html.erb

 create app/views/products/show.html.erb

 create app/views/products/new.html.erb

 create app/views/products/_form.html.erb

 invoke test_unit

 create test/controllers/products_controller_test.rb

 create test/system/products_test.rb

 invoke helper

 create app/helpers/products_helper.rb

 invoke test_unit

 invoke jbuilder

 create app/views/products/index.json.jbuilder

 create app/views/products/show.json.jbuilder

 create app/views/products/_product.json.jbuilder

 invoke assets

 invoke coffee

 create app/assets/javascripts/products.coffee

 invoke scss

 create app/assets/stylesheets/products.scss

 invoke scss

 create app/assets/stylesheets/scaffolds.scss

ChApter 4 SCAffolding And reSt

192

As you can see, rails generate scaffold has already created the model. So, you

can directly call rails db:migrate.

$ rails db:migrate

== 20180118065756 CreateProducts: migrating ===============================

-- create_table(:products)

 -> 0.0014s

== 20180118065756 CreateProducts: migrated (0.0015s)

==========================

Let’s create the first six products in db/seeds.rb.

Product.create(name: 'Apple', price: 1)

Product.create(name: 'Orange', price: 1)

Product.create(name: 'Pineapple', price: 2.4)

Product.create(name: 'Marble cake', price: 3)

Populate with the example data.

$ rails db:seed

 The Routes
rails generate scaffold has created a route (more on this later in Chapter 5), a

controller, and several views for you.

You could also have done all of this manually. Scaffolding is merely an automatism

that does the work for you for some basic things. This is assuming that you always want

to view, create, and delete records.

Without diving too deeply into the topic of routes, let’s just take a quick look at the

available routes for the example. You need to run rails routes.

$ rails routes

 Prefix Verb URI Pattern Controller#Action

 products GET /products(.:format) products#index

 POST /products(.:format) products#create

 new_product GET /products/new(.:format) products#new

edit_product GET /products/:id/edit(.:format) products#edit

 product GET /products/:id(.:format) products#show

ChApter 4 SCAffolding And reSt

193

 PATCH /products/:id(.:format) products#update

 PUT /products/:id(.:format) products#update

 DELETE /products/:id(.:format) products#destroy

These are all the routes and consequently URLs available in this Rails application. All

routes invoke actions (in other words, methods) in the ProductsController.

 The Controller
Now it’s about time you had a look at the file app/controllers/products_controller.rb.

The scaffolding automatically creates the methods index, show, new, create, update, and

destroy. These methods or actions are called by the routes.

Listing 4-5 shows the content of app/controllers/products_controller.rb.

Listing 4-5. app/controllers/products_controller.rb

class ProductsController < ApplicationController

 before_action :set_product, only: [:show, :edit, :update, :destroy]

 # GET /products

 # GET /products.json

 def index

 @products = Product.all

 end

 # GET /products/1

 # GET /products/1.json

 def show

 end

 # GET /products/new

 def new

 @product = Product.new

 end

 # GET /products/1/edit

 def edit

 end

ChApter 4 SCAffolding And reSt

194

 # POST /products

 # POST /products.json

 def create

 @product = Product.new(product_params)

 respond_to do |format|

 if @product.save

 format.html { redirect_to @product, notice: 'Product was

successfully created.' }

 format.json { render :show, status: :created, location: @product }

 else

 format.html { render :new }

 format.json { render json: @product.errors, status: :unprocessable_

entity }

 end

 end

 end

 # PATCH/PUT /products/1

 # PATCH/PUT /products/1.json

 def update

 respond_to do |format|

 if @product.update(product_params)

 format.html { redirect_to @product, notice: 'Product was

successfully updated.' }

 format.json { render :show, status: :ok, location: @product }

 else

 format.html { render :edit }

 format.json { render json: @product.errors, status: :unprocessable_

entity }

 end

 end

 end

 # DELETE /products/1

 # DELETE /products/1.json

 def destroy

ChApter 4 SCAffolding And reSt

195

 @product.destroy

 respond_to do |format|

 format.html { redirect_to products_url, notice: 'Product was

successfully destroyed.' }

 format.json { head :no_content }

 end

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_product

 @product = Product.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white

list through.

 def product_params

 params.require(:product).permit(:name, :price)

 end

end

Let’s take a moment and go through this controller.

 set_product

An action called before_action calls a private method to set an instance variable called

@product for the actions :show, :edit, :update, and :destroy. That DRYs it up nicely.

before_action :set_product, only: [:show, :edit, :update, :destroy]

[...]

private

 # Use callbacks to share common setup or constraints between actions.

 def set_product

 @product = Product.find(params[:id])

 end

[...]

ChApter 4 SCAffolding And reSt

196

 index

The index method sets the instance variable @products. It contains the result of

Product.all.

GET /products

GET /products.json

def index

 @products = Product.all

end

 show

The show method doesn’t do anything. set_product before_action already set the

instance variable @product. So, there is not more to do.

GET /products/1

GET /products/1.json

def show

end

new

The new method creates a new instance of Product and saves it in the instance variable @

product.

GET /products/new

def new

 @product = Product.new

end

 edit

The edit method doesn’t do anything. The action called set_product before_action

already set the instance variable @product. So, there is nothing more to do.

GET /products/1/edit

def edit

end

ChApter 4 SCAffolding And reSt

197

 create

The create method uses Product.new to create a new instance of Product and store it in

@product. The private method product_params is used to filter the trusted parameters

with a white list. When @product is successfully saved, a redirect to the show action is

initiated for HTML requests. If a validation error occurs, the new action will be rendered.

POST /products

POST /products.json

def create

 @product = Product.new(product_params)

 respond_to do |format|

 if @product.save

 format.html { redirect_to @product, notice: 'Product was successfully

created.' }

 format.json { render :show, status: :created, location: @product }

 else

 format.html { render :new }

 format.json { render json: @product.errors, status: :unprocessable_

entity }

 end

 end

end

[...]

Never trust parameters from the scary internet, only allow the white list

through.

def product_params

 params.require(:product).permit(:name, :price)

end

ChApter 4 SCAffolding And reSt

198

 update

The update method tries to update @product with product_params. The private method

product_params is used to filter the trusted parameters with a white list. When @product

is successfully updated, a redirect to the show action is initiated for HTML requests. If a

validation error occurs, the edit action will be rendered.

PATCH/PUT /products/1

PATCH/PUT /products/1.json

def update

 respond_to do |format|

 if @product.update(product_params)

 format.html { redirect_to @product, notice: 'Product was successfully

updated.' }

 format.json { render :show, status: :ok, location: @product }

 else

 format.html { render :edit }

 format.json { render json: @product.errors, status: :unprocessable_

entity }

 end

 end

end

[...]

Never trust parameters from the scary internet, only allow the white list

through.

def product_params

 params.require(:product).permit(:name, :price)

end

ChApter 4 SCAffolding And reSt

199

 destroy

The destroy method destroys @product and redirects an HTML request to the index

action.

DELETE /products/1

DELETE /products/1.json

def destroy

 @product.destroy

 respond_to do |format|

 format.html { redirect_to products_url, notice: 'Product was

successfully destroyed.' }

 format.json { head :no_content }

 end

end

 The Views
Now you start the Rails web server.

$ rails server

=> Booting Puma

=> Rails 5.2.0 application starting in development on http://localhost:3000

=> Run `rails server -h` for more startup options

Puma starting in single mode...

* Version 3.11.0 (ruby 2.5.0-p0), codename: Love Song

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://0.0.0.0:3000

Use Ctrl-C to stop

ChApter 4 SCAffolding And reSt

200

A little drum roll, please, for dramatic suspense...launch the web browser and go to

the URL http://localhost:3000/products. You can see the list of products as a simple

web page, as shown in Figure 4-2.

Figure 4-2. Products index

ChApter 4 SCAffolding And reSt

201

If you now click the link New Product, you will see an input form for a new record, as

shown in Figure 4-3.

Figure 4-3. New product form

Use your browser’s Back button to go back and click the Show link in the first line.

You will then see the page shown in Figure 4-4.

Figure 4-4. Showing a product

ChApter 4 SCAffolding And reSt

202

If you now click Edit, you will see the editing view for this record, as shown in

Figure 4-5.

If you click Destroy on the index page, you can delete a record after confirming the

message that pops up. Isn’t that cool? Within less than ten minutes, you have written

a web application that allows you to create, read/retrieve, update, and delete/destroy

records. That is the scaffolding magic. You can save a lot of time.

 Where Are the Views?

You can probably guess where the views are, but let’s take a look at the directory

app/views/products anyway.

$ tree app/views/products/

app/views/products/

├── _form.html.erb
├── _product.json.jbuilder
├── edit.html.erb
├── index.html.erb
├── index.json.jbuilder

Figure 4-5. Editing a product

ChApter 4 SCAffolding And reSt

203

├── new.html.erb
├── show.html.erb
└── show.json.jbuilder

There are two different file extensions. The html.erb file is for HTML requests, and

the json.jbuilder file is for JSON requests.

For index, edit, new, and show, the corresponding views are located there. As new

and edit both require a form for editing the data, this is stored in the partial _form.

html.erb in accordance with the principle of DRY and is integrated into new.html.erb

and edit.html.erb with a <%= render 'form' %>.

Let’s open the file app/views/products/index.html.erb, as shown in Listing 4-6.

Listing 4-6. app/views/products/index.html.erb

<p id="notice"><%= notice %></p>

<h1>Products</h1>

<table>

 <thead>

 <tr>

 <th>Name</th>

 <th>Price</th>

 <th colspan="3"></th>

 </tr>

 </thead>

 <tbody>

 <% @products.each do |product| %>

 <tr>

 <td><%= product.name %></td>

 <td><%= product.price %></td>

 <td><%= link_to 'Show', product %></td>

 <td><%= link_to 'Edit', edit_product_path(product) %></td>

 <td><%= link_to 'Destroy', product, method: :delete, data: {

confirm: 'Are you sure?' } %></td>

 </tr>

ChApter 4 SCAffolding And reSt

204

 <% end %>

 </tbody>

</table>

<%= link_to 'New Product', new_product_path %>

You are now an old hand when it comes to ERB, so you’ll be able to read and

understand the code without any problems.

 link_to

In the views generated by the scaffold generator, you first came across the helper

link_to. This creates <a hre ...> links. You can of course also enter a link manually

via in erb, but for links within a Rails project, link_to is more practical

because you can use the names of the routes as a target. The code becomes much easier

to read. In the previous example, there are the following routes:

$ rails routes

 Prefix Verb URI Pattern Controller#Action

 products GET /products(.:format) products#index

 POST /products(.:format) products#create

 new_product GET /products/new(.:format) products#new

edit_product GET /products/:id/edit(.:format) products#edit

 product GET /products/:id(.:format) products#show

 PATCH /products/:id(.:format) products#update

 PUT /products/:id(.:format) products#update

 DELETE /products/:id(.:format) products#destroy

The first part of this route is the name of the route. With a new call, this is new_product.

A link to new_product looks like the following in the erb code (you can see it at the end of

the file app/views/products/index.html.erb):

<%= link_to 'New Product', new_product_path %>

In the HTML code of the generated page (http://localhost:3000/products), you

can see the result.

<%= link_to 'New Product', new_product_path %>

ChApter 4 SCAffolding And reSt

205

With link_to you can also link to resources within a RESTful resource. Again, you

can find examples for this in app/views/products/index.html.erb. In the table, a show

link, an edit link, and a destroy link are rendered for each product.

<tbody>

 <% @products.each do |product| %>

 <tr>

 <td><%= product.name %></td>

 <td><%= product.price %></td>

 <td><%= link_to 'Show', product %></td>

 <td><%= link_to 'Edit', edit_product_path(product) %></td>

 <td><%= link_to 'Destroy', product, method: :delete, data: { confirm:

'Are you sure?' } %></td>

 </tr>

 <% end %>

</tbody>

From the resource and the selected route, Rails automatically determines the

required URL and the required HTTP verb (in other words, whether it is a POST, GET,

PUT, or DELETE). For index and show calls, you need to observe the difference between

singular and plural. link_to 'Show', product links to a single record, and link_to

'Show', products_path links to the index view.

Whether the name of the route is used with or without the suffix _path in link_to

depends on whether Rails can “derive” the route from the other specified information.

If only one object is specified (in this example, the variable product), then Rails

automatically assumes that it is a show route.

Here are some examples:

ERD Code Explanation

link_to 'Show', Product.first link to the first product

link_to 'New Product', new_product_path link to the web interface where a

new product can be created

link_to 'Edit', edit_product_path(Product.first) link to the form where the first

product can be edited

link_to 'Destroy', Product.first, method: :delete link to deleting the first product

ChApter 4 SCAffolding And reSt

206

 form_for

In the partial used by new and edit, called app/views/products/_form.html.erb, you

will find the code shown in Listing 4-7 for the product form.

Listing 4-7. app/views/products/_form.html.erb

<%= form_with(model: product, local: true) do |f| %>

 <% if product.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(product.errors.count, "error") %> prohibited this

product from being saved:</h2>

 <% product.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= f.label :name %>

 <%= f.text_field :name %>

 </div>

 <div class="field">

 <%= f.label :price %>

 <%= f.text_field :price %>

 </div>

 <div class="actions">

 <%= f.submit %>

 </div>

<% end %>

ChApter 4 SCAffolding And reSt

207

In a block, the helper form_for takes care of creating the HTML form via which

the user can enter the data for the record or edit it. If you delete a complete <div

class="field"> element here, this can no longer be used for input in the web interface.

I am not going to comment on all possible form field variations at this point. The most

frequently used ones will appear in examples later and be explained then (if they are not

self-explanatory).

 You can find an overview of all form helpers at http://guides.
rubyonrails.org/form_helpers.html.

When using validations in the model, any validation errors that occur are displayed

in the following code at the head of the form:

<% if product.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(product.errors.count, "error") %> prohibited this

product from being saved:</h2>

 <% product.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

<% end %>

Let’s add a small validation to the app/models/product.rb model, as shown in

Listing 4-8.

Listing 4-8. app/models/product.rb

class Product < ApplicationRecord

 validates :name,

 presence: true

end

ChApter 4 SCAffolding And reSt

http://guides.rubyonrails.org/form_helpers.html
http://guides.rubyonrails.org/form_helpers.html

208

Whenever somebody wants to save a product that doesn’t have a name, Rails will

show the flash error in Figure 4-6.

 Access via JSON

By default, Rails’ scaffolding generates not just access via HTML for human users but

also a direct interface for machines. The same methods index, show, new, create,

update, and destroy can be called via this interface, but in a format that is easier to read

for machines. As an example, you will see the index action via which all data can be read

in one go. With the same idea, data can be removed (destroy) or edited (update).

JSON (see http://wikipedia.org/wiki/Json) seems to be the new cool kid. So, let’s

use JSON.

If you do not require machine-readable access to data, you can remove the lines

shown in Listing 4-9 from the file Gemfile (followed by the command bundle).

Figure 4-6. Products error flash

ChApter 4 SCAffolding And reSt

http://wikipedia.org/wiki/Json

209

Listing 4-9. Gemfile

Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder

gem 'jbuilder', '~> 2.5'

Of course, you can delete the format.json lines manually too. But please don’t forget

to delete the JSON view files too.

JSON As Default

Right at the beginning of app/controllers/products_controller.rb you will find the

entry for the index action, as shown in Listing 4-10.

Listing 4-10. app/controllers/products_controller.rb

GET /products

GET /products.json

def index

 @products = Product.all

end

The code is straightforward. In the instance variable @products, all the products are

saved. The view app/views/products/index.json.jbuilder contains the code shown

in Listing 4-11 to render the JSON.

Listing 4-11. app/views/products/index.json.jbuilder

json.array! @products, partial: 'products/product', as: :product

It renders the partial named _product.json.jbuilder, as shown in Listing 4-12.

Listing 4-12. app/views/products/_product.json.jbuilder

json.extract! product, :id, :name, :price, :created_at, :updated_at

json.url product_url(product, format: :json)

ChApter 4 SCAffolding And reSt

210

You can use your browser to fetch the JSON output. Just open

http://localhost:3000/products.json and view the result. I installed a JSON view

extension in my Chrome browser to get a nicer format, as shown in Figure 4-7.

If you do not want the JSON output, you need to delete the json.jbuilder files.

JSON and XML Together

If you ever need a JSON and XML interface in a Rails application, you just need to specify

both variants in the controller in the block respond_to. Listing 4-13 shows an example

with app/controllers/products_controller.rb in the index action.

Listing 4-13. app/controllers/products_controller.rb

GET /products

GET /products.json

GET /products.xml

def index

 @products = product.all

 respond_to do |format|

 format.html # index.html.erb

 format.json { render json: @products }

Figure 4-7. Products index JSON

ChApter 4 SCAffolding And reSt

211

 format.xml { render xml: @products }

 end

end

 When Should You Use Scaffolding?
You should never use scaffolding just for the sake of it. There are Rails developers who

never use scaffolding and always build everything manually. I find scaffolding quite

useful for quickly getting into a new project. But it is always just the beginning.

 Example for a Minimal Project
Let’s assume you need a web page quickly with which you can list products and

represent them individually. But you do not require an editing or deleting function. In

that case, a large part of the code created via scaffolding would be useless and have to be

deleted. Let’s try it as follows:

$ rails new read-only-shop

 [...]

$ cd read-only-shop

$ rails generate scaffold product name 'price:decimal{7,2}'

 [...]

$ rails db:migrate

 [...]

Now create db/seeds.rb with some demo products, as shown in Listing 4-14.

Listing 4-14. db/seeds.rb

Product.create(name: 'Apple', price: 1)

Product.create(name: 'Orange', price: 1)

Product.create(name: 'Pineapple', price: 2.4)

Product.create(name: 'Marble cake', price: 3)

Populate it with this data:

$ rails db:seed

ChApter 4 SCAffolding And reSt

212

Because you need only index and show, you should delete the views that not

required.

$ rm app/views/products/_form.html.erb

$ rm app/views/products/new.html.erb

$ rm app/views/products/edit.html.erb

The json.jbuilder views are not needed either.

$ rm app/views/products/*.json.jbuilder

The file app/controllers/products_controller.rb can be simplified with an

editor. It should look like Listing 4-15.

Listing 4-15. app/controllers/products_controller.rb

class ProductsController < ApplicationController

 before_action :set_product, only: [:show]

 # GET /products

 # GET /products.json

 def index

 @products = Product.all

 end

 # GET /products/1

 # GET /products/1.json

 def show

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_product

 @product = Product.find(params[:id])

 end

end

You only need the routes for index and show. Please open the file config/routes.rb

and edit it as shown in Listing 4-16.

ChApter 4 SCAffolding And reSt

213

Listing 4-16. config/routes.rb

Rails.application.routes.draw do

 resources :products, only: [:index, :show]

end

A rails routes command shows you that really only index and show are routed now.

$ rails routes

 Prefix Verb URI Pattern Controller#Action

products GET /products(.:format) products#index

 product GET /products/:id(.:format) products#show

If you now start the server with rails server and go to the URL

http://localhost:3000/products, you get an error message, as shown in Figure 4-8.

Figure 4-8. Products error message

ChApter 4 SCAffolding And reSt

214

The same message will be displayed in the log.

$ rails server

=> Booting Puma

=> Rails 5.2.0 application starting in development on http://localhost:3000

=> Run `rails server -h` for more startup options

Puma starting in single mode...

* Version 3.11.0 (ruby 2.5.0-p0), codename: Love Song

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://0.0.0.0:3000

Use Ctrl-C to stop

Started GET "/products" for 127.0.0.1 at 2017-03-23 17:47:43 +0100

 (0.2ms) SELECT "schema_migrations"."version" FROM "schema_migrations"

ORDER BY "schema_migrations"."version" ASC

Processing by ProductsController#index as HTML

 Rendering products/index.html.erb within layouts/application

 Product Load (0.2ms) SELECT "products".* FROM "products"

 Rendered products/index.html.erb within layouts/application (126.3ms)

Completed 500 Internal Server Error in 149ms (ActiveRecord: 0.7ms)

ActionView::Template::Error (undefined method `edit_product_path' for

#<#<Class:0x007f98eb1e8148>:0x007f98ea6620d0>

Did you mean? edit_polymorphic_path):

 17: <td><%= product.name %></td>

 18: <td><%= product.price %></td>

 19: <td><%= link_to 'Show', product %></td>

 20: <td><%= link_to 'Edit', edit_product_path(product) %></td>

 21: <td><%= link_to 'Destroy', product, method: :delete, data:

{ confirm: 'Are you sure?' } %></td>

 22: </tr>

 23: <% end %>

app/views/products/index.html.erb:20:in `block in _app_views_products_

index_html_erb___4554496912710881403_70147378203280'

app/views/products/index.html.erb:15:in `_app_views_products_index_html_erb

___4554496912710881403_70147378203280'

ChApter 4 SCAffolding And reSt

215

The error message states that you call the undefined method edit_product_path in

the view app/views/products/index.html.erb. Because you route only index and show

now, there are no more edit, destroy, or new methods anymore. So, you need to adapt

the file app/views/products/index.html.erb in the editor as shown in Listing 4-17.

Listing 4-17. app/views/products/index.html.erb

<h1>Products</h1>

<table>

 <thead>

 <tr>

 <th>Name</th>

 <th>Price</th>

 <th></th>

 </tr>

 </thead>

 <tbody>

 <% @products.each do |product| %>

 <tr>

 <td><%= product.name %></td>

 <td><%= product.price %></td>

 <td><%= link_to 'Show', product %></td>

 </tr>

 <% end %>

 </tbody>

</table>

While you are at it, you can also edit app/views/products/show.html.erb

accordingly; see Listing 4-18.

Listing 4-18. app/views/products/show.html.erb

<p>

 Name:

 <%= @product.name %>

</p>

ChApter 4 SCAffolding And reSt

216

<p>

 Price:

 <%= @product.price %>

</p>

<%= link_to 'Back', products_path %>

Now the application is finished. Start the Rails server with rails server and open

the URL http://localhost:3000/products in the browser, as shown in Figure 4-9.

 in this example, i am not commenting on the required changes in the tests,
as this is not an exercise for test-driven development (tdd) but is meant to
demonstrate a way of working with scaffolding. tdd developers will quickly be
able to adapt the tests.

 Conclusion
Try working with scaffolds one time and without them the next. Then you will soon get a

feel for whether they fit into your workflow. I find that scaffolding makes my work much

easier for standard applications.

Figure 4-9. Read-only products index

ChApter 4 SCAffolding And reSt

217
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_5

CHAPTER 5

Routes
In Chapters 2 and 4, you learned about routes. The configuration in config/routes.rb

defines what happens in the Rails application when a user of a Rails application fetches

a URL. A route can be static or dynamic and pass any dynamic values with variables to

the controller. If several routes apply to the same URL, the one that is listed at the top of

config/routes.rb wins.

 If you do not have much time, you can skip this chapter for now and come

back to it later if you have any specific questions.

Let’s first build a test Rails application so you can experiment.

$ rails new shop

 [...]

$ cd shop

$ rails db:migrate

With rails routes, you can display the routes of a project. Let’s try it straightaway in

the freshly created project.

$ rails routes

You don't have any routes defined!

Please add some routes in config/routes.rb.

For more information about routes, see the Rails guide:

http://guides.rubyonrails.org/routing.html.

218

That’s what I call a good error message. It’s a new Rails project, so there are no

routes yet.

 HTTP GET Requests for Singular Resources
As you might know, the HTTP protocol uses different so-called verbs to access content

on the web server (e.g., GET to request a page or POST to send a form to the server). First

let’s take a look at GET requests.

Create a controller with three pages.

$ rails generate controller Home index ping pong

 create app/controllers/home_controller.rb

 route get "home/pong"

 route get "home/ping"

 route get "home/index"

 [...]

Now rails routes lists a route for these three pages.

$ rails routes

 Prefix Verb URI Pattern Controller#Action

home_index GET /home/index(.:format) home#index

 home_ping GET /home/ping(.:format) home#ping

 home_pong GET /home/pong(.:format) home#pong

Chapter 5 routes

219

The pages can be accessed at the following URLs after starting the Rails server with

rails server:

• http://localhost:3000/home/index for home_index GET /home/

index(.:format) home#index

• http://localhost:3000/home/ping for home_ping GET /home/

ping(.:format) home#ping (see Figure 5-1)

• http://localhost:3000/home/pong for home_pong GET /home/

pong(.:format) home#pong

With the output home#index, Rails tells you that the route home/index goes into the

controller home and there to the action/method index. These routes are defined in

the config/routes.rb file. rails generate controller Home index ping pong has

automatically inserted the lines there shown in Listing 5-1.

Listing 5-1. config/routes.rb

get "home/index"

get "home/ping"

get "home/pong"

Figure 5-1. Home ping

Chapter 5 routes

220

 Naming a Route
A route should always have an internal name that doesn’t change. In the section “HTTP

Get Requests for Singular Resources,” there is the following route:

home_pong GET /home/pong(.:format) home#pong

This route has the automatically created name home_pong. Generally, you should

always try to work with the name of the route within a Rails application. For example,

you would point link_to to home_pong and not to /home/pong. This has the big

advantage that you can later edit (in the best case, optimize) the routing for visitors

externally and do not need to make any changes internally in the application. Of course,

you need to enter the old names with :as in that case.

 as
If you want to define the name of a route yourself, you can do so with as. For example,

the following line:

get "home/pong", as: 'different_name'

results in the route shown here:

different_name GET /home/pong(.:format) home#pong

 to
With to, you can define another destination for a route. For example, the following line:

get "home/applepie", to: "home#ping"

results in the route shown here:

home_applepie GET /home/applepie(.:format) home#ping

Chapter 5 routes

221

 Parameters
The routing engine does not just assign fixed routes; it also passes parameters that are

part of the URL. A typical example would be date specifications (e.g., http://example.

com/2010/12/ for all December postings).

To demonstrate this, let’s create a mini blog application.

$ rails new blog

 [...]

$ cd blog

$ rails generate scaffold post subject content published_on:date

 [...]

$ rails db:migrate

 [...]

Put some example data in db/seeds.rb, as shown in Listing 5-2.

Listing 5-2. db/seeds.rb

Post.create(subject: 'A test', published_on: '01.10.2011')

Post.create(subject: 'Another test', published_on: '01.10.2011')

Post.create(subject: 'And yet one more test', published_on: '02.10.2011')

Post.create(subject: 'Last test', published_on: '01.11.2011')

Post.create(subject: 'Very final test', published_on: '01.11.2012')

With rails db:seed, you populate the database with this data:

$ rails db:seed

Chapter 5 routes

http://example.com/2010/12/
http://example.com/2010/12/

222

If you now start the Rails server with rails server and go to the page

http://localhost:3000/posts in the browser, you will see the screen in Figure 5-2.

For this kind of blog, it would of course be useful if you could render all entries for the

year 2010 with the URL http://localhost:3000/2010/ and all entries for October 1, 2010,

with http://localhost:3000/2010/10/01. You can do this by using optional parameters.

Enter the configuration shown in Listing 5-3 in config/routes.rb.

Listing 5-3. config/routes.rb

Blog::Application.routes.draw do

 resources :posts

 get ':year(/:month(/:day))', to: 'posts#index'

end

Figure 5-2. Posts index

Chapter 5 routes

223

The round brackets represent optional parameters. In this case, you have to specify

the year but not necessarily the month or day. rails routes shows the new route at the

last line, as shown here:

$ rails routes

 Prefix Verb URI Pattern Controller#Action

 posts GET /posts(.:format) posts#index

 POST /posts(.:format) posts#create

 new_post GET /posts/new(.:format) posts#new

edit_post GET /posts/:id/edit(.:format) posts#edit

 post GET /posts/:id(.:format) posts#show

 PATCH /posts/:id(.:format) posts#update

 PUT /posts/:id(.:format) posts#update

 DELETE /posts/:id(.:format) posts#destroy

 GET /:year(/:month(/:day))(.:format) posts#index

If you do not change anything else, you still get the same result when calling

http://localhost:3000/2011/ and http://localhost:3000/2011/10/01 as you did

with http://localhost:3000/posts. But take a look at the output of rails server for

the request http://localhost:3000/2011, as shown here:

Started GET "/2011/" for 127.0.0.1 at 2017-03-24 11:18:52 +0100

 (0.5ms) SELECT "schema_migrations"."version" FROM "schema_migrations"

 ORDER BY "schema_migrations"."version" ASC

Processing by PostsController#index as HTML

 Parameters: {"year"=>"2011"}

 Rendering posts/index.html.erb within layouts/application

 Post Load (0.5ms) SELECT "posts".* FROM "posts"

 Rendered posts/index.html.erb within layouts/application (14.7ms)

Completed 200 OK in 122ms (Views: 99.1ms | ActiveRecord: 1.0ms)

The route has been recognized, and "year" ⇒ "2011" has been assigned to

the hash params (written misleadingly as Parameters in the output). Going to the URL

http://localhost:3000/2010/12/24 results in the following output, as expected:

Started GET "/2010/12/24" for 127.0.0.1 at 2017-03-24 11:19:38 +0100

Processing by PostsController#index as HTML

 Parameters: {"year"=>"2010", "month"=>"12", "day"=>"24"}

Chapter 5 routes

224

 Rendering posts/index.html.erb within layouts/application

 Post Load (0.2ms) SELECT "posts".* FROM "posts"

 Rendered posts/index.html.erb within layouts/application (2.9ms)

Completed 200 OK in 14ms (Views: 11.4ms | ActiveRecord: 0.2ms)

In the case of the URL http://localhost:3000/2010/12/24, the following values

have been saved in the hash params: "year"⇒"2010", "month"⇒"12", and "day"⇒"24".

In the controller, you can access params[] to access the values defined in the

URL. You simply need to adapt the index method in app/controllers/posts_

controller.rb to output the posts entered for the corresponding date, month, or year, as

shown in Listing 5-4.

Listing 5-4. app/controllers/posts_controller.rb

GET /posts

GET /posts.json

def index

 # Check if the URL requests a date.

 if Date.valid_date? params[:year].to_i, params[:month].to_i,

params[:day].to_i

 start_date = Date.parse("#{params[:day]}.#{params[:month]}.#{params

[:year]}")

 end_date = start_date

 # Check if the URL requests a month

 elsif Date.valid_date? params[:year].to_i, params[:month].to_i, 1

 start_date = Date.parse("1.#{params[:month]}.#{params[:year]}")

 end_date = start_date.end_of_month

 # Check if the URL requests a year

 elsif params[:year] && Date.valid_date?(params[:year].to_i, 1, 1)

 start_date = Date.parse("1.1.#{params[:year]}")

 end_date = start_date.end_of_year

 end

 if start_date && end_date

 @posts = Post.where(published_on: start_date..end_date)

 else

Chapter 5 routes

225

 @posts = Post.all

 end

end

If you now go to http://localhost:3000/2011/10/01, you can see all posts for

October 1, 2011, as shown in Figure 5-3.

Figure 5-3. Posts for October 1, 2011

 Constraints
In the section “Parameters,” I showed you how you can read out parameters from the URL

and pass them to the controller. The entry defined in config/routes.rb is shown here:

get ':year(/:month(/:day))', to: 'posts#index'

Unfortunately, this has one important disadvantage: it does not verify the individual

elements. For example, the URL http://localhost:3000/just/an/example will be

matched as usual and then of course results in an error, as shown in Figure 5-4.

Chapter 5 routes

226

In the log output in log/development.log, you can see the following entry:

Started GET "/just/an/example" for 127.0.0.1 at 2017-03-24 13:18:21 +0100

Processing by PostsController#index as HTML

 Parameters: {"year"=>"just", "month"=>"an", "day"=>"example"}

Completed 500 Internal Server Error in 2ms (ActiveRecord: 0.0ms)

ArgumentError (invalid date):

app/controllers/posts_controller.rb:19:in `parse'

app/controllers/posts_controller.rb:19:in `index'

Obviously, Date.parse("example.an.just") does not work. A date is made up of

numbers, not letters.

Constraints can define the content of the URL more precisely via regular expressions.

In the case of the example blog, the config/routes.rb file with constraints would look

like Listing 5-5.

Figure 5-4. Invalid date

Chapter 5 routes

227

Listing 5-5. config/routes.rb

Blog::Application.routes.draw do

 resources :posts

 get ':year(/:month(/:day))', to: 'posts#index',

 constraints: { year: /\d{4}/, month: /\d{2}/, day: /\d{2}/ }

end

 please note that you cannot use regex anchors such as ^ in regular
expressions in a constraint.

If you go to the URL again with this configuration, Rails gives you an error message,

“No route matches,” as shown in Figure 5-5.

Figure 5-5. No route error

Chapter 5 routes

228

 Redirects
The current application answers the request in the format YYYY/MM/DD (four digits for

the year, two digits for the month, and two digits for the day). That is OK for machines,

but maybe a human would request a single-digit month (like January) and a single-digit

day without adding the extra 0 to make it two digits. You can fix that with a couple of

redirect rules that catch these URLs and redirect them to the correct ones. See Listing 5-6.

Listing 5-6. config/routes.rb

Blog::Application.routes.draw do

 resources :posts

 get ':year/:month/:day', to: redirect("/%{year}/0%{month}/0%{day}"),

 constraints: { year: /\d{4}/, month: /\d{1}/, day: /\d{1}/ }

 get ':year/:month/:day', to: redirect("/%{year}/0%{month}/%{day}"),

 constraints: { year: /\d{4}/, month: /\d{1}/, day: /\d{2}/ }

 get ':year/:month/:day', to: redirect("/%{year}/%{month}/0%{day}"),

 constraints: { year: /\d{4}/, month: /\d{2}/, day: /\d{1}/ }

 get ':year/:month', to: redirect("/%{year}/0%{month}"),

 constraints: { year: /\d{4}/, month: /\d{1}/ }

 get ':year(/:month(/:day))', to: 'posts#index',

 constraints: { year: /\d{4}/, month: /\d{2}/, day: /\d{2}/ }

end

With this set of redirect rules, you can ensure that a user of the page can also enter

single-digit days and months and still end up in the right place or be redirected to the

correct format.

 redirects in config/routes.rb are by default http redirects with the
code 301 (“Moved permanently”). so, even search engines will benefit from this.

Chapter 5 routes

229

 root :to ⇒ welcome#index
Rails provides a shortcut for the / (root) route. Assuming you want to render the index

view of the posts controller, you have to use the configuration shown in Listing 5-7.

Listing 5-7. config/routes.rb

Blog::Application.routes.draw do

 resources :posts

 root :to => posts#index

end

If you don’t want to show any of the resource pages, you can create a new controller

(e.g., Page) with an index view.

$ rails new controller Page index

Then you can use the following configuration to present it as your index (root) page.

Blog::Application.routes.draw do

 resources :posts

 get 'page/index'

 root :to => page#index

end

 resources
resources provides routes for a RESTful resource. Let’s try it with the mini blog

application, shown here:

$ rails new blog

 [...]

$ cd blog

$ rails generate scaffold post subject content published_on:date

 [...]

$ rails db:migrate

 [...]

Chapter 5 routes

230

The scaffold generator automatically creates a resources route in config/routes.

rb, as shown in Listing 5-8.

Listing 5-8. config/routes.rb

Blog::Application.routes.draw do

 resources :posts

end

 New routes are always added at the beginning of config/routes.rb
with rails generate scripts.

The resulting routes are shown here:

$ rails routes

 Prefix Verb URI Pattern Controller#Action

 posts GET /posts(.:format) posts#index

 POST /posts(.:format) posts#create

 new_post GET /posts/new(.:format) posts#new

edit_post GET /posts/:id/edit(.:format) posts#edit

 post GET /posts/:id(.:format) posts#show

 PATCH /posts/:id(.:format) posts#update

 PUT /posts/:id(.:format) posts#update

 DELETE /posts/:id(.:format) posts#destroy

You have already encountered these RESTful routes in Chapter 4. They are required

for displaying and editing records.

 Selecting Specific Routes with only: or except:
If you want to use only specific routes from the finished set of RESTful routes, you can

limit them with :only or :except.

Chapter 5 routes

231

config/routes.rb, as shown in Listing 5-9, defines only the routes for index and show.

Listing 5-9. config/routes.rb

Blog::Application.routes.draw do

 resources :posts, only: [:index, :show]

end

With rails routes you can check the result, as shown here:

$ rails routes

Prefix Verb URI Pattern Controller#Action

 posts GET /posts(.:format) posts#index

 post GET /posts/:id(.:format) posts#show

except works exactly the other way around, as shown in Listing 5-10.

Listing 5-10. config/routes.rb

Blog::Application.routes.draw do

 resources :posts, except: [:index, :show]

end

Now all routes except for index and show are possible, as shown here:

$ rails routes

 Prefix Verb URI Pattern Controller#Action

 posts POST /posts(.:format) posts#create

 new_post GET /posts/new(.:format) posts#new

edit_post GET /posts/:id/edit(.:format) posts#edit

 post PATCH /posts/:id(.:format) posts#update

 PUT /posts/:id(.:format) posts#update

 DELETE /posts/:id(.:format) posts#destroy

 When using only and except, please make sure you also adapt the views
generated by the scaffold generator. For example, there is a link on the index page
to the new view with <%= link_to 'New Post', new_post_path %>, but
this view no longer exists in the previous example.

Chapter 5 routes

232

 Nested Resources
Nested resources refer to routes of resources that work with an association. These can

be addressed precisely via routes. Let’s create a blog with Post and a second resource

Comment.

$ rails new nested-blog

 [...]

$ cd nested-blog

 [...]

$ rails generate scaffold post subject body:text

 [...]

$ rails generate scaffold comment post:references content

 [...]

$ rails db:migrate

 [...]

Now you associate the two resources. In the file app/models/post.rb, you add a

has_many, as shown in Listing 5-11.

Listing 5-11. app/models/post.rb

class Post < ApplicationRecord

 has_many :comments

end

The file app/models/comment.rb has its counterpart, belongs_to, as shown in

Listing 5-12.

Listing 5-12. app/models/comment.rb

class Comment < ApplicationRecord

 belongs_to :post

end

Chapter 5 routes

233

The routes generated by the scaffold generator look like this:

$ rails routes

 Prefix Verb URI Pattern Controller#Action

 comments GET /comments(.:format) comments#index

 POST /comments(.:format) comments#create

 new_comment GET /comments/new(.:format) comments#new

edit_comment GET /comments/:id/edit(.:format) comments#edit

 comment GET /comments/:id(.:format) comments#show

 PATCH /comments/:id(.:format) comments#update

 PUT /comments/:id(.:format) comments#update

 DELETE /comments/:id(.:format) comments#destroy

 posts POST /posts(.:format) posts#create

 new_post GET /posts/new(.:format) posts#new

 edit_post GET /posts/:id/edit(.:format) posts#edit

 post PATCH /posts/:id(.:format) posts#update

 PUT /posts/:id(.:format) posts#update

 DELETE /posts/:id(.:format) posts#destroy

So, you can get the first post with /posts/1 and all the comments with /comments. By

using nesting, you can get all the comments with a post_id of 1 via /posts/1/comments.

To achieve this, you need to change config/routes.rb, as shown in Listing 5-13.

Listing 5-13. config/routes.rb

Blog::Application.routes.draw do

 resources :posts do

 resources :comments

 end

end

Chapter 5 routes

234

This gives you the desired routes, as shown here:

$ rails routes

 Prefix Verb URI Pattern Controller#Action

 post_comments GET /posts/:post_id/ comments#index

comments(.:format)

 POST /posts/:post_id/ comments#create

comments(.:format)

 new_post_comment GET /posts/:post_id/ comments#new

comments/new(.:format)

edit_post_comment GET /posts/:post_id/comments/ comments#edit

:id/edit(.:format)

 post_comment GET /posts/:post_id/ comments#show

comments/:id(.:format)

 PATCH /posts/:post_id/ comments#update

comments/:id(.:format)

 PUT /posts/:post_id/ comments#update

comments/:id(.:format)

 DELETE /posts/:post_id/ comments#destroy

comments/:id(.:format)

 posts GET /posts(.:format) posts#index

 POST /posts(.:format) posts#create

 new_post GET /posts/new(.:format) posts#new

 edit_post GET /posts/:id/edit(.:format) posts#edit

 post GET /posts/:id(.:format) posts#show

 PATCH /posts/:id(.:format) posts#update

 PUT /posts/:id(.:format) posts#update

 DELETE /posts/:id(.:format) posts#destroy

But you still need to make some changes in the file app/controllers/comments_

controller.rb. This ensures that only the Comments of the specified Post can be

displayed or changed, as shown in Listing 5-14.

Chapter 5 routes

235

Listing 5-14. app/controllers/comments_controller.rb

class CommentsController < ApplicationController

 before_action :set_post

 before_action :set_comment, only: [:show, :edit, :update, :destroy]

 def index

 @comments = @post.comments

 end

 def show

 end

 def new

 @comment = @post.comments.build

 end

 def edit

 end

 def create

 @comment = @post.comments.build(comment_params)

 respond_to do |format|

 if @comment.save

 format.html { redirect_to post_comment_path(@post, @comment),

notice: 'Comment was successfully created.' }

 format.json { render :show, status: :created, location: @comment }

 else

 format.html { render :new }

 format.json { render json: @comment.errors, status: :unprocessable_

entity }

 end

 end

 end

Chapter 5 routes

236

 def update

 respond_to do |format|

 if @comment.update(comment_params)

 format.html { redirect_to post_comments_path(@post, @comment),

notice: 'Comment was successfully updated.' }

 format.json { render :show, status: :ok, location: @comment }

 else

 format.html { render :edit }

 format.json { render json: @comment.errors, status: :unprocessable_

entity }

 end

 end

 end

 def destroy

 @comment.destroy

 respond_to do |format|

 format.html { redirect_to post_comments_url(@post), notice: 'Comment

was successfully destroyed.' }

 format.json { head :no_content }

 end

 end

 private

 def set_post

 @post = Post.find(params[:post_id])

 end

 def set_comment

 @comment = @post.comments.find(params[:id])

 end

 def comment_params

 params.require(:comment).permit(:content)

 end

end

Unfortunately, this is only half the story because the views still link to the old routes.

So, you need to adapt each view in accordance with the nested route.

Chapter 5 routes

237

Please note that you need to change the form_with call to form_with(model:

[post, comment], local: true). But you don’t need the post_id field anymore

because that information is already in the URL. See Listing 5-15, Listing 5-16,

Listing 5-17, Listing 5- 18, and Listing 5-19.

Listing 5-15. app/views/comments/_form.html.erb

<%= form_with(model: [post, comment], local: true) do |f| %>

 <% if comment.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(comment.errors.count, "error") %> prohibited this

comment from being saved:</h2>

 <% comment.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= f.label :content %>

 <%= f.text_field :content %>

 </div>

 <div class="actions">

 <%= f.submit %>

 </div>

<% end %>

Listing 5-16. app/views/comments/edit.html.erb

<h1>Editing Comment</h1>

<%= render 'form', comment: @comment, post: @post %>

<%= link_to 'Show', post_comment_path(@post, @comment) %> |

<%= link_to 'Back', post_comments_path(@post) %>

Chapter 5 routes

238

Listing 5-17. app/views/comments/index.html.erb

<p id="notice"><%= notice %></p>

<h1>Comments</h1>

<table>

 <thead>

 <tr>

 <th>Post</th>

 <th>Content</th>

 <th colspan="3"></th>

 </tr>

 </thead>

 <tbody>

 <% @comments.each do |comment| %>

 <tr>

 <td><%= comment.post %></td>

 <td><%= comment.content %></td>

 <td><%= link_to 'Show', post_comment_path(@post, comment) %></td>

 <td><%= link_to 'Edit', edit_post_comment_path(@post, comment) %></td>

 <td><%= link_to 'Destroy', post_comment_url(@post, comment),

method: :delete, data: { confirm: 'Are you sure?' } %></td>

 </tr>

 <% end %>

 </tbody>

</table>

<%= link_to 'New Comment', new_post_comment_path(@post) %>

Chapter 5 routes

239

Listing 5-18. app/views/comments/new.html.erb

<h1>New Comment</h1>

<%= render 'form', comment: @comment, post: @post %>

<%= link_to 'Back', post_comments_path(@post) %>

Listing 5-19. app/views/comments/show.html.erb

<p id="notice"><%= notice %></p>

<p>

 Post:

 <%= @comment.post %>

</p>

<p>

 Content:

 <%= @comment.content %>

</p>

<%= link_to 'Edit', edit_post_comment_path(@post,@comment) %> |

<%= link_to 'Back', post_comments_path(@post) %>

Please go ahead and experiment with the URLs listed under rails routes.

You can now generate a new post with /posts/new and a new comment for this post with

/posts/:post_id/comments/new.

If you want to see all comments of the first post, you can access that with the URL

http://localhost:3000/posts/1/comments. It would look like Figure 5-6.

Chapter 5 routes

240

 Shallow Nesting

Sometimes it is a better option to use shallow nesting. For this example, the

config/routes.rb file would contain the routes shown in Listing 5-20.

Listing 5-20. config/routes.rb

Blog::Application.routes.draw do

 resources :posts do

 resources :comments, only: [:index, :new, :create]

 end

 resources :comments, except: [:index, :new, :create]

end

Figure 5-6. Listing comments

Chapter 5 routes

241

That would lead to the less messy rails routes output, as shown here:

$ rails routes

 Prefix Verb URI Pattern Controller#Action

 post_comments GET /posts/:post_id/comments(.:format) comments#index

 POST /posts/:post_id/comments(.:format) comments#create

new_post_comment GET /posts/:post_id/comments/new(.:format) comments#new

 posts GET /posts(.:format) posts#index

 POST /posts(.:format) posts#create

 new_post GET /posts/new(.:format) posts#new

 edit_post GET /posts/:id/edit(.:format) posts#edit

 post GET /posts/:id(.:format) posts#show

 PATCH /posts/:id(.:format) posts#update

 PUT /posts/:id(.:format) posts#update

 DELETE /posts/:id(.:format) posts#destroy

 edit_comment GET /comments/:id/edit(.:format) comments#edit

 comment GET /comments/:id(.:format) comments#show

 PATCH /comments/:id(.:format) comments#update

 PUT /comments/:id(.:format) comments#update

 DELETE /comments/:id(.:format) comments#destroy

Shallow nesting tries to combine the best of two worlds, and because it is often used,

there is a shortcut. You can use the config/routes.rb shown in Listing 5-21 to achieve it.

Listing 5-21. config/routes.rb

Blog::Application.routes.draw do

 resources :posts do

 resources :comments, shallow: true

 end

end

Chapter 5 routes

242

 Generally, you should never nest more deeply than one level, and nested
resources should feel natural. after a while, you will get a feel for this. In my
opinion, the most important point about restful routes is that they should feel
logical. If you phone a fellow rails programmer and say, “I’ve got a resource post
and a resource comment here,” then both parties should immediately be clear on
how you address these resources via rest and how you can nest them.

 Further Information on Routes
The topic of routes is far more complex than I can address here. For example,

you can also involve other HTTP methods/verbs. The official routing documentation at

http://guides.rubyonrails.org/routing.html will give you a lot of information and

examples for these features and edge cases.

Chapter 5 routes

http://guides.rubyonrails.org/routing.html

243
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_6

CHAPTER 6

Bundler and Gems
Gems are how you do package management in the world of Ruby.

 If you do not have much time, you can skip this chapter for now and come
back to it later if you have any specific questions.

If a Ruby developer wants to offer a specific feature or a certain program or collection

of programs to other Ruby developers, the developer can create a package. Those

packages are called gems. They can then be installed with the command gem install.

 Take a look at https://www.ruby-toolbox.com to get an overview of
the existing gems.

Rails itself is a gem, and every Rails project uses a lot of different gems. You as a

developer can even add other gems. The program bundle helps the developer to install

all these gems in the right version and to take the dependencies into account.

The file Gemfile generated by rails new indicates which gems are to be installed by

Bundler, as shown in Listing 6-1.

Listing 6-1. Gemfile

source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

ruby '2.5.0'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'

https://www.ruby-toolbox.com/

244

gem 'rails', '~> 5.2.0'

Use sqlite3 as the database for Active Record

gem 'sqlite3'

Use Puma as the app server

gem 'puma', '~> 3.11'

Use SCSS for stylesheets

gem 'sass-rails', '~> 5.0'

Use Uglifier as compressor for JavaScript assets

gem 'uglifier', '>= 1.3.0'

See https://github.com/rails/execjs#readme for more supported runtimes

gem 'mini_racer', platforms: :ruby

Use CoffeeScript for .coffee assets and views

gem 'coffee-rails', '~> 4.2'

Turbolinks makes navigating your web application faster. Read more:

https://github.com/turbolinks/turbolinks

gem 'turbolinks', '~> 5'

Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder

gem 'jbuilder', '~> 2.5'

Use Redis adapter to run Action Cable in production

gem 'redis', '~> 4.0'

Use ActiveModel has_secure_password

gem 'bcrypt', '~> 3.1.7'

Use ActiveStorage variant

gem 'mini_magick', '~> 4.8'

Use Capistrano for deployment

gem 'capistrano-rails', group: :development

Reduces boot times through caching; required in config/boot.rb

gem 'bootsnap', '>= 1.1.0', require: false

group :development, :test do

 # Call 'byebug' anywhere in the code to stop execution and get a debugger

console

 gem 'byebug', platforms: [:mri, :mingw, :x64_mingw]

 # Adds support for Capybara system testing and selenium driver

ChapTer 6 Bundler and Gems

245

 gem 'capybara', '~> 2.15'

 gem 'selenium-webdriver'

 # Easy installation and use of chromedriver to run system tests with Chrome

 gem 'chromedriver-helper'

end

group :development do

 # Access an interactive console on exception pages or by calling

'console' anywhere in the code.

 gem 'web-console', '>= 3.3.0'

 gem 'listen', '>= 3.0.5', '< 3.2'

 # Spring speeds up development by keeping your application running in the

background. Read more: https://github.com/rails/spring

 gem 'spring'

 gem 'spring-watcher-listen', '~> 2.0.0'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

The format used is easy to explain: the word gem is followed by the name of the gem

and then, if required, a specification of the version of the gem.

For example, the line gem 'rails', '5.2.0' means “install the gem with the name

rails in the version 5.2.0.”

With ~> before the version number, you can determine that the newest version after

this version number should be installed. As a result, the last digit is incremented, so for

example gem 'rails', '~> 4.0.0' would correspondingly install Rails 4.0.1 but not 4.1

(for the latter, you would need to specify gem 'rails', '~> 4.1').

 You have the option of installing certain gems only in certain environments.
To do so, you need to enclose the corresponding lines in a group :name do loop.

ChapTer 6 Bundler and Gems

246

Besides the file Gemfile, there is also the file Gemfile.lock, and the exact versions of

the installed gems are listed there. For the previous example, it looks like Listing 6-2.

Listing 6-2. Gemfile.lock

GEM

 remote: https://rubygems.org/

 specs:

 actioncable (5.2.0)

 actionpack (= 5.2.0)

 nio4r (~> 2.0)

 websocket-driver (~> 0.6.1)

 actionmailer (5.2.0)

 actionpack (= 5.2.0)

 actionview (= 5.2.0)

 activejob (= 5.2.0)

 mail (~> 2.5, >= 2.5.4)

 rails-dom-testing (~> 2.0)

 actionpack (5.2.0)

 actionview (= 5.2.0)

 activesupport (= 5.2.0)

 rack (~> 2.0)

 rack-test (>= 0.6.3)

 rails-dom-testing (~> 2.0)

 rails-html-sanitizer (~> 1.0, >= 1.0.2)

 [...]

The advantage of Gemfile.lock is that it makes it possible for several

developers to work on the same Rails project independently from one another and

to still be sure that they are all working with the same gem versions. If a file version is

locked in Gemfile.lock, this version is used by Bundler. This is also useful for deploying

the Rails project later on a web server.

 edit only Gemfile and never Gemfile.lock.

ChapTer 6 Bundler and Gems

247

Thanks to this mechanism, you can use and develop several Rails projects with

different gem version numbers in parallel.

 bundle update
With bundle update, you can update gems to new versions. For example, here is a Rails

project with the Rails version 4.2.1:

$ rails -v

Rails 4.2.1

$

In the file Gemfile, this version is listed, as shown in Listing 6-3.

Listing 6-3. Gemfile

source 'https://rubygems.org'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'

gem 'rails', '4.2.1'

[...]

It’s also listed in Gemfile.lock.

$ grep 'rails' Gemfile.lock

 [...]

 rails (= 4.2.1)

 [...]

$

Assume you are working with Rails 4.2.0 and you want to update it to Rails 4.2.4. You

have to change the Gemfile from what’s shown in Listing 6-4 to what’s shown in Listing 6-5.

Listing 6-4. Gemfile

[...]

gem 'rails', '4.2.0'

[...]

ChapTer 6 Bundler and Gems

248

Listing 6-5. Gemfile

[...]

gem 'rails', '4.2.4'

[...]

After this change, you can use bundle update rails to install the new Rails version

(Bundler automatically takes the required dependencies into account).

$ bundle update rails

 [...]

$ rails -v

Rails 4.2.4

$

 after every gem update, you should first run rake test to make sure that
a new gem version does not add any unwanted side effects.

 bundle outdated
If you want to know which of the gems used by your Rails project are now available in a

new version, you can do this via the command bundle outdated. Here’s an example:

$ bundle outdated

The dependency tzinfo-data (>= 0) will be unused by any of the platforms

Bundler is installing for. Bundler is installing for ruby but the

dependency is only for x86-mingw32, x86-mswin32, x64-mingw32, java. To add

those platforms to the bundle, run `bundle lock --add-platform x86-mingw32

x86-mswin32 x64-mingw32 java`.

Fetching gem metadata from https://rubygems.org/.........

Fetching gem metadata from https://rubygems.org/.

Resolving dependencies....

Outdated gems included in the bundle:

 * archive-zip (newest 0.10.0, installed 0.7.0)

 * websocket-driver (newest 0.7.0, installed 0.6.5)

ChapTer 6 Bundler and Gems

249

To update them, you’ll have to change the version numbers in Gemfile and run a

bundle update command.

 bundle exec
bundle exec is required whenever a program such as rake is used in a Rails project and

is present in a different version than the rest of the system. The resulting error message is

always easy to implement.

You have already activated rake 0.10, but your Gemfile requires rake 0.9.2.2.

Using bundle exec may solve this.

In this case, it helps to invoke the command with a preceding bundle exec

command, as shown here:

$ bundle exec rake db:migrate

 binstubs
In some environments, using bundle exec is too complicated. In that case, you can

install programs with the correct version via bundle install --binstubs in the

directory bin.

$ bundle install --binstubs

Using rake 12.3.0

Using concurrent-ruby 1.0.5

Using i18n 0.9.1

[...]

Using turbolinks 5.1.0

Using uglifier 4.1.3

Using web-console 3.5.1

Bundle complete! 18 Gemfile dependencies, 76 gems now installed.

Use `bundle info [gemname]` to see where a bundled gem is installed.

ChapTer 6 Bundler and Gems

250

Afterward, you can always use these programs. Here’s an example:

$ bin/rake db:migrate

== CreateUsers: migrating ==

-- create_table(:users)

 -> 0.0018s

== CreateUsers: migrated (0.0019s) =======================================

 Popular Gems
At https://www.ruby-toolbox.com you’ll find most of the available gems. The main

problem with gems is that many times you have no idea how active the community is

that developed a gem. It’s a major headache to upgrade a Rails application that uses

neglected gems. So, you can check out the gem’s home page and GitHub repository

before installing a gem.

I’ll show you a couple of gems that are essential for many developers. But please do

your due diligence first before you include a gem!

 acts_as_list
Let’s create a to-do list application that displays a couple of to-dos that can be edited by the

user. You just need one scaffold for this. Let’s call the model task. Here is the basic setup:

$ rails new to-do-list

 [...]

$ cd to-do-list

$ rails generate scaffold task name completed:boolean

 [...]

$ rails db:migrate

 [...]

$ rails server

ChapTer 6 Bundler and Gems

https://www.ruby-toolbox.com/

251

 naming is always important within a rails project. I’ve seen many
examples of a to-do list application where the Task model has a field called task.
don’t do that. If you have an instance variable called @task, it is cleaner to have a
@task.name than a @task.task, which is just confusing.

 Order Your Tasks
A common idea for any to-do list is the feature to order the tasks. For that you’ll need to

have some sort of position field in your model. Because this is such a common problem,

there is a nice gem ready to go for this. It’s called acts_as_list. To use it, you have to

add the line shown in Listing 6-6 to the Gemfile and run the bundler.

Listing 6-6. Gemfile

[...]

gem 'acts_as_list'

[...]

$ bundle

To use it, you have to add a position field to the task model.

$ rails generate migration AddPositionToTask position:integer

 [...]

$ rails db:migrate

If you already have a full database table of tasks, you will want to change the

migration to something like this, which sets the position field:

class AddPositionToTask < ActiveRecord::Migration[5.2]

 def change

 add_column :tasks, :position, :integer

 Task.order(:updated_at).each.with_index(1) do |task, index|

 task.update_column :position, index

 end

 end

end

ChapTer 6 Bundler and Gems

252

The last change is a change to the task model to make it use acts_as_list, as shown

in Listing 6-7.

Listing 6-7. app/models/task.rb

class Task < ApplicationRecord

 acts_as_list

end

For any new entry of the tasks table, acts_as_list will set the position field

automatically. But that is not all. You can use these methods to move the position of a

task and reorder the list:

• task.move_lower

• task.move_higher

• task.move_to_bottom

• task.move_to_top

You also have access to these useful methods:

• task.first?

• task.last?

• task.in_list?

• task.not_in_list?

• task.higher_item

• task.higher_items

• task.lower_item

• task.lower_items

It’s not rocket science, but it’s so much easier to use an existing gem than to reinvent

the wheel.

Don’t forget to change the index action in your tasks_controller.rb file to display

the tasks in the right order, as shown in Listing 6-8.

ChapTer 6 Bundler and Gems

253

Listing 6-8. app/controllers/tasks_controller.rb

[...]

def index

 @tasks = Task.order(:position)

end

[...]

 Check Done Tasks in Your Index View
Wouldn’t it be nice to have a way of checking done tasks in the /tasks index view instead

of having to use the edit view every time? This could be done with a link to a yet to be

created check action in app/controllers/tasks_controller.rb. But there is a cleaner,

more RESTful way: you can use the update action from a little form in each table row.

Listing 6-9 shows the example code snippet for app/views/tasks/index.html.erb.

Listing 6-9. app/views/tasks/index.html.erb

[...]

<% @tasks.each do |task| %>

 <tr>

 <td><%= task.description %></td>

 <td><%= task.completed %></td>

 <td>

 <% unless task.completed %>

 <%= form_with(model: task, local: true) do |form| %>

 <%= form.hidden_field :completed, value: true %>

 <div class="actions">

 <%= form.submit 'Check!', :name => 'check' %>

 </div>

 <% end %>

 <% end %>

 </td>

ChapTer 6 Bundler and Gems

254

 <td><%= link_to 'Show', task %></td>

 <td><%= link_to 'Edit', edit_task_path(task) %></td>

 <td><%= link_to 'Destroy', task, method: :delete, data: { confirm: 'Are

you sure?' } %></td>

 </tr>

<% end %>

[...]

Find more information and the complete documentation about acts_as_list at

https://github.com/swanandp/acts_as_list.

 Authentication
Most Rails applications need some kind of authentication system. The old RailsCast episode

at http://railscasts.com/episodes/250-authentication-from-scratch-revised

shows how to do that by yourself. It is not that complicated, but it is also nice to do

authentication with a ready-to-go gem that not only handles passwords but also sends

one-time password e-mails and does the Facebook and Twitter magic. This saves you a

lot of time that you can instead invest in your application.

Take a look at https://www.ruby-toolbox.com/categories/rails_authentication,

which sorts the most popular authentication gems. I’ve used a couple of them, but I don’t

have a clear favorite.

If you have the time, try two to three for yourself. If you don’t have the time, go with

devise by Plataformatec (https://github.com/plataformatec/devise).

 Authorization
Authentication is only half the battle. You need to have a system to limit access to special

parts of your Rails application to specific users or user groups. In other words, you need

an authorization system. Again, you can create such a system by yourself; it is not rocket

science. But if you are in a hurry, go to https://www.ruby-toolbox.com/categories/

rails_authorization to find a list of available gems for this.

However, do not use the outdated cancan by the Rails legend Ryan Bates (the

inventor of http://railscasts.com). It is an orphan. Use cancancan, which is an

up-to- date fork. You’ll find it at https://github.com/cancancommunity/cancancan.

ChapTer 6 Bundler and Gems

https://github.com/swanandp/acts_as_list
http://railscasts.com/episodes/250-authentication-from-scratch-revised
https://www.ruby-toolbox.com/categories/rails_authentication
https://github.com/plataformatec/devise
https://www.ruby-toolbox.com/categories/rails_authorization
https://www.ruby-toolbox.com/categories/rails_authorization
http://railscasts.com/
https://github.com/cancancommunity/cancancan

255

 Simple Form
Many Rails developers use the simple_form gem (https://github.com/plataformatec/

simple_form) to make their lives easier. It helps you create forms in an easier way than

the default scaffolds. Please see for yourself. I found this topic a double-edged sword.

I try to stay as vanilla as possible, but I see the attractiveness of simple_form.

 Further Information on Bundler
The topic of Bundler is far more complex than can be described here. If you want to find

out more about Bundler, please visit the following web sites:

• http://gembundler.com/

• http://railscasts.com/episodes/201-bundler-revised

ChapTer 6 Bundler and Gems

https://github.com/plataformatec/simple_form
https://github.com/plataformatec/simple_form
http://gembundler.com/
http://railscasts.com/episodes/201-bundler-revised

257
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_7

CHAPTER 7

Forms
In this chapter, I’ll talk about forms.

 The Data-Input Workflow
To understand forms, you need take a look at the data workflow. Understanding it better

will help you to understand how forms work.

Here is an example application:

$ rails new testapp

[...]

$ cd testapp

$ rails generate scaffold Person first_name last_name

[...]

$ rails db:migrate

[...]

$ rails server

[...]

Usually you will create forms by using the scaffold. Let’s go through the flow the data.

 Request the people#new Form
When you request the http://localhost:3000/people/new URL, the router answers

with the following route:

new_person GET /people/new(.:format) people#new

The controller app/controllers/people_controller.rb runs the code shown in

Listing 7-1.

258

Listing 7-1. app/controllers/people_controller.rb

GET /people/new

def new

 @person = Person.new

end

So, a new instance of Person is created and stored in the instance variable @person.

Rails takes @person and starts processing the view file app/views/people/new.html.erb,

as shown in Listing 7-2.

Listing 7-2. app/views/people/new.html.erb

<h1>New Person</h1>

<%= render 'form', person: @person %>

<%= link_to 'Back', people_path %>

render 'form' renders the file app/views/people/_form.html.erb and sets the local

variable person to the content of @person, as shown in Listing 7-3.

Listing 7-3. app/views/people/_form.html.erb

<%= form_with(model: person, local: true) do |form| %>

 <% if person.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(person.errors.count, "error") %> prohibited this

person from being saved:</h2>

 <% person.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= form.label :first_name %>

Chapter 7 Forms

259

 <%= form.text_field :first_name %>

 </div>

 <div class="field">

 <%= form.label :last_name %>

 <%= form.text_field :last_name %>

 </div>

 <div class="actions">

 <%= form.submit %>

 </div>

<% end %>

Next, form_with(model: person, local: true) embeds the two text_fields

:first_name and :last_name instances plus a submit button.

Here is the resulting HTML:

[...]

<form action="/people" accept-charset="UTF-8" method="post">

<input name="utf8" type="hidden" value="✓" />

<input type="hidden" name="authenticity_token" value="lSt...hbIg==" />

 <div class="field">

 <label for="person_first_name">First name</label>

 <input type="text" name="person[first_name]" />

 </div>

 <div class="field">

 <label for="person_last_name">Last name</label>

 <input type="text" name="person[last_name]" />

 </div>

 <div class="actions">

 <input type="submit" name="commit" value="Create Person"

 data-disable-with="Create Person" />

 </div>

</form>

[...]

This form uses the post method to upload the data to the server.

Chapter 7 Forms

260

 Push the Data to the Server
Go ahead and enter Stefan in the first_name field and Wintermeyer in the last_name

field and click the Submit button. The browser uses the post method to upload the data

to the URL /people. The log shows the following:

Started POST "/people" for 127.0.0.1 at 2018-01-18 12:56:46 +0100

Processing by PeopleController#create as HTML

 Parameters: {"utf8"=>"✓", "authenticity_token"=>"0wS2r9...",

"person"=>{"first_name"=>"Stefan", "last_name"=>"Wintermeyer"},

"commit"=>"Create Person"}

 (0.1ms) begin transaction

 Person Create (0.6ms) INSERT INTO "people" ("first_name", "last_name",

"created_at", "updated_at") VALUES (?, ?, ?, ?) [["first_name", "Stefan"],

["last_name", "Wintermeyer"], ["created_at", "2018-01-18 11:56:46.889256"],

["updated_at", "2018-01-18 11:56:46.889256"]]

 (0.9ms) commit transaction

Redirected to http://localhost:3000/people/1

Completed 302 Found in 9ms (ActiveRecord: 1.6ms)

What happened in Rails? The router answers the request with this route:

POST /people(.:format) people#create

The controller app/controllers/people_controller.rb runs the code shown in

Listing 7-4.

Listing 7-4. app/controllers/people_controller.rb

def create

 @person = Person.new(person_params)

 respond_to do |format|

 if @person.save

 format.html { redirect_to @person, notice: 'Person was successfully

created.' }

 format.json { render :show, status: :created, location: @person }

Chapter 7 Forms

261

 else

 format.html { render :new }

 format.json { render json: @person.errors, status: :unprocessable_

entity }

 end

 end

end

[...]

Never trust parameters from the scary internet, only allow the white list

through.

def person_params

 params.require(:person).permit(:first_name, :last_name)

end

A new instance variable called @person is created. It represents a new Person

instance that was created with the parameters that were sent from the browser to the

Rails application. The parameters are checked in the person_params method, which is

a whitelist. That is done so the user does not inject parameters that you don’t want to be

injected.

Once @person is saved, a redirect_to @person is triggered, which is

http://localhost:3000/people/1 in this example.

 Present the New Data
The redirect to http://localhost:3000/people/1 is traceable in the log file, as shown here:

Started GET "/people/1" for 127.0.0.1 at 2018-01-18 12:56:46 +0100

Processing by PeopleController#show as HTML

 Parameters: {"id"=>"1"}

 Person Load (0.2ms) SELECT "people".* FROM "people"

WHERE "people"."id" = ? LIMIT ? [["id", 1], ["LIMIT", 1]]

 Rendering people/show.html.erb within layouts/application

 Rendered people/show.html.erb within layouts/application (0.9ms)

Completed 200 OK in 27ms (Views: 20.8ms | ActiveRecord: 0.2ms)

Chapter 7 Forms

262

The router answers this request with the following:

person GET /people/:id(.:format) people#show

This gets handled by the show method in app/controllers/people_controller.rb.

 Generic Forms
A form doesn’t have to be hardwired to an ActiveRecord object. You can use the

form_tag helper to create a form by yourself. Here is an example of http://guides.

rubyonrails.org/form_helpers.html (which is the official Rails guide about forms) to

show how to create a search form that is not connected to a model:

<%= form_with(url: '/search') do |f| %>

 <%= f.label(:q, "Search for:") %>

 <%= f.text_field(:q, id: :q) %>

 <%= f.submit("Search") %>

<% end %>

It results in this HTML code:

<form accept-charset="UTF-8" action="/search" method="get">

 <label for="q">Search for:</label>

 <input id="q" name="q" type="text" />

 <input name="commit" type="submit" value="Search" />

</form>

To handle this, you’d have to create a new route in config/routes.rb and write a

method in a controller to handle it.

 FormTagHelper
There is not just a helper for text fields. Take a look at the official API documentation for

all FormTagHelpers at http://api.rubyonrails.org/classes/ActionView/Helpers/

FormTagHelper.html to get an overview. Because you use scaffold to create a form, there

is no need to memorize them. It is just important to know where to look in case you need

something else.

Chapter 7 Forms

http://guides.rubyonrails.org/form_helpers.html
http://guides.rubyonrails.org/form_helpers.html
http://api.rubyonrails.org/classes/ActionView/Helpers/FormTagHelper.html
http://api.rubyonrails.org/classes/ActionView/Helpers/FormTagHelper.html

263

 Alternatives
Many Rails developers use the Simple Form gem as an alternative to the standard way

of defining forms. It is worth a try because you can really save time and some trouble.

Simple Form is available as a gem at https://github.com/plataformatec/simple_form.

Chapter 7 Forms

https://github.com/plataformatec/simple_form

265
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_8

CHAPTER 8

Cookies and Sessions
In this chapter, I’ll talk about cookies and sessions.

 Cookies
With a cookie, you can store information on the web browser’s system in the form of

strings as key-value pairs that the web server has previously sent to this browser. The

information is later sent from the browser to the server in the HTTP header. A cookie

(if configured accordingly) is not deleted from the browser system by restarting the

browser or by restarting the system. Of course, the browser’s human user can manually

delete the cookie.

 A browser does not have to accept cookies, and it does not have to save
them either. But we live in a world where almost every page uses cookies. So, most
users will have the cookie functionality enabled. For more information on cookies,
please visit Wikipedia at http://en.wikipedia.org/wiki/Http_cookie.

A cookie has a limited size (the maximum is 4KB). You should remember that the

information in the saved cookies is sent from the browser to the server. So, you should

use cookies to store only small amounts of data (for example, a customer ID) to avoid the

protocol overhead from becoming too big.

Rails provides a hash with the name cookies[] that you can use transparently. Rails

automatically takes care of the technological details in the background.

http://en.wikipedia.org/wiki/Http_cookie

266

To demonstrate how cookies work, I will show how to build a Rails application that

places a cookie on a page, reads it out on another page, and displays the content. The

cookie is deleted on a third page.

$ rails new cookie_jar

 [...]

$ cd cookie_jar

$ rails db:migrate

$ rails generate controller home set_cookies show_cookies delete_cookies

 [...]

Populate the controller file app/controllers/home_controller.rb, as shown in

Listing 8-1.

Listing 8-1. app/controllers/home_controller.rb

class HomeController < ApplicationController

 def set_cookies

 cookies[:user_name] = "Smith"

 cookies[:customer_number] = "1234567890"

 end

 def show_cookies

 @user_name = cookies[:user_name]

 @customer_number = cookies[:customer_number]

 end

 def delete_cookies

 cookies.delete :user_name

 cookies.delete :customer_number

 end

end

Listing 8-2 shows the view file app/views/home/show_cookies.html.erb.

ChApter 8 CookieS And SeSSionS

267

Listing 8-2. app/views/home/show_cookies.html.erb

<table>

 <tr>

 <td>User Name:</td>

 <td><%= @user_name %></td>

 </tr>

 <tr>

 <td>Customer Number:</td>

 <td><%= @customer_number %></td>

 </tr>

</table>

Start the Rails server with rails server and go to the URL http://localhost:3000/

home/show_cookies in your browser. You will not see any values, as shown in Figure 8-1.

Figure 8-1. Cookies empty

ChApter 8 CookieS And SeSSionS

268

By requesting the page http://localhost:3000/home/delete_cookies, you can

delete the cookies.

The cookies you have placed in this way stay alive in the browser until you close the

browser completely.

 Permanent Cookies
Cookies are usually set to give the application a way of recognizing users when they

visit again later. Between these visits to the web site, much time can go by, and the

user may well close the browser in the meantime. To store cookies for longer than

the current browser session, you can use the method permanent. You can expand the

previous example by adding the method shown in Listing 8-3 in app/controllers/

home_controller.rb.

Figure 8-2. Cookies set

Now go to the URL http://localhost:3000/home/set_cookies and then back to

http://localhost:3000/home/show_cookies. Now you will see the values that you have

set in the method set_cookies, as shown in Figure 8-2.

ChApter 8 CookieS And SeSSionS

269

Listing 8-3. app/controllers/home_controller.rb

class HomeController < ApplicationController

 def set_cookies

 cookies.permanent[:user_name] = "Smith"

 cookies.permanent[:customer_number] = "1234567890"

 end

 def show_cookies

 @user_name = cookies[:user_name]

 @customer_number = cookies[:customer_number]

 end

 def delete_cookies

 cookies.delete :user_name

 cookies.delete :customer_number

 end

end

 permanent here does not really mean permanent. You cannot set a cookie
permanently. When you set a cookie, it always needs a valid until stamp that
the browser can use to automatically delete old cookies. With the method
permanent, this value is set to today’s date in 20 years.

 Signed Cookies
With normally placed cookies, you have no option on the application side to find out

whether the user of the application has changed the cookie. This can quickly lead to

security problems because changing the content of a cookie in the browser is no great

mystery. The solution is to sign the cookies with a key that is known only to you. This key

is automatically created via a random generator with each rails new command and is

located in the file config/secrets.yml, as shown in Listing 8-4.

ChApter 8 CookieS And SeSSionS

270

Listing 8-4. config/secrets.yml

development:

 secret_key_base: f4c3[...]095b

test:

 secret_key_base: d6ef[...]052a

Do not keep production secrets in the repository,

instead read values from the environment.

production:

 secret_key_base: <%= ENV["SECRET_KEY_BASE"] %>

As mentioned in the comment before the production key, it is not a good idea to

store the production key in the source code of your project. It’s better to store it as an

environment variable and let the Rails project read it from there.

To sign cookies, you can use the method signed, which you use for writing and

reading the cookie. You can expand the previous example by adding the method shown

in Listing 8-5 in app/controllers/home_controller.rb.

Listing 8-5. app/controllers/home_controller.rb

class HomeController < ApplicationController

 def set_cookies

 cookies.permanent.signed[:user_name] = "Smith"

 cookies.permanent.signed[:customer_number] = "1234567890"

 end

 def show_cookies

 @user_name = cookies.signed[:user_name]

 @customer_number = cookies.signed[:customer_number]

 end

 def delete_cookies

 cookies.delete :user_name

 cookies.delete :customer_number

 end

end

ChApter 8 CookieS And SeSSionS

271

The content of the cookie is now encrypted every time you set the cookie. The user

can read the name of the cookie, but not the value.

 Sessions
As HTTP is a stateless protocol, you will encounter special problems when developing

applications. An individual web page has no connection to the next web page, and they

do not even know about one another. But since a user wants to register only once on a

web site, not over and over again on each individual page, this can pose a problem. The

solution is called a session, and Rails offers sessions to the programmer transparently as

with the session[] hash. Rails automatically creates a new session for each new visitor

of the web page. This session is saved by default as a cookie, so it is subject to the 4KB

limit. You can also store the sessions in the database (see the section “Saving Sessions in

the Database”). An independent and unique session ID is created automatically, and the

cookie is deleted by default when the web browser is closed.

The beauty of a Rails session is that you can save not only strings there as with

cookies, but any object, hashes, and arrays as well. So, you can, for example, use it to

conveniently implement a shopping cart in an online shop.

 Breadcrumbs via Sessions
As an example, let’s create an application with a controller and three views. When a view

is visited, the previously visited views are displayed in a little list.

Here is the basic application:

$ rails new breadcrumbs

 [...]

$ cd breadcrumbs

$ rails db:migrate

$ rails generate controller Home ping pong index

 [...]

First you create a method with which you can save the last three URLs in the session

and set an instance variable called @breadcrumbs to be able to neatly retrieve the

values in the view. To that end, you set up a before_action in app/controllers/home_

controller.rb, as shown in Listing 8-6.

ChApter 8 CookieS And SeSSionS

272

Listing 8-6. app/controllers/home_controller.rb

class HomeController < ApplicationController

 before_action :set_breadcrumbs

 def ping

 end

 def pong

 end

 def index

 end

 private

 def set_breadcrumbs

 if session[:breadcrumbs]

 @breadcrumbs = session[:breadcrumbs]

 else

 @breadcrumbs = Array.new

 end

 @breadcrumbs.push(request.url)

 if @breadcrumbs.count > 4

 # shift removes the first element

 @breadcrumbs.shift

 end

 session[:breadcrumbs] = @breadcrumbs

 end

end

Now you use app/views/layouts/application.html.erb to display the last entries

at the top of each page, as shown in Listing 8-7.

ChApter 8 CookieS And SeSSionS

273

Listing 8-7. app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

 <head>

 <title>Breadcrumbs</title>

 <%= csrf_meta_tags %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-

turbolinks- track': 'reload' %>

 <%= javascript_include_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <% if @breadcrumbs && @breadcrumbs.any? %>

 <h3>Surf History</h3>

 <% @breadcrumbs[0..2].each do |breadcrumb| %>

 <%= link_to breadcrumb, breadcrumb %>

 <% end %>

 <% end %>

 <%= yield %>

 </body>

</html>

Start the Rails server with rails server and go to http://localhost:3000/home/ping,

http://localhost:3000/home/pong, or http://localhost:3000/home/index; at the top

you will always see the last three pages that you have visited. Of course, this works only on

the second page because you do not yet have a history on the first page you visit.

ChApter 8 CookieS And SeSSionS

274

 reset_session
Occasionally, there are situations where you want to reset a session (in other words,

delete the current session and start a new, fresh session). For example, if you log out

of a web application, the session will be reset. This is easily done, and you can quickly

integrate it into your breadcrumb application.

 With the switch -s, the generator doesn’t overwrite existing files. in this
example, that would be the home_controller.rb file.

$ rails generate controller Home reset -s

Running via Spring preloader in process 49668

 skip app/controllers/home_controller.rb

 route get 'home/reset'

 invoke erb

 exist app/views/home

 create app/views/home/reset.html.erb

 invoke test_unit

 skip test/controllers/home_controller_test.rb

 invoke helper

 identical app/helpers/home_helper.rb

 invoke test_unit

 invoke assets

 invoke coffee

 identical app/assets/javascripts/home.coffee

 invoke css

 identical app/assets/stylesheets/home.css

The correspondingly expanded controller, named app/controllers/home_

controller.rb, looks like Listing 8-8.

ChApter 8 CookieS And SeSSionS

275

Listing 8-8. app/controllers/home_controller.rb

class HomeController < ApplicationController

 before_action :set_breadcrumbs

 def ping

 end

 def pong

 end

 def index

 end

 def reset

 reset_session

 @breadcrumbs = nil

 end

 private

 def set_breadcrumbs

 if session[:breadcrumbs]

 @breadcrumbs = session[:breadcrumbs]

 else

 @breadcrumbs = Array.new

 end

 @breadcrumbs.push(request.url)

 if @breadcrumbs.count > 4

 # shift removes the first element

 @breadcrumbs.shift

 end

 session[:breadcrumbs] = @breadcrumbs

 end

end

So, you can delete the current session by going to the URL http://localhost:3000/

home/reset.

ChApter 8 CookieS And SeSSionS

276

 it’s important not just to invoke reset_session, but you need to also set
the instance variable @breadcrumbs to nil. otherwise, the old breadcrumbs
would still appear in the view.

 Saving Sessions in the Database
Saving the entire session data in a cookie on the user’s browser is not always the best

solution. Among other reasons, the limit of 4KB can pose a problem. But it’s no big obstacle;

you can relocate the storing of the session from the cookie to the database with the gem at

https://github.com/rails/activerecord-session_store. The session ID is of course

still saved in a cookie, but the other session data is stored in the database on the server.

To install the gem, you have to add the line shown in Listing 8-9 at the end of the

file Gemfile.

Listing 8-9. Gemfile

gem 'activerecord-session_store'

After that, run the bundle install command.

$ bundle install

[...]

Next, you have to run rails generate active_record:session_migration and

rails db:migrate to create the needed table in the database.

$ rails generate active_record:session_migration

 create db/migrate/20150428183919_add_sessions_table.rb

$ rails db:migrate

== 20150428183919 AddSessionsTable: migrating =============================

-- create_table(:sessions)

 -> 0.0019s

-- add_index(:sessions, :session_id, {:unique=>true})

 -> 0.0008s

-- add_index(:sessions, :updated_at)

 -> 0.0008s

== 20150428183919 AddSessionsTable: migrated (0.0037s) ====================

ChApter 8 CookieS And SeSSionS

https://github.com/rails/activerecord-session_store

277

Finally, change the session_store value in the file config/initializers/session_

store.rb to :active_record_store, as shown in Listing 8-10.

Listing 8-10. config/initializers/session_store.rb

Rails.application.config.session_store :active_record_store, :key =>

'_my_app_session'

You’re finished. Start the server again with rails server and Rails will save all

sessions in the database.

ChApter 8 CookieS And SeSSionS

279
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_9

CHAPTER 9

Tests
I have been programming for more than 30 years, and most of the time I have managed

quite well without test-driven development (TDD). I am not going to be mad at you if

you decide to just skip this chapter. You can create Rails applications without tests, and

you are not likely to garner any bad karma as a result (at least, I hope not, but you can

never be entirely sure with the whole karma thing).

If you should decide to go for TDD, then I can promise you that it is enlightening. The

basic idea of TDD is that you write a test for each programming function to check that

function. In the pure TDD teaching, this test is written before the actual programming.

Yes, you will have a lot more to do initially. But later, you can run all the tests and see

that the application works exactly as you wanted it to work. The real advantage becomes

apparent only after a few weeks or months when you look at the project again and write

an extension or new variation. Then you can safely change the code and check that it

still works properly by running the tests. This avoids a situation where you find yourself

saying “Oops, that went a bit wrong; I just didn’t think of that particular problem.”

Often, the advantage of TDD is evident when writing a program. Tests can reveal

many careless mistakes that you would otherwise have stumbled across only much later.

This chapter is a brief overview of the topic of test-driven development with Rails.

If you want to find out more, you can dive into the official Rails documentation at

http://guides.rubyonrails.org/testing.html.

 TDD is just like driving a car. The only way to learn it is by doing it.

http://guides.rubyonrails.org/testing.html

280

 Example for a User in a Web Shop
Let’s start with a user scaffold in an imaginary web shop, as shown here:

$ rails new webshop

 [...]

$ cd webshop

$ rails generate scaffold user login_name first_name last_name

birthday:date

 [...]

 invoke test_unit

 create test/models/user_test.rb

 create test/fixtures/users.yml

 [...]

 invoke test_unit

 create test/controllers/users_controller_test.rb

 create test/system/users_test.rb

 invoke helper

 create app/helpers/users_helper.rb

 invoke test_unit

 [...]

$ rails db:migrate

 [...]

You already know all about scaffolds (if not, please read Chapter 4), so you know

what the application you have just created does. The scaffold created a few tests (they are

easy to recognize because the word test is in the file names).

The complete test suite of a Rails project is processed with the command rails test.

Let’s see what a test produces at this stage of development:

$ rails test

Running via Spring preloader in process 2440

Run options: --seed 62885

ChapTer 9 TesTs

281

Running:

.......

Finished in 1.361143s, 5.1427 runs/s, 6.6121 assertions/s.

7 runs, 9 assertions, 0 failures, 0 errors, 0 skips

The output 7 runs, 9 assertions, 0 failures, 0 errors, 0 skips looks good.

By default, a test will run through in a standard scaffold.

Let’s edit app/models/user.rb and insert a few validations (if these are not entirely

clear to you, please read the section “Validation” in Chapter X), as shown in Listing 9-1.

Listing 9-1. app/models/user.rb

class User < ApplicationRecord

 validates :login_name,

 presence: true,

 length: { minimum: 10 }

 validates :last_name,

 presence: true

end

Then execute rails test again, as shown here:

$ rails test

Running via Spring preloader in process 89164

Run options: --seed 40163

Running:

....F

Failure:

UsersControllerTest#test_should_update_user [/.../webshop/test/controllers/

users_controller_test.rb:38]:

Expected response to be a <3XX: redirect>, but was a <200: OK>

bin/rails test test/controllers/users_controller_test.rb:36

F

ChapTer 9 TesTs

282

Failure:

UsersControllerTest#test_should_create_user [/.../webshop/test/controllers/

users_controller_test.rb:19]:

"User.count" didn't change by 1.

Expected: 3

 Actual: 2

bin/rails test test/controllers/users_controller_test.rb:18

.

Finished in 0.262099s, 26.7075 runs/s, 30.5228 assertions/s.

7 runs, 8 assertions, 2 failures, 0 errors, 0 skips

Boom! This time you have the output 2 failures. The error happens in

UsersControllerTest#test_should_update_user and UsersControllerTest#test_

should_create_user. The explanation for this is in the validation. The example data

created by the scaffold generator went through in the first rails test test (without

validation). The errors occurred only the second time (with validation).

This example data is created as fixtures_tests tests in YAML format in the

directory test/fixtures/. Let’s take a look at the example data for User in the file

test/fixtures/users.yml; see Listing 9-2.

Listing 9-2. test/fixtures/users.yml

one:

 login_name: MyString

 first_name: MyString

 last_name: MyString

 birthday: 2018-01-25

two:

 login_name: MyString

 first_name: MyString

 last_name: MyString

 birthday: 2018-01-25

ChapTer 9 TesTs

283

There are two example records in Listing 9-2 that do not fulfill the requirements of

the validation. The login_name record should have a length of at least ten. Let’s change

the login_name record in test/fixtures/users.yml accordingly; see Listing 9-3.

Listing 9-3. test/fixtures/users.yml

one:

 login_name: MyString12

 first_name: MyString

 last_name: MyString

 birthday: 2018-01-25

two:

 login_name: MyString12

 first_name: MyString

 last_name: MyString

 birthday: 2018-01-25

Now, the rails test command completes without any errors again.

$ rails test

Running via Spring preloader in process 89807

Run options: --seed 50152

Running:

.......

Finished in 0.271182s, 25.8129 runs/s, 33.1880 assertions/s.

7 runs, 9 assertions, 0 failures, 0 errors, 0 skips

Now you know that valid data has to be contained in test/fixtures/users.yml

so that the standard test created via the scaffolding will succeed. But you need nothing

more. The next step is to change test/fixtures/users.yml to the minimum needed

(for example, you do not need a first_name field), as shown in Listing 9-4.

ChapTer 9 TesTs

284

Listing 9-4. test/fixtures/users.yml

one:

 login_name: MyString12

 last_name: Mulder

two:

 login_name: MyString12

 last_name: Scully

To be on the safe side, let’s run another rails test command after making the

changes (you really can’t do that often enough).

$ rails test

Running via Spring preloader in process 89972

Run options: --seed 40198

Running:

.......

Finished in 0.255256s, 27.4234 runs/s, 35.2587 assertions/s.

7 runs, 9 assertions, 0 failures, 0 errors, 0 skips

 all fixtures are loaded into the database when a test is started. You need to
keep this in mind for your test, especially if you use uniqueness in your validation.

 Functional Tests
Let’s take a closer look at the point where the original errors occurred, as shown here:

Failure:

UsersControllerTest#test_should_create_user

[/.../webshop/test/controllers/users_controller_test.rb:19]:

"User.count" didn't change by 1.

Expected: 3

 Actual: 2

ChapTer 9 TesTs

285

In UsersControllerTest, the user could not be created. The controller tests are

located in the directory test/functional/. Let’s now take a good look at the file

test/controllers/users_controller_test.rb, as shown in Listing 9-5.

Listing 9-5. test/controllers/users_controller_test.rb

require 'test_helper'

class UsersControllerTest < ActionDispatch::IntegrationTest

 setup do

 @user = users(:one)

 end

 test "should get index" do

 get users_url

 assert_response :success

 end

 test "should get new" do

 get new_user_url

 assert_response :success

 end

 test "should create user" do

 assert_difference('User.count') do

 post users_url, params: { user: { birthday: @user.birthday,

 first_name: @user.first_name, last_name: @user.last_name,

 login_name: @user.login_name } }

 end

 assert_redirected_to user_url(User.last)

 end

 test "should show user" do

 get user_url(@user)

 assert_response :success

 end

ChapTer 9 TesTs

286

 test "should get edit" do

 get edit_user_url(@user)

 assert_response :success

 end

 test "should update user" do

 patch user_url(@user), params: { user: { birthday: @user.birthday,

 first_name: @user.first_name, last_name: @user.last_name,

 login_name: @user.login_name } }

 assert_redirected_to user_url(@user)

 end

 test "should destroy user" do

 assert_difference('User.count', -1) do

 delete user_url(@user)

 end

 assert_redirected_to users_url

 end

end

At the beginning, you will find a setup instruction.

setup do

 @user = users(:one)

end

These three lines of code mean that for the start of each individual test, an instance

called @user with the data of the item one from the file test/fixtures/users.yml is

created. setup is a predefined callback that—if present—is started by Rails before each

test. The opposite of setup is teardown. A teardown—if present—is called automatically

after each test.

ChapTer 9 TesTs

287

 For every test (in other words, at each run of rails test), a fresh and
therefore empty test database is created automatically. This is a different database
than the one you access by default via rails console (that is, the development
database). The databases are defined in the configuration file config/
database.yml. If you want to do debugging, you can access the test database
with rails console test.

This functional test then tests various web page functions. First, you access the

index page.

test "should get index" do

 get users_url

 assert_response :success

end

The command get users_url accesses the page /users. A response of

assert_response :success means that the page was delivered.

Let’s look more closely at the should create user problem from earlier.

test "should create user" do

 assert_difference('User.count') do

 post users_url, params: { user: { birthday: @user.birthday,

 first_name: @user.first_name, last_name: @user.last_name,

 login_name: @user.login_name } }

 end

 assert_redirected_to user_url(User.last)

end

The block assert_difference('User.count') do ... end expects a change by the

code contained within it. User.count should result in +1.

The last line, assert_redirected_to user_path(User.last), checks whether after

the newly created record the redirection to the corresponding view show occurs.

Without describing each individual functional test line by line, it’s becoming clear

what these tests do: they execute real queries to the web interface (or actually to the

controllers), and so they can be used for testing the controllers.

ChapTer 9 TesTs

288

 Unit Tests
For testing the validations that you have entered in app/models/user.rb, unit tests

are more suitable. Unlike the functional tests, these test only the model, not the

controller’s work.

The unit tests are located in the directory test/models/. But a look into the file

test/models/user_test.rb is rather sobering, as shown in Listing 9-6.

Listing 9-6. test/models/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

 # test "the truth" do

 # assert true

 # end

end

By default, the scaffold only writes a commented-out dummy test.

A unit test always consists of the following structure:

test "an assertion" do

 assert something_is_true

end

The word assert already indicates that you are dealing with an assertion in this

context. If this assertion is true, the test will complete, and all is well. If this assertion is

false, the test fails, and you have an error in the program (you can specify the output of

the error as a string at the end of the assert line).

If you take a look at http://guides.rubyonrails.org/testing.html, you’ll see that

there are some other assert variations. Here are a few examples:

• assert(boolean, [msg])

• assert_equal(obj1, obj2, [msg])

• assert_not_equal(obj1, obj2, [msg])

• assert_same(obj1, obj2, [msg])

• assert_not_same(obj1, obj2, [msg])

ChapTer 9 TesTs

http://guides.rubyonrails.org/testing.html

289

• assert_nil(obj, [msg])

• assert_not_nil(obj, [msg])

• assert_match(regexp, string , [msg])

• assert_no_match(regexp, string , [msg])

Let’s breathe some life into the first test in test/unit/user_test.rb, as shown in

Listing 9-7.

Listing 9-7. test/unit/user_test.rb

require 'test_helper'

class UserTest < ActiveSupport::TestCase

 test 'a user with no attributes is not valid' do

 user = User.new

 assert_not user.save, 'Saved a user with no attributes.'

 end

end

This test checks whether a newly created User that does not contain any data is valid

(it shouldn’t be).

You can run a rails test command for the complete test suite.

$ rails test

Running via Spring preloader in process 91049

Run options: --seed 8014

Running:

........

Finished in 0.248883s, 32.1436 runs/s, 40.1795 assertions/s.

8 runs, 10 assertions, 0 failures, 0 errors, 0 skips

ChapTer 9 TesTs

290

Now you integrate two asserts in a test to check whether the two fixture entries in

test/fixtures/users.yml are really valid. The first one is just a shorter version of the

empty user test.

require 'test_helper'

class UserTest < ActiveSupport::TestCase

 test 'an empty user is not valid' do

 assert !User.new.valid?, 'Saved an empty user.'

 end

 test "the two fixture users are valid" do

 assert User.new(last_name: users(:one).last_name, login_name:

 users(:one).login_name).valid?, 'First fixture is not valid.'

 assert User.new(last_name: users(:two).last_name, login_name:

 users(:two).login_name).valid?, 'Second fixture is not valid.'

 end

end

Then once more there’s a rails test command.

$ rails test

Running via Spring preloader in process 91434

Run options: --seed 57493

Running:

.........

Finished in 0.256179s, 35.1317 runs/s, 46.8422 assertions/s.

9 runs, 12 assertions, 0 failures, 0 errors, 0 skips

 Fixtures
With fixtures you can generate example data for tests. The default format for this

is YAML. You can find the files for this in the directory test/fixtures/; they are

automatically created with rails generate scaffold. But of course you can also define

your own files. All fixtures are loaded into the test database by default with every test.

ChapTer 9 TesTs

291

You can find examples for alternative formats (e.g., CSV) at http://api.

rubyonrails.org/classes/ActiveRecord/Fixtures.html.

 Static Fixtures
The simplest variant for fixtures is static data. The fixture for User used in the section

“Example for a User in a Web Shop” statically should look like Listing 9-8 (please change

the content of the file accordingly).

Listing 9-8. test/fixtures/users.yml

one:

 login_name: fox.mulder

 last_name: Mulder

two:

 login_name: dana.scully

 last_name: Scully

You simply write the data in YAML format into the corresponding file.

 Fixtures with erb
Static YAML fixtures are sometimes not smart enough to do the job. In these cases, you

can work with erb.

If you want to dynamically enter today’s date 20 years ago for a birthday, then you

can simply do it with erb in test/fixtures/users.yml, as shown in Listing 9-9.

Listing 9-9. test/fixtures/users.yml

one:

 login_name: fox.mulder

 last_name: Mulder

 birthday: <%= 20.years.ago.to_s(:db) %>

two:

 login_name: dana.scully

 last_name: Scully

 birthday: <%= 20.years.ago.to_s(:db) %>

ChapTer 9 TesTs

http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html
http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html

292

 Integration Tests
Integration tests are tests that work like functional tests, but they can span several

controllers and additionally analyze the content of a generated view. So, you can use

them to re-create complex workflows within a Rails application. As an example, I will

show how to write an integration test that tries to create a new user via the web GUI but

omits the login_name value and consequently gets corresponding flash error messages.

A rails generate scaffold command generates unit and functional tests but not

integration tests. You can do this either manually in the directory test/integration/ or more

comfortably with rails generate integration_test. So, let’s create an integration test.

$ rails generate integration_test invalid_new_user_workflow

Running via Spring preloader in process 91538

 invoke test_unit

 create test/integration/invalid_new_user_workflow_test.rb

You can now populate the file test/integration/invalid_new_user_workflow_

test.rb with the test shown in Listing 9-10.

Listing 9-10. test/integration/invalid_new_user_workflow_test.rb

require 'test_helper'

class InvalidNewUserWorkflowTest < ActionDispatch::IntegrationTest

 fixtures :all

 test 'try to create a new user without a login' do

 @user = users(:one)

 get '/users/new'

 assert_response :success

 post users_url, params: { user: { last_name: @user.last_name } }

 assert_equal '/users', path

 assert_select 'li', "Login name can't be blank"

 assert_select 'li', "Login name is too short (minimum is 10 characters)"

 end

end

ChapTer 9 TesTs

293

Let’s run all the tests.

$ rails test

Running via Spring preloader in process 91837

Run options: --seed 4153

Running:

..........

Finished in 0.277714s, 36.0083 runs/s, 57.6132 assertions/s.

10 runs, 16 assertions, 0 failures, 0 errors, 0 skips

The example clearly shows that you can program without manually using a web

browser to try it. Once you have written a test for the corresponding workflow, you can

rely in the future on the fact that it will run through; in other words, you don’t have to try

it manually in the browser as well.

 rails stats
With rails stats, you can get an overview of your Rails project. Here’s an example:

$ rails stats

+----------------------+--------+--------+---------+---------+-----+-------+

| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |

+----------------------+--------+--------+---------+---------+-----+-------+

| Controllers | 77 | 53 | 2 | 9 | 4 | 3 |

| Helpers | 4 | 4 | 0 | 0 | 0 | 0 |

| Jobs | 2 | 2 | 1 | 0 | 0 | 0 |

| Models | 11 | 10 | 2 | 0 | 0 | 0 |

| Mailers | 4 | 4 | 1 | 0 | 0 | 0 |

| Channels | 8 | 8 | 2 | 0 | 0 | 0 |

| JavaScripts | 31 | 4 | 0 | 1 | 0 | 2 |

| Libraries | 0 | 0 | 0 | 0 | 0 | 0 |

| Controller tests | 48 | 38 | 1 | 7 | 7 | 3 |

| Helper tests | 0 | 0 | 0 | 0 | 0 | 0 |

| Model tests | 14 | 12 | 1 | 2 | 2 | 4 |

| Mailer tests | 0 | 0 | 0 | 0 | 0 | 0 |

ChapTer 9 TesTs

294

| Integration tests | 17 | 13 | 1 | 1 | 1 | 11 |

| System tests | 9 | 3 | 1 | 0 | 0 | 0 |

+----------------------+--------+--------+---------+---------+-----+-------+

| Total | 225 | 151 | 12 | 20 | 1 | 5 |

+----------------------+--------+--------+---------+---------+-----+-------+

 Code LOC: 88 Test LOC: 63 Code to Test Ratio: 1:0.7

In this project, there are a total of 88 lines of code (LOCs) in the controllers, helpers,

and models. There are a total of 63 LOCs for tests. This gives you a test relation of 1:1.0.7.

Logically, this does not say anything about the quality of tests.

 More on Testing
This chapter just scratched the surface of the topic of TDD in Rails. Take a look at

http://guides.rubyonrails.org/testing.html for more information. There you will

also find several good examples on this topic.

One cool feature of Ruby on Rails testing is the ability to run the tests in real browsers

(e.g., Chrome) and to take screenshots while doing so.

ChapTer 9 TesTs

http://guides.rubyonrails.org/testing.html

295
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_10

CHAPTER 10

Active Job
Sometimes a specific piece of code takes a long time to run but doesn’t need to run

right away. An example is sending an e-mail after creating an order at the end of an

online shopping workflow. It can take a long time to send an e-mail, but you don’t want

your user to wait for that to happen within the controller. It makes more sense to use a

queueing mechanism for these tasks.

Active Job provides such a queueing system. You can create jobs that are processed

asynchronously by the active job.

 Create a New Job
The quickest way to create a new job is to use the job generator. Let’s create an example

job that waits for ten seconds and then logs an info message, as shown here:

$ rails new shop

 [...]

$ cd shop

$ rails db:migrate

$ rails generate job example

Running via Spring preloader in process 5301

 invoke test_unit

 create test/jobs/example_job_test.rb

 create app/jobs/example_job.rb

$

All jobs are created in the app/jobs directory. Please change the app/jobs/example_

job.rb file accordingly, as shown in Listing 10-1.

296

Listing 10-1. app/jobs/example_job.rb

class ExampleJob < ApplicationJob

 queue_as :default

 def perform(*args)

 sleep 10

 logger.info "Just waited 10 seconds."

 end

end

You can test the job in your console with ExampleJob.perform_later, which creates it.

$ rails console

Running via Spring preloader in process 98485

Loading development environment (Rails 5.2.0)

>> ExampleJob.perform_later

Enqueued ExampleJob (Job ID: 21526c3c-7839-49e7-975e-2a176a07dbc4) to

Async(default)

Performing ExampleJob (Job ID: 21526c3c-7839-49e7-975e-2a176a07dbc4) from

Async(default)

=> #<ExampleJob:0x007fceee71f498 @arguments=[], @job_id="21526c3c- 7839- 49e7-

975e-2a176a07dbc4", @queue_name="default", @priority=nil, @executions=0,

@provider_job_id="4c814d91-45d1-4c3e-a57a-3bfd08c1c56f">

Now you have to wait ten seconds to see the following output in the console:

Just waited 10 seconds.

Performed ExampleJob (Job ID: bb6e9781-8ffb-4bf2-8dfc-8ac983ed8bf6)

from Async(default) in 10012.97ms

?> exit

 The file log/development.log contains the logging output.

You’ll find a more concrete example of using jobs in Chapter 11 where an e-mail

gets sent.

ChapTer 10 aCTive Job

297

 Set the Time for Future Execution
The set method provides two arguments that can be used to set the execution of a job in

the future.

• wait

ExampleJob.set(wait: 1.hour).perform_later

• wait_until

ExampleJob.set(wait_until: Date.tomorrow.noon).perform_later

 Configure the Job Server Back End
The page http://api.rubyonrails.org/classes/ActiveJob/QueueAdapters.html

lists all the available back ends. To use one of them, you have to install the needed gem.

Listing 10-2 shows an example of using the popular Sidekiq. To use the gem, you have to

add it to the Gemfile and run a bundle install command afterward.

Listing 10-2. Gemfile

[...]

gem 'sidekiq'

$ bundle install

In config/application.rb, you can configure the use of it, as shown in Listing 10-3.

Listing 10-3. config/application.rb

require_relative 'boot'

require 'rails/all'

Require the gems listed in Gemfile, including any gems

you've limited to :test, :development, or :production.

Bundler.require(*Rails.groups)

ChapTer 10 aCTive Job

http://api.rubyonrails.org/classes/ActiveJob/QueueAdapters.html

298

module Shop

 class Application < Rails::Application

 # Initialize configuration defaults for originally generated Rails version.

 config.load_defaults 5.2

 # Settings in config/environments/* take precedence over those

specified here.

 # Application configuration should go into files in config/initializers

 # -- all .rb files in that directory are automatically loaded.

 # Sidekiq Configuration

 config.active_job.queue_adapter = :sidekiq

 end

end

ChapTer 10 aCTive Job

299
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_11

CHAPTER 11

Action Mailer
Even if you mainly use Ruby on Rails to generate web pages, it sometimes is useful to be

able to send an e-mail.

So, let’s build an example with minimal user management for a web shop that

automatically sends an e-mail to the user when a new user is created, as shown here:

$ rails new webshop

 [...]

$ cd webshop

$ rails generate scaffold User name email

 [...]

$ rails db:migrate

 [...]

For the user model, create a minimal validation in app/models/user.rb so that you

can be sure that each user has a name and a syntactically correct e-mail address (see

Listing 11-1).

Listing 11-1. app/models/user.rb

class User < ApplicationRecord

 validates :name,

 presence: true

 validates :email,

 presence: true,

 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i }

end

300

There is a generator with the name mailer that creates the files required for mailing.

First, take a look at the output of rails generate mailer, without passing any further

arguments, as shown here:

$ rails generate mailer

Running via Spring preloader in process 99958

Usage:

 rails generate mailer NAME [method method] [options]

[...]

Example:

========

 rails generate mailer Notifications signup forgot_password invoice

 creates a Notifications mailer class, views, and test:

 Mailer: app/mailers/notifications_mailer.rb

 Views: app/views/notifications_mailer/signup.text.erb [...]

 Test: test/mailers/notifications_mailer_test.rb

That is just as expected. Let’s now create the mailer notification, as shown here:

$ rails generate mailer Notification new_account

Running via Spring preloader in process 201

 create app/mailers/notification_mailer.rb

 invoke erb

 create app/views/notification_mailer

 create app/views/notification_mailer/new_account.text.erb

 create app/views/notification_mailer/new_account.html.erb

 invoke test_unit

 create test/mailers/notification_mailer_test.rb

 create test/mailers/previews/notification_mailer_preview.rb

In the file app/mailers/notification_mailer.rb you will find the controller for it,

as shown in Listing 11-2.

Chapter 11 aCtion Mailer

301

Listing 11-2. app/mailers/notification_mailer.rb

class NotificationMailer < ApplicationMailer

 # Subject can be set in your I18n file at config/locales/en.yml

 # with the following lookup:

 #

 # en.notification_mailer.new_account.subject

 #

 def new_account

 @greeting = "Hi"

 mail to: "to@example.org"

 end

end

In it, you change the new_account method to accept a parameter with

new_account(user) and some code to use to send the confirmation e-mail; see Listing 11-3.

Listing 11-3. app/mailers/notification_mailer.rb

class NotificationMailer < ApplicationMailer

 def new_account(user)

 @user = user

 mail(to: user.email, subject: "Account #{user.name} is active")

 end

end

Now you can create the view for this method. Actually, you have to breathe life into

two files.

• app/views/notification_mailer/new_account.text.erb

• app/views/notification_mailer/new_account.html.erb

If you want to send a non-HTML e-mail, you can delete the file app/views/

notification_mailer/new_account.html.erb. Otherwise, Action Mailer will generate

an e-mail that can be read as a traditional text e-mail (see Listing 11-4) or as a modern

HTML e-mail (see Listing 11-5).

Chapter 11 aCtion Mailer

302

Listing 11-4. app/views/notification_mailer/new_account.text.erb

Hello <%= @user.name %>,

your new account is active.

Have a great day!

 A Robot

Listing 11-5. app/views/notification_mailer/new_account.html.erb

<p>Hello <%= @user.name %>,</p>

<p>your new account is active.</p>

<p>Have a great day!</br>

 A Robot</p>

As you want to send this e-mail after the creation of a User, you still need to add an

after_create callback that triggers the delivery, as shown in Listing 11-6.

Listing 11-6. app/models/user.rb

class User < ApplicationRecord

 validates :name,

 presence: true

 validates :email,

 presence: true,

 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i }

 after_create :send_welcome_email

 private

 def send_welcome_email

 NotificationMailer.new_account(self).deliver_later

 end

end

Let’s create a new User in the console.

Chapter 11 aCtion Mailer

303

 it’ll take a moment for action Mailer to send the e-mail. it’s using active Job
to queue it. Be patient.

$ rails console

Running via Spring preloader in process 1795

Loading development environment (Rails 5.2.0)

>> User.create(name: "Wintermeyer", email: "sw@wintermeyer-consulting.de")

 (0.1ms) begin transaction

 User Create (0.4ms) INSERT INTO "users" ("name", "email", "created_at",

"updated_at") VALUES (?, ?, ?, ?) [["name", "Wintermeyer"], ["email",

"sw@wintermeyer-consulting.de"], ["created_at", "2018-01-27 16:21:32.093810"],

["updated_at", "2018-01-27 16:21:32.093810"]]

Enqueued ActionMailer::DeliveryJob (Job ID: de33ce3d-9671-4957-8b89-

65b8d3000820) to Async(mailers) with arguments: "NotificationMailer",

"new_account", "deliver_now", #<GlobalID:0x007ffe488addf8 @uri=#<URI::GID

gid://shop4/User/1>>

 (3.2ms) commit transaction

=> #<User id: 1, name: "Wintermeyer", email: "sw@wintermeyer-consulting.

de", created_at: "2018-01-27 16:21:32", updated_at: "2018-01-27 16:21:32">

>> User Load (0.3ms) SELECT "users".* FROM "users" WHERE "users"."id" =

? LIMIT ? [["id", 1], ["LIMIT", 1]]

Performing ActionMailer::DeliveryJob (Job ID: de33ce3d-9671-4957-8b89-

65b8d3000820) from Async(mailers) with arguments: "NotificationMailer",

"new_account", "deliver_now", #<GlobalID:0x007ffe45f84120 @uri=#<URI::GID

gid://shop4/User/1>>

 Rendering notification_mailer/new_account.html.erb within layouts/mailer

 Rendered notification_mailer/new_account.html.erb within layouts/mailer (6.7ms)

 Rendering notification_mailer/new_account.text.erb within layouts/mailer

 Rendered notification_mailer/new_account.text.erb within layouts/mailer (0.4ms)

NotificationMailer#new_account: processed outbound mail in 792.9ms

Sent mail to sw@wintermeyer-consulting.de (31.8ms)

Chapter 11 aCtion Mailer

304

Date: Sat, 27 Jan 2018 17:21:43 +0100

From: from@example.com

To: sw@wintermeyer-consulting.de

Message-ID: <5a6ca717456a9_183a3fff24456d442550@sw.mail>

Subject: Account Wintermeyer is active

Mime-Version: 1.0

Content-Type: multipart/alternative;

 boundary="--==_mimepart_5a6ca7174371d_183a3fff24456d44254be";

 charset=UTF-8

Content-Transfer-Encoding: 7bit

----==_mimepart_5a6ca7174371d_183a3fff24456d44254be

Content-Type: text/plain;

 charset=UTF-8

Content-Transfer-Encoding: 7bit

Hello Wintermeyer,

your new account is active.

Have a great day!

 A Robot

----==_mimepart_5a6ca7174371d_183a3fff24456d44254be

Content-Type: text/html;

 charset=UTF-8

Content-Transfer-Encoding: 7bit

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <style>

 /* Email styles need to be inline */

 </style>

 </head>

 <body>

 <p>Hello Wintermeyer,</p>

Chapter 11 aCtion Mailer

305

<p>your new account is active.</p>

<p>Have a great day!</br>

 A Robot</p>

 </body>

</html>

----==_mimepart_5a6ca7174371d_183a3fff24456d44254be--

Performed ActionMailer::DeliveryJob (Job ID: de33ce3d-9671-4957-8b89-

65b8d3000820) from Async(mailers) in 842.52ms

>> exit

That was straightforward. In development mode, you can see the e-mail in the log. In

production mode, it is sent to the configured SMTP gateway.

 take a look at the files app/views/layouts/mailer.html.erb and
app/views/layouts/mailer.text.erb to set a generic envelope (e.g., add CSS)
for your e-mail content. it works like app/views/layouts/application.
html.erb for htMl views.

 Configuring the E-mail Server
Rails can use a local sendmail or an external SMTP server to deliver the e-mails.

 Sending via Local Sendmail
If you want to send the e-mail in the traditional way via local sendmail, then you need

to insert the lines shown in Listing 11-7 into your configuration file, which is config/

environments/development.rb for your Development environment or config/

environments/production.rb for your Production environment.

Listing 11-7. config/environments/development.rb

config.action_mailer.delivery_method = :sendmail

config.action_mailer.perform_deliveries = true

config.action_mailer.raise_delivery_errors = true

Chapter 11 aCtion Mailer

306

 Sending via Direct SMTP
If you want to send the e-mail directly via an SMTP server (for example, Google Mail),

then you need to insert the lines shown in Listing 11-8 into your configuration file,

which is config/environments/development.rb for your Development environment or

config/environments/production.rb for your Production environment.

Listing 11-8. config/environments/development.rb

config.action_mailer.delivery_method = :smtp

config.action_mailer.smtp_settings = {

 address: "smtp.gmail.com",

 port: 587,

 domain: 'example.com',

 user_name: '<username>',

 password: '<password>',

 authentication: 'plain',

 enable_starttls_auto: true }

Of course, you need to adapt the values for :domain, :user_name, and :password in

accordance with your configuration.

 Custom X-Header
If you feel the urge to integrate an additional X-header, then this is no problem. Listing 11-9

shows an example for expanding the file app/mailers/notification_mailer.rb.

Listing 11-9. app/mailers/notification_mailer.rb

class NotificationMailer < ApplicationMailer

 def new_account(user)

 @user = user

 headers["X-Priority"] = '3'

 mail(to: user.email, subject: "The account #{user.name} is active.")

 end

end

Chapter 11 aCtion Mailer

307

This means the sent e-mail looks like this:

Sent mail to sw@wintermeyer-consulting.de (50ms)

Date: Sat, 27 Jan 2018 17:35:21 +0200

From: from@example.com

To: sw@wintermeyer-consulting.de

Message-ID: <4fc63e39e356a_aa083fe366028cd8803c7@MacBook.local.mail>

Subject: The new account Wintermeyer is active.

Mime-Version: 1.0

Content-Type: text/plain;

 charset=UTF-8

Content-Transfer-Encoding: 7bit

X-Priority: 3

Hello Wintermeyer,

your new account is active.

Have a great day!

 A Robot

 Attachments
E-mail attachments can be defined too.

As an example, in app/mailers/notification_mailer.rb you add the Rails image

app/assets/images/rails.png to an e-mail as an attachment, as shown in Listing 11- 10.

Listing 11-10. app/mailers/notification_mailer.rb

class NotificationMailer < ApplicationMailer

 def new_account(user)

 @user = user

 attachments['rails.png'] =

 File.read("#{Rails.root}/app/assets/images/rails.png")

 mail(to: user.email, subject: "The account #{user.name} is active.")

 end

end

Chapter 11 aCtion Mailer

308

 Inline Attachments
For inline attachments in HTML e-mails, you need to use the method inline when calling

attachments. In the example, the controller app/mailers/notification_mailer.rb

looks like Listing 11-11.

Listing 11-11. app/mailers/notification_mailer.rb

class NotificationMailer < ApplicationMailer

 def new_account(user)

 @user = user

 attachments.inline['rails.png'] =

 File.read("#{Rails.root}/app/assets/images/rails.png")

 mail(to: user.email, subject: "The account #{user.name} is active.")

 end

end

In the HTML e-mail, you can access the hash attachments[] via image_tag. In the

example, the app/views/notification_mailer/new_account.html.erb file will look

like Listing 11-12.

Listing 11-12. app/views/notification_mailer/new_account.html.erb

<!DOCTYPE html>

<html>

 <head>

 <meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />

 </head>

 <body>

 <%= image_tag attachments['rails.png'].url, :alt => 'Rails Logo' %>

 <p>Hello <%= @user.name %>,</p>

 <p>your new account is active.</p>

 <p><i>Have a great day!</i></p>

 <p>A Robot</p>

 </body>

</html>

Chapter 11 aCtion Mailer

309

 Further Information
The Rails online documentation has an extensive entry on Action Mailer at

 http://guides.rubyonrails.org/action_mailer_basics.html.

Chapter 11 aCtion Mailer

http://guides.rubyonrails.org/action_mailer_basics.html

311
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_12

CHAPTER 12

Internationalization
If you are in the lucky situation of creating web pages in English only, then you can skip

this chapter completely.

But even if you want to create a web page that uses only one language (other than

English), you will need to dive into this chapter. It is not enough to just translate the

views. If you use scaffolding, you will still need to take care of the not yet translated

validation errors.

The class I18n is responsible for everything having to do with translation in the Rails

application. It offers two important methods for this purpose.

• I18n.translate or I18n.t: Takes care of inserting previously defined

text blocks. These can contain variables.

• I18n.localize or I18n.l: Takes care of adapting time and date

specifications to the local format.

With I18n.locale, you define the language you want to use in the current call. In the

configuration file config/application.rb, the entry config.i18n.default_locale sets

the default value for I18n.locale. If you do not make any changes there, this value is set

by default to :en for English.

For special cases such as displaying numbers, currencies, and times, special helpers

are available. For example, if you want to create a German web page, you can ensure that

the number 1000.23 can be correctly displayed with a decimal comma as 1.000,23 on the

German page and with a decimal point on an English web page as 1,000.23.

Let’s create an example application that includes the rails-i18n gem by Sven Fuchs

(https://github.com/svenfuchs/i18n). It provides a couple of language files with

translations and format information.

$ rails new shop-i18n

 [...]

$ cd shop-i18n

https://github.com/svenfuchs/i18n

312

$ rails db:migrate

$ echo "gem 'rails-i18n'" >> Gemfile

$ bundle

 [...]

$

In the console, you can see the different output of a number depending on the

language setting, as shown here:

$ rails console

Running via Spring preloader in process 3337

Loading development environment (Rails 5.2.0)

>> price = 1000.23

=> 1000.23

>> helper.number_to_currency(price, locale: :de)

=> "1.000,23 €"
>> helper.number_to_currency(price, locale: :en)

=> "$1,000.23"

>> helper.number_to_currency(price, locale: :fr)

=> "1 000,23 €"
>> exit

 I18n.t
With I18n.t, you can retrieve previously defined translations. The translations are saved

by default in YAML format in the directory config/locales/.

In config/locales/, you can find an example file called config/locales/en.yml

with the content in Listing 12-1.

Listing 12-1. config/locales/en.yml

en:

 hello: "Hello world"

In the Rails console, you can see how I18n.t works, as shown here:

$ rails console

Running via Spring preloader in process 3487

Chapter 12 InternatIonalIzatIon

313

Loading development environment (Rails 5.2.0)

>> I18n.t :hello

=> "Hello world"

>> I18n.locale

=> :en

>> exit

Let’s first create a config/locales/de.yml file with the content shown in Listing 12- 2.

Listing 12-2. config/locales/de.yml

de:

 hello: "Hallo Welt"

Now you have to tell Rails to load this file by adding those files to config.i18n.load_

path in config/application.rb, as shown in Listing 12-3.

Listing 12-3. config/application.rb

require_relative 'boot'

require 'rails/all'

Require the gems listed in Gemfile, including any gems

you've limited to :test, :development, or :production.

Bundler.require(*Rails.groups)

module ShopI18n

 class Application < Rails::Application

 # Initialize configuration defaults for originally generated Rails version.

 config.load_defaults 5.2

 # Settings in config/environments/* take precedence over those specified here.

 # Application configuration should go into files in config/initializers

 # -- all .rb files in that directory are automatically loaded.

 # Load i18n translation files

 config.i18n.load_path +=

 Dir[Rails.root.join('my', 'locales', '*.{rb,yml}').to_s]

 end

end

Chapter 12 InternatIonalIzatIon

314

In the console, you can set the system language using I18n.locale = :de to German.

$ rails console

Running via Spring preloader in process 4009

Loading development environment (Rails 5.2.0)

>> I18n.locale = :de

=> :de

>> I18n.t :hello

=> "Hallo Welt"

I18n.t looks by default for the entry in the language defined in I18n.locale. It does

not matter if you are working with I18n.t or I18n.translate. Nor does it matter if you

are searching for a symbol or a string.

>> I18n.locale = :en

=> :en

>> I18n.t :hello

=> "Hello world"

>> I18n.t 'hello'

=> "Hello world"

>> I18n.translate 'hello'

=> "Hello world"

If a translation does not exist, you get an error message that says translation

missing:. This also applies if a translation is missing in only one language (then all

other languages will work, but for the missing translation you will get the error

message). In that case, you can define a default with default: 'any default value',

as shown here:

>> I18n.t 'asdfasdfasdf'

=> "translation missing: en.asdfasdfasdf"

>> I18n.t 'asdfasdfasdf', default: 'asdfasdfasdf'

=> "asdfasdfasdf"

>> exit

Chapter 12 InternatIonalIzatIon

315

In the YAML structure, you can also specify several levels. Please amend the config/

locale/en.yml file as shown in Listing 12-4.

Listing 12-4. config/locale/en.yml

en:

 hello: "Hello world"

 example:

 test: "A test"

 aaa:

 bbb:

 test: "Another test"

You can display the different levels within the string with dots or with a :scope for

the symbols. You can also mix both options.

$ rails console

Running via Spring preloader in process 4243

Loading development environment (Rails 5.2.0)

>> I18n.t 'example.test'

=> "A test"

>> I18n.t 'aaa.bbb.test'

=> "Another test"

>> I18n.t :test, scope: [:aaa, :bbb]

=> "Another test"

>> I18n.t :test, scope: 'aaa.bbb'

=> "Another test"

>> exit

It’s up to you which structure you choose to save your translations in the YAML files.

But the structure described in the section “A Rails Application in Only One Language:

German” does make some things easier, and that’s why you are going to use it for this

application as well.

Chapter 12 InternatIonalIzatIon

316

 Using I18n.t in the View
In the view, you can use I18n.t as follows:

<%= t :hello-world %>

<%= I18n.t :hello-world %>

<%= I18n.translate :hello-world %>

<%= I18n.t 'hello-world' %>

<%= I18n.t 'aaa.bbb.test' %>

<%= link_to I18n.t('views.destroy'), book, confirm:

I18n.t('views.are_you_sure'), method: :delete %>

 Localized Views
In Rails, there is a useful option of saving several variations of a view as localized views,

each of which represents a different language. This technique is independent of the

potential use of I18n.t in these views. The file name results from the view name, the

language code (for example, de for German), and html.erb for erb pages. Each of these

is separated by a dot. So, the German variation of the index.html.erb page would get

the file name index.de.html.erb.

Your views directory could then look like this:

|-app

|---views

|-----products

|-------_form.html.erb

|-------_form.de.html.erb

|-------edit.html.erb

|-------edit.de.html.erb

|-------index.html.erb

|-------index.de.html.erb

|-------new.html.erb

|-------new.de.html.erb

|-------show.html.erb

Chapter 12 InternatIonalIzatIon

317

|-------show.de.html.erb

|-----page

|-------index.html.erb

|-------index.de.html.erb

The language set with config.i18n.default_locale is used automatically if no

language was encoded in the file name. In a new and not yet configured Rails project,

this will be English. You can configure it in the file config/application.rb.

 A Rails Application in Only One Language: German
In a Rails application aimed only at German users, it is unfortunately not enough to

just translate all the views into German. The approach is in many respects similar to

a multilingual Rails application (see the section “Multilingual Rails Applications”).

Correspondingly, there will be a certain amount of repetition. I am going to show you the

steps you need to watch out for by using a simple application as an example.

Let’s go through all the changes using the example of a bibliography application, as

shown here:

$ rails new bibliography

 [...]

$ cd bibliography

$ rails generate scaffold book title number_of_pages:integer \

 'price:decimal{7,2}'

 [...]

$ rails db:migrate

 [...]

$ echo "gem 'rails-i18n'" >> Gemfile

$ bundle

$

To get examples of validation errors, please insert the validations shown in Listing 12-5

into app/models/book.rb.

Chapter 12 InternatIonalIzatIon

318

Listing 12-5. app/models/book.rb

class Book < ApplicationRecord

 validates :title,

 presence: true,

 uniqueness: true,

 length: { within: 2..255 }

 validates :price,

 presence: true,

 numericality: { greater_than: 0 }

end

Please search the configuration file config/application.rb for the value config.

i18n.default_locale and set it to :de for German. In the same context, you then also

insert two directories in the previous line for the translations of the models and the

views. This directory structure is not a technical requirement but makes it easier to keep

track of things if your application becomes big, as shown in Listing 12-6.

Listing 12-6. config/application.rb

require_relative 'boot'

require 'rails/all'

Require the gems listed in Gemfile, including any gems

you've limited to :test, :development, or :production.

Bundler.require(*Rails.groups)

module ShopI18n

 class Application < Rails::Application

 # Initialize configuration defaults for originally generated Rails version.

 config.load_defaults 5.2

 # Settings in config/environments/* take precedence over those specified here.

 # Application configuration should go into files in config/initializers

 # -- all .rb files in that directory are automatically loaded.

Chapter 12 InternatIonalIzatIon

319

 # Load i18n translation files

 config.i18n.load_path +=

 Dir[Rails.root.join('config', 'locales', 'models', '*', '*.yml').to_s]

 config.i18n.load_path +=

 Dir[Rails.root.join('config', 'locales', 'views', '*', '*.yml').to_s]

 # Set de as the default language

 config.i18n.default_locale = :de

 end

end

You then still need to create the corresponding directories.

$ mkdir -p config/locales/models/book

$ mkdir -p config/locales/views/book

Now you need to generate a language configuration file for German or simply

download a ready-made one by Sven Fuchs from his GitHub repository at https://

github.com/svenfuchs/rails-i18n, as shown here:

$ cd config/locales

$ curl -O \

 https://raw.githubusercontent.com/svenfuchs/rails-i18n/master/rails/

locale/de.yml

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 5492 100 5492 0 0 20795 0 --:--:-- --:--:-- --:--:-- 20803

$

If you know how Bundler works, you can also insert the line gem 'rails-i18n' into

the file Gemfile and then execute bundle install. This gives you all the language files

from the repository.

In the file config/locales/de.yml, you have all the required formats and generic

wordings for German that you need for a normal Rails application (for example, days of

the week, currency symbols, etc.). Take a look at it with your favorite editor to get a first

impression.

Chapter 12 InternatIonalIzatIon

https://github.com/svenfuchs/rails-i18n
https://github.com/svenfuchs/rails-i18n

320

Next, you need to tell Rails that a model book is not called book in German, but buch.

The same applies to all attributes. So, you create the file config/locales/models/book/

de.yml with the structure shown in Listing 12-7. As a side effect, you get the methods

Model.model_name.human and Model.human_attribute_name(attribute), with which

you can insert the model and attribute names in the view.

Listing 12-7. config/locales/models/book/de.yml

de:

 activerecord:

 models:

 book: 'Buch'

 attributes:

 book:

 title: 'Titel'

 number_of_pages: 'Seitenanzahl'

 price: 'Preis'

In the file config/locales/views/book/de.yml, you insert a few values for the

scaffold views, as shown in Listing 12-8.

Listing 12-8. config/locales/views/book/de.yml

de:

 views:

 show: Anzeigen

 edit: Editieren

 destroy: Löschen

 are_you_sure: Sind Sie sicher?

 back: Zurück

 edit: Editieren

 book:

 index:

 title: Bücherliste

 new: Neues Buch

 edit:

 title: Buch editieren

Chapter 12 InternatIonalIzatIon

321

 new:

 title: Neues Buch

 flash_messages:

 book_was_successfully_created: 'Das Buch wurde angelegt.'

 book_was_successfully_updated: 'Das Buch wurde aktualisiert.'

Now, you still need to integrate a “few” changes into the views. You can use the

I18n.t helper, which can also be abbreviated as t in the view. I18n.t reads out the

corresponding item from the YAML file. In the case of a purely monolingual German

application, you could also write the German text directly into the view, but with this

method you can more easily switch to multilingual use if required. See Listing 12-9,

Listing 12-10, Listing 12-11, Listing 12-12, and Listing 12-13.

Listing 12-9. app/views/books/_form.html.erb

<%= form_with(model: book, local: true) do |form| %>

 <% if book.errors.any? %>

 <div id="error_explanation">

 <h2><%= t 'activerecord.errors.template.header', :model =>

 Book.model_name.human, :count => @book.errors.count %></h2>

 <% book.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= form.label :title %>

 <%= form.text_field :title %>

 </div>

 <div class="field">

 <%= form.label :number_of_pages %>

 <%= form.number_field :number_of_pages %>

 </div>

Chapter 12 InternatIonalIzatIon

322

 <div class="field">

 <%= form.label :price %>

 <%= form.text_field :price %>

 </div>

 <div class="actions">

 <%= form.submit %>

 </div>

<% end %>

Listing 12-10. app/views/books/edit.html.erb

<h1><%= t 'views.book.edit.title' %></h1>

<%= render 'form', book: @book %>

<%= link_to I18n.t('views.show'), @book %> |

<%= link_to I18n.t('views.back'), books_path %>

Listing 12-11. app/views/books/index.html.erb

<p id="notice"><%= notice %></p>

<h1><%= t 'views.book.index.title' %></h1>

<table>

 <thead>

 <tr>

 <th><%= Book.human_attribute_name(:title) %></th>

 <th><%= Book.human_attribute_name(:number_of_pages) %></th>

 <th><%= Book.human_attribute_name(:price) %></th>

 <th colspan="3"></th>

 </tr>

 </thead>

 <tbody>

 <% @books.each do |book| %>

 <tr>

 <td><%= book.title %></td>

 <td><%= number_with_delimiter(book.number_of_pages) %></td>

Chapter 12 InternatIonalIzatIon

323

 <td><%= number_to_currency(book.price) %></td>

 <td><%= link_to I18n.t('views.show'), book %></td>

 <td><%= link_to I18n.t('views.edit'), edit_book_path(book) %></td>

 <td><%= link_to I18n.t('views.destroy'), book, method: :delete,

data: { confirm: I18n.t('views.are_you_sure') } %></td>

 </tr>

 <% end %>

 </tbody>

</table>

<%= link_to I18n.t('views.book.index.new'), new_book_path %>

Listing 12-12. app/views/books/new.html.erb

<h1><%= t 'views.book.new.title' %></h1>

<%= render 'form' %>

<%= link_to I18n.t('views.back'), books_path %>

Listing 12-13. app/views/books/show.html.erb

<p id="notice"><%= notice %></p>

<p>

 <%= Book.human_attribute_name(:title) %>:

 <%= @book.title %>

</p>

<p>

 <%= Book.human_attribute_name(:number_of_pages) %>:

 <%= number_with_delimiter(@book.number_of_pages) %>

</p>

<p>

 <%= Book.human_attribute_name(:price) %>:

 <%= number_to_currency(@book.price) %>

</p>

Chapter 12 InternatIonalIzatIon

324

<%= link_to I18n.t('views.edit'), edit_book_path(@book) %> |

<%= link_to I18n.t('views.back'), books_path %>

 In the show and index views, I integrated the helpers number_with_
delimiter and number_to_currency so the numbers are represented more
attractively for the user.

Right at the end, you still need to adapt a few flash messages in the controller app/

controllers/books_controller.rb, as shown in Listing 12-14.

Listing 12-14. app/controllers/books_controller.rb

class BooksController < ApplicationController

 before_action :set_book, only: [:show, :edit, :update, :destroy]

 # GET /books

 # GET /books.json

 def index

 @books = Book.all

 end

 # GET /books/1

 # GET /books/1.json

 def show

 end

 # GET /books/new

 def new

 @book = Book.new

 end

 # GET /books/1/edit

 def edit

 end

 # POST /books

 # POST /books.json

Chapter 12 InternatIonalIzatIon

325

 def create

 @book = Book.new(book_params)

 respond_to do |format|

 if @book.save

 format.html { redirect_to @book, notice: I18n.t('views.book.flash_

messages.book_was_successfully_created') }

 format.json { render :show, status: :created, location: @book }

 else

 format.html { render :new }

 format.json { render json: @book.errors, status: :unprocessable_

entity }

 end

 end

 end

 # PATCH/PUT /books/1

 # PATCH/PUT /books/1.json

 def update

 respond_to do |format|

 if @book.update(book_params)

 format.html { redirect_to @book, notice: I18n.t('views.book.flash_

messages.book_was_successfully_updated') }

 format.json { render :show, status: :ok, location: @book }

 else

 format.html { render :edit }

 format.json { render json: @book.errors, status: :unprocessable_

entity }

 end

 end

 end

 # DELETE /books/1

 # DELETE /books/1.json

 def destroy

 @book.destroy

 respond_to do |format|

Chapter 12 InternatIonalIzatIon

326

 format.html { redirect_to books_url, notice: I18n.t('views.book.

flash_messages.book_was_successfully_destroyed') }

 format.json { head :no_content }

 end

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_book

 @book = Book.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white

list through.

 def book_params

 params.require(:book).permit(:title, :number_of_pages, :price)

 end

end

Now you can use the views generated by the scaffold generator entirely in German.

The structure of the YAML files shown here can of course be adapted to your own

preferences. The texts in the views and the controller are displayed with I18n.t. At this

point, you could of course also integrate the German text directly if the application is

purely in German.

 Paths in German
The bibliography is completely in German, but the URLs are still in English. If you want

to make all books available at the URL http://localhost:3000/buecher instead of the

URL http://localhost:3000/books, then you need to add the entry shown in Listing 12-15

to config/routes.rb.

Listing 12-15. config/routes.rb

Bibliography::Application.routes.draw do

 resources :books, path: 'buecher', path_names:

 { new: 'neu', edit: 'editieren' }

end

Chapter 12 InternatIonalIzatIon

327

As a result, you then have the following new paths:

$ rails routes

(in /Users/xyz/rails/project-42/bibliography)

 Prefix Verb URI Pattern Controller#Action

 books GET /buecher(.:format) books#index

 POST /buecher(.:format) books#create

 new_book GET /buecher/neu(.:format) books#new

edit_book GET /buecher/:id/editieren(.:format) books#edit

 book GET /buecher/:id(.:format) books#show

 PATCH /buecher/:id(.:format) books#update

 PUT /buecher/:id(.:format) books#update

 DELETE /buecher/:id(.:format) books#destroy

The brilliant thing with Rails routes is that you do not need to do anything else.

The rest is managed transparently by the routing engine.

 Multilingual Rails Applications
The approach for multilingual Rails applications is similar to the monolingual,

all- German Rails application described in the section “A Rails Application in Only

One Language: German.” However, you need to define YAML language files for all the

required languages and tell the Rails application which language it should currently use.

You do this via I18n.locale.

 Using I18n.locale for Defining the Default Language
Of course, a Rails application has to know in which language a web page should be

represented. I18n.locale saves the current language and can be read by the application.

I am going to show you this with a mini web shop example, as shown here:

$ rails new i18n-webshop

 [...]

$ cd i18n-webshop

$ echo "gem 'rails-i18n'" >> Gemfile

$ bundle

$

Chapter 12 InternatIonalIzatIon

328

This web shop gets a home page, as shown here:

$ rails generate controller Page index

 [...]

$

You still need to enter it as a root page in config/routes.rb, as shown in Listing 12- 16.

Listing 12-16. config/routes.rb

Rails.application.routes.draw do

 get 'page/index'

 root 'page#index'

end

Now populate the app/views/page/index.html.erb with the example shown in

Listing 12-17.

Listing 12-17. app/views/page/index.html.erb

<h1>Example Webshop</h1>

<p>Welcome to this webshop.</p>

<p>

I18n.locale:

<%= I18n.locale %>

</p>

If you start the Rails server with rails server and go to http://localhost:3000/ in

the browser, then you see the web page shown in Figure 12-1.

Chapter 12 InternatIonalIzatIon

329

As you can see, the default is set to en for English. Stop the Rails server with

Ctrl+C and change the setting for the default language to German in the file config/

application.rb, as shown in Listing 12-18.

Listing 12-18. config/application.rb

[...]

config.i18n.default_locale = :de

[...]

If you then start the Rails server and again go to http://localhost:3000/ in the web

browser, you will see the web page shown in Figure 12-2.

Figure 12-1. I18n index page

Chapter 12 InternatIonalIzatIon

330

The web page has not changed, but as output of <%= I18n.locale %> you now get de

for German (Deutsch), not en for English as before.

Please stop the Rails server with Ctrl+C and change the setting for the default

language to en for English in the file config/application.rb, as shown in Listing 12-19.

Listing 12-19. config/application.rb

[...]

config.i18n.default_locale = :en

[...]

You now know how to set the default for I18n.locale in the entire application, but

that gets only half the job done. A user wants to be able to choose a language. There

are various ways of achieving this. To make things clearer, you need a second page that

displays German text.

Please create the file app/views/page/index.de.html.erb with the content shown

in Listing 12-20.

Listing 12-20. app/views/page/index.de.html.erb

<h1>Beispiel Webshop</h1>

<p>Willkommen in diesem Webshop.</p>

Figure 12-2. I18n index page default locale de

Chapter 12 InternatIonalIzatIon

331

<p>

I18n.locale:

<%= I18n.locale %>

</p>

 Setting I18n.locale via the URL Path Prefix
The more stylish way of setting the language is to add it as a prefix to the URL. This

enables search engines to manage different language versions better. You want

http://localhost:3000/de to display the German version of your home page and

http://localhost:3000/en to display the English version. The first step is to adapt

config/routes.rb, as shown in Listing 12-21.

Listing 12-21. config/routes.rb

Rails.application.routes.draw do

 scope ':locale', locale: /en|de/ do

 get 'page/index'

 get '/', to: 'page#index'

 end

 root 'page#index'

end

Next, you need to set a before_action in app/controllers/application_

controller.rb. This filter sets the parameter locale set by the route as I18n.locale, as

shown in Listing 12-22.

Listing 12-22. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

 before_action :set_locale

 private

 def set_locale

 I18n.locale = params[:locale] || I18n.default_locale

 end

end

Chapter 12 InternatIonalIzatIon

332

Now you have to allow the new locales to be loaded. Add the line in Listing 12-23 to

your config/application.rb file.

Listing 12-23. config/application.rb

[...]

config.i18n.available_locales = [:en, :de]

[...]

To test it, start Rails with rails server and go to the URL http://localhost:3000/de,

as shown in Figure 12-3.

Of course, you can also go to http://localhost:3000/de/page/index, as shown in

Figure 12-4.

Figure 12-3. I18n root de

Chapter 12 InternatIonalIzatIon

333

If you go to http://localhost:3000/en and http://localhost:3000/en/page/

index, you get the English version of each page.

But now you have a problem: by using the prefix, you initially get to a page with the

correct language, but what if you want to link from that page to another page in your

Rails project? Then you would need to manually insert the prefix into the link. Who

wants that? Obviously, there is a clever solution for this problem. You can set global

default parameters for URL generation by defining a method called default_url_

options in the controller.

So, you just need to add this method in app/controllers/application_

controller.rb, as shown in Listing 12-24.

Listing 12-24. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

 before_action :set_locale

 def default_url_options

 { locale: I18n.locale }

 end

 private

 def set_locale

 I18n.locale = params[:locale] || I18n.default_locale

 end

end

Figure 12-4. I18n de page index

Chapter 12 InternatIonalIzatIon

334

As a result, all links created with link_to and url_for (on which link_to is

based) are automatically expanded by the parameter locale. You do not need to do

anything else. All links generated via the scaffold generator are automatically changed

accordingly.

Navigation Example
To give the user the option of switching easily between the different language versions,

it makes sense to offer two links at the top of the web page. You don’t want the current

language to be displayed as the active link. This can be achieved as shown in Listing 12-25

for all views in the file app/views/layouts/application.html.erb.

Listing 12-25. app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

 <head>

 <title>I18nWebshop</title>

 <%= csrf_meta_tags %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-

turbolinks- track': 'reload' %>

 <%= javascript_include_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <p>

 <%= link_to_unless I18n.locale == :en, "English", locale: :en %>

 |

 <%= link_to_unless I18n.locale == :de, "Deutsch", locale: :de %>

 </p>

 <%= yield %>

 </body>

</html>

The navigation is then displayed at the top of the page, as shown in Figure 12-5.

Chapter 12 InternatIonalIzatIon

335

 Setting I18n.locale via the Accept Language HTTP Header
of the Browser
When a user goes to your web page for the first time, you ideally want to immediately

display the web page in the correct language for that user. To do this, you can read out

the accept language field in the HTTP header. In every web browser, the user can set the

preferred language (see www.w3.org/International/questions/qa-lang-priorities).

The browser automatically informs the web server and consequently Ruby on Rails of

this value.

Please edit app/controllers/application_controller.rb as shown in Listing 12- 26.

Listing 12-26. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

 before_action :set_locale

 private

 def extract_locale_from_accept_language_header

 http_accept_language =

 request.env['HTTP_ACCEPT_LANGUAGE'].scan(/^[a-z]{2}/).first

 if ['de', 'en'].include? http_accept_language

 http_accept_language

 else

Figure 12-5. I18n URL prefix

Chapter 12 InternatIonalIzatIon

http://www.w3.org/International/questions/qa-lang-priorities

336

 'en'

 end

 end

 def set_locale

 I18n.locale = extract_locale_from_accept_language_header ||

 I18n.default_locale

 end

end

Do not forget to clean the settings from the section “Setting I18n.locale via the URL

Path Prefix” out of config/routes.rb, as shown in Listing 12-27.

Listing 12-27. config/routes.rb

Rails.application.routes.draw do

 get "page/index"

 root 'page#index'

end

Now you always get the output in the language defined in the web browser. Please

note that request.env['HTTP_ACCEPT_LANGUAGE'].scan(/^[a-z]{2}/).first does

not catch all cases. For example, you should make sure that you support the specified

language in your Rails application in the first place. There are some ready-made gems

that can easily do this job for you. Take a look at https://www.ruby-toolbox.com/

categories/i18n#http_accept_language to find them.

 Saving I18n.locale in a Session
Often you want to save the value of I18n.locale in a session.

To set the value, let’s create a controller in the web shop as an example, namely, the

controller SetLanguage with the two actions english and german, as shown here:

$ rails generate controller SetLanguage english german

 [...]

$

In the file app/controllers/set_language_controller.rb, you populate the two

actions as shown in Listing 12-28.

Chapter 12 InternatIonalIzatIon

https://www.ruby-toolbox.com/categories/i18n#http_accept_language
https://www.ruby-toolbox.com/categories/i18n#http_accept_language

337

Listing 12-28. app/controllers/set_language_controller.rb

class SetLanguageController < ApplicationController

 def english

 I18n.locale = :en

 set_session_and_redirect

 end

 def german

 I18n.locale = :de

 set_session_and_redirect

 end

 private

 def set_session_and_redirect

 session[:locale] = I18n.locale

 end

end

Finally, you also want to adapt the set_locale methods in the file app/controllers/

application_controller.rb, as shown in Listing 12-29.

Listing 12-29. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

 before_action :set_locale

 private

 def set_locale

 I18n.locale = session[:locale] || I18n.default_locale

 session[:locale] = I18n.locale

 end

end

After starting Rails with rails server, you can now set the language to German

by going to the URL http://localhost:3000/set_language/german and to English by

going to http://localhost:3000/set_language/english.

Chapter 12 InternatIonalIzatIon

338

Navigation Example
To give the user the option of switching easily between the different language versions,

it makes sense to offer two links at the top of the web page. You don’t want the current

language to be displayed as the active link. This can be achieved as shown in Listing 12-30

for all views in the file app/views/layouts/application.html.erb.

Listing 12-30. app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

 <head>

 <title>I18nWebshop</title>

 <%= csrf_meta_tags %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-

turbolinks- track': 'reload' %>

 <%= javascript_include_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <p>

 <%= link_to_unless I18n.locale == :en, "English", set_language_

english_path %>

 |

 <%= link_to_unless I18n.locale == :de, "Deutsch", set_language_

german_path %>

 </p>

 <%= yield %>

 </body>

</html>

The navigation is then displayed at the top of the page.

Chapter 12 InternatIonalIzatIon

339

 Setting I18n.locale via a Domain Extension
If you have several domains with the extensions typical for the corresponding languages,

you can of course also use these extensions to set the language. For example, if a user

visits the page www.example.com, the user would see the English version; if the user goes

to http://www.example.de, then the German version would be displayed.

To achieve this, you would need to go into app/controllers/application_

controller.rb and insert a before_action that analyzes the accessed domain and sets

I18n.locale, as shown in Listing 12-31.

Listing 12-31. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

 before_action :set_locale

 private

 def set_locale

 case request.host.split('.').last

 when 'de'

 I18n.locale = :de

 when 'com'

 I18n.locale = :en

 else

 I18n.locale = I18n.default_locale

 end

 end

end

 to test this functionality, you can add the following items on your linux or

macoS development system in the file /etc/hosts:

localhost www.example.com

localhost www.example.de

then you can go to the Urls www.example.com:3000 and www.example.de:3000
to see the corresponding language versions.

Chapter 12 InternatIonalIzatIon

340

 Which Approach Is the Best?
I believe that a combination of the approaches described earlier will lead to the best

result. When I first visit a web page, I am happy if I find that the accept language HTTP

header of my browser is read and implemented correctly. But it is also nice to be able to

change the language later in the user configuration (in particular, for badly translated

pages, English language is often better). Ultimately it has to be said that a page that is easy

to represent is worth a lot for a search engine, and this also goes for the languages. Rails

gives you the option of easily using all variations and even enables you to combine them.

 Multilingual Scaffold Example
As an example, let’s use a mini web shop in which you translate a product scaffold. The

aim is to make the application available in German and English.

Here’s the Rails application:

$ rails new i18n-webshop

 [...]

$ cd i18n-webshop

$ rails generate scaffold Product name description 'price:decimal{7,2}'

 [...]

$ rails db:migrate

 [...]

$ echo "gem 'rails-i18n'" >> Gemfile

$ bundle

$

You define the product model in app/models/product.rb, as shown in Listing 12-32.

Listing 12-32. app/models/product.rb

class Product < ApplicationRecord

 validates :name,

 presence: true,

 uniqueness: true,

 length: { within: 2..255 }

Chapter 12 InternatIonalIzatIon

341

 validates :price,

 presence: true,

 numericality: { greater_than: 0 }

end

When selecting the language for the user, you use the URL prefix variation

described in the section “Setting I18n.locale via the URL Path Prefix.” You use the

app/controllers/application_controller.rb file shown in Listing 12-33.

Listing 12-33. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

 before_action :set_locale

 def default_url_options

 { locale: I18n.locale }

 end

 private

 def set_locale

 I18n.locale = params[:locale] || I18n.default_locale

 end

end

Listing 12-34 shows the config/routes.rb file.

Listing 12-34. config/routes.rb

Rails.application.routes.draw do

 scope ':locale', locale: /en|de/ do

 resources :products

 get '/', to: 'products#index'

 end

 root 'products#index'

end

To allow the new locales to be loaded, add the line shown in Listing 12-35 to your

config/application.rb file.

Chapter 12 InternatIonalIzatIon

342

Listing 12-35. config/application.rb

[...]

config.i18n.available_locales = [:en, :de]

[...]

Then you insert the links for the navigation in the app/views/layouts/application.

html.erb file, as shown in Listing 12-36.

Listing 12-36. app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

 <head>

 <title>I18nWebshop</title>

 <%= csrf_meta_tags %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-

turbolinks- track': 'reload' %>

 <%= javascript_include_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <p>

 <%= link_to_unless I18n.locale == :en, "English", locale: :en %>

 |

 <%= link_to_unless I18n.locale == :de, "Deutsch", locale: :de %>

 </p>

 <%= yield %>

 </body>

</html>

Start the Rails server with rails server.

$ rails server

[...]

If you go to http://localhost:3000, you see the normal English page, as shown in

Figure 12-6.

Chapter 12 InternatIonalIzatIon

343

If you click the option German, the URL and the language navigation links change, as

shown in Figure 12-7.

You still need to find a way to translate the individual elements of this page

appropriately and as generically as possible.

Figure 12-6. I18n basic version

Figure 12-7. I18n basic version de

Chapter 12 InternatIonalIzatIon

344

 Text Blocks in YAML Format
You need to define the individual text blocks for I18n.t. The corresponding directories

still have to be created first.

$ mkdir -p config/locales/models/product

$ mkdir -p config/locales/views/product

$

To make sure that the YAML files created are indeed read in automatically, you need

to insert the lines shown in Listing 12-37 in the file config/application.rb.

Listing 12-37. config/application.rb

[...]

The default locale is :en and all translations from config/locales/*.rb,yml

are auto loaded.

config.i18n.load_path += Dir[Rails.root.join('config', 'locales', 'models',

'*', '*.yml').to_s]

config.i18n.load_path += Dir[Rails.root.join('config', 'locales', 'views',

'*', '*.yml').to_s]

config.i18n.available_locales = [:en, :de]

[...]

 German

Please create the file config/locales/models/product/de.yml with the content shown

in Listing 12-38.

Listing 12-38. config/locales/models/product/de.yml

de:

 activerecord:

 models:

 product: 'Produkt'

 attributes:

 product:

 name: 'Name'

 description: 'Beschreibung'

 price: 'Preis'

Chapter 12 InternatIonalIzatIon

345

In the file config/locales/views/product/de.yml, you insert a few values for the

scaffold views, as shown in Listing 12-39.

Listing 12-39. config/locales/views/product/de.yml

de:

 views:

 show: Anzeigen

 edit: Editieren

 destroy: Löschen

 are_you_sure: Sind Sie sicher?

 back: Zurück

 edit: Editieren

 product:

 index:

 title: Liste aller Produkte

 new_product: Neues Produkt

 edit:

 title: Produkt editieren

 new:

 title: Neues Produkt

 flash_messages:

 product_was_successfully_created: 'Das Produkt wurde angelegt.'

 product_was_successfully_updated: 'Das Produkt wurde aktualisiert.'

 product_was_successfully_destroyed: 'Das Produkt wurde gelöscht.'

Finally, you can copy a ready-made default translation by Sven Fuchs from his

GitHub repository at https://github.com/svenfuchs/rails-i18n.

$ cd config/locales/

$ curl -O https://raw.githubusercontent.com/svenfuchs/rails-i18n/master/

rails/locale/de.yml

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 5027 100 5027 0 0 15756 0 --:--:-- --:--:-- --:--:-- 15758

$

Chapter 12 InternatIonalIzatIon

https://github.com/svenfuchs/rails-i18n

346

 If you know how Bundler works, you can also insert the line gem 'rails-i18n'
into the file Gemfile and then execute bundle install. this gives you all
language files from the repository.

The file config/locales/de.yml contains all the required formats and generic

phrases for German that you need for a normal Rails application (for example, days of

the week, currency symbols, etc.). Use your favorite editor to take a look at the file.

 English

As most things are already present in the system for English, you just need to insert a

few values for the scaffold views in the file config/locales/views/product/en.yml, as

shown in Listing 12-40.

Listing 12-40. config/locales/views/product/en.yml

en:

 views:

 show: Show

 edit: Edit

 destroy: Delete

 are_you_sure: Are you sure?

 back: Back

 edit: Edit

 product:

 index:

 title: List of all products

 new_product: New product

 edit:

 title: Edit Product

 new:

 title: New product

 flash_messages:

 product_was_successfully_created: 'Product was created.'

 product_was_successfully_updated: 'Product was updated.'

Chapter 12 InternatIonalIzatIon

347

 Equipping Views with I18n.t
Please edit the listed view files as specified.

 _form.html.erb

In the file app/views/products/_form.html.erb, you need to change the display of the

validation errors in the top section to I18n.t. The names of form errors are automatically

read in from activerecord.attributes.product, as shown in Listing 12-41.

Listing 12-41. app/views/products/_form.html.erb

<%= form_with(model: product, local: true) do |f| %>

 <% if product.errors.any? %>

 <div id="error_explanation">

 <h2><%= t 'activerecord.errors.template.header', model:

 Product.model_name.human, count: @product.errors.count %></h2>

 <% product.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= f.label :name %>

 <%= f.text_field :name %>

 </div>

 <div class="field">

 <%= f.label :description %>

 <%= f.text_field :description %>

 </div>

 <div class="field">

 <%= f.label :price %>

 <%= f.text_field :price %>

 </div>

Chapter 12 InternatIonalIzatIon

348

 <div class="actions">

 <%= f.submit %>

 </div>

<% end %>

 edit.html.erb

In the file app/views/products/edit.html.erb, you need to integrate the heading and

the links at the bottom of the page with I18n.t, as shown in Listing 12-42.

Listing 12-42. app/views/products/edit.html.erb

<h1><%= t 'views.product.edit.title' %></h1>

<%= render 'form', product: @product %>

<%= link_to I18n.t('views.show'), @product %> |

<%= link_to I18n.t('views.back'), products_path %>

 index.html.erb

In the file app/views/products/index.html.erb, you need to change practically every

line. In the table header I use human_attribute_name(), but you could also do it directly

with I18n.t. The price of the product is specified with the helper number_to_currency.

In a real application, you would have to specify a defined currency at this point as well,

as shown in Listing 12-43.

Listing 12-43. app/views/products/index.html.erb

<p id="notice"><%= notice %></p>

<h1><%= t 'views.product.index.title' %></h1>

<table>

 <thead>

 <tr>

 <th><%= Product.human_attribute_name(:name) %></th>

 <th><%= Product.human_attribute_name(:description) %></th>

 <th><%= Product.human_attribute_name(:price) %></th>

Chapter 12 InternatIonalIzatIon

349

 <th colspan="3"></th>

 </tr>

 </thead>

 <tbody>

 <% @products.each do |product| %>

 <tr>

 <td><%= product.name %></td>

 <td><%= product.description %></td>

 <td><%= product.price %></td>

 <td><%= link_to I18n.t('views.show'), product %></td>

 <td><%= link_to I18n.t('views.edit'), edit_product_path(product)

%></td>

 <td><%= link_to I18n.t('views.destroy'), product,

 method: :delete, data: { confirm: I18n.t('views.are_you_sure') }

%></td>

 </tr>

 <% end %>

 </tbody>

</table>

<%= link_to I18n.t('views.product.index.new_product'), new_product_path %>

 new.html.erb

In the app/views/products/new.html.erb file, you need to adapt the heading and the

link, as shown in Listing 12-44.

Listing 12-44. app/views/products/new.html.erb

<h1><%= t 'views.product.new.title' %></h1>

<%= render 'form', product: @product %>

<%= link_to I18n.t('views.back'), products_path %>

Chapter 12 InternatIonalIzatIon

350

 show.html.erb

In the app/views/products/show.html.erb file, you again use human_attribute_

name() for the attributes. Plus, the links need to be translated with I18n.t. As with the

index view, you again use number_to_currency() to show the price in formatted form, as

shown in Listing 12-45.

Listing 12-45. app/views/products/show.html.erb

<p id="notice"><%= notice %></p>

<p>

 <%= Product.human_attribute_name(:name) %>:

 <%= @product.name %>

</p>

<p>

 <%= Product.human_attribute_name(:description) %>:

 <%= @product.description %>

</p>

<p>

 <%= Product.human_attribute_name(:price) %>:

 <%= @product.price %>

</p>

<%= link_to I18n.t('views.edit'), edit_product_path(@product) %> |

<%= link_to I18n.t('views.back'), products_path %>

 Translating Flash Messages in the Controller
Finally, you need to translate the two flash messages in app/controllers/products_

controller.rb for creating (create) and updating (update) records, again via I18n.t, as

shown in Listing 12-46.

Chapter 12 InternatIonalIzatIon

351

Listing 12-46. app/controllers/products_controller.rb

class ProductsController < ApplicationController

 before_action :set_product, only: [:show, :edit, :update, :destroy]

 # GET /products

 # GET /products.json

 def index

 @products = Product.all

 end

 # GET /products/1

 # GET /products/1.json

 def show

 end

 # GET /products/new

 def new

 @product = Product.new

 end

 # GET /products/1/edit

 def edit

 end

 # POST /products

 # POST /products.json

 def create

 @product = Product.new(product_params)

 respond_to do |format|

 if @product.save

 format.html { redirect_to @product, notice:

 I18n.t('views.product.flash_messages.product_was_successfully_

created') }

 format.json { render :show, status: :created, location: @product }

 else

 format.html { render :new }

Chapter 12 InternatIonalIzatIon

352

 format.json { render json: @product.errors, status: :unprocessable_

entity }

 end

 end

 end

 # PATCH/PUT /products/1

 # PATCH/PUT /products/1.json

 def update

 respond_to do |format|

 if @product.update(product_params)

 format.html { redirect_to @product, notice:

 I18n.t('views.product.flash_messages.product_was_successfully_

updated') }

 format.json { render :show, status: :ok, location: @product }

 else

 format.html { render :edit }

 format.json { render json: @product.errors, status: :unprocessable_

entity }

 end

 end

 end

 # DELETE /products/1

 # DELETE /products/1.json

 def destroy

 @product.destroy

 respond_to do |format|

 format.html { redirect_to products_url, notice:

 I18n.t('views.product.flash_messages.product_was_successfully_

destroyed') }

 format.json { head :no_content }

 end

 end

Chapter 12 InternatIonalIzatIon

353

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_product

 @product = Product.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white

list through.

 def product_params

 params.require(:product).permit(:name, :description, :price)

 end

end

 The Result
Now you can use the scaffold products both in German and in English. You can switch

the language via the link at the top of the page.

 Further Information
You can find the best source of information on this topic in the Rails documentation at

http://guides.rubyonrails.org/i18n.html. This also shows how you can operate

other back ends for defining the translations.

Chapter 12 InternatIonalIzatIon

http://guides.rubyonrails.org/i18n.html

355
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_13

CHAPTER 13

Asset Pipeline
The asset pipeline offers Rails developers the opportunity to deliver CSS, JavaScript,

and image files to the browser more optimally. Depending on the type of file, this can be

through compression or a file name fingerprint. Different CSS files are combined into one

big file. The fingerprinting enables the browser and any proxy in between to optimally

cache the data so the browser can load these files more quickly on subsequent visits.

 When running your web server on HTTP/2, it might be a good idea to break
up this flow into smaller chunks to optimize HTTP caching. But that depends on the
specifics of your web application.

Within the asset pipeline, you can program CSS, Sass, JavaScript, and CoffeeScript

extensively and clearly to let them be delivered later as automatically compressed CSS

and JavaScript files.

As an example, you will use once more a web shop with a product scaffold, as shown

here:

$ rails new webshop

 [...]

$ cd webshop

$ rails generate scaffold product name 'price:decimal{7,2}'

 [...]

$ rails db:migrate

 [...]

356

In the directory app/assets, you will then find the following files:

app/assets/

├── config
│ └── manifest.js
├── images
├── javascripts
│ ├── application.js
│ ├── cable.js
│ ├── channels
│ └── products.coffee
└── stylesheets
 ├── application.css
 ├── products.scss
 └── scaffolds.scss

The files app/assets/javascripts/application.js and app/assets/stylesheets/

application.css are referred to as manifest files. They automatically include the other

files in the relevant directory.

 application.js
The file app/assets/javascripts/application.js has the content, as shown in

Listing 13-1.

Listing 13-1. app/assets/javascripts/application.js

// [...]

//

//= require rails-ujs

//= require activestorage

//= require turbolinks

//= require_tree .

This file and all subfiles (which are integrated via required_tree) are merged

into one file, and the asset pipeline optimizes it. The not yet optimized version can be

downloaded in the Development environment with this URL: http://localhost:3000/

assets/application.js.

CHaPTer 13 asseT PiPeline

357

 application.css
The file app/assets/stylesheets/application.css has the content shown in Listing 13-2.

Listing 13-2. app/assets/stylesheets/application.css

/*

 * [...]

 *

 *= require_tree .

 *= require_self

 */

With the command require_tree ., all files in this directory are automatically

integrated.

You can download the not yet optimized CSS at the URL http://localhost:3000/

assets/application.css.

 rails assets:precompile
When using the asset pipeline, you need to remember that you have to precompile the

assets before starting the Rails server in the Production environment. This happens via

the command rails assets:precompile with a prefixed RAILS_ENV=production value

for the Production environment.

$ RAILS_ENV=production bin/rails assets:precompile

Yarn executable was not detected in the system.

Download Yarn at https://yarnpkg.com/en/docs/install

I, [2018-01-27T17:56:51.650389 #8573] INFO -- : Writing /.../public/

assets/application- 9eca361cfc054d474ebb4c8c6b16465dd4cd42664fe474b8d9a52573

c1e2d2e3.js

I, [2018-01-27T17:56:51.656011 #8573] INFO -- : Writing /.../public/

assets/application- 9eca361cfc054d474ebb4c8c6b16465dd4cd42664fe474b8d9a52573

c1e2d2e3.js.gz

I, [2018-01-27T17:56:51.700670 #8573] INFO -- : Writing /.../public/

assets/application- 35729bfbaf9967f119234595ed222f7ab14859f304ab0acc5451afb3

87f637fa.css

CHaPTer 13 asseT PiPeline

358

I, [2018-01-27T17:56:51.700920 #8573] INFO -- : Writing /.../public/

assets/application- 35729bfbaf9967f119234595ed222f7ab14859f304ab0acc5451afb3

87f637fa.css.gz

If you forget to do this, you will find the following error message in the log:

ActionView::Template::Error (application.css isn't precompiled)

The files created by rails assets:precompile appear in the directory public/

assets.

public/assets/

├── application- 35729bfbaf9967f119234595ed222f7ab14859f304ab0acc5451afb38
7f637fa.css

├── application- 35729bfbaf9967f119234595ed222f7ab14859f304ab0acc5451afb387
f637fa.css.gz

├── application- 443bf66d6410ac6de6fd02a73fd8279e83ae0baee64d3832cc67a0909
e8329d9.css

├── application- 443bf66d6410ac6de6fd02a73fd8279e83ae0baee64d3832cc67a0909e
8329d9.css.gz

├── application- 9eca361cfc054d474ebb4c8c6b16465dd4cd42664fe474b8d9a52573c
1e2d2e3.js

├── application- 9eca361cfc054d474ebb4c8c6b16465dd4cd42664fe474b8d9a52573c1
e2d2e3.js.gz

├── application- b59f735b008e94c6f72a3b7c43cf31aea2ab324386b7a378482d17887
e683a61.js

└── application- b59f735b008e94c6f72a3b7c43cf31aea2ab324386b7a378482d17887e
683a61.js.gz

Go ahead and use your favorite editor to take a look at the created .css and .js files.

You will find minimized and optimized code. If the web server supports it, the zipped

.gz files are delivered directly, which speeds things up a bit more.

The difference in file size is enormous. The file application.js created in the

Development environment has a file size of 80 KB. The file js.gz created by rails

assets:precompile is only 20 KB. Users of cell phones in particular will be grateful for

the smaller file sizes.

CHaPTer 13 asseT PiPeline

359

The speed advantage incidentally lies not just in the file size but also in the fact that

only one file is downloaded, not several. The HTTP/1.1 overhead for loading multiple

files is time-consuming. Things are changing with HTTP/2, but that is beyond the scope

of this book.

 jQuery used to be an essential part of the Javascript and ruby on rails
world. since rails version 5.1, jQuery is no longer needed. Most people still use it,
but you don’t have to.

 The Fingerprint
The fingerprint in the file name consists of a hash sum generated from the content of the

relevant file. This fingerprint ensures optimal caching and prevents an old cache from

being used if any changes are made to the content. It’s a simple but effective method.

 Coding Links to an Asset
All files under the directory app/assets are delivered in normal form by the Rails

server. For example, you can go to the URL http://localhost:3000/assets/rails.

png to view the Rails logo saved under app/assets/images/rails.png and can go to

http://localhost:3000/assets/application.js to view the content of app/assets/

javascripts/application.js. The Rails image rails.png is delivered 1:1, and the file

application.js is first created by the asset pipeline.

But you should never enter these files as hardwired in a view. To make the most of

the asset pipeline, you must use the helpers described here.

 Coding a Link to an Image
You want to save all images in the directory app/assets/images/. The asset pipeline will

search for them there. To actually use them in your erb code, you can use the image_tag

helper. Assuming you have a file called app/assets/images/rails.png, you can re-

create an element with this code:

<%= image_tag "rails.png", alt: "Rails Logo" %>

CHaPTer 13 asseT PiPeline

360

In Development mode, the following HTML code results from this:

In Production mode, you get an HTML code that points to a precompiled file with a

fingerprint, as shown here:

 Coding a Link to a JavaScript File
You can use the helper javascript_include_tag to retrieve a JavaScript file compiled

by the asset pipeline. This is what it would look like in the view for the file app/assets/

javascripts/application.js:

<%= javascript_include_tag "application" %>

Normally you don’t have to care about this because the default app/views/layouts/

application.html.erb takes care of it.

 Coding a Link to a CSS File
A stylesheet compiled by the asset pipeline can be retrieved via the helper stylesheet_

link_tag. In the view, it would look like this for the file app/assets/stylesheets/

application.css:

<%= stylesheet_link_tag "application" %>

Normally you don’t have to care about this because the default app/views/layouts/

application.html.erb takes care of it.

 Defaults in application.html.erb
Incidentally, the file app/views/layouts/application.html.erb that the scaffold

generator creates by default already contains the coding links for these JavaScript and

stylesheet files, as shown in Listing 13-3.

CHaPTer 13 asseT PiPeline

361

Listing 13-3. app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

 <head>

 <title>Webshop</title>

 <%= csrf_meta_tags %>

 <%= stylesheet_link_tag 'application', media: 'all', 'data-

turbolinks- track': 'reload' %>

 <%= javascript_include_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <%= yield %>

 </body>

</html>

CHaPTer 13 asseT PiPeline

363
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_14

CHAPTER 14

Caching
With the caching of web applications, most people tend to wait to implement it until

they encounter performance problems. First the admin usually looks at the database

and adds an index here and there. If that does not help, the admin then takes a look

at the views and adds fragment caching. But this is not the best approach for working

with caches. The aim of this chapter is to help you understand how key-based cache

expiration works. You can then use this approach to plan new applications already on the

database structure level in such a way that you can cache optimally during development.

There are two main arguments for using caching.

• The application becomes faster for the user. A faster web page results

in happier users, which results in a better conversion rate.

• You need less hardware for the web server because you require less

CPU and RAM resources for processing the queries.

If these two arguments are irrelevant for you, then there’s no need to read this chapter.

I will cover three caching methods.

• HTTP caching: This is the sledgehammer among the caching

methods and the ultimate performance weapon. In particular, web

pages that are intended for mobile devices should try to make the

most of HTTP caching. If you use a combination of key-based cache

expiration and HTTP caching, you save a huge amount of processing

time on the server and also bandwidth.

• Page caching: This is the screwdriver among the caching methods.

You can get a lot of performance out of the system, but it is not as

good as HTTP caching.

• Fragment caching: This is the tweezers among the caching methods,

so to speak. But do not underestimate it!

364

 The aim is to optimally combine all three methods.

 The Example Application
You will use a simple phone book with a company model and an employees model.

Create the new Rails app, as shown here:

$ rails new phone_book

 [...]

$ cd phone_book

$ rails generate scaffold company name

 [...]

$ rails generate scaffold employee company:references \

 last_name first_name phone_number

 [...]

$ rails db:migrate

 [...]

 Models
Listing 14-1 and Listing 14-2 show the setup for the two models.

Listing 14-1. app/models/company.rb

class Company < ApplicationRecord

 validates :name,

 presence: true,

 uniqueness: true

 has_many :employees, dependent: :destroy

 def to_s

 name

 end

end

ChapTer 14 CaChing

365

Listing 14-2. app/models/employee.rb

class Employee < ApplicationRecord

 belongs_to :company, touch: true

 validates :first_name,

 presence: true

 validates :last_name,

 presence: true

 validates :company,

 presence: true

 def to_s

 "#{first_name} #{last_name}"

 end

end

 Views
Go ahead and change the two company views, shown in Listing 14-3 and Listing 14-4, to

list the number of employees in the index view and all the employees in the show view.

Listing 14-3. app/views/companies/index.html.erb

[...]

<table>

 <thead>

 <tr>

 <th>Name</th>

 <th>Number of employees</th>

 <th colspan="3"></th>

 </tr>

 </thead>

 <tbody>

 <% @companies.each do |company| %>

ChapTer 14 CaChing

366

 <tr>

 <td><%= company.name %></td>

 <td><%= company.employees.count %></td>

 [...]

 </tr>

 <% end %>

 </tbody>

</table>

[...]

Listing 14-4. app/views/companies/show.html.erb

<p id="notice"><%= notice %></p>

<p>

 Name:

 <%= @company.name %>

</p>

<% if @company.employees.any? %>

<h1>Employees</h1>

<table>

 <thead>

 <tr>

 <th>Last name</th>

 <th>First name</th>

 <th>Phone number</th>

 </tr>

 </thead>

 <tbody>

 <% @company.employees.each do |employee| %>

 <tr>

 <td><%= employee.last_name %></td>

 <td><%= employee.first_name %></td>

 <td><%= employee.phone_number %></td>

 </tr>

 <% end %>

ChapTer 14 CaChing

367

 </tbody>

</table>

<% end %>

<%= link_to 'Edit', edit_company_path(@company) %> |

<%= link_to 'Back', companies_path %>

 Example Data
To easily populate the database, you can use the Faker gem (see http://faker.

rubyforge.org/). With Faker, you can generate random names and phone numbers.

Please add the line shown in Listing 14-5 in the Gemfile.

Listing 14-5. Gemfile

[...]

gem 'faker'

[...]

Then start bundle, as shown here:

$ bundle

With db/seeds.rb, you can create 30 companies with a random number of

employees in each case, as shown in Listing 14-6.

Listing 14-6. db/seeds.rb

30.times do

 company = Company.new(:name => Faker::Company.name)

 if company.save

 SecureRandom.random_number(100).times do

 company.employees.create(

 first_name: Faker::Name.first_name,

 last_name: Faker::Name.last_name,

 phone_number: Faker::PhoneNumber.phone_number

)

 end

 end

end

ChapTer 14 CaChing

http://faker.rubyforge.org/
http://faker.rubyforge.org/

368

You can populate it via rails db:seed.

$ rails db:seed

You can start the application with rails server and retrieve the example data with

a web browser by going to the URL http://localhost:3000/companies or http://

localhost:3000/companies/1.

 Normal Speed of the Pages to Optimize
In this chapter, you will optimize the example web pages. Start the Rails application in

development mode with rails server. (The relevant time values, of course, depend on

the hardware you are using.)

$ rails server

To access the web pages, use the command-line tool curl (http://curl.haxx.se/).

Of course, you can also access the web pages with other web browsers. You can look at

the time shown in the Rails log for creating the page. In reality, you need to add the time

it takes for the page to be delivered to the web browser.

 List of All Companies (Index View)

At the URL http://localhost:3000/companies, the user can see a list of all the saved

companies with the relevant number of employees.

Generating the page takes 89ms on my machine.

Completed 200 OK in 89ms (Views: 79.0ms | ActiveRecord: 9.6ms)

 Detailed View of a Single Company (Show View)

At the URL http://localhost:3000/companies/1, the user can see the details of the first

company with all the employees.

Generating the page takes 51ms on my machine.

Completed 200 OK in 51ms (Views: 48.9ms | ActiveRecord: 0.9ms)

ChapTer 14 CaChing

http://curl.haxx.se/

369

 HTTP Caching
HTTP caching attempts to reuse already loaded web pages or files. For example, if you

visit a web page such as www.nytimes.com or www.wired.com several times a day to read

the latest news, then certain elements of that page (for example, the logo at the top of the

page) will not be loaded again from the server on your second visit. Your browser already

has these files in the local cache, which saves the loading time and bandwidth.

Within the Rails framework, your aim is to answer the question “Has a page

changed?” in the controller. Normally, most of the time is spent on rendering the page in

the view. I’d like to repeat that: most of the time is spent on rendering the page in the view!

 Last-Modified
The web browser knows when it has downloaded a resource (e.g., a web page) and

then placed it into its cache. On a second request, it can pass this information to the

web server in an If-Modified-Since: header. The web server can then compare this

information to the corresponding file and either deliver a newer version or return an

HTTP 304 Not Modified code as response. In the case of a 304, the web browser delivers

the locally cached version. Now you are going to say, “That’s all very well for images, but

it won’t help me at all for dynamically generated web pages such as the index view of the

companies.” However, you are underestimating the power of Rails.

 please modify the times used in the examples in accordance with your own
circumstances.

Go ahead and edit the show method in the controller file app/controllers/

companies_controller.rb, as shown in Listing 14-7.

Listing 14-7. app/controllers/companies_controller.rb

GET /companies/1

GET /companies/1.json

def show

 fresh_when last_modified: @company.updated_at

end

ChapTer 14 CaChing

http://www.nytimes.com/
http://www.wired.com/

370

After restarting the Rails application, take a look at the HTTP header of http://

localhost:3000/companies/1, as shown here:

$ curl -I http://localhost:3000/companies/1

HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block

X-Content-Type-Options: nosniff

Last-Modified: Sat, 27 Jan 2018 18:38:05 GMT

[...]

The Last-Modified entry in the HTTP header was generated by fresh_when in the

controller. If you later go to the same web page and specify this time as well, then you do

not get the web page back; you get a 304 Not Modified message, as shown here:

$ curl -I http://localhost:3000/companies/1 --header 'If-Modified-Since:

Sat, 27 Jan 2018 18:38:05 GMT'

HTTP/1.1 304 Not Modified

 [...]

In the Rails log, you will find this:

Started HEAD "/companies/1" for 127.0.0.1 at 2018-01-27 18:24:21 +0100

Processing by CompaniesController#show as */*

 Parameters: {"id"=>"1"}

 Company Load (0.1ms) SELECT "companies".* FROM "companies" WHERE

"companies"."id" = ? LIMIT ? [["id", 1], ["LIMIT", 1]]

Completed 304 Not Modified in 2ms (ActiveRecord: 0.1ms)

It took Rails 2ms on my machine to answer this request, compared to the 51ms of the

standard variation. This is much faster! So, you have used fewer resources on the server

and saved a massive amount of bandwidth. The user will be able to see the page much

more quickly.

 etag
Sometimes the update_at field of a particular object is not meaningful on its own. For

example, if you have a web page where users can log in and this page then generates web

ChapTer 14 CaChing

371

page contents based on a role model, it can happen that user A as the admin is able to

see an Edit link that is not displayed to user B as a normal user. In such a scenario, the

Last-Modified header explained earlier does not help. Actually, it would do harm.

In these cases, you can use the etag header. The etag is generated by the web server

and delivered when the web page is first visited. If the user visits the same URL again, the

browser can then check whether the corresponding web page has changed by sending

an If-None-Match: query to the web server.

Please edit the index and show methods in the controller file app/controllers/

companies_controller.rb, as shown in Listing 14-8.

Listing 14-8. app/controllers/companies_controller.rb

GET /companies

GET /companies.json

def index

 @companies = Company.all

 fresh_when etag: @companies

end

GET /companies/1

GET /companies/1.json

def show

 fresh_when etag: @company

end

A special Rails feature comes into play for the etag: Rails automatically sets a new

CSRF token for each new visitor of the web site. This prevents cross-site request forgery

attacks (see http://wikipedia.org/wiki/Cross_site_request_forgery). But it also

means that each new user of a web page gets a new etag for the same page. To ensure

that the same users also get identical CSRF tokens, these are stored in a cookie by the

web browser and consequently sent back to the web server every time the web page is

visited. You have to tell curl that you want to save all cookies in a file and transmit these

cookies later if a request is received.

For saving, you use the -c cookies.txt parameter.

$ curl -I http://localhost:3000/companies -c cookies.txt

HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN

ChapTer 14 CaChing

http://wikipedia.org/wiki/Cross_site_request_forgery

372

X-XSS-Protection: 1; mode=block

X-Content-Type-Options: nosniff

ETag: W/"53830a75ef520df8ad8e1894cf1e5003"

 [...]

With the parameter -b cookies.txt, curl sends these cookies to the web server

when a request arrives. Now you get the same etag for two subsequent requests.

$ curl -I http://localhost:3000/companies -b cookies.txt

HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block

X-Content-Type-Options: nosniff

ETag: W/"53830a75ef520df8ad8e1894cf1e5003"

[...]

$ curl -I http://localhost:3000/companies -b cookies.txt

HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN

X-Xss-Protection: 1; mode=block

X-Content-Type-Options: nosniff

ETag: W/"53830a75ef520df8ad8e1894cf1e5003"

[...]

You now use this etag to find out in the request with If-None-Match if the version

you have cached is still up-to-date.

$ curl -I http://localhost:3000/companies -b cookies.txt --header 'If-None-

Match: W/"53830a75ef520df8ad8e1894cf1e5003"'

HTTP/1.1 304 Not Modified

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block

X-Content-Type-Options: nosniff

ETag: W/"53830a75ef520df8ad8e1894cf1e5003"

[...]

You get a 304 Not Modified in response. Let’s look at the Rails log.

Started HEAD "/companies" for 127.0.0.1 at 2018-01-27 18:36:25 +0100

ChapTer 14 CaChing

373

Processing by CompaniesController#index as */*

 (0.2ms) SELECT COUNT(*) AS "size", MAX("companies"."updated_at") AS

timestamp FROM "companies"

Completed 304 Not Modified in 24ms (ActiveRecord: 0.2ms)

Rails took only 24ms on my machine to process the request. Plus, you have saved

bandwidth again. The user will be happy with the speedy web application.

 Find more generic information about etag headers at
https://en.wikipedia.org/wiki/HTTP_ETag.

 current_user and Other Potential Parameters

As the basis for generating an etag, you can pass not just an object but also an array

of objects. This way, you can solve the problem with the logged-in user who might get

different content than a non-logged-in user. Let’s assume that a logged-in user is output

with the method current_user.

You have to add etag { current_user.try :id } in app/controllers/

application_controller.rb to make sure that all etags in the application include the

current_user.id value, which is nil if nobody is logged in, as shown in Listing 14-9.

Listing 14-9. app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

 etag { current_user.try :id }

end

You can chain other objects in this array too and use this approach to define when a

page has not changed.

 The Magic of touch
What happens if an employee is edited or deleted? Then the show view and potentially

the index view would have to change as well. That is the reason for the following line in

the employee model:

belongs_to :company, touch: true

ChapTer 14 CaChing

https://en.wikipedia.org/wiki/HTTP_ETag

374

Every time an object of the class Employee is saved in edited form and if touch: true

is used, ActiveRecord updates the superordinate Company element in the database. The

updated_at field is set to the current time. In other words, it is “touched.”

This approach ensures that the correct content is delivered.

 stale?
Up to now, I was assuming that only HTML pages are being delivered. So, I showed how

to use fresh_when and then do without the respond_to do |format| block. But HTTP

caching is not limited to HTML pages. What if you want to render JSON, for example, as

well and want to deliver it via HTTP caching? You need to use the method stale?. Using

stale? resembles using the method fresh_when. Here’s an example:

def show

 if stale? @company

 respond_to do |format|

 format.html

 format.json { render json: @company }

 end

 end

end

 Using Proxies (public)
I have also been assuming you were using a cache on the web browser. But on the

Internet, there are many proxies that are often closer to the user and can therefore be

useful for caching in the case of nonpersonalized pages. If the example is a publicly

accessible phone book, then you can activate the free services of the proxies with the

parameter public: true in fresh_when or with stale?.

Here’s an example:

GET /companies/1

GET /companies/1.json

def show

 fresh_when @company, public: true

end

ChapTer 14 CaChing

375

You can go to the web page and get the output, as shown here:

$ curl -I http://localhost:3000/companies/1

HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block

X-Content-Type-Options: nosniff

ETag: W/"f37a06dbe0ee1b4a2aee85c1c326b737"

Last-Modified: Sat, 27 Jan 2018 17:16:53 GMT

Content-Type: text/html; charset=utf-8

Cache-Control: public

[...]

The header Cache-Control: public tells all proxies that they can also cache this

web page.

 Using proxies always has to be done with great caution. On the one hand,
they are brilliantly suited for delivering your own web page quickly to more users,
but on the other hand, you have to be absolutely sure that no personalized pages
are cached on public proxies. For example, CSrF tags and flash messages should
never end up in a public proxy. For CSrF tags, it is a good idea to make the output
of csrf_meta_tag in the default app/views/layouts/application.html.
erb layout dependent on the question of whether the page may be cached publicly,
as shown here:

<%= csrf_meta_tag unless response.cache_control[:public] %>

 Cache-Control with Time Limit
When using etag and Last-Modified, you can assume that the web browser definitely

checks once more with the web server if the cached version of a web page is still current.

This is a very safe approach.

ChapTer 14 CaChing

376

But you can take the optimization one step further by predicting the future: if you

am already sure when delivering the web page that this web page is not going to change

in the next two minutes, hours, or days, then you can tell the web browser this directly.

It then does not need to check back again within this specified period of time. This

overhead savings has advantages, especially with mobile web browsers with relatively

high latency. Plus, you save server load on the web server.

In the output of the HTTP header, you may already have noticed the corresponding

line in the etag and Last-Modified examples, shown here:

Cache-Control: max-age=0, private, must-revalidate

The item must-revalidate tells the web browser that it should definitely check

back with the web server to see whether a web page has changed in the meantime. The

second parameter, private, means that only the web browser is allowed to cache this

page. Any proxies on the way are not permitted to cache this page.

If you decide for the phone book that the web page is going to stay unchanged for

at least two minutes, then you can expand the code example by adding the method

expires_in. The controller app/controllers/companies.rb will then contain the

following code for the method show:

GET /companies/1

GET /companies/1.json

def show

 expires_in 2.minutes

 fresh_when @company, public: true

end

Now you get a different cache control information in response to a request.

$ curl -I http://localhost:3000/companies/1

HTTP/1.1 200 OK

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block

X-Content-Type-Options: nosniff

Date: Sat, 27 Jan 2018 17:58:56 GMT

ETag: W/"f37a06dbe0ee1b4a2aee85c1c326b737"

Last-Modified: Sat, 27 Jan 2018 17:16:53 GMT

ChapTer 14 CaChing

377

Content-Type: text/html; charset=utf-8

Cache-Control: max-age=120, public

[...]

The two minutes are specified in seconds (max-age=120), and you no longer need

must-revalidate. So, in the next 120 seconds, the web browser does not need to check

back with the web server to see whether the content of this page has changed.

 This mechanism is also used by the asset pipeline. assets created there in
the production environment can be identified clearly by the checksum in the file
name and can be cached for a long time both in the web browser and in public
proxies. That’s why you have the following section in the nginx configuration file:

location ^~ /assets/ {

 gzip_static on;

 expires max;

 add_header Cache-Control public;

}

 Fragment Caching
With fragment caching, you can cache individual parts of a view. You can safely use it in

combination with HTTP caching and page caching. The advantages, once again, are a

reduction of server load and faster web page generation, which means increased usability.

Please create a new example application (see “The Example Application”).

 Enabling Fragment Caching in Development Mode
Fragment caching is by default disabled in the Development environment. You can

activate it with the command rails dev:cache, which touches the file tmp/caching-

dev.txt.

$ rails dev:cache

Development mode is now being cached.

ChapTer 14 CaChing

378

To deactivate caching, run the same command again (this will delete the file

tmp/caching-dev.txt).

$ rails dev:cache

Development mode is no longer being cached.

 in production mode, fragment caching is enabled by default.

 Caching the Table of the Index View
On the page http://localhost:3000/companies, a computationally intensive table with

all the companies is rendered. You can cache this table as a whole. To do so, you need to

enclose the table in a <% cache('name_of_cache') do %> ... <% end %> block.

<% cache('name_of_cache') do %>

[...]

<% end %>

Please edit the file app/views/companies/index.html.erb as shown in Listing 14- 10.

Listing 14-10. app/views/companies/index.html.erb

<h1>Companies</h1>

<% cache('table_of_all_companies') do %>

<table>

 <thead>

 <tr>

 <th>Name</th>

 <th>Number of employees</th>

 <th colspan="3"></th>

 </tr>

 </thead>

 <tbody>

 <% @companies.each do |company| %>

 <tr>

ChapTer 14 CaChing

379

 <td><%= company.name %></td>

 <td><%= company.employees.count %></td>

 <td><%= link_to 'Show', company %></td>

 <td><%= link_to 'Edit', edit_company_path(company) %></td>

 <td><%= link_to 'Destroy', company, method: :delete, data: { confirm:

 'Are you sure?' } %></td>

 </tr>

 <% end %>

 </tbody>

</table>

<% end %>

<%= link_to 'New Company', new_company_path %>

Then you can start the Rails server with rails server and go to the URL http://

localhost:3000/companies.

The first time, a page that has a fragment cache is a little bit slower because the cache

has to be written. The second time it is a lot of faster.

 Deleting the Fragment Cache
With the method expire_fragment, you can clear specific fragment caches. Basically,

you can build this idea into the model in the same way as shown in the section “Deleting

Page Caches Automatically.”

The model file app/models/company.rb will look like Listing 14-11.

Listing 14-11. app/models/company.rb

class Company < ActiveRecord::Base

 validates :name,

 presence: true,

 uniqueness: true

 has_many :employees, dependent: :destroy

 after_create :expire_cache

 after_update :expire_cache

 before_destroy :expire_cache

ChapTer 14 CaChing

380

 def to_s

 name

 end

 def expire_cache

 ActionController::Base.new.expire_fragment('table_of_all_companies')

 end

end

Because the number of employees also has an effect on this table, you also have to

expand the file app/models/employees.rb accordingly, as shown in Listing 14-12.

Listing 14-12. app/models/employees.rb

class Employee < ActiveRecord::Base

 belongs_to :company, touch: true

 validates :first_name,

 presence: true

 validates :last_name,

 presence: true

 validates :company,

 presence: true

 after_create :expire_cache

 after_update :expire_cache

 before_destroy :expire_cache

 def to_s

 "#{first_name} #{last_name}"

 end

 def expire_cache

 ActionController::Base.new.expire_fragment('table_of_all_companies')

 end

end

ChapTer 14 CaChing

381

Deleting specific fragment caches often involves a lot of effort in terms of

programming. First, you often miss things; second, in big projects it’s not easy to keep

track of all the different cache names. Often it is easier to automatically create names via

the method cache_key. These then expire automatically in the cache.

 Auto-expiring Caches
Managing fragment caching is rather complex with the naming convention used in the

section “Caching the Table of the Index View.” On the one hand, you can be sure that the

cache does not have any superfluous ballast if you have programmed neatly, but on the

other, it does not really matter. A cache is structured in such a way that it deletes old and

no longer required elements on its own. If you use a mechanism that gives a fragment

cache a unique name, as in the asset pipeline, then you do not need to go to the trouble

of deleting fragment caches.

Rails has you covered. And it is pretty easy to do.

Let’s edit the index view in the file app/views/companies/index.html.erb, as

shown in Listing 14-13.

Listing 14-13. app/views/companies/index.html.erb

<h1>Companies</h1>

<% cache(@companies) do %>

<table>

 <thead>

 <tr>

 <th>Name</th>

 <th>Number of employees</th>

 <th colspan="3"></th>

 </tr>

 </thead>

 <tbody>

 <% @companies.each do |company| %>

 <tr>

 <td><%= company.name %></td>

 <td><%= company.employees.count %></td>

ChapTer 14 CaChing

382

 <td><%= link_to 'Show', company %></td>

 <td><%= link_to 'Edit', edit_company_path(company) %></td>

 <td><%= link_to 'Destroy', company, method: :delete, data: { confirm:

 'Are you sure?' } %></td>

 </tr>

 <% end %>

 </tbody>

</table>

<% end %>

<%= link_to 'New Company', new_company_path %>

You ask Rails to generate a cache key for @companies and use it. If you want to see

the name of that cache key in your log, you have to add config.action_controller.

enable_fragment_cache_logging = true in the file config/environments/

development.rb.

 There is no general answer to the question of how much detail you should
use fragment caching. Do some experimenting with it and then look in the log to
see how long things take.

 Russian Doll Caching
In the previous example, you created one fragment cache for the whole table of

companies. If one company within that table changes, the whole table has to be re-

rendered. Depending on the kind of data, that might take a lot of time.

The idea of Russian doll caching is that you cache not only the whole table but each

row of the table too. So, when one row changes, just this row has to be rendered; all other

rows can be fetched from the cache. When done well, this can save a lot of resources.

Please take a look at the updated example, as shown in Listing 14-14.

ChapTer 14 CaChing

383

Listing 14-14. app/views/companies/index.html.erb

<h1>Companies</h1>

<% cache(@companies) do %>

<table>

 <thead>

 <tr>

 <th>Name</th>

 <th>Number of employees</th>

 <th colspan="3"></th>

 </tr>

 </thead>

 <tbody>

 <% @companies.each do |company| %>

 <% cache(company) do %>

 <tr>

 <td><%= company.name %></td>

 <td><%= company.employees.count %></td>

 <td><%= link_to 'Show', company %></td>

 <td><%= link_to 'Edit', edit_company_path(company) %></td>

 <td><%= link_to 'Destroy', company, method: :delete, data: {

confirm: 'Are you sure?’ } %></td>

 </tr>

 <% end %>

 <% end %>

 </tbody>

</table>

<% end %>

<%= link_to 'New Company', new_company_path %>

ChapTer 14 CaChing

384

 Change the Code in the View Results in an Expired Cache

Rails tracks an MD5 sum of the view you use. So if you change the file (e.g., app/views/

companies/index.html.erb), the MD5 changes, and all the old caches will expire.

 Cache Store
The cache store manages the stored fragment caches. If not configured otherwise, this

is the Rails MemoryStore. This cache store is good for developing but less suitable for a

production system because it acts independently for each Ruby on Rails process. So, if

you have several Ruby on Rails processes running in parallel in the production system,

each process holds its own MemoryStore.

 MemCacheStore

Most production systems use memcached (http://memcached.org/) as a cache store. To

enable memcached as a cache store in your production system, you need to add the line

shown in Listing 14-15 in the file config/environments/production.rb.

Listing 14-15. config/environments/production.rb

config.cache_store = :mem_cache_store

The combination of appropriately used auto-expiring caches and memcached is an

excellent recipe for a successful web page.

 Other Cache Stores

In the official Rails documentation you will find a list of other cache stores; see http://

guides.rubyonrails.org/caching_with_rails.html#cache-stores.

 Page Caching
Page caching was removed from the core of Rails 4.0, but it is still available as a gem, and

it is powerful.

ChapTer 14 CaChing

http://memcached.org/
http://guides.rubyonrails.org/caching_with_rails.html#cache-stores
http://guides.rubyonrails.org/caching_with_rails.html#cache-stores

385

 To do page caching, you need a bit of knowledge to configure your web
server (e.g., nginx or apache). page caching is not for the faint-hearted.

With page caching, it’s all about placing a complete HTML page (in other words,

the render result of a view) into a subdirectory of the public directory and having it

delivered directly from there by the web server (for example, Nginx) whenever the web

page is visited next. Additionally, you can also save a compressed .gz version of the

HTML page there. A production web server will automatically deliver files under public

itself and can also be configured so that any .gz files present are delivered directly.

In complex views, that may take 500ms or even more for rendering; the amount of

time you save is of course considerable. As a web page operator, you once more save

valuable server resources and can service more visitors with the same hardware. The

web page user profits from a faster delivery of the web page.

 When programming your rails application, please ensure that you also
update this page or delete it! You will find a description of how to do this in the
section “Deleting the page Caches automatically.” Otherwise, you will end up with
an outdated cache later.

please also ensure that page caching rejects all UrL parameters by default. For
example, if you try to go to http://localhost:3000/companies?search=abc,
this automatically becomes http://localhost:3000/companies. But that can
easily be fixed with different route logic.

Please install a fresh example application (see the section “The Example

Application”) and add the gem with the following line in Gemfile:

gem 'actionpack-page_caching'

Now install it with the command bundle install.

$ bundle install

[...]

Lastly, you have to tell Rails where to store the cache files. Please add the line shown

in Listing 14-16 in your config/application.rb file.

ChapTer 14 CaChing

386

Listing 14-16. config/application.rb

config.action_controller.page_cache_directory =

"#{Rails.root.to_s}/public/deploy"

 Activating Page Caching in Development Mode
First you need to go to the file config/environments/development.rb and set the item

config.action_controller.perform_caching to true, as shown in Listing 14-17.

Listing 14-17. config/environments/development.rb

config.action_controller.perform_caching = true

Otherwise, you cannot try page caching in development mode. In production mode,

page caching is enabled by default.

 Configure Your Web Server
Now you have to tell your web server (e.g., Nginx or Apache) that it should check the

/public/deploy directory first before hitting the Rails application. You have to configure

it so that it will deliver a .gz file if one is available.

There is no one perfect way of doing it. You have to find the best way of doing it in

your environment on your own.

 as a quick and dirty hack for development, you can set page_cache_

directory to public. Then your development system will deliver the cached page.

config.action_controller.page_cache_directory = "#{Rails.root.to_s}/public"

 Caching the Company Index and Show View
Enabling page caching happens in the controller. If you want to cache the show view for

Company, you need to go to the controller app/controllers/companies_controller.rb

and enter the command caches_page :show at the top, as shown in Listing 14-18.

ChapTer 14 CaChing

387

Listing 14-18. app/controllers/companies_controller.rb

class CompaniesController < ApplicationController

 caches_page :show

[...]

Before starting the application, the public directory looks like this:

public/

├── 404.html
├── 422.html
├── 500.html
├── apple-touch-icon-precomposed.png
├── apple-touch-icon.png
├── favicon.ico
└── robots.txt

After starting the application with rails server and going to the URLs http://

localhost:3000/companies and http://localhost:3000/companies/1 via a web

browser, it looks like this:

public

├── 404.html
├── 422.html
├── 500.html
├── apple-touch-icon-precomposed.png
├── apple-touch-icon.png
├── deploy
│ └── companies
│ └── 1.html
├── favicon.ico
└── robots.txt

The file public/deploy/companies/1.html has been created by page caching.

From now on, the web server will only deliver the cached versions when these pages

are accessed.

ChapTer 14 CaChing

388

 gz Versions

If you use page caching, you should also cache directly zipped .gz files. You can do

this via the option :gzip ⇒ true or use a specific compression parameter as a symbol

instead of true (for example, :best_compression).

The controller app/controllers/companies_controller.rb will look like

Listing 14-19 at the beginning.

Listing 14-19. app/controllers/companies_controller.rb

class CompaniesController < ApplicationController

 caches_page :show, gzip: true

[...]

This automatically saves a compressed version and an uncompressed version of

each page cache.

public

├── 404.html
├── 422.html
├── 500.html
├── apple-touch-icon-precomposed.png
├── apple-touch-icon.png
├── deploy
│ └── companies
│ ├── 1.html
│ └── 1.html.gz
├── favicon.ico
└── robots.txt

 The File Extension .html

Rails saves the page accessed at http://localhost:3000/companies under the file

name companies.html. So, the upstream web server will find and deliver this file if

you go to http://localhost:3000/companies.html, but not if you try to go to

http://localhost:3000/companies because the extension .html at the end of the URL

is missing.

ChapTer 14 CaChing

389

If you are using the Nginx server, the easiest way to do this is to adapt the try_files

instruction in the Nginx configuration file as follows:

try_files $uri/index.html $uri $uri.html @unicorn;

Nginx then checks if a file with the extension .html of the currently accessed URL exists.

 Deleting Page Caches Automatically
As soon as the data used in the view changes, the saved cache files have to be deleted.

Otherwise, the cache would no longer be up-to-date.

According to the official Rails documentation, the solution for this problem is

the class ActionController::Caching::Sweeper. But this approach, described at

http://guides.rubyonrails.org/caching_with_rails.html#sweepers, has a big

disadvantage: it is limited to actions that happen within the controller. So, if an action

is triggered via URL by the web browser, the corresponding cache is also changed or

deleted. But if an object is deleted in the console, for example, the sweeper would not

realize this. For that reason, I will show you an approach that does not use a sweeper but

works directly in the model with ActiveRecord callbacks.

In the phone book application, you always need to delete the cache for http://

localhost:3000/companies and http://localhost:3000/companies/company_id

when editing a company. When editing an employee, you also have to delete the

corresponding cache for the relevant employee.

 Models

You still need to fix the models so that the corresponding caches are deleted

automatically as soon as an object is created, edited, or deleted, as shown in Listing 14- 20

and Listing 14-21.

Listing 14-20. app/models/company.rb

class Company < ActiveRecord::Base

 validates :name,

 presence: true,

 uniqueness: true

 has_many :employees, dependent: :destroy

ChapTer 14 CaChing

http://guides.rubyonrails.org/caching_with_rails.html#sweepers

390

 after_create :expire_cache

 after_update :expire_cache

 before_destroy :expire_cache

 def to_s

 name

 end

 def expire_cache

 ActionController::Base.expire_page(Rails.application.routes.url_

helpers.company_path(self))

 ActionController::Base.expire_page(Rails.application.routes.url_

helpers.companies_path)

 end

end

Listing 14-21. app/models/employee.rb

class Employee < ActiveRecord::Base

 belongs_to :company, touch: true

 validates :first_name,

 presence: true

 validates :last_name,

 presence: true

 validates :company,

 presence: true

 after_create :expire_cache

 after_update :expire_cache

 before_destroy :expire_cache

 def to_s

 "#{first_name} #{last_name}"

 end

ChapTer 14 CaChing

391

 def expire_cache

 ActionController::Base.expire_page(Rails.application.routes.url_

helpers.employee_path(self))

 ActionController::Base.expire_page(Rails.application.routes.url_

helpers.employees_path)

 self.company.expire_cache

 end

end

 Preheating
Now that you have read your way through this chapter, here is a final tip: preheat your

cache!

For example, if you have a web application in a company and you know that at 9 a.m.

all employees are going to log in and then access this web application, then it’s a good

idea to let your web server go through all those views a few hours in advance with a cron

job. At night, your server is probably bored anyway.

Check out the behavior patterns of your users. With public web pages, this can be

done, for example, via Google Analytics (www.google.com/analytics/). You will find

that at certain times of the day, there is a lot more traffic going in. If you have a quiet

phase prior to this, you can use it to warm up your cache.

The purpose of preheating is to save server resources and achieve better quality for

the user because the web page is displayed more quickly.

 Further Information
The best source of information on this topic is in the Rails documentation at http://

guides.rubyonrails.org/caching_with_rails.html. There you can find additional

information (e.g., low-level caching).

ChapTer 14 CaChing

http://www.google.com/analytics/
http://guides.rubyonrails.org/caching_with_rails.html
http://guides.rubyonrails.org/caching_with_rails.html

393
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_15

CHAPTER 15

Action Cable
Most modern web pages are not just static. They often get updates from the server

without interaction from the user. For example, your Twitter or Gmail browser client will

display new tweets or e-mails without you reloading the page. The server pushes the

information via WebSockets (https://en.wikipedia.org/wiki/WebSocket), and Action

Cable provides the tools you need to use these mechanisms without diving deep into the

technical aspects of WebSockets.

The use of Action Cable always includes JavaScript, and this book is about Ruby and

Ruby on Rails. So, I will only show you a minimal Hello World example of how Action

Cable works to give you an idea of how to proceed.

 Hello World Action Cable Example
In the first example, you will push content from the Rails console into a browser that

shows the page#index view.

 The Rails Application
Please create the following Rails application:

$ rails new hello-world-action-cable

 [...]

$ cd hello-world-action-cable

$ rails db:migrate

$ rails generate controller page index

 [...]

Add a root route so that you can access the page at http://localhost:3000, as

shown in Listing 15-1.

https://en.wikipedia.org/wiki/WebSocket

394

Listing 15-1. config/routes.rb

Rails.application.routes.draw do

 get 'page/index'

 root 'page#index'

end

Listing 15-2 shows the content of the view.

Listing 15-2. app/views/page/index.html.erb

<h1>Action Cable Example</h1>

<div id="messages"></div>

 Setting Up jQuery
You will now append HTML to <div id="messages"></div> in the DOM. To do that, you

will use jQuery, which is not installed by default in Rails anymore. There are two ways of

installing jQuery. The old way was to use the command gem 'jquery-rails' followed

by bundle. This still works, but Rails 5.2 has Yarn built-in, which is the new way. If you

haven’t installed Yarn yet, take a look at https://yarnpkg.com/en/docs/install.

If you are using macOS and Homebrew, you can install Yarn via brew install yarn,

as shown here:

brew install yarn

Within Rails 5.2, you can use Yarn now to install jQuery, as shown here:

Chapter 15 aCtion Cable

https://yarnpkg.com/en/docs/install

395

To load jQuery, you have to add it in the app/assets/javascripts/application.js

file, as shown in Listing 15-3.

Listing 15-3. app/assets/javascripts/application.js

//= require jquery

//= require rails-ujs

//= require activestorage

//= require turbolinks

//= require_tree .

 Creating a Channel
Rails provides a handy generator to create a new WebSockets channel that you need

in order to push information to the client. For this example, you will call the channel

WebNotifications, as shown here:

$ rails generate channel WebNotifications

Running via Spring preloader in process 13267

 create app/channels/web_notifications_channel.rb

 identical app/assets/javascripts/cable.js

 create app/assets/javascripts/channels/web_notifications.coffee

Whenever somebody requests the page#index view, you want the user to

automatically subscribe to the WebNotificationsChannel channel. You do this by

adding the piece of CoffeeScript that’s shown in Listing 15-4.

Listing 15-4. app/assets/javascripts/page.coffee

App.room = App.cable.subscriptions.create "WebNotificationsChannel",

 received: (data) ->

 $('#messages').append data['message']

Lastly, you have to add the code shown in Listing 15-5 to the channel.

Listing 15-5. app/channels/web_notifications_channel.rb

class WebNotificationsChannel < ApplicationCable::Channel

 def subscribed

 stream_from "web_notifications_channel"

Chapter 15 aCtion Cable

396

 end

 def unsubscribed

 end

end

You will start a rails server command and a rails console command in separate

terminals. You need to use the Redis gem to make this work. This is not the default in the

development setup.

To activate the Redis gem, include the line shown in Listing 15-6 in the Gemfile.

Listing 15-6. Gemfile

gem 'redis', '~> 4.0'

After that change, you have to run bundle once more.

$ bundle

Obviously, you need a running Redis server. If you are running macOS with

Homebrew, you can install Redis with brew install redis and start it with brew

services start redis. Don’t forget to stop it with brew services stop redis after

using it.

Further, you have to configure the use of Redis, as shown in Listing 15-7.

Listing 15-7. config/cable.yml

redis: &redis

 adapter: redis

 url: redis://localhost:6379/1

production: *redis

development: *redis

test: *redis

To make things a little bit more complicated, you have to configure the Content-

Security- Policy in config/initializers/content_security_policy.rb to allow the

use of Action Cable in the development environment by adding p.connect_src :self,

:https, 'ws://localhost:3000', as shown in Listing 15-8.

Chapter 15 aCtion Cable

397

Listing 15-8. config/initializers/content_security_policy.rb

Rails.application.config.content_security_policy do |p|

 p.default_src :self, :https

 p.font_src :self, :https, :data

 p.img_src :self, :https, :data

 p.object_src :none

 p.script_src :self, :https

 p.style_src :self, :https, :unsafe_inline

 p.connect_src :self, :https, 'ws://localhost:3000'

end

 take a look at https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Content-Security-Policy for more information about
Content-Security-policy (CSp).

Finally, it’s time to start up your development Rails server in the first terminal.

$ rails server

Load http://localhost:3000 in your web browser. In the log, you’ll see this entry:

Started GET "/" for 127.0.0.1 at 2018-01-27 23:30:56 +0100

Processing by PageController#index as HTML

 Rendering page/index.html.erb within layouts/application

 Rendered page/index.html.erb within layouts/application (1.5ms)

Completed 200 OK in 236ms (Views: 221.8ms | ActiveRecord: 0.0ms)

Finished "/cable/" [WebSocket] for 127.0.0.1 at 2018-01-27 23:30:56 +0100

WebNotificationsChannel stopped streaming from web_notifications_channel

Started GET "/cable" for 127.0.0.1 at 2018-01-27 23:30:56 +0100

Started GET "/cable/" [WebSocket] for 127.0.0.1 at 2018-01-27 23:30:56 +0100

Successfully upgraded to WebSocket (REQUEST_METHOD: GET, HTTP_CONNECTION:

Upgrade, HTTP_UPGRADE: websocket)

WebNotificationsChannel is transmitting the subscription confirmation

WebNotificationsChannel is streaming from web_notifications_channel

Chapter 15 aCtion Cable

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

398

Now start a second terminal and go to the directory where your Rails project is

located. Fire up the console and use ActionCable.server.broadcast to broadcast a

message to web_notifications_channel.

$ rails console

Running via Spring preloader in process 19706

Loading development environment (Rails 5.2.0)

>> ActionCable.server.broadcast 'web_notifications_channel',

message: '<p>Hello World!</p>'

[ActionCable] Broadcasting to web_notifications_channel:

{:message=>"<p>Hello World!</p>"}

=> 1

Now you can see the update in your browser window, as shown in Figure 15-1.

You can add other messages by calling ActionCable.server.broadcast

'web_notifications_channel', message: '<p>Hello World!</p>' again.

Congratulations! You have your first working Action Cable application.

 by using $('#messages').replaceWith data['message'] in
app/assets/javascripts/page.coffee, you can replace the htMl content
instead of appending it. See http://api.jquery.com/replaceWith/.

Figure 15-1. Hello World example in browser

Chapter 15 aCtion Cable

http://api.jquery.com/replaceWith/

399
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_16

CHAPTER 16

Credentials
Deploying secret API keys or other secret configuration credentials to a production

environment can become quite a hassle. You normally don’t want to commit them

unencrypted to your repository, but you also want to share them with other developers.

Rails 5.1 introduced the concept of secrets, but Rails 5.2 deprecated them and

introduced the concept of credentials.

You still have to store one central encryption key on your server and on all

development systems, but that’s it. All other secrets/credentials are encrypted with that

key and can be stored safely in your code repository.

Credentials are identical in all environments. In other words, there is no difference

between them in the Development and Production environments.

Let’s start with a new Rails application, as shown here:

$ rails new shop

$ cd shop

 Setup
In a new Rails 5.2 application, you’ll find the master key, which is used to encrypt all

credentials in the file config/master.key. Save this in your team password manager so

that your team can access it.

 If you lose the key, no one, including you, can access any encrypted
credentials.

It is important to keep this key secure. Anyone who has it can decrypt your

credentials, and if you lose it, you cannot decrypt your credentials anymore.

400

 Editing Credentials
The encrypted credentials are stored in config/credentials.yml.enc. But because they

are encrypted, you cannot edit them in that file with an editor. You have to use rails

credentials:edit. If you are using the bash shell and don’t have the environment

variable EDITOR already set, you can edit your credentials with this command:

$ EDITOR=vim rails credentials:edit

Credentials are saved in the YAML format, as shown here:

aws:

access_key_id: 123

secret_access_key: 345

Used as the base secret for all MessageVerifiers in Rails, including the

one protecting cookies.

secret_key_base: 9846dad34a3168...68d634f

test: foobar

 Accessing a Key
You can access a credential with the format AppName::Application.credentials.name_

of_the_credential. Here is an example for the previous configuration:

$ rails console

Running via Spring preloader in process 19662

Loading production environment (Rails 5.2.0)

>> Shop::Application.credentials.test

=> "foobar"

>> exit

 Using the Credentials on the Production Web Server
To use the credentials in the production web server system, you have to copy the file

config/master.key to that system.

Chapter 16 CredentIals

401
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1_17

CHAPTER 17

Active Storage
Ruby on Rails 5.2 introduced Active Storage, which can be used to attach files

(e.g., avatar images) to objects and store those files on the server or in the cloud.

Not only can Active Storage store files, but it can also convert and resize them. In

this chapter, I will show you how to attach a file to give you the basic idea of how Active

Storage works.

 Avatar Example
First, I’m sorry for not coming up with a more original example! Everybody uses avatars to

describe how to attach something, but I will do it too because it is such a common use case.

Let’s create a new phone book application that stores basic user information in the

User model, as shown here:

$ rails new phone_book

 [...]

$ cd phone_book

$ rails generate scaffold User first_name last_name email_address

$ rails db:migrate

For this example, you want to add an avatar image to each user. To work with images,

you need to have access to the Imagemagick software (https://www.imagemagick.

org/). Please install it with the package manager of your choice (for macOS Homebrew

users, the command brew install imagemagick will do the trick). On the Rails side, you

have to activate the mini_magick gem. Please open your Gemfile and search for it. You

can activate it by deleting the prefixed #, as shown in Listing 17-1.

https://www.imagemagick.org/
https://www.imagemagick.org/

402

Listing 17-1. Gemfile

[...]

Use ActiveStorage variant

gem 'mini_magick', '~> 4.8'

[...]

After that, run the command bundle.

$ bundle

To use Active Storage, you have to add a migration with rails active_storage:install,

as shown here:

$ rails active_storage:install

$ rails db:migrate

== 20180128074248 CreateActiveStorageTables: migrating

========================

-- create_table(:active_storage_blobs)

 -> 0.0020s

-- create_table(:active_storage_attachments)

 -> 0.0018s

== 20180128074248 CreateActiveStorageTables: migrated (0.0040s)

===============

This table will take care of all the storage information. You don’t have to change the

user table at all to add an avatar. You can do that in the model, as shown in Listing 17-2.

Listing 17-2. app/models/user.rb

class User < ApplicationRecord

 has_one_attached :avatar

end

Now you have access to the avatar method in the User model, which is the key for

working with it. Let’s create a new user in the console and attach an image from the local

file system as an avatar to it.

$ rails console

Loading development environment (Rails 5.2.0)

>> user = User.create(first_name: "Stefan", last_name: "Wintermeyer")

Chapter 17 aCtive Storage

403

 (0.1ms) begin transaction

 User Create (1.4ms) INSERT INTO "users" ("first_name", "last_name",

"created_at", "updated_at") VALUES (?, ?, ?, ?) [["first_name",

"Stefan"], ["last_name", "Wintermeyer"], ["created_at", "2018-01-28

09:47:23.769721"], ["updated_at", "2018-01-28 09:47:23.769721"]]

 (1.5ms) commit transaction

=> #<User id: 1, first_name: "Stefan", last_name: "Wintermeyer", email_address:

nil, created_at: "2018-01-28 09:47:23", updated_at: "2018-01-28 09:47:23">

>> user.avatar.attach(io: File.open("/Users/xyz/Desktop/stefan-wintermeyer.

jpg"), filename: "stefan-wintermeyer.jpg", content_type: "image/jpg")

 ActiveStorage::Attachment Load (0.5ms) SELECT "active_storage_

attachments".* FROM "active_storage_attachments" WHERE "active_storage_

attachments"."record_id" = ? AND "active_storage_attachments"."record_type" = ?

AND "active_storage_attachments"."name" = ? LIMIT ? [["record_id", 1],

["record_type", "User"], ["name", "avatar"], ["LIMIT", 1]]

 Disk Storage (3.1ms) Uploaded file to key: C8uKHdsuSemKP1iJXDcB5Kcf

(checksum: FW5KA5+afBfLJ+HMFEtVfA==)

 (0.1ms) begin transaction

 ActiveStorage::Blob Create (1.0ms) INSERT INTO "active_storage_blobs"

("key", "filename", "content_type", "byte_size", "checksum", "created_at")

VALUES (?, ?, ?, ?, ?, ?) [["key", "C8uKHdsuSemKP1iJXDcB5Kcf"],

["filename", "stefan-wintermeyer.jpg"], ["content_type", "image/jpg"],

["byte_size", 199263], ["checksum", "FW5KA5+afBfLJ+HMFEtVfA=="],

["created_at", "2018-01-28 09:48:15.946522"]]

 (0.9ms) commit transaction

 (0.1ms) begin transaction

 ActiveStorage::Attachment Create (0.9ms) INSERT INTO "active_storage_

attachments" ("name", "record_type", "record_id", "blob_id", "created_at")

VALUES (?, ?, ?, ?, ?) [["name", "avatar"], ["record_type", "User"],

["record_id", 1], ["blob_id", 1], ["created_at", "2018-01-28 09:48:15.971930"]]

 User Update All (0.1ms) UPDATE "users" SET "updated_at" = '2018-01-28

09:48:15.974030' WHERE "users"."id" = ? [["id", 1]]

 (1.1ms) commit transaction

Chapter 17 aCtive Storage

404

Enqueued ActiveStorage::AnalyzeJob (Job ID: 9c978cdf-4517-445a-a45b-

11194be8f0e7) to Async(default) with arguments: #<GlobalID:0x007ff7a42fef10

@uri=#<URI::GID gid://phone-book/ActiveStorage::Blob/1>>

 ActiveStorage::Blob Load (0.2ms) SELECT "active_storage_blobs".* FROM

"active_storage_blobs" WHERE "active_storage_blobs"."id" = ? LIMIT

? [["id", 1], ["LIMIT", 1]]

=> #<ActiveStorage::Attachment id: 1, name: "avatar", record_type: "User",

record_id: 1, blob_id: 1, created_at: "2018-01-28 09:48:15">

>> Performing ActiveStorage::AnalyzeJob (Job ID: 9c978cdf-4517-

445a-a45b-11194be8f0e7) from Async(default) with arguments:

#<GlobalID:0x007ff7a42c7268 @uri=#<URI::GID gid://phone-book/

ActiveStorage::Blob/1>>

 (0.1ms) begin transaction

 ActiveStorage::Blob Update (0.5ms) UPDATE "active_storage_blobs" SET

"metadata" = ? WHERE "active_storage_blobs"."id" = ? [["metadata",

"{\"width\":1280,\"height\":1280,\"analyzed\":true}"], ["id", 1]]

 (0.9ms) commit transaction

Performed ActiveStorage::AnalyzeJob (Job ID: 9c978cdf-4517-445a-a45b-

11194be8f0e7) from Async(default) in 96.79ms

You can use the avatar.attached? method to check whether a given user object has

an avatar attached.

>> user.avatar.attached?

 ActiveStorage::Attachment Load (0.2ms) SELECT "active_storage_

attachments".* FROM "active_storage_attachments" WHERE "active_storage_

attachments"."record_id" = ? AND "active_storage_attachments"."record_type" = ?

AND "active_storage_attachments"."name" = ? LIMIT ? [["record_id", 1],

["record_type", "User"], ["name", "avatar"], ["LIMIT", 1]]

 ActiveStorage::Blob Load (0.1ms) SELECT "active_storage_blobs".* FROM

"active_storage_blobs" WHERE "active_storage_blobs"."id" = ? LIMIT ?

[["id", 1], ["LIMIT", 1]]

=> true

To see that avatar, you have to update your show view to the code shown in

Listing 17-3.

Chapter 17 aCtive Storage

405

Listing 17-3. app/views/users/show.html.erb

<p id="notice"><%= notice %></p>

<% if @user.avatar.attached? %>

<p>

 <%= image_tag(url_for(@user.avatar)) %>

<p>

<% end %>

<p>

 First name:

 <%= @user.first_name %>

</p>

<p>

 Last name:

 <%= @user.last_name %>

</p>

<p>

 Email address:

 <%= @user.email_address %>

</p>

<%= link_to 'Edit', edit_user_path(@user) %> |

<%= link_to 'Back', users_path %>

url_for(@user.avatar) will create a URL for the avatar. The image itself is stored in

the database as a blob. Active Storage does all the magic needed to make this possible.

Uploading from the console is nice, but normally you want to have a way to upload

something from within a form. So, let’s update the form to make this happen, as shown

in Listing 17-4.

Listing 17-4. app/views/users/_form.html.erb

<%= form_with(model: user, local: true) do |form| %>

 <% if user.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(user.errors.count, "error") %> prohibited this user

from being saved:</h2>

Chapter 17 aCtive Storage

406

 <% user.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= form.label :first_name %>

 <%= form.text_field :first_name %>

 </div>

 <div class="field">

 <%= form.label :last_name %>

 <%= form.text_field :last_name %>

 </div>

 <div class="field">

 <%= form.label :email_address %>

 <%= form.text_field :email_address %>

 </div>

 <div class="field">

 <%= form.label :avatar %>

 <%= form.file_field :avatar %>

 </div>

 <div class="actions">

 <%= form.submit %>

 </div>

<% end %>

But that is not enough. You have to add the part where you attach the avatar to the

user object in the create and update methods in the users controller, as shown in

Listing 17-5.

Chapter 17 aCtive Storage

407

Listing 17-5. app/controllers/users_controller.rb

[...]

def create

 @user = User.new(user_params)

 avatar = params[:user][:avatar]

 respond_to do |format|

 if @user.save

 if avatar

 @user.avatar.attach(avatar)

 end

 format.html { redirect_to @user, notice: 'User was successfully

created.' }

 format.json { render :show, status: :created, location: @user }

 else

 format.html { render :new }

 format.json { render json: @user.errors, status: :unprocessable_entity }

 end

 end

end

def update

 avatar = params[:user][:avatar]

 respond_to do |format|

 if @user.update(user_params)

 if avatar

 @user.avatar.attach(avatar)

 end

 format.html { redirect_to @user, notice: 'User was successfully

updated.' }

 format.json { render :show, status: :ok, location: @user }

 else

 format.html { render :edit }

Chapter 17 aCtive Storage

408

 format.json { render json: @user.errors, status: :unprocessable_

entity }

 end

 end

end

[...]

Now you can use the web GUI to upload new avatars.

Active Storage can do a lot more. It can resize the images and store them in the cloud

automatically. Please take a look at http://guides.rubyonrails.org/active_storage_

overview.html for an overview and the complete documentation.

Chapter 17 aCtive Storage

http://guides.rubyonrails.org/active_storage_overview.html
http://guides.rubyonrails.org/active_storage_overview.html

409
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1

APPENDIX A

Ruby on Rails Installation
This chapter describes how to install Ruby on Rails for development systems.

 Ruby on Rails 5.2 on Debian 9.3 (Stretch)
There are two main reasons for installing a Ruby on Rails system with Ruby Version

Manager (RVM).

• You do not have any root rights on the system, so you have no other

option.

• You want to run several Rails systems that are separated cleanly, and

perhaps also separate Ruby versions. This can be easily done with

RVM.

 You can find detailed information about RVM on the RVM home page at
https://rvm.io.

This description assumes you have a freshly installed instance of Debian

GNU/Linux 9.3 (Stretch). You will find an ISO image for the installation at www.debian.org.

I recommend the approximately 250MB net installation CD image. For instructions on

how to install Debian GNU/Linux, please go to www.debian.org/distrib/netinst.

 Preparations
If you have root rights on the target system, you can use the following commands to

ensure that you have all the required programs for a successful installation of RVM.

https://doi.org/10.1007/978-1-4842-3489-1
https://rvm.io/
http://www.debian.org/
http://www.debian.org/distrib/netinst

410

If you do not have root rights, you have to either hope that your admin has already

installed everything you need or send your admin a quick e-mail with the

corresponding lines.

Log in as root, update the package lists, and upgrade the system, as shown here:

root@debian:~# apt-get update

[..]

root@debian:~# apt-get upgrade

Install the packages required for the RVM installation, as shown here:

root@debian:~# apt-get -y install curl gawk g++ \

make libreadline6-dev zlib1g-dev libssl-dev \

libyaml-dev libsqlite3-dev sqlite3 autoconf \

libgdbm-dev libncurses5-dev libtool bison nodejs \

pkg-config libffi-dev libgmp-dev libgmp-dev git \

dirmngr

Now is a good time to log out as root, as shown here:

root@debian:~# exit

logout

xyz@debian:~$

 Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM
Log in with your normal user account (in this case, it’s the user xyz).

RVM, Ruby, and Ruby on Rails can be installed in various ways. I recommend using

the following commands and getting at least one cup of tea or coffee:

xyz@debian:~$ gpg --keyserver hkp://keys.gnupg.net --recv-keys \

409B6B1796C275462A1703113804BB82D39DC0E3 \

7D2BAF1CF37B13E2069D6956105BD0E739499BDB

[...]

xyz@debian:~$ curl -sSL https://get.rvm.io | bash

[...]

Appendix A RubY on RAils instAllAtion

411

To be able to use RVM, you need to run a script first. RVM will tell you which script to

run (its path depends on the username).

xyz@debian:~$ source /home/xyz/.rvm/scripts/rvm

Now you can use RVM to install Ruby 2.5 and after that the current Rails version with

gem, as shown here:

xyz@debian:~$ rvm install 2.5

[...]

xyz@debian:~$ gem install rails

[...]

xyz@debian:~$

 gem install rails installs the current stable Rails version. You can use

the format gem install rails -v 5.2.0 to install a specific version and can
use gem install rails --pre to install the current beta version.

RVM, Ruby 2.6, and Rails 5.2 are now installed. You can check this with the following

commands:

xyz@debian:~$ ruby -v

ruby 2.5.0p0 (2017-12-25 revision 61468) [x86_64-linux]

xyz@debian:~$ rails -v

Rails 5.2.0

xyz@debian:~$

 Ruby on Rails 5.2 on macOS 10.13 (High Sierra)
macOS 10.13 includes Ruby by default, which is not what you need here. You want

Ruby 2.5 and Rails 5.2. To avoid interfering with the existing Ruby and Rails installation

and therefore the packet management of Mac OS X, you will install Ruby 2.5 and Rails 5.2

with RVM.

With RVM, you can install and run any number of Ruby and Rails versions as a

normal user (without root rights and in your home directory).

Appendix A RubY on RAils instAllAtion

412

 You can find detailed information about RVM on the RVM home page at
https://rvm.io/.

 Xcode Installation or Upgrade
Before you start installing Ruby on Rails, you must install the latest Apple Xcode tools on

your system. The easiest way to do this is via the Mac App Store (search for xcode) or via

the web site at https://developer.apple.com/xcode/.

 please take care to install all the command-line tools!

 Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM
RVM can be installed in various ways. I recommend using the following monster

command (please copy it exactly) that installs the latest RVM, Ruby, and Ruby on Rails in

your home directory:

$ gpg --keyserver hkp://keys.gnupg.net --recv-keys \

409B6B1796C275462A1703113804BB82D39DC0E3 \

7D2BAF1CF37B13E2069D6956105BD0E739499BDB

[...]

$ curl -sSL https://get.rvm.io | bash

[...]

RVM will give you a source command that you can run to set up RVM for your

current shell/terminal. Usually it is just easier to close the current shell and open a new

terminal window. Then everything in the new terminal will be set up properly.

$ rvm install 2.5

[...]

$ gem install rails

[...]

$

Appendix A RubY on RAils instAllAtion

https://rvm.io/
https://developer.apple.com/xcode/

413

 gem install rails installs the current stable Rails version. You can use
the format gem install rails -v 5.2.0 to install a specific version and can
use gem install rails --pre to install the current beta version.

RVM, Ruby 2.5, and Rails 5.2 are now fully installed. You can check this with the

following commands:

$ ruby -v

ruby 2.5.0p0 (2017-12-25 revision 61468) [x86_64-darwin17]

$ rails -v

Rails 5.2.0

Appendix A RubY on RAils instAllAtion

415
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1

APPENDIX B

 Web Server in Production
Mode
This chapter walks you through the process of setting up a production server. This

example will run Nginx as a reverse proxy web server and Puma as the Ruby on Rails web

server behind Nginx. This chapter will start with a fresh Debian system and show how

to install all the software you need. The Rails 5.2 project will be run with Ruby 2.5, which

gets installed with RVM and runs for a user named deployer.

The example Rails application you will use is called blog. It will contain a post scaffold.

 If you have never set up an Nginx or Apache web server by yourself on a
Linux system before, you will likely get lost somewhere in this chapter.

 Debian 9.3
You will build your production web server on a minimal Debian 9.3 system. To carry out

this installation, you need to have root rights on the web server.

This description assumes that you have a freshly installed Debian GNU with

Linux 8.7 (Jessie). You will find an ISO image for the installation at www.debian.org.

I recommend downloading the approximately 250MB net installation CD image. For

instructions on how to install Debian GNU/Linux, please go to www.debian.org/

distrib/netinst.

 VMware or any other virtual PC system is a great playground for you to get

a feeling for how this works.

https://doi.org/10.1007/978-1-4842-3489-1
http://www.debian.org/
http://www.debian.org/distrib/netinst
http://www.debian.org/distrib/netinst

416

 Build the System
Log in as root, update the package lists, and upgrade the system, as shown here:

root@debian:~# apt-get update

[..]

root@debian:~# apt-get upgrade

Install the packages required for the RVM installation.

root@debian:~# apt-get -y install curl gawk g++ \

make libreadline6-dev zlib1g-dev libssl-dev \

libyaml-dev libsqlite3-dev sqlite3 autoconf \

libgdbm-dev libncurses5-dev libtool bison nodejs \

pkg-config libffi-dev libgmp-dev libgmp-dev git \

dirmngr

 Nginx
Nginx will be the web server to the outside world.

root@debian:~# apt-get -y install nginx

 User Deployer
The Rails project will use RVM in the user space. So, create a new user with the name

deployer, as shown here:

root@debian:~# adduser deployer

Adding user `deployer' ...

Adding new group `deployer' (1001) ...

Adding new user `deployer' (1001) with group `deployer' ...

Creating home directory `/home/deployer' ...

Copying files from `/etc/skel' ...

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

APPeNdIx B WeB SerVer IN ProduCtIoN Mode

417

Changing the user information for deployer

Enter the new value, or press ENTER for the default

 Full Name []: Deployer

 Room Number []:

 Work Phone []:

 Home Phone []:

 Other []:

Is the information correct? [Y/n] Y

root@debian:~#

 Database
In this setup, you will use PostgreSQL as the production database.

 PostgreSQL Installation

You need to install the database software.

root@debian:~# apt-get -y install postgresql postgresql-client libpq-dev

To create a database user named deployer and a database named blog_production,

you need to do the following steps:

root@debian:~# su - postgres

postgres@debian:~$ createuser -W --createdb deployer

Password:

postgres@debian:~$ createdb blog_production

postgres@debian:~$ exit

logout

root@debian:~#

For this example, you will use a password of 123456. It should be obvious that this is

a bad idea for your application to use on a production system.

 Setting Up the Rails Environment for the User Deployer

With su - deployer, you’ll become the user deployer.

root@debian:~# su - deployer

APPeNdIx B WeB SerVer IN ProduCtIoN Mode

418

As the user deployer, please carry out the steps for installing Ruby 2.5 and Rails 5.2

via RVM, as shown here:

deployer@debian:~$ gpg --keyserver hkp://keys.gnupg.net --recv-keys \

409B6B1796C275462A1703113804BB82D39DC0E3 \

7D2BAF1CF37B13E2069D6956105BD0E739499BDB

[...]

deployer@debian:~$ curl -sSL https://get.rvm.io | bash

[...]

deployer@debian:~$ source /home/deployer/.rvm/scripts/rvm

deployer@debian:~$ rvm install 2.5 --autolibs=read-only

[...]

deployer@debian:~$ gem install rails

[...]

deployer@debian:~$

 You need to run gem install rails --pre if rails 5.2 is still in beta

when you follow these steps.

 Setting Up a New Rails Project
To keep this guide as simple as possible, you will create a simple blog in the home

directory of the user deployer, as shown here:

deployer@debian:~$ rails new blog --database=postgresql

[...]

deployer@debian:~$ cd blog

deployer@debian:~/blog$ rails generate scaffold post subject content:text

[...]

deployer@debian:~/blog$

 --database=postgresql takes care of installing the pg gem for using
PostgreSQL. If you already have a rails application, you need to add the line gem
'pg' to your Gemfile and run a bundle install command afterward.

APPeNdIx B WeB SerVer IN ProduCtIoN Mode

419

 Production Database Configuration
In the file config/database.yml, you need to change the production database user to

deployer, as shown in Listing B-1.

Listing B-1. config/database.yml

[...]

production:

 <<: *default

 database: blog_production

 username: deployer

 password: <%= ENV['BLOG_DATABASE_PASSWORD'] %>

 rails db:migrate
You still need to create the production database tables, as shown here:

deployer@debian:~/blog$ rails db:migrate RAILS_ENV=production

BLOG_DATABASE_PASSWORD=123456

[...]

deployer@debian:~/blog$

 You probably want to set BLOG_DATABASE_PASSWORD as an environment
variable in your .bash_profile file because it is not a good idea to have the
database password in your bash history.

 rails assets:precompile
rails assets:precompile ensures that all assets in the asset pipeline are made

available to the Production environment.

deployer@debian:~/blog$ rails assets:precompile

APPeNdIx B WeB SerVer IN ProduCtIoN Mode

420

 Puma PID
Puma needs the tmp/puma directory to store a PID file, as shown here:

deployer@debian:~/blog$ mkdir tmp/puma

deployer@debian:~/blog$ exit

logout

root@debian:~#

 Puma init Script
The Puma web server has to be started automatically at every booting process. Plus, it

has to be killed when the server shuts down. That’s been taken care of by an init script.

Please do the following commands as root:

$ cd /etc/init.d

$ wget https://raw.githubusercontent.com/puma/puma/master/tools/jungle/

init.d/puma

$ chmod a+x puma

$ cd /usr/local/bin

$ wget https://raw.githubusercontent.com/puma/puma/master/tools/jungle/

init.d/run-puma

$ chmod a+x run-puma

$ touch /etc/puma.conf

$ chmod 640 /etc/puma.conf

$ update-rc.d -f puma defaults

Now you have to create the configuration for the production instance. It includes the

environment variables BLOG_DATABASE_PASSWORD and SECRET_KEY_BASE, as shown in

Listing B-2.

 to create a new SECRET_KEY_BASE, you should run rails secret in
your rails project directory.

APPeNdIx B WeB SerVer IN ProduCtIoN Mode

421

Listing B-2. /etc/puma.conf

/home/deployer/blog,deployer,/home/deployer/blog/config/puma.rb,/home/

deployer/blog/log/production.log,RAILS_ENV=production;PORT=3001;BLOG_

DATABASE_PASSWORD=123456;SECRET_KEY_BASE=AASD...ASDF

 If you don’t want to store the environment variables in /etc/puma.conf,
you can use the bin/rails secrets:setup mechanism.

It’s time to start Puma.

$ /etc/init.d/puma start

[ok] Starting puma (via systemctl): puma.service.

$

Now Puma runs and is available at http://localhost:3001. To make it available to

the Internet, you have to set up Nginx.

 Nginx Configuration
For the Rails project, add a new configuration file called /etc/nginx/sites-available/

blog.conf with the content shown in Listing B-3.

Listing B-3. /etc/nginx/sites-available/blog.conf

server {

 listen 80 default deferred;

 # server_name example.com;

 root /home/deployer/blog/public;

 location / {

 gzip_static on;

 try_files $uri/index.html $uri @puma;

 }

APPeNdIx B WeB SerVer IN ProduCtIoN Mode

422

 location ^~ /assets/ {

 gzip_static on;

 expires max;

 add_header Cache-Control public;

 }

 location @puma {

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header Host $http_host;

 proxy_redirect off;

 proxy_pass http://localhost:3001;

 }

 error_page 500 502 503 504 /500.html;

 client_max_body_size 4G;

 keepalive_timeout 10;

}

You link this configuration file into the /etc/nginx/sites-enabled/ directory to

have it loaded by Nginx. The default file can be deleted. After that, you restart Nginx and

are all set. You can access the Rails application through the IP address of this server.

$ ln -s /etc/nginx/sites-available/blog.conf /etc/nginx/sites-enabled/

$ rm /etc/nginx/sites-enabled/default

$ /etc/init.d/nginx restart

[ok] Restarting nginx (via systemctl): nginx.service.

$

You’re all set. Your new Rails project is online. You can access the posts. You’ll have

to configure the root path in config/routes.rb to get a proper root path URL.

 Loading Updated Versions of the Rails Project
If you want to activate updates to the Rails project, you need to copy them into

the directory /home/deployer/blog and log in as the user deployer to run rails

assets:precompile (see Chapter 13).

APPeNdIx B WeB SerVer IN ProduCtIoN Mode

423

deployer@debian:~/blog$ rails assets:precompile

[...]

deployer@debian:~/blog$

If you bring in new migrations, you of course also need to run a rails db:migrate

RAILS_ENV=production command, as shown here:

deployer@debian:~/blog$ rails db:migrate RAILS_ENV=production

[...]

deployer@debian:~/blog$

Then you need to restart Puma as the user root, as shown here:

root@debian:~# /etc/init.d/puma restart

 Performance
If performance is key for your production web server, you will want to use a socket

connection instead of the TCP connection.

 Misc
Here are some miscellaneous topics.

 Alternative Setups
This method of using RVM, Puma, and Nginx is fast and makes it possible to set up different

Ruby versions on one server. But many admins prefer an easier installation process, which

is promised by Phusion Passenger. Take a look at https://www.phusionpassenger.com for

more information about Passenger. It is a good and reliable solution.

 What Else There Is to Do
Please always consider the following points, although you have to decide for yourself

what works for your situation and implement the best practices accordingly:

• Set up automatic and regular backups of the database and the Rails project.

• Set up log rotations of log files.

APPeNdIx B WeB SerVer IN ProduCtIoN Mode

https://www.phusionpassenger.com/

424

• Set up monitoring for the system load and hard drive space.

• Regularly install Debian security updates as soon as they become

available.

 404 and Co.
Finally, please look into the public directory in your Rails project and adapt the HTML

pages saved there to your own requirements. Primarily, this is about the design of the

pages. With the default settings, they are somewhat sparse and do not have any relation

to the rest of your web site. If you decide to update your web page and shut down your

Puma server to do so, Nginx will deliver the web page public/500.html in the meantime.

You will find a list of HTTP error codes at http://en.wikipedia.org/wiki/List_of_

HTTP_status_codes.

 Multiple Rails Servers on One System
You can run several Rails servers on one system without any problems. You need to

set up a separate Puma for each Rails server. You can then distribute to it from Nginx.

With Nginx you can also define on which IP address a Rails server is accessible from the

outside.

 The Cloud Platform as a Service Provider
If you do not have a web server available on the Internet or want to deploy to a Platform

as a Service (PaaS) system right from the start, you should take a look at what the various

providers have to offer. The two U.S. market leaders are currently Heroku (www.heroku.

com/) and Engine Yard (www.engineyard.com/).

Going with PaaS as a platform usually offers fewer options than your own server. But

you have 24/7 support for this platform if something does not work properly.

APPeNdIx B WeB SerVer IN ProduCtIoN Mode

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.heroku.com/
http://www.heroku.com/
http://www.engineyard.com/

425
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1

APPENDIX C

 Further Rails
Reading Material
You made it through the whole book. Congratulations!

Probably you are wondering what other Rails resources are available to read, watch,

or listen. Here is a list of important web sites on the topic of Ruby on Rails:

http://guides.rubyonrails.org: This site has a couple of good official guides.

http://rubyonrails.org/: The project page of Ruby on Rails offers many links

for further documentation. Please note that some parts of the documentation are now

obsolete. Therefore, always check whether what you are reading is related specifically to

Rails 3.2 or to older Rails versions.

http://railscasts.com/: Ryan Bates used to publish a screencast every Monday on

a topic associated with Rails. Unfortunately, he hasn’t published screencasts for some

time now, but the page still has valuable old ones.

https://rubyweekly.com: Peter Cooper’s Ruby Weekly newsletter is popular in the

Ruby community.

https://www.wintermeyer-consulting.de/newsletters/: This is my monthly Ruby

on Rails newsletter.

https://doi.org/10.1007/978-1-4842-3489-1
http://guides.rubyonrails.org/
http://rubyonrails.org/
http://railscasts.com/
https://rubyweekly.com/
https://www.wintermeyer-consulting.de/newsletters/

427
© Stefan Wintermeyer 2018
S. Wintermeyer, Learn Rails 5.2, https://doi.org/10.1007/978-1-4842-3489-1

Index

A
a 1:n association

belongs_to options, 131
Category model, 121, 123
foreign key, 121
fruits category

access records, 126–128
build method, 125–126
create, 123–125
delete and destroy, 130–131
includes method, 129–130
joins method, 129
search for records, 128

has_many options, 132–133
Product model, 121–122

Action Cable, 393
Hello World

creating channel, 395–398
Rails application, 393
setting up jQuery, 394–395

Active Job
create new, 295–296
set method, 297
Sidekiq, 297

ActiveRecord, list of countries (Europe)
create database/model

app/models/country.rb, 86
configuration file, 89–90
created_at, 86
decimal, 88

field types, 87–88
getters and setters, 87
attributes id, 86
naming conventions, 89
rails db, 86
rails generate model, 84–85
updated_at, 86

first, last, and all, 94–97
records

create, 90
new, 92–93
new_record? method, 93–94
syntax, 91

seeds.rb file
from existing data, 99
rails db:reset, 98
Ruby program, 98

Active Storage, 401
avatar example

console, 402–405
Gemfile, 401–402
migration, 402
resources, 425
User model, 401
users controller, 406, 408

Album
ActiveModel::Dirty

_changed? method, 117
changed? method, 116–117
update method, 118

https://doi.org/10.1007/978-1-4842-3489-1

428

batches, 115
calculations

average method, 112
count method, 113
maximum method, 113
minimum method, 114
sum method, 114

edit record
locking, 118–120
steps, 115

SQL EXPLAIN, 114
queries

automatic optimization, 107–108
db/seeds.rb, 100
find method, 101–102
first_or_create and first_

or_initialize, 112
group method, 110
lazy loading, 106–107
limit method, 109
not method, 104
offset method, 109
or method, 104
order method, 108
pluck method, 110
reverse order method, 109
sanitize, 105–106
select, 111–112
SQL, 104–106
where method, 102–103

Asset pipeline
application.css, 357
application.js, 356
fingerprint (see Fingerprint)
rails assets:precompile, 357–358
web shop, 355–356

Authentication system, 254

Authorization system, 254
Auto-expiring caches, 381–382
average method, 112

B
Bike model, 137–141
Blog application

comment, 232
config/routes.rb file, 240–242
create, 221
error message, 226–227
index (root) page, 229
:only or :except, 230–231
posts index, 222
resources route, 230
single-digit request, 228
year, 223, 225

Book model
delete method, 146–147
destroy, 144

Boolean values and nil, 24
Breadcrumbs via sessions, 271–273
Bundle

binstubs, 249
exec, 249
outdated, 248
update, 247

C
Caching

arguments, 363
Faker gem, 367–368
index view, 368
methods, 363
phone book (see Phone book)
show view, 368
web pages, 368

Album (cont.)

Index

429

Callbacks, 178–180
Car model, 137–141
Cloud Platform as a Service provider, 424
Coding by convention, see Convention

over configuration
Console, rails, 71–73
Content security policy (CSP), 77
Convention over configuration, 79
Cookies

controller file, 266
permanent, 268–269
set_cookies, 268
signed, 269–271
sizes, 265
view file, 266–267

count method, 113
Create, Read, Update, and Delete (CRUD),

183
Credentials, 399

accessing a key, 400
editing, 400
on production web server, 400
setup, 399

D
Database

configuration file, 173–174
index, 176–177
run migration, 175
sqlite3 tool, 175

Data-input workflow
log file, 261
people#new Form, 257, 259
to URL/people, 260–261

Debian 8.7 system, 415
build the system, 416
database

PostgreSQL installation, 417

Rails environment for user
deployer, 417

Nginx, 416
user deployer, 416–417

Debian system, 415
Debug tools, 76–78
Default values, 180–181
Development environment, 51
Don’t Repeat Yourself (DRY), 79

E
E-mail

after_create callback, 302
attachments, 307–308
create mailer notification, 300
create minimal validation, 299
create new User, 302
HTML, 301
inline attachments, 308–309
generate mailer, 300
new_account method, 301
send confirmation, 301
sending via direct SMTP, 306
sending via local sendmail, 305
X-header, 306–307

erb file
create HTML with

app/controllers directory, 59
rails generate controller, 57–58
routing configuration, 60

instance variable, 66–67
layouts, 64–66
partials

passing variables to, 69, 71
web page, 67, 69

programming in, 60, 62–64
etag, 370–372
SQL EXPLAIN, 114

Index

430

F
Faker gem, 367–368

find_each method, 115

find method, 101–102

Fingerprint

application.html.erb, 360

coding links to

asset, 359

CSS file, 360

image, 359

JavaScript file, 360

Flash messages

advantage, 190

ping-pong, 187–189

types, 189

Foreign key, 121

Forms, 262

Fragment caching

auto-expiring, 381–382

cache store, 384

definition, 363

in development

mode, 377

expire_fragment method, 379–381

index view, 378–379

MemCacheStore, 384

Russian doll caching, 382, 384

Fruits category, a 1:n association

access records, 126–128

build method, 125–126

create, 123–125

search for records, 128

delete and destroy, 130–131

includes method, 129–130

joins method, 129

Functional tests, 284, 287

G
Gems

acts_as_list, 250
authentication system, 254
authorization system, 254
defined, 243
Gemfile, 243
Gemfile.lock, 246
index view, 253
order tasks, 251–252
simple_form, 255

Generator, 73, 75
group method, 110

H
Helper method, 75–76
Hotel reservation system, 168–169
HTTP caching

cache-control, 375–377
current_user, 373
definition, 363
etag, 370–372
last-modified, 369–370
stale?, 374
using proxies, 374–375

HTTP GET Requests for Singular
Resources

constraints, 225–227
controller with three pages, 218–219
index (root) page, 229
naming route, 220
nested resources, 232
:only or :except, 230–231
parameters, 221–225
redirects, 228
resources, 229–230
shallow nesting, 240–242

Index

431

I
includes method, 129–130
Inflector/inflections, 52
Inline attachments, 308–309
Instance variable, 66–67
Integration tests, 292–293
Interactive Ruby (irb), 4
Internationalization

I18n.t, 312–316
localized views, 316–317
Rails application, 317

model Book, 320
directories, 318–319
flash messages in controller, 324–326
model book, 320
multilingual (see Multilingual Rails

applications)
paths, 326
validation errors, 317

J, K
joins method, 129

L
Lazy loading, 96, 106–107
limit method, 109

M
maximum method, 113
Migration

add fields, 177–178
change method, 170–171
Product model, 170
updated_at, 172
web pages, 178

minimum method, 114
Misc

alternative setups, 423
best practices, 423
404 and Co., 424
Rails servers on one system, 424

Model View Controller (MVC), 80
Multilingual Rails applications

I18n.locale
approaches, 340
Rails server, 328–330
root page, 328
saving in session, 336–338
setting via accept language HTTP

header, 335–336
setting via domain extensions, 339
setting via URL path prefix, 331–334

scaffold, 340
equipping views with I18n.t, 347–350
language navigation links, 343
locales, 341
text blocks in YAML format,

344–346
translating flash messages in

controller, 350–353
URL prefix variation, 341

N
NamedScopes

online shop
build, 148–149
cheap products, 151
count products in stock, 149–150
create new products, 151

new_record? method, 93–94
Nginx, 415
not method, 104

Index

432

Numbers
floats, 23
integers, 23
mixed class calculations, 23

O
Object-relational mapping (ORM),

see ActiveRecord
offset method, 109
One-to-many association,

see a 1:n Association
Online shop

NamedScopes
build, 148–149
cheap products, 151
count products in

stock, 149–150
create new products, 151

Scaffolding
access via JSON, 208–211
controller, 193
create method, 197
deleting products, 211–212
destroy method, 199
edit method, 196
error message, 213–216
form_for, 206–208
index method, 196
list of products for, 190, 192
new method, 196
routes, 192
set_product, 195
show method, 196
update method, 198
views, 199, 201–204

order method, 108
or method, 104

P, Q
Page caching

company index and show view
file extension .html, 388
gz versions, 388
public directory, 387

configure web server, 386
definition, 363
delete models, 389–391
in development mode, 386
HTML page, 385

Phone book
models, 364–365
views, 365

Ping-pong game
flash messages, 187–189
redirects, 184–186

Platform as a Service (PaaS) system, 424
pluck method, 110

R
Rails

destroying record, 142–143
generate model, 84–85

Rails application, Action Cable, 393–398
Rails application, German users, 317

model Book, 320

directories, 318–319

flash messages in controller, 324–326

model book, 320

multilingual use, 321–323

paths, 326

validation errors, 317
Rails console, 71–73
Rails project, new

init script, 420–421

Index

433

loading updated version, 422–423
Nginx configuration, 421–422
performance, 423
production database configuration,

419
Puma PID, 420
rails assets

migrate, 419
precompile, 419

Redirects, 183, 185–186
Refactoring, 79
Representational State Transfer (REST),

183
reverse order method, 109
Routes, 217–218
Routing configuration, 60
Ruby

arrays, 44–46
basic classes

Boolean values, 24
numbers, 23
strings, 20–22

comments, 3
converting (casting) objects, 33–34
getters and setters, 29–32
hashes, 46

iterator each, 48
symbols, 46–48

Hello World, 2
help via ri, 4
if condition, 37–38

else, 39
elseif, 39
shorthand notation, 38

irb, 4
loops

blocks and iterators, 41–43
method upto, 43

while and until, 39–41
+ method, 35–37
method chaining, 29
object-oriented, 5

all instance methods, 19
class and instance methods, 15–18
classes, 9–10
inheritance, 14–15
method initialize(), 11–12
methods, 6–9
private methods, 10–11
return statement, 12, 13

puts and print, 2–3
Range class, 48–49
to_s method, 34, 35
variables (see Variables)

Ruby 2.5, 1
Ruby on Rails system, 409

on macOS 10.13, 411
preparations, 409–410
with RVM, 410–412
Xcode installation or upgrade, 412

Ruby program, 98
Ruby Programming Language, 1
Ruby Version Manager (RVM), 409
Russian doll caching, 382, 384

S
Scaffolding

definition, 183
flash messages (see Flash messages)
online shop

access via JSON, 208–211
controller, 193
create method, 197
deleting products, 211–212
destroy method, 199

Index

434

edit method, 196
error message, 213–216
form_for, 206–208
index method, 196
list of products for, 190, 192
new method, 196
routes, 192
set_product, 195
show method, 196
update method, 198
views, 199, 201–204

redirects (see Redirects)
seeds.rb file

from existing data, 99
rails db:reset, 98
Ruby program, 98

Sessions
breadcrumbs via, 271–273
defined, 271
reset_session, 274–275
save, 276–277

Shop application
association, 134–135
create empty record,

152, 154
error message, 154
exclusion, 165
format, 165–166
inclusion, 163–164
length, 157–159
numericality, 159–161
order object, 135–137
preparation, 133–134
presence, 156–157
save(validate: false), 155
uniqueness, 161, 163

valid? method, 154
Sidekiq, 297
Signed cookies, 269–271
SQLite3 database, 52
SQLite3 tool, 175
SQL query, 104–106
Static content

create rails project, 52–54
static pages, 55–57

Strings, 20
built-in-methods, 21–22
single and double quotations marks,

20–21
sum method, 114

T
Tag model, 137–141
Test-driven development (TDD)

fixtures
erb, 291–292
static, 291

integration tests, 292–293
rails stats, 293–294
web shop, user in

create, 280
fixtures_tests, 282–283
test suite, 280–282
unit tests, 288–290
UsersControllerTest, 285

to_yaml method, 95–96
Transactions, 147–148

U
Unit tests, 288–290
update method, 118

Scaffolding (cont.)

Index

435

V
Validation

custom, 167, 169
new shop application

create, 152
create empty record,

 152, 154
error message, 154
exclusion, 165
format, 165–166
inclusion, 163–164
length, 157–159
numericality, 159–161
presence, 156–157
save(validate: false), 155
uniqueness, 161, 163
valid? method, 154

options
allow_blank, 166

allow_nil, 166
if and unless, 167

Variables
naming conventions, constants, 25
scope of, 26

global variables, 27
instance variables, 27–28
local variables, 26

W, X, Y, Z
Web console, 77–78
Web page, 67, 69
Web shop, user in

create, 280
fixtures_tests, 282–283
test suite, 280–282
unit tests, 288–290
UsersControllerTest, 285

where method, 102–103

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Introduction
	Chapter 1: Ruby Introduction
	Ruby 2.5
	Basics
	Hello World
	puts and print
	Comments
	Help via ri
	irb

	Ruby Is Object-Oriented
	Methods
	Classes
	Private Methods
	Method initialize()
	return
	Inheritance
	Class Methods and Instance Methods
	List of All Instance Methods

	Basic Classes
	Strings
	Single and Double Quotations Marks
	Built-in Methods for String

	Numbers
	Integers
	Floats
	Mixed Class Calculations

	Boolean Values and nil

	Variables
	Naming Conventions
	Constants

	Scope of Variables
	Local Variables (aaa or _aaa)
	Global Variables ($aaa)
	Instance Variables (@aaa)

	Methods Once Again
	Method Chaining
	Getters and Setters
	Converting from One to the Other: Casting
	Method to_s for Your Own Classes
	Is + a Method?
	Can You Overwrite the Method +?

	if Condition
	Shorthand
	else
	elsif

	Loops
	while and until
	Blocks and Iterators
	Iterators
	Blocks
	Method upto

	Arrays and Hashes
	Arrays
	Iterator each

	Hashes
	Symbols
	Iterator each

	Range

	Chapter 2: First Steps with Rails
	Environment (Development)
	SQLite3 Database
	Why Is It All in English?
	Static Content (HTML and Graphics Files)
	Create a Rails Project
	Static Pages

	Creating HTML Dynamically with erb
	Programming in an erb File
	<% ... %> vs. <%= ... %>
	Q & A

	Layouts
	Passing Instance Variables from a Controller to a View
	Partials
	Passing Variables to a Partial
	Further Documentation on Partials

	The Rails Console
	app

	What Is a Generator?
	Helper
	Debugging
	debug
	Web Console
	Other Debugging Tools

	Rails Lingo
	Don’t Repeat Yourself
	Refactoring
	Convention Over Configuration

	Model View Controller Architecture
	Model
	View
	Controller

	Abbreviations

	Chapter 3: ActiveRecord
	Creating a Database/Model
	The Attributes id, created_at, and updated_at
	Getters and Setters
	Possible Data Types in ActiveRecord
	Decimal
	Naming Conventions (Country vs. country vs. countries)
	Database Configuration

	Adding Records
	create
	Syntax

	new
	new_record?

	first, last, and all
	Populating the Database with seeds.rb
	It’s All Just Ruby Code
	Generating seeds.rb from Existing Data

	Searching and Finding with Queries
	find
	where
	not
	or
	SQL Queries with where
	Sanitized Queries

	Dangerous SQL Queries
	Lazy Loading
	Automatic Optimization

	order and reverse_order
	limit
	offset

	group
	pluck
	select
	first_or_create and first_or_initialize

	Calculations
	average
	count
	maximum
	minimum
	sum

	SQL EXPLAIN
	Batches
	Editing a Record
	Simple Editing
	Active Model Dirty
	changed?
	_changed?

	update
	Locking

	has_many, a 1:n Association
	Creating Records
	create
	build

	Accessing Records
	Searching for Records
	joins method
	includes
	joins vs. includes

	delete and destroy
	Options
	belongs_to
	has_many

	Many-to-Many, an n:n Association
	Preparation
	The Association
	The Association Works Transparently

	Polymorphic Associations
	Options

	Deleting/Destroying a Record
	destroy
	delete

	Transactions
	Scopes
	Preparation
	Defining a Scope
	Passing In Arguments
	Creating New Records with Scopes

	Validation
	Preparation
	The Basic Idea
	valid?
	save(validate: false)

	presence
	length
	Options

	numericality
	Options

	uniqueness
	Options

	inclusion
	Options

	exclusion
	Options

	format
	Options

	General Validation Options
	allow_nil
	allow_blank
	on

	if and unless

	Writing Custom Validations
	Defining Validations with Your Own Methods

	Further Documentation

	Migrations
	Which Database Is Used?
	Creating Index
	Automatically Added Fields (id, created_at, and updated_at)
	Further Documentation

	Callbacks
	Default Values

	Chapter 4: Scaffolding and REST
	Redirects and Flash Messages
	Redirects
	redirect_to:back
	Flash Messages
	Different Types of Flash Messages
	Why Are There Flash Messages at All?

	Generating a Scaffold
	The Routes
	The Controller
	set_product
	index
	show
	new

	edit
	create
	update
	destroy

	The Views
	Where Are the Views?
	link_to
	form_for
	Access via JSON
	JSON As Default
	JSON and XML Together

	When Should You Use Scaffolding?
	Example for a Minimal Project
	Conclusion

	Chapter 5: Routes
	HTTP GET Requests for Singular Resources
	Naming a Route
	as
	to
	Parameters
	Constraints
	Redirects

	root:to ⇒ welcome#index
	resources
	Selecting Specific Routes with only: or except:
	Nested Resources
	Shallow Nesting

	Further Information on Routes

	Chapter 6: Bundler and Gems
	bundle update
	bundle outdated
	bundle exec
	binstubs
	Popular Gems
	acts_as_list
	Order Your Tasks
	Check Done Tasks in Your Index View
	Authentication
	Authorization
	Simple Form

	Further Information on Bundler

	Chapter 7: Forms
	The Data-Input Workflow
	Request the people#new Form
	Push the Data to the Server
	Present the New Data

	Generic Forms
	FormTagHelper
	Alternatives

	Chapter 8: Cookies and Sessions
	Cookies
	Permanent Cookies
	Signed Cookies

	Sessions
	Breadcrumbs via Sessions
	reset_session
	Saving Sessions in the Database

	Chapter 9: Tests
	Example for a User in a Web Shop
	Functional Tests
	Unit Tests

	Fixtures
	Static Fixtures
	Fixtures with erb

	Integration Tests
	rails stats
	More on Testing

	Chapter 10: Active Job
	Create a New Job
	Set the Time for Future Execution
	Configure the Job Server Back End

	Chapter 11: Action Mailer
	Configuring the E-mail Server
	Sending via Local Sendmail
	Sending via Direct SMTP

	Custom X-Header
	Attachments
	Inline Attachments

	Further Information

	Chapter 12: Internationalization
	I18n.t
	Using I18n.t in the View

	Localized Views
	A Rails Application in Only One Language: German
	Paths in German
	Multilingual Rails Applications
	Using I18n.locale for Defining the Default Language
	Setting I18n.locale via the URL Path Prefix
	Navigation Example
	Setting I18n.locale via the Accept Language HTTP Header of the Browser
	Saving I18n.locale in a Session
	Navigation Example
	Setting I18n.locale via a Domain Extension
	Which Approach Is the Best?

	Multilingual Scaffold Example
	Text Blocks in YAML Format
	German
	English

	Equipping Views with I18n.t
	_form.html.erb
	edit.html.erb
	index.html.erb
	new.html.erb
	show.html.erb

	Translating Flash Messages in the Controller
	The Result

	Further Information

	Chapter 13: Asset Pipeline
	application.js
	application.css
	rails assets:precompile
	The Fingerprint
	Coding Links to an Asset
	Coding a Link to an Image
	Coding a Link to a JavaScript File
	Coding a Link to a CSS File
	Defaults in application.html.erb

	Chapter 14: Caching
	The Example Application
	Models
	Views
	Example Data
	Normal Speed of the Pages to Optimize
	List of All Companies (Index View)
	Detailed View of a Single Company (Show View)

	HTTP Caching
	Last-Modified
	etag
	current_user and Other Potential Parameters

	The Magic of touch
	stale?
	Using Proxies (public)
	Cache-Control with Time Limit

	Fragment Caching
	Enabling Fragment Caching in Development Mode
	Caching the Table of the Index View
	Deleting the Fragment Cache
	Auto-expiring Caches
	Russian Doll Caching
	Change the Code in the View Results in an Expired Cache

	Cache Store
	MemCacheStore
	Other Cache Stores

	Page Caching
	Activating Page Caching in Development Mode
	Configure Your Web Server
	Caching the Company Index and Show View
	gz Versions
	The File Extension .html

	Deleting Page Caches Automatically
	Models

	Preheating
	Further Information

	Chapter 15: Action Cable
	Hello World Action Cable Example
	The Rails Application
	Setting Up jQuery
	Creating a Channel

	Chapter 16: Credentials
	Setup
	Editing Credentials
	Accessing a Key
	Using the Credentials on the Production Web Server

	Chapter 17: Active Storage
	Avatar Example

	Appendix A:Ruby on Rails Installation
	Ruby on Rails 5.2 on Debian 9.3 (Stretch)
	Preparations
	Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM
	Ruby on Rails 5.2 on macOS 10.13 (High Sierra)
	Xcode Installation or Upgrade
	Installing Ruby 2.5 and Ruby on Rails 5.2 with RVM

	Appendix B:Web Server in Production Mode
	Debian 9.3
	Build the System
	Nginx
	User Deployer
	Database
	PostgreSQL Installation
	Setting Up the Rails Environment for the User Deployer

	Setting Up a New Rails Project
	Production Database Configuration
	rails db:migrate
	rails assets:precompile
	Puma PID
	Puma init Script
	Nginx Configuration
	Loading Updated Versions of the Rails Project
	Performance

	Misc
	Alternative Setups
	What Else There Is to Do
	404 and Co.
	Multiple Rails Servers on One System

	The Cloud Platform as a Service Provider

	Appendix C:Further Rails Reading Material
	Index

